Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2856 WHIPTAIL LOOP; ; CBC2023-0028; Permit
Building Permit Finaled {cityof Carlsbad Commercial Permit Print Date: 01/28/2025 Job Address: Permit Type: Parcel#: Valuation: Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: Code Edition: Sprinkled: Project Title: 2856 WHIPTAIL LOOP, CARLSBAD, CA 92010-6708 BLDG-Commercial Work Class: 2091201400 Track#: $0.00 Lot#: Project#: Plan#: Construction Type: Orig. Plan Check #: Plan Check #: Tenant Improvement Permit No: Status: CBC2023-0028 Closed -Finaled Applied: 02/01/2023 Issued: 03/16/2023 Finaled Close Out: 01/28/2025 Final Inspection: 09/28/2023 INSPECTOR: Renfro, Chris Description: CAMSTON WRATHER RESOURCE RECOVERY FACILITY: HIGH PILE STORAGE RACKINGN (PHASE 2&3) Applicant: Property Owner: QUALITY MATERIAL HANDLING INCORPORATE JULIE DARR HAMANN OAK PROPERTIES LP 1000 PIONEER WAY 10156 SHARON CIR RANCHO CUCAMONGA, CA 91730-5300 (626) 812-9722 FEE BUILDING PLAN CHECK FEE (manual) EL CAJON, CA 92020 (619) 440-7424 BUILDING PLAN REVIEW -MINOR PROJECTS (LDE) BUILDING PLAN REVIEW -MINOR PROJECTS (PLN) FIRE F Occupancies Tl SB1473 -GREEN BUILDING STATE STANDARDS FEE STORAGE RACKS > 8 FT HIGH STRONG MOTION -COMMERCIAL (SMIP) Total Fees: $3,500.00 Total Payments To Date: $3,500.00 Contractor: QUALITY MATERIAL HANDLING INC 10156 SHARON CIR RANCHO CUCAMONGA, CA 91730-5300 (626) 812-9722 Balance Due: AMOUNT $959.06 $194.00 $98.00 $744.00 $1.00 $1,475.48 $28.46 $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any su bsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov ( City of Carlsbad COMMERCIAL BUILDING PERMIT APPLICATION B-2 Plan Check C.fr W2?-ao~ Est. Value IOI. G,$:::2 ,--tw.t ~ PC Deposit Date Job Address2856 Whiptail Loop E Carlsbad , CA. 92010 Suite: APN :209-120-14 ----- Tenant Name#: Dustin Caldwell Lot#: 17 Year Built: ------------------------------ Year Built: __ _ Occupancy: B/S-1 Construction Type: 111-B Fire sprinklers@'ESQNO A/C:QYESQNO BRIEF DESCRIPTION OF WORK: High Pile Storage Racking ------------------------------ D Addition/New: ___________ New SF and Use, _________ New SF and Use ______ SF Deck, SF Patio Cover, SF Other (Specify) ___ _ ~Tenant Improvement: 18,890 SF, Existing Use: _______ Proposed Use: ______ _ 504 • '6] 1::.-~...,__SF, Existing Use: Proposed Use: ______ _ D Pool/Spa: _____ SF Additional Gas or Electrical Features? ___________ _ D Solar: ___ KW, ___ Modules, Mounted: 0Roof 0Ground D Re roof: __________________________________ _ D Plumbing/Mechanical/Electrical D Other: ___________________________________ _ APPLICANT (PRIMARY CONTACT) Name: Juli Darr Address· 10156 Sharon Circle PROPERTY OWNER Name: Dustin Caldwell Address: 2856 Whiptail Loop E City: Carlsbad Phone: 360-820-9632 State:_C_A __ .Zip: 92010 City· Rancho Cucamonga State:_C_A __ .Zip: 91730 Phone·626-812-9722 ext 407 Email·Jdarr@qmhinc.com Email: Dustincaldwell@camstonwrather.com DESIGN PROFESSIONAL CONTRACTOR OF RECORD Name: Naresh Palkhiwala Business Name: Quality Material Handling Inc. Address: 1815 Wright Ave Address: 10156 Sharon Circle City:La Verne State:_C_A __ Zip:91750 City:Rancho Cucamonga state:Ca Zip:_9_17_3_0 ____ _ Phone: 909-596-1351 Phone: 626-812-9722 Email: Bob@sedinc.com Email: permits@qmhinc.com Architect State License: _C_2_66_0_8 _________ CSLB License #: 731100 Class: C34/D61 B Carlsbad Business License# (Required): _______ _ APPLICANT CERT/FICA TION: I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinan es and State laws relating to building construction. NAME (PRINT): _J_u_lie_o_a_rr ______ _ 163S Faraday Ave Carlsbad, CA 92008 Email: Building@carlsbadca.gov REV. 07/21 THIS PAGE REQUIRED AT PERMIT ISSUANCE PLAN CHECK NUMBER: ______ _ A BUILDING PERMIT CAN BE ISSUED TO EITHER A STATE LICENSED CONTRACTOR OR A PROPERTY OWNER. IF THE PERSON SIGNING THIS FORM IS AN AGENT FOR EITHER ENTITY AN AUTHORIZATION FORM OR LETTER IS REQUIRED PRIOR TO PERMIT ISSUANCE. (OPTION A): LICENSED CONTRACTOR DECLARATION: I herebyaffirm under penal tyof per jury that I am licensed under provisions of Chapter 9 ( commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect. I also affirm under penalty of perjury one of the following declarations {CHOOSE ONE): D 1 have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 of the Labor Code, for the performance of the work which this permit is Issued. PolicyNo. ______________________________________ _ -OR-[!)1 have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance Company Name: _1n_su_ra_n_ce_Co_m..:..pa_n..:..y_o1_1h_e_w_e_s1 ____________ _ Polley No. WSA505942001 Expiration Date: _21_112_J _____________ _ -OR-D Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person In any manner so as to become subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful and shall subject an employer to criminal penalties and civil fines up to $100,000.00, in addition the to the cost of compensation, damages as provided for In Section 3706 of the Labor Code, Interest and attorney's fees. CONSTRUCTION LENDING AGENCY, IF ANY: I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code). Lender's Name: Lender's Address: ____________________ _ CONTRACTOR CERT/FICA TION: I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. Note: If the person signing above is an authorized agent for the contractor provide a letter of au -OR - (OPTION B): OWNER-BUILDER DECLARATION: I hereby aff irm that I am exempt from Contractor 's License Law for the f ollowing reason: n I, as owner of the property or my employees with wages as their sole compensation, will do t he work and the structure is not intended or offered for sale (Sec. t....rd44, Business and Professions Code: The Contractor's license Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). -OR-□,. as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's license Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). -OR-□, am exempt under Business and Professions Code Division 3, Chapter 9, Article 3 for this reason: AND, D FORM B-61 "Owner Builder Acknowledgement and Verification Form" is required for any permit issued to a property owner. By my signature below I acknowledge that, except for my personal residence in which I must have resided for at least one year prior to completion of the improvements covered by this permit, I cannot legally sell a structure that I have built as an owner-builder if it has not been constructed in its entirety by licensed contractors./ understand that acapyof the applicable law, Section 7044 of the Business and Professions Code, Is available upon request when this application is submitted or at the following Web site: http: I I www./eginfo.ca.gov/ calaw. html. OWNER CERT/FICA TION: I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. NAME (PRINT): SIGN: __________ DATE: ______ _ Note: If the person signing above Is an authorized agent for the property owner include form B-62 signed by property owner. 1635 Faraday Ave Carlsbad, CA 92008 Ph: 442-339-2719 Fax: 760-602-8558 Email: Building@carlsbadca.gov 2 REV. 07/21 Building Permit Inspection History Finaled {cityof Carlsbad PERMIT INSPECTION HISTORY for (CBC2023-0028) Permit Type: BLDG-Commercial Work Class: Tenant Improvement Application Date: 02/01/2023 Owner: HAMANN OAK PROPERTIES LP Issue Date: 03/16/2023 Subdivision: CARLSBAD TCT#97-13-02 Status: Closed -Finaled Expiration Date: 03/26/2024 Address: 2856 WHIPTAIL LOOP CARLSBAD, CA 92010-6708 IVR Number: 46313 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 05/31/2023 05/31/2023 BLDG-14 212578-2023 Failed Chris Renfro Reinspection Incomplete Frame/Steel/Bolting/We lding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency No contractor on site and Not ready. Need No Fire inspection. NOTES Created By TEXT Created Date Angie Teanio 909-697-8452 Julie 05/30/2023 BLDG-Final Inspection 212579-2023 Failed Chris Renfro Reinspection Incomplete Checklist Item COMMENTS Passed BLDG-Building Deficiency No contractor on site and not ready. Need No Fire inspection BLDG-Plumbing Final No BLDG-Mechanical Final No BLDG-Structural Final No BLDG-Electrical Final No NOTES Created By TEXT Created Date Angie Teanio 909-697-8452 Julie 05/30/2023 09/27/2023 09/27/2023 BLDG-14 225292-2023 Failed Chris Renfro Re Inspection Incomplete Frame/Steel/Bolting/We lding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Contractor Not on site No NOTES Created By TEXT Created Date Angie Teanio 909-697-8452 Julie 05/30/2023 09/28/2023 09/28/2023 BLDG-11 225512-2023 Passed Chris Renfro Complete Foundation/Ftg/Plers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Special inspection of epoxy anchor Yes BLDG-Final Inspection 225513-2023 Passed Chris Renfro Complete Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-Structural Final Yes Tuesday, January 28, 2025 Page 1 of 2 PERMIT INSPECTION HISTORY for (CBC2023-0028) Permit Type: BLDG-Commercial Work Class: Tenant Improvement Status: Closed -Finaled Application Date: 02/01/2023 Owner: HAMANN OAK PROPERTIES LP Issue Date: 03/16/2023 Subdivision: CARLSBAD TCT#97-13-02 Expiration Date: 03/26/2024 IVR Number: 46313 Address: 2856 WHIPTAIL LOOP CARLSBAD, CA 92010-6708 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Tuesday, January 28, 2025 NOTES Created By Angie Teanio Status TEXT 909-697-8452 Julie Created Date 05/30/2023 Page 2 of 2 Structural Engineering $ Design, Inc. CBC2023-0028 2856 WHIPTAIL LOOP CAMSTON WRATHER RESOURCE RECOVERY FACILITY: HIGH PILE STORAGE RACKINGN (PHASE 2&3) 2091201400 2/1/2023 CBC2023-0028 1815 Wright Ave Verne, CA 91750 i.96.1351 Fax: .90.9.5.96.7186 Project Name : CAMSTON \.VRATHER l<ESOURCE RECOVERY FACILITY Prqject Number: 22-1129-4 Date : 01/25/23 Stree-t Address: 2856 WHIPT AIL LOOP EAST City/State : CARLSBAD, CA 92010 Scope of Work : STORAGE RACK 1/26/23 Structural Engineering & Design Inc. 1815 Wright Aye La \/erne CA 91750 Tel· 909 596 1351 fax: 909 596,7186 By: Nlhal Project: CAMSTON WRATHER Pro/ect #: 22-1129-4 TABLE OF CONTENTS Title Page ............................................................................................................. . Table of Contents .................................................................................................. . Design Data and Definition of Components ........................................................ .. Critical Configuration ....................... : ................................................................... .. Seismic Loads ...................................................................................................... . Column ................................................................................................................ .. Beam and Connector ........................................................................................... . Bracing ................................................................................................................ .. Anchors ................................................................................................................ . Base Plate ............................................................................................................ . Slab on Grade ...................................................................................................... . other Configurations ............................................................................................ . 1 2 3 4 5 to 6 7 8 to 9 10 11 12 13 14 -lf{ 5Uf'f'LY ROOM-Type A Pa,ae Z. of 4S' I 2/G/2022 Structural E~gineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel· 909 5961351 Fax: 909 596,7186 By: Nlhal Project: CAMSTON WRA THER Project #: 22-1129-4 Design Data 1) The analyses herein conforms to the requirements of the: 2019 CBC Section 2209 ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks ''2012 RMI Rack Design Manual" ASCE 7-16, section 15.5.3 ACI 318•14 2) Transverse braced frame steel conforms to ASfM A570, Gr.55, with minimum strength, Fy=55 ksl Longitudinal frame beam and connector steel conforms to ASfM A570, Gr.55, with minimum yield, Fy=55 ksl All other steel conforms to ASfM A36, Gr. 36 with minimum yield, Fy= 36 ksi 3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein. 4) All welds shall conform to AWS procedures, utlllzlng E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy Inspector. 5) Toe existing slab on grade Is 5.511 thick with minimum 4000 psi compressive strength. Allowable Soll bearing capacity Is 2000 psf. Toe design of the existing slab Is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for A5D level load criteria Definition of components - .• _'81Sa'lfl' -~;::~- +!,f ' l -•~• •• ,_,, ~· ;.::!r:; ~ . ,,:i&t7't-- ~= Fia.ttle Height t= ........ Beam Length ·-:ii' fjppt View1 Powo AJik ltonqitydjnaj\: Fl-amf SUPPLY ROOM-Type A <:bl.,im .El!lse Plate and Anchors L... f.-atm.J 1 Depth 7 S@dion .A: Ooss Aisle (Transverse ) Fr;ime f'lbrirontal a-ace Cla§onal &ace 1216/2022 ! i I I ~ Structural En9ineerin9 & Design Inc. 1a1s Weight Aye La Verne CA a11so Tel; 909.596.1351 fax; 909 59§.7186 By: Nihei Project: CAMSTON WRATHER Project#: 22-1129-4 Configuration & summary: Type A Selective Rack T 58" 192" + 58" 192" **RAQ( COLUMN REACT10NS ASDLOADS AXIAL Ol= 75 lb AXIAL LL=--7,500 lb SEISMIC AXIAL Ps=+/· 4,560 lb BASE MOMENT= 8. 000 In-lb +J::===tr 58" I Seismic Criteria Ss=0.921, Fa=l.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab &Soll Level I Load** Per Level 1 2 3 7,000 lb 4,000 lb 4,000 lb ,-l"-r --108" --,r · Beam Length Frame Type 3 42 In 192.0 In 108In Single Row Fv=55 ksl None Fv=55 ksl Fv=S5 ksl Fv=55 ksl Fv=55 ksl Fv=36 ksl 2 oer Base Beam SDCO 5B.0 In 58.0 In 58.0 in Description Mecalux 312 3.06"x2.69"x0.105" P=7575 lb, M=20514 In-lb None None Intlk 59E 5.93BHx2.75Wx0.059"Thk Lu=10B In I Capacity: 8023 lb/pr Lvl 1: 5 Tab OK I Mconn=13086 In-lb I Mcap=24677 In-lb Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Mdx C456 Sgl 1.7953x1.378x16ga(U31x) 7.283x5.118x0.394 I Fixity= 8000 In-lb 0.511 x 2" Embed Hlltf TZ #1917 Inspection Reqd (Net Seismic Uplift=1968 lb) 5.511 thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure Brace 24.0 In 24.0 In 24.0 In 24.0 In 76.0 In I Story Force I Story Force Transv Lona It. 4B4Ib 558Ib 837Ib 277 Ib 320 Ib 479 Ib Column Axial 7,575 lb 4,050 lb 2,025 lb I Column I Conn. Moment Moment 20,514 11# 11,5B1 "# 6,948 "# 13,086 "# 7,544 11# 3,490 11# STRESS 0.99-OK N/A 0.87-OK 0.53-0K 0.3-OK 0.71-OK 0.75-0K 0.967-0K 0.55-0K Beam Connector STab OK STab OK STabOK ** Load defined as product weight per pair of beams Total: 1 879 lb 1 076 lb Notes I INTLK 40E BEAM W/ 4TAB CONNECTOR OK @ LEVEL 2,3 5 UPf'LY ROOM-Type A Page lf of 'f:) I 2/G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750Jel: 909 596,1351 Fax: 909 596 7186 By: Nlhal Project: CAMSTON WRA THER Profect #: 22-1129-4 Seismic Forces Contlguratlon: Type A Select!ve Rad< Lat-eral analysis Is performed with regard to the requirements r:l the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load I ' V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Csl= Sds/R = 0.1842 Cs-max* Ip= 0.1842 . Cs2= 0.044*Sds V~n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 m=tt<: Elcv;,tloo Cs3= 0.5*51/R Ws= (0.67*P4lf1 * PL)+DL (RMI 2.6.2) = o.0424 .-----=...:1;..;;.o"'",2"-oo;;..;.;;.1b _______ __, Cs-max= 0.1842 Vtransv=Vt= 0.1842 * (150 lb+ 10050 lb) Base Shear Coeff=Cs= 0.1842 Etransverse::: 1,879 lb Umlt Stllms LeV111 Tf'ilnsverse seismic shear por upright Level PRODUCT LOAD P P*0.67*PRF1 DL hi wl*hl 1 7,000 lb 4,690 lb 501b 581n 274,920 2 4,000 lb 2,680 lb 501b 116 in 316,680 3 4,000 lb 2,680 lb 501b 1741n 475,020 sum: P=lSOOO lb 10,050 lb 150 lb W=10200 lb 1,066,620 Lon ltudlnal Downalsle Seismic Load Ss= 0.921 S1= 0.339 Fa= 1.200 Fv-= 1.961 Sds=2/3*Ss*Fa= 0.737 Sd1=2/3*S1 *Fv= 0.443 ca=0.4*2/3*5s*Fa= 0.2947 (Trans>efse, Braa!d Frame Dir.) R• 4.Q Ip= 1.0 PRF1= 1.0 Pallet Helght=hp= 48.0 In DL per Beam Lvl= 50 lb Fl Fl* hl+h /2 484.3 lb 39,713·# 557.9 lb 78,106-# 836.8 lb 165,686-# 1,879 lb I=283,505 Slmllar1y for longitudinal seismic loeds, using R•6.0 Ws= 0.67 * P~F2 * P) + DL PRF2= 1.0 Cs1=Sdl/(T*R)= 0.1055 = 10,200 lb (LongltUdlnal, Unbraced Dir.) R• 6.0 Cs2= 0.0324 Cs=Cs-max*Ip= 0.1055 T• 0.70 sec Cs3= 0.0283 Vlong= 0.1055 * (150 lb+ 10050 lb) Cs-max= 0.1055 Elongltlldlnal= 1 076 lb Llm/tS16-Lo...,~/t. -lc-,_.•prlgl,t Level PRODUC LOAD P P*0.67*PR!2 DL hi wl*hl Fl fmoU!kw 1 7,000 lb 4,690 lb 50 lb 58 In 274,920 277.3 lb 2 4,000 lb 2,680 lb 501b 116 in 316,680 319.5 lb 3 4,000 lb 2,680 lb SO lb 174 In 475,020 479.2 lb sum: ===========10=,0=S=O=lb====l=S=O =lb==W====10=2=0=0 =lb===l=,0=6=6=,6=20======1='=07=6=ib========== SUPPLY ROOM-Type A Page ~, (of 't ') I 2/f,/2022 Foundamental Period of V.ibration (Lonld tudinal) Per FEMA 460 Appendix A -Development of An Analytical Modol for the Dlsplacoment Based Seismic Design of Storap;e Racks in Their Down Aisle Direction Section 6. 5. 1 :r, ,•'1Jt ·----"'-----.. I • N 8t)+N, k:1t~ Where: Wpi = hpi g = NL ,.., kc = kbe ,.., kb= kce = Ne = Nb = kbo = kce = kb= kc = L = H = lb= le= E = weight of the ith pallet suppoi·tod by the storage rack the elevation of the center of p;ravitv of the ith pallet with respect to the base of tho storap;e rack gravitational acceleration the number of loaded levels the rotational stiffness of the connector the flexral rotational stiffness of the beam-end the rotational stiffness of the base plato the flexural rotational stiffness of the base upright-enu the number of beam-to-upright connections the number of base plate connections 6Eib / L 4Ei c / H Eic / H Mmax/ 0 max the clear span of the beams the clear height of the uprip;ht the moment of inertia about the bending axis of each beam the moment of inortia of each base upright Young's Modulus of the beams Tl= 2.07626 # of levels min# of bays Ne Nb kc kbe kb kce lb L l e II E Level hpi l 2 3 4 5 3 l 12 4 428.671 7397.94 576. 769 2303.03 Wpi 4.514 in· 4 100 ln 1.132 in· 4 58 in 29!500 ks i 82 7 140 4 198 4 0 0 0 0 Structural E~gineering & Design Inc. 1815 Wrtgbt Aye La Verne CA 91750 Tel· 909.596.1351 fax; 909.596.7186 By: Nihal Project: CAMSTON WRATHER Project#: 22-1129-4 Downalsle Seismic Loads Configuration: Type A Selective Rack Detennine the story moments by applying portal analysis. The base plate Is assumed to provide partial fixity. Seismic Story Forces Vlong= 1,076 lb Vcol=Vlong/2= 538 lb Fl= 2771b F2= 320 lb F3= 479 lb Seismic Story Moments Typfql Fr.i,ne ma<!c Tnbut~ty att.1 of two columns· of r.ick fu.,ne ""'-, _ _ _ _ _ _, ~ li2J ~ EJ(G :~ ' ' .. 1£J C3 EJ:G 1£J:G I I -~□~:GEJ:G ... _______ .. ~ ~ Conceotuel Svstem Typlql Fr.imc made o( two columns ,-✓----, ~ Mbase-max= 8,000 In-lb Mbase-v= (Vcol*h1eff)/2 <=== Default capadty h1-eff= h1 -beam dip height/2 = 53 In = 14,257 In-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 8,000 In-lb M 1-1 = [Vcol * h 1eff]-Mbase-eff = (538 lb * 53 ln)-8000 In-lb = 20,514 in-lb Msels= (Mupper+Mlower)/2 Msels(1-1)= (20514 In-lb+ 11581 ln-lb)/2 = 16,048 In-lb LEVEL hi Axial Load 1 581n 7,575 lb 2 581n 4,050 lb 3 58in 2,025 lb M 2-2= [Vcol-(F1)/2] * h2 = [538 lb -159.8 lb]*58 in/2 = 11,581 In-lb Msels(2-2)= (11581 in-lb + 6948 ln-lb)/2 = 9,265 in-lb Summary of Forces Column Moment"'* Mselsmlc** Mend-flxl 20,514 In-lb 16,048 In-lb 2,646 In-lb 11,581 In-lb 9,265 In-lb 1,512 In-lb 6,948 In-lb 3,474 In-lb 1,512 in-lb ,I Mconn= (Mselsmlc + Mend-fbdty)*0.70*rho Mconn-allow(5 Pin)= 24,677 In-lb **all moments based on limit states level loading SUPPLY ROOM-Type A Page b of l.tJ Vcol 7~'[f:::::=:=:=:=:tl!., h2 h1 .: Beam to Column Elevation rho= 1.0000 Mconn** Beam Connector 13,086 In-lb 5 Tab OK 7,544 In-lb STab OK 3,490 In-lb STabOK I 2/G/2O22 COL Structural E 'ngineering & Design Inc. 1s15 Wrtgbt Aye La Yeroe QA 91750 TeJ: 909,596 1351 fax: 909,596 7186 By: Nihal Project: CAMSTON WRATHER Project#: 22-1129-4 . Column (Longitudinal Loads) Configuration: Type A Selective Rack Section Properties Section: Mecalux 312 3.06"x2.69"x0.105" Aeff = 0.782 ln"2 Ix = 1.132 ln"4 Sx = 0.740 ln"3 rx = 1.203 In Qf= 1.67 Iy = 0.636 ln"4 Sy = 0.422 in" 3 ry = 0.902 In Fy= 55 ksl Kx = 1.7 r 3.060 In -1 Cmx= 0.85 E= 29,500 ksl Loads Considers loads at level 1 COLUMN DL= 75 lb Critical load cases are: RMI Sec 2.1 Lx = 55.0 in Ky= 1.0 Ly= 24.0 In Cb= 1.0 T 0.105 In 2,690 In J_ COLUMN PL= 7,500 lb Meal= 20,514 In-lb Sds= 0.7368 1+0.105*Sds= 1.0774 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 Load case 5:: (1+0.105*Sds)D + 0.75*{1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E)<= 1.0, ASD Method axial load coetf: 0. 7891548 * P seismic moment coeff: 0.5625 * Meo/ Load case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method axial load cdeff: 0.66721 seismic moment coeff: 0.7 * Meo/ Moment=Mx= 0.7*rho*Mcol B= 0.7000 mo:::: 1.0000 Axial Analysis By analysis, Load case 6 governs utilizing loads as such Axial Load=Pax= 1.103152*75 lb+ 0.953152"0.7*7500 lb = 5,087 lb = 0.7 * 20514 ln·lb = 14,360 in·lb Kxlx/rx = 1.7*55.031"/1.203" KyLy/ry = 1 *24"/0.9021" = 77.8 = 26.6 Fe= n"2E/(KL/r)max"2 Fy/2= 27.5 ksl = 48.lksl Pn= Aeff*Fn Qc= 1.92 = 30,718 lb P/Pa= 0.32 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*µx) s 1.0 P/Pao + Mx/Max s 1.0 Pno= Ae*Fy = 0.782 ln"2 *55000 psi = 42,999 lb Pao= Pno/Qc = 42999lb/l.92 = 22,395 lb Fe> Fy/2 Fn= Fy(1-Fy/4Fe) = 55 lcsl*[l-55 ksl/(4*48.1 ksl)] = 39.3 ksl Pa= Pn/Qc = 30718 lb/1.92 = 15,999 lb Myield=My= Sx*Fy = 0.74 ln"3 * 55000 psi = 40,689 In-lb Max= My/Qf Per= n" 2EI/(KL)max" 2 = 40689 in-lb/1.67 = 24,365 In-lb µx= {1/(1-(Qc*P/Pcr)]}"-1 = {l/[1-(1.92*5087 lb/37655 lb)]}"-1 = 0.74 Combined Stresses = n"2*29500 ksl/(l.7*55.031 ln)"2 = 37,655 lb (5087 lb/15999 lb)+ (0.85*14360 ln-lb)/(24365 in-lb*0.74) = (5087 lb/22395 lb)+ (14360 ln-lb/24365 In-lb) = 0.99 0.82 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ C5-2) ** For comparison, total column stress computed for load case 5 is: 92. 0% rinq loads 5999. 4633 lb Axial and M= 10769 In-lb 5UF'F'LY R.OOM-Type A Page 1 of tt:-5" 12/G/2022 Structural Engineering & Design Inc. 1015 Wright Ave La Verne CA 91750 Je1· 909,596 1351 fax· 909 596 z10e By: Nlhal Project: CAMSTON WRATHER BEAM Conttguratlon: Type A selective Rack DETERMINE ALLOWABLE MOMENT CAPACITY Al Check compression flange for local buckling (B2.ll W= C -2*t ·2*r = 1.75 in -2*0.059 In -2*0.059 In = 1.5141n w/t= 25.66 l=lambda= [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = (1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange Is fully effective Bl check web for local buckling per section b2.3 fl{comp)= Fy*(y3/y2)= 51.79 ksl f2(tension)= Fy*(y1/y2)= 103.55 ksi Y= fl/fl = ·1.999 k= 4 + 2*(1-Y)"3 + 2*(1·Y) = 63.94 flat depth=w= y1 +y3 Eq. B2.3-5 Eq. 82.3·4 Eq. B2.1-4 Eq. B2.1-1 = 5. 