HomeMy WebLinkAboutCT 00-06; BRESSI RANCH; DESIGN CALCULATIONS 24" DIP SEWER PILE THRUST RESTRAINT; 2004-10-01cr00 0ç
DESIGN CALCULATIONS
BRESSI RANCH
24" DIP SEWER
PILE THRUST RESTRAINT
PREPARED FOR
KIMLEY-HORN & ASSOCIATES
*
SUBMITTED BY BY
SIMON WONG ENGINEERING
STRUCTURAL AND BRIDGE ENGINEERS
500-663
October, 2004
Project:
=ZL-~
Page:
SIMON WONG ENGINEERING
STRUCTURAL & BRIDGE ENGINEERS Proj. #: g
po
Designed: ,4L'/,ciJ Date: io//oy
9968 Hibert Street, Suite 202 (858) 566-3113 Checked: San Diego, CA 92131 FAX (858) 566-6844 Revised:
~l
Fro O1 P(O/,Je i'iie
8ef ' -/iie 2 Se,er n,:i /L 61 1(
jc 4rp.IAr kk. lAy i
(9\
Kimley-Horn and Associates, Inc. sheet No. J. of
JbbR4YY,&a—WQtk'Z—Zk ______________
Designed by ____-_-.__ Date Ctiec*edby 1 Dale 100 ii_(X1r
X _
2Ar' i P Li CcQ' \i I YRC,LO (mvJ
- vT\c
.V\..
-c
Lioc z°cs 'L\
cew \j) f d
v'F\ ; '•\'Yi•-r L'\i...' .. .. . ..
(.
I G:\ ••( Lcc. (cv\ -- \OO
I
I Bressi Ranch: L-Pile V.4.0, Parameters
Soil / Fill
Depth (feet)
Soil Model
Effective
Unit Weight
(pci)
Soil-Modulus- k
(pci)
Internal Friction
Angle (degrees)
Top Bottom Top Bottom Top Bottom
0 6 SAND (Reese) 125 90 90 30 30
Weak Bedrock - Sandstone to Siltstone
Depth (feet)
Soil Unit
Effective
Elastic Uniaxial
Top 1Bottom Model Weight Modulus -ci)
Compressive RQD k m (p Em (psi) Strength-00
(psi)
6
eak Rock
W(Reese) 130 26,700 1,000 70 0.0005 50f
I
I
I
I
I
I
L~~
I
I
I
Project:
M
Page: SIMON WONG ENGINEERING
STRUCTURAL & BRIDGE ENGINEERS Proj. #: SW se-we(- / n~
Designed: Date:
9968 Hibert Street, Suite 202 (858) 566-3113 Checked: San Diego, CA 92131 FAX (858) 566-6844 Revised:
Sit, Z •/ 4201111 rJ
2'
L. = 3os
tUt:. a
,
I'll6, I, 1
6
/'ñ. i( PA P A 0 4
2V-25 /sS ' e/v)P&
.: -i =
4 lit,
24 7oofr
- Xopo
40b 7z)
le ,oaoc
,,1/'7 iL/
'I
Fr zy
I T,rl (iz)' = ' /n
#1 -iir2 - (I 1) 2. ' J/1
E -IooOO ;
Fr c f— rJ
.2 33.S
2,373-
Project: 4ç 1
__________
Page:
\
SIMON WONG ENGINEERING
STRUCTURAL 8 BRIDGE ENGINEERS Proj. #: p-
Designed: gj Date:
9968 Hibert Street, Suite 202 (858) 566-3113 Checked: San Diego, CA 92131 FAX (858) 566-6844 Revised:
71
'1D ) ///pde/
il319I c 5I I.f 2 p, I<
= /3(/2.3J = /Zl
'I (
'--
-
yriY 1/./ir. 1 th
0k.
L1S.
1<.
VZ7/77)4c- H
=
4$ ,(x)= _31
t/=
(F
= /,3D >3 1 .0
For : ,/'_
___
Page:
SIMON WONG ENGINEERING !ct
/=,\ STRUCTURAL & BRIDGE ENGINEERS Proj. #: -
Designed: ,4%.-,~ Date:
9968 Hibert Street, Suite 202 (858) 566-3113 Checked: San Diego, CA 92131 FAX (858) 566-6844 Revised:
~IIL bIfr ,)/ Iev h,h Yr,/
Pt
( 11/ (01 c)
/ (25L/)6f i 1. _(S
-
PIc c11A1 / 1Z
1 /c(ic'j /20
1*1
- /2'/ Cie /2o'
Project: Page:
A SIMON WONG ENGINEERING V STRUCTURAL & BRIDGE ENGINEERS Proj. #:
Designed: Date:
9968 Hibert Street, Suite 202 (858) 566-3113 Checked: San Diego, CA 92131 FAX (858) 566-6844 Revised:
eyi £Ckt4. Pei, > ,k.14- )k)'e )( 2,1 Peep
b JJ(?o)(/)1-15-0
'I 2i —z--Jc(/,zc)
-1-c;, e,
)() > 17
/
a(i(iq, qi(>
2O,3
1) Lt .ii 'I over
Vm.z2TL,V5)(//.iLi7)
y/ Yilspt.L+IJI. SJiew
Bressi RaflCh.lpo
LPILE Plus for windows, version 4.0
Analysis of individual Piles and Drilled Shafts
subjected to Lateral Loading using the p-y Method
(c) copyright ENSOFT, Inc., 1985-2001
All Rights Reserved
This program is licensed to:
Andrew Sanford
Simon Wang Engineer
Path to file locations: G:\Bridge Division\job Files\500-600 through 500-699\500-663 Bressi Ranch Sewer creek\L-Pile\ Name of input data file: Bressi Ranch.lpd
Name of output file: Bressi Ranch.lpo Name of plot output file: Bressi Ranch.lpp Name of runtime file: Bressi Ranch.lpr
Time and
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Date of Analysis
Date: October 14, 2004 Time: 7:21:15
------------------------------------------------------------------------------
Problem Title ------------------------------------------------------------------------------
BresSi Ranch 24" pile for 24" Sewer Main Free Head 31kip load
------------------------------------------------------------------------------
Program options ------------------------------------------------------------------------------
units used in computations - us customary units, inches, pounds
Basic Program Options:
Analysis Type 1:
- computation of Lateral Pile Response using user-specified Constant El
computation Options:
- only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile-top deflection vs.
pile embedment length
- NO computation of foundation stiffness matrix elements
- Analysis assumes no soil movements acting on pile
- NO additional p-y curves to be computed at user-specified depths
SolUtion control Parameters:
- Number of pile increments = 100
- Deflection tolerance for closure = 1.0000E-05 in
- Maximum number of iterations allowed = 100
- Maximum allowable deflection = 1.0000E+02 in
Printing Options:
- values of pile-head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
------------------------------------------------------------------------------
pile structural Properties and Geometry ------------------------------------------------------------------------------
pile Length = 120.00 , Depth of ground surface below top of pile = 46.00 in
Page 1
I
I Slope angle of ground surface
= Bressi Ranch.lpo
.00 deg.
