HomeMy WebLinkAboutCDP 16-06; BAPTIE RESIDENCE; BAPTIE RESIDENCE TEMPORARY SHORING; 2016-11-21\ ..
RECORD COPY
::¥C-(p/r/11
Initial Date
A17.0004.24
Temporary Shoring
Calculation Package
RECEIVED
DEC 2 9· 2016
LAND DEVELOPMENT
ENGINEERING
Baptie Residence Temporary Shoring
Carlsbad, CA
..._)) BergerABAM
Submitted to:
Western Foundations
Lakeside, CA.
November 21, 2016
..
Design Criteria:
1. State of California CALTRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM.)
2. 2013 CBC
Geotechnical Information:
These calculations are based on the Geotechnical Report issued by:
Firm Name: East County Soil Consulatation and Engineering, Inc.
Project Number: 16-1126F2
Dated: 29-Jan-16
Design Parameters:
Cantilevered Shoring RestFaiAea 51rnFiAg
Active Pressure 57.75 pcf
Passive Pressure 250 psf/ft
R~
3-59~
Calculate Active Pressure
below Excavation?
Max Passive Pressure 0 psf 3;oo~
Minimum Surcharge* 100 psf ~~
Factor of Safety 1.3 H
Seismic Pressure 0 H, psf H~ Inverted triangular Distribution
Arching:
Pile Spacing (s) Arching Factor Soil Internal Friction Angle (0): 28 degrees
< 3 * d 3 Drilled Pile Diameter (d): varies feet
>3 *d 0.08*¢ (:::;3)
For the typical spacing of feet on center: Calculated: User Input:
and 2'-0" Diameter Caissons, use an Arching Factor of:
and 2'-6" Diameter Caissons, use an Arching Factor of:
and 3'-0" Diameter Caissons, use an Arching Factor of:
3 2
Overstress Factor:
3
2.24
Short term increases are allowed to allowable stresses (up to 133%} per
TSM 5.3 except in the following situations:
1. Excavations are not temporary (in service more than 90 days)
2. Dynamic Loadings are present (seismic, pile-driving, etc)
3. Excavations are adjacent to railroads
4. Analysis of horizontal struts.
Allow overstress? Yes
How Much? 130 %
2
2
No
Global Parameters:
Active Pressure:
Passive Pressure:
Max Passive Pressure:
Factor Of Safety:
Seismic Load
Back Lagged Beam Callouts
Beam
1
2 THRU
7
8
9 THRU
13
57.75 pcf
250 pcf
O psf
1.3
0 H, psf
Design Cut
(ft.)
3.5
6 8.5
3.5
4
12 7.5
5.5
Cut on Sch. (If
different from
Cut)
Temporary Shoring Design Parameters
Surch Uniform Seismic Load Seismic External depth of Beam Caisson Max Web
(psf) Surch Depth (kip) Depth (ft) Surch (kip) ext. Spacing Dia. (ft.) Depth (in.) (ft) surch (ft (ft.)
100 3.5 0 0 4 2 8 2.0 no max
100 8.5 0 0 4 2 8 2.5 no max
100 3.5 0 0 4 2 8 2.0 no max
100 4 0 0 1.6 1.5 8 2.0 no max
100 7.5 0 0 1.6 1.5 8 2.5 no max
100 5.5 0 0 1.6 1.5 8 2.0 no max
Neglect the top 1 feet of soil
Design Results Results for Schedule
*all dimensions in feet
Callout Beam Size Deflection Reg. Moment Embed. (ft.) Callout Beam Size Caisson Cut on Emb . Diameter Sched. Total
1 W16X26 0.13 42.38 11.50 1 W16X26 2 3.5 12.5 16.0
2 THRU 6 W21x50 0.65 223.73 18.00 2 THRU 6 W21x50 2.5 8.5 19.0 27.5
7 W16X26 0.13 42.38 11.50 7 W16X26 2 3.5 12.5 16.0
8 W16X26 0.12 38.68 11.00 8 W16X26 2 4.0 12.0 16.0
9 THRU 12 W18x40 0.49 143.39 15.50 9 THRU 12 W18x40 2.5 7.5 16.5 24.0
13 W16X26 0.37 75.44 13.50 13 W16X26 2 5.5 14.5 20.0
Cantilevered ShorinJ? DesiJ?n -AASHTO Methodology
Beam Callout: 1
Wall Height, H: 3.5 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2 ft
Arching, Arch: 2
Active Pressure No
beyond Cut Depth?
