Loading...
HomeMy WebLinkAboutCDP 16-06; BAPTIE RESIDENCE; BAPTIE RESIDENCE TEMPORARY SHORING; 2016-11-21\ .. RECORD COPY ::¥C-(p/r/11 Initial Date A17.0004.24 Temporary Shoring Calculation Package RECEIVED DEC 2 9· 2016 LAND DEVELOPMENT ENGINEERING Baptie Residence Temporary Shoring Carlsbad, CA ..._)) BergerABAM Submitted to: Western Foundations Lakeside, CA. November 21, 2016 .. Design Criteria: 1. State of California CALTRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM.) 2. 2013 CBC Geotechnical Information: These calculations are based on the Geotechnical Report issued by: Firm Name: East County Soil Consulatation and Engineering, Inc. Project Number: 16-1126F2 Dated: 29-Jan-16 Design Parameters: Cantilevered Shoring RestFaiAea 51rnFiAg Active Pressure 57.75 pcf Passive Pressure 250 psf/ft R~ 3-59~ Calculate Active Pressure below Excavation? Max Passive Pressure 0 psf 3;oo~ Minimum Surcharge* 100 psf ~~ Factor of Safety 1.3 H Seismic Pressure 0 H, psf H~ Inverted triangular Distribution Arching: Pile Spacing (s) Arching Factor Soil Internal Friction Angle (0): 28 degrees < 3 * d 3 Drilled Pile Diameter (d): varies feet >3 *d 0.08*¢ (:::;3) For the typical spacing of feet on center: Calculated: User Input: and 2'-0" Diameter Caissons, use an Arching Factor of: and 2'-6" Diameter Caissons, use an Arching Factor of: and 3'-0" Diameter Caissons, use an Arching Factor of: 3 2 Overstress Factor: 3 2.24 Short term increases are allowed to allowable stresses (up to 133%} per TSM 5.3 except in the following situations: 1. Excavations are not temporary (in service more than 90 days) 2. Dynamic Loadings are present (seismic, pile-driving, etc) 3. Excavations are adjacent to railroads 4. Analysis of horizontal struts. Allow overstress? Yes How Much? 130 % 2 2 No Global Parameters: Active Pressure: Passive Pressure: Max Passive Pressure: Factor Of Safety: Seismic Load Back Lagged Beam Callouts Beam 1 2 THRU 7 8 9 THRU 13 57.75 pcf 250 pcf O psf 1.3 0 H, psf Design Cut (ft.) 3.5 6 8.5 3.5 4 12 7.5 5.5 Cut on Sch. (If different from Cut) Temporary Shoring Design Parameters Surch Uniform Seismic Load Seismic External depth of Beam Caisson Max Web (psf) Surch Depth (kip) Depth (ft) Surch (kip) ext. Spacing Dia. (ft.) Depth (in.) (ft) surch (ft (ft.) 100 3.5 0 0 4 2 8 2.0 no max 100 8.5 0 0 4 2 8 2.5 no max 100 3.5 0 0 4 2 8 2.0 no max 100 4 0 0 1.6 1.5 8 2.0 no max 100 7.5 0 0 1.6 1.5 8 2.5 no max 100 5.5 0 0 1.6 1.5 8 2.0 no max Neglect the top 1 feet of soil Design Results Results for Schedule *all dimensions in feet Callout Beam Size Deflection Reg. Moment Embed. (ft.) Callout Beam Size Caisson Cut on Emb . Diameter Sched. Total 1 W16X26 0.13 42.38 11.50 1 W16X26 2 3.5 12.5 16.0 2 THRU 6 W21x50 0.65 223.73 18.00 2 THRU 6 W21x50 2.5 8.5 19.0 27.5 7 W16X26 0.13 42.38 11.50 7 W16X26 2 3.5 12.5 16.0 8 W16X26 0.12 38.68 11.00 8 W16X26 2 4.0 12.0 16.0 9 THRU 12 W18x40 0.49 143.39 15.50 9 THRU 12 W18x40 2.5 7.5 16.5 24.0 13 W16X26 0.37 75.44 13.50 13 W16X26 2 5.5 14.5 20.0 Cantilevered ShorinJ? DesiJ?n -AASHTO Methodology Beam Callout: 1 Wall Height, H: 3.5 ft Beam Spacing, Sp: 8 ft Caisson Diameter, d: 2 ft Arching, Arch: 2 Active Pressure No beyond Cut Depth? Factor Of Saftey: 1.3 Max Beam Depth?: no max Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 3.5 0.202125 1 1 Active 0 0.1 3.5 0.1 0 Un. Surch. 