HomeMy WebLinkAboutCT 05-05; LA COSTA GREENS NGBHD 1.16; DRAINAGE STUDY; 2008-06-05.. I
I
I
·1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HUNSAKER
&ASSOCIATES
"---...::::I 5 AND lEG 0, INC
PLANNING
ENGINEERING
SURVEYING
DRAINAGE STUDY
for IRVINE
LOS ANGELES
RIVERSIDE
SAN DIEGO
ARIZONA
LA COSTA GREENS
NEIGHBORHOOD 1.16
City of Carlsbad, California
Prepared for:
KB Home, Inc.
12235 EI Camino Real
Suite 100
San Diego, CA 92130
W.O. 0490-71
DAVE HAMMAR Hunsaker & Associates
LEX WILLIMAN SO· I
ALiSA VIALPANDO an lego, nco
DAN SMITH
RAY MARTIN
CHUCK CATER
·~O~C:
9707 Waples Street •
San Diego, CA 92121 Ra ond . Martin, R.C.E.
(858) 558-4500 PH Vice President
(858) 558-1414 FX
www.HunsakerSD.com
Info@HunsakerSD.com
RECEIVED
JUt 112008
ENGINEERING
DEPARTMENT
RECORD COpy
[ZS:s-
Initie I Date
OB kc H IREPORTSI04901711A03.doc
w.o. 0490-71 7/10120084.40 PM
f;..~~.tUti
~~
-;. .... ,!)'[~J.llQ
'."., t:~~
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
,I
Drainage Study
La Costa Greens -Neighborhood 1.16
TABLE OF CONTENTS
Chapter 1 -Executive Summary
1.1 Introduction
1.2 Existing Condition
1.3 Proposed Project
1.4 Summary of Results
1.5 Conclusion
1.6 References
Chapter 2 -Methodology & Model Development
2.1 City of Carlsbad Engineering Standards
2.2 Rational Method Hydrologic Analysis
2.3 Storm Drain System Analysis
Chapter 3 -Rational Method Hydrologic Analysis
3.1 Weighted Runoff Coefficient Calculations
3.2 100-Year Developed Condition AES Model Output
Chapter 4 -Hydraulic Analysis
4.1 North Outfall Storm Drain System
4.2 South Outfall Storm Drain System
Chapter 5 -Inlet, Catch Basin & Curb Outlet Sizing
5.1 Inlet Sizing & Calculations
5.2 Catch Basin Type "F" Sizing & Calculations
5.3 Catch Basin Type "G" Sizing & Calculations
5.4 Brooks Catch Basin Sizing & Calculations
5.5 Curb Outlet Calculations
Chapter 6 -Drainage Ditch Sizing
Chapter 7 -Appendices
Appendix 7.1
1 OO-Year, 24-Hour Isopluvial Map
100-Year, 6-Hour Isopluvial Map
SECTION
II
III
IV
V
VI
VII
DB kc H:\REPDRTSI04901711A03.doc
W.O. 0490-71 7110120084:48 PM
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
'1
Drainage Study
La Costa Greens -Neigh borhood 1.16
Appendix 7.2
Runoff Coefficient Table
Appendix 7.3
Maximum Overland Flow Length & Initial Time of Concentration Table
Appendix 7.4
Overland Time of Flow Nomograph
Appendix 7.5
Time of Concentration or Travel Time for Natural Watersheds Nomograph
Appendix 7.6
Gutter and Roadway Discharge-Velocity Chart
Appendix 7.7
Manning's Equation Nomograph
Appendix 7.8
Intensity-Duration Design Chart
Appendix 7.9
100-Year Pre-Development Condition Hydrologic Analysis & Hydrology Map
for Neighborhoods 1.15,1.16 & 1.17 (From Tentative Map "Storm Water
Management Plan for La Costa Greens Neighborhood 1.16")
Appendix 7.10
Excerpts from the 100-Year Mass-Graded Hydrologic Analysis & Hydrology
Map for ,Neighborhood 1.16 (From "Drainage Study for La Costa Greens
Neighborhood 1.16, CT 99-03")
Appendix 7.11
Excerpts from the 100-Year Developed Condition Hydrologic Analysis &
Hydrology Map for Neighborhood 1.17 (From "Drainage Study for La Costa
Greens Neighborhood 1.17") .
Chapter 8 -Hydrology Exhibits
Exhibit 8.1
Site Map
Exhibit 8.2
Developed Condition Hydrology Map
VIII
DB kc H:IREPORTSI04901711A03.doc
w.o.049()'71 7110/20084'48 PM
I
I
I
I '
I-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
EXECUTIVE SUMMARY
1.1 -Introduction
The La Costa Greens Neighborhood 1.16 site is located at the northwest and
northeast corners of the Dove Lane-Estrella de Mar Road intersection in the City of
Carlsbad, California. The project site is also bounded by the existing La Costa
Greens Neighborhood 1.17 development to the north, existing La Costa Greens
Neighborhood 1.15 development to the south, and another existing development to
the west. The vicinity maps below have been included to illustrate the project site's
location.
VICINITY MAP VIClNlTYMAP NTS trw
This drainage study will address:
• 1 OO-Year Peak Flowrates for Developed Conditions
• Hydraulic Calculations for the proposed PVC and existing RCP storm drain
systems
• Curb Inlet, Catch Basin, and Curb Outlet Sizing
• Drainage Ditch Sizing
Per County of San Diego drainage criteria, the Modified Rational Method should be
used to determine peak design flow rates when the contributing drainage area is
less than 1.0-square mile. The total watershed area discharging from the La Costa
Greens Neighborhood 1.16 site is less than 1.0-square mile; thus, the AES-2003
computer software was used to model the runoff response per the Modified Rational
Method. Methodology used for the computation of design rainfall events, runoff
coefficients, and rainfall intensity values are consistent with criteria set forth in the
most current "San Diego County Hydrology Manuaf'. A more detailed explanation of
methodology and model development used for this analysis is listed in Chapter 2 of
this report.
DB kc H:IREPORTSI0490171'A03 doc
wo.0490'71 7/10/20084:48 PM
I
I
I
I
I
I
I
I
I
I
'I
I
I
I.
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
Treatment of storm water runoff from the site as well as from the existing La Costa
Greens Neighborhood 1.17 development has been addressed in two separate
reports, "Storm Water Management Plan for La Costa Greens Neighborhood 1. 1 l'
prepared by Hunsaker & Associates San Diego, Inc. on May 2005 and "Storm Water
Management Plan for La Costa Greens Neighborhood 1.16" also prepared by
Hunsaker & Associates San Diego, Inc. on June 2008.
1.2 -EXisting Condition
The La Costa Greens Neighborhood 1.16 site is part of the La Costa Greens
development in the City of Carlsbad, California. Located in the BatiqIJitos
watershed, the 15.0-acre site currently consists of three (3) mass-graded pads and
surrounding slopes, per City of Carlsbad Drawing No. 423-7A.
The mass-graded site is bisected by Estrella de Mar Road into two (2) areas: the
western' portion, which constitutes the majority of the site, and the eastern portion.
Two (2) mass-graded pads are located west of Estrella de Mar Road and one (1)
mass-graded pad is located east of Estrella de Mar Road. Runoff from the western
pads sheet flows in a easterly direction where it is intercepted by desiltation basins
prior to discharge into the existing RCP storm drain system running along Estrella de
Mar Road towards the north. The top half of the eastern pad sheet flows in a
northerly direction into a desiltation basin prior to discharging into the
aforementioned existing RCP storm drain system along Estrella de Mar Road. The
existing storm drain system outfalls north of the project site into an existing detention
basin (see Exhibit 8.1). Prior to discharge into the detention basin, the peak
discharge confluences with peak flows generated by the existing La Costa Greens
Neighborhood 1.17 development. The previously mentioned existing improvements
and grading have been constructed per City of Carlsbad, Drawings Nos. 423-7 and
423-7A, respectively.
Similarly, runoff from the bottom half of the eastern pad sheet flows in a southerly .
direction into a desiltation basin prior to discharging into another existing RCP storm
drain system running along Estrella de Mar Road towards the south. The existing
system contains a diversion structure downstream that drains some of the peak
discharge into another existing detention basin, 109ated south of the project site,
while allowing the bypass flows to stay within said storm drain system towards its
outfall east of Estrella de Mar Road (see Exhibit 8.1). The aforementioned existing
improvements and grading have been constructed per City of Carlsbad Drawings
Nos. 397 -2C and 397 -2B, respectively.
The peak discharge from both outfall locations, north and south, flows in an easterly'
direction to an unnamed tributary of San Marcos Creek, which thenflows in a
southerly direction along the western site boundary of the La Costa Greens Golf
Course. All the runoff eventually drains under Alga Road via three 96" RCP culverts
and discharges into San Marcos Creek towgrgs Bati~1,Ji~ps Lagoon (see Exhibit 8.1).
DB kc H;IREPORTSI04901711A03 doc
w.o 0490·71 7/10/20084'48 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
The mass-graded condition hydrologic analysis of the La Costa Greens
Neighborhood 1.16 development was completed and discussed in the "Hydrology
Study for La Costa Greens Neighborhood 1.16, CT 99-03" prepared by Hunsaker &
Associates San Diego, Inc. on January 2005.
Storm water runoff generated by the La Costa Greens Neighborhood 1.16 will be
treated via onsite Filterra Sio-Retention Units prior to discharge from the project
site. For further information, please refer to the "Storm Water Management Plan for
La Costa Greens Neighborhood 1.16" prepared by Hunsaker & Associates San
Diego, Inc. on June 2008.
1.3 -Proposed Project
The construction of the La Costa Greens Neighborhoods 1.16 site will include
eighty-six (86) multi-family residential units with its associated streets, sidewalks,
curb-and-gutters, and underground utilities, including internal storm drainage
systems. Peak discharge from the developed site will be collected by several
proposed curb inlets and catch basins and will be conveyed by three (3) proposed
storm drain systems. Each proposed system will tie into two (2) existing Estrella de
Mar Road storm drain systems at four (4) separate locations:
• At Pvt. Beryl Way at approximate Sta. 40+55 (at Node 343)
• At Pvt. Beryl Way Dr. "A" at approximate Sta. 41+55 (at Node 105)
• At Estrella de Mar Rd. at approximate Sta. 24+76 (between Nodes 110 & 112)
• Estrella de Mar Rd. at approximate Sta. 18+76 (at Node 205)
Peak discharge produced from the western portion of the site is conveyed by a
proposed PVC storm drain system which flows easterly towards Estrella De Mar
Road and connects to the existing Estrella de Mar system at Private Beryl Way at
approximate Stations 40+55 and 41 +55. Runoff generated by the top half of the
'eastern portion of the site is conveyed by a proposed 18-inch RCP storm drain
system which flows in a northerly direction, where it connects to the aforementioned
existing Estrella de Mar storm drain system at approximate Sta. 24+76. The peak
discharge from these portions of the site, conveyed by the existing Estrell~ de Mar
northern system, confluences with peak flows generated by the existing La Costa
Greens Neighborhood 1.17 development prior to discharge into the existing
detention basin, located north of the site.
Peak discharge generated by the bottom half of the eastern portion of the site is
conveyed by another proposed PVC storm drain system which flows in a southerly
direction, where it connects to the southern existing Estrella de Mar storm drain
system at approximate Sta. 18+76. The runoff is then routed via the existing storm
drain system towards the diversion structure downstream of the site, where the·
discharge will either outfall into the existing detention basin, located south of the site,
or will bypass towards the existing system's outfall east of Estrella de Mar Road.
As mentioned in Section 1.2, the peak discharge from both outfall locations, north
and south, then flows in an easterly direction to an unnamed tributary of San Marcos
Creek, which then flows in a southerly direction .along the western site boundary of
DB kc H'\REPORTSI0490171\A03 doc
w o. 0490-71 7/10/20084:48 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
the La Costa Greens Golf Course. All the runoff eventually drains under Alga Road
via three 96" RCP culverts and discharges into San Marcos Creek towards
Batiquitos Lagoon (see Exhibit 8.1).
1.4 -Summary of Results
For the Rational Method Analysis, a runoff coefficient of 0.35 was used for
undisturbed, natural terrain; a runoff coefficient of 0.85 was used for paved streets,
corresponding to areas that are 90% impervious; a runoff coefficient of 0.55 was
used for constructed slopes; and a runoff coefficient of 0.63 was used for developed
areas, which corresponds to a medium-density residential land use with 14.5 DUlac
or less. Weighed runoff coefficients were used where a combination of land uses
was present (see Section 3.1 for weighted runoff coefficient Galculations). All runoff
coefficients are based on the most current" San Diego County Hydrology Manuaf'.
Developed condition peak flowrates for the 1 OO-year storm event, listed on Table 1
below, are based on the AES-2003 computer program and criteria set forth in the
City of Carlsbad Engineering Standards (see Chapter 2 for methodology and model
development and Section 3.2 for the AES model output). Watershed delineations
are visually depicted on Exhibit 8.2, which is located in the back pocket of this report
(see Chapter 8). The mass-graded condition peak flowrate into the northern
detention basin, at Node 100, was obtained from the "Hydrology Study for La Costa
Greens Neighborhood 1.17' prepared by Hunsaker & Associates San Diego, Inc. on
May 2005. The existing condition peak flowrate from the bottom half of the eastern
portion of the site, at Node 205, was obtained from the mass-graded hydrology study
for Neighborhood 1.16 labeled "Hydrology Study for La Costa Gre,ens Nf;Jighborhood
1.16, CT 99-03".
TABLE 1 -Summary of Developed Conditions Hydrologic Analysis
Mass-Graded Conditions** Developed Conditions
Runoff Drainage 100-Year Drainage 100-Year
Location Area Peak Flow Area Peak Flow
(ac) (cfs) (a c) (cfs)
Node 100A 56.0 110.1 56.2 111.2
Node 205* 0.8 2.9 0.7 2.1
.. * Denotes Node ID from Neighborhood 1.16 Mass-Graded Condition ,Hydrology Study (see Appendix 7.1 Q).
fI Denotes Node 10 from Neighborhood 1.17 Developed Condition Hydrology Study (see Appendix 7.11).
DB kc H:IREPORTSI0490171IA03,doc
W,O, 0490·71 7/10/20084:48 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
As depicted in Table 1 on the previous page, at the existing northern detention basin
(Node 100) the peak discharge increases by 1.2%. However, the 1.3-cfs increment
does not affect the downstream facilities since the detention basin was designed
conservatively and actually assumed an inflow of 126.4-cfs, which is higher than the
111.4-cfs produced by the proposed development of Neighborhood 1.16 (including
the runoff generated by the existing Neighborhood 1.17 development). In addition,
the existing detention basin mitigates the peak discharge from 126.4-cfs to 56.9-cfs
which is well below the pre-development flow of 1 01.4-:-cfs, per the "Storm Water
Management Plan for La Costa Greens Neighborhood 1.17' (see Appendix 7.9 for
the pre-development hydrologic analysis and hydrology map). The proposed PVC
and existing RCP storm drain systems were also analyzed hydraulically to ensure
that the 1.3-cfs increment did not have a negative impact on the system (see Section
4.1).
As shown in Table 1 on the previous page, development of the site does not
increase runoff at the bottom half of the eastern portion of the site when compared to
the mass-graded peak flowrates. The peak discharge decreased by 17.2%.
For the hydraulic portion of this report, all pipes were analyzed with the STORM
software. Using a starting downstream water surface elevation at the discharge
location, the program calculated the hydraulic grade line for the storm dr(;lin system
(see Chapter 4 for Storm model outputs and legend maps). For the northern outfall
storm drain system, a starting water surface elevation of 98.1-ft was used', which
corresponds to the detention basin's peak elevation, per the "Storm Water
Management Plan for La Costa Greens Neighborhood 1. 17". For the southern
outfall storm drain system, a starting water surface elevation of 113.9-ft was used,
which corresponds to the hydraulic grade line at the existing cleanout located along
Estrella de Mar Road at approximate Sta. 18+76, per the mass-graded study for
Neighborhood 1.16 labeled "Hydrology Study for La Costa Greens Neighborhood
1.16, CT 99-03".
All curb inlets, catch basins, and curb outlets have been sized to ensure that they
are capable of handling 1 ~O-year peak flows (see Chapter 5 for inlet and catch basin
sizing). One existing sump inlet, per Drawing No. 429-2, located west of
approximate Sta. 26+80, was checked to ensure that it could still convey the peak
discharge'. All Type "G" and Brooks catch basins pond water on top of the grate;
thus, water ponding height calculations were performed to ensure that the runoff did
not overtop any curbs or spilled over slopes.
DB kc H'\REPORTS\0490\71\A03 doc
W.o. 0490·71 7110/20084.48 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
Two types of drainage ditches, per the San Diego Regional Standard Drawing 0-75,
have been proposed for the La Costa Greens Neighborhood 1.16 development: a
modified Type B brow ditch and a modified Type 0 terrace ditch. All proposed
modified Type B brow ditches were sized to convey 1 DO-year peak flows at a
minimum slope of 1 % while containing at least 6-inches of freeboard. All proposed
modified Type 0 terrace ditches were sized to convey 1 DO-year peak flows .at a
minimum slope of 1 % while containing at least 3-inches of freeboard. The flow
conveyed in all the ditches was determined to be less than the maximum capacity
they can handle (see Chapter 6 for drainage ditch).
1.5 -Conclusion
Based on the calculations completed herein, the storm drain system shall be able to
function as designed and handle the flows generated from the La Costa Greens·
Neighborhood 1.16 site. Drainage design, including watershed delineation and
storm drain sizing, shall result in no adverse impact to downstream property owners.
Construction of the storm drain improvements as shown herein should safely collect
and convey peak discharge through the development.
DB kc H:IREPORTSI0490\71\A03 doc
w.o. 0490.71 7110/2008 4"48 PM
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
1.6 -References
"San Diego County Hydrology Manual"; Department of Public Works -Flood Contro'l
Division; County of San Diego, California; Revised June 2003.
"City of San Diego Regional Standard Drawings"; Section D -Drainage Systems;
Updated March 2000.
"City of Carlsbad Engineering Standards"; City of Carlsbad, California; June 2004.
(Mass-Graded) "Drainage Study for La Costa Greens Neighborhood 1.16 CT 99-03";
Hunsaker & Associates San Diego, Inc.; January 2005.
"Drainage Study f or La Costa Greens Neighborhood 1.17; Hunsaker & Associates
San Diego, Inc.; May 2005.
. "Storm Water Management Plan for La Costa Greens Neighborhood 1.17; Hunsaker
& Associates San Diego, Inc.; May 2005.
"Storm Water Management Plan for La Costa Greens Neighborhood 1.16; Hunsaker
& Associates San Diego, Inc.; June 2008.
Drawing No. 423-7 "Improvement and Utility Plans for La Costa Greens-
Neighborhood 1.16"; Hunsaker & Associates San Diego, Inc.; August 2005.
Drawing No. 423-7 A "Grading and Erosion Control Plans for La Costa Greens-
Neighborhood 1.16 and 1.17'; Hunsaker & Associates San Die.go, Inc.; March
2005.
Drawing No. 429-2 "Improvement and Utility Plans for La Costa Greens--
Neighborhood 1.17'; Hunsaker & Associates San Diego, Inc.; February 2006'.
Drawing No. 397 -2B "Grading Plans for La Costa Greens Phase 1A"; Hunsaker:-&
Associates San Diego, Inc.; August 2003.
Drawing No. 397-2C "Improvement Plans for La Costa Greens Phase 1A"; Hunsaker
& Associates San Diego, Inc.;.March 2004.
DB ~c 1-1"
w
j
j
j
j
j
,j
j
j
j
I
j
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1 .16
CHAPTER 2
METHODOLOGY & MODEL DEVELOPMENT
2.1 -City of Carlsbad Engineering Standards
AH om H:\REPORTSIo.;9OI71IA02.doc
w.o.0;,00.71 91812006 1:42PM
I
I
I (-
I
I
I
I
I
I
I (.~., . . ', ~, ....
~~ .....
I
I
I
I'
I
I
I
I c'·:' -•. ::',.
I
CHAPTER 5 -DRAINAGE AND STORM DRAIN STANDARDS
1. GENERAL
A All drainage design and requirements shall be in accordance with the latest City of
Carlsbad Standard Urban Storm Water Mitigation Plan (SUSMP), Jurisdictional
Urban Runoff Management Plan (JURMP), Master Drainage and Storm Water
Quality Management Plan and the requirements of the City Engineer and be based
on full development of upstream tributary basins.
B. Public drainage facilities shall be designed to carry the ten-year six-hour storm
underground and the 1 GO-year six-hour storm between the top of curbs.
AI! cUlverts shall be designed to accommodate a 1 ~O-year six-hour storm with a one
foot freeboard at entry conditions such as inlets and head walls.
C. The use of underground storm drain systems, in addition to standard curb and
gutter shall be required:
1) When flooding or street overflow during 100-year six-hour storm cannot be
maintained between the top of curbs.
2) When 1 DO-year six-hour storm flow from future upstream development (as
proposed in the existing General Plan) will cause damage to structures and
improvements.
3) When existing adequate drainage facilities are available fat use (adjacent to
proposed development) .
4) When more than one travel lane of arterial and collector streets would be
obstructed by 10-year 6-hour storm water flow. Special consideration will be
required for super-elevated streets.
D. The use of underground storm drain systems may be required:
1) When the water level in streets at the design storm is within 1" of top of curb.
2) When velocity of water in streets exceeds 11 FPS.
3) When the water travels on surface street improvements for more than 1,000',
E. The type of drainage facility shall be selected on the basis of physical and cultural
adaptability to the proposed land use. Open channels may be considered in lieu of
underground systems when the peak flow exceeds the capacity of a 48" diameter
RCP. Fencing of open channels may be required as determined by the City
Engineer.
F. Permanent drainage facilities and right-of-way, including access, shall be provided
from development to point of approved disposal.
Page 1 of 5
I
I
I (
I
I
I
I
I
I
I 01~f·:
I
I
I
I
I
I
I .'
I
(~.:
I
....
G" Storm 'Drains constructed at a depth of is' or greater measured·from finish grade to
the top of pipe or structure shall be considered deep storm drains and should be
avoided if at all possible. When required, special design consideration will be
required to the satisfaction of the City Engineer. Factors considered in the design
Will include:
1) 'Oversized specially designed access holes/air shafts
2) Line encasements
3) Oversizing lines
4) Increased easement requirements for maintenance access
5) Water-tight joints
6) Additional thickness of storm drain
The project designer should meet with the planchecker prior to initiation of design to
review design parameters.
H. Concentrated drainage from lots or areas greater than 0.5 acres shall not be'
discharged to City streets unless specifically approved by the City Engineer.
I. Diversion of drainage from natural or existing basins is discouraged.
J. Drainage design shall comply with the City's· Jurisdictional Urban -Runoff
Management Plan (JURMP) and requirements of the National Pollutant Discharge
Elimination System (NPDES) permit.
2. HYDROLOGY
A Off site, use a copy of the latest edition City 400-scaJe topographic mapping. Show
existing culverts, cross-gutters and drainage courses based on field review.
Indicate the direction of flow; clearly delineate each drainage basin showing the
area and discharge and the point of concentration.
B. On site, use the grading plan. If grading is not proposed, then use a i00-scale plan
or greater enlargement. Show all proposed and existing drainage facilities and
drainage courses. Indicate the direction of flow. Clearly delineate each drainage
basin showing the area·and discharge and the point of concentration.
C. Use the charts in the San Diego County Hydrology Manual for finc!ing the "Te" and
"I". For small areas, a five minute "Te" may be utilized with prior approval of the City
Engineer .
. D. Use the existing or ultimate development, whichever gives the highest "c" f;3ctor.
E. Use the rational formula Q = CIA for watersheds less than 0.5 square mile unless
an altemate method is approved by the City Engineer. For watersheds in excess of
0.5 &juare mile, the method of analysis shall be approved by the City Engineer
prior to submitting calculations. .-'
Page 2 of 5
I
I ,
I r
I
I
I
I
I
I
I (-
.... ~':..,:.,.
I
I
I
I
I
I
I
(.
I ......
I
,':
3. HYDRAULlCS
A Street -provide:
1) Depth of gutter flow calculation.
2) Inlet calculations.
3) Show gutter flow 0, inlet 0, and bypass 0 on a plan of the street.
B. Storm Drain Pipes and Open Channels -provide:
1) Hydraulic loss calculations for: entrance, friction, junction, access holes,
bends, angles, reduction and enlargement.
2) Analyze existing conditions upstream and downstream from proposed
system, to be determined by the City Engineer on a case-by-case basis.
3) Calculate critical depth and normal depth for open channel flow conditions.
4) Design for non-silting velocity of 2 FPS in a two-year frequency storm unless
otherwise approved by the City Engineer.
5) All pipes and outlets shall show HGL, velocity and 0 valueCs) for design
storm.
6) Confluence angles shall be maintained between 45° and 90Q from the main
upstream flow. Flows shall not oppose main line flows.
4. INLETS
A Curb inlets at a sump condition should be designated for two CFS per lineal foot of
opening when headwater may rise to the top of curb.
B. Curb inlets on a continuous grade should be designed based on the following
equation:
0= 0.7 L (a + y)3/2
Where: y = depth of flow in approach gutter in feet
a = depth of depression of flow line at inlet in feet
L = length of clear opening in feet (maximum 30 feet) o = flow in CFS, use 1 OO-year design storm minimum
C. Grated inlets should be avoided .. When recessary, the design should be based
on the Bureau of Public Roads Nomographs (now known as the Federal Highway
Administration). All grated inlets shall be bicycle proof.
D. All catch basins shall have an access hol~ ill the top unless access through the
grate section satisfactory to the City Engineer is provided.
Page 3 of 5
" ...... -":..,~ .... ,:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,.. ... ,
(
C~;·::
c. 0,0.
E. Catch basins/curb inlets shall be located so as to eliminate, whenever possible,
cross gutters. Catch basins/curb inlets shall not be located within 5' of any curb
return or driveway.
F. Mnimum connector pipe for public drainage systems shall be 18".
G Flow through inlets may be used when pipe size is 24" or less and open channel
flow characteristics exist.
5. STORM DRAINS
A Minimum pipe slope shall be .005 (.5%) unless otherwise approved· by the City
Engineer. .
B. Minimum storm drain, within public right-of-way, size shall be 18" diameter.
C. Provide cleanouts at 300' maximum spacing, at angle points and at breaks in
grade greater than 1 %. For pipes 48" in diameter and larger, a maximum
spacing of 500' may be used.
When the storm drain clean-out Type A dimension of "V'. Jess liZ" is greater than I 18", a storm drain clean-out Type B shall be used.
D. The material for storm drains shall be reinforced concrete pipe designed in
conformance with San Diego County Flood Control District's design criteria, as
modified by Carlsbad Standard Specifications. Corrugated steel pipe shall not be
used.
Plastic/rubber collars shaH be prohibited.
E. Horizontal curve design shaH conform to manufacturer recommended
specifications. Vertical curves require prior approval from the City E:ngineer.
F. The pipe invert elevations, slope, pipe profile line and hydraulic grade line for
design flows shall be delineated on the mylar of the jrhprovem~nt plans. Any
utilities crossing the storm drain shall also be delineated.
The strength classification of any pipe shall be shown on the plans. Mir:limum
D-Ioad for RCP shall be 1350 in an City streets or future rights-of-way. Minimum
O-Ioad for depths less than 2', if allowed, shall be 2000 or greater.
G For all drainage designs not covered in these Standards, the current San Diego
County Hydrology and Design and Procedure Manuals shall be used. . .
H. For storm drain discharging into unprotected or natural channel, proper energy
dissipation measures shall be installed to prevent damag.e to the channel or
erosion. In cases of limited access or outlet velocities greater than 18. fps, a
concrete energy dissipater per SORS 0-41 will be required.
Page 4 of 5
I
-.
I
I
I
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
,A::" ..
