HomeMy WebLinkAboutCDP 16-07; OTA RESIDENCE; OTA RESIDENCE TEMPORARY SHORING; 2017-08-07 (2)RECORD COPY
Initiai Date
Temporary Shoring
Calculation Package
V
BergerABAM \
Ota Residence Temporary Shoring P
CDP 16-07
GR 2017-006
Carlsbad, CA.ctS
OQ
"a>
CO
-C
o
Submitted to:
Western Foundations
Lakeside, CA.
A17.0004.28 August 7, 2017
Design Criteria:
1. state of California CALTRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM.)
2. 2013 CBC
Geotechnical Information:
These calculations are based on the Geotechnical Report issued by:
Firm Name: GCI
Project Number: 16-11073
Dated: 16-May-16
Design Parameters;
Cantilevered Shoring Rostrainod Shoring
At rest Pressure 56 pcf 22 psf Calculate Active Pressure
Passive Pressure 300 psf/ft 2^pef/ff below Excavation?
Max Passive Pressure 0 psf ocnn
Minimum Surcharge*30 psf 22 psf
Factor of Safety 1.3
Seismic Pressure 0 H, psf ±2, H n'-ff tf Inverted triangular Distribution
Arching:
Pile Spacing (s)Arching Factor Soil Internal Friction Angle (0): 30 degrees
<3*d 3 Drilled Pile Diameter (d): varies feet
>3*d 0.08*:'^ (<3)
For the tvoical soacina of 8 feet on center:Calculated; User Inout:
No
and 2'-0" Diameter Caissons, use an Arching Factor of:
and 2'-6" Diameter Caissons, use an Arching Factor of:
and 3'-0" Diameter Caissons, use an Arching Factor of:
3
3
2.4
Overstress Factor:
Short term increases are allowed to allowable stresses (up to 133%) per
TSM 5.3 except in the following situations:
1. Excavations are not temporary (in service more than 90 days)
2. Dynamic Loadings are present (seismic, pile-driving, etc)
3. Excavations are adjacent to railroads
4. Analysis of horizontal struts.
Allow overstress?
How Much?
Yes
130 %
Global Parameters;
Active Pressure:56 pcf
Passive Pressure:300 pcf
Max Passive Pressure:0 psf
Factor Of Safety:1.3
Seismic Load 0 H, psf Temporary Shoring Design Parameters
Beam Callouts Design Cut
(ft.)
Cut on Sch. (If
different from
Cutl
Surch
(psf)
Uniform
Surch Depth
(ft)
Seismic Loac
(kip)
Seismic
Depth (ft)
External
Surch (kip)
depth of| Beam
ext. 1 Spacing
surch (ftl (ft.)
Caisson
Dia. (ft.)
Max Web
Depth (in.)
1 5.5 30 5.5 0 0 6 2.5 no max
2 7.5 30 7.5 0 0 5.8 6.5 8 2.5 no max
3 9 30 9 0 0 5.8 6.5 8 2.5 no max
4-5 10.5 30 10 0 0 5.8 6.5 8 2.5 no max
6-7 11 30 10 0 0 5.8 6.5 8 2.5 no max
8 11.5 11.5 30 10 0 0 5.8 6.5 8 2.5 no max
9 11 12 30 10 0 0 5.8 6.5 8 2.5 no max
10 5 30 5 0 0 5.8 6.5 6 2.5 no max
11 5 30 5 0 0 5.8 6.5 6 2.5 no max
12 11.5 30 10 0 0 8 2.5 no max
13 11.25 11.5 30 10 0 0 2.3 11 8 2.5 no max
14 11 11.5 30 10 0 0 2.3 4.5 8 2.5 no max
15-17 11 30 10 0 0 2.3 4.5 8 2.5 no max
18 10.5 30 10 0 0 8 2.5 no max
19 6 30 6 0 0 6 2.5 no max
Back Lagged
Beam
Neglect the top 1 feet of soil
Design Results Results for Schedule
*all dimensions in feet
Callout
Deflection
Beam Size (in)
Rea. Moment
(K-ft)
Embed, (ft.)
1 W16X26 0.02 23.56 8.00
2 W16X26 0.20 113.94 13.50
3 W21x44 0.17 181.32 16.00
4-5 W24x55 0.22 268.08 18.00
6-7 W24X55 0.27 301.36 18.50
8 W24x68 0.25 337.23 19.00
9 W24x55 0.27 301.36 18.50
10 W16X26 0.02 28.25 9.50
11 W16X26 0.02 28.25 9.50
12 W24X55 0.24 268.66 17.50
13 W24x55 0.23 268.15 18.00
14 W24X55 0.24 266.80 17.50
15-17 W24x55 0.24 266.80 17.50
18 W21x44 0.25 208.21 16.50
19 W16X26 0.03 29.99 8.50
Callout Beam Size
Caisson
Diameter (ft)
Cut on
Sched. (ft)
Emb.(ft)Total (ft)
1 W16X26 2.5 5.5 9.0 14.5
2 W16X26 2.5 7.5 14.5 22.0
3 W21x44 2.5 9.0 17.0 26.0
4-5 W24x55 2.5 10.5 19.0 29.5
6-7 W24x55 2.5 11.0 19.5 30.5
8 W24X68 2.5 11.5 20.0 31.5
9 W24x55 2.5 12.0 19.5 31.5
10 W16X26 2.5 5.0 10.5 15.5
11 W16X26 2.5 5.0 10.5 15.5
12 W24x55 2.5 11.5 18.5 30.0
13 W24x55 2.5 11.5 19.0 30.5
14 W24x55 2.5 11.5 18.5 30.0
15-17 W24X55 2.5 11.0 18.5 29.5
18 W21x44 2.5 10.5 17.5 28.0
19 W16X26 2.5 6.0 9.5 15.5
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 1
Beam Callout:1 Wall Pressures
Wall Height, H:5.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp;6 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure Uni. Surch. Depth:5.5 ft
beyond Cut Depth?External Surcharge, E:kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 5.5 0.308 0.056
0 0.03 5.5 0.03 0
0 0 0 0 -
0 0 0 0 1
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
5.5 0 13.2131 2.313919 0.3
