Loading...
HomeMy WebLinkAboutCT 00-20; FOX MILLER PROPERTY; DRAINAGE REPORT; 2004-01-28I I I I I I I I I I I I I I I I I I I CTOO-)D DRAINAGE REPORT FOR FOX-MILLER PROPERTY -ct0.0 .. 2.0 CARLSBAD, CALIFORNIA r RECEI\~D I FEB 0 5 lUU4 ISNGiNEE;RING DePARTMENT , . .,'; .. , , ~. ., • 0 Z ~ 0 . ' lU :L .... ,:-;.1 ~) I I I I I I I I I I I I I I ·1 I I I I DRAINAGE REPORT FOR FOX-MILLER PROPERTY CT 00-20 CARLSBAD, CALIF9RNIA Prepared By: BUCCOLA ENGINEERING, INC. 3142 Vista Way, Suite 301 Oceanside, California 92056 (760) 721-2000 Philip D. Buccola Registration Expires 3-31-06 January 28, 2004 IN 149-1 Prepared By: JAD II '1' , "~I I I ., fl ]1 I I I I I I I I I I I I I I I I I I I TABLE OF CONTENTS Section • PROJECT DESCRIPTION • LETTERBOX CANYON DETENTIONIRUNOFF DESCRIPTION • RATIONAL METHOD CALCULATIONS, EXISTING CONDITIONS • RATIONAL METHOD CALCULATIONS, PROPOSED CONDITIONS • PIPECALCS • DETENTION BASIN CALCULATIONS • APPENDIX: S.D. COUNTY CHARTS • BACK COVER: DRAINAGE MAPS (3") :i ! I I I I I I I I I I I ·1 I I I I I I I PROJECT DESCRIPTION The Fox-Miller project site is located in the City of Carlsbad near the intersection of College Blvd. and El Camino Real. The site is bounded on the south and east by the Carlsbad Research Center, and on the west by the Taylor Made Golf Business Park. These surrounding areas are part of the industrial development surrounding Palomar Airport Rd., and the Fox-Miller property also proposes industrial development. The site topography is predominated by a large canyon bisecting the property east-west from El Camino R~a1 to the Taylor-Made site at Salk Ave. and Fermi Court. Gently to moderately sloping hillsides occur on each side of the canyon. Approximately two-thirds of the 54 acre site drain into the canyon and into the existing 48" storm drain at Salk Ave. The majority of the remainder of the site drains into EI Camino Real, with about 6 acres draining into the Taylor-Made industrial park on the east side of Fermi Court. The development of the Fox-Miller property will result in increased runoff volumes generated by the industrial use. Due to capacity constraints in the existing trunk storm drains in College Blvd. and in the Taylor-Made site, all tributary projects would need to detain post-development runoff to· produce a volume equal to or less than the existing-condition flows, based on San Diego CO\l11ty 100-yr. storm criteria. The calculations within this report include existing and proposed condition rational method analysis, pipeflow calcs and detention basin calculations. San Diego County methods are used throughout, with supporting charts included in the appendix of the report. A node-to-node computer analysis is used for the rational method analysis. Soil type D occurs throughout the site. CONCLUSIONS: The runoff/detention design for the Letterbox Canyon/Salk system can be found in the next section of the report. The proposed EI Camino Real storm drain system connects to the existing trunk public storm drain at the nw comer of the property, on the adjacent parcel, parcel 3 of PM 17830, with the connection made into the existing 18" storm drain, which increases to 30" about 60 feet into the adjacent parcel. In conversations with the Carlsbad Engr. Dept., during preliminary design, they have stated that the design for the E1 Camino storm drain system should result in flows entering the existing system at rates no higher than existing runoff. These calculations show the existing Q100 at that point to be 38.4 CFS, and with the proposed small detention basin near the connection point, the proposed QI00 would be 38.5 CFS, essentially no increase. The small detention basin is located to pickup all runoff outside of the EI Camino roadway, which amounts to an inflow of around 10 CFS. The trunk storm drain in the street would pick up all the runoff from the road itself. I I. I I I I I I I 1 I I I I I I I I I CT 00-20 January 6, 2004 FOX-MILLER PROPERTY -AREAS TRIBUTARY TO LETTERBOX CANYON STORM DRAIN & DETENTION DISCUSSION Plans are currently being prepared for the Fox-Miller property, for first plan check submittal to the City of Carlsbad Engr. Dept. Site drainage was a significant issue during the TM approval process; for downstream capacity constraints, and also for potential impacts to the natural canyon, known as Letterbox Canyon, which bisects the site. The purpose of this memorandum is to clarify the latest design concept, in conjunction with the latest hydrology and associated exhibits. The TM approval of 2002 conditioned the owners of the property to ensure that ultimate development peak runoff for the property not be increased over the existing peak runoff, due to the capacity constraints in the downstream trunk storm drain system in College Blvd. The design proposal with the TM was to provide the necessary detention in the canyon itself, with the road embankment blocking the bottom of the canyon, allowing for sufficient pondinglheadwater depth, thus providing the necessary storage/detention. The design called for peak runoff from 3 of the 4 proposed lots, and Salk Ave, to enter the canyon. This concept would· have provided the necessary detention, with no additional provisions necessary within the lots. While there would be an increase in flows entering the canyon, the detention provided would result in no increase in runoffleaving the site at that point .. As work for the final plans, and discussion associated with agency permits began in recent weeks, information received from the State Regional Water Quality Board, and the Army Corps of Engineers indicated that their preference was for the proposed peak runoff entering the canyon, to be as close to the existing peak runoff as feasible, and that the majority of the detention be provided upstream of the canyon, not in line with it. Our under~tanding is that this concept of minimizing "in line" detention is a recent development with the Army Corps and the SRWCB. The new detention concepts were discussed with the Carlsbad Engr. Dept.; and their response was that there could be some flexibility in the placement of detention basins, with their main concern being that there would be no increase in peak runoff leaving the site at the bottom. : .' . .' . . . . . The placement of detention basins within the lots themselves will take up useable/sellable· area, so with the storm drain/detention design, every effort was made to minimize the amount of detention on each lot. Based on the street alignment for Salk, and the proposed grading for the site, it is projected that lots 1-3 will be developed with the detention provisions within the pads/lots themselves. Provisions for pollutant-removal, ie grass swales, bio-filtration trenches, etc., can be expected to also provide some detention of runoff by lowering velocities and providing small amounts of storage. The developers of each lot will be responsible for designing and implementing the pollutant-removal features, and also for limiting runoff to amounts noted with this study, pending approval by the City of Carlsbad. Ultimately the individual lot owners or the owners a~sociation will be responsible for maintenance of detention basins and pollutant-removal appurtenances. I I I I I I I I I I I I I I I, I I I I The design for lot 4 is slightly different; due to the geometry of the Salk roadway and the lot layout, a detention basin fits well into the triangular area at the'bottom of the slope, and will be constructed with the Fox-Miller grading/storm drain plans. Looking at the impacts to the Letterbox Canyon - a storm drain will outlet at the top of the canyon with the proposed Q equal to existing, -35 CFS. Moving downstream in the canyon, proposed flows remain close to existing down to the headwall/embankment supporting the Salk roadway, which blocks the canyon at that point. A proposed diverter cle,anout in Salk is would allow another 19 CFS to enter the canyon right at the bottom during high flows. The total proposed Q100 at that point will be 54 CFS, slightly over existing QIOO of 44 CFS. The increase over existing flows will only occur right at the bottom end of the canyon. The ,development of headwater depth at the culvert outlet, due to the road embankment;'will allow' for some retention of flows there, contributing toward the overall flow reduction at the site outlet. With this design proposal, only the last I5-feet of canyon would be maintained by the City, right at the culvert outlet/inlet headwalls. Upstream from there, flows would be similar to existing, and the proposed altered channel bottom will be designed to match the existing cross-section of the' canyon. Other than the bottom I5-feet, this entire area is proposed to'be unmaintained with planting proposed per the biological mitigation report/plan. Summary of the canyon impacts: the canyon will not be a maintained, fenced detention basin, as proposed on the TM. Runoff will flow at velocities and volumes very close to existing, with a minor increase in flows right at the end at the City-maintained inlet/outlet structures. Normal culvert headwater depths will provide a small amount of detention during high flows, with minor ponding. The graded portion of the canyon bottom will be constructed to match current cross sections, and with the ultimate planting, will result in a canyon bottom that will appear and function almost identical to existing. Leaving the canyon, flows will join other storm drain systems from the remaining lots, and combine to a total of 60.4 CFS at the connection to the existing 48" storm drain in Salk Ave. ' This is less than the calculated existing flow of 62 CFS at that point, and very close to the flow identified on the plans for the existing storm drain. . " I I I I I I I· I I I, I I . I I I I I - I I RATIONAL METHOD EXISTING CONDITIONS CALCS . ". . ... -. .) I' il I' I I I I I I I I I I I I I, I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003/1985/1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 *********************"***** DESCRIPTION OF STUDY ************************** * FOX-MILLER PROPERTY EXISTING CONDITIONS DRAINAGE STUDY * BASIN 100 * IN 149-1" 12-17-03 JD ************************************************************************** FILE NAME: G:\149-1F\C100E.DAT TIME/DATE OF STUDY: 15:04 12/17/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLQPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * * * HALF-" CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSS FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ========= ===== ====== 1 30.0 20.0 0.050/0.050/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =================================~=======================================~== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 0 I I I I' I' I I I I I I 'I I I I, ,I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 200.00 UPSTREAM ELEVATION(FEET) = 306.00 DOWNSTREAM ELEVATION(FEET) = 298.00 ELEVATION DIFFERENCE(FEET) = 8.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.371 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW· LENGTH IS USED IN 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.538 Tc CALCULATION! SUBAREA RUNOFF(CFS) 1.99 TOTAL AREA (ACRES) = '0.80 .TOTAL RUNOFF (CFS) . 1.. 99. **************************************************************************~* FLOW PROCESS FROM NODE 106.00 TO NODE 102.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.538 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6770 SUBAREA AREA(ACRES) 1.05 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 1.85 TOTAL RUNOFF(CFS) = TC(MIN.) = 7.37 4.94 6.94 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 290.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 280.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 liZ" FACTOR = 5.000 MANNING'S FACTOR = ·0.040 MAXIMUM DEPT~(FEET) = 2.00. 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.196 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.54 TRAVEL TIME(MIN.) '9.04 6.09 0.77 Tc(MIN.) = 8.14 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA(ACRES) = 2.30 COEFFICIENT 4.15 SUBAREA RUNOFF(CFS) 0.496 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.58 FLOW VELOCITY(FEET/S~C.) 6.42 245.00 0.1607 4.18 10.69 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 480.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 107.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< I I' I I I' I I I I I ,I ,. I I I I: ,I I I »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 245.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 500.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.749 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 15.70 TRAVEL TIME THRU SUBAREA BASED ON. VELOCITY(FEET/SEC.). = 6.84 AVERAGE FLOW DEPTH(FEET) 0.87 TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 9.35 SUBAREA AREA(ACRES) 6.00 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 10.15 SUBAREA RUNOFF(CFS) 0.410 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.95 FLOW VELOCITY(FEET/SEC.) 190.00 0.1100 9 .. 97 19.74 LONGEST FLOWPA~H FROM NODE 101.00 TO NODE 7.28 107.00 = 980.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 10.00 0.925 .INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 308.50 DOWNSTREAM ELEVATION(FEET) = 306.00 ELEVATION DIFFERENCE(FEET) = 2.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc = 10.%, IS USED IN Tc CALCULATION! 7.114 5-MINUTE. SUBAREA RUNOFF(CFS) ~ 3.20 TOTAL AREA(ACRES) =. 0.60 TOTAL RUNOFF (CFS) = 3.20 **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 51 -------------------------------------------------~----~--------------------- »»>COMPUTE TRAPEZOID~~ CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 306.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 220.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 242.00 0.2909 I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.33 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.05 AVERAGE FLOW DEPTH (FEET) 0.26 TRAVEL TIME(MIN.) 0.73 Tc(MIN.) = 1.65 SUBAREA AREA(ACRES) 0.10 SUBAREA RUNOFF(CFS) 0.25 AREA-AVERAGE RUNOFF COEFFICIENT 0.693 TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE (CF$) = 3.45 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.26 FLOW·VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 10S.00 TO NODE 5.02 110.00 = 230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ~=========================================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 1.65 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.45 **************************************************************************** FLOW PROCESS FROM NODE 110.10 TO NODE 110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 320.00 UPSTREAM ELEVATION(FEET) = 310.00 DOWNSTREAM ELEVATION(FEET) = 242.00 ELEVATION DIFFERENCE (FEET) = 6S.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150 SUBAREA RUNOFF(CFS) 4.95 TOTAL AREA(ACRES) = 2.30 TOTAL RUNOFF(CFS) 4.95 **************************************************************************** FLOW PROCESS FROM NODE 110.10 TO NODE 110.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 I I ,I I I I I I, I I I I I I 'I I I I I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.27 RAINFALL INTENSITY (INCH/HR) = 6.15 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.95 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.45 1. 65 7.114 2 4.95 6.27 6.150 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.75 1. 65 7.114 2 7.93 6.27 6.150 ESTIMATES ARE AS FOLLOWS: 7.93 Tc(MIN.) = 3.00 COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA(ACRES) = LONGEST FLOWPATH FROM NODE 110.10 TO NODE AREA (ACRE) 0.70 2.30 RATIO 6.27 110.00 320.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 107.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 242.00 DOWNSTREAM (FEET) 190.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 550.00 CHANNEL SLOPE 0.0945 CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = ,5.292 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 13.33 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.58 AVERAGE FLOW DEPTH(FEET) 0.69 TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 7.91 SUBAREA AREA (ACRES) 5.80 SUBAREA RUNOFF (CFS) 10.74 AREA-AVERAGE RUNOFF COEFFICIENT 0.377 TOTAL AREA(ACRES) = 8.80 PEAK FLOW RATE (CFS) = 17.57 E~D OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.77 FLOW VELOCITY(FEET/SEC.) 5.96 LONGEST FLOWPATH FROM NOP~ 110.10 TO NODE 107.00 = 870.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 107.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ I I I I I I I I I I I I I, I I I I I ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.57 7.91 5.292 AREA (ACRE) 8.80 LONGEST FLOWPATH FROM NODE 110.10 TO NODE 107.00 870.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 19.74 9.35 4.749 AREA (ACRE) 10.15 107.00 LONGEST FLOWPATH FROM NODE 101. 00 -TO NODE -980.00.FEET. ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 34.26 35.51 TABLE ** Tc (MIN. ) 7.91 9.35 INTENSITY ( INCH/HOUR) 5.292 4.749 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 35.51 Tc(MIN.) = 9.35 TOTAL AREA(ACRES) = 18.95 *****************************************************************~********** FLOW PROCESS FROM NODE 107.00 TO NODE 111.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 190.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 650.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) =. 2.00 -100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.243 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 . S. C. S. CURVE NUMBER (AMC II.) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 41.68 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 6.07 AVERAGE FLOW DEPTH (FEET) 1.17 TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) = 11.14 154.00 0.0554 8.30 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA RUNOFF(CFS) 0.381 12.33 TOTAL AREA (ACRES) = 27.25 PEAK FLOW RATE (CFS) ~ 44.05 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 1.20 FLOW VELOCITY(FEET/SEC.).= 6.11 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 111.00 = 1630.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 111. 00 TO NODE 112.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = CHANNEL LENGTH THRU SUBAREA (FEET) = 154.00 DOWNSTREAM (FEET) 230.00 CHANNEL SLOPE = 140.50 0.0587 ~I '1 I I I I I I' I I ,I I I I I I I 'I I I I I CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.046 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMB~R (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 45.54 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.49 AVERAGE FLOW DEPTH(FEET) 0.71 TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 11.99 SUBAREA AREA (ACRES) 2.10 SUBAREA RUNOFF (CFS) 2.97 AREA-AVERAGE RUNOFF COEFFICIENT 0.379 TOTAL AREA(ACRES) = 29.35 PEAK FLOW RATE(CFS) = 44.98 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.71 FLOW VELOCITY(FEET/SEC.) 4.50 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 112.00 = 1860.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 111. 00 TO NODE 112.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.99 RAINFALL INTENSITY (INCH/HR) = 4.05 TOTAL STREAM AREA(ACRES) = 29.35 PEAK FLOW RATE (CFS) AT CONFLUENCE = 44.98 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER~SPECIFIED RUNOFF COEFFICIENT = .3500 ' S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET} = 300.00 DOWNSTREAM ELEVATION(FEET} = 260.00 ELEVATION DIFFERENCE (FEET) = 40.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150 SUBAREA RUNOFF(CFS} 1.94 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF (CFS) 1.94 *******************************************************************~******** FLOW PROCESS FROM NODE 114.00 TO NODE 112.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELE~ENT)««< ============================================================================ I I I I I I I I I I I I I I 'I I I I I ELEVATION DATA: UPSTREAM (FEET) = 260.00 DOWNSTREAM (FEET) 140.50 CHANNEL LENGTH THRU SUBAREA (FEET) 1150.00 CHANNEL SLOPE 0.1039 CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.614 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 11.03 rRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.45 AVERAGE FLOW DEPTH(FEET) 0.64 TRAVEL TIME(MIN.) = 3.52 ..... Tc·(MIN.) = 9.78 SUBAREA AREA(ACRES) 11.10 SUBAREA RUNOFF(CFS) = 17.93 AREA-AVERAGE RUNOFF COEFFICIENT 0.350 TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 19.