\: '.,._.
c
L The use of detention basins to even out storm peaks and reduce pIping is
permitted with substantiating engineering calculation and proper maintenance
agreements. Detention basins shall be fenced.
J. Desiltation measures for silt caused by development shall be provided and
cleaned regularly during the rainy season (October 1 to April 30) and after major
rainfall as required by the City Engineer or his designated representative.
Adequate storage capacity as detennined by the City Engineer shall be
maintained at all times.
K. Protection of downstream or adjacent properties from incremental flows (caused
by change from an undeveloped to a developed site) shall be provided. Such
flows shall not be concentrated and directed across unprotected adjacent
properties unless an easement and stonn drains or channels to contain flows are
provided.
L. Unprotected downstream channels shall have erosion and grade control
structures installed to prevent degradation, erosion, alteration or down cutting of
the channel banks.
M. Storm drain pipes designed for flow meeting or exceeding 20 feet per second will
require additional cover over invert reinforcing steel as approved by the City
Engineer.
N. Storm drain pipe under pressure flow for the design storm, i.e., HGL above the
soffit of the ppe, shall meet .the requirements of ASTM C76, C361, C443 for
water-tight joints in the sections of pipe calculated to be under pressl,lre and an
additional safety length beyond the pressure flow point. Such safety length shall
be determined to the satisfaction of the City Engineer taking into consideration
such factors as pipe diameter, Q, and velocity.
O. An all weather access road from a paved public right-of-way shall be constructed
to all drainage and utility improvements. The following design parameters are
required: Maximum grade 14%, 15 MPH speed, gated entry, minimum paved
width 12 feet, 38' minimum radius, paving shall be a minimum of 4" AC over 4"
Class II AS, turnaround required if over 300'. Work areas should be provided as
approved by the plan checker. Access roads should be shown on the tentative
project approval to ensure adequate environmental review.
P. Engineers are encouraged to gravity drain all lots to the street without use. of a
yard drain system. On projects with new street improvements proposed, a curb
outlet per SDRSD D-27 shall be provided for single-family residential lots to allow
yard drains to connect to the streets gutter.
Page 5 of 5
I
I i
I
I
DWG.
I
G-12
I G-13
I G-14
I G-15
G-24
I G-25
I G-26
G-33 I G-34
I G-35
M
I M-2
I
I
i
I
I
I
I
CITY OF CARLSBAD MODIFICATIONS
TO THE SAN DIEGO REGIONALSTANDARD DRAWINGS
MODIFICATION
Add: smooth trowel flow line (typical) 7-1/2" thick with a minimum of 6ft of aggregate
base per City of Carlsbad Standard GS-17.
Add: smooth trowel flow line (typica/), 7-1/2" thick, with a minimum 6" of aggregate
base per City of Carlsbad Standard G8-17.
Change: Residential Thickness = 5-1/2"
CommerciallMulti-Family Residential Thickness = 7-1/2"
Delete requirement 3
"Type-A" only (delete "Type B")
''Type-C" only (delete ''Type .On)
Change thickness from 5-1/2" to 7-1/2" and add minimum 4" Class II base under
curb/gutter (to 6" past back of curb).
Delete
nType-C" only (delete ''Type on)
''Type-F'' only (delete "Type E'')
General: Agency shall be "City of Carlsbad"
Add: To be used only with specific approval of the City Engineer.
2
I
I
I
,
I
I
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I ' ..
Drainage Study
, La Costa Greens -Neighborhood 1.16
CHAPTER 2
METHODOLOGY & MODEL DEVELOPMENT
2.2 -Rational Method Hydrologic Analysis
. AH dJg H:IREPORTSI0490171IA02.doc
W.OI 049()..71 9JBI2006 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
Rational Method Hydrologic Analysis
Computer Software Package -AES-2003
Design Storm -100-Year Return Interval·
Land Use -Multi-Family Residential in Developed Areas (14.3 DUlac or less)
Soil Type -Hydrologic soil group D was assumed for all areas. Group.D soils have
very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils
with a high swelling potential, soils with a high permanent water table, soils with cl~y
pan or clay layer at or n.ear the surface, and shallow soils over nearly impervious·
materials, Group D soils have a very slow rate of water transmission.
Runoff Coefficient -In accordance with the County of San Diego standards,
multi-family residential areas were designated a runoff coefficient of 0.63 (14.3
DUlac or less), natural areas were designated a runoff coefficient of 0.35, paved
areas were designated a runoff coefficient of 0.85 (corresponding to areas that are
90% impervious), and constructed slopes were designated a runoff coefficient of
0.55.
Method of Analysis -The Rational Method is the most widely used .hydrologic model
for estimating peak runoff rates. Applied to small urban and semi-urban areas with
drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall
intensity, a runoff coefficient, and drainage area to peak runoff rate. This
relationship is expressed by the equation:
Q = CIA, where:
Q = The peak runoff rate in cubic feet per second at the point of analysis.
C = A runoff coefficient representing the area -averaged ratio of runoff to rainfall
intensity.
I = The time-averaged rainfall intensity in inches per hour corresponding to the
time of concentration. . .
A = The drainage basin area in acre~.
To perform a node-link study, the total watershed area is divided into subareas
which discharge at designated nodes.
AH dig H:\f\EPORTSl04901711A02.doc
w.l!l. 0491J..71 91B12006 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1 .16
The procedure forthe subarea summation model is as follows:
1. Subdivide the watershed into an initial subarea (generally 1 lot) and
subsequent subareas, which are generally less than 10 acres in size. Assign
upstream and downstream node numbers to each subarea.
2. Estimate an initial T c by using the appropriate nomograph or overland flow
velocity estimation.
3. Using the initial T c, determine the corresponding values of I. Then Q = CIA.
4. Using Q, estimate the travel time between this node and the next by
Manning's equation as applied to the particular channel or conduit .linking the
two nodes. Then, repeat the calculation for Q based on the revised intensity
(which is a function of the revised time of concentration)
The nodes are joined together by links, which may be street gutter flows, drainage
swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer
subarea menu is as follows:
SUBAREA HYDROLOGIC PROCESS
1. Confluence analysis at node.
2. Initial subarea analysis (including time of ~oncentration calculation).
3. Pipeflow travel time (computer estimated).
4. Pipeflow travel time (user specified).
5. Trapezoidal channel travel time.
6. Street flow analysis through subarea.
7. User -specified information at node.
8. Addition of subarea runoff to main line.
9. V-gutter flow through area ..
10. Copy main stream data to memory bank
11. Confluence main stream data with a memory bank
12. Clear a memory bank .
AH djg H:IREPORTS\0l9O\711A02.doc
W.D.04go..71 9/812006 1:42 PM
I
l
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
Drainage Study .
La Costa Greens -Neighborhood 1.16
At the confluence point of two or more basins, the following procedure is used to
combine peak flow rates to account for differences in the basin's times of
concentration. This adjustment is based on the assumption that each basin's
hydrographs are triangular in shape. ' ,
(1). If the collection streams have the same times of concentration, then the Q
values are directly summed,
Qp = Qa + Qb; T p = T a = T b
(2). If the collection streams have different times of concentration, the smaller of
the tributary Q values may be adjusted as follows:
(i). The most frequent case is where the collection stream with the longer
time of concentration has the larger Q. The smaller Q value is
adjusted by the ratio of rainfall intensities.
Q p = Qa + Qb (lallb); Tp = Ta
(ii). In some cases, the collection stream with the shorter time of
concentration has the larger Q. Then the smaller Q is 'adjusted by a
ratio of the T values.
Q p = Qb + Q a (T !IT a); T p = T b
AH dIg H:\REPORT~\049O\71\A02.doc
w.o. 0490071 91812006 1:42 PM
I
I
I
I
I
I
I
I·
I
I
I
I.
I
I
I
I
I
I
I' :
Drainage Study .
La Costa Greens -Neighborhood 1.16
CHAPTER 2
METHODOLOGY & MODEL D,EVELO'PME'N,T . .
2.3 -Storm Drain System Analysis
AH dig H:IREPORTSl04!lO\71\A02.doc
w.o.04S0-71 91B1200a 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I'
I
Drainage Study
La Costa Greens -Neighborhood 1.16
Storm Drain Hydraulic Analysis
Computer Software Package -Storm
Design ,Storm -i00-Year Return Interval
, '
Roughness Coefficient -Manning's "n" value of 0.013 (concrete pipe)
Minimum Pipe Diameter -18 inches
Minimum Gra<;le of Storm Drains -0.50%
Gfven the discharge and the physical characteristics of a proposed storm drain'
system, the "Storm" computer program, from Los Angeles Public Works, generates
hydraulic grade line elevations at junct,ions and inl~t locations.
Hydraulic grade line elevations are calculated by evaluating friction and minor Iqsses
throughout the system. To determine the hydraulic characteristics at a junction, the
pressure plus momentum equation is applied at end points of the junction to
determine the control point and to compute the conjugate depth at the opposite end
of the junction.
When flow changes from partial flow to full flow or from full flow to partial flow, the
program determines the location in the line where the change occurs. The program
also determines the precise locations of hydraulic jumps (where flow changes from
supercritical to sub critical flow) along with the pressure plus momentum at the jump
and flow depth before and after the jump.
A typical storm drain analysis procedure is as follows:
1.
2.
3.
4.
Establish the main line of the entire storm drain system. Generally,
lines carrying the majority of the flow will constitute the main line.
Establish the main line of any lateral system by proceeding upstream
from the main line junction to the highest upstream ,inlet.
Number the main line segments consecutively in the upstream direction
to the most upstream inlet. Then, number each lateral system in the
same manner (With values greater than that of the main line).
Note: The storm program is number sensitive. Therefore, a
chronological number system must be established.
For each line, tabulate pertinent data such as the maximum design
flow, conduit size and length, flow line elevations, minor loss
coefficients for manholes, bends, etc., entranc,e loss coefficients for the
inlets, and confluence angles at all junctions.
AH dig H:IREPORTS\049Ol71IA02.dQC
w,o,049<).71 9/812006 1:42 PM
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
Junction loss coefficients, Kj, range from 0 to 1.0 depending on the efficiency of the
junction design. Junction losses are calculated by multiplying Kj times the velocity
head in the' outlet conduit. If the value of Kj is left blank or' the pipe flow condition is .
. partially full, the pressure plus momentum equation is us~d to determine the junction
losses. . . '
Entrance loss coefficients, Ke, range from 0.04 (bell-mounted entrance) to 0.5
(f1u~h headwall entrance). The entrance loss is computed by multiplying Ke times
the velocity head in the outlet conduit.
Minor loss coefficients, Km, are the summation of losses from bends, manholes, etc.
The total minor loss, computed as Km times the velocity head in the conduit, is
added to friction losses in the hydraulic analysis for full flow only.
Afi djg fi:IREPORTSI0490\7l'A02.doc
w.o. 049().71 9JSI2006 1:42 PM
I,
I
I
I
I'
I
'I·
I,
I .
I
I,
I: '
I
I
I
I
,I
I
I'
III
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER 3
RATIONAL METHOD HYDROLOGIC ANALYSIS
3.1 --Weighted Runoff Coefficient Calculations
AH djg H:IREPORT?,0490171'A02.doc
w.o. 0490-71 9J8I2006 1:42 PM
----.-----.----------
WEIGHTED RUNOFF COEFFICIENT CALCULATIONS
"LA COSTA GREENS -NEIGHBORHOOD 1.16"
Natural Terrain Constructed Slopes Impervious Areas.
UlS DIS A1 C1 A2 C2
A3 C3
Total Area Weighed C
NODE NODE (acres) (acres) (acres) AT (acres) Cw
322 323 0.35 0.04 0.55 0.10 0.85· 0.14 0.76
333 337 0.35 0.25 0.55 0.09 0.85 0.34 0.63
357 317 0.35 0.20 0.55 0.07 0.85 0.27 0.63
91712006 H:\AES2003\490\71\AESData-DEV100.xls
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
·1
OraiIlage Study
La Costa Greens ~ Neighborhood 1.16
CHAPTER 3
RATIONAL METHOD HYDROLOGIC ANALYSIS
3.2 -100-Year Developed Condition
AES Model Output
AH djg H:IREPQRTS\.o490\71IA02.doc
W.Jl. 049().71 9/812006 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL.DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1239 .
Analysis prepared by:
HUNSAKER & ASSOCIATES -SAN DIEGO
10179 Huennekens Street
San Diego, Ca. 92121
(858) 558-4500
************************** DESCRIPTION OF STUDY ***********************.***
* LA COSTA GREENS -NEIGHBORHOOD 1.16 (MULTI-FAMILY DEVELOPMENT)*'
* 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS *
* W.O.# 490-71 PREPARED BY: DJG *
*****************************************************~*************~******
FILE NAME: H:\AES2003\490\71\DEV100.DAT
TIME/DATE OF STUDY: 08:48 09/08/2006
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
'. USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE (INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE
NO. (FT) (FT) SIDE' / SIDE/ WAY (FT) (FT) (FT) (FT)
===== ========= ================= ====== -----======
1 15.0 10.0 0.020/0.020/ 0.50 1. SO o . 0313
2 32.0 27.0 0.020/0.020/ 0.50 1.50 0.0313
3 20.0 15.0 0.020/0.020/ 0.50 1.50 0.0313
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint =. 4.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
0.125
0.125
0.125
MODEL *
MANNING
FACTOR
(n)
0.0150
0.0150
0.0150
+--------------------------------------------------------------------------+ I . r
I BEGIN BASIN 1 (NORTH OUTFALL) -NODE SERIES 100 AND 300 I
I I
+----------------------------------------------~---------------------------+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 192.60
DOWNSTREAM ELEVATION(FEET) = 190.50
ELEVATION DIFFERENCE (FEET) = 2.10
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF (CFS) 0.37
80.50
6.453
6.035
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) 0.37
*****************************************************************~**********
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 190.50 DOWNSTREAM (FEET) 186.30
FLOW LENGTH(FEET) = 152.80 MANNING'S N = 0.015
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.6 INCHES
PIPE~FLOW VELOCITY(FEET/SEC.) 3.79
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.37
PIPE TRAVEL TIME(MIN.) = 0.67 Tc(MIN.) = 7.12
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 233.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
====================================================================~=======
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.661
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 0.21 SUBAREA RuNoFF (CFS)
TOTAL AREA(ACRES) 0.32 TOTAL RUNOFF(CFS)
TC(MIN.) = 7.12
0.65
1.00
+------------------------------------------------------------------------~-+ I I I The subarea above corresponds to the flow drained by Ditch A. I
I I. +--------------------------------------------------------------------------+
************************************************************,****************
FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK ELOW««~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
=================================================================~==========
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.661
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA (ACRES),
TOTAL AREA(ACRES)
TC(MIN.) = 7.12
COEFFICI~NT = 0.5500
0.13 SUBAREA RUNOFF (CFS)
-0.45 TOTAL RUNOFF(CFS)
0.40
1.40
+-------------------------------------------~----------------------~-------+
I I I The subarea above corresponds to the flow drained by Ditch B. I
I I
+--------------------------------------------------------~-----------~--~--+
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 305.00 IS CODE = 31
-----------------------------------------------------------~----,-~-------~~-
->-»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
========================================================================~===
ELEVATION DATA: UPSTREAM (FEET) = 179 . 80 DmmSTREAM (FEET) 173 . 60--
FLOW LENGTH(FEET) = 65.70 ~ING'S N = 0.010
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 11.54
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES 1-
PIPE-FLOW (CFS) = 1.40
PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 7.22
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 ~ 299.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 305.00_ IS CODE ~ 1
-----~------------------------------------~----------------------~---------~
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 7.22
RAINFALL INTENSITY(INCH/HR) = 5.61
TOTAL STREAM AREA(ACRES) = 0.45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.40
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=============================================================~==============
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S. C. S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 64.99
UPSTREAM ELEVATION(FEET) = 187.00
DOWNSTREAM ELEVATION(FEET) = 186.35
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.820
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.823
SUBAREA RUNOFF (CFS) 0.26
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.26
****************************************************************************
FLOW PROCESS FROM NODE 307.00 TO NODE 305.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE 'SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 186.40 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 324.80 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) .= 1.20
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) .= 0.27
HALFSTREET FLOOD WIDTH (FEET) , = 7.17
AVERAGE FLOW VELOCITY(FEET/SEC.) 1.90
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.51
STREET FLOW TRAVEL TIME(MIN.) = 2.85 Tc(MIN.) 9.67
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.649
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.630
SUBAREA RUNOFF (CFS') = 1. 87
183.20
0.0150
SUBAREA AREA (ACRES)
TOTAL AREA(ACRES) =
0.64
0.71 PEAK FLOW RATE (CFS) = 2.08
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.23
FLOW VELOCITY(FEET/SEC.) = 2.15 DEPTH*VELOCITY(FT*FT/SEC.) .0.67
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 305.00 = 389.79 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 308.00 TO NODE 305.00 IS CODE. = 81
-------------------------------------------------------------~--------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.649
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA (ACRES)
TOTAL AREA(ACRES)
TC(MIN.) = 9.67
COEFFICIENT = 0.6300
o .26 SUBAREA RUNOFF (CFS)
0.97 TOTAL RUNOFF(CFS) =
0.76
2.84
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE ;" 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
TIME OF CONCENTRATION (MIN. ) 9. 67
RAINFALL INTENSITY(INCH/HR) = 4.65
TOTAL STREAM AREA(ACRES) = 0.97
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.84
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 1.40 7.22 5.613
2 2.84 9.67 4.649
2 ARE:
AREA
(ACRE)
0.45
0.97
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 3.52 7.22 5.613
2 4.00 9.67 4.649
COMPUTED 'CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 4.00 Tc(MIN.) = 9.67
TOTAL AREA (ACRES) = 1.42
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 305.00 389.79 FEET.
*************************************************************-**************
FLOW PROCESS FROM NODE 305.00 TO NODE 309.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 173.30 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET} = 13.40 MANNING'S N = 0.010
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 15.20
ESTIMATED PIPE DIAMETER(INCH} = 9.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 4.00
0.01 Tc(MIN.) = 9.69
172.00
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 309.00 403.19 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
===============================================================?============
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM' 1 ARE:
TIME OF CONCENTRATION (MIN.) 9.69
RAINFALL INTENSITY (INCH/HR) = 4.64
TOTAL STREAM AREA(ACRES) = 1.42
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
IN1TIAL SUBAREA FLOW-LENGTH(FEET) = 64.99
UPSTREAM ELEVATION(FEET) = 1B7.10
DOWNSTREAM ELEVATION(FEET) = 186.45
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF (CFS) 0.33
6.820
5.823
TOTAL AREA (ACRES) = 0 . 09 TOTAL RUNOFF(CFS) 0.33
****************************************************************************
FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA~««
»»> (STREET TABLE SECTION # 1 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 186.30 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 309.90 CURB HEIGHT(INCHES) = 6;0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION· FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
7.33
1.92
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE ·FLOW VELOCITY(FEET/SEC.)
PRODUCT· OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 2.70
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) .= 0
. AREA-AVERAGE RUNOFF COEFFICIENT 0.630
0.52
Tc (MIN.)
4.697
9.52.
SUBAREA AREA(ACRES) 0.62
TOTAL AREA(ACRES) = 0.71
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE (CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALF STREET FLOOD WIDTH(FEET) 9.28
1.25
1.83
183.20
o .()150
2.10
FLOW VELOCITY (FEET/SEC.) = 2.15· DEPTH*VEL0.CITY (FT*FT/SEC.) 0.67
LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 374.89 FEET.
****.***************************~********************************************
FLOW PROCESS FROM NODE 313.00 TO NODE 312.00 IS CODE = 81
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
------------------------------------------------------~-------------------~-
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< '
=7==================================~=======================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.697,
*USE~ SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S. C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT-= 0.6572
SUBAREA AREA (ACRES) 0 . lO SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 0.8l TOTAL RUNOFF(CFS) =
TC(MIN.) = 9.52
0.40
2.50
****************************************************************************
FLOW PROCESS FROM NODE 31.2.00 TO NODE 309.00 IS CODE = 31.
»»>COMPUTE PIPE-FLOW TRAVEL TIME'THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
========================================================?==============~====
ELEVATION DATA: UPST~EAM(FEET) = 172.20 DOWNSTREAM (FEET) = 172.00
F'LOW LENGTH (FEET) =' 1.3 • 50 MANNING'S N' = 0 . b 1. 0
DEPTH OF FLOW IN 12 . 0 INCH PIPE, IS 5 . 8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.69
ESTIMATED PIPE DIAMETER{INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.50
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.55
LONGEST FLOWPATH FROM NODE 31.0.00 TO NODE 309.00 388.39 FEET.
****************************************************************************,
FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«,«<
1.
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM
TIME OF CONCENTRATION (MIN. ) 9.55
RAINFALL INTENSITY (INCH/HR) = 4.69
TOTAL STREAM AREA (ACRES) =" 0 . 81.
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.50
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 4.00 9.69 4.644
2 2.50 9.55 4.686
2 ARE:
AREA
(ACRE)
1.42
0,'81
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
l 6.47 9.;;5 4.686
2 6.48 9.69 4.644
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK,FLOW R~TE(CFS) 6.48 Tc(MIN.) = 9.69
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 2.23
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 309.00 403.19' FEET.
****************************************************************************
FLOW PROCESS FROM NODE 309.00 TO NODE 315.00 IS CODE = 31
------------------------------------------~---------------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 171.70 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET) = 97.40 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.31
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 6.48
o . 22 'Tc (MIN.) = 9.91
170.70
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 315.00 500.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<'«
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 170.30 DOWNSTREAM (FEET) 169.10
FLOW LENGTH(FEET)'= 121.10 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.20
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 6.48
PIPE TRAVEL TIME(MIN.) = 0.2S TC(MIN.) = 10.19
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 316.00 621.69 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 399.00 TO NODE 316.00 IS CODE = si
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
======================================================================~=====
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.495
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6242
SUBAREA AREA (ACRES) 0 .20 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) 2.43 TOTAL RUNOFF(CFS)
TC(MIN.) = 10.19
0.57
6.82
****************************************************************************
FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE.= 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
=============================================~~=~===========================
ELEVATION DATA: UPSTREAM (FEET) = '168.80 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 84.90 MANNING'S N = 0.012
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 26.11
133.70
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
I
I
I
I
I
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 6.S2
PIPE TRAVEL TIME (MIN.) = 0.05 Tc(MIN.) ~ 10.24
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 317.00 706.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
===================================================~====~===================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.24
RAINFALL INTENSITY(INCH/HR) = 4.48
TOTAL STREAM AREA(ACRES) = 2.43
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.S2
**************************************************************************~*
FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
==============================================================~===~=====~===
*USER SPECIFIED (SUBAREA) : ,
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = SO.OO
UPSTREAM ELEVATION(FEET) = 156.80
DOWNSTREAM ELEVATION(FEET) = 154.80'
ELEVATION DIFFERENCE (FEET) = 2.00
SUBAREA' OVERLAND TIME OF FLOW (MIN.) = 6.524
100 YEAR RAINFALL INTENSITY (INCH/HOUR) .-5.992
SUBAREA RUNOFF (CFS) 0.33
TOTAL AREA(ACRES) = 0.'10 TOTAL RUNOFF (CFS) 0.33
.****************************************************************************
FLOW PROCESS FROM NODE 319.00 TO NODE 317.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 154.S0 DOWNSTREAM (FEET) 142.50
FLOW LENGTH(FEET) = 431.60 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 4.13
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIP~S 1
PIPE-FLOW (CFS) = 0.33
PIPE TRAVEL TIME(MIN.) = 1.74 Tc(MIN.) = 8.27
LONGEST FLOWPATH FROM NODE 318.00 TO NODE 317.00 511.60 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 319.00 TO NODE 317.00 IS CODE = 81
------------------------~~-~-----------------~~------------------~----------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
5.i43
I
I
I
I
I
I
I
I
I
I
I
I,
I-
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA (ACRES)
TC(MIN.) = 8.27
COEFFICIENT = 0.5500
0.71 SUBAREA RUNOfF (CFS)
0.81 TOTAL RUNOFF (CFS) =
2.01
2.2'9
+------------------------------------------~----------------------,---------+
I I The area above corresponds to the flow drained by Ditch C.
I
I I I + --------------------------------------------------',------------------'------+
****************************************************************************
FLOW PROCESS FROM NODE 320.00 TO NODE 317.00 IS CODE-= 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=================================================================9=========~
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.143
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S . C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA (ACRES)
TOTAL AREA (ACRES),
TC(MIN.) = 8.27
COEFFICIENT = 0.5500
0.34 SUBAREA RUNOFF (CFS)
1.15 TOTAL RUNOFF(CFS) =
0.96
3.25
+--------------------------------------------------------------------------+
I I I The area above corresponds to the flow drained by Ditch G. I'
I I
+------~--------------------------------------~----------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 317.00 TO NODE 317.00 IS CODE =
'»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
===============================================~============================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 8.27
RAINFALL INTENSITY(INCH/HR) = 5.14
TOTAL STREAM AREA(ACRES) = 1.15
PEAK FLOW RATE{CFS) AT CONFLUENCE = 3.25
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 6.82 10.24 4.480
2 3.25 8.27 5.143
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
AREA
(ACRE)
2.43
1.15
RATIO,
I
I
I
I
I
I
I
I
I
I
I
I
"I
I
I
I
I
I
I
NUMBER
1
2
(CFS) "
9.19
9.65
(MIN. )
8.27
10.24
( INCH/HOUR)
5.143
4.480
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) = 9.65 Tc(MIN.) = 10.24
TOTAL AREA(ACRES) = 3.58
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 317.00 706.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 317.00 TO NODE 321.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 1-33.40 DOWNSTREAM (FEET) 130.20
FLOW LENGTH(FEET) = 71.00 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE ~S 8.1" INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 14.23
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 9.65
PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.32
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 321.00 777.59 FEET.
****************************************************************************
FLOW PROCESS FROM"NODE 321. 00 TO NODE 321.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
==========================================================================~=
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.32
RAINFALL INTENSITY(INCH/HR) = 4.46
TOTAL STREAM AREA(ACRES) = 3.58
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.65
****************************************************************************
" FLOW PROCESS FROM NODE 322:00 TO NODE 323.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7600
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 96.00
UPSTREAM ELEVATION(FEET) = 156.00
DOWNSTREAM ELEVATION(FEET) = 148.00
ELEVATION DIFFERENCE (FEET) = 8.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.958
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF (CFS) 0.76
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF (CFS) = 0.76
****************************************************************************
FLOW PROCESS FROM NODE 323.00 TO NODE 321.00 IS CODE = 62
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 148.00 DOWNSTREAM ELEVATION(FEET) = 137.00
STREET LENGTH(FEET) = 460.90 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROS S FALL (DECIMAL) 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) .= 2.80
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = '0.30
HALFSTREET FLOOD WIDTH(FEET) = 8.65
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.23
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.97
STREET FLOW TRAVEL TIME (MIN.) = 2.38 Tc (MIN. ) 5.34
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.821
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S . C . S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.647
SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 4.04
TOTAL AREA(ACRES) = '1.08 PEAK FLOW RATE (CFS) 4.77
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) 10.91
FLOW VELOCITY(FEET/SEC.) = 3.64 DEPTH*VELOCITY(FT*FT/SEC.) 1.25
LONGEST FLOWPATH FROM NODE' 322.00 TO NODE 321.00 = 556.90 FEET.
