Loading...
HomeMy WebLinkAboutCT 05-11; THE BRIDGES AT AVIARA; PRELIMINARY DRAINAGE REPORT; 2008-07-01~j I 'I I ,I ' ' I I I I I I I I I I I I I -'I, ,;,1 -- CTo5- PRELIMINARY DRAINAGE REPORT THE BRIDGES AT A VIARA City of Carlsbad, CA July 2008 CT 05-11 Prepared For: RECEIVED JUL ~ n ?'~q CITY OF CARLSBAD PLANNING DEPT ACACIA INVESTORS, LLC 1650 Hotel Circle North, Suite 200 San Diego, CA 92108 Prepared By: PROJECT DESIGN CONSULTANTS Planning: Landscape Architecture I Environmentall Engineering I Survey PDe Job No. 3330 Prepared by: C. Pack, P .E. Under the supervision of Debby Re ,PE RCB 56148 Registration E4pires 12/31108 701 B Stros\, Suite 900 San Oieoo, CA 92101 619.235.6471 Tel 619.234 ;0349 F~x I I I I I I I I I I I I I I I ,1 I 'I I DATE: July 30, 2008 FILE: 3330.00 TO: City of Carlsbad FROM: C. Pack, Project Design Consultants SUBJECT: Bridges at A viara Drainage Report, Plan Check, Response to review comments This report was revised to accommodate City comments dated May 19., 2008. Please see Appendix 8 for the response to City comments. I II I I I I I I I ,I I I I I I I I 'I I TABLE OF CONTENTS· 1. INTRODUCTION ........................................................................................... 1 •••••••••••••••••••••• 1 2. EXISTING AND PROPOSED DRAINAGE PATTERNS AND IMPROVEMENTS .......... 2 2.1 Existing Drainage Patterns ........... , ......................................................................... , ........ 2 2.2 Proposed Drainage Improvements .......................................................... II ...... " ..... ! ........ 3 3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS ...................................... 5 3.1 Hydrology Criteria .................................................................. " ...................................... 5 3.2 3.3 3.4 3.6 3.7 Hydrologic Methodology f ••••• I ••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••••••• , •••••••••••••••••••••••• 5 Description of Hydrologic Modeling Software .............................................................. 6 Hydrology Results .~tr ... ;.:s:s.f.? ........................................................................ ,. ........ 6 , Comparison of Proposed Flow Rates in Line A to As-built Flows ................................ 8 Detention Volun1e Estin1ates ., ..... , ......... , .............. , ................... , ......... , ......................... 1'0 4. HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS ..................................... 11 5. RELEASE OF LIABILITY ....... , ...... , ........................ , .. , .................................................... , ... -12 6. CONCLUSION .... , .... , ................ , .......................................................................................... 12 FIGURES Figure 1: Project Vicinity Map ....... , .... , ................................. , ... ' ... , ... , ........................................... 1 TABLES Table 1: Hydrology Criteria ................ " ................ , ........................................ , ......................... t •••••• 5 Table 2: Hydrology Results for Lots 1 and 2 .................................................................................. 7 Table 3: Hydrology Results for Lot 3 Alternatives ........................................................................ 8 Table 4: Detention Basin Suitln1ary for Lots 1 and 2 ................................................................... 11 Table 5: Detention Basin Summary fot Lot 3 Alternatives .......................................................... 11 I I I I I I I I I I I I I I I I I 'I I 1 2 3 4 5 6 7 8 APPENDICES Isopluvial Maps Existing Conditions Rational Method Computer Output Proposed Conditions Rational Method Computer Output Preliminary Detention Calculations Preliminary Energy Dissipation Calculations Storm Drain As-builts and Excerpts from Poinsettia Place Drainage Report Drainage Exhibits A -Existing Conditions Hydrology Map B -Proposed Conditions Hydrology Map C -Backbone Flow Comparison Exhibit Responses to City Comments I I I I I I I I I I I I I I I I I 'I 'I 1. INTRODUCTION This drainage report supports the preliminary design of the proposed storm drain improvements associated with The Bridges at Aviara, (Project). The project is located in the City ef CarlSbad and is bound generally by Cassia Road to the north, undeveloped land to the south,' Ambrosia Lane to the west, and EI Camino Real to the east. The site is located between the existing western terminus of Poinsettia Lane and the existing eastern terminus of Poinsettia Lane. The total project site consists of 60.9 acres. Figure 1 shows the vicinity map for the project. Figure 1: Project Vicinity Map P:13330IENORlREPORTSIDRAINlREPORTl3330DR·4th,doc 1 I I I I I I I I 'I I I I I I I I I 'I I The purpose of this report is to determine hydrologic impact, if any, to the existing City of Carlsbad storm drain facilities or natural drainage, and provide peak 100-year discharge values for existing and proposed conditions. The drainage analyses presented herein reflect a Tentative Map level-of-effort, which include peak 100-year storm event hydrologic analyses using relative street and lot grades. Hydraulic analyses for detention, inlets, pipe inverts and HGL's will be provided during final engineering. Therefore, the purpose of this report submittal is to acquire from the City: 1) concept approval of the proposed storm drain layout, 2) approval of the methodology used in the evaluation of the Project storm drain system hydrology, and 3) identification of critical path drainage issues that need to be addressed during final engineering. The Project will meet State NPDES construction and municipal stormwater permit requirements. The construction phase BMPs associated with the Project will be addressed in the Grading and Erosion Control Plans and the SWPPP. The post-construction BMPs for the Project are currently being developed in conjunction with the overall Water Quality Technical Report (WQTR) for The Bridges at Aviara project. The final post-construction BMP design will be provided during final engineering. 2. EXISTING AND PROPOSED DRAINAGE PATTERNS AND IMPROVEMENTS The following sections provide descriptions of the existing and proposed drainage patterns and improvements for the Project. 2.1 Existing Drainage Patterns The site currently consists of mostly undeveloped land with some agricultural fields. Slopes vary from moderate to steep and cover is brush with some cultivated agricu1tural fields. There are no drainage structures located on the property. The only utilities are SDQ&E overhead power lines crossing near the southwest corner of the site. Drainage is divided generally ~y a ridge line running from southwest to northeast through the northwest corner of the project site. Under existing conditions approximately 11.5 acres within the property boundary drains westerly from the ridgeline. A small sliver of area drains to the west in the southwest corner of the site. P:13330\ENORIREPORTS\DRAIN\REPORT\3330DR·4t11,doc 2 I I I I I I I I I I I I I I I I I I I The rest of the area drains to a natural drainage channel located in the middle of the property and then drains to the south. The site accepts a considerable amouht of offsite nm-on from upstream properties, including a portion of the existing limits of Poinsettia Lane. In addition to the ortsite flow through the site, there are offsite areas along the northern property boundary that contribute runoff to the site. The off-site existing City improvements consist of street curb and gutter, curb inlets and. a main line storm drain in Poinsettia Lane that heads south along the westerly property boundary. That existing storm drain, built per Drawing 341-5 (CT 92-3), collects the project drainage to the west of the ridgeline. The drainage heading to the very northwest property comer enters -an existing sump and drains to Storm Drain Line A via a lateral (Storm Drain Line Q per sheet 8, Drawing 341-5A, see Appendix 6). The rest of the project area to the west of the ridgeline flows overland and enters Storm Drain Line A farther downstream. The flow enters Line A at two locations: an F-type catch basin located on the east side of the intersection of Calliandra Road and Ambrosia Lane, and the 6'xlO' box culvert tmdemeath Ambrosia Lane, which doubles as an animal crossing. Approximately 140 feet ftom the culvert outlet, the drainage is picked up via a public Storm Drain Line K and then piped into Storm Drain Line A, as shown on sheet 9 of Drawing 341-5 (CT 92-3, see Appendix 6). Storm Drain Line A then empties to the south of Calliandra Road and discharges to the north end of the A viara golf course. The rest of the project area drains to the natural drainage channel traversing the site. Downstream of the project boundary, this runoff drainage flows south toward Aviara Parkway. See Exhibit A for the existing conditions hydrology map. In order to adequately compare existing flows to proposed flows at each of the project outfalls and to provide a valid comparison, the limits of the existing drainage boundaries match the limits of the proposed drainage boundaries. This was needed because of the large number of drainage outfalls, and lack of concentration points in the pre-developed condition. 2.2 Proposed Drainage Improvements The proposed project consists of building a multi-family residential development 'consisting of multiple buildings with the associated landscaping, paving, storm drain improvements, utilities, l':13330IENORIREPORTSIDRAfNIREPOR1\3330DR·4th,doc 3 I I I I I I I I I I I I I I I I I I I and some uncovered parking. The northern development (Lots 1 and 2) is a senior housing development and the southern development (Lot 3) is a small senior affordable housing development. Lot 3 is also being considered for a different site plan as a multi-family development, and this site plan is considered "Project Alternative A" for Lot 3. Drainage calculations for both of the Lot 3 site plans are included herein, to support either development alternative. For the senior housing on Lots 1 and 2, all of the residential buildings will have one level of underground parking except for the two buildings at the northeast comer. These two buildings will be elevated and the garages will be at grade. It is assumed that for all of the Lot 1 and 2 senior housing, the garage floor will drain to the sanitary sewer, since the site will be designed so that storm runoff will not enter the garages. Therefore, since underground parking will preclude muon, the only drainage required in the garages will be for nuisance flows and spills, which can be connected to the sanitary sewer. The project street improvements include the extension of Poinsettia Lane. Part of the extension will include a bridge over the canyon to the east of the proposed housing. The on-site drainage improvements consist of a series of building down drains, private streets, gutters, curb inlets, catch basins in landscaped recreation areas that all tie into an underground storm drain system. Flow is conveyed to outlets at existing natural canyon locations, or into backbone storm drain systems. Detention basins will be located at the outlet pOints where needed to provide the necessary reduction in peak discharge back to the existing condition peak discharge. See Exhibit B for the proposed conditions hydrology map. The area just north of the project and south of Cassia Road is being entitled by Hunsaker and Associates (Poinsettia Place, CT 04-10). This area will drain to the lateral at the existing sump location at the northwest comer of the project via a proposed storm drain underneath the extension of Poinsettia Lane. The 100-year maximum discharge and tributary area from Hunsaker's preliminary drainage report (dated April 28th, 2004) was used in the analysis included hel'ein to account for the future condition. It is unknown at this time if Poinsettia Place will be built prior to this project, so the ultimate condition flowrate was taken from the Hunsaker report and used in the overall analysis for both existing and proposed conditions. See Appendix 6 for excerpts from the Poinsettia Place preliminary drainage report. P:\3330\ENOR\R.EPORTS\DRAlN\REPORT\3330DR·4th,doc 4 I I I I I I I I I I I I I I I I I I I 3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. 3.1 Hydrology Criteria This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. Also included is a description of the computer model used in the computations. The drainage basins were delineated using available topography and the preliminary proposed grading layout for the project. Table 1 summarizes the key hydrology aSStIDlptions and criteria used for the hydrologic modeling. Table .1: Hydrology Criteria Existing and Proposed Hydrology: 100-year storm frequency Soil Type: Hydrologic Soil Group D { Land Use / Runoff Coefficients: Based on criteria presented in· the 2003 Countx of San Diego Hxdrologx Manual. Rainfall intensity: Based on intensity duration frequency relationships presented in the 2003 Countx of San Diego Hydrologx Manual. 3.2 Hydrologic Methodology The Modified Rational Method was used to determine the 1 OO-year peak discharge flows for the design of the storm drain improvements. The goal of the Project hydrology analysis was to: • Determine existing and design peak 100-year flows for the sizing of the onsite storm drain system gutters, curb inlets, catch basins and underground storm drain sy~tem that convey flow to the discharge locations. From an analytical perspective, the Project hydrology was prepared using relative lot and street grades. P:13330IENORlREPORTSIDRAINlREPORT\3330DR·4th.doc 5 I I I I I I I I I I I I I I I I I· I I • Verify that the Project does not adversely impact the existing City storm drain improvements or natural drainage. A comparative analysis was performed between the existing peak 100-year discharge and project peak 100-year discharge at various locations. For results of the analysis see Exhibit A and B for existing and proposed conditions hydrology maps, and Appendices 2 and 3 for existing and proposed conditions Rational Method computer output. 3.3 Description of Hydrologic Modeling Software The Modified Rational Method was used to determine the 100-year storm flow for the design of the storm system. The Advanced Engineering Software (ABS) Rational Method Program was used to perform the hydrologic calculations. This section provides a brief explanation of the computational procedure used in the computer model. The AES Modified Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models for each interior watershed and linking these sub-models together at confluence points creates the node link model. The intensity-duration-frequency relationships are applied to each of the drainage areas in the model to get the peak flow rates at each point of interest. 3.4 Hydrology Results In general, the Project hydrology results presented herein were used to 1) verify that the project does not adversely impact the existing City storm drain system or natural drainage, and 2) determine where detention was necessary. Storm runoff from the Project will be collected and conveyed to several locations. The off site area to the north of the site (from Node 100 to 111) is unchanged and will be intercepted at the edge of the site by a brow ditch. The drainage will pe collected in a brow ditch and discharged into the proposed Poinsettia Lane storm drain system in the northwest corner of the site that drains to the backbone Storm Drain Line A. No detention of this· flow is required. P:13330111NGRlREPORTSIORAINIREPORT\33300R·4th,doc 6 I I I I I I I I I I I I I "I I I I ~I I The drainage in System 300 will be piped to the proposed detention basin near Building 8. The proposed discharge for System 500 and System 650 (or System 600, if the project alternative is selected) will also require detention. Tables 2 and 3 suml?arize the hydrology results for the project outfalls for the existing and proposed conditions. Table 2: Hydrology Results/or Lots 1 and 2 EXISTING CONDITIONS PROPOSED CONDITIONS COlltrih. Q.olltrih. Poi1lt o(Jllterest Q100 Area Area (Deser/ntioll ) S~tem Notle(sl tml [geresl Sj!§tem Notle(.<;) Q100 (efs) [geresl Northwest Area System System (drains to existing 100 165 13.1 9.98 100 149 25.5 22.71 backbone Storm System System Drain Line A) 130 149 19.7 20.06 200 230 12.6 3.49 System 190 200 5.5 2.5 Total at outfall= 38.3 32.54 38.1 26.2 52.8 System System (undetained), 210 220 10.3 5.09 300 399 7.9 (detained) 13.37 Lot 1 Southwest & System System 120 180 23.2 14.58 900 920 5.1 0.99 Southeast Area System (drains to canyon of proposed bridge) 400 470 18.7 3.88 18.7 System (undetained), 500 570 1.6 (detained) 7.66 System 700 705 0.2 0.08 Total at outfall= 33.5 19.67 33.5 25.98 P:13330IENORIREI'ORTSIDRAJN\REPORT\3330DR·4ul,doc 7 I I I I I I I I- I I I I I I I I I I -I Table 3: Hydrology Results/or Lot 3 Alternatives PROJECT ALTERNATIVE 'A' PROPOSED CONDITIONS (pROPOSED CONDIl'lONS) EXISTING CONDITIONS (Sen lor Affordable) (Multi-family) QJ.JJJ..~ ~ !.iJlJJ1lJJJ... i!.aiJJ.laU!!tlwJ. d.WJ.. dwL Co'l!§.g.1:ifi.liaul ~ f:!!JJkfJl f£bl lmul SJ!J1lttL f:!!JJkfJl QlQeC£Ctl lmul Sxsl!lL f:!!JJkfJl QlOO C£C!'l fn£Wl Lot 3 Arcn (drains to System System west townrds Ambrosin 230 235 2 0.79 800 804 I.S 0.24 NIA . . . Lnne) Totul at outfall" 2 0.79 1.5 u.~" 0 u 14.0 12.2 Lot 3 Aren (drains to System System (undelllined). System (Wldelllincd). cast towards nntural 240 250 5.1 2.28 650 666 5.1 (detained) 2.74 600 630 5.1 (detilined) 2.96 drninQge) Totnlnl outfall-5.1 :l.:lH 5.1 2.74 5.1 2.96 Tables 2 and 3 compare the existing and proposed peak flow rates for each outfall. Each outfall consists of one or more drainage systems, and the flow rates of each of the drainage systems are totaled to provide an adequate comparison between existing and proposed conditions. Drainage to Public Storm Drain Line A does not require detention due to the reduction of drainage area in the proposed condition. For the areas draining into the canyon, two detention areas are provided so that the combined flows of the detained rates exiting the basins plus the peak flow rates from the other outfalls do not exceed the pre-development peak flow rates. A large detention basin will be provided near Building 4. The detention basins near Building 8 for System 500 will be a dual water quality/detention basin. Lot 3 runoff will be detained with a small detention basin, located near the southeast corner of the pad. I The proposed Poinsettia Lane storm drain located north of the property bOll1ldary will be constnlcted per the Poinsettia Place Tentative Map (prepared by Hunsaker and Associates), unless that project is stalled. In that case, this project will need to do the offsite improvements. 3.6 Comparison of Proposed Flow Rates in Line A to As-built Flows The hydrology results presented herein show that the proposed condition peak flow rate across the westerly project boundary will not increase above pre-project condition peak flows. However, the City has requested additional explanation regarding the capacity of the existing Storm Drain Line A along the westerly property line, since flows are being added to it from the project and the new extension of Poinsettia Lane. Due to the proposed lug connection (Node. P:\3330IENOR\R£PORTSIDRAIN\REPORT\3330DR·4th.doc 8 I I I I I I I I I I I I I I I I I I I 225), much of the onsite runoff will enter Line A farther upstream than it does in the pre-project condition. However, because Storm Drain Line A was built with water tight joints at that location, and the proposed lateral peak flow rate is so small in comparison to the main line peak flow, it is reasonable to assume that there will not be any significant hydraulic impacts. Therefore, reanalyzing the hydraulics of Storm Drain Line A would not be warranted. The backbone Line A peak flow rates, as shown on the as-builts, do not directly -correlate to the peak flow rates in the drainage reports available in the City's files. Only two reports were located for the Aviara Phase III project. The first report, Hydrology Study for Aviara Phase IlL CT 85-35, prepared by P&D Consultants, was last revised April 2, 1996. This study contains hydrology information for the mass-graded condition of the Phase III area. However, it is obvious that changes in the drainage design (due to construction changes and upstream storm drain improvements) occurred after the report was last revised. The second report, Hydrology Study and Inlet Calculations for Aviara Unit 1, Phase III, prepared by Leppert Engineering Corporation, is dated April 19, 1999. Updated hydrology infonnation is not included in this report, however, it does document that a total of 17 cfs from properties to the east was estimated as the design flow for the F-type catch basin that ties into Line A. Exhibit C highlights the discrepancies in peak flow rates between the reference reports and the as-built plans. The as-built peak flow for Line Q, at the junction with Line A, is listed as 102.6 cfs. This is obviously incorrect, as the difference in the flow on the as-builts at the-jtmction is only 28.6 cfs. (The flow listed on the downstream pipe, minus the upstream pipe, minus the other lateral, is only 28.6 cfs). Apparently the flow rate for Line Q was never updated on the as-builts to account for the construction of the Cassia Road storm drain, which reduced the tributary area to Line Q. Therefore, it can be assumed that the combined capacity allowable into Line A from the project is 45.6 cfs (28.6 cfs assumed from the as-built information, and 17 cfs from the Leppert report.) , The total proposed peak flow into Line A is the sum of System 100 (25.5 cfs into Line Q), System 200 (12.6 cfs into Line A), and the downstream offsite area that drains to the F-type catch basin. The offsite area to the F-type catch basin, as shown on Exhibit C, is 1.66 acres. P:\3330IENORIREPORTSIDRAIN\REPORTl3330DR·4tll,doc 9 I I I I I I I I I I I I I I I I I I I With an assumed nmoffrate of 1.7 cfs/acre, the offsite area would generate 2.8 cfs. That would bring the total proposed flow to 40.9 cfs, well below the 45.6 cfs of allowable capacity. Therefore, the existing Line A will have enough capacity for the proposed condition peak flow rates. 3.7 Detention Volume Estimates The results in Tables 2 and 3 are dependent on sufficient detention volumes to attem1ate the proposed peak flows so that the results are less than or equal to pre-development peak flow rates. The detention basin routing and design of the outlet structures will be performed during final engineering. However, detention volume estimates are needed at this preliminary stage to verify the project has sufficient detention volume. For this reason, Haestad Method's PondPack software was used to determine the detention volume required to attenuate the peak flow down to the required rate. Refer to Appendix 4 for the calculations. For each drainage system going into a detention basin, the peak inflow hydrograph was generated with Rick Engineering Rational Method Hydrograph Generator. This program develops a synthetic hydro graph per the 2003 County Hydrology Manual by using the results of the AES output. The inflow hydro graph was then input into PondPack and the curvilinear estimate was used to determine the volume required to attenuate the flow down to the target rate. Tables 4 and 5 summarize the detention volumes required and detention volumes provided per the tentative map. Note that during final engineering, a portion of the drainage from the building pad near Building 6 may be changed to connect through building down drains and/or area drains to Node 535 to alleviate the amount of detention required for System 300. !':13330IENORIREJ>ORTS\DRA1N\REJ>ORTl3330DR·4th,doc 10 I I I I I I I I I I I I I I I I I II 'I Table 4: Detention Basin Summary for Lots 1 and 2 Detention Lgcation gf Drainage Volume Water QualitX Volume Detention Basin SYstem Reauired Volume Reauired Provided NQtes: . Basin near N/A, nota WQ Assume 5' de~p ofW~ter Building 4 System 300 0.93 basin 1.0AF storage, l' allowance for spillway Dual w~ter quality/detention basin, Interconnected oversized to allow for basins near System 500 0.5 0.21 AF 1.0AF water quality volume in Building 8 addition to detention volume, l'allowance for spillway Table 5.; Detention Basin Summary for Lot 3 Altematives Detention Drainage Volume Water QualitX Volume DescriDtion Svstem Reauired Volume Reauired Provided Notes: Senior Affordable N/A, not a WQ Assume 4' deep of Site plan, Basin in System 650 0.11 AF basin 0.12 AF water storage, I' Lot 3 allowance for spillway Project Alternative 'A', N/A, not a WQ Assume 4' deep of Multi-family site System 600 0.11 AF basin 0.15 AF water storage, I' plan, Basin in Lot allowance for spillway 3 4. HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS Hydraulic calculations will be performed during final engineering. However, preliminary energy dissipation calculations at the project outfalls have been completed to show whether or not the outlets provide enough energy dissipation to minimize scouring. For the five canyon discharge locations, an impact basin for energy dissipation is proposed. The energy loss through the unit is calculated according to the HEC-14 methodology. See calculations in Appendix 5. The veloGity at the outlet of the box is computed and then the riprap class is sized per the velocity table on Regional Standard Drawing D-40. P:13330\ENOR\REPORTSIDRAlN\REI'ORT\3330DR·4th,doc 11 I I I I I I I I I I I. I I I. I I. I I I 5. RELEASE OF LIABILITY Due to the location of the underground parking entrances for the podium buildings, sUmp inlets are required to pick up the runoff from the driveway ramps. In some locations the surrounding grading does not allow for an emergency overland release. In other locations, Driveway G for example, the developer directed that no emergency overland release be created. In lieu of an emergency overland release, PDC has designed dual pipes at these locations so that if one lateral pipe Clogs, the sump location will still drain. Sound engineering practice suggests that for sump locations, the situation be evaluated to determine what would happen in an emergency situation if the inlet or pipe was clogged. If the sump inlets at the bottom of the driveways were to become clogged, the water would pond at the bottom of the driveway, and if there was enough runoff volume, the water would pond into the underground parking garage. The developer is aware of this design situation and takes responsibility for damages that may occur as a result of flooding. The probability of flooding into the garage is very low, due to the fact that such a small area is . actually draining to the sump driveway inlets. In any case, PDC assumes no liability for such an occurrence, and will not be held responsible for any potential damage due to an improperly maintained storm drain system. 6. CONCLUSION This drainage report has been prepared in support of the preliminary design of the storm drain improvements for the tentative map for the Bridges at A viara. The ptlrpose of this report is to provide peak discharges for use in designing the private and public storm drain systems for the project and to verify that the detention volume provided is adequate to detain the post-project flows to the pre-project flows. The hydrology results Indicate that the' peak flow from the developed site will be less than the existing flows with the detention basins provided. Therefore, the storm drain system will be sufficient to satisfy City criteria in the post-development condition. P:\3330IENORlItEI'ORTSIDRAINlItEI'ORTl3330DR·4th,doc 12 I I I I I I 'I I I 1 I I 'II I I I 'I I 'II 1 I I I APPENDIX 1 I Isopluvial Maps I I I I I I I I I I I I I I I, ----------~-------- ~WI FNlJ.t PROJl!:CT LOCATION . . p= 1.2~ INCHES County of San Diego Hydrology Manual Rainfall Isopluvials 2 Year R2iD&II Event -(0 Hours Isopb;IaI (IIncbes) DPW *GIS -=--- ::;:e- S1iiGIS ""t!=s.,D<p~ N :..-.:==-~-====-CII'-.:w __ ~ ---- ::===:;===.=~~ 3 0 3 IIiIes ~ ------------------- d biN!M PROJECT LOCATION P= 1.90 INCHES County of San Diego Hydrology Manual Rairifall Isop/uvials 2 Year R2infaIl Eveat -24 Hours --~r-) ~1S ~ ~ S11iGIS ~.Hz.cs..DIq;o~ ,-, ~~-----.,.,.., :'=-"=""':~~ ~-......~ 'IIWIo,..... _____ ,..,..... =--'i n .. _ " --'*"---~....,....,.--- 3 0 3 loWes ,........., ------------------- County of San Diego Hydrology Manual Rainfall Isopluvials 10 Year R2inbIl Event - 6 HOIIn 1s<:!*MoI(""""") DPW *GIS ~ ~ S1iiGIS "" lI=~ nq.,a,.ao! ~-=.==~c:..-==-C'~ __ ~ .......... ........,.. -.... "' ... _-........... __ h ~ ~ ... _ ..... -------......--....... .... 3 0 3 IIies ~ ------------------- County of San Diego Hydrology Manual Rainfall Isopluvials 10 Yeu-R2infaD Event -24 Hours IsqiitMaICn:l>es> DPW ~GIS ~ S1liGIS ~ ""l'-=SclJ\q>~ N ~~~c:..-==-D'~_~----==-~ ~ ......... -.".--~-..... -""-!IIio*o __ _ -__ ce ali ... ____ _ --- 3 0 3 Miles ~ - - - - - - - - - ---- - - --. - - - County of San Diego Hydrology Manual Rainfall Isop/uvials 100 Yeoar RabttlI1J Event -6 Hours Isq;tM3I (n:iles} DPW "*GIS ..=:.-;- ~ S1iiGIS ..-eI!=ScD:pa...o!! ""'-~~CW--cl. ___ 0II_~~1I:::I.~ ~-~~ .......,. ...... ...,.--. 3 0 3 lilies ~ I I I I I I I I I I I I I I I I I I I -- -------, -------- -- 10.0 I" i" I I 1111 ill! ! Ii 'I I ! Ii 9.1) '" 1111111 ! Directions for Application: i' '" ,.. I ""111 1m , I! ! "I I II 8.0 I" .' (1) From ~lion maps determine 61r and 24 hr amounts '" r... ,.. I' I 1111111 I II ! U III 7.0 for the selected frequency. These maps are included in the 6.0'" '" EQUATION ! Ii County Hydrology Manual (10, 50. and 100 yr-maps included "'", I = 7.44 Ps 0-0·645 III in the Design and Procedure Manual). 5.0 '" I :: Inlensity CmIhr) (2) Atijust 6 hr precipitation rtf nece5SaIY) so that it is within I" I 1'", ..... ro-I Ps ;; 6-Hour Precipilation (in) I the range of 45% to 65% of the 24 hr precipilalion (not 4.1) appflCaple to Desert). I' t' I' "'I' 1111110 :: Duration (min) il (3) Plot 6 hr precipilafion on the right side of the chart. lllllllllltliUl I I I ~ I ! 1111 I· 3.0 (4) Draw a line through the point paraDe! to the plolled rIlleS. r---... Uililil III I I ! I hi II "'-(5) This line is the intensity-duration curve for the location i'r-. -..~~ I , I I II I I IIII!I i being analyzed. I II~ 2.0 1'1" ~~ I 'N: t:S i I I Iii ~ Application Form: !III ~ : I .. N-! <{> (a) Selected frequency £_ year ~ ::J: 1i I' I ., l*~ ~rnll II 0 0 II iii II I I .. I I! ~ (b) P6 = 1.25 in .• P24 = 1.90 'p:: ~ %(2) ~ t' I I, ~ ~~1 ~ I~ I I ~ 24 ... 'i-tJ. (e) Adjusted P6(2) = 1.24 in . .c . , 9-g1.0 , 6.0-g. ~0.9 I I I~ Ii' I . lI~h ,. 5.5!!!. I 1 '" I ! N-. I I ~ I~! . 0" (d) Ix = __ min. ~0.8 . 5.0;;;J ~0.7 I ,N,. ., I. If. INII ~ 4.55' (e) 1= __ inJhr. 1t'R f'r{ I~I • <> I ;1 4.0 ii 0.6 . . . ~ r 3.S..e. -, .. 1'1 ii-I I . II ! · ' . Note: This chart replaces the Intensity-Duralion-Frequency 0.5 • I! I ~! i.. 3.0 curves used since 1965. .~~ ~1.J i -·~i ! ~ 0.4 i L. 2.5 -_.-.. ; ... -I-.....+--_ .. L .... L-rh--'--__ · _-' ____ 1... ... _. NJ.~ ~U I i I I! PS'--' -+. Pf'-f-i+2f : "f+~ r}·!·~",.-i "-7-¥-'1-~~' -').. DUiaiiOri 0.3 I . I ! !~ 2.0 ==t _21>3 1~~!L~.l§:§l?~:9~ll~!.~~~13.1.!;.!4.~~8.! · .. 2.12 3.1814.2-41 5.30\6.36 7.42nL~~";10.l!9.iJl;66 12.12 "-to '.6!U~ 3.37:~J..!~0!! !?'~J..~1.:~.L?~i ~~J.~:P rR-..1.1. : : .. 1.5 -15 ~1;~)J=,!jL~ .~~e3.89 ~~ 5..19i~ !6:~L?,B J:~ .. .' --20 J~. h~t~).!!L:z,.I!?!!!::?!I.!El8~~~_~~..4 §:~ .!!<1.5 , ---25 02 : ." ---'30 ~Jj1~ }~t~i~~i~~·t{~ 1·::~~t~j ~~. . , . "II~;' , . ~ .. 40 .!!-.!i!.I1.~h~~I::!.~t~~~~~]:iH~45] 3.}~ I ~:;3: · -.-n I 1.0 .-:'< -.. .. _._._50 ~'I~l'~H~tH~i~tt~";~r~H:~'i-~:: , f f . I ; , I ! ~. ---go --"1-' I· .. ' .. .-.... 1. -.. • .....1.: ... .. ,. • . I -. I-I ! :; 0.41 !~~!!!!.~ '!',??'!Jl~:~ ~.63.l_'~J:2,1!4 L?~.L~~. 0000-, ; .. ~ ; ! i! 120 :ll:-I~Jtift~ l~JJl±~H~UJR~ · ! ! , , . ~;; '-1" · . I ,j I' • Ii' 110 ~"i~~ o.li?'j0.7I! ~~_'_~.1.~j .. ~~!!,:!.!,~111.4.~,p2? 0.1 ; . .! . ~ .. -022 0.33 O.Q 0.54 0.65'0.76 H 0.81_.0.98! 1.08 i 1.19.i 1.30 5 6 1 8 910 15 20 30 40 50 _2 3 4 5 6 ru[N:~I~.-,!:m~19.~ ~~I~!5T~T.f@'.lJ.:.1i Miooles Holm; 0.17 !Q.25 0.33 0.4210.s0!0.58 OS! O.75l 0""-1_0.921 1.00 -0Ur3ti0n FIGURE ....... ;q.ou ... onDes;gnC''''''-T....... ~ HazAIaIICciunty ~y IdanuaIIInt .. Dur Design Chart.FH8 M·~". ------------------- 10.0 ro;::+-q:--rc;:J-,;::fo;rr-nrhrrrTITTTTTTmlnrnmnmTTfTTTmrmnim1lrrn;i-;rl-..,....,,,,,-;-:77r;;-;-r.:,mrnr;;i- 9.6 ~ i"'o I'" illUII! I I J! i i Ii Directions for Application: 8.0 ~ ~ I' r-. tIllUlI I I! ; ! II. (1) From precipitalion maps determine 6 hrand24 hramounts 7.0t'-i' ~ t--r-. 11111111 J I! , ! for the selected frequency. These maps are included in the 60 f' t'-t--r-I • r-mtr EQUATION I !i ?xriY ~ Manual (10, SO. and 100 yr maps included · r-• 111111 ::: 7.44 P6 0-0·645 I m the Design and Procedure Manual). 5.0 • r-. I" i"'-~ 11111 I = Intensity (m/hr) (2) Adjust 6 hr precipitation (if necessary) so that it is within ~ ~f'..... i'" r-. r--.... U PS::: 6-Hour Precipitation (in) ~ the mnge of 45% to 65% of the 24 hr precipitation (not 4.0 I"-l"1li III D ::: Duration (min) j' appIicaple to ~esert). i' ~~""'i"'r--I" IIPr I". I 111111 II (3) Plot 6 hr precipitatiooon the right side of the charl 3.0 iIIiII !IIiI . I I . : U II III' liti (4) Draw a line through the point parallel to the plotted lines. NMTtI:ti"ti~tlil'1Jtttt11ttttnlKU:lffJI1t1mtfttwmtlmDt:ftHltt'i!iii,·trtHttitltlrtffim!![t (5) This line is the intensity-duration curve for the location 20 t'-j' I': rl--II I! i IIII I . bemganalyzed. · I' 'h ~ I i I I i I ~ Application Form: I ... ~ i>-, , b ± (a) Selected frequency ~ year "L." ...... I'l . Ii I II I! 0 2 i' '1 I"'~I I Jh!'M-R ~. Ii ~ (b) P6::: 1.75 in .