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) 6.32 LONGEST FLOWPATH FROM NODE 113.00 TO NODE 112.00 = 1310.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 112.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.78 RAINFALL INTENSITY (INCH/HR) = 4.61 TOTAL STREAM AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) AT CONFLUENCE 19.38 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 44.98 11. 99 4.046 2 19.38 9.78 4.614 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 56.06 9.78 4.614 2 61.97 11.99 4.046 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 29.35 12.00 RATIO PEAK FLOW RATE(CFS) 61.97 Tc(MIN.) = 11.99 TOTAL AREA(ACRES) = 4+.35 LONGEST FLOWPAJH FROM NODE 101.00 TO NODE 112.00 1860.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 41.35 TC(MIN.) = 61.97 11. 99 ============================================================================ Ii , " II Ii il 11 1, } ,I i, ! 1 I I I I I I I I I I· I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License 10 1463 Analysis prepared by: Bucc~la Engineeri~g, tnc~" 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 ':.' ************************** DESCRIPTION OF STUDY ************************** * FOX-MILLER PROPERTY EXISTING CONDITIONS DRAINAGE STUDY * BASIN 300 * IN 149-1 12-17-03 JD ************************************************************************** FILE NAME: G:\149-1F\300E.DAT TIME/DATE OF STUDY: 16:17 12/17/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: . . * * * --------------------------------------~------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS . . *USER-DEFINED STREET-SECTIONS, FOR COUPLED PIPEFLOW ANP STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: .MANN:i;NG WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE I. SIDE/ WAY (FT) (FT) (FT) (FT) (n) ========= ================= ====== ====== ===== ======= 1 30.0 20.0 0.050/0.05010.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************************************~******* FLOW PROCESS FROM NODE 300.00 TO NODE ~01.00 IS CODE = 21 ---------------------------------------------------------------------------~ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOF~ COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 , t, 1.1 .. I I I I I I I I I I' I I I I I '"I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00 UPSTREAM ELEVATION (FEET) = 300.50 DOWNSTREAM ELEVATION(FEET) = 295.00 ELEVATION DIFFERENCE,(FEET) = 5.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.667 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 80.28 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF (CFS) = 1.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) = 1.69 **************************************************************************** FLOW PROCESS FROM NODE 301. 00 TO NODE 302.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.050 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 250.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 5.74 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREE,T FLOW DEPTH (FEET) = O. 36 HALFSTREET FLOOD WIDTH (FEET) =' 5.67 AVERAGE'FLOW VELOCITY{FEET/SEC.) 6.47 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.36 STREET FLOW TRAVEL TIME(MIN.) = 2.06 Tc{MIN.) 3.73 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S. C. S. CURVE NUMB,ER (AMC II) = 65 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 SUBAREA AREA(ACRES) 1.20 SUBAREA RUNOFF (CFS) 8.11 TOTAL AREA(ACRES) = 1.45 PEAK FLOW RATE{CFS) 9.80 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.43 HALFSTREET FLOOD WIDT~(FEET) 7.06 FLOW VELOCITY(FEET/SEC.) = 7.36 DEPTH*VELOCITY(FT*FT/SEC.) 3.20 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 980.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31 ---------------------------------------------------------------------------- II I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 247.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 14.17 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 9.80 0.14 _Tc(MIN.) = 3.87 238.00 1 PIPE --TRAVEL -TIME (MIN.) = LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303-.00 =---"1100.00 FE-ET-.- **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 1- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 3.87 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.80 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 21 »»>RATIDNAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 INITIAL SUBAREA FLOW-LENGTH{FEET) = 130.00 UPSTREAM ELEVATION(FEET) = 294.00 DOWNSTREAM ELEVATION(FEET) = 285.00 ELEVATION DIFFERENCE (FEET) = 9.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.372 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 93.85 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 1.01 TOTAL AREA (ACRES) = 0.15 TOTAL RUNOFF (CFS) = 1.01 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 303.bo IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SU~AREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION (FEET) = 294.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 750.00 CURB HEIGHT(INCHES] = 6.0 STREET HALFWIDTH(FEET) = 30.00 238.00 ~i ;1 _I -_J I I I I I I I I I I I 01 I I 10 I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSS FALL (DECIMAL) = 0.050 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 20.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMA.TED FLOW: STREET FLOW DEPTH(FEET) = 0.29 ,HALFSTREET FLOOD WIDTH(FEET) = 4.21 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.42 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.87 STREET FLOW TRAVEL TIME(MIN.) = 1.95 0 Tc(MIN.) 3.32 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.70 TOTAL AREA(ACRES) = 0.85 0.950 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 5.33 3.38 4.73 5.74 FLOW VELOCITY(FEET/SEC.) = 7.22 DEPTH*VELOCITY(FT*FT/SEC.) 2.51 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 0303.00 = 880.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 303.00 IS CODE = o »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 '==========================?================================================= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) 3.32 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.80 3.87 7.114 2 5.74 3.32 7.114 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/ HOUR) 1 14.16 3.32 7.114 2 15.54 3.87 7.114 AREA (ACRE) 1. 45 0.85 RATIO I I I I I I I I I. I I I I I I I I' I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.54 Tc(MIN.) = 3.87 TOTAL AREA(ACRES) = 2.30 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 1100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 306.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< . »»>(STREET TABLE .SECTION #. 1 USED)««< . . ===========================================================================~ . UPSTREAM ELEVATION(FEET) = 238.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.050 OUTSIDE STREET CROSS FALL (DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 8.77 .AVERAGE FLOW VELOCITY(FEET/SEC.) 9.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 4.62 STREET FLOW TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : ., USER-SPECIFIED RUNOFF COEFFICIENT = .9500 ·S . C. S. CURVE NUMBER (AMC II) = 65 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 17.23 4.87 200.00 0.0150 SUBAREA.AREA(ACRES) 0.50 TOTAL AREA (ACRES) = 2.80 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) 3.38 18.92 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) 9.82 FLOW VELOCITY(FEET/SEC.) = 9.34 DEPTH*VELOCITY(FT*FT/SEC.) 4.86 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 306.00 = 1650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 311. 00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ===========================================~~=============================== TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. )4 .87 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE (CFS) AT CONFLUENCE = 18.92 .,' " I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5000 150.00 S.C.S. CURVE NUMBER (AMC II) = 65 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 272.00 DOWNSTREAM ELEVATION(FEET) = . 250.00 .. . -.... ELEVATION DIFFERENCE (FEET) = 22.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.102 SUBAREA RUNOFF(CFS) 2.13 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) 2.13 **************************************************************************** .FLOW PROCESS FROM NODE 308.00 TO NODE 310.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 250.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.050 OUTSIDE STREET CROSS FALL (DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 200.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 4.03 STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 4.67 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.39 PRODUCT OF DEPTH&VELO,CITY (FT*FT /SEC. ) 2.01 STREET FLOW TRAVEL TIME(MIN.) = 1.96 Tc(MIN.) 6.97 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.743 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 AREA-AVERAGE RUNOFF COEFFICIENT 0.742 SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS) 3.82 TOTAL AREA (ACRES) = 1. 30 PEAK FLOW RATE (CFS ) 5 . 54 END OF SUBAREA STREET FLOW HYDRAULICS: "I " " I I I I I I I I I I I I I I I I .1 I I DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 5.37 FLOW VELOCITY(FEET/SEC.) = 6.89 DEPTH*VELOCITY(FT*FT/SEC.) 2.41 LONGEST FLOWPATH FROM NODE 307.00 TO NODE 310.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 309.00 TO NODE 310.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.743 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF.COEFFICIENT·= .7000 S . C. S. CURVE NUMBER (AMC 1.1) = 65 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7344 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 1.60 TOTAL RUNOFF (CFS) TC(MIN.) = 6.97 1.21 6.75 **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO. NODE 311.00. IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 192.30 DOWNSTREAM (FEET) 192 ... 00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 4.92 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.75 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.14 LONGEST FLOWPATH FROM NODE· 307.00 TO NODE 311.00 950.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«~« ============================================================================ TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 7.14 RAINFALL INTENSITY (INCH/HR) = 5.65 TOTAL STREAM AREA(ACRES) ~ 1.60 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.75 **************************************************************************** FLOW PROCESS FROM NODE 311.10 TO NODE 311.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ==~========================================================================= *USER SPECIFIED (SUBAREA) ; USER-SPECIFIED RUNOFF COEFFICIENT = .1500 S.C.S. CURVE NUMBER (AMC II) = 65 USER SPECIFIED Tc(MIN.) = 7.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.726 SUBAREA RUNOFF(CFS) 1.55 TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF (CFS) 1.55 ! . . , , " I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 311.00 TO NODE 311.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 7.00 RAINFALL INTENSITY (INCH/HR) = 5.73 TOTAL STREAM AREA(ACRES) = 1.80 ,PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.55 **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 21 »»>RATIONAL METHOD INITIA~ SUBAREA ANALYSIS««< ===================================================================~======== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 65 INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00 UPSTREAM ELEVATION(FEET) = 309.00 DOWNSTREAM ELEVATION(FEET) = 255.00 ELEVATION DIFFERENCE(FEET) = 54.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.425 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 98.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.051 'SUBAREA RUNOFF(CFS) 3.60 TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF (CFS) 3.60 **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 311.00 IS CODE = 51 ----------------------------------------------------------------------------, , , , »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 255.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 350.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "z" FACTOR = 3.000' MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.60l *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 65 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.52 TRAVEL TIME(MIN.) 5.86 7.12 0.82 SUBAREA RUNOFF(CFS) 0.350 Tc(MIN.) = 7.24 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA (ACRES) = 2.30 COEFFICIENT 4.00 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: 192.00 0.1800 4.51 7.84 I I I I I I I I I I I I I I I I I I I '. DEPTH (FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) 7.65 LONGEST FLOWPATH FROM NODE 312.00 TO NODE 311.00 = 950.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 311.00 TO NODE 311.00 IS CODE = 1 ---------------------------~------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) 7.24 RAINFALL INTENSITY (INCH/HR) = 5.60 TOTAL STREAM AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.84 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 18.92 4.87 7.114 2.80 2 6.75 7.14 5.655 1. 60 3 1. 55 7.00 5.726 1.80 4 7.84 7.24 5.601 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 29.88 4.87 7.114 2 30.97 7.00 5.726 3 31.04 7.14 5.655 4 30.93 7.24 5.601 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: .PEAK. FLOW ):\ATE (CFS) 31,.04 .Tc (MI)::-L) ':" 7.1~ TOTAL AREA(ACRES) = 10.20 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 311. 00 1650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 311. 00 TO NODE 318.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 192.00 DOWNSTREAM (FEET) = ',-'<. 175.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 220.00 CHANNEL SLOPE = . 0.0773 CHANNEL BASE(FEET) -0.00 "Z" FACTOR = 3.000' MANNING I S FACTOR = 0.030 MAXIMUM DEPTH'(FEET) = 2.00 100 YEAR RAINFALL INTENS~TY(INCH/HOUR) = 5.454 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC'II) = 65 TRAVEL'TIME COMPUTED USING ESTIMATED FLOW(CFS) 32.66 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 8.94 AVERAGE FLOW DEPTH(FEET) 1.10 TRAVEL TIME(MIN.) 0.41 " I I I I I I I I I I I I I I I I I I I Tc{MIN.) = 7.55 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA(ACRES) = 1. 70 COEFFICIENT 11. 90 SUBAREA RUNOFF(CFS) = 0.513 3.25 PEAK FLOW RATE(CFS) = 33.27 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 1.11 FLOW VELOCITY(FEET/SEC.) 8.98 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 318.00 = 1870.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 318.00 TO NODE 317.00 IS CODE = 51 . ---~~---~--------~----------------------------------------------~----------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 175.00 DOWNSTREAM (FEET) 160.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 160.00 CHANNEL SLOPE 0.0938" CHANNEL BASE(FEET) 0.00 "z" FACTOR = 2.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.326 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 65 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 34.86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.38 AVERAGE FLOW DEPTH (FEET) 1.36 TRAVEL TIME(MIN.) = 0.28 Tc(MIN.).= 7.83 SUBAREA AREA (ACRES) 1.70 SUBAREA RUNOFF (CFS') 3.17 AREA-AVERAGE RUNOFF COEFFICIENT 0.492 TOTAL AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) = 35.66 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 1.38 FLOW VELOCITY(FEET/SEC.) 9.41 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 317.00 = 2030.00 FEET. .**************************************************************************** FLOW PROCESS FROM NODE 318.00 TO NODE 317.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM. FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: . TIME OF CONCENTRATION(MIN.) 7.83 RAINFALL INTENSITY (INCH/HR) = 5.33 TOTAL STREAM. AREA (ACRES) = 13.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.66 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ~==============================================?============================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 INITIAL SUBAREA FLOW-LENGTH (FEET) = 130.00 UPSTREAM ELEVATION (FEET) = 200.00 .1 , ;:I II E .11 .l :1 .1 :! :. I I I I I I I I I I I I I I I I I I I DOWNSTREAM ELEVATION(FEET) = 190.00 ELEVATION DIFFERENCE(FEET) = 10.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.336 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 95.38 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF (CFS) 1. '69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF (CFS) = 1.69 *************************************************************~**~;*******;** FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 190.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.050 OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 170.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: 3.81 STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.77 100 YEAR RAINFALL INTENSITY(INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc *USER SPECIFIED (SUBAREA) : 6.05 1. 64 Tc(MIN. ) 7.114 5-MINUTE. USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 65 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 i.l1 SUBAREA AREA(ACRES) 0.30 TOTAL AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH (FEET) 4.44 2.70 2.03 3.72 FLOW VELOCITY(FEET/SEC.) = 6.44 DEPTH*VELOCITY(FT*FT/SEC.) 1.95, . LONGEST FLOWPATH FROM NODE 315.00 TO NODE 317.00 = 410.00 FEET. ************************************************************************,**** FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 I I I I I I I I I I I I I I I I I I I ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) 2.11 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.72 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS ) 1 35.66 2 3.72 Tc (MIN. ) 7.83 2.11 INTENSITY (INCH/HOUR) 5.326 7.114 2 ARE: AREA (ACRE) 13.60 0.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 30.41 2.11 7.114 2 38.44 7.83 5.326 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 38.44 Tc(MIN.) = 7.83 TOTAL AREA(ACRES) = 14.15 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 317.00 = 2030.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 14.15 TC(MIN.) = 38.44 7.83 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ;, f ,. ;11 Ii .11 I I I I I I I -I I I I I I I I I I I I RATIONAL METHOD PROPOSED CONDITIONS CALCS ! t I! 1 " " .,' (II iii I! II I! II -I, ." I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc .. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 **********************~*** DESCRIPTION OF STUDY **************~*********** * FOX-MILLER PROPOSED DRAINAGE RATIONAL METHOD CALCS * * BASINS 100 AND 200 * * IN 149-1 12-23-03 JD * ************************************************************************** ;Vor€. : leeF6J-if) l.6-rT£/f JJ~ eApJ1J1J t.()t1I()r~/S/) ~XII/~//,.cb,l-/}/)J),t.. I LtV51',UfrltJ,v FILE NAME: G:\149-1F\100P.DAT TIME/DATE OF STUDY: 13:13 12/30/2003 O/~ JJ6tA-/#6I:J ,~S .44;", eAcH tlr ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOWMODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT· WIDTH ·LIp· HIKE· ·FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 26.0 21. 0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 --------------------------------------------~~------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ===========================================================================~ USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 I I I I I I I I I I I I I I I I I I I UPSTREAM ELEVATION(FEET) = 291.00 DOWNSTREAM ELEVATION(FEET) 290.30 ELEVATION DIFFERENCE (FEET) 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.207 WARNING: INITIAL SUBARE~ FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 1.24 TOTAL AREA (ACRES) = 0.20 TOTAL.R?N~FF(CFS). =. 1.24 **************************************************************************** FLOW PROCESS FROM NODE 101. 00 TO NODE 102.00 IS CODE = . 91 »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< ============================================================================ UPSTREAM NODE ELEVATION (FEET) = 290.30 DOWNSTREAM NODE ELEVATION (FEET) = 281.30 CHANNEL LENGTH THRU SUBAREA(FEET) 220.00 "V" GUTTER WIDTH (FEET) = 3.00 GUTTER HIKE (FEET) 0.050 PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150 PAVEMENT CROSSFALL(DEClMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 2.00 . 