0 0 0 0 --Ext. Surch. ft ksf ft ksf kcf Units Active Pressure, o .: (Sp)(A)(H) = 1.617 kips/ft Active Pressure 2, o •2: (Sp)(A)(D) = 0.462 D kips/ft Surch. Pressure, o ,: (Su)(Sp) = 0.8 kips/ft Passive Pressure, a P: (Arch)(d)(P)(D) = 1 D kips/ft Force (ki ~s} Arm (ft} P.1 = o.(H)(l/2) = 2.830 X ( 1.167 P.2 = o.(D) = 0.000 X ( D/2) P 03 = o ai(D)(l /2) = 0.000 X ( D/3) P, = o ,(H) = 2.800 X ( 1.75 Pe= E = 4.000 X 1.5 PsF =SF= 0.000 X 3.5 PP= o p(D)(l/2) = 0.50 X ( D/3) Driving Moment, OM = X003 +YD2 +ZD+C Xo: 0.00 Y: 0.00 Resisting Moment, RM = (XR)D"3 XR: 0.17 RM with F.O.S. = (XR)D"3 XR: 0.13 YR: 0 Cales of Beam(s): ! Wall Pressures Active Pressure, A: 57.75 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 3.5 ft External Surcharge, E: 4 kips Depth of Ext. Surch, DE: 2 ft Seismic Force, SF: 0 kips Seismic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 3.5 0 14.6921 2.798023 0.25 -4 -3 -2 -1 0 1 2 3 +D) +D) +D) +D) = = = = = = = Z: 9.63 ZR: 0 PRESSURE (lsf) __ Moment at O lk-ttl 3.30 0.00 D2 0.00 D3 2.80 D 4.00 D 0.00 D 0.17 D3 C: C: + + + + 14.20 2.83 D 4.9 6 0 0 <-Terms divided by 4 0 -2 -4 -6 -I:'. I -8 I-0.. UJ 0 -10 -12 -14 -16 1.3 Cales for Beam(s): ! continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)DA3+YDA2+ZD+C-(XR)DA3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Depth: 9.32674 ft 20% Rotational Increase per TSM 6.1: 11.1921 ft 0.00 Plane of Zero Shear is located at 4.39 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAX= PA1(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+PdY+H-DE)-Pp(Y3 /3)= 42.3752 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 4.39 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.03201 in Uniform Surcharge: 0.04274 in External Surcharge: 0.05389 in Seismic Load : 0 in Max Deflection: 0.12864 in Static Deflection: 0.12864 in Soldier Beam Selection With Overstress Factor* Use W16X26 Mpx/0 = 143.363 k' lxx = 301 inA4 Wall Height = 3.5 ft Required Embed = 11.5 ft Total Beam Length = 15 ft Caisson Diameter = 2 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130% Cantilevered Shorinl? DesiJ?n -AASHTO MethodoloJ?V Beam Callout: Wall Height, H: Beam Spacing, Sp: Caisson Dia m eter, d: Arching, Arch: Active Pressure beyond Cut Dept h? Factor Of Saftey: Max Beam Depth?: Driving Pressures: Starting Starting Depth Pressure 0 0 0 0.1 0 0 -ft ksf Active Pressure, o .: Active Pressure 2, o •2: Surch. Pressure, o ,: Passive Pressure, o P: P.1 = o .(H)(l/2) = Pa2 =0 .(D)= Pa3 = o ai(D)(l /2) = P,=O,(H)= PE= E = P5F =SF= PP= a p(D)(l /2) = 2 THRU 6 8.5 ft 8 ft 2.5 ft 2 No 1.3 no max Ending Ending Depth Pressure 8.5 0.490875 8.5 0.1 0 0 -ft ksf (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = Force (kips) 16.690 0.000 0.000 6.800 4.000 0.000 0.63 Driving Moment, DM = X0D3 +YD2 +ZD+C Resisting Moment, RM = (XR)D"3 RM with F.0.S. = (XR)D"3 • Slope t t Active 0 Un. Surch. Ext. Surch. kcf Units 3.927 kips/ft 0.462 D kips/ft 0.8 kips/ft 1.25 D kips/ft Arm (ft) X ( 2.833 X ( D/2) X ( D/3) X ( 4.25 X 6.5 X 8.5 X ( D/3) X0 : 0.00 V: 0.00 XR: 0.21 XR: 0.16 YR: 0 Cales of Beam(s): 2 