• P24::: 3.10 '_p = ~ %(2) ill . N. N--'i'i'l'''"" IN" ~ 24 ~ 1.0 . I I' I ~ LI i' Q. 11 ~ i 1'1 l' 6.0 -i (e) Adjusted p6(2) = 1.75 in. ::;;'09 I I I ~ 11' I I ~ I a·, . 5.5 § . '~0'8 ! ~ I I ~! I N I II .: 5.0 g (d) Ix = __ mm_ ~O:7 I I !J! 1 ' I~ I I ~ ".5~ (e) 1= __ in./hr. \.6 . ~ r± ['tll ;.~I ~~.; . I I : I~ I~ ~ ! J..I I ":! Note: This chart ret>!aces the Inlensily-Oumlion-Frequency 0.5 . I -l!l'" I 1;'-. ~ .~ 3.0 CUJves used SInce 1965. 04 !IIIIIIIIII n I n I ~ . ~ i ;1 ;~ 2.5 -. -...... , -'I'-f-P' --_L_ ... .E_-l-_t..._ .. .:.. __ ". ___ L ._. · , ! III J r: ~." 'I P6 1 I 1.!1 2 2.5 t 3 1 3.5; .. ! 4.5 5, 5.5 l 6 i ..... II I I ~ t, tiurailori -rr-.'=ti . ·r-TlTr.-··'· j"-'-r7 n-c' 03 I I ~. I . "'~ 2.0 __ • _~ ~g;.P.i6.5'!J;7~:9~ll~---H~:13.:.~?;..!.4.:!9~~! · "' • " ____ . 2.12 3.184.24 5.30,6.36 7.4218~...L~_,~~~ill.!.i :!2.72 , • __ 1.. 1.68,2.53 3.3?~H.5.O!! 5.!!On7.:,!J.!:!!I!.~'~'~i:~~ !.Il.'!~ 1.5 _!~! '~I~L~4 2:!9J~15.191~.!!l.M~ i.!.1317.7!. III . .:: _'~ !1~ 2,.-~~!·~~.I~I~r::;~.L4£t§~J.~ ~,~ 02 . . . .' O.ll;!_i~:~ !~J~~:'~I~~!-7;l1.4.~ '_~'~i.5..1.3.1 ~~. · . " :, .. , ~.L1~~P~i·2.071.~:'!! ~.L~.I~?3 t4:1~.i ~~.~~,~ :. . . ., . 1 0 ~![9.!~.031..1~ •. '.·~i2:0!t2: .. '.l2.!6--'~I!1.i.~:45j 3:?l11 :4.13 : ;' :! '. .;;. . :':-!~If.~i+~H:k!IC~~l.!t~-~ ~H:~H~H~ 11111111 ~: : • -+ ;' ':;;: __ 1iA(!~~!~~11~n~ ]~~ ).631'~j 2.04 i.~.!..?-~: HI-t+-HH--t-M-HrHHi-ttt1i11ttiUittlllltmlllHtHrtttttirtttiHtIH ' ..i I; I Il i, __ ..1 ... ~...jl!2t!~ !-~J.l.w ~,1!J ~~.1.1~P:?QP~'i_2,.~ UllllU tlIHtHl ..:! ,! I:.J. ! ! 1~ ~J4?,44t~ !!;?:3'11!J,,~ ,.;~1..',1,~".1-E t'}·4;:!: ',11.2_ ... !.-~ 01 IIIIIIII! ! ! 'J !; ;! I!' l. __ , ~.~~~ 0.65"~~O-!!~'~II'!:!'!!"J.31i1''''t1~ · HH-++-iH--+-...... ....,..'+'L.L.I-'-t ............. .IJ.IlfUU!-WIT'-'..I.li..,....~ . 240 022 0.33 0.43 0.54 0.65-1~.7G 0.81",0.96; J:C)8 i 1.19 i 1..30 5 6 1 8 9"10 15 20 ... _ ... 30 40 50 2.!.._" 5 6 --:::'3i!!! ~ .[~ g]! ~i;~Lii;~ 9~Iy.~I!J~J.J~IIJ! ...... "'es OuraIion ......... " 3&!1 0.17 IQ.2S 0.33 0.42 0.50 0..58 0.67! 11.75 10.&410.9211.00 FIGURE Int.~Des;gnChart-TempI... . ~ HazUaVCourlIy ~ UanualIInCOut Design Chart.FH8 . --=-- -_.'-.-- --- --------- -- 10.0 "'" • ..... rill I , •• It ' 90 I ... i'o..' '" ~ i. j ! i : I" II Directions for Application: 8:0 I'-~ " ! I ! !; II: I III !; (1) From precipitation maps delennine 6 hrand 24 hi' amounts 701'-""''' ~I' 1111111 I I ~: II; I !: for the selected frequency. These maps are induded in the . ~~r-.. .... I' EQUATION!' ComIyHydrologyMamal(10.50.and100yrmapsincluded 6.0 ~ ~ I' I ::: 7.44 Ps D.().645 I'll in the Design and Procedure Manual). 5.0 1'0.. "-t-.. I = Intensity rllllhr) (2) Adjust 6 hr precipitation rlf necessary) so thai it is within 1'0.. t'-" ~ '" ~ I' '" I PS ::: 6-Hour Precipitation rUl) II the ~ange of 45% to 65% of the 24 hr precipitation (not ... 0", I !III D = Duration (min) III appIlCapie to Desert). I'-. • " I'-I' . I'" I I I I I (3) Plot S fir precipitalion on the right side of the chart. 3.0 " !II i I : I I , II II I!; (4) Draw a line through the point paralel to the plotled lines. :-.... ii' 'I II III II!! (5) This line is \he intensily-duration curve for the location r-..", : ~ I I I I I III being analyzed. 2.0 " I .••• I r-. ' :.....!. '" i'o~' i I II i I i"1 Application Fonn: '" I • r I" I I I' . I'; l>: ,I ~ ~ (a) Selected frequency ~ year g III If IHH i ~1'St1'l D-~ '~JI II'!;! ~ (b)Ps=2.70 in.,P24 =4.70 ,-=~%(2) ~ 11m ! N.. I i'lI'! I I r-iJ' • it ~ P24 .fi ~r" I IJ .... 1 ~1 f.;! I 1" ,; .g. (e) Atijusted P6(2)::: 2.70 in. c 1.O Imll .,. iX I' ....... I I~: ,. 6.0;;. =0.9 III ! I '''' I.... ,"'.. .. I;' I ':. 5.5 a . ~ ; ! ~ r;.! I No I ., :: 5.0 g (d) I,,::: __ rom. eO. S L 'lUI 1111 ; .... ! 'I 1II..1~ I~I' I 4.5= .!!0.7I1mJlI , '...... . ll'hl I~ I •. I. g (e) I::: __ inJbr . .$ . . 111111111 I I'K r ~ ~ I • I, 4.0 ~ 0.6 lID i I II i N-.! I ~. i!i 3.5 ~ Note: This chart rep!aces the Intensily-Duration-Frequency no: Ii.tI i" I 1;00 . •. 3.0 curves used s.nce 1965. v." ! I III i il! ': , 04 ; Ii' ~ I ; ,: 2.5 _ ..... _._ ... -.i .... I-:..-i---L_._;-*_j __ .. _--' __ ; ....... . ll~ NJ III ~ I I' 'I~ ~ .... --__ ! ... dl~~_L~_l-~_I-_ ~ .; -4A·-~-· .. -~~l-6_. ,Ii' I . Duoation I~I III;""I!I'I;' • 111111111111111:1 I . • .... I ! i! 2.0 -2.6313.95 5.2116..59;7.90'9.22il054!11.BO'13.17:14.~p5..81 0.3 • . I~: :. --7 2.t~"fiii4~I6:36t¥.'42f8:481-9M:lo:tiOHI.56~12:"72 .. -to _~l~~~~1~~j:~U#.lT~~~~~.pt'1.!l:I1 ; 1.5 -~-}~H~I~-~I~~j;~'NH'~i~i{~'i:!:' . . : --25 'o:i1:di;Jo',m' 2:iii!ZaClI327iT73' ~.20 !-~mI5.13q;:60 • • • ... II 10 __ £l.~!!:9.11:~i.1~J.!·~i2,07 2,4~.!.2.7~19.1.q,45j3:79i.:U3. 1 ,. 1'1 ':'. • ___ !10 !.l!I.I!!~L~.J-'!I.!.:~~:i).;.~.?::~L~:~_L~~i.~!l!!.L~'i'~' ! I .; ... __ ~ ~'I~P'~ t;,D,.,.~~"-!!!!1[2"21.2,39.!:z.65 i.2..!!2. ;1.18 . I • " !!C.! o..~_ ~1.~11!!~~'1/~P~ ~~ 1.63_l~~ 1.2,~ L?~.L~~!? r I;' I! . __ ~ . -~-i~!I~I' o.8.U.U~ 9~U~J.1.~j):!01.1.1!?i_2,~ , . ! l ! 1_~l!!:~1~ 9:.?i1io.~ 1·031J.:~.j.1:.3?U·47.l.I~~! 1.7!, n 1111111111111 . 1111111111111111 ! iJ ! , II !! Il! _....!... __ ~_I'O?:II~ .!L~W?ll ~~tP~-l ... 1=~!I_U.,:)l1.1;~L'ft,l v. . 2 0.22 0.33.0.43 0.54!O.65.0.7!L0.871 0.99! 1.08! 1.19! 1.30 5 6 78 910 15 20 30 40 50 2 3.. 5 6 -0.19 !O:2aiO..3S oA7'0.s6io:66~.75.1"O.as"Tii9in:ii3Ti:13 Minutes Hours --o:17i<i25i0:J3'·o:.iFo.SO·o:s8roS·j a75T0§41 if921'-i1if Ouralion . , FIGURE ,"",,,,,,,,"'60.. 0...,0 Chart-T .... Ia.. ~ ~I ~rogeoIogy IolanuaInnt ... Dur o.siQn Ctiart.FHS I I I 2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I APPENDIX 2 Existing Conditions Rational Method Computer Output I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software ~aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * EXISTING CONDITIONS, SYSTEM 100 * 100 YEAR STORM EVENT ************************************************************************** FILE NAME: SlOOEI00.DAT TIME/DATE OF STUDY: 16:11 07/23/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'l'HOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * -k * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= =====~===~~====== ===~~= ===== ====== ==~== ======~ 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth -0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ************************************************************************** •• FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =====================~===========~========================================== OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 81 INITIAL SUBAREA FLOW-LENGTH (FEET) = 46.00 UPSTREAM ELEVATION (FEET) = 314.20 DOWNSTREAM ELEVATION (FEET) = 312.00 ELEVATION DIFFERENCE (FEET) = 2.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.435 100 YEAR RAINFALL IN'l'ENSI'l'Y(INCH/HOUR)'" 6.741 SUBAREA RUNOFF (CFS) = 0.12 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 165.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< =====~==~=========c=========~=============================================== ELEVATION DATA: UPSTREAM (FEET) Q 312.00 DOWNSTREAM (FEET) ~ 220.40 CHANNEL LENGTH THRU SUBAREA (FEET) = 1237.00 CHANNEL SLOPE 0.0741 CHANNEL BASE (FEET) .., 5.00 ~Z~ FAC'l'OR"" 99.000 MANNINGtS FACTOR ... 0.030 MAXIMUM DEPTH (FEET) = 1.00 100 YEAR RAINFALL INTENSI'rY(INCH/HOUR) =: 3.758 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS ~D~ S.C.S. CURVE NUMBER (AMC II) 81 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) ... 6.97 2.57 8.01 TRAVEL 'rIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH (FEET) "" 0.14 TRAVEL TIME(MIN.) '" Tc(MIN.) ~ 13.45 SUBAREA AREA(ACRES) AREA-AVl!:RAGE RUNOFF 'l'O'l'AL AREA (ACRES) "" = 9.93 SUBAREA RUNOFF (CFS) = 0.350 13.06 COEFFICIEN'£ == 9.98 PEAI< FLOW RATE (CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) -3.02 13.13 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 165.00 = 1283.00 FEET. ====~~~~~==~=============================================~===========~====== END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) '" 9.98 TC(MIN.) "" 13.13 13.45 ===~m=~====================================================~===~======m===== =========~~~~=========~===~================~================================ END OF RATIONAL ME'l'HOD ANALYSIS I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I *******************************************************~********~*********** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * EXISTING CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 120 * ************************************************************************** FIlIE NAME: S120El00. DAT TIME/DATE OF STUDY: 15:43 07/22/2008 ---------------------------------------------------------------------~--~--- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONF1UENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARI<-HEIGHT WIDTH LIP JUKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== =~======= ================= ~===== ===== ====G= ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 D.Ol~O GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth -0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-ot-Curb) 2. (Depth) 'A' (Velocity) Constraint = 6.0 (FT*FT/S) ~'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 120.00 fro NODE 125.00 IS CODE = 22 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ~=========~=====~=====g==========================~========================== OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 $OIL CLASSIF'ICA'I'ION IS "0" S.C.S. CURVE NUMBER (AMC II) 81 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA (ACRES) -0.08 TOTAL RUNOFF(CFS) 0.20 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 180.00 IS CODE == 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ===========~=========c======c=============================================== ELEVA'I'ION DATA: UPS'1'REAM(FEET) = 312.00 DOWNSTREAM (FEET) c 212.00 CHANNEL LENG'I'H 'l'HRU SUBAREA (FE:ET) = 989.00 CHANNEL SLOPE 0.1011 CHANNE',L BASE (FEET) '" 5.00 "Z» FACTOR:o 99.000 MANNING I S F'AC'I'OR "" 0.030 MAXIMUM DEPTH (FEET)'" 1.00 100 YEAR RAINFALL IN'fENSITY (INCH/HOUR) = 4.543 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT"" .3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 81 TRAVEL 'l'IME COMPUTED USING ES'I'IMATED now (CFS) "" 11.55 'l'RAVEL TIME 'l'HRU SUBJ.~REA BASED ON VELOCITY (FEE'l'/SEC. ) 3.28 AVERAGE FLOW DEP'l'H(FEE'l')'" 0.16 TRAVEL TIME(MIN.) == 5.02 Tc(MIN.) ~ 10.02 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA(ACRES) = 13.81 COEFFICIENT '" 13.89 SUBAREA RUNOFF(CFS) 0.350 21. 96 'PEAr< FLOW RATE (CFS) ... 22.09 END OF SUBAEEl~ CHANNEL FLOW HYDRAUl.ICS: DEPTH (FEET) -0.22 FLOW VELOCITY(FEET/SEC.) 3.86 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 180.00 = 1051.00 FEET. **************************************************************************** jJ'LOW PROCESS FROM NODE 176.00 TO NODE 180.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =====~====~========================Q========================:====~~======~~~~ 100 YEAR RAINFALL IN'l'ENSI'fY (INCH/HOUR) = 4.543 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 81 AREA-AVERJ.\GE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) -0.48 TOTAL AREA (ACRES) -14.19 TOTAL RUNOFF(CFS) -22.56 TC(MIN.) m 10.02 *******~*******************************************************************. FLOW PROCESS FROM NODE 178.00 '1'0 NODE 180.00 IS CODE -81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ~=========~=~~=~=====================c=========================~~=~=~~====== 100 YEAR RAINFALL IN'fENSI'rY (INCH/HOUR) = 4.543 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS »D" S.C.S. CURVE NUMBER (AMC II) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.39 TOTAL AREA(ACRES) = 14.58 81 = 0.3500 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 0.62 23.18 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I TC(MIN.) = 10.02 =============~============================================================== END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 14.58 TC(MIN.) = 23.18 10.02 =========~==========~g==~===m=~======================================~==~=== ======================~=================~==~===~=~=~================~======= END OF RATIONAL METHOD ANALYSIS I I I I I- I I I, I I I' **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite SOO San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330 -THE BRIDGES A'I' AVIARA * * EXISTING CONDITIONS, SYSTEM 130 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: S130EIOO.DAT TIME/DATE OF STUDY: 10:51 07/22/2008 --------~------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) '" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 1S.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR ,RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE I SIDE/ WAY (FT) (FT) (PT) (FT) (n) === ====~ ========= ===========~===== ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONS1'RAIN'l'S: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)'''(Velocity) Constraint .. 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.~' ********************'******************************************************* FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 22 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ===m==~===~======~~===~===g============~====~=============================== GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D~ S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) -5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) 0.87 TOTAL AREA (ACRES) = 0.14 TOTAL RUNOFF(CFS) 0.87 **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 134.00 IS CODE = 61 »»>COMPUTE S'rREET FLOW TRAVEL TIME THRU SUBAREA«<<< »»> (STANDARD CURB SECTION USED)««< ===========c=================~~==============================c============== UPSTREAM ELEVATION (FEET) = 272.00 DOWNSTREAM ELEVATION(FEET) ... 246.00 STREET LENGTH (FEET) = 767.00 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) -51.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) ... 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREE'r PARKWAY CHOSSFALL(DECIMAl.) 0.020 Manning's FRICTION FAC'I'OR for St:reetflow Section(curb-to-curb)'" 0.0150 Manning's FRIC'l'ION FACTOR for J3ack-or-Walk Flow Secti.on "" 0.0200 **TRAVEL 'rIME COMI?U'l'ED USING ES'l'IMA'rED FLOW (CFS) =-3.32 STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH (FEET) -8.67 AVERAGE FLOW VELOCI'I'Y(FEET/SEC.) "" 3.82 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.14 STREE'l' FLOW 'rRAVEL TIME(MIN.) '" 3.35 Tc(MIN.) "" 8.35 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5 .112 GENERAL INDUSTRIAL RUNOFF COEFFICIENT .... 8700 SOIL CLASSIFICA'I'ION IS "0" S.C.S. CURVE NUMBER (AMC II) = 97 ARll:A-AVERAGE RUNOFF COll:FFICIENT == 0.870 SUBAREA AREA(ACHES) 1.09 SUBAREA RUNOFF(CFS) = 4.85 To'rAL ARJl:A (ACRES) '" 1. 23 PEAK FLOW RA'l'E (CFS) = 5.4"/ END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) -0.34 HALFSTREET FLOOD WIDTH (FEET) = 10.75 FLOW VELOCITY(FEET/SEC.) -4.30 DEPTH*VELOCITY(FT*FT/SEC.) -1.47 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 134.00 = 767.00 FEET. *****'**********************'*********************************************** FLOW PROCESS FROM NODE'. 134.00 'ro NODI~ 149.00 IS CODE -31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DA'l'l~: UJ?S'l'REAM(FEET) "" 240.00 DOWNSTREAM(FEE'r) FLOW LENGTH (FEET) -208.00 MANNING'S N -0.013 ESTIMATED PIPE DIAME'l'ER (INCH) INCRE]'\SED '1'0 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 15.16 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES = PIPE-FLOW (CFS) = 5.47 1 212.00 I 'I I 'I I I I I I I I I I I 'I I I I ,I I I I I I I I I I I I I I I I I I PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 130.00 TO NODE 8.58 149.00 '" 975.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 149.00 IS CODE -1 -----------------------------------------------------------~----~~---------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ==============================~========~~~==============================F=== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 8.58 RAINFALL INTENSITY (INCH/1-JR) '" 5.02 TOTAL STREAM AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.47 **********************************************************~**********~****** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 7 . ---------------------------------------------------------------------~--------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN)" 14.59 RAIN INTENSITY (INCH/HOUR) ... 3.57 TOTAL AREA(ACRES) = 17.63 TOTAL RUNOFF (CFS) ~ 14.40 *********************************************************************'****** FLOW PROCESS FROM NODE 14 0.00 TO NODE 149.00 IS CODE = 31 , ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL 'l'IME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ~=================~==============g============================~============~ ELEVATION DATA: UPSTREAM (FEET) ~ 222.00 DOWNSTREAM (FEET) = FLOW LENGTH (FEET) = 282.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 11.96 ESTIMATED PIPE DIAMETER (INCH) -18.00 PIPE-FLOW (CFS) = 14.40 0.39 NUMBER OF PIPES = 212.00 1 PIPE TRAVEL 'rIME (MIN.) ... LONGEST FLOWPATH FROM NODE Tc(MIN.) "" 0.00 TO NODE 14.98 149.00 282.00 FEET. *************************************************************~~*******~***** FLOW PROCESS FROM NODE 149.00 'fO NODE 149.00 IS CODE ~ 81 ---------------------------------------------------------------------------- »>>>ADDITION OF SUBAREA '1'0 MAINLINE PEAI< FLOW«<<< =~~===============~~========g=====~=====================================z=== 100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) "" 3.505 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 SOIL CLASSIFICATION IS »D» S.C.S. CURVE NUMBER (AMC II) = 82 AREA-AVERAGE RUNOFF COEFFICIENT = 0.2406 SUBAREA AREA(ACRES) = 1.20 TOTAL AREA(ACRES) ~ 18.83 TC(MIN.) = 14.98 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) -= 1.72 15.88 **********************~*******~********************************************* FLOW PROCESS FROM NODE 140.00 TO NODE 149.00 IS CODE ... 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================~=====~========= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.98 RAINFALL INTENSITY (INCH/HR) = 3.50 'roTAL S'l'REAM AREA (ACRES) = 18.83 PEAK FLOW RATE (CFS) AT CONFLUENCE = 15.88 ** CONFLUENCE DATA * 'k STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.47 8.58 5.023 2 15.88 14.98 3.505 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE 'k * S'l'REAM RUNOFF Tc INTENSITY NUMBER (CfS) (MIN. ) (INCH/HOUR) 1 14.56 8.58 5.023 2 19.70 14.98 3.505 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 1. 23 18.83 RATIO PEAK FLOW RATE (CFS) 19.70 Tc(MIN.) = 14.98 TOTAL AREA(ACRES) = 20.06 LONGEST nOWPA'l'H FROM NODE 130.00 TO NODE 149.00 "" 975.00 fEET. ====================c======================================================= END OF STUDY SUMMARY: TOTAL, AREA (ACRES) = PEAK FLOW RATE (CFS) = 20.06 TC(MIN.) = 19.70 14.98 ==~~========~========c====~========================~======================== ==============~================~========~==========~======c========~=~====~= END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I ***********************************************************************'**** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes} Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * EXISTING CONDITIONS, SYSTEM 190 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: S190E100.DAT TIME/DATE OF' STUDY: 07: 52 07/23/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES)" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAJd METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PAR1<-HEIGHT WIDTH LIP HIKE FAC'l'OR NO. (FT) (F'!') SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ~g= ====~ ======~== =========~======~ ====== ===== ====== =====:== 3. 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET fLOW-DEJ?'fH CONSTRAINTS: 1. Relative Flow-Depth -0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint"" 6.0 (FT*F'l'/S) *SIZE PIPE WITH A now CAPACITY GREATER '£HAN OR EQUAL TO THE UPS'l'REAM TRIBUTARY PIPE.';" **************************************************************************** FLOW PROCESS FROM NODE 190.00 TO NODE 195.00 IS CODE ~ 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 83 INITIAL SUBAREA FLOW-LENGTH(FEET) = 46.00 UPSTREAM ELEVATION(FEET) c 263.00 DOWNSTREAM ELEVA'rrON (FEE'l') = 257.00 ELEVATION DIFFERENCE (FEET) = 6.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.250 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINF]'\LL IN'rENSITY(INCH/HOUR) ... 7.114 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE. SUBAREA RUNOFF (CFS) = 0.12 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) '" 0.12 ••••••• * •• *.*.** •••••••• ** ••••• ** ••• *.** •• **** •• **************************** FLOW PROCESS FROM NODE 195.00 '1'0 NODE 200.00 IS CODE ~ 51 »»>COMPUTE 'l'RAPEZOIDAL CHANNEL FLOW«<<< >>>>>TRAVELTIME 'rHRU SUBAREA (EXISTING ELEMENT) ««< ==~=~==============c~~~~=m==================================~===~=========== ELEVATION DATA: UPSTREAM (FEET) -257.00 DOWNSTREAM (FEET) = 220.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 273.00 CHANNEL SLOPE -0.1355 CHANNEL BASE(FEE:'n =: 5.00 "Z" b~ACTOR = 99.000 MANNING'S FAC'l'OR .. 0.030 MAXIMUM DEP'L'H (FEET) = 1.00 100 YEAR RAINFALL IN'l'ENSI'l'Y (INCH/HOUR) = 6.229 OPEN BRUSH FAIR COVER RUNOF'F COEIJ'FICIENT = .3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) c 83 'l'RAVEL TIME COMJ?U'l'ED USING ESTIMATED FLOW (CPS) ... 2.84 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) -2.40 AVERAGE FLOW DEPTH(FEE'l') '" 0.09 ~rRAVEL TIME(MIN.) 1.89 'l'c(MIN.) = 6.14 SUBAREA AREA(ACRES) = 2.45 SUBAREA RUNOFF(CFS) = 5.34 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) ~ 2.50 PEAK FLOW RATE(CFS) = 5.45 END OF SUBAREA CHANNIl:L FLOW HYDRAULICS: DEPTH (FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 3.04 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 = END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RA'I'E(CFS) 2.50 TC(MIN.) = 5.45 END OF' RATIONAL METHOD ANALYSIS 6.14 319.00 FEET. I ,I I I I I I I I I ,'I I I I I I I I I I I I I I I I I I I I I I I I I I I I ******************************************************************~********* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * EXISTING CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 210 * ************************************************************************** FILE NAME: S210EI00.DAT TIME/DATE OF STUDY: 15:46 07/22/2008 ------------------------------------------------------------------------~--- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPI'l'ATION (INCHES)'" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE'" 0.85 SAN DIEGO HYDROLOGY MANUAL "e"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE/SIDE/WAY (PT) (FT) (E"T) (FT) (n) === ===== ==~==~=== ======~==~~~====~ ==~=~= =~==~ §===== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONS'l'RAINTS: 1. Relative Flow-Depth. = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint'" 6.0 (FT\\"FT/S) ·SIZE PIPE WITH A FLOW CAPACITY GREA'IIER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS ~~ROM NODE 210.00 11'0 NODE 215.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "D" S . C. S. CURVE NUMBER (AMC n.) = 81 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) = 0.15 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF (CFS) 0.15 **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ~==========================================================================~ ELEVATION DATA: UPSTREAM (F'EE'1') = 257.00 DOWNSTREAM (FEET) = 191.00 CHANNEL LENGTH THRU SUBAREA (FEET) -355.00 CHANNEL SLOPE 0.1859 CHANNEL BASE (FEET) == 5.00 HZ" FACTOR = 99.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) ~ 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.797 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) == 81 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) ... 4.29 '!'RAVEL TIME '1'HRU SUBAREA BASED ON VELOCITY (FEET/SEC.) 3.17 AVERAGE FLOW DEP'I'H(FEET) 0.09 Tl~VEL TIME(MIN.) '" 1.87 Tc(MIN.) ~ 6.87 SUBAREA AREA(ACRES) = 4.04 SUBAREA RUNOFF(CFS) = 8.20 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA (ACRES) == 4.10 PEAr< FLOW RA'rE(CFS) .., 8.32 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 3.74 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 220.00 == 355.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 220.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAr< FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) '" 5.797 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 81 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.~9 SUBAREA RUNOFF(CFS) ro 0.99 TOTAL AREA (ACRES) = 4.59 TOTAL RUNOFF(CFS) ~ 9.31 TC(MIN.) = 6.87 **************************************************************************** FLOW PROCESS FROM NODE 219.00 '1'0 NODE 220.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAr< FLOW««< =~========~=================~=============~===~=====================~=~~==== 100 YEAR RAINFALL INTENSI',ry (INCH/HOUR) = 5.797 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = ARE]'\-lWERAGE RUNOFF COEFFICIEN'!, 81 '" 0.3500 SUBAREA AREA(ACRES) 0.50 TOTAL AREA(ACRES) = 5.09 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 1. 01 10.33 I I I I I I I I I I I' I I I I I I ,I I I I· I I I I I' I I I I I I I I I I I I TC(MIN.) = 6.87 ==========================~=======g================~======================== END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 5.09 TC(MIN.) = 10.33 6.87 ================================~=========================================== =====================================================================~====== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL 'METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (e) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** '1< 3330.00 -THE BRIDGES AT POINSETTIA .1< * EXISTING CONDITIONS, SYSTEM 230 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: S230EI00.DAT TIME/DATE OF STUDY: 16:17 07/23/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GAADIEN'rS(DECIMAL) TO USE FOR FRICTION SLOPE"" 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-V-ALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS 'kUSER-DEFINED STREE'1'-SEC'l'IONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSS FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP I-lIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ==~============== ====== ====== ===== =====~~ 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.03130.167 0.0150 GLOBA·L STREET FLOW-DEP'I'H CONSTRAINTS: 1. Relative Flow-Depth -0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (F'l"kFT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER 'l'HAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 230.00 '1'0 NODE 235.00 IS CODE = 22 --------------------------------------------------------------------~------- . >>>>>RATIONAL METHOD INI'l'IAL SUBAREA ANALYSIS<<<<< =================~~==~===~==================================~=============== OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ 81 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF (CFS) = 0.35 •••••••••••••••••••••••• * •••• ** ••• ****** ••• *.*.**.**.*.*.**** •• **.*.******** FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 81 »»>ADDI'rION OF SUBAREA TO MAINLINE PEAK FLOW«<<< ==================~========================================================= 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 7.114 ANNUAL GRASS (DRYLAND) GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.65 TOTAL AREA(ACRES) = 0.79 TC(MIN.) = 5.00 80 = 0.3500 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 1. 62 1. 97 =======~===============================~===m================================ END OF STUDY SUMMARY: TOTAL1AREA(ACRES) Q PEAK FLOW RATJ!:(CFS) 0.79 TC(MIN.) == 1. 97 END OF RA'I'IONAL ME'l'HOD ANALYSIS 5.00 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (0) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * EXISTING CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 240 * ************************************************************************** FILE NAME: S240EI00.DAT 'rIME/DATE OF STUDY: 17: 26 07/21/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES)'" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCEN'l' OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE == 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RA'l'IONAL METHOD NOTE: OSE MODIFIED RATIONAL ME'rHOD PROCEDURES FOR CONl:"'LUENCE ANALYSIS *USER-DEFINED S'rREET-SECTIONS FOR COUPLED PIPEFLOW AND S'rREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSITALL IN-/ OUT-/PARK-HEIGH'r WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (JrT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street:. Flow Depth) -(,J'op-oi-Curb) 2. (Depth) * (Velocity) Constraint =: 6.0 (F'£*F'I'/S) ·SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL '1'0 THE tJPS'l'REAM TRIBUTARY PIPE. 'A' **************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE = 22 >>>>>RA'rIONAL METHOD INI'l'IAL SUBAREA ANALYSIS««< OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) 81 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF (CFS) = 0.32 TOTAL AREA (ACRES) = 0.13 TOTAL RUNOFF(CFS) 0.32 *********************************************************************.****** FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE -51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ~~=c===============~============~====================~====================== ELEVATION DATA: UPSTREAM (FEET) = 266.00 DOWNSTREAM (FEET) = 229.00 CHANNEL LENGTH 'fHRU SUBAREA (FEET) = 172.00 CHANNEL SLOPE"" 0.2151 CHANNEL BASE (FEET) '" 5.00 "Z" FACTOR = 99.000 MANNING' S F'AcrrOl~ = 0.030 MAXIMUM DEPTH (FEEfr) "" 1. 00 100 YEAR RAINFALL IN'l'ENSI'I'Y(INCH/HOUR)" 6.357 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) 81 TRAVEL 'I'IMB COMPUTED USING ESTIMATED FLOW (CFS) = 2.71 'l'RAVEL TIME 'rHRU SUBAREA BASED ON VELOCI'l'Y(FEE'I'/SEC.) 3.01 AVERAGE FLOW DEP'l'H (FEET)'" 0.07 'l'RAVEL 'l'IME (MIN.) c: 0.95 Tc(MIN.) ~ 5.95 SUBAREA AREA(l·~CI~ES) 2.15 SUBAREA RUNOFJ!'(CFS) 4.78 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 'r'OTAL AREA (ACRES) =: 2.28 PEAr<: FLOW RA'I'E (CPS) '-" 5 • 0 7 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) -0.10 FLOW VELOCITY(FEET/SEC.) = 3.62 LONGEST FLOWPATH FROM NODE 240.00 TO NODE 250.00 = END OF STUDY SUMMARY: TOTAL ARE]'\ (l-l.CRES) PE:A[<: now RA'rE (C FS) 2.28 'l'C(MIN.)-= 5.07 END OF RATIONAL METHOD ANALYSIS 5.95 172.00 FEE'r. I I I I I I I I I I I I I I I I I I I " I I I 3 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I APPENDIX 3 Proposed Conditions Rational Method Computer Output I I I I' I I I I I I I I I I I I I I I **************************************************************~************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * PROPOSED CONDITIONS, SYSTEM 100 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: SlOOPIOO. DArl' TIME/DATE OF STUDY: 16:20 07/23/2008 ---------------------------------------------~------------------------------USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -------------------------------------------------------------------~--~-----2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) ~ 100.00 6-HOUR DURA'UON PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE'" 0.95 SAN DIEGO, HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARI<-HEIGHT WIDTH LIP H11<E FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ;1. 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL S'l'REET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth ~ 0.00 FEET os (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint -6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACI'rY GREATER THAN OR EQUAL TO THE UPSTREAM TRlBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 ----------------------------------------------------------~---.-------------- »»>RATIONAL ME'l'HOD INITIAL SUBAREA ANALYSIS«<<< OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) g 81 INITIAL SUBAREA FLOW-LENGTH(FEET) a 46.00 UPSTREAM ELEVATION (F'EE'r) == 314.20 DOWNSTREAM ELEVATION(FEET) -312.00 ELEVATION DIFFERENCE (FEET) -2.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.435 100 YEAR RAINFALL IN'l'ENSI'l'Y(INCH/HOUR) = 6.741 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA (ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 111.00 IS CODE = 51 »»>COMPU'l'E ~l'RAPEZOIDAL CHANNEL FLOW«<<< >>>>>rrRAVELTIME THRU SUBAREA (EXISTING ELEMEN'I') ««< ELEVATION DA'I'A: UPSTREAM (FEET) "" 312.00 DOWNSTREAM (FEET) '" 256.00 CHANNEL LENGTH THRU SUBAREA (FEET) -525.00 CHANNEL SLOPE w 0.1067 CHANNEL BASE(FEE'l') == 5.00 "Z" FAC'l'OR'" 99.000 MANNING'S FAC'fOR ... 0.030 MJ.\XIMUM DEPTH (F'EET) = 1.00 100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) = tJ • 622 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) -81 'l'RAVEL nME COMPU'I'ED USING ESTIMATED FLOW (CFS) ... 1.75 TFJWEL TIME r1'l-Il<'U SUBAREA BASED ON VELOCITY (FEE'l'/SEC.) "" 2.03 AVEl<.J.~GE FLOW DEI?~rl1(F'EE'1') '" 0.07 'rRAVEL TIME(MIN.):= 4.32 Tc(MIN.) = 9.76 SUBAl<.J~A AREA(J.\CRES) = 1.95 SUBAREA RUNOn"(CFS) 3.15 AREl·~-AVERAGE l<.UNOFF COE',J:FICIENT 0.350 'l'O'l'AL AREA (ACRES) .., 2.00 PEl.l.I< FLOW RATE (CFS) = 3.2<1 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTI-I(FEE'1') = 0.09 FLOW VELOCITY(FEET/SEC.) 2.39 LONGEST FLOWPATH FROM NODE 100.00 '1'0 NODE 111.00-571.