Structural properties of pile defined using 2 points
I
Point Depth Pile Moment of Pile Modulus of
X Diameter Inertia Area Elasticity
in in in**4 Sq.in lbs/Sq.in
1 0.0000 24.00 16286.0000 452.0000 3420000.00
2 500.0000 24.00 16286.0000 452.0000 3420000.00
------------------------------------------------------------------------------
Soil and Rock Layering Information
------------------------------------------------------------
The soil profile is modelled using 1 layers
Layer 1 is weak rock, p-y criteria by Reese, 1997
Distance from top of pile to top of layer = 46.000 in
I Distance from top of pile to bottom of layer = 500.000 in
Initial modulus of rock at top of layer = 2.6700E+04 lbs/in**2
Initial modulus of rock at bottom of layer = 2.6700E+04 lbs/in**2
(Depth of lowest layer extends 380.00 in below pile tip)
I
Distributionofeff Effective unit weight of Soil vs. Depth
ective unit weight of soil with depth
is defined using 2 points
- Point Depth x Eff. unit Weight
No. in
- 1 46.00 .07520
2 500.00 .07520
------------------------------------------------------------------------------
Shear strength of Soils
------------------------------------------------------------------------------ I Distribution of shear strength parameters with depth
defined using 2 points
I point Depth X Cohesion c Angle of Friction E50 or RQD No. in lbs/in**2 Deg. ILrm
1 46.000 1000.00000 .00 .00050 70.0 2 500.000 1000.00000 .00 .00050 70.0
I Notes:
Cohesion = uniaxial compressive strength for rock materials.
values of E50 are reported for clay strata.
Default values will be generated for £50 when input values are 0.
I (4) RQD and Lrm are reported only for weak rock strata.
Static loading criteria was used for computation of p-y curves
Pile-head Loading and Pile-head Fixity Conditions ---------------------------------------------------------------
I
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are Shear and Moment (BC Type 1)
I
Shear force at pile head = 31000.000 lbs Bending moment at pile head = .000 in-lbs
Axial load at pile head = .000 lbs
Page 2
I
Bressi Ranch.lpO
(Zero moment at pile head for this load indicates a free-head condition)
------------------------------------------------------------------------------
Computed Values of Load Distribution and Deflection
for Lateral Loading ------------------------------------------------------------------------------ for Load Case Number 1
pile-head boundary conditions are Shear and Moment (BC Type 1)
Specified shear force at pile head = 31000.000 lbs
Specified bending moment at pile head = .000 in-lbs specified axial load at pile head = .000 lbs
(Zero moment for this load indicates free-head conditions)
Depth Deflect. Moment Shear Slope Total Soil Res X y M V S Stress p in in lbs-in lbs Rad. lbs/in**2 lbs/in
0.000 .051811 4.831E-06 31000.0000 -.001179 3.560E-09 0.0000 1.200 .050397 37200.0000 31000.0000 -.001178 27.4100 0.0000 2.400 .048984 74400.0000 31000.0000 -.001177 54.8201 0.0000 3.600 .047573 1.116E-i-05 31000.0000 -.001175 82.2301 0.0000 4.800 .046164 1.488E+05 31000.0000 -.001172 109.6402 0.0000 6.000 .044759 1.860E+05 31000.0000 -.001169 137.0502 0.0000 7.200 .043360 2.232E+05 31000.0000 -.001164 164.4603 0.0000 8.400 .041966 2.604E+05 31000.0000 -.001159 191.8703 0.0000 9.600 .040578 2.976E+05 31000.0000 -.001153 219.2804 0.0000 10.800 .039199 3.348E+05 31000.0000 -.001146 246.6904 0.0000 12.000 .037828 3.720E+05 31000.0000 -.001138 274.1005 0.0000 13.200 .036466 4.092E+05 31000.0000 -.001130 301.5105 0.0000 14.400 .035116 4.464E+05 31000.0000 -.001121 328.9205 0.0000 15.600 .033776 4.836E+05 31000.0000 -.001111 356.3306 0.0000 16.800 .032450 5.208E+05 31000.0000 -.001100 383.7406 0.0000 18.000 .031136 5.580E+05 31000.0000 -.001088 411.1507 0.0000 19.200 .029838 5.952E+05 31000.0000 -.001076 438.5607 0.0000 20.400 .028554 6.324E+05 31000.0000 -.001063 465.9708 0.0000 21.600 .027287 6.696E+05 31000.0000 -.001049 493.3808 0.0000 22.800 .026037 7.068E+05 31000.0000 -.001034 520.7909 0.0000 24.000 .024806 7.440E+05 31000.0000 -.001018 548.2009 0.0000 25.200 .023593 7.812E+05 31000.0000 -.001002 575.6110 0.0000 26.400 .022401 8.184E+05 31000.0000 -9.846E-04 603.0210 0.0000 27.600 .021230 8.556E+05 31000.0000 -9.665E-04 630.4310 0.0000 28.800 .020082 8.928E+05 31000.0000 -9.477E-04 657.8411 0.0000 30.000 .018956 9.300E+05 31000.0000 -9.281E-04 685.2511 0.0000 31.200 .017854 9.672E+05 31000.0000 -9.076E-04 712.6612 0.0000 32.400 .016778 1.004E+06 31000.0000 -8.864E-04 740.0712 0.0000 33.600 .015727 1.042E+06 31000.0000 -8.644E-04 767.4813 0.0000 34.800 .014703 1.079E+06 31000.0000 -8.415E-04 794.8913 0.0000 36.000 .013707 1.116E+06 31000.0000 -8.179E-04 822.3014 0.0000 37.200 .012740 1.153E+06 31000.0000 -7.934E-04 849.7114 0.0000 38.400 .011803 1.190E+06 31000.0000 -7.682E-04 877.1215 0.0000 39.600 .010897 1.228E+06 31000.0000 -7.421E-04 904.5315 0.0000 40.800 .010022 1.265E+06 31000.0000 -7.153E-04 931.9415 0.0000 42.000 .009180 1.302E+06 31000.0000 -6.876E-04 959.3516 0.0000 43.200 .008372 1.339E+06 31000.0000 -6.592E-04 986.7616 0.0000 44.400 .007598 1.376E+06 31000.0000 -6.299E-04 1014.1717 0.0000 45.600 .006860 1.414E+06 31000.0000 -5.999E-04 1041.5817 0.0000 46.800 .006158 1.451E+06 27599.0929 -5.690E-04 1068.9918 -5668.1784 48.000 .005494 1.480E+06 20671.9241 -5.375E-04 1090.3877 -5877.1029 49.200 .004868 1.S00E+06 13510.0106 -5.053E-04 1105.5478 -6059.4196 50.400 .004281 1.512E+06 6146.0291 -4.729E-04 1114.2787 -6213.8828 51.600 .003733 1.515E+06 -1385.7526 -4.403E-04 1116.4164 -6339.0867 52.800 .003225 1.509E+06 -9049.2481 -4.077E-04 1111.8281 -6433.4058 54.000 .002755 1.493E+06 -16806.2345 -3.754E-04 1100.4138 -6494.9049 55.200 .002324 1.469E+06 -24615.8978 -3.435E-04 1082.1081 -6521.2006 56.400 .001931- 1.434E+06 -32434.1634 -3.122E-04 1056.8833 -6509.2421 57.600 .001574 1.391E+06 -40212.6758 -2.817E-04 1024.7519 -6454.9451 58.800 .001254 1.338E+06 -47524.0492 -2.524E-04 985.7716 -5730.6773 60.000 9.69E-04 1.277E+06 -53721.6303 -2.242E-04 940.7108 -4598.6244 61.200 7.16E-04 1.209E+06 -58597.2884 -1.974E-04 890.7708 -3527.4725 62.400 4.95E-04 1.136E+06 -62229.3157 -1.722E-04 837.0880 -2525.9062 63.600 3.03E-04 1.060E+06 -64705.2608 -1.485E-04 780.7251 -1600.6690 64.800 1.39E-04 9.808E+05 -66119.6523 -1.265E-04 722.6638 -756.6501 66.000 -5.33E-07 9.009E+05 -66571.8390 -1.063E-04 663.7997 3.0055 67.200 -1.16E-04 8.210E+05 -66163.9754 -8.770E-05 604.9388 676.7671 68.400 -2.11E-04 7.421E+05 -64999.1710 -7.086E-05 546.7960 1264.5736
Page 3
I
I
I
I
I
LI
I
I
I
I
I
I
I
I
I
I
I
I
Bressi Ranch.lpO
69.600 -2.86E-04 6.650E+05 -63179.8193 -5.571E-05 489.9950 1767.6793
70.800 -3.45E-04 5.905E+05 -60806.1166 -4.218E-05 435.0695 2188.4918 72.000 -3.88E-04 5.191E+05 -57974.7763 -3.023E-05 382.4660 2530.4087 73.200 -4.17E-04 4.513E+05 -54777.9394 -1.978E-05 332.5474 2797.6529 74.400 -4.35E-04 3.876E+05 -51302.2796 -1.074E-05 285.5973 2995.1135
75.600 -4.43E-04 3.282E+05 -47628.2967 -3.029E-06 241.8250 3128.1913
76.800 -4.42E-04 2.733E+05 -43829.7904 3.451E-06 201.3719 3202.6525
78.000 -4.35E-04 2.230E+05 -39973.5027 8.797E-06 164.3168 3224.4936
79.200 -4.21E-04 1.774E+05 -36118.9171 1.311E-05 130.6831 3199.8158
80.400 -4.03E-04 1.363E+05 -32318.1997 1.649E-05 100.4445 3134.7131
81.600 -3.82E-04 99795.0941 -28616.2684 1.903E-05 73.5319 3035.1725 82.800 -3.58E-04 67640.8963 -25050.9720 2.084E-05 49.8398 2906.9881
84.000 -3.32E-04 39672.7613 -21653.3667 2.199E-05 29.2320 2755.6874
85.200 -3.05E-04 15672.8161 -18448.0714 2.259E-05 11.5482 2586.4716
86.400 -2.78E-04 -4602.6100 -15453.6876 2.271E-05 3.3913 2404.1680
87.600 -2.50E-04 -21416.0341 -12683.2700 2.243E-05 15.7800 2213.1947
88.800 -2.24E-04 -35042.4579 -10144.8320 2.182E-05 25.8203 2017.5353
90.000 -1.98E-04 -45763.6310 -7841.8756 2.095E-05 33.7200 1820.7254
91.200 -1.73E-04 -53862.9594 -5773.9318 1.988E-05 39.6878 1625.8475
92.400 -1.50E-04 -59621.0674 -3937.1033 1.865E-05 43.9305 1435.5335
93.600 -1.29E-04 -63312.0072 -2324.5979 1.733E-05 46.6501 1251.9756
94.800 -1.09E-04 -65200.1022 -927.2470 1.594E-05 48.0413 1076.9426
96.000 -9.04E-05 -65537.3999 265.9991 1.454E-05 48.2899 911.8008 97.200 -7.38E-05 -64561.7045 1267.6035 1.313E-05 47.5709 757.5399 98.400 -5.89E-05 -62495.1515 2091.0083 1.177E-05 46.0483 614.8014
99.600 -4.56E-05 -59543.2846 2750.2345 1.045E-05 43.8732 483.9090
100.800 -3.38E-05 -55894.5887 3259.5208 9.208E-06 41.1848 364.9015
102.000 -2.35E-05 -51720.4347 3633.0009 8.048E-06 38.1091 257.5654
103.200 -1.45E-05 -47175.3865 3884.4215 6.983E-06 34.7602 161.4688
104.400 -6.71E-06 -42397.8232 4026.8990 6.018E-06 31.2400 75.9938
105.600 -3.22E-08 -37510.8289 4072.7174 5.157E-06 27.6391 .3701 106.800 5.67E-06 -32623.3015 4033.1632 4.402E-06 24.0378 -66.2938 108.000 1.05E-05 -27831.2373 3918.3992 3.750E-06 20.5069 -124.9795
109.200 1.47E-05 -23219.1435 3737.3742 3.201E-06 17.1085 -176.7289
110.400 1.82E-05 -18861.5393 3497.7677 2.747E-06 13.8977 -222.6152
111.600 2.13E-05 -14824.5009 3205.9697 2.384E-06 10.9231 -263.7148
112.800 2.39E-05 -11167.2119 2867.0927 2.104E-06 8.2283 -301.0802
114.000 2.63E-05 -7943.4784 2485.0167 1.899E-06 5.8530 -335.7131
115.200 2.85E-05 -5203.1717 2062.4666 1.757E-06 3.8338 -368.5371
116.400 3.05E-05 -2993.5585 1601.1213 1.669E-06 2.2057 -400.3717 117.600 3.25E-05 -1360.4805 1101.7557 1.622E-06 1.0024 -431.9043 118.800 3.44E-05 -349.3448 566.8669 1.603E-06 .2574 -459.5771 120.000 3.63E-05 0.0000 0.0000 1.600E-06 0.0000 -485.2011
output Verification:
Computed forces and moments are within specified convergence limits.
Output Summary for Load case NO. 1:
Pile-head deflection = .05181143 in
computed slope at pile head = -.00117853
Maximum bending moment = 1515163.09 YA lbs-in
Maximum shear force = -66571.84 lbs
Depth of maximum bending moment = 51.60 in
Depth of maximum shear force = 66.00 in
Number of iterations = 12
Number of zero deflection points = 2
Summary of Pile-head Response -----------------------------
Definition of symbols for pile-head boundary conditions:
y = pile-head displacment, in M = pile-head moment, lbs-in
V = pile-head shear force, lbs
S = pile-head slope, radians
R = rotational stiffness of pile-head, in-lbs/rad
BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition condition Load Deflection Moment Shear 1 2 lbs in in-lbs lbs
Page 4
I
I
I
I
I
I
I
I
I
I
1
Bressi Ranch.lpo
1 v= 31000.000 M= 0.000 0.0000 .051811 1.515E+06 -66571.8390
------------------------------------
Pile-head Deflection VS. Pile Length
Boundary condition Type 1, Shear and Moment
Shear = 31000. lbs
Moment = 0. in-lbs
Axial Load = 0. lbs
Pile Pile Head Maximum Maximum
Length Deflection Moment shear in in in-lbs lbs
120.000 .05181143 1515163.09 -66571.84 114.000 .05175573 1514385.64 -66573.42 108.000 .05130744 1506468.43 -66114.11 102.000 .05223500 1520015.30 -66637.96 96.000 .05079032 1498684.20 -65165.79 90.000 .05223160 1518672.70 -67333.56 84.000 .05216856 1501951.92 -72183.18 78.000 .05834066 1492833.24 -88977.60 72.000 .14298927 1474782.43 -117449.94 66.000 1.32418914 1458877.24 -147611.02
The analysis ended normally.
