HomeMy WebLinkAboutCT 02-12; CARLSBAD OFFICE CAMPUS; PRELIMINARY DRAINAGE STUDY; 2003-06-18I
:1
I
,I
'I
I
,I
,-I
I
I
I
I
I
I
I
I
I
I
I
K&S ENGINEERING
Planning Engineering Surveying
'PRELIMINARY DRAINAGE STUDY
FOR
CARLSBAD OFFICE CAMPUS
IN
CITY OF CARLSBAD
IN 01-048
June 18, 2003
48592 DAtE •
7801 Mission Center Court, Suite 100 • San Diego, California 92108 • (619) 296-5565 • Fax (619) 296-5564
I
I
I
I
I
I
I
I
I
I
I
'I
.1
I
I
I
I
I
I
TABLE OF CONTENTS
1.SITE DESCRIPTION
2.·HYDROLOGY DESIGN MODELS
3.INLET DESIGN ....................... APPENDIX A
4.HYDROLOGIC CALCULATIONS .......................... APPENDIX B
S.TABLES AND CHARTS ................................ APPENDIX C
6.HYDROLOGY MAPS ................................... APPENDIX D
I
I
~I
I
:1
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
1. SITE DESCRIPTION
A. EXISTING CONDITION
THE EXISTING SITE CONSISTS OF PARCEL 1 OF PARCEL MAP
NO. 16274.
THE ENTIRE SITE CURRENTLY SURFACE-FLOWS TO AN ONSITE
CONCRETE CHANNEL THAT FLOWS NORTHERLY, ALONG THE
WESTERLY PROPERTY LINE AND OUTLETS INTO AN EXISTING
FLOOD C'ONTR'OL CHANNEL LOCATED WITHIN A DRAINAGE.
EASEMENT IN FAV'OR 'OF THE STATE 'OF CALIF'ORNIA.
IN ADDITION OFFSITE FLOWS FR'OM THE PR'OPERTY T'O ,THE
SOUTH 'ENTER THE SITE AT THE SOUTHWESTERLY CORNER.
THE T'OTAL C'OMBINED FL'OW (Q100) EXITING THE SITE IS 89
CFS.
B. PROPOSED CONDITION
THE PROPOSED TENTATIVE MAP CONSISTS OF LOTS A THR'OUGH E
'OF THE CARLSBAD 'OFF I CE CAMPUS WITH A T'OTAL 'OF FOUR
INDUSTRIAL BUILDINGS AND THEIR CORRESPONDING PARKING
AREAS. FURTHERMORE, A RUN'OFF COEFFICIENT (C) OF 0.95
WAS USED SINCE THE ENTIRE SITE IS LOCATED IN SOIL GROUP
"D". THE PROP'OSED DRAINAGE PATERN IS C'ONSISTENT WITH
THAT 'OF THE EXISTING CONDITION. THE PROPOSED SITE WILL
SURFACE -DRAIN TO TW'O PR'OP'OSED CURB INLETS L'OCATED 'ON
THE NORTHWESTERLY SIDE 'OF THE SITE.
IN ADDITI'ON, THE 'OFFSITE FLOWS WILL BE INTERCEPTED BY A
NEW 2' X6' RCB DRAIN, WHICH WILL REPLACE THE EXISTING
'ONSITE C'ONCRETE CHANNEL MENTI'ONED ABOVE. THE T'OTAL
C'OMBlNED FLOW EXITING THE SITE IS 94 CFS.
C. SUMMARY
THE INCREASE IN FLOW FROM THE EXISTING T'O THE PROP'OSED
C'ONDITI'ON IS 5 CFS (5% INCREASE); THEREF'ORE, THE
PROPOSED DEVELOPMENT WILL NOT CAUSE A SIGNIFICANT
IMPACT T'O THE D'OWNSTREAM STORM DRAIN SYSTEM. ALS'O, A 2-
YEAR STORM ANALYSIS DEMONSTRATES THAT ALL THE PIPES'
HAVE VEL'OCITIES GREATER THAN 4 FPS EXCEPT F'OR THE
2'X6'RCB WITH A VEL'OCITY OF 3.48 FPS AS DISCUSSED WITH
CITY STAFF.
ALSO, A SEPARATE REP'ORT ENTITLED "WATER QUALITY
TECHNICAL REP'ORT" HAS BEEN PREPARED FOR THE PR'OJECT.
THIS REPORT Ap:QRESSES TH? SAN DIEG'O REGI'ONAL WATER
QUALITY B'OARD 'ORDER 2001.01. BRIEFLY,. THE REPORT
DEMONSTRATES THAT THERE WILL BE N'O DOWNSTREAM IMPACTS
DUE T'O DEVEL'OPMENT 'OF THE SITE WITH RESPECT TO WATER
QUALITY AND ER'OSI'ON.A MAINTENANCE PR'OGRAM F'OR THE BMP'S
HAS ALS'O BEEN ADDRESSED IN THE REP'ORT.
I
I 2. HYDROLOGY DESIGN MODELS
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
A. DESIGN METHODS
THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY; THE RATIONAL
FORMULA I S AS FOLLOWS:
Q = CIA, WHERE: Q= PEAK DISCHARGE IN CUBIC· FEET/SECOND *
C = RUNOFF COEFFICIENT (DIMENSIONLESS)
I = RAINFALL INTENSITY IN INCHES/HOUR (PER FIGURE 3-1)
A TRIBUTARY DRAINAGE AREA IN ACRES
*1 ACRE INCHES/HOUR = 1.008 CUBIC FEET/SEC
THE OVERLAND FLOW METHOD IS ALSO USED IN THIS HYDROLOGY STUDY; THE
OVERLAND FLOW FORMULA IS AS FOLLOWS:
B.
C.
Tc=1.8 (l.l-C) (L) .5/ [S (100)] .333
L = OVERLAND TRAVEL DISTANCE IN FEET
S = SLOPE IN FT./FT.
Tc= TIME IN MINUTES
DESIGN CRITERIA
-FREQUENCY, 100 YEAR STORM.
-LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP.
-RAIN FALL INTENSITY PER COUNTY OF SAN DIEGO 2001 HYDROLOGY
DESIGN MANUAL.
REFERENCES
-COUNTY OF SAN DIEGO 2001, HYDROLOGY MANUAL.
-COUNTY OF SAN DIEGO 1992 REGIONAL SrANDARD DRAWINGS.
-HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION.
I
·1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX A
(3. HYDROLOGY CALCULATIONS)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
EXISTING HYDROLOGY
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 03/27/03
********* HydrologY'Study Control Information **********
--------------------------------------------------~-------~-------------K & S Engineering, San Diego, CA -SiN 868
--------------------------------------------------~---------------------Rational hydrology study storm event year is
English (in-lb) input data Units used
English (in) rainfall data used
Map data precipitation entered:
6 hour, precipitation (inches) = 2.600
24 hour precipitation(inches) 4.200
Adjusted 6 hour precipitation (inches) = 2.600
P6/P24 = 61.9%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
0.000 Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 54.200(Ft.)
