Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 02-27; LA COSTA FAIRWAYS; HYDROLOGY HYDRAULICS AND DETENTION STUDY; 2002-10-04
II I\ I\ ll l 11 ll I I I I HYDROLOGY, HYDRAULICS, AND DETENTION STUDY FOR LACOSTA FAIRWAYS Job No. 02-1040-5 Date: October 4, 2002 Revised: September 15, 2003 Revised: November 26, 2003 O'Day Consultants, Inc. 2710 Loker Ave West, Suite 100 Carlsbad, CA 92008-7317 Tel: (760) 931-7700 Fax: (760) 931-8680 C'~, C:;) ~ -< RECEIVED ~ G:\ACCTS\021040\drainage intro.doc MAY 1 0 2004 ENGINEERING DEPARTMENT Date £;5-/0-.64- Prepared by: TTC/CJS • 0 z ~ 0 IJ '1 "~,·j ·t.1 IIJu,, . 11 11 11 11 ll ll I I I I i I I ~- I I I I i DESCRIPTION • NARRATIVE ---------------------------------------------------------------- INTRODUCTION DESCRIPTION OF RATIONAL METHOD PROGRAM DETENTION BASIN DESIGN PROCEDURE CONCLUSIONS • RATIONAL ANALYSES -------------------------------------------------- 100 YEAR EXISTING CONDITION 100 YEAR PROPOSED CONDITION • DETENTION BASIN SIZING CALCULATIONS ---------------------- PROPOSED CONDITION RUNOFF HYDROGRAPH INFLOW/ OUTFLOW/ STORAGE DATA STAGE-STORAGE GRAPH • INLET SIZING CALCULATIONS --------------------------------------- • HGL CALCULATIONS ------------------------------------------------------ • APPENDIX ----------------------------------------------------------- VICINITY MAP RUNOFF COEFFICIENT TABLE ISOPLUVIAL MAPS 100 YR, 6HR 100 YR, 24 HR SOIL GROUP MAP MANNING'S ROUGHNESS COEFFICIENT TABLE • MAPPOCKET DRAINAGE MAP (100 YEAR EXISTING) DRAINAGE MAP (100 YEAR PROPOSED) G:\ACCTS\021040\drainage intro.doc SECTION 1 2 3 4 5 6 .,.l I il 11 ii i! ll I I I I I I I fl r1 I :I ~I .I INTRODUCTION The project site is located on La Costa Avenue, approximately one mile east of El Camino ~eal. The site c9nsists of two previously graded residential lots that front the La Costa Resort & Spa Golf Course. Together, the two lots total approximately 1.1 acres. Just outsid~ the northern boundary of the site, there is an existing concrete drainage channel that was designed and built with the ta 'Costa Gryens subdivision. Since the channel was designed to accept runoff from this site, it has not been studied as a part of this report. Four multi-family buildings, with a total of IO units, are proposed for this project. All runoff from the site will eIJ,ter the detention basin at the north end before discharging into the concrete drainage channel. The site consists entirely of type D soils. RATIONAL METHOD DESCRIPTION The rational method, as described in the 2003 San Diego County Hydrology Manual, was used to generate surface runoff flows, which were then used to size the drainage facilities. The basic equation: Q .= CIA C = runoff coefficient (varies with surface) I= intensity (varies with time of concentration) A = Area in acres The design storm for this project is the I 00-year event; the corresponding 6-hour rainfall amount is 2.5 inches. A computer program dev~loped by CivilCADD/Civildesign Engineering Software, © 1993 Version 3 .2, is used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in this model. This program can also determine the street flow and pipeflow characteristics for a given segment. The rational method program is a computer aided design program where the user . develops a node link model of the watershed. The node link model is created by developing independent node link models of each interior watershed and linking these sub-models together at confluence points. The program has the capability of performing calculations for eleven different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: G:\ACCTS\021040\drainage intro.doc fl 11 (l 11 ll I I I I I =1 -1 I I I I i I I I The program has the capability of performing calcµlations for eleven different hydrologic and . hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initfal sub-area input, top of stream 2. Street flow through ·sub-area. Includes sub-area runoff 3. Addition ofrunofffrom·s:ub-area to stream 4. Street inlet and parallel street and pipeflow and area 5. Pipeflow travel time (program estimated pipe size) 6. Pipeflow travel time ( user specified pipe. size) 7. Improved channel time -Area add option 8. Irregular channel travel time -Area add option 9. User specified entry of data at a point 10. Confluence at downstream point in current stream 11 . Confluence of main streams DETENTION BASIN DESIGN PROCEDURE Using the data obtained from the rational analyses for the proposed condition, a runoff hydrograph was developed to model the 100-year storm. The hydrograph was constructed using the Qp and tc fro~ the rational method, a11d the Q/Qp and· t/tp ratios from the San Diego County Hydrology Manual. Usin~ CivilCADD Flood Hydrograph Routing, Universal Method version 6.2, the hydrograph was routed into the detention basin. The program calculates outflow from the basin at different times based 011. the input hydro graph; the storage capacity of the basin, and the outlet works from the basin. The basin for this site was designed to keep the peak Q in the proposed condition below the pealcQ in the existing condition. Using a 1 0" PVC outlet pipe· at 2% slope~ the peak Q is held to 2.3'6 cfs, and the maximum required storage of the basin is 0.026 Ac-ft (1,133 ft3). As shown in the stage-storage curve in section 3, the capacity of the basin on the she plan is 1,163 ft3• G:\ACCTS\021040\drainage intro.doc "l I il il I ll I· I I· .1 I I I I I I I I I I CONCLUSIONS In the existing condition all ninoff from the site flows north to the concrete drainage channel on the La Costa Golf Course. At node 104, Qpeak~2.45 cfs and tc=8.69 minutes. · In the proposed condition, all runoff still flows to the drainage channel after first entering the detention basin. A peak Q of 4.34 cfs enters the detention basin at a tc of 8.48 minutes (node 214). The pe~ Q leaving the basin is 2.36 cfs, occurring at 14 minutes. G:\ACCTS\021040\drainage intro.doc al jl j j i i I I i I i I I I I i i .:i .1 San Diego County Rational ijydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Rational method hydrology program based on Version 3.2 San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/30/02 LA COSTA GREENS LOTS 4&5 EXISTING CQNDITION RATIONAL METHOD G:\ACCTS\0~1040\EXl0O -----------------------------------·------------------------------------***·****** Hydrology Study Control Information********** O'Day Consultants, San Deigo, Ca-lifoz-nia -S/N 10125 --------·------·-------------------------------------------------------- Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour'precipitation(inches) = 4.Q00 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 62.5% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0. 500 given for s·ubarea Initial subarea :flow distance = 35.00(Ft.) Highest elevation= 52:S0(Ft.J Lowest elevation = 41. 00 (Ft.) E:levatiort difference = 11. 50 (Ft.) Time of concentration ca.lculated by the_ urban areas overland flow method (App X-C) = 1.99 min. TC= [1.8*(1.1-C)*distanceA.5)/(%_ slopeA(l/3)] TC= [1.9*(1.1-0.5000)*( 35.00A.5)/( 32.86A(l/3)]= 1.99 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff= 0.23l(CFS) Total initial stream area= 0,07-0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ i?rocess :erom Point/Station 102.000 to Point/Station 104.000 **** IMPROVED CHAN~EL TRAVEL TIME**** Upstream point elevation= 41.00(Ft.) Downstream point elevation 19.00(Ft.) Channel length thru subarea = 290.00(Ft.) Channel base width = 50.000(Ft.) Slope or 'Z' of left channe.l bank = 20. 000 Slope or 'Z' of right channel bank= 2D.000 Estimated mean flow rate at midpoint of channel Manning':5 'N' = 0.030 1. 993 (CFS) 11 11 il 11 f. . J il i I I I I I I I I 1· i i i Maximum depth of channel 0.500(Ft.) Flow (q) thru subarea = 1. 993 (CfS.) Depth of flow= 0.030(Ft.), Average velocity= Channel flow top width= 51.203(Ft.) Flow Velocity= 1.31(Ft/s) Travel time 3.69. min. Time of concentration= 8.69 min. Critical depth= 0.037(Ft.) Adding area flow to channel User i:ipecified 'C' value of 0.450 given for subarea 1. 309 (Ft/s) Rainfall intensity= 4.611(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff= 2.220(CFS) for 1.070(Ac.) T.otal runoff =;: 2. 45J,. (CFS) Total area: = End of computations, total study area= 1.