Loading...
HomeMy WebLinkAboutCDP 16-07; OTA RESIDENCE; OTA RESIDENCE TEMPORARY SHORING; 2017-08-07 (2)RECORD COPY Initiai Date Temporary Shoring Calculation Package V BergerABAM \ Ota Residence Temporary Shoring P CDP 16-07 GR 2017-006 Carlsbad, CA.ctS OQ "a> CO -C o Submitted to: Western Foundations Lakeside, CA. A17.0004.28 August 7, 2017 Design Criteria: 1. state of California CALTRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM.) 2. 2013 CBC Geotechnical Information: These calculations are based on the Geotechnical Report issued by: Firm Name: GCI Project Number: 16-11073 Dated: 16-May-16 Design Parameters; Cantilevered Shoring Rostrainod Shoring At rest Pressure 56 pcf 22 psf Calculate Active Pressure Passive Pressure 300 psf/ft 2^pef/ff below Excavation? Max Passive Pressure 0 psf ocnn Minimum Surcharge*30 psf 22 psf Factor of Safety 1.3 Seismic Pressure 0 H, psf ±2, H n'-ff tf Inverted triangular Distribution Arching: Pile Spacing (s)Arching Factor Soil Internal Friction Angle (0): 30 degrees <3*d 3 Drilled Pile Diameter (d): varies feet >3*d 0.08*:'^ (<3) For the tvoical soacina of 8 feet on center:Calculated; User Inout: No and 2'-0" Diameter Caissons, use an Arching Factor of: and 2'-6" Diameter Caissons, use an Arching Factor of: and 3'-0" Diameter Caissons, use an Arching Factor of: 3 3 2.4 Overstress Factor: Short term increases are allowed to allowable stresses (up to 133%) per TSM 5.3 except in the following situations: 1. Excavations are not temporary (in service more than 90 days) 2. Dynamic Loadings are present (seismic, pile-driving, etc) 3. Excavations are adjacent to railroads 4. Analysis of horizontal struts. Allow overstress? How Much? Yes 130 % Global Parameters; Active Pressure:56 pcf Passive Pressure:300 pcf Max Passive Pressure:0 psf Factor Of Safety:1.3 Seismic Load 0 H, psf Temporary Shoring Design Parameters Beam Callouts Design Cut (ft.) Cut on Sch. (If different from Cutl Surch (psf) Uniform Surch Depth (ft) Seismic Loac (kip) Seismic Depth (ft) External Surch (kip) depth of| Beam ext. 1 Spacing surch (ftl (ft.) Caisson Dia. (ft.) Max Web Depth (in.) 1 5.5 30 5.5 0 0 6 2.5 no max 2 7.5 30 7.5 0 0 5.8 6.5 8 2.5 no max 3 9 30 9 0 0 5.8 6.5 8 2.5 no max 4-5 10.5 30 10 0 0 5.8 6.5 8 2.5 no max 6-7 11 30 10 0 0 5.8 6.5 8 2.5 no max 8 11.5 11.5 30 10 0 0 5.8 6.5 8 2.5 no max 9 11 12 30 10 0 0 5.8 6.5 8 2.5 no max 10 5 30 5 0 0 5.8 6.5 6 2.5 no max 11 5 30 5 0 0 5.8 6.5 6 2.5 no max 12 11.5 30 10 0 0 8 2.5 no max 13 11.25 11.5 30 10 0 0 2.3 11 8 2.5 no max 14 11 11.5 30 10 0 0 2.3 4.5 8 2.5 no max 15-17 11 30 10 0 0 2.3 4.5 8 2.5 no max 18 10.5 30 10 0 0 8 2.5 no max 19 6 30 6 0 0 6 2.5 no max Back Lagged Beam Neglect the top 1 feet of soil Design Results Results for Schedule *all dimensions in feet Callout Deflection Beam Size (in) Rea. Moment (K-ft) Embed, (ft.) 1 W16X26 0.02 23.56 8.00 2 W16X26 0.20 113.94 13.50 3 W21x44 0.17 181.32 16.00 4-5 W24x55 0.22 268.08 18.00 6-7 W24X55 0.27 301.36 18.50 8 W24x68 0.25 337.23 19.00 9 W24x55 0.27 301.36 18.50 10 W16X26 0.02 28.25 9.50 11 W16X26 0.02 28.25 9.50 12 W24X55 0.24 268.66 17.50 13 W24x55 0.23 268.15 18.00 14 W24X55 0.24 266.80 17.50 15-17 W24x55 0.24 266.80 17.50 18 W21x44 0.25 208.21 16.50 19 W16X26 0.03 29.99 8.50 Callout Beam Size Caisson Diameter (ft) Cut on Sched. (ft) Emb.(ft)Total (ft) 1 W16X26 2.5 5.5 9.0 14.5 2 W16X26 2.5 7.5 14.5 22.0 3 W21x44 2.5 9.0 17.0 26.0 4-5 W24x55 2.5 10.5 19.0 29.5 6-7 W24x55 2.5 11.0 19.5 30.5 8 W24X68 2.5 11.5 20.0 31.5 9 W24x55 2.5 12.0 19.5 31.5 10 W16X26 2.5 5.0 10.5 15.5 11 W16X26 2.5 5.0 10.5 15.5 12 W24x55 2.5 11.5 18.5 30.0 13 W24x55 2.5 11.5 19.0 30.5 14 W24x55 2.5 11.5 18.5 30.0 15-17 W24X55 2.5 11.0 18.5 29.5 18 W21x44 2.5 10.5 17.5 28.0 19 W16X26 2.5 6.0 9.5 15.5 Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 1 Beam Callout:1 Wall Pressures Wall Height, H:5.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp;6 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure Uni. Surch. Depth:5.5 ft beyond Cut Depth?External Surcharge, E:kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 5.5 0.308 0.056 0 0.03 5.5 0.03 0 0 0 0 0 - 0 0 0 0 1 Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 5.5 0 13.2131 2.313919 0.3 -2.5 ■2 -1.5 -1 -0.5PRESSURE (ksf) Active Pressure, Active Pressure 2, Surch. Pressure, Passive Pressure, O p: (Sp)(A)(H) = (Sp)(A)(D} = (Su)(Sp) = (Arch)(d)(P)(D) = 1.848 kips/ft 0.336 0 kIps/ft 0.18 kips/ft 1.5 D kips/ft Pal=-^a{H)(l/2) = Pa2 = na(D} = Pa3="a2{D)(l/2} = Ps=a,(H) = Pe = E = Psf = SF = Force (kips) 5.082 0.000 0.000 0.990 0.000 0.000 Moment atO (k-tt) 9.32 + 0.00 d' 0.00 d' 0.99 D + 0.00 D + 0.00 D + 5.08 D 0.5 M -6 -10 Pd=^o(D)(1/2) =0.75 ( 0/3)0.25 0' Driving Moment, DM = XdD'+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XR)D'^3 Xq: 0.00 Y: 0.00 Z: 6.07 Xr: 0.25 Xr: 0.19 Y„: 0 Zr: 0 C; C: 12.04 0 <- Terms divided by 1.3 Calcs for Beam(s): 1 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)DM+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 6.42755 ft 20% Rotational Increase per TSM 6.1: 7.71306 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): = 0.00 Plane of Zero Shear is located at 2.85 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear; Mmax= Pai(Y+H/3}+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp{yV3)= 23.5575 k-ft Determine the Piie Defiection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 1.71 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.01497 in Soldier Beam Selection With Overstress Uniform Surcharge:0.00581 in Factor* External Surcharge:0 in Use W16X26 Seismic Load:0 in Mpx/Q =143.363 k' Max Deflection:0.02078 in Ixx =301 InM Static Deflection:0.02078 in Wall Height =5.5 ft Required Embed =8 ft Total Beam Length =13.5 ft Caisson Diameter =2.5 ft *Referto Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 2 Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 7.5 0.42 0.056 0 0.03 7.5 0.03 0 0 0 0 0 ] 6.5 0.096666667 6.5 0.096667 - Beam Callout:2 Wall Pressures Wall Height, H:7.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch;2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:7.5 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd Oft Active Pressure, Active Pressure 2, ':^a2" Surch. Pressure, Passive Pressure, Cp: (Sp){A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = 3.36 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 7.5 0 20.9426 4.032767 0.3 -5 -4 -3 -2 -1 0 1 PRESSURE (ksf) -5 -.-10 & S -15 -20 Pa: = '%(H)(l/2} = P.2=<^.iO) = Pa3-^a2(D)(l/2) = Ps=^s(H) = Ph-E = Psf = SF = Force (kips) 12.600 0.000 0.000 1.800 5.800 0.000 Arm fft) -25 2.5 D/2) D/3) 3.75 1 7.5 +D) +D) +D) +D) Moment atO(k-ttl 31.50 + 0.00 0.00 d' 1.80 D + 5.80 D + 0.00 D + 12.60 D 6.75 5.8 0 Pp='"p(D}(l/2) =0.75 D/3)0.25 D' Driving Moment, DM = XoD^+YD^+ZD+C Resisting Moment, RM = {XR)D'^3 RM with F.O.S. = (XRjD'^S Xd: 0.00 Y: 0.00 Xr: 0.25 X„: 0.19 Yr; 0 Z: 20.20 Za: 0 C: 44.05 C:0 <- Terms divided by 1.3 Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: Calcs for Beamfsh 2 continued (XD)D^3+yD'^2+ZD+C-(XR}D'^3 =0.00 Embedment Depth: 11.2021 ft 20% Rotational Increase perTSM 6.1: 13.4426 ft Determine the Depth of Zero Shear Plane: (Substitute Y for Pi; 0.00 Plane of Zero Shear is located atPai+Pa2Y+Pa3Y^+P.+Pp+P«-PpY^ =S-rrE-rrsF rpi 5.19 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= PAi(Y+H/3)+P„(YV2}+PA3{YV3}+Ps(Y+H/2)+PE{Y+H-DE)-Pp(yV3)= 113.938 k-ft Determine the Pile Deflection; (Use superposition principle) -Utilize a point of fixity at zero shear plane 2.99 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.13737 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03632 in Factor* External Surcharge:0.02426 in Use W16X26 Seismic Load:0 in Mpx/l) =143.363 k' Max Deflection:0.19795 in Ixx =301 inM Static Deflection:0.19795 in Wall Height =7.5 ft Required Embed =13.5 ft Total Beam Length =21 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfs): 3 Driving Pressures; Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 9 0.504 0.056 0 0.03 9 0.03 0 0 0 0 0 - 6.5 0.080555556 6.5 0.080556 - Beam Caliout:3 Wall Pressures Wall Height, H:9 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:9 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF;0 kips Seismic Depth, Sd Oft Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 9 0 24.5239 4.657176 0.3 -5 -4 -3 -2 -1 0 PRESSURE (ksf) Active Pressure, Active Pressure 2, Cgi- Surch. Pressure, Passive Pressure, Op. {SpKA)(H) = (Sp)(A)(D} = (Su)(Sp) = (Arch)(d)(P)(D) = 4.032 kips/ft 0.448 D kips/ft 0.24 kIps/ft 1.5 D kips/ft -5 -10 -15 -20 Pal=0a{H)(l/2) = Pa3 = ".2(D)(l/2) = Ps = ^s(H) = Pe = E = Psf = SF = Force (kipsi 18.144 0.000 0.000 2.160 5.800 0.000 Arm (ft) ( 3 { D/2) ( D/3) ( 4.5 ( 2.5 ( 9 -30 +D) +D) +D) +D) Moment at O (k-ttl 54.43 + 0.00 0.00 2.16 D + 5.80 D + 0.00 D + 18.14 D 9.72 14.5 0 Pp=^p{D)(l/2) =0.75 D/3}0.25 D' Driving Moment, DM = X^D^+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XRjD'^S Xp: 0.00 Y: 0.00 X(,: 0.25 Xr: 0.19 Yr; 0 Z: 26.10 Zr: 0 C: 78.65 C:0 <- Terms divided by 1.3 Calcs for Beamfsl: Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D; 3 continued {XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 12.9366 ft 20% Rotational Increase per TSM 6.1: 15.5239 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D1; PAl+PA2Y+PA3Y'+Ps+PE+PsrPpY' =0.00 Plane of Zero Shear is located at 5.90 