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 6.81 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.47 AVERAGE FLOW DEPTH(FEET) = 0.20 FLOOD WIDTH(FEET) 17.11 "V" GUTTER FLOW TRAVEL TIME(MIN.) 0.82 Tc(MIN.) 4.03 SUBAREA AREA(ACRES) 1.80 SUBAREA RUNOFF(CFS) 11.14 AREA-AVERAGE RUNOFF COEFFICIENT 0.870 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) 12.38 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = 0.25 FLOOD WIDTH(FEET) 21.85 FLOW VELOCITY(FEET/SEC.) = 5.06 DEPTH*VELOCITY(FT*FT/SEC) 1.26 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER~ESTlMATED PI~ESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 275.00 DOWNSTREAM·(FEET) 269.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.98 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 12.38 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 5.46 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 890.00 FEET. I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO .NODE 103.00 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.720 USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8700 SUBAREA AREA(ACRES) 5.10 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 7.10 TOTAL RUNOFF(CFS) TC (MIN. ). =:= 5.46 29.82 41.51 ~ {)E'[IJ/tV t.07 ., 4/· '5" ~ t9.o **************************************************************************** 'I ;i FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 7 --------------------------------------------------------------------------f (F()r()~6 t\sfeP1A?~ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ===================================================================== -===== .t! ill USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.76 RAIN INTENSITY (INCH/HOUR) = 4.62 TOTAL AREA(ACRES) = 7.10 TOTAL RUNOFF (CFS) = 29.00 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 269.00 DOWNSTREAM (FEET) FLOW·LENGTH(FEET) = 360.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 18.54 ESTIMATED PIPE DIAMETER (INCH) = 21.00 PIPE-FLOW (CFS) = 29.00 NUMBER OF PIPES 0.32 Tc(MIN.) = 242.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 100.00 TO NODE 10.08 105.00 1250.00 FEET. *****~****************************************~***~**********~***~***~****** FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.08 RAINFALL INTENSITY (INCH/HR) = 4.52 TOTAL STREAM AREA(ACRES) = 7.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.00 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 104.00 IS CODE = 21 --------------------------------------------~~------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 97 \ , ;1 Ii I I I I I I I I I I I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 275.70 DOWNSTREAM ELEVATION(FEET) = 273.50 ELEVATION DIFFERENCE (FEET) = 2.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.432 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 68.33 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA,RU~OFF(CFS) 1.28 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = . 1.28 ' *********************************************************************~****** FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 273.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 340.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.28 STREETFLOW MODEL RESULTS USING EST-lMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 ,HALf STREET FLOOD WIDTH(FEET) = 6.11 AVERAGE FLOW VELOCITY(FEET/SEC.)' 4.63 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.15 STREET FLOW TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 3.65 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.767 SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) = 1.99 251.00 0.0150 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE (CFS) 3.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH (FEET) 7.34 FLOW VELOCITY(FEET/SEC.) = 4.98 DEPTH*VELOCITY(FT*FT/SEC.) 1.36 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 106.00 = 460.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- ~ . , , , Ii 'I' II III 11 }: t' ,II III tIl i ql ~ ~ i III N' , I -I I I I -) I I I I I I I I I I I I I I »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6833 SUBAREA AREA(ACRES) 0.60 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 1.20 TOTAL RUNOFF (CFS) = TC(MIN.) = 3.65 2.56 5.83 *~~*~*********~***********~******************~******************~*~**.****** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 243.00 DOWNSTREAM (FEET) 242.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.60 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.83 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 3.76 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 105.00 510.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 3.76 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 1:20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.83 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 15.00 UPSTREAM ELEVATION(FEET) = 275.70 DOWNSTREAM ELEVATION(FEET) = 273.50 ELEVATION DIFFERENCE(FE~T) = 2.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc = SUBAREA RUNOFF(CFS) = 0.91 0.809 10.%, IS USED IN Tc CALCULATION! 7.114 5-MINUTE. t ~I I I I I I I I I I I I I I I I I I I I TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF (CFS) = 0.91 **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 105.00 IS CODE = 62 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 273.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 340.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DIstANCE FROM CROWN TO'CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 251. 00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.92 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.62 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.43 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.06 STREET FLOW TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) 2.09 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.917 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) = 2.03 TOTAL AREA (ACRES) = 0.45 PEAK FLOW RATE(CFS) 2.93 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.01 FLOW VELOCITY(FEET/SEC.) = 4.81 DEPTH*VELOCITY(FT*FT/SEC.) 1.28 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 355.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 105.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 2.09 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.93 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY ,AREA \I " ~! " I I I I I I I I I I I I I I I I I I I NUMBER 1 2 3 (CFS) 29.00 5.83 2.93 (MIN. ) 10.08 3.76 2.09 ( INCH/HOUR) 4.525 7.114 7.114 (ACRE) 7.10 1.20 0.45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 12.17 2.09 7.114 2 19.59 3.76 7.114 3 34.58 10.08 4.525 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 34.58 Tc(MIN.) = 10.08 TOTAL AREA(ACRES) = 8.75 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 1250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 107.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 242.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = "120.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 37.61 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 34.58 NUMBER OF PIPES 0.05 Tc(MIN.) = 190.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 100.00 TO NODE 10.14 " 107.00 = 1370.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE " 112.00 TO NODE 107.00 ~S CODE"= " 81" »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.510 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8111 SUBAREA AREA(ACRES) 1.00 SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) 9.75 TOTAL RUNOFF (CFS) = TC(MIN.) = 10.14 1. 80 35.66 **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 113.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 190.00 DOWNSTREAM (FEET) = 169.00 " 1 11 f,1 l! I' 11 'ell II 1.1 tI 'ii' 'I -." I I I I I I I I I I I , I I I I I I I I CHANNEL LENGTH THRU SUBAREA (FEET) = 640.00 CHANNEL SLOPE 0.0328 CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH (FEET) = 3.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.896 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3600 S.C.S. CURVE NUMBER (AMC II) = 97 T~VEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 39.04 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.13 AVERAGE FLOW DEPTH(FEET) 0.97 TRAVEL TIME(MIN.) = 2.58 Tc(MIN.) = 12.72 SUBAREA AREA(ACRES) 4.80 SUBAREA RUNOFF(CFS) 6.73 , AREA-AVERAGE RUNOFF COEFFICIENT 0.662 TOTAL AREA(ACRES) = 14.55 PEAK FLOW RATE(CFS) = 37.54 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.96 FLOW VELOCITY(FEET/SEC.) 4.10 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 113.00 = 2010.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00 UPSTREAM ELEVATION(FEET) = 308.50 DOWNSTREAM ELEVATION(FEET) = 306.00 ELEVATION DIFFERENCE (FEET) = 2.50 SUBAREA OVERLAND TIME OF FL'OW (MIN.) = 4.917 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 75.83 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 3.20 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF (CFS) = 3.20 **************************************************************************** FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SU~AREA (EXISTING ELEM~NT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 306.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = ,140.00 CHANNEL SLOPE CHANNEL BASE (FEET) 1. 00 "Z" FACTOR = 1. 000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 288.00 0.1286 1 " • Ii " '" " ,j, I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.004 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.52 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 11.42 AVERAGE FLOW DEPTH (FEET) 0.25 TRAVEL TIME(MIN.) 0.20 Tc(MIN.) = 5.12 SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) 0.63 AREA-AVERAGE RUNOFF COEFFICIENT 0.675 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) 3.78 END OF SUBAREA CHANNEL FLOW HYDRAULICS:' DEPTH (FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 11.73 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 320.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 91 »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< ===============================~============================================ UPSTREAM NODE ELEVATION (FEET) = 275.00 DOWNSTREAM NODE ELEVATION(FEET) = 273.00 CHANNEL LENGTH THRU SUBAREA (FEET) 140.00 "V" GUTTER WIDTH (FEET) = 2.00 GUTTER HIKE(FEET) 0.050 PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150 PAVEMENT CROSSFALL(DEClMAL NOTATION) = 0.02000 MAXIMUM DEPTH (FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.291 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.79 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.51 AVERAGE FLOW DEPTH (FEET) = 0.21 FLOOD WIDTH (FEET) 17.0.6 "V" GUTTER FLOW TRAVEL TIME (MIN. ) 0.93 Tc (MIN. ) 6.05 SUBAREA AREA(ACRES) 0.00 SUBAREA RUNOFF(CFS) = 0.01 AREA-AVERAGE RUNOFF COEFFICIENT 0.: 6.75 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.78 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = 0.21 FLOOD WIDTH(FEET) 17.06 FLOW VELOCITY(FEET/SEC.) = 2.51 DEPTH*VELOCITY(FT*FT/SEC) 0.53 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 460.00 FEET. ****************~*********************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 203.00 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.291 *,USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4870 SUBAREA AREA(ACRES) 1.10 SUBAREA RUNOFF(CFS) TOTAL AREA~ACRES) = 1.90 TOTAL RUNOFF (CFS) 2.42 5.82 I I I I I I I I I I I I I I I I I TC(MIN.) = 6.05 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 206.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 268.00 DOWNSTREAM (FEET) 258.00 FLOW LENGTH (FEET) = 500.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.60 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.82 PIPE TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 7.15 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 206.00 960.00 FEET. **************************************************************~************* FLOW PROCESS FROM NODE 204.00 TO NODE 206.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.650 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7237 SUBAREA AREA(ACRES) 5.90 SUBAREA RUNOFF(CFS) 26.67 TOTAL AREA(ACRES) ,= 7.80 TOTAL RUNOFF (CFS) = TC(MIN.) = 7.15 31. 90 ~~-.j)c71i//J 'lo'" ..3 $/. 9 erS -Z:Z.o C-~s **;**(f;~;;; Pd6Nrlo) ************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE - »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================ =============== 'USER-SPECIFIE'D VALUES ARE AS FOLLOWS: TC(MIN) = 13.20 RAIN INTENSITY (INCH/HOUR) = 3.80 TOTAL AREA(ACRES) = 7.80 TOTAL RUNOFF(CFS) = 22.00 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO,NODE 207.00 IS CODE = 31 --------------------------------------------------------------~------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ===========================================================================~ ELEVATION DATA: UPSTREAM (FEET) = 258.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 26.27 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 22.00 NUMBER OF PIPES 0.08 Tc(MIN.) = 231. 00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 200.00 TO NODE 13.28 207.00 1080.00 FEET. ~i I I t I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 20B.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 231.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 1B.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 1B.22 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW(CFS) = 22.00 NUMBER OF PIPES 205.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 6~27' Tc(MIN.) = 200.00 TO NODE 13.55 20B.00 13BO.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 20B.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.55 RAINFALL INTENSITY(INCH/HR) = 3.74 TOTAL STREAM AREA(ACRES) = 7.BO PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.00 1 **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 250.00 DOWNSTREAM ELEVATION (FEET) = 243.00 . ELEVATION DIFFERENCE(FEET) = 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 94.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.6B TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 20B.00 IS CODE = 62 --------------------------~~~----------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 243.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6.0 213.00 I I ,I I I I I I I I I I I I I I I STREET HALFWIDTH(FEET) 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 21. 00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 2.03 STREETFLOW'MODEL RESULTS USING 'E'STlMATED FLOW: " ' STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.45 AVERAGE FLOW VELOCITY(£EET/SEC.) 4.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.15 STREET FLOW TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) 2.63 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) 2.70 TOTAL AREA (ACRES) = 0.50 PEAK FLOW RATE(CFS) 3.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.09 FLOW VELOCITY(FEET/SEC.) = 5.44 DEPTH*VELOCITY(FT*FT/SEC.) 1.46 LONGEST FLOWPATH FROM NODE 209.00 TO NODE 208.00 = 470.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 208.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ '100'YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114' NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6500 SUBAREA AREA(ACRES) 1.00 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 1.50 TOTAL RUNOFF (CFS) = TC(MIN.) = 2.63 3.56 6.94 **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =========================~~~================~~============================== TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 2.63 RAINFALL INTENSITY (INCH/HR) 7.11 TOTAL STREAM AREA(ACRES) = 1.50 '- I I I I I I I I I I 'I' I I I I I I I PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.94 **************************************************************************** FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION (FEET) = 250.00 DOWNSTREAM'ELEVA.TION(FEET) = 243.00 ELEVATION DIFFERENCE (FEET) = 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 94.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.68 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.68 **************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 208.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 243.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00 INSIDE STREET CROSS FALL (DECIMAL) 0.020 OUTSIqE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL.(DECIMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section (curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.86 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.76 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.06 STREET FLOW TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) 2.66 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc $-MINUTE., *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) 2.03 213.00 0.0150 '. ') 1 > /' I I I I I '.1 J I I I I I I I I I I I TOTAL AREA (ACRES) = 0.40 PEAK FLOW RATE(CFS) 2.70 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.35 FLOW VELOCITY(FEET/SEC.) = 5.18 DEPTH*VELOCITY(FT*FT/SEC.) 1.31 LONGEST FLOWPATH FROM NODE 212.00 TO NODE 208.00 = 470.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 208.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 'YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7143 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 0.70 TOTAL RUNOFF (CFS) = TC(MIN.) = 2.66 0.85 3.56 **************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 208.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 2.66 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA (ACRES) = 0.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.56 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 22.00 2 6.94 3 3.56 Tc (MIN. ) 13.55 2.63 2.66 INTENSITY (INCH/HOUR) 3.740 7.114 7.114 AREA (ACRE} " 7.80 1. 50 0.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK STREAM NUMBER 1 2 3 FLOW RATE TABLE ** RUNOFF (CFS) 14.72 14.82 27.52 Tc (MIN. ) 2.63 2.66 13.55 INTENSITY ( INCH/HOUR) 7.114 7.114 3.740 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 27.52 Tc(MIN.) = 13.55 TOTAL AREA (ACRES) = 10.00 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.00 1380.00 FEET. I I I I I I ,I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 215.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 206.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 18.18 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 27.52 NUMBER OF PIPES = 0.28 'T6(MIN.) = 182.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 200.00 TO NODE 13.83 215.00 1680.00 FEET. ****************************************************************~~******** ~ 4ec FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = r.7 "J/tI~/lr!t2..1 ... .' -----------------------------------------------------------------~_r~-~LJ(, »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< 11.5 ep,s 1~7V e~?yP# ============================================================================ ~ k USER-SPECIFIED VALUES ARE AS FOLLOWS: I(J.? CI? J>I(JJN S oJ, TC(MIN) = 13.80 RAIN INTENSITY (INCH/HOUR) = 3.70 7V AlE~7 e.o. \ TOTAL AREA(ACRES) 10.00 TOTAL RUNOFF(CFS) = 17.50 (~cE. jJ#€e,4t.,C~) **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.80 RAINFALL INTENSITY (INCH/HR) = 3.70 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.50 **************************************************************************** FLOW' PROCESS FROM NODE 217.00 TO NODE '218~00 is CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 212.00 DOWNSTREAM ELEVATION(FEET) = 208.00 ELEVATION DIFFERENCE (FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.264 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.68 ,TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68 **************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 216.00 IS CODE = 62 ---------------------------------------------------------------------------- " r , I I I I I I I I I I I , ' I, I I I I I I I »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< =====~====================================================================== UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 'STREET'PARKWAY CROSS FALL (DECIMAL) 0.020 189.