HomeMy WebLinkAboutCT 03-13; BLACK RAIL RIDGE; DRAINAGE STUDY; 2004-08-02I
~I
·1
1
·1
1
I
I
I
I
I
I
I
I
I
I
I
I
'I
ENGINEERING
Professional Civil Engineer and Land Surveyor
DRAINAGE STUDY
TENTATIVE MAP CT 03-13
BLACK RAIL RIDGE SUBDIVISION
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
\.
RECEIVED
MAR 1 0. 2005
ENGINEERING
DEPARTMENT
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
·1
1
I
1
I
1
I
I
I
I
I
I
1
I
Purpose
CT 03-13 Drainage Study
August 2, 2004
Pagel
The purpose of this Drainage Study is to determine and compare the Pre-Development and Post-Development ultimate
storm flows for the proposed project, and to determine the Water Quality Design Storm flows for the developed site.
Ultimate Storm flows will be based on the 10 year and 100 year 6 hour storm as defined in the San Diego County
Hydrology Manual. Water Quality Treatment Design Storm Flows will be based a storm event of 0.2 in/hr., which approximates
an 85th percentile storm event.
Site Description
The proposed site consists of approximately 3.6 acres and adjoins Black Rail Road to the East, Poinsettia Lane to the North
and Triton Street to the South. Currently the site is used for a plant nursery. There are no existing permanent structures.
The proposed development is an 11 lot subdivision.
There are no existing off-site storm flows entering the site.
The storm runoff from the site, currently sheet flows across the westerly property line to the adjoining properties.
Ultimately, all the runoff from this and adjacent sites ends up in a natural drainage area 600' westerly of this site. After
development, a storm drain system will carry the runoff from this site to the natural channel.
Hydrology
The Rational Method as outlined in the San Diego Hydrology Manual is used to determine peak flows. Initial time of
concentration, Ti is derived from Table 3-2 for the undeveloped site and for the developed site. Travel time is determined using
either Figure 3-4 (for the undeveloped site), Figure 3-6 (for street flows) of the manning equation for trapezoidal cl1annels for
flows in earth or concrete swales. Soil Type for the site is Type B per the latest San Diego County Soils Group Map.
Table 1 -Anticipate4 vs. Existing 10 year Storm Flows
Drainage Facility Existing Condition Proposed Proposed
Flow from site, Ql0 Development Flow Development Flow, Q2
(CFS) from site, Ql0 (CFS)
(CFS)
Triton Street -3.3 2.0
Westerly Property Line -2.8 2.4
Total 4.4 6.1 4.4
DesiglJ of Vegetated Swa/e (Lots 1-5)
Ideally, vegetated swales should be used on sites with slopes of less than 4 percent; runoff velocities within channels can
become too high on steeper slopes, causing erosion and inhibiting in.filtration and filtering in the swale. Swale bottoms should
not exceed 8 feet in width, with 4H:1V or flatter side slopes. The depth of the swale should carry the anticipated 10-year storm
600 S. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
cr 03-13 Drainage Study
August 2, 2004
Page 2
runoff with approximately 6 inches of freeboard. Typically, the swale should be designed to convey the runoff from a 2-year
storm event, without erosion. Table 2 summarizes the results of the hydrology and hydraulic calculations for the proposed
vegetated swale in Drainage Area 2c.
Table 1
Hydrologic and Hydraulic Results for Proposed Vegetated Swale, Area 2c
K § ~ ''= ~ t<S -.l:! ..:l CI a 0) .i:f. ~ l:j .... '" '" s (5 !:l
~ ~ en ..... d ~ '" ~ CI 4-< ...... U ~ 0) a '" t<S~ '0 0) ~ cJ .,S;
~ l:E ~ ~ ~ Ii .e-O) a J ~ '0
0) u ..9 W l±:: ~ 0) ~ .~ J ... W <:S ~~ ... ~ fr ~ ... ~ Q < ~ Q ~
Water Quality Storm, 1.97 0.46 9.7 0.2 0.18 0.4 0.6
(1=0.2 in/m)
2-Year Storm 1.97 0.46 9.7 2.23 2.0 1.5 1.8
10-Year Storm 1.97 0.46 9.7 3.09 2.8 1.9 2.1
The total depth of the swale varies but is at least l' below the pad grades. The bottom width of the swale is approximately 8
feet. with a 2:1 slope against Poinsettia Lane, and a slope of approximately 4:1 on the southerly side.
A general rule of thumb fur sizing vegetated swales, as noted in the information included in Appendix A, is one percent of
the area that drains into the swale. For the proposed swale on this project. the area required would be approximately 1180 square
feet, or a swale 8 feet wide by 148 feet long, The actual dimensions of this swale will be 8 feet wide by 290 feet long
Based on the maximum velocity expected for the design storm, and the length of the swale, ihe hydraulic residence time for
runoff flowing through the swale is approximately 8 minutes.
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
Tc & Imp Area Calculations
Node 100 -101
Area = 0.24 Ac
Imp Area = 0.12 Ac
% Imp = 0.12/0.24 = 50%
Slope = 77.0-72.5/156 = 3%
Ti = 6.0 min.
Li = 90'
Using:
Tc = 6 min.
A = 90/156 * 0.24 = 0.14
I = 6.56 in/hr
C=0.60
Then Q = 0.6 cfs
Assuming flow of Q/2 for each side of the lot:
Channel Calculator
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 0.3000 cfs
Slope ........................... 0.0300 ft/ ft
Manning's n ..................... 0.0200
Height .......................... 6.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.0200 ft/ft
Right slope ..................... 0.0200 ft/ ft
Computed Results:
Depth ........................... 0.8039 in
Velocity ........................ 1.3370 fps
Flow area ....................... 0.2244 ft2
Flow perimeter .................. 8004031 in
Hydraulic radius ................ 004019 in
Top width ....................... 80.3871 in
Area ............................ 12.5000 ft2
Perimeter ....................... 600.1200 in
Percent full .................... 13.3978 %
Then V= 1.3 fps
Tt= (156-90)/(1.3*60) = 0.8 min.
Tc = 6.0 + 0.8 = 6.8 min.
Node 101 -102
Area = lAO Ac
Imp Area = 0.70 Ac
% Imp = 0.7/104 = 50%
Slope = 72.5-36.7/565 = 6%
cr 03-13 Drainage Study
August 2, 2004
Page 3
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX~ 760 897-2165 • E-MAIL~ MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Assuming Avg Q = 1.4*3/2 + 0.9 =3 cfs
V = 5.2 fps (Fig. 3.6)
Tt = 565/ (5.2*60)=1.8 min.
Node 200 -102
Area = 0.83 Ac
Imp Area = 0.54 Ac
% Imp = 0.53/0.83 = 64% use 65%
Node 300 -301
Area = 0.58 Ac
Imp Area = 0.20 Ac
% Imp = 0.20/0.58 = 34% use 35%
Slope = 67.0-64.0/200 = 1.5% use 2%
Ti = 7.8 min. (fable 3-2, interpolated between 30% and 40% Imp.)