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+P,2(yV2)+Pa3(yV3}+P5(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 181.321 k-ft 111 Determine the Pile Deflection: (Use superposition principle) •Utilize a point of fixity at zero shear plane 3.45 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.1147 in Soldier Beam Selection With Overstress Uniform Surcharge:0.02557 in Factor* External Surcharge:0.02878 in Use W21X44 Seismic Load:0 in Mpx/(} =309.431 k' Max Deflection:0.16905 in lxx =843 in'^4 Static Deflection:0.16905 in Wall Height =9 ft Required Embed =16 ft Total Beam Length =25 ft Caisson Diameter =2.5 ft •Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamish 42830 Beam Callout:S-Apr Wall Pressures Wall Height, H:10.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 10.5 0.588 0.056 0 0.03 10 0.03 0 0 0 0 0 - 6.5 0.069047619 6.5 0.069048 - Active Pressure, r,: Active Pressure 2, '^32: Surch. Pressure, Oji Passive Pressure, Cp: (Sp){A)(H) = (Sp)(A}(Dl = {5u)(Sp) = (Arch)(d){P)(D) = 4.704 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft P3l = '^a(H)(l/2) = P.2 = ^M = Pa3='^a2(D)(l/2) = P,= rT3{H) = Pe = E = Psf = SF = Force (kips) 24.696 0.000 0.000 2.400 5.800 0.000 Arm (ft) ( 3.5 ( D/2) { D/3) ( 5.5 { 4 ( 10.5 Resisting Pressures; Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 10.5 0 28.0814 5.274413 0.3 -6 +D) +D) +D) +D) -4 -2 PRESSURE {ksf) Moment atO(k-ttl 86.44 + 0.00 d' 0.00 2.40 D + 5.80 D + 0.00 D + 24.70 D 13.2 23.2 0 -5 -10 £ X -15 UJ a -20 -25 -30i Po='-d(D)(1/2) =0.75 ( D/3)0.25 D' Driving Moment, DM = XoD^+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM\«ith F.O.S. = (XR)D'^3 Xq: 0.00 Y: 0.00 X„: 0.25 Xfi! 0.19 Yr: 0 Z: 32.90 Zo: 0 C: 122.84 C:0 <- Terms divided by 1.3 Calcs for Beam(s^: 42830 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D; (XD)D'^3+YD^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 14.6511 f^ 20% Rotational Increase per TSM 6.1: 17.5814 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D); Pai+Pa2Y+Pa3Y^+Ps+Pe+Psf*PpY^ = 0.00 Plane of Zero Shear is located at 6.62 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pa!(Y+H/3)+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp{yV3)= 268.078 k-ft Determine the Pile Deflection: fUse superposition principle) -Utilize a point of fixity at zero shear plane 3.91 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.14765 in Soldier Beam Selection With Overstress Uniform Surcharge:0.02939 in Factor* External Surcharge:0.04218 in Use W24x55 Seismic Load:0 in Mpx/^) =434.631 k' Max Deflection:0.21923 in Ixx =1350 inM Static Deflection:0.21923 in Wall Height -10.5 ft Required Embed =18 ft Total Beam Length =28.5 ft Caisson Diameter =2.5 ft *Referto Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Caics of Beamfs): 42893 Driving Pressures; Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 0 0 11 0.616 0.056 0 0.03 10 0.03 0 0 0 0 0 - 6.5 0.065909091 6.5 0.065909 - Beam Callout:7-Jun Wall Pressures Wall Height, H:11 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Active Pressure, rr,: Active Pressure 2, ^^2'- Surch. Pressure, Passive Pressure, Cp: (Sp}(A)(H) = (Sp)(A){D) = (Su}{Sp) = (Arch){d)(P)(D) = 4.928 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft Resisting Pressures; Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11 0 29.2541 5.476236 0.3 -6 -4 -2 0 PRESSURE (ksf)- 0 -5 -10 g-15 X -20 a -25 -30 P,:='^a(H){l/2) = Paa=n.(D) = Pa3 = ^a2(DHl/2)- P, = n,(H) = Pe = E = Psf = SF = Force (kips) 27.104 0.000 0.000 2.400 5.800 0.000 Arm (ft) -35 ( 3.667 +D) ( D/2) { D/3) ( 6 { 4.5 ( 11 +D) +D) +D) Moment at 0 (k-tt} 99.38 + 0.00 0.00 d' 2.40 D + 5.80 D + 0.00 D + 27.10 D 14.4 26.1 0 P» = ^c(D)(l/2) =0.75 D/3)0.25 D' Driving Moment, DM = XdD^YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XR)D'^3 Xq: 0.00 Y: 0.00 X„: 0.25 Xr: 0.19 Yr: 0 Z; 35.30 Zr; 0 C: 139.88 C:0 <- Terms divided by 1.3 Calcs for Beam{s); 42893 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 15.2118 ft 20% Rotational Increase perTSM 6.1: 18.2541 ft Determine the Depth of Zero Shear Plane; fSubstitute Y for D): Pai+Pa2Y+Pa3Y^+Ps+Pe+Psf"PpY^ = 0.00 Plane of Zero Shear is located at 6.86 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear; Mmax= Pai(Y+H/3)+Pa2(yV2)+P«(yV3)+Ps(Y+H/2)+Pe{Y+H-DE)-Pp(yV3)= 301.36 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 4.06 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.1837 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03591 in Factor* External Surcharge:0.05346 in Use W24x55 Seismic Load:0 in Mpx/n =434.631 k' Max Deflection:0.27307 in lxx =1350 inM Static Deflection;0.27307 in Wall Height =11 ft Required Embed =18.5 ft Total Beam Length =29.5 ft Caisson Diameter =2.5 ft •Refer to Design Criteria Sheet for Overstress Information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Caics of Beam(s); 8 Driving Pressures; Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11.5 0.644 0.056 0 0.03 10 0.03 0 0 0 0 0 - 6.5 0.063043478 6.5 0.063043 - Beam Callout:8 Wall Pressures Wall Height, H:11.