HomeMy WebLinkAboutCT 00-20; FOX MILLER PROPERTY; DRAINAGE REPORT; 2004-01-28I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CTOO-)D
DRAINAGE REPORT
FOR
FOX-MILLER PROPERTY
-ct0.0 .. 2.0
CARLSBAD, CALIFORNIA
r
RECEI\~D I
FEB 0 5 lUU4
ISNGiNEE;RING
DePARTMENT
, . .,'; ..
, ,
~.
.,
• 0
Z
~
0 . '
lU
:L .... ,:-;.1
~)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
DRAINAGE REPORT
FOR
FOX-MILLER PROPERTY
CT 00-20
CARLSBAD, CALIF9RNIA
Prepared By:
BUCCOLA ENGINEERING, INC.
3142 Vista Way, Suite 301
Oceanside, California 92056
(760) 721-2000
Philip D. Buccola
Registration Expires 3-31-06
January 28, 2004
IN 149-1
Prepared By: JAD
II
'1'
, "~I
I
I
.,
fl
]1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE OF CONTENTS
Section
• PROJECT DESCRIPTION
• LETTERBOX CANYON DETENTIONIRUNOFF DESCRIPTION
• RATIONAL METHOD CALCULATIONS, EXISTING CONDITIONS
• RATIONAL METHOD CALCULATIONS, PROPOSED CONDITIONS
• PIPECALCS
• DETENTION BASIN CALCULATIONS
• APPENDIX: S.D. COUNTY CHARTS
• BACK COVER: DRAINAGE MAPS (3")
:i !
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
PROJECT DESCRIPTION
The Fox-Miller project site is located in the City of Carlsbad near the intersection of College Blvd. and
El Camino Real. The site is bounded on the south and east by the Carlsbad Research Center, and on the
west by the Taylor Made Golf Business Park. These surrounding areas are part of the industrial
development surrounding Palomar Airport Rd., and the Fox-Miller property also proposes industrial
development.
The site topography is predominated by a large canyon bisecting the property east-west from El Camino
R~a1 to the Taylor-Made site at Salk Ave. and Fermi Court. Gently to moderately sloping hillsides occur
on each side of the canyon. Approximately two-thirds of the 54 acre site drain into the canyon and into
the existing 48" storm drain at Salk Ave. The majority of the remainder of the site drains into EI Camino
Real, with about 6 acres draining into the Taylor-Made industrial park on the east side of Fermi Court.
The development of the Fox-Miller property will result in increased runoff volumes generated by the
industrial use. Due to capacity constraints in the existing trunk storm drains in College Blvd. and in the
Taylor-Made site, all tributary projects would need to detain post-development runoff to· produce a
volume equal to or less than the existing-condition flows, based on San Diego CO\l11ty 100-yr. storm
criteria.
The calculations within this report include existing and proposed condition rational method analysis,
pipeflow calcs and detention basin calculations. San Diego County methods are used throughout, with
supporting charts included in the appendix of the report. A node-to-node computer analysis is used for
the rational method analysis. Soil type D occurs throughout the site.
CONCLUSIONS:
The runoff/detention design for the Letterbox Canyon/Salk system can be found in the next section of the
report.
The proposed EI Camino Real storm drain system connects to the existing trunk public storm drain at the
nw comer of the property, on the adjacent parcel, parcel 3 of PM 17830, with the connection made into
the existing 18" storm drain, which increases to 30" about 60 feet into the adjacent parcel. In
conversations with the Carlsbad Engr. Dept., during preliminary design, they have stated that the design
for the E1 Camino storm drain system should result in flows entering the existing system at rates no
higher than existing runoff. These calculations show the existing Q100 at that point to be 38.4 CFS, and
with the proposed small detention basin near the connection point, the proposed QI00 would be 38.5
CFS, essentially no increase. The small detention basin is located to pickup all runoff outside of the EI
Camino roadway, which amounts to an inflow of around 10 CFS. The trunk storm drain in the street
would pick up all the runoff from the road itself.
I
I.
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
CT 00-20
January 6, 2004
FOX-MILLER PROPERTY -AREAS TRIBUTARY TO LETTERBOX CANYON
STORM DRAIN & DETENTION DISCUSSION
Plans are currently being prepared for the Fox-Miller property, for first plan check submittal
to the City of Carlsbad Engr. Dept. Site drainage was a significant issue during the TM
approval process; for downstream capacity constraints, and also for potential impacts to the
natural canyon, known as Letterbox Canyon, which bisects the site. The purpose of this
memorandum is to clarify the latest design concept, in conjunction with the latest hydrology
and associated exhibits.
The TM approval of 2002 conditioned the owners of the property to ensure that ultimate
development peak runoff for the property not be increased over the existing peak runoff, due
to the capacity constraints in the downstream trunk storm drain system in College Blvd. The
design proposal with the TM was to provide the necessary detention in the canyon itself, with
the road embankment blocking the bottom of the canyon, allowing for sufficient
pondinglheadwater depth, thus providing the necessary storage/detention. The design called
for peak runoff from 3 of the 4 proposed lots, and Salk Ave, to enter the canyon. This
concept would· have provided the necessary detention, with no additional provisions
necessary within the lots. While there would be an increase in flows entering the canyon, the
detention provided would result in no increase in runoffleaving the site at that point ..
As work for the final plans, and discussion associated with agency permits began in recent
weeks, information received from the State Regional Water Quality Board, and the Army
Corps of Engineers indicated that their preference was for the proposed peak runoff entering
the canyon, to be as close to the existing peak runoff as feasible, and that the majority of the
detention be provided upstream of the canyon, not in line with it. Our under~tanding is that
this concept of minimizing "in line" detention is a recent development with the Army Corps
and the SRWCB. The new detention concepts were discussed with the Carlsbad Engr. Dept.;
and their response was that there could be some flexibility in the placement of detention
basins, with their main concern being that there would be no increase in peak runoff leaving
the site at the bottom. : .' . .' . . . . .
The placement of detention basins within the lots themselves will take up useable/sellable·
area, so with the storm drain/detention design, every effort was made to minimize the amount
of detention on each lot. Based on the street alignment for Salk, and the proposed grading for
the site, it is projected that lots 1-3 will be developed with the detention provisions within the
pads/lots themselves. Provisions for pollutant-removal, ie grass swales, bio-filtration
trenches, etc., can be expected to also provide some detention of runoff by lowering
velocities and providing small amounts of storage. The developers of each lot will be
responsible for designing and implementing the pollutant-removal features, and also for
limiting runoff to amounts noted with this study, pending approval by the City of Carlsbad.
Ultimately the individual lot owners or the owners a~sociation will be responsible for
maintenance of detention basins and pollutant-removal appurtenances.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
The design for lot 4 is slightly different; due to the geometry of the Salk roadway and the lot
layout, a detention basin fits well into the triangular area at the'bottom of the slope, and will
be constructed with the Fox-Miller grading/storm drain plans.
Looking at the impacts to the Letterbox Canyon - a storm drain will outlet at the top of the
canyon with the proposed Q equal to existing, -35 CFS. Moving downstream in the canyon,
proposed flows remain close to existing down to the headwall/embankment supporting the
Salk roadway, which blocks the canyon at that point. A proposed diverter cle,anout in Salk is
would allow another 19 CFS to enter the canyon right at the bottom during high flows. The
total proposed Q100 at that point will be 54 CFS, slightly over existing QIOO of 44 CFS. The
increase over existing flows will only occur right at the bottom end of the canyon. The
,development of headwater depth at the culvert outlet, due to the road embankment;'will allow'
for some retention of flows there, contributing toward the overall flow reduction at the site
outlet. With this design proposal, only the last I5-feet of canyon would be maintained by the
City, right at the culvert outlet/inlet headwalls. Upstream from there, flows would be similar
to existing, and the proposed altered channel bottom will be designed to match the existing
cross-section of the' canyon. Other than the bottom I5-feet, this entire area is proposed to'be
unmaintained with planting proposed per the biological mitigation report/plan. Summary of
the canyon impacts: the canyon will not be a maintained, fenced detention basin, as proposed
on the TM. Runoff will flow at velocities and volumes very close to existing, with a minor
increase in flows right at the end at the City-maintained inlet/outlet structures. Normal
culvert headwater depths will provide a small amount of detention during high flows, with
minor ponding. The graded portion of the canyon bottom will be constructed to match
current cross sections, and with the ultimate planting, will result in a canyon bottom that will
appear and function almost identical to existing.
Leaving the canyon, flows will join other storm drain systems from the remaining lots, and
combine to a total of 60.4 CFS at the connection to the existing 48" storm drain in Salk Ave. '
This is less than the calculated existing flow of 62 CFS at that point, and very close to the
flow identified on the plans for the existing storm drain. .
"
I
I
I
I
I
I
I·
I
I
I,
I
I .
I
I
I
I
I -
I
I
RATIONAL METHOD
EXISTING CONDITIONS CALCS
. ". . ... -. .)
I' il
I'
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003/1985/1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
*********************"***** DESCRIPTION OF STUDY **************************
* FOX-MILLER PROPERTY EXISTING CONDITIONS DRAINAGE STUDY
* BASIN 100
* IN 149-1" 12-17-03 JD
**************************************************************************
FILE NAME: G:\149-1F\C100E.DAT
TIME/DATE OF STUDY: 15:04 12/17/2003
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLQPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
*
*
*
HALF-" CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSS FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
========= ===== ======
1 30.0 20.0 0.050/0.050/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=================================~=======================================~==
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4500
S.C.S. CURVE NUMBER (AMC II) = 0
I
I
I
I'
I'
I
I
I
I
I
I
'I
I
I
I,
,I
I
I
INITIAL SUBAREA FLOW-LENGTH(FEET) = 200.00
UPSTREAM ELEVATION(FEET) = 306.00
DOWNSTREAM ELEVATION(FEET) = 298.00
ELEVATION DIFFERENCE(FEET) = 8.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.371
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW· LENGTH IS USED IN
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.538
Tc CALCULATION!
SUBAREA RUNOFF(CFS) 1.99
TOTAL AREA (ACRES) = '0.80 .TOTAL RUNOFF (CFS) . 1.. 99.
**************************************************************************~*
FLOW PROCESS FROM NODE 106.00 TO NODE 102.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.538
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6770
SUBAREA AREA(ACRES) 1.05 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.85 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.37
4.94
6.94
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 290.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 280.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 liZ" FACTOR = 5.000
MANNING'S FACTOR = ·0.040 MAXIMUM DEPT~(FEET) = 2.00.
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.196
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.54 TRAVEL TIME(MIN.)
'9.04
6.09
0.77
Tc(MIN.) = 8.14
SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF
TOTAL AREA(ACRES) =
2.30
COEFFICIENT
4.15
SUBAREA RUNOFF(CFS)
0.496
PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.58 FLOW VELOCITY(FEET/S~C.) 6.42
245.00
0.1607
4.18
10.69
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 480.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 107.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
I
I'
I
I
I'
I
I
I
I
I
,I ,.
I
I
I
I:
,I
I
I
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 245.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 500.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 3.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.749
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 15.70
TRAVEL TIME THRU SUBAREA BASED ON. VELOCITY(FEET/SEC.). = 6.84
AVERAGE FLOW DEPTH(FEET) 0.87 TRAVEL TIME(MIN.) = 1.22
Tc(MIN.) = 9.35
SUBAREA AREA(ACRES) 6.00
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 10.15
SUBAREA RUNOFF(CFS)
0.410
PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.95 FLOW VELOCITY(FEET/SEC.)
190.00
0.1100
9 .. 97
19.74
LONGEST FLOWPA~H FROM NODE 101.00 TO NODE
7.28
107.00 = 980.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 0
10.00
0.925
.INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 308.50
DOWNSTREAM ELEVATION(FEET) = 306.00
ELEVATION DIFFERENCE(FEET) = 2.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
NOTE: RAINFALL INTENSITY IS BASED ON Tc =
10.%, IS USED IN Tc CALCULATION!
7.114
5-MINUTE.
SUBAREA RUNOFF(CFS) ~ 3.20
TOTAL AREA(ACRES) =. 0.60 TOTAL RUNOFF (CFS) = 3.20
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 51
-------------------------------------------------~----~---------------------
»»>COMPUTE TRAPEZOID~~ CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 306.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 220.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
242.00
0.2909
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.33
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.05
AVERAGE FLOW DEPTH (FEET) 0.26 TRAVEL TIME(MIN.) 0.73
Tc(MIN.) = 1.65
SUBAREA AREA(ACRES) 0.10 SUBAREA RUNOFF(CFS) 0.25
AREA-AVERAGE RUNOFF COEFFICIENT 0.693
TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE (CF$) = 3.45
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.26 FLOW·VELOCITY(FEET/SEC.)
LONGEST FLOWPATH FROM NODE 10S.00 TO NODE
5.02
110.00 = 230.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
~===========================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 1.65
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.70
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.45
****************************************************************************
FLOW PROCESS FROM NODE 110.10 TO NODE 110.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 320.00
UPSTREAM ELEVATION(FEET) = 310.00
DOWNSTREAM ELEVATION(FEET) = 242.00
ELEVATION DIFFERENCE (FEET) = 6S.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150
SUBAREA RUNOFF(CFS) 4.95
TOTAL AREA(ACRES) = 2.30 TOTAL RUNOFF(CFS) 4.95
****************************************************************************
FLOW PROCESS FROM NODE 110.10 TO NODE 110.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
I
I
,I
I
I
I
I
I,
I
I
I
I
I
I
'I
I
I
I
I
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.27
RAINFALL INTENSITY (INCH/HR) = 6.15
TOTAL STREAM AREA(ACRES) = 2.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.95
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 3.45 1. 65 7.114
2 4.95 6.27 6.150
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 4.75 1. 65 7.114
2 7.93 6.27 6.150
ESTIMATES ARE AS FOLLOWS:
7.93 Tc(MIN.) =
3.00
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA(ACRES) =
LONGEST FLOWPATH FROM NODE 110.10 TO NODE
AREA
(ACRE)
0.70
2.30
RATIO
6.27
110.00 320.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 107.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 242.00 DOWNSTREAM (FEET) 190.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 550.00 CHANNEL SLOPE 0.0945
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = ,5.292
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 13.33
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.58
AVERAGE FLOW DEPTH(FEET) 0.69 TRAVEL TIME(MIN.) = 1.64
Tc(MIN.) = 7.91
SUBAREA AREA (ACRES) 5.80 SUBAREA RUNOFF (CFS) 10.74
AREA-AVERAGE RUNOFF COEFFICIENT 0.377
TOTAL AREA(ACRES) = 8.80 PEAK FLOW RATE (CFS) = 17.57
E~D OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.77 FLOW VELOCITY(FEET/SEC.) 5.96
LONGEST FLOWPATH FROM NOP~ 110.10 TO NODE 107.00 = 870.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 107.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
============================================================================
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 17.57 7.91 5.292
AREA
(ACRE)
8.80
LONGEST FLOWPATH FROM NODE 110.10 TO NODE 107.00 870.00 FEET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 19.74 9.35 4.749
AREA
(ACRE)
10.15
107.00 LONGEST FLOWPATH FROM NODE 101. 00 -TO NODE -980.00.FEET.
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
34.26
35.51
TABLE **
Tc
(MIN. )
7.91
9.35
INTENSITY
( INCH/HOUR)
5.292
4.749
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 35.51 Tc(MIN.) = 9.35
TOTAL AREA(ACRES) = 18.95
*****************************************************************~**********
FLOW PROCESS FROM NODE 107.00 TO NODE 111.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 190.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 650.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) =. 2.00
-100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.243
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
. S. C. S. CURVE NUMBER (AMC II.) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 41.68
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 6.07
AVERAGE FLOW DEPTH (FEET) 1.17 TRAVEL TIME(MIN.) = 1.79
Tc(MIN.) = 11.14
154.00
0.0554
8.30 SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA RUNOFF(CFS)
0.381
12.33
TOTAL AREA (ACRES) = 27.25 PEAK FLOW RATE (CFS) ~ 44.05
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 1.20 FLOW VELOCITY(FEET/SEC.).= 6.11
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 111.00 = 1630.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 111. 00 TO NODE 112.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) =
CHANNEL LENGTH THRU SUBAREA (FEET) =
154.00 DOWNSTREAM (FEET)
230.00 CHANNEL SLOPE =
140.50
0.0587
~I
'1 I
I
I
I
I
I'
I
I
,I
I
I
I
I
I
I
'I
I
I
I
I
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.046
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMB~R (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 45.54
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.49
AVERAGE FLOW DEPTH(FEET) 0.71 TRAVEL TIME(MIN.) = 0.85
Tc(MIN.) = 11.99
SUBAREA AREA (ACRES) 2.10 SUBAREA RUNOFF (CFS) 2.97
AREA-AVERAGE RUNOFF COEFFICIENT 0.379
TOTAL AREA(ACRES) = 29.35 PEAK FLOW RATE(CFS) = 44.98
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.71 FLOW VELOCITY(FEET/SEC.) 4.50
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 112.00 = 1860.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 111. 00 TO NODE 112.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.99
RAINFALL INTENSITY (INCH/HR) = 4.05
TOTAL STREAM AREA(ACRES) = 29.35
PEAK FLOW RATE (CFS) AT CONFLUENCE = 44.98
****************************************************************************
FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER~SPECIFIED RUNOFF COEFFICIENT = .3500 '
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00
UPSTREAM ELEVATION(FEET} = 300.00
DOWNSTREAM ELEVATION(FEET} = 260.00
ELEVATION DIFFERENCE (FEET) = 40.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150
SUBAREA RUNOFF(CFS} 1.94
TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF (CFS) 1.94
*******************************************************************~********
FLOW PROCESS FROM NODE 114.00 TO NODE 112.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELE~ENT)««<
============================================================================
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
ELEVATION DATA: UPSTREAM (FEET) = 260.00 DOWNSTREAM (FEET) 140.50
CHANNEL LENGTH THRU SUBAREA (FEET) 1150.00 CHANNEL SLOPE 0.1039
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 5.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.614
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 11.03
rRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.45
AVERAGE FLOW DEPTH(FEET) 0.64 TRAVEL TIME(MIN.) = 3.52
..... Tc·(MIN.) = 9.78
SUBAREA AREA(ACRES) 11.10 SUBAREA RUNOFF(CFS) = 17.93
AREA-AVERAGE RUNOFF COEFFICIENT 0.350
TOTAL AREA(ACRES) = 12.00 PEAK FLOW RATE(CFS) = 19.38
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) 6.32
LONGEST FLOWPATH FROM NODE 113.00 TO NODE 112.00 = 1310.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 112.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.78
RAINFALL INTENSITY (INCH/HR) = 4.61
TOTAL STREAM AREA(ACRES) = 12.00
PEAK FLOW RATE(CFS) AT CONFLUENCE 19.38
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 44.98 11. 99 4.046
2 19.38 9.78 4.614
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 56.06 9.78 4.614
2 61.97 11.99 4.046
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
AREA
(ACRE)
29.35
12.00
RATIO
PEAK FLOW RATE(CFS) 61.97 Tc(MIN.) = 11.99
TOTAL AREA(ACRES) = 4+.35
LONGEST FLOWPAJH FROM NODE 101.00 TO NODE 112.00 1860.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
41.35 TC(MIN.) =
61.97
11. 99
============================================================================
Ii ,
" II Ii
il
11 1,
} ,I
i,
! 1
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License 10 1463
Analysis prepared by:
Bucc~la Engineeri~g, tnc~"
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
':.'
************************** DESCRIPTION OF STUDY **************************
* FOX-MILLER PROPERTY EXISTING CONDITIONS DRAINAGE STUDY
* BASIN 300
* IN 149-1 12-17-03 JD
**************************************************************************
FILE NAME: G:\149-1F\300E.DAT
TIME/DATE OF STUDY: 16:17 12/17/2003
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: . .
