HomeMy WebLinkAboutPD 2023-0009; THE WILLIAMS RESIDENCE; DRAINAGE REPORT; 2024-09-20DRAINAGE REPORT
FOR
WILLIAMS RESIDENCE
2723 CAZADERO DR
CARLSBAD, CA 92009
PD2023-0009
Dwg. 542-4A
JN 17-021
May 23, 2022
Revised 9/20/2023
Revised 05/20/2024
Revised 08/14/2024
Revised 09/20/2024
_______________________________ ____9/20/2024_____________ KAMAL S. SWEIS R.C.E. 48592 DATE
E K&S ENGINEERING, INC.
Planning Engineering Surveying
TABLE OF CONTENTS
1. SITE DESCRIPTION
• EXISTING CONDITION
• PROPOSED CONDITION
• CONCLUSION
2. HYDROLOGY DESIGN MODELS
A. DESIGN METHODS
B. DESIGN CRITERIA
C. REFERENCES
3. HYDROLOGIC AND HYDRAULIC CALCULATIONS................. APPENDIX A
• RATIONAL METHOD CALCULATIONS
4. TABLES AND CHARTS............................................................ APPENDIX B
5. HYDROLOGY MAPS................................................................ APPENDIX C
• EXISTING CONDITION
• PROPOSED CONDITION
1. SITE DESCRIPTION
EXISTING CONDITION
The site is situated at 2723 Cazadero Drive, Carlsbad, CA, within the County of San Diego. The
current condition features a developed lot comprising a single-family dwelling, a pool, patio,
and landscaped areas.
Drainage originating from the higher southern lot (730) is intercepted by a concrete ditch at the
southern property line between lots, then directed westward until it reaches an underground
storm drain system between lots 725 and 726, ultimately channeling the runoff towards the
southerly Argonauta Street. Consequently, no off-site drainage is directed onto the site.
Surface runoff from the southern upper portion of the lot flows towards Cazadero Drive. The lot
is segmented into three basins: the western basin 1 directs drainage runoff through an existing
concrete brow ditch, the middle basin 2 (encompassing the house and driveway) directs surface
flows to Cazadero Street, and finally, the eastern basin, which includes the upper southern area
of the lot, drains through the existing concrete ditch onto Cazadero Drive. Then, runoff from
Cazadero Drive follows a westward path along the existing curb and gutter for approximately
1,550 LF until reaching the 10’ curb inlet & 18” RCP public storm drain system as depicted on
TM no. 2887-1 sheet 25. Subsequently, the runoff discharges into San Marcos Creek,
connecting to Batiquitos Lagoon, and eventually flowing into the Pacific Ocean.
The existing impervious area covers 0.236 acres, while the pervious area covers 0.384 acres,
totaling the basin area to 0.62 acres. Which represents 0.381% of the site.
The C-weighted runoff coefficient of 0.56 was calculated using the San Diego County Hydrology
Manual equation in section 3.1.2, generating a total of 2.38 CFS for the 100-year storm event.
SUMMARY OF EXISITNG CONDITION
DISCHARGE
LOCATION BASIN WEIGHTED C
Cw
INTENSITY
(IN/HR)
AREA
(ACRES)
PEAK FLOW
(CFS)
CAZADERO DR 1 0.56 6.85 0.36 1.38
2 0.56 6.85 0.17 0.65
3 0.56 6.85 0.09 0.35
PROPOSED CONDITION
The proposed condition will consist of the addition of a second single family dwelling and
retaining walls to the already developed lot.
Project drainage will remain the same as the existing condition which is from south to north
towards Cazadero Drive. Basin will still be divided into three basins with minor modification on
areas due to the new development: the western basin 1 directs drainage runoff through an
existing concrete brow ditch an increase of 0.03 acres from basin 2 will be redirected to basin 1,
the middle basin 2 (encompassing the existing house and driveway) directs surface flows to
Cazadero Street and a reduction of area has happen due to the development, and finally, the
eastern basin, which includes the upper southern area of the lot and the proposed house
increasing the basin, the upper patio will direct the runoff to the proposed underground storm
drain system that is discharging onto the existing concrete ditch that will discharge onto
Cazadero Drive. Then runoff from Cazadero Drive follows a westward path along the existing
curb and gutter for approximately 1,550 LF until reaching the 10’ curb inlet & 18” RCP public
storm drain system as depicted on TM no. 2887-1 sheet 25. Subsequently, the runoff discharges
into San Marcos Creek, connecting to Batiquitos Lagoon, and eventually flowing into the Pacific
Ocean.
The new construction will be replacing 1,760 sf of impervious area and adding an additional
1,550 sf. The new total lot impervious area on the proposed condition is 0.277 acres. Which
represents 0.447% of the site.
The C weighted runoff coefficient of 0.60 was calculated utilizing San Diego County Hydrology
Manual equation in section 3.1.2 which generates 2.55 CFS for the 100yr storm event.
SUMMARY OF PROPOSED CONDITION
DISCHARGE
LOCATION BASIN WEIGHTED C
Cw
INTENSITY
(IN/HR)
AREA
(ACRES)
PEAK FLOW
(CFS)
CAZADERO DR 1 0.60 6.85 0.39 1.60
2 0.60 6.85 0.08 0.33
3 0.60 6.85 0.15 0.62
CONCLUSION
The existing concrete ditches which are taking basin 1 on the westerly side and basin 3 on the
easterly side will not be impacted by the addition of runoff as shown on the capacity
calculations included in Appendix A.
Additionally, we included in Appendix A the Hydraulic Analysis of the 6” storm drain system,
concrete brow ditches and 6” inlets that indicates that the proposed on-site storm drain system
and existing concrete ditches are adequate.
We believe that the total increase in runoff of 0.17 CFS resulting from the expansion of
impervious surfaces is negligible and should not have any adverse impacts on the downstream
infrastructure or to the on-site existing concrete ditches.