-2.5 ■2 -1.5 -1 -0.5PRESSURE (ksf)
Active Pressure,
Active Pressure 2,
Surch. Pressure,
Passive Pressure, O p:
(Sp)(A)(H) =
(Sp)(A)(D} =
(Su)(Sp) =
(Arch)(d)(P)(D) =
1.848 kips/ft
0.336 0 kIps/ft
0.18 kips/ft
1.5 D kips/ft
Pal=-^a{H)(l/2) =
Pa2 = na(D} =
Pa3="a2{D)(l/2} =
Ps=a,(H) =
Pe = E =
Psf = SF =
Force (kips)
5.082
0.000
0.000
0.990
0.000
0.000
Moment atO (k-tt)
9.32 +
0.00 d'
0.00 d'
0.99 D +
0.00 D +
0.00 D +
5.08 D
0.5
M -6
-10
Pd=^o(D)(1/2) =0.75 ( 0/3)0.25 0'
Driving Moment, DM = XdD'+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XR)D'^3
Xq: 0.00 Y: 0.00 Z: 6.07
Xr: 0.25
Xr: 0.19 Y„: 0 Zr: 0
C;
C:
12.04
0 <- Terms divided by 1.3
Calcs for Beam(s): 1 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)DM+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 6.42755 ft
20% Rotational Increase per TSM 6.1: 7.71306 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
= 0.00 Plane of Zero Shear is located at 2.85 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear;
Mmax= Pai(Y+H/3}+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp{yV3)= 23.5575 k-ft
Determine the Piie Defiection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
1.71 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.01497 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.00581 in Factor*
External Surcharge:0 in Use W16X26
Seismic Load:0 in Mpx/Q =143.363 k'
Max Deflection:0.02078 in Ixx =301 InM
Static Deflection:0.02078 in Wall Height =5.5 ft
Required Embed =8 ft
Total Beam Length =13.5 ft
Caisson Diameter =2.5 ft
*Referto Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 2
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 7.5 0.42 0.056
0 0.03 7.5 0.03 0
0 0 0 0 ]
6.5 0.096666667 6.5 0.096667 -
Beam Callout:2 Wall Pressures
Wall Height, H:7.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch;2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:7.5 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd Oft
Active Pressure,
Active Pressure 2, ':^a2"
Surch. Pressure,
Passive Pressure, Cp:
(Sp){A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
3.36 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
7.5 0 20.9426 4.032767 0.3
-5 -4 -3 -2 -1 0 1
PRESSURE (ksf)
-5
-.-10
&
S -15
-20
Pa: = '%(H)(l/2} =
P.2=<^.iO) =
Pa3-^a2(D)(l/2) =
Ps=^s(H) =
Ph-E =
Psf = SF =
Force (kips)
12.600
0.000
0.000
1.800
5.800
0.000
Arm fft)
-25
2.5
D/2)
D/3)
3.75
1
7.5
+D)
+D)
+D)
+D)
Moment atO(k-ttl
31.50 +
0.00
0.00 d'
1.80 D +
5.80 D +
0.00 D +
12.60 D
6.75
5.8
0
Pp='"p(D}(l/2) =0.75 D/3)0.25 D'
Driving Moment, DM = XoD^+YD^+ZD+C
Resisting Moment, RM = {XR)D'^3
RM with F.O.S. = (XRjD'^S
Xd: 0.00 Y: 0.00
Xr: 0.25
X„: 0.19 Yr; 0
Z: 20.20
Za: 0
C: 44.05
C:0 <- Terms divided by 1.3
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
Calcs for Beamfsh 2 continued
(XD)D^3+yD'^2+ZD+C-(XR}D'^3 =0.00
Embedment Depth: 11.2021 ft
20% Rotational Increase perTSM 6.1: 13.4426 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for Pi;
0.00 Plane of Zero Shear is located atPai+Pa2Y+Pa3Y^+P.+Pp+P«-PpY^ =S-rrE-rrsF rpi 5.19 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= PAi(Y+H/3)+P„(YV2}+PA3{YV3}+Ps(Y+H/2)+PE{Y+H-DE)-Pp(yV3)= 113.938 k-ft
Determine the Pile Deflection; (Use superposition principle)
-Utilize a point of fixity at zero shear plane
2.99 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.13737 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03632 in Factor*
External Surcharge:0.02426 in Use W16X26
Seismic Load:0 in Mpx/l) =143.363 k'
Max Deflection:0.19795 in Ixx =301 inM
Static Deflection:0.19795 in Wall Height =7.5 ft
Required Embed =13.5 ft
Total Beam Length =21 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfs): 3
Driving Pressures;
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 9 0.504 0.056
0 0.03 9 0.03 0
0 0 0 0 -
6.5 0.080555556 6.5 0.080556 -
Beam Caliout:3 Wall Pressures
Wall Height, H:9 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:9 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF;0 kips
Seismic Depth, Sd Oft
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
9 0 24.5239 4.657176 0.3
-5 -4 -3 -2 -1 0
PRESSURE (ksf)
Active Pressure,
Active Pressure 2, Cgi-
Surch. Pressure,
Passive Pressure, Op.