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Active Pressure, r,: Active Pressure 2, 0^2- Surch. Pressure, Passive Pressure, (Sp)(A)(H) = (Sp}(A)(D) = (Su)(Sp) = (Arch){d)(P)(D) = 5.152 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11.5 0 30.4289 5.678678 0.3 -6 -4 -2 PRESSURE (ksf) - -15 Pal = '^a(H)(l/2) = Pa2=^a(D)- Pa3="a2(D)(l/2) = Ps=^.(H) = Pe = E = Psf = SF = Force (kips) Arm (ft) 29.624 X ( 3.833 +D) 0.000 D X ( D/2) 0.000 X ( D/3) 2.400 X ( 6.5 +D) 5.800 X ( 5 +D) 0.000 X ( 11.5 +D) Moment at O (k-ttl 113.56 + 0.00 0.00 2.40 D + 5.80 D + 0.00 D + 29.62 D 15.6 29 0 Pp=^p(D)(l/2) =0.75 0/3)0.25 D' Driving Moment, DM = XdDVydVzD+C Resisting Moment, RM = {XR)D'^3 RM Nwith F.O.S. = {XR)D'^3 Xq; 0.00 Y: 0.00 Z: 37.82 Xr: 0.25 Xr: 0.19 Yr: 0 ZrI 0 C; 158.16 Ci 0 <- Terms divided by 1.3 Calcsfor Beamfsl: 8 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD'^2+ZD+C-{XR}D'^3 =0.00 Embedment Depth: 15.7741 ft 20% Rotational Increase per TSM 6.1: 18.9289 ft Determine the Depth of Zero Shear Plane; (Substitute Y for D): = 0.00 Plane of Zero Shear is located at 7.10 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: M„ax= Pai(Y+H/3)+P«{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 337.231 k-ft Determine the Pile Deflection: (Use superposition princlplel -Utilize a point of fixity at zero shear plane 4.21 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.16709 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03197 in Factor* External Surcharge:0.04912 in Use W24x68 Seismic Load:0 in Mpx/(] =574.102 k' Max Deflection:0.24818 in Ixx =1830 in'^4 Static Deflection:0.24818 in Wall Height =11.5 ft Required Embed =19 ft Total Beam Length =30.5 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodoloev Calcs of Beamfsh 9 Beam Calicut:9 Wall Pressures Wall Height, H:11 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd Oft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11 0.616 0.056 0 0.03 10 0.03 0 0 0 0 0 - 6.5 0.065909091 6.5 0.065909 - Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11 0 29.2541 5.476236 0.3 -6 Active Pressure, Active Pressure 2, <^32 Surch. Pressure, Oj Passive Pressure, Tp (Sp)(A)(H) {Sp)(A)(D) (Su)(Sp) (Arch)(d)(P)(D) = 4.928 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft \(H)(l/2) = Pa2 = '^a(D) = P33=n,2{D)(l/2) = P.-n,(H) = Pe = E = Psf = SF = Force (kips) 27.104 0.000 0.000 2.400 5.800 0.000 Arm (ft) PRESSURE {ksfl 3.667 +D) D/2) D/3) 6 4.5 11 +D) +D) +0) Moment atO(k-ft) 99.38 + 0.00 d' 0.00 d' 2.40 D + 5.80 D + 0.00 D + 27.10 D 14.4 26.1 0 P.= ^p{D)(l/2) =0.75 ( D/3)0.25 D' Driving Moment, DM = XoD^+YD^+ZD+C Resisting Moment, RM = (XRjD'^S RM with F.O.S. = (XR)D'^3 Xq: 0.00 Y: 0.00 Xb: 0.25 Xr; 0.19 Yr: 0 Z: 35.30 Z«: 0 C: 139.88 C:0 <- Terms divided by 1.3 Calcs for Beamlsl; 9 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD''2+2D+C-(XR}D'^3 =0.00 Embedment Depth: 15.2118 ft 20% Rotational Increase per TSM 6.1: 18.2541 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): Pai+PazY+PajY^+Ps+Pe+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 6.86 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: ,2 /w3 /v,.../-»v.n /X,... pxfX « /v/3,Mmax= pAi(Y+H/3)+PA2(Y72)+pA3(V73)+Ps{Y+H/2)+Pe(Y+H-DE)-Pp(Y73)= 301.36 k-ft / g Determine the Pile Deflection; (Use superposition principle) •Utilize a point of fixity at zero shear plane 4.06 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.1837 In Soldier Beam Selection With Overstress Uniform Surcharge:0.03591 in Factor* External Surcharge:0.05346 in Use W24x55 Seismic Load:0 in Mpx/Q =434.631 k' Max Deflection:0.27307 in Ixx =1350 inM Static Deflection:0.27307 in Wall Height =11 ft Required Embed =18.5 ft Total Beam Length =29.5 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamtsl: 10 Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 5 0.28 0.056 0 0.03 5 0.03 0 0 0 0 0 - 6.5 0.193333333 6.5 0.193333 - Beam Calicut:10 Wall Pressures Wall Height, H:5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:6 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch;2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:5 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Active Pressure, Active Pressure 2, 0^2- Surch. Pressure, Oj: Passive Pressure, c^p: (Sp}{A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D)« 1.68 kips/ft 0.336 D kips/ft 0.18 kips/ft 1.5 D