Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CDP 03-12; PARK DR KELLY RESIDENCE; HYDROLOGY AND HYDRAULIC REPORT; 2003-10-08
•• •-· ·= HYDROLOGY AND HYDRAULIC REPORT PARCEL 1 ·OF PM 12773 ·, APN 206-192-34 CARLSBAD, CA PREP-MffiD FOR: PARK DRIVE SFR DATE: 10/8/03 REVISED: PE: 975 (NORTH) PREPARED BY: PASCO ENGINEERING, INC. 535 NORTH HWY. 101, SUITE A SOLANA BEACH, CA. 92075 WAYNE A. PASCO, ~CE29577 .< •• • . TABLE OF CONTENTS -A INTRODUCTION ............................................................. : ..................... 1 B. DISSCUSION ....................................................................................... I c·. CONCLUSION ............. _ ................................... , ...................................... l D. 10 YEAR STORM RUNOFF CALCULATIONS .... : .................................... 2-8 E. 100 YEAR STORM RUNOFF CALCULATIONS .......................................... 9-15 F. DITCH CAPACITY CALCULATIONS .................................................. 16-18 . G. PROPOSED DRIVEWAY GUTTER CAPACITY .................................... 19-21 H. HYDROLOGY WORKSHEETS AND DATA ........................................ 22-31 I. HYDROLOGY NODE MAP .............................................................. .32-36 • • A. INTllODUCTION The purpose of this report is to provide 100. year storm hydrology calculations for a ·proposed single family res1dence. Also included are capacity calculations for a drainage d:itch, storm drain and proposed driveway .curb: The 0.78 acre site is physically located at Park Drive irt Carlsbad, CA It is geographically l<;>cated at 33°08'51" North Latitude and 117°19'31" West Longitude. Based on the hydrologic data contained withjn this report, a system can be constructed to adequately intercept, contain and convey Q100 to the discharge points noted on the }Jydro1ogy Map. · B. DISCUSSION Runoff res"9lting from 1 O year frequency storms using 6 hour and 24 hour precipitation amounts under post development and pre development conditions are compared. The requirement is. to have all on-site ,post development runoff -be equal to or less than existing on-site runoff. Existing runoff to node 1, {see existing hydrology node map) is 1.55 cfs. Proposed runoff to the same node (see node 2 post development node map) is 1.48 cfs. Proposed runoff is conveyed on-site through brow ditches and storm drains until it reaches the property boundary. A longer time of cot1centration for post development runoff keeps drainage, going off site, below pre development conditions. Runoff going off-site is conveyed along a proposed concrete driveway that reaches Park Drive. Because the driveway is off-site, it picks up more drainage. as it reaches Park Drive. Based on the uses Soil Maps the hydrologic soil classification for the site was · detennined to be type ''D". The. methodology used herein to determine Q100 is rational method. The program utilized is by Advanced Engineering Software (AES). Please refer to Section E for Q100 calculations. Section F and Gcontain hydraulic calculations and the Hydrology Node Map can be found in the back of the report. C. CONCLUSION Basecl o:n the cal~ulations contained in this report it is the professional opinion of Pasco Engineering that a system can be constru~ed to adequately intercept, contain and convey Q100 to the discharge points ·P.Oted on the Hydr~low Map. . , .. • • D. 10 YEAR STORM HYDROLOGY CALCULATIONS •• ****************************************************************************' RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: ·sAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2001,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2002 License ID 1452 Anaiysis prepared by: Pasco Engineering, Inc. 535 N. Hwy. 101, Suite A Solana Beach, CA 92075 Ph. 858-259-8212 Fax: S58-259-4812 ************************** DESCRIPTION OF STUDY************************** * 10 YEAR RUNOFF CALCULATION * * APN 206-192-34 * * PRE DEVELOP$NT CALCU~TtON * ************************************************************************** FILE NAME: 975N.DAT TIME/DATE OF STUDY: 15:50 10/09/2003 ----------·---------· J ---·-------~-·---·----------------------------------USER SPECIFIED HYDROLOGY-AND HYDRAULIC MODEL INFORMATION: ---------------.-----. ---------,-----------,--------------------------------1985 SAN DIEGO MANUAL -GRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 .SPECIFIED.PERCENT OF GRADIENTS(DECIMA.I.) TO USE FOR FRICTION SLOPE 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-Vl\LU]j:S USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET~CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-·/ OUT-/PARK.,. HEIGHT WIDTH LIP HIKE FACTOR NO.. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ==== ·. == ,========= ?==== ====== ===== ======= 1 30.0 20.0 0.018/0.0a.8/0.020 o. 67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FtOW-DEPTH:CONSTRAINTS: 1. Relative Flow-Depth= 0.00 FEET as (Maximum Allowal;>le .Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Const;raint = 6.0 (FT*FT/S) *SJ;ZE PIPE WI.TH A FLOW CAPACITY GREATER TH?lli . OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * -· • *****************************~********************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE= 21 -----:----------------------------------------------------------~----------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =========='='_================·==================================·=========== USER-SPECIFIED RUNOFF COEFFICIENT= .,5-500 S.C.S. CURVE NUMBER (AMC II) = $8 INITIAL SUBAREA F~OW-LENGTH = 40.00 UPSTREAM ELEVATION= . 