Loading...
HomeMy WebLinkAboutPD 2023-0009; THE WILLIAMS RESIDENCE; DRAINAGE REPORT; 2024-09-20DRAINAGE REPORT FOR WILLIAMS RESIDENCE 2723 CAZADERO DR CARLSBAD, CA 92009 PD2023-0009 Dwg. 542-4A JN 17-021 May 23, 2022 Revised 9/20/2023 Revised 05/20/2024 Revised 08/14/2024 Revised 09/20/2024 _______________________________ ____9/20/2024_____________ KAMAL S. SWEIS R.C.E. 48592 DATE E K&S ENGINEERING, INC. Planning Engineering Surveying TABLE OF CONTENTS 1. SITE DESCRIPTION • EXISTING CONDITION • PROPOSED CONDITION • CONCLUSION 2. HYDROLOGY DESIGN MODELS A. DESIGN METHODS B. DESIGN CRITERIA C. REFERENCES 3. HYDROLOGIC AND HYDRAULIC CALCULATIONS................. APPENDIX A • RATIONAL METHOD CALCULATIONS 4. TABLES AND CHARTS............................................................ APPENDIX B 5. HYDROLOGY MAPS................................................................ APPENDIX C • EXISTING CONDITION • PROPOSED CONDITION 1. SITE DESCRIPTION EXISTING CONDITION The site is situated at 2723 Cazadero Drive, Carlsbad, CA, within the County of San Diego. The current condition features a developed lot comprising a single-family dwelling, a pool, patio, and landscaped areas. Drainage originating from the higher southern lot (730) is intercepted by a concrete ditch at the southern property line between lots, then directed westward until it reaches an underground storm drain system between lots 725 and 726, ultimately channeling the runoff towards the southerly Argonauta Street. Consequently, no off-site drainage is directed onto the site. Surface runoff from the southern upper portion of the lot flows towards Cazadero Drive. The lot is segmented into three basins: the western basin 1 directs drainage runoff through an existing concrete brow ditch, the middle basin 2 (encompassing the house and driveway) directs surface flows to Cazadero Street, and finally, the eastern basin, which includes the upper southern area of the lot, drains through the existing concrete ditch onto Cazadero Drive. Then, runoff from Cazadero Drive follows a westward path along the existing curb and gutter for approximately 1,550 LF until reaching the 10’ curb inlet & 18” RCP public storm drain system as depicted on TM no. 2887-1 sheet 25. Subsequently, the runoff discharges into San Marcos Creek, connecting to Batiquitos Lagoon, and eventually flowing into the Pacific Ocean. The existing impervious area covers 0.236 acres, while the pervious area covers 0.384 acres, totaling the basin area to 0.62 acres. Which represents 0.381% of the site. The C-weighted runoff coefficient of 0.56 was calculated using the San Diego County Hydrology Manual equation in section 3.1.2, generating a total of 2.38 CFS for the 100-year storm event. SUMMARY OF EXISITNG CONDITION DISCHARGE LOCATION BASIN WEIGHTED C Cw INTENSITY (IN/HR) AREA (ACRES) PEAK FLOW (CFS) CAZADERO DR 1 0.56 6.85 0.36 1.38 2 0.56 6.85 0.17 0.65 3 0.56 6.85 0.09 0.35 PROPOSED CONDITION The proposed condition will consist of the addition of a second single family dwelling and retaining walls to the already developed lot. Project drainage will remain the same as the existing condition which is from south to north towards Cazadero Drive. Basin will still be divided into three basins with minor modification on areas due to the new development: the western basin 1 directs drainage runoff through an existing concrete brow ditch an increase of 0.03 acres from basin 2 will be redirected to basin 1, the middle basin 2 (encompassing the existing house and driveway) directs surface flows to Cazadero Street and a reduction of area has happen due to the development, and finally, the eastern basin, which includes the upper southern area of the lot and the proposed house increasing the basin, the upper patio will direct the runoff to the proposed underground storm drain system that is discharging onto the existing concrete ditch that will discharge onto Cazadero Drive. Then runoff from Cazadero