Lowest elevation = 48.300(Ft.)
]
500.000(Ft.)
Elevation difference 5.900(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 5.71 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.5)/(% slopeA (1/3)]
TC = [1.8*(1.1-0.9500)*( 500.000A.5)/( 1.180A(1/3)]= 5.71
Rainfall intensity (I) = 6.286(In/Hr) for a 100.0 year storm
Effective runoff coefficien~ used for area (Q=KCIA) is C = 0.950
Subarea runoff = 29.857(CFS)
Total initial stream area = 5.000(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 48.300(Ft.)
Downstream point elevation 47.400(Ft.)
Channel length thru subarea 250.000(Ft.)
Channel base width O.OOO(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel 38.695(CFS)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's 'N' = 0.020
Maximum depth of channel 1.000(Ft.)
Flow(q) thru subarea = 3B.695(CFS)
Depth of flow = 0.617(Ft.), Average velocity 2.035(Ft/s)
Channel flow top width = 61.675(Ft.}
Flow Velocity = 2.03(Ft/s)
Travel time 2.05 min.
Time of concentration = 7.76 min.
Critical depth = 0.520(Ft.)
Adding area flow to channel
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D 1.000
[INDUSTRIAL area type
Rainfall intensity 5.159(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950
Subarea runoff 14.506(CFS) for 2.960(AC.}
Total runoff = 44.363 (CFS) Total area = 7.96(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 42.900(Ft.}
Downstream point elevation 42.500(Ft.}
Channel length thru subarea BOO.OOO{Ft.)
Channel base width = 6.000(Ft.}
Slope or 'Z' of left channel bank =
Slope or 'Z' of right channel bank =
1.000
1.000
Estimated mean flow rate at midpoint of channel
Manning's 'N' = 0.015
Maximum depth of channel 5.000(Ft.}
Flow(q) thru subarea = 77.B31{CFS)
Depth of flow = 2.760(Ft.}, Average velocity
Channel flow top width = 11.521{Ft.}
Flow Velocity = 3.22{Ft/s}
Travel time 4.14 min.
Time of concentration = 11.90 min.
~ritical depth = 1.57B(Ft.}
Adding area flow to channel
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL "area type
0.000
0.000
0.000
1.000
77.831(CFS}
3.219(Ft/s)
Rainfall intensity 3.915{In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C -
Subarea runoff = 44.668{CFS} for 12.010(Ac.}
Total runoff = 89.031(CFS} Total area
End of computations, total study area =
19.97 {Ac.}
19.970 (Ac.)
0.950
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PROPOSED HYDROLOGY
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 03/27/03
********* Hydrology Study Control Information **********
K & S Engineering, San Diego, CA -SIN 868
Rational hydrology study storm event year is
English (in-lb) input data Units used
English (in) rainfall data used
Map data precipitation entered:
6 hour, precipitation (inches) = 2.600
24 hour precipitation(inches) = 4.200
Adjusted 6 hour precipitation (inches) = 2.600
P6/P~4 = 61. 9%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = S3.490(Ft.)
Lowest elevation = SO.110(Ft.)
]
SOO.OOO(Ft.)
Elevation difference 3.380(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 6.88 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.5)/(% slopeA(1/3)]
TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.676A(1/3)l= 6.~8
Rainfall intensity (I) = S.S76(In/Hr) for a 100.0 year storm
Effective runoff coefficie~t used for area (Q=KCIA) is C = 0.950
Subarea runoff = 8.900(CFS)
Total initial stream area = 1.680(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = SO.110(Ft.)
Downstream point elevation 46.260(Ft.)
Channel length thru suba+~~ = 380.0QQ(ft.)
Channel base width 0.000 (Ft.) ,
Slope or 'Z' of left channel bank = 25.000
Slope or 'Z' of right channel bank = 0.200
Manning's 'N' = 0.013
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Maximum depth of channel 0.500(Ft.)
Flow(q) thru subarea = B.900(CFS)
Depth of flow = 0.421(Ft.), Average velocity
Channel flow top width = 10:611(Ft.)
Flow Velocity = 3.9B(Ft/s}
Travel time 1.59 min.
Time of concentration = 8.47 min.
Critical depth = 0.500(Ft.)
3. 9B4 (Ft/s)
++++++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++++++++
Process from Point/station 2.000 to Point/Station 3.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A =
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
0.000
0.000
0.000
1.000
B.47 min.
[INDUSTRIAL area type
Time of concentration
Rainfall intensity
Runoff coefficient
Subarea runoff
4.B76 (In/Hr) for a 100.0 year storm
used for sub-area, Rational method,Q=KCIA, C
32.474 (CFS) for 7.010(Ac.}
Total runoff = 41.374(CFS} Total area = B.69(Ac.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43.500(Ft.}
Downstream point/station elevation 42.690(Ft.}
Pipe length = 142.00(Ft.} Manning's N = 0.013
No. of pipes = 1 Required pipe flow 41.374(CFS}
Given pipe size = 30.00(In.}
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
2. 2B9 (Ft.) at the headworks or inlet of the pipe'(s)
Pipe friction loss = 1.444(Ft.)
Minor friction loss = 1.655(Ft.) K-factor = 1.50
Pipe flow velocity = B.43(Ft/s)
Travel time through pipe 0.2B min.
Time of concentration (TC) = B.75 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.000
Time of concentration B.75 min.
Rainfall intensity 4.775(In/Hr} for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C
Subarea runoff = 0.953(CFS} for 0.210(Ac.}
Total runoff = 42.326(C¥S) Total area B.90 (Ac.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.690(Ft.)
Downstream point/station elevation 42.S00(Ft.)
Pipe length 19.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 42.326 (CFS)
Given pipe size = 30.00(In.) ~
Calculated individual pipe flow 42.326(CFS)
Normal flow depth in pipe = 2S.SS(In.)
Flow top width inside pipe = 21.33(In.)
Critical Depth = 26.13(In.)
Pipe flow velocity = 9.S0(Ft/S)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 8.78 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station S.OOO
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream 1s listed:
In Main Stream number: 1
Stream flow area = 8.900(Ac.)
Runoff from this stream 42.326(CFS)
Time of concentration = 8.78 min.
Rainfall intensity = 4.763 (In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 6.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.QOO
Initial subarea flow distance
Highest elevation = S3.490(Ft.)
Lowest elevation = 49.000(Ft.)
]
sOO.OOO(Ft.)
Elevation difference 4.490(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 6.26 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.S)/(% slopeA(1/3)]
TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.898A(1/3JJ= 6.~6
Rainfall intensity (I) = S.927(In/Hr) for a 100.0 year sto~
Effective runoff coefficient used for area (Q=KCIA) is C = 0.950
Subarea runoff = 7.489(CFS)
Total initial stream area = 1.330(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 49.000(Ft.)