Page 5
Lateral Deflection (in)
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
v Case 20.333
Bressi Ranch 24" Free head Pile
Bending Moment (in-kips)
0 200 400 600 800 1000 1200 1400 1600
IWO
Case 20.333]
Bressi Ranch 24" free head Pile
I
I
I
I
I
I
[1
I
I 'I-
-C 4-.
c
I
I
I
I
I
I
Shear Force (kips)
-70 -60 -50 -40 CO -30 -20 -10 0 10 20 30 4
liii lilt liii lllI till iIll till till lilt liii liii
c'.J
LO
:..
CD - case 20.333
Bressi Ranch 24" Free head Pile
0)
0
0
0
D
:,.
D
WIV
7 Case 1
10 20 30 40 50 60 70 80 100 110 120
Pile Length (in)
Bressi Ranch 24" Free head Pile
10/11/2004, 10:50
Bressi Ranch 24 fixed head pile
Force Equilibrium Condition of the x-section:
Max. Max.
Conc. Neutral Steel Steel
Strain Axis Strain Conc. force P/S Net Curvature Moment
step epscmax in. Tens. Comp. Comp. Tens. force force in/in (K-ft) 0 0.00000 0.00 0.0000 0 0 0 0 0.00 0.000000 0 1 0.00035 5.85 -0.0007 47 3 -48 0 -0.28 0.000057 57 2 0.00039 5.85 -0.0008 51 3 -54 0 -0.35 0.000063 63 3 0.00043 5.85 -0.0009 57 3 -59 0 -0.48 0.000070 69 4 0.00047 5.85 -0.0010 62 3 -65 0 -0.69 0.000077 76
5 0.00052 5.82 -0.0011 69 4 -72 0 0.17 0.000085 84 6 0.00058 5.82 -0.0012 76 4 -79 0 -0.17 0.000094 92 7 0.00064 5.79 -0.0013 84 5 -87 0 0.74 0.000103 102 8 0.00071 5.79 -0.0014 92 5 -96 0 0.11 0.000114 112 9 0.00078 5.79 -0.0016 100 6 -106 0 -0.83 0.000126 123 10 0.00086 5.76 -0.0017 110 7 -116 0 -0.27 0.000139 135 11 0.00095 5.73 -0.0019 121 8 -128 0 0.11 0.000152 148 12 0.00106 5.70 -0.0021 133 9 -140 0 0.20 0.000168 162 13 0.00117 5.66 -0.0023 145 10 -153 0 0.46 0.000184 177 14 0.00129 5.76 -0.0026 153 10 -162 0 -0.30 0.000207 184 15 0.00143 5.85 -0.0029 161 10 -170 0 0.31 0.000232 191 16 0.00158 5.94 -0.0033 168 10 -178 0 -0.49 0.000261 197 17 0.00174 6.00 -0.0037 177 11 -188 0 -0.74 0.000291 204 18 0.00193 6.03 -0.0042 186 12 -197 0 -0.06 0.000324 211 19 0.00213 6.05 -0.0046 196 13 -207 0 0.40 0.000359 219 20 0.00235 6.10 -0.0052 203 13 -215 0 0.18 0.000400 224 21 0.00260 6.25 -0.0059 204 12 -215 0 -0.37 0.000454 225 22 0.00288 6.37 -0.0068 205 11 -215 0 -0.37 0.000512 225 23 0.00318 6.46 -0.0076 206 9 -215 0 -0.33 0.000576 225 24 0.00352 6.52 -0.0086 208 9 -215 0 0.68 0.000644 226 25 0.00389 6.59 -0.0096 208 8 -215 0 0.28 0.000720 225 26 0.00430 6.63 -0.0108 209 7 -215 0 -0.37 0.000803 224 27 0.00475 6.62 -0.0119 208 8 -216 0 -0.47 0.000885 223 28 0.00525 6.52 -0.0128 205 13 -218 0 -0.44 0.000962 222 29 0.00581 6.40 -0.0137 202 20 -220 0 0.64 0.001040 220 30 0.00642 6.29 -0.0148 196 27 -222 0 -0.01 0.001128 217 31 0.00710 6.19 -0.0159 189 35 -224 0 -0.73 0.001224 214 32 0.00784 6.08 -0.0171 183 45 -226 0 0.51 0.001328 213 33 0.00867 5.99 -0.0185 175 55 -228 0 0.44 0.001446 212 34 0.00959 5.96 -0.0203 168 63 -231 0 -0.64 0.001590 212 35 0.01060 5.93 -0.0223 164 72 -234 0 0.61 0.001749 214 36 0.01172 5.94 -0.0247 159 78 -236 0 -0.16 0.001938 216 37 0.01295 5.94 -0.0273 156 86 -242 0 -0.98 0.002143 219 38 0.01432 5.94 -0.0302 153 95 -247 0 0.04 0.002369 223 39 0.01583 5.94 -0.0334 149 105 -253 0 0.68 0.002619 228 40 0.01750 5.91 -0.0367 150 107 -257 0 -0.83 0.002880 230
First Yield of Rebar Information (not Idealized):
Rebar Number 5
Coordinates X and Y (global in.) -3.94, -6.82
Yield strain = 0.00230
Curvature (rad/in)= 0.000184
Moment (ft-k) = 176
Assume concrete modulus (ksi) = 3421
Cracked Moment of Inertia (ft4) = 0.162
I
I
* IAI-RECOL *
* Reinforced Column Design a
* *
* By: Imbsen and Associates, Inc. *
1 * Version 3.3.1 10-JUN-99 *
****** **** **** ************************a********** **** *** ** ***** **********
Licensed to: Simon Wong Engineering
I Date: 11-OCT-04 Time: 10:45:07 Project Title:Bressi Ranch
Page: 1
COLUMN TYPE = 9 (CIRCULAR)
I CONCRETE LOOPS = 1
TOTAL NO. OF CONCRETE COORS. = 40
STEEL REBAR PATTERN = 4 (CONCENTRIC LOOPS)
NUMBER OF STEEL REBAR LOOPS = 1
TOTAL NO. OF STEEL REBARS = 6 I PLOT TYPE = 0 (NO PLOT)
DESIGN TYPE = 2 (CHECK)
PERCENT STEEL LIMITS = (1.00 % MIN. 6.00 % MAX.)