Li = 80'
Using:
Tc = 7.8 min.
A = 80/200 * 0.58 = 0.23
I = 5.54 in/hr
C=0.52
Then Q = 0.7 cfs
Assuming flow of Q/2 for each side of each lot
Channel Calculator
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 0.2000 cfs
Slope ........................... 0.0150 ft./ft.
Manning's n ..................... 0.0200
Height .......................... 6.0000 in
Bottom width .................... 0.0000 in
Left. slope ...................... 0.0200 ft./ft.
Right slope ..................... 0.0200 ft./ ft.
Computed Results:
Depth ........................... 0.7863 in
Velocity ........................ 0.9316 fps
Flow area ....................... 0.2147 ft2
Flow perimeter .................. 78.6469 in
Hydraulic radius ................ 0.3931 in
Top width ....................... 78.6312 in
Area ............................ 12.5000 ft2
Perimeter ....................... 600.1200 in
Percent full .................... 13.1052 %
Use V= 1 fps
Tt= (200-80)/(1*60) = 2.0 min.
Tc = 7.8 + 2.0 = 9.8 min.
CT 03-13 Drainage Study
August 2, 2004
Page 4
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
1
I
1
·1
1
I
I
I
I
I
1
I
I
I
Node 301 -302
Area = 0.27 Ac
Open Space/Landscape area, use 0% Imp.
Ignore Length of Downdrain in determining Tt
Assuming Avg Q = 0.27*1/2 + 1.3 =1.45 cfs (1 cfs/ ac -open space)
Manning Pipe Calculator
Given Input Data:
Shape ........................... Elliptical
Solving for ..................... Depth of Flow
Minor axis ...................... 24.0000 in
Major axis ...................... 36.0000 in
Flowrate ........................ 1.4500 cfs
Slope ........................... 0.0200 ftl ft
Manning's n ..................... 0.0150
Computed Results:
Depth ........................... 3.0212 in
Area ............................ 4.7124 ft2
Wetted Area ..................... 0.3435 ft2
Wetted Perimeter ................ 24.9215 in
Perimeter ....................... 95.1927 in
Velocity ........................ 4.2214 fps
Hydraulic Radius ................ 1.9847 in
Percent Full .................... 12.5882 %
Full flow Flowrate .............. 46.6548 cfs
Full flow velocity .............. 9.9005 fps
Use V= 4.2 fps
Node 302 -303
Area = 1.12 Ac
Imp Area = 0.15 Ac
% Imp = 13% use 20%
Ignore Length of Downdrain in determining Tt.
AssumingAvg Q = 1.12*2/2 + 1.6 =2.7 cfs (2 cfs/ac)
Channel Calculator
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 2.7000 cfs
Slope ........................... 0.0200 ft/ft
Manning's n ..................... 0.0200
Height .......................... 6.0000 in
Bottom width .................... 96.0000 in
Left slope ...................... 0.5000 ft/ ft
Right slope ..................... 0.2500 ft/ ft
Computed Results:
Depth ........................... 1.5128 in
Velocity ........................ 2.5564 fps
600 S. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
CT 03-13 Drainage Study
August 2, 2004
PageS
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Flow area ....................... 1.0562 ft2
Flow perimeter .................. 105.6200 in
Hydraulic radius ................ 1.4400 in
Top width ....................... 105.0766 in
Area ............................ 4.7500 ft2
Perimeter ....................... 134.1550 in
Percent full .................... 25.2128 %
Use V= 2.6 fps
Storm Drain Hydraulic Grade line Calculations
cr 03-13 Drainage Study
August 2, 2004
Page 6
Hydraulic grade line calculations are based on the Mannings equation. Outlet losses are based on the velocity head.
In cases of subcritical flow, the grade line is calculated in an upstream. direction fur the reach adding friction loss to the
downstream grade line elevation.
In the case of supercritical flow, the grade line is based on an assumption of critical depth at the manhole or Catch Basin
outlet and flow in the downstream pipe is assumed to be normal depth for the reach.
Catch Basil1 Capacity -T nton S !reet
In the interim condition, with the berm installed at the West end of Triton Street to direct the street flow across the street
from the South, the catch basin will operate in a sump condition. Ultimately, when Triton is widened to its full 40' width and a
catch basin is installed to pick up the South side flows, the catch basin will operate in an intercept condition.
Interim Condition:
Q100=7.8 cfs
L=14'
S= 0.01
Local Depression = 0.33'
Therefore: Depth @ Inlet = CQI (L *3.0» 2/3 = 0.33'
Ultimate Condition
Q100=4.9 cfs
L=14'
S= 0.01
Local Depression = 0.33'
Depth of Flow in Gutter = 0.38' (Using Figure 3-6)
Capacity = 0.7(0.33+0.38) 3/2 (14)=5.9 cfs > 4.9 cfs
Capacity of Type FAC Dike
Q100 = 7.8-4.9 = 2.9 cfs
S = 0.04
Therefore:
Channel Calculator
Given Input Data:
Shape ........................... Trapezoidal
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Solving for ..................... Depth of Flow
Flowrate ........................ 2.9000 cfs
Slope ........................... 0.0400 ft/ ft
Manning's n ..................... 0.0175
Height .......................... 6.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3000 ft/ ft
Right slope ..................... 0.0200 ft/ ft
Computed Results:
Depth ........................... 2.1486 in
Velocity ........................ 3.3921 fps
Flow area ....................... 0.8549 ft2
Flow perimeter .................. 114.9312 in
Hydraulic radius ................ 1.0712 in
Top width ....................... 114.5943 in
Area ............................ 6.6667 ft2
Perimeter ....................... 320.9406 in
Percent full .................... 35.8107 %
Depth of Flow = (2.15/12) = 0.18' < 0.5' OK
HGL @ existing Manhole -Sta 0+00
From Dwg. No. 360-3B, Ql00 existing at outlet of SD = 12.7 cfs.