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 115.00 IS CODE ~ 31 »»>COMPUTE PIPE-FLOW TI<.AVEL 'l'1ME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) -256.00 DOWNSTREAM (FEET) = FLOW LENGTH (FEET) = 101.00 MANNING'S N -0.013 ESTIMATED PIPE DIAM8TER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) -14.20 ESTIMATED PIPE DIAMETER(INCH) -18.00 PIPE-FLOW (CFS) = 3.2~ NUMBER OF PIPES =' 0.12 Tc(MIN.) = 1 238.00 PIPE TRAVEL, 'rIME (MIN.) "" LONGEST FLOWPATH I:ROM NODE; 100.00 TO NODE 9.88 115.00 675.00 FEET. ************************~*************************************************** FLOW l?ROCI!:8S FROM NODE 113.00 '1'0 NODE 115.00 IS CODE ~ 81 . »>>>ADDl'l'ION OF' SUBAREA '1'0 MAINLINE PJ!:].I.I< FLOW«<<< 1 00 YEAR RAINFJ.\LL INTENSI'l'Y (INCH/HOUR) ::: 4.586 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I GENERAL INDUSTRIAL RUNOFF COEFFICIENT SOIL CLASSIFICATION IS "D" = .8700 S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.13 TOTAL AREA(ACRES) = 2.13 TC(MIN.) = 9.88 97 .. 0.3817 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) .. 0.52 3.73 **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 135.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 238.00 DOWNSTREAM (FEET) = FLOW LENGTH (FEET) = 145.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCI'I'Y (FEET ISEC. ) 6.00 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 3.73 NUMBER OF PIPES = 0.40 Tc(MIN.) = 1 236.00 PIPE TRAVEL TIME(MIN.) ~ LONGEST FLOWPATH FROM NODE 100.00 TO NODE 10.28 135.00 "" 820.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 115.00 '1'0 NODE 135.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ================~=====================~==~~==========~=====================~ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.28 RAINFALL INTENSITY (INCH/HR) = 4.47 TOTAL STREAM AREA (ACRES) = 2.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.73 *************'************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 22 ----------------------------------------------------~-----------------------»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =============~~=====~=~~~==~~=~===============~==~====~==============~====== GENERAL INDUS'['RIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) = 0.87 TOTAL AREA (ACRES) = 0.14 TOTAL RUNOFF(CFS) = '0.87 **************************************************************************** FLOW PROCESS FROM NODE 122.00 TO NODE 124.00 IS CODE = 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»> (STANDARD CURB SECTION U8ED)««< ==========~=====~~===~===~=====~=====~==========================~==~======== UPSTREAM ELEVATION (FEET) = 272.00 DOWNSTREAM ELEVATION (FEET) = 242.40 STREET LENGTH (FEET) = 987.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) -51.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRIC'I'ION FACTOR for Streetflow Section (curb-to-curb)'" 0.0150 Manning's FRIC'l'ION FAC'l'OR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPU'l'ED USING ES'l'IMATED FLOW (CFS) == 3.77 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH (FEET) -9.42 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.75 PRODUCT OF DEI?TH&VELOCITY (FToI'F'J:'/SEC.) 1.18 STREET FLOW '1'RAVEL TIME (MIN.) = 4.39 Tc (MIN.)" 9.39 100 YEAR RAINE"Al,L INTENSITY (INCH/HOUR) = 4.739 GENERAL INDUSTRIAL RUNOFF COEFFICIEN'I' =: .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 Al~EA-AVERAGE RUNOF'F COEFFICIENT 0.870 SUBAREA AREA (ACRES) 1.38 SUBAREA RUNOFF(CFS) = 5.69 TOTAL AREA (ACRES) ,.,. 1.52 J?EAI< IT'LOW RATE (CFS) 6.27 I~ND OF SUBAREA s'rREET now HYDRAULICS: DEPTH (FEET) -0.36 HALFSTREET FLOOD WIDTH (FEET) = 11.67 FLOW VELOCITY(FEET/SEC.) -4.23 DEPTH*VELOCITY(FT*FT/SEC.) -1.52 LONGEST FLOW PATH FROM NODE 120.00 TO NODE 124.00 = 1132.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 135.00 IS CODE = 31 >>>>>COMPUTE PIPE-E'LOW TRAVEL TIME 'l'HRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVA'I'ION DATA: UPSTREAM (!.'"EE'r) ... 237.00 DOWNSTREAM (E'EE'I') ... 236.00 E'LOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.B INCHES PIPE-ITLOW VELOCITY(FEE'r/SEC.) '" 10.18 ESTIMATED PIPE DIAMETER(INCH) -18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 6.27 PIPE TRAVEL 'l'IME (MIN.) "" 0.04 Tc (MIN.)"" 9.43 LONGEST FLOWPATH E'ROM NODE 120.00 TO NODE 135.00 M 1157.00 FEET. ********************'**************'**************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 135.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS ~ 3 CONFLUENCE VALUES USED FOIl. INDEPENDENT STI\EAM 2 ARE: TIME 01:" CONCEN'I'RATION(MIN.) 9.43 RAINFALL IN'I'ENSITY (INCH/HH)" 4 . 7 3 TO'.I'AL s'rREAM AREA (ACRES) "" 1.52 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.27 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 133.00 IS CODE ~ 22 , ----------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =====================c=======~===========================================~m= NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 7.114 SUBAREA RUNOFF(CFS) 6.35 TOTAL AREA (ACRES) = 1.13 TOTAL RUNOFF(CFS) = 6.35 **************************************************************************** FLOW PROCESS FROM NODE 133.00 '1'0 NODE 135.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< . ELEVATION DA'1'A: UPSTREAM (FEET) .,. 237.00 DOWNSTREAM (FEET) 236.00 FLOW LENGTH(F'EET)" 58.00 MANNING'S N:= 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.50 ESTIMATED PIPE DIAME~rER(INCH) '" 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 6.35 PIPE TRAVEL TIME(MIN.) ~ 0.13 Tc(MIN.) ~ 5.13 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 135.00 58.00 FEET. ***************~************************************************************ FLOW PROCESS FROM NODE 133.00 TO NODE 135.00 IS CODE = 1 --------------------------------------------.------~-------------~-~---------»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCEN'1'RATION (MIN. ) 5.13 RAINFALL INTENSI'rY(INCH/HR) '" 7.00 TOTAL STREAM AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.35 y"* CONFLUENCE DATA * ,'" STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.73 10.28 4.469 2 6.27 9.43 4.726 3 6.35 5.13 6.998 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 3 STREAMS. 'k" PEAI< FLOW RATE TABLE ;"k STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) AREA (ACRE) 2.13 1. 52 1.13 RATIO 1 2 3 11. 62 13.97 13.71 5.13 9.43 10.28 COMPUTED CONFLUENCE ESTIMATES ARE PEAl< fLOW RA'm (CFS) = 13.97 TOTAL AREA (ACRES) = 4.78 6.998 4.726 4.469 AS FOLLOWS: Tc(MIN.) = 9.43 LONGEST FLOWPATH FROM NODE 120.00 'ro NODE 135.00 = 1157.00 fEET. **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 145.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>>>USING COMPUTER-ES'rIMA'l'ED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) Q 236.00 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) "" 29.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 11.76 ESTIMATED PIPE DIAMETER (INCH) '" 18.00 NUMBER OF PIPES = PIPE-FLOW (CFS) = 13.97 0.04 Tc(MIN.) = 9.47 1 235.00 PIPE 'I'RAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 120.00 'ro NODE 3.45tOO = 1186.00 FEE'l'. **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 145.00 IS CODE ." 1 , »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =~~====~==~==============~~===~~======c=============================c======= TOTAL NUMBER OF STREAMS = 2 CONFLUE:NCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRA'rION (MIN. ) 9.47 gAINfALL INTENSI'l'Y (INCH/HR) == 4.71 TOTAL STREAM AREA (ACRES) = 4.78 PEAK FLOW RATE (CFS) AT CONfLUENCE == 13.97 **************************************************************************** FLOW PHOCESS FROM NODE 140.00 TO NODE 145.00 IS CODE <= 7 »»>USEH SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIfIED VALUES ARE AS FOLLOWS: 'l'C(MIN)" 14.59 RAIN I N'rENS I'rY (INCH/HOUR) 0:: 3.57 TOTAL AREA(ACRES) B 17.63 TOTAL HUNOFF(CFS) m U .40 *********'****************************************************************** FLOW PH-OCESS FROM NODE 140.00 '1'0 NODE 145.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM fOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 'rIME: Of CONCENTRATION (MIN. ) 14 .59 RAINFALL INTENSI'rY (INCH/HR) = 3.57 TO'l'AJ., STREAM AgEA (ACRES) == 17.63 PEl·\I< FLOW RATE (CFS) AT CONFLUENCE = 14 . 40 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOOR) (ACRE) 1 13.97 9.47 4.713 4.78 2 14.40 14.59 3.566 17.63 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLOENCE FORMULA USED FOR 2 STREAMS. H PEAK FLOW RA1'E TABLE ** STRj!:AM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 23.32 9.47 4.713 2 24.97 14.59 3.566 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 24.97 Tc(MIN.) = 14.59 TOTAL AREA(ACRES) = 22.41 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 "" J,18'6.00 FEET. ***************~************************************************************ FLOW PROCESS FROM NODE 145.00 TO NODE 149.00 IS CODE ~ 31 >>>>>COMPUTE PIPE-FLOW TRAVEL 1'IME 'l'HRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ==~===========~===~m======~====================~=~==========~=====~======~~= ELEVATION DATA: UPSTREfIM(FEET)"" 235.00 DOWNSTREAM (FEET) "" 211.60 FLOW LENGTH(FEE'r) "" 177.00 MANNING'S N = 0.013 DEP'rH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 22.58 ESTIMATED PIFE DIAMETER (INCH) '" 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 24.97 PIPE TRAVEL TIME (MIN.)'" 0 .13 Tc (MIN.) '" 14.72 LONGEST FLOW PATH FROM NODE 120.00 TO NODE 149.00 1363.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 149.00 fro NODE 149.00 IS CODE = 81 ---------------------------------------------------~-----------~-----~------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) "" 3.545 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 SOIL CLASSIFICA'rION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.30 82 = 0.3166 0.44 TOTAL AREA(ACRES) = 22.71 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) -25.49 TC(MIN.) = 14.72 END OF STUDY SUMMARY: TOTAL AREA(ACRES). = PEAI< FLOW RA'rE (CFS) 22.71 TC(MIN.) = 25.49 14.72 ===~=~============~===========~====a~====~=============~~=~================= END OF RA'l'IONAL METHOD ANALYSIS I I' I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM' PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 *********************-"****_ DESCRIPTION OF STUDY ****-"*-1<-"*****-11*****-,,*-1<,**** ~ * 3330.00 -THE BRIDGES AT POINSETTIA * * PROPOSED CONDITIONS • * 100 YEAR STORM EVENT, SYSTEM 200 * ************************************************************************** FILE NAME: S200P100.DAT TIME/DATE OF STUDY: 11:22 07/22/2008 OSER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) "" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE ~ 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint'" 6.0 (FT*F'l'/S) -"SIZE PIPE WITH A FLOW CAPACITY GREA'l'ER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 22 »»>RATIONAL ME'l'HOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2.9 DU/AC OR LESS) RUNOFF COEFFICIENT = .4900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 85 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA (ACRES) = 0.31 TO'1'AL RUNOFF (CFS) .,. 1. 08 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 210.00 IS CODE = 31 »>>>COMPUTE PIPE-FLOW 'l'RAVEL 'rIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ========================================~===~~m==~==~======================= ELEVATION DATA: UPSTREAM (FEET) = 239.80 DOWNSTREAM (FEET) = 229.00 FLOW LENG'I'H(FEET)'" 360.00 MANNING'S N '" 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) "" 1.08 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 6.08 LONGES'r FLOWPATH FROM NODE 200.00 TO NODE 210.00'" 360.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 '1'0 NODE 210.00 IS CODE -81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RIUNFALL INTENSITY (INCH/HOUR) "" 6.271 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900 SOIL CLASSIFICA'frON IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.85 TOTAL AREA(ACRES) 1.16 TC(MIN.) = 6.08 94 r.::: 0.7098 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) ~ 4.21 5.16 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINF'ALL INTENSITY (INCH/HOUR) 6.271 GENERAL INDUS'rRIAL RUNOFF COEFFICIEN'l' ..,. .8700 SOIL CLASSIFICA'l'ION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.08 'I'O'l'AL AREA (ACRES) ." 1 . 2 4 TC(MIN.) -6.08 97 '" 0.7202 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) g 0.44 5.60 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE -81 >>>>>ADDI'l'ION OF SUBAREA 'ro MAINLINE PEJ.\K FLOW<<<<< 100 YEAR RAINFALL IN'rENSITY (INCH/HOUR) ... 6.271 GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700 SOIL CLASSIFICATION IS "0" I 'I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.08 TOTAL AREA(ACRES) = 1.32 TC(MIN.) = 6.08 97 =0.7292 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 0.44 6.04 **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 215.00 IS CODE = 81 --------------------------~-------------------------------------------------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ==========================~===================~===================m========= 100 YEAR RAINFALL INTENSITY (INCH!HOUR) "" 6.271 RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.90 TOTAL AREA(ACRES) = 2.22 TC(MIN.) = 6.08 94 ... 0.7539 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 4.46 10.49 *********************************************************.****************~. FLOW PROCESS FROM NODE 215.00 TO NODE 225.00 ~S CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 229.00 DOWNSTREAM (FEET) 225.00 FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 13.93 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) ~ 10.49 PIPE 'rRAVEL 'rIME (MIN.).. 0.07 Tc (MIN.).. 6.15 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 225.00 422.00 FEET. *************************'************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE =, 31 -----------------------------------------------------------~--~---~-~------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =====~m==~=============================g======~===~==~========~~============ ELEVATION DA'l'A: UPS'l'REAM(FEET) "" 225.00 DOWNS '1' REAM (FEET) = 222.00 FLOW LENGTH (FEET) = 282.00 MANNING'S N -0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.82 ESTIMATED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 10.49 PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 6.84 LONGEST FLOW PATH FROM NODE 200.00 TO NODE 230.00 = 704.00 FEET. ******************************~********************************************* FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ======~===========-======~===~~=============~================~=====~======== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ) 6.84 RAINFALL IN'l'ENSI'l'Y(INCH/HR) = 5.81 TOTAL STREAM AREA (ACRES) -2.22 PEAK IT'LOW RATE (CFS) AT CONFLUENCE "" 1 0 . 4 9 **************************************************************************** FLOW PROCESS FROM NODE 222.00 TO NODE 230.00 IS CODE ~ 21 »»>RATIONAL ME'l'l-IOD INI'l'IAL SUBAREA ANALYSIS««< ===mc=================~===================================================== OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS »0» S.C.S. CURVE NUMBER (AMC II) = 81 INITIAL SUBAREA FLOW-LENGTH(FEET) -702.00 UPSTREAM ELEVATION (FEET) = 258.00 DOWNSTREAM ELEVATION(FEET) = 222.00 ELEVATION DIFFERENCE (FEET) = 36.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.829 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OV1I:RLAND FLOW LENG'l'H = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR rU\TNFALL INrl'ENSI'l'Y (INCH/HOUR) '" 5.327 SUBAREA RUNOFF(CFS) = 2.37 TOTAL AREA (ACRES) -1.27 TOTAL RUNOFF(CFS) 2.37 *'************************************************************************** FLOW PROCESS FROM NODE 222.00 TO NODE 230.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 'I'IME OF CONCENTRATION (MIN.) =: 7.83 RAINFJ.\LL IN'l'ENSI'I'Y (INCH/HR) = 5.33 TOTAL STREAM AREA (ACRES) -1.27 PEJ.\I<: now RA'l'E (CFS) 1-\T CONFLUENCE =: 2.37 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 10.49 2 2.37 'rc (MIN. ) 6.84 7.83 INTENSI'rY ( INCH/HOUR) 5.810 5.327 AREA (ACRE) 2.22 1. 27 RIUNFALL IN'l'li;NSn'y J-'lND 'l'1ME OF CONCEN'l'Rl.\'l'ION RATIO CONl!'LUl~NCE FORMULA USED FOR 2 STREAMS. 'k ·A· PEI-\K srl'REAM NUMBER 1 2 FLOW RATE RUNOFF (CF'S) J2.56 11.99 'l'ABLE ** Tc (MIN. ) 6.8t] 7.83 INTENSITY ( INCH/HOUR) 5.810 5.327 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW AATE(CFS) = 12.56 Tc(MIN.) "" 6.84 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I TOTAL AREA(ACRES) = 3.49 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 230.00 = 704.00 FEET. ============================~~G====~~===========================~=========== END OF STUDY SUMMARY: TOTAL AREA (ACRES) g PEAK FLOW RATE(CFS) 3.49 TC(MIN.) = 12.56 6.84 ========================================~=============~===================== =================================================c=================~~======= END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I **********************************~***************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE SRIDGES AT POINSETTIA * * PROPOSED CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 300 * ********************************~****************~************************ FILE NAME: S300PI00.DAT TIME/DATE OF STUDY: 14:03 07/22/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) ~ 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOl'E: USE MODIFIED RA'l'IONAL ME'rHOD PROCEDURES FOR CONFLUENCE ANALYSIS -kUSER-DEFINED STREET-SEC'l'IONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-I OUT-/PARI<-HEIGHT WIDTH LIP HII<E FACTOR NO. (FT) (FT) SIDE; I SIDEI WAY (FT) (FT) (FT) (F'r) (n) ===== ========= ==============~~= =~=~=~ ====== ======~ 1 41. 0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 ~.125 0.0150 GLOBAL STREB'l' FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth -1.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint == 10.0 (F'r-kFT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER 'rl-IAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *************~*******~******'***************************.******************* FLOW PROCESS FROM NODE 300.00 TO NODE 302.00 IS CODE = 22 ------------------------------------------------------------------------~--- »»>RATIONAL METHOD INITIAL SOBAREA ANALYSIS««< RESIDENTIAL (1. DUlAC OR LESS) RUNOFF COEFFICIENT = .4100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBiR (AMC II) = 82 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINfALL IN'l'ENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) c 0.32 TOTAL RUNOFF (CFS) = 0.93 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 31 »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =~========~=================-=========================================~===== ELEVATION DATA: UPSTREAM (FEET) = 261.50 DOWNSTREAM (FEET) ~ 258.00 FLOW LENGTH (FEET) -158.00 MANNING'S N = 0.013 ES'l'IMATED PIPE DIAMETER (INCH) INCREASED '1'0 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) -4.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 0.93 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 5.55 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 158.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 30<1.00 TO NODE 304.00 IS CODE ~ 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RIUNFALL INTENSITY (INCH/HOUR)'" 6.649 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF' COEFFICIENT SUBAREA AREA(ACRES) ~ 1.15 TOTAL AREA(ACRES) = 1.47 TC(MIN.) = 5.55 94 "" 0.7073 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) ~ 6.0~ 6.91 ************'*************************************************************** FLOW PROCESS FROM NODE 304.00 'l'O NODE 305.00 IS CODE -31 >>>>>COMPU'l'JE PIPE-FLOW TRAVEl, TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVA'1'ION DA'rJ~: UPS'l'EEAM(F8ET) "" 249.20 DOWNSTREAM(F'EE~l') ... FLOW LENGTH (PEET) -32.00 MANNING'S N -0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW(CFS) -6.91 NUMBER OF PIPES 0.07 Tc(MIN.) = 5.62 1 248.70 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FEOM NODE 300.00 '1'0 NODE 305.00 == J.90.00 FEE'r. ******'*'***'*************************************************************** now PROCESS FROM NODE 305.00 '1'0 NODE 305.00 IS CODE = 81 »»>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAI< FLOW««< 10~ YEJ.\R RAINFALl. INTENSITY (INCH/HOUR) "" 6.593 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.23 TOTAL AREA(ACRES) 1.70 TC(MIN.) "" 5.62 97 '" 0.7293 SUBAREA RUNOFF(CFS) "" TOTAL RUNOFF(CFS) g 1.32 8.17 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 315.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =================~====~=================~===================~~===~========== ELEVATION DATA: UPSTREAM (FEET) = 248.70 DOWNSTREAM (FEET) 243.00 FLOW LENGTH (FEET) = 229.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) 9.17 ESTIMATED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) "" 8.17 PIPE TRAVEL TIME(MIN.) ~ 0.42 Tc(MIN.) = 6.04 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 315.00 419.00 FEET. ************************************************~*************************** FLOW PROCESS FROM NODE 307.00 'ro NODE 310.00 IS CODE ~ 81 --------------------------------------------------------------~---~--------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =================~===================~===========~=~~==========~==g~====~=== 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 6.297 RESIDENTAIL (24. DU!AC OR LESS) RUNOFF COEFFICIENT = .7100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA (ACRES) 1.38 TOTAL AREA(ACRES) ~ 3.08 TC(MIN.) = 6.04 92 '" 0.7206 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = ·6.17 13.98 ********************************************************~******************* FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE ~ 81 ------------------------------------------------------------------~-~----~-~ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ==================z=~===============================~==~=====~=~~=~~=~=====~ 100 YEAR RAINFALL INTENSITY (INCH!HOUR) '" 6.297 LIMITED INDUSTRIAL RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA (ACRES) 0.64 TOTAL AREA (ACRES) = 3.72 TC(MIN.) = 6.04 96 "" 0.7429 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF (CFS) = 3.43 17.40 **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 315.00 IS CODE = ~1 ------------------------------------------------------------~---------~----- »>>>COMPUTE PIPE-FLOW, TRAVEL 'rIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< I ----------~~~-....... ============================================m=~===========================~= ELEVATION DATA: UPSTREAM (FEET) c 242.50 DOWNSTREAM (FEET) = 242.30 FLOW LENGTH (FEET) = 19.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.94 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 17.40 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 6.08 LONGES'f FLOWPATH FROM NODE 300.00 TO NODE 315.00 438.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 315.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ==================================~====================================~c=== 100 YEAR RAINFALL IN'fENSI'rY (INCH/HOUR) = 6.270 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.41 TO'l'AL AREA (ACRES) = 4 . 13 TC(MIN.) ~ 6.08 97 .." 0.7555 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) - 2.24 19.56 **************************************************************************** FLOW PROCESS FROM NODE 315.00 'fO NODE 330.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =~=~=========mc====c==================c===================================== ELEVATION DATA: UPSTREAM (FEET) = 242.30 DOWNSTREAM (FEET) 241.30 FLOW LENGTH(FEET) ~ 99.00 MANNING'S N = 0.013 DEPTH OF now IN 24.0 INCH PIPE IS 17.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 7.96 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES ~ 1 PIPE-FLOW (CFS) = 19.56 PIPE TRAVEL TIME(MIN.)'" 0.21 Tc(MIN.) ~ 6.29 LONGEST FLOWPA'l'H FROM NODE 300.00 '1'0 NODE 330.00 c: 537. 00 FEI~T. ********************************************************************'******~ FLOW PROCESS FROM NODE 320.00 'fO NODE 330.00 IS CODE ~ 81 >>>>>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAt< FLOW<<<<< 100 YEAR RAINFALL IN'l'ENSITY (INCH/HOUR) "" 6 .136 LIMITED INDUSTRIAL RUNOFF COEFFICIENT -.8500 SOIL CLASSIFICATION IS "0" S . C . S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT ~ 0.7615 SUBAREA AREA(ACRES) 0.28 SUBAREA RUNOFF(CFS) 'l'OTAL AREA(ACRES) :: 4.41 'rOTAL l<.UNOFF(Cf'S) = TC(MIN.) = 6.29 1. 46 20.61 ************************************6*************************************** FLOW PROCESS FROM NODE 325.00 '1'0 NODE 330.00 IS CODE = 81 »>>>ADDI'l'ION OF SUBAREA TO MAINLINE PEAI< FLOW««< I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ================================================================~==========~ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) :: 6.136 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) ~ 0.18 ~OTAL AREA(ACRES) 4.59 TC(MIN.) = 6.29 97 = 0.7658 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 0.96 21. 57 **************************************************************************** FLOW PROCESS FROM NODE 330.00 TO NODE 350.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =====m======~=========~~=~~=====~========================================~== ELEVATION DATA: UPSTREAM (FEET)" 241. 30 DOWNSTREAM (FEET).... 238 .. 30 FLOW LENGTH (FEET) = 305.00 MANNING'S N = 0.013 OEPTH OF FLOW IN 24.0 INCH PIPE IS 19.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.93 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 21.57 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) ~ 6.93 LONGEST FLOWPA'rJ-I FROM NODE 300.00 TO NODE 350.00.. 842.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 330.00 TO NODE 350.00 IS CODE g 1 ---------------------------------------------------------------------~------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ==============~=======================================~========~=~========== TOTAL NUMBER OF STREAMS ~ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.93 RAINFALL INTENSITY (INCH/HR) = 5.76 TOTAL STREAM AREA(ACRES) = 4.59 PEAr<: FLOW RATE (CFS) A'l' CONFLUENCE'" 21.57 **************************************************************************** FLOW PROCESS FROM NODE 344.00 TO NODE 345.00 IS CODE = 22 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENJ!:RAL INDUSTRIAL RUNOFF COEFFICIENT"" . 8700 SOIL CLASSInCATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL IN'rENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) = 1.42 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) ~.42 **************************************************************************** FLOW PROCESS FROM NODE 342.00 TO NODE 345.00 IS CODE = 81 »»>ADDITION OJ~ SOBAREA TO MAINLINE PEAl< FLOW««< ==================~============================~============================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) ... 7.114 RESIDENTAIL (24. DU/AC OR LESS) .RUNOFF COEFFICIENT = .7100 SOIL CLASSIFICATION S.C.S. CURVE NUMBER AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) 'l'OTAL AREA (ACRES) I: TC(MIN.) = 5.00 IS "D" (AMC II) COEFFICIENT = 0.85 1. 08 92 = 0.7441 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 4.29 5.72 ******************************.****.**************************************** FLOW PROCESS FROM NODE 345.00 TO NODE 350.00 IS CODE = 31 »»>COMPU'l'E PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPU'rER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 242.80 DOWNSTREAM (FEET) = 240.40 FLOW LENGTH (FEET) ... 241.00 MANNING'S N = 0.013 ES'l'IMATED PIPE DIAMETER (INCH) INCREASED '1'0 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.94 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 5.72 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 5.68 LONGEST FLOWPATH FROM NODE 344.00 TO NODE 350.00 -241.00 FEET . • *****************************.************* •• * ••••••• *.*******.**.****.**** FLOW PROCESS FROM NODE 345.00 TO NODE 350.0'0 IS CODE = J. »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =~=====~=~==============================~========m========================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.68 RlUNFALL INTENSITY (INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) -1.08 PEAK FLOW RA'l'E (CFS) A'l' CONFLUENCE = 5. 7~ 'Id CONFLUENCE DATA H S'rREAM RUNOFF NUMBER (CFS) 1 21. 57 2 5.72 Te (MIN. ) 6.93 5.68 RAINFALL IN'rENSITY AND TIME CONFLUENCE FORMULA USED FOR ·k 'k PEAI< FLOW RATE TABLE 'A' 0).. Sl'1~El·\M RUNOFF 'l'e NUMBER (CFS) (MIN. ) J. 23.38 5.68 2 26.59 6.93 OF 2 INTENSITY ( INCH/HOUR) 5.764 6.555 CONCENTRATION STREAMS. INrrENSITY (INCH/HOUR) 6.555 5.764 ES'I'IMA1'ES ARE 26.59 5.67 COMPUTED CONFLUENCE PEAK FLOW RA1'E (eFS) TOTAL AREA(ACRES) ... LONGEST FLOW PATH FROM AS FOLLOWS: 1'e(MIN.) ., NODE 300.00 '1'0 NODE AREA (ACRE) 4.59 1. 08 RATIO 6.93 350.00 "" 842.00 F'EE'l'. *******************.***.*********** •• *************************************** ---------- I· I I I I ,I I I I I I I I I I I I • :1 I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 350.00 T·O NODE 360.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ~====~===~======~=======~~~===============~~==~=~========================~== ELEVATION DATA: UPSTREAM (FEET) ". 235.10 DOWNSTREAM (FEET) "" 234 .. 20 FLOW LENGTH (FEET) = 89.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 8.61 ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 26.59 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.10 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 360.00 = 931.00 FEET. ******************************************************************~******** FLOW PROCESS FROM NODE 355.00 TO NODE 360.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ========~~=======~==================~==================~============~======= 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.673 GENERAL INDUSTRIAL RUNOFF COEFFICIENT ~ .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.78 TOTAL AREA(ACRES) 6.45 TC(MIN.) ~ 7.10 97 '" 0.7747 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 3.85 28.3.5 **************************************************************************** FLOW PROCESS FROM NODE 357.00 TO NODE 360.00 IS COPE = 81 --~--------------------------------------------------------------------------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ======================================================~===========~=====~=== 100 YEAR RAINFALL INTENSITY (INCH/HOUR) ... 5.673 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.38 TOTAL AREA(ACRES) = 6.83 TC(MIN.) ~ 7.10 97 ... 0.7800 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 1. 88 30.23 **************************************************************************** FLOW PROCESS FROM NODE 360.00 TO NODE 368.00 IS CODE = ~1 ----'------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =========~==~=======~======~===========~==================================== ELEVATION DATA: UPSTREAM (FEET) = 234.20 DOWNSTREAM (FEET) = 233.00 FLOW LENGTH(FEET) -121.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 8.92 ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 30.23 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 7.33 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 368.00 = 1052.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 360.00 TO NODE 368.00 IS CODE :: 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================~=============== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDEN'1' S'l'REAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.33 RAINFALL INTENSITY (INCH/HR) = 5.56 TOTAL STREAM AREA(ACRES) = 6.83 PEAI< FLOW RATE (CFS) A'l' CONFLUENCE = 30.23 **************************************************************************** FLOW PROCESS FROM NODE 360.00 TO NODE 365.00 IS CODE ~ 22 -----------~----------------------------------------------------------------»>>>RATIONAL METHOD INI'1'IAL SUBAREA ANALYSIS««< ==================~==============~========================c=~=c=~~~~~~~~~==== RESIDENTAIL (24. DUlAC OR LESS) RUNOFF COEFFICIENT c .7100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL IN'l'ENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF(CFS) = 7.22 TOTAL AREA (ACRES) = 1.43 TOTAL RUNOFF(CFS) ~ 7.22 **************************************************************************** Jr'LOW PROCESS FROM NODE 365.00 TO NODE 365.00 IS CODE = 81 »»>ADDI'l'ION OF SUBAREA TO MAINLINE PJ~AI< FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7252 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) -1.58 TOTAL RUNOFF(CFS) = 8.15 TC(MIN.) = 5.00 **************************************************************************** FLOW PROCESS FROM NODE 365.00 '1'0 NODE 368.00 IS CODE ~ 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESlZE (NON-PRESSURE FLOW) <<<<< EJ~EVATION DATA: UPSrl'REAM (C"1EE;'l') = 234.92 DOWNST1\EAM (FEET) 233.00 FLOW LENGTH (FEET) c 192.00 MANNING'S N -0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.43 ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 8.15 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 5.50 LONGEST FLOWPATH FROM NODE; 360.00 '1'0 NODE 368.00 "" 421.00 FEET. .*******************************************************************'******' FLOW PROCESS FROM NODE 365.00 TO NODE 368.00 IS CODE '" 1 ----------------------------------------------~----------------------------- I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ==~================================================~=====~==~=============== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.50 RAINFALL INTENSITY(INCH/HR) = 6.69 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE ~ 8.15 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 30.23 7.33 5.560 2 8.15 5.50 6.692 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE -It * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUl~) 1 33.26 5.50 6.692 2 37.00 7.33 5.560 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 37.00 Tc (MIN.) ... TOTAL AREA(ACRES) = 8.41 AREA (ACRE) 6.83 1. 