-14 (Ac.) 1.14 (Ac.) 0.450 G:\Accts\021040\EXISTING CONDITION RATIONAL.doc 11 11 11 il il i I I I I i I I i I ~1 ~, :1 .I San Diego County Rational Hydrol.ogy Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Rational method hydrology program based on Version 3.2 San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/26/03 LA COSTA GREENS LOTS 4&5 PROPOSED CONDITION RATIONAL METHOD G:\ACCTS\021040\PRP200 Hydrology Study Control Information********** --------------~ ------.. --------·------------------------------------O'Day Consultants, San Diego, California -S/N 10125 --------------------------~---------------------------------------------Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitatiqn(inches) = 2.500 24 hour precipitation(inches) = 4.000 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 62.5% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance = 47.00(Ft,) Highest elevation= 46.S0(Ft.) Lowest elevation= 46.00(Ft.) Elevation difference 0.50(Ft.) Time of concentration calculated by the urban areas overland .flow method (App X-C) = 1.81 min. TC= [l.8*(1.l-C)~distance~.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.9500)*( 47.00A.,5)/( l.0.6A(l/3))= 1.81 Setting time of concentration to 5 minutes Rainfall intens:j.ty (I) = 6.587 for a 100.0 year storm Effective runoff coefficient useq for area (Q=KCIA) is C = 0.950 Subarea runoff= 0.125(CFS) Total initial stream area= 0.02O(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station . 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= Downstream point elevation Channel length thru subarea 4 6 . 0 0 ( Ft .. ) 44. 90 (Ft.-) 110.00 (Ft.) 11 il j1 i i i I I I i i I I I i I 'I I I Channel base width .0. 000 (Ft.) Slope or 'Z' of left channel bank= 5.000 Slope or •·z' of right channel bap.k = 5. 000 Estimated mean flow rate at mi9,point of channel= 0.375(CFS) Manning's 'N' = 0.050 Maximum depth of channel = 0.500(Ft.} Flow(q} thru subarea = 0.375(CFS} Depth of flow= 0 .. 301(Ft.), Average velocity 0.830(Ft/s} Channel flow top width= 3.008(Ft.) Flow Velocity= 0.83(Ft/s} Travel time = 2.21 min. Time of concentration= 7.21 min. Critical depth= 0.203(Ft.} Adding area flow to channel User specified 'C' value of 0.600 given for subarea Rainfall intensity= 5.202(In/Hr). for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.600 Subarea. runoff 0.250(CFS} for 0.080(Ac.} Total ruhoff = 0.375(CFS} Total area= 0.l0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= Downstream poi-nt elevation Channel length thru subarea Channel base width = Slope or 'Z' of left channel Slope or 'Z' of right channel Manning's 'N' = 0.015 44.90(Ft.) 37.ll(Ft.) 15. 00 (Ft.) 1. 000 (Ft.) bank= 0.000 bank·= 0.000 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea. = 0.375(CES) Depth of flow= 0.044(Ft.}, Average velocity= Channel flow top width = 1. 000 (Ft .. ) Flow Velocity= 8.45(Ft/s) Travel time = 0 .·03 min. Time of concentration 7.24 min. Critical depth -0.164(Ft.) 8.452(Ft/s} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0. l00·(Ac.) Runoff from this stream 0.375(CFS) Time of concentration 7.24 min. Ra-infall intensity = 5 .188 (In/Hr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frQm Point/Station 206.000 to Point/Station 204.000 **** INITIAL ,AREA EVALUATION**** G:\Accts\021040\FROPOSED CONDITION RATIONAL -FINAL.doc I iJ il 11 I i I ·1 I I i i I I I I I I I User specified 'C' value of 0.600 given for subarea Initial subarea flow distance = 63.00(Ft.) Highest elevation = 5.1. 0.0 (Ft.) Lowest elevation= 37.ll(Ft.) Elevation difference= 13.89(Ft.) Time of concentration calcul~ted by the urban areas overland flow method (App X-C) = 2.55 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA~l/3)) TC= [1.8*(1.1-0.6000)*( 63.00A.5)/( 22.05A(l/3)]= 2.55 Setting time of concentration to 5 minutes Rainf~ll intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.600 Subarea runoff= 0.316(CFS) Total initial stream area = 0. 080 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR ~TREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.080(Ac.) Runoff from this stream= 0.316(CFS) Time of concentration= 5.00 min. Rainfall intensity~ 6.581(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.375 7.24 5.188 2 0,316 5.00 6.587 Qinax (1) = 1.000 * 1. 000 * · 0.375) + 0. 788 * 1.000 * 0.316) + = 0.624 Qmax(2). 1.000 * 0.691 * 0.375) + 1,000 * 1.000 * 0.316) + 0.575 Total of 2 streams to confluence: Flew rates before confluence point: 0.375 0.316 Maximum flow rates at confluence using above data: 0.624 0.575 Area of streams before confluence: 0.100 0.080 Results of confluence: Total flow tate = 0.624(CFS) Time of c0ncentration = 7 .239 min .. Effective st:i;:eam area after confluence-0.180 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 **** IMPROVED CHANNEL TRAVEL TIME**** G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc al jl j' r··1 I j i I 11 ,, i I i f.) I I I ' i •• I I I Upstream point elevation Downstream point elevation Channel length thru subarea Channel base width Slope or 'Z' of le.ft channel Slope or 'Z' of right channel Manning's 'N' = 0.015 37 .11 (Ft.) 36.25 (Ft.} = 43.00(Ft.) O.lOO(Ft.) bank = 11. 500 bank= Q. 000 Maximum depth of channel = 0r.500 (Ft.) Flow(q) thru subarea = 0.624(CFS) Depth of flow= 0.188(Ft.), Average velocity Channel flow top width = 2. 259 (St.) Flow Velocity = 2. 82 CFt/s·) Travel time = 0;25 min. Time of concentration= 7.49 min. Critical 'depth= 0.227(Ft.) 2. 818 (Ft/s) - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 208.000 **** STREET FLOW TRAVEL TI~E + SUBAREA FLOW ADDITION**** Top of street segment elevation= 36.250(Ft.) End of street s·egment elevation~ 27.360(Ft.) Length of street segment = 175.000(Ft.) Height of curb above gutteF flowline 6.0(In.) Width of half street (curb to crc:,wn) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 :Slope from grade break to crown (v/hz) = 0.020 Street flow is on [ll side(s) of the street Distance from curb to property line = ,10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flow line = 1. 500 ( :r:n.) Manning's N ih gutter= 0.0150. Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= Depth of flow= · 0.196(Ft.), Average velocity= Street flow hydraulics at midpoint o·f street travel: Halfstreet flow width= 5.052(Ft.) Flow velocity= 3.50(Ft/s) Travel time= 0.83 min. TC= 8.33 min. Adding area flow to street User specified 'C' value of 0.890 given for subarea 1.144 (CFS) 3.503(Ft/s) 'Rainfail intensity 4.7,40(In/Hr) for a 100.0 year storm Runof;E coeffic,:j_ent used for sub-area, Rational method,Q=KCIA, C Subarea ·runoff 1.266(CFS) for .0.300(Ac.) Total runoff= 1.890(CFS) Total area= 0. 48 (Ac.) Street flo~ at end of street= l.&90(CFS) Half street flow at end of street= 1.890(CFS) Depth of flow= 0.224(Ft.), Averag~ velocity= 3.894(Ft/s) Flow width ( from · curb towards crown)= 6. 435 (Ft.) 0.890 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc ~~I 1./ 11 j} 1J j i1 11 ' i i ·~ I ri I I I i i i i i **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 - Stream flow area= 0.480(Ac.) Runoff from this .stream -1. 890 (CFS) Time o·f concentration = 8 .. 33 min. Rainfall intensity= 4.740(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 212.000 *·*** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial s~bare~ flow distance 120.00(Ft.) Highest elevation= 41.0b(Ft.) Lowest elevation= 29.75(Ft.) Elevation difference = 11. 25 (Ft.). Time of concentration calculated by the urban areas ·overland flow method {App X-C) = 1. 40 min. TC= [1.8*(1.l-C)*distanceA,5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.9509)*(120.00A.5)/( 9.38A(l/3)]= 1.40 Setting time of concentration to 5 minutes Rainfall intensity {I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff= 0.188(CFS) Total initial stream area= 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000,to Point/Station 212.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** '.J:'op of street segment elevation= 30.750(Ft.) End of street segment elevation= 29.750(Ft.) Length of street·segment = 1.000{Ft.) Height of curb above gutter flowline = 6.0(In.) Wic;ith of half street (curb ·to crown) 14. 000 (Ft.) Distance from crown to crossfall grade break = 12.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from graq.e brea·k to crown (v/hz) 0. 020 Street flow is on [1] side(s) of the street Distance from curb to property line 10. 0.00 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutte:i; hike from flowline. = 1. 500 (In.) Manning'~ Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.188(CFS) Depth of flow= 0.059(Ft.), Average velocity= 8.958(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 8.96(Ft/s) Travel time= 0.00 min. TC= 5.00 min.