*******************************************************~********************
FLOW PROCESS FROM NODE 321. 00 TO NODE 321.00 IS CODE = 1
-------~------------------------------------~-------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENGE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) .5.34
RAINFALL INTENSITY (INCH/HR) = 6.82
TOTAL STREAM AREA .(ACRES) = 1. 08
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.77
****************************************************************************
FLOW PROCESS FROM NODE 324.00 TO NODE 325.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL S~AREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
. USER-SPECIFIED RUNOFF COEFFICIENT =' .6300
S.C.S. CURVE NUMBER (AMC II) = 0
. INITIAL SUBAREA FLOW-LENGTH(FEET} = 64.99
UPSTREAM ELEVATION(FEET) = 139.10
DOWNSTREAM ELEVATION(FEET) = 138.45
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 6.820
100 YEAR RAINFALL INTENSITY(INCHjHOUR) 5.823
SUBAREA RUNOFF (CFS) 0.66
TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS), = 0.66
****************************************************************************
FLOW PROCESS FROM NODE 325.00 TO NODE 321.00 IS CODE = 62
-------------------------------------------------------~--.-------~----------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«.::«
»»> (STREET TABLE SECTION # 1 USED) ««<
==================?=======================================================~=
UPSTREAM ELEVATION(FEET) = 138.30 DOWNSTREAM ELEVATION{FEET) = 137.00
STREET LENGTH(FEET) = 165.00. CURB HEIGHT{INCHES) 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING 'RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.37
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
HALF STREET FLOOD WIDTH(FEET) = 8.07
AVERAGE FLOW VELOCITY{FEETjSEC.) 1.78
PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.51
STREET FLOW TRAVEL TIME (MIN.) = 1.54 Tc (MIN. ) 8.36
100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.105
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S. C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.630
SUBAREA AREA(ACRES) 0.44 SUBAREA RUNOFF (CFS) 1.42
0.0150
TOTAL AREA (ACRES) = 0 . 62 PEAK FLOW RATE (CFS) 1: 99'
END OF SUBAREA STREET FLOW HYDRAULICS:'
DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH ('FEET) = 9.54"
FLOW VELOCITY(FEET/SEC.) = 1.94 DEPTH*VELOCITY(FT*FTjSEC.)
LONGEST FLOWPATH FROM NODE 324.00 TO NODE 321.00? 229.99
0.61
FEET.
***************************~************************************************
FLOW PROCESS FROM NODE 321. 00 TO NODE 321.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION (MIN. ) 8 . 36
RAINFALL INTENSITY(INCHjHR) = 5.10
TOTAL STREAM AREA (ACRES) = O. 62
PEAK FLOW RATE (CFS) AT CONFLUENCE 1.99
** CONFLUENCE DATA **
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) . (ACRE)
1 .9.65 10.32 4.456 3.58
2 4.77 5.34 6.821 1. 08
3 1.99 8.36 5.105 0.62
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR) ..
1· 12.34 5.34 6.821
2 13.99 8.36 5.105
3 14.51 10.32 4.456
.COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 14.51 Tc(MIN.) = 10.32
,:):,OTAL AREA (ACRES) = 5 . 28
~ONGEST FLOWPATH FROM NODE 306.00 TO NODE 321.00 777.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 321. 00 TO NODE i05.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<~«<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 129.90 DOWNSTREAM (FEET) 126.20
FLOW LENGTH{FEET) = 38.40 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC:) 20.95
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 14.51
PIPE TRAVEL TIME (MIN.) = 0.03 Tc(MIN.) = 10.36
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 105.00 815.99 FEET.
*************************************************************~**************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 326.00 TO NODE 327.00 IS CODE = 21
-~-------~~-----------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< .
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH{FEET) = 69.00
UPSTREAM ELEVATION(FEET) = -192.60
DOWNSTREAM ELEVATION{FEET) = 191.90
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.184
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.177
SUBAREA RUNOFF (CFS) = 0.31
1
I.
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.31
****************************************************************************
FLOW PROCESS FROM NODE 327.00 TO NODE 32B.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 191.90 DOWNSTREAM (FEET) 190.20
FLOW LENGTH{FEET) = .57.20 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO B.OOO
DEPTH OF FLOW IN B.O INCH PIPE IS 2.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 4.17
ESTIMATED PIPE DIAMETER(INCH) = B.OO NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 0.31
PIPE TRAVEL TIME (MIN.) = 0.23 Tc (MIN.) = B. 41
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 32B.00 126.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 327.00 TO NODE 328.00 IS CODE = 81
»»>ADDITION.OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.0B6
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S . C . S. CURVE 'NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 0.09 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) =
TC(MIN.) = B.41
0.25
0.56
+-----------------~--------------------------------------------------------+
I I I The subarea above correponds to the flow drained by Ditch D. I
I I
+---------------------------~--------------------------~-----.--------------+
****************************************************************************
FLOW PROCESS FROM NODE 329.00 TO NODE 32B.00 IS CODE = . 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.086
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S . C. S. CURVE NUMBER (AMC II.) '7 0
AREA-AVERAGE RUNOFF. COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 0.19 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) 0 .39 TOTAL RUNOFF (CFS) . =
TC{MIN.) = 8.41
0.53
1.09
+-------~------------------------------------------------------------------+
I I I The area above corresponds to the flow drained by Ditch E. I
I I +--------------------------------------------------------------------------+
I
I
I
I
I.
1
1
I
I
I
1
·1
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 328.00 TO NODE 330.00 IS CODE ~ 31
»»>COMPUTE P.IPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
=====================================~======================================
ELEVATION DATA: UPSTREAM (FEET) =. 181. 30 DOWNSTREAM (FEET) = 178'.70
FLOW LENGTH(FEET) = 92.20 MANNING'S N = 0.010
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.92
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.09
PIPE TRAVEL TIME(MIN.) =. 0.22 . Tc(MIN.) = 8.64
LONGEST FLOW PATH FROM NODE 326.00 TO NODE 330.00 218 .. 40 FEET.
* * * * *** ** * * * * * * * * ** * * * * * * * * * * * * * *** * * * ** * ** * ** * *'* ** ** * ** ** * ** ** * * * * * ** * * * * * *
FLOW PROCESS FROM NODE 330.00 TO NODE 331.00 IS CODE = 31
------------------------------------------------------------~---------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=================================================================~======~===
ELEVATION DATA: UPSTREAM (FEET) = 178.30 DOWNSTREAM (FEET) 174.60
FLOW LENGTH(FEET) = 78.40 MANNING'S N = 0.010
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.34
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.09
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.79
LONGEST FLOW PATH FROM NODE 326.00 TO NODE 331.00 296.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 331. 00 TO NODE 334.00 IS CODE =31
»»>COMPUTE PIPE-FLOW TRAVEL TIME'THRU SUBAREA««<
»»>USING COMPUTER-ESTIMAT~D PIPESIZE (NON-PRESSURE FLOW)««<
==========================================~======================~==========
ELEVATION DATA: UPSTREAM (FEET) = 174.20 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET) = 210.30 MANNING'S N = 0.010
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 12.46
ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 1.09
0.28 Tc(MIN.) = 9.07
144.30
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM' NODE 326.00 TO NODE 334.00 501.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 334.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««<
======================================================================~=====
****************************************************************************
FLOW PROCESS FROM NODE 335.00 TO NODE 336.00 IS CODE = 21
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
===============================================~============================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S. C. S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 64.99
UPSTREAM ELEVATION(FEET) = 187.20
DOWNSTREAM ELEVATION(FEET) = 186.55
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.820
100 YEAR RAINFALL INTENSITY(INCHjHOUR) 5.823
SUBAREA RUNOFF(CFS) 0.26
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.26
****************************************************************************
FLOW PROCESS FROM NODE 336.00 TO NODE 333.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) =
STREET HALFWIDTH(FEET)
186.55 DOWNSTREAM ELEVATION(FEET) =
84.80 CURB HEIGHT(INCHES) = 6.0
15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.17
HALFSTREET FLOOD WIDTH(FEET) = 2.42
AVERAGE FLOW VELOCITY(FEETjSEC.) '3.35
PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.58
STREET FLOW TRAVEL TIME (MIN.) = 0 .42 Tc (MIN. ) 7.24 .
100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.602
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE. NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = ·0.630
0.59
SUBAREA AREA (ACRES) 0 . 19 SUBAREA RUNOFF (CFS) 0 • 67
i83.00
0.0150
TOTAL AREA(ACRES) = 0.26 PEAK FLOW RATE(CFS) 0.92
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.21 HALFSTREET FLOOD WIDTH (FEET) 4.00
FLOW VELOCITY (FEET j SEC.) = 3 .29 DEPTH*VELOCITY (FT*FT /SEC . ) 0 . 68
LONGEST FLOWPATH FROM NODE 335.00 TO NODE 333.00 = 149.79 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 333.00 ·TO NODE 333.00 IS CODE =. 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF, CONCENTRATION (MIN.) 7.24
RAINFALL INTENSITY(INCH/HR) = 5.60
TOTAL STREAM AREA(ACRES) = 0.26
PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.92
****************************************************************************
FLOW PROCESS FROM NODE 332,00 TO NODE 333.00 IS CODE = 21
------------~---------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = °
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 192.80
DOWNSTREAM ELEVATION(FEET) = 182.50
ELEVATION DIFFERENCE (FEET) = 10'.30
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.596'
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc ,CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINDTE.
SUBAREA RUNOFF (CFS) = 1.10
TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 1.10
**************************************~*************************************
FLOW PROCESS FROM NODE 333.00 TO NODE 333.00 IS CODE = 1
--------------------------------------------------~-------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS '= 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) 4.60
RAINFALL INTENSITY (INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.28
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.10
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 0.92 7.24 5.602
2 1.10 4.60 7.114
AREA
(ACRE)
0.26
0;28
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 1. 68 4.60 7.114
2 1. 78 7.24 5.602 ,
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 1.78 TC(MIN.) = 7.24
TOTAL AREA (ACRES) = 0.54
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 335.00 TO NODE 333.00 = 149.79 FEET.
****************************************************************************
FLOW PROCESS FROM NODE. 333.00 TO NODE 337.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSrREAM ELEVATION(FEET) = 182.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 232.30 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
10.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.23
5.38 HALFSTREET FLOOD WIDTH (FEET) =
AVERAGE FLOW VELOCITY(FEETjSEC.)
PRODUCT OF DEPTH&VELOCITY{FT*FT/SEC.)
5.76
STREET FLOW TRAVEL TIME(MIN.) = 0.67
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S . C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE .RUNOFF COEFFICIENT -. 0.605
1.35
Tc (MIN.)
5.290
7.91
SUBAREA AREA(ACRES) 0.34
TOTAL AREA (ACRES) = 0·. 88
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE (CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 5.96
2.35 .
1.13
FLOW VELOCITY(FEET/SEC.) = 5.95 DEPTH*VELOCITY(FT*FTjSEC.)
LONGEST FLOWPATH FROM NODE 335.00 TO NODE 337.00 = 382.09
156.10
0.0150
2.81
1.46
FEET.
*************************************************************************~**
FLOW PROCESS FROM NODE 380.00 TO NODE 337.00 IS CODE = 81
----------------------------------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK.FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 5.290
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S. C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5893
SUBAREA AREA(ACRES) 0.34 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 1.22 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.91
0.99
3.80
****************************************************************************
FLOW PROCESS FROM NODE 337.00 TO NODE 334.00 IS CODE = 31
----------------------------------------------------,------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
I
I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
, »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 145.40 DOWNSTREAM (FEET) = 144.80
FLOW LENGTH(FEET} = 13.30 MANNING'S N = 0.010
DEP~ OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} 11.06
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS} = 3.80
PIPE TRAVEL TIME(MIN.) = 0.02' Tc(MIN.) = 7.93
LONGEST FLOWPATH FROM NODE 335.00 TO NODE 334.00 395.39 'FEET.
****************************************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 334.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA * *
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS} (MIN. ) (INCH/HOUR)
1 3.80 7.93 5.282
LONGEST FL0WPATH FROM NODE 335.00 TO
** MEMORY BANK # 2 CONFLUENCE DATA **
STREAM RUNOFF Tc !NTENSITY
NUMBER (CFS} (MIN.) (INCH/HOUR)
1 1.09 9.07 4.844
ARE~
(ACRE)
1.22,
NODE 334.00
AREA
(ACRE)
395.39 FEET.
LONGEST FLOWPATH FROM NODE 326.00 TO NODE.
0.39
334.00 = 507.10 FEET,
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 4.76 7.93 5.282
2 ' 4.58 9.07 4.844
COMPUTED CONFLUENCE ESTIMATES ARE AS ,FOLLOWS:
PEAK FLOW RATE (CFS} 4.76 Tc (MIN.) 7.93
TOTAL AREA(ACRES) = 1.61
****************************************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 334.00 IS CODE =' 12
»»>CLEAR MEMORY BANK # 2 ««<
==~=========================================================================
**********************~*****************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 334.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 7 . 93
RAINFALL INTENS ITY (INCH/HR} = 5 . 28
TOTAL STREAM AREA (ACRES) = 1 . 61
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.76
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
**************~*************************************************************
FLOW PROCESS FROM NODE 338.00 TO NODE.· 339.00 IS CODE = 21
-----------------------------------------------------------~----------------»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS~««
============~===============================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 181.00
DOWNSTREAM ELEVATION(FEET) = 186.35
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.26
64.99
6.820
5.823
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF (CFS) = 0.26
****************************************************************************
FLOW PROCESS FROM NODE 339.00 TO NODE 340.00 IS CODE = 62
----------------------------------------------~-----------------------------
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION{FEET) = 185.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 206.60 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 15;00 .
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.61
STREETFLOW MODEL RESULTS 'USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.16
HALFSTREET FLOOD WIDTH(FEET) = 1.50
AVERAGE FLOW VELOCITY(FEET/SEC.) 7.05
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.10
STREET FLOW TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) 7.31
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.569
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA{ACRES) 0.20
TOTAL AREA(ACRES) = 0.27
0.630
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) 1.50
0.70
156.10
0,0150
0.95
FLOW VELOCITY(FEET/SEC.) = 7.05 DEPTH*VELOCITY(FT*FT/SEC.) = 1.10
LONGEST FLOWPATH FROM NODE 338.00 TO NODE 340.00 = 271.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 340.00 TO NODE 334.00 IS CODE = 31
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COM~UTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<:
================================================================'=:;:,;::=========
ELEVATION DATA: UPSTREAM (FEET) = 145.40 DOWNSTREAM (FEET) 144.80
FLOW LENGTH(FEET) = 13.30 MANNING'S N = .. 0.010
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} 7.93
'ESTIMATED PIPE DIAMETER(INCH} = 8.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.95
PIPE TRAVEL T~ME(MIN.) = 0.03 Tc(MIN.) = 7.34
LONGEST FLOWPATH FROM NODE 338.00 TO NODE 334.00 284.89 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 334.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<:<<<
1
=========~==================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 7.34
RAINFALL INTENSITY(INCH/HR) = 5.56
TOTAL STREAM AREA (ACRES) = 0 . 27
PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.95
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) . (MIN.) ( INCH/HOUR) (ACRE)
1 4.76 7.93 5.282 1.61
2 0.95 7.34 5.555 0.27
RAINFALL INTENSIT¥ AND TIME OF CONCENTRATION R.i\.TIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK'FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 5.35 7.34 5.555
2 5.66 7.93 5.282
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) = 5.66 Tc(MIN.) = 7.93
TOTAL AREA(ACRES} = 1.88
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 334.00 507.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 334.00 TO NODE 341. 00 IS CODE = 3'1
--------------------------------------------------------------------~-------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<:<:
==========================================================================~=
ELEVATION DATA: UPSTREAM (FEET) = 144.00 DOWNSTREAM (FEET) 137.50
FLOW LENGTH(FEET) = 70.70 MANNING'S N = 0.010
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 15.88
ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
c
PIPE-FLOW (CFS) = 5.66
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE
0.07 .. Tc(MIN.) =
326.00 TO NODE
8.01
341. 00 577.80 FEET ..
****************************************************t***********************
·FLOW PROCESS FROM NODE 341. 00 TO NODE 342.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ..
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 137.20 DOWNSTREAM (FEET)
FLOW. LENGTH (FEET) = 468.10 MANNING'S N = 0.010
DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.42
ESTIMATED PIPE DIAMETER(INCH) = 12.00
PIPE-FLOW (CFS) = 5.66
NUMBER OF PIPES =
0.83 Tc(MIN.) =
126.70
1
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 326.00 TO NODE
8.84
342.00 1045.90 FEET.
***~************************************************************************
FLOW PROCESS FROM NODE 342.00 TO NODE 105.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
================~========================================================~==
ELEVATION DATA: UPSTREAM (FEET) = 126.40 DOWNSTREAM (FEET) 126.20
FLOW LENGTH(FEET) = 33.10 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.72
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.66
PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 8.93
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 105.00 1079.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1i
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
==================================================================-==========
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 5.66
LONGEST FLOWPATH
** MEMORY BANK #
STREAM RUNOFF
NUMBER (CFS)
1 14.51
Te. INTENSITY AREA
(MIN. ) ( INCH/HOUR) (ACRE)
8.93 4.89,3 1. 88
FROM NODE 326.00 TO NODE 105.00
1 CONFLUENCE DATA **
Tc
(MIN.)
10.36
INTENSITY
(INCH/HOUR)
. AREA
(ACRE)
4.448 5.28
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 105.00
** ·PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 18.17
2 19.65
TABLE **
Tc
(MIN. )
8.93
10.36
INTENSITY
(INCH/HOUR)
4.893
4.448
1079.00 FEET.
815.99 FEET.
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 19.65 Tc(MIN.)·= 10.36
TOTAL AREA(ACRES) = 7.16
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 10-5.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 343.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
. »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 125.90 DOWNSTREAM (FEET) 120.80·
FLOW LENGTH(FEET) = 99.40 MANNING'S N ~ 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 14.65
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 19.65
PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 10.47
LONGEST FLOW PATH FROM NODE 326.00 TO NODE 343.00 1178.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 343.00 TO NODE 343.00 IS CODE = 1
--~-------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.47
RAINFALL INTENSITY(INCH/HR) = 4.42
TOTAL STREAM AREA (ACRES) = 7 . 16
PEAK FLOW RATE (CFS) AT CONFLUENCE = 19.65
****************************************************************************
FLOW PROCESS FROM NODE 344.00 TO NODE 345.00 IS CODE = 21
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
===========================================================~================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH{FEET) =
UPSTREAM ELEVATION(FEET) = 155.90
DOWNSTREAM ELEVATION(FEET) = 155.25
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW{MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF (CFS) 0.77
64.99
6.820
5.823
TOTAL AREA(ACRES) = 0;21 TOTAL RUNOFF(CFS) 0.77
*************************************************************~**************
FLOW PROCESS FROM NODE 345.00 TO NODE 346.00 IS CODE = 62
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
---------------------------------------------------------~-----------------~
»>'»COMPUTE STREET FLOW TRAVEL TIME TERU SUBAREA««<,
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 151.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 563.30 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING, RUNOFF 1
10.00
126.50
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150,
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.37
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 6.91
AVERAGE FLOW VELOCITY(FEET/SEC:) 3.98
PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC.) 1. OS
'STREET FLOW TRAVEL TIME (MIN.) =;: 2.36 Tc (MIN.)' '9.18"
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.807
*USER,SPECIFIED(SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S. C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT'= 0.630
SUBAREA AREA (ACRES) = 1. OS SUBAREA RUNOFF (CFS) ,= 3 . 18
TOTAL AREA(ACRES) = 1.26 PEAK FLOW RATE(CFS) = 3.82
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) '= 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.65
FLOW VELOCITY(FEET/SEC.) = 4.41 DEPTH*VELOCITY(FT*FT/SEC.) 1.32
LONGEST FLOW PATH FROM NODE 344.00 TO NODE 346.00 = 628.29 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 346.00 TO NODE 343.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME TERU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
==================================================================~=========
ELEVATION DATA: UPSTREAM (FEET) = 121.80 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET) = 23.10 MANNING'S N = 0.010
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.57
ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 3.82
0.04 Tc(MIN.) = 9.23
121.30
1
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 344.00 TO NODE 343.00 "651. 39 FEET.
****************************~***********************************************
FLOW PROCESS FROM NODE 343.00 TO NODE 343.00 IS CODE i:: 1 ----------------------------"::"" --,-- - - - - - --- ---------... - - - ---- - --..; -- - - -- - - - - - --'-
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TIME OF CONCENTRATION(MIN.) 9.23
RAINFALL INTENSITY(INCH/HR) 4.79
TOTAL STREAM AREA(ACRES) = 1.26
PEAK FLOW RATEJCFS) AT CONFLUENCE = 3.82
**********************~*****************************************************
FLOW PROCESS FROM NODE 347.00 TO NODE-348.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC" II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 64.99
UPSTREAM ELEVATION(FEET) = 139.10
DOWNSTREAM ELEVATION(FEET} = 138.45
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 6 . 820
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = _5.823
SUBAREA RUNOFF (CFS) 0.37
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.37
****************************************************************************
FLOW PROCESS FROM NODE 348.00 TO NODE 349.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 138.50 DOWNSTREAM ELEVATION(FEET) = 126.50
STREET LENGTH(FEET) = 253.70 CURB HEIGHT(INC~S) 6.0
STREET HALFWIDTH(FEET) = 15.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECI~) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.26
STREETFLOW MODEL-RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET} = 0.22
HALFSTREET FLOOD WIDTH(FEET} = 4.80
AVERAGE FLOW VELOCITY (FEET/SEC. ) 3 . 63
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.81
STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) 7.99
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.260
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.630
SUBAREA AREA(ACRES} 0.54 SUBAREA RUNO:fF{CFS) 1.79
0.0150
TOTAL AREA(ACRES) = 0.64 PEAK FLOW RATE (CFS) 2.12
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.25-HALFSTREET FLOOD WIDTH(FEET) 6.43
FLOW VELOCITY(FEET/SEC.) = 3.99 DEPTH*VELOCITY(FT*FT/SEC.) = 1. 02
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 347.00 TO NODE 349.00 = 318.69 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 349.00 TO NODE 343.00' IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================.
ELEVATION DATA: UPSTREAM (FEET) = 121.50 DOWNSTREAM (FEET) 121.30
FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.010
DEPTH OF 'FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) -10.90
ESTIMATED PIPE DIAMETER(INCH} = 9.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.12
PIPE TRAVEL TIME (MIN.) = 0.01 Tc (MIN.) = T.99
LONGEST FLOWPATH FROM NODE 347.00 TO NODE 343.00 321.99 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 343.00 TO NODE 343.00 IS CODE = I
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
==========================================================================~=
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME ,OF CONCENTRATION(MIN.} = 7.99
RAINFALL INTENSITY(INCH/HR) = 5.26
TOTAL STREAM AREA(ACRES} = 0.64
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.12
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 19.65 10.47 4.417
2 3.82 9.23 4.792
3 2.12 7.99 5.257
AREA
(ACRE)
7.16'
1.26
0.64
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 20.43 7.99 5.257
2 23.07 9.23 4.792
3 24.95, 10.47 4.417
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS} 24.95 Tc(MIN.) = 10.47
TOTAL AREA(ACRES) = 9.06
LONGEST FLOW PATH FROM NODE 326.00 TO NODE 343.00 11 78 . 40' FEET.
****************************************************************************
FLOW PROCESS FROM NODE 343.00 TO NODE 108.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
======~====================================================================="
ELEVATION DATA: UPSTREAM (FEET) = 120.60 DOWNSTREAM (FEET)
'FLOW LENGTH(FEET) = 37.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.3.INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.45
GIVEN PIPE DIAMETER{INCH) = 24.00
PIPE-FLOW (CFS) = 24.95
NUMBER OF PIPES
10.51
1
118.70
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
o . 04· Tc (MIN.) =
326.00 TO NODE 108.00 1216.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 41
-------------------------------------~------------------------------~-------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 118.40 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 9.52
GIVEN PIPE DIAMETER(INCH) = 24.00
PIPE-FLOW (CFS) .. = 24.95
NUMBER OF PIPES
0.49 Tc(MIN.) = 11.00
1
·114.20
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOW PATH FROM NODE 3-26.00 TO NODE 109.00 1496.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = ~1
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE {EXISTING ELEMENT} ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 113.90 DOWNSTREAM (FEET)
FLOW LENGTH{FEET) = 136.40 MANNING'S N = 0.013
109.80
DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 12.69
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES
PIPE-FLOW {CFS} = 24.95
,PIPE TRAVEL TIME{MIN.) =
LONGEST FLOWPATH·FROM NODE
0.18 Tc(MIN.} =
326.00 TO NODE
11.18
110.00
1
1632,,60 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
==================================================~=========================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.} 11.18
RAINFALL INTENSITY (INCH/HR) = 4.23
TOTAL STREAM AREA(ACRES} = 9.06
PEAK FLOW RATE (CFS) AT CONFLUENCE = 24.95
**********************************************************~*****************
FLOW PROCESS FROM NODE 350.00 TO NODE '351. 00 IS CODE = 21.
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
I
I
I
I
I
I
I.'
I
I
I
I
I
I
I
.1
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) =
.6300
UPSTREAM ELEVATION(FEET) = 127.90
DOWNSTREAM ELEVATION(FEET) = 127.25
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
SUBAREA RUNOFF (CFS) 0.48
64.99
6.820
5.823
TOTAL ARE.~(ACRES) = 0.13 TOTAL RUNOFF(CFS) 0.48
****************************************************************************
FLOW PROCESS FROM NODE 351.00 TO NODE 112.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 127.00 DOw~STREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 239.20 CHANNEL SLOPE =
CHANNEL BASE (FEET) 0.00 "Z" FACTOR = 11. 530
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.028
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
0.50
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} 1.42
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.29
AVERAGE FLOW DEPTH(FEET} 0.23 TRAVEL TIME (MIN.) 1. 74
Tc(MIN.) = 8.56
124.60
0.0100
0.59 SUBAREA AREA (ACRES)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA RUNOFF (CFS)
0.630
1. 87
TOTAL AREA(ACRES) = 0.72 PEAK FLOW RATE (CFS) 2.28
END OF SUBAREA CHANNEL ELOW HYDRAULICS:
DEPTH (FEET) = 0.27 FLOW VELOCITY(FEET/SEG.) 2.68
LONGEST FLOWPATH FROM NODE 350.00 TO NODE 112.00 = 304.19 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 112.00 TO NODE 110.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
. »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT} ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 111.90 DOWNSTREAM (FEET) ·110.30
FLOW LENGTH(FEET} = 62.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH.P.IPE IS 4.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} = 6.41
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.28
PIPE TRAVEL TIME (MIN.) = 0.16 Tc(MIN.) = 8.73
LONGEST FLOWPATH FROM NODE 350.00 TO NODE 110.00 366.49 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
I
I,
1
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
=========================~==================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) 8.73
RAINFALL INTENSITY(INCH/HR) = 4.97
TOTAL STREAM AREA (ACRES) = 0 . 72
PEAK FLOW RATE(CFS) AT CONFLUENCE 2.28
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY,
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 24.95 n.18 4.234
2 2.28 8.73 4.967
AREA,
(ACRE)
9.06
0.72
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR, 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) , (MIN. ) ( INCH/HOUR)
1 23.55 8.73 4.967
2 26.89 11.18 4.234
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 26.89 Tc(MIN.) = 11.18
TOTAL AREA(ACRES) = 9.78
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 110.00 1632.60 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 113.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 109.30 DOWNSTREAM (FEET)
FLOW LENGTH{FEET) = 94.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 11.1' INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) = 16.38
GIVEN PIPE DIAMETER (INCH) = 30.00
PIPE-FLOW (CFS) = 26.89
NUMBER OF PIPES
0.10 Tc{MIN.) =
1
103.90
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 326.00 TO NODE
11.27
113.00 = 1727.40 FEET.
*************************************************~*****-***~****************
FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
.============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 103.60' DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 104.90 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.6 IN~~~
'PIPE-FLOW VELOCITY(FEET/SEC.) = 9.01
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 26.89
PIPE TRAVEL TIME (MIN.) = 0.19' Tc (MIN.) = 11.47
102.40
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.1
LONGEST FLOW PATH FROM NODE 326.00 TO NODE 114.00 = 1832.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««<
====================================================~======~================
****************************************************************************
FLOW PROCESS FROM NODE 355.00 TO NODE 356.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 69.99
UPSTREAM ELEVATION{FEET) = 132.50
DOWNSTREAM ELEVATION(FEET) = 131.80
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR).
