Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
GPA 06-09; Muroya Subdivision; General Plan Amendment (GPA) (8)
- - .... - - ... --·-- ., .... - - • • .. • STORM WATER MANAGEMENT PLAN for MUROYA City of Carlsbad, California Prepared for: Taylor Morrison of California 15 Cushing Irvine, CA 92618 RECEIVED W.O. 42-219 AUG· 0 7 2009 CITY OF CARLSBAD PLANNING DEPT July 8, 2009 Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Vice President DE:~e H:IREPORTSIOD42\219\SWMP-113.~oc W.O. 42-219 719/2009 9:19AM - .. .. • • • -• - - - - • - Muroya Storm Water Management Plan TABLE OF CONTENTS CHAPTER 1 -Executive Summary 1.1 Introduction 1.2 Summary of Pre-Developed Conditions 1.3 Summary of Proposed Development 1.4 Results and Recommendations 1.5 Conclusion 1.6 References CHAPTER 2 -Storm Water Criteria 2.1 Regional Water Quality Control Board Criteria 2.2 City of Carlsbad SUSMP Criteria CHAPTER 3 -Identification of Typical Pollutants 3.1 Anticipated Pollutants from Project Site 3.2 Sediment 3.3 Nutrients 3.4 Trash & Debris 3.5 Oxygen-Demanding Substances 3.6 Oil & Grease 3.7 Pesticides 3. 7 Bacteria & Viruses 3.9 Organic Compounds 3.10 Metals CHAPTER 4-Conditions of Concern 4.1 Receiving Watershed Descriptions 4.2 303(d) Status 4.3 Pollutants of Concern in Receiving Watersheds 4.4 Conditions of Concern -Developed Condition Hydrology Summary 4.5 Identification of Primary & Secondary Pollutants of Concern DE:de H:\REPORTS\0042\219\SWMP-03.doc W.O. 42-219 719/2009 9.19 AM - - .... • ... ... ... - , .... 'IIIII -.... ... - Muroya Storm Water Management Plan CHAPTER 5-Site Design & Low Impact Development (LID) BMPs 5.1 Site Design and LID BMPs 5.2 BMP 1 -Minimize and Disconnect Impervious Surfaces 5.3 BMP 2 -Conserve Natural Areas 5.4 BMP 3 -Minimize Directly Connected Impervious Areas 5.5 BMP 4 -Maximize Canopy Interception & Water Conservation 5.6 BMP 5/6/7/8/9-Slope & Channel Protection CHAPTER 6-Source Control BMPs 6.1 BMP 10-Design Outdoor Material Storage Areas 6.2 BMP 11-Design Trash Storage Areas 6.3 BMP 12/13 -Integrated Pest Management Principles 6.4 BMP 14/15/16-Efficient Irrigation & Landscaping Design 6.5 BMP 17/18 -Storm Water Conveyance Systems Stenciling & Signage 6.6 BMP 19 -Private Roads 6.7 BMP 20/21-Residential Driveways & Guest Parking CHAPTER 7 -Treatment Control BMP Design 7.1 BMP Location 7.2 Determination of Treatment Flow 7.3 Determination of Treatment Volume 7.4 BMP Unit Sizing 7.5 StormFilter Filtration Units 7.6 FloGard Curb Inlet Filter Units 7. 7 Extended Detention Basins 7.8 Pollutant Removal Efficiency Table 7.9 BMP Unit Selection Discussion CHAPTER 8 -Operations & Maintenance Plan 8.1 Maintenance Requirements 8.2 Operation and Maintenance Plan 8.3 Annual Operation & Maintenance Costs CHAPTER 9-Fiscal Resources 9.1 Agreements (Mechanisms to Assure Maintenance) DE:de H:IREPORTS\0042\219\SWMP-OJ.doc W.O. 42-219 7/9/2009 9:19AM -.. • - ... - .. .... • • • • • .... -- Muroya Storm Water Management Plan List of Tables and Figures Chapter 1 -Vicinity Map Chapter 1 -Watershed Map Chapter 1 -BMP Location Exhibit Chapter 3-Pollutant Category Table Chapter 4-2006 CWA Section 303(d) List Chapter 4 -Beneficial Uses of Inland Surface Waters Chapter 4 -Water Quality Objectives Chapter 7 -BMP Location Exhibit Chapter 7-Pollutant Removal Efficiency Table Chapter 7 -Design Runoff Determination Summary Table Chapter 7 -85th Percentile Rational Method Calculations Chapter 7-StormFilter Product Information Chapter 7-FloGard Product Information Chapter 7 -CASQA Treatment Control Documentation Exhibits BMP Location Exhibit Developed Conditions Hydrology Exhibit DE:Ue H:\REPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/2009 9:19AM -• -• - • -• ... • • -• - -----• - ... ... ... Muroya Storm Water Management Plan CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction NO SCALE Per the City of Carlsbad SUSMP, the Muroya project is classified as a Priority Project and subject to the City's Permanent Storm Water BMP Requirements. To provide maximum water quality treatment for flows generated by the proposed residential development, dual BMP "treatment trains" are to be employed within the Muroya development. Flows from the developed site will receive primary treatment via FloGard curb inlet treatment units. These flows will then receive secondary treatment via Storm Filter filtration unit or Extended Detention Basin prior to discharging from the project site. Low Impact Design (LID) BMPs such disconnecting roof drains from residences and pervious driveway surfaces (pavers) has also been proposed in order to address pollutants generated from the proposed residential development. Furthermore, this report determines anticipated project pollutants, pollutants of concern in the receiving watershed, recommended source flow and volume-based BMPs, and methodology used for the design of flow and volume-based BMPs . DE:de H:IREPORTS\0042\219\SWMP-Q3.doc W.O. 42-219 7/9/2009 9:19AM ---- - ----'-• • • .. • • • .. • - Muroya Storm Water Management Plan This Storm Water Management Plan (SWMP) has been prepared pursuant to requirements set forth in the City of Carlsbad's Engineering Standards, Volume 4, Section 2, "Standard Urban Storm Water Mitigation Plan (SUSMP)." All calculations are consistent with criteria set forth by the Regional Water Quality Control Board's Order No. R9-2007-0001 and the City of Carlsbad SUSMP. This SWMP identifies anticipated project pollutants, pollutants of concern in the receiving watershed, conditions of concern, applicable Best Management Practices (BMPs) peak flow mitigation, recommended source control BMPs, and methodology used for the design of flow-based BMPs. Low Impact Development (LID) design techniques have also been identified and incorporated throughout the project site in order to minimize storm water runoff from the project site in accordance with the RWQCB's 2007 permit. 1.2 -Summary of Pre-Developed Conditions In existing condition, the proposed site consists of a small nursery and some natural lightly vegetated hillside that drains in a westerly direction. Runoff from the project site flows in a westerly direction to two (2) points of discharge; an existing "L" type headwall and an existing basin adjacent to Nightshade Road. Storm water runoff generated by the northern portion of the pre-developed site is conveyed via brow ditch to the aforementioned Nightshade Road detention facility. The runoff is then confluenced with some natural runoff at the existing detention basin prior to connecting with an existing 24-inch RCP storm drain within Nightshade Road. The remaining portion of the site flows southerly to the existing "L" type headwall where it enters the existing 36-inch RCP storm drain along Towhee Lane . Per the "2003 San Diego County Hydrology Manual", a conservative runoff coefficient of 0.42 was selected to represent the current naturally vegetated terrain found on the Muroya site. TABLE 1-Summary 100 Year Existing Conditions Runoff Drainage Location Drainage Area 100-Year Peak Flow (A c) (cfs) Existing "L" Type Headwall 14.0 21.7 Existing Basin 3.6 6.7 TOTAL 17.6 28.4 The Regional Water Quality Control Board has identified Batiquitos Lagoon as part of the Carlsbad Hydrologic Unit, San Marcos Hydrologic Area, and Batiquitos Hydrologic Subarea (basin number 904.51) . DE:de H:IREPORTS\0042\219\SWMP-03.doc W,O. 42-219 719/2009 9·19 AM I ' ' I J I ' l J • J l J ' I l ' I I I I I I I -~-·--·"""":"'-.~~ -:-.... · .. , . · . • ....... \ '. ~! ·: .. ~ .=: · .• · .. · .. · . . . , . . \. .. '· •, .: · .. · ,· .. ·.·:.:.· .. ' ... •. . . . . :-'.:. ~ _; .. ·; ;: ·.·.··~················:'.<< : •:. > :;,·,->>. ~ '• ;: ·, .'':':: · ... ·, ; . . . . . . ' . . .. '; ... : .. :,..· -.. ~··. ·~ . . . . : . :: < ;; i · ·.· :. ' ··: ' :· · · · ·~ .. ': ..... ·.::..": .. rj~>..,:;llll: .. :;·.:·: .... : .. ; ........... ~-~-~·i-~~·~~~~~~ti~~YJJri~~6~ ...... .... ',\·::·.· :\~·:·.~ .• ~~~·.:.\~~;\\ •. ' .. ·.:·· .. :_:. :·> ~~· ·. ··-.·;. · .. · • ..... · .... ._ . . ·.. . .... ··.: .. MUROYA 1 CITY OF CARLSBAD, CALIFORNIA ... - --- • .. • - --- - -• -• -• .. --- - Muroya Storm Water Management Plan 1.3 -Summary of Proposed Development Located on an 18-acre site, the proposed Muroya development will consist of thirty seven (37) single family residences. Per criteria set forth in the "2003 San Diego County Hydrology Manual", a runoff coefficient of 0.57 was selected to quantify the rainfall to runoff response of the site. Storm water runoff generated by the proposed development will be flow to two (2) points of discharge; an existing "L" type headwall and a proposed basin adjacent to Nightshade Road. Storm water runoff generated by the northern portion of the development will be conveyed via a curb and gutter system to an inlet located within Private Street "A". The runoff is then conveyed in a westerly direction via storm drain to a proposed detention basin prior to connection with an existing 24-inch storm drain. It should be noted that this proposed detention facility is for peak flow attenuation only . Developed storm water runoff is routed through a detention basin located in the northwest corner of the proposed site. In developed conditions, the basin bottom elevation will be 308 feet while the top elevation is 312 feet. Flow will exit the basin via one 1 0-inch orifice built into the side of the 5-foot x 5-foot basin riser. The 1 0-inch orifice will route flow via a storm drain discharging flow to the existing 24-inch RCP storm drain system within Nightshade Road. This orifice has an invert elevation coincident with the basin bottom elevation of 308 feet. The 5-foot x 5-foot riser box, which will surround the outlet pipe, will be built to a top elevation of 311.4 feet. Once floodwaters exceed 311.4 feet in the basin, runoff will spill over the top of the riser and drop to the basin outlet pipe. Emergency spillway calculations show that the proposed riser has adequate capacity to convey the 1 00-year inflow of 11.1 cfs in the event of full clogging of the 1 0-inch orifice. Runoff from the southern portion of the development will drain via a curb and gutter system within Private Drive "C" to a proposed swale. Flow conveyed via the swale will then drain to the natural flow path discharging to an existing type "L" headwall. Runoff from the remainder of the existing natural hillside will also discharge to the existing type "L" headwall. The flow will then enter the existing 36-inch RCP storm drain along Towhee Lane. Developed conditions peak flowrates, listed on Table 2 below, were obtained from the developed condition hydrologic analysis completed and discussed in the "TM Drainage Study for Muroya" by Hunsaker & Associates, dated July 2009. DE:de H:IREPORTS\00421219\SWMP-03.doc W.O. 42-219 7/9/2009 9:19AM -- - • • - - - - - -- - - -• -• .. • • Muroya Storm Water Management Plan TABLE 2-Summary 100 Year Developed Conditions Runoff Drainage Location Drainage Area 100-Year Peak Flow (Ac) (cfs) Existing "L" Type 11.0 17.0 Headwall Existing 24-inch RCP 6.6 6.7* Storm Drain TOTAL 17.6 23.7 *=routed Via detention structure To provide maximum water quality treatment for flows generated by the proposed development flows generated via the northern portion of the site will drain to a BMP Treatment Train comprising of FloGard Curb Inlet Filters, StormFilter Filtration System and an Extended Detention Basin to provide high levels of treatment for pollutants generated via the residential development. 1.4-Results and Recommendations Tables 3 and 4 summarize rational method 85th percentile calculations for the proposed flow and volume-based BMPs for Muroya residential development. TABLE 3 -24 hour Flow Based 85th Percentile Calculations Treatment Drainage Rainfall Runoff 85th Unit Area Intensity Coefficient Percentile (acres) (inches/hour) Flow (cfs) Private Drive A 4.7 0.2 0.57 0.5 FloGard Inlet Private Drive C 1.5 0.2 0.57 0.2 FloGard Inlet Private Drive A 0.9 0.2 0.57 0.1 FloGard Inlet Private Drive A 4.7 0.2 0.57 0.5 StormFilter Unit TABLE 4-24 hour Volume Based 85th Percentile Calculations Drainage 85tn Treatment Percentile Unit Area Precipitation (acres) (inches) Extended 2.4 0.65 Detention Basin Runoff 85th Coefficient Percentile Volume (ac.:ft) 0.57 0.07 DE:de H:IREPORTS\0042\2191SW1.1P-03.doc W.O. 42-219 7/W2009 9.19 AM ---• ----- - .. • .. -• ---• - .. • Muroya Storm Water Management Plan Rational Method calculations predict an 85th percentile runoff flow of approximately 0.5-cfs, 0.2-cfs,0.1-cfs and 0.5 cfs for the areas tributary to the proposed FloGard curb inlet filter units and Storm Filter unit respectively. The Rational Method also predicts a tributary volume of approximately 0.07 acre-feet for the areas tributary to the Extended Detention Basin. To provide maximum water quality treatment for flows generated by the northern portion of the proposed development, a BMP Treatment Train comprising of FloGard Curb Inlet Filters and a StormFilter Filtration System is proposed to provide high levels of treatment for pollutants generated via the residential development. Primary treatment is provided by the FloGard curb inlet units, filtering out trash, debris and sediments prior to discharging runoff to the proposed storm drain system. The Storm Filter unit provides secondary treatment for sediments, trash and debris, nutrients, organic compounds oxygen demanding substances, pesticides, and oil/hydrocarbon based pollutants . To provide maximum water quality treatment for flows generated by the southern portion of the proposed development, a BMP Treatment Train comprising of FloGard Curb Inlet Filters and an Extended Detention Basin is proposed to provide high levels of treatment for pollutants generated via the residential development. Primary treatment is provided by the FloGard curb inlet units, filtering out trash, debris and sediments prior to discharging runoff to the proposed storm drain system. The Extended Detention Basin provides secondary treatment for sediments, trash and debris, nutrients, organic compounds oxygen demanding substances, pesticides, and oil/hydrocarbon based pollutants. Many alternate treatment BMPs, including infiltration basins, wet ponds, grassy swales, and hydrodynamic separators were explored and evaluated (see Chapter 5 for a full comparison on all treatment BMPs considered). However, due to site design constraints and treatment efficiency for pollutants generated via the proposed project site, FloGard Curb Inlet Filter units, Extended Detention and StormFilter Filtration units were deemed to be the most effective and feasible BMP treatment for the Muroya development. Design and maintenance details for the proposed BMPs are included in Chapters 7 and 8 of this report . Further information and product testing on FloGard and Storm Filter Treatment units is provided in Chapter 7 of this report . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/2ll09 9:19AM VICINITY MAP NO SCAL£ so 0 I"""J*- MANUFACTURED SLOPES SHALL BE LANDSCAPED WITH SUITABLE GROUND COVER OR INSTALLED WITH AN EROSION CONTROL SYSTEM. -URBAN HOUSEKEEPING HOMEOWNERS SHOULD BE EDUCATED AS TO THE PROPER USE, STORAGE, AND DISPOSAL OF THESE POTENTIAL STORMWATER CONTAMINANTS -STORM WATER SYSTEMS STENCILING AND SIGNAGE -------------------1 THRASHER PlACE I I r--/ ( \ ~OOSTWOSDCI<£ ...... PCUS 1D ReMAIN -INTEGRATED PEST MANAGEMENT KEEPING PESTS OUT OF BUILDINGS AND LANDSCAPING USING BARRIERS, SCREENS AND CAULKING. PHYSICAL PEST ELIMINATION TECHNIQUES SUCH AS WEEDING, SQUASHING, TRAPPING, WASHING OR PRUNING OUT PESTS. RELY ON NATURAL ENEMIES TO EAT PESTS. -TRASH STORAGE AREAS ALL TRASH WILL BE STORED WITHIN EACH INDIVIDUAL SINGLE FAMILY RESIDENCE. AS SUCH, THERE WILL BE NO TRASH STORAGE AREAS ONSITE. .,-T I I I I I I I -EFFICIENT IRRIGATION PRACTICES ALL HOME OWINERS' ASSOCIATION (HOA) MAINTAINED LANDSCAPED AREAS WILL INCLUDE RAIN SHUTOFF DEVICES TO PREVENT IRRIGATION DURING AND AFTER PRECIPITATION. FLOW REDUCERS AND SHUTOFF VALVES TRIGGERED BY PRESSURE DROP WILL BE USED TO CONTROL WATER LOSS FROM BROKEN SPRINKLER HEADS OR LINES. I I I ,----- 1 I I FLOGARD INLET UNITS IMPERVIOUS SURFACE AREA PER~OUS SURFACE AREA LID PAVER LOCATION 50 0 50 100 !50 ~--I r-;::~~-::::-=~:;:=;-.....<::---==---~-/ ,-----------------------~----------~ 9.7AC LID & SITE DESIGN BMPs: -MINIMIZE IMPERVIOUS FOOTPRINT -CONSTRUCTING STREETS, SIDEWALKS, AND PARKING LOTS TO THE MINIMUM WIDTHS NECESSARY TO COMPLY WITH CITY OF CARLSBAD REQUIREMENTS WITHOUT COMPROMISING PUBLIC SAFETY. -INCORPORATING LANDSCAPED BUFFER AREAS BETWIEEN SIDEWALKS AND STREETS. -MINIMIZING THE NUMBER OF RESIDENTIAL STREET CUL-DE-SACS AND INCORPORATE LANDSCAPED AREAS TO REDUCE THEIR IMPERVIOUS COVER. -REDUCE OVERALL LOT IMPERVIOUSNESS BY PROMOTING ALTERNATIVE DRIVEWAY SURFACES AND SHARED DRIVEWAYS THAT CONNECT TWO OR MORE HOMES TOGETHER. -MAXIMIZE CANOPY INTERCEPTION & WATER CONSERVATION -PRESERVE EXISTING NATIVE TRESS AND SHRUBS. -PLANT ADDITIONAL NATIVE OR DROUGHT TOLERANT TREES AND LARGE SHRUBS IN PLACE OF NON- DROUGHT TOLERANT EXOTICS. -MINIMIZE DIRECTLY CONNECTED IMPERVIOUS AREAS -DRAINING ROOFTOPS INTO ADJACENT LANDSCAPING PRIOR TO DISCHARGING TO THE STORM DRAIN. -DRAINING ROADS, SIDEWALKS AND IMPERVIOUS TRAILS INTO ADJACENT LANDSCAPING. -SLOPE & CHANNEL PROTECTION I HILLSIDE LANDSCAPING -USE OF NATURAL DRAINAGE SYSTEMS TO THE MAXIMUM EXTENT PRACTICABLE. -STABILIZE PERMANENT CHANNEL CROSSINGS. PLANTING NATIVE OR DROUGHT TOLERANT VEGETATION ON SLOPES. -ENERGY DISSIPATERS, SUCH AS RIPRAP, AT THE OUTLETS OF NEW STORM DRAINS, CULVIERTS, CONDUITS, OR CHANNELS THAT ENTER UNLINED CHANNELS. TREATMENT CONTROL BMPs: -STORMFILTER TREATMENT UNIT (MP-40) -FLO-GARD FILTER INSERT (MP-52) -EXTENDED DETENTION BASIN (TC-22) BMP LOCATION EXHIBIT FOR: MUROYA CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 R•\0321 \LHyd\321 SH0-4 -BHP .clwg(] ..lul-l 0 -2009(18:30 - -------• -• .. • .... ... ---.. • --- • .. - Muroya Storm Water Management Plan Site design BMPs & Low Impact Design (LID) principles will also be implemented on this site to the maximum extent practicable to ensure water quality treatment is maximized throughout the Muroya development. Rooftop runoff from the residential structures will be discharged to vegetated landscaped areas adjacent to the homes, draining overland via the vegetated landscaping to the receiving area drain. The conveyance of treatment flows via the vegetated landscaping provides passive treatment for pollutants such as Nutrients and Bacteria & Viruses. A full discussion is provided within Chapter 5 of this report. To provide additional pervious areas and to address runoff generated via driveways, pavers have been incorporated within the site design to promote permeability throughout the project site and to intercept runoff generated via the aforementioned driveways . Grassy swales within the interior of the project site were also evaluated and deemed infeasible. Grassy swales were deemed infeasible due to potential damage to street foundations (for swales running along road sections) and also swale areas often result in standing water that could lead to vector issues (see discussion provided in Chapter 5 for further details) . The Operations and Maintenance plan for the proposed project has been included in Section 8 of this report. 1.5 -Conclusion The combination of proposed construction and permanent BMP's will reduce, to the maximum extent practicable, the expected project pollutants and will not adversely impact the beneficial uses of the receiving waters. 1.6 -References "Standard Urban Storm Water Mitigation Plan -Storm Water Standards", City of Carlsbad, March 2008. "City of Carlsbad Engineering Standards, Volumes 1-4", City of Carlsbad, 2004. "Master Drainage and Storm Water Quality Management Plan", City of Carlsbad, California; November 2007 . "Order No. R9-2007 -0001, NPDES No. CAS01 08758 -Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, San Diego Unified Port District and the San Diego County Regional Airport Authority", California Regional Water Quality Control Board -San Diego Region; January 24, 2007. DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/W()9 9:19AM ·-- - --.. - - .. - - --- - - -- Muroya Storm Water Management Plan "Water Quality Plan for the San Diego Basin", California Regional Water Quality Control Board -San Diego Region, 2006. "2006 CWA Section 303(d) List of Water Quality Limited Sediment'; San Diego Regional Water Quality Control Board. 2006 . "TM Drainage Study for Muroya"; Hunsaker & Associates, Inc. July 2009. DE:de H:IREPORTS\0042\219\SWMP·03.doc W.O. 42·219 7/9/2009 9:19AM .. ------ .. - -- - - • ... • ... • .. • .. Muroya Storm Water Management Plan CHAPTER 2-STORM WATER CRITERIA 2.1 -Regional Water Quality Control Board Criteria All runoff conveyed in the proposed storm drain systems will be treated in compliance with Regional Water Quality Control Board regulations and NPDES criteria prior to discharging to natural watercourses. California Regional Water Quality Control Board Order No. R9-2007-0001, dated January 24 2007, sets waste discharge requirements for discharges of urban runoff from municipal storm separate drainage systems draining the watersheds of San Diego County. Per the RWQCB Order, post-development runoff from a site shall not contain pollutant loads which cause or contribute to an exceedance of receiving water quality objectives or which have not been reduced to the maximum extent practicable. Post-construction Best Management Practices (BMPs), which refer to specific storm water management techniques that are applied to manage construction and post-construction site runoff and minimize erosion, include source control -aimed at reducing the amount of sediment and other pollutants -and treatment controls that keep soil and other pollutants.onsite once they have been loosened by storm water erosion. Post construction pollutants are a result of the urban development of the property and the effects of automobile use. Runoff from paved surfaces can contain both sediment (in the form of silt and sand) as well as a variety of pollutants transported by the sediment. Landscape activities by homeowners are an additional source of sediment. All structural BMPs shall be located to infiltrate, filter, or treat the required runoff volume or flow (based on the 85th percentile rainfall) prior to its discharge to any receiving watercourse supporting beneficial uses. 2.2 -City of Carlsbad SUSMP Criteria Per the City of Carlsbad SUSMP, the Muroya project is classified as a Priority Project and subject to the City's Permanent Storm Water BMP Requirements. These requirements required the preparation of this Storm Water Management Plan . The Storm Water Applicability Checklist, which must be included along with Grading Plan applications, is included on the following page . DE:de H:IREPORTS\00421219\SWMf>-<13.doe W.O. 42-219 7/912009 9:19AM - -- ... - -.. - ---• • • • .. - -.._ • • -- APPENDIX A STORM WATER STANDARDS QUESTIONNAIRE This questionnaire must be completed by the applicant in advance of submitting for a development application (subdivision and land use planning approvals and construction permits). The results of the questionnaire determine the level of storm water pollution prevention standards applied to a proposed development or redevelopment project. Many aspects of project site design are dependent upon the storm water pollution protection standards applied to a project. Applicant responses to the questionnaire represent an initial assessment of the proposed project conditions and impacts. City staff has responsibility for making the final assessment after submission of the development application. A staff determination that the development application is subject to more stringent storm water standards, than initially assessed by the applicant, will result in the return of the development application as incomplete. If applicants are unsure about the meaning of a question or need help in determining how to respond to one or more of the questions, they are advised to seek assistance from Engineering Department Development Services staff. A separate completed and signed questionnaire must be submitted for each new development application submission. Only one completed and signed questionnaire is required when multiple development applications for the same project are submitted concurrently. In addition to this questionnaire, applicants for construction permits must also complete, sign and submit a Construction Activity Storm Water Standards Questionnaire . To address pollutants that may be generated from new development, the City requires that new development and significant redevelopment priority projects incorporate Permanent Storm Water Best Management Practices (BMPs) into the project design, which are described in Chapter 2 of the City's Storm Water Standards Manual This questionnaire should be used to categorize new development and significant redevelopment projects as priority or non-priority, to determine what level of storm water standards are required or if the project is exempt. I 1. Is your project a significant redevelopment? DefinWon: Significant redevelopment is defined as the creation, addition or replacement of at least 5, 000 square feet of impervious surface on an already existing developed site. Significant redevelopment includes, but is not limited to: the expansion of a building footprint; addition to or replacement of a structure; structural development including an increase in gross floor area and/or exterior construction remodeling; replacement of an impervious surface that is not part of a routine maintenance activity; and land disturbing activities related with structural or impervious surfaces. Replacement of impervious surfaces includes any activity that is not part of a routine maintenance activity where impervious material(s) are removed, exposing underlying soil during construction. Note: If the Significant Redevelopment results in an increase of less than fifty percent of the impervious surfaces of a previously existing development, and the existing development was not subject to SUSMP requirements, the numeric sizing criteria discussed in Table 3 of 2.3.3.4 applies only to the addition, and not to the entire development. 2. If your project IS considered significant redevelopment, then please skip Section 1 and proceed with Section 2. 3. If your project IS NOT considered significant redevelopment, then please proceed to Section 1 . 21 SWMP Rev 6/4/08 ... ---- -- -- - -- - ---- ----.... - - I SECTION 1 NEW DEVELOPMENT PRIORITY PROJECT TYPE YES NO Does you project meet one or more of the following criteria: 1. Home subdivision of 100 units or more. / Includes SFD, MFD, Condominium and Apartments 2. Residential development of 10 units or more. .,/ Includes SFD, MFD, Condominium and Apartments 3. Commercial and industrial development greater than 100,000 square feet including parking areas. ./ Any development on private land that is not for heavy industrial or residential uses. Example: Hospitals, Hotels, Recreational Facilities, Shopping Malls, etc. 4. Heavv Industrial I Industry greater than 1 acre (NEED SIC CODES FOR PERMIT BUSINESS TYPES) ,/ SIC codes 5013, 5014, 5541, 7532-7534, and 7536-7539 5. Automotive repair shop. ,/ SIC codes 5013, 5014, 5541,7532-7534, and 7536-7539 6. A New Restaurant where the land area of development is 5, 000 sguare feet or more including g_arking areas. 1/ SIC code 5812 7. Hillside development (1) greater than 5,000 square feet of impervious surface area and (2) development will grade on any / natural slope that is 25% or greater 8. Environmentally Sensitive Area (ESA). c/ Impervious surface of 2,500 square feet or more located within, "directly adjacent"2 to (within 200 feet), or "discharqinq directly to"3 receiving water within the ESA 1 9. Parking lot. Area of 5,000 square feet or more, or with 15 or more parking spaces, and potentially exposed to urban al runoff 10. Retail Gasoline Outlets-serving more than 100 vehicles per day ./ Serving more than 100 vehicles per day and greater than 5,000 square feet 11. Streets, roads. driveways, highways, and freeways. / Project would create a new paved surface that is 5,000 square feet or greater. 12. Coastal Development Zone. ,/ Within 200 feet of the Pacific Ocean and (1) creates more than 2500 square feet of impermeable surface or (2) increases impermeable surface on property by more than 10%. 1 Environmentally Sensitive Areas include but are not limited to all Clean Water Act Section 303(d) impaired water bodies; areas designated as Areas of Special Biological Significance by the State Water Resources Control Board (Water Quality Control Plan for the San Diego Basin (1994) and amendments); water bodies designated with the RARE beneficial use by the State Water Resources Control Board (Water Quality Control Plan for the San Diego Basin (1994) and amendments); areas designated as preserves or their equivalent under the Multi Species Conservation Program within the Cities and Count of San Diego; and any other equivalent environmentally sensitive areas which have been identified by the Copermittees. 2 "Directly adjacent" means situated within 200 feet of the environmentally sensitive area. 3 "Discharging directly to" means outflow from a drainage conveyance system that is composed entirely of flows from the subject development or redevelopment site, and not commingled with flow from adjacent lands. Section 1 Results: If you answered YES to ANY of the questions above you have a PRIORITY project and PRIORITY project requirements DO apply. A Storm Water Management Plan, prepared in accordance with City Storm Water Standards, must be submitted at time of application. Please check the "MEETS PRIORITY REQUIREMENTS" box in Section 3. If you answered NO to ALL of the questions above, then you are a NON-PRIORITY project and STANDARD requirements apply. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3. SWMP Rev 6/4/08 -.. .. -• • • - --- - ------- -------.. I SECTION 2 SIGNIFICANT REDEVELOPMENT: YES NO 1. Is the project redeveloping an existing priority project type? (Priority projects are defined in Section 1) If you answered YES, please proceed to question 2 . If you answered NO, then you ARE NOT a significant redevelopment and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. 2. Is the project solely limited to one of the following: a. Trenching and resurfacing associated with utility work? b . Resurfacing_ and reconfig_uring existing_ surface parking lots? c. New sidewalk construction, pedestrian ramps, or bike lane on public and/or private existing roads? d. Replacement of existing damaged pavement? If you answered NO to ALL of the questions, then proceed to Question 3. If you answered YES to ONE OR MORE of the questions then you ARE NOT a significant redevelopment and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. 3. Will the development create, replace, or add at least 5,000 square feet of impervious surfaces on an existing development or, be located within 200 feet of the Pacific Ocean and (1)create more than 2500 square feet of impermeable surface or (2) increases impermeable surface on property by more than 1 0%? If you answered YES, you ARE a significant redevelopment, and you ARE subject to PRIORITY project requirements. Please check the "MEETS PRIORITY REQUIREMENTS" box in Section 3 below. If you answered NO, you ARE NOT a significant redevelopment, and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. I SECTION 3 Questionnaire Results: MY PROJECT MEETS PRIORITY REQUIREMENTS, MUST COMPLY WITH PRIORITY PROJECT STANDARDS AND MUST PREPARE A STORM WATER MANAGEMENT PLAN FOR SUBMITIAL AT TIME OF APPLICATION. 0 MY PROJECT DOES NOT MEET PRIORITY REQUIREMENTS AND MUST ONLY COMPLY WITH STANDARD STORM WATER REQUIREMENTS. Applicant Information and Signature Box This BoxforOty Use Only Address: Assessors Parcel Number(s): City Concurrence: I YES J I I Applicant Name: Applicant Title: By: Date: Applicant Signature: Date: Project ID: NO SWMP Rev 6/4/08 Muroya Storm Water Management Plan CHAPTER 3 -IDENTIFICATION OF TYPICAL POLLUTANTS 3.1 -Anticipated Pollutants from Project Site The following table details typical anticipated and potential pollutants generated by various land use types. The Muroya development will consist of detached single- family residences. Thus, the Detached Residential Development, Parking Lots and Streets, Highways & Freeways categories have been highlighted to clearly illustrate which general pollutant categories are anticipated from the project area. General Pollutant Categories 1/) 0)1/) Q) 1/) "0 1/) Priority -c c Q) ca oi'J 1/) 1/) ·-(.) Q) Q) c -(.) ::I oi'J 1/) c "0 c ... .!! 1/) "0 Project Q) c >-~ ·-0 a> c ca C) ... Q) ·c:; .5 Q) cc.. .c ·-C)cau; Q) 1/) Categories ·;:: > ca ca E 1/) ... >-E..c oi'J -::I +' "0 -ca-~0 ca..C ~ .!:::: 1/) Q) ::I Q) Q) ... Q) >< Q) ::I Q) tn z J:::! Q(.) 1-C cern 0 al> a.. Detached · ·ii Ill 1; 1,, Resi~:~tial . ' X '•· 5 X X X X X Develo mertf ;rw't' ~" ,. .'lll\' Attached Residential X X X p (1) p (2) p (1l X Development Commercial Development p(1) p(1l p (2) X p (S) X p (3) p(S) >100,000 tf Heavy lnd/lnd X X X X X X Development Automotive X x<4><s> X X Repair Shops Restaurants X X X X Hillside Development X X X X X X >5,000 ft2 . .., I·Y X ',, + • Parking Lots p f1) p<1) X ,' p(1) X p(1) 'i, ' Ill Retail Gasoline X X X X X Outlets r:'tiStteets;"";t f~J '~ l-;•o ffi:<~ '" '' !ill' : '· ,'!l'li ighways& p<tf x<4> X p<S) X , Freewav$ . ,; . t,, •' ' X= anticipated P = potential ( 1) A potential pollutant if landscaping exists on-site. (2) A potential pollutant if the project includes uncovered parking areas. (3) A potential pollutant if land use involves food or animal waste products. (4) Including petroleum hydrocarbons. (5) Including solvents. DE:de H:IREPORTS\0042\219\SWMP.03.doc w o. 42-219 7/9/2009 9:19AM • ... --- - ----... • • -• .. -• -• Muroya Storm Water Management Plan 3.2 -Sediment Soils or other surface materials eroded and then transported or deposited by the action of wind, water, ice, or gravity. Sediments can increase turbidity, clog fish gills, reduce spawning habitat, smother bottom dwelling organisms, and suppress aquatic vegetative growth. 3.3 -Nutrients Inorganic substances, such as nitrogen and phosphorous, that commonly exist in the form of mineral salts that are either dissolved or suspended in water. Primary sources of nutrients in urban runoff are fertilizers and eroded soils. Excessive discharge of nutrients to water bodies and streams can cause excessive aquatic algae and plant growth. Such excessive production, referred to as cultural eutrophication, may lead to excessive decay of organic matter in the water body, loss of oxygen in the water, release of toxins in sediment, and the eventual death of aquatic organisms . 3.4 -Trash & Debris Examples include paper, plastic, leaves, grass cuttings, and food waste, which may have a significant impact on the recreational value of a water body and aquatic habitat. Excess organic matter can create a high biochemical oxygen demand in a stream and thereby lower its water quality. In areas where stagnant water is present, the presence of excess organic matter can promote septic conditions resulting in the growth of undesirable organisms and the release of odorous and hazardous compounds such as hydrogen sulfide. 3.5 -Oxygen-Demanding Substances Biodegradable organic material as well as chemicals that react with dissolved oxygen in water to form other compounds. Compounds such as ammonia and hydrogen sulfide are examples of oxygen-demanding compounds. The oxygen demand of a substance can lead to depletion of dissolved oxygen in a water body and possibly the development of septic conditions. 3.6 -Oil & Grease Characterized as high high-molecular weight organic compounds. Primary sources of oil and grease are petroleum hydrocarbon products, motor products from leaking vehicles, oils, waxes, and high-molecular weight fatty acids. Elevated oil and grease content can decrease the aesthetic value of the water body, as well as the water quality . DE:de H:IREPORTS\00421219\SWMP-03.doc W.O. 42·219 71912009 9:19AM .. -.. ------- - • ... .. • .. • .. .. .. ... -.. .. - Muroya Storm Water Management Plan 3.7-Pesticides Pesticides (including herbicides) are chemical compounds commonly used to control nuisance growth or prevalence of organisms. Excessive application of a pesticide may result in runoff containing toxic levels of its active component. 3.8 -Bacteria & Viruses Bacteria and viruses are ubiquitous microorganisms that thrive under certain environmental conditions. Their proliferation is typically caused by the transport of animal or human fecal wastes from the watershed. Water, containing excessive bacteria and viruses can alter the aquatic habitat and create a harmful environment for humans and aquatic life. Also, the decomposition of excess organic waste causes increased growth of undesirable organisms in the water. 3.9 -Organic Compounds Organic compounds are carbon-based. Commercially available or naturally occurring organic compounds are found in pesticides, solvents and hydrocarbons. Organic compounds can, at certain concentrations, indirectly or directly constitute a hazard to life or health. When rinsing off objects, toxic levels of solvents and cleaning compounds can be discharged to storm drains. Dirt, grease and grime retained in the cleaning fluid or rinse water may also adsorb level of organic compounds that are harmful or hazardous to aquatic life. 3.10-Metals Metals are raw material components in non-metal products such as fuels, adhesives, paints and other coatings. Primary sources of metal pollution in storm water are typically commercially available metals and metal products. Metals of concern include cadmium, chromium, copper, lead, mercury and zinc. Lead and chromium have been used as corrosion inhibitors in primer coatings and cooler tower systems. At low concentrations naturally occurring in soil, metals are not toxic. However, at higher concentrations, certain metals can be toxic to aquatic life. Humans can be impacted from contaminated groundwater resources, and bioaccumulation of metals in fish and shellfish. Environmental concerns, regarding the potential for release of metals to the environment, have already led to restricted metal usage in certain applications . DE:de H:\REPORTS\0042\219\SWMP·03.doc w o .S2-21Q 7/Q/?OOQ Q·1~ AM ------ .... -- - -- • .. Muroya Storm Water Management Plan CHAPTER 4 -CONDITIONS OF CONCERN 4.1 -Receiving Watershed Descriptions As shown in the Watershed Map at the end of this chapter, the Muroya site discharges to the Batiquitos Lagoon. The Regional Water Quality Control Board has identified Batiquitos Lagoon as part of the Carlsbad Hydrologic Unit, San Marcos Creek Hydrologic Area, and Batiquitos Hydrologic Subarea (basin number 904.51 ). Development of the site will not cause any diversion to or from the existing watershed. The Regional Water Quality Control Board has identified the Batiquitos Hydrologic Subarea (basin number 904.51) as part of the San Marcos Creek Watershed within the Carlsbad Hydrologic Unit. 4.2-303(d) Status Section 303(d) of the Federal Clean Water Act (CWA) requires the State to identify surface waters that do not meet applicable water quality standards with certain technology-based controls. The State Water Resources Control Board has approved the 2006 CWA Section 303(d) List of Water Quality Limited Segments Requiring TMDLS. San Marcos Creek is listed on the EPA's 303(d) List of endangered waterways as impaired by DOE, Phosphorus and Sediment Toxicity. 4.3 -Pollutants of Concern in Receiving Watersheds The beneficial uses for the Batiquitos Lagoon and San Marcos Creek (per table 2-2 from the 'Water Quality Plan for the San Diego Basin", included at the end of this Chapter), include Municipal and Domestic Supply, Agricultural Supply, Industrial Service Supply, Contact Water Recreation, Non-Contact Recreation, Warm Freshwater Habitat and Wildlife Habitat. The beneficial uses for the Batiquitos Lagoon (per table 2-3 from the "Water Quality Plan for the San Diego Basin", included at the end of this Chapter), include Contact Water Recreation, Non-Contact Recreation, Preservation of Biological Habitats of Special Significance, Estuarine Habitat, Wildlife Habitat, Rare, Threatened, or Endangered Species, Marine Habitat, Migration of Aquatic Organisms, and Spawning, Reproduction, and/or Early Development. Table 3-2 from the "Water Quality Plan for the San Diego Basin" (also included at the end of this Chapter) lists water quality objectives for a variety of potential pollutants required to sustain the beneficial uses of the San Marcos hydrologic area. OE:de H:IREPORTS\0042\219lS'I\'MP.03.doc W.O. 42-219 719121!09 9•19 AM .. -- - - - .. • -.. • • .. Muroya Storm Water Management Plan 4.4-Condition of Concern-Developed Condition Hydrology Summary Table 5 summarizes developed versus existing conditions drainage areas and resultant 1 00-year peak flowrates at the storm drain discharge locations. Per San Diego County rainfall isolpluvial maps, the design 100-year rainfall depth for the site area is 2.6 inches. TABLE 5 -Summary of Pre Vs Post Developed Condition 100 Year Runoff Drainage Area 100-Year Discharge Location Peak Ftow (acres) {cfs} Existing "L" Type Headwall ~ ~ Pre Developed Conditions 14.0 21.7 Developed Conditions 11.0 17.0 DIFFERENCE -3.0 -4.7 Existing 24-inch RCP Storm ~ -------------Drain I Existing_ Basin Pre-Developed Conditions 3.6 6.7 Developed Conditions 6.6 6.7* DIFFERENCE +3.0 -0.0 *=routed v1a detention structure As shown in the summary tables, development of the existing Muroya project site will have a positive impact upon the receiving storm drain systems. Per Table 4, development of the site will result in a net decrease of approximately 4. 7 cfs in runoff. For further information regarding the peak flow rates listed on Table 5 above, please refer to the "TM Drainage Study for Muroya" dated July 2009 by Hunsaker & Associates. 4.5 -Identification of Primary & Secondary Pollutants of Concern As stated previously in segment 4.3, San Marcos Creek is listed on the EPA's 303(d) List of endangered waterways as impaired by ODE, Phosphorus and Sediment Toxicity. Thus, primary pollutants of concern from the proposed single-family residential include Nutrients, Pesticides and Sediments. Secondary pollutants generated by the project site include Bacteria & Viruses, Heavy Metals, Trash and Debris, Oil and Grease, and Oxygen Demanding Substances. DE:de H:IREPORTS\0042\219\SWMP-Q3.doc W.O. 42·219 719/21)09 9:19AM - -- - - • • ... - - .. • Muroya Storm Water Management Plan To provide maximum water quality treatment for flows generated by the northern portion of the proposed development, a BMP Treatment Train comprising of FloGard Curb Inlet Filters and a StormFilter Filtration System is proposed to provide high levels of treatment for pollutants generated via the residential development. Primary treatment is provided by the FloGard curb inlet units, filtering out trash, debris and sediments prior to discharging runoff to the proposed storm drain system. The Storm Filter unit provides secondary treatment for sediments, trash and debris, nutrients, organic compounds oxygen demanding substances, pesticides, and oil/hydrocarbon based pollutants. To provide maximum water quality treatment for flows generated by the southern portion of the proposed development, a BMP Treatment Train comprising of FloGard Curb Inlet Filters and an Extended Detention Basin is proposed to provide high levels of treatment for pollutants generated via the residential development. Primary treatment is provided by the FloGard curb inlet units, filtering out trash, debris and sediments prior to discharging runoff to the proposed storm drain system. The Extended Detention Basin provides secondary treatment for sediments, trash and debris, nutrients, organic compounds oxygen demanding substances, pesticides, and oil/hydrocarbon based pollutants . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-:<19 71912009 9:19AM ' ' ' I ' j l I ' • I ' ' • ' I ' I ' l J I I I J I I I I I I I J ·. ·. •,: ;•;:: . · .. ·. . · ........ .... -. ·.. . .. ·:;:::: ·. ·\'. ·-. :<-.. ·. ,. · .. ·• :· I • • 't • . .' : . ~ . . ~ ·.· .· ... ... :·i.'·.-.:: \- ·•;'' -:;:_-.. !·. _·::: : · .. :. •. ~- ·.:• .. _:: ·. ·. -..... ·., ·,:~:, ~ ~ .... ' :. o ; I • . ···:. · .. · .. . : ... · :~}:',':_':_: ::,-: ... ·-. :: .. : ·-· . ·-::;: ;-: ~-?-·. ·. -::-: .. _:_:·._"'.._·;_ .·.-: .· . : -:.· ..... : .··. _: ·:: .. ;: ; •. . '· .. . . ·. :-·. ·.'.·;·:;: ·. :,.:_: . :· ·. ... . .• .. : I o o o' . ·, .. -----==:...---CITY OF CARLSBAD, CALIFORNiA MUROYA •.. · .•• \,!,: • .. . : ~ . . . . ·. 