· G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc 11 jl j] jl. .1 It j I ·I I i I I I ~ ;I. :1: ~i •• :1 -1 Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity= 6.5·85(In./Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff= 0.000(CFS) for 0.000(Ac.) Total runoff= 0.188(CFS) Tota1 area= 0.03(Ac.) Street flow at end of street= 0.188~CFS) Half street flow at end of street= 0.188(CFS) Depth of flow= 0.Q59(Ft.), Av:erage velocity= 8.958(Ft/s) Flow width (from curb towards crown)= 1..500 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/ station elevation = 22 .. 8.5 (Ft. ) Downstream point/station elevation= 21.69(Ft.) Pipe lertgth 4i.04(Ft.1 Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 0.188(CFS) Given pipe size= 18.00(~n.) Calculated individual pipe flow 0.188(CFS) Normal flow depth in pipe = 1. 31 (In. ) Flow top width inside pipe= 9.34(In.) Critical Depth= l.90(In.) Pipe flow velocity= 3.27(Ft/s) Travel time through pipe= 0.21 min. Time of concentration (TC) = 5.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 213.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 0.030(Ac.) Runoff from this stream -0.188(CFS) Time of concent-ration = 5. 21 -min. Rainfall intensity= 6.413(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.9. 000 to Point/Station 211. 000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 12.00(Ft.) Highest elevation= 34.74(Ft.) Lowest elevation= 34.53(Ft.) Elevation difference 0.21(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.78 min. TC= [l.8*(1.l-C)*distanceA,5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.9500)*( 12.00A.5)/( 1.7SA11/3)]= 0.78 Set;ting time of concentrat;ion to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc il 17 ·-1 1~1 17 jl jl ' I i ii]' I· I I I I i i (i i .i Subarea runoff= 0.063-(CFS) Total initial stream area= 0. 010 (Ac.) +++++++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station ~levation ~ · 27. 53 (Ft.) Downstream point/station elevation= 21.69(Ft.) Pipe length 34 .. 57(Ft.} Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 0.063(CFS) Given pipe size= 10.00(In.) Calculated individual pipe flow O. 063(CFS) Normal flow depth in pipe= 0.59(In.) Flow top width inside pipe = 4. 71 (In. ) · Critical Depth = 1. 27 (In.) Pipe flow velocity= 4.73(Ft/s} Travel time 'through pipe= 0.12 min. Time of concentration (TC) = 5.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 213.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream nurnl:;,er: 2 in normal stream number 2 Stream flovr area = 0. 010 (Ac.) Runoff from this stream= 0.063(CFS} Time of concentration= 5.12 min. Rainfall intensity= 6.485(In/Hr) Summary 0£ stream data: Stream Flow rq.te TC Rainfall intensity No. (CFS) (min) (In/Hr) 1 0.188 5.21 6.413 4 0. 063' 5.12 '6. 485 Qmax(l) = 1. 000 * 1. 000 * 0.188) + 0.989 * 1.000 i< 0.063) + = 0.250 Qmax(2) 1.000 * 0.983 * 0.188) + 1. 000 * 1.000 * 0.063) + = 0.247 Total of 2 streams to confluence: Flow rates before confluence point: 0.188 0.063 , Maximum flow rates at confluence using above data: 0.2~0 0.247 Area of streams before confluence: 0.030 0.010 Results of confluence: Total flow rate= 0.250(CFS) Time of concentration= 5.211 min. Effective stream area after confluence= 0. 040 (Ac.) G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc 11 11 1,1 11 11 il I I I I i I I I I 'i I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+ Proce·ss from Point/ Station 213. 000 to Point/Station 208. 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 21.69(Ft.) Downst:r:-eam point/station elevation= 20.78(Ft.) Pipe length = 18.75(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 0.250(CFS) Given pipe size= 18.00{In.) Calculated individual pipe flow = 0.250(CFS) Normal flow depth in pipe = 1 .. 32 (In. ) flow top width inside pipe == 9. 38 (In.) Critical Depth= 2.19(In.) Pipe flow velocity= 4.30(Ft/sj Travel time through pipe= 0.07 min. Time of concentration (TC) = 5.28 min. ++++++++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MAIN STREAMS**** The fol;Lowing data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 0.040(Ac.) Runoff from this stream= 0.250(CFS) Time of concentration= 5.28 min. Rainfall intensity= 6.356{In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1. 890 8.33 4.740 2 0.250 5.28 6.356 Qmax(l) = 1. 000 * 1. 000 * 1. 890) + 0. 746 * 1. 000 * 0.250) + = 2.076 Qmax(2) 1.000 * 0.635 * 1. 890) + 1. 000 * 1.000 * 0.250) + = 1. 449 Total of 2 main streams. to confluence: Flow rates before confluence point: 1.890 0.250 Maximum flow rates at confluence using above data: 2.076 1.449 Area of streams before confluence: Q.480 0.040 Results of qonfluence: Total flow rate= Time of concentration= 2. 076 (CFS) 8.326 min. G:\Accts\021040\PROPOSED CONDITION RATIONAL· FINAL.doc ~l lj il 11 i -·~ I, "l .I I I I I i I I I I I I I I Effective stream area after confluence = 0.520(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 214.000 **** PIPEFLOW TRAVEL TIME (Program estimate~ size) **** Upstream point/station elevation= . 23.39(Ft.) Downstream point/station elevation 18.50(Ft.) Pipe length = 83.71(Ft.) Manning's N = 0.0;I.3 No. of pipes= 1 Required pipe flow = 2.076(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow -2.076(CFS) Normal flow depth in pipe= 4.60(In.) Flow top width inside pipe= 9.00(In.) Critical Depth= 7.83(In.) Pipe flow velocity= 9.13(Ft/s) Travel time through pipe= 0.15 min. Time of concentration (TC) = 8.48 min. ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STR$At1S **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0. 520 (Ac.) Runoff from this ~tream 2.0'76(CFS.) Time of concentration 8.48 min. Rainfall intensity= 4.685(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station. 216.000 to P9int/Station 218.000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0.500 given for ·subarea Initial subarea flow distance = 50.00(Ft.) Highest elevation= 40.50(Ft.) Lowest elevation= 28.08(Ft.) Elevation difference= 12.42(Ft.) Time of concentration calculated by the u:i:-ban areas overland flow method (App X-C) = 2.62 min. TC= [1.8*(1.l-C)*dist~nceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.5000)*( 50.QOA.5)/( 24.84A(l/3)]= 2.62 Setting time of concentration to 5 minutes Rainfall-intensity (I) = 6.587 for a 100.0 yea~ storm E.ffective runoff coefficient used for area (Q=KCIA) is C = 0. 500 Subarea runoff= 0.099(CFS) Total initial stream area= 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frbm Point/Station 21B.000 to Point/Station 220.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 28. 08 (Ft.) . G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc 11 (I jJ jl j1 j'1 I I I i I I I I I I I i· i Downstream point elevation= 26.44(Ft.) Channel length thru subarea = 140. 0 0 (Ft. ) Channel base width 0.000(Ft.) Slope or 'Z' of left channel bank= 5.000 Slope or 'Z' of right channel bank= 5.000 Estimated mean flow rate at midpoint of channel 0.609(CFS) Manning's 'N' = 0.015 Maximum depth of channel 0.500(Ft.) Flow(,q) thru subarea = 0.609(CFS) Depth of flow= 0.223(Ft.), Average velocity 2.45l(Ft/s) Channel flow top width= 2.230(Ft.) Flow Velocity= 2.45(Ft/s) Travel time 0.95 min. Time of concentration= 5.95 min. Critical depth= 0.248(Ft.) Adding area flow to channel User specified 'C' value of o.goo given for subarea Rainfall intensity= 5.887(In/Hr) for a 100.0 year storm Runoff, coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runqff = 1.642(CFS) for 0.310(Ac.) Total runoff= 1.741(CFS) Total area= 0.34(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 214.000 **** IMPROVED CHANNE~ TRAVEL TIME**** Upstream point ele.vation = 26. 44 (Ft.) Downstream point elevation= 17.50(Ft.) Channel length thru subarea = 35.00(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank= 0.500 Slqpe or 'Z' of righ.t channel bank= 0.500 Estimated mean flow rate at midpoint of channel 1.792(CFS) Manning's 'N' = 0.025 Maximum depth of channel = 0.500(Ft.) .Flow(q) thru subarea = 1. 792 (CFS) Depth of flow= 0.194(Ft.), Average velocity= 8.422(Ft/s) Channel flow top width= 1.194(Ft.) Flow Velocity= 8.42(Ft/s) Travel time = 0.07 min. Time of concentration= 6.02 min. Critical depth= 0.430(Ft.) Adding area flow to channel User specified 'C' value of 0.500 given for subarea Rainfall intensity= '5.843(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.500 Subarea runoff= 0.058(CFS) for 0.020(Ac.) Total runoff= 1.S00(CFS) Total area= 0.36(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.360(Ac.) G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc 11 (J il I i il •• I I I\ i I .1 I i I i I I Runoff from this stream= Time of concentration= Rainfall intensity= l.800(CFS) 6.02 min. 5.843(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 224.000 **** INITIAL AREA EVALUATION**** User specified 'Ci value of 0. 