58 RATIO 7.33 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 368.00 1052.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 368.00 TO NODE 375.00 IS CODE'" 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =====~=============~========~==~==~====~====================~===~==========~ ELEVATION DATA: UPS'l'REAM(FEET) = 233.00 DOWNSTREAM (FEET) <= 232.90 FLOW LENGTH (FEET) = 7.80 MANNING'S N ... 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 10.29 ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES =. 1 PIPE-FLOW (CFS) ~ 37.00 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.34 LONGEST FLOW PATH FROM NODE 300.00 TO NODE 375.00 = 1059:80 FEET. ****~*********************************************************************** FLOW PROCESS FROM NODE 368.00 TO NODE 375.00 IS .CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ==~==============~==========~=====~==~================~============~=g====== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 7.34 RAINFALL INTENSI'rY(INCH/HR) = 5.55 TOTAL STREAM AREA(ACgES) = 8.41 PEAK FLOW RATE (CFS) AT CONFLUENCE = 37.00 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••• FLOW PROCESS FROM NODE 370.00 TO NODE 372.00 IS CODE = 22 >>>>>RA1'IONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =================================================c==============c==========: RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT = .7100 SOIL CLASSIFICATION IS ~D~ S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 SUBAREA RUNOFF (CFS) 5.71 TOTAL AREA (ACRES) = 1.13 TOTAL RUNOFF(CFS) 5.71 **** •• ** •• * ••••• * ••••••• *** •••• *.****.* ••••••••••••••••••••••••••••••••••••• FLOW PROCESS FROM NODE 372.00 TO NODE 372.00 IS CODE ~ 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 GENERAL INDUSTRIAL RUNOb"'F COEFFICIENT"" .8700 SOIL CLASSIFICATION IS ~D~ S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA (ACRES) 0.10 TOTAL AREA (ACRES) = 1.23 TC(MIN.) = 5.00 97 ... 0.7230 SUBAREA RUNOFF(Cb"'S) = TOTAL RUNOb"'F(CFS) - 0.62 6.33 ••••••••• * •••••••••••••••••••••••••••••• * ••••••••••••••••••••••••••••••••••• FLOW PROCESS FROM NODE 372.00 '1'0 NODE 375.00 IS CODE = 31 >>>>>COMPu'rE PIPE-FLOW TRAVEL 'rIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVA1'ION D]'\TA: UPSTRE1~M(lfEE'r)::: 234.80 DOWNSTREAM (FEE'l') FLOW LENGTH (FEET) = 192.00 MANNING'S N -0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.07 ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 6.33 0.53 Tc(MIN.) ~ 5.53 1 232.90 PIPE TRJWEL 1'IME (MIN.) "" LONGEST 11'J.,OWPATH mOM NODI!: 370.00 TO NODE 375.00 = 23092.00 FEET . •••••••• * ••••••• ** ••••••• *.~*.**.* ••••• * •••••••••••••••••••••••••••••• * ••••• FLOW PROCESS FROM NODE 372.00 'ro NODE 375.00 IS CODE "" »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS "" 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 'l'1ME OF' CONCEN'I'RA'rION (MIN. ) 5.53 RAINFJ,\LL INTENSITY (INCH/HR) "" 6.67 TOTAL STREAM AREA(ACRES) ~ 1.23 PEAI~ FLOW RATE (CFS) A'l' CONFJ~UENCE "" 6.33 ,A' 'k CONFLUENCE DATA ~"k S1'REAM RUNOFF Tc INTENSI'rY AREA 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I 'I I I I I NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 37.00 7.34 5.554 8.41 2 6.33 5.53 6.668 1.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 'II'll PEAK FLOW RATE TABLE ,It'll STREAM RUNOFF Tc INTENSITY NUMBER (eFS) (MIN. ) ( INCH/HOUR) 1 37.14 5.53 6.668 2 42.27 7.34 5.554 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 42.27 Tc (MIN.) == 7.34 TOTAL AREA (ACRES) .. 9.64 LONGEST FLOWPATH FROM NODE 370.00 TO NODE 375.00 = 23092.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 375.00 TO NODE 380.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) .. 232.90 DOWNSTREAM (FEET) = 230.50 FLOW LENGTH (FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 9.68 ES'rIMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES.. 1 PIPE-FLOW (CFS) = 42.27 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 7.75 LONGEST FLOW PATH FROM NODE 370.00 TO NODE 380.00 = 23332.00 FEET. **********************'***************************************~************* FLOW PROCESS FROM NODE 377.00 TO NODE 380.00 IS -CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =g~~========~=~~~~===~====================~=======================~========= 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.361 GENll:RAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C;S. CURVE NUMBER (AMe II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.41 TOTAL AREA (ACRES) = 10.05 TC(MIN.) = 7.75 97 "" 0.7681 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = NOTE: PEAI'< FLOW M'rE DEFAULTED TO UPSTREAM VALUE 1. 91 42.27 **************************************************************************** FLOW PROCESS FROM NODE 379.00 TO NODE '380.00 IS CODE = 81 ---------------------------------------------------------~------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSIT:((INCH/HOUR) 5.361 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.40 ~l'O'I'AL AREA (ACRES) = 10. 45 TC(MIN.) = 7.75 == 0.7720 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 1. 87 43.25 **************************************************************************** FLOW PROCESS FROM NODE 380.00 TO NODE 398.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ================~====~====================================================== ELEVATION DATA: UPSTREAM (FEET) = 230.50 DOWNSTREAM (FEET) = 229.90 FLOW LENGTH(FEE'I') = 58.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.86 ES'l'IMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 43.25 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 7.85 LONGEST FLOWPATH FROM NODE 370.00 TO NODE 398.00 = 23390.00 FEET. **************************************************************************** FLOW PROCESS F'ROM NODE 380.00 '1'0 NODE 398.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ~~~===~==========~===~~===============~===================================== 'I'O'1'AL NUMBER OF S'rREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 'rIME OF CONCENTRATION (MIN.)" 7.85 RAINFALL IN'I'ENSI'I'Y (INCH/HR) = 5.32 'ro'r AI, STREAM AREA (ACRES) "" 1 0 . 4 5 PEAK FLOW RA'l'E(CFS) AT CONFLUENCE = 43.25 **************************************************************************** FLOW PROCESS FROM NODE 381. 00 '1'0 NODE 382.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ====~=n==~========~~~=~==~=========~==cc==================================== GENERAL INDUS'l'RIAL RUNOFF COEFFICIEN'l' = .8700 SOIL CLASSIFIC].\'l'ION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAIN~~ALL INTENSITY (INCH/HOUR) I: 7.114 SUBAREA RUNOFF(CFS) = 0.74 TOTAL AREA(ACRES) -0.12 TOTAL RUNOFF(CFS) w 0.74 **************************************************************************** FLOW PROCESS FROM NODE 382.00 TO NODE 385.00 IS CODE = 62 »»>COMPu'rE S'I'REE'r FLOW TRAVEL TIME THRU SUBAREA<<<<< »»> (STREET TABLE SECTION # 1 U8ED)««< UPSTRl~AM ELEVA'I'ION(FE:E'1') = 240.70 DOWNSTREAM ELEVATION(F'EET) I: 236.60 STREET 1ENGTH(FEET) -210.00 CURB HEIGHT (INCHES) = 6.0 8TREET HALFWIDTH(F'EET) -41.00 DISTANCE FROM CROWN 'ro CROSSFALL GRADEBREAI< (FEE'l') = 20.00 INSIDE STREET CROSSFALL(DECIMAL) g 0.020 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I OBTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) "" 0.0150 Manning's FRICTION FACTOR for Back-of-Walk F'low Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) S'l'REETFLOW MODEL RESULTS USING ES'rIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.79 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.61 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 6.103 GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700 SOIL CLASSIFICATION IS "D" . S.C.S. CURVE NUMBER (AMC II) m 97 AREA-AVERAGE RUNOFF COEFFICIENT 0.870 6.34 SUBAREA AREA (ACRES) = 0.29 TOTAL AREA(ACRES) ~ 0.41 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) ~ END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) .. 0.29 HALFSTREET FLOOD WI DTH (F'EET) 8.09 1. 51 1. 54 2.18 FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81 LONGEST FLOWPATH FROM NODE 381.00 TO NODE 385.00 = 210.00 F~ET. *************************************************************************~** FLOW PROCESS FROM NODE 385.00 TO NODE 392.00 IS CODE ~ 31 -----------------------------------------------------~----------~-~--------~ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 230.00 DOWNSTREAM (FEET) = . 229.00 FLOW LENGTH (FEET) ~ 94.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.71 ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.18 PIPE TRAVEL TIME(MIN,) ~ 0.33 Tc(MIN.) = 6.67 LONGEST FLOWPATH FROM NODE 381.00 TO NODE 392.00 = 304.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 388.00 TO NODE 390.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =~~==~===========~=~======~================g~====~=========mg=m============= 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.905 RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT"" .7100 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 1.50 TOTAL AREA(ACRES) 1.91 TC(MIN.) = 6.67 92 ... 0.7443 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 6.29 8.40 **************************************************************************** FLOW PROCESS FROM NODE 390.00 TO NODE 392.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =====================================================================c====== 100 YEAR RAINFALL INTENSITY (INCH/HOUR) -= 5.905 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 son. CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNm"'F COEFFICIENT SUBAREA AREA(ACRES) = 0.07 TOTAL AREA(ACRES) 1.98 TC(MIN.) = 6.67 97 "" 0.7488 SUBAREA RUNOFF (CFS) = TOTAL RUNOFF (CFS) = 0.36 8.76 **************************************************************************** FLOW PROCESS FROM NODE 392.00 '1'0 NODE 396.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ==========g~=========~===~=~~==~=============================~============== ELEVATION DATA: UPSTREAM (FEET) ~ 233.10 DOWNSTREAM (FEET) 232.96 FLOW LENGTH (FEET) -14.00 MANNING'S N -0.013 Dli:PTH Ob"' FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.51 ESTIMl.';TED PIPE DIAME'rEH (INCH)'" 18.00 NUMBER OF PIPES '"" 1 PIPE-FLOW (CFS) = 8.76 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.)... 6.71 LONGES'1' FLOWPATH FROM NODE 381.00 TO NODE 396.00 "" 318.00 FEE'r. **************************************************************************** FLOW PROCESS FROM NODE 394.00 TO NODE 396.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ~=~======~~~~======z====~===~~~======~============~==========~=====~==~=~=== 100 YEAR RAINFALL INTENSI~['Y (INCH/HOUR) 5.885 GENERAL INDUSTRIAL RUNOFF COEFFICIEN'r .... 8700 SOIL CLASSIF'ICA'l'ION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ 97 AREA-AVERAGE RUNOFF COEFFICIENT ... 0.7524 SUBAREA AREA(ACRES) 0.06 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA (ACRES) ~ 2.04 TOTAL RUNOFF(CFS) -9.03 TC(MIN.) = 6.71 **************************************************************************** FLOW PROCESS FROM NODE 396.00 TO NODE 398.00 IS CODE c 31 >>>>>COMPu'rE PIPE-FLOW 'l'RiWEL 'rIME 'l'HRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ===~=======~=============~~~~~=~=====c============================~========= ELEVATION DATA: UJ?S1~REAM(F'J~ET) == 232.96 DOWNSTREAM (FEET) ... 232.18 FLOW LENGTH (FEET) = 78.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY(FEE'l'/SEC.) '" 6.54 ESTIMA'I'E;D PIPE DIAME'l'I!:R (INCIl)" 18.00 NUMBER OF PIPES = PIPE-FLOW (CFS) -9.03 PIPE 'rMVEL TIME (MIN.) ... LONGEST FLOWPATH FROM NODE 0.20 Tc(MIN.) = 381. 00 TO NODE 6.91 398.00 1 396.00 FEET. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 396.00 TO NODE 398.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ~=======~=============~=~========~=====~g~=================================~ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRA'l'ION (MIN. ) 6.91 RAINFALL INTENSITY(INCH/HR) = 5.78 TOTAL STREAM AREA(ACRES) = 2.04 PEAI< FLOW RATE (CFS) AT CONFLUENCE = 9. 03 H CONFLUENCE DATA ** STREAM RUNOFF To INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 43.25 7.85 5.318 2 9.03 6.91 5.775 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. *'it PEAI< FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CrS) (MIN. ) ( INCH/HOUR) 1 48.85 6.91 5.775 2 51. 57 7.85 5.318 ESTIMATES ARE COMPUTED CONFLUENCE PEAK FLOW RATE (CFS) TOTAL AREA(ACRES) = LONGEST F10WPATH FROM AS FOLLOWS: = 51. 57 Tc (MIN.) '" 12.49 NODE 370.00 TO NODI!: AREA (ACRE) 10.45 2.04 RATIO 7.85 398.00 = 23390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 398.00 TO NODE 399.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) '" 232.18 DOWNSTREAM (FEET) .., 205.00 FLOW LENGTH (FEET) ~ 75.00 MANNING'S N ~ 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 39.05 ESTIMA'l'ED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 51.57 PIPE 'l'RAVEL 'rIME(MIN.) = 0.03 Tc(MIN.) = 7.88 LONGEST FLOWPATH FROM NODE 370.00 TO NODE 399.00 = 23465.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 399.00 TO NODE 399,00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ===~g==~=======m==~=~======~====================~=========================== 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.304 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT -.4100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOE"F COEFFICIENT SUBAREA AREA(ACRES) = 0.88 'rOTAL AREA(ACRES) = 13.37 TC(MIN.) = 7.88 82 = 0.7452 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 1.91 52.84 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) 13.37 TC(MIN.) = 52.84 7.88 =================~=====~=========~===================c===~==~====~=ae======= g==c=========~==================~==================~======================== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ******************************************~********************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * PROPOSED CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 400 * ************************************************************************** FILE NAME: S400PIOO.DAT TIME/DATE OF STUDY: 17:31 07/22/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) '" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRIC1'ION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREE'rFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-j-IEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (F'l') SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ~===== ===== =====~= 1 41.0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET nOW-DEPTH CONS'l'RAIN'I'S: 1. Relative Flow-Depth = 1.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-oi-Curb) 2. (Depth) * (Velocity) Constraint"" 10.0 (F'l"kITT/S) 'I<SIZE PIPE WITH A now CAPACITY GREA'l'ER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO 'NODE 405.00 IS CODE = 22 ---------------------------------------------------------------------_._----- »>>>RATIONAL METHOD INITIAl, SUBAREA ANALYSIS«<<< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. C~RVE NUMBER (AMC II) ~ 97 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) c 0.37 To'rAL AREA(J-\CJ,ES) .,. 0,06 TO'l'AL RUNOFF(CFS) = 0.37 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 455.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< ~=~===================~=========g=~~~===================m=============~~==== UPs'rREAM ELEVA'rION(FEET) == 247.40 DOWNSTREAM ELEVA'rrON(FEET) == 235.00 STREET LENGTH (FEET) = 306.00 CURB HEIGHT (INCHES) 6.0 STREET HALFWIDTH(FEET) -41.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAI«FEET) INSIDE STREET CROSSFALL(DECIMAL) "" 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 STREET PARI<WAY CROSSFALL(DECIMAL) :: 0.020 20.00 Manning's lTRIC'nON FAC'l'OR for Streetflow Section (curb-to-curb) ,-" 0,0150 Manni.ng's FRIC'nON FACTOR for Back-of-Walk Flow Section I: 0.0200 "kW'I'RAVEL 'rIME: COMPUTED LlSING ESTIMATED FLOW (CFS) ... 2.53 STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) a 0.27 HALFSTREET FLOOD WIDTH (FEET) ~ 7.33 AVERAGE: I!'LOW VELOCI'l'Y (FEET / SEC.) "" 3 . 8 7 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06 STREE'r now 'l'RAVEL TIME (MIN.):= 3..32 'I'c (MIN.) = 6.32 100 YEl·\R RAINFALL INTENSITY (INCH/HOUR) ..., 6.117 NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT ~ .7900 SOIL CLASSIFICA'I'ION IS "0" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGl~ RUNOFF COr~JrF'ICIENT == 0.795 SUBAREA AREA (ACRES) 0.89 SUBAREA RUNOFF(CFS) c 4.30 TO'I'A:L AREA (ACRES) "" 0.95 PEAI< FLOW RA'I'E (CFS) := 4.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) -0,32 HALFSTREET FLOOD WIDTH (FEET) 9.61 FLOW VELOCITY(FEET/SEC.) -4.43 DEPTH*VELOCITY(FT*FT/SEC.) 1,41 LONGES'I' ITLOWPA'l'H FROM NODE 400.00 TO NODE 455.00 '" 306.00 FEE'I'. *********'************.*********************************'****'******'******* FLOW PROCESS FROM NODE 455.00 TO NODE 460.00 IS CODE = 31 >>>>>COMPU'I'E PIPE-FLOW 'l'RAVEL 1'IME ~rHRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) -230.00 DOWNSTREAM (FEET) now LENG~l'H(FJ~ET) "" 10.00 MI\NNING'S N '" 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) • 12.99 ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 4.62 1 229.00 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I, I I PI~E TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 400.00 TO NODE 6.33 460.00 316.00 FEET. **************************************************************************~* FLOW PROCESS FROM NODE 455.00 TO NODE 460.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =====~===================g~====~===================================~~======= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 6.33 RAINFALL INTENSITY (INCH/HR) = 6.11 TOTAL STREAM AREA(ACRES) '" 0.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.62 **************************************************************************** FLOW PROCESS FROM NODE 420.00 TO NODE 420.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ===========~=~============~================================================= GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) 0.19 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.19 **************************************************************************** FLOW PROCESS FROM NODE 420.00 TO NODE 425.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPU'rER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< =======~~====~~========~==================================================== ELEVATION DATA: UPSTREAM (FEET) "" 240.10 DOWNSTREAM (FEET) "" 239.80 FLOW LENGTH (FEET) ~ 27.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 0.19 PIPE TRAVEL TIME (MIN.) = 0.19 trc (MIN.) = 5.19 LONGEST FLOWPATH FROM NODE 420.00 TO NODE 425.00 = 182.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE: 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =========~======~=====~=~=====~=~=======~========:========~=======~========= 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.943 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.03 TOTAL AREA (ACRES) 0.06 TC(MIN.) = 5.19 97 = 0.8700 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) g 0.18 0.36 **************************************************************************** FLOW PROCESS FROM NODE 425.00 '1'0 NODE 440.00 IS CODE c 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ==================;======================================~================== ELEVATION DATA: UPSTREAM (FEET) = 239.80 DOWNS'l'REAM(FEET) 238.40 FLOW LENGTH (FEET) I: 142.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.72 ESTIMATED PIPE DIAMETER(INCH) -18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 0.36 PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 6.06 LONGEST FLOWPATH FROM NODE 420.00 TO NODE 440.00 324.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 430.00 TO NODE 435.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ~=~~=====~=~============================~ec=========================~==~c=~~ 100 YEAR RAINFALL IN'I'ENSI'l''f (INCH/HOUR) = 6.283 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 1.56 TOTAL AREA(ACRES) = 1.62 TC(MIN.) = 6.06 94 = 0.7930 SUBAREA RUNOFF (CFS) = TOTAL RUNOFF(CFS) = 7.74 8.07 **************************************************************************** F'LOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) '" 6.283 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIEN'l' SUBAREA AREA(ACRES) = 0.03 TOTAL AREA(ACRES) = 1.65 TC(MIN.) = 6.06 97 = 0.7944 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) - 0.16 8.24 **'************************************************************************* now PROCESS FROM NODE 440.00 TO NODE 450.00 IS CODE ~ 31 »»>COMPUTE PIPE-FLOW TRAVEL 1'IME 'l'HRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) -237.00 DOWNSTREAM (FEET) = 236.70 FLOW LENGTH (FEET) -33.00 MANNING'S N z 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.19 ESTIMATED PIPE DIAME'rER(INCH) 18.00 NUMBER OF PIPES'" 1 PIPE-FLOW (CFS) = 8.24 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = LONGEST FLOW PATH FROM NODE 420.00 TO NODE 6.15 450.00 357.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 450.00 IS CODE =,81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================~=============== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) ~ 6.224 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.02 TOTAL AREA(ACRES) ~ 1.67 TC(MIN.) = 6.15 97 '" 0.7953 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 0.11 8.27 **************************************************************************** FLOW PROCESS FROM NODE 450.00 TO NODE 460.00 1s CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ==~=========~~=======~==~==~=~~~~=====~~=====~============================== ELEVATION DATA: UPSTREAM (FEET) = 236.70 DOWNSTREAM (FEET) 235.60 FLOW LENGTH (FEET) ~ 114.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.35 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 8.27 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 6.45 LONGEST FLOWPATH FROM NODE 420.00 TO NODE 460.00 471.00 FEET. *****************************************************************~********** FLOW PROCESS FROM NODE 450.00 TO NODE 460.00 IS CODE ~ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.45 RAINFALL IN'rENSITY(INCH/HR)"" 6.04 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE (CFS) AT CONFLUENCE = 8.27 ** CONFLUENCE DATA U STREAM RUNOFF NUMBER (CFS) 1 4.62 2 8.27 Tc (MIN. ) 6.33 6.45 INTENSITY ( INCH/HOUR) 6.109 6.037 AREA (ACRE) 0.95 1. 67 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE TABLE 'I<~' STREAM RUNOFF NUMBER (eFS) Tc (MIN. ) INTENSITY ( INCH/HOUR) 1 1 2 12.74 12.83 6.33 6.45 6.109 6.037 ESTIMATES ARE AS FOLLOWS: = 12.83 Tc(MIN.) ~ 2.62 6.45 COMPUTED CONFLUENCE PEAK now RATE (CFS) TO'l'AL A1\EA (ACRES) = LONGES'r FLOWPA'l'H FROM NODE 420.00 'l'O NODE 460.00 "" 4 71 . 0 0 FEET. •••••••••• * •• **.****.********* •• ***.**.* ••••• * •• **.** •• ** •• ***** •• *****.*.** FLOW PROCESS FROM NODE 460.00 TO NODE 465.00 IS CODE = 31 »»>COMPU'l'E: PIPE-l"LOW TRAVl!:L TIME THRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =====~=======~=====~=~===========================================~=~======== ELEVA'l'ION DA'l'A: UPS'l'REAM (FEET) = 235. 60 DOWNST1\EAM (FEET) "" FLOW LENGTH (FEET) -28.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.2 INCHES PIPE-FL0W VELOCITY(FEET/SEC.) ~ 7.39 ESTIMATED PIPE DIAMETER(INCH) m 21.00 PIPE-FLOW (CFS) = 12.83 NUMBER OF PIPES = 0.06 Tc(MIN.) == 235.30 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FROM NODE 420.00 TO NODE 6.51 465.00 = 499.00 FEET. **.** ••• t •• * •••• *.* •••• * •••••••••• *** ••• *** •••••••••••••••••••• * •••••••••• *. FLOW P1\OCI~SS FROM NODE 465.00 '1'0 NODE 465.00 IS CODE = 81 »>>>ADDJ:'rION OF SUBAREA TO MIUNLINE PJ~AK FLOW«<<< 100 YE].\1\ RAINFALL INTENSI'l'Y (INCH/HOUR) == 5.999 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) - AREA-IWERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.59 TOTAL AREA(ACRES) 3.21 TC(MIN.) ~ 6.51 94 == 0.7942 SUBAREA RUNOFF(CFS) ~ TOTAL RUNOFF (CFS) = 2.80 15.29 .* ••••••• * •••••••• ** •••• ***.*** ••• * •• * •••••• * •••• *** •••••••••••••••••••••• *. now P1\OCESS FROM NODE ~65.00 TO NODE 470.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRIWEL 'rIME 'l'BRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DA'rA: UPS'l'REAM(IT'EE'l') "" 235.30 DOWNSTREAM (FEET) "" FLOW LENGTH (FEET) -59.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 1B.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 29.84 ESTIMATED PIPE DIAMETER (INCH) '" 18.00 PIPE-FLOW (CFS) ~ 15.29 NUMBER OF PIPES c 0.03 Tc(MIN.):::: 1. 212.00 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATB FROM NODI!:: 420.00 '1'0 NODE 6.55 470.00 :::: 558.00 FEE'r. *** •• ***** ••• ** •••• *** ••• **t.,***.** •• * •••••••• * ••• * •• * •••• *.***.*** ••• **.*. fLOW P1\OCESS FROM NODE 468.00 '1'0 NODE 470.00 IS CODE ~ 81 »»>ADD'ITION OF SUBAREA 'l'0 MAINLINE PEAr<: FLOW««< I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I =====~==============~===========~=====~=~===============================g=== .100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.979 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICA'rION IS liD" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.30 TOTAL AREA (ACRES) 3.51 TC(MIN.) = 6.55 97 = 0.8007 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 1. 56 16.80 **************************************************************************** FLOW PROCESS FROM NODE 469.00 TO NODE 470.00 IS CODE = 81 ------------------------------------------------------------------~--~---~-- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.979 GENERAL INDUSTRIAL RUNOFF COEFFICIENT ~ .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA (ACRES) = 0.37 TOTAL AREA(ACRES) = 3.88 TC(MIN.) = 6.55 END OF STUDY SUMMARY: 97 ... 0.8073 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = TOTAL AREA(ACRES) = PEAI< FLOW RATE(CFS) = 3.88 TC(MIN.) ~ 18.73 1. 92 18.73 6.55 =====================~===============================g======~~=====~======== ===m========m======~==~=============~===m=============~===================== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF ST~DY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * PROPOSED CONDITIONS * * 100 YEAR STORM EVENT, SYSTEM 500 * ************************************************************************** FILE NAME: S500P100.DAT TIME/DATE OF STUDY: 17:~7 07/22/2008 -.------------------------------------------------------------~~------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL IN F'ORMAT ION : ------------------------------------------------------------------~----~---- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVEN'r (YEAR) "" 100.00 6-HOUR DURATION PRECIPITA'l'ION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARI<:-HEIGHT WIDTH LXP HII<:E FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ===== ====~~=== ==============~== ====== ====== ===== ======= 1 41.0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEP'I'H CONS'l'RAIN'I'S: 1. Relative Flow-Depth -1.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-oi-Curb) 2. (Depth)"'(Ve1ocity) Constraint"" 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 500.00 '1'0 NODE 510.00 IS CODE = 22 ------------------------------------------------------------~-----------~--- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ 94 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) 4.78 TOTAL AREA (ACRES) ~ 0.85 TOTAL RUNOFF(CFS) = 4.78 **************************************************************************** FLOW PROCESS FROM NODE 510.00 TO NODE 535.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW 'l'RAVEL 'l'IME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =============c===========~==~~==~~===========~=======m===============~====== ELEVATION DATA: UPSTREAM (FEET) "" 253.00 DOWNSTREAM (FEET) 252.00 FLOW LENGTH (FEET) = 78.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 6.24 ESTIMATED PIPE DIAMETER(INCH)'" 18.00 NUMBER OF' PIPES" 1 PIPE-FLOW (CFS) = 4.78 PIPE TRAVEL TIME (MIN.)'" 0.21 're (MIN.) = 5. 2J. LONGEST FLOW PATH FROM NODE 500.00 TO NODE 535.00 = 78.00 FEET. *************************************~************************************** now PROCESS FROM NODI3 535. 00 ~l'O NODE 535.00 IS CODE = 81 >>>>>ADDI'TION OF SUBAREA '1'0 MAINLINE PEAK FLOW«<<< 100 YEAR RAINFALL IN'l'ENSI'l'Y (INCH/HOUR) "" 6.929 GENERAL INDUS'I'RIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II).. 97 AREA-AVERAGE RUNOFF COEFE'ICIEN'l' = 0.8070 SUBAREA AREA(ACRES) 0.23 SUBAREA RUNOFF(CFS) = 1.39 'I'O'l'AL AREA (ACRES) 1.08 TOTAL RUNOFF(CFS) => 6.04 TC(MIN.) = 5.21 **************************************************************************** FLOW PROCESS FROM NODE 535.00 '1'0 NODE 560.00 IS CODE ~ 31 >>>>>COMPU'l'}!: PIPE-FLOW TRAVEL 'l'IME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 257.80 DOWNSTREAM (FEET) -257.40 FLOW LENGTH (FEET) = 4.00 MANNING'S N -0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPE-FLOW VELOCI'rY(JTEE'l'!SI:~C.) '" 14.02 ESTIMATED PIPE DIAMETER(INCH): 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 6.04 PIPE 'rRAVJ!:L 'l'IME(MIN.).. 0.00 Te(MIN.) = 5.21 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 560.00 = 82.00 FEET. **********************~***************************.************************* FLOW PROCESS FROM NODE 550.00 'TO NODE 560.00 IS CODE ~ 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ====~~~================~==~~======~~==~==========~===~=========~===~~======= 100 YEl-\.R RAINFALL INrrl~NSI'1'Y (INCH/HOUR) "" 6.925 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700 SOIL CLASSIFICATION IS ~'D" S.C.S. CURVE NUMBER (AMC II) = 97 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8114 SUBAREA AREA(ACRES) 0.08 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 1.16 TOTAL RUNOFF (CFS) = 6.52 TC(MIN.) = 5.21 ************************************************************~*************** FLOW PROCESS FROM NODE 560.00 TO NODE 570.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ===========~======================~==~~==~=======g===========~===~===~==~=== ELEVATION DATA: UPSTREAM (FEET) = 257.40 DOWNSTREAM (FEET) = 255.40 FLOW LENGTH (FEET) = 202.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.11 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.52 PIPE TRJ~VEL TIME(MIN.) = 0.55 Tc(MIN.) = 5.76 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 570.00 "" 284.00 FEE'l'. ****************************************************************~*********** FLOW PROCESS FROM NODE 565.00 TO NODE 570.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAr<: FLOW«<<< ===========~===~=======~===~===~=~~===~==============~===g===~=======~~===== 100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) = 6.491 RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT'" .7100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 1.56 TOTAL AREA(ACRES) 2.72 TC(MIN.) = 5.76 92 "" 0.7532 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 7.19 13.30 **************************************************************************** FLOW PROCESS FROM NODE 565.00 TO NODE 570.00 IS CODE = 1 ~---------------------------------------------------------------------------»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ~=======~==========~=======~===================~=========================~== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 5.76 RAINFALL INTENSITY (INCH/HR) ... 6.49 TOTAL STREAM AREA(ACRES) g 2.72 PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.30 **************************************************************************** FLOW PROCESS FROM NODE 580.00 TO NODE 582.00 IS CODE = 22 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<<< =====~=====~~======~~==~~==========~===g===~==============~================= OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC +1) ~ 81 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTgNSITY(INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 582.00 TO NODE 584.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ~=========================================================================== ELEVATION DATA: UPSTREAM (FEET) = 312.00 DOWNSTREAM (FEET) = 249.00 CHANNEL LENGTH TI-IRU SUBAREA (FEET) = 512.00 CHANNEL SLOPE = 0.1230 CHANNEL BASE(FEET) '" 5.00 "z" FACTOR = 99.000 MANNING'S FACTOR == 0.030 MAXIMUM DEP'I'H(FEET) = 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) c: 5.242 OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICA'l'ION IS "D" S.C.S. CURVE NUMBER (AMC II) = 81 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.48 TRJ\VEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.82 AVERAGE FLOW DEPTH (FEET) == 0.10 'rRAVEL TIME(MIN.) "" 3.03 Tc(MIN.) = 8.03 SUBAREA AREA(ACRES) 4.61 SUBAREA RUNOFF(CFS) ~ 8.46 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 '1'O'l'AL AREA (ACRES) = 4.69 PEAK FLOW RA'l'E (CFS) 8.60 E:ND OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.14 FLOW VELOCITY(FEET/SEC.) 3.25 LONGEST FLOWPATH FROM NODE 580.00 TO NODE 584.00 = 590.00 ~"EErl'. **************************************************************************** FLOW PROCESS FROM NODE 584.00 TO NODE 588.00 IS CODE ~ 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ====~=====~=======e=~~~============~=======================~~=~===~========= ELEVA'I'ION DATA: UPSTREAM (FEET)'" 2 4 5 . 90 DOWNSTREAM (ITEE'r) == 243.90 now LENGTH (FEET) ... 347.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES PIPE-ITLOW VELOCI'l'Y(ITEET/SEC.) 5.33 ESTIMATED PIPE DIAMETER (INCH) -21.00 NUMBER OF PIPES -1 PIPE-FLOW (CFS) = 8.60 PIPE rrRAVEL TIME (MIN.) "" 1. 