Drive follows a westward path along the existing curb and gutter for approximately 1,550 LF until reaching the 10’ curb inlet & 18” RCP public storm drain system as depicted on TM no. 2887-1 sheet 25. Subsequently, the runoff discharges into San Marcos Creek, connecting to Batiquitos Lagoon, and eventually flowing into the Pacific Ocean. The new construction will be replacing 1,760 sf of impervious area and adding an additional 1,550 sf. The new total lot impervious area on the proposed condition is 0.277 acres. Which represents 0.447% of the site. The C weighted runoff coefficient of 0.60 was calculated utilizing San Diego County Hydrology Manual equation in section 3.1.2 which generates 2.55 CFS for the 100yr storm event. SUMMARY OF PROPOSED CONDITION DISCHARGE LOCATION BASIN WEIGHTED C Cw INTENSITY (IN/HR) AREA (ACRES) PEAK FLOW (CFS) CAZADERO DR 1 0.60 6.85 0.39 1.60 2 0.60 6.85 0.08 0.33 3 0.60 6.85 0.15 0.62 CONCLUSION The existing concrete ditches which are taking basin 1 on the westerly side and basin 3 on the easterly side will not be impacted by the addition of runoff as shown on the capacity calculations included in Appendix A. Additionally, we included in Appendix A the Hydraulic Analysis of the 6” storm drain system, concrete brow ditches and 6” inlets that indicates that the proposed on-site storm drain system and existing concrete ditches are adequate. We believe that the total increase in runoff of 0.17 CFS resulting from the expansion of impervious surfaces is negligible and should not have any adverse impacts on the downstream infrastructure or to the on-site existing concrete ditches. COMPARISON POC AREA PRE (ACRES) AREA POST (ACRES) Q PRE (CFS) Q POST (CFS) Q DIFERENCE (CFS) CAZADERO DR 0.62 0.62 2.38 2.55 +0.17 TOTAL 0.62 0.62 2.38 2.55 +0.17 2. HYDROLOGY DESIGN MODELS A. DESIGN METHODS THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY PER SAN DIEGO HYDROLOGY MANUAL DATED 2003; THE RATIONAL FORMULA IS AS FOLLOWS: Q = CIA, WHERE: Q= PEAK DISCHARGE IN CUBIC FEET/SECOND * C = RUNOFF COEFFICIENT (DIMENSIONLESS) I = RAINFALL INTENSITY IN INCHES/HOUR (PER FIGURE 3-2) A = TRIBUTARY DRAINAGE AREA IN ACRES *1 ACRE INCHES/HOUR = 1.008 CUBIC FEET/SEC THE OVERLAND FLOW FORMULA IS AS FOLLOWS: TC=1.8(1.1-C)(L).5/[S(100)].333 L = OVERLAND TRAVEL DISTANCE IN FEET S = SLOPE IN FT./FT. TC= TIME IN MINUTES B. DESIGN CRITERIA - FREQUENCY, 100 YEAR STORM. - LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP. - RAIN FALL INTENSITY PER COUNTY OF SAN DIEGO 2003 HYDROLOGY DESIGN MANUAL. C. REFERENCES - COUNTY OF SAN DIEGO 2003, HYDROLOGY MANUAL. - COUNTY OF SAN DIEGO 2012 REGIONAL STANDARD DRAWING. - HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION. APPENDIX A 3. HYDROLOGIC AND HYDRAULIC CALCULATIONS • RATIONAL METHOD CALCULATIONS • CONCRETE BROW DITCH CAPACITY CALCULATIONS • HYDRAULIC ANALYS FOR THE STORM DRAIN SYSTEM Q=CIA DATE:5.20.2024 C RUNOFF COEFFICIENT I INTENSITY (IN/HR) A CONTRIBUTING AREA (AC) C=0.56 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.36 (SEE ATTACHED EXISTING HYDROLOGY MAP) 1.38 CFS C=0.56 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.17 (SEE ATTACHED EXISTING HYDROLOGY MAP) 0.65 CFS C=0.56 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.09 (SEE ATTACHED EXISTING HYDROLOGY MAP) 0.35 CFS TOTAL AREA =0.62 AC TOTAL RUNOFF =2.38 CFS Q 100 = Q 100 = EXISTING CONDITION Q100 RATIONAL METHOD Q 100 = BASIN 3 BASIN 2 BASIN 1 Q=CIA DATE:5.20.2024 C RUNOFF COEFFICIENT I INTENSITY (IN/HR) A CONTRIBUTING AREA (AC) C=0.60 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.39 (SEE ATTACHED EXISTING HYDROLOGY MAP) 1.60 CFS C=0.60 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.08 (SEE ATTACHED EXISTING HYDROLOGY MAP) 0.33 CFS C=0.60 (SEE WIEGHTED C CALCULATION) I=6.85 (SEE ATTACHED RAINFALL INTENSITY CHART FIGURE 3-1) A=0.15 (SEE ATTACHED EXISTING HYDROLOGY MAP) 0.62 CFS TOTAL AREA =0.62 AC TOTAL RUNOFF =2.55 CFS Q 100 = Q 100 = Q100 RATIONAL METHOD PROPOSED CONDITION Q 100 = BASIN 1 BASIN 2 BASIN 3 CURB OUTLET CALCULATION (FOR EXISITNG CONDITION) BASIN 1 Given Input Data: Shape ........................... Rectangular Solving for ..................... Depth of Flow Flowrate ........................ 