702 in w/t= 96.6440678 • OK l=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5 = [1.052/(63.94)"0.5] * 5.702 * {51.79/29500)"0.5 = 0.S33 < 0.673 be=w= 5. 702 in bl= be(3-Y) = 1.141 b2= be/2 = 2.85 In bl+b2= 3.991 in . > 1.90092 in, Web is fully effective Determine effect of cold working on steel yield point CEYal per section AZ,2 Fya=> C*Fyc + (1-C)*Fy . (EQ A7.2·1) Lcorner=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 in m= 0.192*(Fu/Fy)-0.068 = 0.1590 C= 2*Lc/(Lf+2*Lc) = 0.155 in (EQ A7.2-4) Be= 3.69*(Fu/Fy) -0.819*{Fu/Fy)"2 -1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksi Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113,84 ksf (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksi Eq B2.3-2 (EQ A7.2-3) if F= 0.95 Then F*Mn=F*Fya*Sx=j 41.17 ln-k depth Project #: 22-1129-4 t--2.751n t1,751n { T 1,625 In 5.G38 In 1 ~ 0.059 In Beam= Intlk 59E 5 938Hx2 75ytx0 059''Thk . I yl Ycg _l Ix= 4.514 in"4 Sx= 1.467 in"3 Ycg= 3.919 In t= 0.059 in Bend Radius=r= 0.059 in Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksi E= 29500 ksf top ftange=b= 1.750 in bottom flange= 2.750 in Web depthc 5 O'JO in __:_: Fy yl= Ycg-t-r= 3.801 in y2= depth-Veg= 2.019 in y3= y2-t-r= 1.901 In Structural 'Engi'neering & Design Inc. By: Nlhal 1815 Weight Aye La Verne CA 91750 Jel· 909 596 1351 fax· 909 596 Zl 66 Project: CAMSTON WRATHER BEAM RMI Section 5.2, PT II Section ConMguratton: Type A Selective Rael< Beam= Intlk 59E 5.938Hx2.75Wx0.059''Tok Ix=Ib= 4.514 ln"4 Sx= 1.467 ln"3 t= 0.059 In Fy=Fyv= 55 ksl Fu=Fuv= 65 ksl Fya:::: 58.6 ksl E= 29500 ksl F= 225.0 L= 108 In Beam Level= 1 P=Product Load= 7,000 lb/pair D=Dead Load:::: 50 lb/pair T S.938 In t-2,751n t1.751n 4 Project #: 22-1129-4 1,625 In _j__ 1. Check Bending Stress Allowable Loads Mcenter=PMn= W*L *W*Rm/8 1~ 0,059 In W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.12S)*P FOR DL=20/o of PL, W= 1.599 RMI 2.2, Item 8 Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L}] mor11,m1111m,1om1111111m 1 -(2*225*108 ln)/[(6*29500 ks1*4.5136 ln"3)+(3*225*108 in)] = 0.944 If F= 0.95 Then F*Mn=F*Fya*Sx= 81.74 in-k Thus, allowable load ' ...... per beam palr=W= F*Mn*S*( # of beams)/(L *Rm*W) Beam Lengtli -= 81.74 ln-k * 8 * 2/(1081n * 0.944 * 1.599) = 8,023 lb/pair allowable load based on bending stress a Iii Mend= W*L *(1-Rm)/8 = (8023 lb/2) * 108 In * (1-0.944)/8 = 3,033 In-lb @ 8023 lb max allowable load = 2,646 In-lb @ 7000 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + l0*E*Ib) Allowable Deflection= 1./180 = 1 -(4*225*108 ln)/[(5*225*108 ln)+(10*29500 ksf*4.5136 ln"4)] = 0.600 In = 0.933 In Deflection at Imposed Load= 0.524 In If Dmax= 1./180 Based on L/180 oenection Criteria and Dss= 5*W*L"3/(384*E*Ib) L/180= 5*W*L"3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L "2*Rd) = 384*4.5136 ln"4*2/[180*5*(108 ln)"2*0.933) = 10,441 lb/pair allowable load based on deflection limits Thus, based on the least capacity of Item 1 and 2 above: /pair Imposed Product Load= 7,000 lb/pair • <,I Beam Stress= Beam at Level 1 Structural ' Engineering & Design Inc. 1815 Wrjaht Aye La Verne CA 91750 Tel· 909 5961351 Fax· 909 596 7186 By: Nlhal Project: CAMSTON WRATHER BeAM Contlguratlon: Type A Selective Rack DETERMINE ALLOWABLE MOMENT CAPACITY A} Check comoresston flange for local buckllna cs2.1) W= C • 2*t -2*r = 1.75 In -2*0.059 In -2*0.059 in = 1.514 In w/t= 25.66 !=lambda= [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange Is fully effective B} check web for local buckling oer section b2.3 fl(comp)= Fy*(y3/y2)= 50.23 ksl f2(tenslon)= Fy*(y1/y2)= 101.99 ksi V= f2/f1 = -2.03 k= 4 + 2*(1-V)"3 + 2*(1-V) = 65.70 flat depth=wc: yl +y3 Eq. 82.3-5 Eq. 82.3-4 Eq. B2.1-4 Eq. 82.1·1 = 3.764 in w/t= 63.79661017 OK !=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 = (1.052/(65.7)"0.5J * 3.764 * (50.23/29500)"0.5 "' 0.342 < 0.673 be=w= 3.764 In bl= be(3-V) = 0.748 b2= be/2 = 1.88 In b1+b2= 2.628 in > 1.242 In, Web Is fully effective Determine effect of cold working on steel yield point <Eva} oer section A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcomer=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 In C= 2*Lc/(Lf+2*Lc) = 0.155 In Eq 82.3-2 Profect #: 22-1129-4 2.75 In ts,n + r 1,625 in 4.0001n l~ 0,059 In Beam= Intlk 40E 4Hx2 75Wx0 059"Thk I Ix= 1.667 in"4 Sx= 0.783 ln"3 Veg= 2.640 In t= 0.059 in Bend Radlus=r= 0.059 In Fy=Fyv= 55.00 ksi Fu=Fuv== 65.00 ksl E= 29500 ksl top flange=b= 1.750 In bottom flange= 2.750 In Web depth= 4.('nn In .__ Fy - m m= 0.192*(Fu/Fy) -0.068 = 0.1590 (EQ A7.2·4) dop411 Be= 3.69*(Fu/Fy) • 0.819*(Fu/Fy)"2 • 1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be* Fy/(R/t)"m (EQ A7.2-2) =; 78.485 ksi Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Fya*Vcg/(depth -Veg) = 113.84 ksi (tension stress at bottom) OJeck allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*·2*t = 2.514 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) (EQ A7.2-3) = 29.54 ksi if F= 0.95 Then F*Mn=F*Fya*Sx=j 21.96 in-k yl= Vcg-t-r= 2.522 In y2= depth-Veg= 1.360 In y3= y2-t-r= 1.242 In Structural 'Engi'neering & Design Inc. 1815 Wright Ave La Verne CA 91750 Jel· 909 596 1351 Fax· 909 596 7166 By: Nihal Project: CAMSTON WRATHER BEAM Cont1guratlon: Type A selective Rad< RMI Section 5.2, PT II Section Beam= Intlk 40E 4Hx2.75Wx0.059"Thk Ix=Ib= 1.667 ln''4 Sx= 0.783 ln"3 t= 0.059 In Fy=Fyv= 55 ksl Fu=Fuv= 65 ksl Fya= 58.6 ksl E= 29500 ksl F= 225.0 L= 108 in Beam Level= 2 P=Product Load= 4,000 lb/pair D=Dead Load= 50 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1,2*0 + 1.4*P+1.4*(0.12S)*P FOR DL=2% of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)] ·RMI 2.2, item 8 1 -(2*225*108 ln)/[(6*29500 ksl*l.667 ln"3)+{3*225*108 In)] = 0.868 If F= 0.95 Then F*Mn=F*Fya*Sx= 43.59 ln-k Thus, allowable load per beam palr=W= F*Mn*8*(# of beams)/(L *Rm*W) = 43.59 in-k * 8 * 2/(1081n * 0.868 * 1.599) = 4,653 lb/pair allowable load based on bending stress Mend= W*L*(l-Rm)/8 = (4653 lb/2) * 108 in* (1-0.868)/8 = 4,146 In-lb @ 4653 lb max allowable load = 3,564 In-lb @ 4000 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + lO*E*Ib) = 1 -(4*225*108 ln)/[(5*225*108 ln)+(10*29500 ksl*l.667 ln"4)] = 0.842 In If Dmax= L/180 Based on 1./180 Deflection otter/a and Dss= 5*W*L "3/(384*E*Ib) L/180= 5*W*L"3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L "2*Rd) = 384*1.667 ln"4*2/[180*5*(108 ln)"2*0.842) ,. = 4,273 lb/pair allowable load based on deflection 1/mits Project #: 22-1129-4 2.751n tsln + T 1.625 In 4.000 In l~ 0.059 In mon11m11mo1111m1111111m ------------- I I I I I I : :.: : : : liheam Length - a ,. Allowable Deflection= L/180 = 0.600 In Deflection at imposed Load= 0.562 In '" a Thus, based on the least capacity of Item 1 and 2 above: Allowa e oad= 4,273 lb pair Imposed Product Loadc 4,000 lb/pair Beam Strano . Beam at Level 2 Structural ' Engineering & Design Inc. 1815 Wciqbt Aye La Verne CA 91750 Iel· 909 596 1351 fax-909 596 7186 By: Nlhal Project: CAMSTON WRATHER Project#: 22-1129-4 5 Tab Beam to Column Connection Configuration: Type A Selective Rack Mconn max= {Mselsmlc + Mend-flxlty)"'D.70"'Rho = 13,086 In-lb Load at level 1 Connector Type= 5 Tab Shear Capacity of Tab Tab Length= 0.50 in Ashear= 0.5 In * 0.135 In = 0.0675 in" 2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi *· 0.0675in"2 = 1,485 lb Bearing capacity of Tab tcol= 0.105 in Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearlng= alpha * Fu * tab length * tcol/Omega = 2.22 * 65000 psi * 0.5 In * 0.105 ln/2.22 = 3,413 lb > 14851b Moment capacity or Bracket Edge Dlstance=>E= 1.00 In Tab Spacing= 2.0 In 10" C= Pl+P2+P3+P4+P5 tcllp= 0.135 in = Pl+Pl *(6.5"/8.S")+Pl "'(4.5"/8.5")+Pl "'(2.5"/8.5"}+Pl "'(0.5"/8.5") = 2.623"' Pl Mcap= Sdip * Fllending = 0.1832 in"3 * 0.66 * Fy = 6,650 In-lb Pcllp= Mcap/(2.623 * d) = 6650.16 ln-lb/(2.623 * 0.5 In) = 5,071 lb C*d= Mcap = 2.623 Thus, Pl= 1,485 lb P1 Fy= 55,000 psi Sdip= 0.183 ln"3 d= E /2 = 0.50 in Mconn-aliow= Pl *8.5" + Pl *(6.5"//8.5")*6.5" + Pl *(4,5"/8.5")*4,5" + Pl *(2.S"/8.5")*2.5" + Pl *(0.5"/8.5")*0.5" = 1485 LB*[B.5"+(6,5"/8.5")*6.5"+(4,5"/8.5")*4.5"+(2.5"/8.5")*2.5"+(0.5"/8.5")*0.5"] = 24,677 In-lb > Mconn max, OK Stress= 0,53 SUF'F'LY ROOM-Type A Page 1, I of LfS 1 • 0 I 2/G/2022 Structural Engineering & Design Inc. 1815 Wright Ave I a Verne CA 91 z50 Iel· 909 596 1351 fax· 909 596 7186 By: Nihal Project: CAMSTON WRATHER Project#: 22-1129-4 4 Tab Beam to Column Connection Configuration: Type A Selective Rack Mconn max= (Mselsmlc + Mend·flxity)*0.70*Rho = 7,544 In-lb Load at level 2 Connector Type= 4 Tab Shear capacity of Tab Tab Length= 0.50 In Ashear= 0.5 in * 0.135 in = 0.0675 in"2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi* 0.0675In"2 = 1,485 lb Bearing capacity of Tab Fy= 55,000 psi 4 /8" tcol= 0.105 In Omega= 2.22 Fu= 65,000 psi a= 2.22 Bearing Length= 0)i0Q0 in ,,1 Pbearlng= alpha * Fu * tab length * tool/Omega = 2.22 * 65000 psi * 0.5 in * 0.105 ln/2.22 = 3,413 lb > 1485 lb Moment capacity of Bracket Edge Distance=E= 1.00 In Tab Spacing= 2.0 In C= P1+P2+P3+P4 tcllp= 0.135 in = Pl+Pl *(4.5"/6.S")+Pl *(2.5"/6.S")+Pl *(0.5"/6.5") = 2.154"' Pl Mcap= Scllp * Fbending = 0.1832 ln"3 * 0.66 "' Fy = 6,650 in-lb Pclip= Mcap/(2.154 * d) = 6650.16 ln·lb/(2.154 * 0.5 In) = 6,175 lb C*d= Mcap -= 2.154 Thus, Pl= 1,485 lb Mconn-allow= [Pl *6.5"+Pl *(4.5"/6.5")*4.5" +Pl *(2.5"/6.5")2.5" +Pl *(0.5"/6.5")*0.5"] = 1485 LB*[6.5" +( 4.5"/6.5")*4.5" +(2.5"/6.5")*2.5" +(0.S"/6.5")*0 .5"] = 15,764 In-lb > Mconn max, OK Stress= 0.48 SUPPLY ROOM-Type A Fy= 55,000 psi Sclip= 0.183 ln"3 d= E/2 = 0.50 in I 2/G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909 596,1351 fax: 909 596,7186 By: Nlhal Project: CAMSTON WRATHER Project#: 22-1129-4 Transverse Brace Configuration: Type A Selective Rack Section Properties Diagonal Member= Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 1nA2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Bottom Panel Hetght=H= 56.0 In Frame Depth=D= 42.0 In Column Wldth=B= 2.7 in Dia onal Member -+0 Area= 0.259 1nA2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Clear Depth=D-B*2= 36.6 In X Brace= NO rho= 1.00 I Load case 6: : (W l04¥.Sds7fJ + l(0.85+0.14Sds)*B*P + [0.7*rho*EJ<= 1.0, ASD Method Vtransverse= 1,879 lb Vb,.Vtransv*0.7*rhoa 1879 lb * 0.7 * 1 = 1,315 lb Ldlag= [(D·B*2)A2 + (H-6")A2]"1/2 = 62.0 In Pmax= V*{Ldlag/D} * 0.75 = 1,456 lb (kl/r)= (k * Ldiag)/r min = (1 x 62 in /0.449 In ) = 138.1 In Fe= plA 2*E/(kl/r)" 2 = 15,266 psi axial load on dla onal brace member Since Fe<Fy/2, Pn= AREA*Fn = 0.259 ln"2 * 15266 psi = 3,949 lb Pallowc Pn/Q = 3949 lb /1.92 = 2,057 lb Pn/Pallow= 0.71 Horizontal brace Vb=Vtransv*0.7*rho., 1,315 lb (kl/r)= (k * Lhoriz)/r min = (1 x 42 in) /0.449 in = 93.5 In Since Fe>Fy/2, Fn=Fy*(l-fy/4fe) = 32,293 psi Pn/Pallow= 0.30 5UPF'LY ROOM-Type A <= 1.0 OK <= 1.0 OK Fn= Fe = 15,266 psi B # J'tpfcal Panel Conlklumllon Fe= pi" 2* E/(kl/r)" 2 = 33,304 psi Pn= AREA*Fn = 0.2591n"2*32293 psi = 8,354 lb Page l O of i(-) Fy/2= 27,500 psi Pallow= Pn/Qc = 8354 lb /1.92 = 4,351 lb I 2/G/2022 Structural En9ineerin9 & Design Inc. 1815 Wright Ave La Verne CA 91750 Tei• 909,596.1351 Fax: 909 596.7186 By: Nlhal Project: CAMSTON WRATHER Project#: 22-1129-4 Slngle Row Frame Overturning Configuration: Type A Selective Rack Loads Critical Load· case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho ' Vtrans=V=E=Qe= 1,879 lb DEAD LOAD PER UPRIGHT=D= 150 lb PRODUCT LOAD PER UPRIGHT=P= 15,000 lb Papp=P*0.67= 10,050 lb Wst. LC1=Wst.1=(0.75264*D + 0.75264*Papp*1)= 7,676 lb Product Load Top Level, Plop= 4,000 lb· DL/LVI= 50 lb Seismic OVt based on E, I:(Fl*hl)= 191,551 In-lb helaht/deoth ratio= 4.1 In A) Fullv Loaded Rack Load case 1: Movt= I:(Fl*hi)*E*rho = 191,551 in-lb . Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0]526 B= 'f.0000 rho= 1.0000 Frame Depth=Df= 42.0 In Htop-lvl=H= 174.0 In # Levels= 3 # Anchors/Base= 2 ho-48.0 In h=H+ho/2= 198.0 In Mst= Wstl * Df/2 = 7676 lb * 42 ln/2 = 161 196 in-lb SIDE ELEVATION T= (Movt-Mst)/Df = (191551 In-lb -161196 ln-lb)/42 in = 723 lb Net Upllft per Column I Net Seismic Uplift= 723 lb strenath Level B) Too Level Loaded Onlv Load case 1: 0 -Vl=Vtop= Cs* Ip* Ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho = 0.1842 * 4000 lb = 148,290 in-lb = 737 lb T= (Movt-Mst)/Df Vleff= 737 lb Crltlcal Level= 3 = (148290 In-lb -65593 ln-lb)/42 in V2=Vot. = Cs*Ip*D Cs*Ip= 0.1842 = 1,969 lb Net Uplift per Column = 281b Mst= (0.75264*0 + 0.75264*ptop*1) * 42 ln/2 = 65 593 in-lb I Net Seismic UPllft= 1,969 lb Strenath Level Anchor Check (2) 0,5" x 2" Embed Hlltl TZ anchor(s) per base plate. Special Inspection Is required per #1917. Fully Loaded: Top Level Loaded: Pullout capaclty=Tcap= 970 lb L.A. City Jurisdiction? NO Shear capaclty=Vcap= 1,250 lb Phi= 1 (361 lb/970 lbY'l + (469 lb/1250 lb)"l = (984 lb/970 lb)"l + (184 lb/1250 lb)"l = 5Uf'f'LY ROOM-Type A Page l / of'-f S 0.75 1.16 Tcap*Phl= 970 lb Vcap*Phl= 1,250 lb <= 1.2 OK <= 1.2 OK I 2/G/2022 Structural ' .Engineering & Design Inc. 1815 Wrjaht Aye La Verne CA 91750 Tel· 909,596.1351 Fax: 909 696 7186 By: Nihal Project: CAMSTON WRA THER Project#: 22-1129-4 Base Plate Configuration: Type A Selective Rack Section Baseplate= 7 .283x5.118x0.394 Eff Width=W = 7.28 In Elf Depth=D = 5.12 In Mb Column Wldth=b = 3.06 In a= 2.64 in Anchor c.c. =2*a=d = 5.28 in N=# Anchor/Base= 2 Fy = 36,000 psi I b 1-L Column Depth=dc = 2.69 In ---w L = 2.11 in Plate Thlckness=t = 0.394 in Powaalsle Elevation Down Aisle Loads Load case 5: : (1+0.l0S*SdsJD + 0.75*[(1.4+0.14Sds)*B*P + 0.75*/0.7*rho*El<= 1.0, ASD Method COLUMN DL= 75 lb Axlal=P= 1.077364 * 75 lb+ 0.75 * (1.503152 * 0.7 * 7500 lb) COLUMN PL= 7,500 lb = 5,999 lb Base Moment= 8,000 In-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0774 = 8000 In-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.5032 ,-------=___:.4,<.::2:;.;;0...:.0...:.in:..:.-...:.lb;;_ ______________ _, B= ~-n ~ Axlal Load P = 5,999 lb Mbase=Mb = 4,200 In-lb Axial stress=fa = P/A = P/(D*W) Ml= wLA2/2= fa*L "2/2 = 161 psi = 359 in-lb Moment Stress=fb = M/S = 6*Mb/[(D*B,,._2] = 92.8 psi Moment Stress=fbl = fb-fb2 = 39.0 psi M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*LA2 = BO In-lb S-plate = {l)(t"2)/6 = 0.026 JnA3/in fb/Fb = Mtotal/[(5-plate)(Fb)] 0.75 OK Tanchor = (Mb-(Plapp*0.75*0.46)(a))/[(d)*N/2] = -3,043 lb No Tension Moment Stress=fb2 = 2 * fb * L/W = 53.8 psi M2= fbl *L" 2)/2 = 87 In-lb Mtotal = Ml +M2+M3 = 526 In-lb/in Fb = 0.75*Fy = 27,000 psl F'p= 0.7*Pc = 2,800 psi Tallow= 970 lb OK OK Cross Alsle Loads o-_ ,_,_,, RHJ s« 2.1, -4: r1+o.11Sds)Dt + r1+o,14SDS)P!. •o.1S+a.•o.1S <• 1.0. ASD i'/olhod Ched< uplift load on Baseplate Efft Effe Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatlc= 5,999 lb Movt*0_.75*0.?*mo= 100,564 In-lb Frame Depth= 42.0 In P=Pstatlc+Pseismic= 8,394 lb b =Column Depth= 2.69 In L =Base Plate Depth-Col Depth= 2.11 In fa -= P/A = P/(D*W) = 225 psi Sbase/in = (1){t"2)/6 = 0.026 In" 3/ln fb/Fb = M/[(5-plate){Fb)] Pselsmlc= Movt/Frame Depth = 2,394 lb M= wL,,... 2/2= fa*L" 2/2 = 502 In-lb/In Fbase = 0.7S*Fy = 27,000 psi en the base plate conllguratlon a>nslsts d two anchor bolts located on either side the oolutM and a net uplift fo<ce exists, the minimum base plate thldmess II be determined based on a design bending moment In the plate equal o the uplift force on one anchor times 1/2 the distance from center11ne of the anchor to the nearest edge of the rack column" !.-c ~l__,{" ~rPIB ~ ~ Uplift per Column= 1,968 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 9B4 lb c= 2.11 In Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.72 OK = 1,039 in-lb Splate= 0.132 ln"3 fb Fb *0.75= 0.218 OK SUPPLY ROOM-TYF'e A Page l 2.of lff I 2/G/2022 Structural En9ineerin9 & Design Inc. 1s15 Weight Ave La Verne, CA 91750 Jel· 909 596,1351 fax· 909 596.7186 By: Nihei Project: CAMSTON WRATHER Project#: 22-1129-4 Slab on Grade Configuratioo: Type A Selective Rack L SLAB ELEVATION a Baseplate Piao View ~ re= 4,000 psi tslab=t= 5.5 in teff= 5.5 In . phj![i9J;ac .. M SQil fsoll= 2,000 psf Movt= 191,551 In-lb Frame depth= 42.0 In Sds= 0.737 0.2*Sds= 0.147 Base Plate Effec. Baseplate wldttl=B• 7 .28 In Effec. Baseplate OepthcD0 5.12 in wldth=a= 3.06 in depth=b= 2.69 In r\;:~ :{-it .\~,a., ·n .t;M:~ .,..., .. ~1'~"-· j3=B/D= 1.423 Pc"0.5= 63.20 psi Column Loads DEAD LOAD=D= 75 lb per column unfilctrJred ASD load PRODUCT LOAD=P= 7,500 lb per column unfilctrJred ASD load Papp= 5,025 lb per column P-seismlc=E= (Movt/Frame depth) = 4,560 lb per column unfactored limit state load B=i' ct;· rho=(, Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 o. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 220.83 ln"2 Fpunctl= [(4/3 + 8/(3*13)] * A-*(F'c"0.5) = 121.6 psi Fpunct2= 2.66 * A, * (Pc"0.S) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=OL+PL+E= 12,150 lb Asoll= (Pse*144)/(fsoll) = 875 ln"2 X= (L-y)/2 = 7,0 in Fb= S*(phl)*(rc)"0.S = 189.74 psi SUPPLY ROOM-Type A midway dist face of column to edge of plate=c= 5.17 in midway dist face of column to edge of plate=e= 3.90 In Load case 1) (1.2+0.2Sds)O + (1.2+0.2Sds)*B*P+ rho*E RMI sec 2.2 EQTN s = 1.34736 * 75 lb + 1.34736 * 0.7 * 7500 lb+ 1 * 4560 lb = 11,735 lb _Load case 2) (0.9-0.2Sds)O + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 7 = 0.75264 * 75 lb+ 0.75264 * 0.7 * 5025 lb+ 1 * 4560 lb = 7,264 lb Load Case 3) 1.2*0 + 1.4*P = 1.2*75 lb + 1.4*7500 lb = 10,590 lb Load Case 4) 1.2*0 + 1.0*P + 1.0E = 12,150 lb Effective Column Load.=Pu= 12,150 lb per column L= (Asoll)"0.5 = 29.58 In M= w*x"2/2 = (fsoll*x"2)/(144*2) = 344.5 In-lb Page l3 of45 fv/Fv= Pu/(Apunct*Fpunct) = 0.545 < 10K y= (c*e)"0.S + 2*t = 15.5 In 5-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) = 0.360 < 1, OK RMI SEC 2.2 EqrN 1,2 AC! 318·14 Sec 5.3.1 Eqtn 5.3.le I 2/G/2O22 Structural En9ineerin9 & Design Inc. 1a15 Wright Aye La Verne. CA 91750 Tel· 909 596 1351 Fax; 909,596.7186 By: Nihal Project: TOTAL WESTERNICAMSTON WRATHER Project#: 22-1129-4 Configuration & Summary1 Type B Selective Rack T 58" + 192" 58'0 t 58" J Seismic Criteria Ss=0.921, Fa=l.2 Component Column • Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soil Level I Load** 1 2 3 Per Level 7,000 lb 7,000 lb 7,000 lb -~- 192" ., T 76" + ----.i 24" +1--,1 24" + lf----i 24" +-24" 4-11"--.....--j **RACK COLUMN REACTIONS ASDLOADS M1ALDL= 751b AXIALLL= 10,500 lb SBSMIC AXIAL Ps=+/-5,854 lb BASE MOMENT= 9. 500 in-lb . 10s" , : . ,r ,f-48" ,r # Bm Lvls Frame Depth Frame Height # DI onals Beam Length Frame Type 3 48 In 192.0 in 5 1081n Single Row Fy=SS ksl None FY=55 ksl Fv=55 ksi FY=55 ksl Fy=SS ksi Fy=36 ksi 2 oer Base BeamSD<XI 58.0 In 58.0 In 58.0 In Description STRESS Mecalux 4101 3.97"x2.69"x0.09" P=10575 lb, M=17106 In-lb 0.79-OK None None N/A Intlk 59E 5.938Hx2.75Wx0.059''Thk Lu=108 In I Capacity; 8023 lb/pr 0.87-0K Lvl 1: 5 Tab OK I Mconn=12086 In-lb I Mcap=24677 In-lb 0.49-OK Mdx C715 Sgl 2.76x1.38x16ga(U100/41xx) 0.53-OK Mclx C715 Sgl 2.76x1.38x16ga(U100/41xx) 0.77-OK 7 .283x5.118x0.394 I Fixity= 9500 In-lb 0.62-0K 0.5" x 3.25" Embed Hlltl TZ #1917 .Inspection Reqd (Net Seismic Upllft=2678 lb) 0.675-OK 5.5" thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure 0.72-0K I Story Force I Story Force Column I Column I Conn. Beam Brace Transv Lona It. Axlal Moment Moment Connector 24.0 In 4371b ,, 1671b 10,575 lb 17,106 "# 12,086 "# STabOK 24.0 In 24.0 In 24.0 In 76.0 In 873 lb' 1,310 lb 335 lb 5021b 7,050 lb 3,525 lb 12,132 11# 8,646 "# 5 Tab OK 7,279 "# 4,400 "# 5 Tab OK "" Load defined as product weight per pair of beams Total: 2,619 lb 1,004 lb I Notes IDD@p,00 5 PHASE 2-Type B I 2IG/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909 5961351 Fax· 909.596 7186 By: Nihal Project: TOTAL WESTERN/CAMSTON WRATHER Seismic Forces Configuration: Type B Selectfve Rack Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1·2012 Sec 2.6 & A.SCE 7-16 sec 15.5.3 Transverse (Cross AISie) Seismic Load 1·, V= Cs*Ip*Ws=Cs*Ip*(0,67*P*Prf+D) vt Cs1= Sds/R = 0.1842 Cs-max* Ip= 0.1842 . Cs2= 0.044*Sds Vm1n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 Danwerse Elwtfoo Cs3= 0.5*51/R Ws= (0.67*Plru,1 * PL)+DL (RMI 2.6,2) = 0.0424 = 14,220 lb r-------'--:-----:-~-~""'""".'~:---, Cs-max= 0.1842 vtransv=vt= 0.1842 * (150 lb+ 14070 lb) BaseShearCoeffi=Cs= 0,1842 Etransverse= 2,619 lb Umlt states Level Transverse seismic shear per upright Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hl 1 7,000 lb 4,690 lb 50 1b 58 In 274,920 2 7,000 lb 4,690 lb 50 lb 116 In 549,840 3 7,000 lb 4,690 lb 50 lb 1741n 824,760 sum: P=21000 lb 14,070 lb 1501b W=14220 lb 1,649,520 Lon ltudinal Downaisle Seismic Load Slmllar1y for longitudinal seismic loads, using RE6,0 Ws= 0.67 * Plru,2 * P) + DL Project#: 22-1129-4 Ss= 0.921 S1= 0.339 Fa= 1.200 Fv= 1.500 Sds=2/3*SS*Fa= 0.737 Sd1=2/3*S1 *Fv= 0.339 Ca=0.4*2/3*Ss*Fa= 0.2947 (Transverse, Braced Frame Dir.) R= 4.0 Ip= 1.0 PRF1= 1.0 . Pallet Height=hp=> 48.0 In DL per Beam Lvl= 50 lb Fi Fl* hl+h 2 436.5 lb 35,793-# 873.0 lb 122,220-# 1,309.5 lb 259,281·# 2,619 lb 1=417,294 Cs1=Sdl/{T*R)= 0.0706 = 14,220 lb (Longitudinal, Unbraced Dir.) Rm 6.0 Cs2= 0.0324 Cs=Cs-max*Ip= 0.0706 T• 0.80 sec Cs3= 0.0283 Vlong= 0.0706 * {150 lb+ 14070 lb) Cs-max= 0.0706 Elongltudlnal= 1 004 lb L/n,f,S,,,re,,Law,/Longlt.,.,.mlolboarperuprlt/ht Level PRODUC LOAD P P*0.67*P DL hi wi*hi 1 7,000 lb 4,690 lb 50 lb 58 In 274,920 2 7,000 lb 4,690 lb 50 lb 116 in 549,840 3 7,000 lb 4,690 lb 50 lb 174 In 824,760 Fl 167.3 lb 334.7 lb 502.0 lb Ftoo:t Ylew sum: =======14=,0=7=0=1b====1=5=0=1b===W====14=2=2=0=1b====l=,6=4=9=,5=20=======::::::::1.::::00=4=1=b=======e::: PHASE 2-Type B I 2/G/2022 Foundamental Period of Vibration (Lon11:itudinal) Per rEMA 460 Appendix A -Development of An Analytical Model for the Displacement Based Seismic Dcsi11:n of Stora11:e Racks in Their Down Aisle Direction Section 6.5. 1 Where: Wpi hpi R = NL.