166.00 DOWNSTREAM ELEVATION = 164. 00 · ELEVATION DIFFERENCE = 2·.00· URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 3. 662 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.748 SUBAR~A RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.14 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NOPE 1.00 IS CODE= 53 --------------------------------------------------------------------------- >>>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< =========· =-==============· =· ========== "==-' =============================== ELEVATION DATA: UPS'.j.'REAM(FEET) = 164.00 DOWNSTREAM(FEET) = 62.00 CHANNEL LENGTH THRU SUBAR;EA(FEET) = 363 .. 00 CHANNEL SLOPE= 0.2810 SLOPE ADJUSTMENT CURVE USED: EFFECTIVE SLOPE= .1902 (PER LACFOD/-RCFC&WCD HYDROLOGY MANUAL) NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBARE;A(CFS) = . 0 .• 14 FLOW VELOC:ITY(FEET/SEC) =;, 2.44 ("PER· LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.48 T9(MIN.) = 8.48 . LONGEST FLOWPATH FROM NODE 3.00 TO NODE 1.00 = 403.00 FEET. **************************************************************************** FLOW PROCESS FROM NOPE 1.10 TO NODE 1.00 IS CODE= 81 -----·-------,-------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINL~NE PEAK FLOW<<<<< "========= ·==.================,===================·========================= lOQ YEAR RAINFJU,L INTENSITY (INCH/HOUR). = 2. 999 USER-SPECIFIED RUNOFF COEFFI<;:IENT = .4500 S".C.$. CURVE NUMBER (AMC II) = 87 SUB~EA AREA (.ACRES) -1. 0 4 SUBA:REA RUNOFF (CFS) TOTAL ME;l.(ACRES) = 1.li TOTA;L RUNOFF(CFS) = Te (MIN) = 8 . 4.8 1.40 1.55 ===~============:========·===' ==-=====' ===================================== . END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE ( CFS-) - 1.11 TC(MIN.) = 1.55 8.48 ======= ·.===== ·= '====================-== ·=================================== .===============================·==.=-=== ,======-===-=====--================ ·END OF RATIO~AL METHOD ANALYSIS •• • *****************~********************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2001,1985,1981 HYDROLOGY MANUAL .(c) Copyright 1982-2-002 Advanc:ed Engineering Software (aes) Ver. I.SA Release Dat•: 01/01/2002 License ID 1452 Analysis prepared by: Pasco Engineering, Inc. 535 N. Hwy. io1, Suite A Solana Beach-, CA 92075 Ph. 858-259-8212 Fax~ 858-259-4812 **.**.********************** DESCRIPTION OF STUDY ************************** * 10 YEAR RUNQFF CALCULATION * * APN 206-192-34 * * POST DEVELOPMENT CALCULATION * ************************************************************************** FILE NAME: 975N.DAT TIME/DATE OF STUDY: 16:34 10/09/2003 -------------------·--------------------------------------------------------USER SPECIFIED HYDROLoGr AND HYDRAULIC MODEL INFORMATION: 198.5 SAN DIEGO MANUAL CRITERIA USER SPECIFIED ST.ORM EVENT (YEAR) = 100. 00 ·6-HOUR DURATION PRECIPITATION (INCHES) = 1. 600 SPECIFI·ED MINIMUM PIPE s::i:zE,(INGH)-= 3 •. oo SP~CIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.85 SAN DIEGO EYDROLOGY MANUAL ·"C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFI:NED STREET-SECTIONS :tOR COUPLED·PIPE]i'LOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFAL-L: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN~ / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (ET) . (FT) . SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ====:;:: == . =======·' === .. ====== 1 30.0 20.0 0.67 2.00 0.0313 0.167 0.0150 G+iOBAI,. STREET fLOW-DEPTH CONSTE.AINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constrai~t = 6.0 (FT*FT/S) *S-IZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* • • ** * * * * *'* * * *·* * * * * * * * * *** * *·* * ** ** * **** * * * * * * * * * * * * * ** * * * * * * * * * ** * ** * * * * * * * * * * * FLQW P~OCESS FROM NQD~ 6. 00 TO NODE. -5.00 IS CODE= 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ' C --• --0 = • --===--==-• = • ---= A -==-------===-================================- USER-SPECIFIED RUNOFF COEFFICIENT= .5500 S.C.S. CURVE NUMBER (AMC ,II) = 88 INITIAL SUBAREA FLOW-LENGTH= 40.00 UP.STREAM ELEVATION=, 166.00 DOWNSTREAM ELEVATION= .164.00 ELEVAT.ION DIFFERENCE = 2. 00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.662 *CAUTION: SUBAREA S~OPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION.ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.748 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.14 ' * ** ** *** * *'** * * * ** **** * * * ** ** * ***** *** ** * * * *** * * * * * * *** * * ** * * * *** * ** * ***** * * * FL'ow PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE= 53 ----------------------·----------------------------------------------------->>>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------u----------------------------.=----===-===--==--=================== ELEVATION DATA: UPSTREAM(FEET) = 164.00 DOWNSTREAM(FEET) = 79.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 380.00. CHANNEL SLOPE= 0.2237 SLOPE ADJUSTMENT CURVE USED: EFFECTIVE SLOPE= .1712. (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.14 FLOW VELOCITY(FEET/SEC) = 2.32 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.73 Tc(MIN.) = 8.73 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 4.00 = 420.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4,10 TO NODE 4.00 IS CODE= 81 ---------------------------------------,--,--------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< = .=='==========-==,======-========== ·=====.========================·======= . 