Adding Q from site and ignoringTc variations, Qtotal = 12.7 + 10.2 = 22.9 cfs
Section Downstream of Pipe = 2.5' Wide Rectangular channel, s=0.02
Therefore:
Channel Calculator
Given Input Data:
Shape ........................... Rectangular
Solving for ..................... Depth of Flow
Flowrate ........................ 22.9000 cfs
Slope ........................... 0.0200 ft/ft
Manning's n ..................... 0.0150
Height .......................... 30.0000 in
Bottom width .................... 30.0000 in
Computed Results:
Depth ........................... 11.7142 in
Velocity ........................ 9.3835 fps
Flow area ....................... 2.4405 ft2
Flow perimeter .................. 53.4284 in
Hydraulic radius ................ 6.5775 in
Top width ....................... 30.0000 in
Area ............................ 6.2500 ft2
Perimeter ....................... 90.0000 in
Percent full.................... 39.0474 %
Depth Down Stream of Outlet = (11.7/12) = 1.0'
Assume Hgl @ outlet = soffit of pipe = 309.50
Therefore:
cr 03-13 Drainage Study
August 2,.2004
Page 7
600 S. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning Pipe Calculator
Given Input Data:
Shape ........................... Circular
Solving for ..................... Friction Slope
Diameter ........................ 18.0000 in
Depth ........................... 18.0000 in
Flowrate ........................ 22.9000 cfs
Manning's n ..................... 0.0150
Computed Results:
Slope ........................... 0.0633 ft/ft
Area ............................ 1.7671 ft2
Wetted Area ..................... 1.7671 ft2
Wetted Perimeter ................ 56.5487 in
Perimeter ....................... 56.5487 in
Velocity ........................ 12.9587 fps
Hydraulic Radius ................ 4.5000 in
Percent Full .................... 100.0000 %
Full flow Flowrate .............. 22.9000 cfs
Full flow velocity .............. 12.9587 fps
Sf, flowing full = 0.063
V= 13.0 fps
HGL @ S'ly Inlet = 309.50 + (0.063)(51.79) = 312.76'
Inlet Loss = 1.2 V2/2g = 3.15'
HGL upstream = 312.76 + 3.15 = 315.91'
Q upstream = 7.3 + 10.2 = 17.5 cfs
Therefore:
Manning Pipe Calculator
Given Input Data:
Shape ........................... Circular
Solving for ..................... Friction Slope
Diameter ........................ 18.0000 in
Depth ........................... 18.0000 in
Flowrate ........................ 17.5000 cfs
Manning's n ..................... 0.0150
Computed Results:
Slope ........................... 0.0370 ft/ft
Area ............................ 1.7671 ft2
Wetted Area ..................... 1.7671 ft2
Wetted Perimeter ................ 56.5487 in
Perimeter ....................... 56.5487 in
Velocity ........................ 9.9030 fps
Hydraulic Radius ................ 4.5000 in
Percent Full .................... 100.0000 %
Full flow Flowrate .............. 17.5000 cfs
Full flow velocity .............. 9.9030 fps
Sf, flowing full = 0.0370
V upstream = 9.90 fps
HGL @ Proposed Manhole = 315.91 +28.38(0.037) = 316.96'
cr 03-13 Drainage Study
August 2, 2004
Page 8
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
HGL @ Manhole -Sta 2+42.64
Q downstream = Q upstream = 10.2 cfs
Invert Downstream of manhole = 328.50'
18" RCP
s=0.0802
Therefore:
Manning Pipe Calculator
Given Input Data:
Shape ........................... Circular
Solving for ..................... Depth of Flow
Diameter ........................ 18.0000 in
Flowrate ........................ 10.2000 cfs
Slope ........................... 0.0802 ft./ ft.
Manning's n ..................... 0.0150
Computed Results:
Depth ........................... 7.8685 in
Area ............................ 1.7671 ft2
Wetted Area ..................... 0.7425 ft2
Wetted Perimeter ................ 26.0054 in
Perimeter ....................... 56.5487 in
Velocity ........................ 13.7371 fps
Hydraulic Radius ................ 4.1115 in
Percent Full .................... 43.7141 %
Full flow Flowrate .............. 25.7815 cfs
Full flow velocity .............. 14.5893 fps
Critical Information
Critical depth .................. 15.4735 in
Critical slope .................. 0.0095 ft./ft.
Critical velocity ............... 6.0257 fps
Critical area ................... 1.6928 ft2
Critical perimeter .............. 41.2213 in
Critical hydraulic radius ....... 5.9134 in
Critical top width .............. 18.0000 in
Specific energy ................. 3.5883 ft.
Minimum energy .................. 1.9342 ft.
Froude number ................... 3.4285
Flow condition .................. Supercritical
Supercritical flow condition, assume Dc at outlet.
Dn = 7.9/12 = 0.66'
Vn = 13.7 fps
Dc=15.5/12 = 1.29'
Vc=6.0 fps
Outlet Loss = 1.2V2/2g = 0.67'
HGL @ Manhole = 328.50 + 0.67 + 1.29 = 330.46'
CT 03-13 Drainage Study
August 2, 2004
Page 9
600 S. ANDREASEN DRIVE· SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HGL @ CB -Sta 4+30.80
Q downstream = 10.2 cfs
Q upstream = 7.8 cfs
Invert Downstream of CB = 332.45'
18" RCP
s=0.02
Therefore:
Manning Pipe Calculator
Given Input Data:
Shape ........................... Circular
Solving for ..................... Depth of Flow
Diameter ........................ 18.0000 in
Flowrate ........................ 10.2000 cfs
Slope ........................... 0.0200 ft/ft
Manning's n ..................... 0.0150
Computed Results:
Depth ........................... 12.0925 in
Area ............................ 1.7671 ft2
Wetted Area ..................... 1.2624 ft2
Wetted Perimeter ................ 34.5880 in
Perimeter ....................... 56.5487 in
Velocity ........................ 8.0799 fps
Hydraulic Radius ................ 5.2557 in
Percent Full .................... 67.1805 %
Full flow Flowrate .............. 12.8747 cfs
Full flow velocity .............. 7.2856 fps
Critical Information
Critical depth .................. 15.4735 in
Critical slope .................. 0.0095 ft/ ft
Critical velocity ............... 6.0257 fps
Critical area ................... 1.6928 ft2
Critical perimeter .............. 41.2213 in
Critical hydraulic radius ....... 5.9134 in
Critical top width .............. 18.0000 in
Specific energy ................. 2.0217 ft
Minimum energy .................. 1.9342 ft
Froude number ................... 1.5617
Flow condition .................. Supercritical
Supercritical flow condition, assume Dc at outlet.
Dn = 12.09/12 = 1.01'
Vn = 8.1 fps
Dc=15.5/12=1.29'
Vc=6.03 fps
Outlet Loss = 1.2v2/2g = 0.68'
HGL @ CB = 332.45 + 0.68 + 1.29 = 334.42'
cr 03-13 Drainage Study
August 2, 2004
Page 10
600 S. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I.
I
HGL @ CB -Sta 4+30.80
Q downstream = 7.8 cfs
Invert Downstream of CB = 333.15'
18" RCP
s=0.005
Depth of Water @ 4+32.30 = 334.42-332.57 = 1.85'
Therefore:
Manning Pipe Calculator
Given Input Data:
Shape ........................... Circular
Solving for ..................... Friction Slope
Diameter ........................ 18.0000 in
Depth ........................... 18.0000 in
Flowrate ........................ 7.8000 cfs
Manning's n ..................... 0.0150
Computed Results:
Slope ........................... 0.0073 ftl ft
Area ............................ 1.7671 ft2
Wetted Area ..................... 1.7671 ft2
Wetted Perimeter ................ 56.5487 in
Perimeter ....................... 56.5487 in
Velocity ........................ 4.4139 fps
Hydraulic Radius ................ 4.5000 in
Percent Full .................... 100.0000 %
Full flow Flowrate .............. 7.8000 cfs
Full flow velocity .............. 4.4139 fps
Critical Information
Critical depth .................. 13.2558 in
Critical slope .................. 0.0087 ft/ft
Critical velocity ............... 5.5102 fps
Critical area ................... 1.4155 ft2
Critical perimeter .............. 36.7860 in
Critical hydraulic radius ....... 5.5412 in
Critical top wid.th .............. 18.0000 in
Specific energy ................. 1.7344 ft
Minimum energy .................. 1.6570 ft
Froude number ................... 0.5916
Flow condition .................. Subcritical
Subcritical flow condition.