1.3800 cfs Slope ........................... 0.0200 �/� Manning's n ..................... 0.0150 Height .......................... 3.0000 in Botom width .................... 36.0000 in Computed Results: Depth ........................... 1.5986 in Velocity ........................ 3.4529 fps Full Flowrate ................... 3.7627 cfs Flow area ....................... 0.3997 �2 Flow perimeter .................. 39.1973 in Hydraulic radius ................ 1.4682 in Top width ....................... 36.0000 in Area ............................ 0.7500 �2 Perimeter ....................... 42.0000 in Percent full .................... 53.2881 % Cri�cal Informa�on Cri�cal depth .................. 2.2483 in Cri�cal slope .................. 0.0067 �/� Cri�cal velocity ............... 2.4552 fps Cri�cal area ................... 0.5621 �2 Cri�cal perimeter .............. 40.4966 in Cri�cal hydraulic radius ....... 1.9986 in Cri�cal top width .............. 36.0000 in Specific energy ................. 0.3185 � Minimum energy .................. 0.2810 � Froude number ................... 1.6678 Flow condi�on .................. Supercri�cal CURB OUTLET CALCULATION (FOR EXISITNG CONDITION) BASIN 3 Given Input Data: Shape ........................... Rectangular Solving for ..................... Depth of Flow Flowrate ........................ 0.3500 cfs Slope ........................... 0.0200 �/� Manning's n ..................... 0.0150 Height .......................... 3.0000 in Botom width .................... 36.0000 in Computed Results: Depth ........................... 0.6887 in Velocity ........................ 2.0329 fps Full Flowrate ................... 3.7627 cfs Flow area ....................... 0.1722 �2 Flow perimeter .................. 37.3773 in Hydraulic radius ................ 0.6633 in Top width ....................... 36.0000 in Area ............................ 0.7500 �2 Perimeter ....................... 42.0000 in Percent full .................... 22.9554 % Cri�cal Informa�on Cri�cal depth .................. 0.9008 in Cri�cal slope .................. 0.0083 �/� Cri�cal velocity ............... 1.5541 fps Cri�cal area ................... 0.2252 �2 Cri�cal perimeter .............. 37.8017 in Cri�cal hydraulic radius ....... 0.8579 in Cri�cal top width .............. 36.0000 in Specific energy ................. 0.1216 � Minimum energy .................. 0.1126 � Froude number ................... 1.4961 Flow condi�on .................. Supercri�cal ** * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * P I P E F L O W C A L C U L A T I O N S * * * * * * Co p y r i g h t ( c ) 1 9 8 8 , C i v i l D e s i g n S o � w a r e , I n c . ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fo r : F o r L i c e n s e d C i v i l D e s i g n U s e r ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * N O N -PR E S S U R E , O P E N C H A N N E L C A L C U L A T I O N S * * * * CA L C U L A T E D E P T H O F F L O W G I V E N : Ch a n n e l S l o p e = -.0 1 0 0 0 0 ( F t . / F t . ) = -1. 0 0 0 0 % In v e r t e l e v a � o n a t p i p e I N L E T = 4 9 1 . 3 0 0 ( F t . ) In ver t e l e v a � o n a t p i p e O U T L E T = 4 9 0 . 5 5 0 ( F t . ) Le n g t h o f p i p e = 7 5 . 0 0 0 ( F t . ) Gi v e n F l o w R a t e = . 2 0 C u b i c F e e t / S e c o n d ** * P I P E HY D R A U L I C A N A L Y S I S ** * Ma n n i n g s " n " = . 0 1 3 No . o f p i p e s = 1 V e l o c i t y ( F t . / S e c . ) = 2 . 6 3 Gi v e n P i p e D i a m e t e r ( I n . ) = 6 . 0 0 In d i v i d u a l p i p e f l o w = . 2 0 5 0 ( C F S ) " " " = 9 2 . 0 1 ( G P M ) " " " = . 1 3 2 5 ( M G D ) To t a l p i p e a r e a = 2 8 . 2 7 ( I n 2 ) To t a l p e r i m e t e r o f p i p e = 1 8 . 