1 l I I I • J • • I i ' . I ' t I I ; I I • J Table 2-2. BENEFICIAl USES Of INLAND SURFACE WATERS BENEFICIAL USE 1,2 M A I p G F p R .R B w c w Hydrologic Unit u G N R w R 0 E E I A 0 I Inland Surface Waters Basin Number N R D 0 R s w c c ·a R L L c 1-1 1 2 L M D D San' Diego County Coastal Streams· continued Buena VIsta Lagoon 4.21 See Coastal Waters-Table 2-3 Buena Vista Creek 4.22 + 0 0 Gl 1111 CJ ., Buena Vista Creek 4.21 + Ill 0 • II l!t e Agua Hedlonda 4.31 See Coastal Waters-Table 2-3 Agua Hedionda Creek 4.32 e • • II • G • Buena Creek 4.32 C!) • Q e t!l • C5) Agua Hedionda Creek 4.31 II llil (!) <II e 0 0 : (!) • .' • letlerbox canyon 4.31 • 0 G CJ Canyon de las Encinas 4.40 + 0 Ill f) 1!1 San Marcos Creek Watershed Batlqullos Lagoon 4.51 See Coastal Waters-Table 2-3 San Marcos Creek 4.52 + Ell • e 0 (J ·unnamed Intermittent streams 4.53 + Cll 0 tl 0 CD San Marcos Creek Watershed San Marcos Creel< 4.51 + 0 • • llll 0 Encinitas Creek 4.51 + 0 • 411 G) 0 1 Waterbodies are listed multiple limes if they cross hydrologic area or sub area boundaries. Ill Existing Beneficial Use D Potential Beneficial Use 2 Beneficial usa designations apply to all trlbularies to the Indicated walarbody, If not listed separately. + Excepted From MUN (See Text) Toblo 2·2 BENEFICIAL USES 2·27 I J l ' i • ' j R s A p R w E N • Moren 12, 1997 I I I J I t I J I J l J I • l ' ' Table 2-3. BENEFICIAL USES OF COASTAL WATERS BENEFICIAL USE Coastal Waters Hydrologic I N A A c B E w Unit Basin N A E E .0 I s I Number D v c c M 0 T L 1 2 M L D Pacific Ocean • • • • • • • Dana Point Harbor • • • • • • Del Mar Boat Basin • • • • • • Mission Bay • • • • • • Oceanside Harbor • • • • • • San Diego Bay 1 • • • • • • • • Coastal Lagoons · Tijuana River Estuary 11.; 1 • • • • • • Mouth of San Diego River 7.11 • • • • • Los Penasquitos Lagoon 2 6.10 • • • • • San Dieguito Lagoon 5.11 • • • • • Batlqultos Lagoon 4.51 • • • • • San Elijo Lagoon 5.61 • • • • • Aqua Hedionda Lagoon 4.31 • • • • • • Includes the tidal prisms of the Otay and Sweetwater Rivers. 2 Ashing from shore or boat permitted, but other water contact recreational (REC-11 uses arc prohibited. e Existing Beneficial Use Tabla 2-3 BENEFICIAL USES 2-47 A A R E • • • • • • • • • • • • • ' ' l ' ll j I I I I l I M A M s w s A a I p A H A u G w A E A R N M L L • • • • • • • • • • • • • • • • • • • • • • • • • • ' • • • • • • • • • • • • • • • • • • • • • • • • • March 12, 1997 I J I j I J I I I J t t J t i t I I I I I I ' j ll • ll I I I ' . Table 3-2. WATER QUALITY OBJECTIVES Concentrations not to be exceeded more than 10% of the time during any one one year period. Constitluent (mg/L or as noted) Inland Surface Waters Hydrologic Unit Basin TDS Cl so 4 %Na N&P Fe Mn MBAS B ODOR Turb Color F Number NTU Units SAN LUIS HEY HYDROLOGIC UNIT 903.00 Lower San Luis HA 3.10 600 260 260 60 a 0.3 0.05 0.5 0.75 nona 20 20 1.0 Monserat HA 3.20 500 250 250 60 a 0.3 0.05 0.6 0.75 nona 20 20 1.0 Warner Valley HA 3.30 500 250 250 eo a 0.3 0.05 0.5 0.75 nona 20 20 1.0 CARLSBAD HYDROLOGIC UNIT 904.00 Lorna Alta HA 4.10 -----. ---none 20 20 1.0 Buena Vista Creek HA 4.20 500 250 250 60 a 0.3 0.05 0.6 0.75 nona 20 20 1.0 Aguo Hedionda HA 4.30 509 250 250 60 a 0.3 0.05 0.5 0.75 nona 20 20 1.0 Encinas HA 4.40 -- -- --. . -nona 20 20 1.0 San Marcos HA 4.50 500 260 260 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 Escondido Creek HA 4.60 500 250 250 60 a 0.3 0.05 0.6 0.75 none 20 20 1.0 SAN DIEGUITO HYDROLOGIC UNIT 906.00 Solana Beach HA 5.10 500 250 250 60 a 0.3 0.06 0.5 0.76 none 20 20 1.0 Hodges HA 5.20 500 260 250 60 a 0.3 0.05 0.5 0.76 none 20 20 1.0 San Pasqual HA 5.30 600 250 260 60 a 0.3 0.05 0.5 0.76 nona 20 20 1.0 Santa Maria Valley HA 5.40 500 260 260 60 a 0.3 0.06 0.6 0.75 none 20 20 1.0 Santa Ysabel HA 6.50 500 250 260 60 a 0.3 0.06 0.6 0.75 none 20 20 1.0 PENASQUITOS HYDROLOGIC UNIT 906.00 Miramar Reservoir HA 6.10 500 250 260 60 a 0.3 1 o.o5 0.6 0.75 none 20 20 1.0 Poway HA 6.20 600 260 260 60 a 0.3 lo.os 0.5 0.75 none 20 20 1.0 HA -Hvdrologlc Area HSA • Hydrologic Sub Aroo tLowor coso lottors indicate ondnotos following the tabla.) Tobia 3·2 WATEA QUALITY OBJECTIVES Paoo 3-23 Soptombor 8, 1994 l I I J a ' I I i j l ' j I ' ' j ' . i j ' j Table 3"3. WATER QUAliTY OBJECTIVES Concentrations not to be exceeded more than 10% of the time during any one year period Constituent (mg/L or as noted) Ground Water Hydrologic Turb Color Basin Unit TDS Cl S04 %Na NO a Fe Mn MBAS B ODOR NTU Units F Number Buena Vista Creek HA 4.20 El Saito HSA a 4.21 3500 800 500 60 45 0.3 0.05 0.5 2.0 none 5 15 1.0 Vista HSA a 4.22 1000 b 400 b 500 b 60 10 b 0.3 b 0.05 b 0.5 0.76 b nona 6 15 1.0 Agua Hedionda HA a 4.30 1200 500 500 60 10 0.3 0.05 0.5 0.75 no no 5 15 1.0 los Monos HSA llj 4.31 3500 800 500 60 46 0.3 0.05 0.5 2.0 none 5 15 1.0 Encinas HA a 4.40 3500 b BOO b 500 b 60 46 b 0.3 b 0.05 b 0.6 2.0 b nona 5 15 1.0 San Marcos I-tA a a 4.50 1000 400 500 60 10 0.3 0.05 0.5 0.75 nona 6 15 1.0 Batiquitos HSA aek 4.51 3500 800 600 60 46 0.3 0.06 0.5 2.0 none 6 15 1.0 Escondido Creak HA II 4.60 750 300 300 60 10 0.3 0.05 0.5 0.75 none 5 15 1.0 San Elljo l-ISA II 4.61 2800 700 600 60 45 0.3 0.05 0.5 1.0 none 6 16 1.0 Escondido HSA 4.62 1000 300 400 60 10 0.3 0.06 0.5 0.75 none 5 15 1.0 SAN DIEGUITO HYDROLOGIC UNIT 905.00 Solana Beach HA a 5.10 1600 b 500 b 500 b 60 45 b 0.85 b 0.15 b 0.5 0.75 b none 5 16 1.0 Hodges HA 5.20 1000 b 400 b 600 b 60 10 b 0.3 b 0.06 b 0.5 0.75 b none 5 15 1.() San Pasqual HA 6.30 1000 b 400 b 500 b 60 10 b 0.3 b 0.05 b 0.5 0.75 b none 5 15 1.0 Santa Marla Valley HA 5.40 1000 400 500 60 10 0.3 0.06 0.5 0.75 none 5 16 1.0 Santa Ysabel HA 6.60 600 250 250 60 5 0.3 0.05 0.5 0.76 none 6 15 1.0 PENASOUITOS HYDROLOGIC UNIT 906.00 Miramar Reservoir HA af 6.10 1200 600 500 60 10 0.3 0.06 0.5 0.75 none 5 15 1.0 Poway· HA 6.20 760 q 300 300 60 10 0.3 0.05 0.6 0.76 none 5 15 1.0 Scripps HA 6.30 ---. -----. -- - Miramar HA 0 6.40 750 300 300 60 10 0.3 0.05 0.5 0.76 none 5 16 1.0 Tecolote HA 6.50 -----. ------- HA • l·lydroloolc Arolu HSA -Hydrologic Sub Aron llowor caoo lotturs lndlculs endnotes lollowlno tho tobin.) Tublo 3·3 WATER OUAUTY OBJECTIVES PO(JO 3-29 October 13. 1994 . ' . ' I j I J I j I J I I l I l I ' . • I l I I I I I I I • j PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 R Agua Hedionda Creek 90431000 9 E Agua Hedionda Lagoon 90431000 9 R Aliso Creek 90113000 Manganese Selenium Sulfates Total Dissolved Solids Indicator bacteria Sedimentation/Siltation Indicator bacteria Source Unknown Source Unknown Source Unknown Urban Runoff/Storm Sewers Unknown Nonpolnt Source Unknown point source Nonpoint/Point Source Nonpoint/Point Source 7 Miles 2019 7 Miles 2019 7 Miles 2019 7 Miles 2019 6.8 Acres 2006 6.8 Acres 2019 19 Miles 2005 This listing for indicator bacteria applies to the Aliso Creek mainstem and all the major tributaries of Aliso Creek which are Sulphur Creek, Wood Canyon, Aliso Hills Canyon, Dairy Fork. and English Canyon. Phosphorus Urban Runoff/Storm Sewers Unknown point source Nonpolnt/Point Source 19 Miles 2019 This listing for phosphorus applies to the Aliso Creek mainstem and all the major tributaries of Aliso Creek which are Sulphur Creek, Wood Canyon, Aliso Hills Canyon, DaiiJ' Fork, and English Canyon. Page 1 of27 Urban Runoff/Storm Sewers Unknown Nonpolnt Source Unknown point source ' J I I I J • • • • l I l I I I t I • • . ' I • i l I l I I I & I PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 E Aliso Creek (mouth) 90113000 9 L Barrett Lake 91130000 9 R Buena Creek 90432000 9 R Buena Vista Creek 90421000 Toxicity 19 Miles 2019 This listing for toxicity applies to the Aliso Creek mainstem and all the major tributaries of Aliso Creek which are Sulphur Creek, Wood Canyon, Aliso Hills Canyon, Daily Fork, and English Canyon. Urban Runoff/Storm Sewers Unknown Nonpolnt Source Unknown point source Indicator bacteria 0.29 Acres 2005 Nonpolnt/Polnt Source Color 125 Acres 2019 Source Unknown Manganese 125 Acres 2019 Source Unknown pH 125 Acres 2019 Source Unknown DDT 4.8 Miles 2019 Source Unknown Nitrate and Nitrite 4.8 Miles 2019 Source Unknown Phosphate 4.8 Miles 2019 Source Unknown Sediment Toxicity 11 Mlles 2019 Source Unknown Page 2 of27 * j I I I I . ' . ' . ' I J I t I I ' . • J I J i j I I I I I i I j I i I J PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 E Buena Vista Lagoon 9 R Chollas Creek 9 R Cloverdale Creek CAL WATER WATERSHED 90421000 90822000 90532000 POLLUTANT/STRESSOR Indicator bacteria Nutrients POTENTIAL SOURCES Nonpolnt/Polnt Source SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 202 Acres 2008 202 Acres 2019 Estimated size ofimpainnent is 150 acres located in upper portion of lagoon. Sedimentation/Siltation Copper Indicator bacteria Lead Zinc Phosphorus Total Dissolved Solids Page 3 of27 Nonpolnt/Point Source Nonpoint!Point Source Nonpolnt/Point Source Nonpoint/Point Source Nonpolnt/Point Source Nonpoint/Point Source Urban Runoff/Storm Sewers Unknown Nonpolnt Source Unknown point source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 202 Acres 2019 3.5 Miles 2004 3.5 Miles 2005 3.5 Miles 2004 3.5 Miles 2004 1.2 Miles 2019 1.2 Miles 2019 ' ' I I l • I J I l I I I I I I l I l I • • ' J • j I • I l l J l I PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 R Cottonwood Creek (San Marcos Creek watershed) 9 B Dana Point Harbor 9 R De Luz Creek 9 L El Capitan Lake CAL WATER WATERSHED 90451000 90114000 90221000 90731000 POLLUTANT/STRESSOR DDT Phosphorus Sediment Toxicity Indicator bacteria POTENTIAL SOURCES Source Unknown Source Unknown Source Unknown Impairment located at Baby Beach. Iron Manganese Color Manganese pH Page4 of27 Urban Runoff/Storm Sewers Marinas and Recreational Boating Unknown Nonpolnt Source Unknown point sonrce Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 1.9 Miles 2019 1.9 Miles 2019 1.9 Miles 2019 119 Acres 2006 14 Miles 2019 14 Miles 2019 1454 Acres 2019 1454 Acres 2019 1454 Ac1·es 2019 ' j . ' I I . ' . ' I J I J I j I J I J I j • j l j I I l j I I I I I PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 R Encinitas Creek 9 R English Canyon 9 R Escondido Creek CAL WATER WATERSHED 90451000 90113000 90462000 POLLUTANT/STRESSOR Phosphorus Benzo[b ]fluoranthene Dieldrin Sediment Toxicity DDT Manganese Phosphate Selenium Sulfates Total Dissolved Solids PageS of27 POTENTIAL SOURCES Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 3 Miles 2019 3.6 Miles 2019 3.6 Miles 2019 3.6 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles 2019 I J t I l ' ' ' I I • • • • ' . l j l J ' . l • • i ' ' ' J I j • j I J PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 E Famosa Slough and Channel 9 R Feliclta Creek 9 R Forester Creek CAL WATER WATERSHED 90711000 90523000 90712000 POLLUTANT/STRESSOR Eutrophic Aluminum Total Dissolved Solids Fecal Coliform POTENTIAL SOURCES Nonpolnt Source Source Unknown Agricultural Return Flows Urban RunofflStorm Sewers Flow Regulation/Modification Unknown Nonpoint Source Unknown point source Impainnent Locared aT lower 1 mile. Oxygen, Dissolved pH Urban Runoff/Storm Sewers Spills Unknown Nonpoint Source Unknown point source Source Unknown Impairment Located at upper 3 miles. Phosphorus Page 6 of27 Industrial Point Sources Habitat Modification Spills Unknown Nonpoint Source Unknown point source Source Unknown SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 32 Acres 2019 0.92 Miles 2019 0.92 Miles 2019 6.4 Miles 2005 6.4 Miles 2019 6.4 Miles 2019 6.4 Miles 2019 ' J ' j I I I t ' j l J l J l ' • • J l J ' j • l • • • ' . PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 R Green Valley Creek 90521000 9 L Guajome Lake 90311000 9 L Hodges, Lake 90521000 Total Dissolved Solids Impairment Located at lower 1 mile. Chloride Manganese Pentachlorophenol (PCP) Sulfates Eutrophic Color Manganese Page 7 of27 Agricultural Return Flows Urban Runoff/Storm Sewers Flow Regulatlon!Modlflcatlon Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown Urban Runoff/Storm Sewers Natural Sources Unknown Nonpoint Source Unknown point source Nonpoint/Point Source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown 6.4 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 33 Acres 2019 1104 Acres 2019 1104 Acres 2019 • .I I J l I I j I j • • ' i l j I I ' • ' ' I I ' j PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD I J I • SWRCB APPROVAL DATE: OCTOBER 25, 2006 REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION Nitrogen pH Phosphorus Turbidity 9 R Kit Carson Creek 90521000 Pentachlorophenol (PCP) Total Dissolved Solids 9 R Laguna Canyon Channel 90112000 Sediment Toxicity PageS of27 Agriculture Dairies Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Agriculture Dairies Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Agricultural Return Flows Urban Runoff/Storm Sewers Flow Regulation/Modification Unknown Nonpolnt Source Unknown point source Source Unknown 1104 Acres 2019 1104 Acres 2019 1104 Acres 2019 1104 Acres 2019 0.99 Miles 2019 0.99 Miles 2019 1.6 Miles 2019 • • I • I I I I • • I I I J I J I J I I J I I l I I I I j ' PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 CAL WATER POTENTIAL ESTIMATED PROPOSED TMDL REGION TYPE NAME WATERSHED. POLLUTANT/STRESSOR SOURCES SIZE AFFECTED COMPLETION 9 E Loma Alta Slough 90410000 Eutrophic 8.2 Acres 2019 Nonpolnt Source Indicator bacteria 8.2 Acres 2008 Nonpoint Source 9 R Long Canyon Creek 90283000 Total Dissolved Solids 8.3 Miles 2019 Source Unknown 9 R Los Penasqultos Creek 90610000 Phosphate 12 Miles 2019 Source Unknown Total Dissolved Solids 12 Miles 2019 Source Unknown 9 E Los Penasqultos Lagoon 90610000 Sedimentation/Siltation 469 Acres 2019 Nonpoint/Point Source 9 L Loveland Reservoir 90931000 Aluminum 420 Acres 2019 Source Unknown Manganese 420 Acres 2019 Source Unknown Oxygen, Dissolved 420 Acres 2019 Source Unknown 9 B Mission Bay (area at mouth of Rose Creek 90640000 only) Eutrophic 9.2 Acres 2019 Nonpolnt/Point Source Page 9 of27 I 1 • J i i l i I ' • • • • I i I I I I I I PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE 9 B 9 L 9 L NAME Mission Bay (area at mouth of Tecolote Creek only) Morena Reservoir Murray Reservoir 9 R Murrieta Creek CAL WATER WATERSHED 90650000 91150000 90711000 90252000 POLLUTANT/STRESSOR Lead Eutrophic Lead Color Manganese pH pH Iron Manganese Nitrogen Page 10 of27 POTENTIAL SOURCES Nonpoint/Point Source Nonpoint/Point Source Nonpoint!Point Source Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 9.2 Acres 2019 3.1 Acres 2019 3.1 Acres 2019 104 Acres 2019 104 Acres 2019 104 Acres 2019 119 Acres 2019 12 Miles 2019 12 Miles 2019 12 Miles 2019 I I J l ' l ' a J I J I j • • I l I l l i • I I J I J PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 R Oso Creek (at Mission Viejo Golf Course) 90120000 9 L Otay Reservoir, Lower 91031000 9 c Pacific Ocean Shoreline, Aliso HSA 90113000 Phosphorus Chloride Sulfates Total Dissolved Solids Color Iron Manganese Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Nitrogen, ammonia (Total Ammonia) Source Unknown pH (high) Source Unknown Indicator bacteria 12 Miles 1 Miles 1 Miles 1 Miles 1050 Acres 1050 Acres 1050 Acres 1050 Acres 1050 Acres 0.65 Miles Impairment located at Laguna Beach at Lagunita Place I Blue Lagoon Place, Aliso Beach. Nonpoint/Point Source Page 11 of27 2019 2019 2019 2019 2019 2019 .2019 2019 2019 2005 I t I t I I I J I • I l • t I l I I t I I I I l j . .. • • l • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 C Pacific Ocean Shoreline, Buena Vista Creek HA 9 c Pacific Ocean Shoreline, Dana Point HSA 9 c Pacific Ocean Shoreline, Escondido Creek HA 9 c Pacific Ocean Shorellne, Imperial Beach Pier 9 c Pacific Ocean Shoreline, Laguna Beach HSA 9 c Pacific Ocean Shoreline, Lorna Alta HA CAL WATER WATERSHED 90421000 90114000 90461000 91010000 90112000 90410000 POLLUTANT/STRESSOR POTENTIAL SOURCES SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED SIZE AFFECTED PROPOSED TMDL COMPLETION Indicator bacteria 1.2 Miles 2008 Impairment located at Buena Vista Creek, Carlsbad City Beach at Carlsbad Village Drive, Carlsbad State Beach at Pine Avenue. Nonpoint/Point Source Inclicator bacteria 2 Miles 2005 Impairment located at Aliso Beach at West Street, Aliso Beach at Table Rock Drive, I 000 Steps Beach at Pacific Coast HH'' (Hospital, 9th Ave), Salt Creek (large outlet), Salt Creek Beach at Salt Creek service road, Salt Creek Beach at Dana Strand Road. Nonpoint/Point Source Indicator bacteria 0.44 Miles 2008 Impairment located at San Elijo Lagoon outlet. Nonpoint/Point Source PCBs (Polychlorinated biphenyls) 0.42 Miles 2019 Source Unknown Indicator bacteria 1.8 Miles 2005 Impairment located at Main Laguna Beach, Laguna Beach at Ocean Avenue, Laguna Beach at Laguna Avenue, Laguna Beach at Cleo Street, Arch Cove at Bluebird Canyon Road, Laguna Beach at Dumond Drive. Nonpoint/Point Source Indicator bacteria 1.1 Miles 2008 Impairment located at Lama Alta Creek Mouth. NonpointiPoint Source Page 12 of27 l • I J I J I I I I ' ' I ' I I I I • I t a • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD • j • SWRCB APPROVAL DATE: OCTOBER 25, 2006 REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES ESTIMATED SIZE AFFECTED PROPOSED TMDL COMPLETION 9 c 9 c 9 c 9 c 9 c 9 c Pacific Ocean Shoreline, Lower San Juan HSA Pacific Ocean Shoreline, San Clemente HA Pacific Ocean Shoreline, San Diego HU Pacific Ocean Shoreline, San Dieqnito HU Pacific Ocean Shoreline, San Joaquin Hills HSA Pacific Ocean Shoreline, San Luis Rey HU 90120000 90130000 90711000 90511000 90111000 90311000 Indicator bacteria 1.2 Miles 2008 Impairment located at North Beach Creek, San Juan Creek (large outlet), Capistrano Beach, South Capistrano Beach at Beach Road. Nonpoint!Point Source Indicator bacteria 3.7 Miles 2005 Impainnent located at Poche Beach (large outlet), Ole Hanson Beach Club Beach at Pico Drain, San Clemen1e Ci~l' Beach at El Portal St. Stairs, San Clemente City Beach at Mariposa St., San Clemente City Beach at Linda Lane, San Clemente City Beach at South Linda Lane. San Clemente City Beach at Lifeguard Headquarters, Under San Clememe Municipal Pier, San Clemente City Beach at Trafalgar Canyon (Trafalgar Ln.). San Clemente State Beach at Riviera Beach, San Clemente State Beach at Cypress Shores. Nonpoint/Point Source Indicator bacteria 0.37 Miles 2005 Impairment located at San Diego River Mouth (aka Dog Beach). Nonpoint/Point Source Indicator bacteria 0.86 Miles 2005 Impairment located at San Dieguito Lagoon Mouth, Solana Beach. Nonpoint/Point Source Indicator bacteria 0.63 Miles 2005 Impairment located at Cameo Cove at Irvine Cove Dr./Riviera W~y, Heisler Park-North Urban Runoti/Storm Sewers Unknown Nonpoint Source Unknown point source Indicator bacteria 0.49 Miles 2005 Impairment located at San Luis Rey River Mouth. Nonpoint/Point Source Page 13 of27 . ' I ' I j i ' I ' j i j J J I J I J ll • • • • j . ' I • PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 C Pacific Ocean Shoreline, San Marcos HA 9 c Pacific Ocean Shoreline, Scripps HA 9 c Pacific Ocean Shoreline, Tijuana HU 9 R Pine Valley Creek (Upper) 9 R Pogi Canyon Creek 9 R Prima Deshecha Creek CAL WATER WATERSHED 90451000 90630000 91111000 91141000 91020000 90130000 SWRCB APPROVAL DATE: OCTOBER 25, 2006 POLLUTANT/STRESSOR Indicator bacteria POTENTIAL SOURCES Impairment located at Moonlight State Beach. Nonpoint/Point Source Indicator bacteria ESTIMATED SIZE AFFECTED 0.5 Miles 3.9 Miles PROPOSED TMDL COMPLETION 2005 2019 This listing for indicator bacteria onliy applies 10 the Childrens Pool Beach area of this ocean shoreline segmem. Nonpoint/Point Source Indicator bacteria Impairment locatedfi"om the border, extending north along the shore. Enterococcus Phosphorus Turbidity DDT Phosphorus Page 14 of27 Nonpoint/Point Source Grazing-Related Sources Concentrated Animal Feeding Operations (permitted, point source) Transient encampments Source Unknown Source Unknown Source Unknown Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 3 Miles 2010 2.9 Miles 2010 2.9 Miles 2019 2.9 Miles 2019 7.8 Miles 2019 1.2 Miles 2019 • • I I I I I I . ' I I . ' I I I 1 J l J • J ' ' ' . • • I • ' . PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 CALWATER. POTENTIAL ESTIMATED PROPOSED TMDL REGION TYPE NAME WATERSHED POLLUTANT/STRESSOR SOURCES SIZE AFFECTED COMPLETION Turbidity 1.2 Miles 2019 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 9 R Rainbow Creek 90222000 Iron 5 Miles 2019 Source Unknown Sulfates 5 Miles 2019 Source Unknown Total Dissolved Solids 5 Miles 2019 Source Unknown 9 R Reidy Canyon Creek 90462000 Phosphorus 3.9 Miles 2019 Source Unknown 9 B San Diego Bay 91010000 PCBs (Polychlorinated biphenyls) 10783 Acres 2019 Source Unknown 9 B San Diego Bay Shoreline, 32nd St San 90822000 Diego Naval Station Benthic Community Effects 103 Acres 2019 Nonpoint!Point Source Sediment Toxicity 103 Acres 2019 Nonpoint/Point Source 9 B San Diego Bay Shoreline, at Americas Cup 90810000 Harbor Copper 88 Acres 2019 Source Unknown PagelS of27 ll I ' . I i I I ' j ' . I • t I l I ' . j l I I J I I I J PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD CAL WATER REGION TYPE NAM£ WATERSJIJtD POLLUTANT/STRESSOR. POTENTIAL SOURCES 9 B San Diego Bay Shoreline, at Coronado Cays 91010000 9 B 9 B 9 B 9 B 9 B San Diego Bay Shoreline, at Glorletta Bay San Diego Bay Shoreline, at Harbor Island (East Basin) San Diego Bay Shoreline, at Harbor Island (West Basin) San Diego Bay Shoreline, at Marriott Marina San Diego Bay Shoreline, between Sampson and 28th Streets 91010000 90821000 90810000 90821000 90822000 Copper Source Unknown Copper Source Unknown Copper Source Unknown Copper Source Unknown Copper Source Unknown Copper Nonpoint/Point Source Mercury Nonpoint/Point Source PAHs (Polycyclic Aromatic Hydrocarbons) Nonpoint/Point Source Page 16 of27 SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 47 Acres 2019 52 Acres 2019 73 Acres 2019 132 Acres 2019 24 Acres 2019 53 Acres 2005 53 Acres 2006 53 Acres 2006 ' j • J I J ' ' • j I I I I i j i j I I I t J I I I J ' . ' . ' j I J • • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25,2006 CAL WATER POTENTIAL ESTIMATED PROPOSED TMDL REGION TYPE NAME WATERSilED POLLUTANT/STRESSOR SOURCES SIZE AFFECTED COMPLETION PCBs (Polychlorinated biphenyls) 53 Acres 2019 Nonpoint/Point Source Zinc 53 Acres 2019 Nonpoint/Point Source 9 c San Diego Bay Shoreline, Chula Vista 90912000 Marina Copper 0.41 Miles 2019 Source Unknown 9 B San Diego Bay Shoreline, Downtown 90821000 Anchorage Benthic Community Effects 7.4 Acres 2019 Nonpoint/Point Source Sediment Toxicity 7.4 Acres 2019 Nonpoint/Point Source 9 c San Diego Bay Shoreline, G Street Pier 90821000 Indicator bactel'ia 0.42 Miles 2006 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 9 B San Diego Bay Shoreline, near Chollas 90822000 Creek Benthic Community Effects 15 Acres 2006 Nonpolnt!Point Source Sediment Toxicity 15 Acres 2006 Nonpoint/Point Source 9 B San Diego Bay Shoreline, near Coronado 90822000 Bridge Benthic Community Effects 37 Acres 2019 Nonpoint/Polnt Source Page 17of27 • • I ' • j I I • J l I I j • j l j I I I j I J ' . • • I j ' . PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DffiGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 B 9 B 9 B San Diego Bay Shoreline, near sub base San Diego Bay Shoreline, near Switzer Creek San Diego Bay Shoreline, North of 24th Street Marine Terminal 90810000 90821000 90832000 Sediment Toxicity Includes Crosby Street/Cesar Chave;; Park area, that will receive additional monitoring. Benthic Community Effects Sediment Toxicity Chlordane Nonpoint/Point Source Nonpoint/Point Source Nonpoint/Point Source Urban Runoff/Storm Sewers Other Boatyards Nonpoint/Point Source Lindane/Hexachlorocyclohexane (HCH) Urban Runoff/Storm Sewers Other Boatyards Nonpolnt/Point Source PAHs (Polycyclic Aromatic Hydrocarbons) Benthic Community Effects Sediment Toxicity Page 18 of27 Urban Runoff/Storm Sewers Other Boatyards Nonpoint/Point Source Nonpoint/Point Source Nonpoint/Point Source 37 Acres 2019 16 Acres 2019 16 Acres 2019 5.5 Acres 2019 5.5 Acres 2019 S.S Acres 2019 9.5 Acres 2019 9.5 Acres 2019 a 1 I j I t ' j l I I I I J ' . • J l j I I l • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLliTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 B 9 c 9 B 9 R San Diego Bay Shoreline, Seventh Street Channel San Diego Bay Shoreline, Shelter Island Shoreline Park San Diego Bay Shoreline, Vicinity of B St and Broadway Piers San Diego River (Lower) 90831000 90810000 90821000 90711000 Benthic Community Effects Sediment Toxicity Indicator bacteria Benthic Community Effects Indicator bacteria Nonpoint/Point Source Nonpoint/Point Source Unknown Nonpolnt Source Unknown point source Nonpoint/Point Source Estimated size of impairment is 0.4 miles around the sho1·eline of the bay. Sediment Toxicity Fecal Coliform Lower 6 miles. Low Dissolved Oxygen Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Nonpoint/Point Source Urban Runoff/Storm Sewers Wastewater Nonpoint/Point Source Impairment transcends adjacent Calwater wtareshed 90712. Page 19 of27 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 9 Acres 2008 9 Acres 2008 0.42 Miles 2006 9.9 Acres 2019 9.9 Acres 2006 9.9 Acres 2019 16 Miles 2005 16 Miles 2019 ' . I a I I ' . I I I I I I l I • • • • I I i ' I I I I I I I I a ' I I I J PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE; OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 E San Elljo Lagoon 90461000 9 R San Juan Creek 90120000 9 E San Juan Creek (mouth) 90120000 Phosphorus Impairment transcends adjacent Calwater watershed 90712. Total Dissolved Solids Urban Runoff/Storm Sewers Unknown Nonpolnt Source Unknown point source Impairment transcends adjacent Calwater watershed 90712. Eutrophic Urban Runoff/Storm Sewers Flow Regulation/Modification Natural Sources Unknown Nonpoint Source Unknown point source Estimated si:::e of impairment is 330 acres. Nonpoint/Polnt Source Indicator bacteria Estimated si:::e of impairment is 150 acres. Nonpoint!Point Source Sedimentation/Siltation Estimated si:::e of impairment is 15 0 acres. Nonpoint/Point Source DDE Source Unknown Indicator bacteria Nonpolnt/Point Source Indicator bacteria Nonpoint/Point Source Page20 of27 16 Miles 2019 16 Miles 2019 566 Acres 2019 566 Acres 2008 566 Acres 2019 1 Miles 2019 1 Miles 2005 6.3 Acres 2008 I J I I • • • • . ' I I t ' • • I I t I I I J I ' • • I j I J ' j l • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 CAL WATER POTENTIAL ESTIMATED PROPOSED TMDL REGION TYPE NAME WATERSHED POLLUTANT/STRESSOR SOURCES SIZE AFFECTED COMPLETION 9 R San Luis Rey River 90311000 Chloride 19 Miles 2019 Impairment located at lower 13 miles. Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Total Dissolved Solids 19 Miles 2019 Industrial Point Sources Agriculture-storm runoff Urban Runoff/Storm Sewers Surface Mining Flow Regulation/Modification Natural Sources Golf course activities Unknown Nonpoint Source Unknown point source 9 R San Marcos Creek 90451000 DDE 19 Miles 2019 Source Unknown Phosphorus 19 Miles 2019 Source Unknown Sediment Toxicity 19 Miles 2019 Source Unknown 9 L San Marcos Lake 90452000 Ammonia as Nitrogen 17 Acres 2019 Source Unknown Nutrients 17 Acres 2019 Source Unknown Page21 of27 • J I J I J I J ' ' • j I i I i • I I I I ' I • j l I PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION Phosphorus 17 Acres 2019 Source Unknown 9 L San Vicente Reservoir 90721000 Chloride 1058 Acres 2019 Source Unknown Color 1058 Acres 2019 Source Unknown Manganese 1058 Acres 2019 Source Unknown pH (high) 1058 Ac1·es 2019 Source Unknown Sulfates 1058 Acres 2019 Source Unknown 9 R Sandia Creek 90222000 Iron 1.5 Miles 2019 Source Unknown Manganese 1.5 Miles 2019 Source Unknown Nitrogen 1.5 Miles 2019 Source Unknown Sulfates 1.5 Miles 2019 Source Unknown Page22 of27 I I I I • j t I • j I ; I I I J • J f I I I I I I I Ill • l • • • l I l • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 CAL WATER POTENTIAL ESTIMATED PROPOSED TMDL REGION TYPE NAME WATERSHED· POLLUTANT/STRESSOR SOURCES SIZE AFFECTED COMPLETION Total Dissolved Solids 1.5 Miles 2019 Urban Runoff/Storm Sewers Flow Regulation/Modification Natural Sources Unknown Nonpoint Source Unknown point source 9 E Santa Margarita Lagoon 90211000 Eutrophic 28 Acres 2019 Nonpoint/Point Source 9 R Santa Margarita River (Upper) 90222000 Phosphorus 18 Miles 2019 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 9 R Segundo Deshecha Creek 90130000 Phosphorus 0.92 Miles 2019 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Turbidity 0.92 Miles 2019 Construction/Land Development Urban Runoff/Storm Sewers Channelization Flow Regulation/Modification Unknown Nonpoint Source Unknown point source 9 R Soledad Canyon 90610000 Sediment Toxicity 1.7 Miles 2019 Source Unknown Page23of27 I J I I I J I J • J ' . l I l I • • I J ' j ' ' I I I I I I • • I l I j PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD REGION TYPE NAME 9 L Sutherland Reservoir 9 L Sweetwater Reservoir 9 R Tecolote Creek CAL WATER WATERSHED 90553000 90921000 90650000 POLLUTANT/STRESSOR Color Manganese pH Oxygen, Dissolved Cadmium Copper Indicator bacteria Lead Phosphorus Toxicity Page 24 of27 POTENTIAL SOURCES Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown Nonpoint/Point Source Nonpoint/Point Source Nonpolnt/Point Source Nonpoint/Point Source Source Unknown Nonpoint/Point Source SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 561 Acres 2019 561 Acres 2019 561 Acres 2019 925 Acres 2019 6.6 Miles 2019 6.6 Miles 2019 6.6 Miles 2006 6.6 Miles 2019 6.6 Miles 2019 6.6 Miles 2019 ll j I I I I I I I l i I J I J • • • j a ' • • PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION Turbidity 6.6 Miles 2019 Source Unknown Zinc 6.6 Miles 2019 Nonpoint/Point Source 9 R Temecula Creek 90251000 Nitrogen 44 Miles 2019 Source Unknown Phosphorus 44 Miles 2019 Sonrce Unknown Total Dissolved Solids 44 Miles 2019 Source Unknown 9 R Tijuana River 91111000 Eutrophic 6 Miles 2019 Nonpoint/Point Source Indicator bacteria 6 Miles 2010 Nonpoint/Point Source Low Dissolved Oxygen 6 Miles 2019 Nonpoint/Point Source Pesticides 6 Miles 2019 Nonpoint/Point Source Solids 6 Mlle.s 2019 Nonpoint/Point Source Synthetic Organics 6 Miles 2019 Nonpoiut/Point Source Page25 of27 li I I I I I I I l I f j r 1 ' ' ' I ; I J I j I ' • j a • • • • • ' . PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25,21106 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION 9 E Tijuana River Estuary 91111000 Trace Elements Nonpoint/Point Source Trash Nonpolnt/Polnt Source Eutrophic Estimated size of impairment is I acre. Nonpoint/Polnt Source Indicator bacteria Estimated size of impairment is 150 acres. Nonpoint/Point Source Lead Estimated size of impairment is 1 acre. Low Dissolved Oxygen Nickel Nonpoint/Point Source Urban Runoff/Storm Sewers Wastewater Unknown Nonpolnt Source Unknown point source Estimated si:::e of impairment is 1 acre. Nonpoint/Point Source Pesticides Estimated si:::e of impairment is 1 acre. Nonpoint/Point Source Thallium Estimated size of impairment is 1 acre. Nonpoint/Point Source Trash Estimated size of impairment is 1 acre. Nonpoint/Point Som·ce Page26 of27 6 Miles 2019 6 Miles 2019 1319 Acres 2019 1319 Acres 2010 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 I I . ' I I I J I I . ' . ' • • • J • J • • a I I j l I I i • • I I I I I J PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED PROPOSED TMDL REGION TYPE NAME CAL WATER WATERSHED POLLUTANT/STRESSOR POTENTIAL SOURCES SIZE AFFECTED COMPLETION Turbidity 1319 Acres Source Unknown ABBREVIATIONS REGIONAL WATER QUALITY CONTROL BOARDS WATER BODY TYPE 1 North Coast B = Bays and Harbors 2 San Francisco Bay C= Coastal Shorelines/Beaches 3 Central Coast E = Estuaries 4 Los Angeles L = Lakes/Reserviors 5 Central Valley R= Rivers and Streams 6 Lahontan S= Saline Lakes 7 Colorado Rlver Basin T= Wetlands, Tidal 8 Santa Ana W= Wetlands, Freshwater 9 San Diego CAL WATER WATERSHED "Calwater Watershed" is the State Water Resources Control Board hydrological subunit area or an even smaller area delineation. GROUP A PESTICIDES OR CHEM A aldrin, dieldrin, chlordane, endrin, heptachlor, heptachlor epoxide, hexachlorocyclohexane (including lindane), endosulfan, and toxaphene Page27 of27 2019 . ' • -- - .. - ---- -- -• • • • - Muroya Storm Water Management Plan CHAPTER4 DETENTION BASIN DESIGN CALCULATIONS OE:OE H:\REPORTS\0042\219\SWMP01.doc W.0.2352·146'170 11.13tV2D0611:13AM Muroya Detention Basin Results 100 YEAR RESULTS Project : · Muroya Del Run Name: Run 1 . Reservoir : jH!l$ervoir-1 Basin Model : Mel MOdel: Dev_100 Met1 ···': -.-. Start of Run : 01Jan01 0000 End of Run : 01Jan01 0600 EMecution Time 16Nov06 1629 · ContJoiSpecs: Dev_lOO Volurne Units: lo Inches ! Acre·Feet ,-;Computed Results-------------------- · Pii~k lnftow : 11.150 [cis) Date/Time of Peak Inflow : G1 Jan 01 0410 peak' St~ge·: :·Peak Outflow: 4.0960 [cis) Date/Time of Peak Outflow : 01 Jan 01 0417 . :rcltallnii~: frn) Peek Storage : 0.121 S1 [ac:ft) · · 'r ot~IOtiUiow : [In) Peak Elevation: 310.B7 [It) ... Print I Oose· • -.. STAGE:-STORAGE TABLE MUROYA .. Elevation Area Total Volume (ft) (acres) (acre-ft.) .. 308.0 0.0246 0.00 309.0 0.0365 0.03 310.0 0.0491 0.07 311.0 0.0622 0.13 .. 312.0 0.0763 0.20 '""' ·-.. .... -.... • .. .. .. • • • ---.. .... • .. • .. • 11/27/2006 1 of1 H:\EXCEL\0042\219\Stage-Storage-ENG.xls .. • • .. • ... -- - ... - ... • - ---• ---• .. • • DISCHARGE RATING"CURVE Riser Perforations Calculations Based on Orifice Equation BOTIOM ELEVATION OF HOLE NO.1 = HOLE NO. 1 DIAMETER= NUMBER OF ORIFICES= WEIR EQUATION where Headwate Elevation (feet) 308 309 310 311 312 313 314 C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H =Water Height over Weir (feet) Hole 111 Riser..OrH (Cfs) 0.00 2.01 3.30 4.22 4.97 5.62 6.21 H:\EXCa\00421219\0RJ~ 1112712006 MUROYA ORIFICE CALCULAnONS 308.00 feet 10.0 inches 1.0 0.833333 feet 0.545415 area {sq ft) Orifice Equation ... where C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feet/s2 h = Effective Head on the Orifice Measured from the Centroid of the Opening "--·"·-~~-~---·--·----~---~-~--... -..........., •. ~ ··- .. -.... Rational Method Hydrograph Calculations -for -MUROYA City of Carlsbad, CA -,_ 01oo= 11.15 cfs Tc= 10 min C= 0.4 -#= 36 P1oo,s= 2.6 in A= 4.95 acres (7.44*P6*D"-.645) (/*D/60) (V1-VO) (A VI Ll7) (Q=ciA) (Re-ordered) -D I VOL .6.VOL I (INCR) Q VOL ORDINATE -# (MIN) (IN/HR) (IN) (IN} ~IN/HR) (CFS} (CF) SUM= 0 0 0.00 0.00 0.73 4.38 11.15 6690 0.00 -1 10 4.38 0.73 0.20 1.22 2.42 1452 0.31 2 20 2.80 0.93 0.14 0.87 1.72 1030 0.31 -3 30 2.16 1.08 0.12 0.70 1.38 827 0.33 4 40 1.79 1.19 0.10 0.59 1.17 702 0.33 -5 50 1.55 1.29 0.09 0.52 1.03 616 0.35 ,,. 6 60 1.38 1.38 0.08 0.47 0.92 553 0.35 7 70 1.25 1.46 0.07 0.42 0.84 504 0.37 '-8 80 1.15 1.53 0.07 0.39 0.77 465 0.38 9 90 1.06 1.59 0.06 0.36 0.72 433 0.40 • 10 100 0.99 1.65 0.06 0.34 0.68 406 0.41 11 110 0.93 1.71 0.05 0.32 0.64 382 0.44 ... 12 120 0.88 1.76 0.05 0.31 0.60 362 0.45 • 13 130 0.84 1.81 0.05 0.29 0.57 345 0.49 14 140 0.80 1.86 0.05 0.28 0.55 329 0.50 IIIII 15 150 0.76 1.91 0.04 0.27 0.53 315 0.55 16 160 0.73 1.95 0.04 0.26 0.50 303 0.57 • 17 170 0.70 2.00 0.04 0.25 0.49 292 0.64 18 180 0.68 2.04 0.04 0.24 0.47 281 0.68 ... 19 190 0.66 2.08 0.04 0.23 0.45 272 0.77 20 200 0.63 2.11 0.04 0.22 0.44 263 0.84 • 21 210 0.61 2.15 0.04 0.21 0.43 255 1.03 22 220 0.60 2.19 0.03 0.21 0.41 248 1.17 ... 23 230 0.58 2.22 0.03 0.20 0.40 241 1.72 • 24 240 0.56 2.26 0.03 0.20 0.39 235 2.42 25 250 0.55 2.29 0.03 0.19 0.38 229 11.15 .. 26 260 0.54 2.32 0.03 0.19 0.37 223 1.38 27 270 0.52 2.35 0.03 0.18 0.36 218 0.92 til 28 280 0.51 2.38 0.03 0.18 0.35 213 0.72 29 290 0.50 2.41 0.03 0.18 0.35 208 0.60 -30 300 0.49 2.44 0.03 0.17 0.34 204 0.53 .. 31 310 0.48 2.47 0.03 0.17 0.33 200 0.47 32 320 0.47 2.50 0.03 0.16 0.33 196 0.43 .. 33 330 0.46 2.53 0.03 0.16 0.32 192 0.39 34 340 0.45 2.55 0.03 0.16 0.31 188 0.36 • 35 350 0.44 2.58 0.03 0.16 0.31 185 0.34 36 360 0.43 2.61 0.00 0.00 0.00 0 0.32 -SUM= 20057 cubic feet • 0.46 acre-feet -Check: V = C*A"Ps V= 0.43 acre-feet .. OK .. • RM-Hydrograph-Muroya.xls 11/27/2006 .. • -- ... - .. • -• - -• • - • -• RATING TABLE FOR FLOW OVER RISER BOX Detention Basin Muroya 5' x 5' Concrete Riser ( 4' x 4' opening) WEIR EQUATION Q = CLH312 where ORIFICE EQUATION C =Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) Q = CA(2gH)112 C = Orifice Coefficient =0.60 A = Cross Sectional Area of Orifice (ft2) g = Gravitational Constant (32.2 tvs2) H = Water Height over Centroid of Orifice (ft) Water Height (feet} Riser Length (feet) Riser Width (feet) Weir Coeff. Weir Length (feet) Orifice Coeff. Orifice Area (tr) Weir Flow (cfs) Orifice Weir Orifice Flow Flow Flow CLOGGING FACTOR 10% {cfs) {cfs) (cfs) 0.2 ' 4 4 2.7 16.00 0.6 16.00 3.84 34.45 3.45 29.29 0.4 4 4 2.7 16.00 0.6 16.00 10.93 48.72 9.84 41.42 &fJtiits-~~:iill!:ii:.~~£4'~I~~~~Jli~~;!§."'aW~~,g~~~~~oo~~~~"\'ir!!§:27~!.£~'®m 0.6 4 4 . 3.1 16.00 0.6 16.00 22.68 59.67 20.41 50.72 0.8 4 4 3.2 16.00 0.6 16.00 36.06 68.91 32.46 58.57 1.0 4 4 3.3 16.00 0.6 16.00 52.80 n.04 47.52 65.48 1.2 4 4 3.3 16.00 0.6 16.00 69.41 84.39 62.47 71.73 1.4 4 4 3.3 16.00 0.6 16.00 87.46 91.15 78.72 77.48 1.6 4 4 3.3 16.00 0.6 16.00 106.86 97.45 96.17 82.83 1.8 4 4 3.3 16.00 0.6 16.00 127.51 103.36 114.76 87.86 2.0 4 4 3.3 16.00 0.6 16.00 149.34 108.95 134.41 92.61 2.5 4 4 3.3 16.00 0.6 16.00 208.71 121.81 187.84 103.54 3.0 4 4 3.3 16.00 0.6 16.00 274.36 133.44 246.92 113.42 3.5 4 4 3.3 16.00 0.6 16.00 345.73 144.13 311.16 122.51 4.0 4 4 3.3 16.00 0.6 16.00 422.40 154.08 380.16 130.97 H:\EXCEL\0042\2.1 9\0verflow..Riser-.lds .. "' - - • ... , - - - .... • - • ... • • - , Date 31 Dec 00 01. Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol. 01 Jan 01 01 Jan Ol. Ol. Jan 01 01 Jan Ol. 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 2400 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 HMS * Summary of Results fo~ Reservoi~-l Project Muroya Det Run Name : Run 1 Start of Run Bnd of Run Execution 'l'ime Reservoir Storage (ac-ft} 0.00000 0.00002 0.00008 0. 00017 0.00030 0.00046 0.00064 0.00085 0.00108 0.00133 0.00160 0.00187 0.002l.l 0.00234 0. 00254 0.00272 0.00289 0.00304 0.00318 0.00331 0.00343 0.00353 0.00363 0.00373 0.00382 0.00390 0.00398 0.00405 0.00412 0.00419 0.00425 0.00431 0.00437 0.00442 0. 00446 0.00450 0.00454 0.00457 0.00460 0.00463 0.00466 OlJanOl 0000 Basin Model 01Jan01 0600 Met. Model 16Nov06 1629 Control Specs Reservoir Elevation (ft} 308.00 308.00 308.00 308.01 308.01 308.02 308.02 308.03 308.04 308.04 308.05 308.06 308.07 308.08 308.08 308.09 308.10 308.10 308.11 308.11 308.11 308.12 308.12 308.12 308.13 308.13 308.13 308.14 308.14 308.14 308.14 308.14 308.15 308.15 308.15 308.15 308.15 308.15 308.15 308.15 308.16 Dav_lOO Met 1 Dev_lOO Inflow (cfs) 0.0000 0.0310 0.0620 0.0930 0.1240 0.1550 0.1860 0.2170 0.2480 0.2790 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0. 3100 0. 3100 0.3100 0.3100 0.3100 0.3120 0.3140 0.3160 0.3180 0.3200 0.3220 0.3240 0.3260 0.3280 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 OUtflow (cfs) 0.0000 0.0014 0.0053 O.Ol.l7 0.0203 0.0308 0.0431 0.0571 0.0725 0.0894 0.1075 0.1254 0.1416 0.1565 0.1700 0.1824 0.1936 0.2039 0.2133 0.2218 0.2296 0.2368 0.2435 0.2498 0.2557 0.2613 . 0.2666 0.2715 0.2763 0.2807 0.2850 0.2890 0.2926 0.2959 0.2989 0.3016 0.3041 0.3064 0.3085 0.3104 0.3121 .. • .. • • -• - ·-- - - - .. -... - • .. Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Ja:Jl 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01. 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01. 01 Jan 01 01 Jan 01 01 Jan 01. 01 Jan 01. 01. Jan 01. Time 0041 0042. 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052. 0053 0054 DOSS 0056 0057 0058 0059 0100 01.01 0102 0103 0104 0105 0106 0107 01.08 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 012.1 012.2 0123 0124 0125 0126 0127 0128 0129 0130 0131 Reservoir Storage (ac-ft} 0.00468 0.00471 0.00473 0.00476 0.00479 0.00481 0.00484 0.00487 0.00490 0.00492 0.00495 0.00497 0.00500 0.00502 0.00503 0.00505 0.00507 0.00508 0.00509 0.00510 0.00512 0.00513 0. 00514 0.00516 0.00518 0.00520 0.00522 0.00524 0.00526 0.00528 0.00530 0.00532 0.00534 0.00536 0.00538 0.00540 0.00542 0.00544 0.00546 0.00548 0.00550 0.00552 0.00554 0.00556 0.00558 0.00560 0.00563 0.00565 0.00567 0.00570 0.00572 Reservoir Elevation Page: 2 (ft} 308.16 308.H 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.17 308.17 308.17 308.17 308.17 308.1.7 308.1.7 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.19 308.19 308.19 308.19 308.19 308.19 308.19 308.19 J:nflow (efs} 0.3320 0.3340 0.3360 0.3380 0.3400 0.3420 0.3440 0.3460 0.3480 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3520 0.3540 0.3560 0.3580 0.3600 0.362.0 0.3640 0.3660 0.3680 0.3700 0.3710 0.3720 0.3730 0.3740 0.3750 0.3760 0.3770 0.3780 0.3790 0.3800 0.3820 0.3840 0.3860 0.3880 0.3900 0.3920 0.3940 0.3960 0.3980 0.4000 0.4010 outflow (efs} 0.3138 0.3155 0.3172 0.3190 0.3207 0.3225 0.3243 0.32.61 0.3280 0.3298 0.3316 0.3332 0.3347 0.3361 0.3373 0.3384 0.3394 0.3404 0.34l2 0.3420 0.3428 0.3437 0.3447 0.3458 0.3469 0.3482 0.3495 0.3509 0.3523 0.3538 0.3552 0.3567 0.3581 0.3594 0.3608 0.362.1 0.3633 0.3646 0.3658 0.3670 0.3682 0.3696 0.3709 0.3723 0.3738 0.3753 0.3769 0.3785 0.3801 0.3818 0.3834 - -,.,.. - '"" - '"" - - -- Date OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. 01 Jan Ol OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan OJ. OJ. Jan 01 01 Jan 01 OJ. Jan 01 TiJne 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 Reservoir Storage (ac:-ft) 0.00575 0.00577 0.00579 0.00581 0.00583 0.00586 0.00588 0.00589 0.00591 0.00593 0.00596 0.00598 0.00601 0.00603 0.00606 0.00609 0.00613 0.00616 0. 00619 0.00623 0.00626 0.00629 0.00632 0.00635 0.00637 0.00640 0.00642 0.00645 0.00647 0.00649 0.00652 0.00655 0.00659 0.00662 0.00666 0.00670 0.00674 0.00678 0.00683 0.00687 0.00691 0.00695 0.00699 0.00702 0.00705 0.00709 0.00712 0.00714 0.00717 0.00720 0.00723 Reservoir EJ.evati.on (ft) Page• 3 308.19 308.19 308.].9 308.19 308.].9 308 • .20 308.20 308.20 308 • .20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.21 308.21 308.21 308.21 308.2]. 308.21 308.21 308.21 308.21 308.21 308.21 308.22 308.22 308.22 308.22 308.22 308.22 308.22 308.22 308.22 308.23 308.23 308.23 308.23 308.23 308.23 308.23 308.24 308.24 308.24 308.24 308.24 308.24 308.24 In fl. ow (cfs) 0.4020 0.4030 0.4040 0.4050 0.4060 0.4070 0.4080 0.4090 0.4100 0.4130 0.4160 0.4190 0.4220 0.4250 0.4280 0. 4310 0.4340 0.4370 0.4400 o. 4410 0. 4420 0.4430 0.4440 0.4450 0. 4460 0.4470 0. 4480 0.4490 0.4500 0.4540 0.4580 0.4620 0.4660 0.4700 0.4740 0.4780 0.4820 0.4860 0.4900 0. 4.910 0. 4.920 0.4930 0.4940 0.4950 0.4960 0.4970 0.4980 0.4990 0.5000 0.5050 0.5100 Out fl. ow (c:fs) 0.3850 0.3866 0.388]. 0.3895 0.3909 0.3923 0.3936 0.3949 0.3962 0.3976 0.3991 0.4007 0.4024 0.4043 0.4063 0.4083 0.4104 0.4127 0.4149 0.4172 0.4193 0.4214 0.4233 0.4252 0.4270 0.4287 0.4304 0.4320 0.4335 0.4351 0.4370 0.4390 0.4412 0.4436 0.4461 0.4487 0.4515 0.4544 0.4573 0.4602 0.4630 0.4656 0.4681 0.4704 0.4726 0.4747 0.4767 0.4787 0.4805 0.4824 0.4846 • ... .. ---- --------... ----- • • Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol. Jan 01 01 Jan Ol 01 Jan 01 Ol. Jan 01 01 Jan Ol 01 Jan Ol 01 Ja.u 01 01 Jau 01 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 01 Jau 01 01 Ja.u 01 01 Jau 01 01 Jau 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jau 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Ja.u 01 01 Jan 01 01 Jan 01 01 Jan 01 TilDe 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 Reservoir Storage (ac-ft) 0.00727 0.00731 0.00735 0.00740 0.00745 0.00750 0.00755 0. 00761 0.00766 0. 00771 0.00776 0.00781 0.00786 0.00790 0.00795 0.00799 0.00803 0.00807 0.00812 0.00816 0.00822 0.00828 0.00834 0.00840 0.00847 0.00854 0.00862 0.00870 0.00878 0.00885 0.00893 0.00900 0.00907 0.00914 0.00921 0.00928 0.00935 0.00942 0.00949 0.00957 0.00965 0.00973 0.00982 0.00992 0.01001 0. 0101:1 0.01022 0.01033 0.01043 0.01054 0.01065 Reservoir E1evation (ft) Page: 4 308.24 308.24 308.25 308.25 308.25 308.25 308.25 308.25 308.26 308.26 308.26 308.26 308.26 308.26 308.26 308.27 308.27 308.27 308.27 308.27 308.27 308.28 308.28 308.28 308.28 308.28 308.29 308.29 308.29 308.30 308.30 308.30 308.30 308.30 308.31 308.31 308.31 308.31 308.32 308.32 308.32 308.32 308.33 308.33 308.33 308.34 308.34 308.34 308.35 308.35 308.35 J:nfl.ow (cfs) 0.5150 0.5200 0.5250 0.5300 0.5350 0.5400 0.5450 0.5500 0.5520 0.5540 0.5560 0.5580 0.5600 0.5620 0. 5640 0.5660 0.5680 0.5700 0.5770 0.5840 0.5910 0.5980 0.6050 0. 6120 0.6190 0.6260 0.6330 0.6400 0.6440 0.6480 0.6520 0.6560 0.6600 0.6640 0.6680 0.6720 0.6760 0.6800 0.6890 0.6980 0.7070 0.7160 0. 7250 0.7340 0.7430 0.7520 0.7610 0.7700 0.7770 0.7840 0.7910 Outf1ow (cfs) 0.4871 0.4898 0.4927 0.4957 0.4990 0.5024 0.5059 0.5096 0.5132 0.5167 0.5201 0.5234 0.5265 0.5296 0.5325 0.5354 0. 5382 0.5409 0.5438 0.5470 0.5506 0.5545 0.5586 0.5630 0.5676 0.5725 0.5775 0.5827 0.5879 0.5931 0.5981 0. 6030 0.6079 0.6126 0.6173 0.6220 0.6266 0.6311 o. 6358 0.6409 0.6463 0.6521 0.6581 0.6644 0.6710 0.6777 0.6947 0. 6918 0.6990 0.7062 0.71.34 • • • • .. - - -- - .. -.. ----- - Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Ja.n 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol 01 Jan 01 01 Jan 01 rime 0314 0315 0316 0317 0318 0319 03.20 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 033.2 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 Reservoir Storage (ac-ft) 0.01075 0.01086 0.01097 0.01107 0.01118 0.01129 0.01139 0.01150 0. 01163 0.01178 0. 01193 0.01210 0.01227 0.01246 0.01265 0.01286 0.01307 0.01328 o. 01349 0. 01370 0. 01391 0.01413 0. 01434 0.01455 0.01476 0. 01497 0.01518 0.01542 0.01571 0.01604 0.0164.2 0.01684 0.01729 0.01778 0.01829 0.01884 0.01940 0.02000 0.02064 0. 02131 0.02202 0.02276 0.02352 0. 02431 0.0.2512 0.0.2595 0.0.2680 0.02820 0.03064 0.03410 o. 03860 Reservoi:~; Elevation (ft) Page: 5 308.36 3·08. 