100 Y~ RAINFALL INTENSITY(INCH/HOUR) = 2.942 USER-SPECIFIED RUNOFF COEFFICIENT= .4500 S.C.S. CURVE NUMBER (AMC II)= 87 SUBAREA AREA(ACR~S) = 0.30 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA·(ACRES) = 0 . 3 7 TOT~ RUNOFF (CFS) = 0 • 5 4 TC(MIN) = 8.73 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 3.00 IS CODE= 31 ---------------------------------,------------------------------------------ >>>>>COMPUTE PIPE~FLOW TRAVEL TI~ THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NO~-PRESSURE FLOW)<<<<< ==========-====·======, -==================================================== ELEVATION DATA: UPSTREAM(FEET) = 79.00 DOWNSTREAM(FEET) FLOW :CENGTH(FEE'r) = 71.00 MANNING'S N = 0.009 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCI'l'Y(.FEET/SEC.) = 11.05 ESTIMATED PIPE DIAMETER (.INCH) = 6 •. 00 NUMBER OF PIPES= PIPE-FLOW(CFS) = 0.54 PIPE T~VEL TIME.(MIN. )' = ~ONGEST FLQWPATH FROM NOPE 0.11 Tc (MIN.) = 9,QO TO .NODE 8.84 3.00 = 69.00 1 491. 00 FEET. • • ' **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE= 51 --------------------------------~-------------------------------------------. >>>>>COMPUTE TRAPEZOIDAL CHANNEL ¥LOW<<<<< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)«<« ----,--,-------------------------------.----. -------------------------------ELEVATION DATA: UPSTF,EAM(FEET)·= 69.00 DOWNSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA.(FEET) = 50. 00 CHANNEL SLOPE = CHANNEL BASE (FEET) = 5. 00 rrz-ir FACTOR = . 5. 000 MANNING'S FACTOR = 0. 0·15 MAXIMUM .DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.871 USER-SPECIFIED RUNOFF COEFFICIENT = . 55'00 S.C.S. CURVE NUMBER (AMC II)= 88 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUB.AREA BASE.D ON VELOCl;TY(F·EET/SEC.) AVERAGE FLOW DEPTH(FEET) = 0. 04 TRAVEL TIME (MIN.) = o. 67 3.66 0.23 64.00 0.1000 Tc(MIN.) = 9.07 SUB~EA AREA (ACRES) = TOTAL ~EA(ACRES) = 0.16 0.53 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) = 0.25 0.79 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 3.72 LONGEST FLOWPATH FROM NODE . 6 •. 06 TO NODK 2.00 = 541.00 FEET. ********************~******************************************************* FLOW PROCESS FROM NODE 2.20 TG NODE 2.00 IS CODE= 81 ----.-----~----------------------------------------------------------------->>>>>ADDITION OF SUBAREA TO MAINLINE PEAK.FLOW<<<<< ====-====-=========== ·==-===== . ===--=. ==== -=-=====-================-===== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.871 USER~~PECIFIBD RUNOFF CO~FFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II)= 87 SUBAREA AREA (ACRES:) 0. 4 7 SUBAREA RUNOFF ( CFS) = 0. 61 TOTAL AREA(ACRES) 1.00 TO+AL RUNOFF(CFS) = 1.40 TC(MIN) = 9.07 .., -• •• ' ************~********~**************************~************************** FLOW P~OCESS FROM NqDE 2.00 TO NODE 1.00 IS CODE= 61 ·------~ ---------------------·-----' ----------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUB.AREA<<<<< >>>>>(STANDARD CURB SECTION USED}<<<<< ========-=================-================================================= UPSTREAM ELEVATION(FEET} = 6.4.00 DOWNSTREAM ELEVATION(FEET} = STREET LENGTH(FEET) = ,250.00 CURB HEIGHT(INCHES}' 6.0 STREET HALFWIDTH(FEE_T) = 14.00 DISTANCE FROM CROWN TO CROSSFALL 'GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 O:u;I'SIDE STREET CROSSFALL(DECIMAL} = ·0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 S';['REET PARKWAY CROSSFALL(DECIMAL) = 0.050 36.00 Matmi~g's FRICTION FACTOR for Streetflow S~ction(curb-to-curb) = 0.0130 Manning's FRICTI-ON FACTOR for Back-of-Walk Flow Section = o .• 0200 **TRAVEL TIME COMPUTED USING ESTIMATED. FLOW(CFS) STREETFLOW MOPEL RESULTS USING ~STIMATED FLOW: STREET fLOW DEPTH(FEET) = 0.20 HALFSTREET FµOOD WIDTH(FEET) = 3.55 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.2.0 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.22 STREET FLOW TRAVEL TIME (MIN. ) = 0. 67 Tc (MIN. ) = 100 YEAR RAINFALL INTENSITY(-INCH/HOUR) = 2.742 USER-SPECIFIED RUNOFF COEFFICIENT= .5500 $ • C .. S . CURVE NUMBER (AMC I :t) = 8 8 9.74 SUBAREA AREA(ACRES) = 0.15 TOTAL N,IBA(ACRES} = 1.i5 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) - END OF .SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20' HALFSTREET FLOOD WIDTH(FEET} = 3.82 1.51 0.23 1. 63 FLOW VE:LOCITY(FEET/SEC.) .= 6.16 DEPTH*VELOCITY(FT*FT/SEC.) = 1.25 LONGEST FLOWPATH FROM NODE 6 .. 00 TO NODE 1. 00 = 791. 00 FEET. ======= .' ======== -===== -== . ===== -============== ' ' ============================ END OF' STUDY SUMMARY: TOTAL AREA (ACRES} - PEAK FLOW RATE (CFS) = t.15 TC(MIN.) = 1.63 9.74 =====-====. ======.=========== .-============================================= ===='=======================-=======================================·======= ENP OF RATIONAL METHOD ANALYSIS • • E. 100 YEAR STORM RUNOFF CALCULATIONS • • *~****************~*********~**********~******fa***************************** RATIONAL METHOD HYDROLOGY COMPVTER PROGRAM PACKAGE Referenc~: SAN DIEGO COUNTY F.LOOD· CONTROL DISTRICT 2001,1985,1981 HYDROLOGY ;MANUAL (c) Copyright 1982-2002 Advance-ct Engineering Software (aes) Ver. 1. SA Release Date.: 01/01/2002 License ID 1452 Analysis_prepared by: \ Pasco Engineering, Inc. 535 N. Hwy. 10.1, Suite A Solana Beach, CA 92075 Ph. 858-259-8~12 Fai: 8~8-259-4812 ************************** DESCRIPTION OF STUDY************************** * 100 YEAR RUNOFF CALCULATION * * APN 206~1.92-34 * * PRE DEVELOPMENT CALCULATION * ************************************************************************** FILE NAME: 975N.DAT TIME/PATE OF ST~DY: 08:10 10/10/2003 ---------------~-----------.