*
*
*
--------------------------------------~-------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS . . *USER-DEFINED STREET-SECTIONS, FOR COUPLED PIPEFLOW ANP STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: .MANN:i;NG
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE I. SIDE/ WAY (FT) (FT) (FT) (FT) (n)
========= ================= ====== ====== ===== =======
1 30.0 20.0 0.050/0.05010.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
********************************************************************~*******
FLOW PROCESS FROM NODE 300.00 TO NODE ~01.00 IS CODE = 21
---------------------------------------------------------------------------~
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOF~ COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
, t,
1.1
.. I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
'"I
I
I
I
I
INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00
UPSTREAM ELEVATION (FEET) = 300.50
DOWNSTREAM ELEVATION(FEET) = 295.00
ELEVATION DIFFERENCE,(FEET) = 5.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.667
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 80.28
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF (CFS) = 1.69
TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) = 1.69
****************************************************************************
FLOW PROCESS FROM NODE 301. 00 TO NODE 302.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00
INSIDE STREET CROSSFALL(DECIMAL) 0.050
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
250.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 5.74
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREE,T FLOW DEPTH (FEET) = O. 36
HALFSTREET FLOOD WIDTH (FEET) =' 5.67
AVERAGE'FLOW VELOCITY{FEET/SEC.) 6.47
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.36
STREET FLOW TRAVEL TIME(MIN.) = 2.06 Tc{MIN.) 3.73
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S. C. S. CURVE NUMB,ER (AMC II) = 65
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
SUBAREA AREA(ACRES) 1.20 SUBAREA RUNOFF (CFS) 8.11
TOTAL AREA(ACRES) = 1.45 PEAK FLOW RATE{CFS) 9.80
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.43 HALFSTREET FLOOD WIDT~(FEET) 7.06
FLOW VELOCITY(FEET/SEC.) = 7.36 DEPTH*VELOCITY(FT*FT/SEC.) 3.20
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 980.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
----------------------------------------------------------------------------
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 247.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 14.17
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 9.80
0.14 _Tc(MIN.) = 3.87
238.00
1
PIPE --TRAVEL -TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303-.00 =---"1100.00 FE-ET-.-
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 1-
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 3.87
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 1.45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.80
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 21
»»>RATIDNAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
INITIAL SUBAREA FLOW-LENGTH{FEET) = 130.00
UPSTREAM ELEVATION(FEET) = 294.00
DOWNSTREAM ELEVATION(FEET) = 285.00
ELEVATION DIFFERENCE (FEET) = 9.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.372
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 93.85
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 1.01
TOTAL AREA (ACRES) = 0.15 TOTAL RUNOFF (CFS) = 1.01
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 303.bo IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SU~AREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION (FEET) = 294.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 750.00 CURB HEIGHT(INCHES] = 6.0
STREET HALFWIDTH(FEET) = 30.00
238.00
~i ;1 _I
-_J
I
I
I
I
I
I
I
I
I
I
I
01
I
I
10
I
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSS FALL (DECIMAL) = 0.050
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
20.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMA.TED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
,HALFSTREET FLOOD WIDTH(FEET) = 4.21
AVERAGE FLOW VELOCITY(FEET/SEC.) 6.42
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.87
STREET FLOW TRAVEL TIME(MIN.) = 1.95 0 Tc(MIN.) 3.32
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.70
TOTAL AREA(ACRES) = 0.85
0.950
SUBAREA RUNOFF(CFS)
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 5.33
3.38
4.73
5.74
FLOW VELOCITY(FEET/SEC.) = 7.22 DEPTH*VELOCITY(FT*FT/SEC.) 2.51
LONGEST FLOWPATH FROM NODE 304.00 TO NODE 0303.00 = 880.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 303.00 IS CODE =
o »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
'==========================?=================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION{MIN.) 3.32
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.85
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.74
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 9.80 3.87 7.114
2 5.74 3.32 7.114
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/ HOUR)
1 14.16 3.32 7.114
2 15.54 3.87 7.114
AREA
(ACRE)
1. 45
0.85
RATIO
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I'
I
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 15.54 Tc(MIN.) = 3.87
TOTAL AREA(ACRES) = 2.30
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 1100.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 306.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
. »»>(STREET TABLE .SECTION #. 1 USED)««< . .
===========================================================================~ .
UPSTREAM ELEVATION(FEET) = 238.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00
INSIDE STREET CROSSFALL(DECIMAL) 0.050
OUTSIDE STREET CROSS FALL (DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.51
HALFSTREET FLOOD WIDTH(FEET) = 8.77
.AVERAGE FLOW VELOCITY(FEET/SEC.) 9.13
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 4.62
STREET FLOW TRAVEL TIME(MIN.) = 1.00 Tc(MIN.)
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
., USER-SPECIFIED RUNOFF COEFFICIENT = .9500
·S . C. S. CURVE NUMBER (AMC II) = 65
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
17.23
4.87
200.00
0.0150
SUBAREA.AREA(ACRES) 0.50
TOTAL AREA (ACRES) = 2.80
SUBAREA RUNOFF(CFS)
PEAK FLOW RATE(CFS)
3.38
18.92
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) 9.82
FLOW VELOCITY(FEET/SEC.) = 9.34 DEPTH*VELOCITY(FT*FT/SEC.) 4.86
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 306.00 = 1650.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 311. 00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
===========================================~~===============================
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. )4 .87
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 2.80
PEAK FLOW RATE (CFS) AT CONFLUENCE = 18.92
.,' "
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5000
150.00
S.C.S. CURVE NUMBER (AMC II) = 65
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 272.00
DOWNSTREAM ELEVATION(FEET) = . 250.00 .. . -....
ELEVATION DIFFERENCE (FEET) = 22.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.102
SUBAREA RUNOFF(CFS) 2.13
TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) 2.13
****************************************************************************
.FLOW PROCESS FROM NODE 308.00 TO NODE 310.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 250.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00
INSIDE STREET CROSSFALL(DEClMAL) 0.050
OUTSIDE STREET CROSS FALL (DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
200.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 4.03
STREET FLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.31
HALFSTREET FLOOD WIDTH(FEET) = 4.67
AVERAGE FLOW VELOCITY(FEET/SEC.) 6.39
PRODUCT OF DEPTH&VELO,CITY (FT*FT /SEC. ) 2.01
STREET FLOW TRAVEL TIME(MIN.) = 1.96 Tc(MIN.) 6.97
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.743
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
AREA-AVERAGE RUNOFF COEFFICIENT 0.742
SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS) 3.82
TOTAL AREA (ACRES) = 1. 30 PEAK FLOW RATE (CFS ) 5 . 54
END OF SUBAREA STREET FLOW HYDRAULICS:
"I
" "
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.1
I
I
DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 5.37
FLOW VELOCITY(FEET/SEC.) = 6.89 DEPTH*VELOCITY(FT*FT/SEC.) 2.41
LONGEST FLOWPATH FROM NODE 307.00 TO NODE 310.00 = 900.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 309.00 TO NODE 310.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.743
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF.COEFFICIENT·= .7000
S . C. S. CURVE NUMBER (AMC 1.1) = 65
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7344
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.60 TOTAL RUNOFF (CFS)
TC(MIN.) = 6.97
1.21
6.75
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO. NODE 311.00. IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 192.30 DOWNSTREAM (FEET) 192 ... 00
FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 4.92
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 6.75
PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.14
LONGEST FLOWPATH FROM NODE· 307.00 TO NODE 311.00 950.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«~«
============================================================================
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.14
RAINFALL INTENSITY (INCH/HR) = 5.65
TOTAL STREAM AREA(ACRES) ~ 1.60
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.75
****************************************************************************
FLOW PROCESS FROM NODE 311.10 TO NODE 311.00 IS CODE = 22
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
==~=========================================================================
*USER SPECIFIED (SUBAREA) ;
USER-SPECIFIED RUNOFF COEFFICIENT = .1500
S.C.S. CURVE NUMBER (AMC II) = 65
USER SPECIFIED Tc(MIN.) = 7.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.726
SUBAREA RUNOFF(CFS) 1.55
TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF (CFS) 1.55
! . . ,
,
"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 311.00 TO NODE 311.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 7.00
RAINFALL INTENSITY (INCH/HR) = 5.73
TOTAL STREAM AREA(ACRES) = 1.80
,PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.55
****************************************************************************
FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 21
»»>RATIONAL METHOD INITIA~ SUBAREA ANALYSIS««<
===================================================================~========
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 65
INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00
UPSTREAM ELEVATION(FEET) = 309.00
DOWNSTREAM ELEVATION(FEET) = 255.00
ELEVATION DIFFERENCE(FEET) = 54.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.425
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 98.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.051
'SUBAREA RUNOFF(CFS) 3.60
TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF (CFS) 3.60
****************************************************************************
FLOW PROCESS FROM NODE 313.00 TO NODE 311.00 IS CODE = 51
----------------------------------------------------------------------------, , , ,
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 255.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 350.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "z" FACTOR = 3.000'
MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.60l
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 65
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.52 TRAVEL TIME(MIN.)
5.86
7.12
0.82
SUBAREA RUNOFF(CFS)
0.350
Tc(MIN.) = 7.24
SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF
TOTAL AREA (ACRES) =
2.30
COEFFICIENT
4.00 PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
192.00
0.1800
4.51
7.84
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'.
DEPTH (FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) 7.65
LONGEST FLOWPATH FROM NODE 312.00 TO NODE 311.00 = 950.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 311.00 TO NODE 311.00 IS CODE = 1
---------------------------~------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE:
TIME OF CONCENTRATION(MIN.) 7.24
RAINFALL INTENSITY (INCH/HR) = 5.60
TOTAL STREAM AREA(ACRES) = 4.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.84
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 18.92 4.87 7.114 2.80
2 6.75 7.14 5.655 1. 60
3 1. 55 7.00 5.726 1.80
4 7.84 7.24 5.601 4.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 4 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 29.88 4.87 7.114
2 30.97 7.00 5.726
3 31.04 7.14 5.655
4 30.93 7.24 5.601
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
.PEAK. FLOW ):\ATE (CFS) 31,.04 .Tc (MI)::-L) ':" 7.1~
TOTAL AREA(ACRES) = 10.20
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 311. 00 1650.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 311. 00 TO NODE 318.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 192.00 DOWNSTREAM (FEET) = ',-'<. 175.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 220.00 CHANNEL SLOPE = . 0.0773
CHANNEL BASE(FEET) -0.00 "Z" FACTOR = 3.000'
MANNING I S FACTOR = 0.030 MAXIMUM DEPTH'(FEET) = 2.00
100 YEAR RAINFALL INTENS~TY(INCH/HOUR) = 5.454
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC'II) = 65
TRAVEL'TIME COMPUTED USING ESTIMATED FLOW(CFS) 32.66
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 8.94
AVERAGE FLOW DEPTH(FEET) 1.10 TRAVEL TIME(MIN.) 0.41
"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Tc{MIN.) = 7.55
SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF
TOTAL AREA(ACRES) =
1. 70
COEFFICIENT
11. 90
SUBAREA RUNOFF(CFS) =
0.513
3.25
PEAK FLOW RATE(CFS) = 33.27
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 1.11 FLOW VELOCITY(FEET/SEC.) 8.98
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 318.00 = 1870.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 318.00 TO NODE 317.00 IS CODE = 51
. ---~~---~--------~----------------------------------------------~-----------
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 175.00 DOWNSTREAM (FEET) 160.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 160.00 CHANNEL SLOPE 0.0938"
CHANNEL BASE(FEET) 0.00 "z" FACTOR = 2.000
MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.326
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 65
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 34.86
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.38
AVERAGE FLOW DEPTH (FEET) 1.36 TRAVEL TIME(MIN.) = 0.28
Tc(MIN.).= 7.83
SUBAREA AREA (ACRES) 1.70 SUBAREA RUNOFF (CFS') 3.17
AREA-AVERAGE RUNOFF COEFFICIENT 0.492
TOTAL AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) = 35.66
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 1.38 FLOW VELOCITY(FEET/SEC.) 9.41
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 317.00 = 2030.00 FEET.
.****************************************************************************
FLOW PROCESS FROM NODE 318.00 TO NODE 317.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM. FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
. TIME OF CONCENTRATION(MIN.) 7.83
RAINFALL INTENSITY (INCH/HR) = 5.33
TOTAL STREAM. AREA (ACRES) = 13.60
PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.66
****************************************************************************
FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
~==============================================?============================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
INITIAL SUBAREA FLOW-LENGTH (FEET) = 130.00
UPSTREAM ELEVATION (FEET) = 200.00
.1 ,
;:I
II E
.11
.l :1 .1 :!
:.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DOWNSTREAM ELEVATION(FEET) = 190.00
ELEVATION DIFFERENCE(FEET) = 10.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.336
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 95.38
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF (CFS) 1. '69
TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF (CFS) = 1.69
*************************************************************~**~;*******;**
FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 190.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00
INSIDE STREET CROSSFALL(DEClMAL) 0.050
OUTSIDE STREET CROSSFALL(DEClMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
170.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREET FLOW MODEL RESULTS USING ESTIMATED FLOW:
3.81
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 0.77
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
NOTE: RAINFALL INTENSITY IS BASED ON Tc
*USER SPECIFIED (SUBAREA) :
6.05
1. 64
Tc(MIN. )
7.114
5-MINUTE.
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 65
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
i.l1
SUBAREA AREA(ACRES) 0.30
TOTAL AREA(ACRES) = 0.55
SUBAREA RUNOFF(CFS)
PEAK FLOW RATE (CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH (FEET) 4.44
2.70
2.03
3.72
FLOW VELOCITY(FEET/SEC.) = 6.44 DEPTH*VELOCITY(FT*FT/SEC.) 1.95,
. LONGEST FLOWPATH FROM NODE 315.00 TO NODE 317.00 = 410.00 FEET.
************************************************************************,****
FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
TIME OF CONCENTRATION(MIN.) 2.11
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.55
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.72
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS )
1 35.66
2 3.72
Tc
(MIN. )
7.83
2.11
INTENSITY
(INCH/HOUR)
5.326
7.114
2 ARE:
AREA
(ACRE)
13.60
0.55
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 30.41 2.11 7.114
2 38.44 7.83 5.326
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 38.44 Tc(MIN.) = 7.83
TOTAL AREA(ACRES) = 14.15
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 317.00 = 2030.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
14.15 TC(MIN.) =
38.44
7.83
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
;,
f ,.
;11
Ii
.11
I
I
I
I
I
I
I
-I
I
I
I
I
I
I
I
I
I
I
I
RATIONAL METHOD
PROPOSED CONDITIONS CALCS
! t I! 1
" "
.,' (II iii I!
II
I!
II -I, ."
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc ..
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
**********************~*** DESCRIPTION OF STUDY **************~***********
* FOX-MILLER PROPOSED DRAINAGE RATIONAL METHOD CALCS *
* BASINS 100 AND 200 *
* IN 149-1 12-23-03 JD *
************************************************************************** ;Vor€. : leeF6J-if) l.6-rT£/f JJ~ eApJ1J1J t.()t1I()r~/S/) ~XII/~//,.cb,l-/}/)J),t.. I LtV51',UfrltJ,v FILE NAME: G:\149-1F\100P.DAT
TIME/DATE OF STUDY: 13:13 12/30/2003 O/~ JJ6tA-/#6I:J ,~S .44;", eAcH tlr
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOWMODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT· WIDTH ·LIp· HIKE· ·FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 26.0 21. 0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
--------------------------------------------~~------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
===========================================================================~
USER-SPECIFIED RUNOFF COEFFICIENT = .8700
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
UPSTREAM ELEVATION(FEET) = 291.00
DOWNSTREAM ELEVATION(FEET) 290.30
ELEVATION DIFFERENCE (FEET) 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.207
WARNING: INITIAL SUBARE~ FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 60.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 1.24
TOTAL AREA (ACRES) = 0.20 TOTAL.R?N~FF(CFS). =. 1.24
****************************************************************************
FLOW PROCESS FROM NODE 101. 00 TO NODE 102.00 IS CODE = . 91
»»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««<
============================================================================
UPSTREAM NODE ELEVATION (FEET) = 290.30
DOWNSTREAM NODE ELEVATION (FEET) = 281.30
CHANNEL LENGTH THRU SUBAREA(FEET) 220.00
"V" GUTTER WIDTH (FEET) = 3.00 GUTTER HIKE (FEET) 0.050
PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150
PAVEMENT CROSSFALL(DEClMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 2.00 .
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
USER-SPECIFIED RUNOFF COEFFICIENT = .8700
S.C.S. CURVE NUMBER (AMC II) = 97
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 6.81
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.47
AVERAGE FLOW DEPTH(FEET) = 0.20 FLOOD WIDTH(FEET) 17.11
"V" GUTTER FLOW TRAVEL TIME(MIN.) 0.82 Tc(MIN.) 4.03
SUBAREA AREA(ACRES) 1.80 SUBAREA RUNOFF(CFS) 11.14
AREA-AVERAGE RUNOFF COEFFICIENT 0.870
TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) 12.38
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) = 0.25 FLOOD WIDTH(FEET) 21.85
FLOW VELOCITY(FEET/SEC.) = 5.06 DEPTH*VELOCITY(FT*FT/SEC) 1.26
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 290.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER~ESTlMATED PI~ESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 275.00 DOWNSTREAM·(FEET) 269.00
FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.98
ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 12.38
PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 5.46
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 890.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO .NODE 103.00 IS CODE = 81
----------------------------------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.720
USER-SPECIFIED RUNOFF COEFFICIENT = .8700
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.8700
SUBAREA AREA(ACRES) 5.10 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 7.10 TOTAL RUNOFF(CFS)
TC (MIN. ). =:= 5.46
29.82
41.51 ~ {)E'[IJ/tV t.07
., 4/· '5" ~ t9.o
****************************************************************************
'I ;i
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 7
--------------------------------------------------------------------------f (F()r()~6 t\sfeP1A?~ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
===================================================================== -===== .t!
ill
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 9.76 RAIN INTENSITY (INCH/HOUR) = 4.62
TOTAL AREA(ACRES) = 7.10 TOTAL RUNOFF (CFS) = 29.00
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 269.00 DOWNSTREAM (FEET)
FLOW·LENGTH(FEET) = 360.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 18.54
ESTIMATED PIPE DIAMETER (INCH) = 21.00
PIPE-FLOW (CFS) = 29.00
NUMBER OF PIPES
0.32 Tc(MIN.) =
242.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 100.00 TO NODE
10.08
105.00 1250.00 FEET.
*****~****************************************~***~**********~***~***~******
FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.08
RAINFALL INTENSITY (INCH/HR) = 4.52
TOTAL STREAM AREA(ACRES) = 7.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.00
****************************************************************************
FLOW PROCESS FROM NODE 111.00 TO NODE 104.00 IS CODE = 21
--------------------------------------------~~------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9000
S.C.S. CURVE NUMBER (AMC II) = 97
\ ,
;1 Ii
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
UPSTREAM ELEVATION(FEET) = 275.70
DOWNSTREAM ELEVATION(FEET) = 273.50
ELEVATION DIFFERENCE (FEET) = 2.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.432
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 68.33
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA,RU~OFF(CFS) 1.28
TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = . 1.28 '
*********************************************************************~******
FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 273.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 340.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.28
STREETFLOW MODEL RESULTS USING EST-lMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.25
,HALf STREET FLOOD WIDTH(FEET) = 6.11
AVERAGE FLOW VELOCITY(FEET/SEC.)' 4.63
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.15
STREET FLOW TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 3.65
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.767
SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) = 1.99
251.00
0.0150
TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE (CFS) 3.27
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH (FEET) 7.34
FLOW VELOCITY(FEET/SEC.) = 4.98 DEPTH*VELOCITY(FT*FT/SEC.) 1.36
LONGEST FLOWPATH FROM NODE 111.00 TO NODE 106.00 = 460.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 106.00 IS CODE = 81
----------------------------------------------------------------------------
~
. , , ,
Ii
'I'
II III 11
}:
t' ,II III
tIl
i ql ~ ~
i
III
N' , I
-I
I
I
I
-)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6833
SUBAREA AREA(ACRES) 0.60 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.20 TOTAL RUNOFF (CFS) =
TC(MIN.) = 3.65
2.56
5.83
*~~*~*********~***********~******************~******************~*~**.******
FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 243.00 DOWNSTREAM (FEET) 242.00
FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.60
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.83
PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 3.76
LONGEST FLOWPATH FROM NODE 111.00 TO NODE 105.00 510.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 3.76
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 1:20
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.83
****************************************************************************
FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 15.00
UPSTREAM ELEVATION(FEET) = 275.70
DOWNSTREAM ELEVATION(FEET) = 273.50
ELEVATION DIFFERENCE(FE~T) = 2.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
NOTE: RAINFALL INTENSITY IS BASED ON Tc =
SUBAREA RUNOFF(CFS) = 0.91
0.809
10.%, IS USED IN Tc CALCULATION!
7.114
5-MINUTE.
t
~I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF (CFS) = 0.91
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 105.00 IS CODE = 62
----------------------------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 273.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 340.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DIstANCE FROM CROWN TO'CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
251. 00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.92
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.24
HALFSTREET FLOOD WIDTH(FEET) = 5.62
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.43
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.06
STREET FLOW TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) 2.09
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.917
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) = 2.03
TOTAL AREA (ACRES) = 0.45 PEAK FLOW RATE(CFS) 2.93
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.01
FLOW VELOCITY(FEET/SEC.) = 4.81 DEPTH*VELOCITY(FT*FT/SEC.) 1.28
LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 355.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 105.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 2.09
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.45
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.93
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY ,AREA
\I
"
~!