SUBAREA RUNOFF (CFS) 0.11
8.282
5.137
TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) 0.11
****************************************************************************
FLOW PROCESS FROM NODE 356.00 TO NODE 357.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================?===============================
ELEVATION DATA: UPSTREAM (FEET) = 131.80 DOWNSTREAM (FEET) 114.70
FLOW LENGTH(FEET) = 392.60 MANNING'S N = .0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 'INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.43
ESTIMATED PIPE DIAMETER (INCH) = 8;00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.11
PIPE TRAVEL TIME (MIN.) = 1.91 Tc{MIN.) = 10.19
LONGEST FLOWPATH FROM NODE 355.00 TO NODE 357.00 462.59 FEET.
*************************************************************.***************
FLOW PROCESS FROM NODE 357.00 TO NODE 357.00 IS CODE = 81
--------------------------------------------------------------------------~-. .
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
===========================================================================~
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 4.495
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA (ACRES) 0 . 3 8 SUBAREA RUNOFF (CFS )
TOTAL AREA(ACRES) 0.42 TOTAL RUNOFF(CFS) =
TC(MIN.) = 10.19
0.94
1. 04
+---------------------------------------------------------------~----------+ I .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I The area above corresponds to the flow drained by Ditch F.
I
+-----------------~---------------------------------~-----~----------~-----+
****************************************************************************
FLOW PROCESS FROM NODE 357.00 TO NODE 357.00 IS CODE = 1 --------------------------------------------.-------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
=====================================?======================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.19
RAINFALL INTENSITY(INCH/HR) = 4.50
TOTAL STREAM AREA(ACRES) = 0.42
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.04
*********************************************************************w******
FLOW PROCESS FROM NODE 358.00 TO NODE 359.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
================~===========================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
UPSTREAM ELEVATION(FEET) = 126.80
DOWNSTREAM ELEVATION(FEET) = 125.90
ELEVATION DIFFERENCE (FEET) = 0.90
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.045
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINrrTE.
SUBAREA RUNOFF (CFS) 0.30
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.30
****************************************************************************
FLOW PROCESS FROM NODE 359.00 TO NODE 357.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 3 USED)««~
============================================================================
UPSTREAM ELEVATION (FEET) = 125.90 DOWNSTREAM ELEVATION(FEET) -113.50
STREET LENGTH(FEET) = 331.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO 'CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) -0,020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
15.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-cur~) =
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.22
HALFSTREET FLOOD WIDTH(FEET) = 4.72
AVERAGE FLOW VELOCITY(FEET!SEC.) 3.20
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
1.09
0.Ol50
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
STREET FLOW TRAVEL TIME (MIN.) = . 1.73 Tc (MIN.) = 4.'77
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.114
NOTE: RAINFALL ·INTENSITY IS BASED ON Tc 5-MINUTE.
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .8500
S .C.S. CURVE NUMBER (AMC II)' = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.850
SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF (CFS) = 1.57
TOTAL AREA(ACRES) = 0.31 PEAK FLOW RATE (CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) 6.45
FLOW VELOCITY(FEET/SEC.) = 3.51 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 358.00 TO NODE 357.00' = 391.00
1.87
0.90
FEET.
****************************************************************************
FLOW PROCESS FROM NODE 357.00 TO NODE 357.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION'(M.IN.) 4.77
RAINFALL INTENSITY(INCH/HR) = 7.11
TOTAL STREAM AREA(ACRES) = 0.31
PEAK. FLOW RATE (CFS) AT CONFLUENCE = 1.87
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 1. 04 10.19 4.495
2 1. 87 4.77 7.114
AREA
(ACRE)
0.42
0.31
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW. RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 2.36 4.77 7.114
2 2.22 10.19 4.495
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 2 . 36 Tc ('MIN.) = 4.77
TOTAL AREA(ACRES) = 0.73
LONGEST FLOWPATH FROM NODE 355.00 TO NODE 357.00 = 462.59 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 357.00 TO NODE 117.00 IS CODE = 62
-------------------------------------------------------------~-------------~
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 3 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) 113.50 DOWNSTREAM ELEVATION(FEET) 111. 30
STREET LENGTH(FEET) = 94.90 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
8.91
3.23
STREET FLOW DEPTH(FEET) = 0.30
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME (MIN.) = 0.49
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S. C. S,. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.665
0.98
Tc(MIN.) =
6.885
5.26
SUBAREA AREA(ACRES) 0.27
TOTAL AREA(ACRES) = 1.00
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE (CFS)
'END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) 10.79
2.95
1.17
FLOW VELOCITY(FEET/SEC.) = 3.57 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 355.00 TO NODE 117.00 = 557.49
0.0150
4.58
1.22
FEET.
********************************************************~*******************
FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
, ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 5.26
RAINFALL INTENSITY(INCH/HR) = 6.88
TOTAL STREAM AREA (ACRES) = 1. 00
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.58
****************************************************************************
FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
==========~=================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 14.49 RAIN INTENSITY(INCH/HOUR) = 3.58
TOTAL AREA(ACRES) = 2.96 TOTAL RUNOFF(CFS) = 5.96
+----~---------------------------------------------------------------------+
1 Data for the Code 7 above was obtained from the approved' ';D~aiIlage "I
1 Studt for La Costa Greens -Neighborhood 1.1'711 " dated 05/09/2005 1
1 and prepared by Hunsaker & Associates San Diegq, Inc.' 1
+-----------------------------------------------------~--------~----------:+
****************************************************************************
FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>DESIGNATE INDEPENDENT STREAM POR CONPLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION{MIN.) = 14.49
RAINFALL INTENSITY{INCH/HR) = 3.58
TOTAL STREAM AREA{ACRES) = 2.96
PEAK PLOW RATE(CPS) AT CONPLUENCE"= 5.96
** CONFLUENCE DATA **
STREAM RUNOPP Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 4.58 5.26 6.885
2 5.96 14.49 3.581
AREA'
(ACRE)
1. 00"
2.96
RAINFALL INTENSITY AND TIME OP CONCENTRATION RATIO
CONFLUENCE FORMULA USED POR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CPS) (MIN. ) (INCH/HOUR)
1 6.74 5.26 6.885
2 8.34 14.49 3.581
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 8.34 Tc(MIN.) = 14.49
TOTAL AREA(ACRES) = 3.96
LONGEST FLOWPATH FROM NODE 355.00 TO NODE H7.00 557.49 PEET.
****************************************************************************'
FLOW PROCESS FROM NODE 11 7 . 00 TO NODE 114.00 IS CODE = 41
>>>>>COMPUTE PIPE-PLOW TRAVEL TIME THRU SUBAREA««'<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = i03.20 DOWNSTREAM (FEET) 102.90
PLOW LENGTH(FEET) = 3.40 MANNING'S N = 0.013
.DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 14.04
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OP PIPES 1
PIPE-FLOW (CFS) = 8.34
PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.). = 14.49
LONGEST FLOWPATH FROM NODE 355.00 TO NODE 114.00·= 560.89 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 1
-------------------------------------------------------------------~--------
. »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUE'NCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME Op·CONCENTRATION(MIN.) 14.49
RAINFALL INTENSITY(INCH/HR) = '3.58
TOTAL STREAM AREA(ACRES) = 3.96
PEAK FLOW RATE (CPS) AT CONFLUENCE = 8.34
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM'NODE 162.00 TO NODE 162.00 IS CODE = '7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 14.44 RAIN INTENSITY (INCH/HOUR) = 3.59
TOTAL AREA(ACRES) = 3.35 TOTAL RUNOFF (CFS) = 7.24
+--------------------------------------------------------------------------+ I Data for the Code 7 above was obtained from the approved "Drainage I I Study for La Costa Greens -Neighborhood 1.17" dated 05/09/2005 I I and prepared by Hunsaker & Assocaites San Diego, Inc. I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 120.00 TO NODE 114.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 104.10 DOWNSTREAM (FEET) 103.40
FLOW LENGTH(FEET) = 29.40 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC:) = 8.57
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 7.24
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 14.50
LONGEST FLOWPATH FROM NODE 358 . 00 TO NODE 114 . 00 420 .40 FEET.
*************************************************************.**************
FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS, CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<,
1
============================================================================
TOTAL NUMBER OF'STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) -, 14.50
RAINFALL INTENSITY(INCH/HR) = 3.58
TOTAL STREAM AREA(ACRES) = 3.35
PEAK FLOW RATE (CFS) AT CONFLUENCE = 7.24
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 8.34 14.49 3.581
2 7.24 14.50 3.580
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 15.58 14.49 3.581
AREA
(ACRE)
3.96
3.35
RATIO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
2 15.58 14.50 3.580
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 15.58 Tc(MIN.) ~ 14.50
TOTAL AREA(ACRES) = 7.31
LONGEST FLOW PATH FROM NODE 355.00 TO. NODE 114.00 560.89 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 11
------------------------------------------------~----------------------------
»»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 15.58 14.50 3.580
LONGEST FLOWPATH FROM NODE 355.00 TO
** MEMORY BANK # 3 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENS ITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 26.89 11.47 4.164
AREA
(ACRE)
7.'31
NODE 114.00
AREA
(ACRE)
9.78
560.89 FEET.
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 114.00 1832.30 FEET.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) .. (INCH/HOUR)
1 39.22 11.47 4.164
2 38.7D 14.50 3.580
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 39.22 Tc(MIN.) = 11.47
TOTAL AREA(ACRES) = 17.09
****************************************************************************
FLOW PROCESS FROM NODE . 114.00 TO NODE . 114.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 3 ««<
============?===============================================================
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 121.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
================================================~===========================
ELEVATION DATA: UPSTREAM (FEET) = 101.90 DOWNSTREAM (FEET) 101.60
FLOW LENGTH(FEET) = 64.80 MANNING'S N'= 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.90
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 39.22
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 11.62
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 121.00 1897 .. 10 FEET.
****************************************************************************
I
I
I
I
I
I
I
-I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 121. 00 TO NODE 121. 00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================;===============================================
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 11.62
RAINFALL INTENSITY (INCH/HR) = 4.13
TOTAL STREAM AREA (ACRES) = 17 . 09
PEAK FLOW RATE(~FS) AT CONFLUENCE = 39.22
*******************************************************************~********-
FLOW PROCESS FROM NODE 151.00 TO NODE 151.00 IS CODE = 7
-----------------------------------------~----------------------------------
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC{MIN) = 12.65 RAIN INTENSITY(INCH/HOUR) = 3.91
TOTAL AREA(ACRES) = 3.29 TOTAL RUNOFF(CFS) = 5.72
+--------------------------------------------------------------~------------+ I Data from the Code 7 above was obtained from the approved "Drainage
I study for La Costa Greens -Neighborhood 1.17", dated 05/09/2006 I and p~epared by Hunsaker & Associates San Diego, Inc. . +-------------------------------------------_._-----------------------------+
****************************************************************~*****~*****
FLOW PROCESS FROM NODE 129.00 TO NODE 121.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPST~(FEET) = 114;90 DOWNSTREAM (FEET) 103.10
FLOW LENGTH(FEET) = 65.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 16.68
GIVEN PIPE DIAMETER(INCH) = 18,00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.72
PIPE TRAVEL TIME (MIN.) = 0.07 Tc(MIN.) = 12.72
LONGEST FLOWPATH FROM NODE 358 . 00 TO NODE 121 . 00 486 . 20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 121.00 TO NODE. 1.21.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
===========================================================================~
TOTAL NUMBER OF STREAMS = . 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 12.72
RAINFALL INTENSITY(INCH/HR) = 3.90
TOTAL STREAM AREA(ACRES) = 3.29
PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.72
************************************************************~~**************
FLOW PROCESS FROM NODE 177.00 TO NODE 1.77.00 IS CODE = 7 -. ----------------------------------------------------------------------------
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 11.40 RAIN INTENSITY(INCH/HOUR) = 4.18
TOTAL AREA(ACRES) = 35.78 TOTAL RUNOFF (CFS) = 67.22
+------------------------------------------.~-------------------------------+
·1 Data from the Code 7 above was obtained from the approved "Drainage 1
1 Study for La Costa Greens -Neighborhood 1.17, dated 05/09/2005 I
1 and prepared by Hunsaker & Associates San Diego, Inc. 1
+--------------------------------------------------------------------------+
*******~***************************************************************~****
FLOW PROCESS FROM NODE 177 . 00 TO NODE 121.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 113.10 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 140.40 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 23.72
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 67.22
PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 11.50
LONGEST FLOWPATH FROM NODE 347.00 TO NODE 121.00
101.60
462.39 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 121. 00 TO NODE ·121. 00 IS CODE =. 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS. = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 11.50
RAINFALL INTENSITY(INCH/HR) = 4.16
TOTAL STREAM AREA(ACRES) = 35.78
PEAK FLOW RATE (CFS) AT CONFLUENCE = 67.22
* * CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 39.22 11.62 4.128
2 5.72 12.72 3.896
3 67.22 11.50 4.157
AREA
(ACRE)
17.09
3.29
35.78
RP.INFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 3 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 111.18 11.50 4.157
2 111.19 11.62 4.128
3 105.73 12.72 3.896
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PEAK FLOW RATE(CFS) = 111.19 Tc(MIN.) = 11.62
TOTAL AREA(ACRES) =, 56.16
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 121. 00 1897.10 'FEET.
****************************************************************************
FLOW PROCESS FROM NODE 121. 00 TO NODE 100.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 100.10 DOWNSTREAM (FEET) 97.00
FLOW LENGTH (FEET) = 190.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 54.0 INCH PIPE IS 25.9 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) = 14.72
GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 111.19
PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 11.84
LONGEST FLOWPATH FROM NODE 326.00 TO NODE 100.00 2087.10 FEET.
+--------------------------------------------------------------------------+ I END BASIN 1 (NORTH OUTFALL) -NODE SERIES 100 AND 300 I
I I I BEGIN BASIN 2 (SOUTH OUTFALL) -NODE SERIES 200 AND 400 I
+--------------------------------------------------------------------~-----+
****************************************************************************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE' = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSI.s««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 64.99
UPSTREAM ELEVATION(FEET) = 127.90
DOWNSTREAM ELEVATION(FEET) = 127.25
ELEVATION DIFFERENCE (FEET) = '0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.820
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.823
SUBAREA RUNOFF (CFS) 0.37
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) 0.37
************************************************************~***************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 2 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) =
STREET HALFWIDTH(FEET)
= 126.00 DOWNSTREAM ELEVATION(FEET)
23.80 CURB HEIGHT(INCHES) = 6.0
32.00
,DISTANCE FROM CROWN TO CRQSSFALL GRADEBREAK(FEET) = 27.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
,SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
125.40
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's FRICTION FACTOR for Streetflow Section'(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.23
HALFSTREET FLOOD WIDTH(FEET) = 5.40
2.09 AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
STREET FLOW TRAVEL TIME(MIN.) = 0.92
100 YEAR RAINFALL INTENSITY(INCH/HOUR) =
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.630
0.49
Tc (MIN.)
5.365
7.74
SUBAREA AREA(ACRES) = 0.29
TOTAL AREA(ACRES) = 0.39
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE (CFS') =
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) 6.83
0.86
0.98
0.0150
l. 32
FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59
LONGEST FLOW PATH FROM NODE 401.00 TO NODE 403.00 = -180.99 FEET.
***********************************************************.*****************
FLOW PROCESS FROM NODE 403.00 TO NODE 409.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 2 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 122.64 DOWNSTREAM ELEVATION(.FEET)
STREET LENGTH (FEET) = 136.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Sect~on(curb-to-curb) =
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.77
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALFSTREET FLOOD WIDTH(FEET) = 7.90
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.39
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.68
STREET FLOW TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 8.69
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.979
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.630
SUBAREA AREA(ACRES) 0.29 SUBAREA RUNOFF (CFS) 0.91
TOTAL AREA(ACRES) = 0.68 PEAK FLOW RATE (CFS) =
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.30 HALF STREET FLOOD WIDTH(FEET) 8.62
FLOW VELOCITY(FEET/SEC.) = 2.48 DEPTH*VELOCITY(FT*FT/SEC.) =
120. TO -
0.0150
2.13
0.74
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 409.00 = 316.99 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 409.00 TO NODE 205.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 115.50 DOWNSTREAM (FEET) = 115.30
FLOW LENGTH(FEET) = 95.00 MANNING'S N = 0.010
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 3.10
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 2.13
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOW PATH FROM NODE
0.51 Tc(MIN.) =
401.00 TO NODE
9.21
205.00 =
1
411.99 FEET.
+-----------------------------------------------------------------~--------+
I I I END BASIN 1 (SOUTH OUTFALL) -NODE SERIES 200 AND 400 I
I I
+----------------------------------------------------------------~---------+
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS) =
0.68 TC(MIN.) =
2.13
9.21
=====================================================================~======
============================================================================
END OF RATIONAL METHOD ANALYSIS
I
I
I-
I
I'
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
IV
I
I
I'
I
I
I
I.
I
I
I
I'
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER4 .
HYDRAULIC ANALYSIS
·4.1 -North Outfall Storm Drain System
AH dlg H:IREPORTS\049O\71IA02,doc
w.o. 0490-71 =0061:42 PM
~
"9OJ
II I III •
t
~
.~.
SCALE: 1 "=
LEGEND
PIPE 10 NODE (@)
PROPOSED STORM DRAIN =IQ'F==
EXISTING STORM DRAIN fIQJI --
I
<'~
~
c.
1, ~I! ~
III ~ \I ji ~I~;! ~
[
C
I II I II ""'" "" ~, , [
I
I" I " II"" I "II I II I c.
111111· II~ III i 1111 ~
PREPARED BY:
_ HUNSAKER _ ~f~,~9~~~TES
I'!.INNING 10m IIUCM,k"" 5"",
ENQN((RING SOIl 01,&., c. 92121
SURVEYING I'JI(osD)sSn~sDO· fX(Osn)SSO·11l4
STORM DRAIN LEGEND -NORTH OUTFALL I SHEET
LA COSTA GREENS
NEIGHBORHOOD 1.16
CITY OF CARLSBAD, CALIFORNIA
1
OF
2
n. \n.,-t"\ ....... .l\,..,.,..,A ... ,4,. roT,,",' I ... ,.....,n "I&".r I'Inn,., ".J n4 ontV'. 4C •• 4
I·
1
1
I
I
I
I
I
. 1
I
I
I
I
I
I
I
I
I
I
LA COUNTY PUBL! C NORKS STORM DRAIN ANALYSIS
{INPI .... Tl
PROJECT: LA COSTA GREENS -NEIGHBORIIOOD' 1.15 -NORTH BASIN
DESIGW....R: DJG
CD L2 M.'IX Q ADJ Q LENGTrl FL 1 FL 2 CT1,/TI1 D 11 S KJ KM
1 98.06
2 5 111.2 111.2 127.77 97.00 99.64 0.00 54. O. 3 0.50 0.00 0.05
2 6 111.2 111.2 4.75 99.S4 99.S7 0.00 54. o. 0.50 0.00 0.05
2 7 111.2 111.2 48.4:4 99.S7 100.12 0.00 54. O. 3 0.50 0.00 0.05
2 S 39.2 39.2 64.S1 101.59 101.92 0.00 36. O. 3 0.50 0.00 0.05
2 9 26.9 26.9 104.S5 102.42 103.59 0.00 30. O. 3 0.15 0.00 '0.05
2 10 26.9 26.9 94.75 103.92 109.26 0.00 30. O. 3 0.50 0.00 0.05
2 11 25.0 25.0 136.36 109.76 113.S5 0.00 24 . O. 3 0.15 0.00 0.05
2 12 25.0 25.0 280.00 114.18 IlS.38 0.00 24. O. 0.50 0.00 0.05
2 13 25.0 25.0 37.75 I1S.71 120.64 0.00 24. O. 3 0.50 0.00 0.05
2 14 19.7 19.7 99.36 120.S4 125.91 0.00 24. O. 3 0.50 0.00 0.05
2 15 14.5 14.5 3S.~3 126.49 130.35 0.00 15. O. 3 0.50 0.20 0.05
2 16 9.7 9.7 73.14 130.69 133.S1 0.00 15. O. 3 0.50 0.20 0.05
2 17 6.8 6.8 86.19 134.06 170.86 0.00 12. O. 3 0.50 0.20 0.05
2 18 6.5 6.5 121.52 171.19 172.41 0.00 12. O. 3 0.50 0.00. 0.05
2 19 6.5 6.5 43.94 172.74 173.18 0.00 12. O. 0.50 0.00 0.05
2 20 6.5 6.5 52.61 173.51 174.04 0.00 12. O. 3 0.50 0.00 0.05
2 21 4.0 13.39 174.37 175.59 0.00 12. O. 3 0.50 0.20 0.05
2 22 1.4 1.4 66.05 175.92 181.13 0.00 a. O. 1 0.00 0.20 0.05
2 30' 5.7 5.7 65.81 103.12 114.85 0.00 18. O. 1 0.00 0.20 0.05
2 40 7.2 7.2 29.38 103.42 104.05 0.00 18. O. 1 0.00 0.20 0.05
2 45 8.3 8.3 3.38 102.92 103.18 0.00 la. O. 1 0.00 0.20 0.05
2 50 2.3 2.3 62.27 110.26 111.88 0.00 la. O. 1 0.50 0.20 0.05
2 60 3.8 3.8 23.14 122.17 122.64 0.00 a. O. 1 0.00 0.20 0.05
2 65 2.1 2.1 3.34 122.17 122.31 0.00 a. O. 1 0.00 0.20 0.05
RE¥T: PC/RD4412.1
DATE: 09/08/06
PAGE 1
LC 1..1 L3 1,4 Al A3 A4 J N
1 6 a o q. o. O. 4.00 0.013
o 7 o o. o. 0 .. 5.00 0.013
o 8 30 o 85. o. O. 7.00 0.013
o 9 40 45 O. 90. 90. 4.00 0.013
o 10 o o O. o. O. 4.00 O. 013
o 11 SO 0 O. 7a. 0,. 4.00 0.013
o 12 0 0 o. o. O. 4.00 0.013
o 13 0 0 90. O. O. 4.00 0.013
a 14 60 65 O. 90. 90. 4.00 0.013
o 15 70 a 35. 90. O. 4.00 0.013
o 16 o o 16. o. O. 4.00 0.010
o 17 a o 19. o. O. 2.00 0.010
o 18 o 76. O. O. 2.46' 0·.010
o 19 o o 86. O. O. 4.00 0.010
a 20 o a 62. O. Q •. 4.00 0.010
o 21 90 o 73. 33. O. 4.00 0.010
o 21 o o 79. o. O. 4.00 0.010
o o o o o. o. O. 2.00 0.010
8 o o o O. o. O. 3.00 '0.013
9 o o o o. O. O. 4.00 0.013
9 o o o 0.. o. O. 4.00 0.013
11 o o o O. O. O. 4.00 0.013
14 o a a o. o. 0'. 4.-00 0.010
a o o. o. O. 4.00 0.010
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L..~ COUNTY PUBLIC WORKS STORM DRMN ANALYSIS
(INPUT)
PROJECT: LA COSTA GREENS -NEIGE30RHOOD 1.15 -NORTH BASIN
DESIGl-I"ER, DJG
CD L2 lo\.l>JC Q ADJ Q LENGTH FL 1 FL 2 CTL/TN D w S KJ KE 101
2 70 5.7 5.7 69.36 126.7~ 130.53 0.00 12. o. 0.15 0.00 0.05
2 71 5.7 5.7 212.39 130.87 135.26 0.00 12. O. 3 0.15 0.00 0.05
2 72 5.7 5.7 215.18 135.60 140.39 0.00 12. O. 3 0.15 0.00 0.05
2 73 5.7 5.7 74.67 140.72 146.00 0.00 12. O. 3 0.50 0.00 0.05
2 74. 1.1 1.1 197.24 146.33 173.40 0.00 8. O. 0.50 0.00 0.05
2 75 1.1 1.1 52.35 173.74 178.72 0.00 8. O. 3 0.50 0.00 0.05
2 76 1.1 1.1 62.64 179.04 179.67 0.00 B. O. 3 0.50 0.00 0.05
2 77 1.1 1.1 78.80 IBO.Ol 182.15 0.00 8. O. 1 0.00 0.20 0.05
2 80' 3.8 3.8 13.25 146.00 146.52 0.00 12. O. 3 0.50 0.20 0.05
2 81 1.0 1.0 22.13 151.71 156.67 0.00 12. o. 0.00 0.20 0.05
2 85 1.0 1.0 13.27 146.33 146.86 0.00 8. O. 1 0.00 0.20 0.05
2 90 '2.5 2.5 13.46 174.70 174.84 0.00 8. O. 1 0.00 0.20 0.05
LC Ll L3
15 71 o
o 72 o
o 73 o
o 74 80
o 75 o
o 76 o
a 77 o
o a o
74 Bl o
o a o
74 o
21 o o
L4 .">1 A3
a O. O.
o o. O.
o o. O.
REPT: PC/RD4412.1
PATE: 09/0B/06
PAGE 2
J N
O. 4.00 0.010
O. 4.00 0.010'
O. ,LOO 0.010
85 O. 90. 90. 4.00 0.010
o 63. o. O. 4.00 0.010
o 44. O. O. 4.00 0 . 010
o 90. O. O. '4.00 0.010
o O. O. O. 2.00 0.010
o O. o. O. 4.00 0.010
o o. o. O. 1.83 o.oio
o O. 0.. O. 4.00 0.010
o o. O. O. 4.00 0.010
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L.~ COUNTY PUBLIC WOR-XS STORM DR-~IN ANALYSIS
PROJECT: LA COSTA GREENS -NEIGHBORHOOD 1.16 • NORTH BASIN
DESIGNER: DJG
. LINE
NO
l'
Q D W DN
(CFS) (IN) (IN) (FT)
DC
(FT)
FLOW
TYPE
h"YDRAULIC GR.~E LINE CONTROL
SF-FULL
(FT/FT)
98.06
V 1 V 2
(FPS) (F?S)
PL 1
(FT)
FL 2
(FT)
HG 1
CALC
HG 2
5 111.2 54 o 1.96 3.10 Pk~T 0.00320 15.3 11.7 97.00 99.64 99.10 102.24
6
7
9
10
II
12
13
15
16
17
18
19
20
21
22
8
30
ll1.2 54
111.2 54
x =
39.2 36
o
o
0.00
o
2.81
3.01
X(N)
2.07
3.10 PART
3.10 PART
17.22
2.03 FULL
0.00320
0.00320
0.00345
26.9 30 o 1.43 1.77 FULL 0.00430
26.9 30 0
X = 9.94
0.90
X(N)
1.77 SEAL 0.00430
0.00 X(J) =
9.9
9.8
5.5
5.5
5.5
9.94
9.8 99.84 99.87 102.83 102.8S
9.5 99.87 100.12 102.88 103.22
5.5 101. 59 101. 92 106.61 106.83
5.5 102.42 103.59 107.19 107.64
13.7103.92
P(.1) -14.17
109.26
D(BJ)
107.64 110.31
0.93 D(AJ)
25.0 24 o 1.16 1.76 Pk~T 0.01221 13.1 11.5 109.76 113.85 110.93 115.16
25.0 24 0
X = 0.00
25.0 24 0
X = 36.59
1.49
X(N)
0.99
X(N)
1.76 Pp~T 0.01221
164.83
1.76 SR~ 0.01221
0.00 X(.1) =
10.0
8.0
36.59
8.5
10.9
F(J:)
19.7 24 o 0.86 1.59 Pp~T 0.00758 14.7 11.1
14.5 15 o 0.66 1.23 PART 0.02981 17.5 11.9
9.7
X=
15 0
15.15
0.67
X(N)
6.8 12 0.32
X = 0.00 X(N)
1.17 SR~
0.00
0.97 Pk~T
12.27
0.01334
X(J) =
0.02155
6.5 12 o 1.00 0.97 FULL 0.01969
6.5 12 o 1.00 0.97 FULL 0.01969
6.5 12 o 1.00 0.97 FULL 0.01969
7.9
15.15
31.1
8.3
8.3
8.3
20.S
P(J)
8.7
8.3
8.3
8.3
114.18 ll8.38
118.71 120.64
9.93 . D(BJ)
115.67 120.14
122.33 122.01
1.36 D(AJ)
120.84 125.91 121.72 127.01
126.49 130.35 127.29 131.58
130.69
5.22
134.06
133.81 134.07
0(3.1) = 0.60
170.86 13·L38
1H.32
D(M)
171.83
171.19 172.41 173.67 176.07
172.74 173.18 178.05 178.92
173.51 174.04 lS0.05 181.08
4.0 12 o 0.37 0.85 FULL 0.00746 5.1 5.1 174.37 175.59 182.38 182.48
1.4 8 o 0.26 0.56 FULL 0.00794' 4.0 4.0 175.92 181.13 183.54 184.06
HYDR-~ULIC GRADE LINE CONTROL 104.91
5.7 18 0 0.36 0.92 Pk~T 0.00294 17.3' 5.0 103.12 114.85 103.48 115.77
X = 0.00 X(N) = 63.96
D 1
(FT)
2.10
2.99
3.01
5.02
~. 77
D 2
(FT)
2.60
3.01
3.10
4.91.