Downstream point elevation 46.600(Ft.)
Channel length thru subarea ~ 350.000(Ft.)
Channel base width O.OOO(Ft.)
Slope or 'Z' of left channel bank = 0.200
Slope or 'Z' of right channel bank = 0.083
Estimated mean flow rate at midpoint of channel 8.840(CFS)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's 'N' = 0.015
Maximum depth of channel 0.500(Ft.)
Flow(q) thru subarea = 8.840(CFS)
Depth of flow = 7.676(Ft.), Average velocity 8.414(Ft/s)
!!Warning: Water is above left or right bank elevations
Channel flow top width = 0.142(Ft.)
Flow Velocity = 8.41(Ft/s)
Travel time 0.69 min.
Time of concentration 6.95 min.
Critical depth = 5.188(Ft.)
ERROR -Channel depth exceeds maximum allowable depth
Adding area flow to channel
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
group D
0.000
0.000
0.000
1.000 Decimal fraction soil
[INDUSTRIAL area type
Rainfall intensity
Runoff coefficient
Subarea runoff
5.539(In/Hr) for a 100.0 year storm
used for sub-area, Rational method,Q=KCIA, C
2.526(CFS) for 0.480(AC.)
Total runoff = 10.015(CFS) Total area = 1.81(AC.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Proces~ from Point/Station 7.000 to Point/Station 8.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43.650(Ft.)
Downstream point/station elevation 43.430(Rt.)
Pipe length 22.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 10.015(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 10.015(CFS)
Normal flow depth in pipe = 14.06(In.)
Flow top width inside pipe = 14.88(In.)
Critical Depth = 14.64(In.)
Pipe flow velocity = 6.77(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 7.01 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.810(Ac.)
Runoff from this stream 10.015(CFS)
Time of concentration 7.01 min.
Rainfall intensity = 5.511(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10. 000 to Point/Station 11. OO~O
**** INITIAL AREA EVALUATION ****
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
[INDUSTRIAL area type
group A
group B
group C
group D
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 54.200(Ft.)
1
500.000(Ft.)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Lowest elevation = 48.300(Ft.)
Elevation difference = S.900(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 5.71 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.5 )/(% slopeA(1/3)]
TC = [1.8*(1.1-0.9500)*( SOO.000A.5)/( 1.180A(1/3)]= 5.71
Rainfall intensity (I) = 6.286 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.950
Subarea runoff = 29.857(CFS)
Total initial stream area = S.OOO(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
Upstream point elevation 48.300(Ft.)
Downstream point elevation 47.400{Ft.)
Channel length thru subarea 250.000(Ft.)
Channel base width O.OOO(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel 38.695{CFS)
Manning's 'N' = 0.020
Maximum depth of channel 1.000(Ft.)
Flow{q) thru subarea = 38.695{CFS)
Depth of flow = 0.617(Ft.), Average velocity 2.03S{Ft/s)
Channel flow top width = 61.675(Ft.)
Flow Velocity = 2.03(Ft/S)
Travel time 2.05 min.
Time of concentration = 7.76 min.
Critical depth = 0.520(Ft.)
Adding area flow to channel
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[INDUSTRIAL area type
Rainfall intensity 5.1S9(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950
Subarea runoff 14.S06(CFS) for 2.960(Ac.)
Total runoff = 44.363 (CFS) Total area = 7.96(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 8.·000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
Upstream point elevation 43.490(Ft.)
Downstream point elevation 43.430(Ft.)
Channel length thru subarea SO.OOO(Ft.)
Channel base width 6.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.013
Maximum depth of channel 2.000(Ft.)
Flow(q) thru subarea = 44.363(CFS)
Depth of flow = 1.748(Ft.); Average velocity
Channel flow top width = 6.000(Ft.)
Flow Velocity = 4.23(Ft/s)
Travel time 0.20 min.
4.231(Ft!S)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Time of concentration
Critical depth =
7.96 min.
1.188(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 7.960(Ac.)
Runoff from this stream 44.363 (CFS)
Time of concentration = 7.96 min.
Rainfall intensity = 5.076 (In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 10.015 7.01 5.511
2 44.363 7.96 5.076
Qmax(l)
1. 000 * 1.000 * 10.015) +
1. 000 * 0.880 * 44.363) + 49.066
Qmax(2)
0.921 * 1. 000 * 10.015) +
1. 000 * 1.000 * 44.363) + 53.587
Total of 2 streams to confluence:
Flow rates before confluence point:
10.015 44.363
Maximum flow rates at confluence using above data:
49.066 53.587,
Area of streams before confluence:
1.810 7.960
Results of confluence:
Total flow rate = 53.587(CFS)
Time of concentration 7.958 min.
Effective stream area after confluence 9.770 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 5.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered charinel
Upstream point' elevation 43.430 (Ft.),
Downstream point elevation 42.500(Ft.)
Channel length thru subarea 775.000(Ft.)
Channel base width 6.000(Ft.)
Slope or 'Z' of left channel bank =
Slope or 'Z' of right channel bank =
Manning's 'N' = 0.013
0.000
0.000
Maximum depth of channel 2.000(Ft.)
Flow(q) thru subarea = 53.587(CFS)
Depth of flow = 1.998(Ft.), Average velocity =
Channel flow top width = 6.000(Ft.)
Flow Velocity = 4.47(Ft/s)
Travel time 2.89 min.
Time of concentration 10.85 min.
Critical depth = 1.359(Ft.)
4.470(Ft/s)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 8.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 9.770(Ac.)
Runoff from this stream 53.587(CFS)
Time of concentration = 10.85 min.
Rainfall intensity = 4.157(In/Hr)
Program is now starting with Main Stream No. 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 13.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 47.800(Ft.)
Lowest elevation = 45.500(Ft.)
1
SOO.OOO(Ft.}
Elevation difference 2.300(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 7.82 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.5}/(% slopeA(1/3}]
TC = [1.8*(1.1-0.9500}*( SOO.OOOA.S}/( 0.460A {1/3}1= 7.82
Rainfall intensity (I) = 5.133 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.950
Subarea runoff = 4.S3S(CFS}
Total initial stream area = 0.930(Ac.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 4S.500(Ft.)
End of street segment elevation = 44.390(Ft.)
Length of street segment 190.000(Ft.}
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 19.000(Ft.)
Distance from crown to crossfall grade break 17.S00(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side{s) of the street
Distance from curb to property line 5.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width = 1.S00(Ft.)
Gutter hike from flowline = 1.S00{In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150 .
Manning's N from grade break to crown = 0.0200
Estimated mean flow rate at midpoint of street = S.Sll'(CFS)
Depth of flow = 0.441(Ft.), Average velocity = 1.803(Ft/s}
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 17.277(Ft.)