"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
NUMBER
1
2
3
(CFS)
29.00
5.83
2.93
(MIN. )
10.08
3.76
2.09
( INCH/HOUR)
4.525
7.114
7.114
(ACRE)
7.10
1.20
0.45
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 12.17 2.09 7.114
2 19.59 3.76 7.114
3 34.58 10.08 4.525
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 34.58 Tc(MIN.) = 10.08
TOTAL AREA(ACRES) = 8.75
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 1250.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 107.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 242.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = "120.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 37.61
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 34.58
NUMBER OF PIPES
0.05 Tc(MIN.) =
190.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 100.00 TO NODE
10.14 "
107.00 = 1370.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE " 112.00 TO NODE 107.00 ~S CODE"= " 81"
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.510
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.8111
SUBAREA AREA(ACRES) 1.00 SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) 9.75 TOTAL RUNOFF (CFS) =
TC(MIN.) = 10.14
1. 80
35.66
****************************************************************************
FLOW PROCESS FROM NODE 107.00 TO NODE 113.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 190.00 DOWNSTREAM (FEET) = 169.00
" 1
11 f,1
l! I'
11
'ell
II
1.1 tI 'ii' 'I
-."
I
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
CHANNEL LENGTH THRU SUBAREA (FEET) = 640.00 CHANNEL SLOPE 0.0328
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH (FEET) = 3.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.896
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3600
S.C.S. CURVE NUMBER (AMC II) = 97
T~VEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 39.04
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.13
AVERAGE FLOW DEPTH(FEET) 0.97 TRAVEL TIME(MIN.) = 2.58
Tc(MIN.) = 12.72
SUBAREA AREA(ACRES) 4.80 SUBAREA RUNOFF(CFS) 6.73
, AREA-AVERAGE RUNOFF COEFFICIENT 0.662
TOTAL AREA(ACRES) = 14.55 PEAK FLOW RATE(CFS) = 37.54
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.96 FLOW VELOCITY(FEET/SEC.) 4.10
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 113.00 = 2010.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00
UPSTREAM ELEVATION(FEET) = 308.50
DOWNSTREAM ELEVATION(FEET) = 306.00
ELEVATION DIFFERENCE (FEET) = 2.50
SUBAREA OVERLAND TIME OF FL'OW (MIN.) = 4.917
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 75.83
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 3.20
TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF (CFS) = 3.20
****************************************************************************
FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SU~AREA (EXISTING ELEM~NT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 306.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = ,140.00 CHANNEL SLOPE
CHANNEL BASE (FEET) 1. 00 "Z" FACTOR = 1. 000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
288.00
0.1286
1 " • Ii "
'"
" ,j,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.004
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4500
S.C.S. CURVE NUMBER (AMC II) = 97
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.52
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 11.42
AVERAGE FLOW DEPTH (FEET) 0.25 TRAVEL TIME(MIN.) 0.20
Tc(MIN.) = 5.12
SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) 0.63
AREA-AVERAGE RUNOFF COEFFICIENT 0.675
TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) 3.78
END OF SUBAREA CHANNEL FLOW HYDRAULICS:'
DEPTH (FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 11.73
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 320.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 91
»»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««<
===============================~============================================
UPSTREAM NODE ELEVATION (FEET) = 275.00
DOWNSTREAM NODE ELEVATION(FEET) = 273.00
CHANNEL LENGTH THRU SUBAREA (FEET) 140.00
"V" GUTTER WIDTH (FEET) = 2.00 GUTTER HIKE(FEET) 0.050
PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150
PAVEMENT CROSSFALL(DEClMAL NOTATION) = 0.02000
MAXIMUM DEPTH (FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.291
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8700
S.C.S. CURVE NUMBER (AMC II) = 97
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.79
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.51
AVERAGE FLOW DEPTH (FEET) = 0.21 FLOOD WIDTH (FEET) 17.0.6
"V" GUTTER FLOW TRAVEL TIME (MIN. ) 0.93 Tc (MIN. ) 6.05
SUBAREA AREA(ACRES) 0.00 SUBAREA RUNOFF(CFS) = 0.01
AREA-AVERAGE RUNOFF COEFFICIENT 0.: 6.75
TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.78
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) = 0.21 FLOOD WIDTH(FEET) 17.06
FLOW VELOCITY(FEET/SEC.) = 2.51 DEPTH*VELOCITY(FT*FT/SEC) 0.53
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 460.00 FEET.
****************~***********************************************************
FLOW PROCESS FROM NODE 205.00 TO NODE 203.00 IS CODE = 81
----------------------------------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.291
*,USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4870
SUBAREA AREA(ACRES) 1.10 SUBAREA RUNOFF(CFS)
TOTAL AREA~ACRES) = 1.90 TOTAL RUNOFF (CFS)
2.42
5.82
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TC(MIN.) = 6.05
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 206.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 268.00 DOWNSTREAM (FEET) 258.00
FLOW LENGTH (FEET) = 500.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.60
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.82
PIPE TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 7.15
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 206.00 960.00 FEET.
**************************************************************~*************
FLOW PROCESS FROM NODE 204.00 TO NODE 206.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.650
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7237
SUBAREA AREA(ACRES) 5.90 SUBAREA RUNOFF(CFS) 26.67
TOTAL AREA(ACRES) ,= 7.80 TOTAL RUNOFF (CFS) =
TC(MIN.) = 7.15
31. 90 ~~-.j)c71i//J 'lo'" ..3
$/. 9 erS -Z:Z.o C-~s **;**(f;~;;; Pd6Nrlo) **************************************************************
FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE -
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================ ===============
'USER-SPECIFIE'D VALUES ARE AS FOLLOWS:
TC(MIN) = 13.20 RAIN INTENSITY (INCH/HOUR) = 3.80
TOTAL AREA(ACRES) = 7.80 TOTAL RUNOFF(CFS) = 22.00
****************************************************************************
FLOW PROCESS FROM NODE 206.00 TO,NODE 207.00 IS CODE = 31
--------------------------------------------------------------~-------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
===========================================================================~
ELEVATION DATA: UPSTREAM (FEET) = 258.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 26.27
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 22.00
NUMBER OF PIPES
0.08 Tc(MIN.) =
231. 00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 200.00 TO NODE
13.28
207.00 1080.00 FEET.
~i I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 207.00 TO NODE 20B.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 231.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 1B.0 INCH PIPE IS 11.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 1B.22
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW(CFS) = 22.00
NUMBER OF PIPES
205.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
6~27' Tc(MIN.) =
200.00 TO NODE
13.55
20B.00 13BO.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 207.00 TO NODE 20B.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.55
RAINFALL INTENSITY(INCH/HR) = 3.74
TOTAL STREAM AREA(ACRES) = 7.BO
PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.00
1
****************************************************************************
FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 250.00
DOWNSTREAM ELEVATION (FEET) = 243.00 .
ELEVATION DIFFERENCE(FEET) = 7.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 94.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.6B
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68
****************************************************************************
FLOW PROCESS FROM NODE 210.00 TO NODE 20B.00 IS CODE = 62
--------------------------~~~-----------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 243.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6.0
213.00
I
I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREET HALFWIDTH(FEET) 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 21. 00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 2.03
STREETFLOW'MODEL RESULTS USING 'E'STlMATED FLOW: " '
STREET FLOW DEPTH(FEET) = 0.24
HALFSTREET FLOOD WIDTH(FEET) = 5.45
AVERAGE FLOW VELOCITY(£EET/SEC.) 4.88
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.15
STREET FLOW TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) 2.63
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) 2.70
TOTAL AREA (ACRES) = 0.50 PEAK FLOW RATE(CFS) 3.38
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.09
FLOW VELOCITY(FEET/SEC.) = 5.44 DEPTH*VELOCITY(FT*FT/SEC.) 1.46
LONGEST FLOWPATH FROM NODE 209.00 TO NODE 208.00 = 470.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 211.00 TO NODE 208.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
'100'YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114'
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6500
SUBAREA AREA(ACRES) 1.00 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.50 TOTAL RUNOFF (CFS) =
TC(MIN.) = 2.63
3.56
6.94
****************************************************************************
FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
=========================~~~================~~==============================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 2.63
RAINFALL INTENSITY (INCH/HR) 7.11
TOTAL STREAM AREA(ACRES) = 1.50
'-
I
I
I
I
I
I
I
I
I
I
'I'
I
I
I
I
I
I
I
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.94
****************************************************************************
FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION (FEET) = 250.00
DOWNSTREAM'ELEVA.TION(FEET) = 243.00
ELEVATION DIFFERENCE (FEET) = 7.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 94.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.68
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.68
****************************************************************************
FLOW PROCESS FROM NODE 213.00 TO NODE 208.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 243.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00
INSIDE STREET CROSS FALL (DECIMAL) 0.020
OUTSIqE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL.(DECIMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section (curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.69
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.22
HALFSTREET FLOOD WIDTH(FEET) = 4.86
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.76
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.06
STREET FLOW TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) 2.66
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc $-MINUTE.,
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) 2.03
213.00
0.0150
'.
')
1 >
/'
I
I
I
I
I
'.1
J
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA (ACRES) = 0.40 PEAK FLOW RATE(CFS) 2.70
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.35
FLOW VELOCITY(FEET/SEC.) = 5.18 DEPTH*VELOCITY(FT*FT/SEC.) 1.31
LONGEST FLOWPATH FROM NODE 212.00 TO NODE 208.00 = 470.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 214.00 TO NODE 208.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 'YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7143
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 0.70 TOTAL RUNOFF (CFS) =
TC(MIN.) = 2.66
0.85
3.56
****************************************************************************
FLOW PROCESS FROM NODE 213.00 TO NODE 208.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 2.66
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA (ACRES) = 0.70
PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.56
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 22.00
2 6.94
3 3.56
Tc
(MIN. )
13.55
2.63
2.66
INTENSITY
(INCH/HOUR)
3.740
7.114
7.114
AREA
(ACRE} "
7.80
1. 50
0.70
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK
STREAM
NUMBER
1
2
3
FLOW RATE TABLE **
RUNOFF
(CFS)
14.72
14.82
27.52
Tc
(MIN. )
2.63
2.66
13.55
INTENSITY
( INCH/HOUR)
7.114
7.114
3.740
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 27.52 Tc(MIN.) = 13.55
TOTAL AREA (ACRES) = 10.00
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.00 1380.00 FEET.
I
I
I
I
I
I
,I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 208.00 TO NODE 215.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 206.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 18.18
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 27.52
NUMBER OF PIPES =
0.28 'T6(MIN.) =
182.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 200.00 TO NODE
13.83
215.00 1680.00 FEET.
****************************************************************~~******** ~ 4ec
FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = r.7 "J/tI~/lr!t2..1 ... .' -----------------------------------------------------------------~_r~-~LJ(,
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< 11.5 ep,s 1~7V e~?yP#
============================================================================ ~ k
USER-SPECIFIED VALUES ARE AS FOLLOWS: I(J.? CI? J>I(JJN S oJ,
TC(MIN) = 13.80 RAIN INTENSITY (INCH/HOUR) = 3.70 7V AlE~7 e.o. \
TOTAL AREA(ACRES) 10.00 TOTAL RUNOFF(CFS) = 17.50 (~cE. jJ#€e,4t.,C~)
****************************************************************************
FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.80
RAINFALL INTENSITY (INCH/HR) = 3.70
TOTAL STREAM AREA(ACRES) = 10.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.50
****************************************************************************
FLOW' PROCESS FROM NODE 217.00 TO NODE '218~00 is CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
UPSTREAM ELEVATION(FEET) = 212.00
DOWNSTREAM ELEVATION(FEET) = 208.00
ELEVATION DIFFERENCE (FEET) = 4.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.264
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.68
,TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68
****************************************************************************
FLOW PROCESS FROM NODE 218.00 TO NODE 216.00 IS CODE = 62
----------------------------------------------------------------------------
" r ,
I
I
I
I
I
I
I
I
I
I
I
, ' I,
I
I
I
I
I
I
I
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
=====~======================================================================
UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
'STREET'PARKWAY CROSS FALL (DECIMAL) 0.020
189.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.35
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = '0.21
HALFSTREET FLOOD WIDTH(FEET) = 4.21
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.58
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.96
STREET FLOW TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) 2.14
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) = 1.35
TOTAL AREA (ACRES) = 0.30 PEAK FLOW RATE(CFS) 2.03
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.24 HALFSTREET FLOOD WIDTH (FEET) 5.45
FLOW VELOCITY(FEET/SEC.) = 4.88 DEPTH*VELOCITY(FT*FT/SEC.) 1.15
LONGEST FLOWPATH FROM NODE 217.00 TO NODE 216.00 = 310.00 FEET.
*************************************~*****************************~~*******
FLOW PROCESS FROM NODE 218.00 TO NODE 216.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
, CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 2.14
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.30
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.03
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 17.50 13.80 3.696
2 2.03 2.14 7.114
RAINFALL INTENSITY AND TIME OF CONCENTRATION
AREA
(ACRE)
10.00
0.30
RATIO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
'I
I
I
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 4.74 2.14 7.114
2 18.55 13.80 3.696
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 18.55 Tc(MIN.) = 13.80
TOTAL AREA(ACRES) = 10.30
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 1680.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 216.00 TO NODE 113.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 181.00 DOWNSTREAM (FEET) = 169.00
FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013 'C.lf)tJ ,el'A 1\ V6.A7'6.'
'.,
"
,!:
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 r~ 4 twlM pI t6'"'/' 'I""
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES /I-,.,f,~./ ~.~:.JfI;;:, .. r/lA6IppP ~:
PIPE-FLOW VELOCITY (FEET/SEC. ) 26.97 /41,,, /Y. c::.IVV .,.. C)ff'''' II
ESTIMATED PIPE DIAMETER (INCH) = 18.00 PIPES 1
PIPE-FLOW (CFS) = 18.55'-1=--_
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) =
LONGEST FLOWPATH FROM NODE 200.00 TO NODE
13.83
113.00 1724.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
=======================================================e~~fl~i~et~=;;=~~~fP)v JCt~
** MAIN STREAM CONFLUENCE DATA ** 18 137
STREAM RUNOFF Tc INTENSITY AREA
NUMBER' (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 18.55 13.83 3.691 10.30
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 113.00 1724.00 FEET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 37.54 12.72 3.896
AREA
(ACRE)
14.55
113.00 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
** PEAK
STREAM
NUMBER
1
2
FLOW RATE TABLE **
RUNOFF
(CFS)
54.61
54.12
Tc
(MIN. )
12.72
13,~3
INTENSITY
( INCH/HOUR)
3.896
3.691
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 54.61 Tc(MIN.) = 12.72
TOTAL AREA(ACRES) 24.85
2010.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************~***********
FLOW PROCESS FROM NODE 113.00 TO NODE 219.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS: IJe. T6N riO ,.; IJV6 7f) /lr..) 1J6/lH
Ii) {)!Of} -SC:C lJer&lJT/oN t,lk.es TC(MIN) = 19.80 RAIN INTENSITY (INCH/HOUR) = 2.93
TOTAL AREA(ACRES) = 24.85 TOTAL RUNOFF(CFS) = 20. 80 ~. f c,~.s ~ 19. f ,4!//t!
;;~IJIIC5S. H/6IIESr IJgj)/,cUl~ **************************************************************************~ r~~
FLOW PROCESS FROM NODE 113.00 TO NODE 219.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT
TIME OF CONCENTRATION(MIN.) 19.80
RAINFALL INTENSITY (INCH/HR) = 2.93
TOTAL STREAM AREA(ACRES) = 24.85
PEAK FLOW RATE(CFS) AT CONFLUENCE =
STREAM 1 ARE:
/ f't.O('}
20.80
fJvf
****************************************************************************
FLOW PROCESS FROM NODE 215.00 TO NODE 219.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS: (' ft.JJ4I our Or LJ/il6/LTt;;tf" 0,0.
TC(MIN) = 13.80 RAIN INTENSITY (INCH/HOUR) = 3.70~
TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFF(CFS) = 10.50
****************************************************************************
FLOW PROCESS FROM NODE 215.00 TO NODE 219.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<'
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES US'ED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 13.80
RAINFALL INTENSITY (INCH/HR) = 3.70
TOTAL STREAM AREA(ACRES) = 0.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.50
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 20.80 19.80 2.928
2 10.50 13.80 3.696
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 25.00 13.80 3.696
2 29.12 19.80 2.928
AREA
(ACRE)
24.85
0.00
RATIO
11
, I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 29.12 Tc(MIN.) = 19.80
TOTAL AREA(ACRES) = 24.85
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 219.00 2010.00 FEET.
*****.***********************************************************************
FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 174.00' bOWNSTREAM(FEET)'::'; 162.00
FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 19.03
ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 29.12
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 19.93
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 220.00 = 2160.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) 24.85 TC(MIN.) = 19.93
::::::::::::::::::::::::::::::~~:~~:::2:::::::::::::::::::::::::::::::::::::
END OF RATIONAL METHOD ANALYSIS . C f'--'OW /11/ $II~ SD ~ It-Ii (J,O.
NOKJC ZZO.
M1l0lf/1f£. &4tt.S MsIA/6 '1tJo f'6()()
tpNft (/6,v(!,6IJ /~~ rt..9WS
Sift-it:-(hJIIU6CT/ON 7tJ eX/Gr· SD .
I t
'.
t' (
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,
"
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301"
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
************************** DESCRIPTION OF STUDY **************************
* FOX-MILLER RATIONAL METHOD CALCS fllA/>oS6/) CO#/)lfloJl/5
* BASINS 400 AND 500
* 12-27-03 IN 149-1 JD
**************************************************************************
FILE NAME: G:\149-1F\400P.DAT
TIME/DATE OF STUDY: 17:52 01/05/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DEClMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
*
*
*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK--HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
========= ================= ======
1 26.0 21. 0 0.020/0.020/0.020 0.50 1.50 0.0313 0.031 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 0
"
! ~
il
j,
"
,!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00
UPSTREAM ELEVATION(FEET) = 266.80
DOWNSTREAM ELEVATION(FEET) = 265.60
ELEVATION DIFFERENCE(FEET) = 1.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.437
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 1.07
TOTAL ·AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = .1.07
**************************************************************.**************
FLOW PROCESS FROM NODE 501. 00 TO NODE 502.00 IS CODE = 91
»»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««<
============================================================================
UPSTREAM NODE ELEVATION (FEET) = 265.60
DOWNSTREAM NODE ELEVATION(FEET) = 264.20
CHANNEL LENGTH THRU SUBAREA (FEET) 140.00
"V" GUTTER WIDTH (FEET) = 3.00 GUTTER HIKE(FEET) 0.050
PAVEMENT LIP (FEET) = 0.010 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.684
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8200
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.25
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.18
AVERAGE FLOW DEPTH(FEET) = 0.20 FLOOD WIDTH(FEET) 16.92
"V" GUTTER FLOW TRAVEL TIME(MIN.) 1.07 Tc(MIN.) 5.51
SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) 4.38
AREA-AVERAGE RUNOFF COEFFICIENT 0.806
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) 5.39
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) = 0.24 FLOOD WIDTH(FEET) 20.90
FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC) 0.57
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 220.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 31
---------------------------------------------------------------~------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»~USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 256.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.95
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 5.39
PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 6.23
251. 00
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 503.00 = 520.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE S02.00 TO NODE S03.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) =' 6.17S
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.8016
SUBAREA AREA (ACRES) ·2.80· SUBAREA RUNOFF (CFS) . = ... 13.8.3
TOTAL AREA(ACRES) 3.80 TOTAL RUNOFF(CFS) = 18.81
TC(MIN.) = 6.23
****************************************************************************
FLOW PROCESS FROM NODE S04.00 TO NODE S03.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.17S
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3S00
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7230
SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 4.60 TOTAL RUNOFF (CFS) =
TC(MIN.) = 6.23
1. 73
20.S4
****************************************************************************
FLOW PROCESS FROM NODE S03.00 TO NODE S03.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 11.20 RAIN INTENSITY (INCH/HOUR) = 4.23
.TOTAL .AREA(ACRES) := 4.60 TOTAL RUNOFF (CFS) ~ 14.00
****************************************************************************
FLOW PROCESS FROM NODE 503.00 TO NODE SOS.OO IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 2S1.00 DOWNSTREAM (FEET) 206.00
FLOW LENGTH(FEET) = 420.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 17,76
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 14.00
PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 11.59
LONGEST FLOWPATH FROM NODE SOO.OO TO NODE 50S.00 940.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 50S.00 TO NODE S06.00 IS CODE = 31
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 206.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 27.10
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 14.00
NUMBER OF PIPES
PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) =
165.00
1
.' LONGEST FLOW·PATH TROM NODE 500.00 TO NODE _
11. 67
506.00 . 1060. PO .. FEEl: .