09 'rc (MIN.) "" 9.11 LONGES'l' nOWPArl'H FROM NODE 580.00 TO NODE 588.00 "" 937.00 F'EE'l'. ****************************************************'*********************** Jn~OW PROCESS F'ROM NODE 586.00 '].'0 NODE 588.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =~==~~====~=~=============~=================~============~====~==~~=Q==~===~ 100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) '" 4.830 RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT· .5200 SOIL CLASSIFICA'l'ION IS "0" S.C.S. CURVE NUMBER (AMe II) = 86 AREA-AVERAGE RUNOc~E' COEFFICIEN'I' =: 0.3586 SUBAREA AREA (ACRES) "" 0.25 SUBAREA RUNOFF(CFS) = 0.63 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I TOTAL AREA(ACRES) = 4.94 TOTAL RUNOFF(CFS) 8.60 TC(MIN.) = 9.11 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE **************************************************************************** FLOW PROCESS FROM NODE 588.00 TO NODE 570.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =============~~===~===~=c====~=====m======================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.11 RAINFALL INTENSITY (INCH/HR) == 4.83 TOTAL STREAM AREA(ACRES) m 4.94 PEAK FLOW RA'l'E (CPS) AT CONFLUENCE:. 8.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.30 5.76 6.491 2 8.60 9.11 4.830 RAINFALL INTENSI'l'Y AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. * .. -PEAr" FLOW RATE TABLE -k* STREAM RUNOFF 'fc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 18.74 5.76 6.491 2 18.50 9.11 4.830 ESTIMATES ARE AS FOLLOWS: 18.74 Tc(MIN.) = 7.66 COMPUTED CONFLUENCE PEAK FLOW RATE (CFS) TOTAL AREA(ACRES) ~ LONGEST F'LOWPA'l'H FROM END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) NODE 580.00 TO NODE 7.66 TC(MIN.) ~ 18.74 END OF RATIONAL METHOD ANALYSIS AREA (ACRE) 2.72 4.94 RATIO 5.76 570.00 5.76 937.00 FEET. I I I I I I I I I I I I I I I I I I I *~************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (0) Copyright 1982-2005 Advanced Enginee~ing Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ************************** * 3330.00 -THE BRIDGES AT POINSETTIA * * PROPOSED CONDITIONS * * 100 YR STORM EVENT, SYSTEM 600 (PROJECT ALTERNA'rIVE 'A') * ************************************************************************** FILE NAME: S600P100.DAT TIME/DATE OF STUDY: 16:49 07/21/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'1'HOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) =~= ===== ===~==~~= ================= ~===== ===== ====== ===== ======~ 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)'k (Velocity) Constraint ... 10.0 (FT*FT/S) *SIZE PIPE WI'l'H A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 615.00 TO NODE 620.00 IS CODE = 21 »»>RATIONAL METHOD INI'l'IAL SUBAREA ANALYSIS««< ' ===========g=====~~=================~~========================~========~==== RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT = .7100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 -------------------------" INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 249.00 DOWNSTREAM ELEVATION (FEET) = 247.70 ELEVATION DIFFERENCE (FEE'll) = 1. 30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.304 WARNING: INI'l'IAL SUBAREA FLOW PATH LENGTH IS GREATER 'l'HAN THE MAXIMUM OVERLAND FLOW LENGTH = 68.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND now LENGTH IS USED IN Tc Cl-\LCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.848 SUBAREA RUNOFF (CFS) 2.53 TOTAL AREA (ACRES) == 0.52 TOTAL RUNOFF (CFS) = 2.53 **************************************************************************** FLOW PROCESS FROM NODE 620.00 TO NODE 625.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< =========================~~==========m=========~======~===================== UPSTREAM ELEVATION (FEET) = 247.70 DOWNSTREAM ELEVATION (FEET) = 244.70 STREET LENGTH (FEET) -270.00 CURS HEIGHT (INCHES) -6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 S'IIREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 H'fRAVEL TIME COMPUTED USING ES'rIMA'l'ED FLOW (CFS) "" 6.34 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) n 14.33 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.92 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.21 STt\EE'l' FLOW 'l'RAVEL TIME (MIN.) == 1. 54 Tc (MIN.) == 6.84 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.810 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) ~ 94 ARE':l-\-AVERAGrr: RUNOFF COEFFICIENT = 0.771 SUBAREA AREA (ACRES) 1.66 SUBAREA RUNOFF(CFS) = 7.62 TOTAL AREA(ACRES) -2.18 PEAK FLOW RATE(CFS) = 9.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) -0.47 HALFSTREET FLOOD WIDTH (FEET) Q 17.00 FLOW VELOCITY(FEET/SEC.) -3.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50 LONGES'r FLOWPA'rH FROM NODE 615.00 TO NODE 625.00 = 370.00 F1BE'r. ***************************************~************************************ FLOW PROCESS FROM NODE 600.00 '1'0 NODE 625.00 IS CODE = 81 »»>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAK FLOW««< ===============~=================~=~======~================================= I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.810 RESIDENTAIL (14.5 DulAC OR LESS) RUNOFF COEFFICIENT .6300 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) ... 89 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7382 SUBAREA AREA (ACRES) 0.66 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) 2.84 TOTAL RUNOFF(CFS) = 12.18 TC(MIN.) = 6.84 **************************************************************************~* FLOW PROCESS FROM NODE 625.00 TO NODE 630.00 IS CODE = 31 ---------------------------------------------------.------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 247.00 DOWNSTREAM (FEET) ~ 242.00 FLOW LENGTH(FEET) = 152.00 MANNING'S N = 0.013 DEP'l'H OF FLOW IN 18.0 INCH PIPE IS 11. 0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.73 ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 12.18 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 7.08 LONGEST FLOWPA'l'H FROM NODE 615.00 'fO NODE 630.00 "" 522'.00 FE;ET. ************************'*************************************************** FLOW PROCESS FROM NODE 630.00 TO NODE 630.00 IS CODE ~ 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAr<: FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) ... 5.684 RESIDENTIAL (1. DUlAC OR LESS) RUNOFF COEFFICIENT = .4100 SOIL CLASSIFICA'l'ION IS "D" S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.12 TOTAL AREA(ACRES) ~ 2.96 TC(MIN.) ~ 7.08 82 = 0.7249 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 0.28, 12.20 ==================~====~======~===~====~==========~==============~========== END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2.96 TC(MIN.) ~ 12.20 END OF RATIONAL METHOD ANALYSIS 7.08 I I I I I I I I I I I I I I I I I I I ***********~*****************************************************~********** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Softwar.e (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 8 Street Suite 800 San Diego, Ca. 92101 ************************** DESCRIPTION OF STUDY ********************~***** * 3330 -THE BRIDGES AT AVIARA * * PROPOSED CONDITIONS, LOT 3, SYSTEM 650 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: S650PI00.DAT TIME/DATE OF STUDY: 16:24 07/23/2008 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) "" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'l'HOD NOTE: USE MODIFIED'RATIONAL METHOD PROCEDURES FOR CONFliuENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GU'l'TER-GEOMETRIES : MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE/SIDE/WAY (F'l') (FT) (FT) (FT) (n) ========= =~=======~======= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 ~.oo 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONS'l'RAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A E'LOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 650.00 TO NODE 652.00 IS CODE = 22 »»>RA'l'IONAL METHOD INITIAL SUBAREA ANALYSIS«<<< =========~==========~~g===~=======~===~======================~=========~==== GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICA'l'ION IS "0" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) -5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA (ACRES) = 0.09 TOTAL RUNOFF (CFS) = 0.56 **************************************************************************'* FLOW PROCESS FROM NODE 652.00 TO NODE 654.00 IS CODE = 62 »>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>(STREET TABLE SECTION l' 1 USED)««< =================================~=======~===================c========~~~=== UPs'rREAM ELEVATION (FEET) 249.70 DOWNSTREAM El,EVA'I'ION(FEET) STREET LENGTH (FEET) == 82.00 CURB HEIGHT (INCHES) = 8.0 STREET HALFWIDTH(FEET) == 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAI<:(FEET) == 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 S'l'REET PARKWAY CROSSFALL (DECIMAL) 0.020 248.50 Manning's FRICTION FACTOR for Street flow Section (curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 3.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.36 HALFSTREET FLOOD WIDTH (FEET) c 11. 05 AVERAGE FLOW VELOCI'rY (FEET/SEC.) 2.78 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.00 STREET FLOW TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 5.49 100 YEAR RAINFALL INTENSITY (INCH/HOUR) == 6.697 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLJ.'ISSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 9~ AREA-AVERAGE RUNOFF COEFFICIENT ~ 0.796 SUBAREA AREA (ACRES) = 1.14 SUBAREA RUNOFF(CFS) = 6.03 TOTAL AREA (ACRES) = 1.23 PEAK FLOW RATE(CFS) = 6.56 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) -0.42 HALFSTREET FLOOD WIDTH (FEET) = 14.41 FLOW VELOCITY(FEET/SEC.) -3.20 DEPTH*VELOCITY(FT*FT/SEC.) -1.34 LONGEST FLOWPATH FROM NODE 650.00 TO NODE 654.00 = 119.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 654.00 '1'0 NODE 666.00 IS CODE ~ 31 »»>COMPUTE PIPE-FLOW TRAVEL 'l'IME 'l'HRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPS'rREAM(FEET)'" 245.00 DOWNSTREAM (FEET) '" 242.00 FLOW LENGTH (FEET) = 287.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) ~ 6.25 ESTIMATED PIPE DIAME'rER(INCH) = 18.00 NUMBER OF' PIPES"" 1 PIPE-FLOW (CFS) = 6.56 PIPE TRAVEL TIME(MIN.) ~ 0.76 Tc(MIN.) = 6.26 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I LONGEST FLOWl?ATH FROM NODE 650.00 TO NODE 666.00 '" 406.00 FE$T. **************************************************************************** FLOW PROCESS FROM NODE 654.00 TO NODE 666.00 IS CODE '" 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ========================g=================~=========~========~======~======= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 6.26 RAINFALL INTENSITY (INCH/HR) = 6.16 TOTAL STREAM AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.56 . *************************************~************************************** FLOW PROCESS FROM NODE 660.00 TO NODE 662.00 IS CODE = 22 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTENSI'rY(INCH/HOOR) 7.114 SUBAREA. RUNOFF(CFS) 0.68 TO:t'AL AREA (ACRES) := 0.11 TOTAL RUNOFF (CFS) '" 0.68 **************************************************************************** FLOW PROCESS FROM NODE 662.00 '1'0 NODE 6~4.00 IS CODE -62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 249.60 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) -186.00 CORB HEIGHT (INCHES) -B.O STREET HALFWIDTH(FEET) "" 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) "" 20.00 INSIDE STREET CROSSFALL(DECIMAL) "" 0.018 OUTSIDE S'l'REET CROSSFALL (DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF m 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 247.50 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) "" 0.0150 Manning's FRIC'l'ION FACTOR for Back-oi-Walk Flow Section 0.02(,)0 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 4.13 STREETFl.OW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) -0.39 HALFSTREET FLOOD WIDTH (FEET) -12.46 AVERAGE )J'LOW VELOCITY (FEET ISEC.)'" 2.61 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) ~ 1.01 STREE'l' FLOW TRAVEL TIME (MIN.) = 1.19 Tc n,lIN. ) 6.19 100 YEAR RAINFALL IN'l'ENSr'!'Y (INCH/HOUR) "" 6.201 RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 ------------~~~ AREA-AVERAGE RUNOFF COEFFICIENT = SUBAREA AREA(ACRES) 1.40 TOTAL AREA(ACRES) -1.51 0.796 SUBAREA RUNOFF(CFS) = PEAK FLOW RA'l'E (CFS) "" END OF SUBAREA STREE'l' FLOW HYDRAULICS: DEPTH (FEET) -0.45 HALFSTREET FLOOD WIDTH (FEET) 16.05 6.86 7.45 FLOW VELOCITY(FEET/SEC.) -2.99 DEPTH*VELOCITY(FT*FT/SEC.) -1.34 LONGEST FLOW PATH FROM NODE 660.00 'ro NODE 664.00 = 473.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 664.00 TO NODE 666.00 IS CODE = 31 >>>>>COMPu'rE PIPE-FLOW 'rRAVEL TIME 'rHRU SUBAREA«:«< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ~~========2================~=====~=======~================================~= ELEVATION DATA: UPSTREAM (FEET) ~ 243.00 DOWNSTREAM (FEET) c 242.00 FLOW LENGTH (FEET) ~ 37.00 MANNING'S N = 0.013 ES'rIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.23 ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES = 1 PIPE-1T'LOW (CFS) = 7.45 PIPE TRAVEL TIME(MIN.) ~ 0.07 Tc(MIN.) = 6.25 LONGEST FLOW PATH FROM NODE 660.00 TO NODE 666.00 = 510.00 FEET. '***********************'*************************************************** FLOW PROCESS FROM NODE 664.00 TO NODE 666.00 IS CODE = »»>DESIGNATE INDEPENDEN'l' S'.rREAM FOR CONFLUENCE<<<<< »»>AND COMPu'rE VARIOUS CONFLUENCED S'l'REAM VALUES«<<< 1 ==~~===========c================~==c===~==~================~c=============== TOTAL NUMBER OF STREAMS -2 CONFLUENCE VAWES USED FOR INDEPENDEN'l' STREAM 2 ARE: 'l'IME OF CONCEN'I'RATION (MIN.).. 6.25 RAINF1\LL INTENSITY (INCH/HR) "" 6.16 To'rAL S'I'RE:AM AREA (:L\CRES) "" 1. 51 PEAK E"LOW RATE (CFS) A'I' CONFLurr:NCE '" 7.45 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 6.56 2 7.45 Tc (MIN. ) 6.26 6.25 I N'I'ENS I'I'Y (INCH/HOUR) 6.157 6.158 AREA (ACRE) 1. 23 1. 51 RlUNFALL IN'l'ENSITY AND TIME OF CONCENTRATION RA'rIO CONFLUENCE FORMULA USED E'OR 2 S'l'REAMS. "k PEAI<: STREAM NUMBER 1 2 FLOW RA'l'E RUNOFF' (CFS) 14.00 14.01 Tl·\BLE " .,. 'l'e (MIN. ) 6.25 6.26 IN'l'ENSI'l'Y ( INCH/HOUR) 6.158 6.157 ES'l'IMATES ARE 14.01 2.74 AS FOLLOWS: 'l'c (MIN.) = 6.26 COMPUTED CONFLUENCE PI~J\I<: FLOW RJ.\TE(CF'S) TOTAL AREA(ACRES) = LONGEST FLOWPATH FROM NODE 660.00 TO NODE 666.00 510.00 FEET. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I =========~=================~==========~=========~~==~=============~========= END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 2.74 TC(MIN.) = 14.01 6.26 ==~==~===~======~=~=~~~====~=~====~======~=~=================~============== ===========================~=====~==~===========~=~======================~== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••••• **. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 San Diego, Ca. 92101 •••••••••••••••••••••••••• DESCRIPTION OF STUDY •••• *, •••••••••• *, •• *.***. • 3330.00 -THE BRIDGES AT POINSETTIA • • PROPOSED CONDITIONS, SYSTEM 700 * 'I< 100 YEAR STORM EVENT • •••••••• , •••••••• * ••••••••••••• ** ••••••••••••••••• , •• ** ••••• ,** •• , •••••••• FILE NAME: S700PI00.DAT TIME/DATE OF STUDY: 16:26 07/23/2008 -----------------------------------------------------~---------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------------------------------------------~-------------------------2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) ~ 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS 'USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETl!'LOW MODEV HALF'-CROWN TO STREET-CROSS FALL : CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARI<:-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (F'.r) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.lQ5 0.0150 GLOBAL STREET FLOW-DEFTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)' (Velocity) Constraint == J.O.O (FT*FT/S) 'SIZE PIPE WITH A FLOW CAPACITY GREATEiR THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.' ** •• * •• ,,*.*.,** •••• * ••• * •••• , •• , •• *,**.**,,* ••• *.** •• , •••••• * ••• *~."*"*'. FLOW PROCESS FROM NODE 700.00 TO NODE 705.00 IS CODE = 22 ----------------------------------------------------------------------.------ >>>>>RATIONAl. METHOD INITIAL SUBAREA ANALYSIS<<<<< OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 81 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RAINFALL INTENSI'I'Y(INCH/HOUR) = 7.114 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) ~ 0.20 ============================~=~=======c====~===============c===~========~=== END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE (CFS) 0.08 TC(MIN.) "" 0.20 5.00 ===========================~~========~=~c==============================~==== ===~=================c===============~=============================~~=~===== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I RATIONAL METHOD HYDROLOGY COMPU'l'ER PROGRAM l?ACI,AGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,3.981 HYDROLOGY MANUAL (e) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Dlta: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suit", 800 San Diego, Ca. 92101 ******.***~*'**·*.*k~*'·.* DESCR1PTION OF STUDY ***************-*********' * 3330 BRIDGES AT AVIARA * • PROPOSED CONDITIONS FOR LOT 3, SYSTEM BOO * * 100 Yl!:AR S'fORM' 'i.' • *******'**~.~*~**~i*~*1·.'**~ ••• '1'._*~.'*~******************************* FILE NAt'1E: S800PI00.D,l\'f TIME/DATE OF STUDY: 16:29 07/23/2008 USER SPECIFl ED lIYLll{010GY AND HYDRAULIC t'10DEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) -100.00 6-HOUR DURATION PRECJPITM'J:ON (INCHES) '" 2.700 SPECIFIED MINIMUM PIPE SrZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRAD:rr~NTS (l)1!:CIMAL) ',ro USE FOR ITRICnON SLOPE Oil 0.95 SAN DIEGO HYI)ROLOGY MANUM, "C"-Vf\LUES USED FOR RA'l1I ONl--\.l, METHOD NOTE: USE MODIF.! EI) F\Nl'IONAL tvJETI10D rl\OCEDURES FOl\ CONFLUENCE ANALYSIS ~USER-DErINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-rROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ Ol.l'l'-/ PAJU<-HEIGH'l' WIDTH l,IP HII\E NO. (FT) (FT) SIDE / SIDE/ ViJAY (FT) (FT) (F'll) (lrr) [VJODl~JJ~' [vJANNING FAC'rOR (n) 1 30.0 ;~O. 0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL S'I'l~ISE'1' FLOW-DEPTH C:ONS'.l'PJUtns: 1. r~t;lhlti VI?! flo\~-DiO'pth c--0.00 FEE:T CIS (t'1~\ximuln AIJ owablc S\:J E,,:,I: lTlt)l<v D0pth) -(Top-of-Curb) 2. (Depth)'" (V(c'l(>cHy) ('on:;:tJ;dilll: ,y 6.0 (F'l'*Fl'/S) "SIZE PIPE ItJJ'l'H A fLOW CJ:\PACTf'Y Gl\L:.:l-~'J'I!:r<. 'l'HAN OR EQUAL TO THE UPSTREAM TRiBUTARY PIPE .... FLOW J?EOCESS FHOM NODE 800.00 TO [\JODE 80~.OO IS CODE ~ 22 »>~·>RJ.\1':roNAL MISTHO[J I NJ 'J'J J-\L ~;llBl,\l\EA AN1·\LYS I S««< G:ENEP,AL INDUS'l'RU\L P.ONOf'F (,()I~fF1(, lENT ,,~ . f3700 SOIL CLASSIFICATION IS "0" S. C'. S. CURVE NUf"JBh:R (AMe J I) 97 USER SPECIFIED Tc(MIN.) ~ 5.000 100 YEAR RIUm4 AI"L INTENSITY (TNCH/HOlm) "/ .114 SUBAREA RUNOFF(CFS) -1.19 TOTAL AREA(ACRES) ~ 0.24 TOTAL RUNOFF(CFS) END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEll.l\ Fl.OW I\ATE(CFS) O.2tJ '.l'C(tvJIN.) '" 1. 4 9 END OF RATIONAL METHOD ANALYSIS 1. 4 9 5.00 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I *****k***********~***********"'*'******'**'****'*************************** RATIONAL ME'I'HOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (Ies) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street Suite 800 Sin Diego, Ca. 92101 **********'****'~*'*~***'* DESCRIPTION OF STUDY ************************** * 3330 BRIDGES AT AVIARA ,A' 100 YEAR FLOWS * PROPOSED CONDITIONS, SYSTEM 900 FILE NAME: S900F100.DAT TltvlE/DATE OF STUDY: J.4: 15 07/2212008 OSER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMA'l'ION: 2003 SAN DIEGO MANUAL CRITEJUA USER SPECIFIED STORM EVENT(YEAR) -100.00 6-HOUR DURA'rION PRECIPITATION (INCHES)" 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE e 0.95 SAN DIEGO HYDROLOGY MANUAL "e"-VALUES USED FOR RATIONAL ME'rHOD NOTE: USE MODIFII::D ltl\TIONAJd ME'l'HOD PROCEDORES FOR CONFLrJENCE ANALYSIS 'kOSER-DEFINED STREErr-SEC1'IONS FOR COUPLED PIPEFLOW AND S'l'REETFLOW MODEJ~'A * HALF-CROWN '1'0 STRIl:ET-Cl'\()SSfALl,: CURB GUTTER-GEOME'rRIES: MANNING NID'rH CROSSF'ALL IN-/ ()UT-/I?~\m<:-HEIGHT WIDTH LIP JU1<E ],.-'AC'rOR NO. (F'r) (FT) SIDl~ / SIDE/ WAY (F'r) (lTT) (F'r) (F'I') (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL S'l'REET FlrOW-DEPTH CONSTRIUNTS: 1. Relative Flow-Depth e 0.00 FEET as (Mr.lximwTI IHlc)wab1e' Street Flol'i Depth) -('l'op-of-Curb) 2. (Depth) ''"(VelocHy) Constraint .. 6.0 (FT"'F'r/S) '. 81 ZE PIPE NI'l'H A FLOW Cl·\PACI'l'Y GREA'I'ER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.· FLOW PROCIESS FROM NODE 900.00 TO NODE 905.00 IS CODE ~ 22 »»>RA'l'IONAL METHOD HII'['lAl, SU13M8A ANI~1YSIS««< GEN1ERAL INDUS'l'lUAL RUNOFF COEFFICIENT ~" .8700 SOIL CLASSIFICATION IS "0» S.C.S. CURVE NUMBER (AMe II) -97 USER SPECIFIED Tc(MIN.) -5.000 100 YEAl~ R1UNb~ALL INTENSITY (INCH/HOUR) 7.114 SUBAREA H.tJNOJ:F' (CF'S) 1.11 TOTAL AREA (ACRES) .-. 0.18, 'rOTAJd RUNOE'J:(CFS) '" 1.1J 905.00 '1'0 NODE 910.00 IS CODE ~ 62 »»>COMPU'I'E STREE'l' now TRAVEL TIME rl'HRll SUBARI~A«<<< »»>(5'1'R8ET TABLE SECTION # 1 U8ED)««< UPSTREAM ELEVATION(FEET) ~ 250.00 DOWNSTREAM ELEVATION (J:EET) -241.00 STREET LENGTH (FEET) ~ 290.00 CURB HEIGHT(INCHES) ~ 8.0 S'J'l<'E.:t~T Hl\J.J:'WID'rH (F'EE'r) '" 30.00 DIS'l'l-\NCE FROM CROWN 'ro Cl\OSSFALL GRADEBREAlq l!'EE~t') "" 20.00 INSIDE ATREreT CROSS FALL (DECIMAL) m 0.018 OUTS Hl!~ ~:'l'E8[~'l' CROSS!?ALL (DECIMAL) .. 0.018 ,c;r!~CIF'H:1'l ~J[JMBlJa\ OF' l'IALF'S'l'I\EE~'S CAFUWING RUNOFF <> 1 STREET PARKWAY CROSSFA11 (DECJMAL) ~ 0.020 Mc1 nrd,l 1',' ,~: F'I,J CTION FACTOR for Strl?(lltfJ.ow Saction (curb-to-c:urb) 0,0:1.50 Mt'll'In inq I H Fr·~JC'J'ION F'ACTOR for l3acr.-oi-Walk Flow Section "-, 0.0200 '~',I'RAVE:L 'l'JMJ.:: COMPU'l'E:D USING ES'UMA'l'ED In.JOW (CL"S) r;'l'l'.J::E'I'Fl,OW MODEL ggSUL'l'S LJ:~INCi l!':S'l'IMA1'ED now: STR8ET FLOW DE~TH(FEET) ~ 0.28 HALFSTREET FLOOD WIDTH(FEET) a 6.53 AVERAGF. t::LOlAl Vr~LOCI'l'Y(~~EE:"'/SEC.) .. ' 3.36 PROnUr.T OF DEPTH&VELOCI'l'Y(F'I"j'J:'T/SEC.) 0.94 STr\I~IS'.l' lTLOvJ Tl\AVEL ~1'IME(MIN.) '" 1.44 'l'c(MIN.) "" 6.44 100 Y87\]\ RIUNFALL INTENSITY (INCH/HOUE)" 6.043 GENERl\l, 11'-lDUS'1'R1J.\1" RUNOFF' COEfFICIENT'" • 8700 SOIL CLA!:~J fH'ATWN J.S "0" ~.r.8. ~URVE NUMBER (AMe Il) ~ 97 AR~l\-AV8RAG8 RUNOFF COEFFJC1ENT 0.870 1. 93 SLJBAg~A AREA (ACRES) 0.31 SUBAREA RUNOFF(CFS) ~ 1.63 ']'O'J'AL, Al\r.:l\(J.\C[~ES) .. O,t19 PEAl, FLOW 1,A'l'E;(CIfS) 2.58 E:NI.l 01" :-:lIB/-\P.F:A s'rl\l~J~'T' Fl"OW IIY[lRAULICS: LJI~P'J'Jl ( n:I':'l') ,.. O. 3 0 HALIi'STI~l;;J!:'!' IY'J~O()D WJ. ['lrl'H ( rEE'l') 7 • 7f3 fLOW VF.:I,()('T'T"((IT!·:E'r/r:to:c:.) "" 3.51 DJ~P'1'I'I';VJl:LOCl'l'Y(F"I""l'''r/S8C.) "-' '1.06 T.Oi'Jl;I';S'l' FLOvJPJ.\'J'1l mOtvl l'-IO[)E 900.00 '1'0 t~ODE 910.00 "" 290.00 1-'1:.:1::']'. F'I,OW 1:'!\OC8SS FROM N(lDl~ r.J]O.OO '1'0 NODE 915.00 IS CODE ~ 31 -------------------------------------------------------------------_ .. _------ ',',;.;, "C:()Ml'lJ'I'J.o~ PlPE:-FLOW '.l'E1WE:L 'J'lME ',['I-II\U StlBAREJ.\<'«« ;. ,;.»USJNG CUMPll'J'ER-ES'l':lMl\'rBl) I?IJ?ESIZE (NON-PRESSURE FLOW) <<<<< E'd;~V/\'l']()N !lATh: IJP;:'l'rU~Alvl(F'EI':'l')"' 23'/.00 DOWN~:~rRIT:l\M(F'mE'r) I'l', 23G.O() F"t.()W U,:Nl.i'J' I,! (l:'E:I::'j') ~' (l/l.OO Ml-HINING'S N"" 0.0]3 I':I:'J' HWT't::I) l'1 F'E l1J l-\ME'l'E:R (INCH) :rNCf\El\SI~D ~1'0 18. 000 l'l1':I''!'H <>[0' 1"WW IN In.O 'INCH PIP!!: l8 G.!.) INCI,n:;S 1'.lI'E-I:'WW VEL,()1.'J'l'Y(F'I~I!:'f/S8(".)·' 5.1~ 1':~:'r:llvJl,\',n:l) PHI!: !JH\Mrr;'.l'J~R(INC'IJ)'" 18.00 NUMBEr<. OF' PIPES ~', 1 I'fF'E-F'l,()W(C},'r:) 0' ::..5£l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I PIPE TRAVEL TIME(MIN.) ~ LONGES'r FLOWPATH FMM NODE 0.27 Tc(MIN.) g 900.00 TO NODE 6.71 915.00 "" 374. OOFEE',r. ~****~*.***** •• ****~*'***.****~****.**************************************** FLOW PROCESS FROM NODE 915.00 TO NODE 915.00 IS CODE ~ 81 ---------------------------------------------------------------------------- >>>>>ADDI'rION OF SUBAREA TO MAIN1.INE PEAI< F'LOW«<<< 100 YEAR RAINFALL IN'rENSI'.rY(INCH!HOUR) 5.883 GENERAL INDUSTRIAL RUNOff COEF'FICIENT ... 8700 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) m AREA-AVERAGE RUNOFF' COEFFICIENT SUBAR£A AREA(ACRES) '" 0.50 TOTAL AREA (ACRES) -0.99 TC(MIN.) -6.71 97 '" 0.8700 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF (CFS) - 2.56 5.07 FLOW PROCESS FROM NODE 915.00 TO NODE 920.00 IS CODE = 31 »»>CO[YIPUT'E PlPll:-F'LON TRAV1I:L 'rIJ'lJE 'l'HRIJ SllBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE F'LOW)««< ELEVA'l'ION l)J\T,l\: UPS'l'REAM(FEll:'l') '" 23G.OO DOltJNSTREAM(FEE'f) 196.00 FLOW LENGTH (FEET) -120.00 MANNING'S N ~ 0.013 ES'J'IMA'fED PIPE DIA~lE1'ER (INCH) INCI~EASED 'l'O 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCIT¥(FEET/SEC.) 20.44 ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES ~ 1 PIPE-FLOW (CFS) ~ 5.07 PIPE TRAVEL TltvlE (MIN.)'" 0 .10 fl'e: (MIN.)... 6.81 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 920.00 -494.00 FEET. END OF STUDY SUMMARY: TOTAL AREA (ACRES) l?EAI< FLOW RA'l'l~(CFS) 0.99 TC(MIN.) ~ 5.07 END OF RA'I'IONJ.\L METHOD i'\NALYSIS 6.61 I I "'''' I ~ :5 :0 8 }) fi1 ~~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I APPENDIX 4 Preliminary Detention Calculations I I I, I 'I I I I I I I I I I I I I I I System 300 Detention Estimates I I RATIONAL METHOD HYDROGRAPH PROGRAM I, COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/22/2008 HYDROGRAPH FILE NAME System300.txt TIME OF CONCENTRATION 8 MIN. I 6 HOUR RAINFALL 2.7 ' INCHES BASIN AREA 13.37 ACRES RUNOFF COEFFICIENT 0.745 PEAK DISCHARGE 52.84 CFS 'I TIME (MIN) 0 DISCHARGE (CFS) .. 0 TIME (MIN) == 8 DISCHARGE (CrS) = 1.6 I TIME (MIN) 16 DISCHARGE (CFS) 1.6 TIME (MIN) '" 24 DISCHARGE (CrS) 1.7 TIME (MIN) 32 DISCHARGE (CrS) 1.7 TIME (MIN) 40 DISCHARGE (CrS) 1.8 I TIME (MIN) 48 DISCHARGE (CrS) 1.8 TIME (MIN) 56 DISCHARGE (CFS) 1.9 TIME (MIN) 64 DISCHARGE (eFS) 1.9 TIME (MIN) 72 DISCHARGE (CFS) ... 2 I TIME (MIN) ... 80 DISCHARGE (CFS) '" 2 TIME (MIN) .., 88 DISCHARGE (CFS) '" 2.1 'rIME (MIN) 96 DISCHARGE (CFS) 2.1 I 'rIME (MIN) 104 DISCHARGE (crs) 2.2 TIME (MIN) '" 112 DISCHARGE (ers) 2.3 TIME (MIN) 120 DISCHARGE (ers) 2.4 TIME (MIN) 128 DISCHARGE (ers) 2.5 I TIME (MIN) 136 DISCHARGE (CFS) '" 2.6 '1'IME (MIN) 144 DISCHARGE (ers) .. 2.7 TIME (MIN) 152 DISCHARGE (CFS) .,. 2.9 TIME (MIN) 160 DISCHARGE (CFS) 3 I TIME (MIN) 168 DISCHARGE (CFS) "" 3.3 'rIME (MIN) 176 DISCHARGE (CFS) 3.5 'rIME (MIN) '" 184 DISCHARGE (CFS) '" 3.8 TIME (MIN) 192 DISCHARGE (CFS) 4.1 I TIME (MIN) 200 DISCHARGE (CFS) '" 4.7 TIME (MIN) 208 DISCHARGE (CFS) 5.1 TIME (MIN) = 216 DISCHARGE (CFS) .. 6.2 I TIME (MIN) 224 DISCHARGE (CFS) "" 7.1 TIME (MIN) 232 DISCHARGE (CFS) 10.4 TIME (MIN) 240 DISCHARGE (CFS) 14.1 'rIME (MIN) ." 248 DISCHARGE (CFS) 52.84 I TIME (MIN) 256 DISCHARGE (CFS) 8.3 TIME (MIN) 264 DISCHARGE (crs) "" 5.6 TIME (MIN) .. 272 DISCHARGE (crs) ... 4.4 TIME (MIN) "" 280 DISCHARGE (crs) 3.6 I TIME (MIN) 288 DISCHARGE (CFS) 3.2 TIME (MIN) "" 296 DISCHARGE (crs) 2.8 TIME (MIN) 304 DISCHARGE (crs) 2.6 '1'IME (MIN) 312 DISCHARGE (crs) 2.4 I TIME (MIN) '" 320 DISCHARGE (CFS) '" 2.2 TIME (MIN) 328 DISCHARGE (crs) 2 TIME (MIN) 336 DISCHARGE (crs) ... 1.9 I TIME (MIN) g~ 344 DISCHARGE (crs) 1.8 TIME (MIN) 352 DISCHARGE (CFS) 1.7 TIME (MIN) "" 360 DISCHARGE (crs) 1.7 TIME (MIN) 368 DISCHARGE (crs) 0 I I I I I I I I I I I I I I I I I I I I I Type .... Target Outflow Volume Estimates Page 0.01 Nome .... POND 10 File .... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.l'PW l)E:,ENTl D~l \IOLU~I\£ REQVI RE.J) DETENTION STORAGE ESTIMATES Target Peak Outflow Rate I?' Return Events Peak In Target Lower Linear Curvlinr Upper Total (cfs) (ets) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (/lc'-H) 100 52.940 7.900 .590 .650 CALCULATION TIME RANGES Return Events 100 Lower From To (min) (min) 3.77 257.19 SIN: 621C0212E1CD PondPaek Ver. 9.0046 Linear Curvilinear From '1'0 From To (min) (min) (min) (min) 3.20 257.19 .00 257.19 Project Dosign Consultants 'l'ime: 5: 11 PM .925 1. 799 2.227 Upper Total From To From To (min) (min) (min) (min) .00 257.19 .00 368.00 Date: 7/23/2008 I I .1 I -I I I I I I I I .co 0.0 roM S,E eO) I '0->-~ J:CI) I I I I I I o o ,.... I I o ~--------------~------------~ 0 ~ 0 0 M ~ ~ .- 0 1 0 N '1 1 L= ! , I- o' 0 ,.... t- o o I_I_I-I-_I·~-I-I_I_I._I_I _ 0 o 0 0 0 0 0 o~· CD U') ~ M N ,.... (Sp) MOl.:! -c: 'E --0) E i= I I I I I I I I I I I I I I I I I I I . System 500 Detention Estimates ! I I RATIONAL METHOD HYDROGRAPH PROGRAM I COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/23/2008 HYDROGRAPH FILE NAME System500.txt I TIME OF CONCENTRATION 6 MIN. 6 HOUR RAINFALL 2.7 INCHES BASIN AREA 7.66 ACRES RUNOFF COEFFICIENT 0.499 I PEAK DISCHARGE 18.74 CFS TIME (MIN) '" 0 DISCHARGE (CFS) 0 I TIME (MIN) 6 DISCHARGE (CFS) 0.6 TIME (MIN) 12 DISCHARGE (CFS) 0.6 TIME (MIN) ... 18 DISCHARGE (CFS) 0.6 TIME (MIN) 24 DISCHARGE (CrS) .. 0.6 I TIME (MIN) 30 DISCHARGE (CrS) 0.7 TIME (MIN) = 36 DISCHARGE (CrS) 0.7 TIME (MIN) 42 DISCHARGE (CFS) '" 0.7 'rIME (MIN) '" 48 DISCHARGE (CFS) 0.7 I TIME (MIN) '" S4 DISCHARGE (CrS) "" 0.7 TIME (MIN) "" 60 DISCHARGE (CrS) 0.7 TIME (MIN) 66 DISCHARGE (CrS) "" 0.7 TIME (MIN) '" 72 DISCHARGE (CFS) 0.8 I TIME (MIN) 78 DISCHARGE (CFS) ::: 0.8 TIME (MIN) 84 DISCHARGE (CFS) "" 0.8 TIME (MIN) 90 DISCHARGE (CrS) "" 0.8 I TIME (MIN) 96 DISCHARGE (CFS) .. 0.8 TIME (MIN) 102 DISCHARGE (CF'S) 0.9 TIME (MIN) '" 108 DISCHARGE (CFS) 0.9 TIME (MIN) "" 114 DISCHARGE (CFS) = 0.9 I TIME (MIN) 120 DISCHARGE (CrS) '" 0.9 TIME (MIN) '" 126 DISCHARGE (CFS) 1 TIME (MIN) = 132 DISCHARGE (CrS) '" 1 TIME (MIN) 138 DISCHARGE (CF'S) 1 I 'l'IME (MIN) 144 DISCHARGE (CrS) '" 1.1 TIME (MIN) .. 150 DISCHARGE (CFS) '" 1.1 TIME (MIN) lS6 DISCHARGE (CFS) "" 1.2 TIME (MIN) ... 162 DISCHARGE (CrS) 1.2 I '.rIME (MIN) '" 168 DISCHARGE (CFS) '" 1.3 '.rIME (MIN) 174 DISCHARGE (CFS) 1.4 TIME (MIN) 180 DISCHARGE (CrS) '" 1.4 I 'rIME (MIN) 186 DISCHARGE (CFS) 1.5 TIME (MIN) 192 DISCHARGE (CrS) .., 1.6 TIME (MIN) 198 DISCHARGE (CFS) "" 1.8 'l'IME (MIN) '" 204 DISCHARGE (eFS) 1.9 I TIME (MIN) '" 210 DISCHARGE (CfS) 2.2 TIME (MIN) == 216 DISCHARGE (eFS) = 2.3 TIME (MIN) '" 222 DISCHARGE (CfS) 2.9 TIME (MIN) '" 228 DISCHARGE (CFS) .. 3.3 I TIME (MIN) 234 DISCHARGE (crs) 4.8 TIME (MIN) '" 240 DISCHARGE (CFS) '" 12.2 'rIME (MIN) 246 DISCHARGE (ers) '" 18.74 TIME (MIN) 252 DISCHARGE (CFS) .. 3.8 I 'rIME (MIN) 258 DISCHARGE (crs) = 2.6 TIME (MIN) 264 DISCHARGE (CfS) 2 'rIME (MIN) 270 DISCHARGE (crs) "" 1.7 I I I I TIME (MIN) .. 276 DISCHARGE (CFS) 1.5 I TIME (MIN) ... TIME (MIN) "" TIME (MIN) ... 282 DISCHARGE (CFS) 1.3 288 DISCHARGE (CFS) 1.2 294 DISCHARGE (CFS) = 1.1 TIME (MIN) .. 300 DISCHARGE (CFS) = 1 I 'I'IME (MIN) TIME (MIN) TIME' (MIN) ... 306 DISCHARGE (CFS) 0.9 312 DISCHARGE (CFS) = 0.9 318 DISCHARGE (CFS) .. 0.8 I' 'rIME (MIN) '" TIME (MIN) TIME (MIN) ... 324 DISCHARGE (eFS) 0.8 330 DISCHARGE (CFS) 0.8 336 DISCHARGE (CFS) 0.7 TIME (MIN) '" 342 DISCHARGE (CFS) ..., 0.7 I TIME (MIN) "" TIME (MIN) TIME (MIN) 348 DISCHARGE (CE'S) 0.7 354 DISCHARGE (CFS) ". 0.7 360 DISCHARGE (CE'S) =-0.6 TIME (MIN) 366 DISCHARGE (CFS) 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Type •... Target Outflow Volume Estimates Name ...• POND 10 Page 0.01 File ...• P:\3330\ENGR\REPORTS\DRAIN\l.'ONDl.'ACK\l?RELIM-VOL.l?PW DETENTION S~'ORAGE ESTIMATES Target Peak Outflow Rate Return Events 100 Peak In Target (ds) (c£5) 16.740 1. 600 Lower (ac-ft) .326 CALCULATION TIME RANGES Return Events 100 Lower From To (min) (min) 3.20 273.00 Linear From To (min) (min) .00 273.00 Linear Curvlinr Upper (ac-ft) (ac-ft) (ac-ft) .442 .503 .743 Curvilinear Upper From To From To (min) (min) (min) (min) .00 273.00 .00 273.00 yE-IENTI or~ VOL.UM~ RF-e:< IJ \ ~< ~l> Total (ac-ft) .857 Total From To (min) (min) .00 366.00 SIN: 621C0212E1CD PondPack Ver. 9.0046 Project Design Consultants Time: 5:21 PM Date: 7/231200B ------------------- 20! 18I 1 16t 141 1 -121 :[ + ~ 10-o 1 u:: 81 1 6+ 4t 2I 1 Hydrograph System 500 ! ,---9--;;-, o ' .~'$llmk~"""~ u i r100 o 100 200 300 Time (min) ~ 400 s500 Curvilinear Est 100 I I I I I I I I I I I I I I I I I I I System 600 Detention Estimates (LOT 3 ALTERNATIVE 'A ') I I RATIONAL METHOD HYDROGRAPH PROGRAM I COPYRIGH'r 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 4/17/2008 HYDROGRAPH FILE NAME System600.txt I TIME OF CONCENTRATION 7 MIN. 6 HOUR RAINFALL 2.7 INCHES BASIN AREA 2.96 ACRES RUNOFF COEFFICIENT 0.725 I PEAK DISCHARGE 12.2 CFS TIME (MIN) =: 0 DISCHARGE (CFS) ... 0 I TIME (MIN) 7 DISCHARGE (CrS) 0.3 TIME (MIN) 14 DISCHARGE (CrS) := 0.4 TIME (MIN) 21 DISCHARGE (CrS) .. 0.4 '1'IME (MIN) 28 DISCHARGE (CrS) 0.4 I TIME (MIN) 35 DISCHARGE (CFS) 0.4 TIME (MIN) 42 DISCHARGE (CrS) 0.4 TIME (MIN) 49 DISCHARGE (CrS) "" 0.4 TIME (MIN) 56 DISCHARGE (CrS) 0.4 I TIME (MIN) 63 DISCHARGE (CrS) 0.4 1'IME (MIN) '" 70 DISCHARGE (CrS) 0.4 TIME (MIN) "" 77 DISCHARGE (CFS) 0.4 TIME (MIN) '" 84 DISCHARGE (CFS) 0.4 I TIME (MIN) 91 DISCHARGE (CFS) O.S TIME (MIN) 98 DISCHARGE (CrS) 0.5 TIME (MIN) 105 DISCHARGE (CFS) '" 0.5 I TIME (MIN) '" 112 DISCHARGE (CrS) '" 0.5 TIME (MIN) 119 DISCHARGE (CrS) 0.5 TIME (MIN) 126 DISCHARGE (CrS) "" 0.5 1'IME (MIN) 133 DISCHARGE (CrS) '" 0.6 I TIME-(MIN) 140 DISCHARGE (CrS) 0.6 TIME (MIN) 147 DISCHARGE (CFS) "" 0.6 TIME (MIN) .. 154 DISCHARGE (CrS) .. 0.6 TIME (MIN) 161 DISCHARGE (CrS) 0.7 I TIME (MIN) "" 168 DISCHARGE (CrS) 0.7 TIME (MIN) 175 DISCHARGE (CrS) 0.8 TIME (MIN) 182 DISCHARGE (CFS) = 0.8 I TIME (MIN) 189 DISCHARGE (CrS) 0.9 TIME (MIN) 196 DISCHARGE (CFS) 1 TIME (MIN) 203 DISCHARGE (CrS) .. 