4.05
0.00
0.00
0.00
'0.00
0.00
3.72 1. 05 0.00
3.20
1..17
1.49
3.62
2.18
0.88
0.80
3.38
2.92
0.32
2.48
5.31
6.54
8.01
7.62
0.36
1.31 0 .. 00
1. 76 0.00
1.37 0.00
1.10 0.'00
1.23 0.00
0.51 0.00
0.97 0.00
3.66 0 .. 00
5.74 0.00
7.04 0.00
6.89 0.00
2.93 184.36
0.92 116:24
REPT: PC/RD4412.2
DATE: 09/08/06
PAGE 1
TN
CK
0.00
'0.00
0.06
0.00
0.00
0 .. 00 HYD JUMP
0.00
0.00
0.00 HYD JUNP
0 .. 00
0.00
0.00 HYD Jtjt~P
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1.... COUN'I'Y PlJ3LI C WORKS STORM DRAIN ANALYSIS '
PROJECT: LA COSTA GREENS -NEIGHBORHOOD 1.16 -NORTH "3.~-SIN
DESIGNER: DJG
LINE Q D Ii DN DC FLOli SF-FULL V 1 V 2
(PT) TYPE (FT/FT) (FPS) (PPS) NO (CPS) (IN) (IN) (FT)
9
~o
9
45
11
50
13
60
13
65
15
70
71
72
73
74
HYDRAULIC GRADE LINE CONTROL 107,01
7.2' 18 o 0.72 1.04 ,FULL 0.00470
HYDRAULIC GRADE LINE CONTROL 107.01
8.3 18 o 0.55 1.12 FULL 0.00624
hJr.DRAULIC Ga».DE LINE CONTROL
2.3 18 a 0.37
x = 0.00 X(N)
0.57 PA."T
36.66
HYDRAULIC Ga".DE LINE CONTROL
110.62
O.OOO~S
121.S7
4.1
4.7 4.7
6.7 3.7
3.S 8 0 0.67 0.66 SR».L 0.05851 10.9 10.9
X,= 0.09 X(N) 0.00
HYDa .. ULIC GRADE LINE CONTROL 121. 87
2.1 S a 0.39 0.63 PA."T 0.01787 7.0 6.1
HYDa .. ULIC GRADE LINE CONTROL 127.15
5.7 12 o 0.51 0.9~ PA."T 0.01514 13.5 10.8
5.7 12 0 0.71 0.9~ PA."T 0.01514 9.5 ll.1
X = 0.00 X(N) 107.69
5.7 12 0 0.69 0.9~ PART 0.0151~ 9.9 15.2
5.7
'1.1
X =
12 0
S 0
11.15
0,48
0.20
X(N)
0.94 PART
0.50 SEAL
42.S0
0.01514 14.4
0.00490 ,3.2
X(J) = 11.15
7.'1,
5.9
F(J)
FL 1
(FT)
FL 2
(FT)
HG 1
c.».LC
HG 2
CALC
103.42 104.05 107.01 107.16
102.92 103.1S 107.01 107.05
110.26 111.S8 110.63
122.17 122.64 122.S3 124.19
122.17 122.31 122.70 122.94
126.74 130.53 127.27 131.17
130.87 135'.26 131.58 135.S8
135.60 140.39 136.29 140.87
14,0.72
146.33
0.44
146.00
173.40
D(EJ)
141.22 146.94
149.10 173.75
0.20 D(AJ)
D 1
(PT)
3.59
4.09
0.37
0.66
0.53
0.53
0.71
0.69
0.50
2.77
1.29
D 2
(PT) CALC
3.11 107.47
3.87 107.'1,6
0.57 112.71
1.55 126.40
0.63 123.64
0.64 0.00
0.62 0.00
0.48 0.00
0.94 0.00
0.35 0.-00
REPT: PC/RD4412.2
DATE: 09/08/06
PAGE 2
TN
CK REl'1. ... '-KS
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 HYD J1.iMP
I
I LA COUNTY PUBLIC WORKS
I PROJECT: L.'I. COSTA GREENS -l>lEIGHBOR.."iOOD 1.16
DESIGt."ER: DJG
LINE Q D 11 DN DC FLOW SF-FULL
NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) I
75 1.1 8 0 0.22 0.50 PART 0.00490
X = 0.00 X{N) 17.53
76 1.1 8 0 0.41 0.50 PART 0.004.90 I
X = 0.00 X(N) 46.05
77 1.1 8 0 0.30 0.50 PA!l.T 0_00490
X -0.00 X(N) 31.63
I 74 h'YDRAULIC GRADE LINE CONTROL 148.02
80 3.8 12 0 0.45 0.83 SE-~ 0.00673
X = 12.21 X(N) 0.00 X(J) = I
81 1.0 12 0 0.14 0.42 Pl'.RT o.ooon
I X = 0.00 X(N) = 3.91
I 74 HYDRAULIC GRADE LINE CONTROL 148.02
85 1.0 8 a 0.26 0.47 FU~L 0.00405
I
I 21 h'YDRAUl.IC GRADE LINE CONTROL 181. 73
90 2.5 8 o 0.67 0.65 Fu~ 0.02533
I
I
I
I
I·
I
I
STORM DRAIN AR~YSIS
-NORYrl BASIN
V 1 V 2 FL1 FL 2 HG 1 HG 2
(FPS) (FPS) (FT) (FT) c.~C CALC
11.3 5.8 173.74. 178.72 173.96 179.07
4..9 3.9 179.04. 179.67 179.4.5 180.17
7.1 3.9 180.01 182.15 180.31 182.65
4.8 12.9 146.00 146.52 148.02 246.95
12.21 F(J) 1.46 D(BJ) 0.43 D{AJ)
14.2 3.2 151.71 156.67 151.85 157.09
2.9 2.9 146.33 146.86 148.02 148.08
7.2 7.2 174.70 174.84 181.73 182.11
D 1 D 2 TIl
(IT) (FT) c.l\.LC
0.22 0.35 0-.00
0.41 0.50 0.00
0.30 0.50 182.94
2.02 0.43 0.00
1.62
O.H 0.42 157.28
1.69 1.22 148.24
7.03 7.27 183.07
REPT: PC/RD4412.2
DATE: 09/08/06
PAGE 3
Ti~
CK RE~IARKS
0.00
0.00
0.00 HJ @ DJT
0.00 HID JUMP
0.00
0.00
0.00
I
I
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPS~~~ ~~
X -DISTA.,.CE IN FEET FROM DOWNSTREAM ~"D TO roI~"T W".r'.ERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X (N) -DISTANCE IN FEET FROM DOWNSTREAM E~"D TO POI~"T VlHERE ;IATER SlJ1l.FACE REACHES NOR."I.lU. DEPTH BY EITHER DR. ... VlDOWN OR a. ... CKWATER
X (J) -DISTk"VCE IN FEET FROM DOI'lNSTREl'.M ~"D TO POI~"T N'riERE HYDR.l\.ULIC JUMP OCCURS IN LINE
F (J) -THE COMPUTED ?ORCE AT TF..E HYDRAULIC J1J!1P
D (BJ) -DEPTH OF 11ATER BEFORE TF..E HYDR.l\.ULIC JU11P (UPSTREk'l SIDE)
D(AJ) -DEPTH OF W.l\.TER AFTER THE HYDR.l\.ULIC JUMP (DOl'<"NS~~~ SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FRON FtJJ..oL TO PART
HYD JUl-IP I~~!C."'TES TH .... T FLOW CH.lI.NGES FRON SUPERCRIT!Cl'L TO SlJ"BCRITIC.lU. THROUGH A HYDR. ... UL!C JUMP
HJ @ UJT INDICATES TH. ... T HYDRAULIC JU"MP OCctJRS AT TtlE JUNCTION AT THE UPSTREAM END OF THE LINE
HJ @ DJT Il-I~IC."'TES TH. ... T HYDR!\ULIC JU"MP OCClJ1l.S AT THE JU"NCTION .l\.T THE DOWNSTRE.l'.l'l ~~ OF THE LINE
EOJ 9/ 8/2006 12:24
I
I
I
I,
I .
I
I
I
I
I
I
I
I
I
I,
I. '
I'
I
I ,',
Drainage Study
La Costa Greens -Neighborhood 1.16
.. ' , ,
·CHAPTER'4
HYDRAULIC ANALYSIS
4.2 -South O'utfaU Storm Drain System .
"
, ' ,
AH dlg H:IREPORTS\0490171\A~doe
w.o. Q.49()..11 9/812006 1:42 PM
LEGEND
PIPE 10 NODE (JQ)
PROPOSED STORM DRAIN =tQJ= ==
EXISTING STORM DRAIN ==t§JI:=
PREPARED BY:
HUNSAKER
& ASSOCIATES
SAN DIECO, INC
PlANNING 10179 Huemekeru Street
ENGINEERING San Diego, Ca 92121
SURVEYING PH(858)5S84500-fl((858)558-1414
STORM DRAIN LEGEND -SOUTH OUTFALL -I SHEET
LA COSTA GREENS
NEIGHBORHOOD 1.16
CITY OF CARLSBAD, CALIFORNIA
2
R: \0374\ldiyd\03741!i16-STOOII LEGEN:>.DWG[ ]Jun-2D-200B: 14: 3D
I
LA COUNTY PUBLIC WORKS
I
STORM DRAIN ANALYSIS
(INPUT)
PROJECT: LA COSTA GREENS -NEIGHBORHOOD 1.16 -SOUTH BASIN
IES~GNER: AH
KE KM CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ
1 113.90
5 2.1 2.1 55.53 113.50 115.21 0.00 18. o. 3 0.50 0.00 0.05
6 2.1 2.1 96.33 115.71 116.39 0.00 12. o. 1 0.50 0.20 0.05
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LC L1 L3
1 6 o
a o o
REPT: PC/RD~412.1
DATE: 06/20/08
PAGE 1
L4 Al A3 A4 J N
o 90. o. O. 4. 00 a . 013
o o. O. O. 4.00 0.010
I
LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS
I
PROJECT: LA COSTA GREENS -NEIGHBORHOOD 1.16 -SOUTH BASIN
IESIGNER: AH
LINE Q D W DN DC FLOW SF-FULL V 1 V 2
INO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS)
1 HYDRAULIC GRADE LINE CONTROL 113.90
I 5 2.1 18 0 0.34 0.55 PART 0.00040 5.5 3.7
X = 0.00 X(N) 30.34
6 2.1 12 0 0.52 0.62 PART 0.00206 5.1 4.1
I X = 0.00 X(N) 74.78
I
I
I
I
I
I
I
I
I
I
I
I
I
FL 1 FL 2 HG 1
(FT) (FT) CALC
113.50 115.21 113.90
115.71 116.39 116.23
HG 2 D 1 D 2
CALC (FT) (FT)
115.75 0.40 0.54
117.01 0.52 0.62
TW
CALC
0.00
117.32
REPT: PC/RD4412.2
DATE: 06/20/08
PAGE 1
TW
CK REMARKS
0.00
0.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH ~y EITHER DRAWDOWN OR BACKWATER
X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUB CRITICAL THROUGH A HYDRAULIC JUMP
HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
EOJ 6/20/2008 13:24
,I,
I
I
I
I'
I'
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I·
I
I
I .
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1 .16
·CHAPTER5
INLET & CATCH BASIN SIZING
5.1 -Inlet Sizing & Calculations
AH djg H:IREPORTs\049ffi71\A02.doc
w.o. 049Q..71 9fBl2OO6 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CURB INLET SIZING
LA COSTA GREENS -NEIGHBORHOOD 1.16
Type Inlet Street Surface Gutter Flow Required
of at SIope1 Flo~ Depression Depth3 Length of
Inlet Node S (%) Q (cfs) ~ (ft) Y (ft) Opening4 (ft)
On-Grade 337 9.35%
On-Grade 340 9.35%
On-Grade 346 8.45%
On-Grade 349 8.45%
1 From street profiles in Improvement Plans
2 From AES oiJput
2.9
1.0
3.8
2.1
3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3
0.33 0.25
0.33 0.19
0.33 0.27
0.33 0.23
The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y.
Typical cross-section of a Type G gutter is used for the analysis.
4 Per City of Carlsbad Standards From Equation: Q = O.7L(a+yl3/2
5 Length shown on plans (Required Length of Opening + 1 foot)
9.3
3,6
11.6
7.2
Type Inlet Street Surface Gutter Flow Required
of at Slope 1 Flow 2 Depression Depth Len~th of
Inlet Node S (%) Q (cfs) a (ft) y (ft) . Opening 3 (ft)
Sump 305 N\A
Sump 312 N\A
Sump 321 N\A
Sump 112* N\A
Sump** 117*/15/\ N/A
Sump 409 N\A
1 From street profiles in Improvement Plans
2 From AES Model ouput
2.1
2.5
7.0
. 2.3
8.4
2.1
3 Per City of Carlsbad Standards From Ratio: Q 1 L = 2
N\A
N\A
N\A
N\A
N\A
N\A
4 Length shown on plans (Required Length of Opening + 1 foot)
**Note:
N\A
N\A
N\A
N\A
N\A
N\A
The inlet located at Node 117*/156/\ is an existing inlet per Dwg. No. 429-2. The minimum
opening length it requires in order to handle the 1 OO-year peak flow of 8.4-cfs is 6-ft;
however, per Dwg. No. 429-2, the existing inlet has an opening of 7 -ft. Thus,"it can
handle the runoff flowing into it.
1.1
1.3
3.5
1.1
4.2
1.1
Use
length 5
(ft)
11
5
13
9
Use
Length 4
(ft)
5
5
5
5
6
5
6/19/2008 1 of 1 H:\EXCEL\0490\71\INLETS-CARLSBAD.xls
I
I
I
'I
I
I
I
I
I
I
I
I
I
I
I
I"
I
I
I
Drainage'Study " "
La Costa Greens -Neighborhood 1 .16
CHAPTER 5
INLET & CATCH BASIN SIZING
. ,
5.2 -Catch Basin Type "F" Sizing &
Calculations '
• AH djg ,H:IREPORTs\049!l171\A02.dOC
w.o, ~91).71 9/~00? 1:42 PM
I·
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
7119/2006
I
MODIFIED CATCH BASIN TYPE "F"
"LA COSTA GREENS -NEIGHBORHOOD 1.16"
MAXIMUM CAPACITY CALCULATION
Dimensions obtained from City of San Diego Standard D'rawings (Drawing 0-7):
H = 0.00 I /. w =
(ft) -r---+----------I--r-
1.00 (ft)
x = 13.5
(in)
I 4.5
1------------1 (in) . '~r <.~ "~:: ~~~' ~: ~. "~::;:::' {:/. ;~~:(i.:;: .. ~:::.
4.9
(in)
----------------.---:. --------_____ 1_ (in)
W= 1.00 (ft) Input width of opening
X= 13.5 (in) Input depth from top of box to flowline
X-6"= 7.5 (in) Height of rectangular opening
LAy = 0.28 (ft3) Sum of each area times each centroid
LA= 0.69 (ft2) Sum of areas
Y=LA\j!I:A= 0.41 (ft) Height of effective centroid
= 4.9 (in)
h= 0.72 (ft) Computed head to top of box (X -y)
H= 0.00 (ft) Additional pan ding height allowable
H+h = 0.72 (ft) Total height above centroid
Qmax = 0.6A"'(2gh)
Qrnax = 2.81 cfs per opening*
* Assumes no clogging of opening.
1of2 H:\~CEL\0490\71\TYpe; F CB.xls
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
711912006
MODIFIED CATCH BASIN TYPE "F"
"LA COSTA GREENS -NEIGHBORHOOD 1.16"
MAXIMUM CAPACITY CALCULATION
NODE 303
2 Openings: North Opening, 0 100 = 1.00 cfs
South Opening, 0 100 = 0.40 cfs
NODE 328
2 Openings: North Opening, 0 100 = 0.53 cfs
South Opening, 0 100 = 0.56 cfs
NODE 317
2 Openings: North Opening, 0 100 = 2.29 cfs
South Opening, 0 100 = 0.96 cfs
2of2 H:\EXCEL\0490\71\TYPE F CB.xls
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I
Manhole frame and cover.
See drawing M-2' ~ r Elev. shown on plans . S
r-:-:':'+-n~i;;=~.,....,.-::-:-:; -b.~~~~o:-:-""""':"'-.;::, .q.
#406" both ways
.0.:.::.4·:'; r,1t' unless shawn -{ ;.... . .': ",;:,: ::< JT . •• • ... .. ~---.--:;...::i:p ~. othe!'WlSe on plans . ------===;,;;;:::..j --.--I -. si
4-14 around pipe
>
Slope floor t 2: 1 towards outlet -:r;...;.~~ ___ -=-;;;;:."".;i
SECTION A-A SECTION 8-8
NOTE
4-#4 . around pIpe
A
L
Modd) i1> .i-+t
4-I "
1. See Standard Drawing 0-11 for additional notes and details.
.l
A • --.1 .!Q. -
It) I ;..,
2. When V exceeds 4' ~eps shall be installed. See Stondard Drawing D-11 for details.
3, Exposed edges of concrete sholf be rounded with a radius of 1/2.-,
4. Construct openings on beth sides unl~ otherwise shown on plans.
5. Maintain 1 1/2' clear spacing between reinforcing and surface.
. -
Revision By Approv~ Date
ORIGINAL KercheVal 12 5
SAN DIEGO REGIONAL STANDARD DRAWING
CATCH BASIN -TYPE F
LEGEND ON PLANS
=::@]::: = .
RECOMIlENOEO BY lHE SAN OI£GO REGIONAl STANOAAOS COIDoIITTE£
~3/z!!o Cncitj;R£i19246 ~
DRAWING NUMBER D-7
I· ! •• '
1--, "Drainage .Study:
La Costa Greens -Neighborhood 1.1 ~
I
I.
I'
I,
. '
I
I' ' CHAPTER 5' .
I INLET & CATCH BASIN SIZING
I . '
5.3 -Catch Basin Type' ",G" Sizi~g&
Calculations .
I
I
I
I·
I
I· '
I , '
I -: ,',
I
. " Po,H djg H;1REPORTS\0.\9O\71IA.02,dDC
. w,o, 0.\90-71 !lIB/200s 1;42 P&I "
I
I
I·
I· ..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
CATCH BASIN TYPE "G"
LA COSTA GREENS -NEIGHBORHOOD 1.16
KNOWN:
Catch Basin Location: NODE 316
Design Flow, 0100 = 0.57 cfs
Per SDRSD 0-18, "Catch Basin Type G", the single basin dimensions are:
Length,L= 1'-11"= 1.92 ft
Width, W = 3' -0" = 3.00 ft
WEIR EQUATION: ORIFICE EQUATION:
o = CA(2gH) 1/2
where: . C = Weir Coefficient where: C = Orifice Coefficient
= 3.0 when H = 0.5 feet = 0.60
= 3.3 when H >= 1.0 feet
L = Length of the Weir (feet)
A = Cross Sectional Area of Orific'e (ft2)
g = Gravitational Constant (32.2ft1s2)
H = Water Height over Weir (feet) H = Water Height over Centroid of Orifice (ft)
Calculations for Catch Basin Type "G" -Single "G-1" per SDRSD 0-8:
Water Riser Riser Weir Weir Orifice Orifice Weir Orifice
Height Box Box Coeff. Length Coeff. Area* Flow Flow
Length Width
(feet) (feet) (feet) (feet) (fe) (cfs) (cfs)
l:·:~/o~·iU~:· : ..... : ~,1.'~?\,t· .:)j}/,$;·6q-~:~··':·: .;~;~~:,~6~{·:_:~ ~'~;§;~1\~;~': ;;~~rQ:§·;~;i;. ;~~~::4;~~~·;,1. ,·:!~.:?~::Qi.~~( : .;:::\~t1-~?_~;" i .
0.2 1.92 3.00 2.80 9.84 0.6 2.88 2.46 6.20
0.4 1.92 3.00 2.92 9.84 0.6 2.88 7.27 8.77
0.6 1.92 3.00 3.08 9.84 0.6 2.88 14.09 1-0.74
0.8 1.92 3.00 3.30 9.84 0.6 2.88 23.24 12.40
1.0 1.92 3.00 3.32 9.84 0.6 2.88 32.67 13.87
1.2 1.92 3.00 3.32 9.84 0.6 2.88 ·42.~4 15.19
1.4 1.92 3.00 3.32 9.84 0.6 2.88 54.12. 16.41
1.6 1.92 3.00 3.32 9.84 0.6 2.88 '66.12 . 17.54
1.8 1.92 3.00 3.32 9.84 0.6 2.88 78.89 18.60·
2.0 1.92 3.00 3.32 9.84 0.6' 2.88 92.40 19.61
2.2 1.92 3.00 3.32 9.84 0.6 2.88 106.60 20.57
2.4 1.92 3.00 3.32 9.84 0.6 2.88 121.46 21.48
*NOTE: Assumes 50% clogging.
9/11/2006 30f3 H:\EXCEL\0490\71\TYPE G CB.xls
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
,A
-j 6-1-[ _--.:;...3'_-O_-_-i( 6" r-
-)C o E en
"0 .~ ~~
>
Slope floor 12: 1 towards outlel ELEVATION both wcYs
I J
NOTES
L See Standard Drawing 0-11 for additional notes
and details.
2. When V exceeds 4', steps shan be installed. See
Standard Drawing 0-11 for detoils.
3. Maintain 1 t/2-clear spacing between reinforcing
aod surface.
4. lncreose in allowable depth subject to approvel
by ~enq.
5. Section A-A shows 3 sizes cnd shall not imply
that an interior wall is to be built for th~
structures W11h double or triple frame and grate.
S. Exposed edges of concrete :shaH be rounded with
radius of 1/2".
7. ~ignate types as foUaws: Single G-1, Double G-2
and Triple G-3.
8. Only end bearing grates sholl be used. See Std.
Drawing 0-15. .
___ ------For frame and grate details, see.
c1wgs. 0-1:3, 0-15.
: I I : 14 @ , 2-~th ~ays --.:.---1-'" J I I
I:!:=::!J I 1 14 @ 121 botp ways
I I
I:!:=::!J : :
I I I I I I
I:!:=::!J : :
I I I I 12:1 -_ --L _______ , _______
I t ._ .• :.~:.;. ••. ~:_
2'-11" single
5' -0· double
7'-0· tri Ie
SECTION A-A
RECOMIoIENOEO BY. iH£ SAN OIEGO
REGIONAl. STANOAROS CCWI1na: SAN DIEGO. REGIONAL STANDARD DRAWING Jf!f!fL~
DRAWING
NUMBER D-8
CATCH BASIN· -TYPE G
RoUnded pipe ends See drewIOg 0-61
E/ev shown on plans
LEGEND ON PLANS
RevisiQn By Approved Dote
OR!GlNAI. Kercheval t 2 5
r
I ..
I·
I
·1
I.
1.:-
I.
I
I
I' .
I
I
I
..
·1
I·
I'
.,
I· .
I.
I'
'. :",
.. . ' .
Drainage Study :
La Costa Greens -Neighbdrhood 1.16 .
. . ': "
..
.. .' .
"CHAPTER 5 ..
INLET & CATCH BASIN SIZING .
, .
5.4 -Brooks Catch Basin Sizing & C~lcu.~ations
':., .
'. .
~ dig H:\RePORTS\o.:~71\A02.dOC
w.o.0-\90-71 91B12006 1:42 PM
" " . . -
.,
.:' ,
. .
. .
. . "
I-
I
I
I
I
I
I
I
I-
I
I
I
-I
I
I
I
I-
I
1--
BROOKS CATCH BASIN
LA COSTA GREENS -NEIGHBORHOOD 1.16 ,
KNOWN:
Catch Basin Location: NODE 314
Design Flow, Q100 = 0.99 cfs
-~er Brooks Products manufacturer information, the 1212 Series Catch Basin
dimensions are:
WEIR EQUATION:
Length, L =
Width, W =
1.0 ft (12-in)
1.0 ft (12-in)
ORIFICE EQUATION:
-Q = CLH3/2 Q = CA(2gH)1/2
where: C = We.ir Coefficient where:
= 3".0 when H = 0.5 feet
= 3.3 when H >= 1.0 feet
L = Length of the Weir (feet)
H = Water Height over Weir (feet)
Calculations for Brooks Catch Basin 12-in x 12-in:
Water Riser Riser Weir Weir
Height Box Box-Coeff. Length
Length Width
(fee~) (feet) (feet) (feet)
0.1 1.00 1.00 2.66 -4.0
~~Ld?;~rC ::-'~~::r:OO-:-"'-.';..-~.,----..:: .... ~\~~(KQ,Qjc ::-:.?~~Q-:: _.;::,' 4:~Q~~iL
0.4 1.00 1.00 2.92 4.0
0.6 1.00 1.00 3.08 4.0
0.8 1.00 1.00 3.30 4.0
1.0 1.00 1.00 3.32 4.0
1.2 1.00 1.00 3.32 4.0
1.4 1.00 1.00 3.32 4.0
1.6. 1.00 1.00 3.32 4.0
1.8 1.00 1.00 3.32 4.0
2.0 1.00 1.00 3.32 4.0
2.2 1.00 1.00 3.32 4.0
2.4 1.00 1.00 3.32 4.0 .
*NOTE: Assumes 50% clogging.
C = Orifice Coefficient
=0.60
"A = Cross Sectional Area of Orifice (If)
g = Gravitational Constant (32.2 ftIs2) -
H = Water Height ov.er Centroid of Orifice (ft)
Orifice Orifice Weir -Orifice
Coeff. Area* Flow Flow
(fe) (cfs) (cfs)
. --
-0.6 0.50 0.34 0.76
-,-fEQ~~~~Z i;i:;--q~~9'<: i{.;-f·~g;~~b : __ :~-f': fQ~'-
0.6 0.50 2.95 1.52
0.6 0.50 5.73 1.86
0.6 0.50 9.45 2.15
0.6 0.50 13.28 2.41
0.6 0.50 17.46. 2.64
0.6 0.50 22.00 2.85
0.6 0.50 26.88 3.05
0.6 0.50 32.07 3.23
0.6 0.50 37.56-3.40
0.6 0.50 43.33 --3.57
0.6 0.50 .-49.38 .3:73_ .
.-
7/19/2006 1 of 3 H:\EXCFL\0490\7.1 \BROOKS BOX.xls
I
I
I
I,
I
I
I'
I
I'
I
I
I
I,
I
I
'I
I
'I
I
1212 CAST IRON GRATE' 1212 TOP SECTION (WITH GALVANIZED FRAME)
PARKWAY ONLY 281bs.
1212 STEEL GRATES
PARKWAY 161bs.
TRAFFIC 181bs.
--->~ 1212 LOWER SECTION (NO FRAME)
1212 STEEL COVER
PAR't0NAY
TRAFFIC
NOTES:
221bs.