Factor Of Saftey: 1.3
Max Beam Depth?: no max
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 3.5 0.202125 1 1 Active
0 0.1 3.5 0.1 0 Un. Surch.
0 0 0 0 --Ext. Surch.
ft ksf ft ksf kcf Units
Active Pressure, o .: (Sp)(A)(H) = 1.617 kips/ft
Active Pressure 2, o •2: (Sp)(A)(D) = 0.462 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.8 kips/ft
Passive Pressure, a P: (Arch)(d)(P)(D) = 1 D kips/ft
Force (ki ~s} Arm (ft}
P.1 = o.(H)(l/2) = 2.830 X ( 1.167
P.2 = o.(D) = 0.000 X ( D/2)
P 03 = o ai(D)(l /2) = 0.000 X ( D/3)
P, = o ,(H) = 2.800 X ( 1.75
Pe= E = 4.000 X 1.5
PsF =SF= 0.000 X 3.5
PP= o p(D)(l/2) = 0.50 X ( D/3)
Driving Moment, OM = X003 +YD2 +ZD+C Xo: 0.00 Y: 0.00
Resisting Moment, RM = (XR)D"3 XR: 0.17
RM with F.O.S. = (XR)D"3 XR: 0.13 YR: 0
Cales of Beam(s): !
Wall Pressures
Active Pressure, A: 57.75 pcf
Passive Pressure, P: 250 pcf
Max Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni. Surch. Depth: 3.5 ft
External Surcharge, E: 4 kips
Depth of Ext. Surch, DE: 2 ft
Seismic Force, SF: 0 kips
Seismic Depth, Sd 0 ft
Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
3.5 0 14.6921 2.798023 0.25
-4 -3 -2 -1 0 1 2 3
+D)
+D)
+D)
+D)
=
=
=
=
=
=
=
Z: 9.63
ZR: 0
PRESSURE (lsf) __
Moment at O lk-ttl
3.30
0.00 D2
0.00 D3
2.80 D
4.00 D
0.00 D
0.17 D3
C:
C:
+
+
+
+
14.20
2.83 D
4.9
6
0
0 <-Terms divided by
4
0
-2
-4
-6
-I:'.
I -8 I-0..
UJ 0 -10
-12
-14
-16
1.3
Cales for Beam(s): ! continued
Set Driving Moment equal to Resisting Moment and
solve for Oby changing the depth of Embed, D:
(XD)DA3+YDA2+ZD+C-(XR)DA3 = 0.00
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Embedment Depth: 9.32674 ft
20% Rotational Increase per TSM 6.1: 11.1921 ft
0.00 Plane of Zero Shear is located at 4.39 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAX= PA1(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+PdY+H-DE)-Pp(Y3 /3)= 42.3752 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
4.39 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.03201 in
Uniform Surcharge: 0.04274 in
External Surcharge: 0.05389 in
Seismic Load : 0 in
Max Deflection: 0.12864 in
Static Deflection: 0.12864 in
Soldier Beam Selection With Overstress
Factor*
Use W16X26
Mpx/0 = 143.363 k'
lxx = 301 inA4
Wall Height = 3.5 ft
Required Embed = 11.5 ft
Total Beam Length = 15 ft
Caisson Diameter = 2 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor= 130%
Cantilevered Shorinl? DesiJ?n -AASHTO MethodoloJ?V
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Dia m eter, d:
Arching, Arch:
Active Pressure
beyond Cut Dept h?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1
0 0 -ft ksf
Active Pressure, o .:
Active Pressure 2, o •2:
Surch. Pressure, o ,:
Passive Pressure, o P:
P.1 = o .(H)(l/2) =
Pa2 =0 .(D)=
Pa3 = o ai(D)(l /2) =
P,=O,(H)=
PE= E =
P5F =SF=
PP= a p(D)(l /2) =
2 THRU 6
8.5 ft
8 ft
2.5 ft
2
No
1.3
no max
Ending Ending
Depth Pressure
8.5 0.490875
8.5 0.1
0 0 -ft ksf
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
16.690
0.000
0.000
6.800
4.000
0.000
0.63
Driving Moment, DM = X0D3 +YD2 +ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.0.S. = (XR)D"3
• Slope
t t Active
0 Un. Surch.
Ext. Surch.