1.1 TIME (MIN) 210 DISCHARGE (CrS) 1.2 I TIME (MIN) '" 217 DISCHARGE (CrS) 1.5 TIME (MIN) 224 DISCHARGE (CrS) 1.7 TIME (MIN) '" 231 DISCHARGE (CrS) =: 2.4 TIME (MIN) 238 DISCHARGE (CrS) 3.5 I TIME (MIN) 245 DISCHARGE (CrS) 12.2 1'IME (MIN) = 252 DISCHARGE (CrS) 2 TIME (MIN) ... 259 DISCHARGE (CrS) 1.3 1'IME (MIN) 266 DISCHARGE (CrS) 1 I 1'IME (MIN) 273 DISCHARGE (CrS) =: 0.9 TIME (MIN) .. 280 DISCHARGE cers) 0.7 TIME (MIN) 287 DISCHARGE (CFS) '" 0.7 I TIME (MIN) 294 DISCHARGE (CE'S) 0.6 'rIME (MIN) .. 301 DISCHARGE (CFS) 0.6 TIME (MIN) 308 DISCHARGE (crs) 0.5 TIME (MIN) 315 DISCHARGE (crs) 0.5 I I I I TIME (MIN) 322 DISCHARGE (CFS) c 0.5 I TIME (MIN) 329 TIME (MIN) "" 336 TIME (MIN) 343 DISCHARGE (CFS) 0.4 DISCHARGE (CFS) 0.4 DISCHARGE (CFS) 0.4 TIME (MIN) = 350 DISCHARGE (CFS) 0.4 I TIME (MIN) .. 357 TIME (MIN) 364 DISCHARGE (CFS) 0.4 DISCHARGE (CFS) 0 I I I I I I I I I I I I I I I I I I I I I- I I I I I I I I I I I I I Type ...• Target Outflow Volume Estimates Name .... POND 10 Page 0.01 File .... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.PPW DETENTION STORAGE ESTIMATES Target Peak Outflow Rate Return Events 100 Peak In Target (efs) (cfs) 12.200 5.100 Lower (ae-tt) .052 CALCULATION TIME RANGES Return Events 100 Lower From ~'o (min) (min) 3.99 249.87 Linear From To (min) (min) 3.85 249.87 Linear Curvlinr (ne-ft) (ae-ft) Upper (ae-it) .065 I .108 .371 Curvllinear Upper From To From To (min) (min) (min) (min) 2.57 249.87 .00 249.87 -----' l>r~,:r:Gf\ln oi-J VOLVME- Total (Ole-it) .481 ~'ot!ll From To (min) (min-) .00 364.00 \2.~QU \ ~~J> SIN: 621C0212E1CD PondPack Ver. 9.0046 Project Design Consultants Time: 5:26 PM Date: 7/23/2008 ------------------- 141 12f 10I ~ 81 ~ I ~ - o 61 LL i ! 41 ~ I 2f Hydrograph System 600, Project Alternative 'A' for Lot 3 o T -~-xro...,"!J;~~_~M~ >;U;,;f.l,~ ; i i -100 o 100 200 Time (min) ., 300 400 ""~ S600 Curvilinear Est 100 I I I System 650 Detention Estimates I I I I, I I I I I I I I I I I I I I RATIONAL METHOD HYDROGRAPH PROGRAM I COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/21/2008 HYDROGRAPH FILE NAME Systern650.txt I TIME OF CONCENTRATION 6 MIN. 6 HOUR RAINFALL 2.7 INCHES BASIN AREA 2.74 ACRES RUNOFF COEFFICIENT 0.796 I PEAK DISCHARGE 14.01 CFS TIME (MIN) 0 DISCHARGE (CFS) 0 I TIME (MIN) .. 6 DISCHARGE (CFS) '" 0.4 TIME (MIN) '" 12 DISCHARGE (CFS) 0.4 TIME (MIN) "" 18 DISCHARGE (CPS) ... 0.4 TIME (MIN) .. 24 DISCHARGE (CPS) 0.4 I TIME (MIN) 30 DISCHARGE (CFS) ... 0.4 TIME (MIN) "" 36 DISCHARGE (CPS) O.tl TIME (MIN) 42 DISCHARGE (CFS) '" 0.4 TIME (MIN) 48 DISCHARGE (CPS) '" 0.4 I TIME (MIN) 54 DISCHARGE (CrS) 0.4 TIME (MIN) 60 DISCHARGE (CFS) 0.4 TIME (MIN) 66 DISCHARGE (CrS) '" 0.4 'l'IME (MIN) "" 72 DISCHARGE (CrS) 0.4 I TIME (MIN) 78 DISCHARGE (CPS) 0.4 TIME (MIN) 84 DISCHARGE (CFS) 0.4 TIME (MIN) 90 DISCHARGE (CrS) 0.5 I TIME (MIN) 96 DISCHARGE (CrS) 0.5 TIME (MIN) '" 102 DISCHARGE (CrS) 0.5 TIME (MIN) => 108 DISCHARGE (CrS) '" 0.5 TIME (.MIN) ... 114 DISCHARGE (CrS) 0.5 I TIME (MIN) = 120 DISCHARGE (Cb~S) 0.5 TIME (MIN) "" 126 DISCHARGE (CrS) .. 0.6 TIME (MIN) 132 DISCHARGE (CFS) 0.6 TIME (MIN) ... 138 DISCHARGE (CrS) 0.6 I TIME (MIN) 144 DISCHARGE (CrS) 0.6 TIME (MIN) "" 150 DISCHARGE (CrS) "" 0.6 TIME (MIN) 156 DISCHARGE (CFS) 0.7 TIME (MIN) 162 DISCHARGE (CFS) 0.7 I TIME (MIN) 168 DISCHARGE (CrS) 0.7 TIME; (MIN) 174 DISCHARGE (CrS) ... 0.8 TIME (MIN) 180 DISCHARGE (CFS) "" 0.8 I 'l'IME (MIN) '" 186 DISCHARGE (CFS) "" 0.9 TIME (MIN) .. 192 DISCHARGE (CFS) "'" 0.9 TIME (MIN) 198 DISCHARGE (CPS) 1 TIME (MIN) 204 DISCHARGE (CFS) 1.1 I 'rIME (MIN) '" 210 DISCHARGE (CrS) 1.2 TIME (MIN) 216 DISCHARGE (CFS) "" 1.3 'l'IME (MIN) 222 DISCHARGE (CPS) 1.6 TIME (MIN) 228 DISCHARGE (CFS) 1:9 I TIME (MIN) "" 234 DISCHARGE (CrS) '" 2.7 TIME (MIN) 240 DISCHARGE (CFS) 3.6 TIME (MIN) "" 246 DISCHARGE (CFS) ,.. 14.01 TIME (MIN) 252 DISCHARGE (CFS) .. 2.2 I TIME (MIN) "" 258 DISCHARGE (CFS) "" 1.5 TIME (MIN) 264 DISCHARGE (CFS) .. 1.1 TIME (MIN) "270 DISCHARGE (CPS) 1 I I II I TIME (MIN) 276 DISCHARGE (CrS) '" 0.8 I TIME (MIN) "" TIME (MIN) ... TIME (MIN) '" 282 DISCHARGE (CrS) "" 0.7 288 DISCHARGE (CrS) 0.7 294 DISCHARGE (CrS) 0.6 TIME (MIN) 300 DISCHARGE (CrS) .. 0.6 I TIME (MIN) TIME (MIN) TIME (MIN) 306 DISCHARGE (CrS) 0.5 312 DISCHARGE (CrS) 0.5 318 DISCHARGE (CPS) "" 0.5 TIME (MIN) = 324 DISCHARGE (CrS) "" 0.5 I TIME (MIN) TIME (MIN) TIME (MIN) = 330 DISCHARGE (CFS) 0.4 336 DISCHARGE (CrS) 0.4 342 DISCHARGE (CrS) 0.4 I TIME (MIN) "" TIME (MIN) "" TIME (MIN) "" 348 DISCHARGE (CFS) 0.4 354 DISCHARGE (CrS) 0.4 360 DISCHARGE (CF'S) 0.4 TIME (MIN) "" 366 DISCHARGE (CrS) 0 I I I I I I 'I I, I I I I I , !. I I I I I I I I I I I I I I I I I I Type ...• Target Outflow Volume Estimates Name ...• POND 10 Page 0.01 File •... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.PPW DETENTION STORAGE ESTIMATES Target Peak Outflow Rate Return Events 100 Peak In Target (efs) (efs) 14.010 5.100 Lower (ae-tt) .059 CALCULATION TIME RANGES Return Events 100 Lower From To (min) (min) 4.01 250.53 Linear From To (min) (min) 3.90 250.53 Linear Curvlinr (Ole-tt) (ae-ft) Upper (ae-ft) .070 .111 .378 Curvi linear Upper From To From To (min) (min) (min) (min) 2.90 250.53 .00 250.53 %TEtJT10N \}OLVME.. Total (tle-ft) .489 '~€.cQ V 1 R~ .. I> Total From To (min) (min) .00 366.00 SIN: 621C0212E1CD PondPaek Ver. 9.0046 Project Design Consultants Time: 5:28 PM Date: 7/23/2006 ------------------- ~ 16l 141 ! 121 I T .-. 10t ~ L i' 8 1 o I u: T 6f 4I 1 2t Hydrograph System 650 (Lot 3, Senior Affordable site plan) oT ~=:r!'"~~~~~W- w ~~ i -... ~ . . ~ -100 ,.: \ o 100 200 300 Time (min) s650 ~ Curvilinear Est 100 400 ~I :;g '" <I< § :u c () ~ ~ J:J iii en s I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I APPENDIX 5 Preliminary Energy Dissipation Calculations I I I I I I I != I I I I I I 1"; "'" I I I I I I notch lS2mm ,plCTOR'lAl. 'VIEW I _ 'fit - NOTES SECTlON A-A AogT!tgole cOroJf woll Choooel Invert '1. ~~"nt ~d ~rl (torth lCXl,4inq)= '961 ~g/t)l, m (00 p.c,f.) WO~mlWn OJUIIl ~Iocltr =: 10.7m '(JS')/S' 2. Concr~li lIoon b4 332 kg/101~~-22lttpo ~C~325O) , 3. R'elllll'll'dng WII c.onform tD :ASnI ,dcsJgriolion .A61~ ,C!ld may bt grade ~p or :00.. RcI(IlOI'CIoo ~h!ll!~' pklc:ea with Slmm (t) tleor ~QfIQ1lte ~ 'UJlle" noted o~, Sp~ \theM nof' bt permitttd fl)!~P( 0$ iJ:IdIctJIeP on 11)0 'p/Q~ 4. for 'Pipe grode$ net ~c~r.g 21m. InlGt box rJ1QY bl! ~lled, 5.., U rill,t box b omitted, cooslru<:t, 'pipe eolia' 00 $\low!). , .' e. Unlm noted oIIlO1"1ri$e, on nllnfon:in9 bot benils Ilhdl be 'fobricated tilh standard 'books. ' 7 .. F"IVll foot ,tliQb cl10ln fink fencing. emb(Jd posl J8' dCI!P :in •• ' and ~tJ50, 'with olem a 'mOrtar. ~. In Sorldy and Sillyaoir: , ci) Rlprop and aggfcgoto bote cutoff. wlJ1/ ntqlIlred lit :the ,M!J' of ~ oprOn, b) fllto, doth (~ob'lilCl' X or equmlonl) thOlI bt IJUte_lid, tm hCti~. lIoil bct81!, :minimum 9'~m (tit) ~!lP.S 01 .)pin'" 9. ~ rep j)1')~ $QbbaUe clcs511lcalion wan be os ~ on ~. " , ~',~ SEt D419. ,ReYlslorl B ved Dote Rt~ OY','I'HC WI ,C1too SAN D'EGO REGIONAL STANDARD DflAWING IU:~ sr~ ~ ORIGiNAL CONCRETE ENERGY DISSIPATOR I I I I I I I I I I I I I I I I I I I Revision By ORIGINAL Add Metric Reformotted METRIC DIMENSIONS TABLE, FOR STRUCTURE DETAILS SEE D-041A. Pipe Die 457mm 610mm 9.Hm 11.0m 12.00m 14.63m IM6m IS.29m' 21.9Sm NeD (SQ. m) .154 .292 .456 657 .893 1.17 .1.~ 1.82 2.63 Mox. 0 (cu mle .594 1.08 1.67 2.41 3.26 4026 5.41 6.66 9.60 Vi 1.66m l.80m 2.13m 2.B2m 3.2Om 3.58m 3.98 ~.34 5.03m H 1.30m l.60m 1.90m 2.21m 2.44m 2.7~m 2.67m J.2Bm '3.73m L 2.2~m 2.7~m 3.25m 3.7Bm ~.27m 4.7Bm 5.28m 5.79m 6.71m 0 99lmm 1.19m 1.~ l.60m 1.83m 1.00m ' 2.2-1m 2.+1m 2.82m b 1.24m 1.55m l.85m 2.16m 2.«m 2.72m 3.OSm 3.35m 3.87m c 711mm 864mm 1.02m 1.17m 1.35m 1.5Om t.65m 1.80m 2.11m d 279mm 356mm 400mm ~82mm 533mm 610mm 660mm 737mm 838mm e 152mm 152mm 203mm 203mm 254mm 2~mm 305mm 305mm 38lmm f 457mm 610mm 762mm 914mm 914mm 914mm 914mm 91~mm 914mm Q 635mm 762mm 914mm I.07m 1.19m 1.35m I.SOm 1.63m 1.88m Tf 203mm 2~mm 305mm Th 178mm 241mm 267mm Tf I 78mm 241mm 267mm To 17Bmm 203mm IMPERIAL DIMENSIONS TABLE, FOR STRUCTURE DETAILS SEE D-41A. Pipe Dia (in 18 24 30 36 42 48 ~ 60 72 , NeD (sq.ft. 1.77 3.14 4.91 7.07 9.62 12.57 15.90 19.63 28.27 Max. Q (cfa 21 38 59 85 115 151 191 236 339 Vi 5'-S' 6'-9' 8'-0' 9'-J' 10'-S' 11'-g' 3'-0' 14'-J' 16'-S" H f-3' 5'-3' 6'-3' 7'-3' 8'-0' g'-O' g'-g' 10'-9" 12'-3' l 7'-4' g'-O' 0'-8 '12'-4 14'-0' 15'-8' 17'-4' 19'-0' 22'-0 0 3'-3' 3'-11 4'-7' 5'-3' 6'-0' 6'-9' 7'-." 6'-0' 9'-3" b 4'-1' 5'-1' 6'-1' 7'-1' 8'-0' 8'-11 10'-0' 11'-0' 12'-9' c 2'-4' 12'-10 3'-~' 3'-10 4'-5" .'-11 5'-5' 5'-11 6'-11 d ~'-11 1'-t 1'-4' 1'-7' I'-g' 2'-0' 2'-2" 2'-5' 2'-9' e 0'-6" O'-S' O'-S' O'-S' 0'-10 0'·10 1'-0' 1'-0' 1'-3' f I'-S' 2'-0' 2'-6' 3'-0' 3'-0' 3'-0' 3'-0' 3'-0" 3'-0' Q 2'-1 2'-6' 3'-0' 3'-6' 3'-11 4'-5' 4'-11 5'-4' 6'-2' TI S" 10" 12' Th 7' 9112' 10 1/2' Tw 7' 91/2' 10 1/2' , To 7' 8' Approved Dote RECOMMENDED BY 11-IE SAN DIEGO 2/75 SAN DIEGO REGIONAL STANDARD DRAWING REGIONAL STANDARDS COMMITIEE Kercheval T. Stanton 03/003 1~~Tf.t'I1J 9/()1jtOO9 T. Stanton 04/06 CONCRETE ENERGY OISSIPATOR Chfllroeraon R.C.E. 19246 Dote DRAWING 0-41B NUMBER I I I I I I I I I I I I I I I I I I I S ::> S' ~ r,-., c .... -,5 C! ,.., , ~ 0:: 0 ~ ~ 0:: 0 ~ Concrete 3D OR 3W PLAN SECTION 8-8 152mm (6") Wide Slot • NOTES Design veloclt~ Rock T (min) m/sec (ft/sec * Classification 1.8-3 No. 2 Backing 320mm (1.1 ft) (6-10) 3-3.7 220 kg 823mm (2.7ft) (10-12) (1/4 ton) 3.7-4.3 450 kg 1.1 m (3.5ft) (12-14) (1/2 ton) ('3-4.9 14-16) 900 ~) (.1 ton 103m (404ft) 4.9-5.5 1.B tonne 1.6m (SAft) (16-18) (2 ton) 'over 5.5 mps (18 fps) requires special design o = Pipe Diameter W = Bottom Width of Channel r Blanket Sill, Closs 249kg/rri' -C-13Mpa (420-C-2000) Concrete SECTION A-A 1. Plans sholl specify: A) Rock Closs and thlckl)ess (T). B) Fllter material. number of laysrs and thickness. 2. RIp rap sholl be either quarry stone or broken concrete (if shown on the plans.) Cobbles are not acceptable. 3. Rip rap sholl be placed over filter blonket which may be either granular material or filter fabric (woven filter slit film fabric sholl not be used). 4. See Regional Supplement Amendments for selection of filter blanket. 5. Rip rap energy dissipators shal! be designated as eith!lr Type 1 or Type 2. Type 1 sholl be with concrete sill; Type 2 shalf be without sill. SAN DIEGO REGIONAL STANDARD DRAWING RIP RAP ENERGY OISSIPATOR ~!e7!eOO6 • holrpcrson R.C.E. 19245 Dolo DRAWING NUMBER 0·40 I I I I I I I I I I I I I I I I I I I ,~ PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY WWW.PRO]ECTDESIGN.COM PROJECT 1S~\()G,E S SUBJECT "&EL-1tJ!. ENER.~Y DiSSlfA-77DN PAGE: OF __ JOB NO. : 3'3~ DRAWN BY: ___ DATE: 1!~~Ia",-=B,---_ CHECKED BY: DATE: ____ _ >is-k-M 3co ovef:-bJ1 Lo~,*,-(NtU r "'J foas/~) IM1fN/f-Bas,'/? ~'jl'.....- J)=== 2,('1;;::2 I J Q -;::. 7. q e-.f~ ~ \ ) 'Jo =: ·ILf.LfGt(5 (~Wf>Pb) Sy6~ "300') A;; QIv~::::. 7q·/I~. 'i~ -:;:. 0.55 ':je:::: lA/z)V?'-:::: (O.55/1.)h ~ (9.52--:::. ~,VjV~ ckp+k 0(. .f'(ot,J ~-eriJ Ji'$$if""1oY- S+er i) CoMpl.{.+-e.. t=; .t ~~J cd-~ of riF') ~o 1=;~ \10 ::; _l~.tfb ...-~ ~.5 ~ Jt?Z:l)(6,sZ) \-1-0 ::: ~ -I-:!,.,?-:::.. o.55.r (JLf!!.(P1. :;:. '3.1; 'j 1..(71-.'0) St-q 3) 'D.t,-k:rIV\\~ Vro/~ -{;-ow-. r;j~ve.. q.l~. CtJculk I'""4.JL wl£1l o~ ~;Y\.J WI!> W~ = 'Ao _ ::::-1:t ___ 3.~ \..\0 I~i!> 1.0 ?u-'eSt> p-~\) \N~::: '.75 Skr l{) 1>1~'e>\.s pe-r l)-LJ I 1-51> Skt' s) \)t.-iex\ll!i~ -v;,i-t v'e-loc.Z~., \l B \-l~ -::> -Q 'r' V: ::::-\+0 (\ -t \ wI? \)13> ~ t> ) JL. :;: 0.57 ~ rt" 9, \S \-\;) ..J v,z.. ~~:::. ~ +-_ f, =-,/;,91(1-0,51) l~.75) Vi 1{p .. 'L} Vv:-,,; q. CJ, fp -?'" ~frnr ~UcvJ'~ "b-Lf/ skul~ k #2 Bf/c,t./N{j I I I I I & ~ I I I~' ---' I I I ~///b-~ "JCA.\ / I I 'C;'~' / I I [>--i -<::; li / / V (J I S? I I ~ I ~I I Ii I / / I I / ~ \~ I ~I ~ ,. -\ I I II \\ ~ 1/ /( / ) I (Jv/ I I I I I '-~ x1 ~5. 7 p! & x185.5 / / / I I~~~~~~~LLUL~~~ I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. 3.0 V / V V /' V /' V 2.0 (.0 1.0 .0 2.0 3.0 4.0 . 5.{1 $.0 7.0 8.0 &.0 Figure 9.14. Design Curve for USBR Type VI Impact Basin Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy 1055 was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 I I I I I I I I I I I I I I I I I I I 90 80 /" / / /' L i=' z w 70 ~ w !1. ./ V /-/ r--~MPACT / BASINV' ,/' ~RAULIC 'UII.-I I V ~ HORIZ:ONTAL FLOOR / 30 20 10 1.0 2.0 3.0 ~s 4.0 5.0 .. 6.0 Fr = Vof(gYe)1/2 Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 m/s (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USSR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 --- - ------ -- - ---- - - FILE: SYSTEM300.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:10:52:35 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 300 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1. I Elev I Depth I Width IDia.-FTlor I.D. I ZL IPrs/pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I@ I I I 117.000 187.570 .460 188.030 7.90 14.46 3.25 191.28 .00 1. 00 1. 68 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .445 .0100 .0909 .04 .46 4.47 .82 .0l3 .00 .00 PIPE I I I I I I I I I 117.445 187.574 .458 188.033 7.90 14.53 3.28 191.31 .00 1.00 1. 68 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 3.555 .0100 .0981 .35 .46 4.50 .82 .013 .00 .00 PIPE I I I I I I I I I 121. 000 187.610 .444 188.054 7.90 15.24 3.61 191.66 .00 1.00 1. 66 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 36.476 .1056 .1031 3.76 .44 4.81 .44 .0l3 .00 .00 PIPE I I I I I I I I I 157.476 191.462 .447 191.909 7.90 15.07 3.53 195.43 .00 1. 00 1. 67 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 29.108 .1056 .0951 2.77 .45 4.73 .44 :0l3 .00 .00 PIPE I I I I I I I I I 186.584 194.536 .462 194.998 7.90 14.37 3.21 198.20 .00 1.00 1.69 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 12.261 .1056 .0831 1.02 .46 4.43 .44 .0l3 .00 .00 PIPE I I I I I I I I I 198.845 195.831 .478 196.309 7.90 13.70 2.91 199.22 .00 1.00 1.71 2.000 .000 .00 1 .0 -1--1--1--1--1--I:" -1--1--1--1--1--1--I-I- 7.562 .1056 .0727 ,55 .48 4.15 .44 .013 .00 .00 PIPE I I I I I I I I I 206.407 196.629 .494 197.123 7.90 13.06 2.65 199.77 .00 1.00 1.73 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 5.322 .1056 .0636 .34 .49 3.89 .44 .013 .00 .00 PIPE I I I I I I I I I 211.729 197.191 .511 197.703 7.90 12.45' 2.41 200.11 .00 1.00 1. 74 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 4.018 .. 1056 .0556 .22 .51 3.64 .44 .0l3 .00 .00 PIPE I I I I I I I I I 215.747 197.616 .529 198.145 7.90 11.87 2.19 200.33 .00 1. 00 1. 76 2.000 .000 .00 1 .0 -1--1--1--1--1--.1--1--1--1--1--1--1--I-I- 3.178 .1056 .0486 .15 .53 3.41 .44 .0l3 .00 .00 PIPE - -- ------- ---- - --- - FILE: SYSTEM300.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:10:52:35 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 300 ************************************************************************************************************************** ******** I Invert I Depth I ' Water I Q I Vel Vel i Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth Station I Elev I (FT) I E1ev I (CFS) I (FPS) Head I Grd.El. I E1ev I Depth I width IDia.-FTlor I.D.I ZL IPrs/pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I 'I I I I I I 218.926 197.951 .547 198.498 7.90 11.32 1. 99 200.49 .00 1.00 1. 78 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 2.568 .1056 .0426 .11 .55 3.19 .44 .013 .00 .00 PIPE I I I I I I I I I 221.494 198.223 .566 198.789 7.90 10.79 1.81 200.60 .00 1.00 1. 80 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 2.114 .1056 .0373 .08 .57 2.98 .44 .013 .00 .00 PIPE I I I I I I I I I 223.608 198.446 .586 199.032 7.90 10.29 1. 64 200.68 .00 1. 00 1.82 2.000 .000 .00 1 .0 -1--1--1--1--:1--1--1--1--1--1--1--1--I-I- 1. 774 .1056 .0326 .06 .59 2.79 .44 .013 .00 .00 PIPE I I I I I I I I I 225.382 198.633 .606 199.239 7.90 9.81 1.50 200.73 .00 1.00 1. 84 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1. 479 .1056 .0285 .04 .61 2.61 .44 .013 .00 .00 PIPE I I I I I I I I I 226.861 198.789 .628 199.417 7.90 9.36 1.36 200.78 .00 1.00 1. 86 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.260 .1056 .0250 .03 .63 2.44 .44 .013 .00 .00 PIPE I I I I I I I I I 228.121 198.922 .650 199.573 7.90 8.92 1.24 200.81 .00 1.00 1. 87 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.067 .1056 .0219 .02 .65 2.29 .44 .013 .00 .00 PIPE I I I I I I I I I 229.188 199.035 .673 199.708 7.90 8.51 1.12 200.83 .00 1.00 1.89 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .916 .1056 .0192 .02 .67 2.14 .44 .013 .00 .00 PIPE I I I I I I I I I 230.104 199.132 .696 199.828 7.90 8.11 1.02 200.85 .00 1.00 1.91 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I"" 1- .764 .1056 .0168 .01 .70 2.00 .44 .013 .00 .00 PIPE I I I I I I I I I 230.868 199.213 .721 199.934 7.90 7.73 .93 200.86 .00 1.00 1.92 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .643 .1056 .0147 .01 .72 1. 87 .44 .013 .00 .00 PIPE - - -- FILE: SYSTEM300.WSW - -- ----- W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 300 ----- PAGE 3 Date: 7-24-2008 Time:10:52:35 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR I Type Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* 231.511 -1- .537 I 232.048 -1- .443 I 232.491 -1- .360 I 232.850 -1- .275 I 233.125 -1- .208 I 233.334 -1- .148 I 233.482 -1- .083 I 199.280 -1- .1056 I 199.337 -1- .1056 I 199.384 -1- .1056 I 199.422 -1- .1056 I 199.451 -1- .1056 I 199.473 -1- .1056 I 199.489 -1- .1056 I I .747 200.028 -1--1- I .774 -1- I .802 -1- I .831 -1- I .862 -1- I .894 -I- I .927 -I- I 200.111 -1- I 200.186 -1- I 200.253 -I- I 200.313 -1- I 200.367 -I- I 200.416 -I- I 7.90 -I- I 7.90 -I- I 7.90 -1- I 7.90 -I- I 7.90 -I- I 7.90 -I- I 7.90 -I- 7.37 -1- 7.03 -1- 6.70 -1- 6.39 -1- 6.09 -1- 5.81 -1- 5.54 -1- I .84 -1- .0129 I .77 -1- .0113 I .70 -1- .0100 I .63 -1- .0087 I .58 -1- .0077 , I .52 -1- .0068 , I .48 -1- .0059 I 200.87 -1- .01 200.88 -1- .01 200.88 -1- .00 200.89 -1- .00 200.89 -1- .00 200.89 -1- .00 200.89 -1- .00 .00 -1- .75 I .00 -1- .77 I .00 -1- .80 I .00 -1- .83, i .00 -1- .86 I .00 -1- .89 I .00 -1- .93 I 1.00 -I- I. 75 1.00 -I- I. 63 1.00 -1- 1.52 1.00 -1- 1.42 1.00 -1- 1.33 1.00 -1- 1.24 1.00 -I- LlS 1.93 .44 1. 95 .44 1.96 .44 1. 97 .44 1. 98 .44 1. 99 .44 1.99 .44 2.000 -1--1- .0l3 2.000 -1--1- .0l3 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .0l3 2.000 -1--1- .013 2.000 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 1- PIPE I 1 1- PIPE I, 1 1- PIPE 1 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I .0 .0 .0 .0 .0 .0 .0 - I 233.565 -1- .025 I 199.497 -1- .1056 I .962 -I- I 200.460 -I- I 7.90 -I- 5.28 -1- , .43 -1- .0052 200.89 -1- .00 .00 -1- .96 1.00 2.00 2.000 I .000 -1- .00 .00 1 .0 I 233.590 -1- I 199.500 -1- I 1.000 -1- I 200.500 -1- I 7.90 -1- 5.03 -1- I .39 200.89 -1--1- I .00, -1- -1- 1.08 1.00 -1- -1--1- .44 .0l3 2.00 2.000 -1--1- I .000 -1- .00 .00 1- PIPE I 1 1- .0 - - - - - --- ---- - - - - - --- FILE: SYSTEM300.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-24-2008 Tirne:10:52:34 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 2.000 W S P G W PAGE NO 1 WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM. ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM 300 W S P G W PAGE NO 2 WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT W S ELEV 117.000 187.570 1 187.570 ELEMENT NO 2 IS A REACH * * * u/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 121.000 187.610 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MANH 233.590 199.500 1 .013 .000 .000 .000 0 ELEMENT NO 4 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 233.590 199.500 1 199.500 I I I I I I I I I I I I I I I I I I ',; PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY WWW.PROJECTDESIGN.COM Iwtf()Vf-J?~JI1 Pa& J1. j)~ 2'111 -:.=-2-/ I ()::: 15.3 c,t::, PROJECT '?>12-{P6.6S SUBJECT [?€LIM. f{tvf3f<6Y 7)1551 f,fTJoN PAGE: OF JOB NO. : 3~ -- DRAWN BY: DATE: 7/21/08 ----j---+. ~-- CHECKED BY: DATE: ___ _ 5-kf J) Vt) -:: Zp. 95 ~f" (~Y'1 W5P~) 5J5-ktM lfoo) -1-= (o/j/g) ;; &'YZ-<'.1?) ::: 0.73 ~e::: (A /1.) 1ft. ::. ~:'i3/z, )h-::;:: O. 60 --ec;.,/Vai~ I de.p ft. 0.( flow ~J J$,'t~f)l Skp ~) Conrufrt-Fr ~ ~r d ~ of r~) I.J() [..:::. Vo zo.Q5 _ 1.·7 r ~ ~ ~)(W) -. Stet 3) 1kkn'Vj/~ tf.o/vJ!3 /i-r;W'/ hjuY'~ q.li. WU1,£:vfe-Yoltjd. w/djh of bez.5(J" w~ ~ ~ g ~.2!i-:: Lj,q tlo;1N~ 1.6 Jtr "f-sJ) lJ-Y0 ~:: &.75 Silt 'f) /);~tYl5/();'S petr lJ-,/1 i'SD 1&::: .. ~ -+ §. == %Vg J lit. -:: @. 15 1-10 1-1. (i -i) J»' Fj. CJJ 5 I-//):::: /5.., -l-V/" :;: C-;;'75) v[> z.(1,z.~) 78 (1 -O,.7?) Vg:: 10.2.. .\fs -'Y /Zt'fY"1 .f;;/lofllY /)-'1/ S~CJu/j b~ \/~ -\-I>", 220 I I I I I I I I I IxtT~~~~ I I I I I· I I I - I I I I I I I I I I I I I I I I I I I i=' z 9 8 0 0 W 70 ~ ~75 oj 60 i' / V /" /" V /' / ,.: Cl) ffi 50 ffi u. Q BASIN-z-r--IMPACTv/ V /' L // ~ 40 g 30 20 10 1.0 J I 2.0 3.0 / ~~ ~RAULIC JUMP=-~RIZONTAL FLOOR 4.0 Lf.75.0 Fr I: Vo f(gYe)112 6.0 7.0 Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 m/s (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USSR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. 3.0 I 2:.0 / / / ./ V V 1/ V 1.0 ~.o 2.1) 3.0 4.0 tf, 7 S.O S.D . 1.0 8.0 Fr = Vj(gYe)1/2 Figure 9.14. Design Curve for USBR Type VI Impact Basin Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of Ws to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 --- - FILE: SYSTEM400.WSW - - -- - -- W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 400 -- --- -- PAGE 1 Date: 7-29-2008 Time: 2:48:12 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo wth station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/pip -1--1- -1--1--1--1--1- -1--1- -1--1--1--1--I L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR I Type Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I 118.000 -1- 10.222 I 128.222 -1- 13.593 I 141.815 -1- 10.150 I 151.966 -1- 8.166 I 160.132 -1- 6.868 I 167.000 -1- JUNCT STR I 171.000 -1- .466 I 171.466 -1- 18.690 I 190.156 -1- 10.185 I 199.130 -1- .1210 I 200.367 -1- .1210 I 202.012 -1- .1210 I 203.241 -1- .1210 I 204.229 -1- .1210 I 205.060 -1- .0825 I 205.390 -1- .3414 I 205.549 -1- .3414 I 211.930 -1- .3414 I I .566 199.696 -1--1- I .555 -1- I .536 -I- I .518 -I- I .501 -1- I .485 -I- I .472 -I- I .472 -1- I .488 -1- I 200.922 -1- I 202.548 -I- I 203.759 -I- I 204.730 -1- I 205.545 -I- I 205.862 -I- I 206.021 -1- I 212.418 -1- I 15.30 ~ -1--I- I 6.81 -1- .1554 I 15.30 -1- I 15.30 -I- I 15.30 -I- I 15.30 -1- I 15.30 -I- I 15.30 -I- I 15.30 -1- I 15.30 -1- 21.49 -1- 22.54 -1- 23.64 -1- 24.79 -1- 26.00 -1- I 7.17 -1- .1724 I 7.89 -1- .1970 I 8 .. 68 -1- .2252 I 9.54 -1- .2576 I 10.50 -1- .2908 I 27.0311.34 -1--I- .• 3065 27.02 -1- 25.76 -1- I 11.34 -1- .2871 I 10.31 -1- .2511 206.51 -1- 1.59 208.09 -1- 2.34 210.44 -1- 2.00 212.43 -1- 1.84 214.27 -I- I. 77 216.04 -1- 1.16 217.20 -1- .14 217.36 -1- 5.37 222.72 -1- 2.56 .00 -1- .57 I .00 -1- .56 I .00 -1- .54 I .00 -1- .52 I .00 -1- .50 I .00 -1- .49 .00 -1- .47 I .00 -1- .47 I .00 -1- .49 1.41 -1- 5.80 1.41 -1- 6.01 1.41 -1- 6.42 1. 41 -1- 6.85 1. 41 -1- 7.32 1.41 -1- 7.82 1.41 -1- 8.25 1.41 -1- 8.25 1.41 -1- 7.72 1. 80 .60 1. 79 .60 1. 77 .60 1. 75 .60 1. 73 .60 1.71 1. 70 .46 1. 70 .46 1.72 .46 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE .0 .0 .0 .0 .0 .0 .0 .0 .0 - -- -- - FILE: SYSTEM400.WSW -- --- -- W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 --- - - - PAGE 2 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 400 ************************************************************************************************************************** ******** I Invert Station I Elev -1--1- L/E1em ICh Slope I Depth I (FT) I -I- I Water Elev I I -I- I Q (CFS) I Vel I (FPS) -1--I- Vel I Head I -1- I SF Ave I Energy I Super I Critical I Flow ToplHeight/IBase Wtl Grd.EI.1 Elev I Depth I width IDia.-FTlor I.D.I -1--1--1--1--1--1- HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZL ZR INo Wth IPrs/Pip -I *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** IType Ch 1******* I I 200.341 215.407 -1--1- 6.852 .3414 I 207.192 -1- 5.063 I 212.255 -1- 3.950 I 216.205 -1- 3.194 I 219.399 -1- 2.640 I 222.040 -1- 2.220 I 224.259 -1- 1.890 I 226.149 -I- I. 624 I 227.772 -1- 1.409 I 217.747 -1- .3414 I 219.475 -1- .3414 I 220.824 -1- .3414 I 221. 914 -1- .3414 I 222.816 -1- .3414 I 223.574 -1- .3414 I 224.219 -1- .3414 I 224.773 -1- .3414 I .505 -I- I .522 -1- I .540 -I- I .559 -I- I .578 -I- I .598 -I- I .619 -1- I .641 -1- I .664 -1- I 215.912 -I- I 218.269 -1- I 220.015 -1- I 221.383 -I- I 222.492 -I- I 223.414 -I- I 224.193 -1- I 224.860 -1- I 225.437 -1- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -1- 24.56 -1- 23.42 -1- 22.33 -1- 21.29 -1- 20.30 -1- 19.36 -1- 18.45 -1- 17.60 -1- 16.78 -1- I 9.37 -1- .2196 I 8.52 -1- .1920 I 7.74 -1- .1680 I 7.04 -1- .1470 I 6.40 -1- .1287 I 5.82 -1- .1126 I 5.29 -1- .0986 I 4.81 -1- .0864 I 4.37 -1- .0757 225.28 -1- 1.50 226.79 -1- .97 227.76 -1- .66 228.42 -1- .47 228.89 -1- .34 229.23 -1- .25 229.48 -1- .19 229.67 -1- .14 229.81 -1- .11 .00 -1- .51 I .00 -1- .52 I .00 -1- .54 I .00 -1- .56 I .00 -1- .58 I .00 -I- .60 I .00 -1- .62 I .00 -1- .64 I .00 -1- .66 1. 41 -1- 7.23 1.41 -1- 6.77 1. 41 -1- 6.34 1. 41 -1- 5.93 1.4.1 -1- 5.55 1.41 -1- 5.19 1.41 -1- 4.86 1.41 -1- 4.54 1.41 -1- 4.25 1. 74 .46 1. 76 .46 1. 78 .46 1. 80 .46 1.81 .46 1.83 .46 1. 85 .46 1. 87 .46 1.88 .46 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I . 1 .0 1- PIPE - - - - -- FILE: SYSTEM400.WSW - ----'-- W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 ----- - PAGE 3 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 400 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallF10w ToplHeight/IBase Wtl Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL INO Wth IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** I I 229.181 225.254 -1--1- 1.222 .3414 I 230.403 -1- 1.071 I 231.474 -1- .935 I 232.409 -1- .824 I 233.233 -1- .720 I 233.954 -I- .633 I 234.586 -1- .556 I 235.142 ':'1- .484 I 235.626 -1- .423 I 225.671 -1- .3414 I 226.037 -1- .3414 I 226.356 -1- .3414 I 226.637 -1- .3414 I 226.883 -1- .3414 I 227.099 -1- .3414 I 227.289 -1- .3414 I 227.454 -1- .3414 I I .687 225.941 -1--1- I .712 -I- I .737 -I- I .764 -1- I .791 -1- I .820 -I- I .850 -1- I .881 -1- I .914 -1- I 226.383 -I- I 226.774 -I- I 227.120 -1- I 227.428 -1- I 227.703 -I- I 227.950 -1- I 228.170 -1- I 228.368 -1- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -I- I 15.30 -1- 16.00 -1- 15.25 -1- 14.54 -1- 13.87 -1- 13.22 -1- 12.60 -1- 12.02 -1- 11.46 -1- 10.93 -1- I 3.97 -1- .0663 I 3.61 -1- .0582 I 3.28 -1- .0510 I 2.99 -1- .0447 I 2.71 -1- .0393 I 2.47 -1- .0345 I 2.24 -1- .0303 I 2.04 -1- .0266 I 1.85 -1- .0234 229.91 -1- .08 230.00 -1- .06 230.06 -1- .05 230.11 -1- .04 230.14 -1- .03 230.17 -1- .02 230.19 -1- .02 230.21 -1- .01 230.22 -1- .01 .00 -1- .69 I .00 -I- .71 I .00 -1- .74 I .00 -I- .76 I .00 -1- .79 I .00 -1- .82 I .00 -1- .85 I .00 -1- .88 I .00 -1- .91 1.41 -1- 3.97 1.41 -1- 3.71 1.41 -1- 3.47 1.41 -1- 3.24 1.41 -1- 3.03 1.41 -1- 2.83 1.41 -1- 2.64 1.41 -1- 2.46 1.41 -1- 2.30 1.90 .46 1.92 .46 1.93 .46 1.94 .46 1.96 .46 1.97 .46 1.98 .46 1.99 .46 1.99 .46 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 2.000 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 IType Ch 1******* I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE .0 .0 .0 .0 .0 .0 .0 .0 .0 - --- - - -- - -- -- - -- --- - FILE: SYSTEM400.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 4 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 400 ************************************************************************************************************************** ******** I Invert· I Depth I Water I Q I Vel Vel I Energy I Super I critical I Flow TOp I Height/I Base wtl INo Wth Station I E1ev I (FT) I E1ev I (CFS) I (FPS) Head I Grd.E1.1 E1ev I Depth I Width IDia.-FTlor 1.D.1 ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/E1em ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I I I I 236.049 227.599 .948 228.547 15.30 10.42 1.69 230.23 .00 1. 41 2.00 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .365 .3414 .0206 .01 .95 2.14 .46 .013 .00 .00 PIPE I I I I I I I I I 236.414 227.723 .984 228.708 15.30 9.93 1.53 230.24 .00 1.41 2.00 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .313 .3414 .0181 .01 .98 1. 99 .46 .013 .00 .00 PIPE I I I I I I I I I 236.727 227.830 1.022 228.852 15.30 9.47 1.39 230.25 .00 1.41 2.00 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .269 .3414 .0160 .00 1.02 1.86 .46 .013 .00 .00 PIPE I I I I I I I I I 236.997 227.922 1.061 228.983 15.30 9.03 1.27 230.25 .00 1.41 2.00 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .223 .3414 .0141 .00 1.06 1.73 .46 .013 .00 .00 PIPE I I I I I I I I I 237.220 227.999 1.103 229.102 15.30 8.61 1.15 230.25 .00 1.41 1.99 2.000 .000 .00 1 .0 -1--1--1--1--1--1-~I--1--1--1--1--1--I-I- .184 .3414 .0124 .00 1.10 1.61 .46 .013 .00 .00 PIPE I I I I I I I I . I 237.404 228.061 1.147 229.209 15.30 8.21 1.05 230.25 .00 1.41 1.98 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .149 .3414 .0110 .00 1.15 1.49 .46 .013 .00 .00 PIPE I I I I I I I I I 237.553 228.112 1.193 229.305 15.30 7.83 .95 230.26 .00 1.41 1.96 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .113 .3414 .0097 .00 1.19 1.38 .46 .013 .00 .00 PIPE I I I I I I I I I 237.666 228.151 1.242 229.393 15.30 7.46 .86 230.26 .00 1.41 1.94 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .080 .3414 .0086 .00 1.24 1.28 .46 .013 .00 .00 PIPE I I I I I I I I I 237.746 228.178 1.294 229.472 15.30 7.11 .79 230.26 .00 1.41 1.91 2.000 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .049 .3414 .0076 .00 1.29 1.18 .46 .013 .00 .00 PIPE ---.-- - ------ - - -- - FILE: SYSTEM400.WSW W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 PAGE 5 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 400 Date: 7-29-2008 Time: 2:48:12 ************************************************************************************************************************** ******** I Invert I Station I Elev I -1--1- L/Elem ICh Slope I Depth I Water (FT) I Elev -I- I I I -I- I Q (CFS) I Vel Vel I (FPS) Head I -1--1--I- I SF Ave I Energy I Super I Critical I Flow ToplHeight/IBase Wtl Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I -1--1--1--1--1--1- HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I INo Wth ZL IPrs/Pip -I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I I I I I I 237.795 -1- .015 I 237.810 -1- 228.195 1.349 229.544 15.30 6.78 .71 230.26 .00 1.41 1.87 2.000 .000 .00 1 .0 -1--1--L--1--1--1--1--1--1--1--1--1-1- .3414 .0068 .00 1.35 1.09 .46 .0l3 .00 .00 PIPE I I I I I I I 228.200 1.410 229.610 15.30 6.46 .65 230.26 .00 1.41 1.82 2.000 .000 -1--1--1--1--1--1--1--1--1--1--1--1- .00 1 .0 1- -- -- ---- - -- -- - - ------ FILE: SYSTEM400.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 2:48:10 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 2.000 W S P G W PAGE NO 1 WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM. ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM 400 W S P G W PAGE NO 2 WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT W S ELEV 118.000 199.130 1 119.130 ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 167.000 205.060 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 171.000 205.390 1 0 0 .013 .000 .000 .000 .000 .000 .000 RADIUS ANGLE .000 .000 ELEMENT NO 4 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 237.810 228.200 1 .013 .000 .000 .000 0 ELEMENT NO 5 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 237.810 228.200 1 228.200 I IV PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY PROJECT ~p'?-~IQ=~8:::::..:8===--_____ _ SUBJECT fj¥L-/rv!. ~@G. Y f;15S1 fATloN PAGE: __ OF JOB NO.: 3>3>3D I I I I I I I I I I I I I I I I I WWW.PROJECTDESIGN.COM DRAWN BY : DATE: 7!7A('og CHECKED BY: ___ DATE: ____ _ Sj,,-/tm 500 Ouf.;;t( Ll?ae6'oYt (DtAGrlJ of [JJ~&w:Jt-V7 / ~lew/ld/tA. basil'1.) Ne Coyner-) /~aof ~tft5/11 j).t5~1'\. 'j)::: fe" -::;;. /'5/ ) tP:: I. ~_ cf5 S.Jep / ) lh: 12.5 fF5 (~W5P~ ) Sys~ li?oo) 11-:: &/110 :::: /. &;/11. S-=-o :\2.9 ~ 1- / 'It I", "lll-J":: cA/z.) ~ ~172f 'L-) ::: 6.25 ::: ~Ju/vt:V/e4 clt.j>..fh 0.( (low ~-kY!'J d1$sfp:d--o;-- slet ;2) CtnnfJute-;:;. rf ~r d t/4J t?/ ftr) f/-0 ;;. :::. ~:: \tS _ :;; Lj.tf j~~ ~ l~o -:= je -r :if> "2-:::: 6.15 -I-~:: 2.~7 :J z{ -; 1.:!t) SIej "3) ~-lermt~ JI,,/W~ ~ hJ"'y-e 1,/11. CaJc;uWe. ~d. w/dftt. 0.(' b45'J,...) WE> V6 :;:;. Ito • ::: 11-;;: ? 7$ I Yo! W~ 0,72 Per--7<SJ/ ~-Lfl} We,::' 5:5/ 1 I 1 I I' 230 1 1 1 1 1 21 214.5 x IL-~--~~~~~--~~~~ I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. .0 V co ~ ::c L .0 V V / .0 '/ ? /" 1 V V ~.o 2.0 i:1 3.0 4.0 1.0 8.0 $.0 Figure 9.14. Design Curve for USBR Type VI Impact Basin Once the basin width, Ws, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of Ws to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (N2) 1/2, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 I I I I I I I I I I I I I I I I I I I II. o 90 80 ..".-/ / /'" v ./ ~IMPACT / V / V BASINV' £ // I HYDRAULIC JUMP-I / ~ HORIZONTAL FLOOR 30 20 10 1.0 2.0 3.0 4.0 4!1' 5.0 6.0 7.0 Fr = Vof(gYe)1/2 Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present: Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance velocities as high as 15.2 mls (50 ftls). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USSR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 -- - - FILE: SYSTEM500.WSW -- --- - - W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 500 - ----- PAGE 1 Date: 7-24-2008 Time:11:26: 1 ************************************************************************************************************************** ******** I Invert Station I Elev -1--1- L/Elem ICh Slope I Depth I Water I (FT) I Elev I -1--I- I I Q (CFS) I Vel Vel I (FPS) Head I -1--1--I- I SF Ave I Energy I Super I Critical I Flow ToplHeight/IBase wtl Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I -1--1--1--1--1--1- HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I INo Wth ZL IPrs/Pip -I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I 115.330 218.630 -1--1- .873 .0100 I 116.203 -1- 1.090 I 117.292 -1- 1.038 I 118.330 -1- 36.062 I 154.392 -1- 14.714 I 169.106 -1- 8.258 I 177.364 -1- 3.686 I 181.050 -1- 2.312 I 183.362 -1- 1. 