36 308.37 308.37 308.37 308.38 308.38 308.38 308.39 308.39 308.40 308.40 308.41 308.42 308.42 308.43 308.44 308.44 308.45 308.46 308.46 308.47 308.48 308.48 308.49 308.50 308.51 308.51 308.52 308.53 308.55 308.56 308.58 308.59 308.61 308.63 308.65 308.67 308.69 308.71 308.73 308.76 308.78 308.81 308.84 308.87 308.89 308.94 309.02 309.10 309.21 Inflow (cfs) 0.7980 0.8050 0.8120 0.8190 0.8260 0.8330 0.8400 0.8590 0.8780 0.8970 0. 9160 0.9350 0.9540 0.9730 0.9920 1.0110 1.0300 1.0440 1. 0580 1. 0720 1.0860 1.1000 1.1140 1.1280 1.1420 1.1560 1.1700 1. 2250 1 • .2800 1.3350 1.3900 1.4450 1.5000 1.5550 1. 6100 1. 6650 1.7200 1.7900 1.8600 1.9300 .2.0000 2.0700 2.1400 2.2100 2.2800 2.3500 2.4.200 3.2930 4.1660 5. 0390 5.91.20 Outflow (cfs) 0.7205 0.7277 0.7348 o. 7419 0.7490 0.7561 0.7632 0. 7708 0.7794 0.7890 0.7993 0.8105 0.8223 0. 8348 o. 8478 0.8613 0. 87 54 0.8896 0.9039 0.9181 0. 9323 0.9465 0.9606 0.9748 0.9889 1.0030 1.0171 1.0331 1.0524 1.0749 1.1003 1.1283 1.1586 1.1912 1.2257 1.2620 1.3000 1. 3401 1.3829 1.4281 1. 4754 1.5248 1. 5760 1.6288 1. 6832 1.7389 1.7959 1. 8895 2.0306 2.1424 2.2872 .. • - -- • - • - .. -• -- • -.. -• Date 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 Ol Jan 01 01 Jan 01 Ol Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 Ol Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 Tilne 0405 0406 0407 0408 0409 0410 OH1 0412 0413 0414 0415 04.16 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 Reservoir Storage (ac-ft) 0.04407 0.05048 0.05779 0.06596 0.07500 0.08500 0.0947:! 0.10291 0.10959 0.11480 0.11857 0.12093 0.12191 0.12154 0.11984 0.11685 0.11322 0.10961 0.10601 0.10242 0.09884 0.09528 0.09172 0.08818 0.08465 0. 08113 0.07764 0.07420 0.07080 0.06747 0. 06425 0.06115 0.05815 0.05526 0.05246 0.04976 0.04715 0.04465 0.04223 0.03991 0.03766 0.03550 0.03342 0.03141 0.02949 0.02768 0.02603 0.02451 0.02311 0.02:1.83 0.02065 Reservoir Elevation (ft) 309.35 309.51 309.69 309.90 310.08 310.25 310.41 310.55 310.66 310.75 310.81 310.85 310.87 310.86 310.83 310.78 310.72 310.66 310.60 310.54 310.48 310.42 310.36 310.30 310.24 310.19 310.13 310.07 310.01 309.94 309.86 30!1.78 309.70 309.63 309.56 309.49 309.43 30!1.37 309.31 30!1.25 309.19 30!1.14 309.09 309.04 308.98 308.92 308.87 308.82 308.77 308.73 308.69 Page: 6 Inflow (cfs) 6.7850 7.6580 8.5310 9.4040 10.2770 11.1500 10.1730 9.1960 8.2190 7.2420 6.2650 5.2880 4.3110 3.3340 2. 3570 1.3800 1.3340 1. 2880 1.2420 1.1960 1.1500 1.1040 1.0580 1.0120 0.9660 0.9200 0.9000 0.8800 0.8600 0.8400 0.8200 0.8000 0.7800 0.7600 0. 7400 0. 7200 0.7080 0.6960 0.6840 0.6720 0.6600 0.6480 0.6360 0.6240 0.6120 0.6000 0.5930 0.5860 0.5790 Q.S120 0.5650 Outflow (cfs) 2.4637 2.6704 2.9062 3.1696 3.3767 3.5300 3.6791 3.8046 3.9070 3.9870 4.0448 4.0810 4.0960 4.0903 4.0643 4.0184 3.9627 3.9073 3.8521 3.7971 3.7422 3.6876 3.6331 3.5788 3.5247 3.4707 3.4172 3.3644 3.3122 3.2185 3.1147 3.0145 2.9178 2.8245 2.7344 2.6473 2.5632 2.4824 2.4045 2.3294 2.2572 2.1875 2.1203 2.0556 1.9757 1.8549 1.7438 1.6420 1.5486 1. 4.62.7 1.3838 • ... • • .. • • - ---- -- - - ·--- .. Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 JiUl 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Reservoir Storage {ac-ft) 0.01957 0.01858 0.01766 0.01681· 0. 01603 0.01531 0.01465 0.01403 0. 01346 0.01294 0.01245 0.01200 0.01158 0.01119 0.01082 0.01049 0.01017 0.00988 0.00961 o. 00936 0. 00912 0.00890 0.00870 0.00850 0.00832 0.00815 0.00799 0.00784 0.00769 0.00756 0.00743 0.00730 0.00719 0.00707 0.00697 0.00686 0.00677 0.00667 0.00658 0.00650 0.00642 0.00634 0.00626 0.00619 0.00612 0.00605 0.00599 0.00593 0.00587 0.00581 0.00576 Reservoir Elevation (ft) 308.65 308.62 308.59 308.56 308.53 308.51 308.49 308.47 308.45 308.43 308.42 308.40 308.39 308.37 308.36 308.35 308.34 308.33 308.32 308.31 308.30 308.30 308.29 308.28 308.28 308.27 308.27 308.26 308.26 308.25 308.25 308.24 308.24 308.24 308.23 308.23 308.23 308.22 308.22 308.22 308.21 308.21 308.:Z1 308.21 308.20 308.20 308.20 308.20 308.20 308.19 308.19 Page: 7 :tnflow (c:fs) 0.5580 0.5510 0.5440 0.5370 0.5300 0.5240 0.5180 0.5120 0.5060 o.sooo 0.4940 0.4880 0.4820 0.4760 0.4700 0.4660 0.4620 0.4580 0.4540 0.4500 0.4460 0.4420 0.4380 0.4340 0.4300 0.4260 0.4220 0.4180 0.4140 0.4100 0.4060 0.4020 0.3980 0.3940 0.3900 0.3870 0.3840 0.3810 0.3780 0.3750 0.3720 0.3690 0.3660 0.3630 0.3600 0.3580 0.3560 0.3540 0.3520 0.3500 0.3480 Outflow (cfs) 1.3113 1.2445 1.1830 1.1264 1.0741 1.0258 0.9813 0.9401 0.9021 0.8669 0.8343 0.8040 0.7758 0.7497 0.7253 0.7026 0.6815 0.6620 0. 6438 0.6269 0.6111 0.5964 0.5826 0.5696 0.5575 0.5461 o. 5353 0.5251 0.5155 0.5064 0.4977 0.4894 0.4815 0.4740 0.4668 0.4599 0.4533 0.4471 0.4411 0.4354 0.4299 0.4247 0.4196 0.4148 0.4101 0.4056 0.4013 0.3972 0.3933 0.3896 0.3860 • fill • ... Date Ti.me Reservoir Reservoir Inf~ow Outf~ow Storage E~evation (cfs) (cfsl -(ac-nl (ft) -01 Jan 01 0547 0.00571 308.1!1 0.3460 0.3826 01 Jan 01 0548 0.00566 308 .1!1 0.3440 0.3792 -01 Jan 01 0549 0.00561 308.19 0.3420 0.3760 01 Jan 01 0550 0.00557 308.19 0.3!00 0.3730 .. 01 Jan 01 0551 0.00552 308.18 0.3380 0.3700 .... 01 Jan 01 0552 0.00548 308.18 0.3360 0.3671 01 Jan 01 0553 0.00544 308.18 0.3340 0.3642 .. 01 Jan 01 0554 0.00540 308.~8 0.3320 0.3615 01 Jan 01 0555 0.00535 308.18 0.3300 0.3588 -01 Jan 01 0556 0.00532 308.18 0.3280 0.3562 "" 01 Jan 01 0557 0.00528 308.18 0.3260 0.3536 01 Jan 01 0558 0.00524 308.17 0.3240 0.3511 """ 01 Jan 01 0559 0.00520 308.17 0.3220 0.3486 01 Jan 01 0600 0.00517 308.17 0.3200 0.3462 • -- - - - ---- ill -• ... ... Page: 8 ... • • --- • ... -- .. • ... .. - .. .. .. Muroya Storm Water Management Plan CHAPTER 5-SITE DESIGN & LOW IMPACT DEVELOPMENT (LID) BMPs 5.1 -Site Design & LID BMPs Priority projects, such as the Muroya development, shall be designed to minimize, to the maximum extent practicable, the introduction of pollutants generated from site runoff and address conditions of concern that may impact the receiving watershed and/or downstream water conveyance systems. Site design & LID components can significantly reduce the impact of a project on the environment. Low Impact Development is an innovative stormwater management approach with the basic principle that is modeled after nature: manage rainfall runoff at the source using uniformly distributed decentralized micro-scale controls. LID's goal is to mimic a site's predevelopment hydrology by using design practices and techniques that effectively capture, filter, store, evaporate, detain and infiltrate runoff close to its source. 5.2 -BMP-1 -Minimize Directly Connected Impervious Areas Methods of accomplishing this goal include: Increase building density (number of stories above or below ground); Construct walkways, trails, patios, overflow parking lots and alleys and other low-traffic areas with permeable surfaces, such as pervious concrete, porous asphalt, unit pavers, and granular materials; Construct streets, sidewalks and parking lot aisles to the minimum widths necessary, provided that public safety and a walkable environment for pedestrians are not compromised; Minimize the use of impervious surfaces, such as decorative concrete, in the landscape design . In order to achieve this site design BMP, all streets, sidewalks, and parking lots to the minimum widths necessary to be in accordance with standards set forth by the City of Carlsbad. 5.3 -BMP-2 -Conserve Natural Areas The Muroya project site is currently an agricultural site. Much of the existing natural vegetation currently onsite will remain in its natural state . DE:de H:IREPORTS\00421219\SWMP-03.doc W.O. 42-219 71912009 9.19 AM • .. .. ·-.. ... - .. ... • .. .. .. .. ... .. ... • Muroya Storm Water Management Plan 5.4-BMP-3 -Minimize Directly Connected Impervious Areas Methods of accomplishing this goal include: Draining rooftops into adjacent landscaping prior to discharging to the storm drain. Draining roads, sidewalks and impervious trails into adjacent landscaping . These site design techniques will be implemented within the Muroya development. Rooftop runoff will be discharged to vegetated landscaped areas on each residence, draining overland via the vegetated landscaping to the receiving area drain system. This conveyance through the natural landscaping provides passive treatment for these flows and also allows for partial infiltration via the on-lot vegetated areas, targeting the potential bacterial and nutrient pollutants of concern generated via each family residence . 5.5 -BMP-4 -Maximize Canopy Interception & Water Conservation In order to maximize canopy interception and water conservation: Preserve existing native trees and shrubs; Plant additional native or drought tolerant trees and large shrubs in place of non-drought tolerant exotics . Landscaping on site will incorporate the planting of native, drought tolerant vegetation to meet this requirement. 5.6 -BMP 5/6/7/8/9 -Protect Slopes & Channels Methods of accomplishing this goal include: Use of natural drainage systems to the maximum extent practicable. Stabilize permanent channel crossings. Planting native or drought tolerant vegetation on slopes . Energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels. Minimize disturbances to natural drainages . All slopes will be stabilized by erosion control measures. All outfalls will be equipped with an energy dissipation device and/or a riprap pad to prevent erosion . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42·219 719/2009 9:19AM .... -.. ---- - • - .. • ... -• .. • Muroya Storm Water Management Plan CHAPTER 6-SOURCE CONTROL 6.1 -BMP 10-Design Outdoor Material Storage Areas to Reduce Pollution This is not applicable to the project site as no hazardous materials will be stored outdoors. 6.2 -BMP 11 -Design Trash Storage Areas to Reduce Pollution Introduction It should be noted that no trash storage areas will be located on the Muroya project site. Each individual resident is to store trash in their respective garage until weekly collection . 6.3-BMP 12/13-Integrated Pest Management (IPM) Principles Integrated pest management {IPM) is an ecosystem-based pollution prevention strategy that focuses on long-term prevention of pests or their damage through a combination of techniques such as biological control, habitation manipulation, modification of cultural practices, and use of resistant plant varieties. Pesticides are used only after monitoring indicates they are needed according to established guidelines. Pest control materials are selected and applied in a manner that minimizes risks to human health, beneficial and non-target organisms, and the environment. More information may be obtained at the UC Davis website (http://www.ipn.ucdavis.edu/WATERIU/index.html) . 6.3.1 -Eliminate and/or reduce the need for pesticide use in the project design by: -Plant pest-resistant or well-adapted plant varieties such as native plants -Discourage pests by modifying the site and landscaping design. In order to achieve this source control BMP objective, native vegetation will be used throughout the project site in accordance with the landscape architects plans. 6.3.2 -Distribute IPM educational materials to future site residents/tenants . Minimally, educational materials must address the following topics: -Keeping pests out of buildings and landscaping using barriers, screens, and caulking; -Physical pest elimination techniques, such as, weeding, squashing, trapping, washing, or pruning out pests; -Relying on natural enemies to eat pests; -Proper use of pesticides as a last line of defense . The Homeowners Association will make all homeowners aware of the aforementioned RWQCB regulations through a homeowners' education program. Homeowners should be notified via HOA newsletter prior to the rainy season (Oct. 1st) of storm water requirements. DE:de H:IREPORTS\0042\219\SWMP·03.doc W.O. 42-219 7/9/2009 9:19AM • .. - -- • • • • • • • Muroya Storm Water Management Plan 6.4-BMP 14/15/16-Efficient Irrigation Systems & landscaping Design In compliance with the Water Conservation in Landscaping Act, the following methods to reduce excessive irrigation runoff shall be implemented: Employ rain shutoff devices to prevent irrigation during and after precipitation. Design irrigation systems to each landscape area's specific water requirements. Use flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines. All Home Owners' Association (HOA) maintained landscaped areas will include rain shutoff devices to prevent irrigation during and after precipitation. Flow reducers and shutoff valves triggered by pressure drop will be used to control water loss from broken sprinkler heads or lines. 6.5 -BMP 17 & 18 -Storm Water Conveyance Systems Stenciling and Signage The proposed development will incorporate concrete stamping, or equivalent, of all storm water conveyance system inlets and catch basins within the project area with prohibitive language (e.g., "No Dumping -I Live in <<name receiving water>>"), satisfactory to the City Engineer. Stamping may also be required in Spanish. 6.6-BMP 19-Private Roads The design of private roadway drainage shall use at least one of the following: Rural swale system-street sheet flows to vegetated swale or gravel shoulder, curbs at street corners, culverts under driveways and street crossings; Urban curb/swale system-street slopes to curb, periodic swale inlets drain to vegetated swale/biofilter; Dual drainage system-first flush captured in street catch basins and discharged to adjacent vegetated swale or gravel shoulder. The proposal of grass lined swales/biofilters lining the proposed private roads within the Muroya project has been evaluated and has been deemed infeasible due to the following: Grass lined channels would be located beneath the grade level of the adjacent roads and sidewalks it serves to treat. However, water drained to these grassy channels would enter the existing clay type soils, causing possible swelling of the clay layers. This swelling will ultimately undermine the adjacent pervious surfaces (roads and sidewalks), causing cracking and failure of these surfaces. DE:de H:IREPORTS\00421219\SWMP-03.doc W.O. 42-219 7/9/2009 9.19 AM ... - - -- - .. ... ... ... ... • • • .. .. - Muroya Storm Water Management Plan The site design proposes parking on the shoulders of the proposed private roads. As this is a sizeable single-family development, extensive use of parking areas could lead to excessive wear and tear upon these proposed natural swales bordering the roads, causing erosion and silt pollutants to enter the storm drain system. To ensure water quality treatment is maintained, a BMP Treatment Train incorporating BMPs and other LIDs have been provided within the Muroya project site. 6. 7 -BMP 20/21 -Residential Driveways & Guest Parking Driveways shall have one of the following: Shared access; Flared entrance (single lane at street); Wheelstrips (paving only under tires); Porous paving; Designed to drain into landscaping prior to discharging to the storm water conveyance system . Uncovered temporary or guest parking on private residential lots shall be: Paved with a permeable surface; Designed to drain into landscaping prior to discharging to the storm water conveyance system . To provide additional pervious areas and to address runoff generated via driveways, pavers have been incorporated within the site design to promote permeability throughout the project site and to intercept runoff generated via the aforementioned driveways . DE:de H:IREPORTSI004<1219\SWMP-03.doc .4-1 ·' ; nected to sanitary sewer and treatment plants? The purpose of storm drains is to away from developed prevent flooding. Untreated and the pollutants it years, sources of water like industrial waters from . ; · have been greatly reduced. · · , now, the majority of water occurs from things like cars , fertilizers from farms and failing septic tanks, pet waste ntial car washing into the n··rtr.:>lr\c and into the ocean and · .. sources add up to a pollution ··! But each of us can do small ·help clean up our water and . ' up to a pollution solution! -Pet waste photo is used courtesy of the Water Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma. Storm Water HOTline: 760-602-2799 stormwater@ci.carlsbad.ca.us www.ci.carlsbad .ca.us 1'\ l_ ~...)Printed on recycled paper of bacteria that can make This bacteria gets , lagoons and ocean. ends up in shellfish living bodies. People who ... ry studies show that dog and · ·pan contribute up to 25% of bacteria found in our local n"sible and clean up after ··~ It's as easy as 1-2-3! ng a clean environment . primary importance for ._health and economy. waterways provide fV\r'ni'YloO>rf'lal opportunities, · n, fish habitat and .. ocean clean by ng the following tips: g pets and be sure to pick up them. aning patios, driveways and er hard surfaced areas. Never pet waste into the street or · tter. The best way to dispose of pet waste is to flush it down the toilet because it gets treated by a sewage treatment plant. Other disposal methods for pet waste include sealing it in a bag and placing in trash or burying small quantities in your yard to decompose. Be sure to keep it away from vegetable gardens. connected to sanitary sewer s and treatment plants? The purpose of storm drains is to ·rainwater away from developed to prevent flooding . Untreated . water and the pollutants it flow directly into creeks, s and the ocean. years, sources of water on like industrial waters tom have been greatly reduced. , now the majority of water occurs from things like cars oil, fertilizers from farms and s, failing septic tanks, pet waste sources add up to a pollution But each of us can do our . adds up to a pollution solution! cooperative between the State De Ecology, Kin the cities of Seattle and ·' s no problem with washing your s just how and where you do it. soap contains phosphates and chemicals that harm fish and .. quality. The soap, together with metal and oil washed from ;.car, flows into nearby storm ,. which run directly into lakes, excess algae to grow. Algae , smell bad, and harm water . As algae decay, the process oxygen in the water that fish 0 0 • 0 0 · • Having a clean environment · is of primary importance for ·: bur health and economy. waterways provide opportunities, n, fish habitat and our ocean, creeks and ,.,., .. ,,uu•u• s clean by applying following tips: ··. · .. • Use soap sparingly. . ·· . ·;. Use a hose nozzle with a trigger to ·' · .. :.:• Pour your bucket of soapy water ,'.·:down the sink when you're done, not : • Avoid using engine and wheel · · cleaners or degreasers . . · ~ Take your car to a commercial car . ·: wash, especially if you plan to clean .. :' the engine or the bottom of your car . Most car washes reuse wash water several times before sending it to the sewer system for treatment. • Hire only mobile detail operators that will capture wash water and chemicals. It is unlawful for commercial vehicle washing operators to allow wash water to enter the storm drain system . In the City of Carlsbad, storm drains flow directly into local creeks, lagoons and the ocean without treatment. Storm water pollution is a serious problem for our natural environment and for people who live near streams or wetlands. Storm water pollution comes from a variety of sources including oil, fuel, and fluids, from vehicles and heavy equipments, pesticide runoff from landscaping, and from materials such as concrete and mortar from construction activities. The City of Carlsbad is committed to improving water quality and reducing the amount of pollutants that enter our precious waterways. A Clean Environment is Important to AU of Usl • City of Carlsbad 1635 Faraday Avenue Carlsbad, CA 92008 Storm Water HOTline: 760-602-2799 stormwater@ci.carlsbacl.ca.us March 2003 Pollution Prevention is up to YOU! Did you know that storm drains are NOT connected to sanitary sewer systems or treatment plants? The primary purpose of storm drains is to carry rainwater away from developed areas to prevent flooding. Untreated pollutants such as concrete and mortar flow directly into creeks, lagoons and the ocean and are toxic to fish, wildlife, and the aquatic environment. Disposing of these materials into storm drains causes serious ecological problems-and is PROHIBITED by law. Do the Job Right! ·This brochure was designed for do-it- yourself remodelers, homeown~rs, masons and bricklayers, contractors, and anyone else who uses concrete or mortar to complete a construction project. Keep storm water protection in mind whenever you or people you hire work on your house or property. Best Management Practices Best Management Practices or BMPs are procedures and practices that help to prevent pollutants such as chemicals, concrete, mortar, pesticides, waste, paint, and other hazardous materials from entering our storm drains. All these sources add up to a pollution problerTI. But each of us can do our part to keep storm water clean. These efforts add up to a pollution solution! What YOU Can Do: • Set up and operate small mixers on tarps or heavy plastic drop cloths. • Don't mix up more fresh concrete or mortar than you will need for a project. • Protect applications of fresh concrete and mortar from rainfall and runoff until the material has dried. • Always store both dry and wet materials under cover, protected from rainfall and runoff and away from storm drains or waterways. • Protect dry materials from wind. Secure bags of concrete n1ix and mortar after they are open. Don't allow dry products to blow into driveways, sidewalks, streets, gutters, or storm drains. • Keep all construction debris away from the street, gutter and storm drains. • Never dispose of washout into the street, storm drains, landscape drains, drainage ditches, or streams. Empty mixing containers and wash out chutes onto dirt areas that do not flow to streets, drains or waterways, or allow material to dry and dispose of properly. • Never wash excess material from bricklaying, patio, driveway or sidewalk construction into a street or storm drain. Sweep up and dispose of small amounts of excess dry concrete, grout, and mortar in the trash. • Wash concrete or brick areas only when the wash water can flow onto a dirt area without further runoff or drain onto a surface which has been bermed so that the water and solids can be pumped off or vacuumed up for proper disposal. • Do not place fill material, soil or compost piles on the sidewalk or street. • If you or your contractor keep a dumpster at your site, be sure it is securely covered with a lid or tarp when not in use. • During cleanup, check the street and gutters for sediment, refuse, or debris. Look around the corner or clown the street and clean up any materials that may have already traveled away from your property. purpose of storm drains areas to prevent flooding. storm water and the it carries, flow directly into years, sources of water like industrial waters from ' have been greatly reduced. now, the majority of water occurs from things like cars oil, fertilizers from farms and falling septic tanks, pet But each of us can do small help clean up our water and up to a pollution solution! What's the problem with fertilizers and pesticides? Fertilizer isn't a problem-IF it's used carefully. If you use too much fertilizer or apply II at the wrong lime, it can easily wash off your lawn or garden into storm drains and then flow untreated into lakes or streams. Just like in your garden, fertilizer in lagoons and streams makes plants grow. In water bodies, extra ilrtilizer can mean extra algae and aquatic plant growth. Too much algae harms water quality and makes boating, fishing and swimming unpleasant. As algae decay, they use up oxygen in the water that fish and other wildlife need. Fertilizer photo Is used courtesy of the Willer Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma. Storm Water HOT II ne: 760-602 -2 799 stormwater@ci.carlsbad.ca.us City of Carlsbad 1635 Faraday Avenue Carlsbad CA 92008 www .ci.carlsbad.ca.us · yard waste or start your own pile. Use drip consider adjusting your method to a cycle and Instead of watering for 15 straight, break up the session into 5 minute intervals allowing water to soak in before the next application. Keep irrigation systems well- maintained and water only when needed to save money and prevent over-watering. • Use fertilizers and pesticides sparingly. Have your soil tested to determine the nutrients needed to maintain a healthy lawn. • Consider using organic fertilizers- they release nutrients more slowly. • Leave mulched grass clippings on the lawn to act as a natural fertilizer. • Use pesticides only when absolutely necessary. Use the least toxic product intended to target a specific pest, such as insecticidal soaps, boric acid, etc. Always read the label and use only as directed. • Use predatory insects to control harmful pests when possible. • Properly dispose of unwanted pesticides and fertilizers at Household Hazardous Waste collection facilities. For more information on landscape irrigation, please call760-438-2722. Master Gardeners San Diego County has a Master Gardener program through the University of California Cooperative Extension. Master Gardeners can provide good in about dealing with specific pests and · plants. You may call the Master ·· .. . ,. Gardener Hotline at 858-694-2860 or-: · check out their website at www.rnastergardenerssandiego.orq. The hotline is staffed Monday-Friday, · 9 am-3 pm, by experienced gardeners ': who are available to answer specific ', · questions. Information from Master . ·' :" Gardeners is free to the public. JliiJu:m:u que los desagiles de ·.· .. alcantarillas no estan al sistema de drenaje 6 a las plantas de tratamiento negras? principal del desague 6 las . es remover el agua de lluvia y · inundaciones. El agua que entra jes•aoo·, es va directamente a los y el oceano junto con Ia depositada en las y las calles. · dlas Ia contaminaci6n del agua directamente par fabricas e se ha reducido ir':.rlt,:mnPnt,. Ahara Ia mayoria de Ia del agua origina de carros aceite, el sabre usa de para plantas, tanques · ados, suciedad de anlmales y carros en zonas residenciales. contaminantes se acumulan >~;dles<tgliE~s 6 alcantarillados y son directamente al oceano llueve. l,Cual es el problema creado por el uso de fertllizantes y pesticidas? El fertilizante no es un problema Sl se usa con cuidado. Usar un exceso de fertilizante 6 en Ia temporada incorrecta resulla en el que el fertilizante se deslave con Ia lluvia y se vaya par el desague 6 alcantarillas a nuestros arroyos, lagos y el oceano. Los fertilizantes en nuestros lagos y arroyos hacen que las plantas crezcan, tal como en el jardln. Pero en el oceano el fertilizante causa que las algas y plantas acuaticas sobrecrezcan. Y el exceso de algas marinas pueden ser daliinas a Ia calidad del agua y causar que Ia pesca, nataci6n y navegaci6n sean desagradables. AI echarse a perder las algas consumen el oxigeno del agua que los peces y otros animales necesitan para sobrevivir. La fotografia al frente es cortesfa del Consorclo de Calidad de Agua, en cooperaci6n con el Departamento Eco16gico del Estado de Washington, el Condado de King, y las ciudades de Bellevue, Seattle y Tacoma. Linea de Asistencia: 760-602-2799 stonnwater@ci.carlsbad.ca.us Ciudad de Carlsbad 1635 Faraday Avenue Carlsbad CA 92008 www.ci.carls bad.ca.us /':>, p . d (~ .( .. ..} rullo on recycled paper el media amblente limpio es para nuestra salud y Ia Conservar el agua limpia oportunidades para usos recreativos, habitat para , y agrega belleza a T ados podemos ayudar los arroyos, las Iagunas, y el Pilr1n·liimnoinc: sencillamente siguiendo 0 usar maquinas no permita que las hojas y el cesped recien cortado en las alcantarillas o el Mantener los sistemas de irrigacion limpios y en buenas condiciones es importante para reducir el desperdicio del agua. Regar solamente cuando sea necesario reduce el usa del agua y ahorra dinero. Para mas informacion sabre sistemas de riego !lame al 760-438-2722. Los pesticidas y fertilizantes deben usarse solamente cuando sea absolutamente necesario. Para mantener un pasta saludable se recomienda hacer un analisis de Ia tierra para determinar cuales fertilizantes aplicar y en que temporada. Es recomendable usar fertilizantes orgimicos en vez de productos quimicos. En ocasiones se puede dejar el sacate recien cortado sabre el pasta ya que actua como un fertilizante natural. El usa de pesticidas debe ocurrir solo como ultimo recurso. Es preferible usar productos que sean bajos en toxicos, par ejemplo jabones insecticidas, acido borico, etc. Seguir las instrucciones en Ia etiqueta y usar el producto correctamente evita contaminar el agua de riego y lluvia. Cuando sea posible es preferible usar insectos predadores para controlar plagas. Los pesticidas y fertilizantes vencidos deben desecharse legalmente llevandolos a los centres de coleccion de substancias toxicas localizados en varias ciudades del condado de San Diego. Llame al 760-602-2799 para obtener mas informacion. Master Gardeners El condado de San Diego y Ia Universidad .. de California Extension Cooperativa, han:·· · · creado el program a de Master Gardener · Los expertos de este programa estan ·· disponibles para proporcionar ·. sabre plantas y plagas. Us ted puede · !lamar a Ia linea de Master Gardeners 858-694-2860 de lunes a viernes entre · · 9am y 3pm para obtener respuestas a preguntas. La pagina Internet www. · · masterqardenerssandiego.org es otro recurso con informacion sabre estes temas. Esta informacion es totalmente ' gratis al publico. .: : Did you know that storm drains are NOT connected to sanitary sewer systems and treatment plants? The . primary purpose of storm drains is to , . -~ · ~arry rainwater away from developed areas to prevent flooding. Untreated storm water and the pollutants it carries, flow directly into creeks, lagoons and the ocean. In recent years, sources of water •-• ·,. pollution like industrial waters from •• factories have been greatly reduced. ,.::.However now, the majority of water pollution occurs from things like cars leaking oil , fertilizers from farms, lawns and gardens, failing septic tanks , pet . waste and residential car washing into · ', :' the storm drains and into the ocean ' ' ·:. and waterways. All these sources add up to a pollution problem! But each of us can do small things to help clean up our water and that adds up to a pollution solution! Motor oil photo is used courtesy of the Water Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma . .·.· l\'bbiy Rain in the Storm Drain! ·~·=.•iJ> '-~ City of Carlsbad Storm Water Protection Program City of Carlsbad 1635 Faraday Avenue Carlsbad CA 92008 Storm Water HOTli ne: 760-602-2799 H l·.C Yl; I J'. II S E IJ 0 II. Funded by a grant from the Cal iforn ia Integrated Waste Management Board l ~Printed on recycled paper ., I' '• ... ·:···-.· ,• ·:-· ~ ... ·f,:·. . ·.= •.. . ·-.i: --.' .. ·.:;-··: ;-·· · ... •. r o; !'· ..... '· ' ..• t-·· --:·- ,' ~. .. ' '., What's the problem with motor oil? , Oil does not dissolve in water. It •. lasts a long time and sticks to everything from beach sand to bird _feathers. Oil and other petroleum ···,\. products are toxic to people, wildlife and plants. One pint of oil can make a slick larger than a football field. Oil that leaks from our cars onto roads and driveways is washed into storm ··_· _ drains, and then usually flows directly to a creek or lagoon and finally to the ocean. - -Used motor oil is the largest single source of oil pollution in our ocean , .. creeks and lagoons. Americans spill .. 180 million gallons of used oil each year into our waters. This is 16 times the · • amount spilled by the -Exxon Valdez in Alaska. ' . ' ' ' I · ·. · How' ca11 YOU help keep our environment clean7··.:,; :.\·.· .. ' ' ' ' '','I., ; I I Having a clean environment is of primary importance for our health and economy. Clean waterways provide commercial opportunities, recreation, fish habitat and add beauty to our landscape . YOU can help keep our ocean, creeks and lagoons clean by applying the following tips: • Stop drips. Check for oil leaks regularly and fix them promptly. Keep your car tuned to reduce oil use. • Use ground cloths or drip pans beneath your vehicle if you have leaks or are doing engine work. • Clean up spills immediately. Collect all used oil in containers with tight fitting lids. Do not mix different engine fluids. • When you change your oil, dispose of it properly. Never dispose of oil or other engine fluids down the storm drain, on the ground or into a ditch. • Recycle used motor oil. There are several locations in Carlsbad that accept used motor oil. For hours and locations, call 760-434-2980. • Buy recycled ("refined") motor oil to use in your car. A Clean Environment is Important to A I I of Us! In the City of Carlsbad, storm drains flow directly into local creeks, lagoons and the ocean without treatment. Storm water pollution is a serious problem for our natural environment and for people who live near streams or wetlands. Storm water pollution comes from a variety of sources including oil, fuel , and fluids, from vehicles and heavy equipment, pesticide runoff from landscaping, and from materials such as concrete, mortar and soil from construction activities. The City of Carlsbad is committed to improving water quality and reducing the amount of pollutants that enter our precious waterways. Storm Water Protection Program stormwater@ci.car lsbad.ca.us 760-602-2799 City of Carlsbad 1635 Faraday Avenue Carlsbad, CA 92008 l_ ~Printed on recycled paper It's All Just Water, Isn't It? Although we enjoy the fun and relaxing times in them, the water used in swimming pools and spas can cause problems for our creeks, lagoons and the ocean if not disposed of properly. When you drain your swimming pool, fountain or spa to the street, the high concentrations of chlorine and other chemicals found in the water flows directly to our storm drains. Did you know that these storm drains are NOT connected to sanitary sewer systems and treatment plants? The primary purpose of storm drains is to carry rainwater away from developed areas to prevent flooding. Improperly disposing of swimming pool and spa water into storm drains may be harmful to the environment. Best Management Practices Best Management Practices or BMPs are procedures that help to prevent pollutants like chlorine and sediment from entering our storm drains. Each of us can do our port to keep storm water clean. Using BMPs odds up to a pollution solution! How Do I Get Rid of Chlorine? Pool and spa water may be discharged to the storm drain if it has been properly dechlorinated and doesn't contain other chemicals. The good news is that chlorine naturally dissipates over time. Monitor and test for chlorine levels in the pool over a period of 3 to 5 days. Drain the water before algae starts to grow. Consider hiring a professional pool service company to clean your pool, fountain, or spa and make sure they dispose of the water and solids properly. for more information about discharging wastewater to the sanitary sewer, please contact the Encino Wastewater Authority at (760) 438- 3941. Before you discharge your swimming pool or spa water to the storm drain, the water: • Must not contain chlorine, hydrogen peroxide, acid, or any other chemicals. • Can not carry debris or vegetation. • Should have an acceptable pH of 7-8. • Can not contain algae or harmful bacteria (no "green" present). • Flow must be controlled so that it does not cause erosion problems. Pool Filters Clean filters over a lawn or other landscaped area where the discharge can be absorbed. Collect materials on filter cloth and dispose into the trash. Diatomaceous earth cannot be discharged into the street or storm drain systems. Dry it out as much as possible, bag it in plastic and dispose into the trash. Acid Washing Acid cleaning wash water is NOT allowed into the storm drains. Make sure acid washing is done in a proper and safe manner that is not harmful to people or the environment. It may be discharged into the ·sanitary sewer through a legal sewer connection after the pH has been adjusted to no lower than 5.5 and no higher than 11 . Do the Job Right! • Use the water for irrigation. Try draining de-chlorinated pool water gradually onto a landscaped area. Water discharged to landscape must not cross property lines and must not produce runoff. • Do not use copper-based algaecides. Control algae with chlorine or other alternatives to copper-based pool chemicals. Copper is harmful to the aquatic environment. • During pool construction, contain ALL materials and dispose of properly. Materials such as cement. Gunite, mortar, and sediment must not be discharged into the storm drains. .. - .... -- -... • - ... .. -.. • • • -- Muroya Storm Water Management Plan Chapter 7-TREATMENT CONTROL BMP DESIGN 7.1 -BMP Locations Two (2) BMP treatment trains will be incorporated within the Muroya development to ensure maximum treatment efficiency for pollutants of concern. 85th percentile flows generated via the northern portion of the site will receive treatment via a BMP "Treatment Trains" incorporating FloGard curb inlet treatment units and a StormFilter filtration unit. 85th percentile flows generated via the southern portion of the site will receive treatment via a BMP "Treatment Trains" incorporating FloGard curb inlet treatment units and a Storm Filter filtration unit. Primary treatment is provided by the FloGard units, filtering out trash and debris, sediments and oil/hydrocarbon based pollutants. These pre-treated flows then receive secondary treatment via the Extended Detention Basin or StormFilter unit, filtering out remaining trash and debris, sediments, oil/hydrocarbons and bacterial pollutants . The map on the following page shows the location of the proposed BMPs. 7.2-Determination of Treatment Flow Flow-based BMPs shall be designed to mitigate the maximum flowrate of runoff produced from a rainfall intensity of 0.2 inch per hour. Such BMP's utilize either mechanical devices (such as vaults that produce vortex effects) or non-mechanical devices (based on weir hydraulics and specially designed filters) to promote settling and removal of pollutants from the runoff . 85th percentile flow calculations were performed using the Rational Method. The basic Rational Method runoff equation is as follows: Design flow (Q) = C *I* A Runoff Coefficient (C)-The runoff coefficient for the treatment unit was determined using the areas analyzed in the final engineering hydrology report. The runoff coefficient is based on the following characteristics of the watershed: Land Use-Single-Family Residential Soil Type -In order to provide a conservative flow estimate, type D soil is assumed as this provides the highest possible runoff coefficient. Rainfall Intensity (I)-Regional Water Quality Control Board regulations and NPDES criteria have established that flow-based BMPs shall be designed to mitigate a rainfall intensity of 0.2 inch per hour. DE:de H:\REPORTS\0042\219\SWMP-03.doc w o. 42-219 719/2009 9:19AM VICINITY MAP NO SCALE --- --- --- PROPOSED DETENTION BASIN MANUFACTURED SLOPES SHALL BE LANDSCAPED WITH SUITABLE GROUND COVER OR INSTALLED WITH AN EROSION CONTROL SYSTEM. -URBAN HOUSEKEEPING HOMEOWNERS SHOULD BE EDUCATED AS TO THE PROPER USE, STORAGE, AND DISPOSAL OF THESE POTENTIAL STORMWATER CONTAMINANTS -STORM WATER SYSTEMS STENCILING AND SIGNAGE ________________ _J 1HRASHER PlACE I I I I ,1,.. """"' PQ.C "' .J UHD<"""""'""" I -INTEGRATED PEST MANAGEMENT KEEPING PESTS OUT OF BUILDINGS AND LANDSCAPING USING BARRIERS, SCREENS AND CAULKING. PHYSICAL PEST ELIMINATION TECHNIQUES SUCH AS WEEDING, SQUASHING, TRAPPING, WASHING OR PRUNING OUT PESTS. RELY ON NATURAL ENEMIES TO EAT PESTS. -TRASH STORAGE AREAS ALL TRASH WILL BE STORED WITHIN EACH INDIVIDUAL SINGLE FAMILY RESIDENCE. AS SUCH, THERE WILL BE NO TRASH STORAGE AREAS ONSITE. I i i I I I I I I I I I I I T I I I I -EFFICIENT IRRIGATION PRACTICES ALL HOME OWNERS' ASSOCIATION (HOA) MAINTAINED LANDSCAPED AREAS WILL INCLUDE RAIN SHUTOFF DEVICES TO PREVENT IRRIGATION DURING AND AFTER PRECIPITATION. FLOW REDUCERS AND SHUTOFF VALVES TRIGGERED BY PRESSURE DROP WILL BE USED TO CONTROL WATER LOSS FROM BROKEN SPRINKLER HEADS OR LINES. I I I ,---------- 1 I I I I WATERSHED BOUNDARY FLOWLINE STORMFIL TER UNITS FLOGARD INLE T UNITS IMPERVIOUS SURFACE AREA PER~OUS SURFACE AREA LID PAVER LOCATION 0 v 085= 0.3 cfs A= 2.4oc 9.7AC HUNSAKER & ASSOCIATES so 0 50 100 ~-- -MINIMIZE IMPERVIOUS FOOTPRINT -CONSTRUCTING STREETS, SIDEWALKS, AND PARKING LOTS TO THE MINIMUM WIDTHS NECESSARY TO COMPLY WITH CITY OF CARLSBAD REQUIREMENTS WITHOUT COMPROMISING PUBLIC SAFETY. -INCORPORATING LANDSCAPED BUFFER AREAS BETWIEEN SIDEWALKS AND STREETS. -MINIMIZING THE NUMBER OF RESIDENTIAL STREET CUL-DE-SACS AND INCORPORATE LANDSCAPED AREAS TO REDUCE THEIR IMPERVIOUS COVER. -REDUCE OVERALL LOT IMPERVIOUSNESS BY PROMOTING ALTERNATIVE DRIVEWAY SURFACES AND SHARED DRIVEWAYS THAT CONNECT TWO OR MORE HOMES TOGETHER. 150 I -MAXIMIZE CANOPY INTERCEPTION & WATER CONSERVATION -PRESERVE EXISTING NATIVE TRESS AND SHRUBS. -PLANT ADDITIONAL NATIVE OR DROUGHT TOLERANT TREES AND LARGE SHRUBS IN PLACE OF NON- DROUGHT TOLERANT EXOTICS. -MINIMIZE DIRECTLY CONNECTED IMPERVIOUS AREAS -DRAINING ROOFTOPS INTO ADJACENT LANDSCAPING PRIOR TO DISCHARGING TO THE STORM DRAIN. -DRAINING ROADS, SIDEWALKS AND IMPERVIOUS TRAILS INTO ADJACENT LANDSCAPING. -SLOPE & CHANNEL PROTECTION I HILLSIDE LANDSCAPING -USE OF NATURAL DRAINAGE SYSTEMS TO THE MAXIMUM EXTENT PRACTICABLE. -STABILIZE PERMANENT CHANNEL CROSSINGS. -PLANTING NATIVE OR DROUGHT TOLERANT VEGETATION ON SLOPES. -ENERGY DISSIPATERS, SUCH AS RIPRAP, AT THE OUTLETS OF NEW STORM DRAINS, CULVERTS, CONDUITS, OR CHANNELS THAT ENTER UNLINED CHANNELS. TREATMENT CONTROL BMPs: -STORMFILTER TREATMENT UNIT (MP-40) -FLO-GARD FILTER INSERT (MP-52) -EXTENDED DETENTION BASIN (TC-22) BMP LOCATION EXHIBIT FOR: MUROYA CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 Rr'\0321 \&.Hyd'\321 SH04-BHP .d•gC1Jul-lD-2009C8>30 ... ------ • - -- ... • .. • .. .. • • • ---- Muroya Storm Water Management Plan Watershed Area (A)-Corresponds to total area draining to treatment unit. The 85th percentile flow rate has been calculated using the Rational Method. Required data for the Rational Method Treatment flow determination is as follows: Treatment Drainage Rainfall Runoff asth Unit Area Intensity Coefficient Percentile (acres) (inches/hour) Flow (cfs) Private Drive A 4.7 0.2 0.57 0.5 FloGard Inlet Private Drive C 1.5 0.2 0.57 0.2 FloGard Inlet Private Drive A 0.9 0.2 0.57 0.1 FloGard Inlet Private Drive A 4.7 0.2 0.57 0.5 Stormfilter Unit Rational Method calculations predict an 85th percentile runoff flow of approximately 0.5-cfs, 0.2-cfs,0.1-cfs and 0.5 cfs for the areas tributary to the proposed FloGard curb inlet filter units and StormFilter unit respectively. 7.3 -Determination of Treatment Volume Volume-based BMPs are designed using the volume of runoff produced from a 24- hour 85th percentile storm event, as determined from the local historical rainfall record. The 85th percentile rainfall for the Muroya site is 0.65 inches (see lsopluvial Map) . Per the request of the City of Carlsbad, 85th percentile volume calculations were performed using the Rational Method. The basic Rational Method runoff procedure is as follows: Design Volume (V) = C * P *A Runoff Coefficient (C)-The weighted runoff coefficient for the treatment unit was determined using the areas analyzed in the final engineering hydrology report. The runoff coefficient is based on the following characteristics of the watershed: Land Use-Single-Family Residential Soil Type-Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the DE:de H:IREPORTS\00421219\SVYMP.03.doc W.O. 42·219 7/9/2009 9:19AM .... .. • .. ... ·- ... .. .. .. ... • .. ... .. ... - Muroya Storm Water Management Plan surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission . Rainfall Precipitation (P) -The 24-hour 85th percentile storm event, as determined from the local historical rainfall record. The 85th percentile rainfall for the Muroya site is 0.65 inches (see lsopluvial Map). Watershed Area (A) -Corresponds to total area draining to treatment unit. The 85th percentile volume has been calculated using the Rational Method. Required data for the Rational Method Treatment flow determination is as follows: 24 -hour ssm ssth Drainage Percentile Runoff Percentile Treatment BMP Area Rainfall Coefficient Event Volume (acres) Precipitation (inches) (Acre-feet) Extended Detention 2.4 0.65 0.57 0.07 Basin 7.4-BMP Unit Sizing 7 .4.1 Storm Filter Unit Sizing Calculations show that following Storm Filter treatment unit would be required to treat the design 85th percentile flow. This unit is an offline system and requires the construction of a special diversion box upstream of the treatment unit. StormFilter Unit Vault Size Filter Media Filter Media Cartridges Private Drive A 8' X 16' 15 CSF 7 .4.2 FloGard Unit Sizing In accordance with FloGard manufacturer guidelines, the FloGard curb inlet filter units are to be sized to fit the proposed curb inlets within the project site. Inlet filter units are typically not sized in accordance with the treatment flows directed to the specific inlet. The units are typically sized per the inlet opening, such that all flows directed to the inlet are treated by the unit in question. Typically, curb inlet filters (such as the FloGard unit) have a pre fabricated diversion structure within the inlet filter unit, ensuring peak flows are conveyed via the receiving inlet to the receiving storm drain . As this is a tentative map submittal, storm drain inlets are typically not designed at this stage-hence no exact model will be specified at this time . DE:de H:IREPORTS\0042\219\SWMP-03.doc w o. 42-219 71912009 9. 