950 given f·or subarea In;i.tial subarea flow distance 40.00(Ft.) Highest elevation= 30.00(Ft.) Lowest elevation= 29.00(Ft!) ~levation difference= l.OO(Ft.) Time of concentration calculated by the urban areas overland· flow method (App X-C) = 1. 26 min. TC= (l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= (l.8*(1.1-0.9500)*( 40.00A.5)/( 2.50~(1/3)]= 1.26 Setting time of concentration.to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=;KCIA) is C = 0.950 Subarea runoff = 0·.125 (CFS) Total initial stream area= 0.020(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process f:tom Point/Station 224.000 to Point/Station 214.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point eievation == 29. 00 (Ft.)· Downstream point elevation= 17.50(Ft.) Channel length thru subarea 110. 00 (Ft.) Channel base width = O.OOO(Ft.) . Slope or 'Z' of left channel bank= 5.000 Slope or 'Z' of right channel bank= 5.000 Estimated mean flow rate at midpoint of channel -0.375(CFS) Manning's 'N' = 0.050 Maximum depth of channel 0.500(Ft.) Flow(q) th~u subarea = 0.375(CFS) Depth of flow= 0.194(Ft.), Average velocity 2.00l(Ft/s) Channel flow top width= 1.937{Ft.) Flow Velocity == 2. 00.(Ft/s) Travel time = 0.92 min. Time of conce~tration = 5.92 min. Critical depth= 0.203(Ft.) Adding area flow to channel User specified 'C' value of 0.700 given for subarea Rainfall intensity= 5.909{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff= 0.33l(CFS) for 0.080(Ac.) Total runoff= 0.456(CFS) Total area= O.lO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Ppint/Station 214.000 **** CONFLUENCE OF MINOR STREAMS**** G:\Accts\021040\PROPOSED CONDITION RATIONAL-FINAL.doc j} fl It 11 IJ jl I ,, I I- i I ,I ,I i :i ;i :1 ~- Along Main Stream number: 1 in normal stream number 3 Stream flow area= O.lOO(Ac.) Runoff from this stream= 0.456(CFS) Time ·of concentration = 5. _92 min·. Rainfall intensity= 5.909(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 226.000 to Point/Station 228.000 **** INITIAL AREA EVALUATION**** User specified 'C' valueof 0.450 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation= 40.50(Ft.) Lowest elevation= 29.25(it.) Elevation difference= ll.25(Ft~) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.22 min. TC= [1.8*(1.l-C)*distanceA.5)/(%.slopeA{l/3)] ~c = [1~8*(1.l-0.4500)*(lOO.ooA.5)/{ 11.25A(l/3)1= 5.22 Rainfall intensity (I) = 6.405 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff= 0.058(CFS) Total initial stream area= 0. 020 (Ac.) +4++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 228.000 to Point/Station 230.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 29.25(Ft.) Downstream point elevation = 17 .10 (Ft.) Channel length thru subarea = 165.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left ~hannel bank= 2.000 Slope or 'Z' of right channel bank= 2.000 Estimated mean flow rate at midpoint of channel= 0.159(CFS) Manning's 'N' = 0.050 Maximum depth of channel = l.OOO(Ft.) Flow(q) thru subarea = 0.159(CFS) Depth of flow= 0.216(Ft.), Average velocity= 1.698(Ft/s)" Channel flow top width= 0.864(Ft.) Flow Velocity= 1.70(Ft/s) Travel.time = 1.62 min. Time· of concentration = 6. 84 min. Critical depth= 0.208(Ft.) Adding area flow to channel User specified •·c; value of O. 550 given for subarea Rainfall intensity= 5.38l(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-a-rea, Rational method, Q=KCIA, C = 0. 550 Subarea runoff= 0.207(CFS) for 0.070(Ac.) Total runoff = 0. 265 (CFS) Totc;tl area = 0. 09 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 214.000 **** IMPROVED CHANNEL TRAVEL TIME**** G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc 11. 11 11 ll I I· I I ; :1 .i .i .I Upstream point elevation= 18.SO(Ft.) Downstream point elevation 17.50(Ft.) Channel length thru subarea 80.00(Ft.) Channel base width = O.OOO(Ft.) Slope or 'Z' of left channel bank= -5.000 Slope or 'Z' of right channel bank = 5 .. QOO Estimated mean flow rate at midpoint of channel= 0.353(CFS) Manning's 'N' = 0.050 Maximum depth of channel = O. s·oo (Ft.) Flow(q) thru subarea = 0.353(CFS) Depth of flow= 0.282(Ft.), Average velocity= 0.888(Ft/s) Channel flow top width= 2.819(Ft.) Flow Velocity= 0.89(Ft/s) Travel time = 1.50 min. Time of concentration,= 8.34 min. Critical depth= 0.199(Ft.) Adding area flow to channel User specified 'C' value of 0.700 giyen for subarea Rainfall intensity 4.735(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=~CIA, C = 0.700 Subarea nmoff = 0 .199 (CFS) for O. 060 (Ac.) , Total runoff~ 0.464(CFS) Total area= 0.15(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream nwnber: 1 · in normal stream m.tmber 4 Stream flow area= 0.150(Ac.) Runoff from this stream 0.464(CFS) Time of ·concentration= 8.34 min. Raihfall intensity= 4.735(In/Hr) Summary, of stream data: Stream No. 1 2 3 4 Qmax(l) Qmax(2) Qmax(3) = = = Flow rate (CFS) 2.076 1.800 0.456 Q. 4·64 1.000 * 0.802 * o. 793 * Q.990 * 1. 000 * 1.000 * 0'.989 * 1. 0.00 * 1.000 * 1.000 * TC (min) 8.48 6.02 5. 92 8.34 1.000 * 1. 000 * 1.000 * 1.000 * 0.710 *· 1. 000 * 1.000 * 0.722 * 0.698 * 0.983 * 2. 076) 1. 800) 0.456.) 0. 464) Rainfall Intensity (In/Hr) 4.685 5.843 5.909 4.735 + + + + = 4.339 2.076} + 1. 800) + 0. 456) + 0.464) + ~ 4.059 2 .076) + 1. 800) + G:\Ac'cts\021040\PROPOSED CONDITION RATIONAL· FINAL.doc ll Ii I 11 I II I I I I \ j I I I I I I I I Qmax(4) ·=; 1. 000 * 1. 000 * 1.000 * 0.810 * 0.801 * 1.000 * 1.000 * 0.709 * 0.984 * 1.000 * 1.000 * 1. 000 * 0.456) + 0.464) + = 2.076) + 1. 800) + 0.456) + 0.464) + Total of 4 streams to confluence: Flow rates. before confluence point: 2.076 1.80'0 0.456 4.,002 4.330 0.464 Maximum fiow rates .at confl'l~ence using above data: 4,339 4.059 4~002 4.330 Area of streams before confluenc.e-: 0.520 0.360 0.100 Results of confluence: Total flow rate == . 4. 339 (CFS) Time of concentration= 8.479 min. Effective stream area after confluence= End .of computations, total ~tudy area= 0.1~0 1.130 (Ac.) 1.13 (Ac.) G:\Accts\021040\PROPOSED CONDITION RATIONAL -FINAL.doc ~~~~~~.~~ Jd~~~~.J~ 13.l.·' -PROPOSED CONDITION RUNOFF HYDROGRAPH INPUT .OUTPUT (AT 1 MIN INTERVALS) tp= 8.ZB. qp:;:: 4.29 .. t/tp q/qp t q. t(min) q1 q2 t1 t2 q (cfs) 0 0 0 0 0.828 0.1287 0 0 0.1287 0 0.828 0.00 0.1 0.03 0.828 0.1287 1.656 0.429 1 0.1287 0.429 0.828 1.656 0.19 .0.2 0.1 1.656 0.429 2.484 0.81!?1 2 0.429 0.8151 1.656 2.484 0.59 0.3 0.19 2.484 0.8151 3.312 1.3299 3 0.8151 1.3299 2.484 3.312 1.14 0.4 0.31 3.312 1:3299 4.14 2.0163 4 1.3299 2.0163 3.312 · 4,14 .1.90 0.5 0.47 4.14 2.0163 4.968 2.8314 5 4.8314 3.5178 4.968 5.796 2.86 0.6 0.66 4.968 2.~314 5.796 3.5178 6 3.5178 3.9897 5.796 6.624 3.63 0.7 0.82 5.796 3.5178 6.624 3.9897 7 · 3.98~7 4.2471 6:624 7)J52 · 4.11 0.8 Q.93 6 .. 624 3.9897 7.45~ 4.2471 8 4.2471 4.29 7.452 8.28 4.28 0.9 0.99 . 7.452 4.2471 8.28 '4.29 9 4.29 4.2471 8.28 r 9.108 4.25 1 1 8.28 4.29 9.108 4.2471 10 3.9897 3.6894 9.936 10.764 3.97 1.1 0.99 9.108 4.2471 9.936 3.9897 11 3.6894 3.3462 10.764 11.592 3;59 1.2 0.93 9.936 3.9897 10.764 3.6894 12 3.3462 2.9172 11.592 12.42 3.13 1.3 '0,86 10.764 3.6894 11.592 3.3462 ,• 13 2.9172 2.4024 12.42 13:248 2.56 1.4 0.76 11.592 3.346i . 12.42 2.9172. 14 2.4024 1.9734 13:248 14.076 2.01 1.5 0.68 12.42 2.9172 13:248 2.4024 15 1.6731 1.4157 14.904 15.732 1.64 1.6 0~56 13.248 2.4024 14.076 1.9734 16 1.4157 1.2012 15.732 16.56 1.3~ 1.7 0.46 14.076 1.9734 14.904 1.6731 17 1.2012 0.9009 16.56 18.216 1:12 1.8 0.39 14,904 1.6731 15.732 1.4157 18 1.2012 0.9009 16.56 18.216 0.94 1.9 0.33 15.732 1.4157 -16.56 1.2012 19 0.9009 0:6435 · 18.216 19.872 0.78 , . 2 0.28 16.56 1.2012 18.216 0.9009 20 0.6435 0.4719 19.872 21.528 0.63 2.2 0.21 18.216 0.9009 19.872 0.6435 21 0.6435 0.4719 19.872 21.528 0.53 2.4 0.15 ·.19.872 0.6435 21.528 0.4719 22 0.4719 0.3432 21.528 23.184 0.44 2.6· 0.11 21.528 0.4719 23.184 0.3432 23 0.4719 0.3432 21.528 23.184 0.36 2.8 0.08 '23.184 0.3432 24.84 0.23595 24 0.3432 0.23595 23.184 24.84 0.29 3 0.055 24.84 0.23595 26.496 0.1716 25 0.23595 0.1716 24.84 26.496 0.23 3.2 0.04 26.496 0.1716 28.152 0.12441 26 0.23595 0.1716 24.84 26.496 0.19 3.4 0.029 28.152 0.12441 29.808 0.09009 27 0.1716 0.12441 26.496 28.152 · 0.16 3.6 0.021 29:808 0.09009 31.464 0.06435 28 0.1716 0.12441 26.496 28.152 0.13 3.8 0.015 31.464 0.06435 33.12 0.04719 29 0.12441 0.09009 28.152 29.808 0.11 4 0.011 33.12 0.04719 38.088 0.02145 30 0.09009 0.06435 29.808 31.464 0.09 4.6 0.005 38.088 0.02145 41.4 0 31 0.09009 0.06435 29.808 31.464 0.07 5 0 41.4 0 0 0 32 0.06435 0.04719 31.464 33.12 0.06 33 0.06435 0.04719 31.464 33.12 0.05 ~~~~~~~~ 9 ]~,---~~a1,,]·,,.],,,,l,·]~ 34 0.04719 0.02145 33.12 38.088 0.04 35 0.04719 0.02145 33.12 38.088 0.04 36 0.04719 d:QZ145 33.12 38.088 .0,0~ 37 0:04119 0.02145 33.12 ;38.088 0.03 38 0.04719 0.02145 33.12 38;088 0.02 39 0.02145 0 38.088 41.4 0.02 -40 0.02145 0 38.088 41.4 0.01 41 0:02145 0 3S.088 41.4 0.00 42 0 0 41.4 0 0.00 43 0 0 41.4 0 0.00 44 0 0 41.4 0 0.00 45 ·o . 