251bs.
11f2"
1. GRATES AND COVERS AVAILABLE PAINTED BLACK OR GALVANIZED
2. "ADA" GRATES AVAILABLE IN PARKWAY & TRAFFIC
3. "HEEL PROOF" GRATES AVAILABLE IN PARKWAY & TRAFFIC
4. A TOP SECTION WITH FRAME MUST BE USED IF BOLT DOWN REQUIRED
TOP I I I SECTION HT. LBS KNOCK-OUT
1212TS S" 170 NONE
1212 T12 12" 275 (4),5" x 10"
1212 T18 18" 270 (4) 8" x 12"
1212 T24 24" 430 (4) 8" x is''
1212 T28 28" 380 (4) 8" X 22"
LOWER I I I SECTION HT. LBS KNOCK-OUT
1212 L12 12" 275 (4) 5" x 10"
1212 LiS 18" 270 (4) 8" x 12"
1212 L24 24" 430 (4) 8" x is''
1212 L28 28" 380 (4) 8" x 22"
NOTE: USE 12",18",24",28" LOWERS TO
INCREASE DEPTH UP 1:0 AMAXIMUMOF 72"
\.151:. WITHOIAT
I
. KNOcKClI ... rrs.
SEE
GHART
22" '.. :, 22" ........ .. I ' y~~
1212 BASE
WT.1651bs
12" x 12"
CATCH BASIN
ORG.DWQ.DA'TS REV. DWo. DATE
04·20-95 05-18-00
1212 CB
7
o
1
I ..
I .'.
·1'· ..
I·
'1.
I.
'1·
I·
I
I· .
.' .
I.
I
I
I
I'
.1
I'.
I
I.·.· .
. Drainage Study
.' La Costa Greens...: Neighborhood 1.16 . .
.. ".
CHAPTER'5
INLET & CATCH BASIN SIZI·NG
.' .
5.5 -Cur~ O.utlet Siz.ing & Calculations'
AH dill H:\REPORT~~~711AIJl.dDC '.
w.o. ~9I).71 91B12D06 1:42 P~I .'
I
I
I
'I'
I
I
I
I
I
I
I
I
I
I
I·
I
I
Cross Section for Curb Outlet per SDRSD D-25
Friction Meth,od ' Manning Formula
Solve For Normal Depth
Roughness Coefficient
Channel Slope
Normal Depth
Bottom Width
Discharge' ,
C NO .DE., 3 ~ ~ :
'Q\Oo =-\.~' 0 c.fs
o NOpE.. 3> S-={-:
QLOO =-1. ot cfs
17
3,0 fi
10K
lot<.
0.013
1.00 %
3.0 in
3.0 ft
3.00 cfs
T
3.0m ~
Y: 1 ~
ii: 1
Bentley Systems, Inc. Haestad Methods Solution Center Bentley FiowMaster [08.01.066.001
7119120067:27:57 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1,'·
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Friction Method
Solve For
Roughness Coefficient
Channel Slope
Bottom Width
Discharge
Norm~1 Depth
Flow Area
Wetted Perimeter
Top Width
• Critical Depth
Critical Slope
Vel~city
Velocity Head
Specific Energy
F~oude Number
Flow Type
Downstream Depth
Length
. Number Of Steps
Upstream Depth
Profile Description
Profile Headloss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
Critical Slope
7/19/2006 7:27:40 PM
Curb Outlet per SDRSD D·25
Manning Formula
Normal Depth
Supercritical
0.013
1.00 %
3.0 ft
3.00 cfs
3.0 in
0.74 ft·
3.49 ft
3.00 ft
0.31 ft
. 0.00467 ftlft
4.06 fils
0.26 ft
0.50 ft
1.44
0.0 in
0.00 ft
o
0.0 in
0.00 ft
Infinity fils
Infinity ftls
3.0 in
0.31 ft
0.01000 filit
0.00467 filft
Bentley Systems, Inc. Haestad Methods Solutlon Center Bentley'FlowMaster [08.01.066.00]
27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 .. Page 1 of 1
-I
I
I
I
--I-
I
I
I
I
I
I
I-
I-
I
,I
I'
I
I
#4 @ 3-C.C. ~ t r---------~~--------------~--------~++--, L -c' 1 I A
-LMonOlithiC -.J I Gutler-,
I
I 1
~--r-----~----------------~---------r++--~ 14 x 3'-~~""-_-I I-....... "--'--Curb Une ~_~ ________ D_~_~ __ 'oo __ s_~_o_w_n_o_n~,p_lo_ns ________ JJI
PLAN TI
14 @ Y C.C.
Llanhale frame and cover, see drawing M-2 -
-4-min. See A_ hOt iI
EleV. shown
on plans
#4 @ 3-C.C. total 4 _ nue or e 01
Y X :r -Construction Joint
SECTION 8-8
NOTES
,. Concrete sholl be 560-C-32S0
2. D=inside diameter of pipe or depth of channel.
3. Section to be sloped laterally with top conforming to the-
grades of the existing sidewalk and curb.
4. Manhole frame and cover may be deleted with open channel.
5. Trowel finish top surface and -reproduce markings of existing
sidewalk and curb.
$. Trowel finish floor of ouHel
-: S
~ . -1'11·)-
F' or c01struction through
existing curb-Existing Gutter
For all new c:onstruction--.
Monolithic Gutter.
F~~·~·
'5~~~
~ ";3,
-\
10· ~
2 1/2· x 2-x 1/4-0 'i. 4'-0· 0 __
Galvanized Steel Angle
ANCHOR DErAIL
LEGEND ON PLANS
---~ ---~
Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING
RECOMMENDED BY 1'HE SAN DIEGO,
REGIONAl. STANDARDS CQiU,lI11EE:
_~Sf4, ORIGINAL Kercheval
CURB OUTLET -TYPE A Ch;;;;:;;:R:c:E:'46 Date
DRA'MNG
NUMBER 0·25
I
I :
I
I
I',
I
I
I
I
I
I
I
I
,I
I
I
I
I
I
VI
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I'
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
,-" ...
. .. . . . .. ..' .... " "
CHAPTER 6
DRAINAGE DITCH SIZING· ". '.. .'
< '.:,' ., ." ••
AH dig H:\REPORTS\tl49O\71\A02.do~ .
w.o.04.110·71 !lJSI2006'l:42 PM
, I
. I
I
I
I
I
I
I
I
I
I
I·
.1
I·
I
I
I
I
I
I
1
".' .
7/19/2006
DRAINAGE DITCH SIZING
LA COSTA GREEN -NEIGHBORHOOD 1.16
Drainage Ditch . Conveyed Drainage Draiange
10 Node1 Flow2 (cfs) Ditch Width3 (tt)· Ditch Type3
A 1.00 2.0 Modified 8*
B 0.40 1.5 . Modified D" .
C 2.29 1.5 Modified D+
D 0.5q 2.0 Modified B*
E 0.53 2.0 Modified B* .
F 1.04 2.0 Modified B*
G .0.96 1.5 ModifiedD"
Maximum Capacities for Drainage Ditches
Drainage Drainage Drainage Ditch
Ditch Type3 Ditch Width3 (ft) Min. Slope (%)
Modified B* 2.0 1.00
Modified D" 1.5 1.00
Modified D+ 1.5 1.00
NOTES:
1 Refer to Developed Condition Hydrology Map· (Chapter 8)
2 Flows from AES model output (Chapter 3)
3 Refer to Grading Plans for Modified Type "D" Terrace Ditch Detail
3 Refer to Grading Plans for Modified Type "B" Brow Ditch Detail
Maximum
Flow4 (cfs)
2.73
2.22
2.30
4 Based on a drainage ditch minimum slope, s = 1.00%, and Manning's n = 0.015
4 Refer to attached FlowMaster outputs for calculations (Chapter 6)
., Ditches have 0.5-ft (6-in) of freeboard
" Ditches have O.25-ft (3-in) of freeboard
+ Ditches have 0.24-ft (2.9-in) of freeboard
1 of 1 H:\EXCEL\0490\71\DITCI'I.xls
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Modified Type B Brow Ditch per D-75, f=O.50-ft
Friction Method
Solve For
Roughness Coefficient
Channel Slope
Diameter
Discharge
Non:nal Depth
Flow Area
Wetted Perimeter
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energy
Froude Number
Maximum Discharge
Discharge Full
Slope Full
Flow Type
Downstream Depth
Length
Number Of Steps
Upstream Depth
Profile Description
Profile Headloss
Average End Depth Over Rise
Normal Depth Over Rise
Downstream Velocity
Upstream Velocity
Manning Formula
Normal Depth
SuperCritical
0.015
1.00 %
2.0 ft
2.73 cfs
0.50 ft
0.62 ft·
~.10 ft
1.74 ft
0.58 ft
25.2 %
0.00593 ftlft
4.39 ftls
0.30 ft
0.80 ft
1.29
21.09 ff/s
19.61 ff/s
0.00019 ftlfl
0.00 ft
0.00 ft
o
0.00 ft
0.00 ft
0.00 %
25.21 %
Infinity ftls
Infinily ftls
Bentley Systems, Inc. Haestad Methods Solution Center Bentley FJowMaster [08.01.066.00]
7/18/20061:56:36 PM 27 Siemons Company [jrive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
I
I
I Modified Type B Brow Ditch per D-7S, f=O.50-ft
I Nonnal Depth 0.50 ft
Critical Depth 0.58 ft
Channel Slope 1.00 %
I Critical Slope 0.00593 ftlft .
I
I
I
I
I
I
I
I
I
I
I
I
Bentley Systems, Inc. Haestad Methods Solutlon Center Bentley FlowMaster [08.01.066.001
I 7/18/20061:56:36 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Modified Type D Terrace Ditch per D·75, f=O.25·ft
Friction Method
Solve For
Roughness Coefficient
Channel Slope
Diameter
Discharge
. Normal Depth
Flow Area
Wetted Perimeter
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Spe.cific Energy
Froude Number
Maximum Discharge
Discharge Full
Slope Full
Flow Type
Downstream Depth
Length
Number Of Steps
Upstream Depth
Profile Description
Profile Headloss
Average End Depth Over Rise
Normal Depth Over Rise
Downstream Velocity
Upstream Velocity
Manning Formula
Normal Depth
SuperCritical
0.015
1.00 %
1.5 ft
2.22 cfs
0.50 ft
0.52 ft·
1.86 ft
1.42 ft
0.56 ft
33.6 %
0.00662 ftllt
4.25 ftls
0.28 ft
0.79 ft
1.24
9.79 ft"/s·
9.10 ft"/s
0.00059 ftllt
0.00 ft
0.00 ft
o
0.00 ft
0.00 ft
0.00 %
33.64 %
Infinity ftls
Infinity ftlli!
Bentley Systems,lnc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00]
7/18/20061:41:43 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1·203·755·1666 . Page 1 of 2
I
I
Modified Type D Terrace Ditch per D-75, f=O.25-ft
I
Normal Depth 0.50 ft
I Critical Depth 0.56 ft
Channel Slope 1.00 %
Critical Slope 0.00662 ftlft
I
I
I
I
I
I
I
I
I
I
I
I
I Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00]
7/18120061:41:43 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755·1666 Page 2> of 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Modified Type D Terrace Ditch per D-75, f=O.24-ft -
Friction Method
Solve For
Roughness Coefficient
Channel Slope
Diameter
Discharge
Normal Depth
Flow Area
Wetted Perimeter
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energy
Froude Number
Maximum Discharge
Discharge Full
Slope Full
Flow Type
Downstream Depth
Length
Number Of Steps
Upstream Depth
Profile Description
Profile Headloss
Average End Depth Over Rise
Normal Depth Over Rise
Downstream Velocity
Upstream Velocity
Manning Formula
Normal Depth
SuperCritical
0.015
1.00 %
1.5 ft
2.30 cfs
0.51 ft
0.54 ft·
1.88 ft
1.42 ft
0.57 ft
34.3 %
0.00664 ftIft
4.29 ftIs
0.29 ft
0.80 ft
1.23
9.79 ff'/s
9.10 ft"/s
0.00064 ftIft
0.00 ft
0.00 ft
o
0.00 ft
0.00 ft
0.00 %
34.27 %
Infinity ftIs
Infinity ftI~
Bentley Systems,lnc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001
7/18/20061:42:50 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1-of 2
I
Modified Type D Terrace Ditch per D-75, f=O.24-ft
I
Normal Depth 0.51 ft
I Critical Depth 0.57 ft
Channel· Slope 1.00 %
Critical Slope 0.00664 ftlft
I
I
I
I
I
I
I
I
I
I
I
I
I Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster {OS.D1.0t!6.00]
7/18/2006 1 :42:50 PM 27 Siemons Company Drive Suite 2DO W Watertown, CT 06795 USA +1·203·755·1666 .. Page 2 of 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
Friction Method
Solve For
Roughness Coefficient
Channel Slope
Normal Depth
Diameter
Discharge
Typical Cross Section for Drain'age Ditch
Manning Formula
Normal Depth
0.015
1.00
'(1'\
W
Q.
%
1-----W -----j
711812006 1:55:09 PM
V:1 ~
H: 1
Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowM~ster [08.01.066.00]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1·203·755·1666 Page 1 of ' 1
I
-I
I
I
I-
I
I
I
I
I
I
I
I VII
I
I
I
I
I
I
I
I
I',
I'
I' .
I
I
I
I
I
I
I
I
I
I
I'
I ,
I
Drainage Study ,
La Costa Greens -Neighborhood 1.16
CHAPTER 7
APPENDICES
Appendix 7.1
100-Year, 24-Hour Isopluvial Plan
AH djg H:1REPORTS\()I9O\7M02.doc
w.o, ()I9().71 91812006 1:42 PM
--._, • I -1--" _. - ------_. ----,
County of San Diego
Hydrology Manual
Ra;I?j'alllsopluvials
too Yen .. Rnillfnll Event -24 1I0u1"8
Iso"Uovlal (InChOS~
1100)2.4 ~ 5.0 j I'\c.h..t.$
I,Yml1l.J!lGIS
\\oi·II.H .. !"!111 niqlto ('h\t .... I'
iIlU;I,W·ISI·IIIMlltt.lbUUflIIlWAlUWII"'N'N .. rIlPIILl:tlIIU'bl'lIUS fJ/ljt,II'lH.tI,IIJCUKIIIIU.Jiur hOI ULIIIUllU. lULllJl'llLbWAlIII~1II1 0; ur U£UQWIlAIIIlIlY",/fl, 1fI'1 tr.ron A" ..... U!CU'"''''. ''UI''''''~' c..'flPln...omAIIIfIl"'.,ja' .... M.
1~,."""'-J .... rW\ll .. ..,"'....w-.............. J"" ... ,.I'~.,._ , ..... Io·I< ... u""'-"I1I1._nulloJll ..... I.I.PI
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER 7
APPENDICES
Appendix 7.1
100-Year, 24-Hour'lsopluvial Plan
AH djg H:IREPORTS\Il4!1C1\711A02.doc
w.o.1l491).71 9f1!l2006 1:42 PM
-.. _--------,--------
'pR=·I:: -l:'!·:aJ.r:qit' -r~;-I-H.J..}+ i~J±lJF' .. I+FtJ! .. I··I·-il'-tl+·~t[ .. I .. I .. -,,-, .. , " ........ ' .. tl. t-:: .. -~.': .. -:: :(:" ,.-. :.:' ... ,,:1: f.l .:' .. ' LJ -':i.T: .. '" '.: :~L _.J..::::-:U ::::'3~J'+f,j:~Jt!~'" .. "--J-" _·~"":' __ '_I:r.+ I" ·t··: -t.!JI"" -·1·-~-± ··tl.-I
. ! -rr ,I "f f , .... ·1 .. -',1 ----r..~ . -4--:-'1-' ,,1.1.'1-+i:I= -~ ,I\·"d· --... _., ·1"··,, . -1.'1, ·J_I_ -.' __ 1.1
£lLl~"!lIJ'I'W'1 I-~I .. I .. I .....
.l...
f --·--1-----1-·:---1-. -J·! .. ·I--.... ·Tr --+-;--, ;'-_I-. _., ---..... ~---l-'~----. , ... Q-..... ,,-I" J''''' ""1,' v, I I tTl I I ~ ...... .
~~ ... ' ···fl' .. ··'· ..... --: .. 8.-r .,--.... ,.. -'"j"-' r I . ~""T '; ... L' '''; r-," "f i"
j ,J I ... .J~,.j~ hl·k l-r.-~ -~-~m, :~~~:E:~::+~":;.:."~·::-:· ~~J_: .-=.~ J:.. ·:·=.tE"i ~-. _.;: j:!' .... .1'
1 .. ··1·1 ! 1:lti-:,
-r-
. '. '.-11 ; ;.-T
1.1 I i7:mr 1: ~ ... ft :1~:
-""-r"~ '.!
"
i\:-
1.\
"FlITI! di •• 1-" • 'j •• . ; d31kl-" "j.': ... ::1_ ..... ~
"·{t::.::.: :!:-;:-:d--I 1 .;.
dllllll'I' ",.' .. 1'1"'" n', .
1-··' '1-':'-I.-!.-.! .. -l':::-rtl~-'1 1 .... 1_ •••• ~ ~. :_~ .I
310 _L
~---lt -+ I:t~cr ~;.:
(1:::tF' ! .. I: _ ._i-of'P'. :1bt h:JI-... ~_.
" .. ~J_,. TIT~-r-It
I -2'l'-I :j_+
-TII"'-"'-l~+' . j .. -, -.[-
.. J .. "-,,,I .. ~-I ... I-g..j-I-.I--!-t~
-~-
p"r'ln -I'" .!-"1--, I'~'
-H$.lLr ,__ _ _L. ..
;---~~ i-~+ ...
County of San Diego
Hydrology Manual
RaiJ1fali Isop/livia/s
1011 Y CIll' Rainfall Event -6 Hours
Isopluvlol (Inches)
Roo ... 10 == 2, =!-i V\c..lt\.es
]):P"l\J(!
""''''''GIS -~~
.~J!.~I~". '6<ilr!~;I'GIS '0'1'''' r! , .. }·jkf,.l
" ... """,."lh#C11_ :J •• ,,,,",IVj ... ,,.S-,'tI-'I' \Xot H.I"· So,m l)ill'.11 (~'\'':Iul!
N . "~~LW<I(l.I'IW'4lfOYIIIII'JUlvr"'l/w'TYUI"Nlrlllt".lII11Ulul'llttll ~ DIII1,rIllD."aUDIIXl.,IUIWllllllltOlO.1JlULll'f.lltlWAhIWmt:1 DlI.IlIICIWIIA,klIV,AlMlllmlU'OIlA"Nm:UlM l'\IW'OIE. ~""'IiI!I.ooCft. AlJ"/~.III1~'"''
1I/IJI'l.OludI~'uri ... ~.I""~kJ1l1<rn"''"'"ltJ.I.I1lh'')''''' I I! ~~.=-,-:,.:!!.~::~c..I''-'''"''ut .... "",
. ,,",,.,,,,,,"I,,,,.~"""'''''''''''lkh,,,,uln''f.~''''" " ....... _ ......... ,1I .. ,..I"'."f.I.o',.
Ii. !lH-H-h +H .. I-H-I-I-FI.;::.J,-l-.I.-I--I-Gli=llFPI 3 0 3 Miles T:r;~"---... , a-1)"1J'111 .•. " .. 1.
I·
I·
I'
I·
I,
I
I
I
I
I
I
I
I
I
I·
I
I
I
I'
Drainage Study· .
La Costa Greens -Neighborhpod 1',16
CHAPTER 7
AP.PENDICES
Appendix 7.2 .,'
Runoff Coefficient Table
AH dJg ti:IREPORTSl04901711A02.doc , . .
. w,o.049().71 '9/812006 1:42 PM . , . ,
--- --
. San Diego County Hydrology Manual
Date: June 2003
----.--; ----
Section:
Page:
Table 3-1
RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient "C"
Soil TXEe
NRCS Elements Count Elements %IMPER. A B C
Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30
Lo~ Dens"ity Residential (LDR) Residential, 1.0 DUI A or less 10 0.27 0.32 0.36
Low Density Residelltial (LDR) Residential, 2.0 DUI A 01' less 20 0.34 0.38 0.42
Low Density Residential (LOR) Residential, 2.9 DUIA or less 25 0.38 0.41 0.45
MediulIl Density Residential (MDR) Residential, 4.3 DUIA 01' less 30 0.41 0.45 0.48
Mediulll Density Residential (MDR) Residential, 7.3 DUIA 01' less 40 0.48 0.51 0.54
Medium Density Residential" (MDR) Residential, 10.9 DUIA or less 45 0.52 0.54 0.57
Medium Density Residential (MDR) Residential, 14.5 DUIA or less 50 0.55 0.58 0.60
High Density Residential (HDR) Residential, 24.0 DUIA or less 65 0.66 0.67 0.69
High Density Residential (HDR) Residential, 43.0 Du/A or less 80 0.76 0.77 0.78
Commercial/Industrial (N: Com) Neighborhood Commercial 80 0.76 0.77 0.78
. Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81
Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84
. Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0;84 0.84
Commercial/lndustrial-.(Generall.) General Industrial 95 0.87 0.87 0.87
--.-
3
60f26
0
0.35
6.41
0.46
0.49
0.52
0.57
0.60
0.63
0.71
0.79
0.79
0.82
0.85
0.85' .
0.87
''''The values associated with 0% impervious may be lIsed for direct calculation of the runoff coefficient as described in Section ~.1.2 (representing the pervious runoff
coefficient, Cp;for the soillype), or for areas that will remain undisturbed in perpetu.ity. Justification must be given that the area will remain natural forever (e.g., the area'
is located in Cleveland National Forest). ' , .
Du/A'i= dwelling units pel' acre
NRCS = National Resources Conservation Service
3-6
-
I. '
'I'
I
I
I
1
I
1
'I
I
I,
'I
,I
I
I'
I
I,
I '
I·
, ,
, Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER 7'
APPENDICES
Appendix 7.3 ,
Maximum Overland ,Length & Initial'
Time of Concentration Table.
-_ AH dig H:\REPORTSl04901711A02.<IO~
, w.o. 0490-71· 918120061:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I·
I
San Diego County Hydrology Manual
Date: June 2003 .
Section:
Page:
3' . 1"2 of26
Note that the Initial Time of Concentration should be reflective of the general land-use at the
upstream end ofa drainage basin. A single lot with an area oftw6 or less acres does not have
a significant effect where the drainage basin area is 20 to 600 acres. '.
Table 3-2 provides limits of the length (Maximum. Length (LM)) of sheet flow to be used .in
hydrology studies. Initial Ti values based on average C values for the Land Use Element are
also included. These values can be used in planning and design applications as described
below. Exceptions may be approved by the "Regulating Agency" when submitted with a
detailed study.
Table 3-2
MAXIMUM OVERLAND FLOW LENGTH (LM)
& INITIAL TIME OF CONCENTRATION (Tj)
Element* DUt .5% 1% 2% 3% 5% 10%
Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti
Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9
LDR 1 50 12.2 70 11 .. 51 85 10.0 100 9.5 100 1.8.0 100 6.4
LDR 2 50 11.3 70 10:5 I 85 9.2 100 8~8 I . 100 I 7.4 100· 5.8
LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 .
MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3
MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 10Q 6.0 100 .4.8
·MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5
MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3
HDR 24 50 6.7 .65 6.1 75 5.1 90 4.9 95 '4.3 100 3.5
HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7·
N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7
G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2 .. 9 100 ·2.4
O.P.lCom. 50 4.2 60 3.7 70 3.1 80 2.9 90 .2.6' ·IOp '2.2
Limited 1. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 1·00 2.2
General 1. 50 3.7 :·60 3.2 70 2.7 "80 2.6 90" 2.3 100 '·1.9
.'
*See Table 3-1 for more detailed description
3-12
I
I
·1
I
I
I
I
I
.' .
I
I
I'
I
I'
I
I·
I"
I .
I
I .
. Drainage Study
La Costa Greens":' Neighborhood 1 .16
. -..
CHAPTER 7
. APPENDICES
..
Appendix 7.4
Overland 'Time of Flow Nomograph.' ....
.. AIi dJg H:IREPORTSl049O)711A.02.dc<:.
w.o. Q490-71 !lIBI2006 1:~2 PM .
------------'-------
Iii W LL
~
W
()
Z ~ C/)
'0
ill ~ ::l
0 ~ W ~ ~
Ir J// ,I 1001 1.5 I ~ I\,"Yr-~ I' /\ ~ 130'
C/) w f-::l Z
0 20 ~
~----~----------~--------~--------~----------~---------L----------~--------~IO
EXAMPLE:
Given: Watercourse Distance (D) = 70 Feet
Slope (8) = 1.3%
Runoff Coefficient (C) = 0.41
Overland Flow Time (T) = 9.5 Minutes
T= 1.8 (1.1-C}Vo
3VS
Z
W ~ i=
~ 0 -I LL
0
Z ::i OC ill > 0
SOURCE: Airport Drainage, Federal Aviation Admihistration, 1965
FIGURE
R~tional Formula -Overland Time -of Flow Nomograph 3·3
I
I
I,
I
I'
I
I,
I.
I
I
I ' '"
I
I
I
I
I'
'I
I
I·
Drainage Study
, . La Costa Greens -Neighborhood 1.16
CHAPTER 7
,APP,END'ICES
Append'ix 7.5
Time of Concentration.or,)ravel Tim'e .for
Natural Watersheds ,Nomograph
. . . .
." ,AH dj~ H:IR.epOIttSl0400..711A02.dCe -
w.o. Q49!).71 911l1Zq06 1:42 PM ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
6.E
Feet
5000
4000
Tc
Tc
l
.6.E
=
= = =
EQUATION
(
11.9L 3)0.385
.D.e
Time of concentration (hours)'
Watercourse Distance (miles)
Change in elevation along
effective slope line (See Figure 3-5)(feet)
3000
2000
1000
900
800
Y.OO
6~,
500 ,
400
300
200
100'
3ll
20
10
5
6.E
, ,
,~ ,~~ .
"'~ , , , , , , , ,
SOt,JRCE: California Division of Highways (1941) and Kirpich (1940) -
L
Miles Feet
'1 ,
.
3000
0.5 ,
200
L
,
Nomograph for Determination of
Tc
Hours Minutes
4 246
3 180
2 120
1
50
,
" 12 ,
" 10 , 9
Tc
Time of Concentration (Te) or Travel Time (Tt) for Naturarwatersheds
FIGU~E
-.l3~41
I
I
I
I
I, '
I
I ..
I
I
'I
I ' ,
I'
I
I
I"
I,
" I'
I
I .,
..
, ,
Drainage Study' ", '
La Costa Greens -Neighborhood 1.16
CHAPTER 7,
APPENDICES
Appendix 7.'6
Gutter and RO'adway Discharge-Velocity Chart
.....
, .'
, . "
AH djg H:IREPbRT~049O\71IAoz.dOC
. . .w.o.04go..71 eJBI2006 1:42 PM
, '
I·
I
I
I
I'
I
I'
I
I
I
I
I
I.,
.1
I
I
I·
I.
I
I~n = .015-+-1.....-._. _---2% ~ _n=.0175 ----..::.:::.~----! 2%
2
EXAMPLE:
Concrete
Gutter
Given: Q= 10 S = 2.5%
3 -4
Chart gives: Depth = Q.4, Velocity = 4.4 f.p.s.
Paved
5 • 6 7 8 9 10
Discharge (C.F.S.)
SOURCE: San Diego County Department of Special District Services Design Manual
Gutter and Roadway Discharge -Velocity Chart
RESIDEN1;IAL .STREET
. ONE SIDE ONLY
20 30 '. 40 50'
FIGURE
.~
I
I' .
I
·1
I
I
I
I
I
I
I
·1, .
I·
I
I,
I
I
I
I·
Drainage Study
La Costa Greens -Neighborhood 1 .16
. : .
" :.
. .",.
CHAPTER 7'" . ':
APPENDIC.ES " .' " . .