THRU 6 Wall Pressures Active Pressure, A: 57.75 pd Passive Pressure, P: 250 pd M ax Passive Pres: 0 psf U niform Surcharge, Su: 100 psf Uni. Surch. Depth: 8.5 ft External Surcharge, E: 4 kips Depth of Ext. Surch, DE: 2 ft Seismic Force, SF: O kips Seism ic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending +D) +D) +D) +D) Depth 8.5 = = = = = = = Z: 27.49 Pressure Depth 0 26.0963 Moment at O (k-tt) 47.29 + 0.00 D2 0.00 D3 6.80 D + 4.00 D + 0.00 D + 0.21 D3 C: 102.19 Pressure 4.39908 16.69 D 28.9 26 0 Slope 0.25 1 ZR: 0 C: 0 <-Terms divided by 2 0 -5 -10 .t:! :i:: -15 f-0.. LU Cl -20 -25 -30 1.3 Cales for Beam(s): THRU 6 continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Dept h: 14.6636 ft 20% Rotational Increase perTSM 6.1: 17.5963 ft PA1+PA2Y+PA3 Y2+P5+Pe+P5F-PPY2 = 0.00 Plane of Zero Shear is located at 6.63 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAx= PA1(Y+H/3)+PA2(Y2/2)+PdY3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 223.729 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 6.63 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.28569 in Uniform Surcharge: 0.17687 in External Surcharge: 0.18285 in Seismic Load: 0 in Max Deflection: 0.64541 in Static Deflection: 0.64541 in Soldier Beam Selection With Overstress Factor* Use W21x50 Mpx/0 = 356.786 k' lxx = 984 in"4 Wall Height = 8.5 ft Required Embed = 18 ft Total Beam Length = 26.5 ft Caisson Diameter = 2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130 % Cantilevered Shorin~ Desi~n -AASHTO Methodolo~v Beam Callout: Wall Height, H: Beam Spacing, Sp: Caisson Diameter, d: Arching, Arch : Active Pressure beyond Cut Dept h? Factor Of Saftey: Max Beam Dept h?: Driving Pressures: Starting Starting Depth Pressure 0 0 0 0.1 0 0 -ft ksf Active Pressure, 0 0 : Active Pressure 2, o 02 : Surch. Pressure, o ,: Passive Pressure, o P: P01 = o.(H)(l/2) = P02 = 0 0 (D) = P03 = oai(D)(l/2) = P, = o ,(H) = PE= E = PsF =SF = 7 3.5 ft 8 ft 2 ft 2 No 1.3 no max Ending Ending Depth Pressure 3.5 0.202125 3.5 0.1 0 -ft ksf (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = Force (kips} 2.830 0.000 0.000 2.800 4.000 0.000 0.50 Driving Moment, DM = X0D3+YD2+ZD+C Resisting Moment, RM = (XR)D"3 RM with F.O.S. = (XR)D"3 Slope •• Active 0 Un. Surch. Ext. Surch. kcf Units 1.617 kips/ft 0.462 D kips/ft 0.8 kips/ft 1 D kips/ft Arm (ft} X ( 1.167 X ( D/2) X ( D/3) X ( 1.75 X 1.5 X 3.5 X ( D/3) X0: 0.00 Y: 0.00 XR: 0.17 XR: 0.13 YR: 0 Cales of Beam(s): Z Wall Pressures Active Pressure, A: 57.75 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 3.5 ft External Surcharge, E: 4 kips Depth of Ext. Surch, DE: 2 ft Seismic Force, SF: 0 kips Seism ic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending +D) +D) +D) +D) Depth 3.5 -4 = = = = = = = Z: 9.63 -3 Pressure Depth Pressure 0 14.6921 2.798023 -2 -1 0 1 2 PRESSURE (ksf) Moment at O {k-tt) 3.30 + 0.00 D2 0.00 D3 2.80 D + 4.00 D + 0.00 D + 0.17 D3 C: 14.20 2.83 D 4.9 6 0 Slope 0.25 3 ZR: 0 C: 0 <-Terms divided by 4 0 -2 .4 -6 .:I:'. ::i:: -8 f-0. LJ.J Cl -10 -12 -14 -16 1.3 Cales for Beam{s): Z continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Depth: 9.32674 ft 20% Rotational Increase per TSM 6.1: 11.1921 ft P A1+PA2Y+PA3Y2+P5+Pe+P5F-PpY2 = 0.00 Pl ane of Zero Shear is located at 4.39 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAlC= P Ai(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 42.3752 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 4.39 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.03201 in Uniform Surcharge: 0.04274 in External Surcharge: 0.05389 in Seismic Load: 0 in Max Deflection: 0.12864 in Static Deflection: 0.12864 in Soldier Beam Selection With Overstress Factor* Use W 16X26 Mpx/0 = 143.363 k' lxx = 301 in"4 Wall Height= 3.5 ft Requ ired Embed = 11.5 ft Total Beam Length= 15 ft Caisson Diameter= 2 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130 % Cantilevered Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): ~ Beam Callout: 8 Wall Pressures Wall Height, H: 4 ft Active Press ure, A: 57.75 pcf Beam Spacing, Sp: 8 ft Passive Pressure, P: 250 pcf Caisson Diameter, d: 2 ft Max Passive Pres: 0 psf Arching, Arch: 2 Uniform Surcharge, Su: 100 psf Active Pressure No beyond Cut Depth? Uni. Surch. Depth: 4 ft External Surcharge, E: 1.6 kips Factor Of Saftey: 1.3 Depth of Ext . Surch, DE: 1.5 ft Max Beam Depth?: no max Seismic Force, SF: 0 kips Seismic Depth, Sd 0 ft Driving Pressures: Resisting Pressures: Starting Starting Ending Ending Slope Starting Starting Ending Ending Slope Depth Pressure Depth Pressure Depth Pressure Depth Pressure 0 0 4 0.231 4 0 14.7105 2.677632 0.25 0 0.1 4 0.1 0 0 0 0 0 -3 1 2 0 -2 Active Pressure, CJ.: (Sp)(A)(H) = 1.848 kips/ft -4 Active Pressure 2, 0.2: (Sp)(A)(D) = 0.462 D kips/ft Surch. Pressure, CJ,: (Su)(Sp) = 0.8 kips/ft -6 Passive Pressure, o P: (Arch)(d)(P)(D) = 1 D kips/ft .t:'. J: -8 ~ Cl. LJ.J 0 -10 -12 -14 -16 · Force {kiQs} Arm {ft) Moment at O (k-tt! Pai= 0 3(H)(l/2) = 3.696 X ( 1.333 +D) = 4.93 + 3.70 D P.2=0 .(D)= 0.000 D X ( D/2) = 0.00 D2 Pa3 = 0 .2(0)(1/2) = 0.000 02 X ( D/3) = 0.00 D3 P,=o ,(H)= 3.200 X ( 2 +D) = 3.20 D + 6.4 PE= E = 1.600 X ( 2.5 +D) = 1.60 D + 4 PsF =SF= 0.000 X 4 +D) = 0.00 D + 0 PP= CJ p(D)(l/2) = 0.50 02 X ( 0/3) = 0.17 0 3 Driving Moment, OM = X0D3+YD2+ZD+C X0 : 0.00 Y: 0.00 Z: 8.50 C: 15.33 Resisting Moment, RM = (XR)D"3 XR: 0.17 RM with F.0.S. = (XR)D"3 XR: 0.13 YR: 0 ZR: 0 C: 0 <-Terms divided by 1.3 Cales for Beam(s): ~ continued Set Driving Moment equal to Resisting Moment and solve for O by changing the depth of Embed, D: (XD)DA3+YDA2+ZD+C-(XR)DA3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Depth: 8.92544 ft 20% Rotational Increase per TSM 6.1: 10.7105 ft 0.00 Plane of Zero Shear is located at 4.12 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAx= P Ai(Y+H/3)+P Az(v2/2)+P A3(Y3 /3)+P5(Y+H/2)+PdY+H-DE)-Pp(Y3/3)= 38.6758 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 4.12 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.0396 in Uniform Surcharge: 0.04845 in External Surcharge: 0.03066 in Seismic Load: O in Max Deflection: 0.11871 in Static Deflection: 0.11871 in Soldier Beam Selection With Overstress Factor* Use W16X26 Mpx/0 = 143.363 k' lxx = 301 inA4 Wall Height= 4 ft Required Embed = 11 ft Total Beam Length = 15 ft Caisson Diameter= 2 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130 % Cantilevered Shoring Design -AASHTO Methodology Beam Callout: 