****************************************************************************
FLOW PROCESS FROM NODE 507.00 TO NODE 506.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.118
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6724
SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) S.40 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.67
1.32
14.9S
****************************************************************************
FLOW PROCESS FROM NODE S07.00 TO NODE S06.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.67
RAINFALL INTENSITY (INCH/HR) = 4,12
·TOTAL STREAM AREA(ACRES) = S.40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.95
****************************************************************************
FLOW PROCESS FROM NODE S08.00 TO NODE S09.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH (FEET) =
UPSTREAM ELEVATION (FEET) = 187.00
DOWNSTREAM ELEVATION(FEET) = 183.00
ELEVATION DIFFERENCE(FEET) = 4.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SO.OO
0.955
7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.68
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68
"
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 509.00 TO NODE 506.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 183.00 DOWNSTREAM ELEVATION (FEET)
STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00
INSIDE STREET CROSSFALL(DECIMAL) .0.020
OUTSIDE STREET CROSS FALL (DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
172.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
4.92
4.08
STREET FLOW DEPTH(FEET) = 0.13
HALFSTREET FLOOD WIDTH (FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 0.57
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
NOTE: RAINFALL INTENSITY IS BASED ON Tc
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
0.53
Tc (MIN.)
7.114
5-MINUTE.
1.53
SUBAREA AREA(ACRES) 0.15
TOTAL AREA(ACRES) = 0.25
SUBAREA RUNOFF(CFS) ~
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
1.18
1. 01
1. 69
DE~TH(FEET) = 0.15 HALFSTREET FLOOD WIDTH(FEET) ~.78 .
FLOW VELOCITY(FEET/SEC.) =' 4.42 DEPTH*VELOCITY(FT*FT/SEC.) = 0.66
LONGEST FLOWPATH FROM NODE 508.00 TO NODE 506.00 = 190.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 509.00 TO NODE 506.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 1.53
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.25
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.69
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
Tc
(MIN. )
INTENSITY
( INCH/HOUR)
AREA
(ACRE)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 14.95 11.67 4.118 5.40
2 1. 69 1. 53 7.114 0.25
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 3.65 1. 53 7.114
2 15.93 11. 67 4.118
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: "
PEAK FLOW RATE (CFS) 15.93 Tc(MIN.) = 11.67
TOTAL AREA(ACRES) = 5.65
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 506.00 1060.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 220.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 165.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 23.12
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 15.93
NUMBER OF PIPES
0.01 Tc(MIN.) =
162.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 500.00 TO NODE
11. 68
220.00 1075.00 FEET.
*********************************************************************.******
FLOW PROCESS FROM NODE 506.00 TO NODE 220.00 IS CODE = 1
~----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================ . . .... .
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.68
RAINFALL INTENSITY (INCH/HR) = 4.12
TOTAL STREAM AREA(ACRES) = 5.65
PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.93
****************************************************************************
FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 19.90 RAIN INTENSITY (INCH/HOUR) = 2.92
TOTAL AREA(ACRES) = 24.85 TOTAL RUNOFF(CFS) = 29.10
'****************************************************************************
FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================ ,
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 19.90
RAINFALL INTENSITY (INCH/HR) = 2.92
TOTAL STREAM AREA(ACRES) = 24.85
PEAK FLOW RATE(CFS) AT CONFLUENCE 29.10
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
-. NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 15.93 11. 68 4.116
2 29.10 19.90 2.919
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 33.01 11. 68 4.116
2 40.40 19.90 2.919
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
AREA
(ACRE) ...
5.65
24.85
RATIO
PEAK FLOW RATE(CFS) 40.40 Tc(MIN.) = 19.90
TOTAL AREA(ACRES) = 30.50
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 220.00 1075.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 162.00 DOWNSTREAM (FEET)
FLOW LENG~H(FEET) = 35.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 44.96
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 40.40
NUMBER OF PIPES
0.01 Tc(MIN.) = 19.91
140.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 221.00 1110.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««<
==============================~=~==========================================~
****************************************************************************
FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
!! " " II
" j! :
JI
.!!
:11 " II
"
Iii 'ii ~lli
.11
W
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 130.00
UPSTREAM ELEVATION(FEET) = 308.00
DOWNSTREAM ELEVATION(FEET) = 290.00
ELEVATION DIFFERENCE (FEET) = 18.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
-100-YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.150
SUBAREA RUNOFF (CFS) 0.32
TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.32
****************************************************************************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
ELEVATION DATA: UPSTREAM (FEET) = 290.00 DOWNSTREAM (FEET) 250.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 180.00 CHANNEL SLOPE 0.2222
CHANNEL BASE(FEET) 2.00 HZ" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.968
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) -2.20
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 10.06
AVERAGE FLOW DEPTH (FEET) 0.10 TRAVEL TIME(MIN.) 0.30
Tc(MIN.) = 6.56
SUBAREA AREA (ACRES) 1. 80 SUBAREA RUNOFF (CFS) 3. 76
AREA-AVERAGE RUNOFF COEFFICIENT 0.350
TOTAL AREA(ACRES)-= 1.95 PEAK FLOW RATE(CFS) 4.07
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) 12.16
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 310.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 91
»»>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA««<
===============================================~============================
UPSTREAM NODE ELEVATION (FEET) = 246.00
DOWNSTREAM NODE ELEVATION (FEET) = 242.00
CHANNEL LENGTH THRU SUBAREA (FEET) 200.00 _
"V" GUTTER WIDTH(FEET) = 2.00 GUTTER HIKE(FEET)
PAVEMENT LIP(FEET) = 0.010 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.422
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8700
0.050
,
J .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 5.95
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 3.16
AVERAGE FLOW DEPTH(FEET) = 0.23 FLOOD WIDTH (FEET) 19.15
"V" GUTTER FLOW TRAVEL TIME(MIN.) 1.05 Tc(MIN.) 7.62
SUBAREA AREA (ACRES) o. 80 SUBAREA RUNOFF (CFS) 3. 77
AREA-AVERAGE RUNOFF COEFFICIENT 0.501
TOTAL AREA(ACRES) = 2.75 PEAK FLOW RATE(CFS) 7.47
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) = 0.25 FLOOD WIDTH(FEET) 20.85
FLOW VELOCITY(FEET/SEC.) = 3.36 DEPTH*VELOCITY(FT*FT/SEC) 0.84
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403 .. 00 = .. 51Q. 00 .FEET ..
****************************************************************************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.422
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4909
SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 3.45 TOTAL RUNOFF (CFS) =
TC(MIN.) = 7.62
1.71
9.18
****************************************************************************
FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 235.00 DOWNSTREAM (FEET) 225.00
FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.91
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 9.18
PIPE TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 8.88
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 1110.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
====================================================================~=======
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.911
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6859
SUBAREA AREA(ACRES) 5.90 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 9.35 TOTAL RUNOFF(CFS) =
TC(MIN.) = 8.88
23.18
31. 49
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 225.00 DOWNSTREAM (FEET)
FLOW LENGTH (FEET) = 170.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 32.92
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 31.49
0.09 Tc(MIN.) = 8.97
170.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 1280.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 410.00 TO NODE 405.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = '4.880
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6442
SUBAREA AREA(ACRES) 1.60 SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) 10.95 TOTAL RUNOFF(CFS)
TC(MIN.) = 8.97
3.12
3~.42
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 408.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 21.00 RAIN INTENSITY (INCH/HOUR) = 2.82
TOTAL AREA(ACRES) = 10.95 TOTAL RU,NOFF (CFS) = 19.40
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 408.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 21.00
RAINFALL INTENSITY (INCH/HR) = 2.82
TOTAL STREAM AREA(ACRES) = 10.95
PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.40
****************************************************************************
FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
, I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00
UPSTREAM ELEVATION(FEET) = 212.00
DOWNSTREAM ELEVATION(FEET) = 208.00
ELEVATION DIFFERENCE(FEET) = 4.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 0.955
-100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.68
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.68
-*****************************************~*~*********~*********~**~**~**~***
FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 440.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21.00
INSIDE STREET CROSS FALL (DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
172.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.03
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.16
HALFSTREET FLOOD WIDTH(FEET) = 6.19
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.70
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.74
STREET -FLOW TRAVEL TIME(MIN.} = 1.56-Tc(MIN.) 2.51
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.950
SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS) = 2.70
TOTAL AREA (ACRES) = 0.50 PEAK FLOW RATE(CFS) 3.38
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) 7.67
FLOW VELOCITY(FEET/SEC.) = 5.32 DEPTH*VELOCITY(FT*FT/SEC.) 0.99
LONGEST FLOWPATH FROM NODE 406.00 TO NODE 408.00 = 490.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 409.00 TO NODE 408.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
"
~
I -I
I
:1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7056
SUBAREA AREA(ACRES) 0.40 SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) 0.90 TOTAL RUNOFF (CFS) =
TC(MIN.) = 2.51
1.14
4.52
****************************************************************************
FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 1
------------------------------------~------------~--~~--~~--------~~-~~-----
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 2.51
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.52
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 19.40 21. 00 2.819
2 4.52 2.51 7.114
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 6.84 2.51 7.114
2 21.19 21. 00 2.819
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
AREA
(ACRE)
10.95
0.90
RATIO
PEAK FLOW RATE(CFS) 21.19 Tc(MIN.) = 21.00
TOTAL AREA(ACRES) ~ 11.85
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 408.00 1280.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 408.00 TO NODE 221.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 164.00 DOWNSTREAM(FEET)
FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 41.35
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 21.19
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 21.01
140.00
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 400.00 TO NODE 221.00 = 1310.00 FEET.
*******~********************************************************************
FLOW PROCESS FROM NODE 408.00 TO NODE 221.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 21.19 21.01 2.818 11. 85
LONGEST FLOWPATH FROM NODE . 400.00 TO NODE· 221.00·
** MEMORY BANK # 2 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 40.40 19.91 2.917
AREA
(ACRE)
30.50
221. 00 LONGEST FLOWPATH FROM NODE 500.00 TO NODE
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 60.48
2 60.21
TABLE **
Tc
(MIN. )
19.91
21. 01
INTENSITY
( INCH/HOUR)
2.917
2.818
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 60.48 Tc(MIN.) = 19.91
TOTAL AREA(ACRES) = 42.35
-1310.00 FEET •
1l10.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
42.35 TC(MIN.) =
60.48
19.91
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
!i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Buite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
************************** DESCRIPTION OF STUDY **************************
* FOX-MILLER PROPERTY PROPOSED CONDITIONS DRAINAGE STUDY *
* BASIN 300 cl t-JtMIJ/1J 40ft, SYSr£M *
* IN 149-1 1-23-04 JD *
**************************************************************************
FILE NAME: G:\149-1F\300P.DAT
TIME/DATE OF STUDY: 20:06 02/03/2004
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO' USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDT-H· CROSSFALL IN-J OUT-/PARK-HEIGHT. WIDTH LIP . HIKE. FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.050/0.050/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*************************************~*********~****************************
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
-J
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00
UPSTREAM ELEVATION(FEET) = 300.50
DOWNSTREAM ELEVATION(FEET) = 295.00
ELEVATION DIFFERENCE (FEET) = 5.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.667
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 80.28
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 1.69
TOTAL-AREA(ACRES) ,= 0.25 -TOTAL RUNOFF (CFS) =, -1. 69
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION (FEET)
STREET LENGTH (FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 20.00
INSIDE STREET CROSS FALL (DECIMAL) 0.050
OUTSIDE STREET CROSSFALL(DEClMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
250.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
5.67
6.47
STREET FLOW DEPTH(FEET) = 0.36
HALFSTREET FLOOD WIDTH(FEET) =
'AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 2.06
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
NOTE: RAINFALL INTENSITY IS BASED ON Tc
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT
= .9500
0.950
2.36
Tc(MIN.)
7.114
5-MINUTE.
3.73
SUBAREA AREA(ACRES) 1.20
TOTAL AREA (ACRES) = 1.45
SUBAREA RUNOFF (CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) 7.06
5.74
8.11
9.80
FLOW VELOCITY(FEET/SEC.) = 7.36 DEPTH*VELOCITY(FT*FT/SEC.) 3.20
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 980.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
I ;
~
! ,-
" !'
~j "
, , ,
'I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 245.00 DOWNSTREAM (FEET) 234.00
FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 16.93
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 9.80
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
0.09 Tc(MIN.) =
300.00 TO NODE
3.82
303.00
1
1070.00 FEET.
, '
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 3.82
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 1.45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.80
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 308.50
DOWNSTREAM ELEVATION(FEET) = 307.50
ELEVATION DIFFERENCE(FEET) = 1.00
.SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.486·
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 60.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 2.42
TOTAL AREA (ACRES) = 0.40 TOTAL RUNOFF (CFS) = 2.42
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 61 '
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 307.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 900.00 CURB HEIGHT (INCHES) = 6.0
STREET HALFWIDTH(FEET) = 44.00
270.00
-II ~i I ,,,
".
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET)
INSIDE STREET CROSSFALL(DEClMAL) = 0.030
OUTSIDE STREET CROSSFALL(DEClMAL) 0.030
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSS FALL (DECIMAL) 0.020
39.00
Manning's FRICTION FACTOR for Street flow Section(curb-to~curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.20
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.36
~ALFSTREET FLOOD WIDTH (FEET) = -8.45
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.27
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.92
STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) 6.33
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.107
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.926
SUBAREA AREA(ACRES) 1.30 SUBAREA RUNOFF(CFS) = 7.54
TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) 9.62
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) 10.12
FLOW VELOCITY(FEET/SEC.) = 5.85 DEPTH*VELOCITY(FT*FT/SEC.) 2.43
LONGEST FLOWPATH FROM NODE 304.00 TO NODE 306.00 = 1000.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE ~03.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 262.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
ESTIMATED-PIPE DIAMETER (INCH) INCREASED TO 18.000 --
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 13.75
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 9.62
NUMBER OF PIPES
0.48 Tc(MIN.) =
234.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 304.00 TO NODE
6.82
303.00 1400.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 303.00 IS CODE ~ 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< _
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED fOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.82
RAINFALL INTENSITY (INCH/HR) = 5.82
TOTAL STREAM AREA(ACRES) = 1.70
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.62
(I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH (FEET) = 90.00
UPSTREAM ELEVATION(FEET) = 275.30
DOWNSTREAM ELEVATION(FEET) = 274.40
ELEVATION DIFFERENCE (FEET) = 0.90
SUBAREA OVERLAND TIME OF ·-FLOW(MIN.·) = 5.577.,
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 60.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.630
SUBAREA RUNOFF(CFS) 0.70
TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.70
****************************************************************************
FLOW PROCESS FROM NODE 308.00 TO NODE 303.00 IS CODE = 61
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)««< -============================================================================
UPSTREAM ELEVATION (FEET) = 274.40 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 460.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 26.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 21. 00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSS FALL (DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
242.00
. Manning's FRICTION FACTOR for Street flow Section (curb-to-9urb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALFSTREET FLOOD WIDTH(FEET) = 7.67
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.19
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.45
STREET FLOW TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) 7.05
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.698
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEffI~IENT 0.790
3.66
SUBAREA AREA(ACRES) 1.30 SUBAREA RUNOFF(CFS) = 5.93
T'OTAL AREA (ACRES) = 1.45 PEAK FLOW RATE (CFS) 6.52
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH (FEET) 9.88
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
FLOW VELOCITY(FEET/SEC.) =
LONGEST FLOWPATH FROM NODE
5.96 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93
307.00 TO NODE 303.00 = 550.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 308.00 TO NODE 303.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 7.05
RAINFALL INTENSITY (INCH/HR) = 5.70
TOTAL STREAM AREA(ACRES) = 1.45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.52
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS )
1 9.80
2 9.62
3 6.52
Tc
(MIN. )
3.82
6.82
7.05
INTENSITY
( INCH/HOUR)
7.114
5.823
5.698
AREA
(ACRE)
1. 45
1. 70
1.45
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK
STREAM
NUMBER
1
2
3
FLOW RATE
RUNOFF
(CFS)
18.71
23.95
23.78
TABLE **
Tc
(MIN. )
3.82
6.82
7.05
INTENSITY
(INCH/ HOUR)
7.114
5.823
5.698
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 23.95 Tc(MIN.) =
TOTAL AREA(ACRES) = 4.60
6.84
LONGEST FLOWPATH FROM NODE 304.00 TO NODE 303.00 1400.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 310.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 234.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 16.19
ESTIMATED PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW (CFS) = 23.95
NUMBER OF PIPES
0.68 Tc(MIN.) =
192.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 304.00 TO NODE
7.50
310.00 2060.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 310.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 7.50
RAINFALL INTENSITY (INCH/HR) = 5.48
TOTAL STREAM AREA(ACRES) = 4.60
PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.95
**************************************************************************** . .
FLOW PROCESS FROM NODE 311. 00 TO NODE . 312 ~ 00 IS :CODE = 21"
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
UPSTREAM ELEVATION(FEET) = 272.00
DOWNSTREAM ELEVATION(FEET) = 250.00
ELEVATION DIFFERENCE (FEET) = 22.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.102
SUBAREA RUNOFF(CFS) 2.13
TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF (CFS) 2.13
****************************************************************************
FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 61
-------------------~--------------------------------------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 250.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 750.00 CURB HEIGHT (INCHES) = 6.0
STREET HALFWIDTH(FEET) = 44.00
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 39.00
INSIDE STREET CROSSFALL(DECIMAL) 0.030
OUTSIDE STREET CROSSFALL(DECIMAL) 0.030
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSS FALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTEO USING ESTIMATED FLQW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
6.28
5~71
STREET FLOW DEPTH (FEET) = 0.30
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 2.19
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
1.71
Tc (MIN.)
5.622
3.98
7.20
200.00
0.0150
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.70
TOTAL AREA(ACRES) = 1.30
0.742
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 7.23
3.74
5.43
FLOW VELOCITY(FEET/SEC.) = 6.09 DEPTH*VELOCITY(FT*FT/SEC.) 2.00
'LONGEST FLOWPATH FROM' NODE 311.'00 TO NODE' 313.00 '=' "900, .. 00 'PEET.
****************************************************************************
FLOW PROCESS FROM NODE 314.00 TO NODE 313.00 IS CODE = 81
----------------------------------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.622
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7344
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) 1.60 TOTAL RUNOFF (CFS) =
TC(MIN.) = 7.20
1.18
6.61
****************************************************************************
FLOW PROCESS FROM NODE 313.00 TO NODE 310.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 192.30 DOWNSTREAM (FEET) 192.00
FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES
PIPE~FLOW VELOCITY(FEET/SEC.) 4.91
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) =, 6.61
PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.37
LONGEST FLOWPATH FROM NODE 311.00 TO NODE 310.00 950.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 313.00 TO NODE 310.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.37
RAINFALL INTENSITY (INCH/HR) = 5.54
TOTAL STREAM AREA(ACRES) = 1.60
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.61
****************************************************************************
FLOW PROCESS FROM NODE 310.10 TO NODE 310.20 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT .9500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 247.00
DOWNSTREAM ELEVATION (FEET) = 240.00
ELEVATION DIFFERENCE(FEET) = 7.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.369
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
. THE MAXIMUM OVERLAND FLOW LENGTH = 94.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 1.35
TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.35
****************************************************************************
FLOW PROCESS FROM NODE 310.20 TO NODE 310.00 IS CODE = 61
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 240.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) = 600.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 44.00
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 39.00
INSIDE STREET CROSSFALL(DEClMAL) 0.030
OUTSIDE STREET CROSS FALL (DECIMAL) 0.030
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow.Section ·0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.30
HALFSTREET FLOOD WIDTH(FEET) = 6.28
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.81
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.74
STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) 3.09
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEfF1CIENT 0.950
4.05
SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) = 5.41
199.00
0.0150
TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE (CFS) 6.76
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 7.88
FLOW VELOCITY(FEET/SEC.) = 6.52 DEPTH*VELOCITY(FT*FT/SEC.) 2.26
LONGEST FLOWPATH FROM NODE 310.10 TO NODE 310.00 700.00 FEET.