kcf Units
3.927 kips/ft
0.462 D kips/ft
0.8 kips/ft
1.25 D kips/ft
Arm (ft)
X ( 2.833
X ( D/2)
X ( D/3)
X ( 4.25
X 6.5
X 8.5
X ( D/3)
X0 : 0.00 V: 0.00
XR: 0.21
XR: 0.16 YR: 0
Cales of Beam(s): 2 THRU 6
Wall Pressures
Active Pressure, A: 57.75 pd
Passive Pressure, P: 250 pd
M ax Passive Pres: 0 psf
U niform Surcharge, Su: 100 psf
Uni. Surch. Depth: 8.5 ft
External Surcharge, E: 4 kips
Depth of Ext. Surch, DE: 2 ft
Seismic Force, SF: O kips
Seism ic Depth, Sd 0 ft
Resisting Pressures:
Starting Starting Ending Ending
+D)
+D)
+D)
+D)
Depth
8.5
=
=
=
=
=
=
=
Z: 27.49
Pressure Depth
0 26.0963
Moment at O (k-tt)
47.29 +
0.00 D2
0.00 D3
6.80 D +
4.00 D +
0.00 D +
0.21 D3
C: 102.19
Pressure
4.39908
16.69 D
28.9
26
0
Slope
0.25
1
ZR: 0 C: 0 <-Terms divided by
2
0
-5
-10
.t:!
:i:: -15 f-0..
LU
Cl
-20
-25
-30
1.3
Cales for Beam(s): THRU 6 continued
Set Driving Moment equal to Resisting Moment and
solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Embedment Dept h: 14.6636 ft
20% Rotational Increase perTSM 6.1: 17.5963 ft
PA1+PA2Y+PA3 Y2+P5+Pe+P5F-PPY2 = 0.00 Plane of Zero Shear is located at 6.63 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAx= PA1(Y+H/3)+PA2(Y2/2)+PdY3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 223.729 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
6.63 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.28569 in
Uniform Surcharge: 0.17687 in
External Surcharge: 0.18285 in
Seismic Load: 0 in
Max Deflection: 0.64541 in
Static Deflection: 0.64541 in
Soldier Beam Selection With Overstress
Factor*
Use W21x50
Mpx/0 = 356.786 k'
lxx = 984 in"4
Wall Height = 8.5 ft
Required Embed = 18 ft
Total Beam Length = 26.5 ft
Caisson Diameter = 2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor= 130 %
Cantilevered Shorin~ Desi~n -AASHTO Methodolo~v
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch :
Active Pressure
beyond Cut Dept h?
Factor Of Saftey:
Max Beam Dept h?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1
0 0 -ft ksf
Active Pressure, 0 0 :
Active Pressure 2, o 02 :
Surch. Pressure, o ,:
Passive Pressure, o P:
P01 = o.(H)(l/2) =
P02 = 0 0 (D) =
P03 = oai(D)(l/2) =
P, = o ,(H) =
PE= E =
PsF =SF =
7
3.5 ft
8 ft
2 ft
2
No
1.3
no max
Ending Ending
Depth Pressure
3.5 0.202125
3.5 0.1
0 -ft ksf
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips}
2.830
0.000
0.000
2.800
4.000
0.000
0.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
•• Active
0 Un. Surch.
Ext. Surch.
kcf Units
1.617 kips/ft
0.462 D kips/ft
0.8 kips/ft
1 D kips/ft
Arm (ft}
X ( 1.167
X ( D/2)
X ( D/3)
X ( 1.75
X 1.5
X 3.5
X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.17
XR: 0.13 YR: 0
Cales of Beam(s): Z
Wall Pressures
Active Pressure, A: 57.75 pcf
Passive Pressure, P: 250 pcf
Max Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni. Surch. Depth: 3.5 ft
External Surcharge, E: 4 kips
Depth of Ext. Surch, DE: 2 ft
Seismic Force, SF: 0 kips
Seism ic Depth, Sd 0 ft
Resisting Pressures:
Starting Starting Ending Ending
+D)
+D)
+D)
+D)
Depth
3.5
-4
=
=
=
=
=
=
=
Z: 9.63
-3
Pressure Depth Pressure
0 14.6921 2.798023
-2 -1 0 1 2 PRESSURE (ksf)
Moment at O {k-tt)
3.30 +
0.00 D2
0.00 D3
2.80 D +
4.00 D +
0.00 D +
0.17 D3
C: 14.20
2.83 D
4.9
6
0
Slope
0.25
3
ZR: 0 C: 0 <-Terms divided by
4
0
-2
.4
-6
.:I:'.