= kc = kbe = kb = kce = Ne= Nb = kbe = kce = kb = kc = L = H = lb= le = E = weight of the ith pallet supported bv lhe storage rack the elevation of the center of 11:ravitv of the i t h pallet with respect to the base of the storage rack gravitational acceleration the number of loaded levels the rotational stiffness of the connector the flexral rotational stiffness of the beam-end the rotational stiffness of the base plate the flexural rotational stiffness of the base upri~ht-end the number of beam-to-upright connections the number of base plate connections 6Ei b / L 4Eic / H Eic / H Mmax/ 0 max the clear span of the beams the clear height of the upright the moment of inertia about the bendin11: axis of each beam the moment of inertia of each base upri 11:h t Youn11:'s Modulus of the beams Tl= 2. 42271 # of levels min# of bays Ne Nb kc kbe kb kce lb L Ic II E Level hpi 1 2 3 4 5 3 1 12 4 428. 571 7397. 94 978.586 3914.34 Wpi 4.514 i n· 4 108 in 1.924 in· 4 sa in 29500 ksl 82 7 140 7 198 7 0 0 0 0 Structural , E~gineerir:'g.& Design Inc. 1 a1 s Wright Aye La \/eme CA 91750 Tel: 909 596 1351 fax: 909.596,7186 By: l)jihal Project: TOTAL WESTERN/CAMSTON WRA THER Project #: 22-1129-4 Downalsle Seismic Loads Configuration: Type B Selective Rack Determine the sto~ moments by applying portal analysis. The base plate Is assumed to provide partial fixity. Seismic Story Forces Vlong= 1,004 lb Vcol=Vlong/2= 502 lb Fl= :J.67 lb F2= 335 lb F3= 502 lb Seismic Story Moments Typical ~me ~• Tt!bulaty •""I oft..,,., wluinns o( tick ftame "" , _ _ _ _ _ _, -IEJ ~ E]:'[3 :~ I I -BG E::J:[3 ~:G -r::::;:-:::-, r--::::t ~: .---J_ ~ :r:::1 cs:-J b...::lr ~ I L..,3" ~ I~ ... ________ , fum.t..l&:t.l Conceptual svetam ~ Mbase-max= 9,500 In-lb Mbase-v= (Vcol*hleff)/2 <=== Default capacity hl -eff::: h1 -beam dip helght/2 ::: 53 in = !1.3,303 In-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 9,500 In-lb M 1-1= [Vcol * hleff]-Mbase-eff = (502 lb * 53 ln)-9500 In-lb = 17,106 In-lb Msels= (Mupper+Mlower)/2 Msels(l-1)= ,(17106 In-lb+ 12132 ln-lb)/2 = 14,619 in-lb LEVEL 1 2 3 hi 581n 581n 581n Axial Load 10,575 lb 7,050 lb 3,525 lb M 2-2= [Vcol-(Fl)/2] * h2 = (502 lb -167.4 lb]*58 ln/2 = 12,132 In-lb Mseis(2-2)= (12132 In-lb + 7279 ln-lb)/2 = 9,706 In-lb summary of Forces Column Moment** Mselsmlc** 17,106 in-lb 14,619 In-lb 12,132 In-lb 9,706 In-lb 7,279 In-lb • 3,640 In-lb Mend-fixi 2,646 In-lb 2,646 In-lb 2,646 In-lb Mconn= (Mselsmlc + Mend-fixlty)*0.70*rho Mconnrallow(S Pin)= 24,677 In-lb **all moments based on llmlt states level loading F'HA5E 2-Type B f'age ( h of ~ Vcol 7~·rt=========~ h2 h1 h1eff Beam to Column Elevation rho= 1.0000 Mconn** 12,086 In-lb 8,646 In-lb 4,400 in-lb Beam Connector 5TabOK STab OK 5 Tab OK I 2/G/2022 COL Structural Eri9ineerin9 & Design Inc. 1815 Weight Aye La Verne. CA 91750 Tel· 909.596.1351 fax: 909 596.7186 By: Nihal Project: TOTAL WESTERN/CAMSTON WRATHER Prolect #: 22-1129-4 Column (Longitudinal Loads) Configuration: Type B Selective Rack Section Properties Section: Mecalux 4101 3.97"x2.69"x0.09" Aeff = 0.764 ln"2 Ix = 1.924 ln"4 Sx = 0.969 ln"3 rx = 1.587 In Qf= 1.67 Iy = 0.669 ln"4 Sy= 0.408 ln"3 ry = 0.936 In Fy= 55 ksl Kx = 1.7 r 3.9701n -, Cmx= 0.85 E= 29,500 ksl Loads Considers loads at level 1 COLUMN DL= 75 lb Crltlcal/oad cases are: RMI Sec 2.1 Lx = 55.0 in Ky= 1.0 Ly= 24.0 In Cb= 1.0 r 0,090 In 2,690 In J_ COLUMN PL= 10,500 lb load Case 5:: {1+0.1O5*Sds)D + 0.75*{1.4+0.14Sds)*B*P + 0.75*{0.7*rho*E)<= 1.0, ASD Method Mcol= 17,106 In-lb axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Sds= 0.7368 load Case 6:: {1+0.104*Sds)D + {0.85+0.14Sds)*B*P + {0.7*rho*E)<= 1.0, ASD Method l+0.105*Sds= 1.0774 axial load coeff: 0.66721 seismic moment coeff: 0.7 * Meo/ By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 B= 0.7000 rho= 1.0000 Axial Analysis Axial Load=Pax= 1,103152*75 lb+ 0.953152*0,7*10500 lb = 7,088 lb = 0.7 * 17106 in-lb = 11,974 ln•lb Kxlx/rx = 1.7*55.031 "/1.587" = 58.9 Fe= n"2E/(KL/r)max"2 = 83.8ksl Pn= Aefrl<Fn = 35,101 lb P/Pa= 0.39 > 0.15 Bending Analysis KyLy/ry = 1 *24"/0.9359" = 25.6 Fy/2= 27.5 ksi Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) :s; 1.0 P/Pao + Mx/Max :5 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.764 ln"2 *55000 psi = 41,993 lb = 419931b/1.92 = 21,871 lb Fe> Fy/2 Fn= Fy(1-Fy/4Fe) = 55 ksl*[l-55 ksl/(4*83.8 ksl)] = 46.0 ksl Pa= Pn/nc = 35101 lb/1.92 = 18,282 lb Myleld=My= Sx*Fy = 0.969 in"3 * 55000 psi = 53,295 In-lb Max= My/Qf Per= n"2B/(KL)max"2 = 53295 in-lb/1.67 = 31,913 In-lb µx= {1/(1-(Qc*P/Pcr)]}"-1 = {1/[1-(1.92*7088 lb/63988 ib)]}"-1 = 0.79 Combined stresses = n"2*29500 ksl/(1.7*55.031 in)"2 = 63,988 lb. (7088 lb/18282 lb) + (0.85*11974 ln-lb)/(31913 ln-lb*0.79) = (7088 lb/21871 lb) + (11974 in-lb/31913 In-lb) = 0.79 0.70 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total column stress computed for load case 5 Is: 78. 0% linq loads 8366.9277 /b Ax/a/ and M= 8980 In-lb PHASE 2-Type B .-- rage tl of 1f j I 2/G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La \/erne CA 91750 Tel· 909.596,1351 fax: 909 596 7186 By: Nlhal Project: TOTAL WESTERN/CAMSTON WRATHER BEAM ConNguratJon: ,ype B seIect1ve Rack DETERMINE ALLOWABLE MOMENT CAPACITY Al Check compression flange for local buckHna <B2,1} w= c -2*t -2*r = 1.75 In -2*0.059 In -2*0.059 In = 1.514 In w/t= 25.66 !=lambda= [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange is fully effective Bl check web for local buckHna per section b2,3 fl(comp)= Fy*(y3/y2)= 51.79 k:sl f2(tenslon)= Fy*(y1/y2)= 103.55 ksl Y= f2/fl = -1.999 k= 4 + 2*(1-Y)"3 + 2*{1-Y) = 63.94 flat depth=w= y1 +y3 Eq. B2.3-5 Eq. B2.3-4 Eq. B2.1-4 Eq. 82.1·1 = 5. 702 In w/t= 96.6440678 OK !=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 = [1.052/(63.94)"0.5] * 5.702 * (51.79/29500)"0.5 = 0.533 < 0.673 be=w= 5.702 In bl= be(3-Y) = 1.141 b2= be/2 = 2.85 In b1+b2= 3.991 In > 1.90092 In, Web Is fully effective Determine effect of cold working on steel vleld point <Eva} per section A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=lf= 1.514 In m= 0.192*(Fu/Fy) -0.068 = 0.1590 C= 2*Lc/{Lf+2*Lc) = 0.155 In (EQ A7.2-4) Be= 3.69*{Fu/Fy) • 0.819*{Fu/Fy)"2 • 1.79 = 1.427 since fu/FV= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2·2) = 78.485 ksi Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.84 k:sl (tension stress at bottom) OJeck aHowab{e tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=C>= 2*L.c/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 k:sl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl Eq B2.3-2 (EQ A7.2-3) if F= 0.95 Then F*Mn=F*Fya*Sx=j 41.17 ln-k OOllth Project #: 22-1129-4 T 5.11381n 1.625 in _j_ l~ 0.059 In Beam= Intlk 59E 5 938Hx2 75Wx0 059"Thk ' ' ' YCQ Y1 j_ Ix= 4.514 in"4 Sx= 1.467 ln"3 Ycg= 3.919 In t= 0.059 in Bend Radlus=r= 0.059 In Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksl Ei:: 29500 ksi tup flange=b= 1.750 In bottom flange= 2.750 In Web depth= 5.!)'lO In ..._ Fy - yl= Ycg-t-r= 3.801 In y2= depth-Veg= 2.019 In y3= y2-t-r= 1.901 In Structural ' Engineering & Design Inc. 1815 Weight Aye La Verne CA 91750 Tel· 909 5961351 fax: 909.596.7186 By: Nlhal BEAM RMI Section 5.2, PT II Section Project: TOTAL WESTERN/CAMSTON WRATHER Conttguratlon: Type B setecttve Rack Beam= lntlk 59E 5.938Hx2.75Wx0.059'1hk lx=lb= 4.514 ln''4 Sx= 1.467 ln"3 t= 0.059 In Fy=Fyv= 55 ksl FU=FUV= 65 ksi Fya= 58.6 ksl E= 29500 ksi F= 225.0 L= 108in Beam Level= 1 P=Product Load= 7,000 lb/pair D=Dead Load= 50 lb/pair {--2.751n t 1.7Sln 4 T 5.938 In Project#: 22-1129-4 1,625 In 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 0.059 In 1~ W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.125)*P FOR DL=2% of PL, W= 1.599 Rm= 1 • [(2*F*L)/(6*E*Ib + 3*F*L)] RMI 2.2, Item 8 1 • (2*225*108 ln)/[(6*29500 ksi*4.5136 ln"3)+(3*225*108 In)] = 0.944 If F= 0.95 Then F*Mn=F*Fya~Sx= 81.74 ln-k Thus, allowable load per beam palr=W= F*Mn*B*(# of beams)/(L *Rm*W) = 81.74 ln-k * 8 * 2/(108In * 0.944 * 1.599) ::: 8,023 lb/pair allowable load based on bending atress Mend= W*L*(l·Rm)/8 = (8023 lb/2) * 108 In* (1-0.944)/8 = 3,033 In-lb @ 8023 lb max allowable load = 2,646 In-lb @ 7000 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd u - ..... . . . . . . ..... : : : : : : - " .. Rd= 1 • (4*P'L)/(5*F*L + 10*E*Ib) Allowable Deflection= l/180 = 1 • (4*225*108 ln)/[(5*225*108 in)+(10*29500 ksi*4.5136 ln"4)] = 0.600 In = 0.933 In Deflection at Imposed Load= 0.524 In If Dmax= l/180 Based on f/180 Deffection Criteria and Dss= 5*W*L"3/(384*E*Ib) l/180= 5*W*L"3*Rd/(384*E*Ib*# of beams) solving for W ylelds, W= 384*E*I*2/(180*5*L "2*Rd) = 384*4.5136 ln"4*2/[180*5*(108 ln)"2*0.933) = 10,441 lb/pair allowable load based on deflection limits Thus, based on the least capacity of Item 1 and 2 above: A low pair Imposed Product Load= 7,000 lb/pair Beam Stressc . Beam at Level 1 Structural E~gineering & Design Inc. 1616 Wcigbt Ave I a Verne CA 9115D Jel· 909 595 1351 fax· 909 596 1166 By: Nlhal Project: TOTAL WESTERN/CAMSTON WRA THER Project#: 22-1129-4 s Tab Beam to Column Connection Configuration: Type B Selective Rack Mconn max= (Mselsmlc + Mend•fixlty)*0.70*Rho = 12,086 In-lb Load at level 1 Connector Type= 5 Tab Shear Capacity of Tab Tab Length= 0.50 in Ashear= 0.5 In * 0.135 in = 0.0675 in"2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi* 0.06751n"2 = 1,485 lb Bearing capacity of Tab tcol= 0.090 in Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearing= alpha * Fu * tab length * tcol/Omega = 2.22 * 65000 psi * 0.5 In * 0.09 ln/2.22 = 2,925 lb > 1485 lb Moment capacity of Bracket Edge Dlstance=E= 1.00 in Tab Spacing= 2.0 In 4 /8" 10" C= Pl+P2+P3+P4+P5 tdlp= 0.135 In = Pl +Pl "'(6.5"/8.S"J+Pl "'(4.S"/8.S")+Pl "'(2.5"/8.S"J+Pl *(0.5"/8.5") = 2.623"' Pl Mcap= Sclip * Fbendlng = 0.1832 ln"3 * 0.66 * Fy = 6,650 In-lb Pdlp= Mcap/(2.623 * d) = 6650.16 ln-lb/(2.623 * 0.5 In) = 5,071 lb C*d= Mcap = 2.623 Thus, Pl= 1,485 lb P1 Bearing Length= 0.5000 In Fy= 55,000 psi Sdip= 0.183 ln"3 d= E /2 = 0.50 In Mconn-allow= P1*8.5" + P1*(6.5"//8.5")*6.S" + P1*(4.5"/8.5")*4.S" + P1*(2.5"/8.5")*2.5" + Pl*(0.5"/8.5")*0.5" = 1485 LB*[8.5''+(6.5"/8.5")*6.5"+(4.5"/8.5")*4.5"+(2.S"/8.5")*2.5"+(0.5"/8.S")*0.5"] = 24,677 in-lb > Mconn max, OK Stress= 0.49 PHASE 2-Type B Page (~of <f-) I 2/G/2022 Structural Engineering & Design Inc. 1a1s Wnaht Ave La Verne. CA 91750 Tel: 909.596,1351 fax: 909.596.7186 By: Nihal Project: TOTAL WESTERN/CAMSTON WRATHER Project#: 22-1129-4 Transverse Brace Conflguratlon: Type B Selective Rack Section Properties Dlagonal Member= Mclx C715 Sgl 2.76xl.38x16ga(U100/41xx) Horizontal Member= Mdx C715 Sgl 2.76x1.38x16ga(U100/41xx) , Area= 0.275 inA2 r min= 0.437 in Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Dia onal Member Bottom Panel Height=H= 48.0 in Frame Depth=D= 48.0 in Column Width=B= 2.7 in Area= 0.275 in/\2 r min= 0.437 In Fy= 55,000 psi K= 1.0 Clear Depth=>O-B*2= 42.6 in X Brace= NO rho= 1.00 0 • . I Load Case 6: : (-!±P t04*r.ti:.,jf) + L(0.85+0.14Sds)i*P + [0.7*rho*E]<= 1.0, ASD Method Vtransverse= 2,619 lb Vb=Vtransv*0,7*rho= 2619 lb * 0.7 * 1 = 1,833 lb Ldiag= [(D-B*2)A2 + (H-6")A2JA1/2 = 59.8 in Pmax= V*(Ldlag/D) * 0.75 = 1,713 lb Vb (kl/r)= (k * Ldlag)/r min = (1 x 59.8 In /0.4366 In ) == 137.0 In Fe= pi A 2*E/(kl/r)A 2 = 15,512 psi axial load on dla onal brace member Since Fe<Fy/2, Pn= AREA*Fn = 0.275 inA2 * 15512 psi = 4,263 lb Pallow= Pn/Q = 4263 lb /1.92 = 2,220 lb Pn/Pallow= 0.77 Horizontal brace Vb=Vtransv*0.7*rho= 1,833 lb (kl/r)= (k * Lhorlz)/r min = (1 x 48 in) /0.4366 in = 109.9 in Since Fe<Fy/2, Fn=Fe <= 1.0 OK Fe= pi A 2*E/(kl/r)A 2 = 24,106 psi Pn= AREA*Fn Fn= Fe = 15,512 psi Fy/2= 27,500 psi Pallow= Pn/Qc Typk;af panej COOflouralll!o = 24,106 psi = 0.275inA2*24106 psi = 6,624 lb = 6624 lb /1.92 = 3,450 lb Pn/Pallow= 0.53 <= 1.0 OK T 1 F'HASE 2-Type B Page "2-o of 'f) I 2/G/2022 Structural E~gineering. & Design Inc. 1a15 Weight Aye La Verne, CA 91750 Tel: 909,596.1351 fax: 909,596,7186 By: Nihei Project: TOTAL WESTERN/CAMSTON WRATHER Project#: 22-1129-4 Single Row Frame Overturning Configuration: Type B Selective Rack Loa Crltlcal Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0.7526 Vtrans=V=E=Qe= 2,619 lb DEAD LOAD PER UPRIGHT=D= 150 lb PRODUCT LOAD PER UPRIGHT=P= 21,000 lb Papp=P*0.67= 14,070 lb Wst LC1=Wst:1=(0. 75264*0 + 0. 75264*Papp*1)= 10,702 lb B= 1~od()9>"--!1 rho= 1.0000 Product Load Top Level, Ptop= 7,000 lb DL/LVI= 50 lb Seismic OVt based on E, .E(Fl*hl)= 281,030 In-lb heiqht/deoth ratio= 3.6 In A) Fullv Loaded Rack Load case 1: Movt= E(A*hl)*E*rho· = 281,030 In-lb Frame Depth=Df= 48.0 In Htop-lvl=H= 174.0 In # Levels= 3 # Anchors/Base= 2 ho= 48.0 in h=H+ho/2= 198.0 In Mst= Wstl * Df/2 = 10702 lb * 48 ln/2 = 256,848 in-lb SIDE ELEVATION T= (Movt-Mst)/Df = (281030 In-lb -256848 in-lb)/48 In = 504 lb Net Uplift per Column I Net Seismic Uollft= 504 lb Strennth Level 81 Too Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip * Ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho = 0.1842 * 7000 lb = 257,705 In-lb = 1,289 lb T= (Movt-Mst)/Df Vleff= 1,289 lb Critical Level= 3 = (257705 In-lb -129153 ln-lb)/48 In V2=VOL = Cs*Ip*D Cs*Ip= 0.1842 = 2,678 lb Net Uplift per Column = 281b Mst= (0.75264*0 + 0.75264*Ptop*1) * 48 ln/2 = 129 153 In-lb I Net Seismic Uolift= 2 678 lb Strenoth Level Anchor Check {2) 0.5" x 3.25" Embed Hilti TZ anchor{s) per base plate. Special inspection Is required per #1917. Fully Loaded: Top Level Loaded: Pullout capaclty=Tcap= 1,961 lb L.A. City Jurisdiction? NO Shear capaclty=Vcap= 2,517 lb Phi= 1 (252 lb/1961 lb)Al + (654 lb/2517 lb)Al = (1339 lb/1961 lb)Al + (322 lb/2517 lb)Al = f'HASE 2-Type B 0.39 0.81 Tcap*Phl= 1,961 lb Vcap*Phi= 2,517 lb <= 1.2 OK <= 1.2 OK 12/G/2022 Structural Engineering & Design Inc. 1s15 Weight Ave La Verne, CA 91750 Iel· 909 596,1351 fax-909,596 7186 By: Nlhal Project: TOTAL WESTERN/CAMSTON WRATHER Project#:22-1129-4 Base Plate Configuration: Type B Selective Rack Section Baseplate= 7.283x5.118x0.394 Elf Wldth=W = 7.28 In Elf Depth=D = 5.12 In Column Wldth=b = 3.97 In Column Depth=dc = 2.69 in L = 1.66 in Plate Thlckness=t = 0.394 In a= 2.64 In Anchor c.c. =2*a=d = 5.28 In N=# Anchor/Base= 2 Fy = 36,000 psi DowoalSle Etevat100 Down Alsle Loads load Case 5: : (1 +0.J0S*Sds)D + 0.75*{(1.4+0.14Sds)*B*P + 0.75*{0.7*rho*El<=-1.0, ASD Method COLUMN DL= 75 lb Axlal=P= 1.077364 * 75 lb + 0.75 * (1.503152 * 0.7 * 10500 lb) COLUMN PL= 10,500 lb = 8,367 lb Base Moment= 9,500 In-lb Mb= Base Moment*0.7S*0.7*rho 1+0.105*Sds= 1.0774 = 9500 in-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.5032 = 4 988 in-lb B= !'n-"H~gM"J!;ia~~~M!m Axial Load P = 81367 lb OO{W-9,\!~~'®ir.;;m"'JI._ __ ....;;.;;;=-=.::..::...:....___::.L;;! =.;.....c::. _____ M:.=ba.::se:..;:;...=..:.M..;.;b;...._=_4.:..r.,.::..98.::..8;;.....;.l;.;.n•..:.1b::;.._ _ __, Axial stress=fa = P/A = P/(D*W) Ml= wV'2/2= fa*L"2/2 = 224 psi = 308 In-lb Moment Stress=fb = M/5 = 6*Mb/[(D*B"2] = 110.2 psi Moment Stress=fbl = fb-fb2 = 60.1 psi M3-= (1/2)*fb2*L *(2/3)*L = (1/3)*fb2*L" 2 = 46 In-lb s-plate = (l)(t"2}/6 = 0.026 ln"3/ln fb/Fb = Mtotal/[(S-plate)(Fb}] 0.62 OK Tanchor = (Mb-(Plapp*0.75*0.46)(a)}/[(d)*N/2] = -4,407 lb No Tension Moment Stress=fb2 = 2 * fb * L/W = 50.1 psi M2= fbl*L"2)/2 = 82 In-lb Mtotal = Ml +M2+M3 = 436 In-lb/In Fb = 0.75*Fy = 27,000 psi Pp= 0.7*F'c = 2,800 psi Tallow= 1,961 lb OK OK Cross Aisle Loads 011/Q/1o«1c.soRHis«z.i, ltffm~:r1+o.11s,1,)DI. +(1+o.uSDS)Pl-o.>1S+B.•a;,s <• 1.4 ASDHethod Check uplift load on Baseplate EffE Effe Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 8,367 lb Movt*0.75*0.7*rho= 147,541 In-lb Frame Depth= 48.0 In P=Pstatic+Pseismlc= 11,441 lb b =Column Depth= 2.69 In L =Base Plate Depth-Col Depth= 1.66 In fa = P/A = P/(D*W) = 307 psi Sbase/ln = (l)(t"2)/6 = 0.026 in"3/in fb/Fb = M/[(S-plate)(Fb)] 0.60 OK PHASE 2-Type B Pselsmlc= Movt/Frame Depth = 3,074 lb M= wL"2/2= fa*L"2/2 = 421 In-lb/In Fbase = 0.75*Fy = 27,000 psi the base plate ainfl<luratton oonslsts o/ two anchor bolts located on either side f the column and a net uplift force exists, the minimum base plate lhlckness all be detennlned based on a design bending moment in the plate equal the uplift force on one anchor times 1/2 the distance from e centerline of the anchor to the nearest edge of the rack column' l-c~+A' "1PW Ii EleYa1lan Uplift per Column= 2,678 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 1,339 lb c== 1.66 In Mu=Moment on Baseplate due to uplift= Ta*c/2 = 1,109 In-lb Splate= 0.132 in"3 fb Fb *0.75= 0.233 OK I 2/G/2022 Structural ' Engineering & Design Inc. 1815 Wright Aye La Yerne. QA 91750 Jel: 909 596 1351 Fax: 909 596.7186 By: Nihal Project: TOTAL WESTERN/CAMSTON WRATHER Project#:22-1129-4 Slab on Grade Configuration: Type B Selective Rack y L SLAB ELEVATION a Baseplate Piao View ~ f'c= 4,000 psi tslab=t= 5.5 In teff= 5.5 In · ·· .f>hif:'~~:ojf 1 SQll fsoil= 2,000 psf Movt= 281,030 In-lb Frame dep~= 48.0 In Sds= 0.737 0.2*Sds= 0.147 Base Plate Effec. Baseplate wldth=B= 7.28 in Effec. Baseplate Depth=D= 5.12 In wldth=a= 3.97 in depth=b= 2.69 In ,{ :'".,~:o.~90 ~=8/D= 1.423 F'c"0.5= 63.20 psi Column Loads DEAD LOAD=D= 75 lb per column unfactored ASD load PRODUCT LOAD=P= 10,500 lb per column unfactored ASD load Papp= 7,035 lb per column P-seismlc=E= (Movt/Frame depth) = 5,854 lb per column unfactored Limit state load B=( rho=" Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 225.84 ln"2 Fpunctl= [(4/3 + 8/(3*~)] * ;>.. *(Pc"0.5) = 121.6 psi Fpunct2= 2.66 * ;>.., * (F1c"0.S) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 16,444 lb Asoll= (Pse*144}/(fsoll) = 1,184 ln"2 X= (L-y)/2 = 9.4 In Fb= 5*(phl}*(f'c)"0.5 = 189.74 psi PHASE 2-Twe B midway dist face of column to edge of plate=c= 5.63 In mldwa dist face of column to edge of plate=e= 3.90 In Load Case 1) 1.2+0.2Sds)D + 1.2+0.2S s B P+ rho*E RMI SEC 2.2EQTN s = 1.34736 * 75 lb + 1.34736 * 0.7 * 10500 lb + 1 * 5854 lb = 15,858 lb Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 1 = 0.75264 * 75 lb+ 0.75264 * 0.7 * 7035 lb + 1 * 5854 lb = 9,617 lb Load case 3) l.2*D + 1.4*P = 1.2*75 lb+ 1.4*10500 lb = 14,790 lb ·Load Case 4) 1.2*D + 1.0*P + 1.0E = 16,444 lb Effective Column Load=Pu= 16,444 lb per column L= (Asoll)"0.S = 34.41 In M= w*x"2/2 = (fsoll*x" 2)/(144*2) = 608.6 In-lb Page v3, of ~ fv/Fv= Pu/(Apunct*Fpunct) 0.722 < 1 OK y= (c*e)"0.5 + 2*t = 15.7 in s-slab= 1 *teff"2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) 0.636 < 1, OK RMI SEC 2.2 EQTN 1,2 AC! 318-14 Sec 5.3.1 Eqtn 5.3.le I 2/G/2022 Structural Engineering & Design Inc. 1a15 WJigbt Ave La Verne CA 91zso Tel: 909,596,1351 fax· 909,596,7186 By: Nihal Project: CAMSTON WRATHER Project#: Configuration & Summary: Type C Seled:lve Rack T 36" 120" + 36" t 36" I ' Seismic Criteria Ss=-0.921, Fa=1.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soll Level I Load** Per Level 1 2 3 2,500 lb 2,500 lb 2,500 lb T 70" 120" t 1--------11 32" l _.,i,::f,--1oa· ~ 48" -.,f- *'"RACK COLUMN REACTIONS ASDLOADS AXL4L DL= 90 lb AXIAL LL= 3,750 lb SEISMIC AXIAL Ps=+/-1,470 lb BASE MOMENT= 8,000 In-lb # Bm Lvls Frame Depth Frame Height # Dia onals Beam Length Frame Type 3 48 In 120.0 In 2 108 In Single Row Fv=SS ksl None Fv=SS ks1 FY=SS ksl Fv=SS ksl Fv=SS ksl Fy=36 ksl 1 oer Base Beam Snr.n 36.0 In 36.0 In 36.0 In Description STRESS Mecalux 314 3.0"x2.69"x0.070" P=3840 lb, M=6345 In-lb 0.43-OK None None N/A Intlk 36E 3,656Hx2,75Wx0.059''Thk Lu-'108 In I Capacity: 3553 lb/pr 0.7-OK Lvl 1: 3 Tab OK I Mconn=6093 In-lb I Mcap=8828 In-lb 0.69-OK Mclx C456 Sgl 1.7953xl.378x16ga(U31x} 0.2-OK Mclx C456 Sgl 1.7953x1.378x16ga(U3lx} 0.6-0K 5.094x4.688x0.194 I Fixity= 6344 In-lb 0.99-0K 0.51' x 2" Embed Hiltl TZ #1917 Inspection Reqd (Net Seismic Uplift=295 lb} 0.408-OK 5.5" thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure 0.26-OK I Story Force I Story Force Column I Column I Conn. Beam Brace Transv Lonalt. Axial Moment Moment Connector 32.0 In 1601b 128 1b 3,840 lb 6,345 "# 6,093 "# 3 Tab OK 70.0 In 3201b 480 1b 256 lb 385 lb 2,560 lb 1,280 lb 5,767 "# 3,461 "# 5,084 "# 3 Tab OK 3,065 11# 3 Tab OK ** Load defined as product weight per pair of beams Total: 9591b 769 1b SHOP-2-Type C Page 2-Yof 2(-<;' I 21(;/2022 , Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel; 909 596.1351 Fax· 909 596 7186 By: Nlhal Project: CAMSTON WRATHER Seismic Forces Configuration: Type C Selective Rack Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & f,SC,f. 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load 1· V= CS*Ip*Ws=CS*Ip*(0.67*P*Ptf+D) Vt Csl= Sds/R • '' = 0.1842 Cs·max * Ip= 0.1842 Cs2= 0.044*Sds Vm1n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 rr:aooo:nc Elcvatf® Cs3= 0.S*S1/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2) = 0.0424 .....----=..;;5,t.;2;.;.0~5~1b:__ _______ --.. Cs-max= 0.1842 Vtransv=Vt= 0,1842 * (180 lb+ 5025 lb) Base Shear Coeff=Cs= 0,1842 Level 1 2 3 PRODUCT LOAD P 2,500 lb 2,500 lb 2,500 lb P*0.67*PRF1 1,675 lb 1,675 lb 1,675 lb sum: P=7500 lb 5,025 lb Lonaltudlnal (Downalsle} Seismic Load Etransverse= 959 lb Umlt States LBVBI Transverse SBISmlc shBiJr per upright DL hi wl*hl 60 lb 36 In 62,460 60 lb 72 in 124,920 60 lb 108 in 187,380 1801b W=5205 lb 374,760 Project#: Ss= 0.921 51= 0.339 Fa= 1.200 Fv"' 1.961 Sds=2/3*Ss*Fa= 0.737 Sd1=2/3*51 *Fv= 0.443 ca=0.4*2/3*Ss*Fa= 0.2947 (Transverse, Braced Frame Dir.) Re 4.0 Ip= 1.0 PRF1= 1.0 Pallet Height=hp= 48.0 in DL per Beam Lvl= 60 lb Fl Fl* hl+h /2 159.8 lb 9,588·# 319.7 lb 30,691·# 479.5 lb 63,294-# 959 lb 1=103,573 Slmllariy for longitudinal seismic loads, ustng RG6,0 Ws= (0.67 * PLRF2 * P) + DL PRF2= 1.0 EJEI a □ Csl=Sdl/(T*R)= 0.1477 = 5,205 lb (Longlt:Udlnal, Unbraced Dir.) R,a 6.0 Cs2= 0.0324 Cs=Cs-max*Ip= 0.1477 T• 0.50 sec Cs3= 0.0283 I Vlong= 0.1477 * (180 lb+ 5025 lb) I Cs-max= 0.1477 Elongltudlnal= 769 lb Um/tSta,..L•..,Lot,gJt,_,,,/a_rperuprlght Level 1 2 3 P.RODUC LOAD P P*0.67*PRF2 2,500 lb 1,675 lb 2,500 lb 1,675 lb 2,500 lb 1,675 lb DL 60 1b 60 lb 601b hi 36in 72 in 108 in wl*hl 62,460 124,920 187,380 or l ,,,·1't:1 C]r-7 DE:J Fi 128.2 lb 256.3 lb 384.5 lb ftoot Ylcw sum: =======5=0=25==1b===1=80===1b====W===5=20=5=1=b====3=74=7=6=0=======7=69===1b======== 5HOF'-2-Type C I 2/G/2O22 Foundamental Period of Vibr ation (Londtudinal) Per FEMA 460 Appendix A -Develooment of An Analytical Model for the Displacement Based Soismic Design of Storage Racks in Their Down Aislo Direction Section 6. 5. 1 Where : Wpi hpi g = NL = kc= kbe = kb= kce = Ne = Nb = kbe = kce = kb = kc= L = H = Ib = Ic = E = weight of t he ith pallet supported by the storage rack the elevation of the center of gravity of the i th pal let with respect to the base of the storage rack gravitational acceleration t he number of loaded levels the rotational stiffness of t he connector t he flexral rotational stiffness of the beam-end t he rotational stiffness of the base plat e t he flexural rotational stiffness of the base upright-end the number of beam-to-upright connectlons the number of base pl ate connections 6Elb / L 4Eic / H Eic / H Mmax/ 8 max the clear span of the beams t he clear hei ght of the upright the moment of inertia about the bending axis of each beam the moment of inert ia of each base upright Young's Modulus of the beams Tl= 1. 