{SpKA)(H) =
(Sp)(A)(D} =
(Su)(Sp) =
(Arch)(d)(P)(D) =
4.032 kips/ft
0.448 D kips/ft
0.24 kIps/ft
1.5 D kips/ft
-5
-10
-15
-20
Pal=0a{H)(l/2) =
Pa3 = ".2(D)(l/2) =
Ps = ^s(H) =
Pe = E =
Psf = SF =
Force (kipsi
18.144
0.000
0.000
2.160
5.800
0.000
Arm (ft)
( 3
{ D/2)
( D/3)
( 4.5
( 2.5
( 9
-30
+D)
+D)
+D)
+D)
Moment at O (k-ttl
54.43 +
0.00
0.00
2.16 D +
5.80 D +
0.00 D +
18.14 D
9.72
14.5
0
Pp=^p{D)(l/2) =0.75 D/3}0.25 D'
Driving Moment, DM = X^D^+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XRjD'^S
Xp: 0.00 Y: 0.00
X(,: 0.25
Xr: 0.19 Yr; 0
Z: 26.10
Zr: 0
C: 78.65
C:0 <- Terms divided by 1.3
Calcs for Beamfsl:
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D;
3 continued
{XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 12.9366 ft
20% Rotational Increase per TSM 6.1: 15.5239 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D1;
PAl+PA2Y+PA3Y'+Ps+PE+PsrPpY' =0.00 Plane of Zero Shear is located at 5.90 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+P,2(yV2)+Pa3(yV3}+P5(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 181.321 k-ft 111
Determine the Pile Deflection: (Use superposition principle)
•Utilize a point of fixity at zero shear plane
3.45 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.1147 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.02557 in Factor*
External Surcharge:0.02878 in Use W21X44
Seismic Load:0 in Mpx/(} =309.431 k'
Max Deflection:0.16905 in lxx =843 in'^4
Static Deflection:0.16905 in Wall Height =9 ft
Required Embed =16 ft
Total Beam Length =25 ft
Caisson Diameter =2.5 ft
•Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamish 42830
Beam Callout:S-Apr Wall Pressures
Wall Height, H:10.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 10.5 0.588 0.056
0 0.03 10 0.03 0
0 0 0 0 -
6.5 0.069047619 6.5 0.069048 -
Active Pressure, r,:
Active Pressure 2, '^32:
Surch. Pressure, Oji
Passive Pressure, Cp:
(Sp){A)(H) =
(Sp)(A}(Dl =
{5u)(Sp) =
(Arch)(d){P)(D) =
4.704 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
P3l = '^a(H)(l/2) =
P.2 = ^M =
Pa3='^a2(D)(l/2) =
P,= rT3{H) =
Pe = E =
Psf = SF =
Force (kips)
24.696
0.000
0.000
2.400
5.800
0.000
Arm (ft)
( 3.5
( D/2)
{ D/3)
( 5.5
{ 4
( 10.5
Resisting Pressures;
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
10.5 0 28.0814 5.274413 0.3
-6
+D)
+D)
+D)
+D)
-4 -2
PRESSURE {ksf)
Moment atO(k-ttl
86.44 +
0.00 d'
0.00
2.40 D +
5.80 D +
0.00 D +
24.70 D
13.2
23.2
0
-5
-10
£
X -15
UJ
a
-20
-25
-30i
Po='-d(D)(1/2) =0.75 ( D/3)0.25 D'
Driving Moment, DM = XoD^+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM\«ith F.O.S. = (XR)D'^3
Xq: 0.00 Y: 0.00
X„: 0.25
Xfi! 0.19 Yr: 0
Z: 32.90
Zo: 0
C: 122.84
C:0 <- Terms divided by 1.3
Calcs for Beam(s^: 42830 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D;
(XD)D'^3+YD^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 14.6511 f^
20% Rotational Increase per TSM 6.1: 17.5814 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D);
Pai+Pa2Y+Pa3Y^+Ps+Pe+Psf*PpY^ = 0.00 Plane of Zero Shear is located at 6.62 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pa!(Y+H/3)+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp{yV3)= 268.078 k-ft
Determine the Pile Deflection: fUse superposition principle)
-Utilize a point of fixity at zero shear plane
3.91 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.14765 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.02939 in Factor*
External Surcharge:0.04218 in Use W24x55
Seismic Load:0 in Mpx/^) =434.631 k'
Max Deflection:0.21923 in Ixx =1350 inM
Static Deflection:0.21923 in Wall Height -10.5 ft
Required Embed =18 ft
Total Beam Length =28.5 ft
Caisson Diameter =2.5 ft
*Referto Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Caics of Beamfs): 42893
Driving Pressures;
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
0 0 11 0.616 0.056
0 0.03 10 0.03 0
0 0 0 0 -
6.5 0.065909091 6.5 0.065909 -
Beam Callout:7-Jun Wall Pressures
Wall Height, H:11 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Active Pressure, rr,:
Active Pressure 2, ^^2'-
Surch. Pressure,
Passive Pressure, Cp:
(Sp}(A)(H) =
(Sp)(A){D) =
(Su}{Sp) =
(Arch){d)(P)(D) =
4.928 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
Resisting Pressures;
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11 0 29.2541 5.476236 0.3
-6 -4 -2 0
PRESSURE (ksf)- 0
-5
-10
g-15
X
-20
a
-25
-30
P,:='^a(H){l/2) =
Paa=n.(D) =
Pa3 = ^a2(DHl/2)-
P, = n,(H) =
Pe = E =
Psf = SF =
Force (kips)
27.104
0.000
0.000
2.400
5.800
0.000
Arm (ft)
-35
( 3.667 +D)
( D/2)
{ D/3)
( 6
{ 4.5
( 11
+D)
+D)
+D)
Moment at 0 (k-tt}
99.38 +
0.00
0.00 d'
2.40 D +
5.80 D +
0.00 D +
27.10 D
14.4
26.1
0
P» = ^c(D)(l/2) =0.75 D/3)0.25 D'
Driving Moment, DM = XdD^YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XR)D'^3
Xq: 0.00 Y: 0.00
X„: 0.25
Xr: 0.19 Yr: 0
Z; 35.30
Zr; 0
C: 139.88
C:0 <- Terms divided by 1.3
Calcs for Beam{s); 42893 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 15.2118 ft
20% Rotational Increase perTSM 6.1: 18.2541 ft
Determine the Depth of Zero Shear Plane; fSubstitute Y for D):
Pai+Pa2Y+Pa3Y^+Ps+Pe+Psf"PpY^ = 0.00 Plane of Zero Shear is located at 6.86 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear;
Mmax= Pai(Y+H/3)+Pa2(yV2)+P«(yV3)+Ps(Y+H/2)+Pe{Y+H-DE)-Pp(yV3)= 301.36 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