COMPARISON
POC
AREA
PRE
(ACRES)
AREA
POST
(ACRES)
Q
PRE
(CFS)
Q
POST
(CFS)
Q
DIFERENCE
(CFS)
CAZADERO
DR 0.62 0.62 2.38 2.55 +0.17
TOTAL 0.62 0.62 2.38 2.55 +0.17
2. HYDROLOGY DESIGN MODELS
A. DESIGN METHODS
THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY PER SAN DIEGO HYDROLOGY MANUAL DATED 2003; THE
RATIONAL FORMULA IS AS FOLLOWS:
Q = CIA, WHERE: Q= PEAK DISCHARGE IN CUBIC FEET/SECOND *
C = RUNOFF COEFFICIENT (DIMENSIONLESS)
I = RAINFALL INTENSITY IN INCHES/HOUR (PER FIGURE 3-2)
A = TRIBUTARY DRAINAGE AREA IN ACRES
*1 ACRE INCHES/HOUR = 1.008 CUBIC FEET/SEC
THE OVERLAND FLOW FORMULA IS AS FOLLOWS:
TC=1.8(1.1-C)(L).5/[S(100)].333
L = OVERLAND TRAVEL DISTANCE IN FEET
S = SLOPE IN FT./FT.
TC= TIME IN MINUTES
B. DESIGN CRITERIA
- FREQUENCY, 100 YEAR STORM.
- LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP.
- RAIN FALL INTENSITY PER COUNTY OF SAN DIEGO 2003 HYDROLOGY DESIGN MANUAL.
C. REFERENCES
- COUNTY OF SAN DIEGO 2003, HYDROLOGY MANUAL.
- COUNTY OF SAN DIEGO 2012 REGIONAL STANDARD DRAWING.
- HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION.
APPENDIX A
3. HYDROLOGIC AND HYDRAULIC CALCULATIONS
• RATIONAL METHOD CALCULATIONS
• CONCRETE BROW DITCH CAPACITY CALCULATIONS
• HYDRAULIC ANALYS FOR THE STORM DRAIN SYSTEM
Q=CIA DATE:5.20.2024
C RUNOFF COEFFICIENT
I INTENSITY (IN/HR)
A CONTRIBUTING AREA (AC)
C=0.56 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.36 (SEE ATTACHED EXISTING HYDROLOGY MAP)
1.38 CFS
C=0.56 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.17 (SEE ATTACHED EXISTING HYDROLOGY MAP)
0.65 CFS
C=0.56 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.09 (SEE ATTACHED EXISTING HYDROLOGY MAP)
0.35 CFS
TOTAL AREA =0.62 AC
TOTAL RUNOFF =2.38 CFS
Q 100 =
Q 100 =
EXISTING CONDITION
Q100 RATIONAL METHOD
Q 100 =
BASIN 3
BASIN 2
BASIN 1
Q=CIA DATE:5.20.2024
C RUNOFF COEFFICIENT
I INTENSITY (IN/HR)
A CONTRIBUTING AREA (AC)
C=0.60 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.39 (SEE ATTACHED EXISTING HYDROLOGY MAP)
1.60 CFS
C=0.60 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.08 (SEE ATTACHED EXISTING HYDROLOGY MAP)
0.33 CFS
C=0.60 (SEE WIEGHTED C CALCULATION)
I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1)
A=0.15 (SEE ATTACHED EXISTING HYDROLOGY MAP)
0.62 CFS
TOTAL AREA =0.62 AC
TOTAL RUNOFF =2.55 CFS
Q 100 =
Q 100 =
Q100 RATIONAL METHOD
PROPOSED CONDITION
Q 100 =
BASIN 1
BASIN 2
BASIN 3
CURB OUTLET CALCULATION (FOR EXISITNG CONDITION)
BASIN 1
Given Input Data:
Shape ........................... Rectangular
Solving for ..................... Depth of Flow
Flowrate ........................ 1.3800 cfs
Slope ........................... 0.0200 �/�
Manning's n ..................... 0.0150
Height .......................... 3.0000 in
Botom width .................... 36.0000 in
Computed Results:
Depth ........................... 1.5986 in
Velocity ........................ 3.4529 fps
Full Flowrate ................... 3.7627 cfs
Flow area ....................... 0.3997 �2
Flow perimeter .................. 39.1973 in
Hydraulic radius ................ 1.4682 in
Top width ....................... 36.0000 in
Area ............................ 0.7500 �2
Perimeter ....................... 42.0000 in
Percent full .................... 53.2881 %
Cri�cal Informa�on
Cri�cal depth .................. 2.2483 in
Cri�cal slope .................. 0.0067 �/�
Cri�cal velocity ............... 2.4552 fps
Cri�cal area ................... 0.5621 �2
Cri�cal perimeter .............. 40.4966 in
Cri�cal hydraulic radius ....... 1.9986 in
Cri�cal top width .............. 36.0000 in
Specific energy ................. 0.3185 �
Minimum energy .................. 0.2810 �
Froude number ................... 1.6678
Flow condi�on .................. Supercri�cal
CURB OUTLET CALCULATION (FOR EXISITNG CONDITION)
BASIN 3
Given Input Data:
Shape ........................... Rectangular
Solving for ..................... Depth of Flow
Flowrate ........................ 0.3500 cfs
Slope ........................... 0.0200 �/�
Manning's n ..................... 0.0150
Height .......................... 3.0000 in
Botom width .................... 36.0000 in
Computed Results:
Depth ........................... 0.6887 in
Velocity ........................ 2.0329 fps
Full Flowrate ................... 3.7627 cfs
Flow area ....................... 0.1722 �2
Flow perimeter .................. 37.3773 in
Hydraulic radius ................ 0.6633 in
Top width ....................... 36.0000 in
Area ............................ 0.7500 �2
Perimeter ....................... 42.0000 in
Percent full .................... 22.9554 %
Cri�cal Informa�on
Cri�cal depth .................. 0.9008 in
Cri�cal slope .................. 0.0083 �/�
Cri�cal velocity ............... 1.5541 fps
Cri�cal area ................... 0.2252 �2
Cri�cal perimeter .............. 37.8017 in
Cri�cal hydraulic radius ....... 0.8579 in
Cri�cal top width .............. 36.0000 in
Specific energy ................. 0.1216 �
Minimum energy .................. 0.1126 �
Froude number ................... 1.4961
Flow condi�on .................. Supercri�cal
**
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
P
I
P
E
F
L
O
W
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
*
*
Co
p
y
r
i
g
h
t
(
c
)
1
9
8
8
,
C
i
v
i
l
D
e
s
i
g
n
S
o
�
w
a
r
e
,
I
n
c
.