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.35 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = '0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.21 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.58 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.96 STREET FLOW TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) 2.14 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) = 1.35 TOTAL AREA (ACRES) = 0.30 PEAK FLOW RATE(CFS) 2.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.24 HALFSTREET FLOOD WIDTH (FEET) 5.45 FLOW VELOCITY(FEET/SEC.) = 4.88 DEPTH*VELOCITY(FT*FT/SEC.) 1.15 LONGEST FLOWPATH FROM NODE 217.00 TO NODE 216.00 = 310.00 FEET. *************************************~*****************************~~******* FLOW PROCESS FROM NODE 218.00 TO NODE 216.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 , CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 2.14 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.03 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.50 13.80 3.696 2 2.03 2.14 7.114 RAINFALL INTENSITY AND TIME OF CONCENTRATION AREA (ACRE) 10.00 0.30 RATIO I I I I I I I I I I I I I I I' I 'I I I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.74 2.14 7.114 2 18.55 13.80 3.696 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 18.55 Tc(MIN.) = 13.80 TOTAL AREA(ACRES) = 10.30 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 1680.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 113.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 181.00 DOWNSTREAM (FEET) = 169.00 FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013 'C.lf)tJ ,el'A 1\ V6.A7'6.' '., " ,!: ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 r~ 4 twlM pI t6'"'/' 'I"" DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES /I-,.,f,~./ ~.~:.JfI;;:, .. r/lA6IppP ~: PIPE-FLOW VELOCITY (FEET/SEC. ) 26.97 /41,,, /Y. c::.IVV .,.. C)ff'''' II ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPES 1 PIPE-FLOW (CFS) = 18.55'-1=--_ PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 200.00 TO NODE 13.83 113.00 1724.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< =======================================================e~~fl~i~et~=;;=~~~fP)v JCt~ ** MAIN STREAM CONFLUENCE DATA ** 18 137 STREAM RUNOFF Tc INTENSITY AREA NUMBER' (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.55 13.83 3.691 10.30 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 113.00 1724.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 37.54 12.72 3.896 AREA (ACRE) 14.55 113.00 LONGEST FLOWPATH FROM NODE 100.00 TO NODE ** PEAK STREAM NUMBER 1 2 FLOW RATE TABLE ** RUNOFF (CFS) 54.61 54.12 Tc (MIN. ) 12.72 13,~3 INTENSITY ( INCH/HOUR) 3.896 3.691 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 54.61 Tc(MIN.) = 12.72 TOTAL AREA(ACRES) 24.85 2010.00 FEET. I I I I I I I I I I I I I I I I I I I ****************************************************************~*********** FLOW PROCESS FROM NODE 113.00 TO NODE 219.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: IJe. T6N riO ,.; IJV6 7f) /lr..) 1J6/lH Ii) {)!Of} -SC:C lJer&lJT/oN t,lk.es TC(MIN) = 19.80 RAIN INTENSITY (INCH/HOUR) = 2.93 TOTAL AREA(ACRES) = 24.85 TOTAL RUNOFF(CFS) = 20. 80 ~. f c,~.s ~ 19. f ,4!//t! ;;~IJIIC5S. H/6IIESr IJgj)/,cUl~ **************************************************************************~ r~~ FLOW PROCESS FROM NODE 113.00 TO NODE 219.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) 19.80 RAINFALL INTENSITY (INCH/HR) = 2.93 TOTAL STREAM AREA(ACRES) = 24.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = STREAM 1 ARE: / f't.O('} 20.80 fJvf **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 219.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: (' ft.JJ4I our Or LJ/il6/LTt;;tf" 0,0. TC(MIN) = 13.80 RAIN INTENSITY (INCH/HOUR) = 3.70~ TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFF(CFS) = 10.50 **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 219.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<' 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES US'ED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 13.80 RAINFALL INTENSITY (INCH/HR) = 3.70 TOTAL STREAM AREA(ACRES) = 0.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.50 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 20.80 19.80 2.928 2 10.50 13.80 3.696 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 25.00 13.80 3.696 2 29.12 19.80 2.928 AREA (ACRE) 24.85 0.00 RATIO 11 , I I I I I I I I I I I I I I I I I I I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 29.12 Tc(MIN.) = 19.80 TOTAL AREA(ACRES) = 24.85 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 219.00 2010.00 FEET. *****.*********************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 174.00' bOWNSTREAM(FEET)'::'; 162.00 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.03 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 29.12 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 19.93 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 220.00 = 2160.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) 24.85 TC(MIN.) = 19.93 ::::::::::::::::::::::::::::::~~:~~:::2::::::::::::::::::::::::::::::::::::: END OF RATIONAL METHOD ANALYSIS . C f'--'OW /11/ $II~ SD ~ It-Ii (J,O. NOKJC ZZO. M1l0lf/1f£. &4tt.S MsIA/6 '1tJo f'6()() tpNft (/6,v(!,6IJ /~~ rt..9WS Sift-it:-(hJIIU6CT/ON 7tJ eX/Gr· SD . I t '. t' ( I I I I I I I I I I I I I I I I I I I , " **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301" Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 ************************** DESCRIPTION OF STUDY ************************** * FOX-MILLER RATIONAL METHOD CALCS fllA/>oS6/) CO#/)lfloJl/5 * BASINS 400 AND 500 * 12-27-03 IN 149-1 JD ************************************************************************** FILE NAME: G:\149-1F\400P.DAT TIME/DATE OF STUDY: 17:52 01/05/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DEClMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * * * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK--HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ========= ================= ====== 1 26.0 21. 0 0.020/0.020/0.020 0.50 1.50 0.0313 0.031 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 " ! ~ il j, " ,! I I I I I I I I I I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 266.80 DOWNSTREAM ELEVATION(FEET) = 265.60 ELEVATION DIFFERENCE(FEET) = 1.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.437 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 65.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 1.07 TOTAL ·AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = .1.07 **************************************************************.************** FLOW PROCESS FROM NODE 501. 00 TO NODE 502.00 IS CODE = 91 »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< ============================================================================ UPSTREAM NODE ELEVATION (FEET) = 265.60 DOWNSTREAM NODE ELEVATION(FEET) = 264.20 CHANNEL LENGTH THRU SUBAREA (FEET) 140.00 "V" GUTTER WIDTH (FEET) = 3.00 GUTTER HIKE(FEET) 0.050 PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.684 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.25 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.18 AVERAGE FLOW DEPTH(FEET) = 0.20 FLOOD WIDTH(FEET) 16.92 "V" GUTTER FLOW TRAVEL TIME(MIN.) 1.07 Tc(MIN.) 5.51 SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) 4.38 AREA-AVERAGE RUNOFF COEFFICIENT 0.806 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) 5.39 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = 0.24 FLOOD WIDTH(FEET) 20.90 FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC) 0.57 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 220.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 31 ---------------------------------------------------------------~------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»~USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 256.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.95 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 5.39 PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 6.23 251. 00 1 I I I I I I I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 500.00 TO NODE 503.00 = 520.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE S02.00 TO NODE S03.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) =' 6.17S *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8016 SUBAREA AREA (ACRES) ·2.80· SUBAREA RUNOFF (CFS) . = ... 13.8.3 TOTAL AREA(ACRES) 3.80 TOTAL RUNOFF(CFS) = 18.81 TC(MIN.) = 6.23 **************************************************************************** FLOW PROCESS FROM NODE S04.00 TO NODE S03.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.17S *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3S00 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7230 SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 4.60 TOTAL RUNOFF (CFS) = TC(MIN.) = 6.23 1. 73 20.S4 **************************************************************************** FLOW PROCESS FROM NODE S03.00 TO NODE S03.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.20 RAIN INTENSITY (INCH/HOUR) = 4.23 .TOTAL .AREA(ACRES) := 4.60 TOTAL RUNOFF (CFS) ~ 14.00 **************************************************************************** FLOW PROCESS FROM NODE 503.00 TO NODE SOS.OO IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 2S1.00 DOWNSTREAM (FEET) 206.00 FLOW LENGTH(FEET) = 420.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 17,76 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 14.00 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 11.59 LONGEST FLOWPATH FROM NODE SOO.OO TO NODE 50S.00 940.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50S.00 TO NODE S06.00 IS CODE = 31 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 206.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 27.10 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 14.00 NUMBER OF PIPES PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 165.00 1 .' LONGEST FLOW·PATH TROM NODE 500.00 TO NODE _ 11. 67 506.00 . 1060. PO .. FEEl: . **************************************************************************** FLOW PROCESS FROM NODE 507.00 TO NODE 506.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.118 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6724 SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) S.40 TOTAL RUNOFF(CFS) = TC(MIN.) = 11.67 1.32 14.9S **************************************************************************** FLOW PROCESS FROM NODE S07.00 TO NODE S06.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.67 RAINFALL INTENSITY (INCH/HR) = 4,12 ·TOTAL STREAM AREA(ACRES) = S.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.95 **************************************************************************** FLOW PROCESS FROM NODE S08.00 TO NODE S09.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH (FEET) = UPSTREAM ELEVATION (FEET) = 187.00 DOWNSTREAM ELEVATION(FEET) = 183.00 ELEVATION DIFFERENCE(FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SO.OO 0.955 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.68 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68 " I I I I I I I I I ·1 I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 509.00 TO NODE 506.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 183.00 DOWNSTREAM ELEVATION (FEET) STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00 INSIDE STREET CROSSFALL(DECIMAL) .0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 172.00 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 4.92 4.08 STREET FLOW DEPTH(FEET) = 0.13 HALFSTREET FLOOD WIDTH (FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.57 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 0.53 Tc (MIN.) 7.114 5-MINUTE. 1.53 SUBAREA AREA(ACRES) 0.15 TOTAL AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) ~ PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: 1.18 1. 01 1. 69 DE~TH(FEET) = 0.15 HALFSTREET FLOOD WIDTH(FEET) ~.78 . FLOW VELOCITY(FEET/SEC.) =' 4.42 DEPTH*VELOCITY(FT*FT/SEC.) = 0.66 LONGEST FLOWPATH FROM NODE 508.00 TO NODE 506.00 = 190.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 509.00 TO NODE 506.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 1.53 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.69 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) Tc (MIN. ) INTENSITY ( INCH/HOUR) AREA (ACRE) I I I I I I I I I I I I I I I I I I I 1 14.95 11.67 4.118 5.40 2 1. 69 1. 53 7.114 0.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.65 1. 53 7.114 2 15.93 11. 67 4.118 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: " PEAK FLOW RATE (CFS) 15.93 Tc(MIN.) = 11.67 TOTAL AREA(ACRES) = 5.65 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 506.00 1060.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 506.00 TO NODE 220.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 165.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 23.12 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 15.93 NUMBER OF PIPES 0.01 Tc(MIN.) = 162.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 500.00 TO NODE 11. 68 220.00 1075.00 FEET. *********************************************************************.****** FLOW PROCESS FROM NODE 506.00 TO NODE 220.00 IS CODE = 1 ~---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ . . .... . TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.68 RAINFALL INTENSITY (INCH/HR) = 4.12 TOTAL STREAM AREA(ACRES) = 5.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.93 **************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 19.90 RAIN INTENSITY (INCH/HOUR) = 2.92 TOTAL AREA(ACRES) = 24.85 TOTAL RUNOFF(CFS) = 29.10 '**************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 1 I I I I I I I I I I I I I I I I I I I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ , TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 19.90 RAINFALL INTENSITY (INCH/HR) = 2.92 TOTAL STREAM AREA(ACRES) = 24.85 PEAK FLOW RATE(CFS) AT CONFLUENCE 29.10 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY -. NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 15.93 11. 68 4.116 2 29.10 19.90 2.919 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 33.01 11. 68 4.116 2 40.40 19.90 2.919 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) ... 5.65 24.85 RATIO PEAK FLOW RATE(CFS) 40.40 Tc(MIN.) = 19.90 TOTAL AREA(ACRES) = 30.50 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 220.00 1075.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 162.00 DOWNSTREAM (FEET) FLOW LENG~H(FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 44.96 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 40.40 NUMBER OF PIPES 0.01 Tc(MIN.) = 19.91 140.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 500.00 TO NODE 221.00 1110.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ==============================~=~==========================================~ **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ !! " " II " j! : JI .!! :11 " II " Iii 'ii ~lli .11 W I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 130.00 UPSTREAM ELEVATION(FEET) = 308.00 DOWNSTREAM ELEVATION(FEET) = 290.00 ELEVATION DIFFERENCE (FEET) = 18.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! -100-YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150 SUBAREA RUNOFF (CFS) 0.32 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.32 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM (FEET) = 290.00 DOWNSTREAM (FEET) 250.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 180.00 CHANNEL SLOPE 0.2222 CHANNEL BASE(FEET) 2.00 HZ" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.968 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) -2.20 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 10.06 AVERAGE FLOW DEPTH (FEET) 0.10 TRAVEL TIME(MIN.) 0.30 Tc(MIN.) = 6.56 SUBAREA AREA (ACRES) 1. 80 SUBAREA RUNOFF (CFS) 3. 76 AREA-AVERAGE RUNOFF COEFFICIENT 0.350 TOTAL AREA(ACRES)-= 1.95 PEAK FLOW RATE(CFS) 4.07 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) 12.16 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 310.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 91 »»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««< ===============================================~============================ UPSTREAM NODE ELEVATION (FEET) = 246.00 DOWNSTREAM NODE ELEVATION (FEET) = 242.00 CHANNEL LENGTH THRU SUBAREA (FEET) 200.00 _ "V" GUTTER WIDTH(FEET) = 2.00 GUTTER HIKE(FEET) PAVEMENT LIP(FEET) = 0.010 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.422 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 0.050 , J . I I I I I I I I I I I I I I I I I S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 5.95 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 3.16 AVERAGE FLOW DEPTH(FEET) = 0.23 FLOOD WIDTH (FEET) 19.15 "V" GUTTER FLOW TRAVEL TIME(MIN.) 1.05 Tc(MIN.) 7.62 SUBAREA AREA (ACRES) o. 80 SUBAREA RUNOFF (CFS) 3. 77 AREA-AVERAGE RUNOFF COEFFICIENT 0.501 TOTAL AREA(ACRES) = 2.75 PEAK FLOW RATE(CFS) 7.47 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = 0.25 FLOOD WIDTH(FEET) 20.85 FLOW VELOCITY(FEET/SEC.) = 3.36 DEPTH*VELOCITY(FT*FT/SEC) 0.84 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403 .. 00 = .. 51Q. 00 .FEET .. **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.422 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4909 SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 3.45 TOTAL RUNOFF (CFS) = TC(MIN.) = 7.62 1.71 9.18 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 235.00 DOWNSTREAM (FEET) 225.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.91 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 9.18 PIPE TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 8.88 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 1110.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ====================================================================~======= 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.911 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6859 SUBAREA AREA(ACRES) 5.90 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 9.35 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.88 23.18 31. 49 II I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 225.00 DOWNSTREAM (FEET) FLOW LENGTH (FEET) = 170.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 32.92 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 31.49 0.09 Tc(MIN.) = 8.97 170.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 1280.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 405.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = '4.880 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6442 SUBAREA AREA(ACRES) 1.60 SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) 10.95 TOTAL RUNOFF(CFS) TC(MIN.) = 8.97 3.12 3~.42 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 408.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 21.00 RAIN INTENSITY (INCH/HOUR) = 2.82 TOTAL AREA(ACRES) = 10.95 TOTAL RU,NOFF (CFS) = 19.40 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 408.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 21.00 RAINFALL INTENSITY (INCH/HR) = 2.82 TOTAL STREAM AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.40 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : , I I I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION(FEET) = 212.00 DOWNSTREAM ELEVATION(FEET) = 208.00 ELEVATION DIFFERENCE(FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 0.955 -100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.68 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68 -*****************************************~*~*********~*********~**~**~**~*** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 440.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00 INSIDE STREET CROSS FALL (DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 172.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 6.19 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.70 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.74 STREET -FLOW TRAVEL TIME(MIN.} = 1.56-Tc(MIN.) 2.51 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.950 SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) = 2.70 TOTAL AREA (ACRES) = 0.50 PEAK FLOW RATE(CFS) 3.