0 41.4 0 0.00 46 0 0 41.4 ·O 0~00 47 0 0 41.4 0 0.00 48 0 0 41.4 0 0.00 49 0 0 41.4 0 0.00 50 () 0 41.4 0 0.00 51 0 0 41.4 0 0.00 52 0 0 41.4 0 0.00 -' 53 6 0 41.4 0 0.00 ' 54 0 0 41.4 0 0.00 55 0 0 41.4 0 0.00 56 . 0 0 41.4 0 0.00 57 0 0 41.4 0 0.00 ·-58 0 0 41:4 0 0.00 59 0 0 41.4 0 0.00 60 0 0 41.4 0 0.00 61 0 0 41.4 0 0.00 62 0 0 41.4 0 0.00 63 0 0 41.4 0 0.00 64 0 0 41.4 0 b~OO 65 0 0 41.4 0 0.00 66 0 0 41.4 0 0.00 67 0 0 41.4 0 0.00 68 0 0 41.4 0 0.00 69 0 0 41.4 0 0.00 70 0 0 41.4 0 0.00 71 0 0 41.4 0 0.00 72 0 0 41.4 0 0.00 73 0 0 41.4 0 0.00 74 0 0 41.4 0 0.00 17 11 17 11 11 i I I I I: I I I I ;I I i I I FLOOD RYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 -2001 Study date: 10/11/02 -------------------------------·-------·-----------------------------La Costa Fairways G:\Accts\021040\lacostadetentioh O'Day Consultants, Carlsbad, California -S/N 768 --------------------------------------------------------------------**** * * * * * *·* * **** * * ***· HYDROGRAPH INFORMATION * * *** * * * ** * **** * * ** ** * From study/file name: detl.rte ****-lr***********************HYDROGRAPH DATA********t******************* Number of intervals= 42 Time interval= 1.0 (Min.) Maximum/Peak flow rate= 4.280 (CFS) Total volume= 0.066 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 0.000 to Point/Station 2.000 **** PRINT CURRENT HYDROGRAPH **** .+++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++ P R I N T O F S T O R M R u n o f f H y d r o g r a p h _______ , --.--------------------------------------------------------- Hydrograph in 1 Minute intervals-(CFS) --------------------------------------------------------------------Time(h+m) Volume(Ac.Ft) Q(CFS) 0 1.1 2.1 3.2 ------------------------------,----------------------------------------o+ 1 0+ 2 0+ 3 0+ 4 o+ 5 o+ 6 0+ 7 o+ 8 0+ 9, 0+10 0+11 0+12 0+13 0+14 0+15 0+16 0+17 0+18 0+19 0+20 0+21 0+22 0.0000 0.0003 0.0011 0.0026 0.0053 0.0092 0.0142 0.0199 0.0258 0.0~16 0.0371 0.0420 0.0463 0.0499 0.0526 0.0549 0.0567 0.0583 0.0596 0.0607 0', 0615 0.0623 0.00 Q 0.19 VQ 0.59 V 1.14' IV 1.90 I 2.86 I 3.63 I 4 .11 I 4.28 I 4.25 I 3. 97 I 3.59 I 3.13 I 2.56 I 2.01 I 1. 64 I 1.35 I 1.12 I · o. 94 I 0.78 I 0.63 I 0.53 I I I Q I Q V I V I VI I V I I I I I I I I I Q Q Q I Q I Q I Q I I I I I Q I I I I V I VI IV I I I Q Q I Q I I I I I I I I I I I I Q I I I I I I V I VQI V I I I I I I I I I I I I I I Q I Q I Q QI Q I Q I I I V I V I V I V I V I V I V I V I 4.3 i1 11 j] jl i1 i I I I I. 1· I I I. i I i i I 0+23 0.0629 0.44 I Q I I I V I 0+24 0. 06-34 0.36 I Q I I I V I 0+25 0.0638 0.29 I Q I I I VI 0+26 0.0641 0.23 I. Q I I I VI 0+27 0.0643 0.19 IQ I I I ·VI 0+28 0. 0646 0.16 IQ I I I VI 0+29 0.0647 0.13 IQ I I I VI 0+30 0.0649 0 .. 11 IQ I I I VI ' 0+31 0.0650 0.09 Q I I I VI 0+3~ 0.0651 0.07 Q I I I VI 0+33 0.0652 0.06 Q I I I VI 0+.34 0.0653 o.b5 Q I I I VI 0+35 0.0653 '0. 04 Q ·I I ., VI 0+36 0.0654 0.04 Q I I I VI 0+37 0.0654 0.03 Q ·I. I I VI 0+38 0.0655 0.03 Q I I I VI 0+39 0.0655 0.02 _Q I I I VI 0+40 0.0655 d.02 Q I I I VI 0+41 0.0655 0.01 Q I I I VI 0+42 0.0655 0.00 Q I I I VI -------------------------.--------------,------------------------------****************************HYDROGRAPH DATA**************************** Number of intervals= 42 Time interval: 1.0 (Min.) Maximum/Peak flow rate=· 4.280 (CFS) Total volume= 0.066 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 · -Peak (CFS) Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** -------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ P~ocess from Point/Station 0.000 to Point/Station · 2.000 **** RETARDING BASIN ROUTING**** rrogram computation of outflow v. depth CALCULA,TED OUTFLOW DATA AT DEPTH= 0.44(Ft.)) Pipe length 25. 00 (Ft.) Elevation difference O. 50 (Ft.) Manning's N = 0.011 -No. of pipes= 1 Given pipe size= 8.00(Ih.) Calculated individual pipe flow = 0.864(CFS) Normal flow depth in pipe = 3. 65 (In. ) Flow top width inside pipe= 7.97(In.) Critical Depth= 0.44(Ft.) Calculated flow ra-te through pipe (s) = 0. 864 (CFS) -Total outflow at this depth= 0. 86 (CFS) CALCULATED OUTFLOW DATA AT DEPTH = 0. 88 (Ft.)) Pipe length = 25.00(Ft.) Elevation difference 0. 50 (Ft.) Manning's N = 0.011 No. of pipes= 1 17 11 11 I 11 I -, I I I i I I I I I i I I I Given pipe size= 8.00(In~) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 0. 713 (Ft.) Pipe friction loss= 0.279(Ft.) Minor f:t'iction loss = 0. 435 (Ft. ) Calculated flow rate through pipe(s) = K-factor= 1. 508 (CFS) Total outflow at this depth= 1. 51 (CFS} CALCULATED OUTFLOW DATA AT DEPTH= 1.32(Ft.)) Pipe length = 25. 00 (Ft.) Elevation difference = Manning's N = 0.011 No. of pipes= i Given pipe size= 8.00(In.) NOTE: Assuming outlet depth at so£fit of outlet. NOTE: Normal flow is pressure flow. 1.50 0.50 (Ft.) The total friction loss through the p:i,pe is 1.153 (Ft.) Pipe friction loss= 0.451(Ft.) Mihor friction loss= Q.703(Ft.) Calculated flow rate through pipe(s) = K-factor·= i. 917 (CF·s) Total outflow at this depth= l.92(CFS) CALCULATED OUTFLOW DATA AT DEPTH= 1.76(Ft.)) Pipe length • 25.00(Ft~) ~levation difference Manning's N = 0.011 No. of pipes= 1 Given pipe size= 8.00{In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Nocrmal flow is pressure flow. 1.50 0.50(Ft.) The total friction loss through the pipe is 1.593 (Ft.) Pipe friction-loss = 0. 622 (Ft.} Minor friction loss= 0.971(Ft.) Calculated _flow rate th:r;:ough pipe (s)· = K-factor= 2.253(CFS) Total' outflow at this depth= 2.25(C"E:S} CALCULATED OUTFLOW DATA AT DEPTH= 2.20(Ft.}) Pipe length -25. 00 (Ft.) Elevation difference = Manning's N = 0.011 No. o! pipes= 1 Given pipe size= 8.00(In~) NOTE: Assuming o~tl~t depth at sotfit of outlet. NOTE: Nor~al flow is pressure flow. 1.50 0.50(Ft.) The total friction loss through the pipe is 2.033 (Ft.) Pipe friction loss = 0. 794 (Ft.)· Minor friction loss== l.239(Ft.) Calculated flow rate through pipe(s) = K-factor= 2.546(CFS) Total outflow at this depth= 2.55(CFS) 1.50 ---------------------------J--------------------------------------Total number of inflow hydrograph intervals= 42 Hydrograph time unit= 1.000 (Min.) Initial depth in storage basin= O.OO(Ft.) . . ' --------------------------------------------------------------------. . Initial basin depth= Initial basin storage= initial basin outflow= 0. 00 (Ft.) 0. 00 (Ac. Ft) 0.00 (-CFS) ----------------------------------------------------------------- ~ I £\ I i i i i I I fi i: i ~- -1 Depth vs. Storage and Depth vs. Discharge data: Basin Depth Storage Outflow (S-O*dt/2) (S+O*dt/2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) ------, ------------·------------------------------------------------- 0.000 0.440 0.880 1.320 1. 760 2.200 0.000 0.006 0.012 0.018 0.024 0.030 0.000 0. 864 1.508 1. 917 2.253 2.546 0.000 0.005 0.0ll 0.017 . 0.022 0.028 0.000 0.007 0.013 0.019 0.026 0.032 -----------·--------------------------:----------------------------- Hydrograph Detention Ba~in Routing -·------------------------------------------------------------------- Graph values: 'I'= unit inflow; 'O'=?utflow at time shown ---------------------------------------------------------------------Time (Hours) 0.017 0.033 0.050 0.067 0.083 0.100 0.117 0.133 0.150 0.167 0.183 0.200 0.217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0.400 0. 417 0.433 0. 450 . 0. 467 0.483· 0.5b0 0.517 0.533 0.550 0.567 0.583 0.600 0.617 0.633 0.650 0. 667 0.683 0.700 0.717 Inflow (CFS) 0.00 0.19 0.59 1.14 1. 90 2.86 '3. 63 4.ll 4.28 4.25 3.97 3.59 3.13 2.56 2.01 1. 64 1.35 1.12 0.94 0.78 0.63 0:53 0.44 0.36 0.29 0.23 0.19 0.16 0.13 0.11 0.09 0.07 ,0. 06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.00 0.00 Outflow (CFS) 0.00 0.02 0,08 0.23 0.46 0.81 1.15 1.52 1. 10 i. 97 2.13 2.26 2.33 2.36 2.36 2.32 2.27 2.19 2.11 2.01 1. 92 1.80 1. 68 1.56 1.42 1.26 1.12 0.99 0.87 0.74 0.62 0.53 0.44 0.37 0. 3l. 0.26 0.22 0.19 0.16 0.13 0.11 0.09 0.08 Storage (Ac. Ft) . 0 0.000 0 0.000 or 0.001 0 0.002 10 0.003 I 0.006 I 0.009 I 0.012 I 0.016 0.019 0.022 0.024 0.026 I I I I I I II II II I 0 I I I I I . 0. 026 0;026 0.025 0.024 0.023 0.021 0.020 0.018 0.016 0.015 0.013 0.011 0.010 0.008 0.007 0,006 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0 0.001 O 0.001 0 0.001 0 I I I 0 0 0 I 0 I 0 I 0 IO IO - IO IO 1,. 