4.06 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.1837 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03591 in Factor*
External Surcharge:0.05346 in Use W24x55
Seismic Load:0 in Mpx/n =434.631 k'
Max Deflection:0.27307 in lxx =1350 inM
Static Deflection;0.27307 in Wall Height =11 ft
Required Embed =18.5 ft
Total Beam Length =29.5 ft
Caisson Diameter =2.5 ft
•Refer to Design Criteria Sheet for
Overstress Information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Caics of Beam(s); 8
Driving Pressures;
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11.5 0.644 0.056
0 0.03 10 0.03 0
0 0 0 0 -
6.5 0.063043478 6.5 0.063043 -
Beam Callout:8 Wall Pressures
Wall Height, H:11.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Active Pressure, r,:
Active Pressure 2, 0^2-
Surch. Pressure,
Passive Pressure,
(Sp)(A)(H) =
(Sp}(A)(D) =
(Su)(Sp) =
(Arch){d)(P)(D) =
5.152 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11.5 0 30.4289 5.678678 0.3
-6 -4 -2
PRESSURE (ksf)
- -15
Pal = '^a(H)(l/2) =
Pa2=^a(D)-
Pa3="a2(D)(l/2) =
Ps=^.(H) =
Pe = E =
Psf = SF =
Force (kips) Arm (ft)
29.624 X ( 3.833 +D)
0.000 D X ( D/2)
0.000 X ( D/3)
2.400 X ( 6.5 +D)
5.800 X ( 5 +D)
0.000 X ( 11.5 +D)
Moment at O (k-ttl
113.56 +
0.00
0.00
2.40 D +
5.80 D +
0.00 D +
29.62 D
15.6
29
0
Pp=^p(D)(l/2) =0.75 0/3)0.25 D'
Driving Moment, DM = XdDVydVzD+C
Resisting Moment, RM = {XR)D'^3
RM Nwith F.O.S. = {XR)D'^3
Xq; 0.00 Y: 0.00 Z: 37.82
Xr: 0.25
Xr: 0.19 Yr: 0 ZrI 0
C; 158.16
Ci 0 <- Terms divided by 1.3
Calcsfor Beamfsl: 8 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD'^2+ZD+C-{XR}D'^3 =0.00
Embedment Depth: 15.7741 ft
20% Rotational Increase per TSM 6.1: 18.9289 ft
Determine the Depth of Zero Shear Plane; (Substitute Y for D):
= 0.00 Plane of Zero Shear is located at 7.10 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
M„ax= Pai(Y+H/3)+P«{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 337.231 k-ft
Determine the Pile Deflection: (Use superposition princlplel
-Utilize a point of fixity at zero shear plane
4.21 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.16709 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03197 in Factor*
External Surcharge:0.04912 in Use W24x68
Seismic Load:0 in Mpx/(] =574.102 k'
Max Deflection:0.24818 in Ixx =1830 in'^4
Static Deflection:0.24818 in Wall Height =11.5 ft
Required Embed =19 ft
Total Beam Length =30.5 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodoloev Calcs of Beamfsh 9
Beam Calicut:9 Wall Pressures
Wall Height, H:11 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd Oft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11 0.616 0.056
0 0.03 10 0.03 0
0 0 0 0 -
6.5 0.065909091 6.5 0.065909 -
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11 0 29.2541 5.476236 0.3
-6
Active Pressure,
Active Pressure 2, <^32
Surch. Pressure, Oj
Passive Pressure, Tp
(Sp)(A)(H)
{Sp)(A)(D)
(Su)(Sp)
(Arch)(d)(P)(D) =
4.928 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
\(H)(l/2) =
Pa2 = '^a(D) =
P33=n,2{D)(l/2) =
P.-n,(H) =
Pe = E =
Psf = SF =
Force (kips)
27.104
0.000
0.000
2.400
5.800
0.000
Arm (ft)
PRESSURE {ksfl
3.667 +D)
D/2)
D/3)
6
4.5
11
+D)
+D)
+0)
Moment atO(k-ft)
99.38 +
0.00 d'
0.00 d'
2.40 D +
5.80 D +
0.00 D +
27.10 D
14.4
26.1
0
P.= ^p{D)(l/2) =0.75 ( D/3)0.25 D'
Driving Moment, DM = XoD^+YD^+ZD+C
Resisting Moment, RM = (XRjD'^S
RM with F.O.S. = (XR)D'^3
Xq: 0.00 Y: 0.00
Xb: 0.25
Xr; 0.19 Yr: 0
Z: 35.30
Z«: 0
C: 139.88
C:0 <- Terms divided by 1.3
Calcs for Beamlsl; 9 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD''2+2D+C-(XR}D'^3 =0.00
Embedment Depth: 15.2118 ft
20% Rotational Increase per TSM 6.1: 18.2541 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Pai+PazY+PajY^+Ps+Pe+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 6.86 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
,2 /w3 /v,.../-»v.n /X,... pxfX « /v/3,Mmax= pAi(Y+H/3)+PA2(Y72)+pA3(V73)+Ps{Y+H/2)+Pe(Y+H-DE)-Pp(Y73)= 301.36 k-ft / g
Determine the Pile Deflection; (Use superposition principle)
•Utilize a point of fixity at zero shear plane
4.06 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.1837 In Soldier Beam Selection With Overstress
Uniform Surcharge:0.03591 in Factor*
External Surcharge:0.05346 in Use W24x55
Seismic Load:0 in Mpx/Q =434.631 k'
Max Deflection:0.27307 in Ixx =1350 inM
Static Deflection:0.27307 in Wall Height =11 ft
Required Embed =18.5 ft
Total Beam Length =29.5 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamtsl: 10
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 5 0.28 0.056
0 0.03 5 0.03 0
0 0 0 0 -
6.5 0.193333333 6.5 0.193333 -
Beam Calicut:10 Wall Pressures
Wall Height, H:5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:6 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch;2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:5 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Active Pressure,
Active Pressure 2, 0^2-
Surch. Pressure, Oj:
Passive Pressure, c^p:
(Sp}{A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D)«
1.68 kips/ft
0.336 D kips/ft
0.18 kips/ft
1.5 D kips/ft
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope 1
5 0 14.0644 2.71933 0.3
•2 0 2
PRESSURE (ksf)