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) 7.67 FLOW VELOCITY(FEET/SEC.) = 5.32 DEPTH*VELOCITY(FT*FT/SEC.) 0.99 LONGEST FLOWPATH FROM NODE 406.00 TO NODE 408.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 408.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ " ~ I -I I :1 I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7056 SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) 0.90 TOTAL RUNOFF (CFS) = TC(MIN.) = 2.51 1.14 4.52 **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 1 ------------------------------------~------------~--~~--~~--------~~-~~----- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 2.51 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.52 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 19.40 21. 00 2.819 2 4.52 2.51 7.114 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.84 2.51 7.114 2 21.19 21. 00 2.819 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 10.95 0.90 RATIO PEAK FLOW RATE(CFS) 21.19 Tc(MIN.) = 21.00 TOTAL AREA(ACRES) ~ 11.85 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 408.00 1280.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 221.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 164.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 41.35 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 21.19 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 21.01 140.00 1 I I I I I I I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 400.00 TO NODE 221.00 = 1310.00 FEET. *******~******************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 221.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 21.19 21.01 2.818 11. 85 LONGEST FLOWPATH FROM NODE . 400.00 TO NODE· 221.00· ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 40.40 19.91 2.917 AREA (ACRE) 30.50 221. 00 LONGEST FLOWPATH FROM NODE 500.00 TO NODE ** PEAK FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 60.48 2 60.21 TABLE ** Tc (MIN. ) 19.91 21. 01 INTENSITY ( INCH/HOUR) 2.917 2.818 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 60.48 Tc(MIN.) = 19.91 TOTAL AREA(ACRES) = 42.35 -1310.00 FEET • 1l10.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 42.35 TC(MIN.) = 60.48 19.91 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS !i I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Buite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 ************************** DESCRIPTION OF STUDY ************************** * FOX-MILLER PROPERTY PROPOSED CONDITIONS DRAINAGE STUDY * * BASIN 300 cl t-JtMIJ/1J 40ft, SYSr£M * * IN 149-1 1-23-04 JD * ************************************************************************** FILE NAME: G:\149-1F\300P.DAT TIME/DATE OF STUDY: 20:06 02/03/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO' USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDT-H· CROSSFALL IN-J OUT-/PARK-HEIGHT. WIDTH LIP . HIKE. FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.050/0.050/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *************************************~*********~**************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 -J I I I I I I I I I I I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00 UPSTREAM ELEVATION(FEET) = 300.50 DOWNSTREAM ELEVATION(FEET) = 295.00 ELEVATION DIFFERENCE (FEET) = 5.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.667 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 80.28 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 1.69 TOTAL-AREA(ACRES) ,= 0.25 -TOTAL RUNOFF (CFS) =, -1. 69 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION (FEET) STREET LENGTH (FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 20.00 INSIDE STREET CROSS FALL (DECIMAL) 0.050 OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 250.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 5.67 6.47 STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 'AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 2.06 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = .9500 0.950 2.36 Tc(MIN.) 7.114 5-MINUTE. 3.73 SUBAREA AREA(ACRES) 1.20 TOTAL AREA (ACRES) = 1.45 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) 7.06 5.74 8.11 9.80 FLOW VELOCITY(FEET/SEC.) = 7.36 DEPTH*VELOCITY(FT*FT/SEC.) 3.20 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 980.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31 I ; ~ ! ,- " !' ~j " , , , 'I, I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 245.00 DOWNSTREAM (FEET) 234.00 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 16.93 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 9.80 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0.09 Tc(MIN.) = 300.00 TO NODE 3.82 303.00 1 1070.00 FEET. , ' **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 3.82 RAINFALL INTENSITY (INCH/HR) = 7.11 TOTAL STREAM AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.80 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 308.50 DOWNSTREAM ELEVATION(FEET) = 307.50 ELEVATION DIFFERENCE(FEET) = 1.00 .SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.486· WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 2.42 TOTAL AREA (ACRES) = 0.40 TOTAL RUNOFF (CFS) = 2.42 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 61 ' »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 307.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 900.00 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 44.00 270.00 -II ~i I ,,, ". I I I I I I I I I I I I I I I I I I I DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) INSIDE STREET CROSSFALL(DEClMAL) = 0.030 OUTSIDE STREET CROSSFALL(DEClMAL) 0.030 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSS FALL (DECIMAL) 0.020 39.00 Manning's FRICTION FACTOR for Street flow Section(curb-to~curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.20 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 ~ALFSTREET FLOOD WIDTH (FEET) = -8.45 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.27 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.92 STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) 6.33 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.107 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.926 SUBAREA AREA(ACRES) 1.30 SUBAREA RUNOFF(CFS) = 7.54 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) 9.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) 10.12 FLOW VELOCITY(FEET/SEC.) = 5.85 DEPTH*VELOCITY(FT*FT/SEC.) 2.43 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 306.00 = 1000.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE ~03.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 262.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 ESTIMATED-PIPE DIAMETER (INCH) INCREASED TO 18.000 -- DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 13.75 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 9.62 NUMBER OF PIPES 0.48 Tc(MIN.) = 234.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 6.82 303.00 1400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 303.00 IS CODE ~ 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< _ ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED fOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.82 RAINFALL INTENSITY (INCH/HR) = 5.82 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.62 (I I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH (FEET) = 90.00 UPSTREAM ELEVATION(FEET) = 275.30 DOWNSTREAM ELEVATION(FEET) = 274.40 ELEVATION DIFFERENCE (FEET) = 0.90 SUBAREA OVERLAND TIME OF ·-FLOW(MIN.·) = 5.577., WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.630 SUBAREA RUNOFF(CFS) 0.70 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.70 **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 303.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< -============================================================================ UPSTREAM ELEVATION (FEET) = 274.40 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 460.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 242.00 . Manning's FRICTION FACTOR for Street flow Section (curb-to-9urb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.67 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.45 STREET FLOW TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) 7.05 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.698 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEffI~IENT 0.790 3.66 SUBAREA AREA(ACRES) 1.30 SUBAREA RUNOFF(CFS) = 5.93 T'OTAL AREA (ACRES) = 1.45 PEAK FLOW RATE (CFS) 6.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH (FEET) 9.88 I I I I I I I I I I I I I· I I I I I I FLOW VELOCITY(FEET/SEC.) = LONGEST FLOWPATH FROM NODE 5.96 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93 307.00 TO NODE 303.00 = 550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 303.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 7.05 RAINFALL INTENSITY (INCH/HR) = 5.70 TOTAL STREAM AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.52 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS ) 1 9.80 2 9.62 3 6.52 Tc (MIN. ) 3.82 6.82 7.05 INTENSITY ( INCH/HOUR) 7.114 5.823 5.698 AREA (ACRE) 1. 45 1. 70 1.45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK STREAM NUMBER 1 2 3 FLOW RATE RUNOFF (CFS) 18.71 23.95 23.78 TABLE ** Tc (MIN. ) 3.82 6.82 7.05 INTENSITY (INCH/ HOUR) 7.114 5.823 5.698 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 23.95 Tc(MIN.) = TOTAL AREA(ACRES) = 4.60 6.84 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 303.00 1400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 310.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 234.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 16.19 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 23.95 NUMBER OF PIPES 0.68 Tc(MIN.) = 192.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 7.50 310.00 2060.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< I I I I I I I I I I I I I I I I I I ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 7.50 RAINFALL INTENSITY (INCH/HR) = 5.48 TOTAL STREAM AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.95 **************************************************************************** . . FLOW PROCESS FROM NODE 311. 00 TO NODE . 312 ~ 00 IS :CODE = 21" »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 272.00 DOWNSTREAM ELEVATION(FEET) = 250.00 ELEVATION DIFFERENCE (FEET) = 22.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.102 SUBAREA RUNOFF(CFS) 2.13 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF (CFS) 2.13 **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 61 -------------------~-------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 250.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 750.00 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 39.00 INSIDE STREET CROSSFALL(DECIMAL) 0.030 OUTSIDE STREET CROSSFALL(DECIMAL) 0.030 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSS FALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTEO USING ESTIMATED FLQW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.28 5~71 STREET FLOW DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 2.19 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : 1.71 Tc (MIN.) 5.622 3.98 7.20 200.00 0.0150 I I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.70 TOTAL AREA(ACRES) = 1.30 0.742 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 7.23 3.74 5.43 FLOW VELOCITY(FEET/SEC.) = 6.09 DEPTH*VELOCITY(FT*FT/SEC.) 2.00 'LONGEST FLOWPATH FROM' NODE 311.'00 TO NODE' 313.00 '=' "900, .. 00 'PEET. **************************************************************************** FLOW PROCESS FROM NODE 314.00 TO NODE 313.00 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.622 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7344 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) 1.60 TOTAL RUNOFF (CFS) = TC(MIN.) = 7.20 1.18 6.61 **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 310.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 192.30 DOWNSTREAM (FEET) 192.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE~FLOW VELOCITY(FEET/SEC.) 4.91 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) =, 6.61 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.37 LONGEST FLOWPATH FROM NODE 311.00 TO NODE 310.00 950.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 7.37 RAINFALL INTENSITY (INCH/HR) = 5.54 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.61 **************************************************************************** FLOW PROCESS FROM NODE 310.10 TO NODE 310.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT .9500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 247.00 DOWNSTREAM ELEVATION (FEET) = 240.00 ELEVATION DIFFERENCE(FEET) = 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN . THE MAXIMUM OVERLAND FLOW LENGTH = 94.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 1.35 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.35 **************************************************************************** FLOW PROCESS FROM NODE 310.20 TO NODE 310.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 240.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 600.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 44.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 39.00 INSIDE STREET CROSSFALL(DEClMAL) 0.030 OUTSIDE STREET CROSS FALL (DECIMAL) 0.030 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow.Section ·0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 6.28 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.81 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.74 STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) 3.09 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEfF1CIENT 0.950 4.05 SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) = 5.41 199.00 0.0150 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE (CFS) 6.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 7.88 FLOW VELOCITY(FEET/SEC.) = 6.52 DEPTH*VELOCITY(FT*FT/SEC.) 2.26 LONGEST FLOWPATH FROM NODE 310.10 TO NODE 310.00 700.00 FEET. , ~ I I I I I I I I I I I ·1 I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 3.09 RAINFALL INTENSITY (INCH/HR) '= 7.11 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.76 ** CONFLUENCE DATA ** STREAM RUNOFF Te INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 23.95 7.50 5.477 4.60 2 6.61 7.37 5.538 1. 60 3 6.76 3.09 7.114 1. 00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Te INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 27.97 3.09 7.114 2 35.55 7.37 5.538 3 35.68 7.50 5.477 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 35.68 Te(MIN. ) = 7.50 TOTAL AREA(ACRES) = 7.20 LONGEST FLOW PATH FROM NODE 304.00 TO NODE 310.00 2060.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 315.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)'««< ELEVATION DATA: UPSTREAM (FEET) = 199.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 420.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 20.83 ESTIMATED PIPE DIAMETER (INCH) = 21.00 PIPE-FLOW(CFS) = 35.68 NUMBER OF PIPES 0.34 Te(MIN.) = 1 161.00 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NOg~ 304.00 TO NOpg: 7.83 315.00 2480.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) *USER SPECIFIED (SUBAREA) : 5.325 I I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8708 SUBAREA AREA(ACRES) 0.60 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 7.80 TOTAL RUNOFF(CFS) = TC(MIN.) = 7.83 3.04 36.17 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 31 -------~-----------.-------~-----:-.-'--------.:..--..:.---~-. .,.;.----._--------...;-------:-----':"'" »»>COMPUTE PIPE-FLOW TRAVEL TIME THEU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 161.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 24.04 ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPE-FLOW (CFS) = 36.17 NUMBER OF PIPES 0.07 Tc(MIN.) = 147.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 7.90 316.00 2580.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 317.00 TO NODE 318.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER.SPECIFIED(SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = :3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00 UPSTREAM ELEVATION (FEET) = 302.00 DOWNSTREAM ELEVATION(FEET) = 296.00 ELEVATION DIFFERENCE(FEET) = 6.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SUBAREA RUNOFF(CFS) 0.39 7.430 5.510 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF (CFS) 0.39 **************************************************************************** FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 51 >~»>COMPUTE TRAPEZOIDA~ CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 288.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 290.00 CHANNEL SLOPE CHANNEL BASE (FEET) 2.00 liZ" FACTOR = LOOO MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.067 *USER SPECIFIED (SUBAREA) : 276.00 0.0414 , ~ · I I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.18 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.69 AVERAGE FLOW DEPTH (FEET) 0.12 TRAVEL TIME(MIN.) 1.03 Tc(MIN.) = 8.46 SUBAREA AREA(ACRES) 0.90 SUBAREA RUNOFF (CFS) 1.60 AREA-AVERAGE RUNOFF COEFFICIENT 0.350 TO~J7.L AREA,(ACRES) = 1.10 PEAK FLOW RATE (CFS) = 1.95 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) 5.53 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 319.00 = 390.00 FEET .. **************************************************************************** FLOW PROCESS FROM NODE 319.00 TO NODE 320.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 276.00 DOWNSTREAM (FEET) 240.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 190.00 CHANNEL SLOPE 0.1895 CHANNEL BASE(FEET) 2.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.942 *USER SPECIFIED (SUBAREA) : . USER-SPECIFIED RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.36 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.49 AVERAGE FLOW DEPTH (FEET) 0.12 TRAVEL TIME(MIN.) 0.33 Tc(MIN.) = 8.79 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) 0.81 AREA-AVERAGE RUNOFF COEFFICIENT 0.366 TOTAL AREA (ACRES) =' 1. 50 . PEAK FLOW' RATE (CFS ) = 2. 71 . END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) 10.06 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 320.00 = 580.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 240.00 DOWNSTREAM(FEET) 205.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE 0.1094 CHANNEL BASE (FEET) ~!OO "Z" FACTOR =;" 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.743 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.46 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.23 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) 0.58 II 111 t, I I I I I I I I I I I I I I I I I I I Tc(MIN.) = 9.37 SUBAREA AREA(ACRES) 0.90 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 0.360 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) 1. 49 4.10 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 9.97 321. 00 = 900.00 FEET. . '*~~~~*~*******~*********~*********~***************************************'*.' FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 9.37 RAINFALL INTENSITY (INCH/HR) = 4.74 TOTAL STREAM AREA (ACRES) = 2.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.10 **************************************************************************** FLOW PROCESS FROM NODE 322.00 TO NODE 323.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 273.00 DOWNSTREAM ELEVATION(FEET) = 250.00 ELEVATION DIFFERENCE (FEET) = 23.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.157 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = .6.974 SUBAREA RUNOFF(CFS) 0.43 TOTAL AREA (ACRES) = 0.15 TOTAL RUNOFF (CFS) 0.43 **************************************************************************** FLOW PROCESS FROM NODE 323.00 TO NODE 324.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<. ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 250.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.03p MAXIMUM DEPTH(F~ET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.488 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH (FEET) 0.20 TRAVEL TIME(MIN.) Tc(MIN.) = 7.48 0.88 2.30 2.32 230.00 0.06.25 , i l' , I I I I I I I I I I I I I I ,I I I I SUBAREA AREA(ACRES) 0.40 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 0.410 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) 2.46 LONGEST FLOWPATH FROM NODE 322.00 TO NODE 324.00 = 0.90 1. 