Flow velocity = 1.80(Ft/s)
Travel time = 1.76 min. TC = 9.58 min.
Adding area flow to street
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
[INDUSTRIAL a,rea type
group A
group B
group C
group D
0.000
0.000
0.000
1.000
Rainfall intensity 4.504 (In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C
Subarea runoff 1.712 (CFS) for 0.400(Ac.)
Total runoff = 6.247(CFS) Total area = 1.33 (Ac.)
Street flow at end of street = 6.247(CFS)
Half street flow at end of street = 6.247(CFS)
Depth of flow = 0.458(Ft.), Average velocity = 1.858(Ft/s)
Flow width (from curb towards crown)= 18.139(Ft.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 5.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.810(Ft.)
Downstream point/station elevation = 42.500(Ft.)
Pipe length = 62.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 6.247(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 6.247(CFS)
Normal flow depth in pipe = 12.64(In.)
Flow top width inside pipe = 16.46(In.)
Critical Depth = 11.60(In.)
Pipe flow velocity = 4.71(Ft/s)
Travel time through pipe = 0.22 min.
Time of concentration (TC) 9.80 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.330(Ac.)
Runoff from this stream 6.247(CFS)
Time of concentration =
Rainfall intensity =
Summary of stream data:
9.80 min.
4.439(In/Hr)
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 42.326 8.78 4.763
2 53.587 10.85 4.157
3 6.247 9.80 4.439
Qmax(l)
1.000 * 1. 000 * 42.326) +
1.000 * 0.810 * 53.587) +
1.000 * 0.897 * 6.247) + 91.314
Qmax(2)
0.873 * 1. 000 * 42.326) +
1.000 * 1.000 '!\" 53.587) +
0.936 * 1. 000 * 6.247) + 96.374
Qmax(3)
0.932 * 1. 000 * 42.326) +
1.000 * 0.903 * 53.587) +
I
I
I
I
I
I
I
I
I
I.
·1
I
I
I
I
I
I
1. 000 * 1. 000 * 6.247) + = 94.088
Total of 3 main streams to confluence:
Flow rates before confluence point:
. 42.326 53.587 6.247
Maximum flow rates at confluence using above data:
91.314 96.374 94.088
Area of streams before confluence:
8.900 9.770 1.330
Results of confluence:
Total flow rate = 94.088(CFS)
Time of concentration = 9.797 min.
Effective stream area after confluence
End of computations, total study area = 20.000(Ac.)
20.000 (1!,c.)
I
I
I
I
I
I
I ,~
I
I
I
I
I
I
I
I
I
I
I
I
PROPOSED 2-YR HYDROLOGY
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2'
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 03/27/03
-----------~-----------------------------------------------~------------
********* Hydrology Study Control Information **********
K & S Engineering, San Diego, CA -SiN 868
Rational hydrology study storm event year is
English'(in-lb) input data Units used
English (in) rainfall data used
Map data precipitation entered:
6 hour, precipitation (inches) = 1.200
24 hour precipitation(inches) 1.800
Adjusted 6 hour precipitation (inches) = 1.170
P6/P2~ _ 66.7%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
2.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
[INDUSTRIAL area type
group A
group B
group C
group D
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 53.490(Ft.)
Lowest elevation = 50.110{Ft.)
]
500.000{Ft.)
Elevation difference 3.380{Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 6.88 min.
TC = [1.8*(1.1-C)*distance(Ft.)A.5 )/{% slopeA(1/3)]
TC = [1.8*{1.1-0.9500)*{ 500.000A .5)/{ 0.676A{1/3)]= 6.88
Rainfall intensity (I) = 2.509(In/Hr) for a 100.0 year storm
Effective runoff coefficient.used for area (Q=KCIA) is C = 0.950
Subarea runoff = 4.005(CFS)
Total initial stream area = 1.680(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 50.110{Ft.)
Downstream point elevation 46.260(Ft.)
Channel length thru subarea_ 380.000{ft.)
Channel base width O.OOO(Ft.)
Slope or 'Z' of left channel bank = 25.000
Slope or 'Z' of right channel bank = 0.200
Manning's 'N' = 0.013
I
I
I
I
I
" I
I
I:
I
I
I
I·
I
I
I
PROPOSED 2-YR HYDROLOGY
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 03/27/03
----------------------------------------------------~---------~---------********* Hydrology Study Control Information **********
K & S Engineering, San Diego, CA -SiN 868
Rational hydrology study storm event year is 2.0
English (in-lb) input data Units used
English (in) rainfall data used
Map data precipitation entered:
6 hour, precipitation (inches) = 1.200
24 hour precipitation{inches) 1.800
Adjusted 6 hour precipitation (inches) = 1.170
P6/P24 = 66.7%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 53.490(Ft.)
Lowest elevation = SO.110(Ft.)
]
500.000 (Ft.)
Elevation difference 3.380(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 6.88 min.
TC = [1.8*(1.1-C)*distance{Ft.)A.5 )/(% slopeA(1/3)]
TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.676A (1/3)]=
Rainfall intensity (I) = 2.509{In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 4.005{CFS)
Total initial stream area = 1.680 (Ac.) ,
6.88
2.0 year storm
is C = 0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 50.110(Ft.)
Downstream point elevation 46.260(Ft.)
Channel length thru subare~ 380.0Pg{Ft.)
Channel base width = O.OOO(Ft.)
Slope or 'Z' of left channel bank = 25.000
Slope or 'Z' of right channel bank = 0.200
Manning's 'N' = 0.013
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Maximum depth of channel 0.500(Ft.}
Flow(q) thru subarea = 4.005(CFS}
Depth of flow = 0.312(Ft.}, Average velocity 3.263{Ft/s)
Channel flow top width = 7.865(Ft.}
Flow Velocity = 3.26(Ft/s)
Travel time 1.94 min.
Time of concentration 8.82 min.
Critical depth = 0.363(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 2.000 to Point/Station 3.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D ~
0.000
0.000
0.000
1.000
8.82 min.
[INDUSTRIAL area type
Time of concentration
Rainfall intensity
Runoff coefficient
Subarea runoff
2.138 (In/Hr) for a 2.0 year storm
used for sub-area, Rational method,Q=KCIA, C
14.235(CFS) for 7.010{Ac.)
Total runoff = 18.240{CFS) Total area = 8.69(Ac.}
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation
43.500(Ft.}
42.690(Ft.)
Pipe length 142.00(Ft.) Manning's N = 0.013
18.240(CFS) No. of pipes = 1 Required pipe flow
Given pipe size = 30.00(In.}
Calculated individual pipe flow 18.240(CFS)
Normal flow depth in pipe = 16.55(In.)
Flow top width inside pipe = 29.84(In.)
Critical Depth = 17.37(In.)