10727 II of levels min# of bays Ne Nb kc kbe kb kce lb L le H E Level hpi 1 2 3 4 5 3 1 12 4 428.571 2187.92 626.875 2507.6 \Ypi 1.335 in· 4 108 in 0.765 in· 4 36 in 29500 ks i 60 2. 5 96 2, 6 132 2. 5 0 0 0 0 Structural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909.596.1351 fax· 909 596.7186 . By: Nihei Project: CAMSTON WRATHER Project#: Downalsle Seismic Loads Configuration: Type C Selective Rack Determine ttie story moments by applying portal analysis. The base plate Is assumed to provide partial fixity. Seismic Story Forces Vlong= 769 lb Vcol=Vlong/2= 385 lb Fl= 128 lb F2= 2561b F3= 385 lb Seismic Story Moments Typlotl ftw,c m~4c Trlbubuy ~rc;i of two columns of r~ck ft.lmc "" ___ _ , -1£J G ~: I I -~ G EJ:G EJ:~ I I -~ G li:J:G EJ:G r--96"-, ~ Conceptual system ~ Mbase-max= 8,000 In-lb Mbase-v= (Vcol*hleff)/2 <=== Default capacity hl-eff= hl -beam clip height/2 = 33 In = 6,344 in-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 6,344 In-lb M 1-1= [Vcol * hleff]-Mbase-eff = (385 lb * 33 in)-6344 In-lb = 6,345 In-lb Mseis= (Mupper+Mlower}/2 Msels(l-1)= (6345 in-lb+ 5767 in-ib)/2 = 6,056 in-lb LEVEL 1 2 3 hi 36 In 361n 361n Axial Load 3,840 lb 2,560 lb 1,280 lb M 2-2= [Vcoi-(Fl)/2] * h2 = [385 lb -128.2 lb]*36 ln/2 = 5,767 In-lb Msels(2-2)= (5767 In-lb + 3461 ln-lb)/2 = 4,614 In-lb Summary of Forces Column Moment** Mselsmlc** 6,345 In-lb 6,056 In-lb 5,767 In-lb 4,614 In-lb 3,461 In-lb 1,730 in-lb Mend-foci 2,649 In-lb 2,649 In-lb 2,649 In-lb Moonn= (Mselsmlc + Mend-fbdty)*0.70*rho Mconn-allow(3 Pin)= 8,828 In-lb **all moments based on limit states level loading 5HOP-2-Type C Vcol 7~TI=========~ h2 h1 h1eff Beam to Column Elevation rho= 1.0000 Mconn** 6,093 In-lb 5,084 In-lb 3,065 In-lb Beam Connector 3 Tab OK 3 Tab OK 3 Tab OK I 2/Gl2022 COL Structural , En~ineering & Design Inc. 1 a1 s Weight Aye La Verne. CA 91 zso Je1· 909 596.1351 fax: 909.596.7186 By: Nlhal Project: CAMSTON WRATHER Profect #: Column (Longltudlnal Loads) Configuration: Type C Selective Rack Section Properties Section: Mecalux 314 3.0"x2.69"x0.070" Aeff = 0.538 ln"2 Ix = 0.765 ln"4 Sx = 0.510 ln''3 rx = 1.190 In nf== 1.67 Iy = 0.464 ln"4 Sy = 0.307 ln"3 ry = 0.928 In Fy= 55 ksi Kx = 1.7 I-3.000 In -1 Cmx= 0.85 E= 29,500 ksl Loads Con~ e loads at lev~I 1 Oitfcal load cases are: RMI Sec 2.1 Lx = 34.2 in Ky = 1.0 Ly= 32.0 In Cb= 1.0 ' 2.690 In J_ 0.070 In COLUMN DL= 90 lb COLUMN PL= 3,750 lb Mcol= 6,344 In-lb Sds= 0.7368 1+0.105*Sds= 1.on4 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 Load case 5:: (1+0.105*Sds)D + 0.75*(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E)<= 1.0, ASD Method axtal load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Load case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method ax/al load coetf: o. 66721 seismic moment coeff: o. 7 * Mcol By analysis, Load case 6 governs utilizing loads as such Axial Load=Pax= 1.103152*90 lb+ 0.953152*0.7*3750 lb Moment=Mx= 0.7*rho*Mcol 0.85+0.14*Sds= 0.9532 B= 0.7000 rho= 1.0000 Axial Analysis = 2,601 lb = 0.7 * 6344 In-lb = 4,441 In-lb Kxlx/rx = 1.7*34.172"/l.19" = 48.8 Fe= n"2E/(KL/r)max"2 = 122.2ksi Pn= Aeff'l'Fn = 26,255 lb P/Pa== 0.19 > 0.15 Bending Analysis KyLy/ry = 1 *32"/0.9284" = 34.5 Fy/2= 27.5 ksl Qc= 1.92 Check: PaX/Pa + (Cmx*Mx)/(Max*µx) :S 1.0 P/Pao + Mx/Max s 1.0 Pno= Ae*Fy Pao== Pno/Qc = 0.538 in"2 *55000 psi = 29,585 lb == 29585Ib/1. 92 = 15,409 lb Fe> Fy/2 Fn= Fy(l-Fy/4Fe) = 55 ksi*[l-55 ksi/( 4*122.2 ksl)] = 48.8 ksl Pa= Pn/Qc = 26255 lb/1.92 = 13,674 lb Myleld=My= Sx*Fy = 0.51 ln"3 * 55000 psi = 28,050 In-lb Max= My/nf Pcr= n"2EI/(KL)max"2 = 28050 ln-lb/1.67 == 16,796 In-lb µx= {1/(1-(Qc*P/Pcr))}"-1 == {1/[1-(1.92*2601 lb/66000 lb))}"-1 = 0.92 Combined Stresses = n"2*29500 ksi/(1.7*34.172 ln)"2 = 66,000 lb (2~01 lb/13674 lb) + (0.85*4441 ln-lb)/(16796 ln-lb*0.92) = (2601 lb/15409 lb) + (4441 ln-lb/16796 In-lb) = 0.43 0.43 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total column stress computed for load case 5 is: 41. 0% 'nq loads 30S6.29326 lb Axial and M= 3330 In-lb SHOP-2-TYf'e C I 2/G/2022 $truct.ural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909 596 1351 Fax: 909.596.7186 By: Nlhal Project: CAMSTON WRATHER BEAM conttguratlon: TYpe c 5electlve Rael< DETERMINE ALLOWABLE MOMENT CAPAOTY Al OJeck compression flange for local buckling CB2.1l W= C -2*t -2*r = 1.75 In -2*0.059 In -2*0.059 In = 1.514 In w/t= 25.66 l=lambda= (1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = (1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Range Is fully effective Bl check. web for local budding per section b2.3 fl(comp)= Fy*(y3/y2)= 49.78 ksl f2(tenslon)= Fy*(yl/y2)= 101.54 ksi Y= f2/f1 = -2.04 k= 4 + 2*(1-Y)"3 + 2*(1-Y) = 66.27 flat depth=w= yl +y3 Eq. 82.3-5 Eq. 82.3-4 Eq. B2.1-4 Eq. B2.1-1 = 3.420 In w/t= 57.96610169 OK l=lambda= (1.052/(k)"0.5] * (w/t) * (f1/E)"0.5 = (1.052/(66.27)"0.5] * 3.42 * (49.78/29500)"0.5 = 0.308 < 0.673 be=w= 3.420 In bl= be(3-Y) = 0.679 b2= be/2 = 1.71 in bl +b2= 2.389 In > 1.12504 In, Web Is fully effective Determine effect of cold working on steel yield point <Fva) per section A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcomer=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 In C= 2*Lc/(Lf+2*Lc) = 0.155 in Eq B2.3-2 Project#: 2.75 In t51n 4 T 1.625 In 3.6561n l~ 0,0511 In Beam= Intlk 36E 3 656Hx2 75Wx0 059"Thk I I I Ix= 1.335 in"4 Sx= 0.680 ln"3 Ycg= 2.413 in t= 0.059 In Bend Radlus=r= 0.059 In Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 In bottom flange= 2.750 in Web depth= J ,f CI: In -Fy - m m= 0.192*(Fu/Fy) -0.068 = 0.1590 (EQ A7.2-4) cJepCh Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/FV= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Py/(R/t)"m (EQ A7.2-2) = 78.485 ksi Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Pya*Ycg/(depth -Ycg) = 113.84 ksl (tension stress at bottom) Check allowable tenston stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Ltb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl (EQ A7.2-3) If F= 0.95 Then PMn=F*Fya*Sx= j 19.08 ln-k y1 Yog j_ yl= Ycg-t-r= 2.295 In y2= depth-Veg= 1.243 In y3= y2-t-r= 1.125 In Structural ' Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel; 909.596 1351 fax· 909.596,7186 By: Nihei Project: CAMSTON WRATHER BEAM conttguration: Type c se1ect1ve Rael< RMI Section 5.2, PT II Section Beam= Intlk 36E 3.656Hx2.75Wx0.059"Thk Ix=Ib= 1.335 in"4 Sx= 0.680 ln"3 t= 0.059 in Fy=Fyv= 55 ksi Fu=Fuv= 65 ks! Fya= 58.6 ksi E= 29500 ksl F= 225.0 l= 108 In Beam Level= 1 P=Product Load= 2,500 lb/pair D=Dead Load= 60 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*{0.125)*P FOR DL= 2% of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)] RMI 2.2, item 8 1 -(2*225*108 in)/[(6*29500 ksi*l.3352 in"3)+(3*225*108 in)] = 0.843 if F= 0.95 Then F*Mn=F*Fya*Sx= 37.88 ln-k Thus, allowable load per beam pair=W= F*Mn*8*(# of beams)/(L *Rm*W) = 37.88 in-k * 8 * 2/(108in * 0.843 * 1.599) = 4,164 lb/pair allowable load based on bending stress Mend= W*L *(1-Rm)/8 = (4164 lb/2) * 108 in* (1-0.843)/8 = 4,413 In-lb @ 4164 lb max allowable load = 2,649 In-lb @ 2500 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 "(4*F*L)/(5*F*L + 10*E*Ib) = 1 -(4*225*108 in)/[(5*225*108 in)+(10*295-00 ksl*l.3352 in"4)] = 0.811 In if Dmax= L/180 Based on l/180 Deflection Oiteria and Dss= S*W*L "3/(384*E*Ib) L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L "2*Rd) = 384*1.3352 in"4*2/[180*5*(108 ln)"2*0.811.) = 3,553 lb/pair allowable load based on deflection /Im/ts t--2.751n t1.751n 4 Project#: 1.625 In .J_ T 3.656 In 1 ~ 0.0591n t=:tli•~tl=O=ll=ll=O=O=lt=ll=O=li=O=O=l=ll=O=O=ll~O;:jit:= '~~~-----------~-- • Pr■4uc, f:: - l'.I .. ; ; : : : : ee11:11m· Leng!th -. ... Allowable Deflection= L/180 = Q.600in Deflection at imposed Load= 0.422 in Thus, based on the least capacity of Item 1 and 2 above: Allowable oa = 3,553 /pair Imposed Product Load= 2,S00 lb/pair Beam Stress= . Beam at Level 1 Structural Engineering & Design Inc. 1815 Weight Ave I a Verne CA 91750 Tel· 909 596 1351 Fax· 909 596 7186 By: Nlhal Project: CAMSTON WRATHER Project#: 3 Tab Beam to Column Connection Configuration: Type C Selective Rack Mc:onn max= (Mselsmlc: + Mend-f1Xlty)*0,70*Rho = 6,093 In-lb Load at level 1 Connector Type= 3 Tab Shear Capacity of Tab Tab Length= 0.50 in Ashear= 0.5 in * 0.135 in = 0.0675 ln"2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi * 0.06751n"2 = 1,485 lb Beanng capactty of Tab tcoi= 0.070 In Omega= 2.22 FY= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearlng= alpha * Fu * tab length * tcol/Omega = 2.22 * 65000 psi * 0.5 in * 0.07 ln/2.22 = 2,275 lb > 1485 lb Moment capadty of Bracket Edge Dlstance=E= 1.00 In Tab Spacing= 2.0 in C= Pl+P2+P3 = Pl+Pl "'(2.5"/4.5")+Pl "'(0.5"/4.5") = 1.667 "' Pl Mcap= Sdip * Fbending = 0.1832 ln"3 * 0.66 "' Fy = 6,650 In-lb Pdip= Mcap/(1.667 * d) 4 tdip= 0.135 in C*d= Mcap = 1.667 = 6650.16 ln-lb/(1.667 * 0.5 In) = 7,979 lb Thus, Pl= 1,485 lb Mconn-allow= [Pl *4.5"+Pl *(2.5"/4.5")*2.5"+Pl *(0.5"/4.5")*0.5"] = 1485 LB*[4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"] = 8,828 In-lb > Mconn max, OK stress= 0.69 SHOP-2-Twe C 1 3 16" Bearing Length= O,iOtltJ In Fy= 55,000 psi Sdip= 0.183 ln"3 d= E/2 = 0.50-in I 2/G/2022 - Structural Engineering & Design Inc. 1815 Wciqbt Ave La Verne, CA 91750 Tel: 909,5961351 fax: 909 596 7186 By: Nihei • PrQject: CAMSTON WRA THER Project#: Transverse Brace Configuration: Type C Selective Rack Section Properties Diagonal Member= Mclx C456 Sgl 1.7953xl.378x16ga(U31x) Area= 0.259 ln"2 r min= 0.449 in Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Diagonal Member Bottom Panel Helght=H= 70.0 in Frame Depth=D= 48.0 in Column Wldth=B= 2.7 In Horizontal Member= Mclx C456 Sgl 1.7953xl.378x16ga(U31x) Area= 0.259 ln"2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Oear Depth=D-B*2= 42.6 In X Brace= NO rho= 1.00 .... 0 I Load Case 6:: a.±fl !04//!Seh}f) + l(0.85+0.14Sds)*B*P + [0.7*rflo*EJ<= 1.0, ASD Method Vtransverse= 959 lb Vb=Vtransv*0.7*rho= 959 lb * 0.7 * 1 = 671 lb (kl/r)= (k * Ldlag)/r min = (1 x 76.9 In /0.449 In ) = 171.3 In T Ldlag= [(D-8*2)"2 + (H-611)"2]"1/2 = 76.9 In Pmax= V*(Ldiag/D) * 0.75 = 807 lb axial load on diaaonal brace member Fe= pl"2*E/(kl/r)"2 = 9,922 psi Since Fe<Fy/2, Fn= Fe ~ 1 Pn= AREA*Fn => 0.259 ln"2 * 9922 psi = 2,567 lb PallOW=> Pn/Q = 2567 lb /1.92 = 1,337 lb Pn/Pallow= Horizontal brace Vb=vtransv*0.7*rho= 671 lb 0.60 (kl/r)= (k * Lhorlz)/r min = (1 x 48 In) /0.449 In = 106.9 in Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.20 5 HOP-2-Type C <= 1.0 OK <== 1.0 OK Fe= pi"2*E/(kl/r)"2 = 25,478 psi Pn= AREA*Fn = 0.2591n"2*25478 psi , = 6,591 lb Page :,,o of <tr" = 9,922 psi Fy/2= 27,500 psi Pallow= Pn/Qc Typk:al Panel eonoaurat1on = 6591 lb /1.92 = 3,433 lb I 2/G/2022 Structural Engineering & Design Inc. 1815 Weight Aye La Verne. CA 91750 Tel: 909 596,1351 fax: 909.59§ 7186 By: Nihei Project: CAMSTON WRATHER Project#: Slngle Row Frame Overturning Configuration: Type C Selective Rack Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Vtrans=V=E=Qe= 959 lb DEAD LOAD PER UPRIGHT=D= 180 lb PRODUCT LOAD PER UPRIGHT=P= 7,500 lb Papp=P*0.67= 5,025 lb Wst LCl=Wstl=(0.75264*0 + 0.75264*Papp"l)=-3,917 lb Product Load Top Level, Ptop= 2,500 lb DL/Lvt= 60 lb Seismic Ovt based on E, E(Fi*hl}= 70,567 In-lb helaht/deoth ratio= 2.3 In A) Fullv Loaded Rack Load case 1: Movt= E(Fl*hl}*E*rho = 70,567 In-lb Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0.7526 B= 1.uooo rho= 1.0000 Frame Depth=Df= 48.0 In Htop-lvl=H= 108.0 In # Levels= 3 # Anchors/Base: 1 ho= 48.0 In h=H+ho/2= 132.0 In Mst= Wstl * Df/2 = 3917 lb* 48 in/2 = 94 008 In-lb SIDE ELEVATION T= (Movt-Mst)/Df = (70567 In-lb -94008 ln-lb)/48 In = -488 lb No Uplift I Net Seismic Uplift= --488 lb Strenoth Level B) Top Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip * ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho = 0.1842 * 2500 lb = 62,576 In-lb = 461 lb T= (Movt-Mst)/Df Vleff= 461 lb Cl'ltlcal Level= 3 = (62576 In-lb -48410 ln-lb)/48 In V2=VDl = Cs*Ip*D Cs*Ip= 0.1842 = 295 lb Net Upll~ per Column = 33Ib Mst= (0.75264*0 + 0.75264*Ptop*1) * 48 ln/2 = 48,410 In-lb I Net Seismic Uplift= 295 lb Strenath Level Anchor Check (1) 0.5" x 2" Embed Hlltl TZ anchor(s) per base plate. Speclal Inspection Is required per #1917. Fully Loaded: Top Level Loaded: L.A. Oty Jurisdiction? NO Pullout capadty=Tcap= 970 lb Shear capadty=Vcap= 1,250 lb Phi= 1 (479 lb/1250 lb)"l = (295 lb/970 lb)"l + (230 lb/1250 lb)"l = 5HOP-2-Type C Paqe ':,/ of 't'.S" 0.38 0.49 Tcap*Phl= 970 lb Vcap*Phl= 1,250 lb <= 1.2 OK <= 1.2 OK 12/6/2022 Structural En~ineering & Design Inc. 1815 Weight Ave La Verne CA 91750 Jel· 909 596 1351 fax: 909,596 7186 By: Nlhal Project: CAMSTON WRATHER Project#: Base Plate Configuration: Type C Selective Rack Section Baseplate= 5.094x4.688x0.194 Eff Wldth=W = 5.09 In Eff Depth=D = 4.69 In Column Wldth=b = 3.00 In Column Depth=dc = 2.69 In L = 1.05 In a = 1.55 In Anchor c.c. =2*a=d = 3.09 In Ne# Anchor/Base= 1 Fy = 36,000 psi +-a-p Mb Plate Thlckness=t = 0.194 In Downalsle Elevation Down Aisle Loads Load case 5: : (1+O.1O5*Sds)D + O.75*/(1.4+0.14Sds)*B*P + O.75*{O.7*rho*El<= 1.0, ASD Method COLUMN DL= 90 lb Axial=P= 1.077364 * 90 lb+ 0.75 * (1.503152 * 0.7 * 3750 lb) COLUMN PL= 3,750 lb = 3,056 lb Base Moment= 8,000 In-lb Mb= Base Moment*0.75*0,7*rho 1+0.105*Sds= 1.0774 = 8000 In-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.5032 ,.--------=_4..._,2_00_i_n_·l_b ______________ ___, B= iYio/l®~~~! Axial Load P = 3,056 lb Mbase=Mb = 4,200 In-lb Axial stress=fa = P/A = P/(D*W) Ml= WL "2/2= fa*L "2/2 = 128 psi = 70 In-lb Moment Stress=fb = M/S = 6*Mb/[(D*B"2] = 207.2 psi Moment Stress=fbl = fb-fb2 = 122.0 psi M3 = (1/2)*fb2*L *(2/3)*L ::: (1/3)*fb2*L" 2 = 31 in-lb S-plate = (l)(t" 2)/6 = 0.006 ln"3/ln fb/Fb = Mtotal/[(S-plate)(Fb)] = 0;99 OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] = -1,202 lb No Tension Moment Stress=fb2 = 2 * fb * L/W = 85.2 psi M2= fbl *L" 2)/2 = 67 In-lb Mtotal :::: Ml +M2+M3 = 168 In-lb/in Fb = 0.75*Fy = 27,000 psi F'p= 0.7*F'c = 2,800 psi Tallow= 970 lb OK OK Cross Aisle Loads D1tJca1ll»dt:M•RN1s«z.1, 1tB1n4:f1+0.11St1,JOt. +f1+0.,,1svs)P(•o.1S+a."'0.15<• 1.0, ASD/olethod Check u lift load on Base I t:e em Effe Pstatlc= 3,056 lb Movt*0.75*0.7*rho= 37,048 In-lb Frame Depth= 48.0 in Oleck uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. the base plate conllguratlon,conslsts or two anchor bolts located on either side P=Pstatlc+Pselsmlc= 3,828 lb b =Column Depth= 2.69 in L =Base Plate Depth-Col Depth= 1.05 in fa = P/A = P/(D*W) = 160 psi Sbase/ln = (1)(t"2)/6 = 0.006 ln"3/ln fb/Fb = M/[(S-plate)(Fb)] 0.52 OK 5HOF'-2-TY)'e C Pselsmic= Movt/Frame Depth = 772 lb M= wl"2/2= fa*L"2/2 = 88 In-lb/In Fbase = 0.75*Fy = 27,000 psi Fage 32..of ~ f the column and a net uplift force exists, the minimum base plate thlekness all be de\'ermlned based on a design bending moment In the plate equal to the uplift force on one anchor-times 1/2 the distance from e centerline of the anchor to the nearest edge of the rack column" ,~ C A\~,,,r Ta l~ Tl lJ ri~=-=,=b===I =~ flmllao Uplift per Column= 295 lb Qty Anchor per BP= 1 Net Tension per anchor=Ta:::: 295 lb c= 1.05 in Mu=Moment on Baseplate due to uplift= Ta*c/2 Fb *0.75= 0.146 = 154 In-lb Splate= 0.029 ln"3 OK / 2/G/2022 Structural ' Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909,596, 1351 fax: 909.596,7186 By: Nihal Project: CAMSTON WRATHER Project#: Slab on Grade ConflguraHon: Type C Selective Rack a ~ 'niiffii'Pl'ffi'l'ffiffi"l'in'fr\~ f'c= 4,000 psi tslab=t= 5.5 In teff= 5.5 In ~111~= 0,6 t X 1-~/ ~-J---+I SQlJ fsoll= 2,000 psf Movt= 70,567 In-lb Frame depth= 48.0 In SLAB EL,.EYATION Baseplate Piao View Base Plate Effec. Baseplate wldthmB• 5.09 In Elfec. Baseplate DepttlmDm 4.69 In wldth=a= 3.00 In depth=b= 2.69 In Sds= 0.737 0.2*Sds= 0.147 N=o.600 l3=B/D= 1.087 F'c"0.5= 63.20 psi Column Loads DEAD LOAD=D= 90 lb per column unfactored ASD load PRODUCT LOAD=P= 3,750 lb per column unfactored ASD load Papp= 2,513 lb per column P-selsmic=E= (Movt/Frame depth) = 1,470 lb per column unfllctored Umlt Stllte load · i '" 'S-:r ;r -,,,,., B= 10J7l). • ,'1ti:,'lf"~ i' m1 .. :fK~~ i'n)•~•· r~j ' Ni rho= tf.•\l!l! .. J:i,~;g}~ 1,•u?J Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 206.10 ln"2 Fpunctl= [(4/3 + 8/(3*13)] *).. *(F'c"0.5) = 143.6 psi Fpunct2= 2.66 * ).. * (F'c"0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=Dl+PL+E= 5,358 lb Asoll= (Pse*144)/(fsoll) = 386 ln"2 X= (L-y)/2 = 2.4 In Fb= 5*{phl)*(f'c)"0.5 = 189.74 psi SHOf'-2-Type C midway dist face of column to edge of plate=c= 4.05 In midway dist face of column to edge of plate=e= 3.69 In Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sec 2.2 EQTN s = 1.34736 * 90 lb+ 1.34736 * 0.7 * 3750 lb+ 1 * 1470 lb = 5,128 lb Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI 5'C 2,2 EQTN 7 = 0.75264 * 90 lb+ 0.75264 * 0.7 * 2512.5 lb+ 1 * 1470 lb = 2,861 lb Load case 3) 1.2*D + 1.4*P = 1.2*90 lb + l.4*3750 lb = 5,358 lb Load Case 4) 1.2*D + 1.0*P + 1.0E = 5,328 lb Effective Column Load=Pu= 5,358 lb per column l = (Asoll)"0.5 = 19.65 In M= w*x"2/2 = (f'soll*x"2)/(144*2) = 39.7 In-lb fv/Fv= Pu/(Apunct*Fpunct) = 0.258 < 1 OK y= (c*e)"0.5 + 2*t = 14.9 In S-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) = 0.042 < 1, OK RMI SEC 2.2 EQTN 1,2 ACI 318-1~ Sec 5.3.1 Eqtn 5.3.le I 2/G/2022 Structµral Engineering & Design Inc. 1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 SHELVING Structural Engineering & Design Inc. 1816 Wdgbt Aye Ste 200 La Verne CA 91760 Jal· 809 §981361 fax· 909.693 8561 By: Bob S Project: Camston Project#: 22-1129-4 Design Data Configuration: Rlvetler II Shelving Type 1(@ Grade): 144 In x 96 in x 24 In 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2018 IBC, 2019 CBC and ASC 7·16 2) Steel minimum yield, Fy== 36 ksl unless otherwise noted on the plans or analysis herein. 3) Anchor bolts shall be provided by Installer per rec reference on the calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy Inspector. 5) Slab on grade Is 6 In thick concrete with rc==2500 psi WP55 R1vet1er II Shelving -Cam:::.ton I 2/G/2022 Structural ' Engineering & Design Inc. 1816 Weight Aye Sta 200 La Verna CA 917§0 Toi· 9096961361 fax· 909 §93 6§81 By: Bob S Project; Camston Project#: 22-1129-4 Summary of Results eonne ... 11oo1: Rlwltier n SllelYlna Type 1co Grade): 144 111 "96 i. " 24 '" Seismic Coeff: Ss= 0.921 S1= 0.339 Fa= 1.200 Fv= 1.970 Steel Fy= 36,000 psi Column Beam Beam Rivet Product Load/Lvl= 250 lb Dead Load/Level"' 10 lb Comoonent Summary ANGLE POST L1-1/2"x14ga SS Double Rivet Beam 1/4" Diam Rivet x 1-1/2" Spacing Anchor (1) 3/8" x 2" Embed Hiltl TZ per footplate Special inspection Is required per ICC #1917. Net Upll~=340 lb Foob>late 5.75 x 3.625 X 0.075 Footplate at T Post 3.Sx3.625x14ga at L Post Slab on Grade 6 In thick conaet:e with rc=2500 psi 750 psf allowable soil bearing pressure Notes Column Reactions (ASD): Axial column DL= 40 lb Axial column LL= 750 lb Axial column seismic load=+/-713 lb Net Seismic uplift= 340 lb 0.60 0.40 0.44 0.73 0.60 0.08 Wf'SS R,vet1er II 5helvmq -Cam5ton Pa':3e 3(, of if) OK OK OK OK OK OK Shelf Configuration I# of Levels= 8 D= 24.0 in H= 144.0 in L= 96.0 in Location hl= h2= h3= h4= hS= h6= Elevation 3.0 in 21.0 in 24.0 In 24.0 In 24.0 in 24.0 in Load 2501b 2501b 250 lb 250 lb 2501b 2501b I 2/G/2022 • Structural Engineering & Design Inc. 1816 Wright Aya Sta 200 La Yeco@ CA 91750 Ief· 909 696 1361 Fax· 909 693 8561 By: Bob S Project: Cemston Project#: 22-1129-4 Seismic Forces Configuration: Rlvetler II Shelving Type 1(® Grade): 144 In x 96 in x 24 In V1= Sos*W/R V2= [0.4*ap*Sos*Ws*(1+2*z/h)/(Rp/Ip )] V3= 0.044*Sds j V4= 0.5*51/R j Vl= 0.1842 V2= 0.1842 V3= 0.0324 V4= 0.0000 hb ! Vm1n1mum= 0.015 Seismic Coefl'=Cs= 0.1842 (Either Direction) Cs*Ip= 0.1842 Down Aisle Seismic Shear (Longltudlnal) Wlong= l:(LL *0.67+DL) = 1,065 lb Vlong=VL= 0.1842 * 1065 lb = 196 lb VJ2= 98 lb Summa& of ReactionsJaSee following pages) Longltu nal Col Pstatic= l:(LL+DL) = 780 1b Mlong= Mr*VJVr = 891 In-lb M, 7 V Deck DL= 0 psf Deck LL= 0 psf Trib Area=A= 0.0 ft"2 Deck level LL= 0 lb Deck levelDL= Olb Ss= 0.92 S1= 0.34 Fa= 1.20 Fv= 1.97 Sds= 0.737 Sdl= 0.445 R=Rp= 4.00 Ip= 1.00 ap= 2.5 z/h= 0.00 Elevatton # of levels= 8 Depth= 24.0 In Product LL/Shlf= 250 lb DL/Shlf= 10 lb Cross Aisle Seismic Shear (Transverse) wtransv= l:(LL *0.67+DL) = 1,065 lb Vtransverse=V,-= 0.1842 * 1065 lb = 1961b Transverse Column Loads Pstatlc DL= 30 lb Pstatlc LL= 750 lb Longitudinal Conn Moment Movt= 17,110 In-lb Depth=D= 24 In Pselsmlc= Movt/0 == 713 lb Mtransv=Mr= 891 In-lb Transverse Conn Moment 12/f,/2022 Stetural onEts . ngineering • I 1200 N lettemoa Sht Sht E 4oabeiro CA s2ao1 Jal· 114 532 133Q Fax· 11, 532 7153 By: Bobs Project: Camston Project#: 22-1129-4 ! , [ Seismic Load Distribution I Level LL DL hi wi*hl Fl Fl*hl I 1 250Ib 10 lb 3 In 780 1.6 lb 5 In-lb i 2 250 lb 10 lb 24In 6,240 13.0 lb 312 In-lb 3 250Ib 10 lb 48In 12,480 25.9 lb 1,243 In-lb I 4 250 lb 10 lb 72In 18,720 38.9Ib 2,801 In-lb 1 5 250Ib 10 Ib 96In 24,960 51.8 lb 4,973 In-lb 6 250Ib 10 lb 120In 31,200 64.8 lb 7,776 in-lb 7 Olb Olb 120In 0 0.0 lb 0 In-lb 8 0 lb Olb 120In 0 0.0 lb 0 In-lb 9 Olb Olb 0 In 0 0.0 lb 0 in-lb 10 Olb Olb 0 In 0 0.0 lb 0 In-lb 11 Olb Olb Oln 0 0.0 lb 0 In-lb 12 Olb 0 lb Din 0 0.0 lb 0 In-lb 13 Olb Olb Oln 0 0.0 lb 0 In-lb 14 Olb Olb Din 0 0.0 lb 0 In-lb 15 Olb Olb Oln 0 0.0 lb 0 In-lb 16 Olb 0 lb 0 In 0 0.0 lb 0 In-lb 17 Olb Olb Din 0 0.0 lb 0 In-lb 18 Olb Olb 0 In 0 0.0 lb 0 In-lb 19 Olb Olb 0 In 0 0.0 lb 0 In-lb 20 Olb Olb o in 0 0.0 lb 0 In-lb 21 0 lb 0 lb 0 In 0 0.0 lb 0 In-lb 22 Olb Olb 0 In 0 0.0 lb 0 In-lb 23 Olb 0 lb 0 In 0 0.0 lb 0 In-lb 24 Olb Olb Din 0 0.0 lb 0 in-lb 25 0 lb Olb Oln 0 0.0 lb 0 In-lb 26 Olb Olb Oln 0 0.0 lb 0 In-lb 27 0 lb Olb Oln 0 0.0 lb 0 In-lb 28 O lb Olb Din 0 0.0 lb 0 In-lb 29 0 lb Olb Din 0 0.0 lb 0 In-lb 30 0 lb 0 lb Din 0 0.0 lb 0 In-lb 31 0 lb 0 lb 0 In 0 0.0 lb 0 In-lb 32 Olb Olb Oln 0 0.0 lb 0 in-lb 33 Olb Olb Oln 0 0.0 lb 0 in-lb 34 Olb Olb O in 0 0.0 lb Din-lb 35 0 lb 0 lb Oin 0 0.0 lb 0 In-lb 36 0 lb Olb Din 0 0.0 lb 0 In-lb 37 0 lb 0 lb Oln 0 0.0 lb 0 In-lb 