Sf flowing full = 0.0073
V=4.41 fps
HGL Downstream of CB = 334.42 + (0.0073)(116.41) = 335.27'
Outlet Loss = = 1.2v2/2g = 0.36'
HGL @ CB = 335.27 + 0.36 = 335.63'
TC @ Inlet = 337.10
CF = 6" + 4" = 10" =0.83'
Freeboard 337.10 0.83 335.63
CT 03-13 Drainage Study
August 2, 2004
Page 11
= 0.64'
600 S. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Soils Group Map
I 1 T-+-
~----,--,
!
Group A
GroupB
Group C
GroupD
Undetermined
Unknown
600 s. ANDREASEN DRIVE' SUITE E • ESCONDIDO, CA 92029
PHONE: 760 741-3577 • FAX: 760 897-2165 • E-MAIL: MLBENESH@PACBELL.NET
-------------------
Rational Method Calculation Form
Project: CT 03-13
Drainage Soil & A C CA :teA I
Frequency 100 Year
Post-Development
Q Slope Section
Area Development Aeres In.lHr. CFS
100-101 B -50'0 Imp 0.24 0.58 0.14 0.14 6.05 0.8 1/2 St 101-102 B -50'0 Imp 1.40 0.81 0.06 0.58 0.95 5.20 4.9
200-102 B -65'0 Imp 0.83 0.67 0.56 1.51 5.20 7.8 0.005 21" RCP
300-301 B -35% Imp 0.58 0.48 0.28 0.28 4.78 1.3 0.02 D-75 B -0'0 Imp 301-302 0.27 0.25 0.07 0.35 4.60 1.6 0.02 Swale B -20% Imp 0.38 302·303 1.12 0.43 0.77 4.14 3.2
Conf 303 Qil See SD County Hydrology Manual 10.2
QT2 See SD County Hydrology Manual 9.4
303 Qil 4.44 2.28 10.2
..
. ..
. . :~ ;';:~}'?;'\l:~ :", .
V L T
'/See. Ft. Min.
5.2 565 1.8
4.5 120 0.4
4.2 150 0.6
2.6 290 1.9
SumT
6.8
8.6
8.6
9.1
9.8
10.4
12.3
10.9
Calculated by MB
Oate:2 August 2004
Remarks
See Te Cales.
Fig. 3.6, See Cales
S 'Iy Side Triton
Conf@ 303
See Te Cales.
2% V-Gutter
2% Swale -Conf 303
Tc=[(I(CA)7.44P6)/Q]1.55
I
1
.
-------------------
.
i
Rational Method Calculation Form
Project: CT 03·13
Drainage Soil & A
Area Development Acres
100-101 B -50'0 Imp 0.24
101-102 B -50'0 Imp 1.40
200-102 B -65'0 Imp 0.83
C CA l:CA I
In.lHr.
0.58 0.14 0.14 3.89
0.58 0.81 0.95 3.34
0.67 0.56 1.51 3.34
I 300-301 B -35'0 Imp 0.58 0.48 0.28 0.28 3.07
301-302 B -0'0 Imp 0.27 0.25 0.07 0.35 2.96
302-303 B -20'0 Imp 1.12 0.38 0.43 0.77 2.'06
Conf 303 Qn See SD County Hydrology Manual
QT2 See SD County Hydrology Manual
303 Qn 4.44 2.28
,," . '" ,'.'
. ;':.:~: .. :. ':'"
Frequency 10 Year
Post-Development
Q Slope Section
CFS
0.5 0.06 112 St 3.2
5.0 0.005 21" RCP
0.9 0.02 D-75 1.0
2.1 0.02 Swale
6.6
6.1
6.6
"-
V
I/See.
5.2
4.5
4.2
2.6
L T SumT
Ft. Min.
565 1.8 6.8
8.6
120 0.4 8.6
9.1
9.8 150 0.6 10.4 290 1.9 12.3
10.9
-------
Calculated by MB
Oate:2 August 2004
Remarks
See Tc Cales.
Fig. 3.6, See Cales
S'ly Side Triton
Conf@ 303
See Tc Cales.
2% V-Gutter
2% Swale -Conf 303
Te=[(!(CA)7.44P6)/Q]1.55
I
.
--------------~----
!
i
Rational Method Calculation Form
Project: CT 03·13
Drainage Soil & A
Area Development Acres
100-101 B -50'Yo Imp 0.24
101-102 B -5010 Imp 1.40
200-102 B -6510 Imp 0.83
300-301 B -35% Imp 0.58
301-302 B -010 Imp 0.27
302-303 B -2010 Imp 1.12
C CA :tCA I
In.lHr.
0.58 0.14 0.14 2.81
0.58 0.81 0.95 2.41
0.67 0.56 1.51 2.41
0.48 0.28 0.28 2.22
0.25 0.07 0.35 2.14
0.38 0.43 0.77 1.9'2
Conf 303 Qn See SD County Hydrology Manual
QT2 See SD County Hydrology Manual
303 _~~ '-----_gn ._~ ~ ~J __ . 2.28 .-----_ .
. ... , .....
Frequency 2 Year
Post-Development
Q Slope Section
CFS
0.4 0.06 1/2 St 2.3
3.6 0.005 21" RCP
0.6 0.02 D-75 0.7 0.02 Swale 1.5
4.7
4.4
.1·!._
V L
'/See. Ft.
5.2 565
4.5 120
4.2 150
2.6 290
T SumT
Min.
1.8 6.8
8.6
0.4 8.6
9.1
9.8 0.6 10.4 1.9 12.3
,-l~~
Calculated by MB
Date:2 August 2004
Remarks
See Te Cales.
Fig. 3.6, See Cales
S'ly Side Triton
Conf@ 303
See T c Cales.
210 V-Guttel"
210 Swale -Conf 303
.,!e=[(I(CA)7.44P6)1Q]1.55
,
-------------------
Rational Method Calculation Form
Project: CT 03-13
Drainage Soil & A
Area Development Acres
Area A B -10'10 Imp 3.58
. :.' ;~: .....