Pipe flow velocity = 6.57(Ft/s)
Travel time through pipe = 0.36 min.
Time of concentration (TC) = 9.18 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** SUBAREA FLOW ADDITION ****
group A
group B
group C
group D
0.000
0.000
0.000
1.000
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
[INDUSTRIAL area type
Time of concentration 9.18 min.
Rainfall intensity
Runoff coefficient
Subarea runoff
Total runoff =
2.083 (In/Hr) for a 2.0 year storm
used for sub-area, Rational method;Q=KCIA, C
0.416(CFS) for 0.210(Ac.)
18.656(CFS) Total area 8.90(Ac.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
I
I
I
I
I
I
I
I
I -
I
I
I
I
I
I
I
I
Upstream point/station elevation = 42.690(Ft.)
Downstream point/station elevation 42.500(Ft.)
Pipe length 19.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 18.656(CFS)
Given pipe size = 30.00(In.)
Calculated individual pipe flow 18.656 (CFS)
Normal flow depth in pipe = 14.20(In.)
Flow top width inside pipe = 29.96(In.)
Critical Depth = 17.55(In.)
pipe flow velocity.= 8.16(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 9.22 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 8.900(Ac.)
Runoff from this stream 18.656(CFS)
Time' of concentration = 9.22 min.
Rainfall intensity = 2.077(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Statio~ 6.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[INDUSTRIAL area type ]
Initial subarea flow distance 500.000(Ft.)
Highest elevation = 53.490(Ft.)
Lowest elevation = 49.000(Ft.)
Elevation difference 4.490(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 6.26 min.
TC = [1.8*(l.1-C)*distance(Ft.)A.5)/(% slopeA(1/31]
TC = [1.8*(1.1-0.9500)*( 500.000A .5)/( 0.898A (1/3)]=
Rainfall intensity (I) = 2.667(In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 3.370(CFS)
Total initial stream area = 1.330(Ac.)
6.26
2.0 year storm
is C = 0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 49.000(Ft.)
Downstream point elevation 46.600(Ft.)
Channel length thru subarea 350.000(Ft.)
Channel base width O.Oqq(Ft.)
Slope or 'Z' of left channel bank =
Slope or 'Z' of right channel bank =
0.200
0.083
Estimated mean flow rate at midpoint of channel
Manning's 'N' = 0.015
3.978(CFS)
(
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
Maximum depth of channel 0.500{Ft.)
Flow(q) thru subarea = 3.978(CFS)
Depth of flow = 4.849(Ft.), Average velocity 6.113(Ft/s)
! !Warning: Water is above left or right bank elevations
Channel flow top width = O.142(Ft.)
Flow Velocity = 6.11(Ft/s)
Travel time 0.95 min.
Time of concentration 7.21 min.
Critical depth = 3.156(Ft.)
ERROR -Channel depth exceeds maximum allowable depth
Adding area flow to channel
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
0.000
0.000
0.000
1.000
[INDUSTRIAL area type
Rainfall intensity
Runoff coefficient
Subarea runoff
2.434 (In/Hr) for a 2.0 year storm
used for sub-area, Rational method,Q=KCIA, C
1.110(CFS) for 0.480(Ac.)
Total runoff = 4.480(CFS) Total area = 1.8i(Ac.)
'0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43.650(Ft.)
Downstream point/station elevation 43.430(Ft.)
Pipe length 22.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 4.480(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 4.4BO(CFS)
Normal flow depth in pipe = 8.21(In.)
Flow top width inside pipe = 17.93(In.)
Critical Depth = . 9.75(In.)
Pipe flow velocity = 5.71(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 7.28 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.810(Ac.)
Runoff from this stream 4.4BO(CFS)
Time of concentration 7.28 min.
Rainfall intensity = 2.420(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
0.000
0.000
0.000
Decimal fraction soil group p " 1.000
[INDUSTRIAL area type ]
500.000(Ft.) Initial subarea flow distance
Highest elevation = 54.200(Ft.)
Lowest elevation = 48.300(Ft.)
I
I
I
I
'I
I,
I
I
I'
I
I
I
I
I'
I
I
I
Elevation difference = 5.900{Ft.)
Time of concentration calculated by the urban
areas overland flow method (App x-C) = 5.71 min.
TC = [1.8*{1.1-C)*distance{Ft.)A.5)/(% slopeA {1/3)]
TC = [1.8*{1.1-0.9500)*( 500.000A.S)/{ 1.180A{1/3)]=
Rainfall intensity (I) = 2.829 (In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 13.436(CFS)
Total initial stream area = 5.000(Ac.)
5.71
2.0 year storm
is C = 0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
Upstream point elevation 48.300{Ft.)
Downstream point elevation ,= 47.400(Ft.)
Channel length thru subarea 250.000(Ft.)
Channel base width O.OOO(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel 17.413 (CFS)
Manning's 'N' = 0.020
Maximum depth of channel 1.000(Ft.)
Flow{q) thru subarea = 17.413 (CFS)
Depth of flow = 0.457(Ft.), Average velocity 1. 666'(Ft/S)
Channel flow top width = 45.716(Ft.)
Flow velocity = 1.67(Ft/s)
Travel time 2.50 min.
Time of concentration = 8.21 min.
Critical depth = 0.375(Ft.)
Adding area flow to channel
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[INDUSTRIAL area type
Rainfall intensity 2.238 (In/Hr) for a 2.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950
Subarea runoff 6.294(CFS) for 2.960(Ac.)
Total runoff = 19.729(CFS) Total area = 7.96(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 8.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
Upstream point elevation = 43.490(Ft.)
Downstream point elevation 43.430{Ft.)
Channel length thru subarea 50.000{Ft.)
Channel base width 6.000(Ft.)
Slope or 'Z' of left channel bank =
Slope or 'Z' of right channel bank =
Manning's 'N' = 0.013
0.000
0.000
Maximum depth of channel 2.000{Ft.)
Flow(q) thru subarea = 19.729(CFS)
Depth of flow = 1.004 (Ft.), Average velocity
Channel flow top width = 6.000(Ft.) ,
Flow Velocity = 3.28(Ft/s)
Travel time 0.25 min.
Time of concentration = 8.47 min.
3.275(Ft/S)
I
I
I
I
'I
I
I
I
I
I
I
I
I
I
I
I
I
I
Critical depth 0.695(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 7.960(Ac.)
Runoff from this stream 19.729(CFS)
Time of concentration = 8.47 min.
Rainfall intensity = 2.194 (In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
Total of 2 streams to confluence:
Flow rates before confluence point:
4.480 19.729
Maximum flow rates at confluence using above data:
21.432 23.792
Area of streams before confluence:
1.810 7.960
Results of confluence:
Total flow rate = 23.792(CFS)
Time of concentration 8.468 min.
Effective stream area after confluence 9.770 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 5.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
Upstream point elevation 43.430(Ft.)