-------------~--------------------------------- USER SPECIFIED HYDROLOGY Am) HYDRAULIC MOPEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(Y:EAR) = 100.00 t,'f. 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPEC;t:FIED M:j:NIMUM PIPE SIZE.(.INCH) = 3 .. 00 ~.:t SPECIFIED PERCENT OF GRADIENTS(DECIMAL), TO USE FOR FRICTION SLOPE SAN DIE)GO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 0.85 . *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFtow AND STREETFLOW MODEL* HALF-CROWN TO STREET-C:ROSSFA:LL: CURB. GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (.FT) -(FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ===== ====== ===== ======= 1 ,30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth~ 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velod.ty) Constraint= 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* .-, • • **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE= 21 ---------------------------------------·. ----------------------------------- >>>>>RATIONAL METHOD INITIAL SVBAREA ~ALYSIS<<<<< _______ , __________ -_____________________ , ----------------------------------- USER-SPECIFIED RUNOFF COEFFICIENT = . 55.00 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUB.AREA FLOW-LENGTH= 40.00 UPSTREAM ELEVATION= l6p.00 DOWNSTREAM ELEVATION = i64 .-00 ELEVATION DIFFERENCE= 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.662 ·*CAUTrQN:· SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED.. ,TIME OF CONCENTRATION ASSUMED AS 6-MINUTES ,;J.00 YEAR RAINFALL INTENSI'I'Y(INCH/H;OUR) = 5.~56 SUBAREA RUNOFF(CFS) = 0.23 TOTALAREA(ACRES) = 0.07 '.j:'OTAL Rl,JNOFF(CFS) = 0.23 ******~********************************************************************* FLOW PROCESS, F~OM NODE Z.00 TO NODE 1.00 IS CODE= 53 ----------------------------------------·----------------------------------->>>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ============· ·=================,=====-========.======-==========-=====-===-- ELEVATION DATA: UPSTR&PiM(FJ!;ET) = 16.4. 00 DOWNSTREAM(FEET) = 62. 00 CHANNEL LENGTH 'I'HRU SUBAREA(FEET') = 363.00 CHANNEL SLOPE = 0.2810 SLOPE ADJUSTMENT CURVE, USED: EFFECTIVE SLOPE= .1902 (PER LAGFCD/RCFC&WCD HYDROLOGY MANUAL) ·NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCI';J?Y ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS} = 0.23 FLOW VELOCITY(FEET/SEC) = 2.44 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) = 8.48 LONGEST· FLOWPATH FROM NODE . 3.00 TO NODE 1.0Q = 403.00 FEET. ******;*********************************~*****~****~************************ ·FLOW PROCESS FROM NODE 1.10 TO NODE · 1.00 IS CODE= 81 ---------·--------------------------~------------------------------------»»>ADDITION OF SUB.AREA TO MAINLINE PEAK FLOW««·< ======================-=====-==-================================= -========= 100 Y:EAR RAINFALL INTENSITY(INCH/HQUR} = 4.686 USER-SPECIFIED RUNOFF COEFFICIENT 9 .4500 S.C.S. CUR~ NUMBER (:AMC II} = 87 ~UBAREA AREA(ACRES) 1.04 SUBAREA RUNOFF(CFS) = 2.19 TOTAL AREA (ACRES-) = 1. 11 -TOTAL RUNOFF (CFS) = 2 • 4 2 TC (MIN.) = 8. 48 ,---,-=------------------------------' -. ------------------------------------ END OF STUDY SUMMARY: TOTAL ~EA (ACRES) ·PEAK FLOW RATE (CFS) = 1.11 TC(MIN.) = 2.42 8.48 =============· ==·=============, ===============-=======c===================== ---. -----~ ------------------------------------------------------------------END OF RATIONAL METHOD ANALYSIS II • • **************************************************************************** FLOW PROCESS FROM NODE. 6.00 Td NODE 5.00 IS CODE= 21: ----------------------------------------------------------------·--------->>>>>RATIONAL METHOD INITIAL SUBAREA.ANALYSIS<<<<< .· ======-================= -== .. -== ,=, '=== -===-=====================-========== USER-SPECIFIED RUNOFF COEFFICIENT= .5500 S.C.S. CURVE NUMBER ·(AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 40. 00 UPSTR~ E;LEV'ATION = .166.00 DOWNSTREAM ELEVATION= 164.00 ELEVATION DIFFERENCE= 2.00 URBAN SUBAREA. OVER~D TIME OF FLOW(MINUTES) 3.662 *CAUTIQN: SUBARE}\. SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. · TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 Y~ RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.07 TOT.AL RUNOFF(CFS) = 0.23 * *"*** * * * * * * * * * * * * *·* * * *·* * * * * * *"** * * *:* * *"* * ** ** * * ** ** * * * * * * * ** * * * * * ** * * ** * * ** * * * FLOW PROCES~ rRoM NODE 5.00 ?:'0 NODE 4.00 IS CODE= 53 >>>>>c;:OMPUTE NATURAL MOUN.TAIN CHANNEL FLOW«<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ====·================================-================='==================== ELEVATION DATA: UP.STREAM(FEET) = 164.00 DOWNSTREAM(FEET) = 79.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 380.00 CHANNEL SLOPE= 0.2237 SLOPE ADJUSTMENT CURVE USED: EFFECTIVE SLO~E = .1712 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) NOTE: CHANNEL FLOW QF 1. CFS WAS' ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.23 FLOW VELOCITY(FEET/-SEt) = 2.32 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL ·TIME (MIN.) = 2. 73. Tc(MIN.) = 8. 73 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 4.00 = 420.00 FEET. * * **"* * ** * * * * * * ** **·* ** ***·* ** *** ** * * * **** * * * * * *** * * * * *·* ** * * **** * * ** ** ** ** * * ** * FLOW PRQCESS FROM NODE 4.10 TO NODE 4.00 IS CODE= 81 -.