C CA ::£CA
0.32 1.15 1.15
I
Frequency 100 Year
Pre-Development
Q Slope Section
In.lHr. CFS
4.54 5.2
..
V
'/Sec.
L T SumT
Ft. Min.
10.6
Calculated by MB
Date:2 August 2004
Remarks
L= 675'
Slope = 7'10
Table 3-2 (Interpolated)
Lm=100', Ti=7.4 Min
Tt= 3.2 Min (Fig 3-4)
Tc=7.4+3.2=10.6
-------------------
i
I
Rational Method Calculation Form
Project: CT 03·13
Drainage Soil & A
Area Development Aeres
Area A B -lO,},o Imp 3.58
".}:'.',\\;';"'"
C CA ECA I
In.IHr.
0.32 1.15 1.15 2.92
..
Frequency 10 Year
Pre-Development
Q Slope Section
CFS
3.3
V L
'/See. Ft.
T SumT
Min.
10.6
Calculated by MB
Date:2 August 2004
Remarks
L= 675'
Slope = 7%
Table 3-2 (Interpolated)
Lm=100', Ti=7.4 Min
Tt= 3.2 Min (Fig 3-4)
Tc=7.4+3.2=10.6
-------------------
;--.J
\-;:'
( (
COUNTY OF SAN DIEGO
DEPARTMENT OF SANITATION ,
FLOOD CONTROL
lO-YEAR 6-HOUR PRECIPITATlor~
.'
, 30' "I.b , !Ii f ~ '-<
lS' 1'11\ LJ
"' < •
33'
J 4;' .L"' __ +-_I_~ ._ .. __ .... -.... _-_. --,. ........ ~ .
PrtPI 'ltd by
U.S, OEPARTME T OF COMMERCE
ffAT'ONAI. OCtANt!: AND M' :c)ltttitRIC'''D~tlHJI'rR ... TtOtf
SPECIA!,. 'STUDIES DRANCH, OFFICE 01" I 'OROLOGY, NAT,ONAL WEATHER IBft\llCI
30' J IDI1I4 ... £'t-"-~-"r·
1181' 4,' 30' IS' 1170 45' 30'
(
lS' 116-
----------.---------
....
"j4
~\>
o
1 . J COuillTY OF SAN PIEGO. •
DEPARTMENT OF SANITATtON s-
FLOOD CONTROL lO-YEAR 24-lfOU'R PRECIPITATIOfJ
"'20 .... dSOPlUVIALS bF 10 .. YEAR 24 .. HOUR .
45 t !fd"~~-(' ~ I"" < • '"
30' . 'I' l.,~ I ,,<:: ',._
lS' ""f.I---:--........ ----l
,,0
• 91! 451.!.1---+~-1--: .
IlBO 4,' 30' lS' Jl7° 1'5' 30·
-,
15·' Jl6°
- - - - - --.-- - - - - - - - - - -,
COUNTY OF SAN DIEGO .
DEPARTMENT OF SANITArION &
FLOOD CONTROL
"' 2-YEAR 6-HOUR PRECIPITATIO~l
,-10-ISOPLUVIALS OF 2· 'fEAR G·.~OUR
45 1 DCi)!'Ce't(",..V ,,~ ,. ),'iiS'
30' I "t
IS' I I \: l--it
33·'
4 , 10f t I :::.J."~' t4 J. "" t::::~j' f Sf ,. v .. AN undO ~..."ryl.") I 7
" P,.plI ... dby
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCtANIC MID ATMOSPHtltlC APMINtlTIMTIOlf
'a:CIAL STUDIU BRANCH. OFFICt OF lI\'I'IROt.O(W. NATIONAL WEATHER SIRVICE
\)
~
30 1
1180 'f; I 30' I 45' 30' 15' 117'
.,
IS' liS'
-------------------
..
,. I
)
' .
..
" )
COUNTY OF SAN DIEGO .
DEPARTMENT OF SANITATION &
FLOOD CONTROL
• \
... '
45'
. 30'
l,t
.. ,,',
45'
I Prep.'rlel 11)' , u.s. DEPARTMENT OF COMMERCE
N .... TIONAI.. OCEA:-;IC AND ATf,lOIlJ'HUIC ADMINISTRATION
SPECIAL STUDI!5 BRANCH. O·,."IC& OF IIVDROLOO' .. NATION"!" YilATHEJit 'SIlVlel
....
'i' :r CO \,.J
"'J
;0'
" +-I I
118· '.S' 30'
J
:OoJU .... u ioU .... I
'.. i ' t
..
IS' 117· 45' 30' 151 116·
------------
10.0
9.0
8.0
7.0
6.0
~ l'-.f'ro..!' '" I I! II III II I II ~l'-.!' N I! !! ! II N.. "" ........ ~I .... !'.~ ! III 1 II Ij II
II'l. ""~ ro...~ .... i ~...." . 1 EQUATION I ..... .... ,.... I I =. 7.44 Pa 0-0.645
)' ~ """ . I = Intensity (in/hr)
" ...." I I r---"" '" ri-. '" I Pa = 6-Hour Precipitation (in)
5.0
4.0 )~ r-...", Ii" i 0 = Duration (min)
3.
2.
'C' 5 ~ -5 .5 1.
. I..,.... "" "" I '" I I I . 1 1",-I : 1 . ii' " '
~, , : .... ~ . ~ ) ! I"'..... ,....... ,,! "
l~" : I ," i' .... " I I "'~ ". i"'~
I ..... r-. I i 1'1''''
; i I"~ro-"" ~
" I l"'1'" " iO.
·@o.
J I "" I' 3~~~4-~++~4++H~+H~ffi*~+H~~~~*ffi~~~&+~~~~~
~ Il'WIl roo.
~O
o
o
o
o
o.
0.
7 .... ~
I ! .... 1" '" ) , ~
_, 1 I: I" I~ I'
) I i I" I. I
l i, ~ ~ I I r-.I'r-.
3 .," ..
, ,
~....,. !
,
. I---.-'.-.. -'" "'"' ....' ..
1 '~i+;'ffff~
I ! I
-:! I I
I !, I;
5 6 7·8 910 15 20 30 40 50
Minutes
Duration
2 3 4
Hours
5 6
'T' J: o c ..
"tJ iil Q.
6.0 'E.
5.5 ~ s.O g
4.53-
. 0
4.0 m
3.5~
3.0
2.5
2.0
1.5
1.0
Intenslty·Duratlon Design Chart -Template
- -----
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50. and 100 yr maps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines .
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency ...L year
(b)P6= 1..:;Lln"P24= '1..0 ':26 = rur; %(2)
i ?_ 4 (e) Adjusted PS{2):; ...1..:..2-In.
(d) tx = __ min.