38 0 lb Olb Oln 0 0.0 lb 0 In-lb 39 Olb Olb 0 In 0 0.0 lb 0 In-lb 40 Olb Olb Oln 0 0.0 lb 0 in-lb Sum: 1,500 lb 60Ib W:a1560 lb 94,380 196Ib 17,110 in-lb =Movt WP55 Rivet1er II Shelving -Cam5ton rage ~ S of Y:S I 2/f,/2022 By: Bob S Project: Camston Determine effective loadlng to double rivet moment resisting beams Vlong= 196 lb Vcol= 9816 Longitudinal Direction ..... Moment Resisting Dbl Rivet Beams (Lona) hb 1 3In 2 21 In 3 24In 4 24In 5 24In 6 24In 7 Oln 8 Oln 9 Oln 10 Din 11 o in 12 Qin 13 Oln 14 Oln 15 Din 16 Oln 17 Oln 18 Din 19 Oln 20 Oln 21 Din 22 Oln 23 Din 24 Oln 25 0 In 26 Din 27 O in 28 Din 29 0 In 30 Oin 31 Oln 32 0 In 33 0 In 34 0 In 35 0 In 36 Oln 37 0 In 38 Oln 39 0 In 40 o in Longitudinal Column Loads Pstatic= E(LL +DL) = 780Ib Veff Mn Mconn 98.0 lb 294 In-lb 597 In-lb 85.75 lb 900 In-lb 891 In-lb 73.50 lb 882 In-lb 809 In-lb 61.25 lb 735 In-lb 662 In-lb 49.00 lb 588 ln•lb 515 In-lb 36.75 lb 441 in-lb 221 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 in-lb 0 In-lb 0.00 lb 0 In-lb 0 in-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 lh-lb 0 In-lb 0.00 lb 0 In-lb O in·lb 0.00 lb 0 in-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 in-lb 0 ln·lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 in-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 ln•lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 in-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 in-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 in-lb 0.00 lb 0 In-lb 0 In-lb 0.00 lb 0 In-lb 0 In-lb max: 891 In-lb Mlong= MT-..YJVT = 891 In-lb Longltud/na/ Conn Moment WF'55 Rlvet1er II 5helvin,a -Camston Project#: 22-1129-4 Vlong= 196 lb Transverse Direction Veal= 98 lb .... Moment Reslstlna Dbl Rivet Beams (Transv' hb Veff Mn Mconn 1 3In 98.0 lb 294 In-lb 597 In-lb 2 21 In 85.75 lb 900 In-lb 891 ln·lb 3 24In 73.50 lb 882 In-lb 809 In-lb 4 24 in 61.25 lb 735 In-lb 662 in-lb 5 24In 49.00 lb 588 In-lb 515 in-lb 6 24 In 36.75 lb 441 In-lb 221 In-lb 7 Din 0.00 lb 0 In-lb 0 In-lb 8 Oln 0.00 lb 0 In-lb 0 ln·lb 9 Din 0.00 lb 0 in-lb 0 In-lb 10 Oln 0.00 lb 0 In-lb 0 In-lb 11 Oln 0.00 lb 0 In-lb 0 In-lb 12 Oin 0.00 lb 0 In-lb 0 In-lb 13 Oln 0.00 lb 0 In-lb 0 in-lb 14 Oln 0.00 lb 0 In-lb 0 in-lb 15 Din 0.00 lb 0 In-lb 0 in-lb 16 0 In 0.00 lb 0 In-lb 0 In-lb 17 Oln 0.00 lb 0 In-lb 0 In-lb 18 Oln 0.00 lb 0 In-lb 0 In-lb 19 0 in 0.00 lb 0 In-lb 0 ln-lb 20 Oin 0.00 lb 0 In-lb 0 In-lb 21 Din 0.00 lb 0 In-lb 0 In-lb 22 Din 0.00 lb 0 In-lb 0 In-lb 23 Oin 0.00 lb 0 In-lb 0 In-lb 24 Oln 0.00 lb 0 In-lb 0 In-lb 25 Oln 0.00 lb 0 In-lb 0 In-lb 26 Oin 0.00 lb 0 In-lb 0 In-lb 27 Oln 0.00 lb 0 In-lb 0 in-lb 28 Oin 0.00 lb 0 In-lb 0 In-lb 29 Oln 0.00 lb 0 In-lb 0 in-lb 30 Oln 0.00 lb 0 In-lb 0 In-lb 31 Oln 0.00 lb 0 In-lb 0 In-lb 32 Oln 0.00 lb 0 In-lb 0 In-lb 33 Oin 0.00 lb 0 In-lb 0 In-lb 34 Din 0.00 lb 0 In-lb 0 In-lb 35 Din 0.00 lb 0 In-lb 0 In-lb 36 Oln 0.00 lb 0 In-lb 0 In-lb 37 Oin 0.00 lb 0 In-lb 0 In-lb 38 0 In 0.00 lb 0 In-lb 0 In-lb 39 Oin 0.00 lb 0 In-lb 0 In-lb 40 Oln 0.00 lb 0 In-lb 0 In-lb max: 891 In-lb Transverse Column Loads Pstatlc DL= 30 lb Movt= 17,110 In-lb Pstatlc LL= 750 lb Depth=D= 24 In Mtransv=Mr= 891 In-lb Pselsmlc= Movt/0 Transverse Conn Moment = 713 lb I 2/b/2022 Structural ' Engineering & Design Inc. 1815 Wclgbt Aye Ste 200 La Verne CA 91750 TeJ· 808 598 1351 Fax· 808 593 8581 By: Bobs Project: Camston Project#: 22-1129-4 Transverse Column Loads (Weak Axis Bending) Configuration: Rlvetler II Shelvlng Type 1(@ Grade): 144 In x 96 In x 24 in Net Section Properties Column= ANGLE POST Ll-1/2"x14ga Aeff = 0.358 ln"2 Ix (downalsle) = 0.148 ln"4 Sx {downalsle) = 0.099 ln"3 rx (downalsle) = o.642 In Iy (crossalsle) = 0.087 ln"4 Sy (crossalsle) = 0.090 ln"3 ry (crossalsle) = 0.494 In Fy= 36 ksf Axial DL= 30 lb Axial LL= 750 lb Pseismlc= 713 lb Loads Load Case: (Fully Loaded) Qf= 1.67 E= 29,500 ksi Cb= 1.0 Cmx= 0.85 Kx = 1.0 Lx = 24.0 in Ky= 1.0 Ly= 24.0 in Axial=P= DL+0.75LL+0.75*0.7*Pselsmlc = 967Ib Moment=My= 891 In-lb Axial Analysis Kxlx/rx = 1 *24"/0.642" = 37.4 Fe= n"2E/(Kl/r)max"2 = 123.4ksi Pn= Aeff*Fn = 11,948 lb P/Pa= 0.16 Bending Analysis > 0.15 KyLy/ry = 1 *24"/0.494" = 48.6 Fy/2= 18.0 ksl Qc= 1.92 Check: P/Pa + (cmy*My)/(May*µ) S 1.0 P/Pao + My/May S 1.0 Pno= Ae*Fy Pao= Pno/Qc Fe > Fy/2 Fn= Fy(1-Fy/4Fe) = 36 ksl*[l-36 ksf/(4*123.4 ksl)] = 33.4 ksl Pa= Pn/Qc = 11948 lb/1.92 = 6,223 lb Myteld=My= Sy*Fy = 0.358 ln"2 *36000 psi = 12,888 lb = 128881b/l.92 = 6,713 lb = 0.09 ln"3 * 36000 psi = 3,240 In-lb May=_ My/Qf = 3240 ln-lb/1.67 = 1,940 In-lb µ= {1/(1-(Qc*P/Pcr)]}"-1 = {1/(1-(1.92*967 lb/74810 lb)]}"-1 = 0.98 Combined Stresses Per= n" 2EI/(KL)max" 2 = n"2*29500000 psl/(1 *24 ln)"2 = 74,810 lb (967 lb/6223 lb) + (0.85*891 ln-lb)/(1940 ln-lb*0.98) = (967 lb/6713 lb) + (891 ln-lb/1940 In-lb) = 0.56 0.60 < 1.0, OK < 1.0, OK wrss RJvet,er II Shelvm,a -Camston Page lf-oof y-5 (EQ CS-1) CEO CS-2} I 2/G/2022 Strµctural Engineering & Design Inc. 161 § Weight Ayo sto 200 La Verne CA 91750 Toi· 909 596 13§1 Fax· 909 §93 6§61 By: Bobs Project: Camston Project #: 22-1129-4 Longitudinal Column Loads (Strong Axis Bending) Configuration: Rlvetler II Shelving Type 1(@ Grade): 144 In x 96 In x 24 In Net Section Properties Column= ANGLE POST Ll-1/2"x14ga Aeff = 0.358 ln"2 Ix (downaisle) = 0.148 ln"4 Sx (downaisle) = 0.099 ln"3 rx (downalsle) = o.642 In Iy (crossalsle) = 0.087 in"4 Sy (crossalsle) = 0.090 ln"3 ry (crossalsle) = 0.494 In Loads Fy= 36 ksl Axial DL= 30 lb Axial LL= 750 lb Pselsmlc= 0 lb Load case: (Fully Loaded) Qf= 1.67 E= 29,500 ksl Cb= 1.0 Cmx= 0.85 Kx = 1.0 Lx = 24.0 In Ky= 1.0 Ly= 24.0 In Axial=P= DL+0.75LL+0.75*0.7*Pselsmic = 5931b Moment=Mx= 891 in-lb Axial Analysis Kxlx/rx = 1 *24"/0.642" = 37.4 Fe= n" 2E/.(KL/r)max" 2 = 123.4ksl Pn= Aeff*Fn = 11,948 lb P/Pa= 0.10 Bending Analvsls < 0.15 O,eck: P/Pa + My/May s 1.0 Pno= Ae*Fy KyLy/ry = 1*24"/0.494" = 48.6 Fy/2= 18.0 ksi Qc= 1.92 Pao= Pno/Qc Fe > Fy/2. Fn= Fy(1-Fy/4Fe) = 36 ksl*[l -36 ksl/(4*123.4 ksl)] = 33.4 ksl Pa= Pn/Qc = 11948 lb/1.92 = 6,223 lb Myleld=My= Sx*Fy = 0.358 in"2 *36000 psi = 12,888 lb = 128881b/1.92 = 6,713 lb = 0.099 ln"3 * 36000 psi = 3,564 In-lb May:::: My/Qf = 3564 ln-lb/1.67 :::: 2,134 In-lb µ= {1/[1-(Qc*P/Pcr)]}"-1 = {1/[1-(1.92*593 lb/74810 lb)]}"-1 = 0.98 Combined Stresses Per= n"2EI/(KL)max"2 = n"2*29500000 psl/(1 *24 ln)"2 = 74,810 lb (593 lb/6223 lb) + (891 ln-lb/2134 In-lb) = 0.51 < 1.0, OK Wf'55 Rivet1er II Shelvmq -Cam5ton Page Cf-( of <f5 (EQ CS-3) I 2/G/2O22 S tructural Engineering & Design Inc. 181§ Wcigbt Ave sta 200 La Yeroe, CA 91750 IAI· 808,598.1351 Eex· 808 593 8§81 By: Bob S Project: Camston Project#: 22-1129-4 Double Rivet Beam Configuration: Rlvetler II Shelving Type 1(@ Grade): 144 In x 96 in x 24 In Beam Type= SS Double Rivet Beam Ix= 0.2060 ln"4 Sx= 0.123 ln"3 Fy-beam= 36,000 psi Shelf Span=L= 95 In Check Beam Bending Shelf DL= 10 lb Shelf LL= 250 lb Shelf LL+DL= 260 lb Load=w=LL *0.67/(2*L)= 11.4 plf M= w * L"2/8 = 1,072 In-lb fb::o M/Sx = 8,713 psi Fb= 0.6 * Fy 21,600 psi fb/Fb= 0,40 OK Check ORB Beam Rivets For Static + Seismic Loads Check load case: DL+0.75LL + 0.75*0.7*Mseismic Rivet Spacing:ad= 1.5 In Rivet diameter= 0.25 in Fy-rlvet= 36,000 psi Max Conn. Moment=Mc= 891 in-lb Mc*0.7*0.75=M= 468 in-lb C= M/d = 312 Ib Shear Capacity= Rivet Area * 0.4 * Fy·rivet 1-3/32·1-l Dowm1Isle be<lm if, II\ II\ 1' t•14 9• i T I . ~ t ~ ' y y y "' I _l N IE Down.isle ~m L ss Dbl Rivet Beam sbcl(Elao lt'!Clll Check Beam Deflection E= 29,500,000 psi D= 5 * w * L"4/(384 * E * Ix) = 0.1712 In Dallow= L/140 tmin= 0.075 in Fu= 58,000 psi W= (LL *O. 75+DL)/4 = 49 lb = 0.68 In OK = [(0.25 ln)A2 * pl/4] * 0.4 * 36000 psl = 707 lb Bearing Capacity= Rivet Diam * tmln * Fu * 1.2 = 1,305 lb Effective Shear= [(W/2)"2 + C"2]"0.5 = 313 lb OK Wf'55 Rivet1er 11 Shelving -Camston w Beam to Column II\ 1' J I V -b II\ y Column Rivet Beam I 2/G/2022 Structu~al . E ngine~ring & Design Inc. I 1816 Wright AYft Ste 200 La \lecoe CA 91760 Tel· 908 696.1361 fax· Q0Q 693.6661 By: Bobs Project: Camston Project #: 22-1129-4 Anchors Configuration: Rlvetier II Shelving Type 1(@ Grade): 144 In x 96 In x 24 In 01edc load case: 0.9D + 0.9*0.67LL + V ds Vtrans=V= 196 lb Dl/Frame= 60 lb LL/Frame= 1,500 lb Wst,=(0.9*DL+ 0.9*0.67LL)total= 959 lb LL @TOP= 0 lb Dl/Lvl= 10 lb DL *0.90= 9 lb Lateral Ovt Forces=I(Fl*hl)*1.15= 19,676 In-lb I Fully Loaded,rack Vtrans= 196 lb Frame Depth=D= 24.0 In Htop-lvl= 120.0 In # Levels= 8 # Anchors per col.= 1 - T , SIDE ELEVATION Mst= Wst * D/2 Net Upllft=T= (Movt-Mst)/D V M~vt= r(Fi*hl) = 19,676 In-lb = 959 lb * 24 ln/2 = 11,508 In-lb = (19676 ln·lb -11508 ln-lb)/24 In = 3401b Top Level Loaded Only Oitlcal Level= 8 Vtop= Cs * Lltop Vtqp= 0.184 * 0 lb = 0 lb Mst= 0.6*(LL-top) *D/2 ' = (0 lb*0.6) * 24 in/2 ! = In-lb Hgt @ Lvt 8= 120.0 In Movt= Vtop*Htop*l.15 = 0 lb * 120 In * 1.15 = In-lb Net Upllft=T= (Movt-Mst)/D = (0 In-lb -0 ln-lb)/24 In = Olb Anchor Net Seismic Max Uplift= !340 LB Check (1) 3/8" x 2" Embed Hilti n anchor(s) per footplate ** Spedal Inspection Is required per ICC #1917. Fully Loaded: Top Level Loaded: Pullout capadty=Tcap= 500 lb Shear Capadty=Vcap= 500 lb Tcap*Phl= 500 lb Vcap*Phl= 500 lb Phi= 1.00 (340 lb/500 lb)"l + (98 lb/500 lb}"l = (0 lb/500 lb)"l + (0 lb/500 lb)"l = WP55 R.ivet,er II Shelvm<:3 -Camston Page '-t3 of 'fJ 0.88 0.00 <= 1.2 OK <= 1.2 OK I 2/G/2022 Structural ' . Engineering & Design Inc. 1816 Weight Aye Ste 200 La Verne CA 91750 Jel· 909 696 1351 fax· 909 693 8661 By: Bob S Project: Camston Project#: 22-1129-4 Base Plate Configuration: Rlvetler II Shelving Type 1(@ Grade): 144 In x 96 In x 24 In on Actual base plate for T Post Is 5.75 In x 3.625 In x 14 ga, but a smaller area Is considered to be effective due to the rigidity limitations of the baseplate p Wldth=B = 4.00 In Depth=D = 2.00 in Plate Thickness=t = 0.075 In Cross Aisle Loads Column Wldth=b = 3.000 In Column depth=b = 1.500 In L = a.so In Fy = 36,000 psi Axial DL= 30 lb Axial L= 750 lb Pselsmlc= 713 lb DL+0.75LL + 0.75*0.7*Pseismlc= 967 lb L = Base Plate Depth-Col Depth = 0.50 in fa = P/A = P/(D*B) = 121 psi Sbase/ln = ( 1 )(t" 2)/6 = 0.001 in" 3/ln fb/Fb = M/[(S-plate)(Fb)] = 0.60 OK WPSS Rivet1er II Shelvin':! -Camston M= wl"2/2= fa*L"2/2 = 15 In-lb/in Fbase = 0.75*Fy = 27,000 psi +.,_,L.., $::::5,.,!'J/!all◄·::::(¼):1 Pa,ae 'f<f of lf5 CONNECT TO UPRIGHT W/(2) t/4"Te<8CREWS RDSFP FOOTPLATE CONNECT TO UPRIGHT W/ (1) 1/4" TEI< SCREW RSSFP FOOTPLATE I 2/G/2022 $tr~ctural Engineering & Design Inc. 1816 Wrfgbt Ava Ste 200 La Verne CA 91750 Tot· 9096961351 fax· 909 §93 6661 By: Bob S Project: Camslon Project#: 22-1 129-4 Slab on Grade Configuration: Rlvetier II Shelving Type 1(@ Grade): 144 In x 96 In x 24 In SLAB ELEVATION Base Plate B= 4.00 in D= 2.00 In Load Case 1: Product + Seismic Product DL= 30 lb Product LL= 750 lb Puncture I Pu= 1.2DL + 1.0LL + 1.0*E = 1,392 lb Apunct= [(c+t)+(e+t)]*2*t = 216.0 ln"2 Slab Bendlna I Asoil= (P*144)/(fsoll) = 267 in"2 X= (L-y)/2 = 0.8 in Fb= 5*(phl)*(t'c)"0.5 = 150. OSI Load Case 2: Static Loads Puncture DL= 30 lb Pu= 1.2*DL + 1.6*LL = 1,131 lb Apunct= [(c+t)+(e+t)]*2*t = 216 ln"2 Slab Bending Asoll= (Pu*144)/(fsoll) = 217 ln"2 xc (L-y)/2 = 0.0 in Fb= 5*(phl)*(t'c)"0.5 = 150. osl WP55 R.Jvetier II Shelvm,a -Camston ~ t'c= 2,500 psi tstab=t= 6.0 In phl=0"' 0.60 SQll fsoll= 750 psf Movt= 17,110 In-lb Frame depth= 24.0 In Baseplate Pion View wldth=a= 3.00 In depth=b= 1.50 In eff. baseplate width=c= 4.00 In eff. baseplate depth=e= 2.00 In P-selsmlc=E= Movt/Frame depth = 713 lb (Strength Design Loads) L= (Asoil)"0.5 = 16.34 in M= w*x"2/2 = (fsoll*x"2)/(144*2) = 1 In-lb I LL= 7501b L= (Asoll)"0.5 = 14.74 In M= w*x" 2/2 = (fsoll*x"2)/(144*2) = 0 In-lb • Page 'f.)of 'f-5 Fpunct= 2.66*phl*sqrt(t'c) = 79.8 psi fv/Fv= Pu/(Apunct*Fpunct) = 0.08 < 1.0 OK v= (c*e)"0.5 + t*2 = 14.8 In s-slab= 1 *t" 2/6 = 6.0 ln"3 fb/Fb= M/(S-slab*Fb) = 0.00 < 1,0 OK I Fpunct= 2.66*phi*sqrt(t'c) = 79.8 psi fv/Fv= Pu/(Apunct*Fpunct) 0.07 < 1.0OK y= (c*e)"0.5 + t*2 = 14.8 In S-slab= 1 *t" 2/6 = 6.0 ln"3 fb/Fb= M/(5-slab*Fb) 0.00 < 1.0. OK I 2/G/2022 S tructural Engineering & Design Inc. 1816 Wright Ave., La Verne, CA 91760 Tel: 909.696.1361 Fax: 909.693.8661 Fence Analysis -Structural Engineering & Design Inc. 1816 Wright Ave., La Verne, CA 91760 Tel: 909.696.1361 Fax: 909.693.8661 By: BobS Project: Camston Wrathct R.csoutcc R.ecovcty Facfllty Project #: 22-1129-4 Design Data Configuration: 10.25FT Tall Fencing 1) The analysis present.ed herein conforms to the requirements of the 2022 CBC, 2021 International Building Code & ASCE 7-16 2) Formed steel conforms to ASTM A570, Gr. 50, with minimum yield, Fy= 50 ksl Pipe steel conforms to ASTM A500, Gr. B, with minimum yield, Fy= 42 ksl Other steel conforms to ASTM A36, Gr. 36, with minimum yield, Fy"" 36 ksl 3) Bolts shall be Grade 5 unless noted otherwise on the plans or calculations. 4) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein 5) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 6) Assumed 5.5" slab on grade, unless client chooses to embed fence posts Into ground, if so footing will be required. Seismic Factor Seismic Coeff Fa= 1.20 Seismic Coeff Ss= 0.92 Configuration . .:,•,·:·· ·, • .· ~,:.,;· . ·'· . . . . .. ___ ,,: ',, .·. •••• •_,'1"-, -~>')•·· --~ : :~·-{. ~:· ;. :;!:_ • ~;-._::.._;~. ;~\ -~ . •✓ . '· ._· , ' • ' ;;:••)~:,,, • • • ,•,, ~-• •. I, -~· • ~ ;. ,_·: ·-·-. :· :.-' / :~ .-; .·:· •" ' ~ • : . -~:< .-:•;. ,· ,,, . ;•~ . . . ·--~ ,. • ~-: .-. r': '·· • . , .. · , '; ~,'.>'. •• •! ) .=-:. ' , , . •". , .. ," . 8.0 ft Front Elevation Page A of G" 10.3 ft Side E!eyatton ·Structura Engineering & Design Inc. 1816 Wright Ave., La Verne, CA 91760 Tel: 909.696.1361 Fax: 909.693.8681 = ey; Bob s Project:C1mston Wt.lt het Resoutce R.ecovety F<1dllty Conf"19u0ration: 10.25FT Tall Fencing Seismic Loads ;,_~,:;,,, ~ ::.:::::Ji. .,. ... ~ (,'~~~~~; .. ~~;:~}:~. i~/ 1ft r-8.0 ft --1 front Elevation V= Sos*W/(R*l.4) Sos= Fa * Ss * (2/3) = 0.7368 V= 0.3509 Wfence=Wf= 2 psf * Trlb Area = 2 psf * 10.25 ft* 8 ft = 164 lb V= 0.3509 * 212 lb = 741b Pcol= Wf+Wc = 2121b Mcol= Vtransv*H/2 = 74 lb * 10.25 ft/2 = 4,551 In-lb s psf load Criteria (Per IBC 1607,13} Column Trlb= 8 ft Wcol=WC= 48 lb phl=solld area= 0.25 Surface area coefficient for non-solid wall Mbase= Column Trlb * 5 psf * phi *(H ftY'2/2 = 6,304 In-lb Page e, of (.'.\~ .. ~ ,. -1 ;;;/{~ ,".:,.: .. . . -... ,:,,. ~(?':j :;~\>.~ .-.,·:-'/ >i'. .. :,._ .. ~ ~' .•' 10.3 ft Wtotal=Wt= 212 lb Prolect #: 22-1129-4- H/2 M Side Elevatton Fa= 1.20 Ss= 0.92 R= 1.50 Ip= 1.00 H= 10.3 ft ·Structural Engineering & Design Inc. ey; Bobs Column Section Load• 1816 Wright Ave., La Verne, CA 91750 Tel: 909.696.1361 Fax: 909.693.8561 Project:Camston Wr.rl:het Resource Recovery Fadlfty Load case: DL+LL+E/1.4 Configuration: 10,25ft Tall Fencing Section= 3·1/2 Nom Dia. Pipe Area= 1.70 in"2 Ix= 1. 53 ln"4 Sx= 1.06 ln"3 rx= 0,95 In Pmax= 212 lb Iy= 1.53 ln"4 Sy= 1.06 ln"3 ry= 0.95 in Stress Increase= 1.33 M= 6,304 In-lb Py= 50,000 psi Kx= 2.1 Ky= 2.1 Lx= 62 In Ly= 62 in Cm= 1.00 Combined Sress (kl/r)x = (2.1 *61.5 ln/0.947 in) = 136.38 Cc= (2n"2E/Py)"0.5 = 107.0 SINCE (KL/r)max > Cc, USE EQTN E2·2 Fa= 12n"2E/23{kl/r}"2 23(kl/r)" 2 (kl/r)y = (2.1 *61.5 ln/0.947 In) = 136.38 fa= P/AREA = 125 psi er2ivss tt; 22-1129-4- (ki/r)max= 136.38 = 8,029 psi fa/Fa= 0.02 < 0.15 (H1·3): fbx= M/S = 5,947 psi F'ex= (12*n"2*E)/(23*(KL/r)"2) = 8,029 psi RJx= 0.6*Py = 30,000 psi fb/Fb= 0.2 (1-fa/Pe)>0= 1.00 fa/Fa + fb/Fb= 0.21 <= 1.333 OK Page C of E"' Structural Engineering & Design Inc. By: BobS Base Plate Section 1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 Project: Camston Wrather Resource Recovery Facility ConfiguratJon: 10,25FT Tall Fencing Bolt Edge Dlstce= 1.00 in a= 2.00 in Anchor c.c. a2*a .. d "' 4.00 In N=# Anchor/Base= 4 Project#: 22-1129-4 Width=W = 6.00 In Depth=D = 6.00 In Column Width=b = 2.500 In L = 1.75 In Plate Thlckness=t = 0.250 In Fy = 36,000 psi b 1-L -----w Down Aisle Loads P = 212 lb Mb = 4,551 In-lb Axial Bearing stress=fa = P/A = P/(D*W) = 6 psi Moment Stress=fb c: M/S c: 6*Mb/[(D*B"2] = 126.4 psi Moment Stress=fbl = fb-fb2 = 52.7 psi M3 = (1/2)"'fb2"'L*(2/3)*L = (1/3)*fb2*L"2 = 75 In-lb s-plate = (1)(t"2)/6 = 0.01 ln"3/ln fb/Fb = Mtotal/[(S-plate)(Fb)] 0.44 OK Mbase= 6,304 in-lb (Per UBC 1611.5) Tanchor = (Mbase-(P*0.9)(a))/[(d)*N/2] = 7401b Tallow= 970 lb T{Tallow= 740 lb/(970 lb* 1.33)"1.66 = 0.57 OK Ml== wL"2/2= fa*L"2/2 = 9 In-lb Moment Stress=fb2 = 2 * fb * L/W = 73.7 psi M2= fbl *L"2)/2 = 81 In-lb Mtotal = Ml+M2+M3 ,. 165 In-lb/In Fb = 0.75*Fy*l.33 = 35,910 psi (4) 0,375 in diam x 2 in min. embed. Hilti Kwlkbolt TZ anchor per baseplate Page t7 of t;:' Stl'Uctural Engineering & Design Inc. 1815 Weight Ave,, La Yeroe, CA 91750 Tel; 909.596 1351 fax· 909 593.8561 By: Bobs Project: Camston Wrather Resource Recovery Facility Project#: 22-1129-4 Slab on Grade a ~ t x ➔,,_,_ Ye ~ _~I _j_ Loads SLAB ELEVATION Base Plate B= 6.00 in D= 6.00 in P-DL= 212 lb Puncture Pu= 1.2*PDL + 1.6*PLL = 2,075 lb Apunct= [(c+t)+(e+t)]*2*t = 246 ln"2 Slab Bending Asoll= (P*l 44)/(fsoil) = 398 in"2 x= (L-y)/2 = 1.9 In Fb= S*(phl)*(f'c)"0.5 = 150. psi fb/Fb= M/(5-slab*Fb) 0,01 wldth=a= 2.50 In depth=b= 2.50 In Mbase= 4,551 in-lb <= 10K L= (Asoll)"0.5 = 19.96 In M= w*xA2/2 = (fsoll*xA2)/(144*2) = 9.0 li'Hb Page E ~ f'c= 2,500 psi tslab=t= 6.0 In phl=0= 0.6 SQ1.l fsoil= 750 psf Baseolate Plan Yiew of t:f' eff. baseplate wldth=c= 4.25 in eff. baseplate depth=e= 4.25 in Pselsmic= Mbase/(D*2/3) = 1,138 lb Fpunct=i 2.66*phi*sq:t(f'c) = 79.8 psi fv/P-1= Pu/(Apunct*Fpunct) -0.11 < 1 OK v= ( c*e)"0.5 + t*2 = 16.3 In 5-slab= 1 *tA 2/6 = 6.0 InA3 OFFICE USE ONLY SAN DIEGO REGIONAL HAZARDOUS MATERIALS QUESTIONNAIRE RECORD ID# _________________ _ PLAN CHECK# _________________ _ Business Name Camston Wrather Project Address (include suite) 2856 Whiptail Loop E Mailing Address (include suite) 2856 Whiptail Loop E Project Contact Julie Darr Business Contact Dustin Caldwell City Carlsbad City Carlsbad State CA State CA Telephone# (360 )820-9632 Zip Code 92010 Zip Code 92010 Applicant E-mail Telephone# BP DATE APN# 2091201400 Plan File# CBC2023-0028 jdarr@qmhinc.com 626-243-2748 Ext 407 The following questions represent the facility's activities, NOT the specific project description. PART I: FIRE DEPARTMENT-HAZARDOUS MATERIALS DIVISION: OCCUPANCY CLASSIFICATION: (not required for projects within the City of San Q!!aQ}: Indicate by circling the item, whether your business will use, process, or store any of the following hazardous materials. If any of the items are circled, applicant must contact the Fire Protection Agency with jurisdiction prior to plan submittal. Occupancy Rating: Facility's Square Footage (including proposed project): 1. Explosive or Blasting Agents 5. Organic Peroxides 9. Water Reactives 13. Corrosives 2. Compressed Gases 6. Oxidizers 10. Cryogenics 14. Other Health Hazards 3. Flammable/Combustible Liquids 7. Pyrophorics 11 . Highly Toxic or Toxic Materials 15. None ofThese. 4. Flammable Solids 8. Unstable Reactives 12. Radioactives PART II: SAN DIEGO COUNTY DEPARTMENT OF ENVIRONMENTAL HEALTH -HAZARDOUS MATERIALS DIVISION (HMO): If the answer to any of the questions is yes, applicant must contact the County of San Diego Hazardous Materials Division, 5500 Overland Avenue, Suite 170, San Diego, CA 92123. Call (858) 505-6700 prior to the issuance of a building permit. FEES ARE REQUIRED Project Completion Date: Expected Date of Occupancy: 0 CalARP Exempt 1. 2. 3. 4. 5. 6. 7. 8. YES NO (for new construction or remodeling projects) ___ _,_I ___ _ D 0 Is your business listed on the reverse side of this form? (check all that apply). Date Initials 0 0 Will your business dispose of Hazardous Substances or Medical Waste in any amount? 0 0 Will your business store or handle Hazardous Substances in quantities greater than or equal to 55 gallons, 500 □ □ □ □ □ pounds and/or 200 cubic feet? 0 Will your business store or handle carcinogens/reproductive toxins in any quantity? 0 Will your business use an existing or install an underground storage tank? 0 Will your business store or handle Regulated Substances (CalARP)? 0 Will your business use or install a Hazardous Waste Tank System (Title 22, Article 10)? 0 Will your business store petroleum in tanks or containers at your facility with a total facility storage capacity equal to or greater than 1,320 gallons? (California's Aboveground Petroleum Storage Act). 