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Fo
r
:
F
o
r
L
i
c
e
n
s
e
d
C
i
v
i
l
D
e
s
i
g
n
U
s
e
r
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
N
O
N
-PR
E
S
S
U
R
E
,
O
P
E
N
C
H
A
N
N
E
L
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
CA
L
C
U
L
A
T
E
D
E
P
T
H
O
F
F
L
O
W
G
I
V
E
N
:
Ch
a
n
n
e
l
S
l
o
p
e
=
-.0
1
0
0
0
0
(
F
t
.
/
F
t
.
)
=
-1.
0
0
0
0
%
In
v
e
r
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
I
N
L
E
T
=
4
9
1
.
3
0
0
(
F
t
.
)
In
ver
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
O
U
T
L
E
T
=
4
9
0
.
5
5
0
(
F
t
.
)
Le
n
g
t
h
o
f
p
i
p
e
=
7
5
.
0
0
0
(
F
t
.
)
Gi
v
e
n
F
l
o
w
R
a
t
e
=
.
2
0
C
u
b
i
c
F
e
e
t
/
S
e
c
o
n
d
**
*
P
I
P
E
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
**
*
Ma
n
n
i
n
g
s
"
n
"
=
.
0
1
3
No
.
o
f
p
i
p
e
s
=
1
V
e
l
o
c
i
t
y
(
F
t
.
/
S
e
c
.
)
=
2
.
6
3
Gi
v
e
n
P
i
p
e
D
i
a
m
e
t
e
r
(
I
n
.
)
=
6
.
0
0
In
d
i
v
i
d
u
a
l
p
i
p
e
f
l
o
w
=
.
2
0
5
0
(
C
F
S
)
"
"
"
=
9
2
.
0
1
(
G
P
M
)
"
"
"
=
.
1
3
2
5
(
M
G
D
)
To
t
a
l
p
i
p
e
a
r
e
a
=
2
8
.
2
7
(
I
n
2
)
To
t
a
l
p
e
r
i
m
e
t
e
r
o
f
p
i
p
e
=
1
8
.
8
5
(
I
n
.
)
No
r
m
a
l
f
l
o
w
d
e
p
t
h
i
n
p
i
p
e
=
2
.
5
1
(
I
n
.
)
Fl
o
w
t
o
p
w
i
d
t
h
i
n
s
i
d
e
p
i
p
e
=
5
.
9
2
(
I
n
.
)
Ar
ea
o
f
f
l
o
w
=
1
1
.
1
9
7
3
(
I
n
2
)
We
t
e
d
P
e
r
i
m
e
t
e
r
=
8
.
4
4
(
I
n
.
)
Cr
i
�
c
a
l
D
e
p
t
h
i
n
P
i
p
e
=
2
.
7
2
(
I
n
.
)
To
t
a
l
f
l
o
w
o
f
p
i
p
e
(
s
)
=
.
2
0
5
0
(
C
F
S
)
"
"
"
"
=
9
2
.
0
1
(
G
P
M
)
"
"
"
"
=
.
1
3
2
5
(
M
G
D
)
2.51"
NORMAL FLOW
DEPTH ON 6"
PVC PIPE @ 1%
I
**
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
P
I
P
E
F
L
O
W
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
*
*
Co
p
y
r
i
g
h
t
(
c
)
1
9
8
8
,
C
i
v
i
l
D
e
s
i
g
n
S
o
�
w
a
r
e
,
I
n
c
.
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Fo
r
:
F
o
r
L
i
c
e
n
s
e
d
C
i
v
i
l
D
e
s
i
g
n
U
s
e
r
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
**
*
*
*
N
O
N
-PR
E
S
S
U
R
E
,
O
P
E
N
C
H
A
N
N
E
L
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
CA
L
C
U
L
A
T
E
D
E
P
T
H
O
F
F
L
O
W
G
I
V
E
N
:
Ch
a
n
n
e
l
S
l
o
p
e
=
-.1
6
8
7
5
8
(
F
t
.
/
F
t
.
)
=
-16
.
8
7
5
8
%
In
v
e
r
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
I
N
L
E
T
=
4
9
0
.
5
5
0
(
F
t
.
)
In
ver
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
O
U
T
L
E
T
=
4
8
4
.
5
0
0
(
F
t
.
)
Le
n
g
t
h
o
f
p
i
p
e
=
3
5
.
8
5
0
(
F
t
.
)
Gi
v
e
n
F
l
o
w
R
a
t
e
=
.
2
0
C
u
b
i
c
F
e
e
t
/
S
e
c
o
n
d
**
*
P
I
P
E
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
**
*
Ma
n
n
i
n
g
s
"
n
"
=
.
0
1
3
No
.
o
f
p
i
p
e
s
=
1
V
e
l
o
c
i
t
y
(
F
t
.
/
S
e
c
.
)
=
7
.
2
5
Gi
v
e
n
P
i
p
e
D
i
a
m
e
t
e
r
(
I
n
.
)
=
6
.
0
0
In
d
i
v
i
d
u
a
l
p
i
p
e
f
l
o
w
=
.
2
0
5
0
(
C
F
S
)
"
"
"
=
9
2
.
0
1
(
G
P
M
)
"
"
"
=
.
1
3
2
5
(
M
G
D
)
To
t
a
l
p
i
p
e
a
r
e
a
=
2
8
.
2
7
(
I
n
2
)
To
t
a
l
p
e
r
i
m
e
t
e
r
o
f
p
i
p
e
=
1
8
.
8
5
(
I
n
.
)
No
r
m
a
l
f
l
o
w
d
e
p
t
h
i
n
p
i
p
e
=
1
.
2
1
(
I
n
.
)
Fl
o
w
t
o
p
w
i
d
t
h
i
n
s
i
d
e
p
i
p
e
=
4
.
8
1
(
I
n
.
)
Ar
ea
o
f
f
l
o
w
=
4
.