'. ·Appendix 7.7 .
Manning's 'Equati~n' Nomograph: .
,: '. . . . .
AH djg . H:lREPORTSIIl490171IAaidOC
W.o. 0499-71 9ialz0D61:42 PM ...
'.' .:'
I
I.
I
I
I
I
I
I.
I
I
·1
I.
I·
I,
I
I
CIl I
15 .E ... Q) Co
Qi
~
. 5 w a. 0 -1 (/)
0.3
0.2
0.15
0.10
0.09
0.08 O.OT
O.OS
0.05
0.04
0.03
0.02
0.01
0.009
0.008
0.007
0.006
0.002
. 0.001
0.0009
0.0008
0.0007
o.oOOS
0.0005
0.0004
0.0003
0.2
0.3
0.4
fo.5
r·o.s
~
0.8 ""
0.9 ~ ~ 1.0 06'
'",,'
6·
7
8
9
10
20
'"
GENERAL SOLUTION
SOURCE: OSDOT, FHWA, HDS:-3 (1961)
Manning's Equation Nomograph
2
1.0.
0.9
0.8
0.7
0.6
0.5
0.01
0.04
';' 0.03
1: Q) '0 ~ .
8 0.04
(/) en ~ [0.05
§fO"O~" .
0:: 0.07
0.08 to.09
0.10 ..
0.2
0.3
t.4
I· .'
I
I
·1
I
I'
I
'1
I·
I, .
I
I.
I
I
I'
I
I··
I.
I
Drainage Study .
La Costa Greens -Neighborhood 1.16
CHAPTER 7·
APPENDICES·
Appendix 7~8
Intensity-Duration Chart
, .. ' . ~ . . ... .
AH djg' H:\REPORT~0490171\A02.doc
" w.D.049o.71 9Jar.2005 1:~2 'PM
--- ----- ----
10.0
. 9.0 '" j'-.. "'-r-.. i'.
l"-i'-.!,-51 B.O t'-"'-r--.I" 7.0 "'-I"'!
,..... 1'1"-"'-"'r-. '" ""'I"-" EQUATION 6.0 = 7.44 Pa D-0.645· ~r:-.. .......... ~"'i' I. ,"-I = Intensity (in/hr) 5.0. r-..
r-..I' "'-1'1' ""'t-P6 = 6-Hour Precipitation {in) ,I '" 4.0""
1'1' ~'" D = Dur~tion (min)
3.0' .~ "bl
1'-.. '"
2.0 mlJ IITliJllrtillll~III~ .....
rt.J II'NJIII No. l'iUIlI'NIllI~ 1'0..1 II 1111 Ii{ IJJ ~ ..... ).:t nr
~ .... "'" I~ " III 1111 cp
2 " i'-........ " I' a: ID ,I ~'" I.. ~
13 1 0 . .... "'-I' i'-4' . 5 . ..... ~ ~0.9' .... 6.0 -g; _ • w ~0.8 ..... 5.5 g.
'-0.7 . .. 5.0 ::J £ ~ u~
0.6' ........ 4.0 ~ 3.5 .!!!..
't-0.6111 ~ 1111111111111111I1I111I111111111II111111I~11111111!1111.w1111#4ln11IIW1I3.0
OAIIIIIII'llllllIlIlIllllllIlllIl'lIlrlllllllllllllllllllllllmmlImlmtlll 2
.
5
2.0
0.3 e=FE =~i=BI=I-S=.Etl=!.:':':tt':~""" != 1-1-1= --- . -t:Ltl:l:l 1=1=='=1-1:::-"= = =----0.21-r:-I-j-•. ---
i:U~I=!*f:I:mil~hitumlltll_l~milllll. 1.5
-1.0 1-r-r--j-3:EB:BJ\lEEIII 1=~C~I=t= ~~~I~li§~il~f.!iI~~~ltlft:~mtlt~+~i
0.1!1j=!=m1ttt1Jm~tm~_lmJn~1~ttlil~mmllWtlttJ±llt~~jm I m~ ijillil
I+HHl-HmHIfH-
11-1-1-1-'--.-.-
.40 50 1· 10 20 30 2 3 4 5 6 . Minutes
Duration Hours
Intensity.nuration Design Chart -Template
-- ----
'Dlrectlons for Application:
(1) From precipitation maps determine 6 hr and 24 h~ amounts
for ~he selected frequency. These maps are included in the
County Hydrology Manual (10. 50. and 100 yr map's included
in the Deslg.n and Procedure Manual). .
(2) Adjust 6 hr precIpitation (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on tlie right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) Th.is line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency ___ year
(b) Pa = 2:1-In .• P24 = 5.0 .;6 = 5+ %(2) A>K
24 .
(c) Adjusted P6(2) = ...IZl--in.
(d) tx = __ min.
(e) I = __ in.lhr.
Note: This chart replaces the Intenslty-Duration-Frequency
curves used since 1965.
........ --.. --,----....... -----. ---"1"--'~'-1""'-"1-"" ---·--/-I----·L .--15~,~iiiii;--.. } ... J'f~ -1-" --¥.,. --f---3i~"-... -} .. -. ~I~'" r .. ~ .. '. ~i'~"'1 .. ~ ...
: ____ 5 _ 2.6~ ~'!!5.. §!~~12-,59 .?.!!.Q. !I:Eg,' .!~.~:.!. .1 I :!I.I; i 1.;J.l} !4:4.~, !§"~.1 ... _: ___ .I _.?, 12 i3.!.1.!! .~·.?1 . .?~.? .. q_ 9!.~.!L~g ... ~.,1-'L J1M_j-! 9,,6_0. J.h.6.~. g:.!..?
---.19 .. !&~" ,g,,§!1 .q:?! .i~l .. ~"9'§' _~!gC!. .Jl:?.1_ .z·§.f!.'I .. I!:i.~_ .. !J,'P .. '!QJ.l ........ -.!..~ . ..!,?!!.. JJ!§ E:H.!! .. 3.!.?.4. ~~ . .1:§'1_§c~!l .. _!?&~ ..... .!!:.1~. !!!~_ ..?-'Z~ 20 1.06 1.62 2.16 2.69 3.23 3.77 4.31 4.85' 5.39 5.93 6.46 ~:=:·.1~ j¥.~( 1.~1q .q'i .~;~~~ ·.n9:J.:2:! _~·?fi:: .4:W :4~~7. '.s~'i3-'s:iig
30 0.83 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 4.56 4.98 ---. "-40 'ifiig-1'.ii:i I3ii -1:72 '2:07" 2.41" ''2:;;if -3:10' -:i.4"5-"3:7'9" '-;':'13
::.::.-50 -:![~([ if:iiii n~ .:£'f~:.J.r!i 2:oi! ];~}l= :"~f '.~~.: _~~~ ~~:?,~. --..... ~.!! ".Qc~!!_ p..:!!~ 1:!l.2. _L~.~ __ Hi~, J:!IJ! ...?,.l~t ?:f!!! .... ~&~'" .?J!?' .. _£,1!!. :-_!!~ _<M!.. 51.61 0.82: Jc9R ..!-.?~. 1:1;1: .1&!!. ...!-ll.1 .E:l?:!.. ..R.g~_ ... ?;.1!!. . ... _1~~ .. .Q,.~1_ 9"?1 .Q,.~!! "'1&5,,, ,!,Q.?' J"~!~. -'.'f!~..: .. ~.:.l!~_ J.,l.<!. .. .!.'~?_ .?:.9!. _. __ 15Q j1.EY_ 0.44 ..Q,f:!LQ,I~ J1.8E!, 1;03 ..1:.1!!.. ....1.32• ",kl!.. ... Mg." J.l~..:
___ ~y. ..Q,g!L .Q,.~~ "Q,.!g .QJll?.~tl..!!. .Q • ..9.'!. _1&1 .... h~l!_ .. l!i!L . .1:.1.1 .. ...1.:~L _.....11!! .. !.l~g,., .Q:33 ..Q,1~.~. ~ 9.:.?!!. .,Q,IE_ .IM!!!_ ..1.Q!!., _~!.~!L .. 1=!!.l. . • 300 0.19 0.28 0.38 0.-17 0.56 0.66 0.75 0.B5 .0.94 1.03 1.13 ---aGo '0]'7 025 0:33 '(;:4'21'0.50' 'ii:iiii' -0.6';" "o.'i'if' o:ii;j ",O~92·· '1:00"
FIG U n. E ~
-
I
I
I · .. I •
, .
I
I
I
I
I
I
I
I
I,
I
I' .
I
I: .
I
I
I
Drainage Study
la Costa Greens -Neighborhood 1.16 .
CHAPTER' 7
APPEN·D.lCES
App'endix 7.9
.' 1 OO-Year Pre-Devel~'ped Co'nditio~'
Hydrologic Analysis & Hydrology Ma:p
for Neighborhoods 1.15, 1.16 &.1.17
..
. . ...
-. '.
. .
.. Ali djg H.:\REPORTS\~9O\ilIAOZ.dQC
w.o. 04go..71 91812006 1:42. PM
I
I
I
I
I
1
1
1
I
I·
1
1
1
I
.****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-99 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/99 License ID 1239
Analysis prepared by:
Hunsaker & Associates San Diego, Inc.
101.7·9 Huennekens ·Street
San Diego, California (619) 558-4500
Planning Engineering Surveying
. ************************** DESCRIPTION OF STUDY· **************.*.***********
* LA COSTA GREENS -NEIGHBORHOODS 1.15, 1.16, ~~ 1.17 *
~ 1.00-YEAR EXISTING CONDITION HYDROLOGY ANALYS·IS *
* W.O.# 2352-62 *
***************************~********'***~************~**~*****************
FILE NAME: H:\AES99\2352\62\EX100.DAT
TIME/DATE OF STUDY: 14:50 10/22/2004
USER ·SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: . . ----------------------------------------------------------------------------. .
1985 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.0·0
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE
SAN DIEGO HYDROLOGY MANUAL ncn-VALUES USED
NOTE: ONLY PEAK CONFLUENCE V~LUES CONSIDERED
0.90
+---------------------------------~------------------------------------~---+
·1 . 1
1 BEGIN BASIN A 1
1 ·1 +---------------------------------..,:----------------------------------.;..-----+
****************************************************************************
FLOW PROCESS FROM NODE 1. 00 TO NODE 2.00 I$ CODE = 21
----------------------------------------------------------.--------~-~-------
»»>RATIO~AL METHOD INITIAL SUB~ ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
.~URAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A)
WITH 10-MINUTES ADDED = 11.89 (MINUTES)
INITIAL SUBAREA FLO~-LENGTH = 500.00
UPSTREAM ELEVATION = 295.00
DOWNSTREAM ELEVATION = 215.00
ELEVATION DIFFERENCE = 80.00
100 ~..R RAINFALL INTENSITY.(INCH/HOUR} = 4.068
1
I
I
1
I
-I
I
I
I-
I
I
I
I
I
I
I
I
I
SUB~JrnA R~OFF(CFS)
TOTAL AREA(ACRES) =
4.39
2.40 TOTAL RUNOFF(CFS) 4.39
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00-IS CODE = 52
-----------7~~---------------------------------------------------~----------
»»>COMPUTE NATUR..Z\L VALLEY CH.ZlliNEL FLOW««-<
»»>TRAVELTIME THRU SUBAREA««<
=.::;====================================================================.======
UPSTREAM NODE ELEVATION = 215.00
DOWNSTREAM-NODE ELEVATION = 167.00
CHANNEL LENGTH THRU SUBAREA(FEET) 800.00
-CHANNEL SLOPE = 0 . 0600
CHANNEL FLOW THRU SUBAREA(CFS) = 4.39
FLOW VELOCITY(FEET/SEC) = 5.01 (PER PLATE D-6.1)
TRAVEL TIME (MIN.) = 2.66 TC(MIN.) 14.55
*********************************************************~******************
FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 8
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
===========================================~==~~============================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) =-3.571
------*USEB. SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
SUBAREA AREA (ACRES) 7 . 0 1 SUB~.REA RUNOFF (CFS) 11.27
TOTAL _~(ACRES) 9.41 TOTAL RUNOFF (CFS) 15.66
TC(MIN) = 14-.55_
+------------------------------------------------------------------------~-+
1 END BASIN A ANALYSIS -I I BEGIN BASIN C ANALYSIS r
I --I
+--------------------------------------------------------------------------+
*******************************************~********************************
FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21
--~-------------------------------------------------------------------------
»»>~~TIONAL METHOD INITIAL SUB~.REA ~~ALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
NATURAL WATERSHED NOMOG~iUlH TIME OF CONCENTRATION (APPENDLX X--A)
WITH 10-MINUTES ADDED = 13.52 (MINUTES)
INITIAL SUBAREA FLOW-LENGTH = 1000.00
UPS~~ ELEVATION = 289.00
DOWNSTREAM ELEVATION = 161.00
ELEVATION DIFFERENCE = 128.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.745
SUB~.REA RUNOFF (CFS) 16.85
TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF (CFSi 16.85
**************************************************************~*************
I
I
I
I
I
I
I
I
I
I
I
1
-I
I
I
I
I
I
I
-FLOW PROCESS FROM NODE 7.00 TO NODE 15.00 IS CODE =
------~--~------------------------~-----------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF ST~S = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 13.52
RAINFALL INTENSITY (INCH/HR.) = 3.75
TOTAL STREAM AREA(ACRES) = 10.00
PEAK FLOW RATE{CFS) AT CONFLUENCE = 16.85
+----------------~----------------------------------------------------~~---+ I END BASIN C4 -
I--BEGIN BASIN ci
I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE -8.00 TO NODE 9.00 IS CODE = 21
-»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUN"OFF COEFFICIENT = .4500
NA~~ WATERS~D NOMOG~~H TIME OF CONCENTRATION
WITH 10-MINUTES ADDED = 13.06(MINUTES)
(APPENDIX X-A)
INITIAL SUBARE.~ FLOW-LENGTH = 912.00_
UPSTREAM ELEVATION =
D9WNSTREAM ELEVATION =
255.00
115.00
ELEVATION DIFFERENCE = 140.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.830
-SUBAREA RUNOFF (CFS) 8.89
TOTAL AREA(ACRES) = 5.16 TOTAL RUN"OFF (CFS) 8.89
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 15.00 IS CODE =_ 1--
-~----------------------------------------------~--------------~------------
»»>DESIGNATE INDEPEND~ STREAM FOR CONFLUENCE««<
=================================================~==========================
TOTAL NUMBER OF STREAMS = 4
-CONFLUENCE VAL-UES -USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 13.06
RAINFALL INTENSITY(INCH/HR.) = 3.83
TOTAL STREAM AREA(ACRES) = 5.16
PEF-K FLOW ~~TE(CFS) AT CONFLUENCE = 8.89
+--------------------------------------------------------------------------+ I END BASIN C1 I
I I I BEGIN BASIN C2 I +--------------------------------------------------------------------------+
****************************************************************~***********
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-----------7------------------~-------------~-------------------------~-----
»»>~~TIONAL METHOD INITIAL SUB~~ ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
NATURAL WATERSHED NOMOGRAPH TIME OF, CONCENTRATION (APPENDIX X'-A) ,
WITH 10-MINUTES ADDED = 12.75 (MINUTES)
INITIAL SUBAREA FLOW-LENGTH = 801.00
UPST~~ ELEVATION = 255.00
DOWNSTREAM ELEVATION = 130.00
ELEVATION DIFFERENCE = 125.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.890
SUBAREA RUNOFF (CFS) 9.19
TOTAL AREA (ACRES) , = 5.25 TOTAL RUNOFF(CFS) 9.19
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 52
»»>COMPUTE NATURAL VALLEY CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA««<
============================================================================
UPSTREAM NODE ELEVATION = 130.00
DOWNSTREAM NODE ELEVATION = 105.00
CHANNEL LENGTH THRU SUBAREA(FEET) 241.00
CHANNEL SLOPE = 0.1037
CHANNEL FLOW THRU SUBAREA(CFS) = 9.1~
NOTE: ca~L SLOPE OF .1 W~~ ASSUMED IN VELOCITY ESTIMATION
FLOW VELOCITY(FEET/SEC) = 7.74 (PER PLATE D-6.1)
TRAVEL TIME(MIN.) = 0.52 TC(MIN.) = 13.27
****************************************************************** •• ********
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 8 ______________________________________ ~ _______________________ J ____________ _
»»>ADDITION OF SUBAREA TO MAINLINE PEAK' FLOW««<
============================================================================
100 'YEAR RAINFAL~ INTENSITY(INCH/HOUR) = 3.791
*USER SPECIFIED (SUBAREA) :
RURAL,DEVELOPMENT RUNOFF COEFFICIENT = .4500
SUBAREA AREA(ACRES) 3.03 SUBAREA RUNOFF (CFS) 5.17
TOTAL AREA (ACRES) 8 .28 TOTAL RUNOFF (CFS) = 14 .36
TC(MIN) = 13.27
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 15.00 IS CODE = 1
---------------------------------------------------------------------------~
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
===========================================================================?
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCENTRATION(MIN.) 13.27
RAINFALL INTENSITY (INCH/HR) = 3.79
TOTAL STREAM AREA(ACP~S) = 8.28
PEAK FLOW ~~TE(CFS) AT CONFLUENCE = 14.36
I
I
I
I
I
-I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+---------------------------------------------------------~---------~------+ I END-BAsIN C2, BEGIN BASIN C3
I OFFSITE RATIONAL METHOD ANALYSIS FROM EXISTING DEVELOPMENT TO I THE WEST OF THE PROPOSED LA COSTA 1.17 SITE +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 10.28 RAIN INTENSITY(INCH/HOUR) = 4.47
TOTAL AREA(ACRES) 10.66 TOTAL RUNOFF(CFS) = 28.92
****************************************************************************
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 52-
»»>COMPUTE NATURAL VALLEY CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA««<
============================================================================
UPSTREAM NODE ELEVATION = 240.00
DOWNSTREAM NODE ELEVATION = 128.00
-CHANNEL LENGTH THRU SUBAREA (FEET) =
CHANNEL SLOPE = 0.1340
CHANNEL FLOW THRU SUBAREA(CFS) =
NOTE: CHANNEL SLOPE OF .1 WAS ~~SUMED
FLOW VELOCITY(FEET/SEC) = 10.48 (PER
TRAVEL TIME (MIN.) = 1.33 TC (MIN.)
836.00
28.92
IN VELOCITY ESTIMATION
PLATE D-6.1)
11.61
************************************************************~***************
FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE-=
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.132
*USER SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
SUBARE~. AREA(ACRES) 8.74 SUBAREA RUNOFF (CFS) 16.25'
TOTAL AREA (ACRES) 19.40 TOTAL RUNOFF (CFS) = 45.17-
TC(MIN) = 11.61
************************************************************~************~**
FLOW PROCESS FROM NODE 14.00 TO NODE-· 15.00 IS CODE = 52
»»>COMPUTE NATURAL VALLEY C~~L FLOW««<
»»>TR.!\'VELTIME THRU SUBAREA««<
============================================================================
UPSTR~~ NODE ELEVATION = 128.00
DOWNSTREAM NODE ELEVATION = 87.00
CHANNEL LENGTH THRU SUBAP~(FEET)
CK!\.NNEL SLOPE = 0.0851
C~~L FLOW THRU SUBAREA(CFS) =
482.00
45.17
I
I
I
I
I
I
I
I
I
I
.1
I
I
I
I
I
I
I
I·
FLOW VELOCITY (FEET/SEC) .9.
TRAVEL TIME(MIN.) = 0.73
10.96 (PER PLATE D-6.1)
TC(MIN.) 12.34
********************************************************.********************
FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=========~================================================================~=
100 YEAR·RAINFALL INTENSITY (INCH/HOUR) = 3.972
~USER SPECIFIED (SUBAREA) :
RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500
SUBAREA AREA(ACRES) 10.08 SUBAREA RUNOFF (CFS) 18.02
TOTAL AREA(ACRES) 29.48 TOTAL RUNOFF (CFS) = 63.19
TC(MIN) = 12.34
****************************************************************************
FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< .
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 4
CONFLUENCE VALUES USED FOR INDEPENDENT ST~~ 4 ARE:
TIME OF CONCENTRATION(MIN.) 12.34
RAINFALL INTENSITY (INCH/HR.) = 3.97
TOTAL STREAM AREA(ACRES) = 29.48
PEAK FLOW ~~TE(CFS) AT CONFLUENCE = 63.19
** CONFLUENCE DATA.**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE)
1 16.85 13.52 3.745 10.00
2 8.89 13.06 3.830 5.16
3 14.36 13 .27 3.791 8.28
4 63.19 12.34 3.972 29.48
. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 4 STREAMS.
** P~~ FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 101. 36 12.34 3.972
2 100.52 13.06 3.830
3 100.12 -13 .27 3.791
4 99.32 13 .52 3.745
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 101.36 Tc(MIN.) = 12.34
TOTAL AREA(ACRES) = 52.92
============================================================================
END OF STUDY SUMMARY:
PEAK FLOW RATE (CFS) =
TOT~L AREA(ACRES) =
101.36
52.92
Tc (MIN.) = 12.34
============================================================================
I'
I
1 .
I
I
I
I
I
I .
I
1
1
I
I
.1
I· .
1
I
I
.
END OF RATIONAL METHOD ANALYSIS'
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'1 .
I
I'
Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER 7
APPENDICES
Appendix 7.10
Excerpts from the 100-Year Mass-Graded
. Condition Hydrologic Analysis & Hydrology
Map for Neighborhoods 1.16
AH 019 H.\REPORTS\0490W1\A02.dDC
w.o.0490-71 91812006 1:42 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DRAINAGE STUDY
for
LA COSTA GREENS
NEIGHBORHOOD 1.16
CT 99-03
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
c/o Morrow Development
1903 Wright Place
Suite 180
Carlsbad, CA 92008
w.o. 2352-112
January 7,2005
Hunsaker & Associates
San Diego, Inc.
Raymond L. Martin, R.C.E.
Vice President
AH:ah H:IREPORTS\2352\112 Greens 1.15\3RO SUBMITIALIA03.ooc
W.O.2352-112 611312005 2.1)9 AM
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
...
CHAPTER 3
RATIONAL METHOD HYDROLOGIC ANALYSIS
(AES MODEL OUTPUT)
3.1 -100-Year Mass-Graded AES Model Output
• AH:ah H:IREl'ORTS\23521112 Greens 1.16\3RO SUBMiTTAL'A03.doc
w.o. 2352·112 6/1312005 2:10 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 21
»»>R~TIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000
INITIAL SUBAREA FLOW-LENGTH = 272.00
UPSTREAM ELEVATION = 127.00
DOWNSTREAM ELEVATION = 118.60
ELEVATION DIFFERENCE = 8.40
URBAN SUBAREA OVERLANDrTIME OF FLOW(MINUTES) = 8.154 r
*CAUTION: SUBAREA SLOPE EXCEEDS COUNT~ NOMOGRAPH
DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED.
100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.189
SUBAREA RUNOFF (CFS) 2.87
TOTAL AREA(ACRES) 0.79 TOTAL RUNOFF(CFS) 2 .. 87
****************************************************************************
FLOW PROCESS FROM NODE 205.00 TO NODE 203.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES
PIPEFLOW VELOCITY(FEETjSEC.) = 7.3
UPSTREAM NODE ELEVATION = 115.91
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 78.76
GIVEN PIPE DIAMETER(INCH) =
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME (MIN.) = 0.18
113.50
MANNING'S N = 0.013
18.00 NUMBER OF PIPES =
2.87
TC(MIN.) 8.33
1
****************************************************************************
F~OW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1
-----------------------------------------------------------------------~----
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
======================================================================-======
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
. TIME OF CONCENTRATION (MIN.) 8.33
R~INFALL INTENSITY (INCHjHR) = 5.12
TOTAL STREAM AREA(ACRES) = 0.79
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.87
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 1. 87 13.46 3.756 0.71
2 2.87 8.33 5.116 0.79
R1U:NFALL INTENSITY AND TIME OF CONCENTR~TION R~TIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1 .16
I'
CHAPTER 7
APPENDICES
Appendix 7.11
Excerpts from the 100-Year Developed
Condition Hydrologic Analysis & Hydrology
Map for Neighborhoods 1.17
AH djg H:IREPORTS\049O\71\A02.doc
w.o. 0490-71 91612006 1:4f PM
· ':"
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DRAINAGE STUDY
for
LA COSTA GREENS
NEIGHBOR.HOOD 1.17
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
c/o Morrow Development
1903 Wright Place
Suite 180
Carlsbad, CA 92008
Hunsaker & Associates
San Diego, Inc.
w.o. 2352-109
May 9,2005
Raymond L. Martin, R.C.E.
Vice President
AH;h H:IREPORTSI2352I109 Greens 1.17\2ND SUBMmAl.lA02.doc
W.0.2352·109 611312005 2:09 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La.Costa Greens -Neighborhood 1.17 .
CHAPTER 3 .
RATIONAL METHOD HYDROLOGIC ANALYSIS
(AES MODEL OUTP~T)
3.1 -100-Year Developed Condition AES Model
Output
AH ah H!\RE?ORTS\23S2\'09 Greens 1.I712NO SUBMrTTAI.\A02.doc
W.O.2352·'09 611312006 2:09 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 136.00 TO NODE 137.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
========================================================~===================
DEPTH OF FLOW IN 30.0 INCH PIPE IS 8.1 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 35.1
UPSTREAM NODE ELEVATION = 197.49
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 102.24
GIVEN PIPE DIAMETER(INCH) =
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME (MIN.) = 0.05
159.91
MANNING'S N = 0.013
30.00 NUMBER OF PIPES
37.28
TC(MIN.) = 10.83
1
****************************************************************************
FLOW PROCESS FROM NODE 137.00 TO NODE 122.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================~===============
DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.8 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = '13.2
UPSTREAM NODE ELEVATION = 159.58
DOWNSTREAM NODE ELEVATION = 155.40
FLOWLENGTH(FEET) = 166.23 MANNING'S N = 0.013
GIVEN PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES 1
,PIPEFLOW THRU SUBAREA (CFS) 37 .28
TRAVEL TIME (MIN.) = 0.21 TC(MIN.) = 11.04
****************************************************************************
FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN
STREAM
NUMBER
1
STREAM CONFLUENCE DATA **
RUNOFF Tc INTENSITY
(CFS) (MIN.) (INCH/HOUR)
37.28 11.04 4.267
** MEMORY BANK # 3 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 36.18 16.93 3.239
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 64.74 11.04 4.267
2 64.47 16.93 3.239
AREA
(ACRE)
15.30
AREA
(ACRE)
19.22
COMPUTED CONFLUENCE
PEAK FLOW RATE (CFS)
,TOTAL AREA(ACRES)
ESTIMATES ARE AS FOLLOWS:
64.74 Tc(MIN.) =
34.52,
11.04
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 3 ««<
============================================================================
***********************************************************************~****
FLOW PROCESS FROM NODE 122.00 TO NODE 176.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.3 INCHES
PIPEFLOW VELOCITY(FEET!SEC.) = 19.3
UPSTREAM NODE ELEVATION = 154.90
DOWNSTREAM NODE ELEVATION = 145.48
FL~WLENGTH(FEET) = 196.17 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1
PIPEFLOW THRU SUBAREA(CFS) 64.74
TRAVEL TIME(MIN.) = 0.17 TC(MIN.) = 11.21
****************************************************************************
FLOW PROCESS FROM NODE 176.00 TO NODE, 177.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.7 INCHES
PIPEFLOW VELOCITY(FEET!SEC.) = 26.2
UPSTREAM NODE ELEVATION = 145.15
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 287.21
GIVEN PIPE DIAMETER(INCH) =
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME (MIN.) 0.18
113.38
MANNING'S N = 0.013
36.00 NUMBER OF PIPES 1
64.74
TC (MIN.) = 11.40 0 !'lODE. 1"=t'1-
****************************************************************************
FLOW PROCESS FROM NODE 177.00 TO NODE 147.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 36.0 INCH PIPE IS 14.9 INCHES
PIPEFLOW VELOCITY(FEET!SEC.) = 23.5
UPSTREAM NODE ELEVATION = 113.05
DOWNSTREAM NODE ELEVATION = 101.59
FLOWLENGTH(FEET) = 140.39 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES =
I PIPEFLOW THRU SUBAREA(CFS} 64.74,
TRAVEL TIME{MIN.) = 0.10 TC{MIN.) 11.50
G NoO-E. 11-1-
1
****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««<
=========================================================================~==,
****************************************************************************
FLOW PROCESS FROM NODE 149.00 TO NODE 150.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
====~=======================================================================,
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4S00
NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A)
WITH 10-MINUTES ADDED = 11.Sl(MINUTES)
INITIAL SUBAREA FLOW-LENGTH = 300.00
UPSTREAM ELEVATION = 239.00
DOWNSTREAM ELEVATION = 20B.00
ELEVATION DIFFERENCE = 31.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.154
SUBAREA RUNOFF (CFS) 0.62
TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) 0.62
****************************************************************************
FLOW PROCESS FROM NODE 150.00 TO NODE lS1.00 IS CODE = 3
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=============================~==============================================
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 1B.000
DEP+H OF FLOW IN IB.O INCH PIPE IS 1.7 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 7.5
UPSTREAM NODE ELEVATION = 20B.00
DOWNSTREAM NODE ELEVATION = 126.00
FLOWLENGTH(FEET) = S12.00 MANNING'S N = O.OlS
ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES
PIPEFLOW THRU SUBAREA(CFS) ·0.62
TRAVEL TIME(MIN.) = 1.14 TC(MIN.) 12.65
1
****************************************************************************
FLOW PROCESS FROM NODE 150.00 TO NODE lS1. 00 IS CODE = B
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.909
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4BOO
SUBAREA AREA (ACRES) 1. 32 SUBAREA RUNOFF (CFS) =
TOTAL AREA(ACRES) 1.65 TOTAL RUNOFF(CFS) =
TC(MIN) = 12.6S
2.4B
3.09
****************************************************************************
FLOW PROCESS FROM NODE lS1.00 TO NODE 151. 00 IS CODE = 1
-----------------------------------------------------------------------~----
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.65
RAINFALL INTENSITY(INCH/HR) = 3.91
TOTAL STREAM AREA(ACRES) = 1.65
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.09
****************************************************************************
FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
====================================================~=======================
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4500
NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A)
WITH 10-MINUTES ADDED = 12.26 (MINUTES)
INITIAL SUBAREA FLOW-LENGTH = 355.00
UPSTREAM ELEVATION = 250.00
DOWNSTREAM ELEVATION = 232.00
ELEVATION DIFFERENCE = 18.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.988
SUBAREA RUNOFF (CFS) 0.93
TOTAL AREA(ACRES) = 0.52 TOTAL RUNOFF(CFS) 0.93 .