----------------------------------------------------------------------->>>>>ADDITION OF SUBAREA TO,MAINLI~E PEAK FLOW<<<<< =======================·============="====================================== 100 YEAR RAINFA;LL INTENSITY(INCH/HOUR) = ~.597 ·USER-~PECIFIED RUNOFF COEFFICIENT = ..45·00 S.C.S. CURVE NUMBER (AMC II)= 87 SUBAREA AREA(ACRES) = 0.30· SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.37 TOTAL RUNOFF(CFS) = 0.85 TC (MIN) == 8. 73 *********~******•*********************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 3.00 rs CODE= 31 -----------·-. ---------------------·-·-------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-,ESTIMATE:D PIP,ESI.ZE (•NO:[lf-PRESSURE FLOW)<<<<< ==================== ·====================== .~ == . ========================== ELEVATION DATA: -UPSTR~(FEET') = 79.00 DOWNSTREAM(FEET) = '69.00 FLOW LENGTH(FEET) = 71.00 MANNING''S N = 0.009 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.49 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 0.85 ;FIPE TRAVEL TIME (MI!'.l" .• ) = 0 .. 09 LONGEST FLOWPATH FROM NODE Tc(MIN.) = 6;90 TO NODE 8.83 3.00 = 1 491. 00 FEET. • •• **~************************************************************************* FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS.CODE= 51 ---------------------------------------------------------------------------->>>>>CO~PUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >»»TRAVELTIME THRU SU~AREA (EX~STING ELEMENT)«<«. =========-===·.=======· ==' == .====·=========-·================================ Jj:LEVATION DATA: UPSTREAM(FEET) .= 69.00 DOWNSTREAM(FEET) CHANNEL·LENGTH THRU SUBAREA(FEET) = 50.00 CHANNEL SLOPE CHANNEL BASE(F·EET) = 5.·oo "Z" FACTOR= 5.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4. 498 USER-SPECIFIED RUNOFF COEFFI-CIENT = • 5500 S.C.S. CURVE NUMBER (AMC II.) = 88 TRAVEL TI?1E COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUB.AREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH (FEET) = 0. 05 TRAVEL T.IME (MIN.) 1.04 4.09 0.20 64.00 0.1000 Tc1MIN.) = 9.03 SUB.AREA AREA(ACRES) = TOTAL AREA·(ACRES) = 0.16 0.53 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) 0.40 1.24 END OF SUB.AREA CHANNEL FLOW HYDRAULICS: DEPTH(i'EET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 4.18 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 2.00 = 541.00 FEET. ******************~********************************************************* FLOW PROCESS FROM NODE 2.20 TO NODE 2.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ='================-========== ·-====·'===========================·============ . 10'0 YEJ,\R RAINFALL INTENSITY (INCH/HOUR) = 4. 498 USER-SPECIFIED RUNOFF COEFFICIENT= .4500 S.C.S .. CURVE NUMBER (AMC II') = 87 SUB.AREA AREA (ACRES) = . 0 • 4 7 SUBAREA RUNOFF (CFS) '.l'OTAL AREA(ACRES) .1. 00 TOTAL RUNOFF (CFS) = TC(MIN) = 9.03 14 0.95 2.19 -· • ***************~*****•~*********************~******************************* FLOW PROCESS FROM NODE 2,00 TO NODE 1.00 IS CODE= 61 . . ' --------------------------------------------------------------------------· >>>>>COMPUTE S-TREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTI6N USED)<<<<< .. · -------.---------------·--------,-------,-----------------------------=-----UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = STREET LENGTH(FEET) = 250 .. 00 CURB HEIGHT (INCHES) = 6. 0 STREET HALFWIDTH(FEET) = 14.-00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 9.00 INSIDE STREET CROSSFALL,(DECIMAL) 0 .020 -OUTSIDE. STREET CROSSFALL (DECIMAL) 0. 020 SPECIFIEP NUMBER OF HALFSTREET$ CPIRRYING RUNOFF= 1 STREET PARKWAY CROSS FALL (DECIMAL) 0 .. 0.5 0 36.00 Manning's FRICTION FACTOR for streetflow Section(curb-to-curb) = 0.0130 Manning's FRICTION FACTOR for Back-;•of-Walk Flow Section O. 0200 **TRAVEL TIME COMPUTED USING ESTI~TED FLOW(CFS) = 2.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 . HALFSTREET FLOOD WIDTH(FEET) = 4.97 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.49 PRODUC',1' OF DEPTH&VELOCITY (FT*FT/SEC.) = 1. 46 STREET FLOW TRAVEL TIME (MIN. ) = 0. 64 Tc (MIN. ) = 9. 67 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4. 303 USER-SPECIFIED' RUNOFF COEFFICIENT= .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.36 TOTAL AREA(ACRES) = 1.15 . PEAK FLOW RATE(CFS) 2.55 END OF SUBAREA STREET FLOW HYDRAULICS: DEPT.H(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 5.18 FLOW VELOCITY(FEET/SEC.) = 6.60 DEPTH*VELOCITY(FT*FT/SEC.) 1.52 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 1.00 = 791.00 FEET. ------------------------------------------------.---------------------------END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) = 1. 15 TC (MIN. ) = 2.55 9.67 =============' ====. =====.================================================== =======-===================-======·======== '==·============================= END OF RATIONAL METHOD ANALYSIS • • F. DITCH CAPACITY CALCULATIONS I~ Pr'ojec:,t Description Project File . Worksheet Flow Element. Method Solve For Input Oata Mannings Coefficient· Channel Slope Left Side Slope Right Side Slope Oischarge Depth . . Flow Area Wetted Perimeter Top Width Critical Oepth, Critical Slope Velocity Velocity Head $pacific Energy Froude Number Flow is supercritical.. •-~ CONCRETE ·sROW DITCH Worksheet for Triangular Channel c:\haestad\academic\fmw\975n.fni2. CONCRETE BROW DITCH Triangular Channel Manning's Formula Channel Depth . . 0.013 1.0000 % 2.000000 H : V . 