(e) I :; __ In./hr •
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
pi; .: 1 ·:1.s[·r:),S:: .. 3",:3,?: ... L:",~,5: 5 .. ,.,~.5.~ 'G"
Durallon' I I' I I. I I: I I I: I : I
.... --'~ 2,6?. _9:~~; 5,?? _ ~.5~: 7.90. ~.2~l10.54; !l.8S· 13.,17~ 11.,,\9;1~,.~1.
."" .... ,} ?,'.? ... ~.l~; 4 .. ?4.: ~ . .sq.: 6.3~:7.42l ~.4a ",9.54 . 10.60111.66! 12,~2
~O 1·~ .;?A~~.~!?!.._1,?L~!9?§:~OUH~",J.@. .... !3,,~? .. : 9.~7 J9:.1.!. ..... ".t~ ,,1:!l.Q,,:~'~.~f.?..:~~P!g,1.:,~!8,,~:~.,5~.; 5,!~", 8M .. : 6.4~., .7·t~.; ?:7~:. 20 1,08 '.62! 2.15;2.69. 3.23·3.77, 4.31 4.85 i 5,39' 5.93: 6.46 . r ............... -._-~·_· ___ ·~ __ ...... _ .. __ ~·t'_' ___ '",·M_" , .. .. ~ 0.93 .. 1-.40, 1.~~ !?:~3.;2.80!3.27~ 3.73, 4.20 . 4.67 ; 5.13 i 5,~
30 0,83; 1.24! 1..66~ 2.07. 2!49. 2.~~ .3,~., .~~3 .. ~.15 t .4:?~.1 ~.9~ ~ .0:1l9 : 1.p3! 1..3~. 1.72.2.07.2.41: 2.76 . 3.10 ~ 3.45 [ 3.19 i 4.13
?:O Q.60 .. 0:~Oj 1,1~.I.,4!l_.P9.~.09;.g.~9 ... 2..~\l.; ?~9~ L~·2~.i.~·5t! .
" .. "".@ .~,.53 :0.80: 1.06.1.33.1.59.1.86;2.12.2.39: 2.65,2.92; 3.18
.. ".!l«! _0:41. ;().G~fP:~ J.9.2. ... 1:~3, 1.43. l,6?; 1.~4l2,04: .~~~~.i ?.~~ 1~ .0.34 . 0.51l 0.68.0.85: 1.02; 1.19, 1.36: 1,53. 1.70, 1.61: 2.04
.. .1.@ .Q,g~. ~OA4LQ,~~.!.Q:,?,~,".9:~.L1:.Q~, 1. ... 1~. 1.32 I 1.47 , 1:6~:J.!?'~. .'"" .. 1.~ .0 .. 2,6 ,!?:391.9.:?~.Lq·~5 .. Q.7~l9.-\l! .. ):~ .:..1. !~,I. t.'.~~",~""1:.¥ L 1 ·!F . . "'.~~ o:?? .. O.33f.Q,~~.: 9.~.4 .. ~·~lW~.6i !l.87 : 0.98 : 1·<?!\._. 1.·19: .t~. ~ .O:'.~ .O.2S.~,?!U!:4.L():~:.0.~~jP~ .. ; q .. ~ :""o,~ .. lA~.3. ':.1~.
360 0.17 0.2510.33: 0.42: 0.50'0.58 0.67! 0.75 i 0,84 0.92! 1.00
FIGURE ~
-
---
N i"o. .,... " r-..:..l i .....
10.0
9.0
S.O
7.0
6.0 r-J 1-0."
3.
) . ..... r .... ..... ) I ~. ..... I .
; 1
5.0
4.0
~ 1'", ) I 2.0
'C' ~ ~ c: 1. ~o.
·i1!o.
Q) £l0'
o.
o.
o.
o.
o
o
: !
)
~ ,
T 3 . , r ,
I 3 ,
5
4 !
3
2
. -
i "I
I ' ,
-
~ " 1'0 l"-I' r-.
l"-I' ,....
" ~,.... I'r-.
r...r-.., ...
I~
r.... r--r--100.,
r--r....
I"-i"o.
I ~ r-.
'" 'r-.
' '" j i'i"o.
1"-",
""" I
"
1--,.
+-
5 6 7 8 910
--
I
J
1
r-. I
I ..... ,
i'
ro\,
i'
r.;..
I' !
~ I
" I
....
I
i
I
! I I ,
I I ,
,
-
I
t5 20 30
MinUfEiS
-----
,
.. t 1 11
I ! III
: I I I i II 1
I EQUATION , I = '7.44 Ps 0"0.S45 ,
i I = Intensity (in/hr) !
i Ps = 6·Hour Precipitation (in) r
I o = Duration (min) I
I 1 r
: I
~~
I I' I"-I"-~
to, ~"" I I' r-,.i'o
! ... ... r--~
i ~ .... I"-r-. ~
I l"-t-.
'" i ... "" ,
I' ~
100.,1' "" I
i I .. "" i'io
I I·
! 1' .... ......
-
;
I , ,
.~ ....... _R" ••
1
I
I I l
40 50· 2 3 4 5 6
Duration Hours '
-
i ~ {l . 6.0 "9.
5.5 g
5.0 g
4.55'
4.0 i
3.5 ~
3.0
2.5
2.0
1.5
1.0
Intenllty-Duratlon Design Chart,. Template
------
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are induded in the
County Hydrology Manual (10,50, and 100 yrmaps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) This line Is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency 1m.. year
(b) P6 = 2.€> in., P24 = LJ.t5 ,~= ~ %(2)
24
(C) Adjusted P6(2) = ~ in.
(d) tx = __ min.
(e) I = __ . _ in.lhr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
....... -.... f ...... "...... • .• • •• • ........ . P6 1. 1.~ t .~ .• ~,~ .... 3 ...... ~,!L .... L ... 4,.!t.. 5.:.5.5 i .6 Duration I I; I I I I: I I I' I ! I ...... "'5 2.63· 3.951 5.27: 6.59 7.90 9.22' 10.54 11.66' 13.17:14.49: 15.81 .. ....... : .. ~ :?;i.2.:;~:1·~14.~4r5;.:i~::6.:3( 7.4:2.:·~.48 : 9.54 :10.60i 1 1,.001 12.72 10 ~.f?8.: ?5~~.~:.;l? .. ;._f:?'J .:_!?.'~_L~:!Xl.; _~,?1 ..... 7.·[l!:L. ~,4g_; .. ~·;n iJ.Q.J..1.
....... .15 J!~Q_ J,Jl§.t.?·5S!.L~"g~_.,~·~ . .1:!?~.: 5,1!, .. ~B1 .. , ~.49. L?.'! 3. i.!.'?~. 20 LOa 1.62·2.15:2.69;3.233.77: 4.31 4.85: 5.39: 6.93! 6.46
.. ~ . 9.93 ; ~·~l1.:~7 r~:~( 2:~O :·3:2i;-:i:r3~·4.2ci:-~':61 ;"5'.13; 5:69.