9 THRU 12 Wall Height, H: 7.5 ft Beam Spacing, Sp: 8 ft Caisson Diameter, d: 2.5 ft Arching, Arch: 2 Active Pressure beyond Cut Depth? No Factor Of Saftey: 1.3 Max Beam Depth?: no m ax Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 7.5 0.433125 0 0.1 7.5 0.1 0 0 0 0 0 Active Pressure, CT.: (Sp)(A)(H) = 3.465 kips/ft Active Pressure 2, o •2: (Sp)(A)(D) = 0.462 D kips/ft Surch. Pressure, CT,: (Su)(Sp) = 0.8 kips/ft Passive Pressure, CT P: (Arch)(d)(P)(D) = 1.25 D kips/ft Force (kiQs) Arm (ft) P.1 = o .(H)(l/2) = 12.994 X ( 2.5 P.2=o .(D)= 0.000 D X ( D/2) P.3 = Gai(D)(l /2) = 0.000 02 X ( D/3) P, = o,(H) = 6.000 X ( 3.75 PE= E = 1.600 X 6 PsF=SF= 0.000 X 7.5 PP= CT p(D)(l/2) = 0.63 D2 X ( D/3) Driving Moment, DM = X0D3+YD2+ZD+C X0 : 0.00 Y: 0.00 Resisting Moment, RM= (XR)DA3 XR: 0.21 RM with F.O.5. = (XR)DA3 XR: 0.16 YR: 0 Cales of Beam(s): 9 THRU 12 Wall Pressures Active Pressure, A: 57.75 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 7.5 ft External Surcharge, E: 1.6 kips Depth of Ext. Surch, DE: 1.5 ft Seismic Force, SF: 0 kips Seismic Dept h, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 7.5 0 22.6947 3.798672 0.25 -5 -4 -3 -2 -1 0 PRESSURE Uill) Moment at O (k-tt) +D) = 32.48 + 12.99 D = 0.00 D2 = 0.00 D3 +D) = 6.00 D + 22.5 +D) = 1.60 D + 9.6 +D) = 0.00 D + 0 = 0.21 D3 Z: 20.59 C: 64.58 ZR: 0 C: 0 <-Terms divided by 1 0 -5 --10 ~ :i: t ~ -15 -20 -25 1.3 Cales for Beam(s): THRU 12 continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Dept h: 12.6622 ft 20% Rotational Increase per TSM 6.1: 15.1947 ft 0.00 Plane of Zero Shear is located at 5.74 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAX= P Ai(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+PE(Y+H-DE)-Pp(Y3 /3)= 143.393 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 5.74 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.23595 in Uniform Surcharge: 0.16644 in External Surcharge: 0.08403 in Seismic Load: 0 in Max Deflection: 0.48642 in Static Deflection: 0.48642 in Soldier Beam Selection Wit h Overstress Factor* Use W18x40 Mpx/0 = 254.291 k' lxx = 612 in"4 Wall Height= 7.5 ft Required Embed = 15.5 ft Total Beam Length = 23 ft Caisson Diameter = 2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design -AASHTO Methodology Beam Callout: Wall Height, H: Beam Spacing, Sp: Caisson Diameter, d: Arching, Arch: Active Pressure beyond Cut Depth? Factor Of Saftey: Max Beam Depth?: Driving Pressures: Starting Starting Depth Pressure 0 0 0 0.1 0 0 Active Pressure, o .: Active Pressure 2, a •2: Surch. Pressure, a ,: Passive Pressure, a P: P.1 = o .(H)(l/2) = P.2 =o .(D)= P a3 = o ai(D)(l/2) = P, = o,(H) = Pe= E = PsF =SF= PP= Op(D)(l/2) = 13 5.5 ft 8 ft 2 ft 2 No 1.3 no max Ending Ending Depth Pressure 5.5 0.317625 5.5 0.1 0 0 (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = Force {ki12s} 6.988 0.000 0.000 4.400 1.600 0.000 0.50 Driving Moment, OM = X0 D3 +YD2 +ZD+C Resisting Moment, RM = (XR)D"3 RM with F.O.S. = (XR)D"3 Slope 0 2.541 kips/ft 0.462 D kips/ft 0.8 kips/ft 1 D kips/ft Arm {ft) X ( 1.833 X ( D/2) X ( D/3) X ( 2.75 X 4 X 5.5 X ( D/3) Xo: 0.00 Y: 0.00 XR: 0.17 XR: 0.13 YR: 0 Cales of Beam(s): 13 Wall Pressures Active Pressure, A: 57.75 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 5.5 ft External Surcharge, E: 1.6 kips Depth of Ext. Surch, DE: 1.5 ft Seismic Force, SF: 0 kips Seismic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 5.5 0 18.8248 3.331195 0.25 -4 -3 -2 -1 0 ___ __,__,PR=E=SS"""URE (ksf)_ -..._,..