Downstream point elevation = 42.500(Ft.)
Channel length thru subarea 775.000(Ft.)
Channel base width 6.000(Ft.)
Slope or 'Z' of left channel bank =
Slope or 'Z' of right channel bank =
Manning's 'N' = 0.013
0.000
0.000
Maximum depth of channel 2.000(Ft.)
Flow(q) thru subarea = 23.792(CFS)
Depth of flow = 1.138(Ft.), Average velocity
Channel flow top width = 6.000(Ft.)
Flow Velocity = 3.48(Ft/s)
Travel time 3.71 min.
Time of concentration 12.~8 min.
Critical depth = 0.789(Ft.)
3.484(Ft/S)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
I
I
Process from Point/Station B.OOO to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 9.770(Ac.)
Runoff from this stream 23.792(CFS)
Time of concentration = 12.1B min.
Rainfall intensity = 1.736 (In/Hr)
Program is now starting with Main Stream No. 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 13.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A =
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
0.000
0.000
0.000
1.000
Initial subarea flow distance
Highest elevation = 47.BOO(Ft.)
Lowest elevation = 45.500(Ft.)
]
500.000(Ft.)
Elevation difference 2.300(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 7.B2 min.
TC = [1.B*(1.1-C)*distance(Ft.)"'S)/(% slope"'(1/3)]
TC = (l.B*{1.1-0.9500)*{ 500.000"'.5)/{ 0.460"'(1/3)]=
Rainfall intensity (I) = 2.310{In/Hr) for a
Effective runoff coefficient used fo~ area (Q=KCIA)
Subarea runoff = 2.041{CFS)
Total initial stream area = 0.930 (Ac.)
7.B2
2.0 year storm
is C = 0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 45.500(Ft.)
End of street segment elevation = 44.390(Ft.)
Length of street segment 190.000(Ft.)
Height of curb above gutter flowline 6.0{In.)
Width of half street (curb to crown) = 19.000(Ft.)
Distance from crown to crossfall grade break 17.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.OB3
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side{s) of the street
Distance from curb to property line 5.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0200
Estimated mean flow rate at midpoint of street = 2.4BO(CFS)
Depth of flow = 0.347(Ft.), Average velocity = 1.491(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.616(Ft.)
Flow velocity = 1.49(Ft/s)
Travel time = 2.12 min. TC = 9.94 min.
Adding area flow to street
Decimal fraction soil group A = 0.000
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[INDUSTRIAL area type
Rainfall intensity 1.978 (In/Hr) for a 2.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C
Subarea runoff 0.752 (CFS) for 0.400(Ac.)
Total runoff = 2.793 (CFS) Total area = 1.33(Ac.)
Street flow at end of 'street = 2.793(CFS)
Half street flow at end of street = 2.793(CFS)
Depth of flow = 0.360(Ft.), Average velocity = 1.533 (Ft/S)
Flow width (from curb towards crown)= 13.228(Ft.)
0.950
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 5.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.810(Ft.)
Downstream point/station elevation 42.500(Ft.)
pipe length 62.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 2.793 (CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 2.793(CFS)
Normal flow depth in pipe = 7.65(In.)
Flow top width inside pipe = 17.80(In.)
Critical Depth = 7.61(In.)
pipe flow velocity = 3.90(Ft/s)
Travel time through pipe = 0.26 min.
Time of concentration (TC) = 10.21 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.330(Ac.)
Runoff from this stream 2.793(CFS)
Time of concentration = 10.21 min.
Rainfall intensity = 1.945 (In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 18.656 9.22 2.077
2 23.792 12.18 1. 736 .
3 2.793 10.21 1.945
Qmax(l)
1. 000 * 1. 000 * 18.656) +
1.000 * 0.757 * 23.792) +
1.000 * 0.903 * 2.793) + 39.192
Qmax(2)
0.836 * 1. 000 * 18.656) +
1. 000 * 1. 000 * 23.792) +
0.893 * 1. 000 * 2.793) :t 41. 876
Qmax(3)
0.936 * 1. 000 * 18.656) +
1. 000 * 0.838 * 23.792) +
1. 000 * 1. 000 * 2.793) + 40.209
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Total of 3 main streams to confluence:
Flow rates before confluence point:
18.656 23.792 2.793
Maximum flow rates at confluence using above data:
39.192 41.876 40.209
Area of streams before confluence:
8.900 9.770 1.330
Results of confluence:
Total flow rate = 40.209(CFS)
Time of concentration = 10.209 min.
Effective stream area after confluence
End of computations, total study area =
20.000(Ac.)
20.000 (Ac.)
I
I
I
I
J
I
I
I
I APPENDIX B
(4. INLET DESIGN)
I
I
I
I
I
I
I
I
I
I
I
· J' ,@Pa.s&'.5flii-1-._. __ .;_) _____________ _
,. 0;00 . = 1t~4--C.;::c€;;;;;..t~----------------_:__-
" "LCJc-",~ lJq?,ee;r,t((?&I =-/0
I . . ,
La'--,,~ l/.!a..::...r.t~e;__.c..7#1~~~C&~~I_...oII"J:...=. ~=r;J......-:.4:..c:.11:W.;.;...~.:c;J.,:IIL~~_=~;;..:. r:rr:.;.r:. .. ---..Ioe~ ___ a"'_~_=_""""'M.;...:b"""_, ----
1 __ '_-.;....· C!=--lS:fe~""'--"=cPt.~StV~·.u:.:1 M;;.c:~:........;:;..~_L~) _:K...;;;..2,",,-"'_3_· .' -=c~:.....:S--.s::;;)(a...' ...::,;-; ... '1. . ..;..Z=---...;...· --_I.l.~ '.-'e;c
~.-.-~~, ~ . tlSG (. : . .lL,er. (c(.~ Ot'5v;,v,,) .
/110'06 No.. 7 II'&~Q~ ~!~C~~~1 _______________ _ -II · .La-~ ;;;U~Rl!.t6.s.fHJtJ #: /b II
'I' # tI..i&; LWtJ C!e.J reA. &A/~'-;=:b 0-:-qz ~r9JI"N'~
_ C>Lt:/If1.... ~e~/NG. (L )~ 10. ~...I~. /'Pr-,;;; S. /=r . I e~J ~---~----------~~----~-
, rd.~~ ~ ==_ .. ~ -'?C. Ca:L.t;,47t. b4 ~&J tl t
~------------------
~-I
.)