0.83 ; ~.M, 1.~6i 2.07. 2.49.2.~O: ~:~ ,._~!:3".4 .. 1.5 ,.4,.~.l -;I.9~ ..... "\9. ,.0.69 .' 1.0311 .. ~8: 1.72,2.1)7.2.41 i 2.76 . 3.10 . 3.45 l 3.79! 4.13 ~ 0.60. ;0.901.1.11'1, 1,~9 .. ~:r9 .':!·9.~ .. ?·~9 .• 2,Y.!:l._ ?!~~.l3!g~.l ~.!!~ .. .. " ...... !!o. . 0.53 ;0.80: 1.06; 1.33.1.59.1.86; 2.12 . 2.39 . 2.65 i 2.92; 3.18
... " .~ p:~1.; 0.61 LC!:~2; 1._Q? .•. 1.,2~;.!.,4~; .1.~3.j 1.~ •. ~~ : .~:.2~: ~.~!i.
. l;ZO 0.34 :0.!i1iO.68lo.65~·1.02. 1..19; 1.36 \ 1,53.: 1.70.1.87: 2.04
.... l~ _Q.!!'~"(Q:4.~f9:~9.L().!.~:.q,~:.~ .. O.3; 1.:.1~ : 1.3~. 1.47 J62_d:?~ .. ........ J~ . Q..~~. ~ 0..39 r (),5~'1 Q.~5.; 0.7~; ():~.1.t tc!.~. ~ .1.,1~L._l.,;!! .: .1:~ \ ~ .f>7 ..... ~_"\9. . Q._?.?.. ;0..33. Q,.43 .. o..51 . ..I:H5.;();?!3. 9 .. 87 . 0.98. l·.GS_: U.~.lJ:.~. ~ . 9,'~!:l . O.28~ (),~B! Q:47 .. 9:~: () .. ~~.Q}~.,. q·~!L Q:9.L.!:.~. ~. ~ :.1;3. 360 0.17 0.25!0.33'O.42 0.50:0.58.0.6710.75 0.84 0.92' 1.00
FIGURE ~
-
---
10.0
9.0
8.0
7.0 " )" 6,0
r...
~ " " " "I ....
" I , .... 1'
I I "
5,0
~N'l "
4,0
3,0 i
l"
2,0 , I
C ::0 ~ .r::. g1.
~o.
·~o.
~o. ...,
o.
o.
I
) !
I ,
3 i
1 I
) :
I
5 i
" ....
I
1
j
- -
" I' '" I' I'
" .... ~ I'
i'o.. ~ ... I ~ ...
.... r.... ~ ...
r--. " ~i'
I' f'. I-i'
1'1' I
.... I'
. ~i'.
"" ~
I'
I
I I
11 ! I
I I
o
o
o ! i
I-1-' .. ·1-1-1-_. ..• .--
i
o I . 5 6 1 8 9 10 15
-
I
~ ! I
" !
!
" I'
" ~
" "
~ ! I
N
,
r.... i
!
i
!
1 :
; ,
, ! ,
.I !I
. . ..
; I
I
20 30
Miiltlfes
--
til
II!
III
I !
I
I
I
i
I
I
:
I I
I
j
,
T
I
40 50
Duration
---
I !
I
EQUATlON
I ,. 7.44 P6 0-O.645
I ,. Intensity {in/hr}
P6 = 6·Hour Precipitation (in)
D :: Duration (min)
1'1'
" " ~ ~ I " ... I'" I' I.
I' i'~ I_ ~ I'" 1'1' ~ " r-.
l""
'" ....
. 'I'
I" I'
"I'
""I'
-
----. ~ ~ ~.. . .. -
-
I i
III
!
i
In
!
~
!
,
0) ± ~
4'
6.01
5.5 ~
5.0 ;:I
4.53-
4.0 g.
3,51&
3.0
2.5
2.0
1,5
1.0
2 3 4 56
Hours
Intensity"Duration Design Chart· Template
------
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are induded in the
County Hydrology Manual (10, 50. and 100 yr maps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (nol
applicaple to Desert),
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) This line Is the lntenslty-duratlon curve for the location
being analyzed.
Application Form:
(a) Selected frequency J£:L.... year
(b) Pe = ..L..fL In .• P24 = 5....L. ;:4 = '58 %(21
(C) Adjusted P6(2) = -h&..in .
(d) tx = _ min.
(e) I = __ in.lhr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
Ptl .. ,. ··f.5[""2·:·.:·2;t: 3 :.3.,.~.; .. ~ ....... 4~.~.: .. 5 :.~~~.: ·.if
Duration 11;1 I I I·' 11:1,1
........... '$ 2.63 3.9515,27·6,59·7.90' 9.22:10.,54 1l.86 13.17114.49.15,81 ............ :7 ':2: 1,2:: ~:f~f~:~~.; ?:~(6::in.4( 8.48 : 9.54 : 10.60[11.66; 12:7i
10 . ~:~ .• g:~~~§:~?l1:?L~!~~ :.5:~.1. ~,?~."..?:§~ ..... M2 .. ~.Jl:n •. 19., '1. ... 1~ .1·~Q.)'.~i!.?:~2.i.;Hl:t.~·~.9.:.~,§4;.5,19 .. ~·~.1.; E?:19 ;.r..tL'?:J~.
20 1,08.1.62. 2.,1!).: l?:.~~. ~:~~ .?:?J ... 1.&1... .. _1:~.~.: . .§!~~ ~.?.~~.; 9,16
. ~~ "O.:!:l.3. : 1.40~ 1.~?~,~,~~, 2.8.0.3,27[3.73, 4.20 , 4.67 : 5.13 i 5.6,0.
:,0 0.83; 1.24( t.!l?12,!,7 )l.49. 2,~of 3:3~ .. ; .~.7!3.: 4 . .1?14 .. ~ : ,!,98