I
DENT DATA *
I
*
NUMBER OF COLUMNS IN BENT = 1
OUT TO OUT DISTANCE (DIAMETER) OF SPIRAL. = 18.00 INCHES
DISTANCE FROM TOP COLUMN PLASTIC HINGE TO
I CENTER OF GRAVITY OF THE SUPERSTRUCTURE = 2.00 FEET
CENTER TO CENTER SPACING OF COLUMNS = 0.00 FEET
I * MATERIAL PROPERTIES (PSI) *
I ULTIMATE CONCRETE COMPRESSIVE STRESS - FC = 3250.
YOUNG'S MODULUS FOR CONCRETE - EC = 3249500.
YOUNG'S MODULUS FOR STEEL BARS - ES = 29000000.
ULTIMATE CONCRETE COMPRESSIVE STRAIN - EO = .003
• YIELDING STRESS FOR STEEL BARS - FY = 60000.
Date: 11-OCT-04 Time: 10:45:07
Project Title:Bressi Ranch
CIRCULAR CROSS-SECTION
HX(IN)
24.00
CONCRETE COORDINATES (INCHES)
COORS X Y
1 12.00 0.00
2 11.85 1.88
3 11.41 3.71
4 10.69 5.45
5 9.71 7.05
6 8.49 8.49
7 7.05 9.71
8 5.45 10.69
Page: 2
9 3.71 11.41
10 1.88 11.85
11 0.00 12.00
12 -1.88 11.85
13 -3.71 11.41
14 -5.45 10.69
15 -7.05 9.71
16 -8.49 8.49
17 -9.71 7.05
18 -10.69 5.45
19 -11.41 3.71
20 -11.85 1.88
21 -12.00 0.00
22 -11.85 -1.88
23 -11.41 -3.71
24 -10.69 -5.45
25 -9.71 -7.05
26 -8.49 -8.49
27 -7.05 -9.71
28 -5.45 -10.69
29 -3.71 -11.41
30 -1.88 -11.85
31 0.00 -12.00
32 1.88 -11.85
33 3.71 -11.41
34 5.45 -10.69
35 7.05 -9.71
36 8.49 -8.49
37 9.71 -7.05
38 10.69 -5.45
39 11.41 -3.71
40 11.85 -1.88
Date: 11-OCT-04 Time: 10:45:07 Page: 3
Project Title:Bressi Ranch
CONCENTRIC CIRCLE PATTERN
LOOP RADIUS . AREA BARS
(IN) (IN**2)
1 7.88 0.79 6
STEEL REBAR COORDINATES (INCHES)
COORD X Y
1 7.88 0.00
2 3.94 6.82
3 -3.94 6.82
4 -7.87 0.00
5 -3.94 -6.82
6 3.94 -6.82
THE MAIN LONGITUDINAL STEEL IS ASSUMED TO BE # 8 BARS.
***wAp.NING. THE CONCRETE COVER IS GREATER THAN 2 INCHES
IN THE X-DIRECTION
***WARNING: THE CONCRETE COVER IS GREATER THAN 2 INCHES
IN THE Y-DIRECTION
Date: 11-OCT-04 Time: 10:45:07 Page: 4
Project Tit1e:Bressi Ranch
*** ** * * ** * * ** ***
* INITIAL REFERENCE DATA *
************* ************************************************************
TOTAL AREA OF THE SECTION AG = . 3.13 FT**2
NOMINAL AXIAL LOAD STRENGTH P0 = 1515.90 KIPS
TOTAL REINFORCEMENT AREA AST = 4.74 IN2
PERCENT STEEL = 1.05 %
0.78 FT**4 GROSS MOMENT OF INERTIA ABOUT Y-AXIS IYC =
GROSS MOMENT OF INERTIA ABOUT X-AXIS IXC = 0.78 FT**4
STEEL MOMENT OF INERTIA ABOUT Y-AXIS IYS = 0.0071 FT**4
0.0071 FT**4 STEEL MOMENT OF INERTIA ABOUT X-AXIS IXS =
Date: 11-OCT-04 Time: 10:45:07 Page: 5
Project Title:Bressi Ranch
* ******
* COLUMN LOAD DATA (KIP, KIP-FT) *
************************************************************************
LOAD NAME: Untitled
FOOTING DATA FILE: NO
TYPE FOOTING:
SEISMIC ANALYSIS SPECIFICATIONS:
DESIGN CRITERIA PERFORMANCE CATEGORY
(SDC) (SPC)
CAL
MOMENT DISTRIBUTION FACT COLUMN STEEL LOCATION DUCTILITY
T1E1 TOP1 FACTOR ---TOP--- --- BOTTOM--- : PERCENT LENGTH
DAY DAX DBY DBX IMPACT (FEET) SPIRAL=0 BOTTOM=0 (Z)
0.00 0.00 0.00 0.00 0.00 14.00 0 1 3.00
COLUMN GROUP LOADS - SERVICE (KIP, KIP-FT)
LL+IMPACT
CASE 1
CASE-2 CASE 3
DEAD PRE TRANS LONG AXIAL - SF&
LOAD STRESS MY-MAX MX-MAX N-MAX WIND ML - LF CF-MY TEMP BY
MY 0.
0,0,0,0,0,
0. 0.
0,
0,0.
MX 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. I- P 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PMY 0. 0. 0. 0.
PMX 0. 0. 0. 0.
P 0. 0. 0. 0.
COLUMN SEISMIC AND ARBITRARY LOADS (KIP, KIP-FT)
(ARS) UNREDUCED SEISMIC ARBITRARY LOADS ARBITRARY LOADS
CASE 1 CASE 2 SERVICE SERVICE FACTORED FACTORED
MAX TRAM MAX LONG ALl AL2 ALl AL2
MY TRAN 0. 0. 53. 0. 0. 0.
MX LONG 0. 0. 0. 0. 0. 0.
P AXIAL 0. 0. 0. 0. 0. 0.
Date: 11-OCT-04 Time: 10:45:07 Page: 6
Project Title:Bressi Ranch
************* *******************************************
* FACTORED LOADS FOR COLUMN DESIGN CHECK (KIP, KIP-FT) *
********* * *** * **************** ******* * ** ** * ********** * ** * *** ****** ****** *
APPLIED FACTORED MOMENTS ARE MAGNIFIED FOR SLENDERNESS IN ACCORDANCE WITH
CALTRANS BRIDGE DESIGN SPECIFICATIONS. (ART 8.16.5)
LENGTH = 14.000 FT FC = 3.25 KSI FY = 60.00 KSI
STEEL = 1.05 % AST = 4.74 SQ IN -
APPLIED FACTORED ------: CAPACITY
GROUP CASE TRANS LONG COMB AXIAL (PHI-MN) PHI RATIO I MY MX M P MU MU/M
IH 1 0. 0. 0. 1. 177. 0.90 OK IH 2 0, 0, 0, 1. 177. 0.90 OK I IN 3 0. 0. 0. 1. 177. 0.90 873.88 OK IP 1 0. 0. 0. 1. 177. 0.90 OK IP 2 0. 0. 0. 1. 177. 0.90 OK IP 3 0. 0. 0. 1. 177. 0.90 873.88 OK
0. 0. 0. 1. 177. 0.90 OK I II
III 1 0. 0. 0. 1. 177. 0.90 OK III 2 0. 0. 0. 1. 177. 0.90 OK III 3 0. 0. 0. 1. 177. 0.90 873.88 OK
I IV
IV
1
2
0,
0.