,
~
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 3.09
RAINFALL INTENSITY (INCH/HR) '= 7.11
TOTAL STREAM AREA(ACRES) = 1.00
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.76
** CONFLUENCE DATA **
STREAM RUNOFF Te INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 23.95 7.50 5.477 4.60
2 6.61 7.37 5.538 1. 60
3 6.76 3.09 7.114 1. 00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Te INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 27.97 3.09 7.114
2 35.55 7.37 5.538
3 35.68 7.50 5.477
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 35.68 Te(MIN. ) = 7.50
TOTAL AREA(ACRES) = 7.20
LONGEST FLOW PATH FROM NODE 304.00 TO NODE 310.00 2060.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO NODE 315.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)'««<
ELEVATION DATA: UPSTREAM (FEET) = 199.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 420.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 20.83
ESTIMATED PIPE DIAMETER (INCH) = 21.00
PIPE-FLOW(CFS) = 35.68
NUMBER OF PIPES
0.34 Te(MIN.) =
1
161.00
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NOg~ 304.00 TO NOpg:
7.83
315.00 2480.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
5.325
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.8708
SUBAREA AREA(ACRES) 0.60 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 7.80 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.83
3.04
36.17
****************************************************************************
FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 31
-------~-----------.-------~-----:-.-'--------.:..--..:.---~-. .,.;.----._--------...;-------:-----':"'"
»»>COMPUTE PIPE-FLOW TRAVEL TIME THEU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 161.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 24.04
ESTIMATED PIPE DIAMETER (INCH) = 18.00
PIPE-FLOW (CFS) = 36.17
NUMBER OF PIPES
0.07 Tc(MIN.) =
147.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 304.00 TO NODE
7.90
316.00 2580.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 317.00 TO NODE 318.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER.SPECIFIED(SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = :3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
UPSTREAM ELEVATION (FEET) = 302.00
DOWNSTREAM ELEVATION(FEET) = 296.00
ELEVATION DIFFERENCE(FEET) = 6.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.39
7.430
5.510
TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF (CFS) 0.39
****************************************************************************
FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 51
>~»>COMPUTE TRAPEZOIDA~ CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 288.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 290.00 CHANNEL SLOPE
CHANNEL BASE (FEET) 2.00 liZ" FACTOR = LOOO
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.067
*USER SPECIFIED (SUBAREA) :
276.00
0.0414
, ~
· I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.18
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 4.69
AVERAGE FLOW DEPTH (FEET) 0.12 TRAVEL TIME(MIN.) 1.03
Tc(MIN.) = 8.46
SUBAREA AREA(ACRES) 0.90 SUBAREA RUNOFF (CFS) 1.60
AREA-AVERAGE RUNOFF COEFFICIENT 0.350
TO~J7.L AREA,(ACRES) = 1.10 PEAK FLOW RATE (CFS) = 1.95
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) 5.53
LONGEST FLOWPATH FROM NODE 317.00 TO NODE 319.00 = 390.00 FEET ..
****************************************************************************
FLOW PROCESS FROM NODE 319.00 TO NODE 320.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 276.00 DOWNSTREAM (FEET) 240.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 190.00 CHANNEL SLOPE 0.1895
CHANNEL BASE(FEET) 2.00 "Z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.942
*USER SPECIFIED (SUBAREA) : .
USER-SPECIFIED RUNOFF COEFFICIENT = .4100
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.36
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.49
AVERAGE FLOW DEPTH (FEET) 0.12 TRAVEL TIME(MIN.) 0.33
Tc(MIN.) = 8.79
SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) 0.81
AREA-AVERAGE RUNOFF COEFFICIENT 0.366
TOTAL AREA (ACRES) =' 1. 50 . PEAK FLOW' RATE (CFS ) = 2. 71 .
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) 10.06
LONGEST FLOWPATH FROM NODE 317.00 TO NODE 320.00 = 580.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 240.00 DOWNSTREAM(FEET) 205.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE 0.1094
CHANNEL BASE (FEET) ~!OO "Z" FACTOR =;" 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.743
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.46
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 9.23
AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) 0.58
II 111 t,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Tc(MIN.) = 9.37
SUBAREA AREA(ACRES) 0.90
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 2.40
SUBAREA RUNOFF(CFS) =
0.360
PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.)
1. 49
4.10
LONGEST FLOWPATH FROM NODE 317.00 TO NODE
9.97
321. 00 = 900.00 FEET.
. '*~~~~*~*******~*********~*********~***************************************'*.'
FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 9.37
RAINFALL INTENSITY (INCH/HR) = 4.74
TOTAL STREAM AREA (ACRES) = 2.40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.10
****************************************************************************
FLOW PROCESS FROM NODE 322.00 TO NODE 323.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4100
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00
UPSTREAM ELEVATION(FEET) = 273.00
DOWNSTREAM ELEVATION(FEET) = 250.00
ELEVATION DIFFERENCE (FEET) = 23.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.157
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = .6.974
SUBAREA RUNOFF(CFS) 0.43
TOTAL AREA (ACRES) = 0.15 TOTAL RUNOFF (CFS) 0.43
****************************************************************************
FLOW PROCESS FROM NODE 323.00 TO NODE 324.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<.
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 250.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000
MANNING'S FACTOR = 0.03p MAXIMUM DEPTH(F~ET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.488
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .4100
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH (FEET) 0.20 TRAVEL TIME(MIN.)
Tc(MIN.) = 7.48
0.88
2.30
2.32
230.00
0.06.25
,
i l' ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
I
I
I
SUBAREA AREA(ACRES) 0.40
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 0.55
SUBAREA RUNOFF(CFS) =
0.410
PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) 2.46
LONGEST FLOWPATH FROM NODE 322.00 TO NODE 324.00 =
0.90
1. 24
400.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 324.00 TO NODE 321.00 IS ,CODE '= 51, ..
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 230.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 340.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 2.00 "Z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.101
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.12 TRAVEL TIME(MIN.)
Tc(MIN.) = 8.37
1. 59
6.31
0.90
0.40 SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA RUNOFF(CFS)
0.385
TOTAL AREA(ACRES) = 0.95 PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.)
205.00
0.0735
0.71
1. 86
LONGEST FLOWPATH FROM NODE 322.00 TO NODE
6.50
321. 00 = 740.00 FEET.
************************************************~**************~******~*****
FLOW PROCESS FROM NODE 321. 00 TO NODE 321;00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 8.37
RAINFALL INTENSITY (INCH/HR) = 5.10
TOTAL STREAM AREA(ACRES) = 0.95
PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.86
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS )
1 4.10
2 1. 86
Tc
(MIN. )
9.37
8.37
INTENSITY
( INCH/HOUR)
4.743
5.101
AREA
(ACRE)
2.40
0.95
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
1
.. ~
',I
I
I
I
I
I
·1
I
I
I
I
I
I
I
I
I
I
I
I
I
STREAM
NUMBER
1
2
RUNOFF
(CFS)
5.53
5.83
Tc
(MIN. )
8.37
9.37
INTENSITY
( INCH/HOUR)
5.101
4.743
ESTIMATES ARE AS FOLLOWS:
5.83 Tc(MIN.) =
3.35
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA(ACRES) =
LONGEST FLOW PATH FROM NODE 317.00 TO NODE
9.37
321. 00 900.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 321.00 TO NODE 325.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 205.00 DOWNSTREAM (FEET) 180.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 260.00 CHANNEL SLOPE 0.0962
CHANNEL BASE (FEET) 2.00 "Z" FACTOR = 1. 000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.622
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
-TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 7.13
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 11.28
AVERAGE FLOW DEPTH(FEET) 0.28 TRAVEL TIME(MIN.) 0.38
Tc(MIN.) = 9.76
SUBAREA AREA (ACRES) 1. 60 SUBAREA RUNOFF (CFS) 2.59
AREA-AVERAGE RUNOFF COEFFICIENT 0.362
TOTAL AREA(ACRES) = 4.95 PEAK FLOW RATE(CFS) = 8.27
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) 11.97
LONGEST FLOWPATH FROM NODE -317.00 TO NODE -325-.00 = 1160.00 FEET.
**************************************************************-**************
FLOW PROCESS FROM NODE 325.00 TO NODE 316.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME ~HRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 180.00 DOWNSTREAM (FEET) 155.00
CHANNEL LENGTH THRU SUBAREA (FEET) = _ 260.00 CHANNEL SLOPE 0.0962
CHANNEL BASE(FEET) 2.00 "z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.519
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMe II) = _ 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.46
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 12.51
AVERAGE FLOW DEPTH (FEET) 0.33 TRAVEL TIME(MIN.) 0.35
Tc(MIN.) = 10.10
SUBAREA AREA(ACRES) 1.50 SUBAREA RUNOFF(CFS) 2.37
AREA-AVERAGE RUNOFF COEFFICIENT 0.359
TOTAL AREA(ACRES) = 6.45 PEAK FLOW RATE(CFS) = 10.46
J<
tl
11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) 12.88
LONGEST FLOWPATH FROM NODE 317.00 TO NODE 316.00 = 1420.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
==================================================================~r===AS=~
USER-SPECIFIED VALUES ARE AS FOLLOWS: p~rID~ 5FLj~
TC(MIN) = 10.00 RAIN INTENSITY (INCH/HOUR) = 4.55 Dell
TOTAL AREA(ACRES) = 6.45 TOTAL RUNOFF (CFS) = 3.00
****************************************************************************
FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
** MAIN
STREAM
NUMBER
1
STREAM CONFLUENCE DATA **
RUNOFF Tc INTENSITY
(CFS) (MIN.) (INCH/HOUR)
3.00 10.00 4.549
AREA
(ACRE)
LONGEST FLOWPATH FROM NODE 317.00 TO NODE
6.45
316.00
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
Tc INTENSITY
(MIN.) (INCH/HOUR)
AREA
(ACRE)
1 36.17 7.90 5.295
LONGEST FLOWPATH FROM NODE
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
38.54
34.08
TABLE **
Tc
(MIN. )
7.90
10.00
304.00 TO NODE
INTENSITY
( INCH/HOUR)
5.295
4.549
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 38.54 Tc(MIN.) =
TOTAL AREA (ACRES) = 14.25
7.80
316.00
7.90
1420.00 FEET.
2580.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
14.25 TC(MIN.) =
38.54
7.90
============================================================================
END OF RATIONAL METHOD ANALYSIS
I
I
I
I PIPE CALCS
I . ':,' .. .. ' ... . ~ .' " "
I
I
I
I
I
I
I
. '
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
**************************************************************************
**
»»PIPEFLOW HYDRAULIC INPUT INFORMATION««
PIPE DIAMETER (FEET) = 2.000
PIPE ,SLOPE (FEET/FEET) = 0.0300
# II $11-{" k rJjls r /l61/-M tJ ;:..
,(J,O. ,5'77J: ,z if" 1-:(
PIPEFLOW(CFS) = 29.00
MANNINGS FRICTION FACTOR = 0.013000 Sill:' Cj
==========================================================================
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL DEPTH (FEET) = 1.85
CRITICAL FLOW AREA(SQUARE FEET) = 3.031
CRITICAL FLOW TOP-WIDTH(FEET) = 1.066
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 704.58
CRITICAL FLOW VELOCITY(FEET/SEC.) = 9.569
CRITICAL FLOW VELOCITY HEAD (FEET) = 1.42
CRITICAL FLOW HYDRAULIC DEPTH (FEET) = ' 2.84
CRITICAL FLOW SPECIFIC ENERGY (FEET) = 3.27
==========================================================================
NORMAL-DEPTH FLOW INFORMATION:
~;VP 16 ,.. vt/ de r,od !/-vtftr5(S
NORMAL DEPTH (FEET) = 1. 28 -E<------,. //f/L)/C'/-}r~S ,t:J'&SSCI#" H.lkJ
FLOW AREA(SQUARE FEET) = ,2.12
J ,
}
'1,
.,
l'
"
FLOW TOP-WIDTH (FEET) = 1. 920 ' '-tv"/" v1J/,vr fJ/% /t.?rfb;'~"
FLOW PRESSURE + MOMENTUM (POUNDS) = 841. 21 Pv6tlc ,/Jp;t711J,v P)/~Y)i
FLOW VELOCITY(FEET/SEC.) = 13.652
FLOW VELOCITY HEAD (FEET) = 2.894
HYDRAULIC DEPTH (FEET) = 1.11
FROUDE NUMBER = 2.287
SPECIFIC ENERGY (FEET) = 4.17
==========================================================================
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IPEFLOW DEPTH(FE
TED DOWNSTREAM PIPEFLOW DEPTH (FEET) =
============================================================================
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
. PIPE· FLOW DIAMETER . SLOPE· FRICTION ANGLE .. FLOWLINE
(CFS) ( INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 29.00 24.000 0.03000 0.0130. 71.000 265.33
DOWNSTREAM 29.00 24.000 0.05710 0.0130 0.000 265.00
LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00
LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00 .
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH(FEET): 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION: ----------------------------------------------------------------------------//
PIPE CRITICAL DEPTH NORMAL DEPTH /, , ... Ie,. ~O;rJ 5, A4 V /1-r--~, () I
(FEET) (FEET) VV,VI I' '/1/./"-
UPSTREAM 1.846 1.280 Uf1-/
DOWNSTREAM 1. 846 1. 043
LATERAL #1 0.000 0.000
LATERAL #2 0.000 0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
·l . .1
-t .'
----~~::~::~~~~~~~~~=~~~=~~~:~~=~~~~~~~~~~~~~~-----------------------------L'(tSSP(~ I/&tJ .:
UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP: r--Lv
PIPEFLOW FORCE-PLUS-MOtvIENTUM DETERMINATION (NEGLECT MINOR LOSSES) o/67rtfh1A
UPSTREAM DOWNSTREAM ~ATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) . (FT**~}
1.280 1.846 C.OOO· 0.000 -168.
*HYDRAULIC JUMP OCCURS UPSTREAM OF JUNCTION:
*CRITICAL DEPTH IS ASSUMED AS A DOWNSTREAM HYDRAULIC CONTROL.
CHECK IF JUNCTION SEALS DUE TO DOWNSTREAM CONTROL:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINO
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALAN
DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT 4)
2~000 1.846 0.000 0.000 -142.
*UPSTREAM WATER DEPTH EXCEEDS PIPE DIAMETER:
.*SUGGEST REANALYZE JUNCTION AS UNDER PRESSURE-FLOW CONDITIONS.
============================================================================ Q"",;;;;;;Q$$$zuuuezZZzti ••• U.1£ ..• ,,;estt;QQQ;,;;;;;;;;;;i;;;AkAkkUUXJRUU
»»PIP
._=======================================
Page
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Untitled
***************************************************************************
*
»»PIPEFLOW HYDRAULIC INPUT INFORMATION««
==========================================================================
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL DEPTH (FEET) = 1.85
CRITICAL FLOW AREA(SQUARE FEET) = 3.031
CRITICAL FLOW TOP-WIDTH (FEET) = 1.066
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS") = 704.58
CRITICAL FLOW VELOCITY(FEET/SEC.) = 9.569
CRITICAL FLOW VELOCITY HEAD (FEET) = 1.42
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.84
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.27
==========================================================================
NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH (FEET) = 1.04 < lJ,.; DiG-
FLOW AREA(SQUARE FEET)· 1.66
FLOW TOP-WIDTH (FEET) = 1.998
FLOW PRESSURE + MOMENTUM (POUNDS) = 1029.82
FLOW VELOCITY(FEET/SEC.) = 17.510
FLOW VELOCITY HEAD (FEET) = 4.761
HYDRAULIC DEPTH (FEET) = 0.83
FROUDE NUMBER = 3.389
SPECIFIC ENERGY(FEET) = 5.80
==========================================================:~==============
·~g-e 1·
I
I
I
I
I
I
I
I
.1
I
I
I
I
I
I
I
I
I
I
JUNCTION @ SALK A-4 C.O. §!fit. Zonf SHT. 9
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
FLOW
(CFS)
29.00
29.00
0.00
0.00
DIAMETER
(INCHES)
24.000
24.000
0.000
0.000
·SLOPE
(DECIMAL)
O. 05710
0.08660
0.00000
0.00000
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH(FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
FRICTION
FACTOR
0.0130
O. 0130
0.0000
0.0000
·ANGLE·
(DEGREES)
45.000
0.000
0.000
0.000
FLOWLINE
ELEVATION
245.90
245.57
0.00
0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE CRITICAL DEPTH NORMAL DEPTH
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
(FEET)
1. 846
1. 846
0.000
0.000
(FEET)
1. 043
0.923
0.000
0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2) * (F,hA2) *G/2. -Q2*Q2/A2+Q1*Q1*COS (ANGLE1) /A1
+Q3*Q3*COS(ANGLE3)/A3+Q4~Q4""COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) D:::?TH(FT)·DEPTH(FT)· (FT**4)
1.043 1.846 0.000 0.000 46.
*UPSTREAM FLOW DOMIN;:.~iE:S--JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
=====~======================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
·UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
1.043 0.923 0.000 0.000 -212.
1.043 1.385 0.000 0.000 -4.
1.043 1.615 0.000 0.000 33.
1.043 1.500 0.000 0.000 18.
1.043 1.442 0.000 0.000 8.
1.043 1.414 0.000 0.000 2.
1.043 1.399 0.000 0.000 -1.
1.043 1.406 0.000 0.000 1.
1.043 1.403 0.000 0.000 O.
1.043 1.404 0.000 0.000 O.
1.043 1.404 0.000 0.000 O.
1.043 1.403 0.000 0.000 O.
----~~~:~~~:;-~:!~;;:~~~~~;~~~----~~~~~---------~:---~------------
()/J eN V-/I!lJt1/ ~t.,
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
JUNCTION @ SALK B-INLET STA. 20+49 SHT. 9
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 29.00 24.000 0.08660 0.0130· 45.000 243.35
. DOWNSTREAM 35.00 24.000 0.25000 0.·0130 0.000 243.02
LATERAL #1 6.00 18.000 0.01200 0.0130 21. 000 243.45
LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE CRITICAL DEPTH NORMAL DEPTH VI" ()1,5!"'t!£A-I-1 /)/0/ (FEET) (FEET) e:---
UPSTREAM 1. 846 0.923 Z4" t:OtvN 'j(",olt!' lJu DOWNSTREAM 1. 920 0.764~
LATERAL #1 0.946 0.769
LATERAL #2 0.000 0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULI~ JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
0.923 1.920 0.769 0.000 13.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
: *NO HYDRAULIC JUMP OCCURS AT JUNCTION.
ot
OK-
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
, UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (·FT**4)
0.923 0.960 0.769 0.000 -351.
0.923 1.440 0.769 0.000 -61.
0.923 1.680 0.769 0.000 -7.
0.923 1.800 0.769 0.000 6.
0.923 1.740 0.769 0.000 o.
0.923 1.710 0.769 0.000 -3.
0.923 1.725 0.769 0.000 -1.
0.923 1.733 0.769 0.000 O.
0.923 1.736 0.769 0.000 o.
0.923 1.738 0.769 0.000 O.
0.923 1.737 0.769 0.000 O.
0.923 1.737 0.769 0.000 O.
----------~-=~~:~-----~~~~:-----~~~~~---------~~----------------
UPS EAM CONTROL ASSUMED AT JUNCTION
C MPUTED UPSTREAM PIPEFLOW DEPTH (FEET) = 0.923
C MPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.737
fJaJ m/Jlht/c.L. p.,pW Page 1
il
~l
1
Ii
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I.
I
}JUNCTION @ SALK A-4 C.O. STA.·· 8+07 SHT. 8}
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE
·UPSTREAM
DOWNSTREAM
'LATERAL #1
LATERAL #2
FLOW
(CFS)
22.00
22.00
0:00
0.00
DIAMETER
(INCHES)
24.000
24.000
0.000
0.000
SLOPE
(DECIMAL)
0.03830
0.08060
0.00000 .
0.00000
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
FRICTION
FACTOR
0.0130
0.0130
0.0000"
0.0000
ANGLE
(DEGREES)
50.000
0.000
0.000·
0.000
FLOWLINE
ELEVATION
224.63
224.30
·0.00 ..
0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
-------~~~~----~;~;~~~~-;~~;~--~;~~-;~~;~~~~~/;e~--~¥,;~~---O~----~·?3~
. (FEET) (FEET) ~ /' .
UPSTREAM 1.675 0.996 ., _____ riJJulfS1rltlYh II /.
DOWNSTREAM 1.675 o. 807 ~ /J
LATERAL #1 0.000 0.000 bofh (}A~ aitl/;tf!LA LATERAL #2 0.000 0.000 I'
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH(FT) (FT**4)
0.996 1.675 0.000 0.000 2.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
=======================================================================~====.