0 CalARP Required I Date Initials 0 CalARP Complete I Date Initials PART Ill: SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT (APCD): The following questions are intended to identify the majority of air pollution issues at the planning stage. Your project may require additional measures not identified by these questions. Residences are typically exempt, except-single building with more than four dwelling units and those with more than one detached residential buildings on the property-e.g. granny flats [+Excludes garages & small outbuildings not used as dwelling units]. If yes is answered for the questions below please see link for further instructions: here or for more comprehensive requirements, please contact apcdcomp@sdapcd.org or call (858) 586-2650. YES NO 1.0 [Z] 2. □ 0 3. □ □ 4. □ 0 Will the project disturb 100 square feet or more of existing building materials? If yes. submit an asbestos survey to apcdcomp@sdapcd.org. Will any load supporting structural members be removed? If yes, submit an asbestos survey and demolition notification to apcdcomp@sdapcd.org at least 1 o worl<ing days prior to starting the demolition of a load bearing structure. A noUfication is required even if no asbestos is present in the structure. (ANS\NER ONLY IF QUESTION 1 IS YES) Will 100 square feet or more of friable asbestos material be disturbed? If yes, submit a notification of asbestos removal to apcdcomp@sdapcd.org at least 1 o worl<ing days prior to starting asbestos removal. Will any equipment or operations be installed that may require an APCD Permit to Operate? Please see the reverse side of this form for typical equipment requiring an APCD permit. If yes. contact APCD prior to the issuance of a building permit. Briefly describe business activities: Briefly describe proposed project: Racking Installation Racking I declare under penalty of perjury that to the best of my knowledge and belief t e responses made herein are true and correct. --_ __,.1=u/i,i,=·'--=b=M~r ________ _ -3 I /t, I "p>z.3 Name of Owner or Authorized Agent Signature of Owner or Authorized Agent Date FOR OFFICAL USE ONLY: FIRE DEPARTMENT OCCUPANCY CLASSIFICATION: ________________________________ _ BY: ________________________ _ DATE: __ _./ __ ___._ __ _ EXEMPT OR NO FURTHER INFORMATION REQUIRED RELEASED FOR BUILDING PERMIT BUT NOT FOR OCCUPANCY RELEASED FOR OCCUPANCY COUNTY-HMO• APCD COUNTY-HMO APCD COUNTY-HMO APCD .. *A stamp m this box .Q!1!x exempts businesses from completing or updating a Hazardous Matenals Business Plan. Other permitting requirements may still apply HM-9171 (01/22) County of San Diego -DEH -Hazardous Materials Division LIST OF BUSINESSES WHICH REQUIRE REVIEW AND APPROVAL FROM THE COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH -HAZARDOUS MATERIALS DIVISION Check all that apply: AUTOMOTIVE D Battery Manufacturing/Recycling D Boat Yard D Car Wash 0 Dealership Maintenance/Painting 0 Machine Shop 0 Painting 0 Radiator Shop 0 Rental Yard Equipment 0 Repair/Preventive Maintenance D Spray Booth 0 Transportation Services 0 Wrecking/Recycling CHEMICAL HANDLING 0 Agricultural supplier/distributor D Chemical Manufacturer 0 Chemical Supplier/Distributor 0 Coatings/Adhesive O Compressed Gas Supplier/Distributor D Dry Cleaning 0 Fiberglass/Resin Application D Gas Station 0 Industrial Laundry 0 Laboratory O Laboratory Supplier/Distributor 0 Oil and Fuel Bulk Supply 0 Pesticide Operator/Distributor CHEMICAL HANDLING 0 Photographic Processing 0 Pool Supplies/Maintenance 0 Printing/Blue Printing 0 Road Coatings D Swimming Pool 0 Toxic Gas Handler 0 Toxic Gas Manufacturer METAL WORKING D Anodizing 0 Chemical Milling/Etching 0 Finish-Coaling/Painting D Flame Spraying 0 Foundry 0 Machine Shop-Drilling/Lathes/Mills D Metal Plating 0 Metal Prepping/Chemical Coating 0 Precious Metal Recovery D Sand Blasting/Grinding D Steel Fabricator 0 Wrought Iron Manufacturing AEROSPACE D Aerospace Industry 0 Aircraft Maintenance 0 Aircraft Manufacturing MISCELLANEOUS 0 Asphalt Plant 0 Biotechnology/Research 0 Cannabis-related D Manufacturing D Dispensary D Other 0 Co-Generation Plant 0 Dental Clinic/Office 0 Dialysis Center 0 Emergency Generator 0 Frozen Food Processing Facility 0 Hazardous Waste Hauler 0 Hospital/Convalescent Home 0 Laboratory/Biological Lab 0 Medical Clinic/Office 0 Nitrous Oxide (NO,) Control System 0 Pharmaceuticals 0 Public Utility 0 Refrigeration System 0 Rock Quarry 0 Ship Repair/Construction 0 Telecommunications Cell Site 0 Veterinary Clinic/Hospital 0 Wood/Furniture Manufacturing/Refinishing 0 Brewery/Winery/Distillery ELECTRONICS 0 Electronic Assembly/Sub-Assembly 0 Electronic Components Manufacturing D Printed Circuit Board Manufacturing NOTE: THE ABOVE LIST INCLUDES BUSINESSES, WHICH TYPICALLY USE, STORE, HANDLE, AND DISPOSE OF HAZARDOUS SUBSTANCES. ANY BUSINESS NOT INCLUDED ON THIS LIST, WHICH HANDLES, USES OR DISPOSES OF HAZARDOUS SUBSTANCES MAY STILL REQUIRE HAZARDOUS MATERIALS DIVISION (HMO) REVIEW OF BUSINESS PLANS. FOR MORE INFORMATION CALL (858) 505-6880. LIST OF AIR POLLUTION CONTROL DISTRICT PERMIT CATEGORIES Businesses, which include any of the following operations or equipment, will require clearance from the Air Pollution Control District. CHEMICAL 47 -Organic Gas Sterilizers 32 -Acid Chemical Milling 33 -Can & Coil Manufacturing 44 -Evaporators, Dryers & Stills Processing Organic Materials 24 -Dry Chemical Mixing & Detergent Spray Towers 35 -Bulk Dry Chemicals Storage 55 -Chrome Electroplating Tanks COATINGS & ORGANIC SOLVENTS 27 -Coating & Painting 37 -Plasma Arc & Ceramic Deposition Spray Booths 38 -Paint, Stain & Ink Mfg 27-Prinling 27 -Polyester Resin/Fiberglass Operations METALS 18 -Metal Melling Devices 19 -Oil Quenching & Salt Baths 32 -Hot Dip Galvanizing 39 -Precious Metals Refining ORGANIC COMPOUND MARKETING (GASOLINE, ETC) 25 -Gasoline & Alcohol Bulk Plants & Terminals 25 -Intermediate Refuelers 26 -Gasoline & Alcohol Fuel Dispensing COMBUSTION 34 -Piston Internal -Combustion Engines 13 -Boilers & Heaters (1 million BTU/hr or larger) 14-Incinerators & Crematories 15 -Burn Out Ovens 16-Core Ovens 20 -Gas Turbines, and Turbine Test Cells & Stands 48 -Landfill and/or Digester Gas Flares ELECTRONICS 29 -Automated Soldering 42 -Electronic Component Mfg FOOD 12 -Fish Canneries 12 -Smoke Houses 50 -Coffee Roasters 35 -Bulk Flour & Powered Sugar Storage SOLVENT USE 28 -Vapor & Cold Degreasing 30 -Solvent & Extract Driers 31 -Dry Cleaning ROCK AND MINERAL 04 -Hot Asphalt Batch Plants 05 -Rock Drills 06 -Screening Operations 07 -Sand Rock & Aggregate Plants 08 -Concrete Batch, CTB, Concrete Mixers, Mixers &Silos 1 0 -Brick Manufacturing OTHER 01 -Abrasive Blasting Equipment 03 -Asphalt Roofing Kettles & Tankers 46 -Reverse Osmosis Membrane Mfg 51 -Aqueous Waste Neutralization 11 -Tire Buffers 17 -Brake Debonders 23 -Bulk Grain & Dry Chemical Transfer & Storage 45 -Rubber Mixers 21 -Waste Disposal & Reclamation Units 36 -Grinding Booths & Rooms 40 -Asphalt Pavement Heaters 43 -Ceramic Slip Casting 41 -Pertite Processing 40 -Cooling Towers -Registration Only 91 -Fumigation Operations 56 -WWTP (1 million gal/day or larger) & Pump Station NOTE: OTHER EQUIPMENT NOT LISTED HERE THAT IS CAPABLE OF EMITTING AIR CONTAMINANTS MAY REQUIRE AN AIR POLLUTION CONTROL DISTRICT PERMIT. IF THERE ARE ANY QUESTIONS, CONTACT THE AIR POLLUTION CONTROL DISTRICT AT (858) 586-2600. HM-9171 (09/18) County of San Diego -DEH -Hazardous Materials Division Building Permit Finaled Revision Permit Print Date: 10/24/2023 Job Address: 2856 WHIPTAIL LOOP, CARLSBAD, CA 92010-6708 Permit No: Status: {city of Carlsbad PREV2023-0049 Closed • Finaled Permit Type: BLDG-Permit Revision Work Class: Commercial Permit Revision Parcel #: 2091201400 Track#: Valuation: $0.00 Lot#: Occupancy Group: S-1 Project#: #of Dwelling Units: Plan#: Bedrooms: Bathrooms: Occupant Load: Code Edition: Sprinkled: Project Title: Construction Type: Orig. Plan Check #: CBC2023-0028 Plan Check#: Applied: 04/06/2023 Issued: 05/08/2023 Finaled Close Out: 10/24/2023 Final Inspection: INSPECTOR: Description: CAMSTON WRATH ER RESOURCE RECOVERY FACILITY: REVISION TO BEAM SIZE//HIGH PILE STORAGE RACKINGN (PHASE 2& Applicant: Property Owner: QUALITY MATERIAL HANDLING INCORPORATE HAMANN OAK PROPERTIES LP JULIE DARR 1000 PIONEER WAY 10156 SHARON CIR EL CAJON, CA 92020 RANCHO CUCAMONGA, CA 91730-5300 (619) 440-7424 (626) 812-9722 FEE BUILDING PLAN CHECK FEE (manual) BUILDING PLAN CHECK REVISION ADMIN FEE Total Fees: $155.00 Total Payments To Date: Building Division $155.00 Contractor: QUALITY MATERIAL HANDLING INC 10156 SHARON CIR RANCHO CUCAMONGA, CA 91730-5300 (626) 812-9722 Balance Due: AMOUNT $120.00 $35.00 $0.00 Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov { City of Carlsbad PLAN CHECK REVISION OR DEFERRED SUBMITTAL APPLICATION 8-15 Development Services Building Division 1635 FaradayAvenue 442-339-2719 www.carlsbadca.gov Ca., 2Qi 1J '2 n/) /J <Y ,Pu.a., z..o 2..'3 -OD 'i '} Original Plan Check Number [._).../ ~;J -w,<,A Plan Revision Number ________ _ Project Address ,iis& W f"I 1 ~ II &zop -f . Ov-ls ~11A , CA q ..Z O l 6 General Scope of Revision/Deferred Submittal: ----'Cvt=.L..4'a""-r_.q_@~l_,_f/@~-!3-ett __ rfl __ W __ 1 d+fv _____ _ CONTACT INFORMATION: Name \ ! vl l I(; 'Di?tvY" w v){)q-b'/1-81/S.~ Fax '---~----- Address lo I~ S hui Y-0 r'\ Email Address JtMVV i) flW\h I~ v · C1irn City ~vfu Cta~1.p _q~' l 1_2~t_> _ Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 . Elements revised: D Plans D Calculations D Soils D Energy D Other 2. 3. Describe revisions in detail List page/s) where each revision is shown kv-ertA (het?4~ V PREV2023-0049 2856 WHIPTAIL LOOP CAMSTON WRATHER RESOURCE RECOVERY FACILITY: REVISION TO BEAM SIZE//HIGH PILE STORAGE RACKING (PHASE 2&3) 2091201400 CBC2023-0028 4/6/2023 PREV2023-0049 4. Does this revision, in any way, alter the exterior of the project? D Yes 0 No 5. Does this revision add ANY new floor area(s)? D Yes D No 6. Does this revision affect a lli.--fife-f~ D Yes D No 7. Date _tf....1...-j/C........:CIR--'(..__w_.t-_3 __ , CA 92008 Ph: 442-339-27 19 Email: building@carlsbadca.gov www.carlsbadca.gov Structural Engineering ct Design, Inc. 1815 Wright Ave La Verne, CA 91750 Phone: 909.596.1351 Fax: 909.596.7186 Prqject Name: CAMSTON Wl<.ATHER RESOURCE RECOVERY FACILITY Project Number : 23-0313-9 Date: 03/16/23 Street Address: 2856 \VHIPT AIL LOOP EAST City/State : CARLSBAD, CA 92010 Scope of Work: STORAGE RACK 3/16/23 Sfructural Engineering & Design Inc. 1815 WcigbtAve La Verne CA 91750 Tel· 909,596 1351 fax· 909 596 7186 By: JJM Project: COP 1Sf9~I WEU:EllER Project#: 23 0313 9 TABLE OF CONTENTS Title,Page .............................................................................................................. .. 1 Table of Contents ............................................ , ...................................................... .. 2 Design Dat.a and Definition of Components ......................................................... .. 3 Critical Configuration .......... " ................................................................................. . 4 Seismic Loads ......................................................................................................... . 5 to 6 Column .................................................................................................................. .. 7 Beam and Connector .............................................................................................. . 8 to 9 Bracing ................................................................................................................... . 10 Anchors .................................................................................................................. . 11 Base Plate .............................................................................................................. .. 12 Slab on Grade ........................................................... , ....... , .................................... .. 13 Other Configurations .............................................................................................. . 14 fvt/4 1YPE R Page Q_. of (ii, 3/14/2023 Structural Engineering & Design Inc. 1815 WrigbtAve La Verne CA 91750 tel· 909 596.1351 fax: 909 596.7186 By: JJM Project: Cot9Sf0~1 WBAfllER Project#: 23 O?J 3 9 Design Data 1) The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CBC Section 2209 ANSI MH 16.1-2012 Spec!Rcations for the Design of Industrial Steel Storage Racks n2012 RMI Rack Design Manual" Asa= 7-16, section 15.5.3 2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=SS ksl Longitudinal frame beam and oonnector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=SS ksl All other steel confonns to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksl 3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy Inspector. 5) The existing slab on grade Is 5.5" thick with minimum 4000 psi compressive strength. Allowable Soll bearing capacity Is 2000 psf. The design of the existing slab Is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components fhm& Halght lYPE R &!am U!!Vlh A Slam ~ llff:mt Vlew1 Oo,m Ase Opooitudin:an !fhllne a>bnn Section A; OO!i!I Aisle {Transvu~ l ft:Jlme 3/14/2023 Structural Engineering & Design Inc. 1815 Weight Aye La Verne CA 91750 Jel: 909 596 1351 fax 909 596 7186 By: JJM Project: co n1s:roe1 WEUll lEll Project#: 23 9333 g Configuration & Summary: TYPE R SELECTIVE RACK -r<:---T 60" t 264" 60" -t- 60" + 60" .I **RACK COLUMNREAQlONS ASDLOADS AXIAL DL= 150 lb .w-AL LL= 3,900 lb SBSMIC AXIAL Ps=+/· 2,820 lb BASE MOMENT= 0 In-lb --r--100"~ ,r--48" -7(,r--48",} Seismic Criteria Ssc:0,921, Fa=1.2 Component C.Olumn Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soll Level I Load** 1 2 3 4 Per Level 2,400 lb 2,400 lb 1,500 lb 1,500 lb # BmLvls 4 Fv=55 ksl None Fv=55 ksl Fv=55 ksl Fy=55 ksl Fv=SS ksl Fv=36 ksi 2 per Base BeamSDCG 60.0 In 60.0 in 60.0 In 60.0 In ** Load defined as product weight per pair of beams USE 27E BEAM @ l1'\IELS 34 I ·-I lYPE R Frame Depth Frame Helg Beam Length Frame Type 48 In 264.0 In 108In Single Row Description STRESS Mecalux 314 3.0"x2.69"x0.070" P=4050 lb, M=11628 In-lb 0.8-OK None None N/A Intlk 36E 3.656Hx2.75Wx0.059'Tok Lu=108 In I Capacity: 3553 lb/pr 0.68-OK Lvl 1: 3Tab OK I Mconn=7706 In-lb I Mcap=8828 In-lb 0.87-OK Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 0.21-OK Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 0.6-OK 7.283x5.118x0.394 l Rxlty= 0 In-lb 0.42-OK 0.5'' x 3.25" Embed HILTI KWIKBOLT 1Z ESR 1917 Inspection Reqd (Net Seismic Upllft=-980 lb) 0.242-OK 5.5" thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure Brace 24.0 In 24.0 In 52.0 In 68.0 In 80.0 In Total: I Story Force I Story Force Transv Long It. 136Ib 272 Ib 262Ib 349Ib 1,018 lb Page 11 55 Ib 109Ib 105Ib 140 lb 408Ib of ( l Column Axial 4,050 lb 2,813 lb 1,575 lb 788Ib I Column I Moment 11,628 "# 5,303 "# 3,669 "# 2,097 "# Conn. Moment 7,706 "# 4,920 "# 3,131 "# 1,847 "# 0.31-OK Beam Connector 3Tab OK 3TabOK 3Tab OK 3Tab OK 3/1412023 Structural Engineering & Design Inc. 1015 Weight Aye La Verne QA 91760 Iel: 909 69§,1361 Eox· 009 696 7186 By: JJM Project: CO U5l"9~1 WRHI IER Project#: 22 O?l? 9 Seismic Forces Configuration: TYPE R SELECTIVE RACK Lateral analysts Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1·2012 Sec 2.6 & ASCE 7-16 sec 15.5.3 Transverse (Cross Alsle} Seismic Load V= Cs*Ip*Ws=Cs*lp*(0.67*P*Prf+D) Cs1= Sds/R = 0.1842 Cs2= 0.044*Sds = 0.0324 Cs3= 0.5*51/R = 0.0424 Cs-max* Ip= 0.1842 Vm1n= 0.015 Eff Base Shear=Cs= 0.1842 Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2) = 5 526 lb Cs-max= 0.1842 vtransv=Vt= 0.1842 * (300 lb +· 5226 lb) Etransverse= 1,018 lb Base Shear Coeff=Cs= 0.1842 Limit Sbltn Le11el 7'171n6nrN Hlmlk •bur,,., 11prlgllt Level PRODUCT LOAD P P*0.67*PRFI DL hi wl*hi 1 2,400 lb 1,608 lb 751b 60 In 100,980 2 2,400 lb 1,608 lb 75 1b 120in 201,960 3 1,500 lb 1,005 lb 751b 1801n 194,400 4 1,500 lb 1,005 lb 751b 2401n 259,200 sum: P=7800 lb 5,226 lb 3001b W=55261b 756,540 Lon itudinal Downaisle Seismic Load Ss= 0.921 S1= 0.339 Fa= 1.200 Fv= 1.961 Sds=2/3*Ss*Fa= 0.737 Sd1=2/3*S1 *Pv= 0.443 Ca=0.4*2/3*Ss*Fa= 0.2947 (TrilllSVe,,;e, Braced Frame D~.) R~ 4.0 Ip= 1.0 PRFl = ..... -....... Pallet Helght=hp= 48.0 in DL per Beam Lvl= 75 lb Fi Ff* hl+h /2 135.9 lb 11,416-# 271.8 lb 39,139-# 261.6 lb 53,366-# 348.8 lb 92,083-# 1,018 lb 1=196,004 Similarly for longlltidlnal seismic loads, u&lng R•6,0 Ws= PLRF2 PRF2= 1.0 -Cs1=Sd1/(T*R)= 0.0739 = 5,526 lb (Longitudinal, Unbraced Dir.) R• 6.0 .. Cs2= 0.0324 Cs=Cs-maX"'Ip= 0,0739 T• 1.00 sec Cs3= 0.0283 Vlong= 0.0739 * (300 lb+ 5226 lb) Cs-max= 0.0739 l!longltudlnal= 408 lb Limit Sbltu L•""' LMfl/t. 1,lllllk #Hlifl'porfl/lrlt,llt Level PRODUC LOAD P P*0.67*PRF2 DL hi wl*hl Fl Ftont Yl•w 1 2,400 lb 1,608 lb 75 lb 60 1n 100,980 54.5 lb 2 2,400 lb 1,608 lb ?Sib 1201n 201,960 108.9 lb 3 1,500 lb 1,005 lb 751b 1801n 194,400 104.8 lb 4 1,500 lb 1,005 lb 75 lb 2401n 259,200 139.8 lb sum: ========5,=22=6=1=b===30==0=1b====W=====55=2=6=1b=====7=56=,5=40========40=8=1=b======== TYPER 3/14/2023 Structural Engineer! g & Design Inc. 1815 Wright Aye La Verne CA 91750 Tej · 909 596 1351 Fax· 909 596 7186 By: JJM Project: C0U5i9el WRHIIER Downaisle Seis~iii: Loads Configuration: lYPE R SELECTIVE RACK Determine ttle story'moments by applying portal analysis. The base plate is assumed to provide no fixity. Seismic Story Fon\es Vlong=i: Joa lb Vcol=Vlong/2'1' i04 lb Fl"' ]Sib F2=;: 1,09Ib F3:. 1:os lb I ; 1 Seismic Story Mo11{1enl:s I r-96-+j '--------~ ~ Conceptual System Project#: i!3 0313 9 Typlc~I Ft~mc m~4• oftwocolumn, -~--- I2$1..l{kr,! Mbase-max= o: In-lb <=== Default capacity Mbase·v= (icol*hleff)/2 h1-eff= h1 -beam clip helght/2 = 57In = 5~814 In-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 01tn-lb PINNEDBASEASSUMED M 1-1 = (\'/COi * hleff]-Mbase-eff = (,!04 lb * 57 ln)-0 in-lb = 11,628 In-lb ' Msels= (~~upper+Mlower)/2 Msels(l-1)= 11628 In-lb+ 5303 ln-lb)/2 = 8 465 In-lb LEVEL hi Axial Load 1 60In 4,050 lb 2 60In 2,813 lb 3 60 In 1,575 lb 4 60 In 788Ib M 2-2= [Vcol-(Fl )/2) * h2 = [204 lb -54.5 lb]*60 ln/2 = 5,303 In-lb Mseis(2-2)= (5303 In-lb + 3669 ln-lb)/2 = 4,486 In-lb Summary of Forces Column Moment'!<* Mselsmlc** Mend-flxl 11,628 In-lb 8,465 In-lb 2,543 In-lb 5,303 In-lb 4,486 In-lb 2,543 In-lb 3,669 In-lb 2,883 In-lb 1,590 in-lb 2,09·7 In-lb 1,049 In-lb 1,590 In-lb J Mconn= (Mselsmlc + Mend-fixlty)*0.70*rho Mconn-1llow(3 Pin)= 8,828 tn-lb **all moments based loo limit states level loading lYPE R Pa,ae tb of {J, Vco1 7 -i•rt=====tl h2 h1 h1e Beam to Column rho= 1.0000 Mconn** Beam Connector 7,706 In-lb 3TabOK 4,920 In-lb 3TabOK 31131 in-lb 3TabOK 1,847 in-lb 3TabOK 3/14/2023 COl St~uctural Engineering & Design Inc. 1a1swc19btAve La Verne CA9175□Je1· 9□9 5961351 fax· 909 596 z1a6 By: JJM Project: Cot4HOel WRHIIER Project #: 23 03 J 3 g Column (Longitudinal Loads) configuration: TYPE R SELECTIVE RACK Section Properties Section: Mecalux 314 3.0"x2.69''x0.070" Aeff = 0.538 in"2 Ix = 0.765 ln"4 Sx = 0.510 ln"3 rx = 1.190 In Qf= 1.67 Iy = 0.464 ln"4 Sy= 0.307 in"3 ry = 0.928 In Fy= 55 ksi Kx = 1.7 r 3.0001n -, Cmx= 0.85 E= 29,500 ksl Loads Considers loads at level 1 COLUMN DL= 150 lb Critical load cases are: RMI Sec 2.1 Lx = 58.2 In Ky= 1.0 Ly= 24.0 in Cb= 1.0 T 0,070 In 2.690 In J_ COLUMN PL::: 3,900 lb Mcol= 11,628 ln·lb Sds= 0.7368 Load Case 5:: {1+0.105*Sds)D + 0.75*(1.4+0.14Sds}*B*P + 0.75*(0.7*rho*E}<= 1.0, ASD Method 1 +0.105*Sds= 1.0774 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0,9532 axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ load case 6: : (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method ax/a/ load coeff: 0.66721 seismic moment coeff: 0.7 * Meo/ By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol B= 0.7000 rho= 1.0000 Axial Analysis Axlal Load=Pax= 1.103152*150 lb + 0,953152*0.7*3900 lb = 2,768 lb = 0.7 * 11628 in-lb = 8,140 in-lb Kxlx/rx = 1.7*58.172"/1.19" = 83.1 Fe= n"2E/(KL/r)max"2 = 42.2ksl Pn= Aeff"Fn = 19,936 lb P/Pa= 0.27 Bending Analysis > 0.15 Kyl y/ry = 1 *24"/0.9284" = 25.9 Fy/2= 27.5 ksl Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) s 1.0 P/Pao + Mx/Max s 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.538 ln"2 *55000 psi = 29,585 lb = 295851b/1.92 = 15,409 lb Fe> Fy/2 Fn= Fy(1-Fy/4Fe) = 55 ksl*[l-55 ksl/(4*42.2 ksl)] = 37.1 ksl Pa= Pn/Qc = 19936 lb/1.92 = 10,383 lb Myletd=My= Sx*Fy = 0.51 ln"3 * 55000 psi = 281050 In-lb Max= My/Qf Per= n"2EI/(Kl.)max"2 = 28050 ln-lb/1.67 = 16,796 In-lb µx= {1/[1-(Qc*P/Pcr)]}"-1 = {1/[1·(1.92*2768 lb/22775 lb)]}"-1 = 0.77 Combined Stresses = n"2*29500 ksl/(1.7*58.172 ln)"2 = 22,775 lb (2768 lb/10383 lb) + (0.85*8140 ln-lb)/(16796 in-lb*0.77) = (2768 lb/15409 lb) + (8140 ln-lb/16796 In-lb) = 0.80 0.66 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total column stress computed for load case 5 is: 74.0% •Ing loads 3239.30832 lb Axial and M= 6104 in-lb lYPE R Page 1,-of t,J, 3/14/2023 Structural Engineering & Design Inc. 1815 WrightAye La Verne CA 91750 Tef· 909 596 1351 Fax-909 596 7186 By; JJM Project: CUQS"EOM WR OIi IER BEAM ConflguratJon: TYPE R SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY A) Check compression flange for local buckling <B2.1) W= C • 2*t ·2*r = 1.75 In -2*0.059 In -2*0.059 In "' 1.514 In w/t= 25.66 !=lambda= (1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Range Is fully effective Eq. 82.1-4 Eq. B2.1-1 B) check web for local buckling per section b2,3 fl{comp)a Fy*(y3/y2)= 49.78 ksl f2(tension)= Fy*(y1/y2)= 101.54 ksl Y= f2/f1 = -2.04 k= 4 + 2*(1-Y)"3 + 2*(1-Y) = 66.27 flat depth=w= yl +y3 Eq. 82.3-5 Eq. 82.3-4 = 3.420 In w/t:;: 57.96610169 OK !=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5 = [1.052/(66,27)"0.5] * 3.42 * (49.78/29500)"0.5 = 0.308 < 0.673 be=w= 3.420 In bl= be(3·Y) = 0.679 b2= be/2 = 1.71 In b1+b2= 2.389 In > 1.12504 In, Web Is fully effective Determine effect of cold working on steel yield point CE'Ya) per section A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2·1) Lcomer=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 In m= 0.192*(Fu/Fy) -0.068 = 0.1590 C= 2*Lc/(Lf+2*Lc) = 0.155 In (EQ A7.2-4) Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 • 1.79 = 1.427 since fu/Pv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksl Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.84 ksi (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Ltb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl Eq 82.3·2 (EQ A7.2-3) lfF= 0.95 Then F*Mn;:f*Fya*Sx=! 