........ ~ .0..69 \1.0.31 1.3,8; 1.72.2.07,2.41: 2.76,3.10, 3.45~ 3.79; 4.13
50 M010,901.1.J.!t 1.49 .. 1 .• ?9 )?:Q.9L?·3~ .. ~§~ .. ?:~.~ ~:g~i.~,.9ll.
........ ~ 0:?3 ;0.80[1.06: 1,33.1,59.1.86: 2,12.2.39.2,65 i 2.92! 3,18
90 0.41 :O.Gli 0.82'1.02 1.23' 1.43l1.63; 1:94 2,04; 2.25; 2,45 -.. '''1~f:O:34 :0.511 iis£ii o:ssi ':6(·i:j9~"i'.36; ·1.5~ ; '(70 i 1'.87 i 2:04'
.... J~ .9"~_.0.44L~:5~L<?:.?~..;.~,8.U,.q~; 1 .. 1.~: 1.3~ , 1.4?: 1:?2..L E§ . ...... J~ .. '!'?l? ,9.~91.11:5~;~.!;?5 •. n!l.~~,~.'.: .1.0~ : ... l·J.t) .. ; .. t·,~!.~ .1.4~': 1.~? '" .... ~~ . .9:~.r~1.~3,.9..~.:.I1.~.:<?:~5.;~:7(U1·87 i 0.98 . 1:<>S,,:. 1 ... ~9.U:;lQ .. ~ JJ: ~9 . 0.28~ Q,!3!l.J.O,~? . O:~; Q.~, .9.7.~ .l .. Q.,!,5.:. q,~ ... q~~.l.1 ,.1.3. 360 0.17 ·0.2510.33' 0.42· 0.SO.0.58 0.67; 0.75; 0.84 0.92; 1.00
FIGURE @]
-
-------------------
San Diego County Hydrology Manual
Date: June 2003
Table 3-1
Section:
Page:
RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient "C"
Soil TyEe
NRCS Elements Conn Elements %IMPER, A B
Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25
Low Density Residential (LDR) Residential, 1.0 DU/A orless 10 0.27 0.32
Low Density Residential (LDR) Residential, 2.0 DU/A or less. 20 0.34 0.38
Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41
Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45
Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51
Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0,52 0,54
Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58
High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67
High Density Residential (HDR) Residential, 43.0 DU/A orless 80 0.76 0.77
CommerciallIndustrial (N. Com) Neighborhood Commercial " 80 0,76 0.77
ConunerciallIndustrial (G, Com) General Commercial 85 0.80 0.80
Commercia1JIndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84
CommerciallIndustrial (Limited I,) Limited Industrial 90 0.83 0.84
CommerciallIndustrial~nera1 1.) General Industrial 95 0.87 0.87
C
0.30
0.36
0.42
0.45
0.48
0.54
0.57
0.60
0.69
0.78
0.78
0.81
0,84
0.84
0.87
3
6 of 26
D
0.35
0.41
0.46
0.49
0.52
0.57
0.60
0.63
0.71
0.79
0.79
0.82
0.85
0.85
0.87
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff
coefficient, Cp, forthe soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e,g., the area
is located in Cleveland National Forest).
DUI A ::; dwelling units per acre
NRCS = National Resources Consexvation Service
3-6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
12 of 26
Note that the Initial Time of Concentration should be reflective of the generalland·use at the
upstream end of a drainage basin. A single lot with an area of two or less acres does not have
a significant effect where the drainage basin area is 20 to 600 acres.
Table 3-2 provides limits of the length (Maximum Length (LM» of sheet flow to be used in
hydrology studies. Initial Ti values based on average C values for the Land Use Element are
also included. These values can be used in planning and design applications as described
below. Exceptions may be approved by the "Regulating Agency" when submitted with a
detailed study.
. Table 3-2
MAXIMUM OVERLAND FLOW LENGTH (LM)
& INITIAL TIME OF CONCENTRATION (Ti)
Element* DU/ .5% 1% 2% 3% 5% 10%
Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti
Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9
LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4
LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8
LDR 2.9 50 10.7 70 :10.0 85 8.8 95 8:'1 100 7.0 100 5.6
MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3
MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8
MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5
MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3
HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5
HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2;~7
N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2 . .7
G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4
O.P.lCom 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2
Limited 1. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2
General 1 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9
*See Table 3-1 for more detailed description
3·12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
bE
Feet
5000
4000
Tc
Tc
L
~E
EQUAnON
= C~~3)O.385
;:
=
=
Time of concentration (hours)
Watercourse Distance (miles)
Change in elevation along
effe<:tive stope line (See Figure 3-5)(feet)
3000
2000
"-00
000-,
500' " 400 ',~ ,%
300 ,~ ,
200
100
5
bE
, ,
'\.
" L ''\. Miles Feet
'\. '1 "
~
3000
0.5 ,
L
SOURCE: California Division of Highways (1941) and Kirpich (1940)
,
Nomograph for Determination of
" ,
Tc
Hours Minutes
, , ,
Tc
30
20
5
nme of COncentration (Te) or Travel nme (Tt) for Natural Ykrtersheds
1
FIGURE
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1-+--1.5'---+-1
1~=·01s.-..~ __
2% _ _0=.0175 --------~------~ 2%
Concrete _j-"':+::rn-:.==t:===-eP;;;iiVed~-~~-=R=ES=IDE=N1l=AL~STREET
Gutter ONE SIDE ONLY
2 3 4 5 6 7 8 9 10 20 30 40 50
Discharge (C.F.S.)
EXAMPLE:
Given: Q :: 10 S = 2.5"10
Chart gives: Depth = O.A., Velocity = 4,. f.p.s.
SOURCE: San Diego County Department of Special District Services Design Manual
FIGURE
Gutter and Roadway Discharge -Velocity Chart ~
----~ ~
\ '" ),}!_\ f:) _.. \
I
01
\
\
I
I
I
I
!
/
I
I
\
I
"
16+00
=3.'3 CFS
QIOO= 5. 2 CFS
----
o
r
-r-
I
-------
,
15+00
+
L =-625~ -
J.58 ACRES
:/0%
+ SOIL GROUP B
+
----------
4:1i SLOPE
8 CE~6ij)
SfHT DISTANCE CORR/,DOIi',
PER FINAL I1AP
O. iT At ------"---
0% IMP
r
I
I
I
I
,,/ ------
I
(
PRIVATE SHARED A(.(.c;"'i't--J.l1 '-'r-l~<,
/l UTILITY CA:;tf1t::I'.!.
61.21'
14+00
13+00
RECONST. DR/VEWA Y TO
-PROPOSED STREET II1PROVEI1ENTS
S5 8
DWG 422-r)
70 00 \J r.) -/~~ 0 ~ ~\I-)J ~ J '-/
+
I ____ 0_ • - -,
.l--,
\ ---
Q-
'.
T HYDROLOGY POST-DEVELOPMEN .
0
0
-a
<> P
0
00
H YDROLOGY . PRE-DEVELOPMENT
---------
"'o~
I
\ \
0
--~f \
" "
1---,.,'71 Tr 4 A C \
50%/111'1':-\ \:
:.:--.'-':! ~~771>~\ \
------+
I
"-
~\
)
\
1
J
J
• (1)r,;,r;P
\
I
\
I
I
I
I
I
I
I
I
I
I
'\,; \. \
" "\ fo()' "'-"'.
0
JIIJB
• I
I 0
&& I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\
•
\
SCALE 1'=40'
\....,-,_.-
---------
+
+ SCALE 1"=40'
+ ------
-~ --
\ ------
+
CT 03-/3
. ·neering
. Eng 1 dLand SUf1)~ors -I Civil Engineers an Professzona .do. CA 92029
MAP -Q2/QI0/Q/00 HYDROLOGY n.
Ddvt:, Suite E. Escoruh ac:bcll.net 600 South An~60 897-2165 &-Maili MlJI,enesh@p PhOIlC760 741·3sn
. ..
. ,