19 AM ... ------ - • .. • • • ... .. Muroya Storm Water Management Plan 7 .4.3 Extended Detention Basin Calculations show that following storage volume would be required for the Bio~ filtration Basin that would be required to treat the design 85th percentile volume. The 85th percentile volume is stored within the detention facility. 85th Pet. Volume Provided Treatment BMP Design Volume Basin Elevation (a e-ft) (a e-ft) Extended Detention 0.07 330 0.07 Basin 7.5-StormFilter Treatment Units The Stormwater Management StormFilter is a Best Management Practice (BMP) designed to meet the most stringent regulatory requirements for storm water treatment. Using a variety of sustainable media, the StormFilter removes the most challenging target pollutants-including total suspended solids (TSS), soluble heavy metals, oils and grease, and total nutrients . The StormFilter design is based on passive, siphon-actuated, filtration media-filled cartridges where particulates and pollutants are trapped and adsorbed. The cartridges are typically housed in a concrete vault composed of three bays: a pretreatment bay, a filter bay, and an outlet bay. During a storm, stormwater runoff passes through the filtration media and starts filling the cartridge center tube. Air below the hood is purged through a one way check valve as the water rises. When water reaches the top of the float, buoyant forces pull the float free and allow filtered water to drain. After the storm, the water level in the structure starts falling. A hanging water column remains under the cartridge hood until the water level reaches the scrubbing regulators. Air then rushes through the regulators releasing water and creating air bubbles that agitate the surface of the filter media, causing accumulated sediment to drop to the vault floor. This patented surface-cleaning mechanism helps restore the filter's permeability between storm events . The StormFilter can be customized using different filter media to target site-specific pollutants. Filter media include Perlite, Zeolite, CSF Leaf Media and Metal RX, and Granulated Activated Carbon . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 719/2009 9:19AM • • • - -.. ... • - --.. • • • • • .. .. .. Muroya Storm Water Management Plan Nutrients Ammonium To address pollutants generated by the proposed single family development, the Storm Filter media filter units will comprise of media filter cartridges containing CSF Media. 7.6-FloGard Curb Inlet Treatment Units FloGard Curb Inlet Filter Inserts are designed to collect silt and sediment, trash and debris, and petroleum hydrocarbons (oils and greases) from storm water runoff. The units are designed to fit just under the inlet opening to prevent pollutants from entering downstream storm drain systems. A built-in, dual high-flow bypass allows flows to bypass the device without impeding the system's maximum design flows, while retaining sediment and larger floatables. A Fossil Rock Filter Media pouch is used to collect petroleum hydrocarbons . Product information on the FloGard Curb Inlet Filter Insert unit is provided at the end of this chapter. 7.7-Extended Detention Basin The Muroya site contains one (1) volume-based BMP. This basin will collect the first flush runoff volume and retain it in the basin for a period of 24-48 hours . The runoff volumes contained below the overflow elevation of the basin riser will be slowly discharged from the treatment control basin via a low flow orifice in the basin riser. After passing through the riser, an outlet pipe will dewater the basin and discharge runoff to the receiving storm drain. Runoff will be collected and treated in the Water Quality Basin between the basin bottom elevation (325 feet) and the basin riser (330 feet). Treatment will include the settling of pollutants within in the Water Quality Basin. In developed conditions, the basin base elevation will be 325 feet while the top elevation is 330 feet. DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/2009 9:19AM Muroya Storm Water Management Plan Dewatering will occur via one (1) 1-inch orifice built into the side of the underground detention facility. This orifice, located at an invert elevation coincident with the basin bottom elevation of 325 feet, will provide the runoff with a 24 to 48 hour residence time prior to full basin dewatering. A trash and debris rack will be fitted to the base of the structure to prevent clogging of the 1-inch orifice. Stage storage calculations, orifice calculations, riser overflow calculations, HEC- HMS output results and calculations for the 1-inch orifice have been provided at the end of this chapter. 7.8-Pollutant Removal Efficiency Table The table below shows the generalized pollutant removal efficiencies for extended detention facilities, media filters and trash racks . Table 4. Structural Treatment Control BMP Selection Matrix Settling Infiltration Pollutants of Bioretention Basins ,. Wet Ponds Facilities Media High-rate Facilities and or Concern (LID) (Dry Wetlands Practices Filters biofilters Ponds) (LID) Coarse Sediment HIGH HIGH HIGH HIGH HIGH HIGH and Trash Pollutants that " tend to associate HIGH HIGH HIGH HIGH HIGH MEDIUM with fine particles during treatment Pollutants ::1' that tend to be MEDIUM ~2'11 LOW ~· MEDIUM HIGH LOW LOW dissolved following .~ treatment Pollutants that tend Coarse Sediment to associate with Pollutant and Trash fine particles during treatment Sediment X X Nutrients X Heavy Metals X Organic Compounds X Trash & Debris X Oxyqen Demandinq X Bacteria X Oil & Grease X Pesticides X Trash Racks & High-rate Hydro media filters -dynamic 'I Devices it' HIGH , HIGH MEDIUM LOW w ' N ~· LOW ·:A, LOW ·~·, Pollutants that tend to be dissolved following treatment X DE:de H:IREPORTS\0042\219\SWMP-OJ.doc W.O. 42-219 7/9/2009 9:19AM - .. • -- ·- - ·- - - - -... Muroya Storm Water Management Plan 7.9 -BMP Unit Selection Discussion 7 .9.1 Extended Detention Basins Extended detention basins collect the first flush runoff volume and retain it in the basin for a period of 24-48 hours. 85th percentile runoff volume, contained below the overflow elevation of the basin riser, will be slowly discharged from the treatment control basin via low flow orifices in the basin riser. After passing through the riser, an outlet pipe will dewater the basin and discharge runoff to the natural drainage course downstream. Advantages • Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate. • Extended detentions basins can provide substantial capture of sediment and the taxies fraction associated with particulates. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in the watershed. Limitations • Limitation of the diameter of the orifice may not allow use of extended detention in watersheds of less than 5 acres (would require an orifice with a diameter of less than 0.5 inches that would be prone to clogging). • Dry extended detention ponds have only moderate pollutant removal when compared to some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants. • Dry ponds can detract from the value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet structures. Conclusion: Due to site treatment efficiency for pollutants of concern, an extended detention basin was incorporated within the project site. 7.9.2 Vegetated Swale Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the OE:de H:\REI'ORTS\0042\219\SWMP-Q3.doc W.O. 42-219 7/9/2009 9:19AM .. -------- --- ... • -- - • • • Muroya Storm Water Management Plan velocity of stormwater runoff. Vegetated swales can serve as part of a stormwater drainage system and can replace curbs, gutters and stormwater systems. Advantages • If properly designed, vegetated, and operated, swales can serve as an aesthetic, potentially inexpensive urban development or roadway drainage conveyance measure with significant collateral water quality benefits. Limitations • Can be difficult to avoid channelization. • May not be appropriate for industrial sites or locations where spills may occur. • Grassed swales cannot treat a very large drainage area. Large areas may be divided and treated using multiple swales. • A thick vegetative cover is needed for these practices to function properly . • They are impractical in areas with steep topography. • They are not effective and may even erode when flow velocities are high, if the grass cover is not properly maintained. • In some places, their use is restricted by law: many local municipalities require curb and gutter systems in residential areas. • Swales are more susceptible to failure if not properly maintained than other treatment BMPs. Conclusion: Proposed swales to line the sides of the proposed private roads has potential to undermine the serviceability of the adjacent roads and sidewalks. Also, due to the limited footprint available and site topography with the project site for BMP treatment, master treatment swales are not a feasible treatment option. 7 .9.3 Infiltration Basins An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices . DE:de H:IREPORTS\0042\219\SWMP-OMoc W.O. 42·219 719/2009 9:19AM - ... .... .. • -• -- - .... ... - ... • ... -- Muroya Storm Water Management Plan Advantages • Provides 1 00% reduction in the load discharged to surface waters. • The principle benefit of infiltration basins is the approximation of pre- development hydrology during which a significant portion of the average rainfall runoff is infiltrated and evaporated rather than flushed directly to creeks. • If the water quality volume is adequately sized, infiltration basins can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events . Limitations • May not be appropriate for industrial sites or locations where spills may occur. • Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D. • Infiltration rates exceeding 2.4 inches/hour, the runoff should be treated prior to infiltration to protect groundwater quality. • Not suitable on fill sites or steep slopes. • Risk of groundwater contamination in very coarse soils. • Upstream drainage area must be completely stabilized before construction. • Difficult to restore functioning of infiltration basins once clogged. Conclusion: Due to the fact that other BMPs provided equal or higher levels of treatment efficiency for target pollutants of concern, infiltration basins were not implemented within the project site. 7 .9.4 Wet Ponds Wet ponds are constructed basins that have a permanent pool of water throughout the year (or at least throughout the wet season) and differ from constructed wetlands primarily in having a greater average depth. Ponds treat incoming stormwater runoff by settling and biological uptake. The primary removal mechanism is settling as stormwater runoff resides in this pool, but pollutant uptake, particularly of nutrients, also occurs to some degree through biological activity in the pond. Wet ponds are among the most widely used stormwater practices. While there are several different versions of the wet pond design, the most common modification is the extended detention wet pond, where storage is provided above the permanent pool in order to detain stormwater runoff and promote settling. DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/2009 9:19AM • ----- • ... - - ... - - -• .. • -• - Muroya Storm Water Management Plan Advantages • If properly designed, constructed and maintained, wet basins can provide substantial aesthetic/recreational value and wildlife and wetland habitat. • Ponds are often viewed as a public amenity when integrated with a park setting. • Due to the presence of the permanent wet pool, properly designed and maintained wet basins can provide significant water quality improvements across a relatively broad spectrum of constituents including dissolved nutrients. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in a watershed . Limitations • Some concern about safety when constructed where there is public access. • Mosquito and midge breeding is likely to occur in ponds. • Cannot be placed on steep unstable slopes . • Need for base flow or supplemental water if water level is to be maintained. • Require a relatively large footprint. • Depending on volume and depth, pond designs may require approval from the State Division of Safety of Dams. Conclusion: Due to the large acreage requirements of a wet pond, proximity to residences (vector issues) and the fact that other BMP's are able to treat pollutants of concern with equal efficiency, wet ponds are not a feasible option for the Muroya project site. 7.9.5 Media Filters Stormwater media filters are usually two-chambered including a pre-treatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42-219 71912009 9:19AM • -• -.. --- .. - -.. - - • -- .. .. Muroya Storm Water Management Plan Advantages • Relatively high pollutant removal, especially for sediment and associated pollutants. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in a watershed. Limitations • More expensive to construct than many other BMP's. • May require more maintenance than some other BMP's depending upon the sizing of the filter bed. • Generally require more hydraulic head to operate properly (min 4 feet). • High solids loads will cause the filter to clog . • Work best for relatively small, impervious watersheds. • Filters in residential areas can present aesthetic and safety problems if constructed with vertical concrete walls. • Certain designs maintain permanent sources of standing water where mosquito's and midge breeding is likely to occur. Conclusion: Due to site treatment efficiency for pollutants of concern, a StormFilter Treatment Unit was incorporated within the project site. 7 .9.6 Drainage Inserts Drainage inserts are manufactured filters or fabric placed in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling to one of three different groups: socks, boxes and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets. Boxes are constructed of plastic or wire mesh. Typically a polypropylene "bag" is placed in the wire mesh box. The bag takes form of the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some products consist of one or more trays and mesh grates. The trays may hold different types of media. Filtration media vary by manufacturer. Types include polypropylene, porous polymer, treated cellulose and activated carbon . DE:de H:IREPORTS\0042\219\SWMP-03.doc W.O. 42·219 7/9/2009 9:19AM - • -.. --.. ... - ... • • .. .. .. • '"" - Muroya Storm Water Management Plan Advantages • Does not require additional space as inserts as the drain inserts are already a component of the standard drainage systems. • Easy access for inspection and maintenance . • As there is no standing water, there is little concern for mosquito breeding. • A relatively inexpensive retrofit option. Limitations • Performance is likely significantly less than treatment systems that are located at the end of the drainage system such as ponds and vaults. • Usually not suited for large areas or areas with trash or leaves that can plug the insert. Conclusion: As part of a proposed BMP treatment train, Drainage Inserts provide good levels of initial pre-treatment prior to draining to the secondary BMPs. 7.9.7 Hydrodynamic Separator Systems Hydrodynamic separators are flow-through structures with a settling or separation unit to remove sediments and other pollutants that are widely used in storm water treatment. No outside power source is required, because the energy of the flowing water allows the sediments to efficiently separate. Depending on the type of unit, this separation may be by means of swirl action or indirect filtration. Variations of this unit have been designed to meet specific needs. Hydrodynamic separators are most effective where the materials to be removed from runoff are heavy particulates -which can be settled-or floatables -which can be captured, rather than solids with poor settleability or dissolved pollutants. In addition to the standard units, some vendors offer supplemental features to reduce the velocity of the flow entering the system. This increases the efficiency of the unit by allowing more sediments to settle out. Advantages • May provide the desired performance in less space and therefore less cost. • May be more cost-effective pre-treatment devices than traditional wet or dry basins . • Mosquito control may be less of an issue than with traditional wet basins. DE:de H:\REPORTS\0042\219\SWMP-03.doc W.O. 42-219 7/9/2009 9:19AM -• .. • .... -.. --.... • -• .. • .. .. - • .. Muroya Storm Water Management Plan Limitations • As some of the systems have standing water that remains between storms, there is concern about mosquito breeding . • It is likely that vortex separators are not as effective as wet vaults at removing fine sediments, on the order 50 to 100 microns in diameter and less. • The area served is limited by the capacity of the largest models . • As the products come in standard sizes, the facilities will be oversized in many cases relative to the design treatment storm, increasing cost. • The non-steady flows of stormwater decreases the efficiency of vortex separators from what may be estimated or determined from testing under constant flow . • Do not remove dissolved pollutants. • A loss of dissolved pollutants may occur as accumulated organic matter (e.g., leaves) decomposes in the units . Conclusion Due to the limited treatment efficiencies for anticipated pollutants, implementation of hydrodynamic separator units is not a feasible option for the Muroya project site . DE:de H:\REPORTS\0042\219\SWMP..03.doc W.O. 42-219 7/9/2009 9:19AM II: St o rm Fi Iter Tin.' first choice:• in filtra'l'ion D~:.i!JIWd lo meet slrlngenl n!!Jlll.1lory mqulr~mcnls, 'l11e Stormwaler Mmmgeonc:nl 5tunnl'ilter· tM(J!!t~ tlw lull r~n<.Jt~ or pollulimls lnurb~11 runofl. Total ~uspendt~d solid~ (TSS), solubl~ h~avy Hh~t~ls, oil .111cl grc~,.~. ;md totalnutrienl~ are •~llet:lively removed u~lng a vMICly o·r sust,1inahle nmdi;t, lhl• li~ld-provton pcrlormancc of the Slorml'iller h<rs led to huntlrl·d~ ol re9uliltoty agr•nr:y npprov;rls nntiu11wirlc as il st.Jnd-alone stormwatm tre;rlnlC,rrl system. This wsl-dler.tive, p~~sive rillralion ~y:ilern ir. highly rdiabh.• and e.1sy In install. Its siphon- a.;lu;rlecl ~urine<: dl'ilning system prevents surlilcc blindin<.J and extenrf~ the Cilltric.luc lilt~ cycle nnd mainlenancr! interv.1ls. from small, ptc-falrricilted Gllr.h b,1sim to IM!J~ box culven ;mel p;rm•l v.1ults, folorml'iller syf.lenrs maximize j,,nrfmr,•. The compact desi911 also redun•s wnslrur.Lion and imtallirliun w~t·; by lirnitiniJ exr.;rvulion. ,...----... ,, 2J.~~rnvvate~360) '--.__.t>' Ill lU .~::.._,, Sto rrn vvcrterJ (~0·'·~~) ., / ............ "''' .......... --........ . . ..... ·---~· ..... ~·· Storrnl'lltar l'urlornwncu Char·actcri5Lics TSSiflln) J,M,.Il nu. l!.a\hr, Nulrh:nh '" IUO 1]1111 riii!OIIl' lMuh M~~~t;~;; .. ~~f~t·~.mn~·kf.itil El Iii B [;] KII/I,(S.~"'"''~ Mo~cl~ lhe llln5t slringnnl n~!JIIl~lory rcq,timrntml:; ril\ratiUil IHI.!diil 1fiHJl·ll:> ~;itc·!.p•~dfir: pnllutallt,, Dn!iitJn•~d ror maiolt!ll:uu:c: c.ydl'!.~ nf UIW yts·u ur lnnue' H-:~u lill'.'d, ttiHic:-t~JI'fHtt1riiJMP nt;t.'iitlliiW!r 1.-~nd use now-IJOISI;!<I and VlJhllfii·~·IJrl:il.!d :iyf,h~IYIS ,1v;til.1hlc to nu~•:t 1 f!~JIIIa linn~; i)ry nr nr:;·rrly doy twlw'"'" r.torm I.'V<.'IIIS- nu w:llnr In remove durin{J ln:lilltf.'llilll(\-: ··.1 .:' ·,, The Stormwater Management Storm Filter® Picduct Highlights The Stormwater Management StormFiltef'b is a Best Management Practice {BMP) designed to meet the most stringent regulatory requirements for stormwater treatment. Using a variety of sustainable media, the StormFilter removes the Precast Storm Filler Configuration most challenging target pollutants -including total suspended solids (TSS), soluble heavy metals, oil and grease, and total nutrients. The field-proven performance of the StormFilter has led to hundreds oi stand-alone BMP approvals by regulatory agencies nationwide. The patented filter cartridge's surface cleaning mechanism provides your best long-term solut ion. The StorP,Filter is highly reliable and easy to install. The Technology The StormFilter design Is based on passive, siphon-actuated, filtration media- filled cartridges where particulates and pollutants are trapped and adsorbed. During a storm, stormwater runoff passes through the filtration media and starts filling the cartridge center tube. Air below the hood is purged through a one way check valve as the water rises. When water reaches the top of the float, buoyant forces pull the float free and allow filtered water to drain. The StormF'ilter Cartrldqe After the storm, the water level in the structure starts falling. A hanging water column remains under the cartridge hood until the water level reaches the scrubbing regulators. Air then rushes through the regulators releasing water and creating air bubbles that agitate the surface of the filter media, causing accumulated sediment to drop to the vault floor. This p2tented surface·cleaning mechanism helps restore the filter's permeability between storm events. Media Options The StormFilter can be customized using different filter media to target site-specific pollutants. A combination of media is often recommended to maximize pollutant removal effectiveness. Pollutant Perlite CSF MetaiRx Zeolite GAC Sediments Soluble Metals .( .( .( Nutrients Configuration Guide Perlite is naturally occurring puffed volcanic ash. Its porous, multi-cellular structure and rough edges make it effective for removing TSS, oil and grease. CSF~ Leaf Media and MetaiRx''"' are created from deciduous leaves processed into granular, organic media. CSF ls most effective for removing soluble metals, TSS, oil and grease, and neutralizing acid rain. 1-.·lataiRx, a finer gradation, is used ior higher levels of metal removal. Zeolite is a naturally occurring mineral used in a variety of water filtration applications. It is used to remove soluble metals, ammonium and some organics. GAC (Granular Activated Carbon) has a micro porous structure with an extensive surface area to provide high levels of adsorption. It is primarily used to remove oil and grease and organics such as herbicides and pesticides. From small, pre-fabricated catch basins to large box culverts and panel vaults, StormFilter configurations maximize your land use. The compact design also reduces construction and installation costs by limiting excavation. Use this table to identify the appropriate configuration for your site. Engineers in our Technical Sales department are available to assist with your project. Products Precast Catch Basin Volume Regulation Type rlow Bas;d Flow Based Volume Based Effective Hydraulic Drop 2.3 ft. 2.3 ft. from rim 2.3 ft. Inlet Type Conveyed Flow Pipe(s) Sheet Flow Inlet Grate and/or Pipe Conveyed Flow Pipe(s) Internal Overflow Online Offline Online Treatment Capacity 1.17 cfs 0.13 cfs 5,000+ cf StormFilter Configurations StormFilter Performance Characteristics ISS ().!rn) S:.Jubl! Oil & Trash & Nutri'!nts 2.0 50 100 2300 Motzls Gr2ese Dobris ~~~~~~ ~ ~ ~ IS] . . Benefits • Meets the most stringent regulatory requirement s • Filtration medias target site-specific pollutants • Designed for maintenance cycles of one year i:r;" longer • H-20 rated, underground BI'<'IP maximizes land us; • Low hydraulic head allows use on mast sites • Flow-based and volume-based systems available to meet regulations • Pre-manufactured design means easy installation ior contractors • Cartridge-based systems provide exact sizing ior every project to meet regulatory requirements • Dry or nearly dry between storm events-no water to remove during maintenence Accessories Drain-Down -Provides complete dewatering of the StormFilter vault by gradually removing residual water in the sump after the storll) evenf. • Aids in vector control by eliminating mosquito-breeding haoitat • Eliminates putrification and leaching oi collected pollutants • Lowers maintenance cost by reducing decanting and disposal volume Sorbent Hood Cover-Removes free surface oil and grease. • Instantly adsorbs oil and grease on contact • Will not release captured oil, even after reaching saturation • Made from recycled synthetic fiber Support and Maintenance • Drawings and specifications are available at www.stormwaterinc.com • Design support is available from our Technical Sales engineers, to provide site-specific solutions • Full maintenance services are available to maximlz.e parformance and ensure tong-term product viability I'M Stc:-m·.v;tu M:m>r;,ent Ster.r.r'ilt!:t= U.S. Pat!nt Nos. 5,322.~2.9; S,52C.,57C: 5,707_527; E:,02.7,!13S: !.6~9.0~9. Slcr::1Til~t"r Cartrh!:;! U.S. ?at!!nt t~::.L s~u.=::~ S,5:!~,57ii; .S,i07,527: 6,027,$.3;; :1,:;;.:;s,c.:s. Slormsa-e~n2 C~r'.riO:;~ U.S. ?a~an:: ~a:.. 5,707~2.7: 5,027,53?: 5.:5.:.!?.0.:5. C:t~~a.!Sin StcrmFllter"" u.s. ?ateri~ ~:~s.. ~.3Z2,S29: 5,52..:0,575: 5,707,327; 5.02.7,S:::S:; 1ZIJ:!l-a tH: Airpar~ \112:(, P'!l;~li.n:S, OR !17220 ({ 9 aao.s.;a • .;ss7 @ SOO.S$1.1271 0 st~;mw~~erin:.e::.m • -- .. .. • .. .. .. ALTERNATE PIPE LOCATION (Tl?l (SEE NOTE G) INUET PIPE (SEE NOTES 5tG) BALL.A5T (SEE NOTE 8) COUPUNG (TYPJ (BY CONTRACTOR) OUTLET PIPE (SEE NOTES 5~G) 6' x 12' STORMFILTER-PLAN VIEW G) 30"0 FRAME AND COVER (TYPJ (SEE NOTE 4) PERJV.ANENT POOL MANIFOLD 4'-G" MIN (SEE NOTE 7) 6' x 12' STORMFIL TER -SECTION VIEW @) T:1E 570~U\'/.G..T~R ~ ... lAi~AG:v:=;:;~T 5:,o:;n~l::er?J \).5. f'A~:r..:7 r,v. 5,522,~25. ,c-2006 CONTECH Stormwater Solutions conlechstormwater.com No. 5.707,52;. r~o. b,027.G39 t~c. b.,-49.040. i~c. 5.~2-4.57,, .!.il!D OT:i!?.. J.S. hNJ fO:=..E!G:-t '::!..TEN75 PENDi~lG 6' x 12' PRECAST STORMFILTER PLAN AND SECTION VIEWS STANDARD DETAIL DRAWING DATE: 09121l/05 SCALE: NONE FILE NAME:SF612-PC-OTL .. .. ----... -- • • ... .. .. - .. • - GENERAL NOTES I) STORiv1FILTER BY CONTECH STORMWATER. SOLUTIONS; PORTLAND, OR (800) 548-4GG7: SCARBOROUGH, ME (877) 907-8G7G; LINTHICUM, MD (8GG) 740-3318. 2) FILTER CARTRIDGE(5) TO BE SIPHON-ACTUATED AND SELF-CLEAi~ING. STANDARD DETAIL DRAWING SHOWS MAXHviUM NUMBER OF CARTRIDGES. ACTUAL NUMBER REQUIRED TO BE SPECIFIED ON SITE PLANS OR IN DATA TABLE BELOW. 3) PRECAST VAULT TO BE CONSTRUCTED IN ACCORDANCE WITH ASTM Co57 AND C/3513. DETAIL DRAWING REFLECTS DESIGN INTENT ONLY. ACTUAL DIMENSIONS AND CONFIGURATION OF STRUCTURE WILL BE SHOWN ON PRODUCTION SHOP DRA\VING. 4) STRUCTUP-E AND ACCESS COVERS TO MEET AASHTO H-20 LOAD RATING . 5) STORMFILTER REQUIRES 2.3 FEET OF DROP FROM INLET TO OUTLET. IF LESS DROP IS AVAILABLE, CONTACT CONTECH STORMWATER SOLUTIONS. G) INLET AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR. PRECAST STORfviFILTER VAULT EQUIPPED WITH EITHER CORED OPENINGS OR KNOCKOUTS AT INLET AND OUTLET LOCATIONS. 7) PROVIDE MINIMUM CLEARANCE FOR MAINTENANCE ACCESS. IF A SHALLOWER SYSTEM IS REQUIRED, CONTACT CONTECH STORMWATER SOLUTIONS FOR. OTHER. OPTIONS. 13) ANTI-FLOTATION BALLAST TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR. IF REQUIRED. BALLAST TO BE SET ALONG ENTIRE LENGTH OF BOTH SIDES OF THE STRUCTURE. 9) ALL STOR.MFILTERS REQUIRE REGULAR. MAINTENANCE. REFER TO OPERATION AND MAINTENANCE GUIDELINES FOR MORE INfORMATION. ~ 30"0 FRAiv\E AND COVER _/" (TYP) (5EE NOTE 4) G' x I 2' PRECAST STORMFILTER DATA STRUCTURE ID XXX WATER QUALITY FLOW RATE (c;fs) X.XX PEAK FLOW RATE (cfs) X.XX RETURN PERIOD Of PEAK FLOW (vrs) XXX # OF CARTRIDGES REQUIRED XX CARTRIDGE FLOW RATE ( 15 OR 7.5 qpm) XX MEDIA TYFE (CSF. PERLITE. ZPGJ XY.XXX PIPE DATA: I.E. MATERIAL DIAMETER WIDTH~ f----------12' INLET PIPE #I xxx.xx· XXX XX" INLET PIPE #2 XXX.XX' XXX XX" OUTLET PIPE XXX.XX' XYJ< XX" PJtv1 xxx.xx· XXX.XX' LADDER YES/NO ANTI-FLO 1 A TION BALLAST 11-..:.W:.:.ID~T:.:.H.:...._+-..:.H.:.:E::::IG::,.H:,:_T---1 I XX'' XX'' NOTES/SPECIAL REQUIREMENTS: i;-:! 5TO?..\-W/J.TE?... ~viA.I'lAGE>v'EiJT 5-::cr.,F:::..er~ 6' x 12' STORMFIL TER-TOP VIEW (]) ©2006 CONTECH Stormwater Solutions U.S. F . .:l..TENT Ho. 5.322.G29. :~;:,. 5.707,527. No. G.027.b39' \o. 6.G-'9.C46. :.:o. 5.,24.57b. AI~~ 0Ti1E~ 'J.S. A}f0 fOi"!e!Gi~ ~ORMWATER SOLUTIONS~ tontechstormwater.com 6' x 12' PRECAST STORMFIL TER TOP VIEW, SECTION VIEW AND NOTES STANDARD DETAIL DRAWING - 2 DATE: 09128105 l SCALE: NONE I FILE NAME:SF612-PC-OTL I DRAWN: MJW I CHECKED: ARG .. • ... - .- .. .... .... • • .. • • • • .. • .. ALTERNATE PIPE LOCATION (TYPJ !SEE NOTE G) INLET PIPE (SEE NOTES 5<-GJ 8' x 16' STORMFILTER-PLAN VIEW G) 30"0 FR.A.ME AND COVER (TYP) (SEE NOTE 4) (5EE NOTE .2) 8' x 16' STORMFILTER-SECTION VIEW (f) '~ 2006 CONTECH Stonnwater Solutions =STORMWATER SOLUTIONS~ contechslormwaler.com 8' x 16' PRECAST STORMFIL TER PLAN AND SECTION VIEWS STANDARD DETAIL DATE: 09/29105 SCALE: NONE FILE NAME: SF816-i>C-OTL T~E 5IOR.MWAi!:R.. ~ .. ~A.~AGt:M=r·JT 5torm7:1tc!r® li.5. F'Ai'ENI 1\:o. 5.322,bZ:J. No. 5.707.527. He. 6.027.f;3~ No. t;.G-49.0~8. r-!o. 5.b24.57;;. ;.:~D OTt-:E:=t U.S. AJ{O fQ:;>..fiGN r~.TE:-rrs r:aer.:on·:G DRAWING • ... --- - • .. • .... • -• • -.. GENERAL NOTES I) STORMFILTER BY CONTECH STOR.tviWATER SOLUTIONS; PORTLAND, OR (800) 5-48-4GG7; SCARBOROUGH, ME (877) 907-8G7G; LINTHICUM, MD (8GGJ 740-33 I B. 2) FILTER CARTRIDGE(S) TO BE SIPHON-ACTUATED AND SELF-CLEANING. STANDARD DETAiL DRAWING SHOV6 MAXIMUM NUMBER OF CARTRIDGES. ACTUAL NUMBER REQUIRED TO BE SPECIFIED ON SITE PLANS OR IN DATA TABLE BELOW. 3) PRECAST VAULT TO BE CONSTRUCTED IN ACCORDANCE WITH ASTM Cl357 AND CB513. DETAIL DR~WING REFLECTS DESIGN INTENT ONLY. ACTUAL DIMENSIONS AND CONFIGUR.t>.TION OF STRUCTURE WILL BE SHOWN ON PRODUCTION SHOP DRNNING. 4) STRUCTURE AND ACCESS COVERS TO MEET Al>,SHTO H-20 LOAD R~TING. 5) STORMFILTER REQUIRES 2.3 FEET OF DROP FROM INLET TO OUTLET. If LESS DROP IS AVAILABLE. CONTACT CONTECH STORivlWATER. SOLUTIONS. G) INLET AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR. PRECAST STORMFILTER VAULT EOUIF'PED WITH EITHER CORED OPENINGS OR KNOCKOUTS AT INLET AND OUTLET LOCATIONS. 7) PROVIDE MINIMUM CLEARANCE FOR. MAINTENANCE ACCESS. If A SHALLOVVER SYSTEM IS REQUIRED, CONTACT CONTECH STORMWATER SOLUTIONS FOR OTHER OPTIONS. 13) ANTI-FLOTATION BALLAST TO BE SPECIFIED BY Ei~GINEER AND PROVIDED BY CONTRACTOR, If REQUIRED. BALLAST TO BE SET ALONG ENTIRE LENGTH OF BOTH SIDES Of THE STRUCTURE. 9) ALL STORMFILTERS REQUIRE REGULAR MAINTEI~ANCE. REFER TO OPERATION AND lvtAINTENANCE GUIDELINES FOR MORE BAFFLE WALL UNDERDRAIN MANIFOLD 30"0 FRAME AI~D COVER (TYPJ (SEE NOTE 4) 8' x I G' PRECAST STORMFILTER DATA STRUCTURE ID XXX WATER QUALITY FLOW RATE (c:fs) X.XX PEAK FLOW RATE (cfs) X.XX RETURN PERIOD OF PEAK FLOW (vrs) XXX # OF CARTRIDGES REQUIRED XX CARTRIDGE FLOW RATE ( 15 OR 7.5 "1om) XX BALLAST lviEDIA TYPE ICSF, PERLITE, ZPGJ XXXXX (SEE NOTE 13) PIPE DATA: I.E. MATERIAL DIAMETER INLET PIPE It I XXX.XX' XXX XX' INLET PIPE #2 XXX.XX' XXX XX" OUTLET PIPE XY.X.XX' XXX XX' XXX.XX' 8' x 16' STORMFILTER-SECTION VIEW (]) LADDER YES/NO ANTI-FLOTATION BALLAST HEIGHT XX" 7~E 5TOR.MW"-.TE~ tJ,;...~JAGEMEN7 5to~m~~~~er® 8' x 16' STORMFIL TER-TOP VIEW (]) '~2006 CONTECH Stormwater Solutions IJ.5. f'A7ENT No. 5 . .322,.;29'. Ne. 5.707.527. f\c. b.027.;;39 ~.:c. G,649.048. ~!o. 5.624.57b. ;:.~O OT~eFt U.5 . .:.rJO fO?..EIGN PAifh!TS ~~NDIN~ contechstormwater.com 8' x 16' PRECAST STORMFIL TER TOP AND SECTION VIEWS, NOTES AND DATA STANDARD DETAIL DATE: 09129/05 SCALE: NONE FILE NAME: SF616-PC-DTL DRAWING .. .. ... ... ... filii - filii .... -·--- • .... • ... .. .. ,. ... .. • _, • • -• ... • .. • ... • .. • ""' - ==--~ 1'101'1 _/ I L-'""""'\. I -11 OUTLET PIPE (S~E :o!C'TE 4) ll-!LE.T ~IPE (5::f ~IOTE 4) \ V A.~JACL.E DlAiv1ETE.~ {SEE NOTE 2) II \__ \\'ATER. QUALri" FLOW OUTt.=i i'lfE C5i:E NOTE~' 5TEf5 STORMGATE MANHOLE -PLAN VIEW CD 5TOF,MGATE ADJUSTAci.:E WEIR. (SEE DETAIL l/2) 24• 0 FK.~ME AHD COVER {5TDJ STORMGATE MANHOLE-SECTION VIEW G) WWVt.Stannwalerl£D.com STORMGATE MANHOLE HIGH FLOW BYPASS PLAN AND SECTION VIEWS STANDARD DETAIL .... • -.. -.. -- ... • • • • • .. GENERAL NOTES I J STO:;.\ilGATE 6Y 5TO?-MWATER.SGO (53 GO), ?ORT!A'ID, OREGON (800) 34o~GG7. 2} PRCCA5T MANHOt...f TO 6f CON5iR.UClED IN ACCO~Al\ICE WfTH A5Tl·l. c-:;70. DETAIL DR..:\\111NG REFL.ECT'5 DESIGN INTENT ON!..'r . ACiUAL DIMENSIONS AND CONfiGUR..t.TION OF 5T1WCTU~ WILL i3E Si'IONN ON i"RODUCTlON 5H0i" DRAWiNG. 3) STRUCTURE AND ACCESS COVE.~ TO MEET AASHTO M-20 LOAD R.O.T!NG. 4) INLEi AI~D OUTLET PlPlNG TO CE SFECifiED 6Y ENGINEER. AND PR.OVlDED 5Y CONT?~.CTO~ Ff'eD.5T SiOP.JviGATE ivt.l.NMOLE EOUii'i'ED 1Nl'i11 EITHER. CORED OPENINGS OR. KNO"'J;.OUT5 AT INLET A>'IID OUTL.ET LOCATIONS. 5) CO~m'-ACTOR. TO ADJi.J5T WEIR. TO DoiGN El.EVATION SPECIFIED IN DATA T.'.ol.E E':ELOW. DO NOT EXCEED 5.0 FT-U:SiOR.OUE \·'l;1fN TlGHTeNlNG 5CRE'!15 ON V~lR. FitA.i\~E. SEAL ,~vetR TO f~~ME ':'lliH RTV 5l!.iCOl"E 5E.AJ..l&J{i' AfiE:R. Fli~P.L AOJU5TI~ot.~NT . STORMGATE MANHOLE DATA. I I I I e.~.Sii·: i.O 1().7 ~0" I RJ:": !:LE\lATJON I 85.05' 4'"MIN WEIR DETAIL· PLAN VIEW (I) 2'-2" MIN ~~------4'wUN WEIR DETAIL· SECTION VIEW ([) Pi?E DATA: l I.E. 1 i .54• I o: I HDFE I 5:;· '.V.~.TEK QUALJIY F!..O\.V O~TLET ra1.~E ?E.;"-FLO\V OUTIFT FI?E 71.54'1 71.54'1 ORJFiCE Tl?E {PJPE. CP...F. f2tAiE) OR.IFICE OIAI'viEi'ER (m) 'NEI~ GP.J:S1 ELEVATION '.-VEJie. \VALL ELEVAT!ON '1/EIR ORIENTATION FLOO~ E~\IAT!Ot-1 NOTE5/5FEC!AL R.:QU!Rfivi'ENT5: :;os rvc ~· leO' MOr'E 3~ .. I FIFE I ,... .. I 72.67' I 73.37' 1.27' 74~J41 I 19' 71.20 Plf'E OP.JENTATION ~-y: 90' I 180'-EB-o= zfo= {~~J.: 24" e> FR..~i.J.E - ANO COVER (5TDJ STORMGATE MANHOLE-TOP VIEW ED STORMGATE MANHOLE HIGH FLOW BYPASS TOP VIEW, WEIR DETAIL, DATA AND NOTES STANDARD DETAIL O?.A'."IL .. :G r--- 2 www.starmwater360.com • - - - ... - • • GENERAL NOTES I) 5TOR..V.GATE 6Y STOR..'AWATER3GO (53 GO). l"Oil:l'Lt,'ID, OREGON (500) 54:5-4GG7. 2) i'REC.II.ST MANHOLE TO l5E CONSTR.UCTED IN ACCORDANCE \\1TH A5TM C47o. DEl AIL DRA\',1NG ~F!..E.CTS DE5iGN ll·lii:NT ONLY. ACTlJP..!. DftvlEN5iON5 AND CONFIGU?-ATiON OF STRUCTURE WILL 6E 5HOt.N ON l"ROOUCiiO!I! 5HOF DR.-'.W!NG. 5) STF-UCTU~ A.'I!D ACCESS COVERS TO MEE"i A!Ol1TO r~20 LOAO P-,.;TtNG. 4) INL.Ei AND OUTLET PIPING TO OE 5PECIFtfD 5Y !:1\!GINEER. A.~D r~OVIOED SY CO~!TR..ta.CTOR. .. ?RECAST 5TG?.J·~;GATE MA,'ZHOLE EOUil"i'ED \\1T'r1 EIT.1E11. CORED Ol"ENINGS OR. 1\NOC.<:.OUTS AT INU!T A~D OUT\.Ei LOCA'ii0N5. 5) CONTRACTOR. TO ADJli51 WEiR. TO DESiGN ELEVATION Sl"ECIFIED I~ DATA T.OSLE 5E!.OW. 00 NOT EXCEED 5.0 FT-t.e5 TOR.CL!E tfltiEN TIGHTENING 5CRE\~'5 Or" \VEIR FR.AMC. SEA!. \'/CIR. TO FR.~t\·~E VllTi'i RTV 5IUCONE 5EALA.\ T At~ER. FINAL AO.!U5TMENT. STOR.iviGATE MANHOLE DATA I O.G I 45' I 72..73' 4•MIN l"lf~ DATA: I I.E. I01<.:ENiATION IMAiER.IAL O:AMETE1<. !t ,; 2r 22tt v 22 22 /) Mf! SET 5CR.EW5 (i'r"l") 7 I (SEE NOTE 5) WEIR DETAIL-PLAN VIEW 1----s· .,_,__ ___ 4' 1\·l!N -----eo-1 ED INLET ?lf'f l b-4.~f· I c~ l t;DFE I 24~ ','.'ATE.'t CUA:..tlt 1·-~ ,.. ,..., 2-, 0' I ''"C I F~OVI OUTLET f'lf'E c """' -'v FE;.r,FLO\V OUTIFT ?JPE I G4.GG'I 1 eo· I nDFE l 24' ORifiCE TYFE (FifE. CAf', l""-O.TE) ORIFICE Oi;>.Mc: ER (m) WEI~ CREST ELEVATION W~IR. WAlL EL!:""VATIOt-1 iiE.£0 OVER. V·IEI='t. ii (fti W~IR. Oi".JENIATION FLOOR. ElevATION NOTE5/5FEClAL i"..EOUI~i'.·lENT5: I Pl?E I ,. I !05.50' I ,;s.oo- I 1.1o• I ;f;.40' I s,;· I .fi3.~:s· PlrE ORJEi•rTATlON 1\.i:l': 90' I 1 ao• -E±)-o· I 270' WEIR DETAIL-SECTION VIEW ED www.stonnwaL~r36D.c:om STORMGATE MANHOLE-TOP VIEW f2\ \JJ STORMGATE MANHOLE HIGH FLOW BYPASS TOP VIEW, WEIR DETAIL, DATAAND NOTES STANDARD DETAIL 2 I 01'.;.WN: M.J'II I CIC-t:KEO: A.::;.G .. ... .. - --- ... -- - - ... - • .. .. GENERAL NOTES I l 5TORMGA'iE 6Y 5'i0Rl-AWATE?-3GO {53GOJ, POR.i!..AND, OREGON {cCO) 545-4GG7. 2) P~CA5i MANJ",Q!..E TO !5E CONSTR.UCi'CD IN ACCORDANCE Wlil'l 1'5i:v\ C47o. DE'i . .o.!!.. DRAWiNG ?..EF!..ECT5 DESIGN INTENT ON!..Y. ACTUAL O:MEN510NS AND CONFIGU~TION OF 5T?...UCT1JR.E \ViLL CE SHO\:VN ON ?RODUCiiON 5MOF DRAVIING~ 3) 5T:WC'iURE AND ACCE..."-5 COVERS iO MEET ...... 5i1TO H-20 LOAD RATING. 4) lNLET AND OU71.cr ?IPlNG TO 6E SPECifiED SY EtttGrNEER AND PFWV:DED 5Y C0.'1T~~CfOR.. PREC.!a.ST 5TO~v;GATI! 1viA:o!HOtE EQUIPPED WliH Elil'IER. CO?..ED OPENINGS OR. KNCCWUTS Ai IN\..!1 A.\10 OUT!.fi !..OCATION5. 5) CONT?..;..crOR. 'iO ADJUST WEIR. TO DESIGN EL..=vATION 5FECIFIED IN DA.T.A iAo!..E BELOW. DO NOT EXCEED 5.0 Fi-J;5 TORQUE 'lfr1EN TIGHTeNING SCR.E\VS ON \VEIR. FP...A.'AE. 5E.!.t.J. \VEIR TO FR.A.a'v~C Yi1TM rtTV SJL!CONE 5EAL!..NT AFiER. FlN:Ol. A!JJU5T!v\ENi, -4• ivHN ..... WEIRDETAIL-PLANVIEW CD .._., __ 3' -----i ADJUSTAe!..E t ·~ ~~~ O;VEIR. PLATE 2 '-Z' :,.. ~ j (5EEN0Te5) MIN •· ~-0[\._ ;;~~~~W I . ·=a• .-•:'-. ~-·. ~·.i : ..... ~ :_ CiYr'J t -...... · .. -4.. '(_ .. .. 4'MIN 51 ORivlGA IE MANHOLE DAT,!!, o.:: 40" ?JM E= :=vATlON 5.5.15' riFE o . .;TA: 1 1.E. IO~JENTATIOt·: H·iLEo ?l?E l9l .70' I 0: 1'/AiEi<. au ... .Uif 1.. --· 2-,c• FLOW OUTLET ?li'EJ "'l.tu FVC I ,. PEA."-FLOW I -. OUTL!:I PIPE 9 I .tO ORii'ICE TYFE {FIFE. Cl'.=, ?L.ATE) I PI?.E ORIFICE OIAi,?•c 1 eR. {on) I G' V,tEli<. C?..E5T ELEVATION I 92.22' \..A/EIR.'NALL El ~AitON I 52.72' MEAD OVEK. 'NEIR.. H (rtj 0.90' 'JVSE at Q,:~eak 53.20 WEIR. ORJENTATION "ro ..... FLOOi<. ELEVATION 50.05' NOTES!SF'ECIAL R!:QUI?..EMENTS: FIFE OR.!ENTATION K!:"Y: 9?" 1 oo• -EiJ-o· I 270' WEIR DETAIL-SI=CTION VIEW (]) www.starmwalerliQ.carn STORMGATE MANHOLE-TOP VIEW ED STORMGATE MANHOLE HIGH FLOW BYPASS TOP VIEW, WEIR DETAIL, DATA AND NOTES STANDARD DETAIL I FILE N;.\fE: SG-M!·H)TI. 2 ... --- - -.... - -... .. - • -- RESEARCH AND )1 . Jll. DEVELOPMENT (I STORMWA;E; •• \ MANAGEMENT INC. . 1\ Total Suspended Solids (TSS) Removal Using Different Particle Size Distributions with the Stormvvater Management StormFilter<fj Introduction Total Suspended Solids (TSS} is common!;,: used in the stomw;ater industrj as a surrogate pollutant and a measura of Bsst Management Practice (61·.-lP) perfom1ance. Although a practical star.dard, it is becoming evident that the measurement ofTSS can be complex. Historically, parameters such as partic!e size d!stribt..'tion and specific grao.f:ty have not been included as part of EH·,·iP perfcm1ance due to the difficult; of measuring these parameters in the 'field. For exan1p!e, in a situation ·where road-sanding material is being washed into a BMP, the removal of 80% ofTSS is easily achieved as the majori't'J of the mass of the particles is composed of large sand and grit particles with a high specific gravity. In other situations. the TSS particles are much finer and have iower specific gravity, such as runoff from parking lots and high t""avel roads that frequently have ~gray· water resutting.from suspensions of siits, tire and brake dust, and associated fractions of oil and grease at io'o11 concentrations . TSS Definitions Stomr::ater ;-...lanagemant Inc. (SMI) has been investigating various particle size distributions {PSDs) for Bt'llP acceptance or verffication for va."ious agencies: Washington State Department of Ecology (Ecology), New Jersey Corp-oration for Advanced Technology (NJ CAT), New Jersey State Department of Environmentai Protection (NJ DEP). Citoj of Portland, OR Bureau of En;ironmental Sar.tices (BES}. Fr1e cflfferent PSDs are presented in Table 1. These particle sizes consist of natural soils (sand>j loam and s!lt loam), manufactured sediment (SIL-CO-SIL 1 05}, and two protocols for e';aJuating stomw;ater (APVVA and Cirj of Portland BES). The SMl Stcm1Filter •.vas tested ·..vrlh the natural s-oils and SIL-CO-Sll sediments (finer distriblffion than the APWA or BES protocols). PSD testing was predominantly conducted in the SMI !aboratorf using simu!ated stormwate; in a TSS concentration iange bet-t<een approximately· 0-350 mg/L SMI would recommend that a jurisdiction define TSS ·wrLh a range of PSDs such as the sandy ioam, silt loam, or SIL-CO-SIL "106 used in these labo.'":.'ltorf investigations, as oppose-:l to a unifom1 PSD (i.e. 80% removal of 125 microns}. Manufactured sediments are commercially availab:e and can easily be used in comparing diffe;ent EMPs. The PSDs are idealized at a specific gravity of 2.65, while 'field studies by SMI clearly show a high fraction of the TSS as organic in iexture (seasonal!yj with a specific ~ravitt at approximatel>f 1.0. Investigations by SMI show that PSDs in the Pacific Nolih•Nsst tend to be cllaracteristic of silt !oams and PSDs in the NE tend to be sandy loan1S or loamy s-...nds, especial~y where road sanding is practiced. Table ·1 has a summar:r of various PSDs that have been investigated by sr-.,11. For fwiher infom1ation, AppencfiX A cc-ntains me graphical representation of eacll sediment type. T ab!e 2 contains the TSS removal perfom1ance '.'.'ith fuese differant ssdiments. S~orm .... ,·atar ~,·lanag~-nan~ 1n::. @~2C!C~ FD--~-:3.~ C42S.=e5~10 StormFilt.;r Performance, TSS 1 cf6 -.. ·---.. .... ---- -- .. • .... - Table 1. Sediment Particle Size Distributions Particle Size (microns) 500-1000 250-500 100-250 sandy loam" 5.0 5.0 30.0 50-10-:l 15.0 2-50 40.0 Percent bv mass (approximate! Silt SIL-CO-SIL APWA 1999 loam' 106 ~ Protocol• 5.0 0 20.0 2.:. 0 "iU.O 2.5 G 35.0 5.0 2G.C 10.0 65.0 BG.C 25Jj Portland BES c 10.0 1\J.'.J 25.0 25.0 30.0 1-2 s.o 20JJ GJ} o a SMI tesied Oregc:t si.t an=. S;!ndy ~oams ~c: N::v; ,.!;rs:y Corporaion for A::VancW Teeim:)iOQ"J verification ofTSS performaa;; daims. b SMl :este: SIL-CC~Sll ·Ji:S for \".'asr.ing:on .sm;e Deportmer.t of Ec.:i.o;;;-per tt.e Te:t-.r.olo;rf ~.ssassme~t Prc:c:::-! -E::olag1 (200 i ; . . c H~cthetical portiC:a s~e distrJ:•t..tic:lS frc:n :nas: t~:ir.; ;:ro~ocois. ?;;rJclc sizes wer-e ;r~nte-: in n rar.;e avaCabt~ !n Apper.::'ix #-.; tr;e table represen:s the ~e~st wnservati'.;; [ c.::ars;r) approximate pa."ti :e size l'GI".ge. Table 2.. TSS removal using differing particle size distributions Cartridge Percent Removal (%) Flow Rate SIL-CO-SIL Media Type (gpm) Silt loam~ 106 ~ Sandy loam 3 coarse Perilla i5 72-77 r 1-ao Coarse Perlite 7.5 76-76 Coarse Fu:-e Perllta 15 Cc-arse Fine ?erilte 7.5 6.~--75 79-82 Fine ?er!ite 15 73-75 R::e Pert:te 7.5 85-BS csF" JeafD 15 e.::.-7!: Ccarse ?elmsi'Zeolite ~ 15 ~--84 ZPG"N 7.5 86-89 ?elits/Cs~· leaf 7.5 82-85 Perllte:l~\atai R:<: "" 7.5 89-92 .. Linear r~Jression v,•e,s usad i., t.i.; da±a a.,a:.ysi~, Il;e ta:~e ;resents the upper ar~ low;;r ~5% tonfi:lence tm~~ Oa~a W;3t; coEec:sd !n the SMI Ja....'komtor; uslr.~ simu;eted s:orm·uat;r for TSS eoncer:tratior~ be-:'NS:en Q-350 rr1;!L SL' end sand;' ioam perfcrman:a Cata \.•,-as NJCAT-vsr.fied. :o~ ?;:iomlance of the CSF !eaf rne-Oia w·as t=s!~ usir:; l:oth fie!d and la::Omtor)' irr .. ·esti;atrons. l.a!>::ml!OI)' ~tudies used a Pala~ne lca."'lseCimern. Fi~:i dab is from ::he Pacf.ic t·lorttr,vesl • Pertcm::r.~ of ::he coarse ~oe.~i;e 1 c:::-ar..: :.eolits mecia was teste: u;;ng lt Palat-n e loam secf4-nent. Re;;oned i;, Total S~:spended SC:ids R~T.c·.-a~ usin;; S:ormR:1er~ Technolcgy . Stormfilter \Next Page I· TSS 2of 17 l ~, · N 2 of6 • ... .. • ... .. --... • -.. --- ... - - • .. • References Amertcan Public Works flssociaticn {AP'Nfl.). (1999). Protocol fo:t.'"le acceptance of ur:approv-s-d sto."T!'~· .. gter treatment technoio~i:s for !JSe in the Pr.:cet Sou.r~d ',"/afer:shed. '-!Vashincton: AP"1V.A. VVashingtcn Chapter, Stormwalei Managers Ccmnuttse. Retrieved January 3, 2002, from the Municipal Research and Ser~·ices Center of Washington website: ;•.-vt'.'•~n1rsc . .:n:.:sn\~rcnnip!it:';·:atsrf·.·l~t-:::--.s .. '~r..t":.:::Joic,tccc~.htrn de Riddsr, S. A., Oarc-f, S. L, and Len hat~.. J. H. (2C02j. Silt foam TSS rsmo1·af sif.dency of a storr:n'laisr BA,~f.~: Coarssifins periite Siom;R!:ar carufdga st 20 L!mir. (7.5 gprr.). (ReJ:~:;rt No .. PD- o·l-001.1). Portland, Oreg-on: Stom1water Management Inc. de Ridder. S. A., Darcy, S. L, and Lt:nha:t, J. H. (2002). Sandy l~am TSS rer.}O\'al efiic;iency of a sto:mweter BMP: Coarse per:ite StormFiiter cari.ridge at ::JI Urnin (15 gprn). (Report No. PD-0"1- 002.1). Portland, Oregon: Stomw<ater Management Inc . New Jersey Corporation for Advanced Technology. {2002). zVJCA T TECHNOLOGY VER!FJCA Ti0/-.1 STORAf'NATER MANAG.£?',1ENT. INC. E<::d:!llo·:,~, ~J.: i"L!thor. Retrieved July 3"i, 2003, from: ;·NNi.r"'"'ourcssaver.com:tle.trcclmar.acar:(bor24 ;\l'.:~.coc Portland Bureau of En··.~;onmenbl Se..·-..~ces {Portland SES). (2001 ). Ver.dor .submissior; g:!idar;ce for evaluating storm\'/ater treatment tec.'u-;o!:gias. Portland, Oregon: Cit] of Portland, Bureau of Erwironmental Services. State of Washington Department of Ecolog:l (W.o..DOE). (2002., October}. G::.'da;;ce for Evaluating Emerg.ing Siormwater Tr.eatrnsr.t Techliolagi'es: Tec.~nology P.ssessment Protoroi-~coiogy 0N.4.DOE Pubflcation No. 02-1 0-037). Retrieved November 1·1, 2002, frcm: ·wv:V·i .. Sot .V."3 .. COViorc-::.rnn"J.S1\•:afstomT#aterinev•itech/02-·j C~Q37~·b20T.A.PE.cdf Stom1water Management Inc (SMI). (2004). Evaluation of the StormNater Managemsnt StormF=ffiejl.1 car..ridge for the removal of SlL -CQ-SJL 1 06~ a 51Jnthat!ca!(~.~ graded sand mat.srfa!: Z0 G Sto:mJ=1Iter cartridge at 28 UII'jn (7.5 g_c;mj. (Rs~-ort No. PD-04-006.0). Portland, Oregon: .A.u'ihor. Stom'l'...-..ter Management Inc (SivU). {2003). lnfiuence of iiow rate and media gradation or. the coot- eff:actr.re design of .stormwat:ar filtration best managemant practice<~ fOr the rerr.ovai of total suspended solids. (Report No. PD-03-006.0). Portland, Oregon: Author. Stomw;ater Management Inc (St>'ll). (2000). Total Suspsr.ded Solids Re:r.ovaJ using StonnFilter Teohnoiogy. PorJand, Oregon: Au'".hor. Stonnwater ~..