::i:: -8 f-0. LJ.J Cl -10
-12
-14
-16
1.3
Cales for Beam{s): Z continued
Set Driving Moment equal to Resisting Moment and
solve for Oby changing the depth of Embed, D:
(XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Embedment Depth: 9.32674 ft
20% Rotational Increase per TSM 6.1: 11.1921 ft
P A1+PA2Y+PA3Y2+P5+Pe+P5F-PpY2 = 0.00 Pl ane of Zero Shear is located at 4.39 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAlC= P Ai(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 42.3752 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
4.39 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.03201 in
Uniform Surcharge: 0.04274 in
External Surcharge: 0.05389 in
Seismic Load: 0 in
Max Deflection: 0.12864 in
Static Deflection: 0.12864 in
Soldier Beam Selection With Overstress
Factor*
Use W 16X26
Mpx/0 = 143.363 k'
lxx = 301 in"4
Wall Height= 3.5 ft
Requ ired Embed = 11.5 ft
Total Beam Length= 15 ft
Caisson Diameter= 2 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor= 130 %
Cantilevered Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): ~
Beam Callout: 8 Wall Pressures
Wall Height, H: 4 ft Active Press ure, A: 57.75 pcf
Beam Spacing, Sp: 8 ft Passive Pressure, P: 250 pcf
Caisson Diameter, d: 2 ft Max Passive Pres: 0 psf
Arching, Arch: 2 Uniform Surcharge, Su: 100 psf
Active Pressure No beyond Cut Depth?
Uni. Surch. Depth: 4 ft
External Surcharge, E: 1.6 kips
Factor Of Saftey: 1.3 Depth of Ext . Surch, DE: 1.5 ft
Max Beam Depth?: no max Seismic Force, SF: 0 kips
Seismic Depth, Sd 0 ft
Driving Pressures: Resisting Pressures:
Starting Starting Ending Ending Slope Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure Depth Pressure Depth Pressure
0 0 4 0.231 4 0 14.7105 2.677632 0.25
0 0.1 4 0.1 0
0 0 0 0 -3 1 2
0
-2
Active Pressure, CJ.: (Sp)(A)(H) = 1.848 kips/ft -4
Active Pressure 2, 0.2: (Sp)(A)(D) = 0.462 D kips/ft
Surch. Pressure, CJ,: (Su)(Sp) = 0.8 kips/ft -6
Passive Pressure, o P: (Arch)(d)(P)(D) = 1 D kips/ft .t:'.
J: -8 ~ Cl.
LJ.J 0 -10
-12
-14
-16
· Force {kiQs} Arm {ft) Moment at O (k-tt!
Pai= 0 3(H)(l/2) = 3.696 X ( 1.333 +D) = 4.93 + 3.70 D
P.2=0 .(D)= 0.000 D X ( D/2) = 0.00 D2
Pa3 = 0 .2(0)(1/2) = 0.000 02 X ( D/3) = 0.00 D3
P,=o ,(H)= 3.200 X ( 2 +D) = 3.20 D + 6.4
PE= E = 1.600 X ( 2.5 +D) = 1.60 D + 4
PsF =SF= 0.000 X 4 +D) = 0.00 D + 0
PP= CJ p(D)(l/2) = 0.50 02 X ( 0/3) = 0.17 0 3
Driving Moment, OM = X0D3+YD2+ZD+C X0 : 0.00 Y: 0.00 Z: 8.50 C: 15.33
Resisting Moment, RM = (XR)D"3 XR: 0.17
RM with F.0.S. = (XR)D"3 XR: 0.13 YR: 0 ZR: 0 C: 0 <-Terms divided by 1.3
Cales for Beam(s): ~ continued
Set Driving Moment equal to Resisting Moment and
solve for O by changing the depth of Embed, D:
(XD)DA3+YDA2+ZD+C-(XR)DA3 = 0.00
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Embedment Depth: 8.92544 ft
20% Rotational Increase per TSM 6.1: 10.7105 ft
0.00 Plane of Zero Shear is located at 4.12 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAx= P Ai(Y+H/3)+P Az(v2/2)+P A3(Y3 /3)+P5(Y+H/2)+PdY+H-DE)-Pp(Y3/3)= 38.6758 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
4.12 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.0396 in
Uniform Surcharge: 0.04845 in
External Surcharge: 0.03066 in
Seismic Load: O in
Max Deflection: 0.11871 in
Static Deflection: 0.11871 in
Soldier Beam Selection With Overstress
Factor*
Use W16X26
Mpx/0 = 143.363 k'
lxx = 301 inA4
Wall Height= 4 ft
Required Embed = 11 ft
Total Beam Length = 15 ft
Caisson Diameter= 2 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor= 130 %
Cantilevered Shoring Design -AASHTO Methodology
Beam Callout: 9 THRU 12
Wall Height, H: 7.5 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 2
Active Pressure
beyond Cut Depth?