Pai = -a{H){l/2) =
Paz=n,(D) =
Pa3=^a2(D)(l/2) =
P,= rT,{H) =
P, = E-
Psf = SF =
Force (kipsl
4.200
0.000
0.000
0.900
5.800
0.000
Arm fft)
X ( 1.667 +D)
X { D/2)
X ( D/3)
X ( 2.5 +D)
X ( -1.5 +D)
X ( 5 +D)
Moment at O (k-ttl
7,00 +
0.00 0^
0.00 d'
0.90 D +
5.80 D +
0.00 D +
4.20 D
2.25
-8.7
0
Pp='-p(D)(l/2) =0.75 D/3)0.25 D'
Driving Moment, DM = XdD^+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RMwith F.O.S. = WD'^B
Xp: 0.00 Y: 0.00
Xp: 0.25
Xr: 0.19 Yr: 0
Z: 10.90
Zb:0
C:
C:
0.55
0 <- Terms divided by 1.3
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D;
Caksfor Beamfsl; 10 continued
(XD)D'^3+yD'^2+ZD+C-(XR)D^3 = 0.00
Embedment Depth: 7.55369 ft
20% Rotational Increase per TSM 6.1: 9.06443 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Pai+PazY+PasY^+Ps+Pe+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 3.81 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmak= Pai(Y+H/3)+Pa2(yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 28.2524 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
2.01 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.01382 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.00546 in Factor*
External Surcharge:5.2E-05 in Use W16X26
Seismic Load;0 in Mpx/Q =143.363 k*
Max Deflection:0.01934 in Ixx =301 inM
Static Deflection:0.01934 in Wall Height =5 ft
Required Embed =9.5 ft
Total Beam Length =14.5 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(s): 11
Driving Pressures;
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 5 0.28 0.056
0 0.03 5 0.03 0
0 0 0 0 -
6.5 0.193333333 6.5 0.193333 -
Beam Callout:11 Wall Pressures
Wall Height, H:5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp;6 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:5 ft
beyond Cut Depth?External Surcharge, E:5.8 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:6.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Active Pressure, rr,:
Active Pressure 2, Cgj:
Surch. Pressure, Cj:
Passive Pressure,
{Sp)(A)(H} =
{Sp)(A)(D} =
(Su)(Sp) =
(Arch)(d)(P)(D) =
1.68 kips/ft
0.336 D kips/ft
0.18 kips/ft
1.5 D kips/ft
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
5 0 14.0644 2.71933 0.3
-4 •2 0 2
PRESSURE (ksf)
^(H)(l/2) =
Pa2 = '^a(D) =
P,3='^a2{D)(l/2) =
P.= n,(H) =
Pe = E =
Psf = SF =
Force (kips)
4.200
0.000
0.000
0.900
5.800
0.000
Arm (ft)
1.667 +D)
D/2)
D/3)
2.5
-1.5
5
+D)
+0)
+D)
Moment at O (k-tt)
7.00 +
0.00
0.00
0.90 D +
5.80 D +
0.00 D +
4.20 D
2.25
-8.7
0
Pp=^d(D)(1/2) =0.75 D/3)0.25 D'
Driving Moment, DM = XdD^+YD^+ZD+C
Resisting Moment, RM = (XR}D'^3
RM with F.O.S. = (XR)D'^3
Xq: 0.00 Y: 0.00
Xr: 0.25
Xr: 0.19 Yr; 0
Z: 10.90
Zo: 0
C:
C:
0.55
0 <- Terms divided by 1.3
Calcs for Beamfs); 11 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)DA3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 7.55369 ft
20% Rotational Increase perTSM 6.1: 9.06443 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
Pai+PajY+PasY'+Ps+Pe+Psf-PpY' =0.00 Plane of Zero Shear is located at 3.81 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+Pa2{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe{Y+H-DE)-Pp{yV3)= 28.2524 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
2.01 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.01382 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.00546 in Factor
External Surcharge:5.2E-05 in Use W16X26
Seismic Load:0 in Mpx/n =143.363 k'
Max Deflection:0.01934 in Ixx =301 InM
Static Deflection:0.01934 in Wall Height =5 ft
Required Embed =9.5 ft
Total Beam Length =14.5 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfs); 12
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11.5 0.644 0.056
0 0.03 10 0.03 0
0 0 0 0 -
0 0 0 0 -
Beam Callout:12 Wall Pressures
Wall Height, H:11.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:kips
Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Active Pressure, <ya-
Active Pressure 2, 032:
Surch. Pressure, Oj:
Passive Pressure, C pi
(Sp)(A}(H) =
(Sp)(A)(Dl =
(Su)(Sp) =
(Arch){d){P}(D) =
5.152 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11.5 0 28.9965 5.248945 0.3
-6 -5 -4 -3 -2 -1
PRESSURE (ksf)
M -15
Pai='\(H)(l/2) =
Pa2 = 0 3(D) =
Pa3=n,a(D)(l/2) =
P, = a,(H) =
Pe = E =
Psf = SF =
Force fkips)
29.624
0.000
0.000
2.400
0.000
0.000
Arm (ft)
-35
( 3.833 +D)
( D/2}
( D/3)
{ 6.5
( 11.5
{ 11.5
+D)
+D)
+0)
Moment at O (k-tt)
113.56 +
0.00
0.00
2.40 D
0.00 D +
0.00 D +
29.62 D
15.6
0
0
Pp=^p(D)(l/2) =0.75 ( D/3)0.25 D'
Driving Moment, DM = XdD^+YDVzD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XRID'^S
Xq: 0.00 Y: 0.00
X„: 0.25
Xr: 0.19 Yr: 0
Z: 32.02
Zo: 0
C: 129.16
C:0 <- Terms divided by 1.3
Calcsfor Beamfsl: 12 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD'^2+ZD+C-(XR)D^3 =0.00
Embedment Depth: 14.5804 ft
20% Rotational Increase per TSM 6.1: 17.4965 ft
Determine the Depth of Zero Shear Plane; (Substitute Y for D):
= 0-00 Plane of Zero Shear is located at 6.53 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+Pa2(yV2)+Pa3{yV3)+Ps(Y+H/2)+Pe{Y+H.DE)-Pp(yV3)= 268.664 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
3,89 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.20065 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03958 in Factor*
External Surcharge:0 in Use W24x55