0.
0.
0,
0.
1,
1.
177,
177.
0.90
0.90
OK
OK IV 3 0. 0. 0. 1. 177. 0.90 873.88 OK V 0. 0. 0. 1. 177. 0.90 OK VI 1 0. 0. 0. 1. 177. 0.90 OK VI 2 0. 0. 0. 1. 177. 0.90 OK I VI 3 0. 0. 0. 1. 177. 0.90 908.76 OK VII 1 0. 0. 0. 1. 235. 1.20 OK VII 2 0. 0. 0. 1. 235. 1.20 OK
I NOTE: FOR CALTRANS AND SPC-C AND SPC-D ONLY THE UNREDUCED
SEISMIC MOMENTS ARE REDUCED BY THE Z OR R FACTOR.
FOR SPC-B BOTH THE UNREDUCED SEISMIC AXIAL AND
MOMENTS ARE REDUCED BY THE Z OR R FACTOR.
I
Date: 11-OCT-04 Time: 10:45:07 Page: 7 ' Project Title:Bressi Ranch
** *********** ***** **** ****
* MOMENT MAGNIFICATION AND BUCKLING CALCULATIONS
** ************ ****** ************
* * * * ******
*
REFERENCE: "CALTRANS BRIDGE DESIGN SPECIFICATIONS" (ART 8.16.5)
(COLUMN ASSUMED TO BE UNBRACED AGAINST SIDESWAY.)
MAGY = MOMENT MAGNIFACTION FACTOR ABOUT Y-AXIS
MAGX = MOMENT MAGNIFACTION FACTOR ABOUT X-AXIS
PCY = CRITICAL BUCKLING LOAD ABOUT Y-AXIS
PCX = CRITICAL BUCKLING LOAD ABOUT X-AXIS
KY = EFFECTIVE LENGTH FACTOR ABOUT Y-AXIS = 1.00
ICC = EFFECTIVE LENGTH FACTOR ABOUT X-AXIS = 1.00
}(Y*L/R = SLENDERNESS RATIO ABOUT Y-AXIS = 28. IO(*L/R = SLENDERNESS RATIO ABOUT X-AXIS = 28.
IYS = STEEL MOMENT OF INERTIA ABOUT Y-AXIS = 0.0071 FT**4
IXS = STEEL MOMENT OF INERTIA ABOUT X-AXIS = 0.0071 FT**4
MOMENT CRACKED CRITICAL
:-MAGNIFICATION-:--TRANSFORMED SECTION--: -----BUCKLING----: AXIAL GR CA TRAN LONG COMB E*IY E*IX TRAN LONG LOAD
MAGY MAGX MAG PCY PCX P
(KIPFT**2) (KIPFT**2) (KIPS) (KIPS) (KIPS)
IN 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IH 2 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IH 3 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IP 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IP 2 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IP 3 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. II 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. III 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. III 2 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. III 3 1.000 1.000 1.000 194138. 194138. 9776; 9776. 1. IV 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IV 2 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. IV 3 1.000 1.000 1.000 194138 194138. 9776. 9776. 1. V 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. VI 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1. VI 2 1:000 1.000 1.000 194138. 194138. 9776. 9776. 1.
VI 3 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1.
VII 1 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1.
VII 2 1.000 1.000 1.000 194138. 194138. 9776. 9776. 1.
Date: 11-OCT-04 Time: 10:45:07 Page: 8
Project Title:Bressi Ranch
COLUMN SERVICE LOADS (KIP, K-FT) AND MAXIMUM WORKING STRESSES (PSI)
YOUNG S MODULUS FOR CONCRETE - EC = 3249500. PSI
MODULAR RATIO (ES/EC) - N = 8.9
:--- SERVICE LOADS (KIP. K-FT) --- : --- MAX STRESS (PSI)
TRANS LONG COMB AXIAL CONC STEEL STEEL
GP CASE MY MX M P COMP TEN COMP
IH 1 0. 0. 0. 1. 2. 0. 19.
IH 2 0. 0. 0. 1. 2. 0. 19.
IH 3 0. 0. 0. 1. 2. 0. 19.
II 0. 0. 0. 1. 2. 0. 15.
III 1 0. 0. 0. 1. 2. 0. 15.
III 2 0. 0. 0. 1. 2. 0. 15.
III 3 0. 0. 0. 1. 2. 0. is.
IV 1 0. 0. 0. 1. 2. 0. 15.
IV 2 0. 0. 0. 1. 2. 0. 15.
IV 3 0. 0. 0. 1. 2. 0. 15.
V 0. 0. 0. 1. 2. 0. 14.
VI 1 0. 0. 0. 1. 2. 0. 14.
VI 2 0. 0. 0. 1. 2. 0. 14.
VI 3 0. 0. 0. 1. 2. 0. 14.
ALl 53. 0. 53. 0. 1119. 21498. 3450.
DL 0. 0. 0. 1. 2. 0. 19.
Date: 11-OCT-04 Time: 10:45:07 Page: 9
Project Title:Bressi Ranch
****************************************************************
* PROBABLE PLASTIC MOMENT (1.3 X NOMINAL MOMENT) (lap, KIP-FT) *
******************************************* ***** **** *********************
CODE (8.16.4.4) AND MEMO TO DESIGNERS 15-10
FC = 3.25 KSI FY = 60.00 l(SI
EO = 0.0030 IN/IN AST = 4.74 SQ IN
ANGLE TRANS LONG COMB AXIAL P-BALANCE
MPY MPX MP P (APPROX)
90.0 396.1 0.0 396.1 909.4 553.
430.0 0.0 430.0 757.8
445.5 0.0 445.5 606.3
442.4 0.0 442.4 454.9
414.8 0.0 414.8 303.3
343.8 0.0 343.8 151.7
251.1 0.0 251.1 1.1
250.4 0.0 250.4 0.1
200.9 0.0 200.9 -75.7
136.4 0.0 136.4 -151.5
Date: 11-OCT-04 Time: 10:45:07 Page: 10
Project Title:Bressi Ranch
DESIGN ASSUMPTIONS:
ALL COLUMNS ARE THE SAME I.E., PRISMATIC, EQUAL LENGTH, EQUAL SPACING.
PLASTIC HINGES FORM AT THE TOP AND BOTTOM OF THE COLUMNS.
THE DISTANCE BETWEEN THE PLASTIC HINGES IS TAKEN AS THE COLUMN LENGTH.
THE OVER-TURNING FORCE ACTS THROUGH THE C.G. OF THE SUPERSTRUCTURE AT A
DISTANCE 'CGS ABOVE THE TOP OF THE COLUMN.
S. THE COLUMNS ARE NUMBERED FROM LEFT TO RIGHT AND THE OVERTURNING FORCE
ACTS TO THE RIGHT.