24 400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 324.00 TO NODE 321.00 IS ,CODE '= 51, .. »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 230.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 340.00 CHANNEL SLOPE CHANNEL BASE(FEET) 2.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.101 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.12 TRAVEL TIME(MIN.) Tc(MIN.) = 8.37 1. 59 6.31 0.90 0.40 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA RUNOFF(CFS) 0.385 TOTAL AREA(ACRES) = 0.95 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) 205.00 0.0735 0.71 1. 86 LONGEST FLOWPATH FROM NODE 322.00 TO NODE 6.50 321. 00 = 740.00 FEET. ************************************************~**************~******~***** FLOW PROCESS FROM NODE 321. 00 TO NODE 321;00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 8.37 RAINFALL INTENSITY (INCH/HR) = 5.10 TOTAL STREAM AREA(ACRES) = 0.95 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.86 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS ) 1 4.10 2 1. 86 Tc (MIN. ) 9.37 8.37 INTENSITY ( INCH/HOUR) 4.743 5.101 AREA (ACRE) 2.40 0.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** 1 .. ~ ',I I I I I I ·1 I I I I I I I I I I I I I STREAM NUMBER 1 2 RUNOFF (CFS) 5.53 5.83 Tc (MIN. ) 8.37 9.37 INTENSITY ( INCH/HOUR) 5.101 4.743 ESTIMATES ARE AS FOLLOWS: 5.83 Tc(MIN.) = 3.35 COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA(ACRES) = LONGEST FLOW PATH FROM NODE 317.00 TO NODE 9.37 321. 00 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 321.00 TO NODE 325.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 205.00 DOWNSTREAM (FEET) 180.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 260.00 CHANNEL SLOPE 0.0962 CHANNEL BASE (FEET) 2.00 "Z" FACTOR = 1. 000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.622 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 -TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 7.13 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 11.28 AVERAGE FLOW DEPTH(FEET) 0.28 TRAVEL TIME(MIN.) 0.38 Tc(MIN.) = 9.76 SUBAREA AREA (ACRES) 1. 60 SUBAREA RUNOFF (CFS) 2.59 AREA-AVERAGE RUNOFF COEFFICIENT 0.362 TOTAL AREA(ACRES) = 4.95 PEAK FLOW RATE(CFS) = 8.27 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) 11.97 LONGEST FLOWPATH FROM NODE -317.00 TO NODE -325-.00 = 1160.00 FEET. **************************************************************-************** FLOW PROCESS FROM NODE 325.00 TO NODE 316.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME ~HRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 180.00 DOWNSTREAM (FEET) 155.00 CHANNEL LENGTH THRU SUBAREA (FEET) = _ 260.00 CHANNEL SLOPE 0.0962 CHANNEL BASE(FEET) 2.00 "z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.519 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMe II) = _ 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.46 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 12.51 AVERAGE FLOW DEPTH (FEET) 0.33 TRAVEL TIME(MIN.) 0.35 Tc(MIN.) = 10.10 SUBAREA AREA(ACRES) 1.50 SUBAREA RUNOFF(CFS) 2.37 AREA-AVERAGE RUNOFF COEFFICIENT 0.359 TOTAL AREA(ACRES) = 6.45 PEAK FLOW RATE(CFS) = 10.46 J< tl 11 I I I I I I I I I I I I I I I I I I I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) 12.88 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 316.00 = 1420.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ==================================================================~r===AS=~ USER-SPECIFIED VALUES ARE AS FOLLOWS: p~rID~ 5FLj~ TC(MIN) = 10.00 RAIN INTENSITY (INCH/HOUR) = 4.55 Dell TOTAL AREA(ACRES) = 6.45 TOTAL RUNOFF (CFS) = 3.00 **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM NUMBER 1 STREAM CONFLUENCE DATA ** RUNOFF Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 3.00 10.00 4.549 AREA (ACRE) LONGEST FLOWPATH FROM NODE 317.00 TO NODE 6.45 316.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) Tc INTENSITY (MIN.) (INCH/HOUR) AREA (ACRE) 1 36.17 7.90 5.295 LONGEST FLOWPATH FROM NODE ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 38.54 34.08 TABLE ** Tc (MIN. ) 7.90 10.00 304.00 TO NODE INTENSITY ( INCH/HOUR) 5.295 4.549 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 38.54 Tc(MIN.) = TOTAL AREA (ACRES) = 14.25 7.80 316.00 7.90 1420.00 FEET. 2580.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 14.25 TC(MIN.) = 38.54 7.90 ============================================================================ END OF RATIONAL METHOD ANALYSIS I I I I PIPE CALCS I . ':,' .. .. ' ... . ~ .' " " I I I I I I I . ' I I I I I I I I I I I I I I I I I I I I I I I 'I I I ************************************************************************** ** »»PIPEFLOW HYDRAULIC INPUT INFORMATION«« PIPE DIAMETER (FEET) = 2.000 PIPE ,SLOPE (FEET/FEET) = 0.0300 # II $11-{" k rJjls r /l61/-M tJ ;:.. ,(J,O. ,5'77J: ,z if" 1-:( PIPEFLOW(CFS) = 29.00 MANNINGS FRICTION FACTOR = 0.013000 Sill:' Cj ========================================================================== CRITICAL-DEPTH FLOW INFORMATION: CRITICAL DEPTH (FEET) = 1.85 CRITICAL FLOW AREA(SQUARE FEET) = 3.031 CRITICAL FLOW TOP-WIDTH(FEET) = 1.066 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 704.58 CRITICAL FLOW VELOCITY(FEET/SEC.) = 9.569 CRITICAL FLOW VELOCITY HEAD (FEET) = 1.42 CRITICAL FLOW HYDRAULIC DEPTH (FEET) = ' 2.84 CRITICAL FLOW SPECIFIC ENERGY (FEET) = 3.27 ========================================================================== NORMAL-DEPTH FLOW INFORMATION: ~;VP 16 ,.. vt/ de r,od !/-vtftr5(S NORMAL DEPTH (FEET) = 1. 28 -E<------,. //f/L)/C'/-}r~S ,t:J'&SSCI#" H.lkJ FLOW AREA(SQUARE FEET) = ,2.12 J , } '1, ., l' " FLOW TOP-WIDTH (FEET) = 1. 920 ' '-tv"/" v1J/,vr fJ/% /t.?rfb;'~" FLOW PRESSURE + MOMENTUM (POUNDS) = 841. 21 Pv6tlc ,/Jp;t711J,v P)/~Y)i FLOW VELOCITY(FEET/SEC.) = 13.652 FLOW VELOCITY HEAD (FEET) = 2.894 HYDRAULIC DEPTH (FEET) = 1.11 FROUDE NUMBER = 2.287 SPECIFIC ENERGY (FEET) = 4.17 ========================================================================== I I I I I I I I I I I I I I I I I I I IPEFLOW DEPTH(FE TED DOWNSTREAM PIPEFLOW DEPTH (FEET) = ============================================================================ **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« . PIPE· FLOW DIAMETER . SLOPE· FRICTION ANGLE .. FLOWLINE (CFS) ( INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 29.00 24.000 0.03000 0.0130. 71.000 265.33 DOWNSTREAM 29.00 24.000 0.05710 0.0130 0.000 265.00 LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00 LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 . MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH(FEET): 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: ----------------------------------------------------------------------------// PIPE CRITICAL DEPTH NORMAL DEPTH /, , ... Ie,. ~O;rJ 5, A4 V /1-r--~, () I (FEET) (FEET) VV,VI I' '/1/./"- UPSTREAM 1.846 1.280 Uf1-/ DOWNSTREAM 1. 846 1. 043 LATERAL #1 0.000 0.000 LATERAL #2 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 ·l . .1 -t .' ----~~::~::~~~~~~~~~=~~~=~~~:~~=~~~~~~~~~~~~~~-----------------------------L'(tSSP(~ I/&tJ .: UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: r--Lv PIPEFLOW FORCE-PLUS-MOtvIENTUM DETERMINATION (NEGLECT MINOR LOSSES) o/67rtfh1A UPSTREAM DOWNSTREAM ~ATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) . (FT**~} 1.280 1.846 C.OOO· 0.000 -168. *HYDRAULIC JUMP OCCURS UPSTREAM OF JUNCTION: *CRITICAL DEPTH IS ASSUMED AS A DOWNSTREAM HYDRAULIC CONTROL. CHECK IF JUNCTION SEALS DUE TO DOWNSTREAM CONTROL: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINO UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALAN DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT 4) 2~000 1.846 0.000 0.000 -142. *UPSTREAM WATER DEPTH EXCEEDS PIPE DIAMETER: .*SUGGEST REANALYZE JUNCTION AS UNDER PRESSURE-FLOW CONDITIONS. ============================================================================ Q"",;;;;;;Q$$$zuuuezZZzti ••• U.1£ ..• ,,;estt;QQQ;,;;;;;;;;;;i;;;AkAkkUUXJRUU »»PIP ._======================================= Page I I I I I I I I I I I I I I I I I I I Untitled *************************************************************************** * »»PIPEFLOW HYDRAULIC INPUT INFORMATION«« ========================================================================== CRITICAL-DEPTH FLOW INFORMATION: CRITICAL DEPTH (FEET) = 1.85 CRITICAL FLOW AREA(SQUARE FEET) = 3.031 CRITICAL FLOW TOP-WIDTH (FEET) = 1.066 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS") = 704.58 CRITICAL FLOW VELOCITY(FEET/SEC.) = 9.569 CRITICAL FLOW VELOCITY HEAD (FEET) = 1.42 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.84 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.27 ========================================================================== NORMAL-DEPTH FLOW INFORMATION: NORMAL DEPTH (FEET) = 1.04 < lJ,.; DiG- FLOW AREA(SQUARE FEET)· 1.66 FLOW TOP-WIDTH (FEET) = 1.998 FLOW PRESSURE + MOMENTUM (POUNDS) = 1029.82 FLOW VELOCITY(FEET/SEC.) = 17.510 FLOW VELOCITY HEAD (FEET) = 4.761 HYDRAULIC DEPTH (FEET) = 0.83 FROUDE NUMBER = 3.389 SPECIFIC ENERGY(FEET) = 5.80 ==========================================================:~============== ·~g-e 1· I I I I I I I I .1 I I I I I I I I I I JUNCTION @ SALK A-4 C.O. §!fit. Zonf SHT. 9 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW (CFS) 29.00 29.00 0.00 0.00 DIAMETER (INCHES) 24.000 24.000 0.000 0.000 ·SLOPE (DECIMAL) O. 05710 0.08660 0.00000 0.00000 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH(FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 FRICTION FACTOR 0.0130 O. 0130 0.0000 0.0000 ·ANGLE· (DEGREES) 45.000 0.000 0.000 0.000 FLOWLINE ELEVATION 245.90 245.57 0.00 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE CRITICAL DEPTH NORMAL DEPTH UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (FEET) 1. 846 1. 846 0.000 0.000 (FEET) 1. 043 0.923 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2) * (F,hA2) *G/2. -Q2*Q2/A2+Q1*Q1*COS (ANGLE1) /A1 +Q3*Q3*COS(ANGLE3)/A3+Q4~Q4""COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) D:::?TH(FT)·DEPTH(FT)· (FT**4) 1.043 1.846 0.000 0.000 46. *UPSTREAM FLOW DOMIN;:.~iE:S--JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. =====~====================================================================== PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) ·UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 1.043 0.923 0.000 0.000 -212. 1.043 1.385 0.000 0.000 -4. 1.043 1.615 0.000 0.000 33. 1.043 1.500 0.000 0.000 18. 1.043 1.442 0.000 0.000 8. 1.043 1.414 0.000 0.000 2. 1.043 1.399 0.000 0.000 -1. 1.043 1.406 0.000 0.000 1. 1.043 1.403 0.000 0.000 O. 1.043 1.404 0.000 0.000 O. 1.043 1.404 0.000 0.000 O. 1.043 1.403 0.000 0.000 O. ----~~~:~~~:;-~:!~;;:~~~~~;~~~----~~~~~---------~:---~------------ ()/J eN V-/I!lJt1/ ~t., I. I I I I I I I I I I I I I I I I I I JUNCTION @ SALK B-INLET STA. 20+49 SHT. 9 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 29.00 24.000 0.08660 0.0130· 45.000 243.35 . DOWNSTREAM 35.00 24.000 0.25000 0.·0130 0.000 243.02 LATERAL #1 6.00 18.000 0.01200 0.0130 21. 000 243.45 LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE CRITICAL DEPTH NORMAL DEPTH VI" ()1,5!"'t!£A-I-1 /)/0/ (FEET) (FEET) e:--- UPSTREAM 1. 846 0.923 Z4" t:OtvN 'j(",olt!' lJu DOWNSTREAM 1. 920 0.764~ LATERAL #1 0.946 0.769 LATERAL #2 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULI~ JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 0.923 1.920 0.769 0.000 13. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: : *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ot OK- ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) , UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (·FT**4) 0.923 0.960 0.769 0.000 -351. 0.923 1.440 0.769 0.000 -61. 0.923 1.680 0.769 0.000 -7. 0.923 1.800 0.769 0.000 6. 0.923 1.740 0.769 0.000 o. 0.923 1.710 0.769 0.000 -3. 0.923 1.725 0.769 0.000 -1. 0.923 1.733 0.769 0.000 O. 0.923 1.736 0.769 0.000 o. 0.923 1.738 0.769 0.000 O. 0.923 1.737 0.769 0.000 O. 0.923 1.737 0.769 0.000 O. ----------~-=~~:~-----~~~~:-----~~~~~---------~~---------------- UPS EAM CONTROL ASSUMED AT JUNCTION C MPUTED UPSTREAM PIPEFLOW DEPTH (FEET) = 0.923 C MPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.737 fJaJ m/Jlht/c.L. p.,pW Page 1 il ~l 1 Ii I I I I I I I I I I I I I I I I- I I. I }JUNCTION @ SALK A-4 C.O. STA.·· 8+07 SHT. 8} **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE ·UPSTREAM DOWNSTREAM 'LATERAL #1 LATERAL #2 FLOW (CFS) 22.00 22.00 0:00 0.00 DIAMETER (INCHES) 24.000 24.000 0.000 0.000 SLOPE (DECIMAL) 0.03830 0.08060 0.00000 . 0.00000 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 FRICTION FACTOR 0.0130 0.0130 0.0000" 0.0000 ANGLE (DEGREES) 50.000 0.000 0.000· 0.000 FLOWLINE ELEVATION 224.63 224.30 ·0.00 .. 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: -------~~~~----~;~;~~~~-;~~;~--~;~~-;~~;~~~~~/;e~--~¥,;~~---O~----~·?3~ . (FEET) (FEET) ~ /' . UPSTREAM 1.675 0.996 ., _____ riJJulfS1rltlYh II /. DOWNSTREAM 1.675 o. 807 ~ /J LATERAL #1 0.000 0.000 bofh (}A~ aitl/;tf!LA LATERAL #2 0.000 0.000 I' PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH(FT) (FT**4) 0.996 1.675 0.000 0.000 2. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. =======================================================================~====. PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4) 0.996 0.837 0.000 0.000 0.996 1. 256 0.000 0.000 0.996 1.466 0.000 0.000 0.996 1. 570 0.000 0.000 0.996 1. 623 0.000 0.000 0.996 1. 596 0.000 0.000 0.996 1. 583 0.000 0.000 0.996 1. 577 0.000 0.000 0.996 1. 580 0.000 0.000 0.996 1. 582 0.000 0.000 0.996 1. 583 0.000 0.000 0.9 1. 583 0.000 0.000 0.996 1. 583 0.000 0.000 UPSTREAM CONTROL ASSUMED AT JUNCTION COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET) = 0.996 COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.583 -167. -30. -6. 0.· 1. O. o. o. o. O. o. o. O. ============================================================================ Page 1 I I I I I I I I I ~I I I I I I :1 I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License 10 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 , Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 16:13 02/03/2004 ============================================================================ Problem Descriptions: JUNCTION A-4 C.O. SALK STA. 15+49 SHT. 8 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 22.00 24.000 0.08060 0.0130 0.000 204.00 DOWNSTREAM 28.00 24.000 0.08350 0.0130 0.000 203.77 LATERAL #1 3.00 18.000 0.02080 0.0130 77.000 '204.27 LATERAL #2 3.00 18.000 0.04470 0.0130 50.000 204.27 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 ,CRITICAL DEPTH (FEET) 1. 675 1. 828 0.658 0.658 NORMAL DEPTH (FEET) 0.807 0.914 0.453 0.372 , 1,,'1" lJ;?5r~ ,D/IJ Ok-: f.o~ :i" ttl/" tlOWNSr!URM tJN ~K. i.3~ /( PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(Al+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 0.807 1.828 0.453 0.372 115. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.807 0.807 0.914 1.371 0.453 0.453 0.372 0.372 -126. 69. II tl " , !J II I I I I I .. ' . . , I .1 I I' I I I I I I· I ·1' I I' 0.807 1.143 0.453 0.372 0.807 1. 028 0.453 0.372 0.807 1. 085 0.453 0.372 0.807 1.114 0.453 0.372 0.807 1.128 0.453 0.372 0.807 1.135 0.453 0.372 0.807 1.139 0.453 0.372 0.807 1.141 0.453 0.372 0.807 1.140 0.453 0.372 0.807 1.139 0.453 0.372 0.807 1.140 0.453 0.372 UPSTREAM PIPEFLOW DEPTH(FEET) = 0.807 DOWNSTREAM PIPEFLOW DEPTH(FEET) = 1.140' l. -52. -23. -1l. -5. -2. O. O. O. O. . O. ==================================================================== \, 1 i .\' .1.1 I II ~*=*=*=*=*=*=*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*=*=*=*=*=*=*~*r*r*r*r*r*r*r*r*r*~*=*r.*=*=*r.*=*=*r.*r.*r.*r.*r.*r.*r*r*r*rr*~*~*~*~* I I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1463 Analysis prepared by: I Buccola Engineerin~, Inc. , 3142 Vista Way, SUJ.te 301 . . Oceanside, CA 92056 I (760) 721-2000 / Fax' (760)721-2046· .; .... . *****.********************* DESCRIPTION OF STUDY *********************.****.* .:, : NODE 215 JUNCTION ANALYSIS d~ 1/ .... 1-0,0.. j)/1/6~1eJ2, . : . I * 5111 ;'2.-145 * . ************************************************************************** I I I FILE NAME: G:\149-1F\DIVERT.DAT TIME/DATE OF STUDY: 14:13 12/23/2003 ============================================================================ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 215.10 FLOWLINE ELEVATION' = 100.00 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 27.50 ASSUMED DOWNSTREAM CONTROL HGL = 101.500 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS I ============================================================================ , NODE 215.10: HGL= < 101.500>;EGL= < 105.260>iFLOWLINE= < 100.000> I ,I I I' I I I I· ============================================================================ PRESSURE FLOW PROCESS FROM NODE 215.10 TO NODE 215.00 IS CODE = UPSTREAM NODE 215.00 ELEVATION = 100.33 CALCULATE PRESSURE FLOW JUNCTiON LOSSES: NO. 1 2 3 4 5 DISCHARGE DIAMETER 27.5 18.00 27.5 18.00 0.0 0.00 0.0 0.00 0.0===Q5 EQUALS AREA VELOCITY 1. 767 15.562 1. 767 15.562 0.000 0.000 0.000 0.000 BASIN INPUT=== DELTA 45.000 0.000 0.000 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: HV 3.76'0 3.760 DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)-I 5 Q4*V4*COS (DELTA4» / «A1+A2) *16 .1) 1$~s,:;,4 rfllLbV;1I UPSTREAM MANNINGS N = 0.01300 ./laL ;t JrJ,ve-710,J DOWNSTREAM MANNINGS N = 0.01300 ~~~#5j' UPSTREAM FRICTION SLOPE = 0.06854 OR..lrlcG el/-tc~ ,c;t.(".{)!d/,vG DOWNSTREAM FRICTION SLOPE = 0.06854 2-S;I/;. AVERAGED FRICTION SLOPE IN JUNCTIO ASSUMED AS 0.06854 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.274 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(F JUNCTION LOSSES = 2.203+ 3.760 NODE 215.00: = < 103.977 CTION LOSS) + (ENTRANCE LOSSES) 3.760+( 0.274)+.( 0.000) = 2.477 iEGL= < 107.737>iFLOWLINE= < 100.330> ============================================================================ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM i i· I I I I' I I I ,I I I I, I I I I I I I I tmp#l Orifice Calculator Given Input Data: Solving for .................... . ,Flowrate ....................... . Coefficient .................... . Dlameter .. ; .................. '.' .. Tailwater ...................... . computed Results: Headwater ...................... . Veloci ty ....................... . Z,/I/ IN t 7,$" Cr5 I \~ Page 1 Headwater 17.5000 cfs 0.6100 ' 18.0000 in' , '.- 0.0000 ft 4.0958 9.9030 . :' I I I I I I I I I I I I' I I I I I I I tmp#l Orifice Calculator Given Input Data: Solving for ..................... Headwater Flowrate ........................ 10.5000 cfs ,~oetficient ..................... 0.6100 Diameter ....................... ~ 18. 0000 'in Tailwater ....................... o. 0000 ft ~< /0 .. 5" cr.s "1 Ir IJtJf' Computed Results: Headwater ...................... . I I fitJ 1.4745 ft""'---~/,5 5.9418 fps /f/;Ultf j/16116',I! /'1'1 Velocity ....................... . l' ., fl ~;! I I I I I I I I I I I I' I I I I I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License 10 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056. " (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 17:29 02/03/2004 ============================================================================ Problem Descri tions: SALK CLEANOUT STA. 11+78 611('e1 <( **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« ------------------~-------------------------------------------------~-------PIPE FLOW (CFS) 10.00 29.00 19.00 DIAMETER (INCHES) 18.000 24.000 24.000 SLOPE FRICTION ANGLE (DEGREES) 0.000 0.000 50.000· 0.000 FLOWLINE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (DECIMAL) 0.25000 0.05460 0.02100 0.00000 FACTOR 0.0130 0.0130 0.0130 0.0000 ELEVATION 167.50 167.00 167.50 0.00 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICAL DEPTH (FEET) 1. 219 1.846 1. 568 0.000 NORMAL DEPTH (FEET) . ',/0/1 IJN' 0.444.....-' 0 1.057,.---2JI" 1)# 1.093 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:. "BALANCE" = (Z+Dl-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Ql*Ql*COS(ANGLE1)/Al +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION (NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4) 0.444 1.846 1.093 0.000 33. *UPSTREAM FLOW DOMINATES ~QNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.444 0.444 0.923 1. 385 1. 093 1. 093 0.000 0.000' -232. -21. I I I I I I I I I I I I I I I I I I ·1 0.444 0.444 0.444 0.444 0.444 0.444 . 