1 I I I I I o I 0 I o I o I I . I I I I I I I I I II I I I b I o I o ·I o 10 9 OI o I ! I I I I I I I I I I I I I 2.14 I I I I I I I I I I o I OI 0 10 IO I IIO 10 0 0 0. 0 0 I 3.21 I I I I I I I I I I I I I I II I I I I I I I I I I 4.28 I I I I I I I I I I II I I I I I I I I I I I I I I I Depth (Ft.) 0.00 0.01 0.04 0.11 0.23 0.41 0.64 0.89 1.15 '1.39 1. 60 1.76 1.87 1.92 1.91 1. 86 1. 78 1. 68 1.57 1. 45 1.32 1.19 1.06 0.94 0. 82 0. 71 0.61 0.53 0.45 0.38 0.32 0.27 0.23 0.19 0 .16 0.13 0.11 0.10 0.08 0.07 0.06 0.05 0.04 11 1J jJ -11 j] j I ,I i i i' I ,, 'I i ;i: i ,, i ****************************HYDROGRAPH DATA**************************** Number of intervals= 43 Time interval= 1.0 (Min.) Maximt,mt/Peak flow rate= 2.361 (CFS) Total volume= 0.065 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 -0 . 0 0 0 0 . 0 0 0 *'* ** ** ** ***'*** **** * * ****** *** **** * * * *** * * * * ** ** ** ** * *** ** ** * * * ** * ** ** ** ·-----·------------------------------------------------------------- 11 I il 'll I il ,II I I I I ~ I I • I I I I I I I I . Stage--Storage Curve 11"63.41 .................. .._ ............................................................ - 930.73. t") 698.05 ~ ., E ::, 0 > 465.37 232.68 0.00 .................................................................. .. :...2.00 -1.60 -1.20 -0.80 -0.40 -0.00 Stage -ft I ·I I I I ll. I I I 11 I I I I I} IJ 11 .IJ I] Inlet Sizing Calculations Inlets on a grade Curb inlets on a grade are sized per the "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad," using the equation: Where: Q = O.?L(a+ y)3'2 y = depth of flow in approach gutter, in feet a = depth of depression of flow line .at inlet, in feet L = length of clear opening, in feet (maximum 30 feet) Q = fl~w in CFS, use 50-year design storm minimum Solving the above equation for L: L= Q O.?(a+ y)312 J'he flow rate and th~ depth of flow in the approach gutter are found in the Rational Method calculations, and the depth of gutter depression at the inlet is 4" (0.33') for all type B inlets.Lis rounded up to the nearest whole foot, and 1' is added to the overall length of the inlet to account for the thickness of the walls. Node 208 1.85 L = -. ---------------= 6.47 ft =:=> clear opening= 7 ft => inlet= 8 ft 0.7(0.33 + 0.22)3'2 Nod~ 212 0.19· L = --------------------= 1.11 ft => clear. opening= 4 ft => inlet= 5 ft 0.7(0.33 + 0.06)312 G:\Accts\021040\inlets on grade.qoc I. I: 1; I I I ' . ·. I I I I I I ·1 I r .I fl II (I fl ********************************************************·********************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982·-2002 Advanced Engineering Software (aes) Ver. 9;0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O' Day Consul tan ts, I.nc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 , **************·************ DESCRIPTION OF STUDY ************************** *LACOSTA CONDOS * * HGL CALCS * * 10" PVC * ************************************************************************** FILE NAME: 021040-2.DAT TIME/DATE OF STUDY: 0'9:42 12/03/2003 * * * * * * * * * * * **·**** * *** **** * * * * * * ***** * ***** *'*** ***·* *** * * ** * * * ** * * * * * ** ** * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note:·"*" indicates nodal point UPSTREAM RUN RUN NODE NUMBER 1.00- } 2.00- MODEL PRESSURE PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POUNDS) 0.83 33.86 data used.) DOWNSTREAM FLOW DEPTH(FT) 0.53* PRESSURE+ MOMENTUM(POUNDS) 34.64 FRICTION 0.68*Dc 31.88 0.68*Dc 31.88 --· ---------------------------------------------------------------------------MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE= 25 NOTE: STEADY FLOW HYDRAPLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 1.00 PIPE FLOW= 2.36 CFS ASSUMED DOWNSTREAM CONTROL HGL = ,FLQWLINE ELEVATION = PIPE D~AMETER = 10.00 14.660 FEET 13.83 INCHES . . . ------------------------------------------------------------------------------ NOOE 1. 00 : HGL = < 14.363>;EGL= <. 15.00l>;FLOWLINE= < 13.830> ****************************************************************************** 2.00 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 2.00 1.00 TO NODE ELEVATION= 14.20 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PirE FLOW 2.36 CFS PIPE DIAMETER= PIPE LENGTH = 20 .10 FEET · MAN_NING' S N 10.00 INCHES = 0.01100 --------------------------:---· ----------------------------------------------- NORMAL DEPTH(FT) = 0.50 CRITICAL DEPTH(FT) = 0.68 I I 17 ; I I: 1· I I I: I I ·1· I I. I I I I I ============================= . ==· === -=. == --= . ================================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68. -=== -====· ======· ===========·===· -=========================================== GRADUALLY VARIED FLOW PROFILE COMP\JTED INFORMATION: -------------------'----------------------------------------------------------DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.,000 0.685 4.919 1.061 31. 88 0. 01,8 0. 677 4.968 1.061 31. 88 ·0.075 0,670 5.020 1.062 31. 90 0.174 0.663 5.073 1.063 31. 93 0.318 0.655 5.128 1:064 31. 97 0.511 0.648 5.186 1.066 32.02 0.759 0.640 5.245 1.068 32.08 1.068 0.633 5.307 1.071 32.16 1.445 0.626 5.371 1.074 32.25 1.897 0.618 5.437 1.078 32.35 2.434 o. 611 5.506 1.082 32.47 3.070 0.603 5.577 1.087 32.60 ·3.817 0.596 5.651 1.092 32.74 4.695 0.589 5.728 1.098 32.90 5. 727 0.581 5.808 1.105 33.07 6.943 0.574 5.890 Lll3 33.27 8.381 0.5'67 5.975 1.121 33.47 lQ. 09.6 0. 55·9 6.064 1.130 33.70 12.161 0.552 6.156 1.141 33.94 14.688 0.544 6.251 1.152 34.20 17 .. 845 0.537 6.350 1.164 34.48 20.100 0.533 6.407 1.171 34.64 ----, -----------------------------------_____ -+ ________________________________ NODE 2.00 : HGL = < 14.885>;EGL= < 15.26l>;FLOWLINE= < 14.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 2.00 FLOWLINE ELEVATlON = 14.20 ASSUMED UPSTREAM CONTROL HGL = 14.88 FOR DOWNSTREAM RUN ANALYSIS =------------------------------,--------------------------------------==------END OF GRADU~LLY VARIED 'FLOW ANALYSIS G:\Accts\021040\HGL-2.doc I I II ) J f. Ii; 11 ·1 I I· 1. I· 1: I I fl, ti fl fl ~-I ******************~**********************f************************************ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OGEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY************************** *LACOSTA FAIRWAYS * * HGL CALCS * * 12" PVC ************************************************************************** FILE NAME: 021040-1.DAT TIME/DATE OF STUDY: 09:36 12/03/2003 * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE i?RE;SSURE+-FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 213.00-0.20 0.61 0.04* 0.63 } FRICTION 211. 00-O.lO*Dc 0.29 O.lO*Dc 0.29 -' ----------------------------------, --------------------------------,----------MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE= 25 ----------------------------------.-----·-------------------------------------NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION. FORMULATION *******************************·*********************************************** DOWNSTREAM PIPE FLOW CONTROL·DATA: NODE NUMBER= 213.00 PIPE FLOW= 0.06 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE EiEVATION = 21.69 PIPE DIAMETER= 12.00 INCHES 21. 886 FEET ---------·---------------------------------------------------------------------NODE 213.00 : HGL = < 21. 735>;EGL= < 22.130>;FLOWLINE= < 21. 690> ****************************~************************************************* 211.00 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 211.00 213.00 TO NODE ELEVATION= 27.53 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 0.06 CFS PIPE DIAMETER= PIPE LENGTH= 34.07 FEET MANNING'S N 12.00 INCHES = 0.01100 ---------.-----------· ---.---------------------------------------------------- NORMAL DEPTH(FT) = 0.04 CRITICAL DEPTH(FT) = 0.10 ( ~ 1; (J 17 I . 11 I IJ ·11 I I I I I I I 11 1· , I ' 1· - =======.===-====================-============·======== "====================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.10 -===== > --------------------------------======= ·==--========================== GRAOUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ' . -----------------, ------------------------------------------------------------DIS'TANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.102 1. 496 0.137 0.29 O.Odl 0 .10.0 1.548 0.137 0.29 0.003 0.097 1. 602-0.137 0.29 0.006 0.095 J,.660 0.138 0.29 Q.012 0.093 1.722 0.139 0.30 0.020 0.090 1. 788 0.140 0.30 0..030 0.088 1.858 0.142 0.30 0.042 0.086 1.933 0.144 0.31 0.059 0.083 2'.013 0.146 0.31 0. 