19.08 ln-k depth T 3.656 In Project #: 23 0313 9 1,625 In _j_ 1~ 0,059 In Beam= Intlk 36E 3 656Hx2 75Wx0 059"Thk I I e Ix= 1.335 ln"4 Sx= 0,680 ln"3 Ycg= 2.413 In t= 0.059 In Bend Radlus=r= 0,059 in Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksl E= 29500 ksl top flange=b= 1.750 In bottom flange= 2.750 In Web depth= ~"~t _ yl= Ycg+r= 2.295 In y2= depth-Veg= 1.243 In y3= y2-t-r= 1.125 In ·Structural Engineering & Design Inc. 1815 Wright Ave La Yarne CA 91750 Tei• 909 596 1351 Fax· 909,596 7186 By: JJM Project: C0UHOII lftlAOIIIER BEAM Conftgurat1on:· 1YPE R SELECTIVE RACK RMI Section 5.2, PT II Section Bea,n= Intlk 36E 3,656Hx2.75Wx0.059'7hk Ix=I~= 1.335 ln"4 ~= 0.680 ln"3 ~= 0.059 In fY=FyY= 55 ksi Fu=Fuv= 65 ksl Fya= 58.6 ksl 1, Check Bending Stres, Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 E= 29500 ksl F= 225,0 L= 108 In Beam Level= 1 P=Product Load= 2,400 lb/pair D=Dead Load= 75 lb/pair W=LRFD Load Factor;:, 1.2*0 + 1.4*P+1.4*(0.125)*P FOR DL=2o/o of PL, F 1.599 RmF= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)) RMI 2.2, Item 8 1 -(2*225*108 ln)/[(6*29500 ksl*l.3352 ln''3)+(3*225*108 In)] F 0.843 If FF 0.95 Then F*Mn=F*Fya*Sxp 37.88 ln-k Thus, allowable load per beam palr=Wi= F*Mn*8*(# of beams)/(L *Rm*W) i= 37.88 ln-k * 8 * 2/(1081n * 0.843 * 1.599) :;: 4,164 lb/pair 111/owable load based on bending stress Mend;= W*L *(l-Rm)/8 ;= (4164 lb/2) * 108 In* (1·0.843)/8 ;= 4,413 In-lb @ 4164 lb max allowable load :;: 2,543 In-lb @ 2400 lb Imposed product load 2. Check Deflection Strers Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + l0*E*Ib) = 1 -(4*225*108 ln)/[(5*225*108 ln)+(10*29500 ksl*1.3352 ln"4)] = 0.811 In If Dmax= L/180 Based on l/180 Deflection Criteria and Dss= S*W*L "3/(384*E*Ib) L/180= S*W*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L"2*Rd) = 384*1.3352 ln"4*2/[180*5*(108 ln)"2*0.811) = 3,553 lb/pair 11l/ow11ble load based on deflection limits Project#: 23 0313 9 T 1,625 In 3,6561n _J_ 1~ 0.0591n f: = ',~-~~-------------' ... .. . . . . . . .... ...... . . . . . . Beam, Length, Allowable. Deflection= L/180 = 0.600 In Deflection at imposed Load= 0.405 In " ... Thus, based on the least capacity of item 1 and 2 above: Allowable load= 3,553 lb/pair Imposed Product Load= 2,400 lb/pair Beam Stress= 0.68 Beam at Level 1 Structural Engineering & Design Inc. 1815 WdghtAye La Verne CA 91750 Tel· 909 596 1351 Fax-909 596 7186 By: JJM Project: GO UH9~1 WR?ll IER BEAM Configuration: TYPER SELECTIVE RACK DETI:RMINE ALLOWABLE MOMENT CAPACITY A) Check compression flange for local buckling (62,1) W= C -2*t -2*r • = 1.75 In -2*0.059 ln -2*0.059 In = 1.514 In w/t= 25.66 l=lambda= (1.052/(k)"0.S] * (w/t) * (Fy/E)"0.5 = (1.052/(4)"0.5] * 25.66 * (55/29500)"0,5 = 0.583 < 0.673, Flange Is fully effective B) check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 48,06 ksl f2(tenslon)= Fy*(yl/y2)= 99.82 ksl V= f2/fl = -2.077 k= 4 + 2*(1-Y)"3 + 2*(1-Y) = 68.42 flat depth=w= y1+y3 Eq, B2.3-5 Eq. B2.3-4 = 2.514 In w/t= 42,61016949 OK l=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 "' [1.052/(68,42)"0.5] * 2,514 * (48,06/29500)"0.5 = 0.219 < 0.673 Eq. B2.1-4 Eq. B2.1-1 be=w= 2.514 In bl= be(3-V) = 0.495 b2= be/2 Eq B2.3-2 = 1.26 In b1+b2= 1.755 In > 0.817 In, Web Is fully effective Determine effect of cold working on steel vleld point <Fya) per sectlon A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 In C= 2*Lc/(Lf+2*Lc) = 0.155 In Project#: 23 033 3 9 2,751n V,s1n i T 1.625 In 2,750 In 1~ 0.059 In Beam= Intlk 27E 2 75Hx2 75Wx0 059"Thk • I . Ix= 0.674 ln''4 Sx= 0.441 ln"3 Veg= 1.815 In t= 0.059 In Bend Radlus=r= 0.059 In Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 In bottom flange= 2.750 In Web depth= 2,:;,cn ,~ -Fy - m m= 0.192*(Fu/Fy) -0.068 = 0.1590 (EQ A7.2-4) depth Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m = 78.485 ksl (EQ A7.2-2) Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bottom= Fya*Vcg/(depth -Veg) = 113.84 ksl (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl (EQ A7.2-3) If F= 0.95 Then F*Mn=F*Fya*Sx= ! 12.37 ln-k Yog y1 j_ y1 = Ycg-t-r= 1.697 in y2= depth-Veg= 0.935 In y3= y2-t-r= 0.817 In Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Jel· 909 596 1351 fax· 909 596 7186 By: JJM Project: cousroe1 WAHIIEA BEAM COOflguratton: TYPER SELECTIVE RACK RMI Section 5,2, PT II Section Beam= Intlk 27E 2.75Hx2.75Wx0.059''Thk Ix=Ib= 0.674 ln''4 Sx= 0.441 ln"3 t= o.059 In Fy=Fyv= 55 ks! Fu=Fuv= 65 ksl Fya= 58.6 ks! 1. Check Bending Stress Allowable Load• Mcenter=F*Mn= W*L *W*Rm/8 E= 29500 ks! F= 225.0 L= 108 In Beam Level= 3 P=Product Load= 1,500 lb/pair D=Dead Load= 75 lb/pair W=LRFD Load Factor:: 1.2*D + 1.4*P+1.4*(0.125)*P FOR DL=2o/o of PL, W= 1.599 Rm= 1 -[(2*P'L)/(6*E*Ib + 3*F*L)] RMI .Z.2, Item II 1 -(2*225*108 ln)/[(6*29500 ksl*0.674 ln"'3)+(3*225*108 In)] "'0.747 If F= 0.95 Then P'Mn=F*Fya*Sx= 24.56 ln-k Thus, allowable load per beam palr=W= F*Mn*8*(# of beams)/(L *Rm*W) = 24.56 ln-k * 8 * 2/(1081n * 0.747 * 1.599) Project#: T 1,Cl25 In 2.760 In 1~ 0,059 In f: = OIIIOOHOm11mmm)ll·OIHII 23 93l? 9 = 3,047 lb/pair allowable load bned on bending •ttw• .. .. .... Mend= W*L*(l-Rm)/8 = (3047 lb/2) * 108 In * (1-0.747)/8 = 5,204 In-lb @ 3047 lb max allowable load = 2,562 In-lb @ 1500 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + l0*E*lb) = 1 -(4*225*108 ln)/[(5*225*108 ln)+(10*29500 ksl*0.674 ln"4)] = 0.697 In if Dmax= L/180 Based on l/180 Deflection Criteria and Dss= 5*W*L"3/{384*E*Ib) L/180= 5~*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/{180*5*L"2*Rd) = 384*0,674 ln"4*2/[180*5*(108 in)"2*0.697) = 2,087 lb/pair allowable load based on deRection limits Allowable Deflectton= L/180 = 0.600 In Deflectlon at Imposed Load= 0.431 In Thus, based on the least capacity of item 1 and 2 above: Allowable load= 2,087 lb/pair Imposed Product Load= 1,500 lb/pair Beam Stress= 0.72 Beam at Level 3 Structural Engineering & Design Inc. 1815WrlqbtAve La Yecoe CA Q176Qiel· QPQ 606 1361 Fox· 909 696 7186 By: JJM Project: c,e 1SiON 'O!RATI IER Project#: 3 Tab Beam to Column Connection Configuration: TYPE R SELECTM RACK Mconn max= (Msetsmlc + Mend•fixlty)"'0.70"'Rho = 7,706 In-lb Load at level 1 Connector Type= 3 Tab Shear Capacity or Tab Tab Length= a.so In Ashear= o.s In * 0.135 in = 0.0675 ln"2 Pshear= 0.4 "' Fy * Ashear = 0.4 * 55000 psi * 0.06751n"2 = 1,485 lb Bearing Capacity of Tab tool= 0.070 In Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearlng= alpha * Fu * tab length * tcol/Omega = 2.22 * 65000 psi * 0,5 In * 0,07 ln/2.22 = 2,275 lb > 1485 lb Moment Capacity of Bracket Edge Dlstance=E= 1.00 in Tab Spacing= 2.0 In C= P1+P2+P3 = Pl +Pl *(2.5" /4.S")+Pl "'(0.5"/4.5") = 1.667 * Pl Mcap= Sclip * Fbendlng = 0.1832 ln"3 * 0.66 * Fy = 6,650 In-lb Pdlp= Mcap/(1.667 * d) 4 tx:llp= 0.135 In C*d= Mcap = 1.667 = 6650.16 ln-lb/(1.667 * 0.5 In) = 7,979 lb Thus, Pl= 1,485 lb Mconn-allow= (Pl *4.S"+Pl *(2.5"/4.5")*2.5"+P1 *(0.5"/4.5")*0.5"] = 1485 LB*[4.5''+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"] = 8,828 In-lb > Mconn max, OK Stress= 0.87 lYPE R Bearing Length= Fy= 55,000 psi Sctlp= 0.183 ln''3 d= E/2 = 0,50 In 0 0 2:3 0:3;1;3 9 3/14/2023 Structural Engineering & Design Inc. 1e1s Weight Ave La Verne CA 91750 re1· 909 596 1351 fax· 909.596 7186 By: JJM Project: CH45TO~l l"RHI IER Project#: 23 0313 9 Transverse Brace Configuration: TYPE R SELECTIVE RAO< Section Properties Diagonal Member= Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 InA2 r min= 0.449 In Fy= 55,000 psi K= 1.0 .Qc= 1.92 Frame Dimensions Diagonal Member Bottom Panel Helght=H= 68.0 In Frame Depth=D= 48.0 In Column Wldth=B= 2.7 In Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 inA2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Clear Depth=D-8*2= 42.6 In X Brace= NO rho= 1.00 _.o I Load Case 6:: (1±.fl 104150thje, > l(0.85+0.USds)*B*P + [0.7*rho*EJ<= 1.0, ASD Method Vtransverse= 1,018 lb Vb::>Vtranev*0.7"rho= 1018 lb * 0.7 * 1 = 713 lb Ldlag= [(D-B*2)A2 + (H-6")A2JA1/2 = 75.2 In Pmax= V*(Ldiag/D) * 0.75 = 8371b (kl/r)= (k * Ldiag)/r min Vb~T = (1 x 75.2 In /0.449 In ) = 167.5 In Fe= p1A2*E/(kf/r)A2 r axial load on d/a al brace member = 10,377 psi _j_ Since F-e<Fy/2, Pn= AREA*Fn = 0.259 ln"2 * 10377 psi = 2,685 lb Pallow= Pn/Q = 2685 lb /1.92 = 1,398 lb Pn/Pallow= 0,60 Horizontal brace Vb=Vtransv*0.7*rho= 713 lb (kl/r):: (k * Lhorlz)/r min = (1 x 48 In) /0.449 in = 106.9 In Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.21 lYPE R <= 1.0 OK <= 1.0 OK Fn= Fe Fe= pIA2*E/(kl/r)"2 = 25,478 psi Pn= AREA*Fn = 0.259In"2*25478 psi = 6,591 lb Page l~ of (i = 10,377 psi B tf Fy/2= 27,500 psi Pallow= Pn/.Qc Typlcal Panel ConflouraUon = 6591 lb /1.92 = 3,433 lb 3/14/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, QA 91750 Tel: 909 596 1351 Fax· 909 596 7186 By: JJM Project: C0UHOM'!/AOIIIEA Project#: 2303339 Single Row Frame O~ertuming Configuration: TYPE R SELECTIVE RACK Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: {0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Vtrans=V=E=Qe= 1,018 lb DEAD LOAD PER UPRIGKT =D= 300 lb PRODUCT LOAD PER UPRIGKT=P= 7,800 lb Papp=P*0.67= 5,226 lb Wst LC1=Wst1=(0,75264'D + 0.75264*Papp*1)= 4,159 lb Product L,oad Top Level, Ptop= 1,500 lb DL/Lvl= 75 lb Seismic Ovt l;>ased on E, I:(R*hl)= 135,404 In-lb helaht/deoth ratf 5 0 In o= Al Fullv Loaded Rack Load case 1: Movt= E(Flll<hl)*E*rho = 135,404 In-lb Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0.7526 B= ' mo= 1.0000 Frame Depth=Df= 48.0 In Htop-lvl=H= 240,0 In # Levels= 4 # Anchors/Base= 2 ho 48 0 I = n h=H+ho/2= 264.0 In Mst= Wst1 * Df/2 = 4159 lb * 48 ln/2 = 99,816 In-lb SIDE ELEVATION T= (Movt-Mst)/Df = (135404 in-lb -99816 ln-lb)/48 In = 741 lb Net Uplift per COiumn I Net Seismic Unllft= 741 lb Strenqth Lave/ B) Ton Level Loaded '.onlv Load case 1: 0 Vl=Vtop= Cs* Ip * ptQp >= 350 lb for H/D >6.0 Movt= [V1 *h + V2 * H/2]*rho = 0.1842 * 1500 lb = 79,574 in-lb ., 276 lb T= (Movt-Mst)/Df Vleff= 276 lb Critical Level= 4 = (79574 In-lb -32514 in-lb)/48 In V2=VDl.= Cs*Ip*D Cs*Ip= 0.1842 = 980Ib Net Uplift pel' Column = 551b Mst= (0.75264*0 + 0.75264*ptop*1) * 48 ln/2 = 32,514 In-lb I Net Seismic Unlift= 980 lb Strength Level Anchor Check (2) 0,5" x 3.25" Embed HILTI KWIKBOLT TZ anchor(s) per base plate. Special inspection is required per ESR 1917. Fully Loaded: Top Level Loaded: lYPE R Pullout Capacity=Tcap= 1,961 lb L.A. City Jurisdiction? NO Shear capaclty=Vcap= 2,517 lb Phi= 1 (370 lb/1961 lb)Al + (254 lb/2517 lb)Al = (490 lb/1961 lb)"l + (69 lb/2517 lb)"l = Pa,ae ( { of /J. 0.29 0,28 Tcap*Phi= 1,961 lb Vcap*Phl= 2,517 lb <= 1.2 OK <= 1.2 OK 3/14/2023 Sfructural Engineering & Design Inc. 1815 WrjahtAye La Verne CA 91750 Tel· 909 596 1351 Fax 909 596 7186 By: JJM Project: COP 15lO~1 WRUI IER Project #: 23 0313 9 Base Plate Configuration: TYPE R SELECTIVE RACK Section Baseplate= 7.283x5.118x0.394 EffWldth=W = 7.28 In Eff Depth=D = 5.12 In Mb Column Wldth=b = 3.00 In Column Depth=dc = 2.69 In a= 2.64 In Anchor c.c. =2*a=d = 5.28 In N=# Anchor/Base= 2 Fy = 36,000 psi I b 1-L L=2.14In ---w Plate Tolckness=t = 0.394 In Pownalsle Elevatlon Down Aisle Loads Load Case 5:: (1+O.JOS*Sds)D + O.75*/(L4+0.14Sds)*B*P + O.75*(0.7*rho*El<= 1.0, ASD Method COLUMN DL= 150 lb Axial=P= 1.077364 * 150 lb + 0.75 * (1.503152 * 0.7 * 3900 lb) COLUMN PL= 3,900 lb = 3,239 lb Base Moment= 0 In-lb Mb= Base Moment*0.75*0.7*rho l+D.105*Sds= 1.0774 = 0 in·lb * 0,75*0,7*rho 1.4+D,14Sds= l,5032 = 0 in-lb B= ~ .. •,.---Axi-'a_l_L-oa_d_P_=-3,-2-3_9_1b------M-ba_s_e_=_M_b_=--O-in---,b------. Axial stress=fa = P/A = P/(D*W) = 87 psi Moment Stress=fb = M/5 = 6*Mb/[(D*B"2] = 0.0 psi Moment Stress=fbl = fb-fb2 = 0.0 psi M3 = (1/2)*fb2*L *(2/3)*L = (1/3)*fb2*L "2 = 0 In-lb S-plate = (1)(t"2)/6 = 0.026 ln"3/in fb/Fb = Mtotal/[(S-plate)(Fb)] = 0.29 OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] = -2,080 lb No Tension M 1 = wL" 2/2= fa*L" 2/2 = 199 In-lb Moment Stress=fb2 .. 2 * fb * L/W = o.o psi M2= fbl *L "2)/2 = 0 In-lb Mtotal = Ml+M2+M3 = 199 In-lb/In Fb = 0.75*Fy = 27,000 psi F'p= 0.7*F'c = 2,800 psi OK Tallow= 1,961 lb OK Cross Aisle Loads Ctifalf hl,d a,. RHis« 2.1, _, 4, (l+o.J.JSd,)DI. + (l+o.14SDS)Pt.'r>.7s+a'r> • .,,. <• 1.0, --Check uplift load on Baseplate Efft Effe Pstatlc= 3,239 lb Movt*0.75*0.7*rho= 71,087 In-lb Frame Depth= 48.0 In P=Pstatlc+Pseismic= 4,720 lb Pselsmlc= Movt/Frame Depth = 1,481 lb Check uplift forces on baseplate with 2 or more anchors per RMI 7 .2.2. n the base plotc ,,..,flgl>-oUon a,mist, of two enchor bolts located on either llde the column and a net uplift force exists, the minimum base ploll! thlcl<ness hall be determined based on a design bending moment In the plate equal the uplift force on one anchor times 1/2 the distance from he centerline of the anchor to the nearest edge ot the rack column• 1YPE R b =Column Depth= 2.69 In L =Base Plate Depth-Col Depth= 2.14 In fa = P/A = P/(D*W) = 127 psi Sbase/ln = (1)(t"2)/6 = 0.026 ln"3/ln fb/Fb = M/[(S-plate)(Fb)] = 0.42 OK M= wl "2/2= fa*L "2/2 = 290 In-lb/In Fbase =-0.75*Fy = 27,000 psi Page /'/_,. of { k Ta T ~ Uplift per Column= 980 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 490 lb c= 2.14 In Mu=Moment on Baseplate due to uplift= Ta*c/2 fb Fb *0.75= 0.11 = 525 In-lb Splate=-0.132 ln"3 OK 3/14/2023 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750 Te!· 909 596 1351 fax-909 596 7186 By: JJM Project: co us::i;e~I '!/A OlllER Project#: 23 0313 9 Slab on Grade Configuration: TYPE R SELECJ1VE RACK y L SLAB ELEVATION a i □ l I I I : '-••• ·c Baseplate Plan Ylew ~ fc= 4,000 psi tslab=t= 5.5 in teff== 5.5 in lllffl!""I~ -~ Soil fsoll = 2,000 psf Movt= 135,404 in-lb Frame depth= 48.0 in Sds= 0.737 0.2*Sds= 0.147 Base Plate Effec. Baseplate widthsB= 7.28 in Effec. Baseplate Depth=D= 5.12 In wldth=a= 3.00 In depth=b= 2.69 In P=B/D= 1.423 Pc"0.5= 63.20 psi Column Loads DEAD LOAD=D= 150 lb per column unfKtored ASD load PRODUCT LOAD=P= 3,900 lb per column unfKtored ASD load Papp= 2,613 lb per column P-selsmic=E= {Movt/Frame depth) = 2,820 lb per column unfactored Limit sum load B= rho= Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds=, 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 220.50 ln"2 Fpunctl= [(4/3 + 8/(3*~)] *"' *(F'c"0.5) = 121.6 psi Fpunct2= 2.66 * )., * (Pc"O ,5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 6,900 lb lYPE R Asoll= (Pse*144)/(fsoil) = 497 in"2 x= (L-y)/2 = 3.41n Fb= 5*(phl)*(fc)"0.5 = 189.74 psi midway dist face of column to edge of pfate=c= 5.14 In midway dist face of column to edge of plate-=e .. 3.90 in Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI SEC 2.2 EQTN s = 1.34736 * 150 lb+ 1.34736 * 0.7 * 3900 lb+ 1 * 2820 lb = 6,700 lb Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 7 = 0.75264 * 150 lb+ 0.75264 * 0.7 * 2613 lb+ 1 * 2820 lb = 4,310 lb Load Case 3) 1.2*D + 1.4*P = 1.2*150 lb + 1.4*3900 lb = 5,640 lb Load Case 4) 1.2*0 + 1,0*P + 1.0E = 6,900 lb Effective Column Load=Pu= 6,900 lb per column L= (Asoil)"0.5 = 22.29 In M= w*x"2/2 = (fsoil*x"'2)/(144*2) = 80.6 in-lb Page /J of I), fv/Fv= Pu/(Apunct*Fpunct) 0.310 < 1 OK v= (c*e)"'0.5 + 2*t = 15.5 In 5-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) 0.084 < 1,0K RMI SEC 2,2 EQTN 1,2 AO 318-14 Sec 5.3.1 Eqtn 5.3.le 3/14/2023 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186 By: JJM Project: CAP~5roPI WRAlllEE! Project #: 23 0313 9 Configuration & Summary: TYPE SS SELECTIVE RACK -...----T 60" t 264" 60" i- 60" + 60" .I 24" 4----I'----, **RACK COLUMN REACTIONS ASDLOADS AXIAL DL= 150 lb AXIAL LJ.= 3,900 lb SEISMIC AXTAL Ps=+/· 2,820 lb BASE MOMENT= 0 in-lb ,,l<-r --1 oa" -----.r Seismic Criteria Ss==0.921, Fa= 1.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soll Level I Load** 1 2 3 4 Per Level 2,400 lb 2,400 lb 1,500 lb 1,500 lb # Bm Lvls Frame Depth Frame Heig BeamLengtti Frame Type 4 48 In 264.0 In 108In Single Row Fv=SS ksl None Fv=55 ksi Fy=55ksl Fv=SS ksi Fv=55 ksi Fv=36 ksl 4 oer Base BeamSDCa 60.0 in 60.0 in 60.0 In 60.0 In Description Mecalux 314 3.0"x2.69"x0.070" P=4050 lb, M=11628 In-lb None None Intlk 36E 3.656Hx2.75Wx0.059''Thk Lu=108 In I Capacity: 3553 lb/pr Lvl 1: 3 Tab OK I Mconn=7706 In-lb l Mcap=8828 In-lb Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 7.874x7.874x0.394 I Flxlty= 0 In-lb 0.5" x 3.25" Embed HILTI KWIKBOLTlZ ESR 1917 Inspection Reqd (Net Seismic Upllft:=980 lb) 5.5" thk x 4000 psi slab on grade, 2000 psf Soll Bearing Pressure Brace 24.0 In 24.0 in 52.0 In 68.0 In 80.0 In I Story Force I Transv 136Ib 272 lb 262Ib 349Ib Story Force Longit. 55Ib 109Ib 105Ib 140 Ib Column Axial 4,050 lb 2,813 lb 1,575 lb 788Ib I Column I Moment 11,628 "# 5,303 "# 3,669 "# 2,097 "# Conn. Moment 7,706 "# 4,920 "# 3,131 "# 1,847 "# STRESS 0.8-OK N/A 0.68-OK 0.87-OK 0.21-OK 0.6-0K 0.37-OK 0.183-0K 0.29-OK Beam Connector 3Tab OK 3TabOK 3 Tab OK 3TabOK ** Load defined as product weight per pair of beams Total: 1,018 lb 408Ib LISE 27E BEAM @ LEVELS 3-4 I ·-· I TYFE 55 Page \~ of l;t 3114/2023 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186 By: JJM Project: COPQH9M WROlllER Project#: 23 9313 9 Configuration &. Summary: TYPE I SELECTIVE RACK T 60" 192" t 60" t 60" .I T 78" ,,,J +11---f 32" 1,~ **RACK COLUMN REACTTQNS ASDLOADS MTALDL= 1131b mAL LL= 3,150 lb SBSMIC mAL Ps=+/-2,372 lb BASE MOMENT= 5,000 In-lb ,,1<-r--1oa"-,t' ,t--48" + Seismic Criteria Ss=0.921, Fa=1.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab &Soil Level I Load** 1 2 3 Per Level 2,400 lb 2,400 lb 1,500 lb # BmLvls 3 Fy=SS ksl None Fv=SS ksl Fy=SS ksl Fv=55 ksl Fv=SS ksl Fy=36 ksl 2 per Base Beamsoca 60.0 In 60.0 In 60.0 In ** Load defined as product weight per pair of beams USE 27E BEAM @ LEVEL 3 I N-I 1YFE I Fr■me Depth Frame Height # Dia onals Beam Length Frame Type 48 In 192.0 In 3 1081n SlngleRow Description STRESS Mecalux 314 3.0"x2.69"x0.070" P=3263 lb, M=7483 In-lb 0,64-0K None None N/A Intlk 36E 3.656Hx2.75Wx0.059'1hk Lu=108 In I capacity: 3553 lb/pr 0.68-OK Lvl 1: 3 Tab OK I Mconn=8102 In-lb I Mcap=8828 In-lb 0.92-OK Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 0.22-0K Mclx C456 Sgl 1.7953x1.37Bx16ga(U31x) 0.86-OK 7.28x5.11x0.394 I Fixity= 5000 ln·lb 0.43-OK 0.5'' x 3.25" Embed HILT! KWIKBOLT TI ESR 1917 Inspection Reqd (Net Seismic Upll~=978 lb) 0.233-OK 5,5" thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure Brace 32.0 In 64.0 In 78.0 In Total: I Story Force I Story Force Transv Lona it. 1661b 3331b 3201b 8191b 891b 178 lb 171 lb 4381b Column Axial 3,263 lb 2,025 lb 7881b I Column Moment 7,483 "# 5,237 "# 2,568 "# I Conn. Moment 8,102 "# 5,865 "# 2,615 "# 0.25-OK Beam Connector 3Tab OK 3TabOK 3Tab OK 3114/2023 Structural Engineering & Design Inc. 1815 Wright Aye La'Yerne CA 91750 Tel· 909 596 1351 Fax· 909 596 7186 By: JJM Project: CA PSHO~I WAOII IEFl Project#: 23 0313 9 Configuration & Summary: TYPE Q SELECTIVE RACK ,. r 60" 192" t 60" t 60" J Seismic Criteria Ss=0.921, Fa=1.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab &Soll Level I load** 1 2 3 Per Level 2,400 lb 2,400 lb 1,500 lb # Bm Lvls 3 Fy=SS ksl None Fy=SS ksi Fy=55 ksl Fy=55 ksl FY=55 ksl Fy=36 ksl 2 per Base BeamSpeg 60.0 In 60.0 In 60,0 In ** Load defined as product weight per pair of beams lYPE Q T 78" ,~± t ,- 32" 11---il ,f-48"+ Frame Depth Frame Height # Dia onals 48 In 192.0 In 3 Description Mecalux 314 3.0"x2.69"x0.070" None Intlk 36E 3.656Hx2.75Wx0.059'Tok **RACK COLUMN REAC[]QNS ASDLOADS AXIAL DL= 113 lb AXIAL ll.= 3,150 lb SEISMIC AXIAL Ps=+/· 2,372 /b BASEMOMENT= S,000in-lb Beam Length Frame Type 1081n Single Row STRESS P=3263 lb, M=7483 In-lb 0.64-OK None N/A Lu=108 In I Capacity: 3553 lb/pr 0.68-OK Lvl 1: 3 Tab OK I Mconn=8102 In-lb I Mcap=8828 In-lb 0.92-0K Mclx C456 Sgl l .7953x1.378x16ga(U31x) Mdx C456 Sgl 1.7953xl.378x16ga(U31x) 7.28x5.11x0.394 I Fixity= 5000 ln·lb 0.5" x 3.25" Embed HILTI KWIKBOLT TZ ESR 1917 Inspectlon Reqd (Net Seismic Upllft•978 lb) s.s• thk x 4000 psi slab on grade. 2000 psf Soll Bearing Pressure Brace 32.0 In 64.0 In 78.0 In Total: I Story Force I Transv 1661b 3331b 320 lb 819 1b Story Force Longit. 891b 1781b 171 lb 4381b Column Axial 3,263 lb 2,025 lb 788 lb I Column _I Moment 7,483 "# 5,237 "# 2,568 "# Conn. Moment 8,102 "# 5,865 "# 2,615 "# 0.22-0K 0.86-OK 0.43-OK 0.233-0K 0.25-OK Beam Connector 3TabOK 3Tab OK 3Tab OK Page I~ of/ L 3/14/2023 PREV2023-0049 2856 WHIPTAIL LOOP CAMSTON WRATHER RESOURCE RECOVERY FACILITY: REVISION TO BEAM SIZE/IHIGH PILE STORAGE RACKING (PHASE 2&3} 2091201400 CBC2023-0028 4/6/2023 PREV2023-0049 Structural Engineering $ Design, Inc . 1815 Wright Ave La Verne, CA 91750 Phone: 909.596.1351 Fax: 909.596.7186 Prqject Name : JOBAI< INTERNATIONAL Project Number : .23-0203-6 Date : 02/07 /23 Street Addre.s.s: 2255 E 220TH ST City/State : CARSON, CA 90810 Scope of Work : STORAGE RACK > 1--.0 Structural Engineering & Design Inc. 1815 Wclgbt Ave La Verne. CA 91750 Je1· 909.596 1351 fax· 909 596 7186 By: Bob S Project: Jobar lntnl Project#: 23-0203-6 TABLE OF CONTENTS Title Page . .. .. .. .. .. . . .. .................. ... . .................. ... .. . . .. .... .. .. . . .. . .. .. ... . ... ... ... .. . . .. ... ... . .. . 1 Table of Contents................................................................................................... 2 Design Data and Definition of Components .......................................... ........... ..... 3 Critical Configuration ....................................... ........................................... ...... ..... 4 Seismic Loads ............ ................................................................................. .......... 5 to 6 Column.................................................................................................................. 7 Beam and Connector ........ ......................................... ........................................... 8 to 9 Bracing .................................................................................................................. 10 Anchors ................................................................................................................. 11 Base Plate ................................................. ...... ..................... ................................. 12 Slab on Grade . .. .. . ... . .. ... . .. . .... . .. ... . . .. .... ... ... ...... . .. ... .. . ... . .. ... . .. . .. .... ..... ...... ... . . . .. . . . . .. . 13 Other Configurations............................................................................................. 14 type 3 5elect-Jobar.xl5 Page 2 of I ~ 2/3/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Iel: 909 5961351 Fax· 909 596.7186 By: BobS Project: Jobar lntnl Project#: 23-0203-6 Design Data 1) The analyses herein conforms to the requirements of the: 2021 IBC Section 2209 2022 CBC Section 2209 ANSI MH 16.1-2012 Speclncatlons for the Design of Industrial Steel Storage Racks #2012 RMI Rack Design Manual" ASCE 7-16, section 15.5.3 2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksi Longitudinal frame beam and ronnector steel ronforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel ronforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksl 3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculatfons herein. 4) All welds shall conform to AWS procedures, utflizlng E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5) The existing slab on grade is 6" thick with minimum 4000 psi compressive strength. Allowable Soll bearing capacity Is 750 psf. The design of the existing slab is by others. 6) Load combinations for rack romponents correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components ffamll H&ight A -l?aam Length Rpnt Yim• Down A\ii (LongitlJ'dlotf) fl:tma type 3 ~lect-Jobar .xis Olunn Bue F-!ate and Anchors ~~~~ sec.tlon A1 O:on Aisle Ciranswrse > frame Pa13e 'b of I '--f Hotlrontal Bi'..ai 2/3/2023 Structural Engineering & Design Inc. By: Bob$ 1815 Weight Aye La Verne CA 91750 Tel: 909 596.1351 fax: 909.596.718§ Project: Jobar lntnl Project#: 23-0203-6 Configuration & Summary: TYPE C SELECTIVE RACK r 72" + 3 00" 72" t-300" 72" -~ 72" I Seismic Criteria ~,__....,. 26" +--42" +--·--42" + _ _,, 42" ...,j,.-1oc----'II 42" -'I.,-,,____..,.. 42" + k------41 44" + 1---__:::j-j ~ 42" -f **RACK COLUMN REACTIONS ASDLOADS AX»lL DL= 60 lb AXIAL LL= 4,900 lb SEISMIC AXIAL Ps=+/-8,764 lb /JASE MOMENI= 8. 