DETERMINATION OF COLUMN LATERAL REINFORCEMENT
NUMBER OF COLUMNS IN BENT = 1
OUT TO OUT DISTANCE (DIAMETER) OF
LATERAL REINFORCEMENT = 18.00 IN
DISTANCE FROM TOP COLUMN PLASTIC HINGE
TO CENTER OF GRAVITY OF SUPERSTURCTURE = 2 .00 FT
CENTER TO CENTER SPACING OF COLUMNS = 0.00 FT COMPRESSIVE STRENGTH OF CONCRETE - FC = 3.25 KSI YIELD STRENGTH OF REINFORCEMENT - FY = 60.00 KSI CONCRETE GROSS AREA (2 COVER) - AG = 2.64 FT**2
CONCRETE CORE AREA - AC = 1.77 FT**2
TRANSVERSE DIRECTION - 8W = 18.00 IN TRANSVERSE DIRECTION - D = 14.40 IN LONGITUDINAL DIRECTION - 8W = 18.00 IN LONGITUDINAL DIRECTION - D = 14.40 IN
AMOUNT OF REINFORCEMENT CONFORMS TO THE FOLLOWING BRIDGE DESIGN
SPECIFICATIONS:
CASE A - CONFINEMENT REINFORCEMENT - (CODE 8.18.2.2)
PSI = .45 (AG/AC - 1) FC/FY (.5 + 1.25 P/(FC * AG)) PS2 = .12 FC/FY (.5 + 1.25 P/(FC * AG)) PS3 = .45 (AG/AC - 1) FC/FY
CASE B - APPLIED SHEAR REINFORCEMENT - (CODE 8.16.6)
VU <= PHI * VN (8-46)
VN = VC + VS (8-47)
VC = 2 * SQRT(FC) * BW * 0 (8-51)
VS = (AV * FY * D) / S (8-53)
CASE C - MINIMUM SHEAR REINFORCEMENT - (CODE 8.19.1.1)
AV = (50 * BW * S)/FY (8-63)
Date: 11-OCT-04 Time: 10:45:07 Page: 11 Project Titie:Bressi Ranch
************************
* TRANSVERSE DIRECTION *
*************************************** **** ******* ***********************
LOADS RESULTING FROM PLASTIC HINGING OF COLUMN NO. 1
TOP OF COLUMN AXIAL FORCE P = 1. KIPS
PLASTIC MOMENT MP = 0. K-FT BOTTOM OF COLUMN AXIAL FORCE P = 8. KIPS
PLASTIC MOMENT MP = 255. K-FT
DESIGN SHEAR FORCE: VU = 16. KIPS CONCRETE FACTORED SHEAR STRENGTH: .85 * VC = 0. KIPS STEEL FACTORED SHEAR STRENGTH: .85 * VS = 16. KIPS
NOTE: THE AVERAGE COMPRESSIVE STRESS (P/AC) IS LESS THAN .10 * FC. THEREFORE, VC IS LESS THAN 2 * SQRT(FC) * B * D (CODE 8.16.6.11.4(A))
MAXIMUM CENTER TO CENTER SPACING (PITCH) OF LATERAL REINFORCEMENT. (IN)
BAR CASE A - CASE B CASE C CONFINEMENT SIZE CONFINEMENT APP SHEAR MIN SHEAR RATIO EQUATION 4 3.577 18.773 26.667 0.01204 3 5 5.504 29.098 41.333 0.01204 3 6 7.726 41.300 58.667 0.01204 3 7 10.462 56.318 80.000 0.01204 3 8 13.669 74.152 105.333 0.01204 3
NOTE:
THE UNREDUCED ELASTIC ARS + DEAD LOAD MOMENT ( 0. K-FT) IS LESS THAN THE PROBABLE PLASTIC MOMENT ( 255. K-FT)
'. THEREFORE, PLASTIC HINGING DOES NOT CONTROL.
(CODE 8.16.6.11.1)
THE DESIGNER MUST CHECK THE SHEAR REINFORCEMENT (CASE B) I FOR GROUP LOADS I TO VII
(USE UNREDUCED ELASTIC ARS DEAD LOAD SHEAR FOR GROUP VII)
Date: 11-OCT-04 Time: 10:45:07 Page: 12
Project Title:Bressi Ranch
THE MAXIMUM SPACING OF LATERAL REINFORCEMENT SHALL NOT EXCEED ONE-FIFTH ' OF THE LEAST DIMENSION OF THE COLUMN, 6 TIMES THE NOMINAL DIAMETER OF THE
LONGITUDINAL REINFORCEMENT, OR 8 INCHES. (8.21.1.1)
THE MINIMUM SPACING SHALL NOT BE LESS THAN 1.5 BAR DIAMETERS,
I: 1.5 TIMES THE MAXIMUM SIZE COARSE AGGREGATE, OR 1.5 INCHES. (8.21.1)
FACTORED SHEAR STRENGTH .85 * (VS + VC) BASED ON MAXIMUM AND MINIMUM
CENTER TO CENTER SPACING (PITCH) OF LATERAL REINFORCEMENT:
I
1.0" AGG
BAR MAX SHEAR MIN SHEAR
SIZE PITCH STRENGTH PITCH STRENGTH
(IN) (KIPS) (IN) (KIPS)
I
4 6.000 74. 2.000 126.
5 6.000 101. 2.125 126.
6 6.000 126. 2.250 126.
7 6.000 126. 2.375 126.
8 6.000 126. 2.500 126.
NOTE:
THE ABOVE FACTORED SHEAR STRENGTH VALUES ARE BASED ON A
FACTORED CONCRETE SHEAR STRENGTH (.85 * VC) OF 25. KIPS.
IF THE APPLIED AXIAL LOAD IS LESS THAN 83. KIPS,
THEN THE FACTORED CONCRETE SHEAR STRENGTH DECREASES FROM
25. KIPS TO 0. KIPS AND THE VALUES IN THE ABOVE TABLE
MUST BE APPROPRIATELY ADJUSTED.
IF THE DESIGNER SELECTS A LATERAL BAR SIZE DIFFERENT THAN
THE ONE ASSUMED, HE SHOULD CONSIDER ADJUSTING THE RADIUS OF
THE MAIN STEEL BAR LOOP AND RE-RUN THE PROBLEM.
MAXIMUM SHEAR CAPACITY OF THE SECTION:
VMAX = .85 * 10 * SQRT(FC) * B * D = 126. KIPS
Date: 11-OCT-04 Time: 10:45:07
Project Title:Bressi Ranch
Page: 13
**************************
* LONGITUDINAL DIRECTION *
*************************************************************************
LOADS RESULTING FROM PLASTIC HINGING OF COLUMN NO. 1
TOP OF COLUMN AXIAL FORCE P = 1. KIPS
PLASTIC MOMENT MP = 251. K-FT
BOTTOM OF COLUMN AXIAL FORCE P = 8. KIPS
PLASTIC MOMENT MP = 255. K-FT
DESIGN SHEAR FORCE: VU = 36. KIPS
CONCRETE FACTORED SHEAR STRENGTH: .85 * VC = 0. KIPS
STEEL FACTORED SHEAR STRENGTH: .85 * VS = 36. KIPS
NOTE: THE AVERAGE COMPRESSIVE STRESS (P/AC) IS LESS THAN .10 * FC.