0
6
8
8
(
I
n
2
)
We
t
e
d
P
e
r
i
m
e
t
e
r
=
5
.
5
9
(
I
n
.
)
Cr
i
�
c
a
l
D
e
p
t
h
i
n
P
i
p
e
=
2
.
7
2
(
I
n
.
)
To
t
a
l
f
l
o
w
o
f
p
i
p
e
(
s
)
=
.
2
0
5
0
(
C
F
S
)
"
"
"
"
=
9
2
.
0
1
(
G
P
M
)
"
"
"
"
=
.
1
3
2
5
(
M
G
D
)
1.21"
NORMAL FLOW
DEPTH ON 6" PVC
PIPE @ 16.8%
I
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
P
I
PE
F
L
O
W
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
*
*
Co
p
y
r
i
g
h
t
(
c
)
1
9
8
8
,
C
i
v
i
l
D
e
s
i
g
n
S
o
�
w
a
r
e
,
I
n
c
.
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Fo
r
:
F
o
r
L
i
c
e
n
s
e
d
C
i
v
i
l
D
e
s
i
g
n
U
s
e
r
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
N
O
N
-PR
E
S
S
U
R
E
,
O
P
E
N
C
H
A
N
N
E
L
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
CA
L
C
U
L
A
T
E
D
E
P
T
H
O
F
F
L
O
W
G
I
V
E
N
:
Ch
a
n
n
e
l
S
l
o
p
e
=
-.1
9
1
1
4
3
(
F
t
.
/
F
t
.
)
=
-19
.
1
1
4
3
%
In
v
e
r
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
I
N
L
E
T
=
4
8
4
.
5
0
0
(
F
t
.
)
In
v
er
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
O
U
T
L
E
T
=
4
6
4
.
4
3
0
(
F
t
.
)
Le
n
g
t
h
o
f
p
i
p
e
=
1
0
5
.
0
0
0
(
F
t
.
)
Gi
v
e
n
F
l
o
w
R
a
t
e
=
.
6
2
C
u
b
i
c
F
e
e
t
/
S
e
c
o
n
d
**
*
CO
N
C
R
E
T
E
B
R
O
W
D
I
T
C
H
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
**
*
BA
S
I
N
3
Ma
n
n
i
n
g
s
"
n
"
=
.
0
1
5
No
.
o
f
p
i
p
e
s
=
1
V
e
l
o
c
i
t
y
(
F
t
.
/
S
e
c
.
)
=
7
.
9
4
Gi
v
e
n
P
i
p
e
D
i
a
m
e
t
e
r
(
I
n
.
)
=
2
4
.
0
0
In
d
i
v
i
d
u
a
l
p
i
p
e
f
l
o
w
=
.
6
2
0
0
(
C
F
S
)
"
"
"
=
2
7
8
.
3
(
G
P
M
)
"
"
"
=
.
4
0
0
7
(
M
G
D
)
To
t
a
l
p
i
p
e
a
r
e
a
=
4
5
2
.
3
9
(
I
n
2
)
To
t
a
l
p
e
r
i
m
e
t
e
r
o
f
p
i
p
e
=
7
5
.
4
0
(
I
n
.
)
No
r
m
a
l
f
l
o
w
d
e
p
t
h
i
n
p
i
p
e
=
1
.
4
5
(
I
n
.
)
Fl
o
w
t
o
p
w
i
d
t
h
i
n
s
i
d
e
p
i
p
e
=
1
1
.
4
5
(
I
n
.
)
Ar
e
a o
f
f
l
o
w
=
1
1
.
2
4
3
0
(
I
n
2
)
We
t
e
d
P
e
r
i
m
e
t
e
r
=
1
1
.
9
4
(
I
n
.
)
Cr
i
�
c
a
l
D
e
p
t
h
i
n
P
i
p
e
=
3
.
2
3
(
I
n
.
)
To
t
a
l
f
l
o
w
o
f
p
i
p
e
(
s
)
=
.
6
2
0
0
(
C
F
S
)
"
"
"
"
=
2
7
8
.
3
(
G
P
M
)
"
"
"
"
=
.
4
0
0
7
(
M
G
D
)
I
1.45". i L
WATER I SURFACE
10.55"
FREEBOARD
12"
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
P
I
P
E
F
L
O
W
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
*
*
Co
p
y
r
i
g
h
t
(
c
)
1
9
8
8
,
C
i
v
i
l
D
e
s
i
g
n
S
o
�
w
a
r
e
,
I
n
c
.
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Fo
r
:
F
o
r
L
i
c
e
n
s
e
d
C
i
v
i
l
D
e
s
i
g
n
U
s
e
r
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
*
N
O
N
-PR
E
S
S
U
R
E
,
O
P
E
N
C
H
A
N
N
E
L
C
A
L
C
U
L
A
T
I
O
N
S
*
*
*
*
CA
L
C
U
L
A
T
E
D
E
P
T
H
O
F
F
L
O
W
G
I
V
E
N
:
Ch
a
n
n
e
l
S
l
o
p
e
=
-.1
6
9
1
8
9
(
F
t
.
/
F
t
.
)
=
-16
.
9
1
8
9
%
In
v
e
r
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
I
N
L
E
T
=
4
8
6
.
0
0
0
(
F
t
.
)
In
v
er
t
e
l
e
v
a
�
o
n
a
t
p
i
p
e
O
U
T
L
E
T
=
4
5
4
.
7
0
0
(
F
t
.
)
Le
n
g
t
h
o
f
p
i
p
e
=
1
8
5
.
0
0
0
(
F
t
.
)
Gi
v
e
n
F
l
o
w
R
a
t
e
=
1
.
6
0
C
u
b
i
c
F
e
e
t
/
S
e
c
o
n
d
**
*
CON
CR
E
T
E
B
R
O
W
D
I
T
C
H
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
**
*
BA
S
I
N
1
Ma
n
n
i
n
g
s
"
n
"
=
.
0
1
5
No
.
o
f
p
i
p
e
s
=
1
V
e
l
o
c
i
t
y
(
F
t
.
/
S
e
c
.
)
=
1
0
.