8 5 ( I n . ) No r m a l f l o w d e p t h i n p i p e = 2 . 5 1 ( I n . ) Fl o w t o p w i d t h i n s i d e p i p e = 5 . 9 2 ( I n . ) Ar ea o f f l o w = 1 1 . 1 9 7 3 ( I n 2 ) We t e d P e r i m e t e r = 8 . 4 4 ( I n . ) Cr i � c a l D e p t h i n P i p e = 2 . 7 2 ( I n . ) To t a l f l o w o f p i p e ( s ) = . 2 0 5 0 ( C F S ) " " " " = 9 2 . 0 1 ( G P M ) " " " " = . 1 3 2 5 ( M G D ) 2.51" NORMAL FLOW DEPTH ON 6" PVC PIPE @ 1% I ** * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * P I P E F L O W C A L C U L A T I O N S * * * * * * Co p y r i g h t ( c ) 1 9 8 8 , C i v i l D e s i g n S o � w a r e , I n c . ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fo r : F o r L i c e n s e d C i v i l D e s i g n U s e r ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** * * * N O N -PR E S S U R E , O P E N C H A N N E L C A L C U L A T I O N S * * * * CA L C U L A T E D E P T H O F F L O W G I V E N : Ch a n n e l S l o p e = -.1 6 8 7 5 8 ( F t . / F t . ) = -16 . 8 7 5 8 % In v e r t e l e v a � o n a t p i p e I N L E T = 4 9 0 . 5 5 0 ( F t . ) In ver t e l e v a � o n a t p i p e O U T L E T = 4 8 4 . 5 0 0 ( F t . ) Le n g t h o f p i p e = 3 5 . 8 5 0 ( F t . ) Gi v e n F l o w R a t e = . 2 0 C u b i c F e e t / S e c o n d ** * P I P E HY D R A U L I C A N A L Y S I S ** * Ma n n i n g s " n " = . 0 1 3 No . o f p i p e s = 1 V e l o c i t y ( F t . / S e c . ) = 7 . 2 5 Gi v e n P i p e D i a m e t e r ( I n . ) = 6 . 0 0 In d i v i d u a l p i p e f l o w = . 2 0 5 0 ( C F S ) " " " = 9 2 . 0 1 ( G P M ) " " " = . 1 3 2 5 ( M G D ) To t a l p i p e a r e a = 2 8 . 2 7 ( I n 2 ) To t a l p e r i m e t e r o f p i p e = 1 8 . 8 5 ( I n . ) No r m a l f l o w d e p t h i n p i p e = 1 . 2 1 ( I n . ) Fl o w t o p w i d t h i n s i d e p i p e = 4 . 8 1 ( I n . ) Ar ea o f f l o w = 4 . 0 6 8 8 ( I n 2 ) We t e d P e r i m e t e r = 5 . 5 9 ( I n . ) Cr i � c a l D e p t h i n P i p e = 2 . 7 2 ( I n . ) To t a l f l o w o f p i p e ( s ) = . 2 0 5 0 ( C F S ) " " " " = 9 2 . 0 1 ( G P M ) " " " " = . 1 3 2 5 ( M G D ) 1.21" NORMAL FLOW DEPTH ON 6" PVC PIPE @ 16.8% I ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * P I PE F L O W C A L C U L A T I O N S * * * * * * Co p y r i g h t ( c ) 1 9 8 8 , C i v i l D e s i g n S o � w a r e , I n c . ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fo r : F o r L i c e n s e d C i v i l D e s i g n U s e r ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * N O N -PR E S S U R E , O P E N C H A N N E L C A L C U L A T I O N S * * * * CA L C U L A T E D E P T H O F F L O W G I V E N : Ch a n n e l S l o p e = -.1 9 1 1 4 3 ( F t . / F t . ) = -19 . 1 1 4 3 % In v e r t e l e v a � o n a t p i p e I N L E T = 4 8 4 . 5 0 0 ( F t . ) In v er t e l e v a � o n a t p i p e O U T L E T = 4 6 4 . 4 3 0 ( F t . ) Le n g t h o f p i p e = 1 0 5 . 0 0 0 ( F t . ) Gi v e n F l o w R a t e = . 6 2 C u b i c F e e t / S e c o n d ** * CO N C R E T E B R O W D I T C H HY D R A U L I C A N A L Y S I S ** * BA S I N 3 Ma n n i n g s " n " = . 0 1 5 No . o f p i p e s = 1 V e l o c i t y ( F t . / S e c . ) = 7 . 9 4 Gi v e n P i p e D i a m e t e r ( I n . ) = 2 4 . 0 0 In d i v i d u a l p i p e f l o w = . 6 2 0 0 ( C F S ) " " " = 2 7 8 . 3 ( G P M ) " " " = . 4 0 0 7 ( M G D ) To t a l p i p e a r e a = 4 5 2 . 3 9 ( I n 2 ) To t a l p e r i m e t e r o f p i p e = 7 5 . 4 0 ( I n . ) No r m a l f l o w d e p t h i n p i p e = 1 . 4 5 ( I n . ) Fl o w t o p w i d t h i n s i d e p i p e = 1 1 . 4 5 ( I n . ) Ar e a o f f l o w = 1 1 . 2 4 3 0 ( I n 2 ) We t e d P e r i m e t e r = 1 1 . 9 4 ( I n . ) Cr i � c a l D e p t h i n P i p e = 3 . 2 3 ( I n . ) To t a l f l o w o f p i p e ( s ) = . 6 2 0 0 ( C F S ) " " " " = 2 7 8 . 3 ( G P M ) " " " " = . 4 0 0 7 ( M G D ) I 1.45". i L WATER I SURFACE 10.55" FREEBOARD 12" ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * P I P E F L O W C A L C U L A T I O N S * * * * * * Co p y r i g h t ( c ) 1 9 8 8 , C i v i l D e s i g n S o � w a r e , I n c . ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fo r : F o r L i c e n s e d C i v i l D e s i g n U s e r ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * N O N -PR E S S U R E , O P E N C H A N N E L C A L C U L A T I O N S * * * * CA L C U L A T E D E P T H O F F L O W G I V E N : Ch a n n e l S l o p e = -.1 6 9 1 8 9 ( F t . / F t . ) = -16 . 9 1 8 9 % In v e r t e l e v a � o n a t p i p e I N L E T = 4 8 6 . 0 0 0 ( F t . ) In v er t e l e v a � o n a t p i p e O U T L E T = 4 5 4 . 7 0 0 ( F t . ) Le n g t h o f p i p e = 1 8 5 . 0 0 0 ( F t . ) Gi v e n F l o w R a t e = 1 . 6 0 C u b i c F e e t / S e c o n d ** * CON CR E T E B R O W D I T C H HY D R A U L I C A N A L Y S I S ** * BA S I N 1 Ma n n i n g s " n " = . 0 1 5 No . o f p i p e s = 1 V e l o c i t y ( F t . / S e c . ) = 1 0 . 1 4 Gi v e n P i p e D i a m e t e r ( I n . ) = 2 4 . 0 0 In d i v i d u a l p i p e f l o w = 1 . 6 0 0 ( C F S ) " " " = 7 1 8 . 1 ( G P M ) " " " = 1 . 0 3 4 ( M G D ) To t a l p i p e a r e a = 4 5 2 . 3 9 ( I n 2 ) To t a l p e r i m e t e r o f p i p e = 7 5 . 4 0 ( I n . ) No r m a l f l o w d e p t h i n p i p e = 2 . 3 4 ( I n . ) Fl o w t o p w i d t h i n s i d e p i p e = 1 4 . 2 4 ( I n . ) Ar e a o f f l o w = 2 2 . 7 1 0 6 ( I n 2 ) We t e d P e r i m e t e r = 1 5 . 2 5 ( I n . ) Cr i � c a l D e p t h i n P i p e = 5 . 2 5 ( I n . ) To t a l f l o w o f p i p e ( s ) = 1 . 6 0 0 ( C F S ) " " " " = 7 1 8 . 1 ( G P M ) " " " " = 1 . 0 3 4 ( M G D ) I CURB OUTLET CALCULATION BASIN 1 (PROPOSED CONDITION) Given Input Data: Shape ........................... Rectangular Solving for ..................... Depth of Flow Flowrate ........................ 1.6000 cfs Slope ........................... 0.0200 �/� Manning's n ..................... 0.0150 Height .......................... 3.0000 in Botom width .................... 36.0000 in Computed Results: Depth ........................... 1.7525 in Velocity ........................ 3.6520 fps Full Flowrate ................... 3.7627 cfs Flow area ....................... 0.4381 �2 Flow perimeter .................. 39.5050 in Hydraulic radius ................ 1.5970 in Top width ....................... 36.0000 in Area ............................ 0.7500 �2 Perimeter ....................... 42.0000 in Percent full .................... 58.4162 % Cri�cal Informa�on Cri�cal depth .................. 2.4813 in Cri�cal slope .................. 0.0066 �/� Cri�cal velocity ............... 2.5793 fps Cri�cal area ................... 0.6203 �2 Cri�cal perimeter .............. 40.9626 in Cri�cal hydraulic radius ....... 2.1807 in Cri�cal top width .............. 36.0000 in Specific energy ................. 0.3533 � Minimum energy .................. 0.3102 � Froude number ................... 1.6848 Flow condi�on .................. Supercri�cal CURB OUTLET CALCULATION BASIN 3 (PROPOSED CONDITION) Given Input Data: Shape ........................... Rectangular Solving for ..................... Depth of Flow Flowrate ........................ 0.6200 cfs Slope ........................... 0.0200 �/� Manning's n ..................... 0.0150 Height .......................... 3.0000 in Botom width .................... 36.0000 in Computed Results: Depth ........................... 0.9765 in Velocity ........................ 2.5398 fps Full Flowrate ................... 3.7627 cfs Flow area ....................... 0.2441 �2 Flow perimeter .................. 37.9529 in Hydraulic radius ................ 0.9262 in Top width ....................... 36.0000 in Area ............................ 0.7500 �2 Perimeter ....................... 42.0000 in Percent full .................... 32.5487 % Cri�cal Informa�on Cri�cal depth .................. 1.3188 in Cri�cal slope .................. 0.0075 �/� Cri�cal velocity ............... 1.8804 fps Cri�cal area ................... 