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4)
0.996 0.837 0.000 0.000
0.996 1. 256 0.000 0.000
0.996 1.466 0.000 0.000
0.996 1. 570 0.000 0.000
0.996 1. 623 0.000 0.000
0.996 1. 596 0.000 0.000
0.996 1. 583 0.000 0.000
0.996 1. 577 0.000 0.000
0.996 1. 580 0.000 0.000
0.996 1. 582 0.000 0.000
0.996 1. 583 0.000 0.000
0.9 1. 583 0.000 0.000
0.996 1. 583 0.000 0.000
UPSTREAM CONTROL ASSUMED AT JUNCTION
COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET) = 0.996
COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.583
-167.
-30.
-6.
0.·
1.
O. o. o. o.
O.
o. o.
O.
============================================================================
Page 1
I
I
I
I
I
I
I
I
I
~I
I
I
I
I
I
:1
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License 10 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
, Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 16:13 02/03/2004
============================================================================
Problem Descriptions:
JUNCTION A-4 C.O. SALK STA. 15+49 SHT. 8
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 22.00 24.000 0.08060 0.0130 0.000 204.00
DOWNSTREAM 28.00 24.000 0.08350 0.0130 0.000 203.77
LATERAL #1 3.00 18.000 0.02080 0.0130 77.000 '204.27
LATERAL #2 3.00 18.000 0.04470 0.0130 50.000 204.27
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
,CRITICAL DEPTH
(FEET)
1. 675
1. 828
0.658
0.658
NORMAL DEPTH
(FEET)
0.807
0.914
0.453
0.372
, 1,,'1" lJ;?5r~ ,D/IJ Ok-: f.o~ :i"
ttl/" tlOWNSr!URM tJN ~K. i.3~ /(
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(Al+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
0.807 1.828 0.453 0.372 115.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.807
0.807
0.914
1.371
0.453
0.453
0.372
0.372
-126.
69.
II
tl
" , !J
II
I
I
I
I
I
.. ' . . ,
I
.1
I
I'
I
I
I
I
I
I·
I
·1'
I
I'
0.807 1.143 0.453 0.372
0.807 1. 028 0.453 0.372
0.807 1. 085 0.453 0.372
0.807 1.114 0.453 0.372
0.807 1.128 0.453 0.372
0.807 1.135 0.453 0.372
0.807 1.139 0.453 0.372
0.807 1.141 0.453 0.372
0.807 1.140 0.453 0.372
0.807 1.139 0.453 0.372
0.807 1.140 0.453 0.372
UPSTREAM PIPEFLOW DEPTH(FEET) = 0.807
DOWNSTREAM PIPEFLOW DEPTH(FEET) = 1.140'
l.
-52.
-23.
-1l.
-5.
-2.
O.
O.
O.
O.
. O.
==================================================================== \,
1 i .\' .1.1
I
II ~*=*=*=*=*=*=*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*=*=*=*=*=*=*~*r*r*r*r*r*r*r*r*r*~*=*r.*=*=*r.*=*=*r.*r.*r.*r.*r.*r.*r*r*r*rr*~*~*~*~*
I
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
I Buccola Engineerin~, Inc.
, 3142 Vista Way, SUJ.te 301
. . Oceanside, CA 92056
I (760) 721-2000 / Fax' (760)721-2046· .; ....
. *****.********************* DESCRIPTION OF STUDY *********************.****.* .:,
: NODE 215 JUNCTION ANALYSIS d~ 1/ .... 1-0,0.. j)/1/6~1eJ2, . : .
I * 5111 ;'2.-145 *
. **************************************************************************
I
I
I
FILE NAME: G:\149-1F\DIVERT.DAT
TIME/DATE OF STUDY: 14:13 12/23/2003
============================================================================
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER = 215.10 FLOWLINE ELEVATION' = 100.00
PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 27.50
ASSUMED DOWNSTREAM CONTROL HGL = 101.500
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
I ============================================================================
, NODE 215.10: HGL= < 101.500>;EGL= < 105.260>iFLOWLINE= < 100.000>
I
,I
I
I'
I
I
I
I·
============================================================================
PRESSURE FLOW PROCESS FROM NODE 215.10 TO NODE 215.00 IS CODE =
UPSTREAM NODE 215.00 ELEVATION = 100.33
CALCULATE PRESSURE FLOW JUNCTiON LOSSES:
NO.
1
2
3
4
5
DISCHARGE DIAMETER
27.5 18.00
27.5 18.00
0.0 0.00
0.0 0.00
0.0===Q5 EQUALS
AREA VELOCITY
1. 767 15.562
1. 767 15.562
0.000 0.000
0.000 0.000
BASIN INPUT===
DELTA
45.000
0.000
0.000
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
HV
3.76'0
3.760
DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)-I
5
Q4*V4*COS (DELTA4» / «A1+A2) *16 .1) 1$~s,:;,4 rfllLbV;1I
UPSTREAM MANNINGS N = 0.01300 ./laL ;t JrJ,ve-710,J
DOWNSTREAM MANNINGS N = 0.01300 ~~~#5j'
UPSTREAM FRICTION SLOPE = 0.06854 OR..lrlcG el/-tc~ ,c;t.(".{)!d/,vG
DOWNSTREAM FRICTION SLOPE = 0.06854 2-S;I/;.
AVERAGED FRICTION SLOPE IN JUNCTIO ASSUMED AS 0.06854
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.274
ENTRANCE LOSSES = 0.000
JUNCTION LOSSES = DY+HV1-HV2+(F
JUNCTION LOSSES = 2.203+ 3.760
NODE 215.00: = < 103.977
CTION LOSS) + (ENTRANCE LOSSES)
3.760+( 0.274)+.( 0.000) = 2.477
iEGL= < 107.737>iFLOWLINE= < 100.330>
============================================================================
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
i i·
I
I
I
I'
I
I
I
,I
I
I
I,
I
I
I
I
I
I
I
I
tmp#l
Orifice Calculator
Given Input Data:
Solving for .................... .
,Flowrate ....................... .
Coefficient .................... .
Dlameter .. ; .................. '.' ..
Tailwater ...................... .
computed Results:
Headwater ...................... .
Veloci ty ....................... .
Z,/I/ IN
t 7,$" Cr5
I \~
Page 1
Headwater
17.5000 cfs
0.6100 '
18.0000 in' , '.-
0.0000 ft
4.0958
9.9030
. :'
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
tmp#l
Orifice Calculator
Given Input Data: Solving for ..................... Headwater
Flowrate ........................ 10.5000 cfs ,~oetficient ..................... 0.6100
Diameter ....................... ~ 18. 0000 'in
Tailwater ....................... o. 0000 ft
~< /0 .. 5" cr.s
"1 Ir IJtJf'
Computed Results: Headwater ...................... .
I I fitJ
1.4745 ft""'---~/,5
5.9418 fps /f/;Ultf j/16116',I! /'1'1 Velocity ....................... .
l' .,
fl ~;!
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License 10 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056. "
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 17:29 02/03/2004
============================================================================
Problem Descri tions:
SALK CLEANOUT STA. 11+78 611('e1 <(
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
------------------~-------------------------------------------------~-------PIPE FLOW
(CFS)
10.00
29.00
19.00
DIAMETER
(INCHES)
18.000
24.000
24.000
SLOPE FRICTION ANGLE
(DEGREES)
0.000
0.000
50.000·
0.000
FLOWLINE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
(DECIMAL)
0.25000
0.05460
0.02100
0.00000
FACTOR
0.0130
0.0130
0.0130
0.0000
ELEVATION
167.50
167.00
167.50
0.00 0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICAL DEPTH
(FEET)
1. 219
1.846
1. 568
0.000
NORMAL DEPTH
(FEET) . ',/0/1 IJN'
0.444.....-' 0
1.057,.---2JI" 1)#
1.093
0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:.
"BALANCE" = (Z+Dl-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Ql*Ql*COS(ANGLE1)/Al
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION (NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4)
0.444 1.846 1.093 0.000 33.
*UPSTREAM FLOW DOMINATES ~QNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.444
0.444
0.923
1. 385
1. 093
1. 093
0.000
0.000'
-232.
-21.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·1
0.444
0.444
0.444
0.444
0.444
0.444 .
0.444
0.444
0.444
0.444
0.444
1.615
1.500
1. 442
1.471
1. 486
1.493
1. 489
1. 491
1.490
1. 490
.490
1. 093
1. 093
1. 093
1. 093
1. 093
1. 093
1. 093
1. 093
1. 093
. 1. 093
1. 093
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 '.
0.000
COMP 0 UPSTREAM PIPEFLOW DEPTH(FEET) = 0.444
UTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.490
18.
2.
-9.
-3.
-1.
O.
O.
O. o.
O •
O.
== =======================================================================
f' j()u;1/srUkM /' .;
OICN CI-I,4-NN~(';
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 17:41 02/03/2004
============================================================================
ISALK CLEANOUT STA. 10+31J
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 29.00 24.000 0.05460 0.0130 45.000 159.00
DOWNSTREAM 41. 00 30.000 0.25000 0.0130 0.000 158.'77
LATERAL #1 12.00 18.000 0.25000 0.0130 50.000 159.50
LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
'PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICAL DEPTH
(FEET)
1. 846
2.150
1. 314
0.000
NORMAL DEPTH
(FEET)
1. 057
0 .. 758
0.488
0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM.FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4)
1.057 2.150 0.488 0.000 79.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
1. 057
1. 057
1. 075
1. 612
0.488
0.488
0.000
0.000
-281.
10.
II
I·
I
I
I
I
I
I
'1
I
I
I
I
I
I
I
I
I
I
I
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 057
1. 344
1.478
1. 545
1. 579
1. 562
1. 570
1. 575
1.577
1. 576
1. 575
.575
0.488
0.488
0.488
0.488
0.488
0.488
0.488
0.488
0.488
0.488
0.488
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 .
0.000
OMPU UPSTREAM PIPEFLOW DEPTH{FEET) = 1.057
CO UTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 1.575
-90.
-32.
-9.
1.
-4.
-1.
O.
O.
O.
.' O.
O.
= ==-======================================================================
t!1-I IJpI1/Cl-(JI I-/Jf)lAJp
OK-
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
tAM/NO
**t*************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 17:52 02/03/2004
============================================================================
Problem De?criptions:
EL CAMINO REAL A-4 CLEANOUT STA. 372+59
\ ****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
-------------,,---------------------------------------------------------------
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
FLOW
(CFS)
9.60
9.60
0.00
0.00
DIAMETER
(INCHES)
18.000
18.000
0.000
0.000
SLOPE
(DECIMAL)
0:07010
0.07330
0.00000
0.00000
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
FRICTION
FACTOR
0.0130
0.0130
0.0000
0.0000
ANGLE
(DEGREES)
45.000
0.000 .
0.000
0.000
FLOWLINE
ELEVATION
241.43
241.10
0.00
0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICAL DEPTH
(FEET)
1.196
1.196
0.000
0.000
NORMAL DEPTH
(FEET)
0.608
0.601
0.000
0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.608 1.196 0.000 0.000 27.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH (FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.608
0.608
0.598
0.897
0.000
0.000
0.000
0.000
-36.
15.
j
'1
I
I
I
I
I
I~
I
I
I
I
I
I
I
I
I
I
I
I
I
i .. . , :£
c~ 11 jI
1, ., ,I
:.
ti
" 0.608 0.748 0.000 0.000 -3.
0.608 0.822 0.000 0.000 7.
0.608 0.785 0.000 0.000 3.
0.608 0.766 0.000 0.000 O.
0.608 0.776 0.000 0.000 1.
0.608 0.771 0.000 0.000 1.
0.608 0.769 0.000 0.000 o.
0.608 0.768 0.000 0.000 O.
0.608 0.767 0.000 0.000 o.
0.608 0.767 0.000 .0 .. 000 O.
0.608 0.767 0.000 0.000 O.
UPSTREAM CONTROL ASSUMED AT JUNCTION
----------------------------------------------------~-------------~--------COMPUTED UPSTREAM PIPEFLOW DEPTH (FEET) = 0.608
COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) = 0.767
===========================================~=======/T===================
/~ If tJjJ I /)tJzJ~ f)IL < ~
~ J 7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License 10 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301 .
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 18:07 021Q3/2004
============================================================================
Problem Descriptions:
EL CAMINO REAL B-1 INLET STA. 373+70
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW
(CFS)
9.60
18.60
9.00
0.00
DIAMETER
(INCHES)
18.000
24.000
18.000
SLOPE FRICTION ANGLE
(DEGREES)
23.000
0.000
20.000
0.000
FLOWLINE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
(DECIMAL)
0.07330
0.07810
0.06000
0.00000
FACTOR
0.0130
0.0130
0.0130
0.0000
ELEVATION
233.9'1
233.41
233.91
0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
, PIPE CRITICAL DEPTH NORMAL'DEPTH , '
(FEET) (FEET)
UPSTREAM 1.196 0.601
DOWNSTREAM 1. 552 0.743
LATERAL #1 1.161 0.612
LATERAL #2 0.000 0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM ,LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
0.601 1.552 0.612 0.000 85.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
"
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH(FT) (FT**4)
0.601
0.601
0.776
1.164
0.612
0.612
0.000
0.000
-57.
56.
l :1 j ,"" 1 I
,
:1
:1 \
J :1 .,
-·1
I
I
I
I
-.
I
I
1
I
I
I
I
I
I
I
I-
I
I
I
0.601
0.601
0.601
0.601
0.601
0.601
0.601
0.601
0.601
0.601
0.601
0.970
0.873
0.922
0.897
0.910
0.916
0.913
0.914
0.915
-0.915-
0.915
0.612
0.612
0.612
0.612
0.612
0.612
0.612
0.612
0.612
0.612
0.612
UPSTREAM CONTROL ASSUMED AT JUNCTION
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
16.
-15.
2.
-6.
-2.
O.
-l.
O.
O. o.
O.
·1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License 10 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 18:14 02/03/2004
============================================================================
Problem Descriptions:
EL CAMINO REAL A-4 CLEANOUT STA. 380+11
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
----------------------------------------------------------------------------
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 24.50 24.000 0.06580 0.0130 0.000 192.10
DOWNSTREAM 34.70 30.000 0.07990 0.0130 0.000 191.60
LATERAL #1 5.10 18.000 0.00500 0.0130 75.000 192.60
LATERAL #2 5.10 18.000 0.03000 0·9130 72.000 192.60
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICAL DEPTH
(FEET)
1. 749
2.001
0.869
0.869
NORMAL DEPTH
(FEET)
0.907
0.938
0.913
0.543
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH(FT) (FT**4)
0.907 2.001 0.869 0.543 114.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS "AT JUNCTION.
===============================================================~============
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATE"RAL#1 LATERAL#2 BALANCE
DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.907
0.907
1. 001
1. 501
0.869
0.869
0.543
0.543
-181.
56.
/I
II [I
if
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
----------
----------
0.907
0.907
0.907
0.907
0.907
0.907
0.907
0.907
0.907
0.907
0.907
1. 251
1. 376
1.313
1.344
1. 329
1. 321
1.317
1. 315
1. 316
1. 317
1. 316
0.869
0.869
0.869
0.869
0.869
0.869
0.869
0.869
0.869
0.869.
0.869
CONTROL ASSUMED AT JUNCTION
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
.0.543 .
0.543 .
D UPSTREAM PIPEFLOW DEPTH(FEET) = 0.907
DOWNSTREAM PIPEFLOW DEPTH(FEET) = 1.316
-27.
2l.
-l.
10.
5.
2.
O.
·0. o.
.0.
O.
-===============================================================
30
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista Way, Suite 301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 18:24 02/03/2004
,' ...
============================================================================
Problem Descriptions:,
EL CAMINO REAL j"J; 4 CLEANOU'f' STA. 384+56
f3-/lJl;£,:r
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE'
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 35.70 30.000 0.08050 0.0l30 0.000 159. l4
DOWNSTREAM 35.70 24.000 0.25000 0.0l30 0.000 158.81
LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00
LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
==========================================================================~=
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICAL DEPTH
(FEET)
2.027
1. 926
0.000
0.000
NORMAL DEPTH
(FEET)
0.950
0.772
0.000
0.000
'PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/A1
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICAL; CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH (FT) DEPTH(FT) DEPTH (FT) (FT**4)
0.950 1.926 0.000 0.000 284.
*UPSTREAM FLOW DOMINATES JUNCTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCtION.'
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH (FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.950
0.950
0.963
1. 444
0.000
0.000
0.000
0.000
-91.
209.
-..,
,
{
! ___ -2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
0.950 1. 204 0.000 0.000
0.950 1. 083 0.000 0.000
0.950 1.023 0.000 0.000
0.950 1.053 0.000 0.000
0.950 1. 068 0.000 0.000
0.950 1. 061 0.000 0.000
0.950 1. 057 0.000 0.000
0.950 1. 055 0.000 0.000
0.950 1. 056 0.000 0.000
0.950 1. 057 0.000 0.000
0.950 1. 057 0.000 0.000
UPSTREAM CONTROL ASSUMED AT JUNCTION
COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET = 0.950
COMPUTED DOWNSTREAM PIPEFLOW DEPTH(FE T) = 1.057
104.
22.
-30.
-3.
10.
3.
O.
-2.
-1.
O. o.
========================================= ================================== If 30 () ;1 ~ 71Lc fn.A, /1
t) Drfl;J TO t.-tf
DrJ ()~
~~I
-.II ~' --. .:ll II
" ji
II , :11
~11
,II
'" ~" -II
'II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1463
Analysis prepared by:
Buccola Engineering, Inc.
3142 Vista. Way, Suit~ .301
Oceanside, CA 92056
(760) 721-2000 / Fax (760) 721-2046
TIME/DATE OF STUDY: 18:42 02/03/2004
============================================================================
Problem Descriptions:
EL CAMINO REAL A-4 CLEANOUT STA. 385+10
****************************************************************************
»»PIPE-FLOW JUNCTION INPUT INFORMATION««
PIPE FLOW DIAMETER SLOPE FRICTION ANGLE FLOWLINE
(CFS) (INCHES) (DECIMAL) FACTOR (DEGREES) ELEVATION
UPSTREAM 35.70 24.000 0.25000 0.0130 5.000 146.38
DOWNSTREAM 35.70 18.000 0.25000 0.0130 0.000 146.05
LATERAL #1 0.00 0.000 0.00000 0.0000 0.000 0.00
LATERAL #2 0.00 0.000 0.00000 0.0000 0.000 0.00
MAINLINE FLOWDEPTH INPUT INFORMATION:
UPSTREAM PIPEFLOW DEPTH (FEET) : 0.00
DOWNSTREAM PIPEFLOW DEPTH (FEET) : 0.00
============================================================================
PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
CRITICA.L DEPTH.
(FEET)
1. 926
1. 497
0.000
0.000
NORMAL DEPTH
(FEET)
0.772
0.907
0.000
0.000
PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE:
"BALANCE" = (Z+D1-D2)*(A1+A2)*G/2.-Q2*Q2/A2+Q1*Q1*COS(ANGLE1)/Al
+Q3*Q3*COS(ANGLE3)/A3+Q4*Q4*COS(ANGLE4)/A4
UPSTREAM FLOW IS SUPERCRITICALi CHECK FOR HYDRAULIC JUMP:
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH (FT) DEPTH (FT) (FT**4)
0.772 1.497 0.000 0.000 395.
*UPSTREAM FLOW DOMINATES JUNqTION HYDRAULICS:
*NO HYDRAULIC JUMP OCCURS AT JUNCTION.
============================================================================
PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)
UPSTREAM DOWNSTREAM LATERAL#l LATERAL#2 BALANCE
DEPTH(FT) DEPTH(FT) DEPTH(FT) DEPTH (FT) (FT**4)
0.772
0.772
0.748
1.123
0.000
0.000
0.000
0.000
-300.
236.
~.,.f til
I" I
I
1
I.
I'
I
··1
I
I'
I.
I
I
I
I
I
I
I
I
0.772 0.935 0.000 0.000 41-
0.772 0.842 0.000 0.000 -104.
0.772 0.889 0.000 0.000 -26 ..
0.772 0.912 0.000 0.000 9.
0.772 0.900 0.000 0.000 -9.
0.772 0.906 0.000 0.000 o.
0.772 0.903 0.000 0.000 -4.
0.772 0.905 0.000 0.000 -2.
0.772 0.906 0.000 0.000 -l.
0.772 0.906 0.000 0.000 O.
0.772 0.906 0.000 0.000 O .
. --.--------------------------------------------------------------------------
UPSTREAM C-ONTROL ASSUMED AT JUNCTI.ON
---------------------------------------------~~~-------------~--------------, COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET) = O. 772 ~ . -. '"
COMPUTED DOWNSTREAM PIPEFLOW DEPTH (FEET) == 0.906 .'. . ..... .