650 I 218.639 -1- .0100 I 218.650 -1- .0100 I 218.660 -1- .2973 I 229.380 -1- .2973 I 233.754 -1- .2973 I 236.208 -1- .2973 I 237.304 -1- .2973 I 237.992 -1- .2973 I I .188 218.818 -1--1- I .183 -I- I .178 -I- I .172 -1- I .172 -I- I .174 -I- I .180 -I- I .186 -I- I .192 -1- I 218.822 -I- I 218.828 -I- I 218.832 -I- I 229.552 -1- I 233.928 -I- I 236.389 -I- I 237.490 -I- I 238.184 -1- I I 1.60 §? 2.43 -1--1--1- I 1. 60 -1- I 1. 60 -1- I 1. 60 -1- I 1. 60 -I- I 1. 60 -I- I 1. 60 -I- I 1. 60 -I- I 1. 60 -1- 12.91 -1- 13.54 -'1- 14.20 -1- 14.20 -1- 13.95 -1- 13.30' -1- 12.68 -.1- 12.09 -1- .2164 I 2.59 -1- .2428 I 2.84 -1- .2786 I 3.13 -1- .2975 I 3.13 -1- .2901 I 3.02 -1- .2647 I 2.75 -1- .2311 I 2.50 -1- .2017 I 2.27 -1- .1759 221.25 -1- .19 221. 41 -1- .26 221.67 -1- .29 221. 96 -1- 10.73 232.68 -1- 4.27 236.95 -1- 2.19 239.14 -1- .85 239.99 -1- .47 240.45 -1- .29 .00 -1- .19 I .00 -1- .18 I .00 -1- .18 I .00 -1- .17 I .00 -1- .17 I .00 -1- .17 I .00 -1- .18 I .00 -1- .19 I .00 -1- .19 .48 -1- 6.14 .48 -1- 6.40 .48 -1- 6.83 .48 -1- 7.29 .48 -1- 7.29 .48 -1- 7.11 .48 -1- 6.67 .48 -1- 6.26 .48 -1- 5.86 .99 .40 .98 .40 .97 .40 .96 .17 .96 .17 .96 .17 .98 .17 .99 .17 1.00 .17 1.500 -1--1- .013 1.500 -1--1- .0l3 1.500 -1--1- .0l3 1.500 -1--1- .0l3 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 , I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE - - --- ---- - --- -- - --- -- FILE: SYSTEM500.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:ll:26: 1 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 500 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I 185.013 238.482 .198 238.680 1. 60 11.53 2.06 240.74 .00 .48 1.02 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.256 .2973 .1535 .19 .20 5.50 .17 .013 .00 .00 PIPE I I I I I I I I I 186.269 238.856 .205 239.061 1. 60 10.99 1. 88 240.94 .00 .48 1. 03 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.003 .2973 .1341 .13 .21 5.15 .17 .013 .00 .00 PIPE I I I I I I I I I 187.271 239.154 .212 239.366 1. 60 10.48 1.71 241. 07 .00 .48 1.05 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .822 .2973 .1171 .10 .21 4.83 .17 .013 .00 .00 PIPE I I I I I I I I I 188.093 239.398 .219 239.617 . 1. 60 9.99 1.55 241.17 .00 .48 1.06 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--1-· I- .687 .2973 .1022 .07 .22 4.53 .17 .013 .00 .00 PIPE I I I I I I I I I 188.780 239.602 .226 239.828 1. 60 9.53 1. 41 241.24 .00 .48 1.07 1.500 .000 .00 1 :0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .577 .2973 .0892 .05 .23 4.24 .17 .013 .00 .00 PIPE I I I I I I I I I 189.357 239.774 .234 240.008 1.60 9.08 1.28 241.29 .00 .48 1.09 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .495 .2973 .0780 .04 .23 3.98 .17 .013 .00 .00 PIPE I I I I I I I I I 189.852 239.921 .242 240.163 1. 60 8.66 1.16 241.33 .00 .48 1.10 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .427 .2973 .0681 .03 .24 3.73 .17 .013 .00 .00 PIPE I I I I I I I I I 190.279 240.048 .250 240.298 1.60 8.26 1.06 241.36 .00 .48 1.12 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--1-. 1- .371 .2973 .0594 .02 .25 3.50 .17 .013 .00 .00 PIPE I I I I I I I I I 190.650 240.158 .258 240.416 1. 60 7.87 .96 241.38 .00 .48 1.13 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .320 .2973 .0519 .02 .26 3.28 .17 .013 .00 .00 PIPE -- --- - - - - - - - - ---- -- FILE: SYSTEM500.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:11:26: 1 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 500 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICritica11Flow ToplHeight/IBase wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El. I Elev I Depth I Width IDia.-FTlor I.D. I ZL IPrs/pip -1--1- -1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I liN" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I I I I I I 190.970 240.253 .267 240.520 1. 60 7.51 .88 241.40 .00 .48 1.15 1.500 .000 .00 1 .0 -1--1--1- -1--1--1--1--1--1--1--1--1--I-I- .280 .2973 .0454 .01 .27 3.07 .17 .0l3 .00 .00 PIPE I I I I I I I I I 191.250 240.336 .276 240.612 1.60 7.16 .80 241. 41 .00 .48 1.16 1.500 .000 .00 1 .0 -1--1--1- -1--1--1--1--1--1- -1- -1--1--I-I- .246 .2973 .0396 .01 .28 2.88 .17 .0l3 .00 .00 PIPE I I I I I I I I I 191.496 240.409 .285 240.695 1. 60 6.82 .72 241.42 .00 .48 1.18 1.500 .000 .00 1 .0 -1--1--1--1--1--1- -1--1--1- -1- -1--1--I-I- .212 .2973 .0346 .01 .29 2.70 .17 .0l3 .00 .00 PIPE I I I I I I I I I 191.708 240.473 .295 240.768 1. 60 6.51 .66 241. 43 .00 .48 1.19 1. 500 .000 .00 1 .0 -1--1- -1--1--1--1- -1--1--1--1--1--1--I-I- .186 .2973 .0302 .01 .30 2.53 .17 .0l3 .00 .00 PIPE I I I I I I I I I 191.895 240.528 .305 240.833 1. 60 6.20 .60 241.43 .00 .48 1.21 1.500 .000 .00 .1 .0 -1--1--1- -1--1- -1--1--1--1--1--1- -1--I-I- .164 .2973 .0264 .00 .31 2.37 .17 .013 .00 .00 PIPE I I I I I I I I I 192.058 240.577 .315 240.892 1. 60 5.92 .54 241.44 .00 .48 1.22 1.500 .000 .00 1 .0 -1--1- -1--1--1- -1- -1--1--1--1--1--1--I-I- .140 .2973 .0231 .00 .32 2.22 .17 .013 .00 .00 PIPE I I I I I I I I I 192.199 240.618 .326 240.944 1. 60 5.64 .49 241. 44 .00 .48 1.24 1.500 .000 .00 1 .0 -1--1- -1- -1--1--1--1- -1--1--1--1- -1--I-I- .122 .2973 .0202 .00 .33 2.08 .17 .013 .00 .00 PIPE I I I I I I I I I 192.321 240.655 .337 240.992 1. 60 5.38 .45 241.44 .00 .48 1.25 1.500 .000 .00 1 .0 -1--1--i--i--1--1--1--1--i--1--i- -i--I-i- .107 .2973 .0176 .00 .34 1. 94 .17 .0l3 .00 .00 PIPE I I I I I I I I I 192.428 240.686 .348 241. 034 1. 60 5.l3 .41 241. 44 .00 .48 1.27 1.500 .000 .00 1 .0 -1- -1--1--1--1--1--1--1--1--1- -1--1--I-I- .089 .2973 .0154 .00 .35 1.82 .17 .0l3 .00 .00 PIPE ---- FILE: SYSTEM500.WSW -- - - -- - W S P G W -CIVILDESIGN Version 14.06 Program Package serial Number: 1355 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM. ENERGY DISSIPATION CALCS SYSTEM 500 -- ---- - PAGE 4 Date: 7-24-2008 Time:11:26: 1 ************************************************************************************************************************** ******** I Invert Station I E1ev -1--1- L/E1em ICh Slope I Depth I (FT) I -I- I Water E1ev I I -I- I Q (CFS) I Vel I (FPS) -1--I- Vel I Head I -1- I SF Ave I Energy I Super I Critical I Flow ToplHeight/IBase wtl Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I -1--1- -1--1--1--1- HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZL ZR INo Wth IPrs/pip -I IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I 192.517 240.713 -1- -1- .073 .2973 I 192.590 -1- .062 I 192.652 -1- .052 I 192.704 -1- .039 I 192.743 -1- .031 I 192.774 -1- .020 I 192.795 -1- .014 I 192.809 -1- .001 I 192.810 -1- I 240.735 -1- .2973 I 240.753 -1- .2973 I 240.768 -1- .2973 I 240.780 -1- .2973 I 240.789 -1- .2973 I 240.795 -1- .2973 I 240.800 -1- .2973 I 240.800 -1- I .360 -I- I .373 -I- I .386 -I- I .399 -I- I .413 -I- I .427 -I- I .442 -I- I .457 -I- I .475 -1- I 241. 073 -I- I 241.108 -I- I 241.139 -I- I 241.167 -I- I 241.193 -I- I 241.216 -1- I 241.238 -I- I 241.257 -I- I 241.275 -1- I 1. 60 -I- I 1. 60 -I- I 1.60 -I- I 1. 60 -I- I 1. 60 -I- I 1. 60 -I- I 1. 60 -I- I 1.60 -I- I 1.60 -1- 4.89 -1- 4.66 -1- 4.44 -1- 4.24 -1- 4.04 -1- 3.85 -1- 3.67 -1- 3.50 -1- 3.33 -1- .37 -1- .0135 I .34 -1- .0118 I .31 -1- .0103 I .28 -1- .0090 I .25 -1- .0079 I .23 -1- .0069 I .21 -1- .0060 I .19 -1- .0053 I .17 -1- 241. 44 -1- .00 241.45 -1- .00 241. 45 -1- .00 241. 45 -1- .00 241. 45 -1- .00 241. 45 -1- .00 241. 45 -1- .00 241.45 -1- .00 241.45 -1- .00 -I- .36 I .00 -1- .37 I .00 -1- .39 I .00 -1- .40 I .00 -1- .41 I .00 -1- .43 I .00 -1- .44 I .00 -1- .46 I .00 -1- .48 -I- I. 70 .48 -I- I. 60 .48 -1- 1.50 .48 -I- I. 40 .48 -1- 1.31 .48 -1- 1.23 .48 -I- LlS .48 -1- 1.07 .48 -1- 1.28 .17 1.30 .17 1. 31 .17 1.33 .17 1.34 .17 1.35 .17 1.37 .17 1.38 .17 1.40 1.500 -1--1- .013 1.500 -1- -1- .013 1. 500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- - --- -- - - ----- - - ---- - FILE: SYSTEMSOO.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-24-2008 Time:ll:2S:S9 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(I) Y(2) Y(3) Y(4) Y(S) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 I.S00 W S P G W PAGE NO 1 WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM. ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM SOO W S P G W PAGE NO 2 WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT . W S ELEV l1S.330 218.630 1 218.630 ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 118.330 218.660 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 192.810 240.800 1 .0l3 .000 .000 .000 0 ELEMENT NO 4 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 192.810 240.800 1 240.800 I I I I I I I I I I I I I 'I 'I 1 1 ) I~ PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY WWW.PROJECTDESIGN.COM Sy5>~ (Dco o~4.QJ L,~01t\.... \W'\f~ ~S:1o"\ 'P.e..Slj V\ 1/:::: \~ If ~ IS I I Q:: 5:',\ c-fs A ~ Qf.Jo -:.:. 5 1/13.0'\ ~ O:?,q ft .... PROJECT P~(\)~£25 SUBJECT ~L-IM. ~tvq;.§y 1:>fSOSJ?ATI'ON PAGE: OF __ JOB NO. : 33~O DRAWN BY: ____ DATE: _ '/Z1.!./-!-=..0-u-O __ CHECKED BY: DATE: ____ _ 'je.-::: CA/"7--)/z, ~ (rif?')'/z, ::; b\~'1 -:-4viv~f d.erfk of' t:lPw ~~ d.t$~{ft:Jrr ~~) ~wk ~ d" ~~j ~ ~ i ftpeJ ~ r.: "" S--=-\3>.ot'! ... ::;; 35 C' ~ J~ ~.2-) ( o.~l.j) 1.-...,a'Z 'e\o -::: ~t..r ~ =-o,tt~ -I-..0.v -\ ::.. ~. \ , z-(?> 1-:1-) 5!e.r 3} \>eJ-e'rvvd~ tlro/lJ..j~ ~M f;"6\}.~ 1·l~. G-l~l&\..-k 'V~f' I"OtAtk o~ {"-'l.S1r...,I liVE Wl;~ Ho __ ~ ::: ~.~ \-\o/Ws /.0 'P.w-'\<.St> 1>-4-1 ~ Wy, --;;... 5. S I S-kr I.\} 'Dt~ic>I/I.':> r "P-q\ ~!> SkfS) ~lV\.i..-...e. ~'i~ ~~~ J VIS \.\p ~ Q -r \j~"L ~ ~o (I -~ \ ~ \1~ ~ ~<> ) ~:: 651 p~ 'ft'~. 't .15 ",0 I:+a ::. SIt +-v~ -z.. _ 3 \ 1/ () 57) ('5!5){VS} --;;vi -.. (I - . . V~::. 8. 9_ ~5 -~ifv-<tf -PoHDWi~ t>-Lfl 5k~ld k ~2. bttd<.i~ I I I~~~~\ I ~H-4=4~ I I I I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissip~tor required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. 3,00 V 2.0 / V V ,/ V /' / /.0 1.0 ~.o 2.0 3.0 ? S 4.0 5.0 $.0 Fr = V J(gYe)l/t 7.0 8.0 Figure 9.14. Design Curve for USBR Type VI Impact Basin Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value ofWB to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2)1/2, entering the dissipator' from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 I I I I I I I I I I I I I I I I I I I i=' z 90 8 0 IIJ 70 ~ IIJ !h /60 ~51 >=' CI) 15 50 ffi 110 o ~ 40 30 20 f--IMPACT / BA,SIN~ I I ./ V V .-/' /' ./ V v / L.V HYDRAULIC JUMP=-- / ~ HORIZONTAL FLOOR / 10 1.0 2.0 3.0 J.'S 4.0 .5.0 6.0 7.0 Fr = Vof(gYe)1J2 Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin. for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USSR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 ---------- ---- -- - FILE: SYSTEM600.WSW W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 PAGE 1 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I 114.330 -1- 10.063 I 124.393 -1- 6.258 I 130.651 -1- 4.414 I 135.065 -1- 3.321 I 138.386 -1- 2.606 I 140.992 -1- 2.115 I 143.107 -I- I. 735 I 144.842 -1- 1.453 I 146.295 -1- 1.217 I 234.430 -1- .1061 I 235.497 -1- .1061 I 236.161 -1- .1061 I 236.629 -1- .1061 I 236.982 -1- .1061 I 237.258 -1- .1061 I 237.482 -1- .1061 I 237.666 -1- .1061 I 237.821 -1- .1061 I I .409 234.839 -1--1- I .422 -I- I .437 -I- I .452 -I- I .468 -1'- I .485 -1- I .502 -1- I .520 -1- I .. 538 -1- I 235.920 -I- I 236.598 -I- I 237.082 -I- I 237.450 -1- I 237.743 -1- I 237.985 -1- I 238.187 -1- I 238.359 -1- I I 5.10 § 2.66 -1--1--1- I 5.10 -1- I 5.10 -1- I 5.10 -1- I 5.10 -1- I 5.10 -1- I 5.10 -1- I 5.10 -1- I 5.10 -1- 12.47 -1- 11.89 -1- 11.34 -1- 10.81 -1- 10.31 -1- 9.83 -1- 9.37 -1- 8.94 -1- .0839 I 2.42 -1- .0734 I 2.20 -1- .0642 I 2.00 -1- .0562 I 1.82 -1- .0493 I 1.65 -1- .0432 I 1.50 -1- .0378 I 1.36 -1- .0331 I 1.24 -1- .0290 237.50 -1- .84 238.34 -1- .46 238.80 -1- .28 239.08 -1- .19 239.27 -1- .13 239.39 -1- .09 239.48 -1- .07 239.55 -1- .05 239.60 -1- .04 .00 -1- .41 I .00 -1- .42 I .00 -1- .44 I .00 -1- .45 I .00 -1- .47 I .00 -1- .49 I .00 -1- .50 I .00 -1- .52 I .00 -1- .54 .87 -1- 4.27 .87 -1- 3.99 .87 -1- 3.74 .87 -1- 3.50 .87 -1- 3.27 .87 -1- 3.06 .87 -1- 2.86 .87 -1- 2.68 .87 -1- 2.50 1.34 .39 1.35 .39 1.36 .39 1. 38 .39 1.39 .39 1.40 .39 1.42 .39 1.43 .39 1.44 .39 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE .0 .0 .0 .0 .0 .0 .0 .0 .0 -- ----- FILE: SYSTEM600.WSW ------ W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 - -- ---- PAGE 2 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3 ************************************************************************************************************************** ******** I Invert Station I Elev -1--1- Depth I (FT) I -I- I water Elev I I -I- Q (CFS) I Vel I (FPS) -1--I- I Vel I Head I -1- Energy I Super ICriticallFlow ToplHeight/IBase Wtl Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I -1--1--1--1--1--1- ZL INO Wth IPrs/Pip -I L/Elem ICh Slope I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X -Fall I ZR *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** I I I I I I I I I I 147.512 237.950 .557 238.507 5.10 8.52 1.13 239.63 .00 .87 1.45 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- 1.023 .1061 .0255 .03 .56 2.34 .39 .013 .00 .00 I I I I I I I I 148.535 238.058 .577 238.635 5.10 8.12 1.02 239.66 .00 .87 1.46 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .862 .1061 .0223 .02 .58 2.18 .39 .013 .00 .00 I I I I I I I I 149.397 238.150 .598 238.748 5.10 7.75 .93 239.68 .00 .87 1.47 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .725 .1061 .0196 .01 .60 2.04 .39 .013 .00.00 I I I I I I I I 150.122 238.227 .620 238.847 5.10 7.39 .85 239.69 .00 .87 1.48 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .608 .1061 .0172 .01 .62 1.90 .39 .013 .00 .00 I I I I I I I I 150.729 238.291 .643 238.934 5.10 7.04 .77 239.70 .00 .87 1.48 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .506 .1061 .0151 .01 .64 1.78 .39 .013 .00.00 I I I I I I I I 151.235 238.345 .667 239.012 5.10 6.71 .70 239.71 .00 .87 1.49 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .416 .1061 .0133 .01 .67 1.66 .39 .013 .00 .00 I I I I I I I I 151.652 238.389 .692 239.081 5.10 6.40 .64 239.72 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .348 .1061 .0117 .00 .69 1.55 .39 .013 .00 .00 I I I I I I I I 152.000 238.426 .717 239.143 5.10 6.10 .58 239.72 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .257 .1061 .0103 .00 .72 1.44 .39 .013 .00 .00 I I I I I I I 152.256 238.453 .745 -239.198 5.10 5.82 .53 239.72 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1---1--1--1--1--1- .204 .1061 .0091 .00 .75 1.34 .39 .013 .00 .00 IType Ch 1******* I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE - - -- - --- -------- ---- FILE: SYSTEM600.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth Station I E1ev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 E1ev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I 1 1 I I I 152.461 238.475 .773 239.248 5.10 5.55 .48 239.73 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .137 .1061 .0080 .00 .77 1.25 .39 .013 .00 .00 PIPE 1 1 I 1 I 1 I I I 152.598 238.489 .803 239.292 5.10 5.29 .43 239.73 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .076 .1061 .0070 .00 .80 1.16 .39 .013 .00 .00 PIPE I I I I I I I I I 152.674 238.497 .835 239.332 5.10 5.04 .40 239.73 .00 .87 1.49 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .026 .1061 .0062 .00 .84 1.08 .39 .013 .00 .00 PIPE I I I I I I I I I 152.700 238.500 .869 239.369 5.10 4.80 .36 239.73 .00 .87 1. 48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- ----- --- --------- FILE: SYSTEM600.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 3:23:51 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 1.500 W S P G W WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3 W S P G W WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO ELEMENT NO ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION 114.330 * INVERT 234.430 * SECT 1 * 2 IS A REACH U/S DATA STATION INVERT SECT 152.700 238.500 1 * * 3 IS A SYSTEM HEADWORKS * U/S DATA STATION INVERT SECT 152.700 238.500 1 N .013 PAGE NO 1 PAGE NO 2 W S ELEV 234.430 RADIUS ANGLE ANG PT MAN H .000 .000 .000 0 * W S ELEV 246.000 -- I I I I I I I I I I I I I I I I I I I ,~ PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY WWW.PROJECTDESIGN.COM PROJECT lSl2-I PG,E:5 SUBJECT ~IM. "EN~'1 D 1SS'lfATJ0N' PAGE: OF __ JOB NO.: 3~"bO DRAWN BY: ____ DATE: 7./2.1/06 CHECKED BY: DATE: ____ _ SyS1ewJ ~ 50 O~~ u,uCk9r\ ~ 6~ ~tl.S;V\, L,+ ~ ') lvYtfa.vl-'Btt-sJk.. ~~1'1.-- l)::;.\9 U -:;:: IS' Q::: 5,\ cA, Sky \) V" ~ 2o.o~ -Or $ (~M-l.Usr~) Sys-k-w.. 050) A ~ a/v~;;:; s, I /zo. 08 = D. '2.. 5" .p.('" je.:;:' [4/7--)/1.-::; (0.?--5/'2--)\1'2-""'" 0.3(, -::: e.rv"~~ d.etJI,.. o~ .p{ow %v~.~ ~"5Siftd-1Jor s~ 2-) Cmy~ rr <t ~y at &J. of-(If€-) WO F ... -:: \]<> :; u.06 ;::;. 5. '1 ~ ~"2.'2--)( o.~0 \\ _ v"z... ...,.,..., ..,z. \"\0 -Je.. -t ~ ~ D. 3C, -I-vv.Oo ::: 2-d -z..{ 32..7.) S~ ~) 'P.e,,~vv0~ lJ.o(W'6 ~ 1;tl\J..rt., 1.1~. ~ ~. W(J~, l'f 1oQ.$~".1 ~~ VJT;. ~ "-b ~. & -;-3. I \Jso/w~ --2.1 fur ~Si> 1;)-lfl) Wi?::: s.S/" "'9i~()VI.S pe-r 1:>-'1\ ~S"D \.l~.n'\l\~~ ~~~ YeAOCA.'1) VC!, U~ -::=....B---t' \I: _ II (\ _ t-\I,.\ w'Ov~ 2j" rIo ~J 'I1-~ 0.-7/ ~ h~ i.\? \-\-0 Utl ~ (~)\" + ~ ::; r,.(p 1/-0 .7/\ c?5 V\Z! fpl(.'1 ( I '/ VB -.:: ID.~ ftS~ ~..ir~ tolloWi~ '0-'1 \ s~owlb \".e.. I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. :< ./ 2.0 1.0 l/ / V 2.0 3.0 v V V L 4.0 5.0 s~ $J) Fr = V J(gye) 1/2 7.0 Figure 9.14. Design Curve for USBR Type VI Impact Basin 8.0 Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry in the table to determine the other dimensions. Interpolation is"not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 I I I I I I I I I I I I I I I I I I I 9 0 80 ~71 / V /' ./ w 70 ~ W e:. V V f---IMPAY/ ,/ 30 20 10 1.0 BASIN-z- / I 2.0 3.0 / LRAULIC.' MP- / :.-;:> HORIZONTAL FLOOR 7.0 4.0 5.0 5 q 6.0 Fr = Vol(gYe)1/2 • Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent, degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fels) and entrance velocities as high as 15.2 mls (50 ftls). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USBR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 -- - - FILE: SYSTEM650.WSW - --- - - - W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 650, LOT 3 - - - --- PAGE 1 Date: 7-29-2008 Time: 3:44:12 ************************************************************************************************************************** ******** I Invert Station I Elev -1--1- L/E1em ICh Slope I Depth I (FT) I -I- I Water Elev I I -I- I Q (CFS) I Vel I (FPS) -1--I- Vel I Head I -1- I SF Ave I Energy I Super I Critical I Flow ToplHeight/IBase wtl Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I -1--1--1--1--1--1- HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZL ZR INo Wth I Prs/Pip -I *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** IType Ch 1******* I 114.330 -1- 4.720 I 119.050 -1- 29.588 I 148.638 -1- 9.364 I 158.002 -1- 5.392 I 163.394 -1- 3.711 I 167.105 -1- 2.787 I 169.892 -1- 2.180 I 172.072 -1- 1.777 I 173.849 -1- 1.470 I 217.460 -1- .2995 I 218.874 -1- .2995 I 227.736 -1- .2995 I 230.540 -1- .2995 I 232.155 -1- .2995 I 233.267 -1- .2995 I 234.101 -1- .2995 I 234.754 -1- .2995 I 235.287 -1- .2995 I I .302 217.762 -1--1- I .302 -I- I .312 -I- I .322 -I- I .333 -1- I .345 -I- I .356 -I- I .369 -1- I .381 -1- I 219.176 -I- I 228.048 -I- I 230.863 -I- I 232.488 -1- I 233.612 -I- I 234.457 -I- I 235.124 -1- I 235.668 -1- I 5.10 ~ -1--I- I 5.10 20.08 -1--I- I 5.10 19.16 -1--I- I 5.10 18.26 -1--I- I 5.10 17.41 -1--I- I 5.10 16.60 -1--I- I 5.10 15.83 -1--I- I 5.10 15.09 -1--I- I 5.10 14.39 -1--1- I 6.26 -1- .2995 I 6.26 -1- .2807 I 5.70 -1- .2453 I 5.18 -1- .2142 I 4.71 -1- .1874 I 4.28 -1- .1638 I 3.89 -1- .1432 I 3.54 -1- .1253 I 3.22 -1- .1095 224.03 -1- 1.41 225.44 -1- 8.31 233.75 -1- 2.30 236.04 -1- 1.16 237.20 -1- .70 237.89 -1- .46 238.35 -1- .31 238.66 -1- .22 238.88 -1- .16 .00 -1- .30 I .00 -1- .30 I .00 -1- .31 I .00 -1- .32 I .00 -1- .33 I .00 -1- .35 I .00 -1- .36 I .00 -1- .37 I .00 -1- .38 .87 -1- 7.70 .87 -1- 7.70 .87 -1- 7.22 .87 -1- 6.76 .87 -1- 6.33 .87 -1- 5.93 .87 -1- 5.55 .87 -1- 5.20 .87 -1- 4.87 1.20 .30 1.20 .30 1.22 .30 1.23 .30 1.25 .30 1.26 .30 1.28 .30 1.29 .30 1.31 .30 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1.500 -1--1- .013 1. 500 -1--1- .013 1.500 -1--1- .013 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 I .000 -1- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE I 1 .0 1- PIPE -- - -- -- -- - -- ---- ----- FILE: SYSTEM650.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 650, LOT 3 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uNn I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I 175.319 235.727 .394 236.121 5.10 13.72 2.92 239.04 .00 .87 1.32 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.236 .2995 .0958 .12 .39 4.56 .30 .013 .00 .00 PIPE I I I I I I I I I 176.555 236.097 .408 236.505 5.10 13.08 2.66 239.16 .00 .87 1.34 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.055 .2995 .0838 .09 .41 4.27 .30 .013 .00 .00 PIPE I I I I I I I I I 177.611 236.413 .422 236.835 5.10 12.47 2.42 239.25 .00 .87 1.35 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .905 .2995 .0734 .07 .42 3.99 .30 .013 .00 .00 PIPE I I I I I I I I I 178.516 236.684 .437 237.121 5.10 11.89 2.20 239.32 .00 .87 1. 36 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .785 .2995 .0642 .05 .44 3.74 .30 .013 .00 .00 PIPE I I I I I I I I I 179.301 236.919 .452 237.372 5.10 11.34 2.00 239.37 .00 .87 1.38 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .680 .2995 .0562 .04 .45 3.50 .30 .013 .00 .00 PIPE I I I I I I I I I 179.981 237.123 .468 237.591 5.10 10.81 1.82 239.41 .00 .87 1.39 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .592 .2995 .0493 .03 .47 3.27 .30 .013 .00 .00 PIPE I I I I I I I I I 180.573 237.300 .485 237.786 5.10 10.31 1.65 239.44 .00 .87 1.40 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .519 .2995 .0432 .02 .49 3.06 .30 .013 .00 .00 PIPE I I I I I I I I I 181.092 237.456 .502 237.958 5.10 9.83 1.50 239.46 .00 .87 1.42 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .452 .2995 .0378 .02 .50 2.86 .30 .013 .00 .00 PIPE I I I I I I I I I 181.544 237.591 .520 238.111 5.10 9.37 1.36 239.48 .00 .87 1.43 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .398 .2995 .0331 .01 .52 2.68 .30 .013 .00 .00 PIPE -- - --- --- - - -- - ---- - FILE: SYSTEM650.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 650, LOT 3 ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I E1ev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I I I 181. 942 237.711 .538 238.249 5.10 8.94 1.24 239.49 .00 .87 1. 44 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .347 .2995 .0290 .01 .54 2.50 .30 .013 .00 .00 PIPE I I I I I I I I 182.289 237.814 .557 238.371 5.10 8.52 1.13 239.50 .00 .87 1.45 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .301 .2995 .0255 .01 .56 2.34 .30 .013 .00 .00 PIPE I I I I I I I I I 182.590 237.905 .577 238.482 5.10 8.12 1.02 239.51 .00 .87 1.46 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .260 .2995 .0223 .01 .58 2.18 .30 .013 .00 .00 PIPE I I I I I I I I I 182.850 237.982 .598 238.581 5.10 7.75 .93 239.51 .00 .87 1.47 1.500 .000 .00 1 .0 -1--1--1"--1--1--1--1--1--1--1--1--1--I-I- .224 .2995 .0196 .00 .60 2.04 .30 .013 .00 .00 PIPE I I I I I I I I I 183.074 238.050 .620 238.670 5.10 7.39 .85 239.52 .00 .87 1.48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .191 .2995 .0172 .00 .62 1.90 .30 .013 .00 .00 PIPE I I I I I I I I I 183.265 238.107 .643 238.750 5.10 7.04 .77 239.52 .00 .87 1.48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .162 .2995 .0151 .00 .64 1.78 .30 .013 .00 .00 PIPE I I I I I I I I I 183.427 238.155 .667 238.822 5.10 6.71 .70 239.52 .00 .87 1.49 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .135 .2995 .0133 .00 .67 1.66 .30 .013 .00 .00 PIPE I I I I I I I I I 183.562 238.196 .692 238.888 5.10 6.40 .64 239.52 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .114 .2995 .0117 .00 .69 1.55 .30 .013 .00 .00 PIPE I I I I I I I I I 183.676 238.230 .717 238.947 5.10 6.10 .58 239.53 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .085 .2995 .0103 .00 .72 1.44 .30 .013 .00 .00 PIPE - - - - - FILE: SYSTEM650.wSW - -- - - - - W S P G W -CIVILDESIGN Version 14.06 Program Package Serial Number: 1355 - -- -- PAGE 4 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 650, LOT 3 ************************************************************************************************************************** ******** I Invert Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl Station I E1ev (FT) I E1ev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL INo Wth IPrs/pip -1--1- -1- -1--1--1- -1--1--1--1--1--1--1--I L/E1em ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** I I I I I I I I I I I I 183.761 238.255 .745 239.000 5.10 5.82 .53 239.53 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .068 .2995 .0091 .00 .75 1.34 .30 .013 .00 .00 I I I I I I I 183.829 238.276 .773 239.049 5.10 5.55 .48 239.53 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .046 .2995 .0080 .00 .77 1.25 .30 .013 .00 .00 I I I I I I I I 183.875 238.290 .803 239.093 5.10 5.29 .43 239.53 .00 .87 1.50 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .026 .2995 .0070 .00 .80 1.16 .30 .013 .00 .00 I I I I I I I I 183.901 238.297 .835 239.132 5.10 5.04 .40 239.53 .00 .87 1.49 1.500 .000 .00 -1--1--1--1--1--1--1--1--1--1--1--1--1- .009 .2995 .0062 .00 .84 1.08 .30 .013 .00 .00 I I I I I I I I 183.910 238.300 .869 239.169 5.10 4.80 .36 239.53 .00 .87 1.48 1.500 .000 .00 -1- -1- -1--1--1--1--1--1--1--1--1--1--1- IType Ch 1******* I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- PIPE I 1 1- .0 .0 .0 .0 .0 -- - - - - - ---- - - -- - -- - FILE: SYSTEM650.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 3:44:11 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 1.500 W S P G W WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM 650, LOT 3 W S P G W WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO ELEMENT NO ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION 114.330 * INVERT 217.460 * SECT 1 * 2 IS A REACH U/S DATA STATION INVERT SECT 183.910 238.300 1 * * 3 IS A SYSTEM HEADWORKS * U/S DATA STATION INVERT SECT 183.910 238.300 1 N .0l3 PAGE NO 1 PAGE NO 2 W S ELEV 217.460 RADIUS ANGLE ANG PT MAN H .000 .000 .000 0 * W S ELEV 238.300 -- I I I I I I I I I I I I I I I I I I I ,~ PROJECT DESIGN CONSULTANTS PLANNING I LANDSCAPE ARCHITECTURE ENVIRONMENTAL I ENGINEERING I SURVEY WWW.PROJECTDESIGN.COM Sy~ qOD ().N+~ Lo~~ \VVl.pll-M ~5~\-oo l>eo~1I\. p-:; [0 /' ::: loS' } Q-:;; 5:1 cfs PROJECT ~(2.-tD G\'~S SUBJECT ~ELIM' ~'i "P\SSlf·,trnoN PAGE: OF __ JOB NO.: 3"3:50 DRAWN BY: ___ DATE: "b.Plb'S CHECKED BY: DATE: ____ _ S'+fr () Vo:: \q /1/ -q-s (~\VSf'~ ) SY6~ <tOO) Step z.) CO\M.fVv4e Fr..r ~'1 o.--\-~ " r~ ~ -' \.tQ Fr ::: ~ _ \or .97 ::::-5.9 Jjje -J('72.Z-)(O:~I) 5+€f~) 1I~W1;V\JV W"/W~ -h-oM jt;"8we Cf.I'1. Calcu{~k Jri1i Wt'ift-. df biD:T\) W~ WI):=: ~::: iJ--:: 3. J \\o/VJy, Z II p u-?-S'i) \)-1.{ \) w; -=: S.C; J '.Dl~~~ ~ P-Lf I gsp ~M,r-e--~;1--.J~~ > v"$ ~~ ~ +L ~ Wo(,-~) ~\J~ ~ ~h ~ '= 0.-1\ fC4" ~'~ q, V5 \~o ~ ~ @ ~)\1 ~ 'ole'" '" G.C.(I-O.7f) $. eo ~L{.'1 V~ ~ /f).q fp ....;> 'j!..''f~ ~[{eW;~ 1/-LfI slowld be J/~ f<x..t-• :~)<~~~~07~~~S771~~~~~~~~S~~4~OO~­ I I I I I I I I s / - - / / / / I 1~~~lU~1U~~liil I I I I I I I I I I I I I I I I I I I shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible. v V / / / /" V 1.0 ~.o ~.O 4.0 SJ.I S~ $.0 8.0 $.0 Fr = V j(gye) 1/2 Figure 9.14. Design Curve for USBR Type VI Impact Basin Once the basin width, WB, has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary. In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2)1f2, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section. The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR Type VI impact basin shows a greater capacity for dissipating energy. 9-36 I I I I I I I I I I I I I I I I I I I 9 0 80 ~71 III 70 ~ III e:. :/ 60 -:. = ~ CI) iii 50 Z J,U 110 o B~SIN-z-... . _'MPACi?"/ :& 40 9 30 20 10 1.0 J / 2.0 ,/ V V /' V '/ '/ V ~RAULIC. MP- / :.-;> HORI:Z:ONTAL fLOOk 7.0 4.0 5.0 5f\ 6.0 Fr:: Vof(gYe)1/2 Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent. degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil. For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10. The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance , velocities as high as 15.2 mls (50 fils). Therefore, use of the basin is limited to installc;:ltions within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USSR Type VI is not recommended where debris or ice buildup may cause substantial clogging. 9-39 -- -- -- --- - - ---- --- - FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 900, NEAR BRIDGE ************************************************************************************************************************** ******** I Invert Depth I water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I Elev (FT) I Elev I (CFS) I (FPS) Head I Grd.El. I Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I 114.330 196.380 .303 196.683 5.10 ~ 6.19 202.88 .00 .87 1.20 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 47.350 .2948 .2947 13.96 .30 7.64 .30 .013 .00 .00 PIPE I I I I I I I I I 161. 680 210.337 .303 210.640 5.10 19.97 6.19 216.83 .00 .87 1.20 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 29.625 .2948 .2783 8.25 .30 7.64 .30 .0l3 .00 .00 PIPE I I I I I I I I I 191. 305 219.069 .312 219.381 5.10 19.16 5.70 225.08 .00 .87 1.22 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 10.264 .2948 .2453 2.52 .31 7.22 .30 .0l3 .00 .00 PIPE I I I I I I I I I 201.569 222.094 .322 222.416 5.10 18.26 5.18 227.60 .00 .87 1.23 1.500 .000 .00 1 .0 -1--1--1--'1--1--1--1--1--1--1--1--1--I-I- 5.710 .2948 .2142 1.22 .32 6.76 .30 .0l3 .00 .00 PIPE I I I I I I I I I 207.280 223.778 .333 224.111 5.10 17.41 4.71 228.82 .00 .87 1.25 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 3.875 .2948 .1874 .73 .33 6.33 .30 .0l3 .00 .00 PIPE I I I I I I I I I 211.154 224.920 .345 225.265 5.10 16.60 4.28 229.55 .00 .87 1.26 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 2.888 .2948 .1638 .47 .35 5.93 .30 .0l3 .00 .00 PIPE I I I I I I I I I 214.042 225.771 .356 226.127 5.10 15.83 3.89 230.02 .00 .87 1.28 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1:--I-I- 2.249 .2948 .1432 .32 .36 5.55 .30 .0l3 .00 .00 PIPE I I I I I I I I I 216.291 226.434 .369 226.803 5.10 15.09 3.54 230.34 .00 .87 1.29 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.827 .2948 .1253 .23 .37 5.20 .30 .013 .00 .00 PIPE I I I I I I I I I 218.118 226.972 .381 227.353 5.10 14.39 3.22 230.57 .00 .87 1.31 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.508 .2948 .1095 .17 .38 4.87 .30 .0l3 .00 .00 PIPE --- - - - -- - ----- -- - -- FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 900, NEAR BRIDGE ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l E1ev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uN" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I 219.626 227.417 .394 227.811 5.10 13.72 2.92 230.73 .00 .87 1.32 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.266 .2948 .0958 .12 .39 4.56 .30 .0l3 .00 .00 PIPE I I I I I I I I I 220.891 227.790 .408 228.198 5.10 13.08 2.66 230.86 .00 .87 1.34 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- 1.079 .2948 .0838 .09 .41 4.27 .30 .0l3 .00 .00 PIPE I I I I I I I I I 221. 970 228.108 .422 228.530 5.10 12.47 2.42 230.95 .00 .87 1.35 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .924 .2948 .0734 .07 .42 3.99 .30 .0l3 .00 .00 PIPE I I I I I I I I I 222.895 228.380 .437 228.817 5.10 11.89 2.20 231. 01 .00 .87 1.36 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .801 .2948 .0642 .05 .44 3.74 .30 .013 .00 .00 PIPE I I I I I I I I I 223.696 228.616 .452 229.069 5.10 11.34 2.00 231.07 .00 .87 1.38 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .694 .2948 .0562 .04 .45 3.50 .30 .013 .00 .00 PIPE I I I I I I I I 224.390 228.821 .468 "229.289 5.10 10.81 1.82 231.10 .00 .87 1.39 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--I~ -1--1--I-I- .603 .2948 .0493 .03 .47 3.27 .30 .013 .00 .00 PIPE I I I I I I I I I 224.993 228.999 .485 229.484 5.10 10.31 1.65 231.13 .00 .87 1.40 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .529 .2948 .0432 .02 .49 3.06 .30 .013 .00 .00 PIPE I I I I I I I I I 225.522 229.155 .502 229.657 5.10 9.83 1.50 231.16 .00 .87 1.42 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .461 .2948 .0378 .02 .50 2.86 .30 .013 .00 .00 PIPE I I I I I I I I 1- 225.983 229.290 .520 229.811 5.10 9.37 1.36 231.17 .00 .87 1.43 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .405 .2948 .0331 .01 .52 2.68 .30 .013 .00 .00 PIPE - ---- --- ---- - - -- - -- FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 900, NEAR BRIDGE ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow TOP I Height/I Base Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uN" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I I I 226.388 229.410 .538 229.948 5.10 8.94 1.24 231.19 .00 .87 1. 44 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .353 .2948 .0290 .01 .54 2.50 .30 .013 .00 .00 PIPE I I I I I I I I I 226.74l 229.514 .557 230.071 5.10 8.52 1.13 231.20 .00 .87 1. 45 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .306 .2948 .0255 .01 .56 2.34 .30 .013 .00 .00 PIPE I I I I I I I I I 227.047 229.604 .577 230.181 5.10 8.12 1.02 231.21 .00 .87 1. 