2.000000 H : V 0.95 cfs ·o.37 0.28 1.66 ft 1.48 ft 0.43 ft 0.004785 ft/ft 3.45 ft/s 0.19 ft . .0.56 ft 1.41 Academic Edition • 10/10/03 08:44:34AM Haestad Methods, Inc. 37 Brookside Road . Waterbury, CT06708 (203} 755-1666 FlowMaster v5.17 Page 1 of 1 ProjectD!!C"Ption Project.File Worksheet Flow Element Method Solve For Section Pata Mannings Coefficient Channel Slope Depth Left Side Slope Right $ide Slope Discharge • CONCRETE BROW DITCH Cross Section for Triangular Channel c:\haestad\academic\fmw\975n.fm2 · CONCRETE BROW DITCH Triangular Channel Manning's Formula . Channel Depth ·0.013 1.0000 % 0.37 ft 2.000000 H : V 2.000000 H : V 0.95 cfs Academic Edition • 10/10/03 08:45:06AM Haestad Methods, Irie. 37 Brookside Road \/Vaterbury, CT 06708 (203) 755-1666 I a_ 1 . v~ H 1 NTS FlowMaster '15.17 Page 1 of 1 • • G. PROPOSED DRIVEWAY GUTTER CAPACITY CALCULATION • • DRIVEWAY GUiTER CAPACITY CALCULATION Workshe~t for Irregular Channel Project Description c:\haestad\academic\fmw\975n.fm2 Project Fne · Worksheet Flow Element Methog DRIVEWAY GUTTER CAPACITY CALCULATION Irregular Channel Manning's Formula Solve For Water Elevation 'Input Data Channel Slope 2.8000 % Elevation range: 0.00 ft to 0.78 ft. Station (ft)-Elevation (ft) 0.00 0.50 0.17 0.00 13.83 0.28 14.00 0.78 Discharge 2.55 cfs R.es1,1lf,s Wtd. Mann'ings Coefficient Water Surface Elevation FlowAiea Wetted Pe.rimeter Top Width Height Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is supercritical. 0.015 0.18 ft 0.78 te 8.88 ft 8.75 ft 0.18 ft 0:23 ft 0.006857 ft/ft 3.27 ft/s 0.17 ft 0.34 ft 1.93 Start Station 0.00 Academic Edition End Station 14.00 10/10/03 09:06:38AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.015 FlowMaster v5.17 Page 1 of 1 • • DRIVEWAY GUTTER CAPACITY CALCULATION Cross Section for Irregular Channel Project Description Project.File Worksheet Flow Element Method Solve For Section Data · c:\haestad\academic\fmw\975n.fm2 · DRIVEWAY GUTTER CAPACITY CALCULATION Irregular Channel Manning's Formula Water Elevation Wtd. Mannings Coefficient Channel Slope 0.015 2.8000% 0.18 ft 2.55 cf$ Water Surface Elevation Discharge 08 0 .. 7 0. 6 0. -- g C: I ·o. 4 jjj 0. 3 .. - (~ ,, . .0.2 .. ~ ~ ·f0/10/03 09:06:44AM 0.1 0.0 0.0 ....,. .., ~ i..----- ------~ ~· ~ 2.0 4.0 6.0 8.0 10.0 Station (ft} Academic Edition Haestad Methods, Inc. 37 Brookside Road ·Waterbury, CT 06708 (203) 755-1666 12.0 14.0 FlowMaster v5.17 Page 1 of 1 • •• H. HYDROLOGY WORKSHEETS AND DATA ~· t IO O ;::: ....... rr--',-..,,l~~~t-...l-+-lf..+:1-l--1-1-l-W-.J.l..l..w.! I ~11-H-14+H-14-l+l-!-l-l-i~I-I-I-Ul J i I .,:·-~ 1·~T77 . I . ,· t-t-f.::H'-d:-t~kP'k-P'-ld++H+H-+1++-1-HHf+Hl-llH-l-l+l+~I-UUl~I.UWJW-I I I· i ! .,, EQUATION 7.44 P6 o-0.645 Intensity (in/hr) . 1 6-Hour Precipitation (in) · i, · .Ouralion lmi11\ , · •· ' ' II I 11·()~ ... ~4.11' ~ L i . ! h 2-0H-t--r'kt-t-ti-t--R--t-t-t+-H,A-!r.H+l+Hl-H.lt!HfH~~*l-~,H#j~~-k~,..L...µ..µ:__-4-:_iw...:.t. ::i:. J:, O> -l+R"t,,Hf++f11li,llffij,M,IJ.:P,,~~~~~~_;,~-4'-l,';..;".l,. :i: ,.! Q ·J.f ~. W. l:t E m ti c 1.0 H:--!-H-++-HH-+-+-t-:HI-HI-H-P!-~+H-H+I-HH#H++-1- ~0.9 · . 7" .• ·-·: -• ·-... ··~ ;-... -5.5 ~ 1 I : "" l! .. H-!+tf+:Hd+H+H++H+m!cc-l-+~~.;.+h-~~~J.i:1 >,.1...1 5.0 g ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' "" ·-""' ' H-!+ti+H-ttttfl-+t+H+tHH--i:o...i:--l-i--::~++~.:.J... ........ ~~ ... 4.5 ·~ 1-1: , 4.0 ii 0,6t-H--t+++-t-+++-t+H-IH-ll+t+tl+H-Htlltttl+tHr-H-H'iol:H+Hl+WHHlf¾Hl-lc--++-~~-4+:-...J-h~.L--:~ 3.5 .!!!. 0.5J-H-t--t-++-H-++-t-t-H-IH-lrH-+H+H-ttliHffi4ttl4+H-i+H+H~H#lfHf!+...-i-~.....-,....:.;;.:;,4:,...,_,;,4_;-i~~ 3.0 0.4 I I I I I I I I I I I I I I I I I 11 I I I 1111111111111111 11 I 11111 IJ 1111111111 0.3 . _. _ .. .. . . -. .. ----.. --... . ..... ... .. . .. . -. ~ --' 0.2 .... .. ······ 0.1 .: . 5 6 7 8 !I 10 15 20 30 40 50 1 2 3 4 S 6 Minutes Hours Duration 1.0 Intensity-Duration Design Chart-Template HnzMaVCounlv Hv1ho111l(1l1111v Man11al/lnl Our Oe11lnn Chnrt FHO Directions for Application: ( 1) F rqm precipila\ion maps determine G hr and 24 hr amol!nls .for the selected·rrequency. These maps are included-in the County Hydrology Manual (10. ~-and 100 yr maps inducled .in Um Oosinn and Prm:rnl11rn Manual) . (2) Adjust Ci hr.prm:i1jilaiitlll (ii ntlccssmy) so that ii is within the range or 45% to 65% of the 24 hr precipitation {not applic:apln lo On1>n1I). (3) 'Plot G hr procipilatior.1 011 lhu 1iuhl i,itlu ol lhc: d1,11t. ( 4 ). Dr~w a line throu~Jh the point parnllul to lhe plotted lines. (5). This line is the intensily-duratio11 curve for the location being analyzed . Application Form: (a) Selected frequency -~9-. .. _ year . ll · '.2Q I\, (b) P6 = ~_;? ___ ..., m., P24 = ~..!-_ 'P--= · 24 (c) Adjusted p6<2> = ---'---·· in. 53 o/~121 ,. ___ ..... -· (d). lx = ____ .... min. (e} I= _______ in./tir. Note: This chart replaces the lnlensity-Dur~lion-Frequency . curves used since 1965. P6 I 1 • 1.5 2 2.5 3 3.5 4 4.5 5 5.5 G Du_rallon. I . I I _.I I I . I I I I I 5 21i:l :t.05 &.2/ 6,5!1 7.90 !1.22 10.!,4 11.0li 13.\i 1•1•19 \!,UI 7 2.12 :3_1e·-1.2,1·s.ao 6.36:142· 8.48 9.M 1060·11.sG'.12.n 10 1.68 '.;! 53° 3.:17; 4.21: 5.0!,: 5.90.' 6.14: 7.50 8 42. 9 27 : ID. I I 15 130 105 259'3.2-t-3.89 4.5-1 5.10 584 6.49 7.1:1 1./R 20 1-.oli '1.a2 2.1s.2.69·3:,:,':1.n· 431 · ,i.us s:iy s93 · s,1r, 25 0.93 •l.40° 1.87' 2.33 2.oo':121· 3 73 'ot.:!O -1.t\7 ° 5.1:1. !,GO 30 0.83 11.24° 1.66: 2.07 2.49';,90· 3.3;> 3.73 4.lf,. ,t !iG • .J.98 40 06!} '.I 03 1.38' 1.72 20,.2.-11 2.76. :1.10 ;J45 :179 4 t:t 50 0.60 :0.90. 1.10· 1.49 1111'209· 239.· 2.69. ;~.90 328 3.58 so o.53 io.oo'.1.00· 133 t.59 1 an· 212 2.39 2ns • 202 :1.1a 90 0.-11 :o.n,·002 1.02 1.23· 1.43' 1.63 · 10,1 2.0,1 · .?.:?r, ~..it, 120 0.3<1 :0 51 0.68 0.85 I 02'. I 19' I 36. l.!i3 . 1./0 1 87 2.04 150 0.29 io.-t4°0.!\!) 0 73°0.08! 1·03' I Ill. 1.3:? I •17. 16:! 