-lanagement Inc (SMI j. (2005). Evaluation of the Stormwater Management Stom-.Filter® cartridge for the remo·val of SIL-CO-SIL 106, a synthetically graded sar.d material: Perlits/CSF Stom:Fnte; cartridge at 2B Umin (7.5 gpm). (Rep-ort No. PE-1J5-'J02.0). Portland, Oregon: F-.uthor. Stomr-Nater Management Inc (SMlj. (2005). Evaluation of the Stormwater Managerr1ent Stom1Filter® cartridge for the remo~·al of Sll -CO-SIL 105, a synthetically graded sar:d material: Perlits.!MetaiRx Stom;Fir..er cartidge at 28 Umin {7.5 gpm). (Report No. PE-05-004.0). Portland, Oregon: Al:tior. U.S. Si!~ca. {2:000, Marchi. Product Data, OK-1·10 Ungrcund Silica, Plant Mill Creek. Oklahoma. Retrieved June 12, 2003, from: ·.·..-.:..-.:: u-s~siHca c••rrJorod inic·!PCS/Miil Cr~t?k! MiCOK-·1102000.POF 3of€ . .. • - - - --- - .. - .. • .. • • • - Revision PD-03-13.3 04:28i05 Added PeriiteiCSF leai & Psrlite.:rf.eta! RX to Table 1. Updated Reference Sectic-n. PD-03-0132 12f02i04 Added ZPGw. to Table 1. PD-03-013_1 12!15i03 Altered Table ·1 -SIL-CO-SIL to reflect 20:80:0 (s.3nd:siltclay) .Acc!ec! content to ssciion 2, paragraph 3, last sentence. PD-03-013.0 10:2Si03 S;om-rt;ater ~.la.,;,;g-:.'li;;;T~ ln::. ;z.20C~ F~J:!-:3.1 12:~2.1:4 .SIC Stoml~llter Performance, TSS .. • ... ... - ... • -- - .. .. .. --.~·:, -... • • • ... -.. - APPENDIX A SIL-CO-SIL 106 Particle Slze Distribution Particle Size (umj Figure 1. Particle size distlib\Eon for SlL-CO-SlL 1C6. Sandlsi::.tclay iractions accci·::ing to USDA deiir:iticns are appro:~imatel)' 20%, BO%, and 0% fer SiL-CO-SIL 105. indicating mat lM texiure correspcncs to a sl:t 1nater';al. Specific gra;r.ty ls 2.65. Silt Lonm Pnrticle Size Distribution "'C" Ql 1.0 c i!: 0.9 ~ e.. 0.8 U) Ul 0.7 111 :a >-0.5 .Q .§ 0.5 3 0.4 :2 0.3 ;;; i5 0.2 I!) ;;. 0.1 ~ (ij 0.0 ;: -·-~ .. --:··-: ·?·-:-;..:.:... ~ -·-~-·---~-.. -..!:--·-. ' : -' .... -t----:.....:..."-'-'-'-r--J~_;_~!..:...,: i~.;~f~40---~-~ , .·-.·-··--_·_._;_-_-__ L-_-/-_.: __ -_-__ ;_~_· ~tb~~~-=-=~t L. ---·--i---··--__;_-:-:----. -_.--.:._.;_ -~_;. --~ ___ _j .::~,;/ ~/ '~-------;~!,~:.--~~~ ll: 10 iGD 1COO 10JGO Particle SiZe (umj Figure 2. ?artids siZe distribution (shown as s-olid t:ne) fer bulr; soil s:n;>!e -osu Silt Loam GPS \•V.P. #1 o· use-::1 for tsstin~. Sand/siticlai' fractions according to USD.~. csfinltions .are appio:<imaiely 15%, 65%, and 20%, inaicai:ir:g that ttae texture corresponds to a silt team materiaL Dashed an•j i:!otted finss 1n::l;cate partioe siZe dis:ril:utlon range recommended t•y Portland SE.S (2DO!) and :..=-V·t'A (1999l. respec:vet:1. for materials vssd for latcrak•<":: evaluatlc·n of TSS removal efficiency. S~ormwat~r Ma~g~:n~"l:. In:.. ~2GC~ ?1:--~1:!..1 1Z":O:C4 Sl::i Stonnr·ilter P:liorm:mce. TSS 5 of6 • - --... - • • .. • • - Sandy Loam Particle Size Distribution Particle Size {um) Figure :l. ?article size distribution (sho·.•m as solid line! fo; bull\ soli sample ·osu Loam GFS 'iY.P. #13" usee for testing. Sandfsilt'clay fiadions acccrdlng to USDA definitions are ap;lroximate!;' 55%, 40%, and !:·%, indicaiil;g !hat the te):turs corresponds to a sandy loam material. Dashed and dotted lines indicate J;article size distribution ran~e recommended !Jy Por"Jan:! BES (2.001) and /·•.F',•V.:!.. (1999), respac:ivety, for matsri::ls usad fo; lctroratorJ e·ialuation of TSS removal em-=iency . Stom1fi/ter Perfonnance, TSS 5c.fS - --- -- ., • .. • • • • - ·---~-~--~--~~ -·-----·--------~~-·-,-----------~-·1 // : RESEARCH AND DEVELOPMENT f STORMWATER . ! ~ MANAt=iE.IYIENT INC.; Performance of The Stormv:ater Management StormFilter':E; for Removal of Total Phosphorus Phosphorus In the Urban Environment Phosphor'JS loading to freshwater can promote algal blooms and eutrophication that threaten ecosystems by lo•:;ering dissolved oxygen levels. As shown in Figure 1, phosphorus cyclss through the enoironm,;nt in fom1s organic. inorganic and soluble fcm1s. Plcnts obsor·b or.haph~phahs from th:: v:atcr or· s<>il Pho~phor-us is carried by rivers tQ lak~' or thcz occ:an bottom ,<.nimols obtain ( Orgallic org:nic Short-T~ phosph:!rus from ~ho.tpho,..u: Cy:l<t thdr 6od i i So.ctc"ia feeding on anima! wasto:s or dead plant.: end cni mal.: rdcc~ pho.:phatr:< Phosphorus is stared in ::c:dimr:nt or by the tQr·m:rtion of SEdimen!CU"y ··.v.k StoJ·cd phosphol'U! is dislut"bc:d by cur·nnls. pipclin;: condruction or c1·od"d b::' rive....: from upli ftl!d rock Figure 1. Inorganic and Organic Cycle (Rlve-rWatch, 2001) Total phosphorus (TP}, expressec in milligramsiliter is the sum of inorganic phosphate. organic phosphate, and soluble phosphorus (O.,.hc-Pj. Organic phosphates are a part of plants and animals, their •,•,.astes or decomposing remains. Inorganic phosphorus originates from decomposing natural materials and man-made products. Non-point source runoff [stoffilwater) increases-phosphor.Js concentrations in lakes and streams by transporting sediment and organic matter (bud shatter, leaves. lav-m clippings, etc.) from imper{ious surfaces. Additional phosphoi"..JS sources in stom1water are misapplisd fsrtllizers, some rietargents, and animal waste from birds and domestic pets. Phosphoms in urban runoff is tjpicaliy measured as TP and sometimes Or.ho-P is measured as ·well. The non-soluble portion of the TP is commonly associated with the total suspended solids (TSS). Of this fom1, the phosphorr..Js C..1ll be in an organic or ino~ganic f.:::~m1. TP concentrations in stomw;ater are variable but range from 0.01 to 7.3 mgtL (Minton, 2002). Concentrations of Ortho-P in urb:m runoff are frequent!'] in concentrations ranging from 0.05 to 0.2 mg1L {Vv'igginton, Stormr1lte-r ?erfom1anca, Phosphorus 7of 17 'lllll • .. • .. -----.. • ,. --.. ... • ,.. • ... • ,.. .. • • "" • .. • .. • "" • ... • ... • -~ -'. ~ ·J999j. USEPA guidelines indicate that Ortho-P concentrations in stream in excess of 0.10 mg!L can trigger algae blooms in fresh water iakes. Removal of phosphorus can be accomplished by three mechanisms. The first is removal of organic and inorganic P associated with solids. The second is remo·;al by biological uptake by plants or bacteria. The third is through chemical precipi'.ation such as the reaction of OrLho-P with iron to form iron phosphate in aerobic conditions. Depending on the t)'pe of treatment system, organic phosphorus can transfom1 to Ortho-P and be released later. For example. leaves trapped in a sump can decompose or fall senescence of wetland plant can release Or.ho-P. Results Performance data for removal of total phosphorus were summarized from ongoing field evaluations. These field evaluations ara a combination of first and t'lird party investigations. Data were collected from 9 sites !ocated in different geographic: loc:ations (primarily from the \'Vast Coast (vVA, ORCA) and a single Mid;,vest site) and configured with different media types at different flo•,•: rates. Available reports are listed in the reference section. This perfom1ance summart focuses on Total Phosphorus removal only. The following infom1ation presented in figure 3 coniains data coliectsd since 200·1, mostly during the late spring, summer, and fall for total phosphorus removal by the Stomw;ater Management Stom1Filter. Fifty-five data points are presented in Figure 3. The mean remQval efficiency using linear re-~ression was 52'7~, wrLh 95% coniidence limits of 53% and /.9% (!ower and upper limits, respectively). Sixteen data points that were included in the analysis did not have a positi··..-e removal. Overail thsse systems demonstrated statistically significant removal (P<0.001; 99% probability of net removal) ofT otal Phosphorus • Stormr1lter Perfom1anc;;, Phosphorus ... -- -.. -.. .... .. -.. • ... .. -.. • • -.. .. • 1.5 fj -;:::============~-----~ 1.4 j--Ragr~QI'I I u!. 1 ---95% Confidencg :ntcn~Ais for Re;rcsS:cn 1 ! 1.2 T ---kr.S% Prediction l.'lt.a::Yals 1 -i !' 1~ 1 T R~;gro~on 2quaticn: ~ 1.0 t-Y = O.::.Sx.-<-0.055 + 1 w i ----------1 ~7l; ! ,...., o.s T -·· ___ _,. _,..... i ~ .-··-· ., I 0.7 T ______ .J_._.-··'· ....... ,. ........ 1 Mr .-~ I I 1-_. ........ ..,.. J' 0.5 t ----,- 0.4 l .--·+ --~~ ...... --+...... ------, 0.3 t---· 1....;:-........... -------------______ .r,.-.. ~-,, 0 ~ , + ,-.;,.a ------... T:t.~::f..--+ --+-----.J----~ + ! c., -:r .f + -t:+ ---~------.. ---------,~------. I 0.0 .. : ... , .... : i;····I-• 1-; .• :. ·• [ ... I··· •1 • •. i .••. I 0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 o.s 0.~ 1.0 '·' 1.2 1.3 1.4-1.5 Figure 3. Tctlli phos;:t-:c-ru~ removal perfc;;nanc; summa,;,· coae:ted frc., :3 sr.~. in muF.ple gecgraphi::: lc.::ations, ~vffil ciifrerent metiia Tn; ilnMr regression produced an e-~uation of y = O.~·C·:-: + O.OS5. wh!ch !Iar.Slats:s to aS?*-renllJVal '.',t.h a 95% conftCence hte:va! of 53~~ an-:! 78% oa·.-.·~r ar,j u~;er rrrm, res~ectively). r:'a:a. v~~s statistical)· sign.1ie.:mt \'1-tth a P < iJ.D1J1. D~..a was curr:-nt a;; of Juiy 2oJ~. Table 1. General Site Description WQFiow No. of Site D~crtptlon Rate !Cfsl Unit Size M~di3 Carttidgas Location Shoppin-;; Ce.,~r U.SQ3 5:< 16 z.o.:; .. ~ -~ VanCC'JVer, ViA C3JWash i:.'J70 C5Sf CSF 2 \!ancc-.r:er~ ViA H::tel !l.16S s:.-:a CSF 5 Vonec~var, •N.l.. Mlxe-: Use 1.600 6:·: 16 {2; PerJl-;:Z;ol:te 45 Sarrmamish. 1i•/A Sho;:!pin; Center Q .. QS~. C6S:' Per!ite Vancc!Ner .. ;l·iA Ccrrn:;r::Jal Offi::e G.S~ e.:-: 16 {2) Perille.'CSF 24:30 Ol;mpia= V·ik. Sci:c>o! 0.297 6:-: 1.S Pe-Jirl!!l'Zeolr-a.: 14 Redrr.-~n~ '.11.'A Resort 1.s::-o ClP P::rfrd:Zeol:te so Ca£f:orr,i3 Rosd\'lay Q.30Q 6:-:12 ~3 9 ~1~~.·~t StormFilter Periom1ance, Phosphorus .. • -- .... ... ... -.. .. .. .. • ----- ---• .. References Dela'.fiate State Department of Natural ResO'Jrces and Environmental Control. (no date). Urban Storm;•;ate; Fact Sheet prepared for iniat!d Bays Watershed. Dover, DE. Retrieved 11 i11103 from \''I. ... N·:.J".dnjec.stat:.d:.ust:r.ratar20D0fSe:.~ons.:v./at.;:.:;hed:\·.-s:~3ct fu stt:.rr;:·,·i~~=r.r.~::f !·.-linton, Gary. (2002). S!O:m'/:ater Treatme:Jt Biofogica!, Chemical, & Er.ginseri::g Principles. Resource Planning .t..ssociates. Seattle, \•V."-~ Rivef·/'latch. (2001 "t Beyond B:>:J.=<s Jnstit-,:te cf Aibe:ta. f::QO 1). Rstf:e-..:ed ·:ln 11t1·tl03 at -~ .. vt .. v.ri"ler.'.-atch.ab'.c~:uh~··N to n;or:it•J:ir:· info-t·~-a~.s.•:fn1 · · Symons, James, L:::::: Sradiey. J;., Theodore Cleveland. {20DD). 1 ne Drir1kf:lg l·l·'atar Dictionary. American 1Nater INorks .A.sscciation. r-..lcGraw & Hi!!. Ne•,•: York, NY. Siomw.·ater Management, Inc. {SMI). 2002.. Heritage ,via.'ketplace ,Cie!d E>.--aluetion: Storrm·\'ater Management Stom;,!:f,~:;r wfth CSF Lsaf Media .. Author. Portland, OR. S!orn1v.:ater ro.;!anag-en1enl lnc_ (Sr~·il). 2003. University F'lacs Fie!d E\laluation~ Sto.rmL~·'ater A~anageme-rrt StormFilter~·,:ft.~ Pen·.=:e A.-fedia. Author .. Portland, OR Stom1water Management, Inc. (SMI). 2003. 0~-'et.ake Schoc! Field Evaluation: Sto!i771·Vater ,•.4anagerns-r:t StormR!ter ~·llth F'erlltelZeclite A·'fedfa .. Aui:hor .. Portland: OR Stormwater Management, Inc. (SI~t1l). 2QQ3. Salmon Creek Plaza Fie!d E-al;,-ation: Sionnnate; A-1at'laaerner;t CatchBasir. StormFiltsr-c .. ~ ~·,-ith Go:Li3e Perifte :,,;adla . .t:. .. •Jthor .. Portland, OR - StormNater Management, Inc. (SMI). 2003. Uni-v;;rsi~,-it!."! at Sa!.rnon Creek Fi;!d E\.~aiuation: Sto.7iitr'r"9ter ,4Aanagernant StorrnFi!ter 'l;fth csr~ Leaf A1edia ... A.u..:.~.hor. Portland: OR. Stornw:at;r Management Inc. (SMij. 2003. Larr;'s Cam·ash: Stormwater Manag'3ment StormF:}•ter 'l:ith CSF Leaf ltl!edia .. P..uthor. Portlandt OR Stormwater Management. Inc. (SMl). 2003. Saffron Viliage ,Cis!d Evaluation; S:-ormwater Management SrormFilter>i.t.'J P&dite!Zeo!ita Media .. il.uthor. PorJand, OR \.Vigginton, Byran 0. James Lenhart {2000j. Using Iron-infused A·fedfa and StormFi!ter tachmiogy for the remo-.laf of dissoh,ed phosphorus from storm.·vater disc.~arges. Wa'isr En.,.ironmsnt Fsds~tion-72-rdAnr.ual Conference and Exposition. Anaheim, CA Data from Two third parr.-invsstications were used in this analvsis. reports shall be available in fall of 2004 and spring of2005 (t.-Jid•.vest l. California site) .. StormFiitsr Performance, PhOsphorus - - ... • - - - .. - - • • • • ... .. \ I I I -. REs EAR c H A tl D 0 E v E L 0 p MEN T (I STORMWATER • ,. ~~ il'J A N A G 1! fr1 E /{ T J N C • The Stormwater Management StormFilter:5lfor Removal of Dissolved Metals lntroductlon Urban Stomw:ater often contains high levels of soluble and particulate heavy metals. Generated from traffic, industrial facilities, and s-ometimes residential sources, these metals are frequently found in concentrations that are de!eterious to aquatic life and other biota that are dependent on aquatic fife as a food sources. Two of the most common metals found both in the water column and sediments are zinc and copper. Zinc tends to exhibit toxicity affects in the fresh .,.,.ater envi;onment and copper exhibits toxicit'f characteristics in the marine enYironment. ·1-..ietals are measured as both total metals and solubie metals. Total metals are the sum of dissolved metals and ti-lcse metals associated wr..h particulates. Soluble metals are commonly defined as those metals that pass through a 0.45 micron filter. Frequently the soluble metals are in a cationic form in that they posses a net positive charge. Ho•,.,•eyer, sometimes the charge of the soluble metal has been satisfied in that it could be associated •t:i'"...h sub-micron particles such as ligands or colloids. In this avant, the metal may not have a net positive c.'1arge. Cation Exchange Cation exchange is the exchange of a cation (positively charged atom) for another cation. The process involves the displacement of an atom within the media matrix by an atom V.'ithin the \'iater column. The d!splacement occuiS lf the incoming atom's affinitt for the exchange sits is higher than that of the rurrent occupying atom. In general, the physically smaller the ion (when hydrated) and the greater the positive charge the more tight!~· it •Nil! be held by 1he media. Predictions can be made using a periodic table of elements for commonly found msta!s in stomw:ater runoff. Staying wi'"Lhin the same rov: of the table and proceeding left to right produces an increasing affinit:,.. for cation exchange. This trend is promoted due to the metal atom remaining in the same valence state (charge) while the overall diameter of the atom decreases. Sines the diameter decreases, the "apparent charge" of the atom increases, thus producing the driving mechanism fer cation exchange. For most purposes the following affinit; series is tn.!e: ~-+ .:.-~... =~ .l-l-~~ ,1.,. A! > H > Zn > Cu > Ni > Fe > Cr > Ca > Mg > K > Na Primary Exchange Ions withln Stormwater Management Filtration Media The medla-bound lons utilized wro.h cation exchange filtration are calcium (Ca), magnesium (Mg), po1assium (Kj and sodium (Na) with calcium and magnesium being the primarJ exchange k·ns cue to their abundance ··Nithin the media matrb:. Stormflller ?erfommnce. Dissot·.•ad Metals -.·. .-:: I 1 -~ •.., : --~ .,: .• :. - --- - - - ... - - - - --... - As presented above, zinc, copper and iron (as well as others} win force ihs displacement of the calcium and magnesium ions from the media. Media promoting cation exchange and measured e2tion exchange capacity (CEC"i: • CSF~ media {93.8 meq/100-gr.:ms) • Zeolite (125 meqi100 grams) Performance summary Table 1. Soluble Metals Removal using organic media (CSF'', Metal Rx). Soluble Copp;;r SolubleZn Site Medi:!. Nr!ssco Shipyar·:l CSF Chsf.-:::ston Bcai"j!lrc CSF E:m Side p;;rtino Metal ;:>,;, Table 2. Total Metals Removal Remov<~l Influent fuglll t:Q ......... ... • ... -~r;::.;, Rernov01.l ConfiQuration !R~rnoval emciency) CSF CSF Influent !Uilill 1S:i ... 124 3~560 rrc~-~ t~D-569 (Tc;a;; Influent lmplll Standard Grade Standard Grade Perllta.Zeolite Coarse Grode 15gpm Perlite1Zcolite Fine Grade 15gpm Parameter Tctai Copper Tctal Lead To:al !inc Tob:l Chromium 11 iLQEoti 3 .. 5E 15gpm 7.5 gpm 491{; 41% 41% Psrfom1ance data has been summarized from field investigations (Table l) and from laboratorJ (Table 2) investigations using captured stom1water runoff from ths Charleston Soatyard. StonnFilte:r Perfonmmce, Dissolved Metals : of3 i -.: ·--0: • ..., . -;.~. !. • ..': • - - --- ----- -j '~ ;: - - -.. .. -• ... • References Stoil11water Management, Inc. (200'1). Gom,oa!i.son of CSF ar.d x=csF StormFfitsr Cattiidges for Zinc and Total Suspended So!.;ds Removal. Stomw.•atsr Management Inc., Technical Update. Portland, OR. Lenhart. James, Scott de Ridder, Paula Cah•ert, Calvin Noling. (2003). The Rsmovai of Soluble Heavy· .A.;1eteis Fron1 i\iorJ-Point S-ource Rur;off Originating Frorn Industrial Sources by Leaf Compost 1".fadie. Portland, OR. Noling, Gal\~n. (2002). The Road to En•.;ironmental ?erformar.ce: A SmaN Sh~oyards Experfanr;a. 2nd Annual Shipyard Environmental Issues Conference. Por'Jar.d, OR. h~inion, Gal):. (2002). Sfotrravater Treatrnent: Bi~,·ogical: Cl'u~tnicala. & Engineaf.ng P!'inci,ofes. Resource Planning Associates. Ssattle, WA. Tobiason. Scott, eta!. (2002). Siormwater Metals Removei Tasting at Seattle- Tacoma lntemaiional Airport .. Proceedings ':Vater Env!ronn1ent Federation, Watershed 2002 Conference. Hart Crowser. (2002j. Final Report (Defi~·e;ab/e 5) Demor.stratiot1 of E11hanced Flltration for Storrrn·vater Treatrnent of Shlovard Storm~·;atar San Dieco .. CaLifornia. June 2002, 737 4-03. · • -· · Hart Crowser. ('1997) Shipya;d AKA.C(T Anaiysis for Treatment of Stormwater. Final Report Prepared for Maritime Environmental Coalition, r.,-lay 7, '1997. ce, Dissolved Metals !:.-.: ' ....... ~ . ..., - ---... -... --- - .... - ...... - .... • - l) . 1 RESEARcH AND DEY E:LO p MENT ~ STORMWATER ~~, MAI'iAGE.MfltT INC, i ! The Stormwater Management Storm Filter® for Removal of Oil and Grease Oils and Greases iO&G\ are commonly found in stomw:ater runoff irom automobiles and associated ar{thropo~enic activities. O&G appears in many diifen:nt fom1s in stom1watsr runoff: free. dissolved, emu~sified. and attached to sediments. Total Petroleum Hydrocarbons iTPHi is the usual analvtical measure offue!s, oils and grease (O&G) for stomwater. Typically ihe CC·ncentrations ofTPH associated '.':ilh runoff from streets and parking lots do not exceed concentrations that range from 2.7 to 27 mg!1 {FHWA, 1996j. Frequently studies are conducted using high concent:rations of oil, e.g. 5.000 mgJl in and 250 mgtl out, wr.h claims of 95% removaL Tnese concentrations are not representative of those associated wit"l most stormwater runoff. In the event of these high concentrations, t1en an oil!water separation technology would be required as pretreatment · Removal of TPH by media ·..vithin the St:>m1Fiiter cartridge is accomplished through adsorption. Adsorption is the attraction and adhesion of a free or dissol'led contaminant to the media surface. This occurs at the surface as well as within the pores of the media granule. Adsorption requires that a contaminant come in contact wtth an active suiface site on the media and time must be allowed for ti-le contaminant to adhere. These reactions are usually promoted b}' po!ar interactions between !he mecia and the pollutant. Adsorption can also occur within the dead end pores and channels of the media but is generally slower than a surface reaction due to limits of the contaminants diffusion into the pore. (Note: The contaminant's molecular size will limit diffusion in that the media's pore opening must be larger than the dissoh·ed contaminant) Commontj adsorbed pollutants include: gasoline, oil, grease, TNT. polar organics or orgarJcalt;' bound meta!'s and nutrients. The media provided by Stomw;ater Management for the removal of oils and grease are targeted to remove concentrations of 25 mg!l or less. Media promoting adsorption reactions are the CSF® leaf media, perlits, and granular activated carbon . For concentrations that continually are higher than 10 mg1l an oil remo'<ing accessory such as a sorbent cartridge hood covei is recommended. References Center for Watershed Protection. (2000). 1". Periodic; Br.:ifet.'n on Ur"ban WaterslJed Restoration and Protec;tior. Toof~-VoL 3, No. 3. FeCeral High·uav .~ssociation. {1996) .. E-.··aiuation and ,\4ana~ern:;nt of Hich;'la~ .. Runoff Water Q;,;a!ity. Publication No. ·m\·V.~PD-96-032. --• Tenney, Sean, Michael E. Barret. Joseph M. Malina. Randa!i Charbeneau, Ge-orge H. \•Vard .. (1995) .. An Evaluation of Higf:.,''iay RL·noff .~tra!ion .Syste.Trs .. Technical Raport CRVVR 265. Center fer Research in Water .Res-:>urces. SlomlFilter Performanc::e, Qil Gnd Grease .. • • • • - ---- -- - - • • ... - PARAMETER BRIEF \i J) (( STORMWATER . \\ M A N A G EM EN T I N C ·I '' Performance of the Stormwater Management StormFilter® for Removal of Bacteria Microbial contaminants, generally referred to as bacteria, are fiequently identified as a pollutant of concern and are common in stom>water runoff from both developed and unde·;eloped areas. Typically, is cal co!rrom1 is used as an indicator that enteric organisms may be present in the storm•:.·ater runoff and is used to set water quality standards. Human ·.vaste is a common source of fecal colifom1; other sources include pets and urban wildirre, native wildlife in rural areas, and to a surprising extent, birds iourton and Pitt, 2002; Crabill et al., 1999; Grant et.ol., 200·1; Apicella, undated; WPT, 1999). Tna concentration cf indicator microbial contaminants in urban stormwater is routim:ly measured in the thousands to tens of thousands of organisms per 100 mL range (Burton and Pitt, 2002). Typical federal colifom1 standards for different water uses range from less than ·14 MPN (most probable number) per 100 mL for shellfish beds to less than 200 MPN per 100 ml for water contact recreation. Studies have found that mean fecal coliform concentrations in stomw;ater runoff may well exceed 20,000 colonies per ·too ml (WPT, 1999). Gi·•en the concentrations of bacteria commonly found in stom1water, this could represent a required remo·;al efficiency of 99.9% (VJPT, 1999; NRDC, 2001 ). Fecal colifom1levels may vary greatly depending on occurrences of drt ws~ther news, seasonal effects, and impervious cover. Effecti•:e reduction to meet federal regulations is best achieved through a technology such as uitraviolet disinfection. ozone disinfection or chlorination. Filtration of Stonnwater Available research literature indicates that media filtration of stormwater can achieve a significant and reasonable level of bacteria reduction. Compared to other treatment technologies currently available, a media niter n~ay be considered treatment to fue ~maximum extent practical". Since media filters, including sand filters, have no astringent properties, me remo..,.al of fecal co!ifom1 is typically associated 'Ni'ih the removal of total suspended solids (TSS}. An article from Watershed Protection Techniques ('!999) establishes a link between bacteria and sediment This article suggesis 50% of fecal colifom1 bacteria are attached or adsorbed to larger suspended particles in stomw;ater. Tnese larger particles can then be settled or filtered out In general, the article concludes that filters are veri effective f.:)r remo·,:ing bacteria associated ·::ith TSS. The Stomw.'ater Management Stom1Fiitsi"t is a passive, siphon-actuated, f.ow-through storrnwater nitration system consisting of a structure that houses rechargeable. media- fille-d filter cartridges. The StormFilter has been demonstiated to be an sfft:ctive sr.,-JP for Stormfilter Perfonnance for Bacteria lt"" .. lt4.., ..:--- • -• -.. --- - - '"' • • • • .. - -.. .. the removal of TSS (WADOE., 2004). Hence, according to the research presented by Schueler, the StormFilter ·t,ill provide a reasonable removai of bacteria. It is import3nt to note that sampling to detem1ine the perfom1ance of stom&·Nater BMPs with regards to bacteria removal is quits challenging. To ensure minimal die-off oi the organisms bet~veen sampling and analysis, sample hold times are 'iSI}' short (approximately eight hoursj. In addition, samples must typically be manual grab samples with sterile equipment. Finally, there is such high variability in !he ievel oi organisms in the influent and effluent flows that many samples are requirsd to adequately characterize facility perfom1ance. This combination of variabilitj, sampling difficulties and required number of samples results in few field data or definitive recorts on bacteria removal for anv stomw:atsr BMP. . • Study Results A labora1ori study evaluating b-oth bench scale and column tests of the CSF® leaf media demonstrated reasonable removals of both fecal colifonn and E. coli. For the bench scale test, the media demonstrated removal efficiencies for fecal colifom1 on the order of 50-60% and !or E. coli en the order of 65-7S%. Column tests sho•.ved average removal for fecal colifom1 of 47% and E. cofi of 30% (Roy, '1995) . In a California field study, the Stom1Filter using perliteizeolite media achieved an average bacteria reduction of 47% even wit.h a TSS removal of 50'%, which is on the !o-..v end chhe StcrmFilter performance scale (Caltrans, 2004). Bacteria reduction in future applications may be e·.:en greater if source controls such as street sweaping or removal of leaves and other organic matter upstream of the unit are provided. In addition, me Stom1Filter media-filled cartridges can be operated at lower carui.dge flow rates to maximize contact time •::ith the media and improve removal efficiencies. Finaltj', bacteria removals can be improved by ensuring complete drain down of stomw:ater de,,ices between stom1s. This prevents mosquito breeding and eliminates putrefaction of collected pollutants, thereby limiting the a·1ailabi!it'J of hosts for bacteria. Conclusion In conclusion, given the fe-,.,. data points and limited available literal'.Jre, the Stom1Filt~r providss a le,•el of bacteria removal consistent with other stormwatar filL-ation systems . References Apicella, G. Undated. Urban runoff, wetlands and waterfo·::l effects on water quality in Alley Creek and Lime Neck Bay. Oniine: V'i'tN>.stomw:ateresources.comiLibrar/i071PU~IleyCrsek.pdf Burton Jr., G_;_ and R.E. Pitt. 2002. Stcmw1ater Effects Handbook: A tooibox fo[ watershed managers. scientists, and engineers. U:·.•:is. Ne'l.' Yor.~. StormFi!t&r Performance for Bacteria 2ofS ... • -• -.... - -- - -,,.. - -- • -- Califomia State Department of Transportation {Caltrans). 2004. Si ... JP Retrofit Pilot Program Final. Report lD CTSW-RT-01-050. Sacramento, C.~ Crabill, C., R. Donald, J. Sr,;lling, R Foust, ar:d G. Southam. ·1999_ The impact of sediment fecal colifom1 resar,•oirs on seasonal·water quality in Oak Creek, Arizcna. ~Vater Research, 33: 2163-2171. Grant, S.B., S.F. Sanders, ?~B. 3oehm. J)'>. Redman, J.H. i<im. R.D. Mrse, A.K. Chu.1·1!. Gouldin, C.D. McGee, N .. .3.. Gardiner, B.H. Jones, J. Svejko•sky, G.V. Leipzig, and .A.. Brown. 2001. Generation of Ent&rcocci bacteria in a coastal saltwater marsh and its impact on surf zona water qua lit)'. En·,;ironmentai Science and Technoiogy, 35{12): 2407-24Hi. Natural Resources Defense Council {NRDC). Undated. Testing the •:•aters 2001: a guide to w-ater qualit-J at vacation beaches. Online: ..,..,,., . ..,.; .n:-da:.or-:J:\•:atsr! ocsans.-'t:-,~;.'r:hao i .a so Roy, Steven. ·t995. Stomw,oater 'Ccmpost Filter Anaiysis-Bench Scale and Test Column Results. Burlington, Vemwnt Washington State Department of Ecology CNADOE}. (20iJ4i. Draft General Use Level Designation For Basic (TSSj Treatment the Stomw,rater l\'iana-;~ement, lnc.'s Stormfiller Using Zeolite-Perlite-Granular Activated Carbon Media .t..nd Operating at 7.5 GPI.;l per Cartridge. The final can be retrieved after December 22, 2004 from: ·,.-.,··.::vl.&cy.;·.~a_go--dprcgran1si-..-Jqfs1orm~,vateri:1;;!'ltechlnJedia_i1~tration.htrni V'o/atershed Protection Technicues r:VPT). 1999. Micro~es and Urban 'Natersheds. 'vVatershed Protection Techniques, ·3(1): ~5·1-596. Watershed Protection Techniques (WPTj. Undated. Comparatiye pollutant remova! capability of stomw:ater treatment practices. ".:','atershad Protection Techniques, 2(4): 515-520. StormFilt&r Perfom1anca for Bacteti:J . .. _, ·~ ... ---.. -.. -- - - Media Filter Description Storm water media filters are usually two-chambered including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber . There are currently three manufacturers of storm water filter systems. Two are similar in that they use cartridges of a standard size. The cartridges are placed in vaults; the number of cartridges a function of the design flow rate. The water flo\\'S laterally (horizontally) into the cartridge to a centerwell, then downward to an underdrain system. The third product is a flatbed filter, similar in appearance to sand filters. California Experience There are currently about 75 facilities in California that use manufactured filters. Advantages • Requires a smaller area than standard flatbed sand filters, wet ponds, and con...c;tructed wetlands. • There is no standing water in the units betw·een storms, minimizing but does not entirely eliminate the opportunity for mosquito breeding. • Media capable of removing dissolved pollutants can be selected • One system utilizes media in layers, allowing for selective ,,., removal of pollutants. -. ·~i-~~-~ ,.;·,%. -~.-:!'.!:· :.:. '·-··~ • The modular concept allows the design engineer to more closely match the size of the facility to the design storm. Limitations • .As some of the manufactured filter s:;rstems function at higher flow rates and/or have larger media than found in flatbed filters, the former may not provide the same level of performance as standard sand filters. However, the level of treatment may still be satisfactory. • As with all filtration systems, use in catchments that have significant areas of non-stabilized soils can lead to premature clogging. Jc:nuary 2003 California Stormwater BMP Handbook New Development end Redevelopment www.cabmphandbooks.com MP-40 Design Considerations • Design Storm • MediaType • Maintenance Requirement Targeted Constituents 0 Sediment 0 Nutrients 0 Trash 0 Metals Bacteria 0 Oil and Grease 0 Organics Ren1ova/Effectiveness See New Development and Redevelopment Hancft:look-Seclion 5. \.,;..~l.t-vK.::O..L..<. :mJK"~1'i";l~::..,. ::):.:.--.u r ,· .-;~.:_ . .-_ _.:: L'. •:c~. 1 of3 -- -.. -- .... -- ... .. --- - ... ... • MP-40 Media Filter Design and Sizing Guidelines There are currently three manufacturers of storm water filter systems. Filter System A:. 1b.is system is similar in appearance to a slow-rate sand filter. However, the media is cellulose material treated to enhance its ability to remove hydrocarbons and other organic compounds. The media depth is 12 inches (30 em). It operates at a very high rate, 20 gpmjfu at peak flows. Normal operating rates are much lower assuming that the storm water covers the entire bed at flows less than the peak rate. The system uses vortex separation for pretreatment As the media is intended to remove sediments ('\o\ith attached pollutants) and organic compm.mds, it would not be e:x-pected to remove dissolved pollutants such as nutrients and metals unless they are complexed with the organic compounds that are removed Filter System B: It uses a simple vertical filter consisting of 3 inch diameter, 30 inch high slotted plastic pipe "M"apped 'M.th fabric. The standard fabric has nominal openings of 10 microns. The storm water flows into the vertical filter pipes and out through an rmderdrain system. Several units are placed vertically at 1 foot intervals to give the desired capacity. Pretreatment is typically a dry extended detention basin, with a detention time of about 30 hours. Stormwater is retained in the basin by a bladder that is automatically inflated when rainfall begins. This action starts a timer which opens the bladder 30 hours later. The filter bay has an emptying time of 12 to 24 hours, or about 1 to 2 gpmjft:2 of filter area. This provides a total elapsed time of 42 to 54 hours. Given that the media is fabric, the system does not remove dissolved pollutants. It does remove pollutants attached to the sediment that is removed Filter System C: The system use vertical cartridges in which stormwater enters radially to a center w~ll vvitbin the filter unit, flowing dov.m.ward to an rmderdrain system. Flow is controlled by a passive float valve system, which prevents water from passing through the cartridge until the water level in the vault rises to the top of the cartridge. Full use of the entire filter surface area and the volume of the cartridge is assured by a passive siphon mechanism as the water surlace recedes below the top of the cartridge. A balance between hydrostatic forces assures a more or less equal flow potential across the vertical face of the filter stnface. Hence, the filter surlace receives suspended solids evenly. Absent the float valve and siphon systems, the amount of water treated over time per unit area in a vertical filter is not constant, decreasing 'M.th the filter height; furthermore, a filter would clog unevenly. Restriction of the flow using orifices ensures consistent hydraulic conductivity of the cartridge as a whole by allowing the orifice, rather than the media, whose hydraulic conductivity decreases over time, to control flow. The .manufacturer offers several media used singly orin combination (dual-or multi-media). Total media thickness is about 7 inches. Some media, such as fabric and perlite, remove only suspended solids (\\ith attached pollutants). Media that also remove dissolved include compost, zeolite, and iron-infused polymer. Pretreatment occurs in an upstream unit andjor the vault within which the cartridges are located Water quality volume or flow rate (depending on the particular product) is determined by local governments or sized so that 85% of the annual runoff volume is treated. Construction/Inspection Considerations • Inspect one or more times as necessary during the first wet season of operation to be certain that it is drainmg properly . 2 of3 Califomla Stormwater BMP Handbook New Development and Redevelq:>ment www .ccbmphandbooks.com Ja1uary 2 003 - - -... - -... - ... • .. • • •• • • - Media Filter MP-40 Performance The mechanisms of pollutant removal are essentially the same as with public domain filters (TC -40) if of a similar design. Whether removal of dissolved pollutants occurs depends on the media. Perlite and fabric do not remove dissolved pollutants, whereas for examples, zeolites, compost, activated carbon, and peat have this capability. As most manufactured filter systems function at higher flow rates and have larger media than found in flatbed filters, they may not provide the same level of performance as standard sand filters. However, the level of treatment may still be satisfactory. Siting Criteria There are no unique siting criteria. Additional Design Guidelines Follow guidelines provided by the manufacturer. Maintenance • Maintenance activities and frequencies are specific to each product. Annual maintenance is typical. • Manufactured filters, like standard filters (TC-40 ), require more frequent maintenance than most standard treatment systems like wet ponds an:d constructed wetlands, typically annually for most sites . • Pretreatment systems that may precede the filter unit should be maintained at a frequency specified for the particular process. Cost Manufacturers provide costs for the units including delivery. Installation costs are generally on the order of 50 to 100% of the manufacturer's costs. Cost Considerations • Filters are generally more expensive to maintain than swales, ponds, and basins. • The modularity of the manufactured systems allows the design. engineer to closely match the capacity of the facility to the design storm, more so than with most other manufactured products. References and Sources of Additional Information Minton, G.R., 2002, Stormwater Treatment: Biological, Chemical, and Engineering Principles, RP A Press, 416 pages . Jaoua-y 2003 California Stormwater BMP Handbook New Development aod Redevelopment www.cabmphandbooks.com 3 of3 .. -• - - ... .. - .. • • -• • .. - J-\. (duzl) i"ligh-f~ov? bypas::i :lic· .. vs fic:w~ to byp~ss th~ dsvica \\:hi! a r::t=ii1ing sedimsnt and i:=rgeifloaiabi;~ {d::biis &. trashj ~.ND :UD\YS suS"~in::d m:..."'<irrn.:m design il0\ .. 1.:: und~;-ext-s.ma V.';a.U~=:-conditions. . Ffc-3erd7':.: +Plu3 ins:rts ::r= ev5!J!:jle iit siz:~.s to r1t m~3t ind~stry-stai1dard ckf!!n::g; in!:=!s { ... fl2.t grat:d. c:.mbi:;ation. curb aiid r·:::und ir:1et:.) . • -... -- .. • • • • i i i I ! i ·; • .... .. ... -... --.. - -• .. • Oil and Grease and Partide Removal by KriStar Flo-Gard and Flo- Gard Bigh Capacity Storm drain Inserts bv .; :tvrJc:r..a.elK. Stenstrom Si.,-n-Lin L.au Ci"vi! and Environ:.-nental EngL.teerh"'lg Department University of Ca!ifomia, Los P._'lgeies 4173 Engineerh!g i Los Angeles, CA 90095-1593 February 20, 2.002 --- -.. - - • .. .. .. • • -.. ----·-• • Summar}' A series of experiments Wa5 performed i.11 a small but full-scale catch basii"l si.;ndator to determi..."le the efficiency ofvar'ious Kristar (Fossil Filter) catch basin inset"l.S to remove oil and grease and suspended soiids. Catch basin. inser'"..s are devices used in stormwarer coi!ection systen;s to :emove va~ou~ polluta;1~, including suspen.ded .solids, l_itte.r_,,d oil E.!!.O grease~ Devtces rrom .sever2.1 otner manuracrurers b..ave also oeen tested 1.11 tr!l.S same :facilii:y. This work builds upon an earlier projecr to develop catch basin L<1Serts, which -..vas funded in part by u~e Same. Monica Bay Restoration Projeci: and iTJ part by a consortium of cir:ies c.::d agencies~ All experiments were conducted in a full-scale "mock" catch basi.:.:. (36 L'"!Ch wide opening) located in a !aborato:_i at uCLA. The cacch basin is cons"Lruci:ed of plywood and stll>:ds above grade to allow easy access and i..""l.Sta!!ation of prorot}pe devices. The catch bash! ower:ates ",:.;it..'rJ. tau \Vater ::.1 flo"\V rates from near zero to 200 !:!:allons per minute (GPM::). V~rious levels ~f contaminants ca,:. 1::-e added to th::: i.,.-u:1uent to simuiate storm\Va.ter . Tests were o:::rformed on nvo ryoes of i...T1Serts, called Flo-Gard'M and Flo-Gard';., High Capacity, ove.r flo>v rates ra,•gbg from 15 to 25 ga!ions per minute (GPlY1). Testing \Vas performed to determi\·!e oil and grease removal rate for h:.:fluent concemrations Lb.at varied from 16 mg!L to 36 mgll. fur tirD.e periods from 30 to 180 minutes. Total suspended solids (TSS) r::movai ·,vas ev.e.!uated for concentrations from 65 to l 00 mg/L for 3D minute periods. Automobile cr::::n.l( case oil was used to simulate oil a,;d grease i>"1 stormwater. Grad~d sand \Vas used to simulate TSS in storrnwater. Two types of s:orbents were used for the oil a,&d grease studies: Fossil Rock't.l, an alulnh-!Um silicate sorbent, and Rubberizer•M, an organi: polymer. Both are c:o!Th-nercially ayaitabie for this and other app!icatio.ns. Oil a,;d grease removal efficiency ranged from 70 to 80% for most cond!tlons. Sand rernava! was nearly 100% for particles 30 me.sh (589 to 833 )J.m) and larger, 20% for particles 60 mesh (250 to 420 n:ttn) and :nearly zero for smalier pE.!-ticles. :E:!.-perimental Methods Fi~re .1 SJ.1.0\V is a s~he~atic diagr.a~ ~ft.l!e expe:Lrnen::! faci!hy. Bui~ding ~~;-ater (t:!p Wai:er) !S COill"leC:ted to tne catch basm S!Z!lUlator Y!S. 2. 3-ll"'Ch di!:.l"!U:!ter p!pe. l WO TIOW meters are provided. The first is a,; ultrasonic flow meter (D:masonic UST-603, Naper-ville, IL) th<:t uses Doppier effect l.o cietermi..;e the velocity offlowi.;""!.g p&tictes, From the velocity and kno>1<TI pipe diai-neter, the flo·>'; is ca]cu!a;:eci. In this application, there are ;:oo few particles in the t:E.p w=.ter and a small quantity of air is added to simulate p=.rticles. A second flow meter (Signet -:-GF+, Cole-Parmer, Chicago, IL) using a paddle wheel is also used. The oadd!e wheel rotations ar:e counted a,;d the fio·,v rate is proportional to the rotations; different calibrations are provided for different pipe • - --- - - -- - - - • • • Air lnjection Point 3 in. Tap water line. ~ t );~ ' . + Control Valve(-· ~-· -' \ ::--,J ~ \-OI§l-.o ----.~ r ··-./·-· l i l ~ Stilling Chamber Doppler Effect Flow Meter Paddle Wheel Flow Meter Contami~ant ll I .'"-) ReservoJr Metering -Pump ()) E d lL ell =g ·~ ---;;;:= .b: t,;l e ·= '<::i" ~ Kristar lnsert r---------! 'tr T Effluent Sample Point Influent Sample Point .... - -- , ... - -- --- .... - • ---- , ... - • • • diameters. The u!i:r:.sonic meter is used for higher flows while the paddle ;vhee{ meter is more conveni~nt for lo\\r flo\vs. The paddle Ylheel me~;::r \VE3 generally used durL1g w.~ese experL-nen.ts~ The pipe connects to the stil1~1g bas~ \Vhich discharges i.n.to a 24 ~"1cb.-\vide flume .. The purpose of the stilli.;1g basin is to da;npei! velocities from the i.11le;: :.s well :.s to insure a constant !1ow rate. The flume i.s 10 feet long and co;uJecLS to the ce:tch basin. All conta;:nii1~'lts (oil and gre:.se. sand, etc.) ;vere ir1troduced into the 24-inch flume. Liquids were pu111ped L>to the fiume usLT'lg a peris,altic meterL;g pump. The sand w:.s "sprinkled" into the r1o>V from prewe!ghed sample bottles over 1 or 2-mmute L;tervals. Jn this way the appropriate a;nounts of sand were released every one or two minutes. This process was continued throughout the test. The flume provides adequate mixing to disperse all m::.terials. Test Sequence. Irrr1uent samples Vlere collecreci from rhe free surface a.s the 'vater spilled i."'!to the inlet device. Effiuent samples were collected by passi;;g glass sampie bot"Jes below the inlet device. Tests were begun by collectk'lg a i."'lflu:::nt s::.mple prior tc U~e introduction. of E.!"1Y conta...rninants to the flume. NeA"t the me:teri..r:Ig pump '\Vas tum~d on. Efrluent samples were collected periodically for the test duration. Generally 10 to 12 s~-np!es \Vere coilected for each. test; s""ld samples \.Vere evenly distribured over time. T\VO additional influent samples \vere co !lee ted at times equal to a.ppro:£.1.-ns.tely one--third md hvo-7hl•ds of the test duration. At the end of the test: the meterL'"lg pump vta.s turned off. ln pre-·.tious testh'1g ~amp11.:.g continued for 30 m1.Lutes after endL.Jg oil 2..1.1.d gre:a.se addition. For alumh"lum silicate, Rubbedz.er and OA:.~ sorbents at the concencations med in these studies, it was shown that no measl!!-;;,ble oil and grease desorbs. In some c:.ses the sorbents were reused, wt-Jch si.-nulates sequential rainfalL For rhese tests, ill;:: sorb::nt was allowed to dry but \V2.S not modified h""lany',Vay. S~-np~es v;ere gener::.Uy ane.l:izeci \VIthin 16 hours after the tests \Vere completed. Oil and grease. remo'l'al test. Tests were generally perfomli::d for 30 minutes (see Table l for a su;:n.-na.rj ofaH tests). Used c~'1.kcase lubricati!!g oil (from automobiles) was used as the oil and grease source. One batch w:.s used for all tests. lm1uent oil and g;ease samoles were collected as the oi!/water combination fto·,ved Lr!to the insert. Eilluent sarnp!es were collected by capturing flow from the bottom of the insert. Efiiciencies were calculated by subtractLT'lg tb:: measured effluent concentrai:ions from the average i."'lfluent concentration .. .!\.U tests 'rYere performed ::.t co!lstant rlo'\V rate. Ofi and Grease Analysis. Oil and grease ;v:.s measured using a solid phas: e;;.'tra.ction (SPE) technique deveioped earlier by u.1e authors (Lau and Stenstrom, 1997). This i:echnique l!Ses a known volume of s~"Tiple (generally 500 ml for th1s study), which !s pumped tlJ...rough an. SPE colum...; at a const::.nt but low rate (e.g., 5 mY min). The oil =nd grease i.;1 the sample is .sorbed on the S?E colur:,,. .-'\frer me samp!.e is pumped through the colum...-;,, it is eluted with a :small volume of solvent (5 ml):me"t!~ylene chloride and he?tane. T..'le sample bottle is also washeci wil!1 a small volume of isopropanol. The two - - ... ... - - - - -- --.. • solvent volumes sre combin.ed and placed in a ta.-red com.ai.:."1er. The solvents are a!!mved to dry at 50"C using a gentle nitrogen purge. The residue is weighed 2..i1d the results are reoorted as mdL based uuon the ori,;:!na.l samole volume. This method has G.le advEntages ofPJgher rec~very, espe~ially for tne more vo !ati1e components in oi! c.nd grease, and using less solvent. By ush!g different sample volumes is it possible to hc.ve different detection l.imtLS, and the limn wit1500-mlsample volume is ty-pically 0.25 mgiL. This method does not qua.-1titatively me=.sure oU and grease adsorbed to solids .ar;d an alternate technique must be used far particle-bound oil a..->ci grease. However, t.1is is uot i.:.-nporta.lt for t.l)is study because no particle£ where added to the tap water used for oil and grease testing. Sa.11d particle removal test. Sand particles were prepared by sieving sa.!ds from various sources, but mostly from sand used for concrete construction. A series of ASTM standard sieves \Vere used. Particles 1vere selected to demonstrate Iemov2.l !fficiency= 2S opposed to simulate particles found in sto;:rnwater. For the screen provide in the high capacity Fl>~Gard, sieve sizes oflO, 30, 40, 60 and 100 (2000, 833; 589,420,250, 149 .urn resp~ctive~y) ·were selected. Eq_ua~ kno•,>;-n.~ses of ~~ch s~nd_.Particle size v-i~re released !.r:.to ~Le fllli-ne over E. 30 m1.:.1ute test -.. vn!Ch flo,vea !..!.ito tne li!Sert. Below tne L.!sert:' E. £1.1= screen: correspondin.g to 325 rnesh (45 }l!!l)~ captured the pardcles not removed by the L.:sert .A.t t.