1
4
Gi
v
e
n
P
i
p
e
D
i
a
m
e
t
e
r
(
I
n
.
)
=
2
4
.
0
0
In
d
i
v
i
d
u
a
l
p
i
p
e
f
l
o
w
=
1
.
6
0
0
(
C
F
S
)
"
"
"
=
7
1
8
.
1
(
G
P
M
)
"
"
"
=
1
.
0
3
4
(
M
G
D
)
To
t
a
l
p
i
p
e
a
r
e
a
=
4
5
2
.
3
9
(
I
n
2
)
To
t
a
l
p
e
r
i
m
e
t
e
r
o
f
p
i
p
e
=
7
5
.
4
0
(
I
n
.
)
No
r
m
a
l
f
l
o
w
d
e
p
t
h
i
n
p
i
p
e
=
2
.
3
4
(
I
n
.
)
Fl
o
w
t
o
p
w
i
d
t
h
i
n
s
i
d
e
p
i
p
e
=
1
4
.
2
4
(
I
n
.
)
Ar
e
a o
f
f
l
o
w
=
2
2
.
7
1
0
6
(
I
n
2
)
We
t
e
d
P
e
r
i
m
e
t
e
r
=
1
5
.
2
5
(
I
n
.
)
Cr
i
�
c
a
l
D
e
p
t
h
i
n
P
i
p
e
=
5
.
2
5
(
I
n
.
)
To
t
a
l
f
l
o
w
o
f
p
i
p
e
(
s
)
=
1
.
6
0
0
(
C
F
S
)
"
"
"
"
=
7
1
8
.
1
(
G
P
M
)
"
"
"
"
=
1
.
0
3
4
(
M
G
D
)
I
CURB OUTLET CALCULATION BASIN 1 (PROPOSED CONDITION)
Given Input Data:
Shape ........................... Rectangular
Solving for ..................... Depth of Flow
Flowrate ........................ 1.6000 cfs
Slope ........................... 0.0200 �/�
Manning's n ..................... 0.0150
Height .......................... 3.0000 in
Botom width .................... 36.0000 in
Computed Results:
Depth ........................... 1.7525 in
Velocity ........................ 3.6520 fps
Full Flowrate ................... 3.7627 cfs
Flow area ....................... 0.4381 �2
Flow perimeter .................. 39.5050 in
Hydraulic radius ................ 1.5970 in
Top width ....................... 36.0000 in
Area ............................ 0.7500 �2
Perimeter ....................... 42.0000 in
Percent full .................... 58.4162 %
Cri�cal Informa�on
Cri�cal depth .................. 2.4813 in
Cri�cal slope .................. 0.0066 �/�
Cri�cal velocity ............... 2.5793 fps
Cri�cal area ................... 0.6203 �2
Cri�cal perimeter .............. 40.9626 in
Cri�cal hydraulic radius ....... 2.1807 in
Cri�cal top width .............. 36.0000 in
Specific energy ................. 0.3533 �
Minimum energy .................. 0.3102 �
Froude number ................... 1.6848
Flow condi�on .................. Supercri�cal
CURB OUTLET CALCULATION BASIN 3 (PROPOSED CONDITION)
Given Input Data:
Shape ........................... Rectangular
Solving for ..................... Depth of Flow
Flowrate ........................ 0.6200 cfs
Slope ........................... 0.0200 �/�
Manning's n ..................... 0.0150
Height .......................... 3.0000 in
Botom width .................... 36.0000 in
Computed Results:
Depth ........................... 0.9765 in
Velocity ........................ 2.5398 fps
Full Flowrate ................... 3.7627 cfs
Flow area ....................... 0.2441 �2
Flow perimeter .................. 37.9529 in
Hydraulic radius ................ 0.9262 in
Top width ....................... 36.0000 in
Area ............................ 0.7500 �2
Perimeter ....................... 42.0000 in
Percent full .................... 32.5487 %
Cri�cal Informa�on
Cri�cal depth .................. 1.3188 in
Cri�cal slope .................. 0.0075 �/�
Cri�cal velocity ............... 1.8804 fps
Cri�cal area ................... 0.3297 �2
Cri�cal perimeter .............. 38.6377 in
Cri�cal hydraulic radius ....... 1.2288 in
Cri�cal top width .............. 36.0000 in
Specific energy ................. 0.1816 �
Minimum energy .................. 0.1649 �
Froude number ................... 1.5697
Flow condi�on .................. Supercri�cal
INLET CAPACITY CALCULATION (GRATE AT SAG) FOR ALL PROPOSED 6” INLETS
H = 0.25’ / 3” q = 0.36 CFS/FT 6” GRATED INLET WITH ALL SIDES UNABBUTED PEFF = 2 (0.5 + 0.5) = 2FT WITH 50% CLOGGING 2FT * .5 = 1FT Q CAPACITY = PEFF * q = 1 FT * 0.36 CFS/FT Q CAPACITY = 0.36 CFS
Each inlet is receiving a maximum of 0.01 acres hich generates the following Q:
Q100 = CIA
Q100 = 0.60 x 6.85 x 0.01
Q100 = 0.04 CFS
0.04 CFS < 0.36 CFS
Therefore, the 6" inlets have the capacity to receive the surface drainage.
APPENDIX B
4. TABLES AND CHARTS
PER RATIONAL METHOD
Tc=
Tc
L=
V=
Tc X
L=220
V=5.45
Tc=
Tc=MIN
BASIN 3 (NORTHERLY SIDE)
FT.
FT PER SEC.
220
5.45
0.67
V
TIME OF CONCENTRATION (IN HOURS)
LENGTH OF FLOW PATH (IN FEET)
AVERAGE VELOCITY OF FLOW (IN FT PER SEC)
HOURS
EXISTING CONDITION
TIME OF CONCENTRATION
FROM CONCRETE DITCH TO CURB OUTLET
L
PER RATIONAL METHOD
Tc=
Tc
L=
V=
Tc X
L=185
V=9.7
Tc=
Tc=MIN
FT.
FT PER SEC.