0.3297 �2 Cri�cal perimeter .............. 38.6377 in Cri�cal hydraulic radius ....... 1.2288 in Cri�cal top width .............. 36.0000 in Specific energy ................. 0.1816 � Minimum energy .................. 0.1649 � Froude number ................... 1.5697 Flow condi�on .................. Supercri�cal INLET CAPACITY CALCULATION (GRATE AT SAG) FOR ALL PROPOSED 6” INLETS H = 0.25’ / 3” q = 0.36 CFS/FT 6” GRATED INLET WITH ALL SIDES UNABBUTED PEFF = 2 (0.5 + 0.5) = 2FT WITH 50% CLOGGING 2FT * .5 = 1FT Q CAPACITY = PEFF * q = 1 FT * 0.36 CFS/FT Q CAPACITY = 0.36 CFS Each inlet is receiving a maximum of 0.01 acres hich generates the following Q: Q100 = CIA Q100 = 0.60 x 6.85 x 0.01 Q100 = 0.04 CFS 0.04 CFS < 0.36 CFS Therefore, the 6" inlets have the capacity to receive the surface drainage. APPENDIX B 4. TABLES AND CHARTS PER RATIONAL METHOD Tc= Tc L= V= Tc X L=220 V=5.45 Tc= Tc=MIN BASIN 3 (NORTHERLY SIDE) FT. FT PER SEC. 220 5.45 0.67 V TIME OF CONCENTRATION (IN HOURS) LENGTH OF FLOW PATH (IN FEET) AVERAGE VELOCITY OF FLOW (IN FT PER SEC) HOURS EXISTING CONDITION TIME OF CONCENTRATION FROM CONCRETE DITCH TO CURB OUTLET L PER RATIONAL METHOD Tc= Tc L= V= Tc X L=185 V=9.7 Tc= Tc=MIN FT. FT PER SEC. 185 9.7 0.32 V TIME OF CONCENTRATION (IN HOURS) LENGTH OF FLOW PATH (IN FEET) AVERAGE VELOCITY OF FLOW (IN FT PER SEC) HOURS EXISTING CONDITION TIME OF CONCENTRATION FROM CONCRETE DITCH TO CURB OUTLET L BASIN 1 (SOUTHERLY SIDE) PER RATIONAL METHOD Tc= Tc L= V= Tc X L=220 V=7.94 Tc= Tc=MIN FROM CONCRETE DITCH TO CURB OUTLET PROPOSED CONDITION 220 7.94 0.462 BASIN 3 (NORTHERLY SIDE) TIME OF CONCENTRATION (IN HOURS) LENGTH OF FLOW PATH (IN FEET) AVERAGE VELOCITY OF FLOW (IN FT PER SEC) FT. FT PER SEC. HOURS TIME OF CONCENTRATION V L PER RATIONAL METHOD Tc= Tc L= V= Tc X L=200 V=10.14 Tc= Tc=MIN 10.14 0.329 FROM CONCRETE DITCH TO CURB OUTLET PROPOSED CONDITION AVERAGE VELOCITY OF FLOW (IN FT PER SEC) HOURS FT. FT PER SEC. 200 BASIN 1 (SOUTHERLY SIDE) L V TIME OF CONCENTRATION (IN HOURS) LENGTH OF FLOW PATH (IN FEET) TIME OF CONCENTRATION Cw =0.9 (%impervious) + 0.35 (1-%impervious) EXISTING CONDITION Total Area (acres) =0.62 Impervious (acres) =0.236 Pervious (acres) =0.384 % impervious (acres) =0.381 Cw =0.9 *0.381 +0.35 * (1 -0.381 ) Cw =0.343 +0.35 * (0.619 ) Cw =0.343 +0.217 Cw =0.56 PROPOSED CONDITION Total Area (acres) =0.62 Impervious (acres) =0.277 Pervious (acres) =0.343 % impervious (acres) =0.447 Cw =0.9 *0.447 +0.35 * (1 -0.447 ) Cw =0.402 +0.35 * (0.553 ) Cw =0.402 +0.194 Cw =0.60 WEIGHTED C FACTOR PER COUNTY DRAINAGE DESIGN MANUAL 100 2.6 4.5 57.8 5 6.85 6.85 10.0 ' ..... "' ..... ' "r--. Directions for Applicat.ion: 9.0 8.0 ' ..... .... :, .... ' (1) From precipitation maps determine 6 hr and 24 hr amounts 7.0 ' • ' .... , .... , "'r,.. 'i-. I"'' for the selected frequency. These maps are included in the .... r-... ... ... 'r--. ·, i'i' .. ''~ .. County Hydrology Manual (10, 50, and 100 yr maps included R: ' ..... ' EQUATION 6.0 in the Design and Procedure Manual). r"l .... ' ... ,. ' .. ,, I = ?.44 P6 D-0.645 ~ ... I',"'-~ ' • '"' ~ .. ~ (2) Adjust 6 hr precipitation (if necessary) so that it is within 5.0 ' "'II "I',. 1'-i,. ""i-., I = Intensity (in/hr) r-... ~ ~ ... r,.., ~ ~ P5 = 6-Hour Precipitation (in) the range of 45% to 65% of the 24 hr precipitation (not 4.0 ' .. ~ .. .. applicaple to Desert). t-.... .... , r,~ , ... ~ .. D = Duration (min) ' ' l!!l~ ,,"' ~ ~ •i-.'• .. (3) Plot 6 hr precipitation on the right side of the chart . • ' 'r-.. --. '~ .. .. .. .. ~ 3.0 (4) Draw a line through the point parallel to the plotted lines. .... ... , ~ ~ . .. ..... I' ~ ~, .. ~ (5) This line is the intensity-duration curve for the location ' .... ,. .. , ~ ~ .. .. 'i', being analyzed . ' ·, ........ 2.0 ' .. .. .... .... , ,. .. ' .... :-..' Application Form: ' .. , .. ~"" :-.. i--.' .. .... , .. ...... ~ .. .... , "' (a) Selected frequency ___ year ' ' .. ± :5 .... , ~ ~ i', ' .... .. 