kips/ft Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 1 5 0 14.0644 2.71933 0.3 •2 0 2 PRESSURE (ksf) Pai = -a{H){l/2) = Paz=n,(D) = Pa3=^a2(D)(l/2) = P,= rT,{H) = P, = E- Psf = SF = Force (kipsl 4.200 0.000 0.000 0.900 5.800 0.000 Arm fft) X ( 1.667 +D) X { D/2) X ( D/3) X ( 2.5 +D) X ( -1.5 +D) X ( 5 +D) Moment at O (k-ttl 7,00 + 0.00 0^ 0.00 d' 0.90 D + 5.80 D + 0.00 D + 4.20 D 2.25 -8.7 0 Pp='-p(D)(l/2) =0.75 D/3)0.25 D' Driving Moment, DM = XdD^+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RMwith F.O.S. = WD'^B Xp: 0.00 Y: 0.00 Xp: 0.25 Xr: 0.19 Yr: 0 Z: 10.90 Zb:0 C: C: 0.55 0 <- Terms divided by 1.3 Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D; Caksfor Beamfsl; 10 continued (XD)D'^3+yD'^2+ZD+C-(XR)D^3 = 0.00 Embedment Depth: 7.55369 ft 20% Rotational Increase per TSM 6.1: 9.06443 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): Pai+PazY+PasY^+Ps+Pe+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 3.81 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmak= Pai(Y+H/3)+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 28.2524 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 2.01 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.01382 in Soldier Beam Selection With Overstress Uniform Surcharge:0.00546 in Factor* External Surcharge:5.2E-05 in Use W16X26 Seismic Load;0 in Mpx/Q =143.363 k* Max Deflection:0.01934 in Ixx =301 inM Static Deflection:0.01934 in Wall Height =5 ft Required Embed =9.5 ft Total Beam Length =14.5 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(s): 11 Driving Pressures; Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 5 0.28 0.056 0 0.03 5 0.03 0 0 0 0 0 - 6.5 0.193333333 6.5 0.193333 - Beam Callout:11 Wall Pressures Wall Height, H:5 ft Active Pressure, A:56 pcf Beam Spacing, Sp;6 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:5 ft beyond Cut Depth?External Surcharge, E:5.8 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Active Pressure, rr,: Active Pressure 2, Cgj: Surch. Pressure, Cj: Passive Pressure, {Sp)(A)(H} = {Sp)(A)(D} = (Su)(Sp) = (Arch)(d)(P)(D) = 1.68 kips/ft 0.336 D kips/ft 0.18 kips/ft 1.5 D kips/ft Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 5 0 14.0644 2.71933 0.3 -4 •2 0 2 PRESSURE (ksf) ^(H)(l/2) = Pa2 = '^a(D) = P,3='^a2{D)(l/2) = P.= n,(H) = Pe = E = Psf = SF = Force (kips) 4.200 0.000 0.000 0.900 5.800 0.000 Arm (ft) 1.667 +D) D/2) D/3) 2.5 -1.5 5 +D) +0) +D) Moment at O (k-tt) 7.00 + 0.00 0.00 0.90 D + 5.80 D + 0.00 D + 4.20 D 2.25 -8.7 0 Pp=^d(D)(1/2) =0.75 D/3)0.25 D' Driving Moment, DM = XdD^+YD^+ZD+C Resisting Moment, RM = (XR}D'^3 RM with F.O.S. = (XR)D'^3 Xq: 0.00 Y: 0.00 Xr: 0.25 Xr: 0.19 Yr; 0 Z: 10.90 Zo: 0 C: C: 0.55 0 <- Terms divided by 1.3 Calcs for Beamfs); 11 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)DA3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 7.55369 ft 20% Rotational Increase perTSM 6.1: 9.06443 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): Pai+PajY+PasY'+Ps+Pe+Psf-PpY' =0.00 Plane of Zero Shear is located at 3.81 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+Pa2{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe{Y+H-DE)-Pp{yV3)= 28.2524 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 2.01 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.01382 in Soldier Beam Selection With Overstress Uniform Surcharge:0.00546 in Factor External Surcharge:5.2E-05 in Use W16X26 Seismic Load:0 in Mpx/n =143.363 k' Max Deflection:0.01934 in Ixx =301 InM Static Deflection:0.01934 in Wall Height =5 ft Required Embed =9.5 ft Total Beam Length =14.5 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfs); 12 Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11.5 0.644 0.056 0 0.03 10 0.03 0 0 0 0 0 - 0 0 0 0 - Beam Callout:12 Wall Pressures Wall Height, H:11.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:kips Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Active Pressure, <ya- Active Pressure 2, 032: Surch. Pressure, Oj: Passive Pressure, C pi (Sp)(A}(H) = (Sp)(A)(Dl = (Su)(Sp) = (Arch){d){P}(D) = 5.152 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11.5 0 28.9965 5.248945 0.3 -6 -5 -4 -3 -2 -1 PRESSURE (ksf) M -15 Pai='\(H)(l/2) = Pa2 = 0 3(D) = Pa3=n,a(D)(l/2) = P, = a,(H) = Pe = E = Psf = SF = Force fkips) 29.624 0.000 0.000 2.400 0.000 0.000 Arm (ft) -35 ( 3.833 +D) ( D/2} ( D/3) { 6.5 ( 11.5 { 11.5 +D) +D) +0) Moment at O (k-tt) 113.56 + 0.00 0.00 2.40 D 0.00 D + 0.00 D + 29.62 D 15.6 0 0 Pp=^p(D)(l/2) =0.75 ( D/3)0.25 D' Driving Moment, DM = XdD^+YDVzD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XRID'^S Xq: 0.00 Y: 0.00 X„: 0.25 Xr: 0.19 Yr: 0 Z: 32.02 Zo: 0 C: 129.16 C:0 <- Terms divided by 1.3 Calcsfor Beamfsl: 12 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD'^2+ZD+C-(XR)D^3 =0.00 Embedment Depth: 14.5804 ft 20% Rotational Increase per TSM 6.1: 17.4965 ft Determine the Depth of Zero Shear Plane; (Substitute Y for D): = 0-00 Plane of Zero Shear is located at 6.53 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+Pa2(yV2)+Pa3{yV3)+Ps(Y+H/2)+Pe{Y+H.DE)-Pp(yV3)= 268.664 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 3,89 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.20065 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03958 in Factor* External Surcharge:0 in Use W24x55 Seismic Load;0 in Mpx/n =434.631 k' Max Deflection:0.24023 in Ixx =1350 InM Static Deflection:0.24023 In Wall Height =11.5 ft Required Embed =17.5 ft Total Beam Length =29 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 13 Beam Callout:13 Wall Pressures Wall Height, H:11.25 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:2.3 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:11 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd Oft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11.25 0.63 0.056 0 0.03 10 0.03 0 0 0 0 0 - 11 0.025555556 11 0,025556 - ft ksf ft ksf kef Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11.25 0 28.8486 5.279591 0.3 -6 -5 -3 -2 -1 PRESSURE (ksf) Active Pressure, a,: Active Pressure 2, ^^32' Surch. Pressure, Passive Pressure, Op: (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp)- (Arch}{d}(P)(D) = 5.04 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XRjD'^a Xr: 0.25 Xr: 0.19 Yr: 0 j -15 o -25 -30 Pai=':^a{H)(l/2) = Pa2 = n3(D) = Pa3 = ^a2(D)(l/2)- Force fkiosi 28.350 0.000 0.000 X D X D^ X Arm (ftl ( 3.75 ( D/21 ( D/3) +D) = Moment at O (k-ttl 106.31 + 0.00 d' 0.00 28.35 D -35 Ps=0,(H) =2.400 X { 6.25 +D) =2.40 D +15 II UJ II 2.300 X ( 0.25 -t-D) =2.30 D +0.575 Psf = SF =0.000 X ( 11.25 +D) =0.00 D +0 Pp=rp(D)(l/2) =0.75 D^ X ( D/3}0.25 D^ Driving Moment, DM =XdD'+ydVzd+c Xt,: 0.00 Y: 0.00 Z: 33.05 C:121.89 Zb: 0 C:0 <- Terms divided by 1.3 Calcsfor Beam(sl; 13 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 14.6655 ft 20% Rotational Increase per TSM 6.1: 17.5986 ft Determine the Depth of Zero Shear Plane: fSubstltute Y for D): PAi+PAzY+PAaY^+Ps+Pg+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 6.64 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+P„(yV2)+Pa3(Y'/3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 268.151 k-ft Determine the Pile Deflection; (Use superposition principle) -Utilize a point of fixity at zero shear plane 3.91 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.18753 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03704 in Factor* External Surcharge:0.00244 in Use W24x55 Seismic Load:0 in Mpx/0 =434.631 k' Max Deflection:0.22701 in Ixx -1350 in''4 Static Deflection:0.22701 in Wall Height =11.25 ft Required Embed =18 ft Total Beam Length =29.25 ft Caisson Diameter =2.5 ft *Referto Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl; 14 Beam Callout:14 Wall Pressures Wall Height, H:11 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:2.3 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:4.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11 0.616 0.056 0 0.03 10 0.03 0 0 0 0 0 - 4.5 0.026136364 4.5 0.026136 - Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11 0 28.4483 5.234485 0.3 ' -5 -5 -3 -2 -1 PRESSURE (ksf) Active Pressure, cr,: Active Pressure 2, fjgz' Surch. Pressure, <^5' Passive Pressure, (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch){d)(P){D) = 4.928 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft -5 -10 -25 Pai='^a(H)(l/2) = Pa2=n3(D} = P33-^a2{D)(l/2) = P, = n,(H) = ?, = £ = Psf = SF = Force (kips) 27.104 0.000 0.000 2.400 2.300 0.000 Moment at O (k-tti 99.38 + 0.00 D' 0.00 2.40 D + 2.30 D + 0.00 D + 27.10 D Po=^.{D)(l/2) =0.75 D/3)0.25 0' Driving Moment, DM = XdD^+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S. = (XRiD'^S Xq: 0.00 Y: 0.00 Xf,: 0.25 Xr: 0.19 Yr: 0 Z: 31.80 Zp: 0 C: 128.73 C:0 <- Terms divided by 1.3 Calcsfor Beam(s); 14 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D; (XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 14.5402 ft 20% Rotational Increase perTSM 6.1: 17.4483 ft Determine the Depth of Zero Shear Plane: (Substitute Y for D): 0.00 Plane of Zero Shear is located at 6.51 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= pAi(Y+H/3)+P„(YV2)+PA3{YV3}+Ps{Y+H/2)+PE(y+H-DE)-Pp(YV3)= 266.802 k-ft Determine the Pile Deflection; (Use superposition principle) -Utilize a point of fixity at zero shear plane 3.88 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.17121 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03403 in Factor* External Surcharge:0.03782 in Use W24x55 Seismic