~e end of the tes~ the 325-mesh screen \V=.s reraoved ~mi t~e retained sad pardch:s were collected, dried, sieved and weighed. The weight of reco-vered particles h1 each sieve size T-IES compared to the ~uount of sand released into the flume to calculate efficiency. i\3 expected t.1e large particies \Vere removed lVell: while the smaller particles ·were removed poorly. The smallest sa:!d partici:::s are sm;;.l!er tlta.il the mesh openings. TP.ree sand removal tests ·\vere performed. One -was performed a~ 25 gallons per minute (GPlvi) a.1d two were performed at ]5 GPM. Sand v<~s added to create influent concentrations equal to 65 to 100 mg:fL lrzserts The two i11serts tested Vt'ere standard un.its and "\·vere modified only to e.Llo\V them to be accurately positioned in rhe simulated catch basin. This required t...'-le end brackets to b~ modified to allow attac!'> .. rnent. The pollutant removal var..s of the inser..s (e.!l., Eorbent pouches, screens) were nat modified. . - The Flo-Gud. i.nsert measured 35 i..."lches iong by 22 inches wide and ·,vas open in t.l-te middie. T.ne openi.:.'1g was 27 inches lang and 15 h•ches ·wide. The area between t:1e opening and the outside dimellSions is ~trough of screen and conta.h1ed 6 pouches or "sausages" of sorbent. The ooeGinl< is oravided to a !low high fiows to bypass. Th~ sorbeo.t oouches ~E.!t be reuiac~d ii1 both models "~.Vtthout remo-vin£ ~\e insert The Flo- Gard hi~h capacity in-sert ~vas 35 i.:."lches long by 17 i.:.iches deep. The central section is fully enclosed and forms a ba~ that retah"!s litter and debris. The internal dh!!ensions are 32 long by 12 inches wide, and the bag is 28 inches deep. Sorbem: pouches (12) are .. --- - ... """' .. IIIII --... • 1111 • .. ---- --• clipped to the sides a..t!d bottom of the bag. T\·vo !J~es of bags \Vere tested; the b-:)t:tOm of Table1. Oil and grease removal test conditions used. F!o-Gard ffig:.r, Capaclzy 2 Fram t~t 1 3 Fromz~t2 Hc-Gud 5 Fromt~t4 7 9 10 From ~-est .5 F1c-G-aii1"'Tht Rig.:.~ Capacit"Jl non-W\:lYen bottom From test 7 1.1 FrcmtS 10 12 Fromt~ 11 Sorb:nt Fiow 1~te (GPN!) Fossil Rc-:k 15 15 i5 Fossil Rod: 15 !5 !5 !5 !5 15 Rubb::rize.r 15 !5 15 Tab!e2. P~-ticle removal test conditions used. Ins~~ Type I'.l!e.sh No . ParJcle Flow ~c.te size.(~L-n) {GP:t-.-f) i3 Flc-Go..rd bgh 20,30, 2000, 833, !5 Cape city 40, 60, S89, 420, lOD 250, 149 14 Flc-G-:.rd High 20,30. :woo, ~33, 15 Capaclty 40, 60, 589,420, 100 250, 149 FJc-C-arci High 20,30. 2000, 333, 25 Capr.dcf 40, 60, 5&9, 420, 100 2.50, 149 !6 Flo-Gcrcl 20, 30, 2000, 833, 15 40, 50, 559,4.20, 100 250, 149 17 Fl::.-Gard 20, 30, 2.000, 833, 15 4Gr601 589,420, !00 250, 149 13 Fio-Gard 20, 30, 2000, 833, 25 4(), 60, 589,420, 100 25(), 149 Fio-Gar-ci EP.h 20, 30, 2000, 5331 2S c~padcy, no-n-y.,·oven 40, 60, 559:420, i9 bottcm 100 250, 149 20 Flc-Gard 1-<Jg:i 60, 100, 250, !49, 25 Capa.cicy, r.cn·wov~n 200 75 bcetcu: Du1::.tion 1'1ilu.er,t cone. (nin) (mg:I.) 30 i6 30 29 i80 ~i:i 30 34 30 34 180 34 30 36 30 31 !80 23 30 2.2 30 24 180 30 Durariou lr&ue.:."!t cone. {min) (mgiL) 30 65 30 100 30 65 30 65 30 100 30 65 30 ·55 30 ;;o -.. .... • ... • -- - - - - - • • -• • ODe was screen: just li'-ce the we.lls, >vhile the other was non-·,,•ov~• polypropylene . Manufacturer's fuera~re should b: consulted for :more precise h1formaiion . Results and Discussion Figcre 2 (top) sho1NS the results of the fust rwo series of test (3 tests each). T\vo ii1sert configurations (Fio-C-ard and Flo-Gard High Capacity) were evaluated. Both U£ed a!u.rninum silica;;e (Fossil Rock) sor'oents. The fust two tes-..s for each insert were conducted over a 30-mi.:.-tme period. The t.l-tird test was conducted over a 180-rninute period. The frrst two tests were used ;:o es:;:ablish t:.~e remoYal efficiency of the unit. The third test was performed to see if any decli;1e in removal efficiency would occur due to satu..-ation of the sorbent. The h1itial removal efficiency of'oot.~ inserts was approxirnateiy 85% and decline slighr.ly duri11g the iirst 60 mh>utes. The high capacir-y ur>it showed less dec!L.-te in removal rate after t.I-J.e t:.'llrg te;;t, as ex--pected. Tne normal capacitj unit decli11ed to approximately 60% removal after 240 mim .. -tes, while t.he high capacity il"lSert decline to 70%. The J.jgh capacity insert has greater sorbent mass 2:d has greater volume for litter and debris ret entia n. P"'ubber!zer sorb::nt was also used Lr:. t.he bjgh capacity iil.Sert~ Rubberizer bas greater specific gravit-y tha..1. aluminum silicate (0.1 0 to 0.13 for aluminum silicate versus 0.26 for Rubber!zer). Rubberizer ha:; !e.ss o:endency to abrade t.i-t2ll aluminum silicate sori::-ent3. Both have pa.."ticies sizes approxi.cuately 2 to 3 .mm. Sorbent pouches contah-J.ing Rubberizer 1--vere substituted h'1 each it.tsert ir! exactly the same 1vay as aluminum siHcate pouches were used. Fig-cU"e2 (middle) compares the removal ef:iiciencies wit.I"L Rubb:rize;r and aluminum silicate. The Rubberizer hES !ower bitial remoY<.l efficiency, bm deciirtes less o~ver th11e. .A.i!.er 240 mlnutes: the efficiency of both sorbents ~t¥as e.ppraxL.-n::tety 70%. Figure_?. (~tton:~_comp<.~es a modifie~ screen to a normal scr.een ':!,io.g Ru~~er~er as sorb::m:s. 1 ne dmerence ta"1 u~e screen 1s the bottom c.onstructton. lne rnoau1ea screen h=.s a non-woven bottom composed of polypropylene mesh. The polypropylene mesh is also a good oU and gre=.se sorbent. It h<.s a ver-j fh:.e mesh and is more subiect to c[o!!:E:BE 1:.ha..:. the more oper, ~cr:een. Tne non-woven bottom produces higher effici~ncy dun;g th~ in.itia.l phases of the tests, a:.1d auorox.L.-nates t.~e siaiue removal efficiency E.S aluminum silicate sorbent. .... Figures 3 and 4 show the oarticie removal rates ofFlo-Gard and Flo-Gard Hi;:h CE.vacity inserts. Sand \¥E.S sieved ~siilE . .A..STivi scr~er!.S ro oroduce the partjcle size PX;!.mir1~s shm.vn on the horizontal a:>eis ;f each graph. Siev;s >vere chos~n to select pE.L-tic.les -that \Vere larger, equal tc· and less t.l:!an the nomi:;a! screen size openl!'1gs~ Figure 5 shows a photomicrograph of the mesh 1vith 2 millimeter r11ler: arJd both ir1.serts used t..he sa:ue size mesh. The opepings ~e approxh.11ate!y 500 !Jm. The elongated operlliJgs ~t the S:.!rfuce of the ruler are an artifact of cutting the mesh. ... .. '--- .. - - - - - -.. • .. • - Remov~l r=.tes are consistent 1vith tile average mesh opening (500 Jl.!-n), Parric!es much larger(sgo to 2,000 ~J-m) were abost completely removed. Very little removal occ!l!-red with smaller particle:S smaller man 420 ,!liD. Removal rates at higher flow rates or concentrations \Vere slightly higherl .sugges\:i11g that accumulation of parth:les at Ui.e screen might be formLT'J.g a ;;dynarvic== filter .. Head !ass for the flo\VS and amounts of panicles remo!'ed were not observably different from head loss without particles. More accumuiatiou of particles would be rrecessary w observe head loss. Conclusions The perfurrna."lce of these C\Vo devices is consistent with the better devices tesced b our laboratory (Lau, Khan and Stens".rom, 2001). The differences in perf~rmance, as measured by these tests is small, and u1e selection of products could be based upon ot.1er considerations, such as cost, d!4-ability and potential for cloggL'1g. ,,.. --- - -.. - - - ... • • • ""' • .. -----------• 1= ::..! .~ ~ ~-----------~-~~~~-'------------~ I •.•. '. • I • I ...-~----·~-;-_ ....... ! • i , • ~ ~ = 3 7~.::-o.!!{n:;,..,} ;;......:: ~ ~ ~-----------~-~-~-'------------~ ·~~~~~-+~~~-+~~~~~~~~~~~~~ L:, ... L~ ~ i l:t "-"':! ~---~---· ·~··-···-· -.... -~-·: .. ·-· .. t 1;.) ,~ i":t:a-( • ...:01) = i I t= ::-=:.:.:.: ~~~--------------------------~ "'' L .. , , l . Figure 2. Oil and grease removal efficiency ofF1o-Gard:M il1Sert (tests 1-12). .. ----- ... ----- • • • .. .. .. --... 120 L . I ! ;.. : --;-15 GP~\;1 {65 r.~g.lL SS) i ~00'"1 ....... ___ <:::::::::::~ ---' --r. ~ __ _jl r : ~ -:::~ -.a GPr,·\ {c:;. rna:L cS) ~ ~ \\ -I 50 1-----'--·----·-!....2!..'----~-· 15 GPM (100 w~P-SSJ ·-·-~' ~ ! I \~ I l -! 1 1 -n 1 ;: ! \\: E i ~l~=f=t~i~l I I I I I "'l' 20 3D .;o eo 1oo (533-(565-(420-(250-{14S- 2000 um) 533 um) 58~ um) 420 umJ 250 um) (parii!::l:s :siz.e) Figure 3. Particle remove.l efficiency ofF1o-Gard7~.~ i.i1Sert (tests 16-18) . ';;' > g 5 0:: 120~,------~~----~~----~--------~------~----~ r 10u 1 ........ --------tes·-·s•d:---___,.,~ 15 G?M (55 mgfLSSi ~ i f\ ---;; · 25 G?M {55 mg/L SS) ' ' .... ----···i ! ' [ i i t ~-l i 0 ~ ! ! ! ! -~ l 20 so 40 50 1ii0 (533-(SBil-(420-(250-{149- ZOOO um) 833 urn) 5.69 !.m:j 420 um) 250 um) Mash No. (p~rf.das s<z:) Figure 4. Particle removal efficiency ofFlo-Gard7l~ High Cap?.city (tests 13-15). - ... - .. • .. • .. -.. - - - - -- -.. • .. • Figure 5 . -• - • • - --- - - ... • • • • • ... References Lau, S-L. and M. K. Ster..strom, "Application of Oil Sorbents i.."'! Oil and Grease Removal from Stormwat::r Runoff," Proceedings afthe 68ch Armual Yvater Environment Federation Con!erence and ExpositioD, Miami Beach, FL, October 21-25, # 9572008, Vol. 3, pp. 685-695, 1995. Lau, S-L. and M.K. Sten:stro~ "Solid Phase Extraction for Oil and Grease A..nalysis," Water EF;vironment Research, Vol. 69, No.3, pp. 358-3i4, 1997. Lau S-L., E. K..I-Jan, a..'ld M.K. Stenstrom, "Catch Basin Inserts to Reduce Pollution from Storrnwater," Water Scienco: and Technology, Vol. 44, pp. 23-34.,2001. .. ... • - • --- -- -- - .. • • • Drain Inserts Description Drain inserts are manufactt.rred filters or fabric placed in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling into one of three different groups: socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are me.:mtfor vertical (drop) inlets. Boxes are constructed of plastic or wire mesh. Typically a polypropylene "bag'' is placed ill the wire mesh box. The bag takes the form of the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some products consist of one or more trays or mesh grates. The trays may hold different types of media. Filtration media vary by manufacturer. Types include pol:;.'Propylene, porous polymer, treated cellulose, and activated carbon. California Experience The number of installations is unknovm but likely e..xceeds a thousand. Some users have reported that these systems require considerable mamtenance to prevent plugging and bypass. Advantages 111 Does not require additional space as inserts as the drain inlets are already a component of the standard drainage systems. • Easy access for inspection and maintenance. • -~there is no standing water, there is little concern for mosquito breeding. • A relatively inex-pensive retrofit option. Limitations Performance is likely significantly less than treatment systems that are located at the end of the drainage system such as ponds and vaults. Usually not suitable for large areas or areas with trash or leaves than can plug the insert. Design and Sizing Guidelines Refer to manufacturer's guidelines. Drain inserts come any many configurations but can be placed into three general groups: socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets. Boxes are constructed of plastic or vv.ire mesh. Typically a polypropylene "bag" is placed in the wire mesh box. The bag takes the form of the box. Most box products are Janua-y 2003 California Stormwater BMP Handbook New Development and Redevelopment www. cabmphandbooks. com MP-52 ----------------------Design Considerations • Use with other Bti'Ps • Fi\ and Seal Capacity 1M thin Inlet Targeted Constituents 0 Sediment 0 Nutrients 0 Trash 0 Metals Bacteria 0 Oil and Grease 0 Organics Rer.nova/Effecuveness See New Development and Redevelopment Handbook-Section 5. :_.1, LL """-"P ... l-·.:JA ::;~ tac~-t v. A::·=:.:r . -.::1..· ~.r.;n· A..$:::e::u;r::)~. 1 of3 --- - - .. IIIII • .. --... • ... --- • - MP-52 Drain Inserts one box; that is, the setting area and filtration through media occurs in the same box. One manufacturer has a double-box. Storm water enters the first box where setting occurs. The storm water flows into the second box where the filter media is located. Some products consist of one or more trays or mesh grates. The tray-s can hold different types of media. Filtration media vary with the manufacturer: types include polypropylene, porous polymer, treated cellulose, and activated carbon. Construction/Inspection Consideratio118 Be certain that installation is done in a manner that makes certain that the storm water enters the unit and does not leak around the perimeter. Leakage betvveen the frame of the insert and the frame of the drain inlet can easily occur with vertical (drop) inlets. Performance Few products have performance data collected under field conditions. Siting Criteria It is recommended that inserts be used only for retrofit situations or as pretreatment v-lhere other treatment B MP s presented in this section area used. Additional Design Guidelines Follow guidelines provided by individual manufacturers. Maintenance Likely require frequent maintenance, on the order of several times per year. Cost • The initial cost of individual inserts ranges from less than $100 to about $2,000. The cost of using multiple units in curb inlet drains varies with the size of the inlet. • The low cost of inserts may tend to favor the use of these systems over other, more effective treatment BiviPs. However, the low cost of each unit may be offset by the number of units that are required, more frequent maintenance, and the shorter structural life (and therefore replacement). References and Sources of Additional Information Hrachovec, R., and G. Minton, 2001, Field testing of a sock-type catch basin insert, Planet CPR, Seattle, Washington Interagency Catch Basin Insert Committee, Evaluation of Commercially-Available Catch Basin Inserts for the Treatment of Storm water Runoff from Developed Sites, 1995 Larry Walker Associates, June 1998, NDMP Inlet/In-Line Control Measure Study Report Manufacturers literature Santa Monica (City), Santa Monica Bay Municipal StormwaterjUrban Rnnoff Project- Evaluation of Potential Catch basin Retrofits, Woodward Clyde, September 24, 1998 2 of3 Califomla Stormwater BMP Handbook New Development and Redevelopment www. cabmphandbooks. com January 2003 .. .. • -- -·-- -·- ------- --... Drain Inserts MP-52 Woodward Clyde, June 11, 1996, Parking Lot Monitoring Report, Santa Clara Valley N onpoint Source Pollution Control Program . Jcnuary 2003 Califomia Stormwater BMP Handbook New Development and Redevelopment www. cabm phandbooks. com 3 of3 Muroya WQ Basin Results ~ HMS • Summary of Results for Reservoir Reservoir-1 l.;J _;_ ~ Project : Muroya Det Run Name : Rl.l'l 4 Reservoir : I Reservoir-1 Start of Run : 01Jan01 OOJO End of Rl.l'l : 03J an01 0000 Execution Time 08Jul09 1 305 B"sin Model : 'WQ B Min Met. Model : Met 1 Control Specs: 'WQ Volume Units : r. Inches r Acre-Feet C~ed Resuls -------------------- 0.0 (ds) Date/Tine of PM<. Inflow : 31 Dec 00 2400 Pe~ Outflow : O.ffiOOOO (ds) Date/Tine of PM<. Outflow : 31 Dec 00 2400 Tot.,( Inflow : [n) Peak St01"ge : 0.070000(ac-ft) T ot<!ll Outflow : [n) Peak Elevation : 330.00 (ft) Print Dose ~ Reservoir-1 GJ@J(g] DJ ...., D~ 0»~~~~~~~-~-~-~·~::~:~:~:~:~:~:~::~:~:~:~:~:~:~:~::~:~:~:~:~:~:~::~:~:~~~ O.DG •••••.•• -.•.•..•.••••••••••••••••••••.••••.••• 0.0 2410 oeoo 1200 1800 2410 oeoo 1200 1800 24)0 01Jan2001 02Jan2001 HEC HtE Print Close I -STAGE-STORAGE TABLE MUROYA --Elevation Area Total Volume (ft) (acres) (acre-ft.) 325.0 0.0040 0.00 326.0 0.0070 0.01 328.0 0.0150 0.03 330.0 0.0250 0.07 -.. ---- --- - ------• -.. --... --7/8/2009 1 of 1 H :\EXCEL \0042\219\Stage-Storage-WQ.xls - ---- • • ... ---- .. -- - - -.. ----- DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTIOM ELEVATION OF HOLE NO. 1 = HOLE NO. 1 DIAMETER= NUMBER OF ORIFICES= WEIR EQUATION Q = CLH312 where Headwate Elevation (feet) 325 326 327 328 329 330 C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) Hole 1 (1 Riser-Orif (cfs) 0.00 0.03 0.04 0.05 0.05 0.06 H :\EXCEL \0042\219\0RIFICE-WQ-Basin.xls 7/8/2009 MUROYA ORIFICE CALCULATIONS 325.00 feet 1.0 inches 1.0 0.083333 feet 0.005454 area (sq ft) Orifice Equation ... Oorifice = CA(2gh)1/2 where C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feeVs2 h = Effective Head on the Orifice Measured from the Centroid of the Opening 30" orifice centroid eh top of orific 325 325.04 325.08 ' i I ' I I I I ' ecipitation vfap zches I j I j ' J l I I • I j ' ENCINITAS ''lll'fll HMS * Summary of Results for Reservoir-1 ... Project Muroya Det Run Name Run 4 Start of Run 01Jan01 0000 Basin Model WQ Basin End of Run 03Jan01 0000 Met. Model Met 1 Execution Time 08Jul09 1314 Control Specs WQ •r----------------------------------------------------------------------------------------, -- - ·- -·--- ----- .. - - Date 31 Dec 00 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 2400 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 Reservoir Storage (ac-ft) 0.070000 0.069917 0.069835 0.069752 0.069670 0.069587 0.069505 0.069422 0.069340 0.069257 0.069175 0.069093 0.069010 0.068928 0.068846 0.068764 0.068681 0.068599 0.068517 0.068435 0.068353 0.068271 0.068189 0.068107 0.068025 0.067943 0.067861 0.067779 0.067697 0.067615 0.067533 0.067452 0.067370 0.067288 0.067206 o. 067125 0.067043 0.066962 0.066880 0.066798 0.066717 Reservoir Elevation (ft) 330.00 330.00 329.99 329.99 329.98 329.98 329.98 329.97 329.97 329.96 329.96 329.95 329.95 329.95 329.94 329.94 329.93 329.93 329.93 329.92 329.92 329.91 329.91 329.91 329.90 329.90 329.89 329.89 329.88 329.88 329.88 329.87 329.87 329.86 329.86 329.86 329.85 329.85 329.84 329.84 329.84 Inflow (cfs) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Outflow (cfs) 0.060000 0.059979 0.059959 0.059938 0.059917 0.059897 0.059876 0.059856 0.059835 0.059814 0.059794 0.059773 0.059753 0.059732 0.059711 0.059691 0.059670 0.059650 0.059629 0.059609 0.059588 0.059568 0.059547 0.059527 0.059506 0.059486 0.059465 0.059445 0.059424 0.059404 0.059383 0.059363 0.059342 0.059322 0.059302 0.059281 0.059261 0.059240 0.059220 0.059200 0.059179 Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) OUtflow (cfs) wL-------------------------------------------------------------------------------------------------------------~ "''' .... .... - --·-- - - -.... -- -- - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0.066635 0.066554 0.066472 0.066391 0.066310 0.066228 0.066147 0.066066 0.065984 0.065903 0.065822 0.065741 0.065660 0.065578 0.065497 0.065416 0.065335 0.065254 0.065173 0.065092 0.065011 0.064930 0.064849 0.064769 0.064688 0.064607 0.064526 0.064445 0.064365 0.064284 0.064203 0.064123 0.064042 0.063962 0.063881 0.063800 0.063720 0.063640 0.063559 0.063479 0.063398 0.063318 0.063238 0.063157 0.063077 0.062997 0.062917 0.062836 0.062756 0.062676 0.062596 Page: 2 329.83 329.83 329.82 329.82 329.82 329.81 329.81 329.80 329.80 329.80 329.79 329.79 329.78 329.78 329.77 329.77 329.77 329.76 329.76 329.75 329.75 329.75 329.74 329.74 329.73 329.73 329.73 329.72 329.72 329.71 329.71 329.71 329.70 329.70 329.69 329.69 329.69 329.68 329.68 329.67 329.67 329.67 329.66 329.66 329.65 329.65 329.65 329.64 329.64 329.63 329.63 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.059159 0.059138 0.059118 0.059098 0.059077 0.059057 0.059037 0.059016 0.058996 0.058976 0.058955 0.058935 0.058915 0.058895 0.058874 0.058854 0.058834 0.058814 0.058793 0.058773 0.058753 0.058733 0.058712 0.058692 0.058672 0.058652 0.058632 0.058611 0.058591 0.058571 0.058551 0.058531 0.058511 0.058490 0.058470 0.058450 0.058430 0.058410 0.058390 0.058370 0.058350 0.058329 0.058309 0.058289 0.058269 0.058249 0.058229 0.058209 0.058189 0.058169 0.058149 ,~~-------------------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) OUtflow (cfs) ,~~------------------------------------------------------------------------------------------------------------~ ... • - - - ,.,. - • - -- - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan OJ. 01 Jan 01 01 Jan 01 01 Jan OJ. 01 Jan OJ. 01 Jan OJ. 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0.062516 0.062436 0.062356 0.062276 0.062196 0. 062116 0.062036 0.061956 0.061876 0.061796 0.061717 0.061637 0.061557 0.061477 0.061398 0.061318 0.061238 0.061159 0.061079 0.061000 0.060920 0.060841 0.060761 0.060682 0.060602 0.060523 0.060443 0.060364 0.060285 0.060205 0.060126 0.060047 0.059968 0.059889 0.059809 0.059730 0.059651 0.059572 0.059493 0.059414 0.059335 0.059256 0.059177 0.059098 0.059019 0.058941 0.058862 0.058783 0.058704 0.058625 0.058547 329.63 329.62 329.62 329.61 329.61 329.61 329.60 329.60 329.59 329.59 329.59 329.58 329.58 329.57 329.57 329.57 329.56 329.56 329.55 329.55 329.55 329.54 329.54 329.53 329.53 329.53 329.52 329.52 329.51 329.51 329.51 329.50 329.50 329.49 329.49 329.49 329.48 329.48 329.47 329.47 329.47 329.46 329.46 329.45 329.45 329.45 329.44 329.44 329.44 329.43 329.43 Page: 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.058129 0.058109 0.058089 0.058069 0.058049 0.058029 0.058009 0.057989 0.057969 0.057949 0.057929 0.057909 0.057889 0.057869 0.057849 0.057829 0.057810 0.057790 0.057770 0.057750 0.057730 0.057710 0.057690 0.057670 0.057651 0.057631 0.057611 0.057591 0.057571 0.057551 0.057532 0.057512 0.057492 0.057472 0.057452 0.057433 0.057413 0.057393 0.057373 0.057354 0.057334 0.057314 0.057294 0.057275 0.057255 0.057235 0.057215 0.057196 0.057176 0.057156 0.057137 .... .. r--------------------------------------------------------------------------------------------------------------, Date -Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------------~ -- -- ..... ---- - --- - --- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0.058468 0.058389 0.058311 0.058232 0.058154 0.058075 0.057997 0.057918 0.057840 0.057761 0.057683 0.057604 0.057526 0.057448 0.057369 0.057291 0.057213 0.057135 0.057056 0.056978 0.056900 0.056822 0.056744 0.056666 0.056588 0.056510 0.056432 0.056354 0.056276 0.056198 0.056120 0.056042 0.055964 0.055887 0.055809 0.055731 0.055653 0.055576 0.055498 0.055420 0.055343 0.055265 0.055188 0.055110 0.055033 0.054955 0.054878 0.054800 0.054723 0.054645 0.054568 Page: 4 329.42 329.42 329.42 329.41 329.41 329.40 329.40 329.40 329.39 329.39 329.38 329.38 329.38 329.37 329.37 329.36 329.36 329.36 329.35 329.35 329.35 329.34 329.34 329.33 329.33 329.33 329.32 329.32 329.31 329.31 329.31 329.30 329.30 329.29 329.29 329.29 329.28 329.28 329.27 329.27 329.27 329.26 329.26 329.26 329.25 329.25 329.24 329.24 329.24 329.23 329.23 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.057117 0.057097 0.057078 0.057058 0.057038 0.057019 0.056999 0.056980 0.056960 0.056940 0.056921 0.056901 0.056881 0.056862 0.056842 0.056823 0.056803 0.056784 0.056764 0.056745 0.056725 0.056705 0.056686 0.056666 0.056647 0.056627 0.056608 0.056588 0.056569 0.056549 0.056530 o. 056511 0.056491 0.056472 0.056452 0.056433 0.056413 0.056394 0.056374 0.056355 0.056336 0.056316 0.056297 0.056278 0.056258 0.056239 0.056219 0.056200 0.056181 0.056161 0.056142 ... . .------------------------------------------------------------------------------------------------, Date ... Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~--------------------------------------------------------------------------------------------------~ ... • .. ... -.. ... .. -- - - -·- -- ------- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 0.054491 0.054413 0.054336 0.054259 0.054182 0.054105 0.054027 0.053950 0.053873 0.053796 0. 053719 0.053642 0.053565 0.053488 0.053411 0.053334 0.053257 0.053190 0.053104 0.053027 0.052950 0.052873 0.052796 0.052720 0.052643 0.052566 0.052490 0.052413 0.052337 0.052260 0.052184 0.052107 0.052031 0.051954 0.051878 0.051801 0.051725 0.051649 0.051572 0.051496 0.051420 0.051344 0.051267 0.051191 0.051115 0.051039 0.050963 0.050887 0.050811 0.050735 0.050659 329.22 329.22 329.22 329.21 329.21 329.21 329.20 329.20 329.19 329.19 329.19 329.18 329.18 329.17 329.17 329.17 329.16 329.16 329.16 329.15 329.15 329.14 329.14 329.14 329.13 329.13 329.12 329.12 329.12 329.11 329.11 329.11 329.10 329.10 329.09 329.09 329.09 329.08 329.08 329.07 329.07 329.07 329.06 329.06 329.06 329.05 329.05 329.04 329.04 329.04 329.03 Page: 5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.056123 0.056103 0.056084 0.056065 0.056045 0.056026 0.056007 0.055988 0.055968 0.055949 0.055930 0.055911 0.055891 0.055872 0.055853 0.055834 0.055814 0.055795 0.055776 0.055757 0.055737 0.055718 0.055699 0.055680 0.055661 0.055642 0.055622 0.055603 0.055594 0.055565 0.055546 0.055527 0.055508 0.055489 0.055469 0.055450 0.055431 0.055412 0.055393 0.055374 0.055355 0.055336 0.055317 0.055298 0.055279 0.055260 0.055241 0.055222 0.055203 0.055184 0.055165 •r------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -L-----------------------------------------------------------------------------------------------~ ... .. .. • .. • -... -- - - - ---.. -- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0.050583 0.050507 0.050431 0.050355 0.050279 0.050203 0.050127 0.050052 0.049976 0.049900 0.049824 0.049749 0.049673 0.049597 0.049522 0.049446 0.049371 0.049295 0.049220 0.049144 0.049069 0.048993 0.048918 0.048843 0.048767 0.048692 0.048617 0.048541 0.048466 0.048391 0.048316 0.048240 0.048165 0.048090 0.048015 0.047940 0.047865 0. 047790 0.047715 0.047640 0.047565 0.047490 0.047415 0.047341 0.047266 0.047191 0.047116 0.047041 0.046967 0.046892 0.046817 329.03 329.03 329.02 329.02 329.01 329.01 329.01 329.00 329.00 329.00 328.99 328.99 328.98 328.98 328.98 328.97 328.97 328.96 328.96 328.96 328.95 328.95 328.95 328.94 328.94 328.93 328.93 328.93 328.92 328.92 328.92 328.91 328.91 328.90 328.90 328.90 328.89 328.89 328.89 328.88 328.88 328.87 328.87 328.87 328.86 328.86 328.86 328.85 328.85 328.84 328.84 Page: 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055146 0.055127 0.055108 0.055089 0.055070 0.055051 0.055032 0.055013 0.054994 0.054975 0.054956 0.054937 0.054918 0.054899 0.054880 0.054862 0.054843 0.054824 0.054805 0.054786 0.054767 0.054748 0.054729 0.054711 0.054692 0.054673 0.054654 0.054635 0.054617 0.054598 0.054579 0.054560 0.054541 0.054523 0.054504 0.054485 0.054466 0.054448 0.054429 0.054410 0.054391 0.054373 0.054354 0.054335 0.054316 0.054298 0.054279 0.054260 0.054242 0.054223 0.054204 Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) OUtflow (cfs) ··~------------------------------------------------------------------------------------------------------------------~ "1 ... • ... • .. - -- ... --------- - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0.046743 0.046668 0.046593 0.046519 0.046444 0.046370 0.046295 0.046221 0.046146 0.046072 0.045998 0.045923 0.045849 0.045775 0.045700 0.045626 0.045552 0.045478 0.045403 0.045329 0.045255 0.045181 0.045107 0.045033 0.044959 0.044885 0.044811 0.044737 0.044663 0.044589 0.044515 0.044441 0.044367 0.044294 0.044220 0.044146 0.044072 0.043999 0.043925 0.043851 0.043778 0.043704 0.043630 0.043557 0.043483 0.043410 0.043336 0.043263 0.043190 0.043116 0.043043 Page: 7 328.84 328.83 328.83 328.83 328.82 328.82 328.81 328.81 328.81 328.80 328.80 328.80 328.79 328.79 328.79 328.78 328.78 328.77 328.77 328.77 328.76 328.76 328.76 328.75 328.75 328.74 328.74 328.74 328.73 328.73 328.73 328.72 328.72 328.71 328.71 328.71 328.70 328.70 328.70 328.69 328.69 328.69 328.68 328.68 328.67 328.67 328.67 328.66 328.66 328.66 328.65 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.054186 0.054167 0.054148 0.054130 0.054111 0.054092 0.054074 0.054055 0.054037 0.054018 0.053999 0.053981 0.053962 0.053944 0.053925 0.053906 0.053888 0.053869 0.053851 0.053832 0.053814 0.053795 0.053777 0.053758 0.053740 0.053721 0.053703 0.053684 0.053666 0.053647 0.053629 0.053610 0.053592 0.053573 0.053555 0.053537 0.053518 0.053500 0.053481 0.053463 0.053444 0.053426 0.053408 0.053389 0.053371 0.053352 0.053334 0.053316 0.053297 0.053279 0.053261 ... .,r-------------------------------------------------------------------------------------------------------~ Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ~ ~------------------------------------------------------------------------------------------------------~ - ,,. - --... ... - -.. -- - -... -.. ---- --... - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0.042969 0.042896 0.042823 0.042750 0.042676 0.042603 0.042530 0.042457 0.042384 0.042310 0.042237 0.042164 0.042091 0.042018 0.041945 0.041872 0.041799 0.041726 0.041653 0.041581 0.041508 0.041435 0.041362 0.041289 0.041217 0.041144 0.041071 0.040999 0.040926 0.040853 0.040781 0.040708 0.040636 0.040563 0.040491 0.040418 0.040346 0.040273 0.040201 0.040128 0.040056 0.039984 0.039911 0.039839 0.039767 0.039695 0.039623 0.039550 0.039478 0.039406 0.039334 Page: 8 328.65 328.64 328.64 328.64 328.63 328.63 328.63 328.62 328.62 328.62 328.61 328.61 328.60 328.60 328.60 328.59 328.59 328.59 328.58 328.58 328.58 328.57 328.57 328.56 328.56 328.56 328.55 328.55 328.55 328.54 328.54 328.54 328.53 328.53 328.52 328.52 328.52 328.51 328.51 328.51 328.50 328.50 328.50 328.49 328.49 328.48 328.48 328.48 328.47 328.47 328.47 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.053242 0.053224 0.053206 0.053187 0.053169 0.053151 0.053132 0.053114 0.053096 0.053078 0.053059 0.053041 0.053023 0.053005 0.052986 0.052968 0.052950 0.052932 0.052913 0.052895 0.052877 0.052859 0.052841 0.052822 0.052804 0.052786 0.052768 0.052750 0.052731 0.052713 0.052695 0.052677 0.052659 0.052641 0.052623 0.052605 0.052586 0.052568 0.052550 0.052532 0.052514 0.052496 0.052478 0.052460 0.052442 0.052424 0.052406 0.052388 0.052370 0.052352 0.052333 ... -r-------------------------------------------------------------------------------------------------------------------~ Date ... Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------------------~ '""' .. - • - - ..... -·--- --.. • -• ---- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0.039262 0.039190 0.039118 0.039046 0.038974 0.038902 0.038830 0.038758 0.038686 0.038614 0.038543 0.038471 0.038399 0.038327 0.038255 0.038184 0.038112 0.038040 0.037969 0.037897 0.037826 0.037754 0.037683 0.037611 0.037540 0.037468 0.037397 0.037325 0.037254 0.037183 0.037111 0.037040 0.036969 0.036897 0.036826 0.036755 0.036684 0.036613 0.036541 0.036470 0.036399 0.036328 0.036257 0.036186 0.036115 0.036044 0.035973 0.035902 0.035831 0.035761 0.035690 328.46 328.46 328.46 328.45 328.45 328.45 328.44 328.44 328.43 328.43 328.43 328.42 328.42 328.42 328.41 328.41 328.41 328.40 328.40 328.39 328.39 328.39 328.38 328.38 328.38 328.37 328.37 328.37 328.36 328.36 328.36 328.35 328.35 328.34 328.34 328.34 328.33 328.33 328.33 328.32 328.32 328.32 328.31 328.31 328.31 328.30 328.30 328.30 328.29 328.29 328.28 Page: 9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.052315 0.052297 0.052279 0.052261 0.052243 0.052225 0.052207 0.052190 0.052172 0.052154 0.052136 0.052118 0.052100 0.052082 0.052064 0.052046 0.052028 0.052010 0.051992 0.051974 0.051956 0.051939 0.051921 0.051903 0.051885 0.051867 0.051849 0.051831 0.051813 0.051796 0.051778 0.051760 0.051742 0.051724 0.051707 0.051689 0.051671 0.051653 0.051635 0.051618 0.051600 0.051582 0.051564 0.051547 0.051529 0.051511 0.051493 0.051476 0.051458 0.051440 0.051422 .,r--------------------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -L---------------------------------------------------------------------------------------------------~ - .. --- ·• .. - --.... --- - -- ·• - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0.035619 0.035548 0.035477 0.035407 0.035336 0.035265 0.035195 0.035124 0.035053 0.034983 0.034912 0.034842 0.034771 0.034701 0.034630 0.034560 0.034489 0.034419 0.034348 0.034278 0.034208 0.034137 0.034067 0.033997 0.033927 0.033856 0.033786 0.033716 0.033646 0.033576 0.033506 0.033436 0.033366 0.033296 0.033226 0.033156 0.033086 0.033016 0.032946 0.032876 0.032806 0.032736 0.032667 0.032597 0.032527 0.032457 0.032388 0.032318 0.032248 0.032179 0.032109 328.28 328.28 328.27 328.27 328.27 328.26 328.26 328.26 328.25 328.25 328.25 328.24 328.24 328.24 328.23 328.23 328.22 328.22 328.22 328.21 328.21 328.21 328.20 328.20 328.20 328.19 328.19 328.19 328.18 328.18 328.18 328.17 328.17 328.16 328.16 328.16 328.15 328.15 328.15 328.14 328.14 328.14 328.13 328.13 328.13 328.12 328.12 328.12 328.11 328.11 328.11 Page: 10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.051405 0.051387 0.051369 0.051352 0.051334 0.051316 0.051299 0.051281 0.051263 0.051246 0.051228 0.051210 0. 051193 0.051175 0. 051158 0.051140 0.051122 0.051105 0.051087 0.051070 0.051052 0.051034 0.051017 0.050999 0.050982 0.050964 0.050947 0.050929 0.050911 0.050894 0.050876 0.050859 0.050841 0.050824 0.050806 0.050789 0.050771 0.050754 0.050736 0.050719 0.050702 0.050684 0.050667 0.050649 0.050632 0.050614 0.050597 0.050579 0.050562 0.050545 0.050527 .. .-------------------------------------------------------------------------------------------------------------------~ Date Time ·-Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------------~ - -.. ... -... -·-- - - ---• - --- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0.032039 0.031970 0.031900 0.031831 0.031761 0.031692 0.031622 0.031553 0.031484 0.031414 0.031345 0.031276 0.031206 0.031137 0.031068 0.030998 0.030929 0.030860 0.030791 0.030722 0.030653 0.030584 0.030515 0.030446 0.030377 0.030308 0.030239 0.030170 0.030101 0.030032 0.029963 0.029894 0.029826 0.029757 0.029688 0.029620 0.029552 0.029484 0.029415 0.029347 0.029279 0.029212 0.029144 0.029076 0.029009 0.028941 0.028874 0.028807 0.028739 0. 028672 0.028605 328.10 328.10 328.10 328.09 328.09 328.08 328.08 328.08 328.07 328.07 328.07 328.06 328.06 328.06 328.05 328.05 328.05 328.04 328.04 328.04 328.03 328.03 328.03 328.02 328.02 328.02 328.01 328.01 328.01 328.00 328.00 327.99 327.98 327.98 327.97 327.96 327.96 327.95 327.94 327.93 327.93 327.92 327.91 327.91 327.90 327.89 327.89 327.88 327.87 327.87 327.86 Page: 11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.050510 0.050492 0.050475 0.050458 0.050440 0.050423 0.050406 0.050388 0.050371 0.050354 0.050336 0.050319 0.050302 0.050284 0.050267 0.050250 0.050232 0.050215 0.050198 0.050180 0.050163 0.050146 0.050129 0.050111 0.050094 0.050077 0.050060 0.050042 0.050025 0.050008 0.049963 0.049894 0.049826 0.049757 0.049688 0.049620 0.049552 0.049484 0.049415 0.049347 0.049279 0.049212 0.049144 0.049076 0.049009 0.048941 0.048874 0.048807 0.048739 0.048672 0.048605 .r-------------------------------------------------------------------------------------------------------~ Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ·~~------------------------------------------------------------------------------------------------------------~ - --- - - --- - ------... -- - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 1000 1001 0.028538 0.028472 0.028405 0.028338 0.028272 0.028205 0.028139 0.028073 0.028007 0.027940 0.027874 0.027809 0.027743 0.027677 0.027611 0.027546 0.027480 0.027415 0.027350 0.027285 0.027220 0.027155 0.027090 0.027025 0.026960 0.026895 0.026831 0.026766 0.026702 0.026638 0.026574 0.026509 0.026445 0.026382 0.026318 0.026254 0.026190 0.026127 0.026063 0.026000 0.025936 0.025873 0.025810 0.025747 0.025684 0.025621 0.025558 0.025496 0.025433 0.025371 0.025308 327.85 327.85 327.84 327.83 327.83 327.82 327.81 327.81 327.80 327.79 327.79 327.78 327.77 327.77 327.76 327.75 327.75 327.74 327.73 327.73 327.72 327.72 327.71 327.70 327.70 327.69 327.68 327.68 327.67 327.66 327.66 327.65 327.64 327.64 327.63 327.63 327.62 327.61 327.61 327.60 327.59 327.59 327.58 327.57 327.57 327.56 327.56 327.55 327.54 327.54 327.53 Page: 12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.048538 0.048472 0.048405 0.048338 0.048272 0.048205 0.048139 0.048073 0.048007 0.047940 0.047874 0.047809 0.047743 0.047677 0.047611 0.047546 0.047480 0.047415 0.047350 0.047285 0.047220 0.047155 0.047090 0.047025 0.046960 0.046895 0.046831 0.046766 0.046702 0.046638 0.046574 0.046509 0.046445 0.046382 0.046318 0.046254 0.046190 0.046127 0.046063 0.046000 0.045936 0.045873 0.045810 0.045747 0.045684 0.045621 0.045558 0.045496 0.045433 0.045371 0.045308 .... •r------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~--------------------------------------------------------------------------------------------------~ - .. - - - --- ·- -.. - .... - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 0.025246 0.025183 0.025121 0.025059 0.024997 0.024935 0.024873 0.024812 0.024750 0.024688 0.024627 0.024565 0.024504 0.024443 0.024382 0.024320 0.024259 0.024199 0.024138 0.024077 0.024016 0.023956 0.023895 0.023835 0.023774 0.023714 0.023654 0.023594 0.023534 0.023474 0.023414 0.023354 0.023295 0.023235 0.023176 0.023116 0.023057 0.022998 0.022938 0.022879 0.022820 0.022761 0.022702 0.022644 0.022585 0.022526 0.022468 0.022409 0.022351 0.022293 0.022235 327.52 327.52 327.51 327.51 327.50 327.49 327.49 327.48 327.47 327.47 327.46 327.46 327.45 327.44 327.44 327.43 327.43 327.42 327.41 327.41 327.40 327.40 327.39 327.38 327.38 327.37 327.37 327.36 327.35 327.35 327.34 327.34 327.33 327.32 327.32 327.31 327.31 327.30 327.29 327.29 327.28 327.28 327.27 327.26 327.26 327.25 327.25 327.24 327.24 327.23 327.22 Page: 13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.045246 0.045183 0.045121 0.045059 0.044997 0.044935 0.044873 0.044812 0.044750 0.044688 0.044627 0.044565 0.044504 0.044443 0.044382 0.044320 0.044259 0.044199 0.044138 0.044077 0.044016 0.043956 0.043895 0.043835 0.043774 0.043714 0.043654 0.043594 0.043534 0.043474 0.043414 0.043354 0.043295 0.043235 0.043176 0.043116 0.043057 0.042998 0.042938 0.042879 0.042820 0.042761 0.042702 0.042644 0.042585 0.042526 0.042468 0.042409 0.042351 0.042293 0.042235 - .r-------------------------------------------------------------------------------------------------------~ Date ... Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~--------------------------------------------------------------------------------------------------~ - - - -- • .. • -.. --.. ----- - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1053 1054 1055 1056 1057 1058 1059 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 0.022176 0.022118 0.022060 0.022002 0.021945 0.021887 0.021829 0.021772 0.021714 0.021657 0.021599 0.021542 0.021485 0.021428 0.021371 0.021314 0.021257 0.021200 0.021144 0.021087 0.021030 0.020974 0.020917 0.020861 0.020805 0.020749 0.020693 0.020637 0.020581 0.020525 0.020469 0.020413 0.020358 0.020302 0.020247 0.020191 0.020136 0.020081 0.020026 0.019970 0.019915 0.019861 0.019806 0.019751 0.019696 0.019642 0.019587 0.019532 0.019478 0.019424 0.019369 Page: 14 327.22 327.21 327.21 327.20 327.19 327.19 327.18 327.18 327.17 327.17 327.16 327.15 327.15 327.14 327.14 327.13 327.13 327.12 327.11 327.11 327.10 327.10 327.09 327.09 327.08 327.07 327.07 327.06 327.06 327.05 327.05 327.04 327.04 327.03 327.02 327.02 327.01 327.01 327.00 327.00 326.99 326.99 326.98 326.98 326.97 326.96 326.96 326.95 326.95 326.94 326.94 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.042176 0.042118 0.042060 0.042002 0.041945 0.041887 0.041829 0.041772 0.041714 0.041657 0.041599 0.041542 0.041485 0.041428 0.041371 0.041314 0.041257 0.041200 0.041144 0.041087 0.041030 0.040974 0.040917 0.040861 0.040805 0.040749 0.040693 0.040637 0.040581 0.040525 0.040469 0.040413 0.040358 0.040302 0.040247 0.040191 0.040136 0.040081 0.040026 0.039970 0.039915 0.039861 0.039806 0.039751 0.039696 0.039642 0.039587 0.039532 0.039478 0.039424 0.039369 ... • r---------------------------------------------------------------------------------------------------------, Date Time ... Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~----------------------------------------------------------------------------------------------~ .. • -- -- - --- ----- - • -- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 0.019315 0.019261 0.019207 0.019153 0.019099 0.019045 0.018992 0.018938 0.018884 0.018831 0.018777 0.018724 0.018671 0.018618 0.018564 0.018511 0.018458 0.018405 0.018352 0.018300 0.018247 0.018194 0.018142 0.018089 0.018037 0.017984 0.017932 0.017880 0.017828 0.017776 0.017724 0.017672 0.017620 0.017568 0.017516 0.017465 0.017413 0.017362 0.017310 0.017259 0.017208 0.017156 0.017105 0.017054 0.017003 0.016952 0.016901 0.016851 0.016800 0.016749 0.016699 326.93 326.93 326.92 326.92 326.91 326.90 326.90 326.89 326.89 326.88 326.88 326.87 326.87 326.86 326.86 326.85 326.85 326.84 326.84 326.83 326.82 326.82 326.81 326.81 326.80 326.80 326.79 326.79 326.78 326.78 326.77 326.77 326.76 326.76 326.75 326.75 326.74 326.74 326.73 326.73 326.72 326.72 326.71 326.71 326.70 326.70 326.69 326.69 326.68 326.67 326.67 Page: 15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.039315 0.039261 0.039207 0.039153 0.039099 0.039045 0.038992 0.038938 0.038884 0.038831 0.038777 0.038724 0.038671 0.038618 0.038564 0.038511 0.038458 0.038405 0.038352 0.038300 0.038247 0.038194 0.038142 0.038089 0.038037 0.037984 0.037932 0.037880 0.037828 0.037776 0.037724 0.037672 0.037620 0.037568 0.037516 0.037465 0.037413 0.037362 0.037310 0.037259 0.037208 0.037156 0.037105 0.037054 0.037003 0.036952 0.036901 0.036851 0.036800 0.036749 0.036699 .. r---------------------------------------------------------------------------------------------------------, Date Time Reservoir Reservoir -Storage Elevation (ac-ft) (ft) Inflow (cfs) Outflow (cfs) ·L-----------------------------------------------------------------------------------------------~ - - • • - - - - - ----.... -... ... ... 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 0.016648 0.016598 0.016547 0.016497 0.016447 0.016397 0.016347 0.016297 0.016247 0.016197 0.016147 0.016097 0.016047 0.015998 0.015948 0.015899 0.015849 0.015800 0.015751 0.015702 0.015652 0.015603 0.015554 0.015505 0.015456 0.015408 0.015359 0.015310 0.015262 0.015213 0.015165 0.015116 0.015068 0.015020 0.014971 0.014923 0.014875 0.014827 0.014779 0.014731 0.014684 0.014636 0.014588 0.014541 0.014493 0.014446 0.014398 0.014351 0.014304 0.014256 0.014209 326.66 326.66 326.65 326.65 326.64 326.64 326.63 326.63 326.62 326.62 326.61 326.61 326.60 326.60 326.59 326.59 326.58 326.58 326.58 326.57 326.57 326.56 326.56 326.55 326.55 326.54 326.54 326.53 326.53 326.52 326.52 326.51 326.51 326.50 326.50 326.49 326.49 326.48 326.48 326.47 326.47 326.46 326.46 326.45 326.45 326.44 326.44 326.44 326.43 326.43 326.42 Page: 16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.036648 0.036598 0.036547 0.036497 0.036447 0.036397 0.036347 0.036297 0.036247 0.036197 0.036147 0.036097 0.036047 0.035998 0.035948 0.035899 0.035849 0.035800 0.035751 0.035702 0.035652 0.035603 0.035554 0.035505 0.035456 0.035408 0.035359 0.035310 0.035262 0.035213 0.035165 0.035116 0.035068 0.035020 0.034971 0.034923 0.034875 0.034827 0.034779 0.034731 0.034684 0.034636 0.034588 0.034541 0.034493 0.034446 0.034398 0.034351 0.034304 0.034256 0.034209 •r-------------------------------------------------------------------------------------------------------~ Date Time Reservoir Reservoir -Storage Elevation (ac-ft) (ft) Inflow (cfs) OUtflow (cfs) -L---------------------------------------------------------------------------------------------------~ - • • • ... -----.... ---- - --... - - -.. - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 0.014162 0.014115 0.014068 0.014021 0.013974 0.013928 0.013881 0.013834 0.013788 0.013741 0.013695 0.013648 0.013602 0.013556 0.013510 0.013463 0.013417 0.013371 0.013326 0.013280 0.013234 0.013188 0.013142 0.013097 0.013051 0.013006 0.012960 0.012915 0.012870 0.012824 0.012779 0.012734 0.012689 0.012644 0.012599 0.012554 0.012509 0.012465 0.012420 0.012375 0.012331 0.012286 0.012242 0.012197 0.012153 0.012109 0.012065 0.012021 0.011976 0.011932 0.011889 326.42 326.41 326.41 326.40 326.40 326.39 326.39 326.38 326.38 326.37 326.37 326.36 326.36 326.36 326.35 326.35 326.34 326.34 326.33 326.33 326.32 326.32 326.31 326.31 326.31 326.30 326.30 326.29 326.29 326.28 326.28 326.27 326.27 326.26 326.26 326.26 326.25 326.25 326.24 326.24 326.23 326.23 326.22 326.22 326.22 326.21 326.21 326.20 326.20 326.19 326.19 Page: 17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.034162 0.034115 0.034068 0.034021 0.033974 0.033928 0.033881 0.033834 0.033788 0.033741 0.033695 0.033648 0.033602 0.033556 0.033510 0.033463 0.033417 0.033371 0.033326 0.033280 0.033234 0.033188 0.033142 0.033097 0.033051 0.033006 0.032960 0.032915 0.032870 0.032824 0.032779 0.032734 0.032689 0.032644 0.032599 0.032554 0.032509 0.032465 0.032420 0.032375 0.032331 0.032286 0.032242 0.032197 0.032153 0.032109 0.032065 0.032021 0.031976 0.031932 0.031889 ... -.------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --~------------------------------------------------------------------------------------------------------------~ --.... .. - - -.. - -... • .. - ------- - -- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1500 1501 1502 1503 1504 1505 1506 1507 0.011845 0.011801 0.011757 0.011713 0. 011670 0.011626 0.011583 0.011539 0.011496 0.011452 0.011409 0.011366 0.011323 0.011279 0.011236 0.011193 0.011150 0.011108 0. 011065 0.011022 0.010979 0.010937 0.010894 0.010852 0.010809 0.010767 0.010724 0.010682 0.010640 0.010598 0.010556 0.010513 0.010471 0.010430 0.010388 0.010346 0.010304 0.010262 0.010221 0.010179 0.010138 0.010096 0.010055 0.010013 0.009972 0.009931 0.009890 0.009849 0.009809 0.009768 0.009728 326.18 326.18 326.18 326.17 326.17 326.16 326.16 326.15 326.15 326.15 326.14 326.14 326.13 326.13 326.12 326.12 326.12 326.11 326.11 326.10 326.10 326.09 326.09 326.09 326.08 326.08 326.07 326.07 326.06 326.06 326.06 326.05 326.05 326.04 326.04 326.03 326.03 326.03 326.02 326.02 326.01 326.01 326.01 326.00 326.00 325.99 325.99 325.98 325.98 325.98 325.97 Page: 18 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.031845 0.031801 0.031757 0. 