185
9.7
0.32
V
TIME OF CONCENTRATION (IN HOURS)
LENGTH OF FLOW PATH (IN FEET)
AVERAGE VELOCITY OF FLOW (IN FT PER SEC)
HOURS
EXISTING CONDITION
TIME OF CONCENTRATION
FROM CONCRETE DITCH TO CURB OUTLET
L
BASIN 1 (SOUTHERLY SIDE)
PER RATIONAL METHOD
Tc=
Tc
L=
V=
Tc X
L=220
V=7.94
Tc=
Tc=MIN
FROM CONCRETE DITCH TO CURB OUTLET
PROPOSED CONDITION
220
7.94
0.462
BASIN 3 (NORTHERLY SIDE)
TIME OF CONCENTRATION (IN HOURS)
LENGTH OF FLOW PATH (IN FEET)
AVERAGE VELOCITY OF FLOW (IN FT PER SEC)
FT.
FT PER SEC.
HOURS
TIME OF CONCENTRATION
V
L
PER RATIONAL METHOD
Tc=
Tc
L=
V=
Tc X
L=200
V=10.14
Tc=
Tc=MIN
10.14
0.329
FROM CONCRETE DITCH TO CURB OUTLET
PROPOSED CONDITION
AVERAGE VELOCITY OF FLOW (IN FT PER SEC)
HOURS
FT.
FT PER SEC.
200
BASIN 1 (SOUTHERLY SIDE)
L
V
TIME OF CONCENTRATION (IN HOURS)
LENGTH OF FLOW PATH (IN FEET)
TIME OF CONCENTRATION
Cw =0.9 (%impervious) + 0.35 (1-%impervious)
EXISTING CONDITION
Total Area (acres) =0.62
Impervious (acres) =0.236
Pervious (acres) =0.384
% impervious (acres) =0.381
Cw =0.9 *0.381 +0.35 * (1 -0.381 )
Cw =0.343 +0.35 * (0.619 )
Cw =0.343 +0.217
Cw =0.56
PROPOSED CONDITION
Total Area (acres) =0.62
Impervious (acres) =0.277
Pervious (acres) =0.343
% impervious (acres) =0.447
Cw =0.9 *0.447 +0.35 * (1 -0.447 )
Cw =0.402 +0.35 * (0.553 )
Cw =0.402 +0.194
Cw =0.60
WEIGHTED C FACTOR PER COUNTY DRAINAGE DESIGN MANUAL
100
2.6 4.5 57.8
5
6.85
6.85
10.0 ' ..... "' ..... ' "r--. Directions for Applicat.ion: 9.0
8.0 ' ..... .... :, .... ' (1) From precipitation maps determine 6 hr and 24 hr amounts
7.0 ' • ' .... , .... , "'r,.. 'i-. I"'' for the selected frequency. These maps are included in the
.... r-...
... ...
'r--. ·, i'i' .. ''~ .. County Hydrology Manual (10, 50, and 100 yr maps included R: ' ..... ' EQUATION 6.0 in the Design and Procedure Manual).
r"l ....
'
... ,. ' .. ,, I = ?.44 P6 D-0.645 ~ ... I',"'-~ ' • '"' ~ .. ~ (2) Adjust 6 hr precipitation (if necessary) so that it is within 5.0
' "'II "I',. 1'-i,. ""i-., I = Intensity (in/hr)
r-... ~ ~ ... r,.., ~ ~ P5 = 6-Hour Precipitation (in) the range of 45% to 65% of the 24 hr precipitation (not
4.0 ' .. ~ .. .. applicaple to Desert).
t-.... .... , r,~ , ... ~ .. D = Duration (min)
' ' l!!l~
,,"' ~ ~ •i-.'• .. (3) Plot 6 hr precipitation on the right side of the chart .
• ' 'r-.. --. '~ .. .. .. .. ~ 3.0 (4) Draw a line through the point parallel to the plotted lines. .... ... ,
~ ~ . ..
..... I' ~ ~, .. ~ (5) This line is the intensity-duration curve for the location
' .... ,. .. ,
~ ~ .. .. 'i', being analyzed .
' ·, ........
2.0 ' .. .. ....
.... , ,. .. ' .... :-..' Application Form:
' .. , .. ~"" :-.. i--.' .. .... , .. ...... ~ .. .... , "' (a) Selected frequency ___ year ' ' .. ±
:5 .... , ~ ~ i', ' .... .. 0 p
"i--'"' i--.,
,, .. ':; (b) P5= __ in., P24 = --'P 6 = %(2) 0 .. .. ,, ..
~ .... ' ,, .. 7J ---''i-. .. i--., ......
"' ' .. ro 24 Q) .... 'r--. .... , ..
(c) Adjusted p 6(2) = ___ in . .t::. .. 0
g 1.0 ~ 6.o -g;
~09 .. ........ ' .. 5.5 ~
~ill,. .... , 5.0 g (d) tx = __ min.
-~0 8 , ... h . ,, ~ 4.5 5' ~0 7 i--., 0 (e) I= __ in./hr. ·~ .. -~1111 ~ 4.0 ~
0.6 3.5 ~ .... , .... .. ~ Note: This chart replaces the Intensity-Duration-Frequency
0.5 ' 3.0 curves used since 1965.
' ' .. .. , ..
0.4 2.5 I I I I
..... i', ' P6 1-1 +1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
.. Duration I I I I I I I I I I I
i--., .. 2.0 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11.86 13.17 14.49 15.81 0 3 7 2.12 3.18 4.24 5.30 6.36 7.42 's.48 9.54 10.60 11.66 12.72
10 1.68 2.53 3.37 4.21 5.05 5.00 6.74 ~7.58 8 .42 9.27 1 0.11 ~ 1.5 15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78
20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46
0.2 --~ 0.93 1.40 1.87 2.33 2.80 3.22, ~3.73 4.2~ __j.67 5.13 5.60
30 0.83 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 4.56 4.98 --40 0.69 ~ -1.72 I 2.07 2.41 c-'3.lo-r--r--c--
1.0 1.03 1.38 2.76 3.45 3.79 4.13 -50 -0.60-o-:00 1.19 1 .491 1.79 2.09 2.39 2.69 2.98 3.28 3.58
60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.18
90 0.41 0.61 0.82 1.02' 1.23 1.43 1.63 1.84 2.04 2.25 2.45
120 0.34_ 0.51 0.68 o.a~J 1.02 1.19 1.36 1.53 1.70 1.87 2.04 -~ --,....