No
Factor Of Saftey: 1.3
Max Beam Depth?: no m ax
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 7.5 0.433125
0 0.1 7.5 0.1 0
0 0 0 0
Active Pressure, CT.: (Sp)(A)(H) = 3.465 kips/ft
Active Pressure 2, o •2: (Sp)(A)(D) = 0.462 D kips/ft
Surch. Pressure, CT,: (Su)(Sp) = 0.8 kips/ft
Passive Pressure, CT P: (Arch)(d)(P)(D) = 1.25 D kips/ft
Force (kiQs) Arm (ft)
P.1 = o .(H)(l/2) = 12.994 X ( 2.5
P.2=o .(D)= 0.000 D X ( D/2)
P.3 = Gai(D)(l /2) = 0.000 02 X ( D/3)
P, = o,(H) = 6.000 X ( 3.75
PE= E = 1.600 X 6
PsF=SF= 0.000 X 7.5
PP= CT p(D)(l/2) = 0.63 D2 X ( D/3)
Driving Moment, DM = X0D3+YD2+ZD+C X0 : 0.00 Y: 0.00
Resisting Moment, RM= (XR)DA3 XR: 0.21
RM with F.O.5. = (XR)DA3 XR: 0.16 YR: 0
Cales of Beam(s): 9 THRU 12
Wall Pressures
Active Pressure, A: 57.75 pcf
Passive Pressure, P: 250 pcf
Max Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni. Surch. Depth: 7.5 ft
External Surcharge, E: 1.6 kips
Depth of Ext. Surch, DE: 1.5 ft
Seismic Force, SF: 0 kips
Seismic Dept h, Sd 0 ft
Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
7.5 0 22.6947 3.798672 0.25
-5 -4 -3 -2 -1 0 PRESSURE Uill)
Moment at O (k-tt)
+D) = 32.48 + 12.99 D
= 0.00 D2
= 0.00 D3
+D) = 6.00 D + 22.5
+D) = 1.60 D + 9.6
+D) = 0.00 D + 0
= 0.21 D3
Z: 20.59 C: 64.58
ZR: 0 C: 0 <-Terms divided by
1
0
-5
--10 ~
:i: t ~ -15
-20
-25
1.3
Cales for Beam(s): THRU 12 continued
Set Driving Moment equal to Resisting Moment and
solve for Oby changing the depth of Embed, D:
(XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Embedment Dept h: 12.6622 ft
20% Rotational Increase per TSM 6.1: 15.1947 ft
0.00 Plane of Zero Shear is located at 5.74 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAX= P Ai(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+PE(Y+H-DE)-Pp(Y3 /3)= 143.393 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
5.74 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.23595 in
Uniform Surcharge: 0.16644 in
External Surcharge: 0.08403 in
Seismic Load: 0 in
Max Deflection: 0.48642 in
Static Deflection: 0.48642 in
Soldier Beam Selection Wit h Overstress
Factor*
Use W18x40
Mpx/0 = 254.291 k'
lxx = 612 in"4
Wall Height= 7.5 ft
Required Embed = 15.5 ft
Total Beam Length = 23 ft
Caisson Diameter = 2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design -AASHTO Methodology
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1
0 0
Active Pressure, o .:
Active Pressure 2, a •2:
Surch. Pressure, a ,:
Passive Pressure, a P:
P.1 = o .(H)(l/2) =
P.2 =o .(D)=
P a3 = o ai(D)(l/2) =
P, = o,(H) =
Pe= E =
PsF =SF=
PP= Op(D)(l/2) =
13
5.5 ft
8 ft
2 ft
2
No
1.3
no max
Ending Ending
Depth Pressure
5.5 0.317625
5.5 0.1
0 0
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force {ki12s}
6.988
0.000
0.000
4.400
1.600
0.000
0.50
Driving Moment, OM = X0 D3 +YD2 +ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0
2.541 kips/ft
0.462 D kips/ft
0.8 kips/ft
1 D kips/ft
Arm {ft)
X ( 1.833
X ( D/2)
X ( D/3)
X ( 2.75
X 4
X 5.5
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.17
XR: 0.13 YR: 0
Cales of Beam(s): 13
Wall Pressures
Active Pressure, A: 57.75 pcf
Passive Pressure, P: 250 pcf
Max Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni. Surch. Depth: 5.5 ft
External Surcharge, E: 1.6 kips