031713 0.031670 0.031626 0.031583 0.031539 0.031496 0.031452 0.031409 0.031366 0.031323 0.031279 0.031236 0. 031193 0.031150 0.031108 0.031065 0.031022 0.030979 0.030937 0.030894 0.030852 0.030809 0.030767 0.030724 0.030682 0.030640 0.030598 0.030556 0.030513 0.030471 0.030430 0.030388 0.030346 0.030304 0.030262 0.030221 0.030179 0.030138 0.030096 0.030055 0.030013 0.029916 0.029793 0.029670 0.029547 0.029426 0.029304 0.029183 -Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -L-----------------------------------------------------------------------------------------------~ ... .. --- - - - - -·- - """ ... 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 0.009688 0.009648 0.009608 0.009568 0.009529 0.009490 0.009450 0.009411 0.009373 0.009334 0.009296 0. 009257 0.009219 0.009181 0.009143 0.009105 0.009068 0.009031 0.008993 0.008956 0.008919 0.008882 0.008846 0.008809 0.008773 0.008737 0.008701 0.008665 0.008629 0.008594 0.008558 0.008523 0.008488 0.008453 0.008418 0.008383 0.008349 0.008314 0.008280 0.008246 0.008212 0.008178 0.008144 0.008111 0.008077 0.008044 0.008011 0.007978 0.007945 0.007912 0.007879 325.97 325.96 325.96 325.96 325.95 325.95 325.95 325.94 325.94 325.93 325.93 325.93 325.92 325.92 325.91 325.91 325.91 325.90 325.90 325.90 325.89 325.89 325.88 325.88 325.88 325.87 325.87 325.87 325.86 325.86 325.86 325.85 325.85 325.85 325.84 325.84 325.83 325.83 325.83 325.82 325.82 325.82 325.81 325.81 325.81 325.80 325.80 325.80 325.79 325.79 325.79 Page: 19 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.029063 0.028943 0.028824 0.028705 0.028587 0.028469 0.028351 0.028234 0.028118 0.028002 0.027887 0.027772 0.027657 0.027543 0.027429 0.027316 0.027204 0.027092 0.026980 0.026869 0.026758 0.026647 0.026538 0.026428 0.026319 0.026211 0.026102 0.025995 0.025888 0.025781 0.025675 0.025569 0.025463 0.025358 0.025254 0.025150 0.025046 0.024943 0.024840 0.024737 0.024635 0.024534 0.024432 0.024332 0.024231 0.024131 0.024032 0.023933 0.023834 0.023736 0.023638 - -r-----------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ~ ~------------------------------------------------------------------------------------------------------~ -- ------ .... -·-- - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1559 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 0.007847 0.007814 0.007782 0.007750 0.007718 0.007686 0.007655 0.007623 0.007592 0.007560 0.007529 0.007498 0.007467 0.007436 0.007406 0.007375 0.007345 0.007315 0.007284 0.007254 0.007224 0.007195 0.007165 0.007135 0.007106 0.007077 0.007048 0.007018 0.006990 0.006961 0.006932 0.006903 0.006875 0.006847 0.006818 0.006790 0.006762 0.006734 0.006707 0.006679 0.006651 0.006624 0.006597 0.006569 0.006542 0.006515 0.006488 0.006462 0.006435 0.006409 0.006382 325.78 325.78 325.78 325.78 325.77 325.77 325.77 325.76 325.76 325.76 325.75 325.75 325.75 325.74 325.74 325.74 325.73 325.73 325.73 325.73 325.72 325.72 325.72 325.71 325.71 325.71 325.70 325.70 325.70 325.70 325.69 325.69 325.69 325.68 325.68 325.68 325.68 325.67 325.67 325.67 325.67 325.66 325.66 325.66 325.65 325.65 325.65 325.65 325.64 325.64 325.64 Page: 20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.023541 0.023443 0.023347 0.023251 0.023155 0.023059 0.022964 0.022869 0.022775 0.022681 0.022588 0.022494 0.022402 0.022309 0.022217 0.022126 0.022034 0.021944 0.021853 0.021763 0.021673 0.021584 0.021495 0.021406 0.021318 0.021230 0.021143 0.021055 0.020969 0.020882 0.020796 0.020710 0.020625 0.020540 0.020455 0.020371 0.020287 0.020203 0.020120 0.020037 0.019954 0.019872 0.019790 0.019708 0.019627 0.019546 0.019465 0.019385 0.019305 0.019226 0.019146 -. .---------------------------------------------------------------------------------------------------~ Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow Outflow (cfs) (cfs) ·~------------------------------------------------------------------------------------------~ """ """ - - - '- -- - - - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 0.006356 0.006330 0.006303 0.006277 0.006252 0.006226 0.006200 0.006175 0.006149 0.006124 0.006099 0.006073 0.006048 0.006023 0.005999 0.005974 0.005949 0.005925 0.005900 0.005876 0.005852 0.005828 0.005803 0.005780 0.005756 0.005732 0.005708 0.005685 0.005661 0.005638 0.005615 0.005592 0.005569 0.005546 0.005523 0.005500 0.005477 0.005455 0.005432 0.005410 0.005387 0.005365 0.005343 0.005321 0.005299 0.005277 0.005256 0.005234 0.005212 0.005191 0.005169 325.64 325.63 325.63 325.63 325.63 325.62 325.62 325.62 325.61 325.61 325.61 325.61 325.60 325.60 325.60 325.60 325.59 325.59 325.59 325.59 325.59 325.58 325.58 325.58 325.58 325.57 325.57 325.57 325.57 325.56 325.56 325.56 325.56 325.55 325.55 325.55 325.55 325.55 325.54 325.54 325.54 325.54 325.53 325.53 325.53 325.53 325.53 325.52 325.52 325.52 325.52 Page: 21 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.019067 0.018989 0.018910 0.018832 0.018755 0.018677 0.018600 0.018524 0.018447 0.018371 0.018296 0.018220 0.018145 0.018070 0.017996 0.017921 0.017848 0.017774 0.017701 0.017628 0.017555 0.017483 0.017410 0.017339 0.017267 0.017196 0.017125 0.017054 0.016984 0.016914 0.016844 0.016775 0.016706 0.016637 0.016568 0.016500 0.016432 0.016364 0.016297 0.016229 0.016162 0.016096 0.016029 0.015963 0.015897 0.015832 0.015767 0.015702 0.015637 0.015572 0.015508 ... . .-----------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Inflow Outflow Elevation (cfs) (cfs) (ft) .WL-------------------------------------------------------------------------------------------~ - • • -.. --- - - • -.. -- "'" - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 0.005148 0.005127 0.005106 0.005085 0.005064 0.005043 0.005022 0.005001 0.004981 0.004960 0.004940 0.004919 0.004899 0.004879 0.004859 0.004839 0.004819 0.004799 0.004779 0.004759 0.004740 0.004720 0.004701 0.004681 0.004662 0.004643 0.004624 0.004605 0.004586 0.004567 0.004548 0.004529 0.004510 0.004492 0.004473 0.004455 0.004436 0.004418 0.004400 0.004382 0.004364 0.004346 0.004328 0.004310 0.004292 0.004275 0.004257 0.004239 0.004222 0.004204 0.004187 325.51 325.51 325.51 325.51 325.51 325.50 325.50 325.50 325.50 325.50 325.49 325.49 325.49 325.49 325.49 325.48 325.48 325.48 325.48 325.48 325.47 325.47 325.47 325.47 325.47 325.46 325.46 325.46 325.46 325.46 325.45 325.45 325.45 325.45 325.45 325.45 325.44 325.44 325.44 325.44 325.44 325.43 325.43 325.43 325.43 325.43 325.43 325.42 325.42 325.42 325.42 Page: 22 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.015444 0.015381 0.015317 0.015254 0.015191 0.015128 0.015066 0.015004 0.014942 0.014880 0.014819 0.014758 0.014697 0.014636 0.014576 0.014516 0.014456 0.014397 0.014337 0.014278 0.014219 0.014161 0.014102 0.014044 0.013986 0.013928 0.013871 0.013814 0.013757 0.013700 0.013644 0.013587 0.013531 0.013475 0.013420 0.013365 0.013309 0.013255 0.013200 0.013145 0.013091 0.013037 0.012984 0.012930 0.012877 0.012824 0. 012771 0.012718 0.012666 0.012613 0.012561 -• r----------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~------------------------------------------------------------------------------------------~ .. .. -• • - --- - - - - ------ 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 0.004170 0.004153 0.004136 0. 004118 0.004101 0.004085 0.004068 0.004051 0.004034 0.004018 0.004001 0.003985 0.003968 0.003952 0.003935 0.003919 0.003903 0.003887 0.003871 0.003855 0.003839 0.003823 0.003807 0.003792 0.003776 0.003761 0.003745 0.003730 0.003714 0.003699 0.003684 0.003668 0.003653 0.003638 0.003623 0.003608 0.003593 0.003579 0.003564 0.003549 0.003535 0.003520 0.003505 0.003491 0.003477 0.003462 0.003448 0.003434 0.003420 0.003406 0.003391 325.42 325.42 325.41 325.41 325.41 325.41 325.41 325.41 325.40 325.40 325.40 325.40 325.40 325.40 325.39 325.39 325.39 325.39 325.39 325.39 325.38 325.38 325.38 325.38 325.38 325.38 325.37 325.37 325.37 325.37 325.37 325.37 325.37 325.36 325.36 325.36 325.36 325.36 325.36 325.35 325.35 325.35 325.35 325.35 325.35 325.35 325.34 325.34 325.34 325.34 325.34 Page: 23 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.012510 0.012458 0.012407 0.012355 0.012304 0.012254 0.012203 0.012153 0.012103 0.012053 0.012003 0.011954 0.011904 0.011855 0.011806 0.011758 0.011709 0.011661 0.011613 0.011565 0.011517 0.011470 0.011422 0.011375 0.011328 0.011282 0.011235 0.011189 0.011143 0.011097 0.011051 0.011005 0.010960 0.010915 0.010870 0.010825 0.010780 0.010736 0.010692 0.010648 0.010604 0.010560 0.010516 0.010473 0.010430 0.010387 0.010344 0.010301 0.010259 0.010217 0.010174 - -r-----------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~----------------------------------------------------------------------------------------------~ • ... --- -- - ..... - - ... - --- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0.003377 0.003364 0.003350 0.003336 0.003322 0.003308 0.003295 0.003281 0.003268 0.003254 0.003241 0.003227 0.003214 0.003201 0.003188 0.003175 0.003161 0.003148 0.003135 0.003122 0.003110 0.003097 0.003084 0.003071 0.003059 0.003046 0.003033 0.003021 0.003008 0.002996 0.002984 0.002971 0.002959 0.002947 0.002935 0.002923 0.002911 0.002899 0.002887 0.002875 0.002863 0.002851 0.002839 0.002828 0.002816 0.002804 0.002793 0.002781 o. 002770 0.002758 0.002747 325.34 325.34 325.33 325.33 325.33 325.33 325.33 325.33 325.33 325.33 325.32 325.32 325.32 325.32 325.32 325.32 325.32 325.31 325.31 325.31 325.31 325.31 325.31 325.31 325.31 325.30 325.30 325.30 325.30 325.30 325.30 325.30 325.30 325.29 325.29 325.29 325.29 325.29 325.29 325.29 325.29 325.29 325.28 325.28 325.28 325.28 325.28 325.28 325.28 325.28 325.27 Page: 24 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.010132 0.010091 0.010049 0.010008 0.009966 0.009925 0.009884 0.009844 0.009803 0.009763 0.009722 0.009682 0.009642 0.009603 0.009563 0.009524 0.009484 0.009445 0.009406 0.009367 0.009329 0.009290 0.009252 0.009214 0.009176 0.009138 0.009100 0.009063 0.009025 0.008988 0.008951 0.008914 0.008877 0.008841 0.008804 0.008768 0.008732 0.008696 0.008660 0.008624 0.008589 0.008553 0.008518 0.008483 0.008448 0.008413 0.008378 0.008344 0.008310 0.008275 0.008241 - -r-----------------------------------------------------------------------------------------------~ Date Time ... Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~------------------------------------------------------------------------------------------~ ... ... - • ----- - - .... - -.. .. - - 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2100 2101 2102 2103 2104 0.002736 0.002724 0.002713 0.002702 0.002691 0.002680 0.002669 0.002658 0.002647 0.002636 0.002625 0.002614 0.002603 0.002593 0.002582 0.002571 0.002561 0.002550 0.002540 0.002529 0.002519 0.002508 0.002498 0.002488 0.002477 0.002467 0.002457 0.002447 0.002437 0.002427 0.002417 0.002407 0.002397 0.002387 0.002377 0.002367 0.002358 0.002348 0.002338 0.002329 0.002319 0.002309 0.002300 0.002290 0.002281 0.002272 0.002262 0.002253 0.002244 0.002234 0.002225 325.27 325.27 325.27 325.27 325.27 325.27 325.27 325.27 325.26 325.26 325.26 325.26 325.26 325.26 325.26 325.26 325.26 325.26 325.25 325.25 325.25 325.25 325.25 325.25 325.25 325.25 325.25 325.24 325.24 325.24 325.24 325.24 325.24 325.24 325.24 325.24 325.24 325.23 325.23 325.23 325.23 325.23 325.23 325.23 325.23 325.23 325.23 325.23 325.22 325.22 325.22 Page: 25 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.008207 0.008173 0.008140 0.008106 0.008073 0.008039 0.008006 0.007973 0.007940 0.007908 0.007875 0.007842 0.007810 0.007778 0.007746 0.007714 0.007682 0.007650 0.007619 0.007587 0.007556 0.007525 0.007494 0.007463 0.007432 0.007402 0.007371 0.007341 0.007310 0.007280 0.007250 0.007220 0.007191 0.007161 0.007131 0.007102 0.007073 0.007044 0.007014 0.006986 0.006957 0.006928 0.006900 0.006871 0.006843 0.006815 0.006786 0.006758 0.006731 0.006703 0.006675 -.,r------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) OUtflow (cfs) ·~------------------------------------------------------------------------------------------------------~ .. ... • --- - - - - - --- - .. • -- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 0.002216 0.002207 0.002198 0.002189 0.002180 0.002171 0.002162 0.002153 0.002144 0.002135 0.002126 0.002117 0.002109 0.002100 0.002091 0.002083 0.002074 0.002066 0.002057 0.002049 0.002040 0.002032 0.002023 0.002015 0.002007 0.001998 0.001990 0.001982 0.001974 0.001966 0.001958 0.001949 0.001941 0.001933 0.001925 0.001917 0.001910 0.001902 0.001894 0.001886 0.001878 0.001871 0.001863 0.001855 0.001847 0.001840 0.001832 0.001825 0.001817 0.001810 0.001802 325.22 325.22 325.22 325.22 325.22 325.22 325.22 325.22 325.21 325.21 325.21 325.21 325.21 325.21 325.21 325.21 325.21 325.21 325.21 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.20 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.19 325.18 325.18 325.18 325.18 325.18 325.18 325.18 Page: 26 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.006648 0.006620 0.006593 0.006566 0.006539 0.006512 0.006485 0.006458 0.006431 0.006405 0.006379 0.006352 0.006326 0.006300 0.006274 0.006248 0.006222 0.006197 0.006171 0.006146 0.006120 0.006095 0.006070 0.006045 0.006020 0.005995 0.005970 0.005946 0.005921 0.005897 0.005873 0.005848 0.005824 0.005800 0.005776 0.005752 0.005729 0.005705 0.005682 0.005658 0.005635 0.005612 0.005588 0.005565 0.005542 0.005520 0.005497 0.005474 0.005452 0.005429 0.005407 --r----------------------------------------------------------------------------------------------------, Date Time .... Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ·~----------------------------------------------------------------------------------------------~ -.. .. • .. • ... - - --- - - - .. - - - -- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 2156 2157 2158 2159 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 0.001795 0.001787 0.001780 0.001773 0.001765 0.001758 0.001751 0.001744 0.001736 0.001729 0.001722 0.001715 0.001708 0.001701 0.001694 0.001687 0.001680 0.001673 0.001666 0.001659 0.001652 0.001646 0.001639 0.001632 0.001625 0.001619 0.001612 0.001605 0.001599 0.001592 0.001586 0.001579 0.001573 0.001566 0.001560 0.001553 0.001547 0.001540 0.001534 0.001528 0.001521 0.001515 0.001509 0.001503 0.001496 0.001490 0.001484 0.001478 0.001472 0.001466 0.001460 325.18 325.18 325.18 325.18 325.18 325.18 325.18 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.17 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.16 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 325.15 Page: 27 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005384 0.005362 0.005340 0.005318 0.005296 0.005274 0.005253 0.005231 0.005209 0.005188 0.005166 0.005145 0.005124 0.005103 0.005082 0.005061 0.005040 0.005019 0.004998 0.004978 0.004957 0.004937 0.004917 0.004896 0.004876 0.004856 0.004836 0.004816 0.004796 0.004776 0.004757 0.004737 0.004718 0.004698 0.004679 0.004659 0.004640 0.004621 0.004602 0.004583 0.004564 0.004545 0.004527 0.004508 0.004489 0.004471 0.004452 0.004434 0.004416 0.004397 0.004379 - .r-----------------------------------------------------------------------------------------------~ Date Time Reservoir Reservoir Storage Elevation Inflow (cfs) Outflow (cfs) (ac-ft) (ft) -~------------------------------------------------------------------------------------------~ -.. • • -- -.. -- -- - ---- .. ------ 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2259 2259 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2319 2319 2320 2321 2322 2323 2324 2325 2326 2327 2329 2329 2330 2331 2332 2333 2334 2335 2336 2337 0.001454 0.001448 0.001442 0.001436 0.001430 0.001424 0.001418 0.001412 0.001406 0.001401 0.001395 0.001399 0.001383 0.001378 0.001372 0.001366 0.001361 0.001355 0.001350 0.001344 0.001338 0.001333 0.001327 0.001322 0.001317 0.001311 0.001306 0.001300 0.001295 0.001290 0.001284 0.001279 0.001274 0.001269 0.001263 0.001258 0.001253 0.001248 0.001243 0.001237 0.001232 0.001227 0.001222 0.001217 0.001212 0.001207 0.001202 0.001197 0.001192 0.001197 0.001182 325.15 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.14 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.13 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 325.12 Page: 29 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004361 0.004343 0.004325 0.004309 0.004290 0.004272 0.004255 0.004237 0.004219 0.004202 0.004185 0.004168 0.004150 0.004133 0. 004116 0.004099 0.004082 0.004065 0.004049 0.004032 0.004015 0.003999 0.003982 0.003966 0.003950 0.003933 0.003917 0.003901 0.003985 0.003869 0.003953 0.003937 0.003821 0.003805 0.003790 0.003774 0.003759 0.003743 0.003729 0.003712 0.003697 0.003682 0.003666 0.003651 0.003636 0.003621 0.003606 0.003591 0.003577 0.003562 0.003547 -.. ~------------------------------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --~------------------------------------------------------------------------------------------------------------~ • - -... ------------ - - --- 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2400 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0.001178 0.001173 0.001168 0.001163 0.001158 0.001153 0.001149 0.001144 0.001139 0.001135 0.001130 0.001125 0.001121 0.001116 0.001111 0.001107 0.001102 0.001098 0.001093 0.001089 0.001084 0.001080 0.001075 0.001071 0.001066 0.001062 0.001058 0.001053 0.001049 0.001045 0.001040 0.001036 0.001032 0.001027 0.001023 0.001019 0.001015 0.001011 0.001006 0.001002 0.000998 0.000994 0.000990 0.000986 0.000982 0.000978 0.000974 0.000970 0.000966 0.000962 0.000958 325.12 325.12 325.12 325.12 325.12 325.12 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.11 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 325.10 Page: 29 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003533 0.003518 0.003504 0.003489 0.003475 0.003460 0.003446 0.003432 0.003418 0.003404 0.003390 0.003376 0.003362 0.003348 0.003334 0.003320 0.003307 0.003293 0.003279 0.003266 0.003252 0.003239 0.003226 0.003212 0.003199 0.003186 0.003173 0.003160 0.003147 0.003134 0.003121 0.003108 0.003095 0.003082 0.003070 0.003057 0.003044 0.003032 0.003019 0.003007 0.002994 0.002982 0.002970 0.002957 0.002945 0.002933 0.002921 0.002909 0.002897 0.002885 0.002873 -.. .----------------------------------------------------------------------------------------------------, Date Time Reservoir Storage {ac-ft) Reservoir Elevation {ft) Inflow Outflow {cfs) {cfs) .. ~--------------------------------------------------------------------------------------------------~ .... -- • • • - - - - .... - --- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0.000954 0.000950 0.000946 0.000942 0.000938 0.000934 0.000930 0.000927 0.000923 0.000919 0.000915 0.000911 0.000908 0.000904 0.000900 0.000896 0.000893 0.000889 0.000885 0.000882 0.000878 0.000874 0.000871 0.000867 0.000864 0.000860 0.000857 0.000853 0.000850 0.000846 0.000843 0.000839 0.000836 0.000832 0.000829 0.000825 0.000822 0.000819 0.000815 0.000812 0.000808 0.000805 0.000802 0.000799 0.000795 0.000792 0.000789 0.000785 0.000782 0.000779 0.000776 325.10 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.09 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 Page: 30 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002861 0.002850 0.002838 0.002826 0.002814 0.002803 0.002791 0.002780 0.002768 0.002757 0.002745 0.002734 0.002723 0.002712 0.002700 0.002689 0.002678 0.002667 0.002656 0.002645 0.002634 0.002623 0.002613 0.002602 0.002591 0.002580 0.002570 0.002559 0.002549 0.002538 0.002528 0.002517 0.002507 0.002497 0.002486 0.002476 0.002466 0.002456 0.002446 0.002435 0.002425 0.002415 0.002405 0.002396 0.002386 0.002376 0.002366 0.002356 0.002347 0.002337 0.002327 .-r--------------------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------------~ ... - -.. -.. ... ----... ---.... ... --... --- - ... 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0.000773 0.000769 0.000766 0.000763 0.000760 0.000757 0.000754 0.000751 0.000747 0.000744 0.000741 0.000738 0.000735 0.000732 0.000729 0.000726 o. 000723 0.000720 0.000717 0.000714 0.000711 0.000708 0.000705 0.000702 0.000700 0.000697 0.000694 0.000691 0.000688 0.000685 0.000682 0.000680 0.000677 0.000674 0.000671 0.000669 0.000666 0.000663 0.000660 0.000658 0.000655 0.000652 0.000649 0.000647 0.000644 0.000641 0.000639 0.000636 0.000634 0.000631 0.000628 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.08 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.07 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 Page: 31 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002318 0.002308 0.002299 0.002289 0.002280 0.002270 0.002261 0.002252 0.002242 0.002233 0.002224 0.002215 0.002205 0.002196 0.002187 0.002178 0.002169 0.002160 0.002151 0.002143 0.002134 0.002125 0. 002116 0.002107 0.002099 0.002090 0.002082 0.002073 0.002064 0.002056 0.002047 0.002039 0.002031 0.002022 0.002014 0.002006 0.001997 0.001989 0.001981 0.001973 0.001965 0.001956 0.001948 0.001940 0.001932 0.001924 0.001916 0.001909 0.001901 0.001893 0.001885 - .. r-------------------------------------------------------------------------------------------------------~ Date -Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------~ -• ----- • --------- -- --- -... - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0300 0301 0.000626 0.000623 0.000621 0.000618 0.000615 0.000613 0.000610 0.000608 0.000605 0.000603 0.000600 0.00055>8 0.00055>5 0.000593 0.000591 0.000588 0.000586 0.000583 0.000581 0.000578 0.000576 0.000574 0.000571 0.000569 0.000567 0.000564 0.000562 0.000560 0.000557 0.000555 0.000553 0.000551 0.000548 0.000546 0.000544 0.000541 0.000539 0.000537 0.000535 0.000533 0.000530 0.000528 0.000526 0.000524 0.000522 0.000520 0.000517 0.000515 0.000513 0.000511 0.000509 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.06 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 Page: 32 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001877 0.001869 0.001862 0.001854 0.001846 0.001839 0.001831 0.001824 0.001816 0.001809 0.001801 0.001794 0.001786 0.001779 0.001772 0.001764 0.001757 0.001750 0.001743 0.001735 0.001728 0.001721 0.001714 0.001707 0.001700 0.001693 0.001686 0.001679 0.001672 0.001665 0.001658 0.001652 0.001645 0.001638 0.001631 0.001624 0.001618 0.001611 0.001604 0.001598 0.001591 0.001585 0.001578 0.001572 0.001565 0.001559 0.001552 0.001546 0.001539 0.001533 0.001527 .. r-------------------------------------------------------------------------------------------------------------~ Date Time Reservoir -Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~----------------------------------------------------------------------------------------------~ .. --.. .... - -.... --- ... - - - - • 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0.000507 0.000505 0.000503 0.000501 0.000499 0.000496 0.000494 0.000492 0.000490 0.000488 0.000486 0.000484 0.000482 0.000480 0.000478 0.000476 0.000474 0.000472 0.000471 0.000469 0.000467 0.000465 0.000463 0.000461 0.000459 0.000457 0.000455 0.000453 0.000451 0.000450 0.000448 0.000446 0.000444 0.000442 0.000440 0.000439 0.000437 0.000435 0.000433 0.000431 0.000430 0.000428 0.000426 0.000424 0.000423 0.000421 0.000419 0.000417 0.000416 0.000414 0.000412 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.05 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 Page: 33 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001521 0.001514 0.001508 0.001502 0.001496 0.001489 0.001483 0.001477 0.001471 0.001465 0.001459 0.001453 0.001447 0.001441 0.001435 0.001429 0.001423 0.001417 0.001412 0.001406 0.001400 0.001394 0.001388 0.001383 0.001377 0.001371 0.001366 0.001360 0.001354 0.001349 0.001343 0.001338 0.001332 0.001327 0.001321 0.001316 0.001310 0.001305 0.001300 0.001294 0.001289 0.001284 0.001278 0.001273 0.001268 0.001263 0.001257 0.001252 0.001247 0.001242 0.001237 '""' •r------------------------------------------------------------------------------------------------, Date Time Reservoir Storage Reservoir Elevation Inflow (cfs) Outflow (cfs) (ac-ft) (ft) -~--------------------------------------------------------------------------------------~ • ... • ... • ---... --.... - - ... - -.. .... -.. •• 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0.000411 0.000409 0.000407 0.000405 0.000404 0.000402 0.000400 0.000399 0.000397 0.000396 0.000394 0.000392 0.000391 0.000389 0.000387 0.000386 0.000384 0.000383 0.000381 0.000380 0.000378 0.000376 0.000375 0.000373 0.000372 0.000370 0.000369 0.000367 0.000366 0.000364 0.000363 0.000361 0.000360 0.000358 0.000357 0.000355 0.000354 0.000352 0.000351 0.000349 0.000348 0.000347 0.000345 0.000344 0.000342 0.000341 0.000339 0.000338 0.000337 0.000335 0.000334 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.04 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 Page: 34 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001232 0.001227 0.001221 0.001216 0.001211 0.001206 0.001201 0.001196 0.001192 0.001187 0.001182 0.001177 0. 001172 0. 001167 0.001162 0.001158 0.001153 0.001148 0.001143 0. 001139 0.001134 0.001129 0.001125 0.001120 0.001115 0.001111 0.001106 0.001102 0.001097 0.001093 0.001088 0.001084 0.001079 0.001075 0.001070 0.001066 0.001061 0.001057 0.001053 0.001048 0.001044 0.001040 0.001035 0.001031 0.001027 0.001023 0.001018 0.001014 0.001010 0.001006 0.001002 •r-------------------------------------------------------------------------------------------------------~ ... .. .... - --.. -- --- -- ... -... -.. -- Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan Ol 02 Jan Ol 02 Jan Ol 02 Jan 01 02 Jan 01 02 Jan Ol 02 Jan Ol 02 Jan 01 02 Jan Ol Time 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 OSlO OSll 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 Reservoir Storage (ac-ft) 0.000333 0.000331 0.000330 0.000328 0.000327 0.000326 0.000324 0.000323 0.000322 0.000320 0.000319 0.000318 0.000316 0.000315 0.000314 0.000313 0.000311 0.000310 0.000309 0.000307 0.000306 0.000305 0.000304 0.000302 0.000301 0.000300 0.000299 0.000297 0.000296 0.000295 0.000294 0.000293 0.000291 0.000290 0.000289 0.000288 0.000287 0.000285 0.000284 0.000283 0.000282 0.000281 0.000280 0.000278 0.000277 0.000276 0.000275 0.000274 0.000273 0.000272 0.000270 Reservoir Elevation 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 Page: 35 Inflow (cfs) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Outflow (cfs) 0.000998 0.000993 0.000989 0.000985 0.000981 0.000977 0.000973 0.000969 0.000965 0.000961 0.000957 0.000953 0.000949 0.000945 0.000941 0.000938 0.000934 0.000930 0.000926 0.000922 0.000918 0.000915 0.000911 0.000907 0.000903 0.000900 0.000896 0.000892 0.000889 0.000885 0.000881 0.000878 0.000874 0.000870 0.000867 0.000863 0.000860 0.000856 0.000853 0.000849 0.000846 0.000842 0.000839 0.000835 0.000832 0.000828 0.000825 0.000821 0.000818 0.000815 0.000811 ""' .. ~---------------------------------------------------------------------------------------------------, Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) -~------------------------------------------------------------------------------------------------------~ .. ... • -------- - .... -.. ---- - -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0.000269 0.000268 0.000267 0.000266 0.000265 0.000264 0.000263 0.000262 0.000261 0.000260 0.000258 0.000257 0.000256 0.000255 0.000254 0.000253 0.000252 0.000251 0.000250 0.000249 0.000248 0.000247 0.000246 0.000245 0.000244 0.000243 0.000242 0.000241 0.000240 0.000239 0.000238 0.000237 0.000236 0.000235 0.000234 0.000233 0.000232 0.000231 0.000230 0.000229 0.000228 0.000227 0.000226 0.000225 0.000225 0.000224 0.000223 0.000222 0.000221 0.000220 0.000219 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.03 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 Page: 36 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000808 0.000805 0.000801 0.000798 0.000795 0.000791 0.000788 0.000785 0.000782 0.000779 0.000775 0.000772 0.000769 0.000766 0.000763 0.000759 0.000756 0.000753 0.000750 0.000747 0.000744 0.000741 0.000738 0.000735 0.000732 0.000729 0.000726 0.000723 0.000720 0. 000717 0.000714 0.000711 0.000708 0.000705 0.000702 0.000699 0.000696 0.000693 0.000691 0.000688 0.000685 0.000682 0.000679 0.000676 0.000674 0.000671 0.000668 0.000665 0.000663 0.000660 0.000657 Date Time .. Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) . ~--------------------------------------------------------------------------------------------------~ ... • • --- ---... ---..... - - - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0.000218 0.000217 0.000216 0.000215 0.000215 0.000214 0.000213 0.000212 0.000211 0.000210 0.000209 0.000208 0.000208 0.000207 0.000206 0.000205 0.000204 0.000203 0.000203 0.000202 0.000201 0.000200 0.000199 0.000198 0.000198 0.000197 0.000196 0.000195 0.000194 0.000194 0.000193 0.000192 0.000191 0.000190 0.000190 0.000189 0.000188 0.000187 0.000186 0.000186 0.000185 0.000184 0.000183 0.000183 0.000182 0.000181 0.000180 0.000180 0.000179 0.000178 0.000177 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 Page: 37 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000654 0.000652 0.000649 0.000646 0.000644 0.000641 0.000638 0.000636 0.000633 0.000631 0.000628 0.000625 0.000623 0.000620 0.000618 0.000615 0.000613 0.000610 0.000608 0.000605 0.000603 0.000600 0.000598 0.000595 0.000593 0.000590 0.000588 0.000585 0.000583 0.000581 0.000578 0.000576 0.000573 0.000571 0.000569 0.000566 0.000564 0.000562 0.000559 0.000557 0.000555 0.000552 0.000550 0.000548 0.000546 0.000543 0.000541 0.000539 0.000537 0.000535 0.000532 -Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. L-------------------------------------------------------------------------------------------------------~ - ... --- ..... -- -.. .. • .,.. - - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0800 0801 0802 0803 0804 0805 0806 0807 0.000177 0.000176 0.000175 0.000175 0.000174 0.000173 0.000172 0.000172 0.000171 0.000170 0.000170 0.000169 0.000168 0.000167 0.000167 0.000166 0.000165 0.000165 0.000164 0.000163 0.000163 0.000162 0.000161 0.000161 0.000160 0.000159 0.000159 0.000158 0.000157 0.000157 0.000156 0.000155 0.000155 0.000154 0.000154 0.000153 0.000152 0.000152 0.000151 0.000150 0.000150 0.000149 0.000149 0.000148 0.000147 0.000147 0.000146 0.000146 0.000145 0.000144 0.000144 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.02 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 38 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000530 0.000528 0.000526 0.000524 0.000521 0.000519 0.000517 0.000515 0.000513 0.000511 0.000509 0.000507 0.000504 0.000502 0.000500 0.000498 0.000496 0.000494 0.000492 0.000490 0.000488 0.000486 0.000484 0.000482 0.000480 0.000478 0.000476 0.000474 0.000472 0.000470 0.000468 0.000466 0.000464 0.000463 0.000461 0.000459 0.000457 0.000455 0.000453 0.000451 0.000449 0.000447 0.000446 0.000444 0.000442 0.000440 0.000438 0.000437 0.000435 0.000433 0.000431 - .,.-------------------------------------------------------------------------------------------------------~ Date Time ... Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~--------------------------------------------------------------------------------------------------~ - • ... -... • .. --- '"" -'--'- ... 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0.000143 0.000143 0.000142 0.000141 0.000141 0.000140 0.000140 0.000139 0.000138 0.000138 0.000137 0.000137 0.000136 0.000136 0.000135 0.000135 0.000134 0.000133 0.000133 0.000132 0.000132 0.000131 0.000131 0.000130 0.000130 0.000129 0.000129 0.000128 0.000127 0.000127 0.000126 0.000126 0.000125 0.000125 0.000124 0.000124 0.000123 0.000123 0.000122 0.000122 0.000121 0.000121 0.000120 0.000120 0.000119 0.000119 0.000118 0.000118 0.000117 0.000117 0.000116 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 39 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000429 0.000428 0.000426 0.000424 0.000422 0.000421 0.000419 0.000417 0.000415 0.000414 0.000412 0.000410 0.000409 0.000407 0.000405 0.000404 0.000402 0.000400 0.000399 0.000397 0.000395 0.000394 0.000392 0.000390 0.000389 0.000387 0.000386 0.000384 0.000382 0.000381 0.000379 0.000378 0.000376 0.000375 0.000373 0.000372 0.000370 0.000369 0.000367 0.000365 0.000364 0.000362 0.000361 0.000359 0.000358 0.000357 0.000355 0.000354 0.000352 0.000351 0.000349 . .----------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ~~------------------------------------------------------------------------------------------------------~ .... .. .... - --- - -- ... - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0859 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0.000116 0.000115 0.000115 0.000115 0.000114 0.000114 0.000113 0.000113 0.000112 0.000112 0.000111 0.000111 0.000110 0.000110 0.000109 0.000109 0.000109 0.000108 0.000108 0.000107 0.000107 0.000106 0.000106 0.000105 0.000105 0.000105 0.000104 0.000104 0.000103 0.000103 0.000102 0.000102 0.000102 0.000101 0.000101 0.000100 0.000100 0.000099 0.000099 0.000099 0.000098 0.000098 0.000097 0.000097 0.000097 0.000096 0.000096 0.000095 0.000095 0.000095 0.000094 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 40 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000348 0.000346 0.000345 0.000344 0.000342 0.000341 0.000339 0.000338 0.000336 0.000335 0.000334 0.000332 0.000331 0.000330 0.000328 0.000327 0.000326 0.000324 0.000323 0.000322 0.000320 0.000319 0.000318 0.000316 0.000315 0.000314 0.000312 0.000311 0.000310 0.000309 0.000307 0.000306 0.000305 0.000303 0.000302 0.000301 0.000300 0.000298 0.000297 0.000296 0.000295 0.000294 0.000292 0.000291 0.000290 0.000289 0.000288 0.000286 0.000285 0.000284 0.000283 -. .----------------------------------------------------------------------------------------------------, Date T:i.me Reservo:i.r Storage (ac-ft) Reservo:i.r Elevat:i.on (ft) Inflow (cfs) Outflow (cfs) .-~--------------------------------------------------------------------------------------------------------~ - .. ---- .... ... - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 0.000094 0.000094 0.000093 0.000093 0.000092 0.000092 0.000092 0.000091 0.000091 0.000090 0.000090 0.000090 0.000089 0.000089 0.000089 0.000088 0.000088 0.000088 0.000087 0.000087 0.000086 0.000086 0.000086 0.000085 0.000085 0.000085 0.000084 0.000084 0.000084 0.000083 0.000083 0.000083 0.000082 0.000082 0.000082 0.000081 0.000081 0.000081 0.000080 0.000080 0.000080 0.000079 0.000079 0.000079 0.000078 0.000078 0.000078 0.000077 0.000077 0.000077 0.000076 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 41 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000282 0.000281 0.000279 0.000278 0.000277 0.000276 0.000275 0.000274 0.000273 0.000271 0.000270 0.000269 0.000268 0.000267 0.000266 0.000265 0.000264 0.000263 0.000262 0.000260 0.000259 0.000258 0.000257 0.000256 0.000255 0.000254 0.000253 0.000252 0.000251 0.000250 0.000249 0.000248 0.000247 0.000246 0.000245 0.000244 0.000243 0.000242 0.000241 0.000240 0.000239 0.000238 0.000237 0.000236 0.000235 0.000234 0.000233 0.000232 0.000231 0.000230 0.000229 - -.r-------------------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --~------------------------------------------------------------------------------------------------------------------~ -- - .. --- ----• -... -- - ---- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 0.000076 0.000076 0.000075 0.000075 0.000075 0.000075 0.000074 0.000074 0.000074 0.000073 0.000073 0.000073 0.000072 0.000072 0.000072 0.000071 0.000071 0.000071 0.000071 0.000070 0.000070 0.000070 0.000069 0.000069 0.000069 0.000069 0.000068 0.000068 0.000068 0.000067 0.000067 0.000067 0.000067 0.000066 0.000066 0.000066 0.000066 0.000065 0.000065 0.000065 0.000064 0.000064 0.000064 0.000064 0.000063 0.000063 0.000063 0.000063 0.000062 0.000062 0.000062 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 42 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000228 0.000227 0.000226 0.000225 0.000224 0.000224 0.000223 0.000222 0.000221 0.000220 0.000219 0.000218 0.000217 0.000216 0.000215 0.000214 0.000214 0.000213 0.000212 0.000211 0.000210 0.000209 0.000208 0.000207 0.000207 0.000206 0.000205 0.000204 0.000203 0.000202 0.000202 0.000201 0.000200 0.000199 0.000198 0.000197 0.000197 0.000196 0.000195 0.000194 0.000193 0.000193 0.000192 0.000191 0.000190 0.000189 0.000189 0.000188 0.000187 0.000186 0.000186 -.. r---------------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --L---------------------------------------------------------------------------------------------------~ -... .,.,. -- • -... .., -----.... - - -- . ._ .... ... -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 0.000062 0.000061 0.000061 0.000061 0.000061 0.000060 0.000060 0.000060 0.000060 0.000059 0.000059 0.000059 0.000059 0.000058 0.000058 0.000058 0.000058 0.000057 0.000057 0.000057 0.000057 0.000056 0.000056 0.000056 0.000056 0.000056 0.000055 0.000055 0.000055 0.000055 0.000054 0.000054 0.000054 0.000054 0.000054 0.000053 0.000053 0.000053 0.000053 0.000052 0.000052 0.000052 0.000052 0.000052 0.000051 0.000051 0.000051 0.000051 0.000051 0.000050 0.000050 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 325.01 Page: 43 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000185 0.000184 0.000183 0.000183 0.000182 0.000181 0.000180 0.000180 0.000179 0.000178 0.000177 0.000177 0.000176 0.000175 0.000174 0.000174 0.000173 0.000172 0.000172 0.000171 0.000170 0.000169 0.000169 0.000168 0.000167 0.000167 0.000166 0.000165 0.000165 0.000164 0.000163 0.000163 0.000162 0.000161 0.000161 0.000160 0.000159 0.000159 0.000158 0.000157 0.000157 0.000156 0.000155 0.000155 0.000154 0.000153 0.000153 0.000152 0.000152 0.000151 0.000150 - .r-------------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) -~------------------------------------------------------------------------------------------~ ----- ----.... -.... ----- • -.. --- -.. -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 0.000050 0.000050 0.000049 0.000049 0.000049 0.000049 0.000049 0.000048 0.000048 0.000048 0.000048 0.000048 0.000047 0.000047 0.000047 0.000047 0.000047 0.000047 0.000046 0.000046 0.000046 0.000046 0.000046 0.000045 0.000045 0.000045 0.000045 0.000045 0.000044 0.000044 0.000044 0.000044 0.000044 0.000044 0.000043 0.000043 0.000043 0.000043 0.000043 0.000042 0.000042 0.000042 0.000042 0.000042 0.000042 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Paqe: 44 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000150 0.000149 0.000148 0.000148 0.000147 0.000147 0.000146 0.000145 0.000145 0.000144 0.000144 0.000143 0.000142 0.000142 0.000141 0.000141 0.000140 0.000140 0.000139 0.000138 0.000138 0.000137 0.000137 0.000136 0.000136 0.000135 0.000134 0.000134 0.000133 0.000133 0.000132 0.000132 0.000131 0.000131 0.000130 0.000130 0.000129 0.000128 0.000128 0.000127 0.000127 0.000126 0.000126 0.000125 0.000125 0.000124 0.000124 0.000123 0.000123 0.000122 0.000122 .. ,.------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Inflow Outflow Elevation (cfs) (cfs) (ft) .. ,~--------------------------------------------------------------------------------------------------~ -02 Jan 01 02 Jan 01 • 02 Jan 01 -- • -... --- - ----- ... --.. • - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1400 1401 1402 1403 1404 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000038 0.000038 0.000038 0.000038 0.000038 0.000038 0.000038 0.000037 0.000037 0.000037 0.000037 0.000037 0.000037 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000035 0.000035 0.000035 0.000035 0.000035 0.000035 0.000035 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000033 0.000033 0.000033 0.000033 0.000033 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 45 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000121 0.000121 0.000120 0.000120 0.000119 0.000119 0.000118 0.000118 0.000117 0.000117 0. 000116 0.000116 0.000115 0.000115 0.000114 0.000114 0.000113 0.000113 0.000113 0.000112 0. 000112 0.000111 0.000111 0.000110 0.000110 0.000109 0.000109 0.000108 0.000108 0.000108 0.000107 0.000107 0.000106 0.000106 0.000105 0.000105 0.000104 0.000104 0.000104 0.000103 0.000103 0.000102 0.000102 0.000102 0.000101 0.000101 0.000100 0.000100 0.000099 0.000099 0.000099 .. r---------------------------------------------------------------------------------------------------~ Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --~------------------------------------------------------------------------------------------------------~ - - -... ------ ---- - ------- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 0.000033 0.000033 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000031 0.000031 0.000031 0.000031 0.000031 0.000031 0.000031 0.000031 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000028 0.000028 0.000028 0.000028 0.000028 0.000028 0.000028 0.000028 0.000028 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 46 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000098 0.000098 0.000097 0.000097 0.000097 0.000096 0.000096 0.000095 0.000095 0.000095 0.000094 0.000094 0.000093 0.000093 0.000093 0.000092 0.000092 0.000092 0.000091 0.000091 0.000090 0.000090 0.000090 0.000089 0.000089 0.000089 0.000088 0.000088 0.000087 0.000087 0.000087 0.000086 0.000086 0.000086 0.000085 0.000085 0.000085 0.000084 0.000084 0.000084 0.000083 0.000083 0.000083 0.000082 0.000082 0.000082 0.000081 0.000081 0.000081 0.000080 0.000080 -.. .--------------------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. L-------------------------------------------------------------------------------------------------------~ - -.. -------- ... -- ·• • -... • - ---- - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1456 1457 1458 1459 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 0.000027 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 47 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000080 0.000079 0.000079 0.000079 0.000078 0.000078 0.000078 0.000077 0.000077 0.000077 0.000076 0.000076 0.000076 0.000075 0.000075 0.000075 0.000074 0.000074 0.000074 0.000074 0.000073 0.000073 0.000073 0.000072 0.000072 0.000072 0. 000071 0.000071 0.000071 0.000071 0.000070 0.000070 0.000070 0.000069 0.000069 0.000069 0.000069 0.000068 0.000068 0.000068 0.000067 0.000067 0.000067 0.000067 0.000066 0.000066 0.000066 0.000066 0.000065 0.000065 0.000065 •r---------------------------------------------------------------------------------------~ Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) .. ~------------------------------------------------------------------------------------------------------------------~ --... --- --.. - - - - - ·- --- --.. • - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000017 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 48 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000064 0.000064 0.000064 0.000064 0.000063 0.000063 0.000063 0.000063 0.000062 0.000062 0.000062 0.000062 0.000061 0.000061 0.000061 0.000061 0.000060 0.000060 0.000060 0.000060 0.000059 0.000059 0.000059 0.000059 0.000058 0.000058 0.000058 0.000058 0.000057 0.000057 0.000057 0.000057 0.000056 0.000056 0.000056 0.000056 0.000056 0.000055 0.000055 0.000055 0.000055 0.000054 0.000054 0.000054 0.000054 0.000054 0.000053 0.000053 0.000053 0.000053 0.000052 -•r------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) --~--------------------------------------------------------------------------------------------------~ .... • ... -- - -.. -• ----- -- ""' - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 49 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000052 0.000052 0.000052 0.000052 0.000051 0.000051 0.000051 0.000051 0.000050 0.000050 0.000050 0.000050 0.000050 0.000049 0.000049 0.000049 0.000049 0.000049 0.000048 0.000048 0.000048 0.000048 0.000048 0.000047 0.000047 0.000047 0.000047 0.000047 0.000046 0.000046 0.000046 0.000046 0.000046 0.000046 0.000045 0.000045 0.000045 0.000045 0.000045 0.000044 0.000044 0.000044 0.000044 0.000044 0.000044 0.000043 0.000043 0.000043 0.000043 0.000043 0.000042 - ,~~---------------------------------------------------------------------------------------------------, Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow Outflow (cfs) (cfs) .. L-------------------------------------------------------------------------------------------------------~ ... - ---.. - ---... --- -• ------- -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000011 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000042 0.000042 0.000042 0.000042 0.000042 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000038 0.000038 0.000038 0.000038 0.000038 0.000038 0.000037 0.000037 0.000037 0.000037 0.000037 0.000037 0.000037 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000035 0.000035 0.000035 0.000035 0.000035 0.000035 0.000035 0.000034 - .. ,r-------------------------------------------------------------------------------------------------------~ Date Time Reservoir Storage {ac-ft) Reservoir Elevation {ft) Inflow {cfs) OUtflow {cfs) --~------------------------------------------------------------------------------------------------------------------~ • • • ------- - - - - - -.. -.. -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 51 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000032 0.000031 0.000031 0.000031 0.000031 0.000031 0.000031 0.000031 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000030 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000028 0.000028 0.000028 0.000028 0.000028 0.000028 .