0 p "i--'"' i--., ,, .. ':; (b) P5= __ in., P24 = --'P 6 = %(2) 0 .. .. ,, .. ~ .... ' ,, .. 7J ---''i-. .. i--., ...... "' ' .. ro 24 Q) .... 'r--. .... , .. (c) Adjusted p 6(2) = ___ in . .t::. .. 0 g 1.0 ~ 6.o -g; ~09 .. ........ ' .. 5.5 ~ ~ill,. .... , 5.0 g (d) tx = __ min. -~0 8 , ... h . ,, ~ 4.5 5' ~0 7 i--., 0 (e) I= __ in./hr. ·~ .. -~1111 ~ 4.0 ~ 0.6 3.5 ~ .... , .... .. ~ Note: This chart replaces the Intensity-Duration-Frequency 0.5 ' 3.0 curves used since 1965. ' ' .. .. , .. 0.4 2.5 I I I I ..... i', ' P6 1-1 +1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 .. Duration I I I I I I I I I I I i--., .. 2.0 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11.86 13.17 14.49 15.81 0 3 7 2.12 3.18 4.24 5.30 6.36 7.42 's.48 9.54 10.60 11.66 12.72 10 1.68 2.53 3.37 4.21 5.05 5.00 6.74 ~7.58 8 .42 9.27 1 0.11 ~ 1.5 15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78 20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46 0.2 --~ 0.93 1.40 1.87 2.33 2.80 3.22, ~3.73 4.2~ __j.67 5.13 5.60 30 0.83 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 4.56 4.98 --40 0.69 ~ -1.72 I 2.07 2.41 c-'3.lo-r--r--c-- 1.0 1.03 1.38 2.76 3.45 3.79 4.13 -50 -0.60-o-:00 1.19 1 .491 1.79 2.09 2.39 2.69 2.98 3.28 3.58 60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.18 90 0.41 0.61 0.82 1.02' 1.23 1.43 1.63 1.84 2.04 2.25 2.45 120 0.34_ 0.51 0.68 o.a~J 1.02 1.19 1.36 1.53 1.70 1.87 2.04 -~ --,.... 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1.76 180 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.18 1.31 1.44 1.57 0.1, ' 240 0.22 0.33 0.43 0.54 . 0.65 0.76 0.87 0.98 1.08 1.19 1.30 5 6 7 8 9 10 15 20 30 40 50 1 2 3 4 5 6 300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0.94 1.03 1.13 Minutes Hours 360 0.17 0.25 0.33 0.42 0.50 0.58 0.67-0 .75 0.84 0.92 1.00 Duration Intensity-Duration Design Chart -Template FIGURE ~ 0.25' 3" or 0.36 cfs/ft IO~ I 11 1111 'Ill Ill 1J 1111 1'111 I 111 11 "' 11111 II\ .'II II' I I 11 I := ~ ..L l f= I .... - T ... I J_ .... w --. J__ ~ ,-... 4 t-_,_ r· ··• . ~ I ---a. --1 .... -J. ,- r;:. II ' ::: ' --\. I I P • 2 (a+ b) --1 • I-I -,- A• 6 aw I-j ,-'/ I r--~.,.__.. -----· --. v I -.... ••-r I I I I 1 I 11 •111 II" r II 1111, 1111 111 II 11111 I I' ~"' V I ~ ./ ' ·! = / ./ ---,-~,,, r I/ ~ .. ---.. -/· I ... J ~ t I ] li'lt :::. (o) .... ~ i ' Q/ 5. :'5 '" t-.4 l • ... :.,,,,,,· ~ w - -u. / -~z - .;~ I ~ I ~ ' ,,,, ... ---,-X L ,-._. .t-... ,-0 Vc I ~-~-OHi t't ' -11.J 7 IP E 0 V lo" II I ' I .I ! I I : ~ I: HEA )5 (J p 10 0. ICUR VE ta . ~F IP1 jl ES '"" HEAi s A '3 0' ~E I. ~ :VE U, ~F I:> 11 I ES 1 -: H EAi )S B ~TY EE ~ -~ a I. '4 • rf"R ~ N-SI Jr10N ri .. rl. C JI ~ IC SEC = - .. ... ,_ ... ... .. ,_ DISCI I I I I 0.1 .,_. OR 8 C PE 'rft7 ION 19 IN D : /N!TE 1 ! I I I. I Al!U31 l Pl R FO tr .OF p :.R J-A -~ B[r (Q/F ) DIS ~HI RC E PEI F !QC T 0 f 11~fl -I I f'i\ ill I 111! I ·," 1i 11 ,,1, ,i!f 1 ·" ,,, "' I I I I 11 I II I I •,) 1,111 11111 1111 ll l l ti! [JI , ... ., t ,t .3 ... .B .s . f •••• 'o I ,-t ! " 8 • 1 I t 10 1,J INLET CAPACITY OF GRATE AT SAG Plate 2.6-0658 i, I I -3 ~ ; ; --- ~ = ~ ---------- - ::; = :; i: = ------ = ~ = ------------- ~ ~ = = -= ----- = ': ~ ---------- Q/A): I I ·, I I to 2.6 APPROXIMATE SITE IL__·-----_--_I 4.5 APPROXIMATE SITE I I I I I . . . . . . . . • . -) . ,-. ' ' . : . . . ,, .,,. . . -... ·, "~ ~ ~ . I I I I I · . --- . . -~ . . . . . . . . ,=' ·- --. . . . . . . . ' ~ e,a\H'1'Y 0 ~i.NDIEc;o • I -······_--___JI DPW ~GIS [lep:I.J""iJ7ient Di P11Mc Works Grn,r,..•pfll/,; /11furrr,.itiw1 &rv,tr.i-:; APPENDIX C 5. HYDROLOGY MAP  EXISTING CONDITION  PROPOSED CONDITION SAN MARCOS CREEK BATIQUITOS LAGOON SITE DIRECTION OF FLOW EXISTING 10' CURB INLET & 18" RCP PIPE @ EAST SIDE OF CAZADERO DRIVE NEAR LUCIERNAGA STREET PER TM NO. 2887-1 SHEET 25 DRAINAGE PATTERN LUCIERNAGA ST. EXISTING 10' CURB INLET & 18" RCP PIPE INTERCEPTING SITE RUNOFF APPROX. 