07,8 0.081 2.099 0.149 0.32 0.102 0.079 2.191 0.153 0.32 0.132 0.076 2.290 0.158 0.33 0.167 Q.074 2.397 0.163 0.34 0.210. 0.072 2.513 0.170 0.35 0.262 0.069 2.639 0.178 0.36 0.325 0. 06.7 2. 776 0.187 0.38 0.402 0.065 2.925 ·0.198 0.39 0.496 0.062 3.088 0.211 0.41 0.614 0.060 3.267 0.226 0.43 0.763 0.058 3. 464 0.244 0.45 0.955 0.055 3.682 0.266 0.47 1.212 0.053 3.924 0.292 0.50 1.572 0.051 4.194 0.324 0.53 2.124 0.048 4.498 0.363 0.57 3.153 0.046 4.839 0. 410 0.61 34.070 0.045 5.041 0.440 0.63 ------------------------------------------------------------------------------ NODE. 211. 00 : HGL = < 27.632>;EGL= < 27.667>;FLOWLINE= < 27.530> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 211.00 FLOWLINE ELEVATION = 27 .53 ASSUMED UPSTREAM CONTROL HGL = 27.63 FOR DOWNSTREAM RUN ANALYSIS ================-======== -=====.====· -==========-===== -======================= END OF GRADUALLY VARIED FLOW ANALYSIS G:\Accts\021040\HGL-1.doc I I I I I~ ·1 I I I I I I I fl I I fl ll' I ***************~*******~******************************~*********************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) ·(c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ****************·********** DESCRIPTION OF STUDY ************************** * 1'A. COSTA FAIRWAYS * * * * HGL CALCS * 18" RCP ************************************************************************** FILE NAME: 021040.DAT TIME/DATE OF STUDY: 09:27 12/03/2003 ******~*********************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note:"*" indicates nodal point UPSTREAM RON data used.) DOWNSTREAM RUN NODE NUMBER 214.00- '} 208.00- } io8 .10- } 213.00- } '213 .10- } 212.00- MODEL , PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POONDS) DEPTH(FT) MOMENTUM(POUNDS) 1.50* 103.35 0.54 71.32 FRICTION 0.80*Dc 58.49 0.80*Dc 58. 49 JUNCTION l.ll* 43.00 0.12 2.02 FRICTION 0.44* 5.20 0.18 De 1.55 JUNCTION 0.44* 4. 9'4 0.11 1. 40 FRICTION } HYDRAULIC. JUMP 0.16*'Dc 1.10 0.16*Dc 1.10 -------------------------------------------------,-----------------------------MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE= 25 ---,--.-----------------------------------. ----------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT.LAGFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FUL~ INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214. 00 FLOWLINE ELEVATION = 18. 50 PIPE FLOW= 4.34 CFS PIPE DIAMETER= 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 20,000 FEET ----------------·------------------------------------------------------------- NODE 214.00 : HGL ~ < 20.000>;EGL= < 20.094>;FLOWLINE= < 18.500> ****************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 208.00 IS CODE= 1 l~- l l · 1··: ., l_ f I I I I I ·I I ,, I r1 II fl ll I UPSTREAM NODE 208.00 ELEVATION= 20.45 (FLOW SEALS IN REACH) ----------------------·-------------------------------------------------------CALCULATE FRICTION LOSSES(LACFCD): PIP.E FLOW = 4.34 CFS PIPE DIAMETER= 18.00 INCHES PIPE LENGTH= 83.71 FEET MANNING'S N = 0.01300 --------------·-----------------------.-·-------------------·-----------------NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.80 ====----=----------------------------------,----------==---====-============== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD-(FT) = 1. 50 =======================·=================== ·=·=========·====================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -----------------------.------------------------------------------------------DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CbNTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 2.455 1.594 103.35 1.257 1.472 2. 465 1.566 100.35 2.475 1.444 2.485 1.540 97.45 3. 671 1. 416 2.510 1.514 94.62 4.846 1.388 2.541 1. 488 91.87 6.004 1. 360 2 . .576 1.463 89.20 7.145 1.332 2. 6.16 1.438 86.61 8 .268 1.304 2. 660 1.414 84.10 9.374 1.276 2.708 1. 390 81.68 10.461 1.248 2.761 1.366 79.35 11. 528 1.219 2.819 1.343 77.11 12.573 1.191 2.882 1.320 74.97 13.595" 1.163 2.950 1.299 72.94 14.592 1.135 3. 023 -1.277 71.0.l 15.559 1.107 3.102 1.257 69.19 16.494 1.079 3.187 1.237 67.50 17.392 1.051 3.2.79 1. i18 65.92 18.248 1.023 3.378 1.200 64.47 19.Q55 0.995 3.485 1.184 63.16 19.806 0.967 3.601 :1.._169 61.99 20. 4 92 0.939 3. 727 1.155 60.97 21. 099 o. 911 3. 862 1.143 60.11 21.615 0.883 4.010 1.133 59.42 22.018 0. 855 4.170 1.125 58.91 22.285 0.827 4.344 1.120 58.60 22.383 0 .. 799 4.535 1.118 58.49 83. 71-0 o·. 799 4.535 1.118 58.49 . . ------------------------------------------------------------------------------ NODE 208.00 : HGL = < 21.249>;EGL= < 21.568>;FLOWLINE= < 20.450> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *'* * * * * *'* * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE UPSrREAM NODE 208.10 208.00 TO NODE 208.10 rs CODE= 5 ELEVATION= 20.78 (FLOW rs SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 0.25 18.00 45.00 20.78 0.18 0.179 DOWNSTREAM 4.34 18.00 20.45 0.80 4.536 LATERAL jf:1 0.00 O.Ob 0.00 0.00 0.00 0.000 LATERAL :Jt2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.09===Q5 EQUALS BASIN INPUT=== G:\Accts\021040\HGL.doc I: 11 ·1 I} 11 I I JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: , MANNING'S N = 0.01300; FRICTION SLOPE= 0.00001 DOWNSTREAM: MANNING'S N = 0,'01300; FRICTION SLOPE = 0.00553 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00277 JUNCTION LENGTH= 5.00 FEET FRICTION LOSSES= 0.014 FEET ENTRANCE LOSSES= 0.064 FEET JUNCTION LOSSES -{TRANSITION LOSS)+{fRICTION LOSS)+{ENTRANCE LOSSES) JUNCTION LOSSES= { 0.240)+{ 0.014)+{ 0.064) == 0.317 -----------, -------~--------------· -------------------------------------------NODE 208.10 : HGL = < 21 .. 8 8.5> ;EGL= < 21. 886>; FLOWLINE= < 20 .·780> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM ~ODE 213.00 208.10 TO NODE ELE;VATION = 213.00 IS CODE= 1 21.44 {FLOW IS SUBCRITICAL) ----------------------------------------------·-------------------------------CALCULATE FRICTION LOSSES{LACFCD): PI.PE FLOW ,;,. . 0. 25 CFS PIPE DIAMETER = 18. 00 INCHES PIPE LENGTH= , 18.50 FEET MANNING'S N = 0.01300 -------~ .--NORMAI:d:>-EP'I'H-(FT-) ·=·----· ·0-;12-----.. --·----GRIT-ICAI,--DEPTH-{F'I')-=----0.-18---·· - I I I I I I I fl JI I fl fl ===·========·===,==-=============================.============================ DOWNSTREAM CONTROL ASSQMED FLOWDEPTH(FT). = 1. 11 =======-=· =========-=======-===========================· ====================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------------------------~ ----------------------------------------------- DISTANCE FROM CONTROL{FT) 0.000 1. 032 2.063 3.095 4.126 5.157 6.188 7.219 8.249 9.278 10. 307 11.335 12.363 13.389 14.413 15.435 16.453 17.468 18.475 18.500 FLOW DEPTH (FT) 1.105 1.068 1.031 0.994 0.958 0.9~1 0.884 0.847 0.810 0.773 0.737 0.700 0.663 0.626 0.589 0.552 0.516 0.479 0.442 0.441 VELOCITY (FT/SEC) 0.179 0.186 0.193 0.201 0.210 0.220 0.231 ·0.243 0.257 0.272 0.289 0.309 0.332 0.358 0.388 0.423 0.465 0.514 0.575 0.576 NODE 213.00 : HGL = < 21.88l>;EGL= < SPECIFIC ENERGY{FT) 1.106 1.069 1.032 0.995 0.958 0.922 0.885 0.848 0. 811 0.775 0.738 0-. 701 0.665 0.628 0.592 0.555 0. 519- 0. 483 0.447 0. 44-6 PRESSURE+ MOMENTUM{POUNDS) 43.00 39.85 36.82 33.90 31.11 28.43 25.89 23. 46 21.17 19.00 16.96 15.05 13.27 11. 61 10.08 8.68 7.40 6.25 5.22 5.20 21. 886>; FLOWLINE= < 21. 440> *************************~**~*******************~****~************************ FLOW PROCESS FROM NODE 213.00 TO NODE 213.10 IS CODE= 5 UPSTREAM NODE 213-. 10 ELEVATION = 21. 45 (FLOW IS SUBCRITICAL) --------------------------------------------------------------------------CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INC,HES') (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) G:\Accts\021040\HGL.doc IJ ,, I".'; 1'11 ,; ., IJ 11 J I] ! . I I I I I I . I I I I I I UPSTREAM 0.19 18.00 0.00 21.45 0.16 0.446 DOWNSTREAM 0.25 18.00 21.44 0.18 0.577 LATERAL #1 0.06 12.00 90.00 21. 69' 0.10 0.563 LATERAL #2 0.00 ·0.00 0.00 0.00 0.00 0.000 Q5 O.OO===Q5 EQUALS BASIN INPUT=== JUNC'J,'ION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.00010 DOWNSTREAM: .MANNING'S N = 0.01300; FRICTION SLOPE= 0.00016 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00013 JUNCTION LENGTH= 1.00 FEET . FRICTION LOSSES 0.000 FEET ENTRANCE LOSSES= 0.000 FEET .JUNCTION LOSSES= (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES -( 0,00~)+( 0.000)+( 0.000) ~ 0.002 --------------------------------.--------------------------·------------------NODE 213.10 : HGL = < 21..886>;EGL= < 21.889>;FLOWLINE= < 21. 