150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1.76
180 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.18 1.31 1.44 1.57 0.1, ' 240 0.22 0.33 0.43 0.54 . 0.65 0.76 0.87 0.98 1.08 1.19 1.30 5 6 7 8 9 10 15 20 30 40 50 1 2 3 4 5 6 300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0.94 1.03 1.13 Minutes Hours 360 0.17 0.25 0.33 0.42 0.50 0.58 0.67-0 .75 0.84 0.92 1.00 Duration
Intensity-Duration Design Chart -Template
FIGURE ~
0.25'
3"
or
0.36 cfs/ft
IO~ I 11 1111 'Ill Ill 1J 1111 1'111 I 111 11 "' 11111 II\ .'II II' I I 11
I :=
~
..L l f= I
.... -
T ... I J_ ....
w --. J__ ~ ,-...
4 t-_,_ r· ··• . ~ I
---a. --1 .... -J. ,-
r;:. II ' ::: ' --\. I I
P • 2 (a+ b) --1
• I-I -,-
A• 6 aw I-j
,-'/ I r--~.,.__.. -----· --. v I -....
••-r I I I I 1 I 11 •111 II" r II 1111, 1111 111 II 11111 I I' ~"' V I
~ ./ ' ·! = / ./
---,-~,,, r I/
~ .. ---.. -/· I ... J
~ t I ] li'lt :::. (o) .... ~ i ' Q/ 5. :'5
'" t-.4 l • ... :.,,,,,,· ~ w -
-u. /
-~z -
.;~
I
~ I ~ ' ,,,, ... ---,-X L ,-._.
.t-... ,-0 Vc I
~-~-OHi t't ' -11.J 7 IP E
0
V lo" II I
' I
.I ! I I
:
~
I: HEA )5 (J p 10 0. ICUR VE ta . ~F IP1 jl ES
'"" HEAi s A '3 0' ~E I. ~ :VE U, ~F I:> 11 I ES 1
-: H EAi )S B ~TY EE ~ -~ a I. '4 • rf"R ~ N-SI Jr10N
ri ..
rl. C JI
~
IC
SEC
= -
.. ... ,_ ... ... ..
,_ DISCI
I I I I
0.1
.,_.
OR 8 C PE 'rft7 ION 19 IN D : /N!TE
1
!
I
I
I. I
Al!U31 l Pl R FO tr .OF p :.R J-A -~ B[r (Q/F ) DIS ~HI RC E PEI F !QC T 0 f 11~fl -I I f'i\ ill I 111! I ·," 1i 11 ,,1, ,i!f 1 ·" ,,, "' I I I I 11 I II I I •,) 1,111 11111 1111 ll l l ti! [JI , ... .,
t ,t .3 ... .B .s . f •••• 'o I ,-t ! " 8 • 1 I t 10
1,J
INLET CAPACITY OF GRATE AT SAG
Plate 2.6-0658
i, I
I -3
~ ;
;
---
~
= ~ ----------
-
::;
= :;
i:
= ------
= ~
= -------------
~
~ = = -= -----
=
':
~ ----------
Q/A):
I I ·, I I
to
2.6 APPROXIMATE SITE
IL__·-----_--_I
4.5 APPROXIMATE SITE
I I I I I
. . . . . . . . • .
-)
. ,-. ' ' .
: . . . ,, .,,. . . -... ·,
"~ ~ ~ .
I I I I I
· . ---
. . -~ . . . . . . . .
,='
·-
--. . . . . .
.
.
'
~
e,a\H'1'Y 0 ~i.NDIEc;o •
I -······_--___JI
DPW
~GIS
[lep:I.J""iJ7ient Di P11Mc Works Grn,r,..•pfll/,; /11furrr,.itiw1 &rv,tr.i-:;
APPENDIX C
5. HYDROLOGY MAP
EXISTING CONDITION
PROPOSED CONDITION
SAN MARCOS
CREEK
BATIQUITOS
LAGOON
SITE
DIRECTION OF
FLOW
EXISTING 10' CURB INLET
& 18" RCP PIPE @ EAST
SIDE OF CAZADERO
DRIVE NEAR
LUCIERNAGA STREET
PER TM NO. 2887-1
SHEET 25
DRAINAGE PATTERN
LUCIERNAGA ST.
EXISTING 10' CURB
INLET & 18" RCP PIPE
INTERCEPTING SITE
RUNOFF APPROX.
1,550' AWAY
WILLIAMS RESIDENCE
1 2
----
PROJECT BASIN
LOT / BASIN AREA XXX
EXISTING CONDITION
PROJECT GENERATES 2.38 CFS
U)
EXISTI
EXIST. • ~-/ DR, VE'.'i,t.. V
A = 0.17 AC
0100 = 0.65 ~:
28.0 ------+-----+-28.0 ----,..:,,..,1>::--'. ·-,-t-
LU > a:
0
a:
LU
0
~
f--· c-,
I---18.0 -----..
=-x s-. 6" c:u::;::r; _/
& 1:.;J lR
~
?f:J!:§_5 l':
·ScJ./(~,,------
,_-~1
-I;
EXISTING CURB-OUlUT
A ,= 0.3p AC
Q100 = 1.38 CFS
V100-= 3.45 FT/S-' I
TC = 0.32 Ml~. (~M\N. MINIMUM)
~;I ~I~ µ'f ,f R ~\
V
\ -+-+r----tl--+-
I
I
I
I
I
I
I I
I 1, 'I
I I
I I
', \
\ '\ \ \ \ \
\
' \ I. \
\ I.
\ ,.
EXISTING D\
''......',
x47l.4
x472.4
x471I
\
-~' '
Ji •·•,
Lor 1as
MAP NO. 7887
BASIN 2
X47J4 Ji
x472.9
( 0.17 AC )
)?'
x
4738 A'5 I N 1
0.36 AC 1-",---------'',-----\
\*-
\
~)
-~~\
·•_f.._,\
\ s;-,v Ci'
x488. I v~
!:<JJ;;J1:,~--"-.~,f:l.:(_,,.,,.,,
.--:e_;''~ e;· j• J( ,-
1) d---'i '['\ .\
-. '~
r >1\
"{}}\
,)' I •' 1;h-, ,.-. r~ ' '\:A~-.