-- +D) +D) +D) +D) = = = = = = = Z: 12.99 ZR: 0 Moment at O {k-tt} 12.81 0.00 D2 0.00 D3 4.40 D 1.60 D 0.00 D 0.17 D3 C: C: + + + + 6.99 D 12.1 6.4 0 31.31 0 <-Terms divided by 1 0 -2 -4 -6 --8 ,t:: :x: -10 5: ~ -12 -14 -16 -18 -20 1.3 Cales for Beam(s): 13 continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Embedment Depth: 11.104 ft 20% Rotational Increase perTSM 6.1: 13.3248 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): 0.00 Plane of Zero Shear is located at 5.10 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAX= PA1(Y+H/3)+P dY2/2)+PA3(Y3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(Y3 /3)= 75.4399 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at point of zero shear 5.10 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.15346 in Uniform Surcharge: 0.14027 in External Surcharge: 0.07947 in Seismic Load: 0 in Max Deflection: 0.3732 in Static Deflection: 0.3732 in Soldier Beam Selection With Overstress Factor* Use W16X26 Mpx/0 = 143.363 k' lxx = 301 in"4 Wall Height= 5.5 ft Required Embed = 13.5 ft Total Beam Length= 19 ft Caisson Diameter= 2 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Lateral Earth Pressure on Lagging Design Spreadsheet Maximum Depth of Excavation: 8.5 feet Max Lagging Clear Spacing 7.3 feet Active Pressure: 57.75 pd Max Uniform Surcharge: 100 psf Max External Surcharge: 142.85714 psf Lagging Lateral Uniform External Lagging without external surcharges (other than uniform required surcharge) have been shown to have a maximum lagging load of 400psf per TSM, 2011. The walls of this shoring system have an external surcharge, therefore use 0.6 multiplied by the maximum design load to calculate the lagging size. 0.6 is a reduction due to arching. Lagging Mom. Required Required Depth Pressure Surcharge Surcharge Total Load Mmax = wL"2/8 Sx Lagging (ft) (psf) (psf) (psf) 0 0 100 142.85714 1 57.75 100 142.85714 2 115.5 100 142.85714 3 173.25 100 142.85714 4 231 100 142.85714 5 288.75 100 142.85714 6 346.5 100 142.85714 7 404.25 100 142.85714 8 462 100 0 9 519.75 100 0 10 577.5 100 0 11 635.25 0 0 12 693 0 0 13 750.75 0 0 14 808.5 0 0 15 866.25 0 0 16 924 0 0 17 981.75 0 0 18 1039.5 0 0 19 1097.25 0 0 20 1155 0 0 Check Douglas Fir Larch; fb = 850psi f'b = fb 850 * 1.25 f'b = 1478.4688 * 1 (psf) (lb-ft/ft) 100 399.7 157.75 630.5 215.5 861.3 273.25 1092.1 331 1322.9 388.75 1553.7 446.5 1784.5 504.25 2015.4 562 2246.2 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 400 1598.7 * * * 1 1 1.1 Using Rough Sawn Lagging (approximately 1/8" Larger than Dressed) Sx of 3x12 Lagging: Sx of 4x12 Lagging: Sx of 6x12 Lagging: 13.1 24.9 61.3 in"3 for 3x12 Lagging in"3 for 4x12 Lagging in"3 for 6x12 Lagging (in"3) Size 3.00 3x12 Lagging 5.00 3x12 Lagging 7.00 3x12 Lagging 9.00 3x12 Lagging 11.00 3x12 Lagging 13.00 3x12 Lagging 14.00 3x12 Lagging 16.00 4x12 Lagging 18.00 4x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging 13.00 3x12 Lagging * * * 1.1 1 1.15