• r-------------------------------------------------------------------------------------------------------------~ Date .... 02 Jan 01 02 Jan 01 IIIII 02 Jan 01 • • • • .. ---- - - - ---.. --... - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 2000 2001 Reservoir Storage (ac-ft) 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 Reservoir Elevation 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 52 Inflow (cfs) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Outflow (cfs) 0.000028 0.000028 0.000028 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000026 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023 - •r------------------------------------------------------------------------------------------------, Date Time -Reservoir Storage (ac-ft) Reservoir Inflow Outflow Elevation (cfs) (cfs) (ft) -L---------------------------------------------------------------------------------------------------------~ - - .. -.. -.. -- - - ·- -- .. -- ----- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 53 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 0.000022 o.oooon 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000021 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000019 0.000018 0.000018 0.000018 0.000018 ,,, ~;r-------------------------------------------------------------------------------------------------------------------~ Date Time ..• Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) ••L-------------------------------------------------------------------------------------------------------------------~ - - -- - - ---... -.... 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2053 2054 2055 2056 2057 2058 2059 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 54 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000017 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 0.000015 .... Date Time Reservoir Storage (ac-ft) Reservoir Inflow Outflow Elevation (cfs) (cfs) (ft) -~--------------------------------------------------------------------------------------------------~ - •• ... --.... -- - - - --.. - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 55 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000015 0.000015 0.000015 0.000015 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow Outflow (cfs) (cfs) .• L--------------------------------------------------------------------------------------------------------------------J - .... • ... .. ----·-- - .. - --- - -- 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 56 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0. 000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 -Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) OUtflow (cfs) .. ~------------------------------------------------------------------------------------------------------------------~ - ... - - - - - - -- - 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2400 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 325.00 Page: 57 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000010 0.000010 0.000010 0.000010 0.000010 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000009 0.000008 0.000008 0.000008 Extended Detention Basin Description Dry extended detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the storm water runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool. They can also be used to provide flood control by including additional flood detention storage. California Experience Caltrans constructed and monitored 5 extended detention basins in southern California with design drain times of 72 hours. Four of the basins were earthen, less costly and had substantially better load reduction because of infiltration that occurred, than the concrete basin. The Cal trans study reaffirmed the flexibility and performance of this conventional technology. The small headloss and few siting constraints suggest that these devices are one of the most applicable technologies for storm water treatment. Advantages • Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate. • Extended detention basins can provide substantial capture of sediment and the toxics fraction associated with particulates. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com TC-22 Design Considerations • Tributary Area • Area Required • Hydraulic Head Targeted Constituents 0 Sediment .. 0 Nutrients • 0 Trash • 0 Metals .. 0 Bacteria .. 0 Oil and Grease .. 0 Organics .. Legend (Removal Effectiveness) • Low • High .. Medium I ASQ 1 of 10 - - TC-22 Extended Detention Basin relationships resulting from the increase of impervious cover in a watershed. Limitations • Limitation of the diameter of the orifice may not allow use of extended detention in watersheds ofless than 5 acres (would require an orifice with a diameter ofless than 0.5 inches that would be prone to clogging). • Dry extended detention ponds have only moderate pollutant removal when compared to some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants. • Although wet ponds can increase property values, dry ponds can actually detract from the value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet structures. Design and Sizing Guidelines -• Capture volume determined by local requirements or sized to treat 85% of the annual runoff - - - - ... • -- - - volume. • Outlet designed to discharge the capture volume over a period of hours. • Length to width ratio of at least 1.5:1 where feasible. • Basin depths optimally range from 2 to 5 feet. • Include energy dissipation in the inlet design to reduce resuspension of accumulated sediment. • A maintenance ramp and perimeter access should be included in the design to facilitate access to the basin for maintenance activities and for vector surveillance and control. • Use a draw down time of 48 hours in most areas of California. Draw down times in excess of 48 hours may result in vector breeding, and should be used only after coordination with local vector control authorities. Draw down times ofless than 48 hours should be limited to BMP drainage areas with coarse soils that readily settle and to watersheds where warming may be determined to downstream fisheries. Construction/Inspection Considerations • Inspect facility after first large to storm to determine whether the desired residence time has been achieved . • When constructed with small tributary area, orifice sizing is critical and inspection should verify that flow through additional openings such as bolt holes does not occur . Performance One objective of stormwater management practices can be to reduce the flood hazard associated vdth large storm events by reducing the peak flow associated with these storms. Dry extended detention basins can easily be designed for flood control, and this is actually the primary purpose of most detention ponds. 2 of 10 California Stormwater BMP Handbook New Development and Redevelopment www .cabmphandbooks.com January 2003 Errata 5-06 --.. -- • .. • .. .. --- - - ---- -- -.. - -- Extended Detention Basin TC-22 Dry extended detention basins provide moderate pollutant removal, provided that the recommended design features are incorporated. Although they can be effective at removing some pollutants through settling, they are less effective at removing soluble pollutants because of the absence of a permanent pool. Several studies are available on the effectiveness of dry extended detention ponds including one recently concluded by Caltrans (2002) . The load reduction is greater than the concentration reduction because of the substantial infiltration that occurs. Although the infiltration of stormwater is clearly beneficial to surface receiving waters, there is the potential for groundwater contamination. Previous research on the effects of incidental infiltration on groundwater quality indicated that the risk of contamination is minimal. There were substantial differences in the amount of infiltration that were observed in the earthen basins during the Caltrans study. On average, approximately 40 percent of the runoff entering the unlined basins infiltrated and was not discharged. The percentage ranged from a high of about 6o percent to a low of only about 8 percent for the different facilities. Climatic conditions and local water table elevation are likely the principal causes of this difference. The least infiltration occurred at a site located on the coast where humidity is higher and the basin invert is within a few meters of sea level. Conversely, the most infiltration occurred at a facility located well inland in Los Angeles County where the climate is much warmer and the humidity is less, resulting in lower soil moisture content in the basin floor at the beginning of storms. Vegetated detention basins appear to have greater pollutant removal than concrete basins. In the Caltrans study, the concrete basin exported sediment and associated pollutants during a number of storms. Export was not as common in the earthen basins, where the vegetation appeared to help stabilize the retained sediment. Siting Criteria Dry extended detention ponds are among the most widely applicable stormwater management practices and are especially useful in retrofit situations where their low hydraulic head requirements allow them to be sited within the constraints of the existing storm drain system. In addition, many communities have detention basins designed for flood control. It is possible to modify these facilities to incorporate features that provide water quality treatment and/ or channel protection. Although dry extended detention ponds can be applied rather broadly, designers need to ensure that they are feasible at the site in question. This section provides basic guidelines for siting dry extended detention ponds. In general, dry extended detention ponds should be used on sites with a minimum area of 5 acres. With this size catchment area, the orifice size can be on the order of 0.5 inches. On smaller sites, it can be challenging to provide channel or water quality control because the orifice diameter at the outlet needed to control relatively small storms becomes very small and thus prone to clogging. In addition, it is generally more cost-effective to control larger drainage areas due to the economies of scale. Extended detention basins can be used with almost all soils and geology, with minor design adjustments for regions of rapidly percolating soils such as sand. In these areas, extended detention ponds may need an impermeable liner to prevent ground water contamination. January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 3 of 10 TC-22 Extended Detention Basin The base of the extended detention facility should not intersect the water table. A permanently wet bottom may become a mosquito breeding ground. Research in Southwest Florida (Santana et al., 1994) demonstrated that intermittently flooded systems, such as dry extended detention ponds, produce more mosquitoes than other pond systems, particularly when the facilities remained wet for more than 3 days following heavy rainfall. A study in Prince George's County, Maryland, found that stormwater management practices can increase stream temperatures (Galli, 1990). Overall, dry extended detention ponds increased temperature by about 5°F. In cold water streams, dry ponds should be designed to detain stormwater for a relatively short time (i.e., 24 hours) to minimize the amount of warming that occurs in the basin. Additional Design Guidelines In order to enhance the effectiveness of extended detention basins, the dimensions of the basin must be sized appropriately. Merely providing the required storage volume will not ensure maximum constituent removal. By effectively configuring the basin, the designer will create a long flow path, promote the establishment oflow velocities, and avoid having stagnant areas of the basin. To promote settling and to attain an appealing environment, the design ofthe basin should consider the length to width ratio, cross-sectional areas, basin slopes and pond configuration, and aesthetics (Young et al., 1996). Energy dissipation structures should be included for the basin inlet to prevent resuspension of accumulated sediment. The use of stilling basins for this purpose should be avoided because the standing water provides a breeding area for mosquitoes. Extended detention facilities should be sized to completely capture the water quality volume. A micropool is often recommended for inclusion in the design and one is shown in the schematic diagram. These small permanent pools greatly increase the potential for mosquito breeding and complicate maintenance activities; consequently, they are not recommended for use in California. A large aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W) where feasible. Basin depths optimally range from 2 to 5 feet . The facility's drawdown time should be regulated by an orifice or weir. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outlet design implemented by Caltrans in the facilities constructed in San Diego County used an outlet riser with orifices Figure 1 Example of Extended Detention Outlet Structure 4 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 -.. -.. • -- • --.. -------- -• ----- -.. Extended Detention Basin TC-22 sized to discharge the water quality volume, and the riser overflow height was set to the design storm elevation. A stainless steel screen was placed around the outlet riser to ensure that the orifices would not become clogged with debris. Sites either used a separate riser or broad crested weir for overflow of runoff for the 2S and greater year storms. A picture of a typical outlet is presented in Figure 1. The outflow structure should be sized to allow for complete draw down of the water quality volume in 72 hours. No more than so% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure can be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. Summary of Design Recommendations (1) Facility Sizing -The required water quality volume is determined by local regulations or the basin should be sized to capture and treat 85% of the annual runoff volume. See Section s.5.1 of the handbook for a discussion of volume-based design . (2) Basin Configuration -A high aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio offlowpath length to width from the inlet to the outlet should be at least LS:1 (L:W). The flowpath length is defined as the distance from the inlet to the outlet as measured at the surface. The width is defined as the mean width of the basin. Basin depths optimally range from 2 to 5 feet. The basin may include a sediment fore bay to provide the opportunity for larger particles to settle out. A micro pool should not be incorporated in the design because of vector concerns. For online facilities, the principal and emergency spillways must be sized to provide 1.0 foot of freeboard during the 25-year event and to safely pass the flow from 100-year storm. Pond Side Slopes-Side slopes of the pond should be 3:1 (H:V) or flatter for grass stabilized slopes. Slopes steeper than 3:1 (H:V) must be stabilized with an appropriate slope stabilization practice. (3) Basin Lining -Basins must be constructed to prevent possible contamination of groundwater below the facility. (4) (S) Basin Inlet -Energy dissipation is required at the basin inlet to reduce resuspension of accumulated sediment and to reduce the tendency for short-circuiting . Outflow Structure-The facility's drawdown time should be regulated by a gate valve or orifice plate. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outflow structure should be sized to allow for complete drawdown of the water quality volume in 72 hours. No more than so% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure should be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. This same valve also can be used to regulate the rate of discharge from the basin. January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 5 of 10 --- - ----- ----- - • .. ------ -- ... TC-22 Extended Detention Basin (6) (7) (8) The discharge through a control orifice is calculated from: Q = CA(2g(H-H0))o.s where: Q =discharge (ft3/s) C = orifice coefficient A = area of the orifice (ft2) g = gravitational constant (32.2) H = water surface elevation (ft) Ho= orifice elevation (ft) Recommended values for Care 0.66 for thin materials and o.8o when the material is thicker than the orifice diameter. This equation can be implemented in spreadsheet form with the pond stage/volume relationship to calculate drain time. To do this, use the initial height of the water above the orifice for the water quality volume. Calculate the discharge and assume that it remains constant for approximately 10 minutes. Based on that discharge, estimate the total discharge during that interval and the new elevation based on the stage volume relationship. Continue to iterate until H is approximately equal to Ho. When using multiple orifices the discharge from each is summed. Splitter Box -When the pond is designed as an offline facility, a splitter structure is used to isolate the water quality volume. The splitter box, or other flow diverting approach, should be designed to convey the 25-year storm event while providing at least 1.0 foot of freeboard along pond side slopes. Erosion Protection at the Outfall -For online facilities, special consideration should be given to the facility's outfall location. Flared pipe end sections that discharge at or near the stream invert are preferred. The channel immediately below the pond outfall should be modified to conform to natural dimensions, and lined with large stone riprap placed over filter cloth. Energy dissipation may be required to reduce flow velocities from the primary spillway to non-erosive velocities . Safety Considerations -Safety is provided either by fencing of the facility or by managing the contours of the pond to eliminate dropoffs and other hazards. Earthen side slopes should not exceed 3:1 (H:V) and should terminate on a flat safety bench area. Landscaping can be used to impede access to the facility. The primary spillway opening must not permit access by small children. Outfall pipes above 48 inches in diameter should be fenced. Maintenance Routine maintenance activity is often thought to consist mostly of sediment and trash and debris removal; however, these activities often constitute only a small fraction ofthe maintenance hours. During a recent study by Cal trans, 72 hours of maintenance was performed annually, but only a little over 7 hours was spent on sediment and trash removal. The largest recurring activity was vegetation management, routine mm-ving. The largest absolute number of hours was associated with vector control because of mosquito breeding that occurred in the stilling basins (example of standing water to be avoided) installed as energy dissipaters. In most cases, basic housekeeping practices such as removal of debris accumulations and vegetation 6 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 ... ---.. -... - • - -- .... .. - -- - - - --- -.. Extended Detention Basin TC-22 management to ensure that the basin dewaters completely in 48-72 hours is sufficient to prevent creating mosquito and other vector habitats. Consequently, maintenance costs should be estimated based primarily on the mowing frequency and the time required. Mowing should be done at least annually to avoid establishment of woody vegetation, but may need to be performed much more frequently if aesthetics are an important consideration . Typical activities and frequencies include: • Schedule semiannual inspection for the beginning and end of the wet season for standing water, slope stability, sediment accumulation, trash and debris, and presence of burrows . • Remove accumulated trash and debris in the basin and around the riser pipe during the semiannual inspections. The frequency of this activity may be altered to meet specific site conditions. • Trim vegetation at the beginning and end of the wet season and inspect monthly to prevent establishment of woody vegetation and for aesthetic and vector reasons. • Remove accumulated sediment and re-grade about every 10 years or when the accumulated sediment volume exceeds 10 percent of the basin volume. Inspect the basin each year for accumulated sediment volume. Cost Construction Cost The construction costs associated with extended detention basins vary considerably. One recent study evaluated the cost of all pond systems (Brown and Schueler, 1997). Adjusting for inflation, the cost of dry extended detention ponds can be estimated with the equation: where: C = Construction, design, and permitting cost, and V =Volume (ft3). Using this equation, typical construction costs are: $ 41,600 for a 1 acre-foot pond $ 239,000 for a 10 acre-foot pond $ 1,38o,ooo for a 100 acre-foot pond Interestingly, these costs are generally slightly higher than the predicted cost of wet ponds (according to Brown and Schueler, 1997) on a cost per total volume basis, which highlights the difficulty of developing reasonably accurate construction estimates. In addition, a typical facility constructed by Caltrans cost about $160,000 with a capture volume of only 0.3 ac-ft. An economic concern associated with dry ponds is that they might detract slightly from the value of adjacent properties. One study found that dry ponds can actually detract from the January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 7 of 10 --- -.. • ---- - --- -- .. TC-22 Extended Detention Basin perceived value of homes adjacent to a dry pond by between 3 and 10 percent (Emmerling- Dinovo, 1995). Maintenance Cost For ponds, the annual cost of routine maintenance is typically estimated at about 3 to 5 percent ofthe construction cost (EPA website). Alternatively, a community can estimate the cost of the maintenance activities outlined in the maintenance section. Table 1 presents the maintenance costs estimated by Caltrans based on their experience with five basins located in southern California. Again, it should be emphasized that the vast majority of hours are related to vegetation management (mowing). Table 1 Estimated Average Annual Maintenance Effort Activity Labor Hours Equipment& Cost Material ($) Inspections 4 7 183 Maintenance 49 126 2282 Vector Control 0 0 0 Administration 3 0 132 Materials 535 535 Total 56 $668 $3,132 References and Sources of Additional Information Brown, W., and T. Schueler. 1997. The Economics ofStormwater BMPs in the Mid-Atlantic Region. Prepared for Chesapeake Research Consortium. Edgewater, MD. Center for Watershed Protection. Ellicott City, MD. Denver Urban Drainage and Flood Control District. 1992. Urban Storm Drainage Criteria Manual-Volume 3: Best Management Practices. Denver, CO. Emmerling-Dinovo, C. 1995. Stormwater Detention Basins and Residential Locational Decisions. Water Resources Bulletin 31(3): 515-521 Galli, J. 1990. Thermal Impacts Associated with Urbanization and Stormwater Management Best Management Practices. Metropolitan Washington Council of Governments. Prepared for Maryland Department ofthe Environment, Baltimore, MD. GKY, 1989, Outlet Hydraulics of Extended Detention Facilities for the Northern Virginia Planning District Commission. MacRae, C. 1996. Experience from Morphological Research on Canadian Streams: Is Control of the Two-Year Frequency Runoff Event the Best Basis for Stream Channel Protection? In Effects of Watershed Development and Management on Aquatic Ecosystems. American Society of Civil Engineers. Edited by L. Roesner. Snowbird, UT. pp. 144-162. 8 of 10 California Stormwater BMP Handbook New Development and Redevelopment www .cabmphandbooks.com January 2003 Errata 5-06 ----... .... - -- -- • • ---- - "" - --.... --- Extended Detention Basin TC-22 Maryland Dept ofthe Environment, 2000, Maryland Stormwater Design Manual: Volumes 1 & 2, prepared by MDE and Center for Watershed Protection. http://www.mde.state.md.us/environment/wma/stormwatermanual/index.html Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side OfStormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39 . Santana, F., J. Wood, R. Parsons, and S. Chamberlain. 1994. Control of Mosquito Breeding in Permitted Stormwater Systems. Prepared for Southwest Florida Water Management District, Brooksville, FL. Schueler, T. 1997. Influence of Ground Water on Performance of Stormwater Ponds in Florida. Watershed Protection Techniques 2(4):525-528. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office ofWater. Washington, DC. Young, G.K., et al., 1996, Evaluation and Management of Highway Runoff Water Quality, Publication No. FHWA-PD-96-032, U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning. Information Resources Center for Watershed Protection (CWP), Environmental Quality Resources, and Loiederman Associates. 1997. Maryland Stormwater Design Manual. Draft. Prepared for Maryland Department of the Environment, Baltimore, MD. Center for Watershed Protection (CWP). 1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC. U.S. Environmental Protection Agency (USEPA). 1993. Guidance Specifying Management Measures for Sources ofNonpoint Pollution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC. January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www .cabmphandbook.com 9 of 10 , .. ---,----.. -.. --... -- '""' - - --... • -.... TC-22 Extended Detention Basin EMBANKMENT '\7100 !!jAR LEVEl RISER\ Schematic of an Extended Detention Basin (MOE, 2000) 10 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com PLAN VIEW PROFILE January 2003 Errata 5-06 • .. -.. -- - - -- -·- - - - --- - Muroya Storm Water Management Plan CHAPTER 8-OPERATIONS & MAINTENANCE PLAN 8.1 -Maintenance Requirements Maintenance of the site BMPs will be the responsibility of the Home Owners Association for Muroya. A maintenance plan will be developed and will include the following information: Specification of routine and non-routine maintenance activities to be performed A schedule for maintenance activities Name, qualifications, and contact information for the parties responsible for maintaining the BMPs For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. 8.1.1 StormFilter Treatment Units The StormFilter storm water treatment device should be inspected periodically to assure their condition to treat anticipated runoff. Maintenance of the proposed Storm Filter unit includes inspection and maintenance 4 times per year. At a minimum the unit should be inspected twice a year, once in the dry season, once in the wet. The primary factor controlling timing of maintenance for the Storm Filter is sedimentation. A properly functioning system will remove solids from water by trapping particulates in the porous structure of the filter media. The flow through the system will naturally decrease as more and more solids are trapped. Eventually the flow through the system will be low enough to require replacement of the cartridges. It may be possible to extend the lifespan of the cartridges by removing sediment from upstream trapping devices on an as-needed basis in order to prevent material from being re-suspended and discharged to the system. Site conditions greatly influence maintenance requirements. StormFilter units located in areas with erosion or active construction should be inspected and maintained more often than those in fully stabilized areas. The maintenance frequency may be adjusted as additional monitoring information becomes available during the inspection program. Areas that develop known problems should be inspected more frequently than areas that demonstrate no problems, particularly after large storms. Minor Maintenance To conduct an inspection and/or minor maintenance: DE:de H:IREPORTS\00421219\SWMP-03.doc W.O. 42·219 7/9/2009 Q·1Q AM ... ... - - - .... - - ... ... -.. ·- Muroya Storm Water Management Plan 1. If applicable, set up safety equipment to protect pedestrians from fall hazards due to open vault doors or when work is being done near walkways or roads . 2. Visually inspect the external condition of the unit and take notes concerning defects/problems. 3. Open the doors to the vault and allow the system to air out for 5-10 minutes. 4. Without entering the vault, inspect the inside of the unit, including components. 5. Take notes about the external and internal condition of the vault. Be sure to record the level of sediment build up on the floor of the vault, in the forebay, and on top of the cartridges. If flow is occurring, note the level of water and estimate the flow rate per drainage pipe. Record all observations. 6. Remove large loose debris and trash using a pole with a grapple or net on the end. 7. Close and fasten the door. 8. Remove safety equipment. 9. Make notes about the local drainage area relative to ongoing construction, erosion problems, or high loading of other materials to the system. 10. Finally, review the condition reports from the previous minor and major maintenance visits, and schedule cartridge replacement if needed. Major Maintenance Depending upon the configuration of the particular system, a worker may be required to enter the vault to perform some tasks. If vault entry is required, OSHA rules for confined space entry must be followed. Filter cartridge replacement should occur during dry weather. It may be necessary to plug the filter inlet pipe if base flows exist. Standing water present in the vault should be regarded as polluted and should be contained during this operation by temporarily capping the manifold connectors. Replacement cartridges will be delivered to the site. Information concerning how to obtain the replacement cartridges is available from Stormwater Management Inc. To conduct cartridge replacement and sediment removal maintenance: 1. If applicable, set up safety equipment to protect pedestrians from fall hazards due to open vault doors or when work is being done near walkways or roads. 2. Visually inspect the external condition of the unit and take notes concerning defects/problems . 3. Open the doors to the vault and allow the system to air out for 5-1 0 minutes. 4. Without entering the vault, inspect the inside of the unit, including components. 5. Take notes about the external and internal condition of the vault. Be sure to record the level of sediment build up on the floor of the vault, in the forebay, and on top of the cartridges. If flow is occurring, note the level of water and estimate the flow rate per drainage pipe. Record all observations. DE:de H:IREPORTS\D042\219\SWMP·03.doc .. .. ... ------ - ... .. ... .. .. Muroya Storm Water Management Plan 6. Remove large loose debris and trash using a pole with a grapple or net on the end. 7. Using a boom, crane or other device (dolly and ramp), offload the replacement cartridges (up to 150 lb each) and set aside. 8. Remove the used cartridges from the vault. 9. Remove deposited sediment from the floor of the vault, and if large amounts are present, from the forebay. The can usually be accomplished by shoveling the sediment into containers or a vactor truck may be required. 1 0. Once the sediments are removed, assess the condition of the vault and the condition of the manifold and connectors. The connectors are short sections in 2-inch schedule 40 PVC, or threaded schedule 80 PVC that should protrude above the floor of the vault. Replace any damaged connectors . 11. Using the boom, crane or tripod, lower and install the new cartridges. Once again, take care not to damage the connections. 12. Close and fasten the door. 13. Remove safety equipment. 14. Make notes about the local drainage area relative to ongoing construction, erosion problems, or high loading of other materials to the system. 15. Finally, dispose of the residual materials in accordance with applicable regulations. Make arrangements to return the used cartridges to Stormwater Management, Inc. 8.1.2 FloGard Curb Inlet Filter Units Maintenance of the FloGard curb inlet filter unit requires quarterly inspections during the dry season (June through September) and monthly during the wet season (October through May). The units need to be cleaned out quarterly to remove trash, debris and excess sediment. The filter media within the units requires replacing annually at which time the filter shall be disposed of in accordance with state and federal environmental protection requirements. The replacement filter is then placed into the existing bracket below the storm drain entrance. 8.1.3 Extended Detention Basins Typically, detention basin maintenance activities include unclogging of the outlet structure, vegetation removal, and excess sediment removal. Proper maintenance is required to insure optimum performance of the basin. General BMP inspections should check for structural integrity of the riser, debris and litter removal to prevent blockage of outlet orifices, etc . Maintenance of the water quality basin will be the responsibility of the HOA. For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials . Factors that affect the operational performance of a detention basin include mowing, control of pond vegetation, removal of accumulated sediments, removal of debris DE:de H:IREPORTS\00421219\SWMP·03.doc .. ... -• .. .... ----... ... -- - ·- - .. - - Muroya Storm Water Management Plan from all inflow and outflow structures, unclogging of orifice perforations, etc. Periodic inspections should be performed following each significant storm. The basin should be inspected at least twice a year to evaluate facility operation . Periodic inspections of the Detention Basin should be performed at regular intervals throughout the year. Additional inspections will be required after major rainfall events (defined per this Maintenance Plan as 24-hour rainfall events in excess of 1 inch). During the periodic and post-major event rainfall inspections, the inspector must identify any repairs and maintenance activities deemed necessary, including the removal of trash, debris, and sediment from the basin area. All riser orifices should be unclogged during the periodic and post-rainfall inspections. Sediment removed during periodic, post-major rainfall event, and annual maintenance can be placed in a sanitary landfill or used for composting activities. If no basin maintenance takes places for a period of longer than 1 year, then trapped pollutants may be deemed hazardous and special requirements may apply to disposal activities. In such a case, removals would require testing prior to disposal in a sanitary landfill . 8.2 -Schedule of Maintenance Activities 8.2.1 -FloGard Curb Inlet Filter Insert Target Maintenance Dates -June 15th and September 15th; Quarterly Annual Inspections June through September (Dry Season Inspections) Maintenance Activity-Regular inspection to ensure that filter unit is functioning properly, has not become clogged, and does not need to be replaced. Target Maintenance Dates -15th of each month; Monthly Inspections October through May (Rainy Season Inspections) Maintenance Activity -Regular inspection to ensure that filter unit is functioning properly, has not become clogged, and does not need to be replaced. Target Maintenance Date-March 15th, June 15th, September 151h, December 15th; Quarterly Annual Inspections January through December Maintenance Activity-Quarter annual cleanouts: cleanout filter and remove trash, debris, and excess sediment. DE:de H:IREPORTS\00421219\SWMP.03.doc w.o, 42·219 719/2009 9:19AM .. .. .. - - ... -- '"" llllf - Muroya Storm Water Management Plan Target Maintenance Dates -March 15th Maintenance Activity -Annual filter replacement: remove and replace filter. Dispose of used filter according to state and federal environmental protection guidelines . 8.2.2 -StormFilter Treatment Unit Target Maintenance Date -March 15th Maintenance Activity -Annual inspection and cleanout. Perform visual inspection. Clear vault unit with vactor truck. Remove existing filter media cartridges, replace with new filter cartridges. Target Maintenance Dates -15th of each month; October through May (Rainy Season Inspections) Maintenance Activity-Regular inspection to ensure that unit is functioning properly, has not become clogged, and does not need to be cleared out. 8.2.3 -Extended Detention Basin Target Maintenance Date-February 15 (Rainy Season Inspection) Maintenance Activity -Periodic inspection and removal of trash, debris and excess sediment, clear any clogged riser orifices, perform basin area repairs Target Maintenance Date -May 15 (Annual Inspection -Post-Rainy Season) Maintenance Activity-Annual Basin Inspection & Maintenance ... includes full silt removal, annual inspection by registered civil engineer, removal of trash and debris, clear any clogged riser orifices, perform basin area repairs Target Maintenance Date-September 15 (Pre-Rainy Season Inspection) Maintenance Activity -Periodic inspection and removal of trash, debris and excess sediment, clear any clogged riser orifices, perform basin area repairs Target Maintenance Date-December 15 (Rainy Season Inspection) Maintenance Activity -Periodic inspection and removal of trash, debris and excess sediment, clear any clogged riser orifices, perform basin area repairs Additional Maintenance-(Post-Major Rainfall Event) ... following major rainfall event (24-hour rainfall volume greater than 1.0 inch) unless next scheduled target maintenance date is within 1 month Maintenance Activity -Post-rainfall inspection and removal of trash, debris and excess sediment, clear any clogged riser orifices, perform basin area repairs. For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. DE:de H:IREPORTS\0042\219\SWMP-03.doc • ... -... --- .... ... -.. • ... .. --... -- • --- - .. - Muroya Storm Water Management Plan 8.3 -Annual Operations & Maintenance Costs The following costs are intended only to provide a magnitude of the costs involved in maintaining BMPs. Funding shall be provided by the Home Owners Association for the Muroya development. 8.3.1 -FloGard Curb Inlet Filter Inserts An approximate annual maintenance cost for the proposed FloGard Curb Inlet Filter Insert is outlined below. Costs assume a 3 man crew: -Periodic Inspection and Cleanout ($910 per unit x 3 units)= $2,730 -Annual Filter Replacement ($250 per unit x 3 unit)= $750 FloGard Subtotal = $3.480 8.3.2 -Stormfilter Treatment Units: -Periodic Inspection and Cleanout ($2,000 per unit x 1 unit)= $2,000 -Annual Filter Cartridge Replacement ($200 per unit x 15 units) = $3,000 StormFilter Subtotal = $5.000 8.3.3-Extended Detention Basin: Ultimate-condition silt removal activities shall begin once the silt level in the Water Quality Basin reaches 1 foot -Assume 1 cleanout per year. The associated storage volume associated with elevations 326 feet is 0.01 acre-feet (16 cubic yards) for the basin Annual Silt removal cost = 16 CY * $15/CY = $240 Annual Inspection by Engineer= $1 ,000 Periodic and Post-Major Rainfall Inspections and Trash/Debris/Sediment Cleanout: Assume (4) periodic and post-major rainfall inspections per year Assume (3) man crew Assume 4-hour cleanout time Assume $50 hourly rate Annual Periodic Inspection and Maintenance Cost = $2,400 Subtotal for WQ Basin Maintenance = $3.640 Approximate Total Annual Maintenance Costs= $12.120 TOTAL BMP MAINTENANCE COSTS (inc. 10% Contingency) = $13,332 DE:de H:\REPORTS\0042\219\SWMP-03.doc - -- ... -... ---.. • -.. ... • .. .. - ... -- .. Muroya Storm Water Management Plan Chapter 9-FISCAL RESOURCES 9.1-Agreements (Mechanisms to Assure Maintenance) There are multiple flow and volume-based BMP treatment units within the proposed Muroya development for storm water quality treatment. Funding for the water quality treatment devices will be provided by the Muroya HOA. The Master Homeowners Association for the Muroya development will be responsible to perform the maintenance activities and to ensure adequate funding. The City of Carlsbad Watershed Protection, Stormwater Management, and Discharge Control Ordinance require ongoing maintenance of BMPs to ensure the proper function and operation of these BMPs. Costs for this maintenance will be the responsibility of the Developer at the time of inception and by the contractor during construction of the development. The LID & Treatment Control BMPs will require maintenance activities as outlined in Chapters 8 of this report. DE:de H:\REPORTS\0042\219\SWMP-03.doc w n A?.?1Q 7/Q/?MQ t:HQ 4U -- I I I I I I I I CJ) y VICINITY MAP NO SCALE ' I I I ' I I ' I ' ;$ -----~ ~ I 1"-i~'QJ- 1 I I ,, I \\ i II I II , II 1 II I II ' II I II I II I II I II !! j II I ~r{ /1 \\ _ _L ___ _ LEGEND WATERSHED BOUNDARY FLOWLINE NODES ' THRASHER PLACE I I I N I L ~ I ·--, \ ' \ ------, \ \ P 2B3,1 p 297.4 I I ', j I ' -_lL p 2889 'l p 285.1 ----- -·--_, I I _I ---------- 1 I ) __ J ==== p 2811 50 r--E>'ISTIP/G CURB INLET TO REMAIN PER D WG 335-5 \ -r------~~~~n;s MUROYA OF ------------~- -------------·--------------------------------1 I \ ------------------ 1 1 I "-JII ·--·---~-----riANNING :0:9NHu:;~e:s:~~:t N c I W 1 ~ U=S=U=B==A=R=E=A===A=R=E=A============I;1.~0~0~A~CR~E~s~l~------~--~·r-__ ~---~~----~------------------~~~~--~~---------~------~~----------~~-~-·~~-~-~_~:_~~-~,,_~''5_~~·_""~----C-I_TY __ O_F_C_A_R~LS~B~A~D;,~C~AL~I~FO~R~N;IA~~~~~~ R•\ 03 21\ ~Hy d\321$H 02-DEV .d w glJJul-09-2009•10•18 Jl&A 7/912009 50 VICINITY MAP NO SCALE ~~< 0 50 100 SCALE 1'=50' ----' I ' I ---j g ' 5 I ~~IQf---__ _ ' ~ I ' ll I II ' II I II I -ll------ Q851h = 0.5 cfs. A= 4.7 ac. ------ ~ ~ 150 -- I --------------------, TIIRASHER PlACE I I I I ' I ' I II II 0 II I I I , ~----------- 1 I '. I . i I I I I I I I I I I --r-cEXIS11.NG 78:s.ro~~ DRAIN 50 ~ 0.8AC ~~ 0 50 ~ I SCALE 1'-50' ---------- I I I 100 ISO I I ------------ ~~--~~E~X~TE~N~D~E=D~D=E=T=E?NT~IO~N~~~~ -~ .-----------------------------~--------------. 9.7AC 085= 0 . .3 cfs LID & SITE DESIGN BMPs: A= 2. 4ac -MINIMIZE IMPERVIOUS FOdTPRINT EXISTING HEADWALL -CONSTRUCTING STREETS, SIDEWALKS, AND PARKING LOTS TO THE MINIMUM WIDTHS NECESSARY TO COMPLY WITH CITY OF CARLSBAD REQUIREMENTS WITHOUT COMPROMISING PUBLIC SAFETY. -INCORPORATING LANDSCAPED BUFFER AREAS BETWEEN SIDEWALKS AND STREETS. -MINIMIZING THE NUMBER OF RESIDENTIAL STREET CUL-DE-SACS AND INCORPORATE LANDSCAPED AREAS TO REDUCE THEIR IMPERVIOUS COVER. -REDUCE OVERALL LOT IMPERVIOUSNESS BY PROMOTING ALTERNATIVE DRIVEWAY SURFACES AND SHARED DRIVEWAY~ THAT CONNECT TWO OR MORE HOMES TOGETHER. -MAXIMIZE CANOPY INTERCEPTION & WATER CONSERVATION PRESERVE EXISTING NATIVE TRESS AND SHRUBS. -PLANT ADDITIONAL NATIVE OR DROUGHT TOLERANT TREES AND LARGE SHRI;JBS IN PLACE OF NON- DROUGHT TOLERANT EXOTICS. -MINIMIZE DIRECTLY CONNECTED IMPERVIOUS AREAS -DRAINING ROOFTOPS INTO ADJACENT LANDSCAPING PRIOR TO'DISCHARGING TO THE STORM DRAIN. DRAINING ROADS, SIDEWALKS AND IMPERVIOUS TRAILS INTO ADJACENT I,.ANDSCAPING. -SLOPE & CHANNEL PROTECTION I HILLSIDE LANDSCAPING -USE OF NATURAL DRAINAGE SYSTEMS TO THE MAXIMUM EXTENT PRACTICABLE. -STABILIZE PERMANENT CHANNEL CROSSINGS. ----r-\ I ----~-~--------~::::;:g;@:::::g;:::::;g;~-=:55 ~ - - --~~""'!!!$:-'!Q>~----- 1 T I I ~ :::;::----)(~ --T PLANTING NATIVE OR DROUGHT TOLERANT VEGETATION ON SLOPES. / II ( DRAIN HI:ADWALL TO BE: Rt:MO\£D WJTH F-TYP£ CATCH BASIN ~--II __.--'\1'-= = = = ~--------~ ~~~~-----R~o~~ ~- \ \ SOURCE CONTROL BMPs: MANUFACTURED SLOPES SHALL BE LANDSCAPED WITH SUITABLE GROUND COVER OR INSTALLED WITH AN EROSION CONTROL SYSTEM. -URBAN HOUSEKEEPING HOMEOWNERS SHOULD BE EDUCATED AS TO THE PROPER USE, STORAGE, AND DISPOSAL OF THESE POTENTIAL STORMWATER CONTAMINANTS -STORM WATER SYSTEMS STENCILING AND SIGNAGE EX/SliNG SDG&E: POWER \ I POLES TO REMAIN -INTEGRATED PEST MANAGEMENT KEEPING PESTS OUT OF BUILDINGS AND LANDSCAPING USING BARRIERS, SCREENS AND CAUL.J<ING. PHYSICAL PEST ELIMINATION TECHNIQUES SUCH AS WEEDING, , SQUASHING, TRAPPING, WASHING OR PRUNING OUT PESTS. RELY ON NATURAL ENEMIES TO EAT PESTS. -TRASH STORAGE AREAS ALL TRASH WILL BE STORED WITHIN EACH INDIVIDUAL SINGLE FAMILY RESIDENCE. AS SUCH, THERE WILL BE NO TRASH STORAGE AREAS ONSITE. \ \ I \ \ I \ \ I \ \ I \ -EFFICIENT IRRIGATION PRACTICES ALL HOME OWNERS' ASSOCIATION (HOA) MAINTAINED LANDSCAPED AREAS WILL INCLUDE RAIN SHUTOFF DEVICES TO PREVENT IRRIGATION DURING AND AFTER PRECIPITATION. FLOW REDUCERS AND SHUTOFF VALVES TRIGGERED BY PRESSURE DROP WILL BE USED TO CONTROL WATER LOSS FROM BROKEN SPRINKLER HEADS OR LINES. I I I _/ ~~ ---% EXISnNG l' J ;::::~ ~ . -=-:_--_JJ_ --~ <== TYPE HEADWALL I -.:::::: ~ ------.-:--=':--=-c=-::--c:=:---'----------'----------'-------, ---------LEGEND I 1 ---~~~~-.;- WATERSHED BOUNDARY FLOWLINE -···-··· STORMFIL TER UNITS FLOGARD INLET UNITS IMPERVIOUS SURF ACE AREA '-'-,1·=·1~·· ""-'---' PER~OUS SURFACE AREA LID PAVER LOCATION Elasmo 35' RCP STORM I ._ -r DI/NN PER DWG. 322-2A / I 1 I I I p 253.8 I I I p 259.9 I I I p 2550 I I 1 I I p I I I I PREPARED BY: HUNSAKER & ASSOCIATES SAN DIEGO. INC. ENQNEIJUNG San Diego. Ca 92tr1 SURVEYING PH(85B)S58-4500· FX:{858)558-141t -ENERGY DISSIPATERS, SUCH AS RIPRAP, AT THE OUTLETS OF NEW STORM DRAINS, CULVERTS, ' CONDUITS, OR CHANNELS THAT ENTER UNLINED CHANNELS. TREATMENT CONTROL BMPs: -STORMFILTER TREATMENT UNIT (MP-40) -FLO-GARD FILTER INSERT (MP-52) -EXTENDED DETENTION BASIN (TC-22) ' ' BMP LOCATION EXHIBIT FOR: MUROYA CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 "' Oi I "' v "" 6 "'