I ,ii \ /)-.,'/, . -~_,,--,,7·,-\ ' \
£q j/ \ ,---'-.,\ 1)-f,,\ I\ I I
'--\, r , \ 1-1_).C\,_J I \ \ \ l \-<>' ~~vii ·;~~-::,-... ,_ I I I I I
SIN
.09
x495/
x495.2
r_o.:-;, : ,;( } / /}.J~y ·-. \. \--Fi=, -. -
°', 1"'; '.i'---·-l __ .\;l _) ·--·---
·,,;,/\ , <\\ ' -.Y;-'~ ·., }/
\h{ ,__,,"'·' ·,->~ :?r·,1 \.~ ~\ l ____ , -,~.-, • ... , .. ·.j I r(,}'c/-·( (·-1·--. , \;~. , • , , • '\f/::'rf). ,:x_i·--c;::,,{/) \-f' ....... • vf --\1) , \'-r,-1 I fl\l '. 0, \ '1-,_,)\:.'i -~)(\. ,;.::.:p ' ,?/ .':,.
l'I A('l'"/ .... ,_ ,-r,'j,~~~,/ u SP/I r -:i ,-.-~.:.•.~-·-~ .t-V'' <( ;\-::.:)~': \: , _ _).:\ , ·'/'.} , .. · .. ,·. --/ )\ YJ;/"-<:tf\()-_,()\ \ ; C i 1:••· ''-•) I
-':J;(, -..: .;.-c·1' \J~ut J / ·---J\ ____ fSC)t:t .
I\; -,:
(''
V:)\ \ ''"n ~I
I I•·:
/"':::(i . /1-t ----/
,;(J;.c:;( \'4 ,, /·(
:-r:_,
,✓-,.:: .. ,, ///
_________ ....... -'
I
\
\
\
\
\
\
\
\
\
\
\
I
I
I
I
I
I
I
·◊ -t--110.0 ~ ~ 10.0 5 WER
• DRAINAGE I EASEMENT I
• EASEMENT PER MAP
PER MAP I
• 7367 1'361 \
-◊ \ I
• I I
• I I
~ :◊ \ \
~,,,. I \
/-:!:\~ I
/·◊ I
• I I
• I
~"c:J:: ' : ◊ \ \
\\ I
\ • I I
I
I
• \ I :t I \
• I I
:0 \ \
• I I
• I
/;
----·-------I
I
I
I
----
(~_____,,)
fSHml CITY OF CARLSBAD I SHEETS I 1------1---+----------------+-----+--+-----11-----1 L__j ENGINEERING DEPARTMENT 1----+-----ll------------------+---+-----11------11----1
10 5 0 10
SCALE: 1 "=10'
1----1----+----------------t-------11----+---+------1 EXISTING CORDffiON HYDROIDGY KAP FOR:
DA 1E INITIAL
ENGINEER OF WORK REVISION DESCRIPTION
DAlE INl11AL DAlE INl11AL
O'IHER APPROVAL CllY APPROVAL
APPROVED:
ENGINEERING MANAGER
RVWD BY: _,.D.,.JM.____ 1
CHKD BY· KSS
JASON S. GELDERT
RCE 63912 EXP-9/YJ/22 DAlE
PROJECT NO. I DRAWING NO.
WILLIAMS RESIDENCE
2 2
----
PLAN VIEW
PROJECT BASIN
LOT / BASIN AREA XXX
PROJECT GENERATES 2.55 CFS
PROPOSED CONDITION
28.0
U)
.~~-
V100 = 2.54 /S ccs _ti;r
TC = 0.46 MIN. (5MIN. MINIMUMY;on:,------1~--"-....
LU > a: 0
a:
LU
0
~
'()
.,
EXIST. • ~-/ DR, VE'.'i,t.. V
A = 0.08 C
Q100 = 0.33 C
~:
28.0
~';
18.0
=-x s-. 6" c:u::;::r; _/
& 1:.;J lR
~
?f:J!:§_5 l':
·ScJ./(~,,------
.,_
;_: f5/J:66 I/' -:0 ·-;--:-,-,-_,__,.
•_,,y 1:) t:,. --
=
l>.
~
V
V
I
I
I/
i:
I
I + I .+ I
I
I I
I 1, 'I
I I
I I
II I
I 'I '' \' '
I. k
' ' I.
' ,.
I
I I
x472.1
+ x472.4
EXIS NG
WOOD BO
A= 0
Q100 = 0
V100 7
X47J4
x472.9
10
I
I
I
I
I
' I
I
I
I
I
\
x488./
I
I _L ___ _
I
I
I
"
I \
x495.
'
_/_,,
_/_ .. ----
/
I /
///
,,.,/_,..,.-·'
I
\
\
\
\ I
\
:1'7H O&SCW(tU u:.,
TH.Fr.':
\
\
\
\
\
\
I
I
I I
I
I
I
I
-11--110.0-\
s WER I EASEMENT I
I PER MAP
DRAINAGE
EASEMENT
PER MAP
7367 1'361 \
\ I
I I
I
\
I
I
I
\
I
I
I
\
I
I
\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
----
■ ---■--■ --■ -----I
10
SCALE: 1"=10'
I
I
I
I SHEET I CITY OF CARLSBAD l-----l---+----------------t----t--t--4"-7 ENGINEERING DEPARTMENT 1-----11---+---------------t---t---t---r---, PROPOSED CONDITION HYDROIDGY MAP FOR:
I SHEETS I
DA 1E INITIAL DA 1E INITIAL DAlE INITIAL
ENGINEER OF WORK REVISION DESCRIPTION O'IHER APPROVAL CllY APPROVAL
APPROVED:
ENGINEERING MANAGER
RVWD BY: DJM
CHKD BY· KSS
JASON S. GELDERT
RCE 63912 EXP. 9/YJ/22 DAlE
PROJECT NO. I DRAWING NO.