Depth of Ext. Surch, DE: 1.5 ft
Seismic Force, SF: 0 kips
Seismic Depth, Sd 0 ft
Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
5.5 0 18.8248 3.331195 0.25
-4 -3 -2 -1 0 ___ __,__,PR=E=SS"""URE (ksf)_ -..._,..--
+D)
+D)
+D)
+D)
=
=
=
=
=
=
=
Z: 12.99
ZR: 0
Moment at O {k-tt}
12.81
0.00 D2
0.00 D3
4.40 D
1.60 D
0.00 D
0.17 D3
C:
C:
+
+
+
+
6.99 D
12.1
6.4
0
31.31
0 <-Terms divided by
1
0
-2
-4
-6
--8 ,t::
:x: -10 5: ~ -12
-14
-16
-18
-20
1.3
Cales for Beam(s): 13 continued
Set Driving Moment equal to Resisting Moment and
solve for Oby changing the depth of Embed, D:
(XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00
Embedment Depth: 11.104 ft
20% Rotational Increase perTSM 6.1: 13.3248 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
0.00 Plane of Zero Shear is located at 5.10 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MMAX= PA1(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 75.4399 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at point of zero shear
5.10 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure: 0.15346 in
Uniform Surcharge: 0.14027 in
External Surcharge: 0.07947 in
Seismic Load: 0 in
Max Deflection: 0.3732 in
Static Deflection: 0.3732 in
Soldier Beam Selection With Overstress
Factor*
Use W16X26
Mpx/0 = 143.363 k'
lxx = 301 in"4
Wall Height= 5.5 ft
Required Embed = 13.5 ft
Total Beam Length= 19 ft
Caisson Diameter= 2 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Lateral Earth Pressure on Lagging Design Spreadsheet
Maximum Depth of Excavation: 8.5 feet
Max Lagging Clear Spacing 7.3 feet
Active Pressure: 57.75 pd
Max Uniform Surcharge: 100 psf
Max External Surcharge: 142.85714 psf
Lagging Lateral Uniform External
Lagging without external surcharges (other than
uniform required surcharge) have been shown to have
a maximum lagging load of 400psf per TSM, 2011. The
walls of this shoring system
have an external surcharge, therefore use 0.6
multiplied by the maximum design load to calculate
the lagging size. 0.6 is a reduction due to arching.
Lagging Mom. Required Required
Depth Pressure Surcharge Surcharge Total Load Mmax = wL"2/8 Sx Lagging
(ft) (psf) (psf) (psf)
0 0 100 142.85714
1 57.75 100 142.85714
2 115.5 100 142.85714
3 173.25 100 142.85714
4 231 100 142.85714
5 288.75 100 142.85714
6 346.5 100 142.85714
7 404.25 100 142.85714
8 462 100 0
9 519.75 100 0
10 577.5 100 0
11 635.25 0 0
12 693 0 0
13 750.75 0 0
14 808.5 0 0
15 866.25 0 0
16 924 0 0
17 981.75 0 0
18 1039.5 0 0
19 1097.25 0 0
20 1155 0 0
Check Douglas Fir Larch; fb = 850psi
f'b = fb
850
*
1.25
f'b = 1478.4688
*
1
(psf) (lb-ft/ft)
100 399.7
157.75 630.5
215.5 861.3
273.25 1092.1
331 1322.9
388.75 1553.7
446.5 1784.5
504.25 2015.4
562 2246.2
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
400 1598.7
* * *
1 1 1.1
Using Rough Sawn Lagging (approximately 1/8" Larger than Dressed)
Sx of 3x12 Lagging:
Sx of 4x12 Lagging:
Sx of 6x12 Lagging:
13.1
24.9
61.3
in"3 for 3x12 Lagging
in"3 for 4x12 Lagging
in"3 for 6x12 Lagging
(in"3) Size
3.00 3x12 Lagging
5.00 3x12 Lagging
7.00 3x12 Lagging
9.00 3x12 Lagging
11.00 3x12 Lagging
13.00 3x12 Lagging
14.00 3x12 Lagging
16.00 4x12 Lagging
18.00 4x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
13.00 3x12 Lagging
* * *
1.1 1 1.15