116 180 0.26 :0_39'. 0 !'.2 0.65 0.18· 0 91 • I 04. I Ill I :11 I ~4 ' 1 !1/ 2<10 0.22 : 0.33'. 0.,t3 O.S4 • 0.65' 0.76: 0.87 ' 0.98 1.08 I. 19 I.JU 300 0.19 'o.2e:0_35 0.41·0.su·o.oo· 0.15 · o.or. o.!l4 1.03 1 1:1 a&o 0.11 :o.wio.33 o..i2'or,o·o.w: 067 o.n, o.M · o.o-.i I oo F. I _c;. tJ _R 1,: 3-1 --·--·-·---------.. --···-··--·--·----·--· • .... , .. ) ,') I lNTENSITY,.DUR/\TION DESIGN CHART 0\ I 5 C "1 Murch 1982 · ·.Directions for Application: ·· 1) From precipitation r.1aps d·etennJne 6 hr. and 24 hr. amounts for the selected frequency. These maps are. printed in the Co~nty Hydrolog Manual (10, 50 and 100 yr. maps included fn t Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if n~cessary) so that it i.s wtthin the range of 45% to 65% of the 24 hr. precipitation.· -(Hot applicable to Desert) I 3) Plot 6 hr. precipitation on the rinr.t side of the chart. ;l I 4) Draw a line through the point parallel to the plotted lines. n .... -0 .... .6.0 f;!' 5.5 ~ 5.0 g 1-sl This line ts the intensity-duration curve for the location being analyzed. IOo yr. * -4.0, p6:;: t;;/ ,5 %* P24 2) Adjusted *P6= ______ in. ' ' ' " lllllllll.11-J-t-t-t-1 3) > ' .., tc = _____ min. ~.2 ..1--J--H-+HH+:1-l+t+t-H-t!-HtttttttHiitiiittttttftttttiHtttfflifffc:t:t:ttt:t:t:t:tttttttr~ f 4) 3 -I -< -< 1-t-l I I I I I I I H+H+HH -I -1-;-1-1-H-l··t-t-~- -1-I -1-1-l•~t-t-t-1-1-t-1•1-t-1 t"l•t• ·-H-t-H-1-H-1-1·,_._.· ~-1 Flj]~FHTf l{l:llll rn] ,~~lllllf ffffi]IB 1HmltllllllEf lTEIJil8f HJUill ltlllll 10 15 20 Minutes 30 40 50 1 n .... Ji .I -·- 2 3 4 5 -6 Hours I :::-____ in/hr. *Not Applicable to Desert Region ... \, APPENDIX XI IV-A-14 • •·· ' l ) COVNTY OF SAN -DIEGO DEPARTMENT OF SANITATION i FLOOD CONTROL 10-YEAR 6-l·IOUR PllECIPITATl(l'~J 4.5' t 1 -~·~ 30• . \ , ~ 15' I I I , J-1- 33° 45 I +---------r--r~ • --·--·---··------· --·--. ·-· Prep,fr~d by U.S. -DEPARTMENT OF COMMERCE NATIONAL OCEANIC ASD 1.1·~:0Sl'IIERIC AD~IINISTRA"l'JON SPECIAL STUDIES DRASClf, OFFICE OF l(\'DROLOOY, NATIONAL WEATHER SERVICE ) .... .... I > I -l:" 30 1 ~~-t--t-==p!~~-+--l-_l_ 118° lf 5 I · 30 1 151 117° lJS I I 16• 30• 15' • 'I l'"t•• • ) . COUNTY OF SAN t>lEGO • . I 10-vEAR 24-HouR PRECIPITATION . rzo..,. I SOPLUVIALS br 10-VEAR 24-HOUR DEPARTMENT OF SANITATIOM S. FLOOD CONTROL 45 I =:p,-, 1'.]:\(:I\'~ 3 0 I J ::,.. \--~ •J ' \. '2 15'-.---~--+----' 33° 45'+----t---,i--~. ·1 . . . Prep, red by • U.S. pEPARTME i OF COMMERCE NATIO~AL OCEhNIC AND hT ,IOSPIIF.RIC ADMl~ISTRATION •P<CIAL SToo,es n•ANCII, O•FICO OF I DROLOOY, NAT>ON~L WEATH•R •••vt•• l .... .... I ~--0 30'-t-----1-----+-----,-----1----1 118° 45' 301 151 1170 1,5' 30 1 ·, ., ·t·· • . , , .. , .. • 15' 116° t. ' COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL . ··, 45 i , "'l""'.~ ,_ v:,:• • I < • ·1.: ! 30 I I I --l \ ,~ I !· I ._, ) 15 1 ; I I f1~ 't / ~ ,I 33° 100-VEA-R 6-HOUR 45' I I I __ I, {.,i; rn,i-11 I · :,1 ----··--····-· .... _. ·---. PHpnf!d by U.S. DEPARTMENJl' OF COMMERCE NATIONAL OCEANIC AND /\T~OSPIIERIC J\Dl:JNISTRATION !SPECIAL STUDIES BRANCH, OFFICE OF HiDROLOOY, NATIONAL WEATHER IERVJCE 301 ; I I I -I 118 1 45 1 30' 15' · 117° '•5' 30 1 I l"J'" • . ' , .. , .. • 15 1 I 16° ( COUNTY OF SAN DIEGO DEPARTMENT Of SANITATION· S. FLOOD C.ONTROL 45• .30' 1),5 I I ( . I . . 100-VEAR 24-HOllrt PllECIPITATION ,..20...,,1sor-rnv1ALS O.r too -VEAR· 24-noun .SIT/; _33° ~ \V ,-,- L15 I -r---------, Prcrof·d by U.S. DEPARTMENll' OF COMMERCE NATIONAL OCliA:-1c ANO AT'.-IOSl'IIERIC AO~lltU$0rRATION SPJ;:CJAL STUDIES UIU:-ICII, Ol'l'ICI:: Ol'~t·' Ol~OLOGY, NA'rtONI\L ll'EATllll:R SEJWlCE . . 30• . H H I ) .. I 11 fl" /1 !j I JO' 1S 1 117• JI !i I JOI •· I ( . ' .... , .. • • ,~· ., 16" I 1••1•• I;; -~ 8 lil,. "' -.-0 7 () .,..,. --t'} ..,.,.. () w 7 ·..z.. . 0 (") · :/ ,·,._: ;;·,.;\._ CARLSBAD' ,,·:\,?_1::·:::~~~,,;.~!;; · .. ' . : ,, ~ 7 () 7 ..>i 7 'C" - ..-i. ~ o/ 7 ~ 330 o1• 30" ._, ;:-;;---------------T16oocmoFEET ____ 'if."1i~V:,R"~n'ir----------------_:~~f§)~~~~ 1170 22' 30" ' 1660000 FEET R. 5 w. I R. 4 w. ~~NO, --~"-' ........... ,~b Soil Survey by USDA, Soil Conservation Service in cooperation with the University of California Agricultural Experiment Station. Photobase compiled 1970 from 1967-68 aerial photography. Control from USGS and USC & GS. Polyconic projection. 1927 North American datum. 10,000-foot grid based on California plane coordinate system, zone 6. Land division corners are approximate. 5000 4000 ½ ~ 3000 ¼ t:===r ~ 2000 1 000 • ·:. ~ . • (Join: ~ 0 I 1••1•• This map is one of Si,~ • • TABLE 11.--INTERPRETATIONS FOR LAND MANAGEMENT--Continued 11G oC re rC2 rD rD2 r~2 uC ul: nA nB oA sA cc .c02 . aE2 ,aE3 .cE ,cE2 ,cF2 ,dE .dG .ec .e·c2 .ep .eD2 ~eE ~eE2 Soil Holland stony fine sandy loam, 30 to 60 percent slopes. Holland fine sandy loam, deep, 2 to 9 percent .slopes. Huerhuero loam, 2 to 9 percent slopes---------------~--- Huerhuero· loam, S to 9 .percent slopes, eroded--------..:'-- Huerhuer'O roam, 9 to 15 percent slopes------------------ Huerhuero · 1oam, 9 to 15 percent slopes, eroded----------- Huerhuero loam, 15 to 30 percent slopes, eroded---------- Huerhuero-Urban land complex, 2 to 9 percent slopes: Huerhuero------------------------------------------. Urban land-----.----------·---------------_------------· IHuerhuero°'.Urban land complex, 9 to 30 percent slopes: Huerhuero------------------------------------------- Urban land------------_------------------------------ Indio silt loam, 0 to 2 percent slop.es--~---------------- ' Indio silt loam, 2 to S percent slopes------------------- Indio silt loam, saline, 0 to 2 percent slopes----------- Indio silt loam, dark variant--------------------------- Kitchen Creek loamy coarse sand, 5 to 9 percent slopes. · Kitchen Creek loamy coarse sand, 9 to 15 percent slopes, eroded. I,a Pesta loamy coarse sand, 5 to 30 _percent slopes, eroded.