46 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .265 .2948 .0223 .01 .58 2.18 .30 .013 .00 .00 PIPE I I I I I I I I I 227.312 229.682 .598 230.280 5.10 7.75 .93 231.21 .00 .87 1.47 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .228 .2948 .0196 .00 .60 2.04 .30 .013 .00 .00 PIPE I I I I I I I I I 227.540 229.749 .620 230.369 5.10 7.39 .85 231.22 .00 .87 1.48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .195 .2948 .0172 .00 .62 1.90 .30 .013 .00 .00 PIPE I I I I I I I I I 227.734 229.807 .643 230.450 5.10 7.04 .77 231.22 .00 .87 1.48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .164 .2948 .0151 .00 .64 1.78 .30 .013 .00 .00 PIPE I I I I I I I I I 227.899 229.855 .667 230.522 5.10 6.71 .70 231.22 .00 .87 1.49 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .137 .2948 .0133 .00 .67 1. 66 .30 .013 .00 .00 PIPE I I I I I I I I I 228.036 229.896 .692 230.588 5.10 6.40 .64 231.22 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .116 .2948 .0117 .00 .69 1.55 .30 .013 .00 .00 PIPE I I I I I I I I I 228.152 229.930 .717 230.647 5.10 6.10 .58 231.23 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .086 .2948 .0103 .00 .72 1.44 .30 .013 .00 .00 PIPE - -- --- - - -- -- ---- - -- FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 4 Program Package Serial Number: 1355 WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57 3330 BRIDGES PRELIM ENERGY DISSIPATION CALCS SYSTEM 900, NEAR BRIDGE ************************************************************************************************************************** ******** I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I width IDia.-FTlor I.D.I ZL IPrs/Pip -1--1--1--1--1--1--1--1--1--1--1--1--1--I L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch *********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1******* I I I I I I 228.238 229.955 .745 230.700 5.10 5.82 .53 231.23 .00 .87 1.50 1. 500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .069 .2948 .0091 .00 .75 1.34 .30 .013 .00 .00 PIPE I I I I I I I I I 228.308 229.976 .773 230.749 5.10 5.55 .48 231.23 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .047 .2948 .0080 .00 .77 1.25 .30 .013 .00 .00 PIPE I I I I I I I I I 228.355 229.990 .803 230.793 5.10 5.29 .43 231.23 .00 .87 1.50 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .026 .2948 .0070 .00 .80 1.16 .30 .013 .00 .00 PIPE I I I I I I I I I 228.381 229.997 .835 230.832 5.10 5.04 .40 231.23 .00 .87 1.49 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- .009 .2948 .0062 .00 .84 1.08 .30 .013 .00 .00 PIPE I I I I I I I I I 228.390 230.000 .869 230.869 5.10 4.80 .36 231.23 .00 .87 1. 48 1.500 .000 .00 1 .0 -1--1--1--1--1--1--1--1--1--1--1--1--I-I- -- --- - - - - -- - - -- - - FILE: SYSTEM900.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 4:18:56 WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 1.500 W S P G W WATER SURFACE PROFILE -TITLE CARD LISTING HEADING LINE NO 1 IS - 3330 BRIDGES HEADING LINE NO 2 IS - PRELIM ENERGY DISSIPATION CALCS HEADING LINE NO 3 IS - SYSTEM 900, NEAR BRIDGE W S P G W WATER SURFACE PROFILE -ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT 114.330 196.380 1 ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT 228.390 230.000 1 ELEMENT NO 3 IS A SYSTEM HEADWORKS * U/S DATA STATION INVERT SECT 228.390 230.000 1 N .013 * W S ELEV 196.380 RADIUS .000 W S ELEV 230.000 ANGLE .000 PAGE NO 1 PAGE NO 2 ANG PT MAN H .000 0 -- 9 Ii I ~8 I :tJ 8 ~~ I f)J I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I APPENDIX 6 Storm Drain As-builts & Excerpts from Poinsettia Place Drainage Report I I I I I I I I I I I I I I I I I I I As-built Drawings (For Reference) 1 'I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I tllQ ~~ I ... ~ II) 179Jt1J!fJI11./.f(tIdII.b.M: LEI'I'" .. r '1l(l,l1l~1lQ COl\\/. ~>(: OP.~~M' ~~~r.~f."ob ~ P&D CONSULTANTS 401 WE5T A SlIIttT, SUiTt 2~ S,IrH DlECO, CA, 02101 (11S)232-un H·"f<} pATe UNTI-5.D'oIG 07112196 110 ••• 00 1310,4] 113".COR PLOT , 1'040' 45+00 46+00 44+~7 It ~\+!I INSTALL IZ" ,DErt.!C710N COUPLINGS ) IJ' 6.$' IX - Q,~6J.Jcrs /'00. 1/.2 I'PS 'C '--6" T'rPE A AC 8C1!M{CI! RSD G-$(BOTH SIDES Z' AC ON COMPMTFO FILL SEC770N IV AC SPILLWAY NO SCALE ENGINEER OF WORK ~ MANila c. NIETO 7.1$/1 EIIPIRES 0/1 6/JO""" If.c.c. J0714 /.!. ~ ,~ DArt: <> RECLAlMeJ) VA TeR J)A TA NO. DlLTAftClol!lNG MD/US LeNGTH RtAWtKS , .6 j4tJ9'{l,' IUOO.OO' 300.00' tr PVCCWS 00 2 J 40' 0' 40' eo' 120' ~ 3 GRAPHIC SCALE, ,-•• 0' BENCHMARK DESCRIPTION, LOCATION, RECORDS mOM, ELEVATION: OC-0170 DISC SET IN WE$! END HmWALl. or 24" R.C.P. D •• 4041LE EA$I or INTERSECTON or LA COSTA A'-1:. AND SAliONY ROAD COUNTY OF SAN DIEOO, DEPT. or PUBLIC WORKS, REPORT !MI10S-Ol,10/ls/es '3.87 DATV~: M. S. l.. 51+00 52+00 , ""', .. _. _._--------------, LENOTH I!~N$ 3<1ff.eo· eL. 1'00.00' 7I!J.0!!' aL D. VA TERiiArA 11'!,00' U,D,OO' LtNrlTH a4~;e-o' 11!!. P9' ;4'''.'1 ' I riO/ I!C/J.4RKS ''40 1.1" PYC CWS 'W 1.1" PIll ClASS IW 1,( CMWD 9.3-501 " "'~ !h::' ..... cr.' ~ ·1 I I I I I I I 1 I I I I I I I I ~ I I rl) \() il) r,l ::2; a.: (M:>7'A PAClT) .. IjO'CMW&> ."\ ~'-"":l. Lo-r .z ---------- *AVIARA* ·CARLSBAD . ·.TRACT NO.' 92-3 IMPROVEAfENT PLANS AVIARA ipHAISE III, UNIT·1 INDE:X MAP LEGEND 'IP'cP' . ' .. , . ~:--o ~ . I .j\~e-~~ : ~ tfJ.,.~;t ; -tb~ 1'I1"'~V .11 6 ) -; 9~.I\N t,-\.' fJft~(#I~Pl' ,,~ ~O.bPr:: Ii or) ~141\" f'~~~ R. OF' ~--:T7 ~-71 14m; / ! --~ ------ INDEX MAP s. 'X. :it:> ""I""'" "OWL. S. J 0774 Shoot Indox 1 2 3,8 9&10 11~/2' Title Nolos Siroot Pion & Prontes Siorm Droln & Sewor line A ST"lf:II"!IIO I'GIINS .!!-ltO _MI!t:>11II./ "'''IN.t: ~. 2} CACCIA IJ:MC> PLANe ~"'r NOTE: ~T:I SlIter ~. stJ/JOMS/ON tf()IINDAlfY "lrOPOS(t) STrNlM OIWN' sm«r UGHr WAIl!1f NlO ~IT VALIof' 1'.11. ASsrMIIL r Lpr NO. $J1/eET' lIMIt S/ON (xISTlNt; STORM OIWN ACCf:SS HOLt r:TOI':M t:>~IIIN I..INE ~. (CTATION ISH'2:!: TO 17f .. 6 ~) CI1(:Ml!NTtY ~;,,:~o;l~Ij~:~~~~t;t~~ TZ~C ::;AI~f!~~ f!t~~~:J 1i!c}M /)~/i1N 'AN 71:I!"'CH IS TO tiE (;)(JIVE IN IIceO!lt:>ilNct: JW17"11 RUCOMMENt:>1I710NC f'~l!mfl:EC> MY II ~1~GN~I!'f:) sOILl~ ENt:IIV(tEIt f':'tr::o~~6I1JNk~ ;;'~Yo::'e~~:~~N r:: :1f,~f'N:ee;II':o~t.r: I!NG/IoJtrl!i<! ANI> THI! CITY INrf'CC TloN PEf'II"TMI!'NT. fTIII' II'Cf',II11t.' wo~ 111010 ~n:oMM~lVo.<IrION" If) NOT "'I':r 0f',..1( CONt:IJL TANr.r "'-1111"7&. VICINJTY ;., :.S1M1!J)J. o ~ .... --=---.- ~" I '. 2 .,\ '. ... !:!!!!'I!l!I!S';f_ 0" I, JlAP , ~ fit .~, f. C T J 0 j\J .2.2 ·1 SCALE "a200' OECLARAnON OF RESPONSIBLE CHARGE LEGAL DESCRIPnON PORTIONS 01" SECTIONS :12 ANI) 17, TDWNSIIII' " SOUTlI. fIA~C ~ tl£3'r. !WI OI:flNARDIN(7 MCfIIOIlN, IN TIll: CITY or ~1/I.5/loW. r:ollNrr or SAN OItrIO, SrAIl' or CAUl'OlrN/.\ ACIXJIIOING TO 0I"f1I:/AL PlAT TIIl:flt:Of'. FL OF' S. 5fJ4 11. '0 F S. ),3 '76 .2 WOf/1( roR TIllS C//ARGt OW TIlt 6'0.1 or rile rill: Ot:Sf(;N IS WATERLINE CONSTRUCTION· ORDI!R Of WORK PHASe 1 ,Ilxlotlng 10"112' wolor llno '0' T •• k 1: Exl.llng wulot1lno SI.tlon 26'86: In,'oll \O"xl0-.0" no"god I •• W"" To.k 2: To.k 3: Blind nonO.' WOlt on4 .otllh. ExloUng wolollino SloIIO" 21+00.00: In.tollond cop block. Groda AmbroolD LAM nnd connlruct now 12" pvc WIJI@tIiM. MokO connoeUonl to o)CI§Ung IJn@ ot poml& In TMk 1 tlbov~. Exl.,lng WtmlltlOO St.tlon 20-00: 100,"" 12".10" roducol ond In"oll blind nong. on .".lIng 10" G.V. ( .-1'.-,... ........ ". • • "~ .• NO"",' ~ """ ""V' ........ ~ .... ,... '-"v" TII( '0' ML fMC ,'l'toN. "'''1IIle MAto' 511. .... " ... ItI/CIh:J .." • AoII> 2. •• .1 • cu/446 YHf'II t.4..w.s "'" f'AN'~. "--;;;t-., J'_" •..• /'~ ... NO CONSIJI.TANrS, INC. 40/ II't:sr A sTllm SIIIIT :1500 Ijti~ %Cf~2J~-:mJ ~ T .. k4' WahHlJM SIII\Jon 11+An,g .. : lnohtll and CAP block And DbDndol\lICmc .... o llno b@twl}~n abO .... o »13110n5. TMk G: SUHt grading OPOI6IJ0n8 ovot th@ nbovft Ott'lD ofwiltmilno PHASE 2 ' Conn.cllonolo •• ,.tlno 18" .t .. lond 12" p,c wo'orllno. T~Dk ': Ofod8 Ambrosio ond POlnfiQUI~ L~noli with lomponuy DloP08 MAr tho •• ,.tlng watolll ..... ,hown on CIIy Cwg. 351·5 .h.ol. G ond 7. r •• k 2: Con.truet Ih. now 30" & 18" .t •• llln ... nd ,h. 12" pvc moln,ln Amblo.'. 8nd Po' .. o"" Lin •• por CIIy Cwg 3M·5. rook 3. Took ~. Conn{lct to both 0)(16Uoo tln61 ft! tho north end of Ambro~h} LA"~ ~,"d Ih@ w •• t ond of PolnB.m.!..n., . Abondonillunov81he o)(lollng molnt ft. required bctwoon Ih@ 1II\:>(}I,Ift connoctlon polntl. HOTE: PItAS! 1 TO BE COMPL!TI!D B!fOIl! PH"!! 2. £NGIN££R OF WORK' J.fANl)Cl t. 1VIt.IV r.1(1'11I1:9 ON 6/JO/OO ~~\l'. JOi24.· ~. .". ENGINEER OF WORK (FOfI /1:; AND PROCUDINO t:1s INIrIAl.liD IN ~!VI310N BOX} ..!.!Iid!:z STfiVI!N C, /tI!TTLI!" R. C. I. ~83U DATt fiIrf'IHIISON,-$O-QO _~_ J ~i<'1Q(']..IMARK -------- c6M9v 'OAlt DESCRIM'lON: OC-O 170 DISC scr IN WEST tND or SOUTlf HCADWtIIJ. or 24-R.C.P. ASSESSORS PARCEL NUMBER IrS-O~O-II/,U.:l5 .+ :l1/J-080-:l~,2S CALIFORNIA COORDINATES N 331,000 E 1.605.000 • DE:VELOPER ~r p~'tf~c;t;~bi1r ~~T' PARTNt:1ISlI1P CAlll.SlIAO.CAJ.II'OIINVo,92()()9 (r~) 9.1/-/190 CARLSBAD MUNICIPAL WATER DJSTRII CITY OF CARLSBAD FIRE DEPARTMENT /lDDIl£) SHGGT""Z.I t; I/!/'I."tI!tJO Rt'OlJIlIGlPlrs, tJy Dlli1/t".,..tN NO 01" f'.ll.s._Lr n.owJi!P.PCI'M our or.LF.H.s" I ~ t;' ~'IF't ~ OLOG. SPItlNJ(UV 'frS-NO. I" n.OW ___ C.P.1oI. ........ 0. n" • W//J,IlM £ PLlJMMER (OiSr. EN(;//,) IlIIT ~ '8Md.. 1./:>tJ911 II.C.l'. ZlJ176 MIl(, SMIiii (nlU: MAlIS/tAl.) -riATC i--, . [~1ml i IMPROvtM~FJT PLANS I'OR: CARLSBAD TRACT 92-3 ~ :,&!, r:::..~:,!TA:::S !;AH DIr.CO, CA ~"O, (619) 232-.... ~ MANiJr.t l'. 1'111:70 4t~t: JOU4 • tlrl'IRt:S ON Q/J'O/~ O' 20p-i:--zd08' 800' f!S;eU I EZ!J ~~ GnAPHIC SCALE "=200' OArr LOc,t,TlON: D.4 MILt I:AST or nmRSECl10N or. LA COSTA Ave. .-NO $A)(ONY ROAD RECORDS rna!.!: cou»TY or SAN DIEGO, DEPT, or PUBLIC WORKS, REPORT·S\lOIOO-OI, IO/I~/HS CLtl'AlION: 13.87 DATUM: M. S. t.. • 7 or. ~ ~ IM-'-"~·. [III'. .~ _ ' _ CT 92-3-1 PHASE III ",UNIT I ~ -, • ~ ~ APP,_RQ.~D· u'Jl.'IllAJi llUllPS .1 --SCI: -'mD'41~C'IG'O ~Ht.!.:lJ.£..... -'dW "1~o-!'''';':,,: S· .. f·"! (). -• GO !l'I1.Al J!'L..... ' I Clll' &N«lN ~,R RCt 23009 [XPJ2-31-97 IiiiIT.' " I'" '/& 'D S. S .. '! I /, J,iI • ,~ I5Qt BY' Ii "DI"\II.""'''' Uf\ If,..OJ.lUU" ujiij'( DA1 WiinAI. DA'tt I At. DAn: IHIn"", : _""_u _ J ~U·VlSlntJ DI!'~t'!R:IP"ON .,,' •• h ... ____ ._h_..... I riLe, C,\1I3 •• W3UlIP1,WG CREATtD 12-20-9. IN tl3 •• ,OO 1310,.) 115/IIj:!r, 1.00 ,~.CMWO 93-50'1 , I ,II "l,1 _I ... -'v,.) ~1~ ....... ~ ... ~ , ~ ~ ~ I I I I I I I I I I I I I I I I I I I ~I ~ ~ ~ 51 !i! ~ ~~; l! ~~I~ I' i ..c;..... Ii ~ ~ a. ~ 2 :tSO-w z ifih III PROFILE: SEW R LINE II p:,' & STORM ORA N LINE. "p:,' a! ~ ~ I ~ ." 4Q'H7 , ""'.20+12.00 ELl ~I' ) ~. a: ~ . -"""'--.---i---' Ul It f ~ ml ~ ~ ~ I J U' ~~ ~ T ~r~ oIDOo"'i=QIF;~~ I ,,--.... _,-'L..! • ..-:JIJ.lllllit!2;,<W __ ,:.~<' :";;;;»'I~ . t"731 !I'I! 11t~ '~ . EO , go.s Tl:t.lP, BASIN ,Ie' . , FLOOR f PROF'ILE:STO M DRAIN A-I HORIZ. '" -20' VERT. 1·.&' c:ID d Ii! ~ ; ~ a P i lo ... ~ ,~ m '~19 l ~ 'l"'1l,U!:!!i ,i.IMI'M !2.B!!tUK' 8,4P'N24' Rep • 24.eo~ HOAIZ. 1'·4()' ~ Q ~:r~ ,~:;~' H~a_~~-1' 1'"L.ll!:J II'" --"'I ILrNrtA-2'1'" v o".~ :'0 ~§l'''. H-.'.Bei u ;"1 f1e~----l..--'IE!!T ,'.a' e . 1--1 . 170 ~'I' 1'1-11 ", .• . ~ !l88:M '&Is tlf/!I:,i~'l/" I· QI_,: en 0 S~I+I~R .DA TA I/O. oo.r. NO IWJ/VS /.DI(/TH iIDWI~S 1 $1"·51'08*1: '".00' 10' PVC : SI4""'0II*C :13. DO' 10' PVCj J SOl'rJ3'IO'e 10.11' 10' DIP 0/ N1I1'QI''''!: 10.46' 10' PVC 5 N;f7'J9'ifO'E 800,n' 10' PVC , H"" '40 '~'C 30l,n' 8' PVC ? 6 ''1'4''11' 100. D(J' N,?" 10' PVC P N-f"·J""D'~ H~_,_'O' 10'1'5 c:> STORM .DRAIN OA TA I/O. ot:/.TA/flliARlNO IW)IIJII LENOTH ~ , In'I"4g' B? 00' 94,:11' 60' RCP(lIiOo-Di •• 2 SI4""OI)'! 113,'" 60' IICP( 11i00-D). 3 SDt4·0,',,'C 10,00' ?iI' IICI'(l3110-D). 4 N4'rU'<lO'C 17B,~I' 60' RCP(l3S0-D). a $6"34'<11 'C 7"Dtf' 18' RCP(J3S0-D). ~ H4'1'U'40'C CDC,:/!' ,., RCNI31J0-D) 7 N41'J9'40'C 71,00' 54' IICP(J 31i0-D). e H41'30'4D't t3., 'C' 1S4' RCP(J31S0-D). P $64 'If' '43" 08.6" e.' RCP(J3110-D). 10 N~'43''S3't ., .,. /I., IICP(J31i0-D). •• Ref' f'lfCSSIH't!: I'm: (V"TC~ miNT .JOINTS) ••• 8' L.£NGTflS Vlrll HItNUr~rutrt:D CLIOItS , !tClt f'f!t£SSUfff: ",'" \ "+00.S0 TO 12+37,110 StVotR: CONST. 0I71.F 01' CONCRCTI: BACKFILl. PER RSO 5-8 12HD.12 SEYlER Rrlo/OVE EX. PLUG" CONNECT TO EXIST 10" PYC STUB IE IS1.42 ~~.Z(~~~ 0l1'l'Elfr Elliilif~\l'1\1 iolG'CI5I\~, B'(: I'iOf\.MAN ~,l<AWaUCI\I ReG ~\et'l Ii)(V. It,!>\·OQ .ilA'ffiL..G.1151 '!'} ~ :~, ;~~u.;:::!TS $All MOO, CAo 92101 (118)232-'''' UNlI-9.DIIG 01/1S196 11344,00 1310." 113H,COR PLOT • 1"'0' sa D~ JoII-SA roR • ~I J DerAIL or £~ LINE' ".I' <r;.(. I \iI, .... ~ ~~ il! I Accm It UnLIT"!' EAstN£Nr ~ • ~~~4G= ~r--~ . ~ LC:"~=~~"" ~ \ 6 tid?:=-= \ =-::;,, _~ j--¥-± f==-------~ ALL ~ THER ACCESS RD TO 'OLl.OW TOP 01' BASIN CONNECl1ON) ~ - 12+3D,OI TO 12+~a.~s so CONST, RIP-RAP CHANNEL 1.100 n~ D-1~ ~ -, -.. n. -....... _ ... -NNE!.: SOO 'l'I"W 31,&.' • ~ •• e2 ~ (sr.t DETAIL show , , .25W' 01' e HON BLACK "'N..':!. COAlt!) CHAIN LINK' FE CE PER CITY 01' NO I S' 1. - (I .00 RSO ~0t.l-1I2 \\ITH 2EA 20 \\IDE LOCI<INO OATES PCR RSO 1.1-6 S7?1~M P~I/IN /-INt! 'A' (3TAriO/J 11 .JZ I-Tl:I 17"'" es t) "tI/tRJ!H'~Y A'ru~ MrSl:~E)'s:'~~~1 ~A~~"?iA~K~W or UNED DITCH: REt.lOVE " 11M ~ROSIDN OAMAIJ/! WHIr.H IM~ Nor "UN It..ePAIRt:.P A7 rHe ~~T CITY Ul1LITY ESt.lT ' __ • 12'RCP \\1111 'U' T"IPE rII-Il!. OF r'11I$6' "'~-4'J/~r$. TN/!. /U.I'IfI.e ()~ 7?'I.e./MHA6ISP dn>~ 2~' C~-S~t'CDl1ONTO 9E AE"'SEO ~ HOI\!. PER RSO 0-36, DIIAIN 1)1/' r'1l6JJCH 1$ ~ 114 ~/vl! IN h(X.QItDIfAICc, WiT'''' • TW 10M5 ~/!.C.DMMI!ND"''7IQN~ I'Il,PI/ItED 8Y ... 'lal!N~"D 6DIL$ t!7WW/Ve'~.e ~~ -?,,1's:A-& /J~Nun .. NIUO 11. C... JO?24 DA rr E'XPlIIES ON 6/JO/OO .0' 0' .0' &0' 120' e e;;;; GRAPHIC SCAlE: '" •• 0' --I 0.0' 5,&' I D.O' I .tNt) IIFP/lDYIlO 4Y iN~ aifY i!"/'/()IAlC.:',e. Tflf!. PIe',,, /l1!l'1/1~S -, •• SWIM. ~r /:IONI!" IJNDI!./t.. rl/I!" OlH/!"II-Vlforlew 01' 19 ~CllHI5I!f) .sCI<.:J /!"NMNC~IZ ,fND rNr CITY 1/'/6P~rl()N T.;>LJPl/Mri'II!N r: rHI~ RI!P/lI.e /,)O/l~ liNt> lUa"MHt:/'IDII7/0N~ /~ /'/0.,. MAT 0":' ";1;) CQN.s,,~rlfN7'~ m ~-r--li i 9 L. r.1'IU{nc.r.f'lII'lU Ut.""I'l!1'M["rfl -~'I IMPROVEMENT PLANS I'OR: ~ ~~~~~iLl.~~"''S'~5"~~~ltD CUSHION FROIo! RIP-RAP. .16-SUMII, BENCHMAR ~I~-RAP CH~NNEl. PER R~~r-" ,",TH U? Tr '''@iiiijl''!,UiiiiI'F-F't. leD,oe ~;~~!·~Eb'3~N&'t.Ul:RI L t\LfoRJ. s~~&. DETAIL: RIP-RAP CHANNEL NO SCALE DESCRIPTION: LOCA110N: RECORDS P'lIOt.I: tl£VATION: OC-OI1Q DISC stT IN WEST END 0, SOlfTH HEAOWAU. 01" 2~' R.C.P. 0,4 MILE EAST 01' INTl:ASEcnON or v. COSTA AYE. AND SAXON'!' ROAD COUNTY or SAN 01[00, DEPt. or pueuc 13.&7 DATUt.I: 104. S. L.. -R ;lJfLr '0 ~II!I.T '~I!'D mil/! r.dQl '" f'l(O,,~vr-t. RE\>1SION DESCRIPTION CARLSBAD TRACT 92-3 CIoIYI1l ;3-1101 --------------------------------------~-------------------------------------------------__._. -·------r" ~~ ~~ Jl.' CJ\ I I I I I I I I I I I I I I I I I I I 20+00 21+0Q ~ $ tf " q ~ ). 22+00 23+OQ ~ 1f :< tJ 24+00 Lo"r -J QIOOa 1611. II crs Vloo-10.7 ll's 25+00 26+00. 28+00 29+00 30+00 NOTE: CONSmUCf m .11.1. WEAlHEA VEHICULM ACCESS ROAl) OWA Ii. or SEWER t.I~~ 12' WIDE S~t SECTION lHlS SHEET. LO"r :2 12' PfI) WA IrR (J15 HG) SEE SlItEr 8 .,..-P .... 242 222 202 --::r7'_ ... '1 z:z::::...~ "~'I.~"" ~"\ "-~ I!I 0' PVC STUn OUT" END PLUG TO LOT I 0 2.001': It 20M2 II"PYC S'lUD OUT .. END PLUO ~ " "-~ " n: "'" m~IfJ/ur """'tor.'>.1 I~~' I!I TO LOT 2 02.00)1 IE 21'.80 "V, ~ -----------// L / #'X~ - - - - - -I..,... - - - - - - - - - - -~ __ =.=-__ 77 'Jt, .. ~.;;~kAlil·L,.iiE 'A' ----7-------~., = -:: --_-t ' ~ "'Q;~......:=:=-==~ =m: _ -I x==--" J_ I • ":"'f -\!1I to " .L-__ 1_ _.----I-2D ~I!'- 20.,0 II!. ex. IO'XIO'X6"EE"'/ S W~'GV TO RCMoIJH -T---r----- '" lXlST 20' CMJII) lSMT =1'~- 20+00 lit Rt:IJOYl' cx. 1:r1<10' I1EDI.lCEB: ~ ~ INSTAa fJf' 01/ EX 10'CV .t COI/$7 END GAP BLOC/( I'EII If-/? o S~II~l? DATA NO. DCLr.o7Iil'NllllO IIA/)~ , N03'09'oq~ z N4l!f40~eO'JI --J Og",,'4,· 'DO. DO 4 NOO'3:t'J'f'r --~ NOO""J'I't -- ~ NOP'Zd '43'11 --7 NOO'33'J1'£ -- WIOTH J09.3{f· e"'8'~ g.DtI· 11/4,1}9' 3110,00' DO. 00' 248.1~· .63/1. p&n CONSULTANTS ~ l>Wo.Ac\"il'b,sUllt 2~ (81P)Zn-.... e "~t.lAn~$ Ii' pvc ~. PVC 6' PI'C trPVC trPI'C ~-PI'C ~-PI'C ~NTI-IO.D\IG 07112",6 113~4,to C:ltO.~) 113~".CCR PLOT t 1'.40' ~ &l fd I C> STaRN DRAIN DATA 1 NO. DCLTIVDCARINo. /W)1fJ$ WvGl1i RCt.W//($ '.UNOO"56 ':17'C IBO.ItIl· U ~IJljO-Q) 2· NDO':J3'/'I'C 4eU.4a· Q4-RCP(IJ~o-d) JU NOC"nt/l'C ,0'.113' f8' RCP(ISSO-D( • NO} 'OI'OJ't: 103. SI' 0Ii' RCP(lJ~-D a 5 7 •• RCP M/:SS/mC PIPe (VItTeR TIG/IT> ,.11 ,,' Df' RCfI PRrS$L/RC P/fI& (sec PRDrlLC> •••• ,~' or Rep PRt:SSUIIC PIPe ($C. PIIOI'lLe> IGiNffR OF WORK ~ MANI/EL r. NI.TO 1I.e.r. J07U EXilllt'S ON 6/JO.tW --11'--JF:"Qi-. _"' Y / ~ 'I"~' ,.0' eo' dOl CL GMPHIC SC>l.E: ,.' E'''' +:--+-1-~ .: --:::'~'J:::"''' / /_ _ _ , ------:)<'>-~; ~I~/.,. . SEE CRAIlIN.,>'(' "'" .. ~ BUll T -"11 ~,,-~ ,-" , ',.,.. ., • AS _, L ~ , ." ' .. ' " ,$). -11 -. -""'0-- JO' EA~EMtNT I 10' ~ ~ "7ds.-9~ DATE !_'_O' : I 6. 10 1 6', I 1 ~I ~I~ 12' 1liiiE WE C IlLt /trA Tlft//' ACCESS ROAD " TO 1.1}' OPfN GRADED GRAVEL AGCIIEGltT'E 6' Tille/( 01/ 12' or 9$ir COMI'ACT'ED ""L SECTIOI'{; 'ALL WEATHER' ACCESS RD NO SCN..E BENCHMARK J f:l .~ , ,y... , NOTE, de. JOe=. , .. " ,~. ~ •• " '" AT" c"S!~~;:l°f~':r . -:;;;;.. , .. " .. ~~~::::.::.b.. ____ . ,q.,#,# ...... \ W ,rACI'LIN. ft.!/' CITY 1)/111 ~ 11+4$.94. Ret _ _ " lJ>~ ~~ ~ _";...... . __ SIIr I) .t ~VErg/ABANDONEf g~ AND 20+0G,' TO 0. IIEM orrar:CN 1/+ "00 TO 26+65. BY GI/ADING mOM 2()+ AN() TO RrMAIN ___ . PLAN: SEWER LINE "A" &, STORM· DRAIN LINE" A" SCALE: 1-• 40' DESCRIPTION: OC-Ol70 DISC SET IN WEST END 'or SOUlH HEAGWllLL OF 2." M.P. LOCATION: RECORDS mOM: ELEVATION: 0.. MILE EAST or INTERSECTION OF LA COSTA AYE. M'lD SAXONY ROAl) COUNlY OF sm OIECO. DEIIT. OF PUBLIC WORKS: ~EPORf SVC)10&-Ol.IO/1S/1l& 13.87 DATUM: M. S. L. ,., u._........................ ,~ ... ~~""~-~_l~ .. .. ~ ... ,.....,..' ... ~ .. -----~=----. ~ i I I. I I I I I I I I I I I I I I I I I I I r- CARLSBAD WATI!IIWHI! COHSTIlUCTlON • OIID!II OP WORK PHASE 1 • (I.i.bn; 10'112' Wolo, lint '0' T •• k 1:' E.lillno willriino Siolion :is.e&: InIlAlllo".10'.8' nAnglKl tM wnh • Blind nAngo. w •• t .na'lOulh. E.I.llng wAtorlin. Slation 2HQO.Ce: In,t.II ond cop'bleck. To.k 2: G,.d. AmbrO.la Lo"" And conot,uct now 1~" pvc wOlorlln •• Took 3: . MAk.-ocnnocUon. to •• I,lIng IIno 01 pOlnl. In T .. k 1 obov •. To.k~: E.I.II.ng .... I.illM Gt.llon 20+0P: ,omove 1?'x10" roduCft' Bnd lillloU blind nong. on •• I.tlng 10' G.V. Walo.lnB 610110" t1·45.~: m'lftn.nd CIP block Ind .bondonl,amov. IIno botwoln obovo Iiolionl, To.k e: Stort gr'dlng opomllono ovo, Iho obov. 0'0' 0' wol.rilno, PHil!! 2. Conooolion. t ••• I,lIng 18' .t •• lond 12~'p~c wIII,lIno, Took 1: gmdo'Amb""I. Ind ~oln .. ttl. Llno, wnh lompo'A,y Ilop., n ... tho IXI,ting wAlortlnoo A, ohown on ,Clly Cwo, 351·5 ,h.ot, e ond ? Took 2: Con,truct Iho now 30" & 18' Itoil IInu And lhol2" pvo mlln, in Ambro,!_ And PolnlOltl. Lonll POI City CWo 3&1.&, . TMk 3' Conoool to bolh oxllling lin ... t the north ond 0' Amb,osl. Lont Bnd Ih. w •• lond 0' Poln~.III. Lin.. • , T •• k ~: Abondonl",mov. Ih ••• I,lIng moln ... ",qul .. d billw •• n Iho Abovt eonnft(:tlon polnti, NOt!: I'HAS! 1 TO Be COMPI.!T!D I!'OR! PHAse t, r----, ~ L-______ _ BENCHMARK DESCRIPTION, OC-Ol?D DISC SEl IN WEST END or SO\ffii LOCATION: RECORDS FROM: EI.£VATION' Ht:AOWALI. or 24" R.C,P, 0,4 Milt rAST or IN'!£RSECTION or LA COSTA AVf., AND SAXONY ROAD COUNlY OF SAN OIEOO. DEPT. or PUBUC WORKS' REPO~T SV010G-Ol.1C/1&/C& 13,ft? DATUM: M, S, L, ~ ""VI$ED e/5/% ~ P&D TECHNOLOGIES , 401 WC$T A mm SUITt zooo m9)~I§~~44~. mot P3GPI.DIIO IN 1I3~4,OO (31M) 1l344,CCR PLOT I"~O' L~ __ ::rA ,Of'1?.",j'-o.l) Ijlt~/.., O~WI B. RAcu.NO. i J.!g~ ilf:ClSmA nOlI OiPIfIES B/JO/Df l~ INDEX MAP 11f~~tA;,.I- TRACT NO'$ ,92~3 VICINITY MAP GRADING PLANS A VIARA PHASE III SH«T' J . ENGINtER OF WORK DECLARATION OF RESPONSIBLE CHARGE yC DECtARE"",r I AM TIlE ENt:lNt:E1I 0,. WORI( !'rIR TIllS mAr I Ho4~ t:XERCISED RIfSI'ONSIIJLt: CH04ffGlf OVE'IP TIlt: 01" TIIIf I"ROJECT AS DmNItD IN SECTION ~7()J 0,. THE T"W1T11 "a"8;J1Z'f'/;~AI/ft.R&s. AIIO THAT 7'/'IE DEC/GN IS P .It 0 TrCHNOLOCIEC CHIfCI( O!' PIfOJIfCT DffAlI'IliCS AND 0" CARLSBAD IS CONfflliD, TO A flEYlIfW 'Etf' Dlf,DN~C/NEER O!' 11'0//1(, 01" MY ~DI mr A STIIEET; SII/I"E ZIIOIl· SAN. DIEGO. C1'IIlIIlI (6111)IlJIl-~466 ~ 'M;II/II!' t. NlI:TO <.(.... A. I:IfPlfll:S ON 6/Ja""O rw,/:. J0724 ~ i?" ,~ MIT SYMBOL @ ~ ------ I RESOURCE AREA 90UNDARY Ii! DArt: DESCRIPTION or $IfCTlON$ 21 !/'IO n TrlIfflSHIP 12 soum, ""NIlr SAil Df.IIIWIOINO 1oI,II/DIAN, IN mf. ell'f or CARI.$/JAO. OF'SAN DIEIIO. STAn: or CWroHNI'. ACCOROINll TO :P/AT mF/lCOr. .,..~/'..,. LDCflTION tJLDMTI"D WtrillN II.P.N.~I S'"tl6'·OofO·I? .. UlzS- MLlI'f' COORO. INoa IS 1'17B·(.ZokJ '-----~--~ SOURCE OF --;;0"7' .-:L ZL:::~ '"'- EARTHWORK QUANTITIES D«:AVATIONt 1.ta~.oco CY f:l,/8ANKIoIENI'I 1.1n.ooo CY tfli?LS8110 HUNlCIPflL /r'IlTEf? f}/STRICT tXPOlI1'I 0 ,R=MMliNOW ~r ~ 1..A.J!,.Y.r?f1446 lfL/.{aa PRINT tw.IE INSPECTOR DATt I ~Ht[T II CITY OF CARLSBAD I ~ 1 ENGINEERINO DEPAR'lMENT~ ~ t. ;.:y~ Z:..LI.:1rt 'I rGR~OING .Ie EROSION CONlROL PLANS rOR: I WIWIIH E.PIVI1H~R(PIJ7'.FN4If) Ql?r~ ••• , "'''.8. """" CARLSBAD TRACT 92-3 I RI:'.£. ,zOI7" ,'Ii'" S>t ~:~: XI!:V~~~j • ..;~llr~ cAn'. I~"""" ~_.~ ..... _. _ ... __ '" ..... __ • __ _ ~ t:i O· 200' 400' e~o' "u '~I Uf< VA\- I'!D-'.f'lUI". ............. ,_!'J ...... ) :f()-3'I" I ~'CIC 1/3\-, ~!' 1 c III I ~ Ii 'ii ·1 : 1 ,I ~ '. ! 'III ~h 1 ;1 1 I , I I 1 i II i i i ;~ 'm5d i ... ..:1 t~ ?b 1 1 ,I 1 1 'I 1 1 1 1 1 1 1 1 1 1 1 1 1 0- .:-+ w w ::r: V') C,1I3H\P30P9.dWO 1~ Ii 40' SEE \' SEE SHEET /0 SHEET 7 /..0.,. I I'V1'f,lRtI $I:-.C,~'i+~#J?~1i/ (N7'·"D'I~W 87.04') F'1J1'(J~E PII~J.": .s.Il LIN/!. "cl ~,~ $wr. /+ PM PR,OP/LfJ (tV "'·OIJ' lHo"4 !S7./6' ) 4~qRCP SEE BENCHMARK OESCRIPTION, OC-0179 DISC SET IN WEST END OF SOUTH HEADWALL OF 24' R,C,P. LOCATION, RECORDS FRO!'!, EL!:VATlON, ,0.4 MILE EAST OF INTERSECTION or lA COSTA AVO. AND SAXONY ROAD COUNIY or SAN OIEOO. OEPT. or PUDLIC WORKS, REPORT SVOIOG-OI. lO/IG/8~ ,I3.e7 DATUM, 1.4. S. L.' //./ .-JJ..,,,j/¥ ~a ~ ~ -71"s: t'¢6 MANuBI_ l!!. Nllt.frJ:J Ileft g,,"£ p,.,~ 6:>:1$17 LINe NORnt OF SiA. 1I .. """ • ..,f. ro RtSMAIN. EXIST UNe' ~ srA 1I-r15.'M-soum TO STA. ZO+OO ro ISs ASI4NDONe.r:>/ReNlOYl!!P AS IiIE.(jilIIReD. • AS BUll.·l· ~C.1qat.... tl'::.ftn "XI'.J:J.J..1.H. . ..u!J7:f;."L.. . '. ~o' o· . 40' eo' 120' E5-C!5 ORAPfliC SCALE, I'~~O' ." . '''''''\ \ ~ ~ ---, ~ iU,~» 1.;',/ I I I I I I I I I I I I I I I I I' I I I 1.J;:.Jw\··,,j:··,j. .. I'lc.r ... blq:';I·V·I';;~~:X;+'·1 ',1 ·' .. ··:'····j:·w·";;lJ lr"I'·+21:8't.t:)~l~LU~-LJ Id;.~~+1X' EiNGlNGE'B OF WORK ,~ ,woNI1t<1. IIr ~~ ...,/, r-L.. fP."1i<6~ ';NNI'f/l'&<> /fa., ,nt.of :t..L:!2!i.~ 1«> c>"re ~ REVISED 8151.., ~ P~D TECHNOLOGIES 40' WEST A STHtt'T. SUITt 2500 SAN D'EGO. CA 02'0' (elg)23~-446& A3UllH3.DIIO 03/02195 11344.00 1310.4) 11344.COR PLOT I j"W ,1~t. C#JJ(,NI1'1'£CPVM liN TN# t"'~/tll! tJti AL.4 ttMINPtJR.eJ1P C/Nt.R,lJ.lli PIP&' /'fll~r ~K 1M:Q1"t,:lUJ TD r/itINIPl! ... I1lNfHIIH ()/l'" /-YJ.. " ()Vt:1l TId! J:.gIHrl/j~/N4 WIIIiN n(K (JC1tf~N ,,&UJ<If"II.$ (kU/) U; tt.t:~, "fIlS C-bNt~UG.. t:e'414/11 ~T_4n1 IN 'T/!/lSQ ~""t:HIU 11/A,U M ,~. ;,&r>O i!U: I'rJI1. VI!J,.DC.lrn"$ l!'/.I;Il""'N~ 'Zt> F:f',f,. ANfJ ~ • i)""'''' I':\I: FIJI< V/lJ..tx:lTlflS d'tC.GI!f)IN'1'(') r.r.r;, BENCHMARK· OeSCRIPTIUN, OC-0179 DISC SET IN WEST END or SWill HEADW-'l.L or 24" R,C,P. LOCATION, 0.4 MILE CAST or INTERSECTION ,.... or v. COS1A Ave. AND SAXONY ROAD RECORDS rAOM: COUNTY or SAN DIEGO. DEPT. or PUDLIC W(\R~S: REPORT SV010G-Ol.l0/l~/e5 ELEVATION, 13.87 OAhJM, M. • L. ~ --~ ~.> " - I I I I I I I I I I I I I I I I I I I Excerpts from Poinsettia Place TM Drainage Report • II II II' II II' II II II· II .' • , , , , ,. ,. ,. PLANNING ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO HUNSAKER &ASSOCIATES 5 AND lEe 0, INC. TENTATIVE MAP DRAINAGE STUDY for RECEIVED MAY 1 0 2004 CITY OF CARLSBAD PLANNING DEPT. POINSETTIA PLACE DAVE HAMMAR LEX WILLIMAN ALISA VIALPANDO DANSMITI-I ' RAY MARTIN 10179 HUClln'l.kens St. San Diego, CA 92121 (858) 558·4,500 PH (858) 558·1414 FX www.Huns~kerSD.com Info@HunsakerSD.com City of Carlsbad, California Prepared for: Barratt American, Inc. 5950 Priestley Drive Carlsbad, CA 92008 W.O. 0294-143 April 28th , 2004 EM:kd ' h:It.PO~l102o.1l1~31D01,doc w.o.'02o.1.1~3 41301200.12:37 PM I I --, &I f f f , , , , , , , , , , SRWB Development Tentative Map Drainage Study 1.4 Summary of Results Table 2 below summarizes developed condition drainage areas and resultant 100- year peak f10wrate at the storm drain discharge location. Per San Diego County rainfall isolpluvial maps, the design 100-year rainfall depth for the site area is 2.7 inches. TABLE 3 • Summary of Peak Flows Outlet Location Drainage Area 100·Year Peak Flow (acres) (cfs) Existing Conditions 17.6 19.7 Developed Conditions 17.6 14.4* *=Developed flow routed through detention strueture. Peak runoff from the SRWB developed site has been routed via the detention structure from an inflow of 30 cfs to an outflow of 14.4 cfs. The basin has ~ base elevation of 227 feet, with a peak water elevation of 230.8 feet experienced from the 100 year event. The proposed outlet structure is a 3 foot by 3 foot concrete riser box, with a top elevation of 230.8 feet. At the base of this riser is a single 18" orifice, enclosed in a protective screening "trash" rack to prevent blockage from vegetation and other debris. Refer to Chapter V for calculations and sizing of this detention structure. Due to the routing of developed flows to below that of existing natural flows, the development has no negative impact upon the existing flow of the tributary to which the site drains to. Peak flow rates listed above were generated based on criteria set forth in "San Diego County Hydrology Manual" (methodology presented in Chapter III of this report). Rational Method output is located in Chapter IV. Final storm drain, inlet and rip rap design details will be provided at the final engineering stage of the development. References "Hydrology Manual': County of San Diego Department of Public Works -Floqd Control Division; Updated April 1993. ' IISan Diego County Hydrology Manual': County of San Diego Department of Public Works -Flood Control Section; June 2003. 'Water Quality Technical Report for SRWB': Hunsaker & Associates San Diego, Inc.; April 2004. EM:kc h:1r11>Or11~\1431a01.doc w.o. 029+14~ 4I3CI2OO4 8:11 AM I I I I I I I I I I I I I I I I I I I EXHIBITC BACKBONE FLOW COMPARISON EXHIBIT OFFSITE AREA TO F-TYP£=1.66 AC""\ (APPROX) \ SCALE: 1"=100' JOB j: JJJO ~ ~~ P: \JJJO\ENGR\REPORTS\DRAIN\EXH\(B)Prop Cond.dwg 7/29/2008 6:41:JO PM 7/29/08 PREPARED B't ,~ PROJECT DESIGN CONSULTANTS r Planning I Landscape Archtteclure I Engineering I Survey 701 BSttMt.SulteBOO San Diego. CASZ101 819.235.6471T&I 819.234.0349 fix. E FG 235.8 BWG. ~ GF 223.3- -BlJJG:s ~--~----m~~­ i;r 2258 BACKBONE FLOW COMPARISON EXHIBIT J I I I I I I I I I I I I I I I I I I! I I I I DATE: TO: FROM: July 30, 2008 FILE: ·3330.00 City of Carlsbad C. Pack, Project Design Consultants I SUBJECT: Bridges at A viara Drainage Report, Plan Check, Response to review comments I I I I I I I I I I I I • I I City Comment #19 from City comments memo dated May 19, 2008 under "Engineering· Concerns": Revise the TM to modify the storm drain outfall for Lot 3 so it does not· discharge over a 2:1 slope, leading to erosion. Refer to redlines for clarification. Response: Site and environmental constraints do not allow much flexibility for discharge location. Discharge location for Lot 3 had been revised to more clearly show that the D·41 energy dissipater and riprap will be installed on a flat pad. Due to the very small diScharge flow rate, this should minimize erosion. City Comment #23 from City comments memo dated May 19, 2008 under "Engineering Concerns": Revise the preliminary hydrology study to provide runoff estimates (QIOO) and velocities (V100) under the Poinsettia Lane Bridge. Revise the TM to show the approximate 100-year limits under the bridge. We received a response this is not a FEMA . mapped area (and the requested information was not provided). Staff is not asking whether it is FEMA mapped or not. We ask that you provide information in the study nnd TM as it relates to this proposed bridge crossing for Poinsettia Lane. Thb is an important design feature that should be evaluated and verified. Response: Since the proposed bridge is so high and the expected flow rate in the canyon is so low, the hydraulics of the flow would not affect the bridge design. Therefore, we agreed at the meeting with City staff that this issue will be addressed during final engineering. City Comment #24 from City comments memo dated May 19, 2008 under "Engineering Concerns": Revise the preliminary hydrology study to verify capacity and sizing of existing and proposed storm drain infrastructure. The study seems to focus on the sizing of private systems, but this project is constructing both private and public storm drains, so it should encompass both. The study should address the capacity of the existing storm drain along. the westerly property line as flows are being added to it from the project and the new extension of Poinsettia Lane. Refer to redlines for clarification. Response: Revised text and calculations now include that portion of the Poinsettia Lane extension. See Section 3.6 of revised report. City Comment #25 from City comments memo dated May 19, 2008 under "Engineering Concerns": Revise the preliminary hydrology study to address the preliminary sizing of public storm drains along the northerly portion of Poinsettia Lane. There are storm I I I I I I I I I I I I I I I I I I I drains, inlets, and basin modifications proposed without hydrology/hydraulic analysis. Provide sizing/capacity calculations for the 30-inch RCP under Poinsettia Lane and the existing sump/basin north of building 1. The TM seems to show this basin will decrease in size by this project and impervious runoff from proposed Poinsettia Lane is being added. Revise the study and TM to address discrepancy. Response: See Section 3.6 of revised report. City Comment #26 from City comments memo dated May 19, 2008 under "Engineering Concerns": Revise the preliminary hydrology map (proposed conditions to show the QIOO e~pected after the effects of the proposed detention basins, as sized per Appendix 4. Revise the hydrology study to include the basin sizing calculations for the existing sump/basin just north of building 1. This project is affecting the size, capacity, and flow characteristics to that basin and, therefore, must be analyzed with this project. Response: QI00 values for pipes exiting detention basins have been added to revised exhibits. The existing sump north of building 1 is not a basin, but additional calculations and explanation are included in the revised report. City Comment #27 from City comments memo dated May 19, 2008 under "Engineering Concerns": Revise the TM (and hydrology study) to clarify how the storm drain inlets along Poinsettia Lane (near sta 190+00) will drain north through bridge. It seems, with the depth of the storm drain, these pipes will not fit within the bridge. Prior to resubmittal, please coordinate the street drainage and bridge design to address this discrepancy. Response: The area draining to the low spot on the bridge has been reduced with the addition of upstream inlets before the abutments. The new design for the sump bridge inlets is to have them drain straight down to the canyon below. The layout and sizing ofthat system will be deferred to final engineering. City Comment redlined report, page 3: Identify QI00, VIOO for Poinsettia Bridge Crossing. Response: See response to Comment #23. City Comment redlined report, page 4: Expand study to verify capacity before statement can be made. Response: See response to Comment #24. City Comment redlined report, page 6: Not an accurate statement. System 100 also comprised of Poinsettia Lane, which needs treatment. The sump basin also needs evaluation with flows into it to verify adequacy. Response: See response to Comment #25. Text has been changed and clarifIed on pages 6-7. I I I I I I I I I I I I I I I I I I I City Comment redlined report, page 7: You actually add some area from Poinsettia Lane (impervious). This study must be expanded before making this determination. Please complete analysis to verify the sump (basin) sizing/capacity. Response: Study has been expanded. See response to comment #25. City Comment redlined report, page 8: "water quality/detention basin" circled and "Not numerically sized in SWMP. Verify it serves as a treatment control and revise" was written. Response: This was munerically sized in the SWMP, in the BMP Design Criteria table. This basin is a combined water quality/detention basin, so therefore it serves as a treatment control BMP. City Comment redlined report, page 9: "and public" was written after "private". Response: Text has been updated. City Comment redlined report, proposed condition hydrology map: New impervious area being added to sump. Need to address hydrology/hydraulics here. Response: See response to comment #25. City Comment redlined report, proposed condition hydrology map: Basin sizing/capacity? Qin? Qout? Do routing? Response: Sump will be filled in. See response to comment #25. City Comment redlined report, proposed condition hydrology map: Verify existing Q, 'Post Q in pipe before stating no change Response: See response to comment #24. City C;omment redlined report, proposed condition hydrology map: QIOO after basins? Response: Q 100 values for pipes exiting detention basins have been added to revised exhibits. City Comment redlined report, proposed condition hydrology map: Adress QI00, VIOO at bridge crossing. Show 100 year limits on TM. Response: See response to Comment #27.