=======================================================-=======;===~======== VII' Uf6frMr~.
If . . ttl If.· tJpW "
rJOfi! IJ !tllo j}
10 ttl6/. St)
I.
I
I
I DETENTION CALCS
I .
. .' ...... . .
I
I
I
I
I
I
I
. . . '. . -..
I
I
I
I
I
I .
I
I '
I ;1/0&€ lIb
I /;Vft-· ((r .:;-'54-·6 eFS tV re ::-/t, f ,AI/tV A::tlf~ Ife
/ :: 3, If l/hr. I ~1>'1f)6/1t!-C ~ 0,51
I //;I'Ig;,) ~ drp,Ytyj, -tuflrrry (Jr f)~ -sa jJr//llPvl .
I
.1
I
I
I
I
I
I
I
I
I
I
I.
I
. ',:'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.. -~
RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 12123/03
HYDRO GRAPH FILE NAME Text1
TIME OF CONCENTRATION 13 MIN.
6 HOUR RAINFALL 2.7 INCHES
BASIN AREA 24.85 ACRES
RUNOFF COEFFICIENT 0.57 .
PEAK DISCHARGE 54.6 CFS
TIME (MIN) = 0
TIME (MIN) = 13
TIME (MIN) = 26
TIME (MIN) = 39
TIME (MIN) = 52
TIME (MIN) = 65
TIME (MIN) = 78
TIME (MIN) = 91
TIME (MIN) = 104
TIME (MIN) = 117
TIME (MIN) = 130
TIME (MIN) = 143
TIME (MIN) = 156
TIME (MIN) = 169
TIME (MIN) = 182
TIME (MIN) = 195
TIME (MIN) = 208
TIME (MIN) = 221
TIME (MIN) = 234
. TIME (MIN) = 247
TIME (MIN) = 260
TIME (MIN) = 273
TIME (MIN) = 286
TIME (MIN) = 299
TIME (MIN) = 312
TIME (MIN) = 325
TIME (MIN) = 338
TIME (MIN) = 351
TIME (MIN) = 364
TIME (MIN) = 377
DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0 .
DISCHARGE (CFS) = 2.3
DISCHARGE (CFS) =.2.4
DISCHARGE (CFS) = 2.5
DISCHARGE (CFS) = 2.6
DISCHARGE (CFS) = 2.8
DISCHARGE (CFS) = 2.8
DISCHARGE (CFS) = 3
DISCHARGE CFS) = 3.2
DISCHARGE CFS) = 3.4
DISCHARGE CFS) = 3.6
DISCHARGE CFS) = 4
DISCHARGE CFS) = 4.2
DISCHARGE (CFS) = 4.9
DISCHARGE (CFS) = 5.3
DISCHARGE (CFS) = 6.4
DISCHARGE (CFS) = 7.3
DISCHARGE (CFS) = 10.8
DISCHARGE (CFS) = 15
DISCHARGE (CFS) = 54.6
DISCHARGE (CFS) = 8.6
DISCHARGE {CFS) = 5.8 DISCHARGE CFS) = 4.5
DISCHARGE CFS) = 3.8
DISCHARGE (CFS) = 3.3
DISCHARGE (CFS) = 2.9
DISCHARGE (CFS) = 2.7
DISCHARGE (CFS) = 2.5
DISCHARGE (CFS) = 0
//-3 flf(};tp~flJ,JJ1
e:; t)/,J 1 f !11 CTfi 0 IJ -;'[1 efi. r;AJat. ,tJ;20 6;2"p, )
5Ul-T/oAi 6toorv'TY .:5; I11tPllt.-a/) ... .
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*************************************************** ***** FHWA URBAN DRAINAGE DESIGN PROGRAMS *****
***** RESERVOIR ROUTING ***** ***************************************************
COMPUTED BY: JD DATE: 12-23-2003
PROJECT: FOX
}lO/)c //3
~/~ff5
PROJECT NO: FOX
1/1/(,£ f ovrt£r )fPwtL -1J£~N7iOAl
slftj(,
Max. Storage Max. Depth Max. Discharge At Time
,(ft"3) (ft) (cfs) (hours)
28487 3.64 23.8 4.55
Ie !e~lc./rd:l/~mJ)= r.S5"r t/~, 6,ArJ
:= jJ Hid
Stage
(ft)
0.00
1.00
2.00
3.00
4;00
5.00
Discharge
(cfs)
/)/6£!har,t. 0.00
t,'/r.sf) 4.00
13.00 !/w!J; ....::, 20.00
26.00
30.00
Storage Storage
(ft"3) Indicator
0 0.00
1f90 3.53
7820 16.53
33770 56.29
50120 79.26
11 ole, ()~ .;:; t/;;:; hl3. :;tt).ftP5
19270 ~4.71 .
raft'htcJ .fc::: 19·8 MIll sIoya~ ~h1
Zr;,g tFS ~ /9, Cj#/M /l1/S #/6#~ &1I~(,lIti,gCEtJ ~t"Pt.J (I/n'11ows -5Iqlu./~;"
Time Inflow Discharge Storage De¥th (hours) (cfs) (cfs) (ft"3) ( t)
--------------------------------------------------------------
0.00 0.000 0.000 0 0.00
'0.22 0.000 0.'000 0 ·0 ... 00
0.43 2.300 1. 305 388 0.33
0.65 2.400 ,2.491 741 0.62
0.87 2.500 2.445 727 0.61
1.08 2.600 2.5'64 763 0.64
1.30 2.800 2.718 809 0 .. 68
1. 52 2.800 2.811 836 0.70
1. 73 3.000 2.912 866 0.73
1.95 3.200 3.125 930 0.78
2.17 3.400 3.324 989 0.83
2.38 3.600 3.524 1048 0.88
2.60 4.000 3.837 1142 0.96 . 2.82 4.200 4.083 1251 1.01
3.03 4.900 4.406 1489 1. 05
3.25 5.300 4.887 1843 1.10
3.47 6.400 5.554 2334 1.17
3.68 7.300 6.451 2996 1.27
3.90 10.800 8.250 4321 1.47
4.12 15.000 11.469 6692 1. 83.
4.33 54.600 20.817 21245 3.14
4.55 8.600 23.814 28487 3.64
4.77 5.800 18.887 ,17449 2.84
4.98 4.500 13.598 .8797 2.09
5.20 3.800 7.534 3793 1.39
5.42 3.300 4.776 1761 1. 09
5.63 2.900 3.370 1003 0.84
5.85 2.700 2.723 810, 0.68
6.07 2.500 2.583 769 0.65
of
I
I
~ I
I
I
I
I
I"
I
~
I
:1
"1' , f ." '.
, '.
~~:'."
(/)
ILl :c
'0 :z:
:z:
e: .-c:: ILl > -l
::l <,;)
lL. 0
c::
ILl .-
ILl
'::E <:
0
-.....::.;;~--===---:-----.....:..=================::::::=-:::-,~
ISO
168
156
.144
132
120
lOS
96
S4
" 72
(/)
'60 lL.
0
:z:
54 g
4S //~
,./' <: ~2 ~ (/)
c
36
33
30
27
24
21
18
15
12
'.
CHART 2'
10,000
8,000 EXAMPLE ( I) (2) (3)
6,000 0.42 Inches (3.5 fed) 6.
5,000 0./20 cis
6.
5.
4,000 2· HW 5.
3,000
0 'U'
(lJ.
4. ' ,
2.5 8.8 4.
(2) 2.1 7.4
2,000 -(3) 2.2 7.7 3.
-0 in teet 3. .
1,000
SOO
600 //'". 2:-
500
400 // ~
300 ~'i'\.V := ~~ e 1.5 1.5
//
en
200
c:: ILl 1.5 .-/ ILl
'/ ::E <:
c , 100 :z:
SO
60 loa I.Q
50 'HW , ,ENTRANCE
40 [) SCALE TYPE c:: 1.0
ILl
30 (I) Square ~dq. "ith
.-.9 .9 <:
h~d .. cll := .9 0
20 (2) GrooYl Ind with <: ILl
hlod.oll :C' .S .S
(3) Groo .. , .nd ~8
projlerinq
10
8
.7 .r .7
6 To uu seoll (2) ot (3) ptoiler
5 horizon roil, ro seal. (I), fhtn
4
use sfralqhl Inclinld lint fllrouqh
o Clnd 0 scaln, or rlYarsc CI, .6
3 iIIulfrortd, .6 .6
.5 .5 .5
1.0
HEADWATER SCALES ~?!~
HEADWATER DEPTH FOR
C9 NCR E:TE PIPE CULVERT.S
(
(
/
I
I
,I
,I
1
1
1
I
I
I
I
I
I
I
1
I
I
RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992. 2001 RICK ENGINEERING COMPANY
RUN DATE 12127103
, HYDROGRAPH FilE NAME Text1
TIME OF CONCENTRATION 9 MIN.
6 HOUR RAINFAll 2.7 INCHES
BASIN AREA 10.95 ACRES
RUNOFF COEFFICIENT 0.64
PEAK DISCHARGE 34.4 CFS
TIME (MIN) = 0
,TIME (rvlIN) = 9
TIME (MIN) = 18
TIME (MIN) = 27
TIME (MIN) = 36
TIME (MIN) = 45
TIME (MIN) = 54
TIME (MIN) = 63
TIME (MIN) = 72
TIME (MIN) = 81
TIME (MIN) = 90
TIME (MIN) = 99
TIME (MIN) = 108
TIME (MIN) = 117
TIME (MIN) = 126
TIME (MIN) = 135
TIME (MIN) = 144
TIME (MIN) = 153
TIME (MIN) = 162
TIME (MIN) = 171
TIME (MIN) = 180
TIME (MIN) = 189
TIME (MIN) = 19'8
TIME (MIN) = 207
TIME (MIN) = 216
TIME (MIN) = 225
TIME (MIN) = 234
TIME (MIN) = 243
TIME (MIN) = 252
TIME (MIN) = 261
TIME (MIN) = 270
TIME (MIN) = 279
TIME (MIN) = 288
TIME (MIN) = 297
TIME (MIN) = 306
TIME (MIN) = 315
TIME (MIN) = 324
TIME (MIN) = 333
TIME (MIN) = 342
TIME (MIN),= 351
TIME (MIN) = 360
TIME (MIN) = 369
. ;f! (JOt:
DISCHARGE (CFS) = 0
, DISCHARGE (CFS) = 0
DISCHARGE (CFS) = 1.1
DISCHARGE (CFS) = 1.2
DISCHARGE (CFS) = 1.2
DISCHARGE (CFS) = 1.2
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.4
DISCHARGE (CFS) = 1.4
DISCHARGE (CFS) = 1.5
DISCHARGE (CFS) = 1.5
DISCHARGE (CFS) = 1.6
DISCHARGE (CFS) = 1.6
DISCHARGE (CFS) = 1.7
DISCHARGE (CFS) = 1.8
DISCHARGE (CFS) = 1.9
DISCHARGE (CFS) = 2
DISCHARGE (CFS) = 2.2
DISCHARGE (CFS) = 2.3
DISCHARGE (CFS) = 2.5
DISCHARGE (CFS) = 2.7
DISCHARGE (CFS) = 3
DISCHARGE (CFS) = 3.3
DISCHARGE (CFS) = 4
DISCHARGE (CFS) = 4.6
DISCHARGE (CFS) = 6.8
DISCHARGE (CFS) = 9.2
DISCHARGE (CFS) = 34.4
DISCHARGE (CFS) = 5.4-
DISCHARGE (CFS) = 3.6
DISCHARGE (CFS) = 2.8
DISCHARGE (CFS) = 2.4
DISCHARGE (CFS) = 2.1
DISCHARGE (CFS) = 1.8
DISCHARGE (CFS) = 1.7
DISCHARGE (CFS) = 1.5
DISCHARGE (CFS) = 1.4
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.2
DISCHARGE (CFS) = 0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
*************************************************** *****
*****
FHWA URBAN DRAINAGE DESIGN PROGRAMS
RESERVOIR ROUTING
***** *****
***************************************************
COMPUTED BY: JD DATE: 12-27-2003
PROJECT: FOX PROJECT NO: FOX
t01 f ~~r6Nr/O) /111) /) Ii' 40 5'
Max. Storage (ft"3)
8088
Max. Depth Max. Discharge At Time
(ft) (cfs) (hours)
19.4 4.35
/ar:{:?;f,4-:: t/ /41#
Stage Discharge
(ft) (cfs)
------o~OO--Z1NO~1--0~OO--
l. 00 I-/W'j)1 4.00 2.00 /~ 13.00
3.00 20.00
4.00 25.00
5.00 30.00
Time Inflow Discharge
(hours) (cfs) (cfs)
Storage (ft"3)
o
1400
4680
8430
12670
17410
Storage
(ft"3)
Storage
Indicator
0.00
4.59
15.17
25.61
35.96
47.24
Depth
(ft)
--------------------------------------------------------------
0.00 0.000 0.000 0 0.00
0.15 0.000 0.000 0 .0.00
0.30 1.100 0.479 168 0.12
0.45 l.200 1.063 372 0.27
0.60 l.200 l.182 414 0.30
0.75 l.200 1.198 419 0.30
0.90 l. 300 1.243 435 0.31
1.05 l.300 l.293 452 0.32
1.20 l. 400 l. 343 470 0.34
l. 35 l.400 1.393 487 0.35
1.50 l. 500 l.443 505 0.36
l. 65 l. 500 1.493 522 0.37
1.80 1.600 1.543 540 0.39
1.95 1.600 l. 593 557 0.40
2.10 1.700 l. 643 575 0.41
2.25 1.800 1.736 608 0.43
2.40 1.900 1.835 642 0.46
2.55 2.000 1.935 677 0.48
2.70 2.200 2.079 728 0.52
2.85 2.300 2.228 780 0.56
3.00 2.500 2.378 832 0.59
3.15 2.700 2.571 900 0.64
3.30 3.000 2.814 985 0 .. 70
3.45 3.300 3.107 1087 0.78
3.60 4.000 3.580 1253 0.89
3.75 4.600 4.202 1474 1. 02
3.90 6.800 5.477 1938 l.16
4.05 9.200 7.624 2721 1.40
4.20 34.400 18.268 7502 2.75
I
I 4.35
4.50
4.65
/)CITlI)
19.362~M!W & i-1A-;t
5.400 8088 2.91
3.600 8.430 3014 1.49
2.800 3.978 1392 0.99
4.80 2.400 2.778 972 0.69
I 4.95
5.10
5.25
2.100 2.318 811 0.58
1.800 1. 997 699 0.50
1. 700 1.782 624 0.45
5.40
I 5.55
5.70
1. 500 1.623 568 0.41
1.400 1.472 515 0.37
1. 300 1. 366 478 0.34
5.85 1.300 1. 308 458 0.33
I 6.00
6.15
1.200 1.258 440 0.31
0.000 0.685 240 0.17
I
I
I
I
I
I
I
I
I
I
I
I
I
I
lTIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
~UN DATE 1/26/04
HYDROGRAPH FILE NAME Text1
IME OF CONCENTRATION 10 MIN.
6 HOUR RAINFALL 2.7 INCHES
IBASIN AREA 6.45 ACRES
RUNOFF COEFFICIENT 0.36
PEAK DISCHARGE 10.5 CFS
TIME (MIN) = a DISCHARGE (CFS) = a
ITIME (MIN) = 10 DISCHARGE (CFS) = 0.4
TIME (MIN) = 20 DISCHARGE (CFS) = 0.4 TIME (MIN) = 30 DISCHARGE (CFS) = 0.4
TIME (MIN) = 40 DISCHARGE (CFS) = 0.4
TIME (MIN) = 50 DISCHARGE (CFS) = 0.4
I TIME (MIN) = 60 DISCHARGE (CFS) = 0.4
TIME (MIN) = 70 DISCHARGE (CFS) = 0.5
TIME (MIN) = 80 DISCHARGE (CFS) = 0.5
TIME (MIN) = 90 DISCHARGE (CFS) = 0.5
TIME (MIN) = -100 -DISCHARGE (CFS) = 0.5
I TIME (MIN) = 110 DISCHARGE (CFS) = 0.5
TIME (MIN) = 120 DISCHARGE (CFS) = 0.6
TIME (MIN) = 130 DISCHARGE (CFS) = 0.6
TIME (MIN) = 140 DISCHARGE (CFS) = 0.6
TIME (MIN) = 150 DISCHARGE (CFS) = 0.7
I TIME (MIN) = 160 DISCHARGE (CFS) = 0.7
TIME (MIN) = 170 DISCHARGE (CFS) = 0.8
TIME (MIN) = 180 DISCHARGE (CFS) = 0.8
TIME (MIN) = 190 DISCHARGE (CFS) = 0.9
TIME (MIN) = 200 DISCHARGE (CFS) = 1
I TIME (MIN) = 210 DISCHARGE (CFS) = 1.3
TIME (MIN) = 220 DISCHARGE (CFS) = 1.4
TIME (MIN) = 230 DISCHARGE (CFS) = 2.1
TIME (MIN) = 240 DISCHARGE (CFS) = 3
TIME (MIN) = 250 DISCHARGE (CFS) = 10.5
I TIME (MIN) = 260 DISCHARGE (CFS) = 1.7 TIME (MIN) = 270 DISCHARGE (CFS) = 1.1
TIME (MIN) = 280 DISCHARGE (CFS) = 0.9
TIME (MIN) = 290 DISCHARGE (CFS) = 0.7
TIME (MIN) = 300 DISCHARGE (CFS) = 0.6
I TIME (MIN) = 310 DISCHARGE (CFS) = 0.6
TIME (MIN) = 320 DISCHARGE (CFS) = 0.5
TIME (MIN) = 330 DISCHARGE (CFS) = 0.5
TIME (MIN) = 340 DISCHARGE (CFS) = 0.4
TIME (MIN) = 350 DISCHARGE (CFS) = 0.4 I TIME (MIN) = 360 DISCHARGE (CFS) = 0.4
TIME (MIN) = 370 DISCHARGE (CFS) = a
I
I
I
I
I
I
I
I
EL-eAMltVrJ ttMt-5fsJ'CM
/V/)/)C :3z5 r--3/6 \
. (&t"f)~5) PfJ6)t) .5f>/J~t 19f161J-s)
6,15 A-t·,·
0= /0· Ei eF-S
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*************************************************** ***** FHWA URBAN DRAINAGE DESIGN PROGRAMS *****
***** RESERVOIR ROUTING *****
***************************************************
COMPUTED BY: DATE: 02-03-2004
PROJECT: FOX-MILLER PROJECT NO: 149-1
Max. Storage
(ft"3)
Max. Depth
(ft)
Max. Discharge
(cfs)
"'At Time
(hours)
3782 3.26 3.0 -----4~i7-:.-1
Time
(hours)
0.00
0.17
0.33
0.50
0.67
0.83
1.00
1.17
1. 33
1 . .50
1. 67
1.83
2.00
2.17
2.33
2.50
2.67
2.83
3.00
3.17
3.33
3.50
3.67
3.83
4.00
4.17
4.33
4.50
4.67
Stage
(ft)
0.00
1. 00
2.00
3.00
4.00
Inflow (cfs)
Discharge
(cfs)
0.00
1.70
2.40
2.90
3.40
Discharge
(cfs)
Storage
(ft"3)
o
800
2000
3200
5400
Storage (ft"3)
:::-/ () M /N
Storage
Indicator
0.00
2.18
4.53
6.78
10.70
De¥th ( t)
-------------------------------------------------
0.000 0.000 0 0.00
0.400 0.156 . 73 0 .. 09
0.400 0.346 163 0:20
0.400 0.388 183 0.23
0.400 0.397 187 0.23
0.400 0.399 188 0.23
0.400 0.400 188 0.24
0.500 0.439 207 0.26
0.500 0.486 229 0.29
0.500 0.497 234 0.29
0.500 0.499 235 0.29
0.500 0.500 235 0.29
0.600 0.539 254 0.32
0.600 0.586 276 0.34
0.600 0.597 281 0.35
0.700 0.638 300 0.38
0.700 0.686 32·3 0.40
0.800 0.736 346 0.43
0.800 0.786 370 0.46
0.900 0.836 393 0.49
1.000 0.925 435 0.54
1. 300 1.100 518 0.65
1. 400 1. 295 609 0.76
2.100 1.649 776 0.97
3.000 1. 949 1227 1.36
10.500 r/J It 'f:. ~ 3-'--01i~~ 3782 3.26
1.700 o . 0-0 0.00
1.100 0.015 0 0.00
0.900 0.0J.7 0 0.00
L
I
I
I
I,
I
, ' ..