450> *********************************************k******************************** FLOW PROCESS FROM NODE UPSTREAM NODE 21i.oo 213.10 TO NODE ELEVATION= 212.00 IS CODE= 1 22.85 (HYDRAULIC JUMP OCCURS) ------------,--------------------------.--------------------------------------CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.19 CFS PIPE DIAMETER~ 18.00 INCHES PIPE LENGTH= 42.00 FEET MANNING'S N = 0.01300 --,---------------------------------------------------------------------------HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ----------------------------------.-------------------------------------------NORMAL DEPTH(FT) = 0.11 CRITICAL DEPTH(FT) = 0.16 ·===·=-·==============··==================·=======,============================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) ~ 0.16 =====--------------. ,-. ---------" -----. -----------------=---=--------=====--- 'GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -·-----, ----------------------------------------------------------------------DISTANCE FROM CON,TROL-( FT) 0.000 0.002 0.009 0.0~1 0.039 0.063 0.095 0.134 0.182 0.241 ·o.310 0.393 0.492 0.608 0.746 0.908 1.102 1. 335 1. 616 1. 961 2.396 2.958 FLOW DEPTH (FT) 0.160 0.158 0.156 Q.154 0.151 0.149 0.147 0.145 0.143 0.140 0.138 0.13? 0.134 0.132 0.130 0.127 0.125 0.123 0.121 0.119 0.116 0.114 VELOCITY (FT/SEC) 1.875 1.914 1.953 1. 994 2.037 2.081 2.127 2.174 2.223 2.275 2.328 2.383 2.441 2.501 2.563 2.629 2.697 2.768 2.842 2.920 3.002 3.087 SPECIFIC ENERGY(FT) 0.215 0.215 0.215 0.215 0.216 0.217 0.217 0.218 0.219 0.221 0.222 0. 22'4 0.226 0.229 0.232 0.235 0.238 0.242 0.246 o,. 251 0.256 0.262 PRESSURE+ MOMENTUM(POUNDS) 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.12 1.13 1.13 1.14 1.15 1.16 1.17 1.19 1.20 1.21 1.23 1.25 1.27 1.29 1. 31 G:\Accts\021040\HGL.doc I I I; I~ ll I ' ! I I I-· .1 I I I I I I II 3.725 4. 864' 6.919 42.000 0.112 0.110 0.108 ·0.107 3.177 3.271 3.370 3.40~ 0.269 0.276 0.284 0.287 1.34 1.36 1.39 1.40 ------·-----------------------------------------------------------------------HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS.RESULTS ===-==== ---------------------------------------------------------=====-------- DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.44 ======-========================--========-====== .============================= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------.---------------------------.-----------------------------------------DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMEN'I'.UM(POUNDS) 0.000 0.436 0.446 0.439 . 4.94 0.325 0.425 0.462 0.428 4.65 0.648 0.414 0.479 0.417 4.38 0.972 0.402 0.498 0.406 4.12 1. 2 9 4 0 . 3 91 0 . 51 7 0 . 3.9 6 3 . 8 7 1.616 0.380 0.539 0.385 3.63 1.936 0.369 0.561 0.374 3.40 2.255 0.358 0.586 0.364 3.18 2.573 0.347 0.612 0.353 2.98 2.889 0.336 0.641 0.343 2.78 '3,203 0.325 0.672 0.332 2.59 3.515 0.314 0.706 0.322 2.41 3.824 0.303 0.743 0.312 2.25 ~.130 0.292 0.783 0.302 2.09 4.431 · 0.281 0.828 0.292 1.95 4.728 0.270 0.877 0.282 1.81 5.019 0.259 0.931 0.273 1.69 5.303 o.248 o.~91 0.264 1.57 S.578 0.237 1.058 0.255 1.47 5.841 0.226 1.133 0.246 1.38 6.089 Q.215 1.219 0.238 1.30 6.318 Q.204 1.315 0.231 1.23 6,521 0.193 1.426 0.225 1.18 6.689 O.i82 1.553 b.220 1.13 6.808 0.171 1.701 0.216 1.11 6.855 0.160 1.875 0.215 1.10 42.000 0.180 1.875 0.215 1.10 -------------~----------END OF HYDRAULIC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 5.77 FEET UPSTREAM OF NODE 213.10 I I DOWNSTREAM DEPTH= 0.229 FEET, UPSTREAM CONJUGATE DEPTH= 0.107 FEET I -------------. ___________________________ ._, ---------------------------------- NODE 212.00 :· HGL = < 23:0lO>;EGL= < 23.065>;FLOWLINE= < 22.850> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NOOE NUMBER= 212.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION= 22.85 43.01 FOR DOWNSTREAM RUN ANALYSIS ====·=· ==============================-===-====-=============================== END OF GRADUALLY VARIED FLOW ANALYSIS G:\Accts\021040\HGL.doc I I 1. ,, I I I I I .. I I I I fl [I [I I [I I [I I CITY OF OCEANSIDE 78 PACIFIC VICINITY . MAP NO SCALE -~~~ ~~---------~---- Table3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land·Use I Rum;,ff Coefficient "C" Soil Type NRCS Elements County Elements I %IMPER. A B C D Undisturbed Natural Terrain Permanent Open Space o• 0.20 0.25' 0.30 0.35 Low Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Residential, 2.0 DU/A or less 20 0.34 Q.38 0.42 0.46 Low Residential, 2.9 DU/A 'or less 25 0.38 0.41 .0.45 0.49 Medium Density Residential Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential Residential, .7 .3 DU/ A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential Residential, 10.9. DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial General Industrial 95 0.95 0.95 0.95 0.95 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described-in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A= dwelling units per acre NRCS = National Resources Conservation Service I . -. . . . . . . I • ---·---. ._... --W ------1111 ... -1111 ~--2 ._, ... ;) ~ ·-·---~ '!!!!l'J ~ .... .... I :t-i ....... COUflTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL i.s• I \l!.!IIIBQ,w(' 'ai~"c~f\.~i-U '• 1,1'" I Jiia~;;;.:: ¾., ~~ ,, 33• ------·. --· ! 301 ' 1 vv l I Ji,: .. ~ . I I i IS I I I *i" ) ,I V ~SI.I I ,, '"7J -=---~~c:.-h7.~ l , ( > 71 :::!) C ;. -. -,. • ; .. 45 • 1 n · , r .. " ... ~ 11 _.,,, I I ___ , .¾i)ll UDl:11 :,::r ~! · Prep• ,d lar ' ····-· ·--.. , . . .. U.S. DEPARTl\1EN I' OF COMMERCE fMTIONAL OC:11\tilC AND AT, 05PIIEHIC ADMIN15TIAnON 5P&:~IAL 5TUDIEli DRA."iCH, OFFICt: OF II UROLOGY, NATIONAL WIATHl9' IERVICI ·.-: ·3o• i I I I ,u ·,------.. ., _ vr. --I I 1, 118:' 4S' JO' 15' 117• Lt5 1 . 30 1 15' 116• ·:-11 .. ·.11 ( '". ' . I~-' J . ·1r I 1 ' ' .l i. . :z:: C: 11 ::, ·c::, c::, . ·--I-..... • I [,I c:.t q"" 1--N -• c:::: Cl--·;I .. c.:) · L:.J I:. c= = ,· c.. ··1 = 11 ,,._ = .... ... ---= [;I = -"-Cl) ..J I ~ 11': ~ -N ::=a = ...I c::: ~ 1;1· c:: Q l..t.J .. C,') -> " I 1:1 C> c:;::::, ~ c:::a ~ _.,.... :I I. 111 cb z ·o .... I-l{I oi= e-I.I.I :z t-t-< ccn ill zu...1 ceoo &n C: u. !i: ~ 0\&JQ I :cu ,_..,. I-C: 0 zc:::::o :>a.o c:, I.I.I _, [I (.) Q '-'- ll .... -· -· ... -. _, c.a • I .. ,. , I .r !. ·1 --t.n 0 "' .::-C"'\ Ln -.:r • I"'\ ""· .. u !· Iii Ill DC ~ !e -:.a ~-DC .J (:J t-< u ?!i'! ~ zO (:J i j: :& Q ~ :Ii~. 0 .. )o (Jill 0 wCI ... Cl.=~. • 0 ;= . '!':..oca • z. -.. w .. -: -< II,, 11.j::OCI Z:it = < u < u~ a. ;;. :.. -~-0 Q <0 :ii • C"'\ .u= Cl) Cl u • ,J ;,; ::i < < ~ :.c 0 :A -"' ... II.I <-z0 :, ,.. Ill ,J < u l:l a. "' • ...:, ---I.:' • . --C . .... -,.-. -- • ,..._ -- -1.,-• -C C¥\ -"-,"\ ..::: !,_ -- II-A-, 17 1J ,. j I j I I I i i I I I i i i i i ' 1-104.14 TABLE 1-104.14A DESIGN VALUES FOR MANNINGS ROUGHNESS COEFFICIENT {n) TYPE O;F CHANNEL Unlined Channels: Clay Loam Sand Gravel Rock Lined Channels: Portland Cement Concrete Air Blown Mortar Asphalt Concrete Grass Lined Channels: ( Shallow depths) 2 inch· length 4 -6 inch length 6 -12 inch length 12 -24 inch + length· Pavement and Gutters: N VALUE 0.023 0.020 0.030 0,040 0.015 0.018 0.018 0.050 0.060 0.120 0.200 Concr.ete O. 015 Asphalt Concrete O. 018 Natural ·streams: (Less than 100 feet wide· at flood stage) 1. Regular section · a. Some grass and weeds, little or no brush O. 030 b, Dense growth of wee.ds, depth of flow substantially greater than weed height 0. 040 c. Some weeds., light -brush. on bank . o. 040 d. Some weeds, heavy brush on banks 0.060 e. With trees in cha,nnel, branches s.ubrnerged at flood stage, increase above values by O. O 15 74 11 11 rl 11 ;'I I \I ( ~ ~ ~ I I . I I ·1 I I I .1 ,1 I I I 1 . • ~, •;:, . ~ ~ . ''· r:i·/t :-,: . ',: ·,:'· -~· . ' ... ,,. : . ·.; ·::' : :·:.}>.II:::'. i;)(~i~! ; :· ' :_. ti~ ll), , ',' I• '< >. ;->· . .,,-,,'::~)·/.:,;~~.7:%~;:~ ·. . ·Sofana:Bea'dl'.' ';, ,-: \, /:~:·:_::\~:~(~:\;~, ". · · ,, ·: , . Del,Ma~·, · <! .. ::':?lf·:: ,,: !f • ,_;· ~: • ,... : ',' :,',' . .,.,. :·'.",. ,·.,. ,:, •, "-" .''··:/'<:~:¥.f ·,,, ·_·:-:{,,·,, -~:~ /;~;(,It .·.,.:·,. :--·-·, ',, ',.·,., : ,~ ~ EstadoS Unidos Mexicanos"3aja California •• .n. '¥ i C 0 p n, ... ~- \- (') 0 c:. ? ... 1< i ! County of San Diego Hydrology Manual , ---. .. · _:..._;): . ),;:-~ ... ----:,< /m,' '1<, ;~~~) •ct __ ., LL · Soil Hydrologic Groups Legend [ii'.-mII1 Group A ltllll GroupB '/l';'filfi"'"'l0 ~ri:1.:i~;?) Group C -GroupD i-Undetermined (Made or Urban or Gullied or Escarpments) Data Unavailable Map Notes Stateplane Prqjection, Zone6, NAD83 Creation Date: June 18, 2001 NOT TO BE USED FOR DESIGN CALCULATIONS Q n 7 r;.