· La P9sta loamy coarse s;µid, 5 to 30 percent slopes, severely eroded. La Pesta rocky loamy coarse sand, 5 to 30 percent slopes. ~a. Pos~a rocky loamy coarse sand, S to 30 percent slopes, eroded. La, Posta rocky lpamy coarse sand, 30 to SO percent slopes. eroded. La Posta-Sheephead complex, 9 to 30 percent slopes: ta Posta------------------·-----------------------· --- Sheephead-.------------------------------------------- La Posta-Sheephead complex, 30 to 65 percent slopes: La Pesta------------------,---------.-------------- Sheephea-d-------------------------------~------------- 1..as Flores loamy fine sand, 2 to 9 percent slopes--------- · Las Flores loamy f~ne sand, 5 to 9 percent siopes, .eroded. Las .Floi_-es loamy fine sand, 9 to 15 percent slopes--------' Las Flores loamy fine sand, 9 to !·S percent slopes, eroded. Las Flores loamy fine sand, 15 to 30 percent !:l·lopes---..,--- Las Flores loamy fine sand, 15 to 30 percent -slopes, eroded. Las nores loamy fine sand, 9 to 30 percen-t slopes, , severely eroded. Las Flores-Urban land complex, 2 to 9 percent slopes: Las Flores---------------------------------.. --------- ·Urban iand,----------.------------------·------,------ See footnotes at end of table, Hydro-Erodibility logic group C C D D D D D D D D D C C C C B B A A A A A A C A C D D D D o D D D D Severe 1----- Severe 16---- Severe 9----- Severe 9----- Severe 9----- Severe 9----- Severe 9----- Severe 16 Severe 16 Severe 16 Severe 16 Severe 2--,,--- Severe 2----- Severe 2----- Severe 2----- Severe 2----- Severe 2----- Severe 1----- Severe 2-----Severe 2----- Severe 1----- Severe 1----- Severe 2-----Severe 2----- Se_vere 2----- Severe 2----- Severe 2-----Severe 2----- Severe 2----- Lirni tations for conversion from brush to grass Moderate. Slight. Slight. Slight. Slight. Slight. Slight. Slight. y Slight. y Slight . y Severe. y Moderate. y Moderate. y Moderate. y Moderate. 4/ Moderate. !/ Moderate. 4/ Moderate.!/ Slight. Slight. Slight. Slight. Slight. Slight. Severe. 35 •• • TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS {URBAN} Coefficient, C Land Use A Resident i a 1 : Si.ngle F~mi ly .40 Hui ti-Units .45 Mobi t e h~mes .45 Rural (lots greater th~n 1/2 acre) .30 Corrmercial (2) • 70 80% I111pervious Industriat:(2) . 80 90% Impervious NOTES: Soi. I Grpup-q) 8 C .45 .so .so .60 .so .55 .35 .40 • 75 .80 .as .90 CD ® . 70 .65 Ci) • 85 .95 _, I t (l) Soil Grouo -mans are. available at th.e ·offices of the Department of Public Works. ... .. _(2)where actual conditions deviate significantly from the tabulated impervious- .ness values of 80%.or 90%, the values given for coefficient C, may be revised ·by multi·plying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. Howev~r, in no case shall the final coefficient be less than 0.50. For example: Consider-commercial property on D soil.-group. Actual imperviousness = 50% Tabu 1 ated imperviousness = 8C°/4 Revised C = 50 x 0.85 = 0.53 80 IV-A-9 · APPENDIX IX-8 Re~.!-· -S/81 •• • I. HYDROLOGY NODE MAP • --,-.:t.._.; ' ! :---------l~ --7 f I ~ ,,-;/ :.. ........ '="-·---'· ~!I r:::.u-:------' • ' ;:~:_: ---~ .. ---~'7-,. \ ' --, !---·-,~/---'-! :--.. -, ,: i ,/-.. .. /I ,··--·--/' ··-r 1 , I ;~,L~ ·f/ · · - ,, I --... -ti ·--i 1-""----l i f' I l i .... · --- ' -' -' - ,. ·-. ----~---f I I .. If ----... .J-, ~- t-.. ' :--------~ j'----- I. ,, ' ' ~ ... ' . '· ' ~ '·. t~~--- ' ' ' ------, -- /' 1 ;,~ ... r. ', v.i,, ....... . .. t--_ ... ~ -------- \ l ' ,' \ ' / ·- I I \ \ \ --... _ -- \ \ ' ' / '· • --..: ,--1 I --.> I --·_c;, --------I I I I·-I --------- ' I ... I -- I I -I ·• I J .. . , ' i I I ' ',,, .-:.,.0 ............ ·t=-o. / ~': / p ' '., ,, .J I ,..,,. __ _..,; --- ! / I I ; , , , _ ...... _]~~-:--_~~.-:-----__ .. - 1: ....... -. _.,.---------- --- ~ -·z --.. ~-~,~~:::; ~:---:\_ ~- i~~~~----::- ...._ ____ _ ·i-·g~>~-~~- . I .--,.. .. -I 1f<"· . ---------.... !',: .~ ____ .... Va ------- i .J'. \_,; / --'' . I 1 Q \\...,_,,,.,., k \\'\ " \', \ ~------. ----------.. ' /!--,,.-. \ t;---~ ----.------- .. \ ' :-----i -,_.,;; .. "\"·---~....._.: ..•.. ---_:--.. ---------· -.. -r·- i:;~?~~ I •o;;-----· ------------·, _-_· .• .. ----._ \ ; . . \ ' -- l l ,,·· '~ --. . " .... -~ ---. -.. .......:. ,~ i : -:-:.-:..:------z--::·-.--~---_,c _______ .. ! l . -.. ~,-·: .. -·:1:s:;::::,f-. .:.::· --~ , /\"\ ,.i f \ ~ I I -\ a. ' \...-, •' l , ,· !, _j ( .. -\ ' ' \ ', \ ' \ I : • ---i ._;,::,,. ,__ _____________ ,._____ ~ ·;:.:·--.. I .wllil 3.oi.la...:s·-' -;,, _____ :::·· I I l' .. : .. ' ~-·· --"· ._, -~ ; -·· -------LIQI-.:~--... --! -------------------=-~·-::C: 1---:------.------:------s--·-· -,-----....,..--------------------------r--·--------s-------------,---------, .. ---, ~' --·----·• --· -. ----=---=-r--~ ~-------. _,,,=-._ ---~ .... ~ ----- -. ------·.;------·----- .... H------------• ---------------------. • i (· . /~~= --.-·-. -.. ------:·~---~-,_.--: ~-.. • • --.. --- J -.... -- / , g ,,......,----I'..,,' -+--:-i. t ;j-----.---0 ·@· f __ .->-·····-------------.. .1!' ... '·;···· .-------~ --· I --· . h:!-- 1 :.·i·--- ..:. ---.. --·. -·-·-·=-... -·.-::::-..:.:::...:-:-_;:::_.::-: ----~--,, ..::-·: •• --=::. .. --· ---.~· •Jo • • . " ~ ~ ( . ~) .. . r'~ . . t--) I ~ . •' " '' ,• ~-~ .. \ . ,, -~ ~ ~ ~ z ~ I ~ .~ I t ~ . ' r---,, ~ '-Sl <'<) . { !l' •,i I