0.444 0.444 0.444 0.444 0.444 1.615 1.500 1. 442 1.471 1. 486 1.493 1. 489 1. 491 1.490 1. 490 .490 1. 093 1. 093 1. 093 1. 093 1. 093 1. 093 1. 093 1. 093 1. 093 . 1. 093 1. 093 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 '. 0.000 COMP 0 UPSTREAM PIPEFLOW DEPTH(FEET) = 0.444 UTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.490 18. 2. -9. -3. -1. O. O. O. o. O • O. == ======================================================================= f' j()u;1/srUkM /' .; OICN CI-I,4-NN~('; I I I I I I I I I I I I I I I I I I I' **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 17:41 02/03/2004 ============================================================================ ISALK CLEANOUT STA. 10+31J **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 29.00 24.000 0.05460 0.0130 45.000 159.00 DOWNSTREAM 41. 00 30.000 0.25000 0.0130 0.000 158.'77 LATERAL #1 12.00 18.000 0.25000 0.0130 50.000 159.50 LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: 'PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICAL DEPTH (FEET) 1. 846 2.150 1. 314 0.000 NORMAL DEPTH (FEET) 1. 057 0 .. 758 0.488 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM.FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4) 1.057 2.150 0.488 0.000 79. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 1. 057 1. 057 1. 075 1. 612 0.488 0.488 0.000 0.000 -281. 10. II I· I I I I I I '1 I I I I I I I I I I I 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 057 1. 344 1.478 1. 545 1. 579 1. 562 1. 570 1. 575 1.577 1. 576 1. 575 .575 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 . 0.000 OMPU UPSTREAM PIPEFLOW DEPTH{FEET) = 1.057 CO UTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.575 -90. -32. -9. 1. -4. -1. O. O. O. .' O. O. = ==-====================================================================== t!1-I IJpI1/Cl-(JI I-/Jf)lAJp OK- I· I I I I I I I I I I I I I I I I I I tAM/NO **t************************************************************************* HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 17:52 02/03/2004 ============================================================================ Problem De?criptions: EL CAMINO REAL A-4 CLEANOUT STA. 372+59 \ **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« -------------,,--------------------------------------------------------------- PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW (CFS) 9.60 9.60 0.00 0.00 DIAMETER (INCHES) 18.000 18.000 0.000 0.000 SLOPE (DECIMAL) 0:07010 0.07330 0.00000 0.00000 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 FRICTION FACTOR 0.0130 0.0130 0.0000 0.0000 ANGLE (DEGREES) 45.000 0.000 . 0.000 0.000 FLOWLINE ELEVATION 241.43 241.10 0.00 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICAL DEPTH (FEET) 1.196 1.196 0.000 0.000 NORMAL DEPTH (FEET) 0.608 0.601 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.608 1.196 0.000 0.000 27. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH (FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.608 0.608 0.598 0.897 0.000 0.000 0.000 0.000 -36. 15. j '1 I I I I I I~ I I I I I I I I I I I I I i .. . , :£ c~ 11 jI 1, ., ,I :. ti " 0.608 0.748 0.000 0.000 -3. 0.608 0.822 0.000 0.000 7. 0.608 0.785 0.000 0.000 3. 0.608 0.766 0.000 0.000 O. 0.608 0.776 0.000 0.000 1. 0.608 0.771 0.000 0.000 1. 0.608 0.769 0.000 0.000 o. 0.608 0.768 0.000 0.000 O. 0.608 0.767 0.000 0.000 o. 0.608 0.767 0.000 .0 .. 000 O. 0.608 0.767 0.000 0.000 O. UPSTREAM CONTROL ASSUMED AT JUNCTION ----------------------------------------------------~-------------~--------COMPUTED UPSTREAM PIPEFLOW DEPTH (FEET) = 0.608 COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 0.767 ===========================================~=======/T=================== /~ If tJjJ I /)tJzJ~ f)IL < ~ ~ J 7 I I I I I I I I I I I I I I I I I I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License 10 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 . Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 18:07 021Q3/2004 ============================================================================ Problem Descriptions: EL CAMINO REAL B-1 INLET STA. 373+70 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW (CFS) 9.60 18.60 9.00 0.00 DIAMETER (INCHES) 18.000 24.000 18.000 SLOPE FRICTION ANGLE (DEGREES) 23.000 0.000 20.000 0.000 FLOWLINE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (DECIMAL) 0.07330 0.07810 0.06000 0.00000 FACTOR 0.0130 0.0130 0.0130 0.0000 ELEVATION 233.9'1 233.41 233.91 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: , PIPE CRITICAL DEPTH NORMAL'DEPTH , ' (FEET) (FEET) UPSTREAM 1.196 0.601 DOWNSTREAM 1. 552 0.743 LATERAL #1 1.161 0.612 LATERAL #2 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM ,LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 0.601 1.552 0.612 0.000 85. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. " ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4) 0.601 0.601 0.776 1.164 0.612 0.612 0.000 0.000 -57. 56. l :1 j ,"" 1 I , :1 :1 \ J :1 ., -·1 I I I I -. I I 1 I I I I I I I I- I I I 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.970 0.873 0.922 0.897 0.910 0.916 0.913 0.914 0.915 -0.915- 0.915 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 UPSTREAM CONTROL ASSUMED AT JUNCTION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16. -15. 2. -6. -2. O. -l. O. O. o. O. ·1 I I I I I I I I I I I I I I I I I I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License 10 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 18:14 02/03/2004 ============================================================================ Problem Descriptions: EL CAMINO REAL A-4 CLEANOUT STA. 380+11 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« ---------------------------------------------------------------------------- PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 24.50 24.000 0.06580 0.0130 0.000 192.10 DOWNSTREAM 34.70 30.000 0.07990 0.0130 0.000 191.60 LATERAL #1 5.10 18.000 0.00500 0.0130 75.000 192.60 LATERAL #2 5.10 18.000 0.03000 0·9130 72.000 192.60 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICAL DEPTH (FEET) 1. 749 2.001 0.869 0.869 NORMAL DEPTH (FEET) 0.907 0.938 0.913 0.543 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH(FT) (FT**4) 0.907 2.001 0.869 0.543 114. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS "AT JUNCTION. ===============================================================~============ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATE"RAL#1 LATERAL#2 BALANCE DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.907 0.907 1. 001 1. 501 0.869 0.869 0.543 0.543 -181. 56. /I II [I if I I I I I I I I I I I I I I I I I I I ---------- ---------- 0.907 0.907 0.907 0.907 0.907 0.907 0.907 0.907 0.907 0.907 0.907 1. 251 1. 376 1.313 1.344 1. 329 1. 321 1.317 1. 315 1. 316 1. 317 1. 316 0.869 0.869 0.869 0.869 0.869 0.869 0.869 0.869 0.869 0.869. 0.869 CONTROL ASSUMED AT JUNCTION 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 .0.543 . 0.543 . D UPSTREAM PIPEFLOW DEPTH(FEET) = 0.907 DOWNSTREAM PIPEFLOW DEPTH(FEET) = 1.316 -27. 2l. -l. 10. 5. 2. O. ·0. o. .0. O. -=============================================================== 30 I I I I I I I I I I I I I I I I I I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista Way, Suite 301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 18:24 02/03/2004 ,' ... ============================================================================ Problem Descriptions:, EL CAMINO REAL j"J; 4 CLEANOU'f' STA. 384+56 f3-/lJl;£,:r **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE' (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 35.70 30.000 0.08050 0.0l30 0.000 159. l4 DOWNSTREAM 35.70 24.000 0.25000 0.0l30 0.000 158.81 LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00 LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ==========================================================================~= PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICAL DEPTH (FEET) 2.027 1. 926 0.000 0.000 NORMAL DEPTH (FEET) 0.950 0.772 0.000 0.000 'PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1 +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH (FT) DEPTH(FT) DEPTH (FT) (FT**4) 0.950 1.926 0.000 0.000 284. *UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCtION.' ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.950 0.950 0.963 1. 444 0.000 0.000 0.000 0.000 -91. 209. -.., , { ! ___ -2 I I I I I I I I I I I I I I I I I I 0.950 1. 204 0.000 0.000 0.950 1. 083 0.000 0.000 0.950 1.023 0.000 0.000 0.950 1.053 0.000 0.000 0.950 1. 068 0.000 0.000 0.950 1. 061 0.000 0.000 0.950 1. 057 0.000 0.000 0.950 1. 055 0.000 0.000 0.950 1. 056 0.000 0.000 0.950 1. 057 0.000 0.000 0.950 1. 057 0.000 0.000 UPSTREAM CONTROL ASSUMED AT JUNCTION COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET = 0.950 COMPUTED DOWNSTREAM PIPEFLOW DEPTH(FE T) = 1.057 104. 22. -30. -3. 10. 3. O. -2. -1. O. o. ========================================= ================================== If 30 () ;1 ~ 71Lc fn.A, /1 t) Drfl;J TO t.-tf DrJ ()~ ~~I -.II ~' --. .:ll II " ji II , :11 ~11 ,II '" ~" -II 'II I I I I I I I I I I I I I I I I I I I **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1463 Analysis prepared by: Buccola Engineering, Inc. 3142 Vista. Way, Suit~ .301 Oceanside, CA 92056 (760) 721-2000 / Fax (760) 721-2046 TIME/DATE OF STUDY: 18:42 02/03/2004 ============================================================================ Problem Descriptions: EL CAMINO REAL A-4 CLEANOUT STA. 385+10 **************************************************************************** »»PIPE-FLOW JUNCTION INPUT INFORMATION«« PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE (CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION UPSTREAM 35.70 24.000 0.25000 0.0130 5.000 146.38 DOWNSTREAM 35.70 18.000 0.25000 0.0130 0.000 146.05 LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00 LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 MAINLINE FLOWDEPTH INPUT INFORMATION: UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00 DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00 ============================================================================ PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 CRITICA.L DEPTH. (FEET) 1. 926 1. 497 0.000 0.000 NORMAL DEPTH (FEET) 0.772 0.907 0.000 0.000 PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE: "BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/Al +Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4 UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP: PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT**4) 0.772 1.497 0.000 0.000 395. *UPSTREAM FLOW DOMINATES JUNqTION HYDRAULICS: *NO HYDRAULIC JUMP OCCURS AT JUNCTION. ============================================================================ PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES) UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4) 0.772 0.772 0.748 1.123 0.000 0.000 0.000 0.000 -300. 236. ~.,.f til I" I I 1 I. I' I ··1 I I' I. I I I I I I I I 0.772 0.935 0.000 0.000 41- 0.772 0.842 0.000 0.000 -104. 0.772 0.889 0.000 0.000 -26 .. 0.772 0.912 0.000 0.000 9. 0.772 0.900 0.000 0.000 -9. 0.772 0.906 0.000 0.000 o. 0.772 0.903 0.000 0.000 -4. 0.772 0.905 0.000 0.000 -2. 0.772 0.906 0.000 0.000 -l. 0.772 0.906 0.000 0.000 O. 0.772 0.906 0.000 0.000 O . . --.-------------------------------------------------------------------------- UPSTREAM C-ONTROL ASSUMED AT JUNCTI.ON ---------------------------------------------~~~-------------~--------------, COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET) = O. 772 ~ . -. '" COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) == 0.906 .'. . ..... . =======================================================-=======;===~======== VII' Uf6frMr~. If . . ttl If.· tJpW " rJOfi! IJ !tllo j} 10 ttl6/. St) I. I I I DETENTION CALCS I . . .' ...... . . I I I I I I I . . . '. . -.. I I I I I I . I I ' I ;1/0&€ lIb I /;Vft-· ((r .:;-'54-·6 eFS tV re ::-/t, f ,AI/tV A::tlf~ Ife / :: 3, If l/hr. I ~1>'1f)6/1t!-C ~ 0,51 I //;I'Ig;,) ~ drp,Ytyj, -tuflrrry (Jr f)~ -sa jJr//llPvl . I .1 I I I I I I I I I I I. I . ',:' I I I I I I I I I I I I I I I I I I I .. -~ RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 12123/03 HYDRO GRAPH FILE NAME Text1 TIME OF CONCENTRATION 13 MIN. 6 HOUR RAINFALL 2.7 INCHES BASIN AREA 24.85 ACRES RUNOFF COEFFICIENT 0.57 . PEAK DISCHARGE 54.6 CFS TIME (MIN) = 0 TIME (MIN) = 13 TIME (MIN) = 26 TIME (MIN) = 39 TIME (MIN) = 52 TIME (MIN) = 65 TIME (MIN) = 78 TIME (MIN) = 91 TIME (MIN) = 104 TIME (MIN) = 117 TIME (MIN) = 130 TIME (MIN) = 143 TIME (MIN) = 156 TIME (MIN) = 169 TIME (MIN) = 182 TIME (MIN) = 195 TIME (MIN) = 208 TIME (MIN) = 221 TIME (MIN) = 234 . TIME (MIN) = 247 TIME (MIN) = 260 TIME (MIN) = 273 TIME (MIN) = 286 TIME (MIN) = 299 TIME (MIN) = 312 TIME (MIN) = 325 TIME (MIN) = 338 TIME (MIN) = 351 TIME (MIN) = 364 TIME (MIN) = 377 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0 . DISCHARGE (CFS) = 2.3 DISCHARGE (CFS) =.2.4 DISCHARGE (CFS) = 2.5 DISCHARGE (CFS) = 2.6 DISCHARGE (CFS) = 2.8 DISCHARGE (CFS) = 2.8 DISCHARGE (CFS) = 3 DISCHARGE CFS) = 3.2 DISCHARGE CFS) = 3.4 DISCHARGE CFS) = 3.6 DISCHARGE CFS) = 4 DISCHARGE CFS) = 4.2 DISCHARGE (CFS) = 4.9 DISCHARGE (CFS) = 5.3 DISCHARGE (CFS) = 6.4 DISCHARGE (CFS) = 7.3 DISCHARGE (CFS) = 10.8 DISCHARGE (CFS) = 15 DISCHARGE (CFS) = 54.6 DISCHARGE (CFS) = 8.6 DISCHARGE {CFS) = 5.8 DISCHARGE CFS) = 4.5 DISCHARGE CFS) = 3.8 DISCHARGE (CFS) = 3.3 DISCHARGE (CFS) = 2.9 DISCHARGE (CFS) = 2.7 DISCHARGE (CFS) = 2.5 DISCHARGE (CFS) = 0 //-3 flf(};tp~flJ,JJ1 e:; t)/,J 1 f !11 CTfi 0 IJ -;'[1 efi. r;AJat. ,tJ;20 6;2"p, ) 5Ul-T/oAi 6toorv'TY .:5; I11tPllt.-a/) ... . I, I I I I I I I I I I I I I I I I I I *************************************************** ***** FHWA URBAN DRAINAGE DESIGN PROGRAMS ***** ***** RESERVOIR ROUTING ***** *************************************************** COMPUTED BY: JD DATE: 12-23-2003 PROJECT: FOX }lO/)c //3 ~/~ff5 PROJECT NO: FOX 1/1/(,£ f ovrt£r )fPwtL -1J£~N7iOAl slftj(, Max. Storage Max. Depth Max. Discharge At Time ,(ft"3) (ft) (cfs) (hours) 28487 3.64 23.8 4.55 Ie !e~lc./rd:l/~mJ)= r.S5"r t/~, 6,ArJ := jJ Hid Stage (ft) 0.00 1.00 2.00 3.00 4;00 5.00 Discharge (cfs) /)/6£!har,t. 0.00 t,'/r.sf) 4.00 13.00 !/w!J; ....::, 20.00 26.00 30.00 Storage Storage (ft"3) Indicator 0 0.00 1f90 3.53 7820 16.53 33770 56.29 50120 79.26 11 ole, ()~ .;:; t/;;:; hl3. :;tt).ftP5 19270 ~4.71 . raft'htcJ .fc::: 19·8 MIll sIoya~ ~h1 Zr;,g tFS ~ /9, Cj#/M /l1/S #/6#~ &1I~(,lIti,gCEtJ ~t"Pt.J (I/n'11ows -5Iqlu./~;" Time Inflow Discharge Storage De¥th (hours) (cfs) (cfs) (ft"3) ( t) -------------------------------------------------------------- 0.00 0.000 0.000 0 0.00 '0.22 0.000 0.'000 0 ·0 ... 00 0.43 2.300 1. 305 388 0.33 0.65 2.400 ,2.491 741 0.62 0.87 2.500 2.445 727 0.61 1.08 2.600 2.5'64 763 0.64 1.30 2.800 2.718 809 0 .. 68 1. 52 2.800 2.811 836 0.70 1. 73 3.000 2.912 866 0.73 1.95 3.200 3.125 930 0.78 2.17 3.400 3.324 989 0.83 2.38 3.600 3.524 1048 0.88 2.60 4.000 3.837 1142 0.96 . 2.82 4.200 4.083 1251 1.01 3.03 4.900 4.406 1489 1. 05 3.25 5.300 4.887 1843 1.10 3.47 6.400 5.554 2334 1.17 3.68 7.300 6.451 2996 1.27 3.90 10.800 8.250 4321 1.47 4.12 15.000 11.469 6692 1. 83. 4.33 54.600 20.817 21245 3.14 4.55 8.600 23.814 28487 3.64 4.77 5.800 18.887 ,17449 2.84 4.98 4.500 13.598 .8797 2.09 5.20 3.800 7.534 3793 1.39 5.42 3.300 4.776 1761 1. 09 5.63 2.900 3.370 1003 0.84 5.85 2.700 2.723 810, 0.68 6.07 2.500 2.583 769 0.65 of I I ~ I I I I I I" I ~ I :1 "1' , f ." '. , '. ~~:'." (/) ILl :c '0 :z: :z: e: .-c:: ILl > -l ::l <,;) lL. 0 c:: ILl .- ILl '::E <: 0 -.....::.;;~--===---:-----.....:..=================::::::=-:::-,~ ISO 168 156 .144 132 120 lOS 96 S4 " 72 (/) '60 lL. 0 :z: 54 g 4S //~ ,./' <: ~2 ~ (/) c 36 33 30 27 24 21 18 15 12 '. CHART 2' 10,000 8,000 EXAMPLE ( I) (2) (3) 6,000 0.42 Inches (3.5 fed) 6. 5,000 0./20 cis 6. 5. 4,000 2· HW 5. 3,000 0 'U' (lJ. 4. ' , 2.5 8.8 4. (2) 2.1 7.4 2,000 -(3) 2.2 7.7 3. -0 in teet 3. . 1,000 SOO 600 //'". 2:- 500 400 // ~ 300 ~'i'\.V := ~~ e 1.5 1.5 // en 200 c:: ILl 1.5 .-/ ILl '/ ::E <: c , 100 :z: SO 60 loa I.Q 50 'HW , ,ENTRANCE 40 [) SCALE TYPE c:: 1.0 ILl 30 (I) Square ~dq. "ith .-.9 .9 <: h~d .. cll := .9 0 20 (2) GrooYl Ind with <: ILl hlod.oll :C' .S .S (3) Groo .. , .nd ~8 projlerinq 10 8 .7 .r .7 6 To uu seoll (2) ot (3) ptoiler 5 horizon roil, ro seal. (I), fhtn 4 use sfralqhl Inclinld lint fllrouqh o Clnd 0 scaln, or rlYarsc CI, .6 3 iIIulfrortd, .6 .6 .5 .5 .5 1.0 HEADWATER SCALES ~?!~ HEADWATER DEPTH FOR C9 NCR E:TE PIPE CULVERT.S ( ( / I I ,I ,I 1 1 1 I I I I I I I 1 I I RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992. 2001 RICK ENGINEERING COMPANY RUN DATE 12127103 , HYDROGRAPH FilE NAME Text1 TIME OF CONCENTRATION 9 MIN. 6 HOUR RAINFAll 2.7 INCHES BASIN AREA 10.95 ACRES RUNOFF COEFFICIENT 0.64 PEAK DISCHARGE 34.4 CFS TIME (MIN) = 0 ,TIME (rvlIN) = 9 TIME (MIN) = 18 TIME (MIN) = 27 TIME (MIN) = 36 TIME (MIN) = 45 TIME (MIN) = 54 TIME (MIN) = 63 TIME (MIN) = 72 TIME (MIN) = 81 TIME (MIN) = 90 TIME (MIN) = 99 TIME (MIN) = 108 TIME (MIN) = 117 TIME (MIN) = 126 TIME (MIN) = 135 TIME (MIN) = 144 TIME (MIN) = 153 TIME (MIN) = 162 TIME (MIN) = 171 TIME (MIN) = 180 TIME (MIN) = 189 TIME (MIN) = 19'8 TIME (MIN) = 207 TIME (MIN) = 216 TIME (MIN) = 225 TIME (MIN) = 234 TIME (MIN) = 243 TIME (MIN) = 252 TIME (MIN) = 261 TIME (MIN) = 270 TIME (MIN) = 279 TIME (MIN) = 288 TIME (MIN) = 297 TIME (MIN) = 306 TIME (MIN) = 315 TIME (MIN) = 324 TIME (MIN) = 333 TIME (MIN) = 342 TIME (MIN),= 351 TIME (MIN) = 360 TIME (MIN) = 369 . ;f! (JOt: DISCHARGE (CFS) = 0 , DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.7 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 1.9 DISCHARGE (CFS) = 2 DISCHARGE (CFS) = 2.2 DISCHARGE (CFS) = 2.3 DISCHARGE (CFS) = 2.5 DISCHARGE (CFS) = 2.7 DISCHARGE (CFS) = 3 DISCHARGE (CFS) = 3.3 DISCHARGE (CFS) = 4 DISCHARGE (CFS) = 4.6 DISCHARGE (CFS) = 6.8 DISCHARGE (CFS) = 9.2 DISCHARGE (CFS) = 34.4 DISCHARGE (CFS) = 5.4- DISCHARGE (CFS) = 3.6 DISCHARGE (CFS) = 2.8 DISCHARGE (CFS) = 2.4 DISCHARGE (CFS) = 2.1 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 1.7 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 0 I I I I I I I I I I I I I I I I I I I. *************************************************** ***** ***** FHWA URBAN DRAINAGE DESIGN PROGRAMS RESERVOIR ROUTING ***** ***** *************************************************** COMPUTED BY: JD DATE: 12-27-2003 PROJECT: FOX PROJECT NO: FOX t01 f ~~r6Nr/O) /111) /) Ii' 40 5' Max. Storage (ft"3) 8088 Max. Depth Max. Discharge At Time (ft) (cfs) (hours) 19.4 4.35 /ar:{:?;f,4-:: t/ /41# Stage Discharge (ft) (cfs) ------o~OO--Z1NO~1--0~OO-- l. 00 I-/W'j)1 4.00 2.00 /~ 13.00 3.00 20.00 4.00 25.00 5.00 30.00 Time Inflow Discharge (hours) (cfs) (cfs) Storage (ft"3) o 1400 4680 8430 12670 17410 Storage (ft"3) Storage Indicator 0.00 4.59 15.17 25.61 35.96 47.24 Depth (ft) -------------------------------------------------------------- 0.00 0.000 0.000 0 0.00 0.15 0.000 0.000 0 .0.00 0.30 1.100 0.479 168 0.12 0.45 l.200 1.063 372 0.27 0.60 l.200 l.182 414 0.30 0.75 l.200 1.198 419 0.30 0.90 l. 300 1.243 435 0.31 1.05 l.300 l.293 452 0.32 1.20 l. 400 l. 343 470 0.34 l. 35 l.400 1.393 487 0.35 1.50 l. 500 l.443 505 0.36 l. 65 l. 500 1.493 522 0.37 1.80 1.600 1.543 540 0.39 1.95 1.600 l. 593 557 0.40 2.10 1.700 l. 643 575 0.41 2.25 1.800 1.736 608 0.43 2.40 1.900 1.835 642 0.46 2.55 2.000 1.935 677 0.48 2.70 2.200 2.079 728 0.52 2.85 2.300 2.228 780 0.56 3.00 2.500 2.378 832 0.59 3.15 2.700 2.571 900 0.64 3.30 3.000 2.814 985 0 .. 70 3.45 3.300 3.107 1087 0.78 3.60 4.000 3.580 1253 0.89 3.75 4.600 4.202 1474 1. 02 3.90 6.800 5.477 1938 l.16 4.05 9.200 7.624 2721 1.40 4.20 34.400 18.268 7502 2.75 I I 4.35 4.50 4.65 /)CITlI) 19.362~M!W & i-1A-;t 5.400 8088 2.91 3.600 8.430 3014 1.49 2.800 3.978 1392 0.99 4.80 2.400 2.778 972 0.69 I 4.95 5.10 5.25 2.100 2.318 811 0.58 1.800 1. 997 699 0.50 1. 700 1.782 624 0.45 5.40 I 5.55 5.70 1. 500 1.623 568 0.41 1.400 1.472 515 0.37 1. 300 1. 366 478 0.34 5.85 1.300 1. 