-. '-
-1-1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
. APPENDIX C
(5 . TABLES AND CHARTS)
I
500r------,-------r------~----~r_y__,~~----_r------,_--~~70
400~------~------~------r_~~~r_#_~~+_~~--+__.~--~----~
~--~------~----~------~------~------~----~~-----JO
EXAMPLE:
Given: Watercourse Distance (D) = 250 Feet
Slope (5) = 0.5%
Runoff Coefficient (C) = 0.70
Overland Flow Time (T) = 14.3 Minutes
T = 1.8 (1.1.C)VO
3'{i
OURCE: Airport Drainage, Federal Aviation Administration, 1965
FIGURE
Rational Formula· Overland Time of Flow Nomograph 3-5
fMaVCounty Hydrogeology ManuaVOv,rI.nd Flow.FH8
l
.-
·~10.0-r!-.~ -----IiIIIII ----- --90 1'0. I.... t'oo..i' r-... i , II' i! : ''', Directions for Application: ---,
8·0 i' ~ i"",,-~ I III III !I I d: (1) From precipitation maps determine 6 hr and 24 hr amounts . ~ r-.., .... ~, .... ~ II III III :j I ! 1
7.0 f'. f I ~ for the selected frequency. These maps are included in the
r.... ~ ~~ .... "'~~ ... EQUATION I I: County Hydrology Manual (10, 50, and 100 yr maps included · ,
6.0 "" ....
· ., in the Design and Procedure Manual).
.... "'~' ..... I-"' .... ~ I = 7.44 P6 0-0.645 ; I!
i ~ • (2) Adjust 6 hr precipitation (if necessary) so that it is within
5.0 " ~ I = Intensity (in/hr) I ! I ~'" ~,... r-... .... ~ P 6 = 6-Hour Precipitation ( in) 1
m
, the range of 45% to 65% of the 24 hr precipitation (not
4.0~ D = Duration (min) , 'I applicaple to Desert).
.... ~..... "'r-., · II (3) Plot 6 hr precipitation on the right side of the chart.
~.... ~r... l"-I I I i hi! , (4) Draw a line through the point parallel to the plotted lines. 3.0 r-., I I I II' ..... I , I (5) This line is the intensity-duration curve for the location :
.......... ~ I I I ' . I being analyzed. I I
"'1'00. , , I ..... II I
2.0 ""1'0. 'I'-
..... ' ~{ I I I Application Form:
..... r-. ~ I ....... ~ ! .. ~ I C1I (a) Selected frequency ______ year :i:
"C' I"r-. [' ~r... ~ h" ~ '\1 g :::l ~ (b) P = in P = ---= ~ (2) 0 t...~ r-., I I i ~ I .... ~ :... ... 1""" " 6 ------., 24 ______ 'P -----0
It' ~ ... ",,~ 1·'1 24
CD ~"-' I II> (c) Adjusted P6(2) = ______ in. s:: :;. .,", o.
g1.0 ' ' 60 '0
I r:-... I'-N !f :r.'h . ;:;:
~0.9 ' 5.5!!!. (d) tx = _____ min. : I .... I"'~ IRI : ,-,. 5.0 g.
·t:!0.8 ~ I-N.!. '. '!'Ij 4.55-CD (e) I = _____ in.lhr. EO.7 , " ... r0-II :I~!! 4.0 [ I
0.6 ~ I .... IF 11 I II, 3.5~ Note: This chart replaces the Intensity-Duration-Frequency I I~'
0.5 curves used since 1965.
II .... II r":'. i ·1= i 3.0
II I~I
0.4 h .. · " : ,', 2.5 . 1. i.1:5.1~2~ .. t·2.5.J·(.r3:5··j-·4-t·4:(:~" 5 ; 5:5·:._6 ~ i ~ I~I. P6
..... i Duration I iIi I I i I I: I . I I I I ! I ' .... , ! I I : 1'1 2.0 ...... "-5 I !. " 2.63 13.9S'S.2?f 6 .. S9r.901_9.22.10.54i 11.86, 13. 17P,U9; 15.81
0.3 ... 7 .2~~~.13~~~1~:~~~_~!~ .~:~ !!42L8.48-!--9.54 • ~0·60p!·~n2.~2 -10 .1.68 j2.5313.3714.21 5.0515.90' 6.74 7.58.8.42 19.27,'0.11
.' 1.5 . '.' "·,5 1.30 : 1.95 2.59 3.24l3.B914.54J.5 .. 1.9 .. 5.84.1 6.49 i 7.131 7.78 .. 20 1.08!,.6212.,5! 2.6913.231.3:771.4.3114.85 ! 5.39 I 5.93 I 6.46
0.2
25 .0.93 '1.40 1.87l2.33 rOO13.27i 3.73 i 4.20 , 4.6715.,315.60
30 .0.83 1.24 1.66! 2.07 2.49,2.9013.32 3.73.4.15 4.!Sa 4.98
• • I 1.0
... 40 0.69 1.03 1.381,.72 2.0712.41,2.76 3.10: 3.4513.7914.13
, . .. .. 50 0.60 0.90 1.19 1.491'.79i2.09 .2.39 2.6~;2.98 3.28 t3.58 ,. 80 0.53 0.80 1.06 1.33 1.59j 1.86 2.12 2.39 12.65,2.92 3.18 , · ,. · .... ··10 .... , 0" 0.82 "82 '~I'.<3 '.63 , ... : 10' l .... 1 , ...
I I I · " "--'-·'20 .0:34. 0.51 0,68 0.8~ .1.02 .1.19.1.36 1.53 .•. 1.70 1.87 2.04
, i I I !, it' 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 I 1.47 1.62 1.76 ,
I I : t II --1eO -9:2&. 0,39 0,52 0.65 0.78\0.91 1.04 1.18 i 1.31. 1.44 ".57
0.1 --·· .. -240
5 6 7 8 910 15 20 30 40 50 1 2 3 4 5 6 --.. _9..~2_ 9.~~ .. O:~~ ~~ .. q!~ ,.qJ.~ .~:87. O .•. j .1·:l'''~ 11 .. 1.30
Minutes Hours .... __ .. 3ij 1-~:19 ... 0,2' 9:.~ _O.~!_ ~:~h~~'!8 .O,rs. 0.85 to.14 .1.:~ .U~. ; 0.17 10.25 0.33 0.42 0.50.0.58 0.87 0.75· 0.14 0.912 1.00
Duration
FIGURE
Intensity-Duration Design Chart· Template 3-1
HilzMatlCounty tiyc!rOQeOloQv ManuaUlnt Our O.slan Chart.FHB
:('.
\.
I""... ~ ........
/'..--'. -------------------
""' ... ,
> I
'-.J
Cv .... , 'f OF' SAN D lEGO
DEPARTMENT OF SANITATION &
FLOOD corrrRoL
45' \. 11!~IJ!\{~1 '-,;'" { _ i
I 30' I I ..... 1 ~ II-:
I
15' : I ~~ '{,' ,r.
330
45 ' I,' {. 1-----_. I ,i 0 .. ~ IdJ.ii A ----_ ..... -... , .... ---.