Seismic Load;0 in Mpx/n =434.631 k'
Max Deflection:0.24023 in Ixx =1350 InM
Static Deflection:0.24023 In Wall Height =11.5 ft
Required Embed =17.5 ft
Total Beam Length =29 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl: 13
Beam Callout:13 Wall Pressures
Wall Height, H:11.25 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:2.3 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:11 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd Oft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11.25 0.63 0.056
0 0.03 10 0.03 0
0 0 0 0 -
11 0.025555556 11 0,025556 -
ft ksf ft ksf kef
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11.25 0 28.8486 5.279591 0.3
-6 -5 -3 -2 -1
PRESSURE (ksf)
Active Pressure, a,:
Active Pressure 2, ^^32'
Surch. Pressure,
Passive Pressure, Op:
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp)-
(Arch}{d}(P)(D) =
5.04 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XRjD'^a
Xr: 0.25
Xr: 0.19 Yr: 0
j -15
o
-25
-30
Pai=':^a{H)(l/2) =
Pa2 = n3(D) =
Pa3 = ^a2(D)(l/2)-
Force fkiosi
28.350
0.000
0.000
X
D X
D^ X
Arm (ftl
( 3.75
( D/21
( D/3)
+D) =
Moment at O (k-ttl
106.31 +
0.00 d'
0.00
28.35 D
-35
Ps=0,(H) =2.400 X { 6.25 +D) =2.40 D +15
II
UJ
II
2.300 X ( 0.25 -t-D) =2.30 D +0.575
Psf = SF =0.000 X ( 11.25 +D) =0.00 D +0
Pp=rp(D)(l/2) =0.75 D^ X ( D/3}0.25 D^
Driving Moment, DM =XdD'+ydVzd+c Xt,: 0.00 Y: 0.00 Z: 33.05 C:121.89
Zb: 0 C:0 <- Terms divided by 1.3
Calcsfor Beam(sl; 13 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 14.6655 ft
20% Rotational Increase per TSM 6.1: 17.5986 ft
Determine the Depth of Zero Shear Plane: fSubstltute Y for D):
PAi+PAzY+PAaY^+Ps+Pg+Psf-PpY^ = 0.00 Plane of Zero Shear is located at 6.64 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+P„(yV2)+Pa3(Y'/3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 268.151 k-ft
Determine the Pile Deflection; (Use superposition principle)
-Utilize a point of fixity at zero shear plane
3.91 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.18753 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03704 in Factor*
External Surcharge:0.00244 in Use W24x55
Seismic Load:0 in Mpx/0 =434.631 k'
Max Deflection:0.22701 in Ixx -1350 in''4
Static Deflection:0.22701 in Wall Height =11.25 ft
Required Embed =18 ft
Total Beam Length =29.25 ft
Caisson Diameter =2.5 ft
*Referto Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beamfsl; 14
Beam Callout:14 Wall Pressures
Wall Height, H:11 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:2.3 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:4.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11 0.616 0.056
0 0.03 10 0.03 0
0 0 0 0 -
4.5 0.026136364 4.5 0.026136 -
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11 0 28.4483 5.234485 0.3 '
-5 -5 -3 -2 -1
PRESSURE (ksf)
Active Pressure, cr,:
Active Pressure 2, fjgz'
Surch. Pressure, <^5'
Passive Pressure,
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch){d)(P){D) =
4.928 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
-5
-10
-25
Pai='^a(H)(l/2) =
Pa2=n3(D} =
P33-^a2{D)(l/2) =
P, = n,(H) =
?, = £ =
Psf = SF =
Force (kips)
27.104
0.000
0.000
2.400
2.300
0.000
Moment at O (k-tti
99.38 +
0.00 D'
0.00
2.40 D +
2.30 D +
0.00 D +
27.10 D
Po=^.{D)(l/2) =0.75 D/3)0.25 0'
Driving Moment, DM = XdD^+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S. = (XRiD'^S
Xq: 0.00 Y: 0.00
Xf,: 0.25
Xr: 0.19 Yr: 0
Z: 31.80
Zp: 0
C: 128.73
C:0 <- Terms divided by 1.3
Calcsfor Beam(s); 14 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D;
(XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 14.5402 ft
20% Rotational Increase perTSM 6.1: 17.4483 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
0.00 Plane of Zero Shear is located at 6.51 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= pAi(Y+H/3)+P„(YV2)+PA3{YV3}+Ps{Y+H/2)+PE(y+H-DE)-Pp(YV3)= 266.802 k-ft
Determine the Pile Deflection; (Use superposition principle)
-Utilize a point of fixity at zero shear plane
3.88 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.17121 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03403 in Factor*
External Surcharge:0.03782 in Use W24x55
Seismic Load:0 in Mpx/ll =434.631 k'
Max Deflection:0.24306 in Ixx =1350 inM
Static Deflection:0.24306 in Wall Height =11 ft
Required Embed =17.5 ft
Total Beam Length =28.5 ft
Caisson Diameter =2.5 ft
•Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(sk 15-17
Beam Caliout:15-17 Wall Pressures
Wall Height, H;11 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:2.3 kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^\4.5 ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd 0 ft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 11 0.616 0.056
0 0.03 10 0.03 0
0 0 0 0 -
4.5 0.026136364 4.5 0.026136 -
Active Pressure, rr,:
Active Pressure 2, c 32:
Surch. Pressure, '^'>5:
Passive Pressure, c^p:
(Sp)(AHH) =
(Sp){A)(D) =
{Su)(Sp) =
(Arch)(d)(P)(D) =
4.928 kips/ft
0.448 D kips/ft
0.24 kIps/ft
1.5 D kips/ft
P,i = n,(H)(l/2) =
Pa2 = ^.(D) =
P.3=n,2{D)(l/2) =
P,= rT,(H) =
P, = E =
Psf = SF =
Force (kips)
27.104
0.000
0.000
2.400
2.300
0.000
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
11 0 28.4483 5.234485 0.3
ft ksf ft ksf
-6 -5 -4 -3 -2 -1
PRESSURE (ksf)
-5
-10
d
X -IS
I-
a.