1,550' AWAY WILLIAMS RESIDENCE 1 2 ---- PROJECT BASIN LOT / BASIN AREA XXX EXISTING CONDITION PROJECT GENERATES 2.38 CFS U) EXISTI EXIST. • ~-/ DR, VE'.'i,t.. V A = 0.17 AC 0100 = 0.65 ~: 28.0 ------+-----+-28.0 ----,..:,,..,1>::--'. ·-,-t- LU > a: 0 a: LU 0 ~ f--· c-, I---18.0 -----.. =-x s-. 6" c:u::;::r; _/ & 1:.;J lR ~ ?f:J!:§_5 l': ·ScJ./(~,,------ ,_-~1 -I; EXISTING CURB-OUlUT A ,= 0.3p AC Q100 = 1.38 CFS V100-= 3.45 FT/S-' I TC = 0.32 Ml~. (~M\N. MINIMUM) ~;I ~I~ µ'f ,f R ~\ V \ -+-+r----tl--+- I I I I I I I I I 1, 'I I I I I ', \ \ '\ \ \ \ \ \ ' \ I. \ \ I. \ ,. EXISTING D\ ''......', x47l.4 x472.4 x471I \ -~' ' Ji •·•, Lor 1as MAP NO. 7887 BASIN 2 X47J4 Ji x472.9 ( 0.17 AC ) )?' x 4738 A'5 I N 1 0.36 AC 1-",---------'',-----\ \*- \ ~) -~~\ ·•_f.._,\ \ s;-,v Ci' x488. I v~ !:<JJ;;J1:,~--"-.~,f:l.:(_,,.,,.,, .--:e_;''~ e;· j• J( ,- 1) d---'i '['\ .\ -. '~ r >1\ "{}}\ ,)' I •' 1;h-, ,.-. r~ ' '\:A~-. I ,ii \ /)-.,'/, . -~_,,--,,7·,-\ ' \ £q j/ \ ,---'-.,\ 1)-f,,\ I\ I I '--\, r , \ 1-1_).C\,_J I \ \ \ l \-<>' ~~vii ·;~~-::,-... ,_ I I I I I SIN .09 x495/ x495.2 r_o.:-;, : ,;( } / /}.J~y ·-. \. \--Fi=, -. - °', 1"'; '.i'---·-l __ .\;l _) ·--·--- ·,,;,/\ , <\\ ' -.Y;-'~ ·., }/ \h{ ,__,,"'·' ·,->~ :?r·,1 \.~ ~\ l ____ , -,~.-, • ... , .. ·.j I r(,}'c/-·( (·-1·--. , \;~. , • , , • '\f/::'rf). ,:x_i·--c;::,,{/) \-f' ....... • vf --\1) , \'-r,-1 I fl\l '. 0, \ '1-,_,)\:.'i -~)(\. ,;.::.:p ' ,?/ .':,. l'I A('l'"/ .... ,_ ,-r,'j,~~~,/ u SP/I r -:i ,-.-~.:.•.~-·-~ .t-V'' <( ;\-::.:)~': \: , _ _).:\ , ·'/'.} , .. · .. ,·. --/ )\ YJ;/"-<:tf\()-_,()\ \ ; C i 1:••· ''-•) I -':J;(, -..: .;.-c·1' \J~ut J / ·---J\ ____ fSC)t:t . I\; -,: ('' V:)\ \ ''"n ~I I I•·: /"':::(i . /1-t ----/ ,;(J;.c:;( \'4 ,, /·( :-r:_, ,✓-,.:: .. ,, /// _________ ....... -' I \ \ \ \ \ \ \ \ \ \ \ I I I I I I I ·◊ -t--110.0 ~ ~ 10.0 5 WER • DRAINAGE I EASEMENT I • EASEMENT PER MAP PER MAP I • 7367 1'361 \ -◊ \ I • I I • I I ~ :◊ \ \ ~,,,. I \ /-:!:\~ I /·◊ I • I I • I ~"c:J:: ' : ◊ \ \ \\ I \ • I I I I • \ I :t I \ • I I :0 \ \ • I I • I /; ----·-------I I I I ---- (~_____,,) fSHml CITY OF CARLSBAD I SHEETS I 1------1---+----------------+-----+--+-----11-----1 L__j ENGINEERING DEPARTMENT 1----+-----ll------------------+---+-----11------11----1 10 5 0 10 SCALE: 1 "=10' 1----1----+----------------t-------11----+---+------1 EXISTING CORDffiON HYDROIDGY KAP FOR: DA 1E INITIAL ENGINEER OF WORK REVISION DESCRIPTION DAlE INl11AL DAlE INl11AL O'IHER APPROVAL CllY APPROVAL APPROVED: ENGINEERING MANAGER RVWD BY: _,.D.,.JM.____ 1 CHKD BY· KSS JASON S. GELDERT RCE 63912 EXP-9/YJ/22 DAlE PROJECT NO. I DRAWING NO. WILLIAMS RESIDENCE 2 2 ---- PLAN VIEW PROJECT BASIN LOT / BASIN AREA XXX PROJECT GENERATES 2.55 CFS PROPOSED CONDITION 28.0 U) .~~- V100 = 2.54 /S ccs _ti;r TC = 0.46 MIN. (5MIN. MINIMUMY;on:,------1~--"-.... LU > a: 0 a: LU 0 ~ '() ., EXIST. • ~-/ DR, VE'.'i,t.. V A = 0.08 C Q100 = 0.33 C ~: 28.0 ~'; 18.0 =-x s-. 6" c:u::;::r; _/ & 1:.;J lR ~ ?f:J!:§_5 l': ·ScJ./(~,,------ .,_ ;_: f5/J:66 I/' -:0 ·-;--:-,-,-_,__,. •_,,y 1:) t:,. -- = l>. ~ V V I I I/ i: I I + I .+ I I I I I 1, 'I I I I I II I I 'I '' \' ' I. k ' ' I. ' ,. I I I x472.1 + x472.4 EXIS NG WOOD BO A= 0 Q100 = 0 V100 7 X47J4 x472.9 10 I I I I I ' I I I I I \ x488./ I I _L ___ _ I I I " I \ x495. ' _/_,, _/_ .. ---- / I / /// ,,.,/_,..,.-·' I \ \ \ \ I \ :1'7H O&SCW(tU u:., TH.Fr.': \ \ \ \ \ \ I I I I I I I I -11--110.0-\ s WER I EASEMENT I I PER MAP DRAINAGE EASEMENT PER MAP 7367 1'361 \ \ I I I I \ I I I \ I I I \ I I \ I I I I I I I I I I I I I I I I I I I I I I I I I I I ---- ■ ---■--■ --■ -----I 10 SCALE: 1"=10' I I I I SHEET I CITY OF CARLSBAD l-----l---+----------------t----t--t--4"-7 ENGINEERING DEPARTMENT 1-----11---+---------------t---t---t---r---, PROPOSED CONDITION HYDROIDGY MAP FOR: I SHEETS I DA 1E INITIAL DA 1E INITIAL DAlE INITIAL ENGINEER OF WORK REVISION DESCRIPTION O'IHER APPROVAL CllY APPROVAL APPROVED: ENGINEERING MANAGER RVWD BY: DJM CHKD BY· KSS JASON S. GELDERT RCE 63912 EXP. 9/YJ/22 DAlE PROJECT NO. I DRAWING NO.