******************************************************************~*********
FLOW PROCESS FROM NODE 153.00 TO NODE 151. 00 IS CODE = 3
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 7.8
UPSTREAM NODE ELEVATION = 232.00
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 840.00
ESTIMATED PIPE DIAMETER(INCH)
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME(MIN.) = 1.80
126.84
MANNING'S
18.00
0.93
TC (MIN.)
N = 0.015
NUMBER OF PIPES
14.07
1
****************************************************************************
FLOW PROCESS FROM NODE 153.00 TO NODE 151. 00 IS CODE = 8
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = '3.650
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4600
SUBAREA AREA (ACRES) 1. 12 SUBAREA RUNOFF (CFS) 1. 88
TOTAL AREA(ACRES) = 1.64 TOTAL RUNOFF (CFS) = 2.81
TC(MIN) = 14.07
-.3~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE lSI. 00 TO NODE 151. 00 IS CODE = 1
----------------------_._----------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = . 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 14.07
RAINFALL INTENSITY (INCH/HR) = 3.65
TOTAL STREAM AREA(ACRES) = 1.64
PEAK FLOW RATE (CFS) AT CONFLUENCE = . 2.81
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 3.09 12.65 3.909
2 2.81 14.07 3.650
AREA
(ACRE)
1. 65
1.64
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED ·FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF
NUMBER (CFS)
1 5.72
2 5.70
l-COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
Q NCPE. 151
Tc INTENSITY
(MIN. ) (INCH/HOUR)
12.65 3.909
14.07 3.650
ESTIMATES ARE AS FOLLOWS:
5.72 Tc(MIN.) =
3.29
. 12.6~
****************************************************************************
FLOW PROCESS FROM NODE 151. 00 TO NODE 147.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
=======================================================================~====
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 16.7
UPSTREAM NODE ELEVATION = . 114.85
DOWNSTREAM NODE ELEVATION = 103.12
FLOWLENGTH(FEET) = ·65.81 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPEFLOW THRU SUBAREA(CFS) 5.72
TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = l2.72
****************************************************************************
FLOW'PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = II
»»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA'**
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1-
I
I
I
I
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 5.72 12.72 3.896 3.29
** MEMORY BANK # 2 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE)
1 64.74 11.50 4.158 34.52
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 70.10 11.50 4.158
2 66.38 12.72 3.896
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (-CFS) 70.10 Tc (MIN.) = 11.50
TOTAL AREA(ACRES) = 37.81
****************************************************************************
FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 2 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 9.36 RAIN INTENSITY(INCH/HOUR) = 4.75
TOTAL AREA(ACRES) = 0.76 -TOTAL RUNOFF (CFS) = 2.53
****************************************************************************
FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 6
»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
============================================================================
UPSTREAM ELEVATION = 114.00
STREET LENGTH(FEET) = 120.01
STREET HALFWIDTH(FEET) = 20.00
DOWNSTREAM ELEVATION = -110.90
CURB HEIGHT(INCHES) = 6.
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 18.50
INTERIOR STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS)
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) = 0.30
HALFSTREET FLOODWIDTH(FEET) = 8.73
AVERAGE FLOW VELOCITY (FEET/SEC. ) 3.43
PRODUCT OF DEPTH&VELOCITY = 1.03
STREETFLOW TRAVELTIME(MIN) = 0.58 TC(MIN) = 9.95
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.565
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6500
SUBAREA AREA (ACRES) = 0 . 33 SUBAREA RUNOFF (CFS) =
SUMMED AREA(ACRES) = 1.09 TOTAL RUNOFF(CFS)
END OF SUBAREA STREETFLOW HYDRAULICS:
3.02
0.98
3.51
DEPTH (FEET) = 0.31 HALFSTREET FLOODWIDTH{FEET) ~
FLOW VELOCITY(FEET/SEC.) = 3.57 DEPTH*VELOCITY =
9.30
1.11
****************************************************************************
FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 9.95
RAINFALL INTENSITY(INCH/HR) = 4.57
TOTAL STREAM AREA(ACRES) = 1.09
PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.51
****************************************************************************
FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = ~1
-----------------------------------------------------------------------~-~--
»»>RATIONAL METHOD ,INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
INITIAL SUBAREA FLOW-LENGTH = 192.80
UPSTREAM ELEVATION = 177.70
DOWNSTREAM ELEVATION = 174.40
ELEVATION DIFFERENCE = 3.30
URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.492
100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.159
SUBAREA RUNOFF(CFS) 0.94
TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF (CFS) 0.94
****************************************************************'************
FLOW PROCESS FROM NODE 143.00 TO NODE 156.00 IS CODE = 6
»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
=============~==============================================================
UPSTREAM ELEVATION =
STREET LENGTH(FEET) =
174.40
926.80
DOWNSTREAM,ELEVATION = 110.90
CURB HEIGHT (INCHES) = 6.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREET HALFWIDTH(FEET) = 18.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 16.50
INTERIOR STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.45
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) = 0.27
HALFSTREET FLOODWIDTH(FEET) = 7.43
AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.15
PRODUCT OF DEPTH&VELOCITY = 1.41
STREETFLOW TRAVELTIME(MIN) = 3.00, TC(MIN) = 14.49
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.581
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF (CFS)
SUMMED AREA (ACRES) = 2.96 TOTAL RUNOFF(CFS)
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) 9.49
FLOW VELOCITY(FEET!SEC.) = 5.85 DEPTH*VELOCITY = 1.85
<? NO 0 E. 15G
***************************************************************** **********
FLOW PROCESS FROM NODE 154.00 TO NODE 156.00 IS CODE = 8
-~----------------------------------------------------------------------~--
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
==========================================================F========== -===~=
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.581 \~~l~~
*USER .SPECIFIED (SUBAREA) : -tY\\5 S\.\~l2.ed
S INGLE FAMILY DEVELOPMENT RUNOFF COEFFI CIENT = . 5500 (! N ock r:Fl-
I SUBAREA AREA(ACRES) 1.26 SUBAREA RUNOFF (CFS) 2.48, / G,)
TOTAL AREA(ACRES) 4.22 TOTAL RUNOFF(CFS) = 8.44 l~Node 1-5
TC (MIN) = 14.49 'Sol Nee. r+ 3~ Iv\-To
S-ro/lM de..,Qi N c:;£:.s.-k.M
befoe. N =k 15G
****************************************************************************
FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>~ COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 14.49
RAINFALL INTENSITY (INCH!HR) = 3.58
TOTAL STREAM AREA(ACRES) = 4.22
PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.44
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 3.51 9.95 4.565
2 8.44 14.49 3.581
AREA
(ACRE)
1.09
4.22
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED -FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 10.13 9.95 4.565
2 11.19 14.49 3.581
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 11.19 Tc(MIN.) = 14.49
TOTAL AREA(ACRES) = 5.31
****************************************************************************
FLOW PROCESS FROM NODE 156.00 TO NODE 159.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
PIPEFLOW VE~OCITY(FEET/SEC.) = 14.8
UPSTREAM NODE ELEVATION = 103.18
DOWNSTREAM NODE ELEVATION = 102.92
FLOWLENGTH(FEET) = 3.38 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPEFLOW THRU SUBAREA(CFS) 11.19
TRAVEL TlME(MIN.) = 0.00 TC(MIN.) = 14.50
****************************************************************************
FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 161.00 TO NODE 161.00 IS CODE = ,7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
===================================================================~========
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 7.11
TOTAL AREA (ACRES) = 0.27 TOTAL RUNOFF(CFS) = 1.62
****************************************************************************
FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE =' 6
»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
============================================================================
UPSTREAM ELEVATION = 114.00
STREET LENGTH(FEET) = 120.78
STREET HALFWIDTH(FEET) = 17.00
DOWNSTREAM ELEVATION = 110.90
CURB ,HEIGHT (INCHES) = 6.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50
INTERIOR STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.20
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) = 0.28
HALFSTREET FLOODWIDTH(FEET) = 7.80
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.03
PRODUCT OF DEPTH&VELOCITY = 0.85
STREETFLOW TRAVELTIME(MIN) = 0.66 TC(MIN) = 5.66
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6:564
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8000
SUBAREA AREA (ACRES) = 0 . 22 SUBAREA RUNOFF (CFS)
SUMMED AREA(ACRES) = 0.49 TOTAL RUNOFF{CFS)
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET)
FLOW VELOCITY(FEET/SEC.) = 3.13 DEPTH*VELOCITY =
1.16
2.78
8.77
0.94
****~***********************************************************************
FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 5.66
RAINFALL INTENSITY(INCH/HR) = 6.56
TOTAL STREAM AREA (ACRES) = 0 . 49
PEAK FLOW RATE{CFS) AT CONFLUENCE = 2.78
****************************************************************************
FLOW PROCESS FROM NODE 163.00 TO NODE 164.00 IS CODE = 21
--------------~-------------------------------------------------------------»'»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
INITIAL SUBAREA FLOW-LENGTH = 277.40
UPSTREAM ELEVATION = 171.90
DOWNSTREAM ELEVATION = 165.42
ELEVATION DIFFERENCE = 6.48
URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 12.427
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.954
SUBAREA RUNOFF(CFS) 0.85
TOTAL AREA(ACRES) 0.39 TOTAL RUNOFF(GF$) 0.85
****************************************************************************
FLOW PROCESS FROM NODE 164.00 TO NODE 162.00 IS CODE = 6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
============================================================================
UPSTREAM ELEVATION = 165.42
STREET LENGTH(FEET) = 683.39
STREET HALFWIDTH(FEET) = 17.00
DOWNSTREAM ELEVATION = 110.90
CURB HEIGHT (INCHES) = 6.
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK
INTERIOR STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
15.50
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.30
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) = 0.26
HALFSTREET FLOODWIDTH(FEET) = 6.83
AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.65
PRODUCT OF DEPTH&VELOCITY = 1.48
STREETFLOW TRAVELTIME (MIN) = 2.02 TC(MIN) = 14.44
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.589
*USER SPECIFIED (SUBAREA) :
SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500
SUBAREA AREA (ACRES) = 2.47 SUBAREA RUNOFF (CFS) 4.88
SUMMED AREA(ACRES) = 2.86 TOTAL RUNOFF(CFS} = 5.72
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) 8.77
FLOW VELOCITY(FEET/SEC.) = 6.46 DEPTH*VELOCITY = 1.95
*****************************************************************~**********
FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 14.44
RAINFALL INTENSITY (INCH/HR) = 3.59
TOTAL STREAM AREA (ACRES>' = 2 . 86
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.72
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 2.78 5.66 6.564
2 5.72 14.44 3.589
. RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM . RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 5.90 5.66 6.564
2 7.24 14.44 3.589
AREA
(ACRE)
0.49
2.86
RATIO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) = 7.24 Tc(MIN.) =
TOTAL AREA(ACRES} = 3.35
G. NoDE 1<02.
14"~
****************************************************************************
FLOW PROCESS FROM NODE 162.00 TO NODE 159.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
==================================================================~=========
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.,0 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 8.2
UPSTREAM NODE ELEVATION = 104.05
DOWNSTREAM NODE ELEVATION = 103.42
FLOWLENGTH(FEET) = 29.38 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES
PIPEFLOW THRU SUBAREA(CFS) 7.24
TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 14.50
1
****************************************************************************
FLOW 'PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
'NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 7.24 14.50 3.579 3.35
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE)
1 11.19 14.50 3.580 5.31
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 18.43 14.50 3.580
2 18.43 14.50 3.579
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 18.43 Tc(MIN.) = 14.50
TOTAL AREA(ACRES) = 8.66
*********************************************************~******************
FLOW PROCESS FROM NODE 159.00 TO NODE 159 . 00 IS CODE = , 12
------------------------r---------------------------------------------------
»»>CLEAR MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 48.44
GIVEN PIPE DIAMETER(INCH) =
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME(MIN.) 0.09
99.87
MANNING'S N = 0.013
54.00 NUMBER-OF PIPES
110.14
TC(MIN.) = 11.58
1
****************************************************************************
FLOW PROCESS FROM NODE 165.00 TO NODE 166~00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 54.0 INCH PIPE IS 34.7 INCHES
PIPEFLOW VELOCITY(FEETjSEC.) 10.2
UPSTREAM NODE ELEVATION = 99.87
DOWNSTREAM NODE ELEVATION = 99.84
FLOWLENGTH(FEET) = 4.75 MANNING'S N = 0.013
GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES 1
PIPEFLOW THRU SUBAREA(CFS) = 110.14
TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 11.59
****************************************************************************
FLOW PROCESS FROM NODE 166.00 TO NODE 100.00 IS CODE =
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE««<
4
============================================================================
DEPTH OF FLOW IN 54.0 INCH PIPE IS 23.3 INCHES
PIPEFLOW VELOCITY(FEETjSEC.) 16.8
UPSTREAM NODE ELEVATION = 99.64
DOWNSTREAM NODE ELEVATION =
FLOWLENGTH(FEET) = 112.77
GIVEN PIPE DIAMETER(INCH) =
PIPEFLOW THRU SUBAREA(CFS)
TRAVEL TIME(MIN.) = 0.11
97.00
MANNING'S N = 0.013
54.00 NUMBER OF PIPES =
110.14
TC(MIN.) = 11.70
1
+--------------------------------------------------------------------------+ I I END NEIGHBORHOOD 1.17 (NODE SERIES 100)
I +--------------------------------------------------------------------------+
1
====================================================== ====================
END OF STUDY SUMMARY:
PEAK FLOW RATE(CFS) =
TOTAL AREA (ACRES) =
110.14
55.95
Tc (MIN.) = 11.70
======================================================
END OF RATIONAL METHOD ANALYSIS
d NODE. 100 Ci~ No~)e-br-hDN &s..in;
====================
I
I
I
I
I,
I
I
I
I
I'
I'
I
I
I
I
I
I
I
I.
VIlli
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Drainage Study
La Costa Greens -Neighborhood 1.16
CHAPTER 8
HYDROLOGY EXHIBITS
Exhibit 8.1
Site Exhibit
AH djg H:\REPORTS1049O\7t'A02.dQC
w.o.049o.11 9/BI2006 1:42 PM
'-"J "JIII '[_IJ..:I_~:-'_~,-_I-_ -------------•. ----~.}. --. ~·=.t.-f-11 I . t ... *.~~~ .... ~_-..
~
~
NOT TO SCALE
LEGEND
CONNECT TO EXISTING
STORM DRAIN SYSTEMS •
r ,=::;P"~"",r.~':""·::':~· 1
PREPARED BY:
_ HUNSAKER
_ PROPOSED STORM ORAIN
EXISTING STORM DRAIN
=rilll== ===== 1&1 ~,~~,~?~~~!ES
PlANNlNG 10119 IIUl:Mtkcns Site.!!! ~Ql== == INQN£IKING San 01,,0, Ca 92121
SURIltYING IOIl(asulsso~soo· fl((USUISSU.1414
~
LA COSTA GREENS NEIGHBORHOOD 1.16
SITE MAP FOR
LA COSTA GREENS
NEIGHBORHOOD 1.16
CITY OF CARLSBAD, CALIFORNIA
I
l[r~ ..,
I
t',
o \ /-
/ t / , .. 4 ' \. / ' . . ~'~ -,,':>
( .... ~."} """
SHEET
1
OF
1
n.\".,.,"\-.JI. . ..I\"-,-r ..... 14C',..... ""' .. nn nIIU"Ir nnn,..' .... 1'\" .,1\1\1> •.. ~. " ..
I
I
I
I
I·
::;1. .
I
I
I
I
I
I
1
I
I
1
I
I
I
I'
. Drainage Study
La Costa Greens -Neigh~orhood 1 .16
CHAPTER 8
HYDROLOGY EXHIBITS
Exhibit 8.2
Developed Condition Hydrology Map
AH djg H:IREPORTS\Q.lso\7.\A02.doc
w.o.0400.7' 9I1lI2006 ':42 PM
o 150 300 450
I I i
SCALE 1'-150'
CITY OF ENCINITAS
VICINITY MAP
NTS
OFFSITE RUNOFF
Ql00 =28. gefs.
A= 10. ae.
Tc =10.3 min .
. j ::" . ,. ,
: '~.
p, .
.':!,~'.
J.
" . ..,.' .. _--
..
OUTFALL BASIN
quo -15. 7cfs.
A= 9.4 OC.
Ta =14.6 min.
H&A 10125/2004
LEGEND
WATERSHED BOUNDARY
(WATERSHED SUB-BOUNDARY
\ INITIAL SUB-AREA -------
I ~ NODES
FLOWLINE .--.. --... --, .. ~ ...
,
FOR: EXISilNG CONDITION HYDROLOGY MAP SHEET
1 HUNSAKER
& ASSOCIATES LA COSTA GREEN .......,
NEIGHBORHOODS 1.15, 1.16, g 1.17
CITY OF CARLSBAD, CALIFORN. tI',
OF SAN DltCO, INC.
PlANNING 10179 Huennekens Street
1 ENGJNHRING San Diego. Ca 92121
, SURVEYING PH(85S)55B-4500· fX(8s8)sS8-1414
,
-,; 1 ; , i:)" ..L:
/'
/
\
\
~
\
\
\", ~,
\
\
\ '. \,
\ \
\ \ "-
EXISTING DEVELOPMENT
\
o 60 120:.-0 __ ~lBO \\\'" ~ I .. ,
SCALE 1'-60' \
\
\
LEGEND
PROJECT BOUNDARY
WATERSHED BOUNDARY
FLOWLINE
WATERSHED NODE ID
DRAINAGE DITCH 10
OUTFALL LOCATION
PROPOSED DITCH
---- -"----
--.. ------------
C) C) C) C) c::>
EXISTING STORM DRAIN =-. i§--_o' ,--=
PROPOSED STORM DRAIN =-~-~
SEE SHEET, 1,
I :' SEE SHEET 3
PREPARED BY:
HUNSAKER
& ASSOCIATES
SAN DJECO, INC.
PlANNING 10179 H!./lWIekens Street
ENGINEERJNG San Otego. Ca 92121
SURVEYING PH(855)558-4500· f}((U58)5S8-1414
''',\ \ ,\.\ \ \.~ ,
\\
"" \\
\
{)
r f ~ ! (
( /
) !
( f , ,
i J , I
) 'ri t
f ~ J ; /
f ~_/ I
; I / !! / j' \ /
i '-/ f
! \ [ f I j 1\ '
j I I ! ! f J J! i/ \{ ! / !~ l' flJ ___ ~ //!r;~ AI-I~;~!~;r:N/1 ~t
4Y,..., y/ II ~~/
OUTFALL BASIN #1
Q'00 72.6 cfs.
A= 50.5 ac.
Tc = 21.6min.
Q ~~~~ON = 83.7 cfs
QAFTER = 57.0 cfs DE1ENlJON
MASS-GRADED HYDROLOGY MAP FOR SHEET
LA COSTA GREENS 2
NEIGHBORHOOD 1.16 OF
3 CITY OF CARLSBAD, CALIFORNIA
N --I N on '" '" "'" 6 ,.
-.
\
\ -.
\ ,
'.
\ , , ,
\
\ , -. , ,
, , , ,
\
-.
\\ ~ \ , \
\\
\
\
\
\ ,
\ ' \ \ \\ \\ , -. \ -. \\ "1 \ 't~ ~ ~ \ , ,
\ \ ,. , \ \
, <
\ \
'\ '
\
\ ,
\ ,
~~~ ~------~~------~--... \
\ , ,
, , ,
-. , ,
,
, , ,
•
, <
~ \ , \ < , ; \ ~ \ , \ -. . ~ , -. . ~" " ! ' -. ' . , , .
1 " 'f:.,.J
,
\ ,
\ • \
\ \
I \ • \ ,
\ 1
1 \
\ ,
\ ,
\ , , • -.
\ , ,
;
\ ,
\
\ -.
.
\ .
\ < , , , .
,
-. , ,
\
\ . ;
. •
,
\
; ,
\
. i
-.
\
\
\ ,
,
\
\
i -.
\
, ,
\ -.
\
\
-.
\
\
\
\
\ , ,. t
;
\
\
. , , \
,. ~ . ; , \
-.
j \ ,.
\ .
\
\ •
\
\ , , , .
\ ,
o 60 120 180 ~ I
SCALE 1'=60'
\ , • \
\ \ ,
\
\
\ .
\
\
\
\ \
\ ,
-. . -.
\
\
\ -. \
\ ,
• ; ,. ~
\ ,
,
\
;
\ ,
LEGEND
PROJECT BOUNDARY
WATERSHED BOUNDARY
FLOWLINE
WATERSHED NODE 10
DRAINAGE DITCH 10
OUTFALL LOCATION
PROPOSED DITCH
EXISTING STORM DRAIN
PROPOSED STORM DRAIN
--------
_. __ ._ ..
o 0 000
~= .. ~-.~~. "'-~
=-~ -=
\ " .\. ;
SEE SHEET 2
. -
(OUTFALL BASIN
,·----·-¥-·f \ ,
! H i
EXISTING PA 1.1
¥ --..... -,
0 100 =4.2 efs.
A= 1.5 ae.
Te = 8.3 min.
H&A 6/13/2006
~'" OUTFALL BASIN #4'\
0'00 7.8 cfs. ~~H-h--':::=----:---::----l 404 A= 2.3 ac.
Tc = 8.5 min .
r .
\
(
)
~.~ )
( OUTFALL BASIN #3
. Qf(£1.9cfs ..
A= 0.3 ac.
Tc = 6.0 min.
/ I .J I! _ i f /'
~ i '
i ~ r t: /
• PROJECT uJ,.J·+,~ .
\
PREPARED BY: MASS-GRADED HYDROLOGY MAP FOR
HUNSAKER
& ASSOCIATES
SAN DIECO, INC.
PlANNING 10179 Huennekens Street
ENGINEERING Sari DIego. Ca 92121
SURVEYING PH(858}558-4500· FX(858)55&1414
LA COSTA GREENS
NEIGHBORHOOD 1.16
CITY OF CARLSBAD, CALIFORNIA
(
SHEET
3
OF
3
R.\0374\8.Hyd\0374$H03-FINAL ENGR MGlOO.dwg[ OJJo.n-04-2005,1l,24
'" --,
N '" '" '" ...
<5
;;f
\
\ (
/
f-
Z
W :::;;;
0.. o -l ~
W o
",
\,
'" --l ---CAt
019;: «
___ "f-
Z
W o
(f)
W
0:::
(!)
Z
f-
(f)
X
W
\ I I , , I 1 , , ., ,
te "
315
, , '/ II ; II ..
EXISTING LA COSTA GREENS
~;;;;;b~~:::~~ NEIGHBORHOOD 1.17
/ .;,~--~-,-, ~~r-r:5:-v'
13'9 4.
X
EXISTING LA COSTA GREENS
NEIGHBORHOOD 1.15
\ ,
','
i
" 111
I
!
I
f
I
!
LEGEND
PROJECT BOUNDARY
WATERSHED BOUNDARY
LOCATION ID NODE
DRAINAGE DITCH ID
PROPOSED STORM DRAIN
EXISTING STORM DRAIN
DRAINAGE DITCHES
NOTES:
* Denotes Node ID from
A Denotes Node ID from
--------
-----------------
===![Q]===
c:::) c:::) c:::)
» » »
o ~ 100 1~ ~SCALE 1"=50·1:' __ ~
Neighborhood 1.16 Mass-Graded Hydrology Study.
Neighborhood 1.17 Hydrology Study.
, , ,
, '
-" -\;
H&A 6123!2008
\
, , '
, '
'26 4
~ • , ,
1 , , , ' , ,
PREPARED BY:
HUNSAKER
& ASSOCIATES
SAN OI[CO, INC.
PLANNING 10179 Huennekens StreE!t
ENGINEERING San Diego, Ca 92121
SURVEYING PH(858)558 4500-FX(858)551J.1414
r !
I
I
"
r MASTER TrNTA"VE ~ _ MAP BOUNDARY
'" '-""-. ""-.
LA COSTA GREENS NBGHBORHOOD 1. :.. -~ \
L,A
ESTRELLA DE MAR ROAD '''c'\r
"'1 A 0°;:;1
ALGA ROAD
VICINITY MAP
[714,91
~
EXISTING
DETENTION
BASIN
, ; ( ) : ,
NTS
1r~r<...,jFj :f=,o'f:::
( " h'fL-fJ"r , , , '
\ \ , ' , '
\ \ , ,
1 "
1
\
OUTFALL:
0100= 111.4 cfs.
A=56.2ac.
Tc=11.6min.
" -.'J ...
OUTFALL:
0 ,00 = 2.1cfs.
A=O. 7 ac.
Tc =9.2 min.
, ,
! tel-
,
, x.5
/ /' \ ,
/
\ \
j \ /\. 'v
! ,
\
/
/ /'
/
) /
/ /
,/ I /
" i /
DEVELOPED CONDITION HYDROLOGY MAP SHEET
LA COSTA GREENS
NEIGHBORHOOD 1.16
CITY OF CARLSBAD, CALIFORNIA
1
OF
1
~R~~:03i4\&H~d\()37415H15-FE"DEV1DO,DWG[ jJun-23-2008: 10: 00
" I
" c, , ,
,--
3c