UJ
a
-20
-25
Arm (ft)
X { 3,667 +D)
X ( D/2)
X { D/3)
X ( 6 +D)
X ( 6.5 +D)
X ( 11 +D)
-30
Moment at O (k-tt)
99.38 +
0.00
0.00
2.40 D +
2.30 D +
0.00 D +
27.10 D
14.4
14.95
0
Pp=^p(D)(l/2} =0.75 ( D/3)0.25 D'
Driving Moment, DM = XqD^+YD^+ZD+C
Resisting Moment, RM = (XR)D'^3
RM with F.O.S.= (XR)D'^3
Xq: 0.00 Y: 0.00
Xr: 0.25
Xr: 0.19 Y„: 0
Z: 31.80
4:0
C: 128.73
C:0 <-Terms divided by 1.3
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
Calcs for Beamfs); 15-17 contmued
(XD)D'^3+YD'^2+ZD+C-(XR}D'^3 = 0.00
Embedment Depth: 14.5402 ft
20% Rotational Increase per TSM 6.1: 17.4483 ft
Determine the Depth of Zero Shear Plane: fSubstitute Y for D):
PAi+pA2Y+PA3Y^+Ps+PE+PsrPpY' = 0.00 Plane of Zero Shear is located at 6.51 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+P„{yV2)+Pa3(yV3)+Ps(Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 266.802 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
3.88 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure;0.17121 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.03403 in Factor*
External Surcharge:0.03782 in Use W24x55
Seismic Load:0 In Mpx/(] =434.631 k'
Max Deflection:0.24306 in Ixx =1350 InM
Static Deflection:0.24306 in Wat! Height =11 ft
Required Embed =17.5 ft
Total Beam Length =28.5 ft
Caisson Diameter =2.5 ft
*Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodoloev Catcs of Beamfs): 18
Beam Callout:18 Wall Pressures
Wall Height, H:10.5 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:8 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch;2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:10 ft
beyond Cut Depth?External Surcharge, E:kips
Factor Of Saftey:1.3 Depth of Ext. Surch, Dg:ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd Oft
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 10.5 0.588 0.056
0 0.03 10 0.03 0
0 0 0 0 -
0 0 0 0 -
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
10.5 0 26.5801 4.824044 0.3
-6 -5 -3 -2
PRESSURE_tksf)
-1
Active Pressure,
Active Pressure 2, 0,2:
Surch. Pressure, O j:
Passive Pressure, Cpt
(Sp)(A)(H) =
{Sp}(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
4.704 kips/ft
0.448 D kips/ft
0.24 kips/ft
1.5 D kips/ft
-30
Force (kios)Arm fftl Moment at 0 (k-tt)
Pai='-a(H)(l/2)= 24.696 X ( 3.5 +D) =86.44 +24.70 D
Pa2="a(D)= 0.000 D X ( D/2)=0.00 D^
Pa3=^a2(D)(l/2)= 0.000 X ( D/3)0.00 D^
Ps=Os(H)= 2.400 X ( 5.5 +D) =2.40 D ■f 13.2
Pe=E= 0.000 X ( 10.5 +D) =0.00 D +0
Psf = SF = o.OOO X ( 10.5 +D) =0.00 D +0
Pp=rTp(D)(l/2)= 0.75 D^ X ( D/3)0.25 d'
Driving Moment, DM = XdD^+YD^+ZD+C Xd: 0.00 Y: 0.00 Z: 27.10 C:99.64
Resisting Moment, RM = (XR)D'^3 Xg: 0.25
RM with F.O.S. = (XRjD'^S Xr: 0.19 Y„;0 Z„:0 C:0 <- Terms divided by 1.3
Calcsfor Beam(sl: 18 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:(XD)D'^3+YD'^2+ZD+C-(XR)D'^3 =0.00
Embedment Depth: 13.4001 ft
20% Rotational Increase per ISM 6.1: 16.0801 ft
Determine the Depth of Zero Shear Plane: fSubstitute Y for D):
Pai+PazY+PasY^+Ps+Pe+Psf'PrY^ = 0.00 Plane of Zero Shear is located at 6.01 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+Pa2(yV2)+Pa3(YV3)+Ps{Y+H/2)+Pe(Y+H-DE)-Pp(yV3)= 208.213 k-ft ?^P!