Load:0 in Mpx/ll =434.631 k' Max Deflection:0.24306 in Ixx =1350 inM Static Deflection:0.24306 in Wall Height =11 ft Required Embed =17.5 ft Total Beam Length =28.5 ft Caisson Diameter =2.5 ft •Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(sk 15-17 Beam Caliout:15-17 Wall Pressures Wall Height, H;11 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:2.3 kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^\4.5 ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd 0 ft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 11 0.616 0.056 0 0.03 10 0.03 0 0 0 0 0 - 4.5 0.026136364 4.5 0.026136 - Active Pressure, rr,: Active Pressure 2, c 32: Surch. Pressure, '^'>5: Passive Pressure, c^p: (Sp)(AHH) = (Sp){A)(D) = {Su)(Sp) = (Arch)(d)(P)(D) = 4.928 kips/ft 0.448 D kips/ft 0.24 kIps/ft 1.5 D kips/ft P,i = n,(H)(l/2) = Pa2 = ^.(D) = P.3=n,2{D)(l/2) = P,= rT,(H) = P, = E = Psf = SF = Force (kips) 27.104 0.000 0.000 2.400 2.300 0.000 Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 11 0 28.4483 5.234485 0.3 ft ksf ft ksf -6 -5 -4 -3 -2 -1 PRESSURE (ksf) -5 -10 d X -IS I- a. UJ a -20 -25 Arm (ft) X { 3,667 +D) X ( D/2) X { D/3) X ( 6 +D) X ( 6.5 +D) X ( 11 +D) -30 Moment at O (k-tt) 99.38 + 0.00 0.00 2.40 D + 2.30 D + 0.00 D + 27.10 D 14.4 14.95 0 Pp=^p(D)(l/2} =0.75 ( D/3)0.25 D' Driving Moment, DM = XqD^+YD^+ZD+C Resisting Moment, RM = (XR)D'^3 RM with F.O.S.= (XR)D'^3 Xq: 0.00 Y: 0.00 Xr: 0.25 Xr: 0.19 Y„: 0 Z: 31.80 4:0 C: 128.73 C:0 <-Terms divided by 1.3 Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: Calcs for Beamfs); 15-17 contmued (XD)D'^3+YD'^2+ZD+C-(XR}D'^3 = 0.00 Embedment Depth: 14.5402 ft 20% Rotational Increase per TSM 6.1: 17.4483 ft Determine the Depth of Zero Shear Plane: fSubstitute Y for D): PAi+pA2Y+PA3Y^+Ps+PE+PsrPpY' = 0.00 Plane of Zero Shear is located at 6.51 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+P„{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 266.802 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 3.88 feet below bottom of excavation Estimated Deflection Due To: Active Pressure;0.17121 in Soldier Beam Selection With Overstress Uniform Surcharge:0.03403 in Factor* External Surcharge:0.03782 in Use W24x55 Seismic Load:0 In Mpx/(] =434.631 k' Max Deflection:0.24306 in Ixx =1350 InM Static Deflection:0.24306 in Wat! Height =11 ft Required Embed =17.5 ft Total Beam Length =28.5 ft Caisson Diameter =2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodoloev Catcs of Beamfs): 18 Beam Callout:18 Wall Pressures Wall Height, H:10.5 ft Active Pressure, A:56 pcf Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch;2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:10 ft beyond Cut Depth?External Surcharge, E:kips Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd Oft Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 10.5 0.588 0.056 0 0.03 10 0.03 0 0 0 0 0 - 0 0 0 0 - Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 10.5 0 26.5801 4.824044 0.3 -6 -5 -3 -2 PRESSURE_tksf) -1 Active Pressure, Active Pressure 2, 0,2: Surch. Pressure, O j: Passive Pressure, Cpt (Sp)(A)(H) = {Sp}(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = 4.704 kips/ft 0.448 D kips/ft 0.24 kips/ft 1.5 D kips/ft -30 Force (kios)Arm fftl Moment at 0 (k-tt) Pai='-a(H)(l/2)= 24.696 X ( 3.5 +D) =86.44 +24.70 D Pa2="a(D)= 0.000 D X ( D/2)=0.00 D^ Pa3=^a2(D)(l/2)= 0.000 X ( D/3)0.00 D^ Ps=Os(H)= 2.400 X ( 5.5 +D) =2.40 D ■f 13.2 Pe=E= 0.000 X ( 10.5 +D) =0.00 D +0 Psf = SF = o.OOO X ( 10.5 +D) =0.00 D +0 Pp=rTp(D)(l/2)= 0.75 D^ X ( D/3)0.25 d' Driving Moment, DM = XdD^+YD^+ZD+C Xd: 0.00 Y: 0.00 Z: 27.10 C:99.64 Resisting Moment, RM = (XR)D'^3 Xg: 0.25 RM with F.O.S. = (XRjD'^S Xr: 0.19 Y„;0 Z„:0 C:0 <- Terms divided by 1.3 Calcsfor Beam(sl: 18 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D:(XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00 Embedment Depth: 13.4001 ft 20% Rotational Increase per ISM 6.1: 16.0801 ft Determine the Depth of Zero Shear Plane: fSubstitute Y for D): Pai+PazY+PasY^+Ps+Pe+Psf'PrY^ = 0.00 Plane of Zero Shear is located at 6.01 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+Pa2(yV2)+Pa3(YV3)+Ps{Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 208.213 k-ft ?^P! Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 3.57 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.20592 in Soldier Beam Selection With Overstress Uniform Surcharge:0.04224 in Factor« External Surcharge:0 in Use W21x44 Seismic Load:0 in Mpx/[} =309.431 k' Max Deflection:0.24816 In Ixx =843 inM Static Deflection:0.24816 in Wall Height =10.5 ft Required Embed =16.5 ft Total Beam Length =27 ft Caisson Diameter =2.5 ft •Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(s); 19 Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 6 0.336 0.056 0 0.03 6 0.03 0 0 0 0 0 - 0 0 0 0 - Beam Callout:19 Wall Pressures Wall Height, H:6 ft Active Pressure, A:56 pcf Beam Spacing, Sp:6 ft Passive Pressure, P:300 pcf Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf Arching, Arch:2 Uniform Surcharge, Su:30 psf Active Pressure No Uni. Surch. Depth:6ft beyond Cut Depth?External Surcharge, E:kips Factor Of Saftey:1.3 Depth of Ext. Surch, D^:ft Max Beam Depth?:no max Seismic Force, SF:0 kips Seismic Depth, Sd Oft Active Pressure, rr,: Active Pressure 2, Ca2' Surch. Pressure, Passive Pressure, '"^p: (Sp)(A)(H) = (Sp)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(0) = 2.016 kips/ft 0.336 D kips/ft 0.18 kips/ft 1.5 D kips/ft Resisting Pressures Starting Depth Starting Pressure Ending Depth Ending Pressure Slope 6 0 14.3583 2.507483 0.3 -i ■2.5 -i.b -1 -0.5PRESSURE (ksf)U.5 P,i=-a(H)(l/2) = ^2=^^3(0) = P«=naz(D)(l/2) = P,= rT^(H) = P£=E = Psf = SF = Force (kips) 6.048 0.000 0.000 1.080 0.000 0.000 +D) Moment at 0 (k-ttl 12.10 + 0.00 0.00 1.08 D + 0.00 D + 0.00 D + 6.05 D Po='^d(D)(1/2) =0.75 D/3)0.25 D' Driving Moment, DM = XdDVyD^+ZD+C Resisting Moment, RM = (XRlD'^S RM with F.O.S. = {XR)D^3 Xq: 0.00 Y: 0.00 Z: 7.13 X„: 0.25 Xr: 0.19 Yr: 0 Zr: 0 C: C: 15.34 0 <-Terms divided by 1.3 Calcsfor Beam(sh 19 continued Set Driving Moment equal to Resisting Moment and solve for 0 by changing the depth of Embed, D: (XD)D'^3+YD'^2+ZD+C-{XR)D'^3 =0.00 Embedment Depth: 6.96523 ft 20% Rotational Increase perTSM 6.1: 8.35828 ft Determine the Depth of Zero Shear Plane: fSubstitute Y for D): = 0.00 Plane of Zero Shear is located at 3.08 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: Mmax= Pai(Y+H/3)+P;^2(yV2)+P„(yV3)+Ps(Y+H/2)+Pe(Y+H-DE}-Pp(yV3)= 29.9857 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at zero shear plane 1.86 feet below bottom of excavation Estimated Deflection Due To: Active Pressure:0.02291 in Soldier Beam Selection With Overstress Uniform Surcharge:0.00817 in Factor* External Surcharge:0 in Use W16X26 Seismic Load:0 in Mpx/0 =143.363 k' Max Deflection:0.03107 in Ixx =301 in«4 Static Deflection:0.03107 in Wall Height =6 ft Required Embed =8.5 ft Total Beam Length =14.5 ft Caisson Diameter =2.5 ft *Referto Design Criteria Sheet for Overstress information Overstress Factor = 130 % Lateral Earth Pressure on Lagging Design Spreadsheet Maximum Depth of Excavation: 11.5 feet Max Lagging Clear Spacing 7.3 feet Active Pressure: 56 pcf Max Uniform Surcharge: 30 psf Max External Surcharge: 111.53846 psf Lagging without external surcharges (other than uniform required surcharge) have been shown to have a maximum lagging load of 400psf per ISM, 2011. The walls of this shoring system have an external surcharge, therefore use 0.6 multiplied by the maximum design load to calculate the lagging size. 0.6 is a reduction due to arching. Lagging Depth Lateral Pressure Uniform Surcharge External Surcharge Total Load Lagging Mom. Mmax = wL^2/8 Required Sx Required Lagging Size Required Lagging Size(ft)(psf) (psf) (psf)(psf)(Ib-ft/ft)(in'^3) 0 0 30 111.53846 66.92308 267.5 2.00 3x12 Lagging 3x12 Laggini 1 56 30 111.53846 100.5231 401.8 3.00 3x12 Lagging 3x12 Laggini 2 112 30 111.53846 142 567.5 5.00 3x12 Lagging 3x12 Laggini 3 168 30 111.53846 198 791.4 6.00 3x12 Lagging 3x12 Laggini 4 224 30 111.53846 254 1015.2 8.00 3x12 Lagging 3x12 Laggini 5 280 30 111.53846 310 1239.0 10.00 3x12 Lagging 3x12 Laggini 6 336 30 111.53846 366 1462.8 12.00 3x12 Lagging 3x12 Laggini 7 392 30 0 422 1686.6 14.00 3x12 Lagging 3x12 Laggini 8 448 30 0 478 1910.4 16.00 4x12 Lagging 3x12 Laggini 9 504 30 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini 10 560 30 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini 11 616 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini 12 672 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini 13 728 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini 14 784 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 15 840 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 16 896 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 17 952 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 18 1008 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 19 1064 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini 20 1120 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini Check Douglas Fir Larch; fb = 850psi fb =fb 850 " Cd 1.25 * Ct 1 * Cl 1 1.1 -FU 1.1 * c, 1 1.15 fb= 1478.4688 Using Rough Sawn Lagging (approximately 1/8" Larger than Dressed) Sx of 3x12 Lagging: 13.1 in'^Sfor 3x12 Lagging Sx of 4x12 Lagging: 24.9 in'^Sfor 4x12 Lagging Sx of 6x12 Lagging: 61.3 ln'^3 for 6x12 Lagging