000 in-lb Beam Length Frame Type Ss=l.697, Fa=l.2 4 42 In 300.0 In 96In Component Description STRESS Column Fv=SS ksl UMH C3312TD 3x3x12ga P=4960 lb, M=18282 in-lb 0.85-OK Column & Backer None None None N/A Beam Fv=SS ksl StepBeam 4"x2.S"x0.06" Lu=96 In I capacity: 5051 lb/pr 0.49-OK Beam Connector Fv=SS ksl Lvl 1: 4 pin OK 1 Mconn=12439 In-lb I Mcap=32642 In-lb 0.38-OK Brace-Horizontal Fy=SS ksl UMH C 1.38x0.94x0.39x16ga 0.68-OK Brace-Diagonal Fv=SS ksl UMH C 1.38x0.94x0.39x16ga 0.99-OK Base Plate Fv=36 ksl Bx8x3/8 I Fixity= 8000 In-lb 0.68-OK Anchor 4 Per Base 0.5" x 3.25" Embed HILT! KWIKBOLTTZ ESR 1917 Insoectfon Reqd (Net seismic Upllft=6660 lb) 0.8-OK Slab & Soil 6" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure 0.67-OK Level I Load** I Story Force I Story Force Column I Column I Conn. Beam Per Level Beam Sn,r.n Brace Transv Lona It. Axial Moment Moment Connector 1 2,450 lb 72.0ln 44.0 In 227Ib 77Ib 4,960 lb 18,282 "# 12,439 "# 4 pin OK 2 2,450 lb 72.0ln 42.0 In 454Ib 155Ib 3,720 lb 12,523 "# 9,449 "# 4 pin OK 3 2,450 lb 72.0 in 42.0 In 681 lb 232 lb 2,480 lb 9,740 "# 7,014 "# 4 pin OK 4 2,450 lb 72.0ln 42.0 In 908 lb 309Ib 1,240 lb 5,566 "# 3,605 "# 4 pin OK 42.0 In 42.0 In 26.0 In ** Load defined as product weight per pair of beams Total: 2,269 lb 773 lb type 3 5elect-Job~r.xl5 Pa';3e '{ of I l/ 2/3/2023 Structural Engineering & Design Inc. 1a15 Wri9bt Aye La Verne. CA 91750 Jel: 909,596.1351 Fax: 909.596.7186 By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Seismic Forces Configuration: TYPE C SELECTIVE RACK Lateral analysla Is performed wltfl regard to the requlramenta of the 2012 RMr ANSI MH 16.1-2012 Sec 2.6 • ASce 7-16 sec 15.5.3 Transverse (£ross Aisle) Se~mlc load V= Cs*Ip* s=Cs*lp*(0.67*P*Prf+D) CSl= Sds/R = 0.3394 CS2= 0.044*Sds = 0.0597 CS3= 0.5*51/R = 0.0765 Cs-max= 0.3394 Base Shear Coeff,,,C1a 0,3394 Level PRODUCT LOAD P 1 2,450 lb 2 2,450 lb 3 2,450 lb 4 2,450 lb Cs-max * Ip= 0.3394 Vm1n= 0.015 Eff Base Shear=Cs= 0.3394 P*0.67*PRF1 1,642 lb 1,642 lb 1,642 lb 1,642 lb Ws= (0.67*Plru,1 * PL)+DL (RMI 2.6.2) = 6 686 lb Vtransv=Vt= 0,3394 * (120 lb+ 6566 lb) aransverse= 2,269 lb limit Stam Levlll Trans-fflsm/c shear per upright DL hi Wl*hl 30 lb 72In 120,348 30 lb 144 In 240,696 30 lb 216 In 361,044 30Ib 288In 481,392 sum: P==9800 lb 6,566 lb 120 lb W=6686 lb 1,203,480 Downalsle Seismic L d Slmiarly for longitudinal seismic: loads, using Rc6.0 Ws= (0.67 P~2 * P + DL Ss= 1.697 S1= 0.612 Fa:: 1.200 Fv= 1.700 Sds=2/3*Ss*Fa= 1.358 Sd1=2/3*S1 *Fv= 0.694 Ca=0.4*2/3*Ss*Fa= 0.5430 {Transv-, Blllced Frame Dir.) R• 4.0 Ip= 1.0 PRF1= 1.0 Pallet Helght=hp=-48.0 In DL per Beam Lvl= 30 lb Fl Fl* hl+h 2 226.9 lb 21,782·# 453.8 lb 76,238·# 680.7 lb 163,368-# 907.6 lb 283,171-# 2,269 lb I=544,560 Csl=Sdl/(T*R)= 0.1156 = 6,686 lb (Longitudinal, Unbraced Olr.) R~ 6.0 Cs2= 0.0597 es .. es-max"'lp= 0.1156 T• 1.00 SOC Cs3= 0.0510 Vlong= 0,1156 * (120 lb+ 6566 lb) Cs-max= 0.1156 Elongltudlnal= 773 lb t11111t-u11•1t01t11MH11m1c,,-,.,,.,.,,,,,,,,ht Level PRO0UC LOAD p P*0.67*PRF2 DL hi wl*hl Fl f ront Ylcw 1 2,450 lb 1,642 lb 30 lb 72 In 120,348 77.3 lb 2 2,450 lb 1,642 lb 30 lb 144 In 240,696 154.6 lb 3 2,450 lb 1,642 lb 30 lb 216 In 361,044 231.9 lb 4 2,450 lb 1,642 lb 30 lb 288 In 481,392 309.2 lb sum: =======6!::,5=66::::::::lb===1=2=0=1b===W===6=68==6=1=b===1=.2=0=3=.4=8=0=====77::::::::3=1b========== type 3 !)elect-Jobar.xl:, f'age ~of 2/3/2023 Structural Engineering & Design Inc. 1815 Wcigbt Ave La verne QA e1160 re1· epe.500.1351 fax· ooe,soo 1186 By: Bob S Project: Jobar lntnl Project #: 23-0203-6 Downalsle Seismic Loads Configuration: TYPE C SELECTIVE RACK Detennlne the story moments by applying portal analysis. The base plate Is assumed to provide partial fixity. seismic Stosy Forais Vlong= 773 lb Vcol=Vlong/2= 387 lb Fl= 77 lb F2= 155 lb FJ= 232 lb Selsn,lc Stosy Moments Typical fume ma<k Tributlty ~rea of lwo columns 0("1ck Ftimc '.,.,,_ , _. _ I ... ~ ~ lit;:t: ,,,., i--96'-, fil2nll!tcw conceptual System Mbase-max= 8,000 in-lb Mbase-v= (Vcol*hleff)/2 <=== Default capadty hl-eff= hl -beam dip helght/2 = 68 In = 13,141 in-lb <==:=: Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 8,000 In-lb M 1-1 = [Vcol * hleff]-Mbase-eff = (387 lb * 68 ln)-8000 In-lb = 18,282 in-lb Msels= (Mupper+Mlower)/2 Msels(l-1)= (18282 In-lb+ 12523 ln-lb)/2 = 15,402 In-lb LEVEL hi Axial Load 1 72 In 4,960 lb 2 72 In 3,720 lb 3 721n 2,480 lb 4 72 in 1,240 lb M 2-2= [Vcol-(Fl)/2) * h2 = [387 lb -77.3 lb]*72 ln/2 = 12,523 In-lb Msels(2-2)= (12523 ln•lb + 9740 in-lb)/2 = 11,131 In-lb Summary of Forces Column Moment** Mselsmlc"'* 18,282 ln·lb 15,402 In-lb 12,523 In-lb 11,131 In-lb 9,740 In-lb 7,653 In-lb 5,566 In-lb 2,783 In-lb Mend-fixi 2,367 In-lb 2,367 ln·lb 2,367 In-lb 2,367 In-lb Mconn= (Mselsmlc + Mend-flxity)*0.70*rho Mconn-allow(4 Pin)= 32,642 in-lb **all moments based on limit states level loading type 3 5elect-Jobar.xl5 Vco17:---,11t======:tlb h2 h1 Beam to Column Elevation rho= 1.0000 Mconn** 12,439 In-lb 9,449 ln·lb 7,014 In-lb 3,605 In-lb Beam Connector 4 pin OK 4 pin OK 4 pin OK 4 pin OK 2/3/2023 COb Structural Engineering & Design Inc. 1 a1 s wr19b1 Ave La Verne CA 91750 Jel: 909 596 1351 fax; 909.596.11 as By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Column {Longltudinal Loads} Configuration: TYPE C SELECTIVE RACK Section Properties Section: UMH C3312TD 3x3x12ga Aeff = 0. 761 In" 2 Ix = 1.221 inA4 Sx = 0.817 lnA3 rx = 1.267 In Qf= 1.67 E= 29,500 ksl Loads Considers loads at level 1 Iy = 0.692 ln"4 Sy = 0.397 inA3 ry = 0.954 In Fy= 55 ksl Cmx= 0.85 COLUMN DL= 60 lb 0/ttcal load cases are: RMI Sec 2.1 Kx = 1.7 Lx = 70.0 in Ky = 1.0 Ly= 44.0 In Cb= 1.0 ~l v-·-·r ·-·-v 10.108 In it l=i-o.1s 1n 3.000 in _J_ COLUMN PL= 4,900 lb Load Case 5:: (1+0.105*Sds}D + 0.75*(1.4+0.14Sds)*B*P + 0.75*{0.l*rho*E)<= 1.0, ASD Method Mcol= 18,282 in-lb ax/a/ load coeff: 0.8347836 * P seismic moment coeff: 0.5625 * Meo/ Sds= 1.3576 Load Case 6:: (1+0.14*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method 1 +0.105*Sds= 1.1425 ax/a/load coeff: 0.72804 seismic moment coeff: 0.7 * Meo/ 1.4+0.14Sds= 1.5901 By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol 1+0.14Sds= 1.1901 0.85+0.14*Sds= 1.0401 B= 0.7000 rho= 1.0000 Axial Analvsls Axial Load=Pax= 1.190064*60 lb+ 1.040064*0.7*4900 lb = 3,639 lb = 0.7 * 18282 in-lb = 12,797 In-lb Kxlx/rx = 1.7*70"/1.267" = 93.9 Fe= n" 2E/(KL/r)max" 2 = 33.0ksi Pn= Aeff*Fn = 24,418 lb P/Pa= 0.29 Bending Analysis > 0.15 KyLy/ry = 1 *44"/0.954" = 46.1 Fy/2= 27.5 ksl Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) s 1.0 P/Pao + Mx/Max s 1.0 Pno= Ae*Fy = 0.761 ln"2 *55000 psi = 41,855 lb Pao= Pno/Qc = 418551b/1.92 = 21,799 lb Fe > Fy/2 Fn= Fy(l-Fy/4Fe) = 55 ksi*[l-55 ksl/(4*33 ksl)] = 32.1 ksl Pa= Pn/Qc = 24418 lb/1.92 = 12,718 lb Myield=My= Sx*Fy = 0.817 in"3 * 55000 psi = 44,935 in-lb Max= My/Qf Per= nA2EI/(KL)max"2 = 44935 ln-lb/1.67 = 26,907 In-lb µx= {l/[l-(Oc*P/Pcr)]}"-1 = {1/[1-(1.92*3639 lb/25104 lb)]}"-1 = 0.72 Combined Stresses = nA2*29500 ksl/(1.7*70 ln)"2 = 25,104 lb (3639 lb/12718 lb) + (0.85*12797 ln-lb)/(26907 in-lb*0.72) = (3639 lb/21799 lb) + (12797 in-lb/26907 In-lb) = 0.85 0.64 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total rolumn stress computed for load case S Is: 77. 0% 'nq loads 41S8.99252 lb Ax/a/ and M-9598 In-lb type 3 5e\ect-Jobar.x\5 Fage 7 of tY 2/3/2023 Structural Engineering & Design Inc. 1 s15 Weight Aye La Verne CA 91750 Tel: 909 596 1351 fax· 909 596 11 ae By: Bob S Project Jobar lntnl BEAM contiguratlon: TYPE C SELECTIVE RACK DETERMINE ALLOWABLE MOMeNT CAPACITY Al Check compression flange for local buckling cs2.n w= c -2*t -2*r = 1.75 In • 2*0.06 In • 2*0.06 In = 1.510 In w/t= 25.17 lulambda"' (1.052/(k)/'0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.17 * (55/29500)"0.5 = 0.572 < 0.673, Flange Is fully effective Bl check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 50.15 ksi f2(tenslon)= Fy*(y1/y2)= 101.91 ksl Y"' f2/fl = -2.032 k= 4 + 2*(1·Y)"3 + 2*(1-Y) = 65.81 flat depth=w= yl+y3 Eq. B2.3·5 Eq. B2.3·4 Eq. B2.1-4 Eq. B2.1-1 = 3.760 in w/tc 62.66666667 OK !=lambda= (1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 = (1.052/(65.81)"0.5] * 3.76 * (50.15/29500)"0.5 = 0.335 < 0.673 be=W= 3.760 In bl= be(3·Y) = 0.747 b2= be/2 r:r 1.88 In b1+b2= 2.627 In > 1.24 In, Web Is fully effective Determine effect of cold working on steel yield point CEYa} per section AZ,2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2·1) Lcorner= Lee (p/2) * (r + t/2) 0.141 In Lflange-top=Lf= 1.510 In C= 2*Lc/(Lf+2*Lc) = 0.157 In Eq B2.3-2 Project #: 23-0203-6 2,50 In V,51n 4 T 4.000 In 1,625 In _j__ l 0.0601n ~- Beam= SteoBeam 4"x2 S"xO 06" I I Ix= 1.534 ln"4 Sx= 0.729 ln"3 Ycg= 2.640 In t-= 0.060 In Bend Radlus=r= 0.060 In Fy=Fyvc 55.00 ksl Fu=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 In bottom flange= 2.500 In Web depth= 4.rnn In -Fy - m m= 0.192*(Fu/Fy) -0.068 = 0.1590 (EQ A7.2-4) depth Be= 3,69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/Fv=. 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksl Thus, Fya-top= 58.70 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.94 ksl (tension stress at bottom) Check auowabie tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.260 In Cbottom=Cb= 2*Lc/(Lfb+ 2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.61 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.68 ksl (EQ A7.2-3) If F= 0.95 Then F*Mn=F*Fya*Sx=j 20.55 ln-k yl= Ycg-t-r= 2.520 In y2= depth-Ycg= 1.360 In y3= y2+r= 1.240 In Structural Engineering & Design Inc. 1815 Wcigbt Ave La Verne, CA 91z50 Tel; 909 596 1351 f ax; 909 596 7186 By: Bob S BEAM RMI Section 5.2, PT II Section Project: Jobar lntnl contlguratlon: TYPE C SELECTIVE RACK Beam= StepBeam 411x2.5"x0.06" Ix=Ib= 1.534 ln"4 Sx= 0.729 ln"3 t= 0.060 In Fy=Fyv= 55 ksl Fu::.Fuv= 65 ksl Fya= 58.7 ksl E= 29500 ksl F= 300.0 L= 96 in Beam Level= 1 P=Product Load= 2,450 lb/pair D=Dead Load= 30 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 Project #: 23-0203-6 2.50 1n V,s ,n 4 T 4.000 in 1.625 1n _j_ 1 0,0601n -~- W=LRFD Load Factor= 1.2*0 + 1.4*P+l.4*{0.125)*P FOR DL=2% of PL, RMI 2.2, Item 8 W= 1.599 Rm= 1 -((2*F*L)/(6*E*Ib + 3*F*L)] 1 -(2*300*96 in)/[(6*29500 ksi*l.534 in"3)+(3*300*96 In)] = 0.839 If F= 0.95 Then F*Mn=F*Fya*Sx= 40.65 in-k Thus, allowable load per beam palr=W= F*Mn*8*( # of beams)/(L *Rm*W) = 40.65 in-k * 8 * 2/(961n * 0.839 * 1.599) = S,051 lb/pair allowable load based on bending stress Mend= W*L *(1-Rm)/8 = (5051 lb/2) * 96 In* (1-0.839)/8 = 4,879 in-lb @ 5051 lb max allowable load = 2,367 in-lb @ 2450 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + 10*E*Ib) = 1 -(4*300*96 ln)/[(5*300*96 in)+(10*29500 ksi*l.534 in"4)] = 0.807 In If Dmax= L/180 Based on 1./180 Deflection Criteria and Dss= S*W*L "3/(384*E*Ib) L/180= S*W*L "3*Rd/(384*E*l b*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L" 2*Rd) = 384*1.534 in"4*2/[180*5*(96 in)"2*0.807) = S,192 lb/pair allowable load based on deflection limits Thus, based on the least capacity of item 1 and 2 above: Iii 11/11111111II1111111110II 11111111111111111 ~=~~~~~~ ....... .... -..... r, Id -... _________ _ . ...... . . . . . I • • • • • • P,oduot. ...... . . . . . . Beam Length - .. r., Allowable Deflection= L/180 = 0.533 in Deflection at Imposed Load= 0.259 in A lowable loa pair Imposed Product Load= 2,450 lb/pair Beam Stress= . .__ ________ ..... Beam at Level 1 Structural Engineering & Design Inc. 181§ Wriqbt Ave I ft Verne CA 91760 Iel· 909 §96 1351 Eax· 9Q9 58§ Z18§ By: BobS Project: Jobar lntnl Project#: 23-0203-6 4 Pin Beam to Column Connection TYPE C SELECTIVE RACK I he beaM end moments shown herein show the result of the maximum induced fixed end monenl:s form se1Smlc + static loads and the code mandated minimum value ot 1.50/o(DL+PL) Mconn max= (Mselsmlc + Mend-flxlty)"'0.70"'Rho = 12,439 In-lb Load at level 1 Connector Type= 4 Pin Shear capacity or Pin Pin Diam= 0.44 In Ashear= (0.438 In)" 2 * Pl/4 = 0.1507 In" 2 Pshear= 0.4 "' Fy * Ashear = 0.4 * 55000 psi* 0.15071n"2 = 3,315 lb Bearing Capacity of Pin tcoi= 0.108 In Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearlng= alpha "' Fu "' diam "' tcol/Omega = 2.22 "'65000 psi "' 0.438 In"' 0.108 ln/2.22 = 3,075 lb < 3315 lb Moment Capacity of Bracket Edge Dlstance=E= 1.00 In Pin Spacing= 2.0 In C= Pl+P2+P3+P4 tdlp= 0.18 In = Pl +Pl*( 4.5"/6.S")+Pl *(2.5"/6.S")+Pl *(0.5"/6.5") = 2.154 * Pl Mcap= Scllp * Fbendlng = 0.127 ln"3 * 0.66 * Fy = 4,610 in-lb Pdlp= Mcap/(2.154 * d) = 4610.1 ln-lb/(2.154 * 0,5 In) = 4,281 lb C*d= Mcap = 2.154 Thus, Pl= 3,075 lb Pl -------li<-'1~• ---'~-~'"""1~• Fy= 55,000 psi Scllp= 0.127 ln"3 d-= E/2 = 0.50 In Mconn-allow= [Pl *6.5"+P1 *( 4.5"/6.5")*4.5" +Pl *(2.5"/6.5")2.5" +Pl *(0.5"/6.S")*0.5"] = 3075 LB*[6.5"+(4.5"/6.5")*4.5"+(2.5"/6,5")*2.5"+(0.5''/6.5")*0.5"] = 32,642 In-lb > Mconn max, OK type 3 select-Jobar.xls Page 1 of f'-( rho= 1.0000 2/3/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909,596, 1351 fax: 909.596,7186 By; Bob S Project: Jobar lntnl Project#; 23-0203-6 Transverse Brace Conflguratlon: TYPE C SELECTIVE RACK Section Properties Diagonal Member= UMH C 1.38x0.94x0.39x16ga Horizontal Member= UMH C 1.38x0.94x0.39xl6ga Area= 0.214 ln"2 µ.380 fn -I r min= 0.356 in I I ~= ~~0000 psi n_J_:r40 in Qc= 1.92 Area= 0.214 in"2 r min= 0.356 In Fy= 55,000 psi K= 1.0 ~ ,.,_ 0.390 In Frame Dimensions Dia onal Member Bottom Panel Helght=H= 44.0 In Frame Depth=D= 42.0 In Column Wldth=B= 3.0 In Clear Depth=D-8*2: 36.0 In X Brace= NO rho= 1.00 .+0 I Load Case 6: : (W !01*Sd5Jl' + l{0.85+0.14Scls)*B*P + [0.7*rho*EJ<= 1.0, ASD Method Vtransverse= 2,269 lb Vb,..Vtranav*0.7*rho= 2269 lb * 0.7 * 1 = 1,588 lb Ldlag= ((D-8*2)"2 + (H-611)"2]"1/2 = 52.3 In Pmax= V*(Ldlag/D) * 0,75 = 1,483 lb (kl/r)= (k * Ldlag)/r min Vb +fts===~.;:l T = (1 x 52.3 In /0.356 In ) = 146.9 in = 13,492 psi axial load on dla onal brace member Fe= pl"2*E/(kl/r)"2 J_H Since Fe<Fy/2, Pn= AREA*Fn = 0.214 ln"2 * 13492 psi = 2,887 lb Pallow= Pn/Q = 2887 lb /1.92 = 1,504 lb Pn/Pallow= Horizontal brace 0.99 Vb=Vtransv*0.7*rho= 1,588 lb (kl/r)= (k * Lhorlz)/r min = (1 x 42 In) /0.356 In = 118.0 In Since Fe<Fy/2, Fn=Fe = 20,910 psi Pn/Pallow= 0,68 type 3 !!elect-Jobar.xls <= 1.0 OK <= 1,0 OK Fn= Fe B # Fe:: pl" 2*E/(kl/r)" 2 = 20,910 psi Pn= AREA*Fn = 0.214ln"2*20910 psi = 4,475 lb Paqe (',1 of /'I = 13,492 psi Typk;al l>anel ColJflaJ.arallon Check End Weld Lweld= 3.0 In Fu= 65 ksl tmln= 0.059 In Weld Capacity= 0.75 * tmln * L * Fu/2.5 = 3,452 lb OK Fy/2= 27,500 psi Pallow= Pn/Qc :: 4475 lb /1.92 = 2,331 lb 2/3/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909,596,1351 Fax· 909,596.7186 By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Single Row Frame Overturning Configuration: TYPE C SELECTIVE RACK Loads Critical Load case(s): 1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D + (0.9·0.20Sds)*B*Papp -E*rho Vtrans=V=E=Qe= 2,269 lb DEAD LOAD PER UPRIGHT=D= 120 lb PRODUCT LOAD PER UPRIGHT=P= 9,800 lb Papp=P*0.67= 6,566 lb Wst LC1=Wst1=(0.62848*D + 0.62848*Papp*l)= 4,202 lb Product Load Top Level, Ptop= 2,450 lb DL/Lvl= 30 lb Seismic Ovt based on E, E(Fl*hl)= 368,088 In-lb helaht/denth ratio-6 9 In - A) Fullv Loaded Rack Load case 1: Movt= I:(Fi*hi)*E*rho = 368,088 in-lb Sds= 1.3576 (0.9-0.2Sds)= 0.6285 (0.9-0.2Sds)= 0.6285 B= 1.0000 rho= 1.0000 Frame Depth=Df= 42.0 In Htop-lvl=H= 288.0 In # Levels= 4 # Anchors/Base= 4 hp-48 0 In - h-H+ho/2= 312.0 In Mst= Wstl * Df/2 = 4202 lb * 42 in/2 = 88,242 in-lb SIDE ELEVATION T= (Movt-Mst)/Df = (368088 In-lb • 88242 ln-lb)/42 In =66631b Net Uplift per Column I Net Seismic Uplift= 6,663 lb B) Tnn Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip * ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2J*rho = 0.3394 * 2450 lb = 265,302 In-lb = 8321b T= (Movt-Mst)/Df Vleff= 832 lb Critical Level= 4 = (265302 In-lb • 33919 ln-lb)/42 In V2=VDL = Cs*Ip*D Cs*Ip= 0.3394 = 5,509 lb Net Uplift per Column = 41 lb Mst= (0.62848*D + 0.62848*Ptop*1) * 42 ln/2 = 33,919 In-lb I Net Seismic Uollft= 5.509 lb Anchor Check (4) 0.5" x 3.25" Embed HILTI KWIKBOLT TZ anchor(s) per base plate, Special inspection is required per ESR 1917. Fully Loaded: Top Level Loaded: Pullout capaclty=Tcap= 1,961 lb L.A. City Jurisdiction? NO Shear capaclty=Vcap= 2,517 lb Phi= 1 (1665 lb/1961 lb)"l + (283 lb/2517 lb)"l = (1377 lb/1961 lb)"l + (103 lb/2517 lb)"l = type 3 select-Jobar.xls Page (/ of I</ 0.96 0.74 Tcap*Phl= 1,961 lb Vcap*Phl= 2,517 lb <= 1.2 OK <= 1.2 OK 2/3/2023 Structural Engineering & Design Inc. 1 s15 Wcigbt Aye La Verne CA 91750 Tel: 909 596 1351 fax; 909.596 z1 as By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Base Plate Configuration: TYPE C SELECTIVE RACK Section Baseplate= 8x8x3/8 Eff Wldth=W = 8.00 in Eff Depth=D = 8.00 In Column Wldth=b = 3.00 In Column Depth=dc = 3.00 In L = 2.50 In Plate Tolcknesset = 0.375 In a= 3.00 In Anchor c.c. =2*a=d = 6.00 in N=# Anchor/Base= 4 Fy = 36,000 psi oowaa1s1e E\evattoo Down Isle Loads Load a se 5: : 1+0.JOS*Sds tJ + 0, '5* 'J.4+0.14Sds *B*P + 0.75* 0.7*r. o*E <= 1.0. ASD Method COLUMN DL= 60 lb COLUMN PL= 4,900 lb Base Moment= 8,000 In-lb l+0.105*Sds= 1.1425 1.4+0.14Sds:o: 1.5901 Axlal=P= 1.142548 * 60 lb+ 0.75 * (1.590064 * 0.7 * 4 00 lb) = 41159 lb Mb= Base Moment*0.75*0.7*rho = 8000 In-lb * 0.75*0.7*rho = 4 200 In-lb B= 0.7000 Axlal Load P = 4;159 lb Mbase=Mb = 4,200 In-lb Axial stress=fa = P/A = P/(D*W) = 65 psi Moment Stress=fb = M/5 = 6*Mb/[(D*B"2) = 49.2 psi Moment Stress=tbl = fb-tb2 = 18.5 psi M3 = (1/2)*fb2*L *{2/3)*L = {l/3)*fb2*L /\ 2 = 64 ln·lb 5-plate = (l)(t"2)/6 = 0.023 ln"3/ln fb/Fb =-Mtotal/[(S·plate)(Fb)) = 0.51 OK Tanchor = (Mb·(Plapp*0.75*0.46)(a))/[(d)*N/2) = -701 lb No Tension Ml= wL"2/2= fa*L"2/2 = 203 in-lb Moment Stress=fb2 = 2 * tb * 1./W = 30.8 psi M2= fbl *L" 2)/2 = 58 ln·lb Mtotal"' M1+M2+M3 = 325 ln·lb/ln Fb = 0.75*Fy = 27,000 psi F'p= 0.7*F'c = 2,800 psi Tallow= 1,961 lb Cross Aisle Loads Dfllt:a/ b8dctlSO RN/ SBC 1.J, P,,n,4: (J+0.1/Sdl)DI. +(J+O.J4SOS)PL 'U.JS+El'0.75 <• 1.4 ASDNeJ/,c,J OK OK Efft Effe Pstatic= 4,159 lb Ched< uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. the base plate oonllgurauon conststs or two •nchor bolls located on either side Movt*0.75*0.7*rho= 193,246 In-lb Frame Depth= 42.0 in P=Pstatlc+Pselsmlc= 8,760 lb b =Column Depth= 3.00 In L =Base Plate Depth-Col Depth= 2.50 In fa= P/A = P/(D*W) = 137 psi Sbase/ln = (1)(t"2)/6 = 0.023 ln"3/ln fb/Fb = M/[(S-plate)(Fb)) = 0.68 OK twe 3 select-Jobar.xl5 Pselsmlc= Movt/Frame Depth = 4,601 lb M= WL "2/2= fa*L "2/2 = 428 in-lb/In Fbase = 0.75*Fy = 21,000 psi Paqe /.i.. of I'/ the column and a net uplift rorce exists, the minimum base plate thickness hall be determined based on a design bending moment In the plate equal to the uplift force on one anchor times 1/2 the distance from he centerline of the anchor to the nearest edge of the rack column" I+-C A\ t,1" "rfW I1 ~ Uplift per Column= 6,660 lb Qty Anchor per BP= 4 Net Tension per anchOr=Ti!= 1,665 lb c= 2.50 in Mu=Moment on Baseplate due to upllfta Ta*c/2 = 2,081 In-lb Splate= 0.188 ln"3 Fb *0.75= 0.308 OK 2/3/2023 Structural Engineering & Design Inc. 101 s Wright Aye La Verne CA 91750 Tel: 909,596 1351 fax· 909,596 7186 By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Slab on Grade Configuration: TYPE C SELECTTVE RACK y L SLAB ELEVATION a Baseplate Plan View concrete re= 4,000 psi tslab=tc: 6.0 In teffc 6.0 In phlc0= 0.6 SQll fsoll= 750 psf Movt= 368,088 In-lb Frame depth= 42.0 In Sds= 1.358 0.2*Sds= 0.272 Base Plate Effec. Baseplate wldth.,B= 8.00 in Elfec. Baseplate DepthaDa 8.00 in width=a= 3.00 in depth=b= 3.00 In A>= Q.600 l3=B/D= 1.000 F'c"O.S= 63.20 psi Column Loads DEAD LOAD=D= 60 lb per column unfactored ASO load PRODUCT LOAD=P= 4,900 lb per column unfactored ASD load Papp= 3,283 lb per column P-selsmlc=E= (Movt/Frame depth) = 8,764 lb per column unfactored Umlt state load B= 0.7000 rho= 1.0000 Sds= 1.3576 1.2 + 0.2*Sds= 1.4715 0. 9 -0.20Sds= 0.6285 Pun re Apunct= [(c+t)+(e+t)]*2*t = 276.0 in"2 Fpunctl= [(4/3 + 8/(3*13)) *,., *(Pc"0.5) = 151.7 psi Fpunct2= 2.66 * "'* (Pc"O.S) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 13,900 lb Asoll= (Pse*144)/(fsoll) = 2,669 ln"2 x= (L-y)/2 = 17.1 In Fb=-S*(phl)*(rc)"0.5 = 189.74 psi type 3 5elect-Jobar.xl5 midway dist face of column to edge of plate=c= 5.50 In midway dist face of column to ed e of plate=e= 5.50 In Load Case 1) 1.2+0.2 s D + 1.2+0.2 ds) B P+ o E RMI sec 2.HQTN s -= 1.47152 * 60 lb+ 1.47152 * 0.7 * 4900 lb+ 1 * 8764 lb = 13,900 lb Load Case 2) (0.9·0.2Sds)D + (0.9·0.2Sds)*B*Papp + rho*E RMI sec 2.2 EQTN 7 = 0.62848 * 60 lb + 0.62848 * 0.7 * 3283 lb + 1 * 8764 lb = 10,246 lb Load Case 3) 1.2*D + 1.4*P = 1.2*60 lb + 1.4*4900 lb = 6,932 lb Load Case 4) 1.2*D + 1.0*P + LOE = 13,736 lb Effective Column Load=Pu= 13,900 lb per column L= (Asoll)"0.5 = 51.66 In M= w*x"2/2 = (fsoll*x" 2)/(144*2) = 759.8 In-lb Page (3 of llf fv/Fv= Pu/(Apunct*Fpunct) 0,499 < 1 OK y:: (c*e)"0.5 + 2*t = 17.5 In s-slab= 1 *teff" 2/6 = 6.0 ln"3 fb/Fb= M/(S-slab*Fb) = 0,667 < 1, OK RMI Ste 2.2 EQTN 1,2 ACI 318--14 sec 5.3.1 Eqtn 5.3.le 2/3/2023 Structural Engineering & Design Inc. 1815 Wrjaht Aye La Yeme, QA 91750 Tel: 909,596 1351 Fax-909,596.7186 By: Bob S Project: Jobar lntnl Project#: 23-0203-6 Configuration & Summary: TYPE T SELECTIVE RACK 300" 72" 72" **RACK COLUMN REACTIONS ASDLOAOS AXIAL OL:r: 4S lb AXIAL LL= 4,612 lb SEISMIC AXIAL Ps=+/· 6,978 lb BASE MOMENT= 8,000 In-lb ' I ,A"-f--144" ---,.r,~ -I"-42" -,,j, Seismic: Criteria # Bm Lvls Frame Beam Length Frame Type Ss=l.697, Fa=l.2 2 42 In 1441n Component Description STRESS Column Fv=SS ksi UMH C3313TD 3x3x13ga P=4658 lb, M=16650 In-lb 0.92-OK Column & Backer None None None N/A Beam Fv=SS ksl UMH SB556 5.5"x2.S"xl6ga Lu=144 In I capacity: 4587 lb/pr 0.87-OK Beam Connector Fy=SS ksl Lvl 2: 4 pin OK I Mconn=l0OOl In-lb I Mcap=27197 In-lb 0.37-0K Brace-Horizontal FY=SS ksl UMH C 1.38x0.94x0.39x16ga 0.64-OK Brace-Diagonal FY=SS ksl UMH C 1.38x0.94x0.39x16ga 0.92-OK Base Plate fyo:36 ksl 8x8x3/8 I Fixity= 8000 In-lb 0.58-OK Anchor 4 oer Base 0.5'' x 3.25" Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd (Net Seismic Upllft=6548 lb) 0.75-0K Slab & Soll 6" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure 0.57-0K Level I Load** I Story Force I Story Force Column I Column I Conn. Beam Per Level Beam Spca Brace Transv Lonalt. Axlal Moment Moment Connector 2 4,000 lb 72.0ln 42.0 In 801 lb 273 lb 4,030 lb 12,280 "# 10,001 "# 4 pin OK 3 4,000 lb 72.0ln 42.0 In 1,201 lb 409 lb 2,015 lb 7,367 "# 5,703 "# 4 pin OK 42.0 In 42.0 In 42.0 In 26.0 In ** Load defined as product weight per pair or beams Total: 2,128 lb 725 lb type 4 5elect-Jobar.xl5 Pa<3e /'{ of / y 2/G/2023