I
I
:1
I
I
I
I
I
I
I
I
I
I
I
4.83 0.700
5.00 0.600
5.17 0.600
5.33 0.500
5.50 0.500
5.67 0.400
5.83 0.400
6.00 0.400
6.17 0.000
0.018
0.018
0.019
0.020
0.020
0.021
0.021
0.022
0.022
o o o o o o o o o
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
'I
. . '
I I -!
I
,I
I
I
.1
I
I
I
I
I;
I,
I
I
I
APPENDIX
l' • • ',"... '. '. "
", .'
-----10.0
9.0
8.0
7.0
6.0
5.0 I
4.0 I
I 3.0
"C ~ j
2.
. ~1. ;:0. :c ~o.
20 ..s'
o.
o
o
o
o
I
I
I
I .
I
;
I
I
!
" ..... "" '" ~ .....
I' i'. r.....
t-.. 1'" . ..... ~
"-1' .....
I'r--I'
'",
""
I' ...........
..... I'
l-f-
-f-i-
" i'o.l
I ....... '" ..... I' I" i' l"-
..... I' I' i-1''''''' I"" I" I' I'.. • ~
r--", I' i'i' !'-.
I. i" '" ~I'
i' ~
t..... I'-
I>
'",
i"r-.
~ r~
I ,
..
I
-1-,
,,~.~ -.. ' ~~ ..... ... ----. -.. -..... '"" " .... -.. -.... ,,, ...... ~.
-
-l-I---.. -
o I, II
5 6 7 8 910 15 20 30
Minutes
1
j
-
_ ..
40 50
Duration
..........
EQUATION
I . = 7.44 P6 0-0.645
I = Intensity (in/hr)
P6 = 6-Hour Precipitation (in)
D = Duration (min)
i'.i'.
~ '" i' I"
i' " "'r-, ... " I-~ i'o.'" I .. i'f"o ..... ~ i'i' i'
I i'
i' I'
i"
i'o.i'
, ...
i'
I-
t i'.i' i'
.. .. \
I
. ---.. ... I ..." ."------.. . ..
..... 1-,--1---... _ .... . ..
I
I
1
I
I
..
± o c: ...
;E
Q •
6.0 -g.
5.5 g
5.0 g
4.55" o 4.0 S
3.5 .!!!,
3.0
2.5
2.0
1.5
1.0
2 3 4 5 6
Hours
Intenslty-Duratton DeSign Chtlrt -Template
.. .• . : •. --... -;
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included In the
County Hydrology Manual (10. 50, and 100 yr maps included
In the Design and Procedure Manual).
(2) Adjust'6 hr precipitation (if necessary) so that It is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) This line Is the intensity-duration curve for the location
being analyzed .
Application Form:
(a) Selected frequency @(J year
(b) Ps = 1-1 in .• P24 = ~ .pP6 = ~ "10(2)
1 24 (c) Adjusted P6(2) = ~ In.
(d) tx = _ min.
(e) I = __ in.lhr •
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
..
IF IS.UlR EI
-
I
I 0...-bJ)C\:S .~ S '" ~ ... = ~ro .S! 0
I := ~~ ~ '" .. I .. §< ... ii ~6i3 &:: r:: ~ .. ;. ~ (ij ~ ~ I OJa .g, 3 a. 0 j~ .s &:: .!!!
~ ·OJ ~ p:: ... ..
I O£ .. ;..
0 U 0 -
,I
I
I
I
'I:
I
·1'
I
I
'1\
1\
I
I
I
I
I
I
I,
I'
I
I
I·
I
J
I
I
I
I
I
I:
I
I
I
-.. ' -.. ' .. .. ... ' .. .. .. .. ..
r
-i ;, ! _tHl I
i, T:'~;"<i!'
:tj::L, I! ! . I I I . :P_;,' ",',-1--"'-
:~Hl'''' " . ' , .... -, '1 ' • " r ".'" '''''''','''' "'" "",, 't"'i:'T";-""rf" I" " ... "l-~''''j""t''''l-"'-1-1 t I' ;, , .. ,,+ rf-.j-+-';--'j'-jl""J-I-f.".W-J±t-I-'j!....;-. ' f 2-3 I •• I ! Ii: I . I I! . I I' I , f i I " • I .' • !! . \ .:. 1 'I;! l . i:l";'~' . ~· .. ·i·Nl·!.. . Q .. j ... , ... "~,,i I ... ", .ra .. L .. ;!. I ! ! I ... :!!; ! I : : , I~, ! '. I _ _ i. ~ .IN'.i •• , •. ·,L:.rt'
;~--~--~~,~,--~--
.. -.. ' --- -
County of San Diego
Hydrology Manual
Soil Hydrologic Groups
Legend
Soil Groups
~ Group A
_ Groups
1m Groupe
_ GroupO
~ Undetermined o Data Unavailable
DPW ~GIS
~#II".AJ.a.~ ..... ,.....,~_.sw..-
~
S11lGIS
We Have ~:ln Du:~u Cmcn::J~
fHIIa.wo.PfIIOIII)(DWIlHOUTWAlllWnVOPNH'UloC.lmcI'lD,.,. .. OAIW'Lllo...a.I"IOIHQ • .uTNOTUloIIflD 10. THE....".DWNlIWtTIU OIUD1CtWi1'MUTYAND'lTNUIfOI\AI'MllCU..NI:l'UfI1'OI(, c.".""IeMM."~"-'w4.
n. ........................... lINCIAO ......... ~.,..... ....... Q,/ftII .................. ... ""' .... ...-.-fIIUrHC1.\G,.
"""' ................ ..,...... ............ "...... ... '*--.---,.,--." ..... ...,..
o 3 Miles
~
----~~---~~~~~~-~--
San Diego County Hydrology Manual
Date: June 2003
Table 3-1
Section:·
Page:
RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient "C"
Soil Type
NRCS Elements Coun Elements %IMPER. A B
Undisturbed Natural Terrain (Natural) Permanent Open Space . . 0* 0.20 0.25
Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32
Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38
Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41
Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45
Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51
Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54
Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58
High Density Residential/(HDR) Residential, 24.0 DU/A or less 65 0.66 0.67
High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77
CommerciaVIndustrial (N. Com) Neighborhood Commerc:ial 80 0.76 0.77
CommerciaVIndustrial (G. Com) General Commercial 85 0.80 0.80
CommerciaVIndustrial (O.P. Com) Office ProfessionaVCommercial 90 0.83 0.84
CommerciaVIndustrial (Limited I.) Limited Industrial 90 0.83 0.84
General Industrial 95 0.87 0.87
C
0.30
0.36
0.42
0.45
0.48
0.54
0.57
0.60
·0.69
0.78
0.78
0.81 .
0.84
0.84
:0.87
3
60f26
D
0.35
0.41
0.46
0.49
0.52
0.57
0.60
0.63.
0.71
0.79
0.79
0.82
0.85
0.85
0.87
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff
coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area
is located in Cleveland National Forest).
DU/A = dwelling un·its per acre -
NRCS = National Resources Conservation Service
3-6
....... _ .. I.I~ .. ~ t. ... ~~
-~-~------~-~-~-~----
Iii w u.
~
W (J
Z ~ en is
w ~ :> o ~ W I-~
1001 1.5 IVN/,/ Ie I ,-~~
en ~
! 1///*/:/1' y?'1 ~ ~20~
~
w :E i=
~ u. I ~ ,cP .. _,o -~ ~::---=-10 i
~=-L------L----~~----J-----~------~----~-----7:'O
EXAMPLE:
Given: Watercourse Distance (D) = 70 Feet
Slope (s) =1.3%
Runoff Coefficient (C) = 0.41
Overland 'Flow Time (T)::: 9.5 Minutes
T = 1.8 (i.i-e) Vi) 3VS
~
SOURCE: Airport Drainage, Federal Aviation Administration, 1965
FIGURE
, Rational Formula· Overland Time of Flow Nomograph ,3·3
••• ~_~ • ..A~
I
I
I
I
I
"I
I
I
I
"I
I"
I
I
I
I
I"
I
I
I
Q)
0.
10
.Q 3 (jJ
1~1.5'--+1
1~=·01s.....+~ __
____ .::.:2'*:::..0 ---...l _ -n = .0175
2%
2
EXAMPLE:
Concrete Gutter
Given: Q = 10 S = 2.5%
Paved
3 4 5 6 7 8 9 10
Discharge (C.F.S.)
Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s.
SOURCE: San Diego County Department of Special District Services Design Manual
Gutter and Roadway Discharge· Velocity Chart
RESIDENTIAL STREET
ONE SIDE ONLY
20 30 40 50
FIGURE
~
r
f
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Watershed Divide '\
..-------~~
~ ~ \ ~ /' " -~, ' '\ ,'. ' \ ,----.-. \,--~ ... ?-." ------........... _... -~ ~ -.. ~ ,1' ,~ ------'---~. . ~ ./
'--'/
~ --------~----------------------L~==~==~~===-------~
Watershed
Divide
T'
~E
I Effective Slope Line De$ign Point
(Watershed,Outlet)
I
I+-------~----------------------L------------------------------~·I
Area "A" = Area "B"
SOURCE: California Division of Highways (1941) and Kirpich (1940)
FIGURE
Computation of Effective Slope for Natural Watersheds ~
, I
1
I I ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AE
Feet
5000
4000
Tc
Tc
L
AE
=
=
=
=
EQUATION ( 12:~3y.385
Time of concentration (hours)
Watercourse Distance (miles)
Change in elevation along
effectlve slope line (See Figure 3-5) (feet)
30GO
20DO
10GO
900
800
'YDO
6O(r ,
500' ,
4GO '~ '+~ ,,~
300 ~<& , , , , , , L
, Miles Feet
10
5
h.E
SOURCE: California Division of Highways (1941) and Kirpich (1940)
,
'1 ,
0.5
L
4000 , .
3000 ,
2000
1800 1600
1400
1200
1000
900
800
700
600
500
200
,
Nomograph for Determination of
Tc
Hours Minutes
30
, , , , ,
5
Tc
Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds
FIGURE ~
t-I ~
i r ~ i i : ,
I ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual Section:
Date: June 2003 Page:
SECTION 6
RATIONAL METHOD HYDRO GRAPH PROCEDURE
6.1 INTRODUCTION
6
loflO
The procedures in this section are for the development of hydro graphs from RM study
results for study areas up to approximately 1 square mile in size. The RM, discuss.ed in
Section 3, is a mathematical formula used to determine the maximum runoff rate from a
given rainfall. It has particular application in urban storm drainage, where -it is used to
estimate peak runoff rates from small urban and rural watersheds for the design of storm
drains and small drainage structures. However, in some instances such as for design of
detention basins, the peak runoff rate is insufficient information for the design, and a
hydrograph is needed. Unlike the NRCS hydrologic method (discussed in Section 4), the
RM itself does not create hydrographs. The procedures for detention basin design based
on RM study results were first developed as part of the East Otay Mesa Drainage Study.
Rick Engineering Company performed this study under the direction of County Flood
Control. The procedures in this section may be used for the development of hydro graphs
from RM study results for study areas up to approximately 1 square mile in size.
6;2 HYDRO GRAPH DEVELOPMENT
The concept of this hydro graph procedure is based on the RM formula:
Q=CIA
Where: Q = peak discharge, in cubic feet per second (cfs)
C = runoff coefficient, proportion of the rainfall that runs off the surface
(no units)
I = average rainfall intensity for a duration equal to the T c for the area,
in inches per hour
A = drainage area contributing to the design location, in acres
The RM formula is discussed in more detail in Section 3.
6-1
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
6
20f1O
An assumption of the RM is that discharge increases linearly over the T c for the drainage
area until reaching the peak discharge as defined by the RM formula, and then decreases
ihiearly.· A linear hydrograph can be ·developed for the peak flow ·occurring over the T c ..
as shown in Figure 6-1. However, for designs that are dependent on the total storm
volume, it is not sufficient to consider a single hydrograph for peak flow occurring over
the Teat the beginning of a 6-hour storm event because the hydrograph does not account
for the entire volume of runoff from the storm event. The volume under the hydrograph
shown in Figure 6-1 is equal to the rainfall intensity multiplied by the duration for which
that intensity occurs (T c), the drainage area (A) contributing to the design location, and
the runoff coefficient (C) for the drainage area. For designs that are dependent on the
total storm volume, a hydrograph must be generated to account for the entire volume of
runoff from the 6-hour storm event. The hydro graph for the entire 6-hour storm event is
generated by creating a rainfall distribution consisting of blocks of rain, creating an
incremental hydrograph for each block of rain, and adding the hydro graphs from each
block of rain. This process creates a hydro graph that contains runoff from all the blocks
of rain and accounts for the entire volume of runoff from the 6-hour storm event. The
total volume under the resulting hydrograph is equal to the following equation:
Where: VOL = volume of runoff (acre-inches)
P6 = 6-hour rainfall (inches)
C = runoff coefficient
A = area of the watershed (acres)
6-2
(Eq.6-1)
i .~ I
• J
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~:
"
" II \1
II
FIGURE
Triangular Hydrograph ~
I
I
I
I
I
"I-
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
6.2.1 Rainfall Distribution
Section:
Page:
6
40fl0
Figure 6-2 shows a 6..;hour rainfall distribution consisting of blocks of 'rain' over-
increments of time equal to Te. The number of blocks is detennined by rounding Te to
the nearest whole number of minutes, dividing 360 minutes (6 hours) by Te, and rounding
again to the nearest whole number. The blocks are distributed using a (2/3, 1/3)
distribution in which the peak rainfall block is placed at the 4-hour time within the 6-hour
rainfall duration. The additional blocks are distributed in a sequence alternating two
blocks to the left and one block to the right of the 4-hour time (see Figure 6-2). The total
amount of rainfall (PT(N) for any given block (N) is determined as follows:
PT(N) = (IT(N) T T(N) 160
Where: PT(N) = total amount of rainfall for any given block (N)
h(N) = average rainfall intensity for a duration equal to T T(N) in inches per hour
TT(N) = NTe in minutes (N is an integer representing the given block number
of rainfall)
Intensity is calculated -using the following equation (described in detail in Section 3):
1= 7.44 P6 D-O•645
Where: I = average rainfall intensity for a duration equal to D in inches per hour
P6 = adjusted 6-hour storm rainfall
D = duration in minutes
6-4 I
I f j
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
-en 4) .s::. 0 c :.::.
:g c '6 0::
.. .. ~ .
. . ..
Ore) (Tcf60)~ h;;->I
r-;-.
(l2Te) (2Te/60) • (Ire) CTc/60) 1
(13Tc) (3Tc/60) • (l2Te) (2Te/6O)
2 (14Tc) (4Tc/6Q) • (13Te) (3Tc/60)
r-3 4 5 r-~ 6
~ 8 M
'--4 (hours)
Time
F I G U R E
Rainfall Distribution
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
6
6oflO
Substituting the equation for I in the equation above for PT(N) and setting the duration (D)
equal to T T(N) yields:
PT(N) = [(7.44 P ~ T(N) oo645)(T T(N»)] / 60
PT(N) ='0.124 P6TT(N)°o355
Substituting NTc for TT (where N equals the block number of rainfall) in the equation
above yields:
(Eq.6-2) 0
Equation 6-2 represents the total rainfall amount for a rainfall block with a time base
equal to T T(N) (NTc). The actual time base of each rainfall block in the rainfall
distribution is Tc, as shown in Figure 6-2. The actual rainfall amount (PN) for each block
of rain is equal to PT at N (PT(N») mnus the previous PT at N-l
(PT(N-I)) at any given multiple of Tc (any NTc). For example, the rainfall for block 2 is
equal to PT(N) at TT(N) = 2Tc minus the PT(N) at TT(N) = lTc, and the rainfall for block 3
equals PT(N) at TT(N) = 3Tc minus the PT(N) at TT(N) = 2Tc• or PN can be represented by the
following equation:
(Eq.6-3)
For the rainfall distribution, the rainfall at block N = 1, (1 Tc), is centered at 4 hours, the
rainfall at block N = 2, (2Tc), is centered at 4 hours -lTc, the rainfall at block N = 3,
(3Tc), is centered at 4 hours -2Tc, and the rainfall at at block N = 4, (4Tc), is centered at
4 hours + 1 Tco The sequence continues alternating two blocks to the left and one block to
the right (see Figure 6-2).
6-6
I
I
I
I,
I
-I'
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
6.2.2 Construction of Incremental Hydrograpbs
Section:
Page:
6
7oflO
Figure 6-1 shows the relationship of a single block of rain to a single hydrograph.
Figure 6-3 shows the relationship of the rainfall distribution to the overall hydrograph for,
, the storm' event. The peak flow amount from each block of rain is determined by the RM ' ,
formula, Q = CIA, where I equals IN (the actual rainfall intensity for the r~nfal1 block).
IN is determined by dividing PN by the actual time base of the block, Te. The following: .' ''':<i -<'
equation shows this relationship:
(Eq.6-4)
Where: IN = average rainfall intensity for a duration equal to Te in inches per hour
PN = rainfall amount for the block in inches
Te = time of concentration in minutes
By substituting equation 6-4 into the rational equation, the following' relationship is
obtained:
(Eq.6-5)
Finally, the overall hydrograph 'for the storm 'event is determined by adding 'all the
hydrographs from each block of rain. Since the peak flow amount for each incremental
hydrograph corresponds to a zero flow amount from the previous and proceeding
hydrographs, as shown in Figure 6-3, the inflow hydrograph can be.plotted by connecting
the peak flow amounts (see the dashed line in Figure 6-3).
6-7
I
I
I
I
I
·1
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
Time (minutes)
.. 240 (4 hours) 360
o
(6 hours)
H
o H .··360·
(6 hours)
Time (minutes)
FIGURE
6-Hour Rational Method Hydrograph E
I
1
I
I
1
I
1
I
I
I'
I
I
I'
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
6.3 GENERATING A HYDRO GRAPH USING RATHYDRO
Section:
Page:
6
90flO
The rainfall distribution and related hydro graphs can be developed using the'
RATHYDRO computer program provided.to the County by Rick Engineering Company.
A copy of this program is available at no cost from the County. The output from this
computer program may be used with HEC-l or other software for routing 'purposes.
The design stonn pattern used by th~ RATHYDRO program is based on the (2/3, 1/3)
distribution described in Sections 4.1.1 and 6.2.1. The ordinates on the hydrograph are
calculated based on the County of San Diego Intensity-Duration Design Chart (Figure 3-
1), which uses the intensity equation described in Sections 3.1.3 and 6.2.1.to relate the
intensity (1) of the stonn to Te, I = 7.44 P6D-O·645. The computer program uses equations
6-2 and 6-3 described above and calculates IN directly. The intensity at any given
multiple ofTe is calculated by the following equation:
Where: N = number of rainfall blocks
T T(N) = time of concentration at rainfall block N in minutes (equal to
NTc)
IN = actual rainfall intensity at rainfall block N in inches per hour
(Eq.6-6)
h(N) = rainfall intensity at time of concentration T T(N) in inches per hour
Figure 6-2 shows the rainfall distribution used in the RM hydrograph, computed at
multiples of Te. The rainfall at block N = 1, (1 Te), is centered at 4 hours, the rainfall at
block N = 2, (2Tc), is centered at 4 hours -lTc, the rainfall at block N = 3, (3Tc), is
centered at 4 hours -2Te, and the rainfall at at block N = 4, (4Tc), is centered at 4 hours +
1 Tc. The sequence continues alternating two blocks to the left and one block to the right
(see Figure 6-2).
As described in Section 6.2.2, the peak discharge (ON) of the hydrogr~ph for any given
rainfall block (N) is detennined by the RM fonnula Q = CIA, where 1.= IN = the actual
6-9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
6
10ofl0
rainfall intensity for the rainfall block. The RATHYDRO program substitutes equation
6-6 into the RM formula to determine ON yielding the following equation:
(Eq.6-7)
Where: ON = peak discharge for rainfall block N in cubic feet per second (cfs)
N = number of rainfall blocks
T T(N) = time of concentration at rainfall block N in minutes (equal to 'NT e)
h(N) = rainfall intensity at time of concentration T T(N) in inches per hour
C = RM runoff coefficient
A = area of the watershed (acres)
To develop the hydrograph for the 6-hour design stonn, a series of triangular hydrographs
with ordinates at multiples of the given Teare created and added to create the
hydrograph. This hydrograph has its peak at 4 hours plus Y2 of the Te. The total volume
under the hydrograph IS 'equal to the following equation (equation 6-1):
VOL = CP<>A
Where: VOL = volume of runoff ( acre-inches)
P6 = 6-hourrainfall (inches)
C = runoff coefficient
A = area of the watershed (acres)
6-10