308 458 0.33 I 6.00 6.15 1.200 1.258 440 0.31 0.000 0.685 240 0.17 I I I I I I I I I I I I I I lTIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY ~UN DATE 1/26/04 HYDROGRAPH FILE NAME Text1 IME OF CONCENTRATION 10 MIN. 6 HOUR RAINFALL 2.7 INCHES IBASIN AREA 6.45 ACRES RUNOFF COEFFICIENT 0.36 PEAK DISCHARGE 10.5 CFS TIME (MIN) = a DISCHARGE (CFS) = a ITIME (MIN) = 10 DISCHARGE (CFS) = 0.4 TIME (MIN) = 20 DISCHARGE (CFS) = 0.4 TIME (MIN) = 30 DISCHARGE (CFS) = 0.4 TIME (MIN) = 40 DISCHARGE (CFS) = 0.4 TIME (MIN) = 50 DISCHARGE (CFS) = 0.4 I TIME (MIN) = 60 DISCHARGE (CFS) = 0.4 TIME (MIN) = 70 DISCHARGE (CFS) = 0.5 TIME (MIN) = 80 DISCHARGE (CFS) = 0.5 TIME (MIN) = 90 DISCHARGE (CFS) = 0.5 TIME (MIN) = -100 -DISCHARGE (CFS) = 0.5 I TIME (MIN) = 110 DISCHARGE (CFS) = 0.5 TIME (MIN) = 120 DISCHARGE (CFS) = 0.6 TIME (MIN) = 130 DISCHARGE (CFS) = 0.6 TIME (MIN) = 140 DISCHARGE (CFS) = 0.6 TIME (MIN) = 150 DISCHARGE (CFS) = 0.7 I TIME (MIN) = 160 DISCHARGE (CFS) = 0.7 TIME (MIN) = 170 DISCHARGE (CFS) = 0.8 TIME (MIN) = 180 DISCHARGE (CFS) = 0.8 TIME (MIN) = 190 DISCHARGE (CFS) = 0.9 TIME (MIN) = 200 DISCHARGE (CFS) = 1 I TIME (MIN) = 210 DISCHARGE (CFS) = 1.3 TIME (MIN) = 220 DISCHARGE (CFS) = 1.4 TIME (MIN) = 230 DISCHARGE (CFS) = 2.1 TIME (MIN) = 240 DISCHARGE (CFS) = 3 TIME (MIN) = 250 DISCHARGE (CFS) = 10.5 I TIME (MIN) = 260 DISCHARGE (CFS) = 1.7 TIME (MIN) = 270 DISCHARGE (CFS) = 1.1 TIME (MIN) = 280 DISCHARGE (CFS) = 0.9 TIME (MIN) = 290 DISCHARGE (CFS) = 0.7 TIME (MIN) = 300 DISCHARGE (CFS) = 0.6 I TIME (MIN) = 310 DISCHARGE (CFS) = 0.6 TIME (MIN) = 320 DISCHARGE (CFS) = 0.5 TIME (MIN) = 330 DISCHARGE (CFS) = 0.5 TIME (MIN) = 340 DISCHARGE (CFS) = 0.4 TIME (MIN) = 350 DISCHARGE (CFS) = 0.4 I TIME (MIN) = 360 DISCHARGE (CFS) = 0.4 TIME (MIN) = 370 DISCHARGE (CFS) = a I I I I I I I I EL-eAMltVrJ ttMt-5fsJ'CM /V/)/)C :3z5 r--3/6 \ . (&t"f)~5) PfJ6)t) .5f>/J~t 19f161J-s) 6,15 A-t·,· 0= /0· Ei eF-S I I I I I I I I I I I I I I I I I I I *************************************************** ***** FHWA URBAN DRAINAGE DESIGN PROGRAMS ***** ***** RESERVOIR ROUTING ***** *************************************************** COMPUTED BY: DATE: 02-03-2004 PROJECT: FOX-MILLER PROJECT NO: 149-1 Max. Storage (ft"3) Max. Depth (ft) Max. Discharge (cfs) "'At Time (hours) 3782 3.26 3.0 -----4~i7-:.-1 Time (hours) 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1. 33 1 . .50 1. 67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 4.67 Stage (ft) 0.00 1. 00 2.00 3.00 4.00 Inflow (cfs) Discharge (cfs) 0.00 1.70 2.40 2.90 3.40 Discharge (cfs) Storage (ft"3) o 800 2000 3200 5400 Storage (ft"3) :::-/ () M /N Storage Indicator 0.00 2.18 4.53 6.78 10.70 De¥th ( t) ------------------------------------------------- 0.000 0.000 0 0.00 0.400 0.156 . 73 0 .. 09 0.400 0.346 163 0:20 0.400 0.388 183 0.23 0.400 0.397 187 0.23 0.400 0.399 188 0.23 0.400 0.400 188 0.24 0.500 0.439 207 0.26 0.500 0.486 229 0.29 0.500 0.497 234 0.29 0.500 0.499 235 0.29 0.500 0.500 235 0.29 0.600 0.539 254 0.32 0.600 0.586 276 0.34 0.600 0.597 281 0.35 0.700 0.638 300 0.38 0.700 0.686 32·3 0.40 0.800 0.736 346 0.43 0.800 0.786 370 0.46 0.900 0.836 393 0.49 1.000 0.925 435 0.54 1. 300 1.100 518 0.65 1. 400 1. 295 609 0.76 2.100 1.649 776 0.97 3.000 1. 949 1227 1.36 10.500 r/J It 'f:. ~ 3-'--01i~~ 3782 3.26 1.700 o . 0-0 0.00 1.100 0.015 0 0.00 0.900 0.0J.7 0 0.00 L I I I I, I , ' .. I I :1 I I I I I I I I I I I 4.83 0.700 5.00 0.600 5.17 0.600 5.33 0.500 5.50 0.500 5.67 0.400 5.83 0.400 6.00 0.400 6.17 0.000 0.018 0.018 0.019 0.020 0.020 0.021 0.021 0.022 0.022 o o o o o o o o o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 'I . . ' I I -! I ,I I I .1 I I I I I; I, I I I APPENDIX l' • • ',"... '. '. " ", .' -----10.0 9.0 8.0 7.0 6.0 5.0 I 4.0 I I 3.0 "C ~ j 2. . ~1. ;:0. :c ~o. 20 ..s' o. o o o o I I I I . I ; I I ! " ..... "" '" ~ ..... I' i'. r..... t-.. 1'" . ..... ~ "-1' ..... I'r--I' '", "" I' ........... ..... I' l-f- -f-i- " i'o.l I ....... '" ..... I' I" i' l"- ..... I' I' i-1''''''' I"" I" I' I'.. • ~ r--", I' i'i' !'-. I. i" '" ~I' i' ~ t..... I'- I> '", i"r-. ~ r~ I , .. I -1-, ,,~.~ -.. ' ~~ ..... ... ----. -.. -..... '"" " .... -.. -.... ,,, ...... ~. - -l-I---.. - o I, II 5 6 7 8 910 15 20 30 Minutes 1 j - _ .. 40 50 Duration .......... EQUATION I . = 7.44 P6 0-0.645 I = Intensity (in/hr) P6 = 6-Hour Precipitation (in) D = Duration (min) i'.i'. ~ '" i' I" i' " "'r-, ... " I-~ i'o.'" I .. i'f"o ..... ~ i'i' i' I i' i' I' i" i'o.i' , ... i' I- t i'.i' i' .. .. \ I . ---.. ... I ..." ."------.. . .. ..... 1-,--1---... _ .... . .. I I 1 I I .. ± o c: ... ;E Q • 6.0 -g. 5.5 g 5.0 g 4.55" o 4.0 S 3.5 .!!!, 3.0 2.5 2.0 1.5 1.0 2 3 4 5 6 Hours Intenslty-Duratton DeSign Chtlrt -Template .. .• . : •. --... -; Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included In the County Hydrology Manual (10. 50, and 100 yr maps included In the Design and Procedure Manual). (2) Adjust'6 hr precipitation (if necessary) so that It is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line Is the intensity-duration curve for the location being analyzed . Application Form: (a) Selected frequency @(J year (b) Ps = 1-1 in .• P24 = ~ .pP6 = ~ "10(2) 1 24 (c) Adjusted P6(2) = ~ In. (d) tx = _ min. (e) I = __ in.lhr • Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. .. IF IS.UlR EI - I I 0...-bJ)C\:S .~ S '" ~ ... = ~ro .S! 0 I := ~~ ~ '" .. I .. §< ... ii ~6i3 &:: r:: ~ .. ;. ~ (ij ~ ~ I OJa .g, 3 a. 0 j~ .s &:: .!!! ~ ·OJ ~ p:: ... .. I O£ .. ;.. 0 U 0 - ,I I I I 'I: I ·1' I I '1\ 1\ I I I I I I I, I' I I I· I J I I I I I I: I I I -.. ' -.. ' .. .. ... ' .. .. .. .. .. r -i ;, ! _tHl I i, T:'~;"<i!' :tj::L, I! ! . I I I . :P_;,' ",',-1--"'- :~Hl'''' " . ' , .... -, '1 ' • " r ".'" '''''''','''' "'" "",, 't"'i:'T";-""rf" I" " ... "l-~''''j""t''''l-"'-1-1 t I' ;, , .. ,,+ rf-.j-+-';--'j'-jl""J-I-f.".W-J±t-I-'j!....;-. ' f 2-3 I •• I ! Ii: I . I I! . I I' I , f i I " • I .' • !! . \ .:. 1 'I;! l . i:l";'~' . ~· .. ·i·Nl·!.. . Q .. j ... , ... "~,,i I ... ", .ra .. L .. ;!. I ! ! I ... :!!; ! I : : , I~, ! '. I _ _ i. ~ .IN'.i •• , •. ·,L:.rt' ;~--~--~~,~,--~-- .. -.. ' --- - County of San Diego Hydrology Manual Soil Hydrologic Groups Legend Soil Groups ~ Group A _ Groups 1m Groupe _ GroupO ~ Undetermined o Data Unavailable DPW ~GIS ~#II".AJ.a.~ ..... ,.....,~_.sw..- ~ S11lGIS We Have ~:ln Du:~u Cmcn::J~ fHIIa.wo.PfIIOIII)(DWIlHOUTWAlllWnVOPNH'UloC.lmcI'lD,.,. .. OAIW'Lllo...a.I"IOIHQ • .uTNOTUloIIflD 10. THE....".DWNlIWtTIU OIUD1CtWi1'MUTYAND'lTNUIfOI\AI'MllCU..NI:l'UfI1'OI(, c.".""IeMM."~"-'w4. n. ........................... lINCIAO ......... ~.,..... ....... Q,/ftII .................. ... ""' .... ...-.-fIIUrHC1.\G,. """' ................ ..,...... ............ "...... ... '*--.---,.,--." ..... ...,.. o 3 Miles ~ ----~~---~~~~~~-~-- San Diego County Hydrology Manual Date: June 2003 Table 3-1 Section:· Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil Type NRCS Elements Coun Elements %IMPER. A B Undisturbed Natural Terrain (Natural) Permanent Open Space . . 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 High Density Residential/(HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 CommerciaVIndustrial (N. Com) Neighborhood Commerc:ial 80 0.76 0.77 CommerciaVIndustrial (G. Com) General Commercial 85 0.80 0.80 CommerciaVIndustrial (O.P. Com) Office ProfessionaVCommercial 90 0.83 0.84 CommerciaVIndustrial (Limited I.) Limited Industrial 90 0.83 0.84 General Industrial 95 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 ·0.69 0.78 0.78 0.81 . 0.84 0.84 :0.87 3 60f26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63. 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling un·its per acre - NRCS = National Resources Conservation Service 3-6 ....... _ .. I.I~ .. ~ t. ... ~~ -~-~------~-~-~-~---- Iii w u. ~ W (J Z ~ en is w ~ :> o ~ W I-~ 1001 1.5 IVN/,/ Ie I ,-~~ en ~ ! 1///*/:/1' y?'1 ~ ~20~ ~ w :E i= ~ u. I ~ ,cP .. _,o -~ ~::---=-10 i ~=-L------L----~~----J-----~------~----~-----7:'O EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) = 0.41 Overland 'Flow Time (T)::: 9.5 Minutes T = 1.8 (i.i-e) Vi) 3VS ~ SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE , Rational Formula· Overland Time of Flow Nomograph ,3·3 ••• ~_~ • ..A~ I I I I I "I I I I "I I" I I I I I" I I I Q) 0. 10 .Q 3 (jJ 1~1.5'--+1 1~=·01s.....+~ __ ____ .::.:2'*:::..0 ---...l _ -n = .0175 2% 2 EXAMPLE: Concrete Gutter Given: Q = 10 S = 2.5% Paved 3 4 5 6 7 8 9 10 Discharge (C.F.S.) Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. SOURCE: San Diego County Department of Special District Services Design Manual Gutter and Roadway Discharge· Velocity Chart RESIDENTIAL STREET ONE SIDE ONLY 20 30 40 50 FIGURE ~ r f I I I I I I I I I I I I I I I I I I I Watershed Divide '\ ..-------~~ ~ ~ \ ~ /' " -~, ' '\ ,'. ' \ ,----.-. \,--~ ... ?-." ------........... _... -~ ~ -.. ~ ,1' ,~ ------'---~. . ~ ./ '--'/ ~ --------~----------------------L~==~==~~===-------~ Watershed Divide T' ~E I Effective Slope Line De$ign Point (Watershed,Outlet) I I+-------~----------------------L------------------------------~·I Area "A" = Area "B" SOURCE: California Division of Highways (1941) and Kirpich (1940) FIGURE Computation of Effective Slope for Natural Watersheds ~ , I 1 I I , I I I I I I I I I I I I I I I I I I I AE Feet 5000 4000 Tc Tc L AE = = = = EQUATION ( 12:~3y.385 Time of concentration (hours) Watercourse Distance (miles) Change in elevation along effectlve slope line (See Figure 3-5) (feet) 30GO 20DO 10GO 900 800 'YDO 6O(r , 500' , 4GO '~ '+~ ,,~ 300 ~<& , , , , , , L , Miles Feet 10 5 h.E SOURCE: California Division of Highways (1941) and Kirpich (1940) , '1 , 0.5 L 4000 , . 3000 , 2000 1800 1600 1400 1200 1000 900 800 700 600 500 200 , Nomograph for Determination of Tc Hours Minutes 30 , , , , , 5 Tc Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds FIGURE ~ t-I ~ i r ~ i i : , I , I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Section: Date: June 2003 Page: SECTION 6 RATIONAL METHOD HYDRO GRAPH PROCEDURE 6.1 INTRODUCTION 6 loflO The procedures in this section are for the development of hydro graphs from RM study results for study areas up to approximately 1 square mile in size. The RM, discuss.ed in Section 3, is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where -it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. However, in some instances such as for design of detention basins, the peak runoff rate is insufficient information for the design, and a hydrograph is needed. Unlike the NRCS hydrologic method (discussed in Section 4), the RM itself does not create hydrographs. The procedures for detention basin design based on RM study results were first developed as part of the East Otay Mesa Drainage Study. Rick Engineering Company performed this study under the direction of County Flood Control. The procedures in this section may be used for the development of hydro graphs from RM study results for study areas up to approximately 1 square mile in size. 6;2 HYDRO GRAPH DEVELOPMENT The concept of this hydro graph procedure is based on the RM formula: Q=CIA Where: Q = peak discharge, in cubic feet per second (cfs) C = runoff coefficient, proportion of the rainfall that runs off the surface (no units) I = average rainfall intensity for a duration equal to the T c for the area, in inches per hour A = drainage area contributing to the design location, in acres The RM formula is discussed in more detail in Section 3. 6-1 I I I I I I I I I I· I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 6 20f1O An assumption of the RM is that discharge increases linearly over the T c for the drainage area until reaching the peak discharge as defined by the RM formula, and then decreases ihiearly.· A linear hydrograph can be ·developed for the peak flow ·occurring over the T c .. as shown in Figure 6-1. However, for designs that are dependent on the total storm volume, it is not sufficient to consider a single hydrograph for peak flow occurring over the Teat the beginning of a 6-hour storm event because the hydrograph does not account for the entire volume of runoff from the storm event. The volume under the hydrograph shown in Figure 6-1 is equal to the rainfall intensity multiplied by the duration for which that intensity occurs (T c), the drainage area (A) contributing to the design location, and the runoff coefficient (C) for the drainage area. For designs that are dependent on the total storm volume, a hydrograph must be generated to account for the entire volume of runoff from the 6-hour storm event. The hydro graph for the entire 6-hour storm event is generated by creating a rainfall distribution consisting of blocks of rain, creating an incremental hydrograph for each block of rain, and adding the hydro graphs from each block of rain. This process creates a hydro graph that contains runoff from all the blocks of rain and accounts for the entire volume of runoff from the 6-hour storm event. The total volume under the resulting hydrograph is equal to the following equation: Where: VOL = volume of runoff (acre-inches) P6 = 6-hour rainfall (inches) C = runoff coefficient A = area of the watershed (acres) 6-2 (Eq.6-1) i .~ I • J i I I I I I I I I I I I I I I I I I I I ~: " " II \1 II FIGURE Triangular Hydrograph ~ I I I I I "I- I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 6.2.1 Rainfall Distribution Section: Page: 6 40fl0 Figure 6-2 shows a 6..;hour rainfall distribution consisting of blocks of 'rain' over- increments of time equal to Te. The number of blocks is detennined by rounding Te to the nearest whole number of minutes, dividing 360 minutes (6 hours) by Te, and rounding again to the nearest whole number. The blocks are distributed using a (2/3, 1/3) distribution in which the peak rainfall block is placed at the 4-hour time within the 6-hour rainfall duration. The additional blocks are distributed in a sequence alternating two blocks to the left and one block to the right of the 4-hour time (see Figure 6-2). The total amount of rainfall (PT(N) for any given block (N) is determined as follows: PT(N) = (IT(N) T T(N) 160 Where: PT(N) = total amount of rainfall for any given block (N) h(N) = average rainfall intensity for a duration equal to T T(N) in inches per hour TT(N) = NTe in minutes (N is an integer representing the given block number of rainfall) Intensity is calculated -using the following equation (described in detail in Section 3): 1= 7.44 P6 D-O•645 Where: I = average rainfall intensity for a duration equal to D in inches per hour P6 = adjusted 6-hour storm rainfall D = duration in minutes 6-4 I I f j I I I I I I I I I I I I I I I I· I I I -en 4) .s::. 0 c :.::. :g c '6 0:: .. .. ~ . . . .. Ore) (Tcf60)~ h;;->I r-;-. (l2Te) (2Te/60) • (Ire) CTc/60) 1 (13Tc) (3Tc/60) • (l2Te) (2Te/6O) 2 (14Tc) (4Tc/6Q) • (13Te) (3Tc/60) r-3 4 5 r-~ 6 ~ 8 M '--4 (hours) Time F I G U R E Rainfall Distribution I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 6 6oflO Substituting the equation for I in the equation above for PT(N) and setting the duration (D) equal to T T(N) yields: PT(N) = [(7.44 P ~ T(N) oo645)(T T(N»)] / 60 PT(N) ='0.124 P6TT(N)°o355 Substituting NTc for TT (where N equals the block number of rainfall) in the equation above yields: (Eq.6-2) 0 Equation 6-2 represents the total rainfall amount for a rainfall block with a time base equal to T T(N) (NTc). The actual time base of each rainfall block in the rainfall distribution is Tc, as shown in Figure 6-2. The actual rainfall amount (PN) for each block of rain is equal to PT at N (PT(N») mnus the previous PT at N-l (PT(N-I)) at any given multiple of Tc (any NTc). For example, the rainfall for block 2 is equal to PT(N) at TT(N) = 2Tc minus the PT(N) at TT(N) = lTc, and the rainfall for block 3 equals PT(N) at TT(N) = 3Tc minus the PT(N) at TT(N) = 2Tc• or PN can be represented by the following equation: (Eq.6-3) For the rainfall distribution, the rainfall at block N = 1, (1 Tc), is centered at 4 hours, the rainfall at block N = 2, (2Tc), is centered at 4 hours -lTc, the rainfall at block N = 3, (3Tc), is centered at 4 hours -2Tc, and the rainfall at at block N = 4, (4Tc), is centered at 4 hours + 1 Tco The sequence continues alternating two blocks to the left and one block to the right (see Figure 6-2). 6-6 I I I I, I -I' I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 6.2.2 Construction of Incremental Hydrograpbs Section: Page: 6 7oflO Figure 6-1 shows the relationship of a single block of rain to a single hydrograph. Figure 6-3 shows the relationship of the rainfall distribution to the overall hydrograph for, , the storm' event. The peak flow amount from each block of rain is determined by the RM ' , formula, Q = CIA, where I equals IN (the actual rainfall intensity for the r~nfal1 block). IN is determined by dividing PN by the actual time base of the block, Te. The following: .' ''':<i -<' equation shows this relationship: (Eq.6-4) Where: IN = average rainfall intensity for a duration equal to Te in inches per hour PN = rainfall amount for the block in inches Te = time of concentration in minutes By substituting equation 6-4 into the rational equation, the following' relationship is obtained: (Eq.6-5) Finally, the overall hydrograph 'for the storm 'event is determined by adding 'all the hydrographs from each block of rain. Since the peak flow amount for each incremental hydrograph corresponds to a zero flow amount from the previous and proceeding hydrographs, as shown in Figure 6-3, the inflow hydrograph can be.plotted by connecting the peak flow amounts (see the dashed line in Figure 6-3). 6-7 I I I I I ·1 I· I I I I I I I I I I I I I Time (minutes) .. 240 (4 hours) 360 o (6 hours) H o H .··360· (6 hours) Time (minutes) FIGURE 6-Hour Rational Method Hydrograph E I 1 I I 1 I 1 I I I' I I I' I I I I I I San Diego County Hydrology Manual Date: June 2003 6.3 GENERATING A HYDRO GRAPH USING RATHYDRO Section: Page: 6 90flO The rainfall distribution and related hydro graphs can be developed using the' RATHYDRO computer program provided.to the County by Rick Engineering Company. A copy of this program is available at no cost from the County. The output from this computer program may be used with HEC-l or other software for routing 'purposes. The design stonn pattern used by th~ RATHYDRO program is based on the (2/3, 1/3) distribution described in Sections 4.1.1 and 6.2.1. The ordinates on the hydrograph are calculated based on the County of San Diego Intensity-Duration Design Chart (Figure 3- 1), which uses the intensity equation described in Sections 3.1.3 and 6.2.1.to relate the intensity (1) of the stonn to Te, I = 7.44 P6D-O·645. The computer program uses equations 6-2 and 6-3 described above and calculates IN directly. The intensity at any given multiple ofTe is calculated by the following equation: Where: N = number of rainfall blocks T T(N) = time of concentration at rainfall block N in minutes (equal to NTc) IN = actual rainfall intensity at rainfall block N in inches per hour (Eq.6-6) h(N) = rainfall intensity at time of concentration T T(N) in inches per hour Figure 6-2 shows the rainfall distribution used in the RM hydrograph, computed at multiples of Te. The rainfall at block N = 1, (1 Te), is centered at 4 hours, the rainfall at block N = 2, (2Tc), is centered at 4 hours -lTc, the rainfall at block N = 3, (3Tc), is centered at 4 hours -2Te, and the rainfall at at block N = 4, (4Tc), is centered at 4 hours + 1 Tc. The sequence continues alternating two blocks to the left and one block to the right (see Figure 6-2). As described in Section 6.2.2, the peak discharge (ON) of the hydrogr~ph for any given rainfall block (N) is detennined by the RM fonnula Q = CIA, where 1.= IN = the actual 6-9 I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 6 10ofl0 rainfall intensity for the rainfall block. The RATHYDRO program substitutes equation 6-6 into the RM formula to determine ON yielding the following equation: (Eq.6-7) Where: ON = peak discharge for rainfall block N in cubic feet per second (cfs) N = number of rainfall blocks T T(N) = time of concentration at rainfall block N in minutes (equal to 'NT e) h(N) = rainfall intensity at time of concentration T T(N) in inches per hour C = RM runoff coefficient A = area of the watershed (acres) To develop the hydrograph for the 6-hour design stonn, a series of triangular hydrographs with ordinates at multiples of the given Teare created and added to create the hydrograph. This hydrograph has its peak at 4 hours plus Y2 of the Te. The total volume under the hydrograph IS 'equal to the following equation (equation 6-1): VOL = CP<>A Where: VOL = volume of runoff ( acre-inches) P6 = 6-hourrainfall (inches) C = runoff coefficient A = area of the watershed (acres) 6-10