THEREFORE, VC IS LESS THAN 2 * SQRT(FC) * B * D (CODE 8.16.6.11.4(A))
MAXIMUM CENTER TO CENTER SPACING (PITCH) OF LATERAL REINFORCEMENT. (IN)
U
I
I
BAR CASE A CASE B CASE C CONFINEMENT
SIZE CONFINEMENT APP SHEAR MIN SHEAR RATIO EQUATION
4 3.577 8.193 26.667 0.01204 3 5 5.504 12.699 41.333 0.01204 3 6 7.726 18.025 58.667 0.01204 3 7 10.462 24.579 80.000 0.01204 3 8 13.669 32.363 105.333 0.01204 3
NOTE:
I
THE UNREDUCED ELASTIC ARS + DEAD LOAD MOMENT ( 0. K-FT) IS LESS THAN THE PROBABLE PLASTIC MOMENT ( 255. K-FT)
THEREFORE, PLASTIC HINGING DOES NOT CONTROL.
(CODE 8.16.6.11.1)
I
THE DESIGNER MUST CHECK THE SHEAR REINFORCEMENT (CASE B)
FOR GROUP LOADS I TO VII
(USE UNREDUCED ELASTIC ARS + DEAD LOAD SHEAR FOR GROUP VII)
I Date: 11-OCT-04 Time: 10:45:07 Project Title:Bressi Ranch
Page: 14
THE MAXIMUM SPACING OF LATERAL. REINFORCEMENT SHALL NOT EXCEED ONE-FIFTH
OF THE LEAST DIMENSION OF THE COLUMN, 6 TIMES THE NOMINAL DIAMETER OF THE
LONGITUDINAL REINFORCEMENT, OR 8 INCHES. (8.21.1.1)
THE MINIMUM SPACING SHALL NOT BE LESS THAN 1.5 BAR DIAMETERS,
1.5 TIMES THE MAXIMUM SIZE COARSE AGGREGATE, OR 1.5 INCHES. (8.21.1)
FACTORED SHEAR STRENGTH .85 * (VS + VC) BASED ON MAXIMUM AND MINIMUM
CENTER TO CENTER SPACING (PITCH) OF LATERAL REINFORCEMENT
BAR MAX SHEAR
SIZE PITCH STRENGTH
(IN) (KIPS)
4 6.000 74.
5 6.000 101.
6 6.000 126.
7 6.000 126.
8 6.000 126.
1.0 AGG
MIN SHEAR
PITCH STRENGTH
(IN) (KIPS)
2.000 126.
2.125 126.
2.250 126.
2.375 126.
2.500 126.
NOTE:
THE ABOVE FACTORED SHEAR STRENGTH VALUES ARE BASED ON A
FACTORED CONCRETE SHEAR STRENGTH (.85 * VC) OF 25. KIPS.
IF THE APPLIED AXIAL LOAD IS LESS THAN 83. KIPS,
THEN THE FACTORED CONCRETE SHEAR STRENGTH DECREASES FROM
25. KIPS TO 0. KIPS AND THE VALUES IN THE ABOVE TABLE
MUST BE APPROPRIATELY ADJUSTED.
IF THE DESIGNER SELECTS A LATERAL BAR SIZE DIFFERENT THAN
THE ONE ASSUMED, HE SHOULD CONSIDER ADJUSTING THE RADIUS OF
THE MAIN STEEL BAR LOOP AND RE-RUN THE PROBLEM.
MAXIMUM SHEAR CAPACITY OF THE SECTION:
VMAX = .85 * 10 * SQRT(FC) * B * D = 126. KIPS
SECTION A-A
3/4' -
3'-06
(3 TOP. 3 BOTTOM)
,s U - TOTAL 2
ID - O 6
- EXISTING
- L
24'O SEWER LINE
TOTAL A TOTAL 3
V- 6'
SECTION C-C
2' - I-U'
09 fT .- TOTAL 3
2' CLR TSP
IT L,J - TOTAL 3
18 - TOTAL I
4 SPIRAL 3' CLR
SECTION D-D
I 1/2' - I -U'
Y-AXIS
0
:4
4'-O* 4-0±
A 3'-O'H TYP
I5TYP 18TYP q
PILE I
(-4.88. +3.20)
NEW 30'M -_.••
WATER LINE
Sr BRTYP
ORIGIN X-AXtS - - r (0.0)
I I
05 TYP
EXISTING THRUST BLOCK
(REM C0NJCKNG
¶9 I.
PORTIONS - SEE GENERAL
N
NOTES 2 AND 3 BELOW)
EXISTING
C
-- -- •"•" / ,6'H \\ SEWER USE
l-0 UNIT OF THRUST BLOCK REMOVAL 15 HOOP 45'42'08' Typ
14 SPIRAL CYP
(-1.48. -5.68')
PILE 2
NOTE THE CENTERS OF PILES I AND 2 ARE REFERENCED FROM THE ORION POINT
(INSIDE BEND OF 240 SEWER LINE) AS SHOWN ON THE PUN IN THE FORM (BY)
WITH THE Y-AXIS PARALLEL TO THE 240 SEWER UNE, AND THE X-AXIS
BEING PERPENDICULAR. WITH POSITIVE AND NEGATIVE DIRECTIONS SHOWN.
PLAN
I/2 -
DESIGN CRITERIA
CONCRETE: IN - 3.250 pM
REINFORCING: F0 - 60.000 pM
GENERAL NOTES
CONCRETE MIX SHALL CONFORM TO GREEN BOOK AND HAVE A MINIMUM STRENGTH OF 3.200 p,1.
OCIS1TNO THRUST BLOCK SHALL NOT BE REMOVED UNTIL NEW RESTRAINT SYSTEM
IS IN PLACE AND HAS ACHIEVED MINIMUM DESIGN STRENGTH.
PORTIONS OF EXISTING THRUST BLOCK SHALl. BE REMOVED TO FACILITATE INSTALLATION
OF THE NEW 30'0 WATER LINE. THE UNIT OF REMOVAL OF THE EXISTING THRUST BLOCK SHALL BE 12 BEYOND THE OUTSIDE EDGE OF THE NEW 30'0 WATER LINE.
1
_
ORIGINAL SCALE OF
SIMON WONG 571 FULL SITE P1.685
ENGINEERING \\I'.,JASE ,NJ) (INCHES) I
9966 0061 S&,,t CA. WN I iIiIiTh
92131 I lb. 530.263 ISMi 262.3113 I
15 13 TYP
3-U'9 3'-OH I I
1—#9r1- TOTAL 3 ) I
2' CLR rIP
IlIL. I
-U-15005. ,i t
0 12 FTP •I TOTAL 3
I —
T IL 2-0' CIDH PILE - TOTAL 2
I
NOTE: FOR REINFORCEMENT NOT SHOWN. SEE SECTION A-A.
SECTION B-B
3/4' - 1'-0-
"AS BUILT"
RcG_.............. DP........,..._ CAR
0(02650 IN
- INSPCC100 Bolt
1 CITY OF CARLSBAD
J E-10—TCI'6916201T I
BRESSI RANCH PIPE PROTECTION
PIPE PROTECTION DETAILS
zi REOTSIGN DESOVPTTON I1;;I;1I.iI__NRO.KCIHA