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
3.57 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.20592 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.04224 in Factor«
External Surcharge:0 in Use W21x44
Seismic Load:0 in Mpx/[} =309.431 k'
Max Deflection:0.24816 In Ixx =843 inM
Static Deflection:0.24816 in Wall Height =10.5 ft
Required Embed =16.5 ft
Total Beam Length =27 ft
Caisson Diameter =2.5 ft
•Refer to Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Cantilevered Shoring Design - AASHTO Methodology Calcs of Beam(s); 19
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 6 0.336 0.056
0 0.03 6 0.03 0
0 0 0 0 -
0 0 0 0 -
Beam Callout:19 Wall Pressures
Wall Height, H:6 ft Active Pressure, A:56 pcf
Beam Spacing, Sp:6 ft Passive Pressure, P:300 pcf
Caisson Diameter, d:2.5 ft Max Passive Pres:0 psf
Arching, Arch:2 Uniform Surcharge, Su:30 psf
Active Pressure
No
Uni. Surch. Depth:6ft
beyond Cut Depth?External Surcharge, E:kips
Factor Of Saftey:1.3 Depth of Ext. Surch, D^:ft
Max Beam Depth?:no max Seismic Force, SF:0 kips
Seismic Depth, Sd Oft
Active Pressure, rr,:
Active Pressure 2, Ca2'
Surch. Pressure,
Passive Pressure, '"^p:
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(0) =
2.016 kips/ft
0.336 D kips/ft
0.18 kips/ft
1.5 D kips/ft
Resisting Pressures
Starting
Depth
Starting
Pressure
Ending
Depth
Ending
Pressure
Slope
6 0 14.3583 2.507483 0.3
-i ■2.5 -i.b -1 -0.5PRESSURE (ksf)U.5
P,i=-a(H)(l/2) =
^2=^^3(0) =
P«=naz(D)(l/2) =
P,= rT^(H) =
P£=E =
Psf = SF =
Force (kips)
6.048
0.000
0.000
1.080
0.000
0.000
+D)
Moment at 0 (k-ttl
12.10 +
0.00
0.00
1.08 D +
0.00 D +
0.00 D +
6.05 D
Po='^d(D)(1/2) =0.75 D/3)0.25 D'
Driving Moment, DM = XdDVyD^+ZD+C
Resisting Moment, RM = (XRlD'^S
RM with F.O.S. = {XR)D^3
Xq: 0.00 Y: 0.00 Z: 7.13
X„: 0.25
Xr: 0.19 Yr: 0 Zr: 0
C:
C:
15.34
0 <-Terms divided by 1.3
Calcsfor Beam(sh 19 continued
Set Driving Moment equal to Resisting Moment and
solve for 0 by changing the depth of Embed, D:
(XD)D'^3+YD'^2+ZD+C-{XR)D'^3 =0.00
Embedment Depth: 6.96523 ft
20% Rotational Increase perTSM 6.1: 8.35828 ft
Determine the Depth of Zero Shear Plane: fSubstitute Y for D):
= 0.00 Plane of Zero Shear is located at 3.08 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
Mmax= Pai(Y+H/3)+P;^2(yV2)+P„(yV3)+Ps(Y+H/2)+Pe(Y+H-DE}-Pp(yV3)= 29.9857 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity at zero shear plane
1.86 feet below bottom of excavation
Estimated Deflection Due To:
Active Pressure:0.02291 in Soldier Beam Selection With Overstress
Uniform Surcharge:0.00817 in Factor*
External Surcharge:0 in Use W16X26
Seismic Load:0 in Mpx/0 =143.363 k'
Max Deflection:0.03107 in Ixx =301 in«4
Static Deflection:0.03107 in Wall Height =6 ft
Required Embed =8.5 ft
Total Beam Length =14.5 ft
Caisson Diameter =2.5 ft
*Referto Design Criteria Sheet for
Overstress information
Overstress Factor = 130 %
Lateral Earth Pressure on Lagging Design Spreadsheet
Maximum Depth of Excavation: 11.5 feet
Max Lagging Clear Spacing 7.3 feet
Active Pressure: 56 pcf
Max Uniform Surcharge: 30 psf
Max External Surcharge: 111.53846 psf
Lagging without external surcharges (other than
uniform required surcharge) have been shown to have
a maximum lagging load of 400psf per ISM, 2011. The
walls of this shoring system
have an external surcharge, therefore use 0.6
multiplied by the maximum design load to calculate
the lagging size. 0.6 is a reduction due to arching.
Lagging
Depth
Lateral
Pressure
Uniform
Surcharge
External
Surcharge Total Load
Lagging Mom.
Mmax = wL^2/8
Required
Sx
Required
Lagging
Size
Required
Lagging
Size(ft)(psf) (psf) (psf)(psf)(Ib-ft/ft)(in'^3)
0 0 30 111.53846 66.92308 267.5 2.00 3x12 Lagging 3x12 Laggini
1 56 30 111.53846 100.5231 401.8 3.00 3x12 Lagging 3x12 Laggini
2 112 30 111.53846 142 567.5 5.00 3x12 Lagging 3x12 Laggini
3 168 30 111.53846 198 791.4 6.00 3x12 Lagging 3x12 Laggini
4 224 30 111.53846 254 1015.2 8.00 3x12 Lagging 3x12 Laggini
5 280 30 111.53846 310 1239.0 10.00 3x12 Lagging 3x12 Laggini
6 336 30 111.53846 366 1462.8 12.00 3x12 Lagging 3x12 Laggini
7 392 30 0 422 1686.6 14.00 3x12 Lagging 3x12 Laggini
8 448 30 0 478 1910.4 16.00 4x12 Lagging 3x12 Laggini
9 504 30 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini
10 560 30 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini
11 616 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini
12 672 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini
13 728 0 0 400 1598.7 13.00 3x12 Lagging 3x12 Laggini
14 784 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
15 840 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
16 896 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
17 952 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
18 1008 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
19 1064 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
20 1120 0 0 400 1598.7 13.00 3x12 Lagging 4x12 Laggini
Check Douglas Fir Larch; fb = 850psi
fb =fb
850
" Cd
1.25
* Ct
1
* Cl
1 1.1
-FU
1.1
* c,
1 1.15
fb= 1478.4688
Using Rough Sawn Lagging (approximately 1/8" Larger than Dressed)
Sx of 3x12 Lagging: 13.1 in'^Sfor 3x12 Lagging
Sx of 4x12 Lagging: 24.9 in'^Sfor 4x12 Lagging
Sx of 6x12 Lagging: 61.3 ln'^3 for 6x12 Lagging