Pres'" I .. d by
u.s. OEPARTMENlr OF COMMERCE
HATfONAL OCEANIC AND AT'iOSpnERJC ADMINISTRATION
SPECIAL STUDIES DRA!fCH. OFFICE OF nfuRoLoCY. NATIONAL \\'EATHER SERVICE
30'-1 I -... -1 'rr I·
118 1 45 ' 30' 15 ' 1170 45' 30' IS' 116-
,-' -1IIil.----COUNTY OF SAN DIEGO
DEPARTMENT OF SANITATION &
FLOOD CONTROL
45 1
30'
1,'
.33-~ \\,
,---
45'
Pre,._",,, br
u.s. DEPARTMENlr OF COMMERCE
NATIONAL OCa-:A~IC AHO Al·:.tOS1'IIERIC AO)IIKI$TRAT10N SP~CJAL STUDIES BRANCH, OffiCE OP' "10ROLOCY, NATIONAL WEATIIE)'t SERvicE
--'.-
30 1 -i,--------I~-----·-+I------~~----~~------4-------~------~ ,...
>-4 t )0. •
'N
. nne 11!i ' )0' I r,., 117-"~i ' JO' J!i' 116-.
I
I
I
I
I
I
I
I
I
I
I
I
\ l
I
I
Average Values of Roughness Coefficient (Manning's n)
Roughness
Type of Waterway Coefficient (n)
1. Closed Conduits (1)
Steel (not lined)
Cast Iron
Aluminum
Corrugated Metal (not lined)
Corrugated Metal (2) (smooth asphalt quarterlining)
Corrugated ~tetal (2) (smooth asphalt half lining)
Corrugated Metal (smooth asphalt full lining)
Concrete RCP
Clay (sewer)
Asbestos Cement
Drain Tile (terra cotta)
Cast-in-p1ace Pipe
Reinforced Concrete Box
2. Open Channels (1)
a. Unlined
Clay Loam
Sand
b. Revetted
Gravel
Rock
Pipe and Wire
Sacked Concrete
c. Lined
Concrete (poured)
Air Blown Mortar (3)
Asphaltic Concrete or Bituminous Plant Mix
d. Vegetated (5)
Grass lined, maintained
Grass and Weeds
Grass lined with concrete low flow channel ,
:.;. Pavement and Gutters (1)
Concrete
Bituminous (plant-mixed)
0.015
0.015
.021
0.024
0.021
0.018
0.012
, O. 012
0.013,
0.011
0.015
0.015
0.014
0."023
0'.020
0.0:';0
0.040
0.025
0.025
0.014
0.016
0.018
n--... .:>!l
.045
.032
O.OlS
0.016
ArpE~DIX XV! ~
I
I ,
I
I
I
I
I
I
I
J
I
I
I
I
I
I
,I, . \ '-: t
I
RUNOFF COEFFICIENTS (RATIONAL METHOD)
PEYELOPED AREAS (URBAN)
Land Use
Residential:
Single Family
Multi-Units
'Mobile Homes
Rural (lots greater than 1/2 acre)
Commercial 121
SO% Impervious
Industrial 121
90% Impervious
Coefficient, C
Soil Group 111
.40 .45 .50. .55
.45 .50 .60 .70
.45 .50 .55 .65 I
.30 .35 .40 .45
.70 .75 .SO .S5
.80 .85 .90 .95
,
NOTES:
111
121
Soil Group maps are available at the offices of the Department of Public Works.
Where actual conditions deviate significantly from the tabulated imperviousness
values of SO% or 90%, the values given for coefficient C, may be revised by
mUltiplying SO% or 90% by the ratio of actual imperviousne~s to the tabulated
imperviousness. However, in no-case shall the final coefficient be less than 0.50.
'For example: Consider 'commercial property on D soil group.
Actual imperviousnes~ = 50%
Tabulated imperviousness = SO%
Revised C = §..Q. x: 6.S5 = 0.53
SO
IV-A-9
APPENDIX IX
Updated 4/93
&.at F. 'rlllr -and Horael Williamsllni I
I
I
,-... -.. HANDBOOK OF
:1
." -.
-I
I
,I
I
I
I
~I
I
I
I
I-
I-
I
I-
I
S, . 1~1' .... '~'" .. I " "
• -0°
. ;
'Table 7-14.
!
Values of K' for Circular ('hann('ls in Hu' J4'ormula
1 K' I '
D I -.00 d --_.
.0
.1 .00967 ., -.... .P4.0G
.3 :0907
.4 .1561
.5 .232
.6 .311
.7 .388
.8 .456
.9 .494
.
1.0 .463
. ""
:'.,
Q = -d~~S'-':
" D -depth of wawr d -diaulC!wr of channel
.01 • 02
,
.00007' .00031
.0118
.04"8
.0966
.1633
.239
.319
:395
.458 '
.496
• • • •
,-
..
.0142-
;().I92
.1027
.1705
.247
.327
.402
.463
.497
•
.03 .04 .05
_.---
.0007" '.00 138· .00222_
.OU.7 .01 !J5
.0537 .0585
.1089 .1153
.1779 .1854
.255 .263
.335 .343
."OU .416
,.468 .473
.498 .498
.0225
.0634 '
.1218
.1929
.271
.350
.422
.477
.498
• • j .
,-
. .06 _ .07 .08 .09
-
.Q0328 .00455 .00604' .00775
.0257 .0291 ' .0327 .03HG
.0686 .0738 .07U3 .0849 '
.1284 .1352 .1420 .14UO
.2005 .2082 .2160 .2238
.279 .287 .295 ~303
.358 .366 .373 .380
.429 .435 .441 .4-&7
.481-.485 .4SS .-&91
.496~·'" .49-& .• 489 ... 83
--
, I i
• I • '-.1 .1 .1 .1 .1
I
.."
til a _. --' a
O. a
ell
-..... -'. til
':\
·1
f
,.. ..
rguana
--?'~
EstadoS l)1ktlS MexicanosJBaja Califom1a
M e X i C 0
3
'tJ
CD .,
III
(")
o c
:s ...
'<
.... ~.
County o~ San. Diego
Hydrology Manual
... ~'~~~. "~m~\ I~~).
:; 'J ,~ ~·,:r..t~. ,k~ 'J .:.~ /~ ~.I . ' ..• ' l.i.~'\:\~
Rainfall Isopluvials
2 Year Rainfall Event.-6 HOU'S
/"'/ Isopluvial (inches)
Map Notes
~ Prqjedioo. Zooe6. NADa3
CreM!on Dale: .AIle 22. 2001
OOT TO BE USED FOR DESIGN CAlCULATIONS
Q
o 7.5 L__ --::::-J
MlES amecP .. ................
-
\
'\ ~< \'~--"'\
',.:;;:t' ~ . • ", I )
\
.~
','
" I
~\
\,) \
\ \
\ \
\
I
,I
I
I
I
I APPENDIX D
I (6. HYDROLOGY MAP)
I
I
I
I
I
I
I
I
'I
I
I
I