HomeMy WebLinkAboutCT 05-11; THE BRIDGES AT AVIARA; PRELIMINARY DRAINAGE REPORT; 2008-07-01~j I
'I
I
,I ' '
I
I
I
I
I
I
I
I
I
I
I
I
I
-'I,
,;,1
--
CTo5-
PRELIMINARY DRAINAGE REPORT
THE BRIDGES AT A VIARA
City of Carlsbad, CA
July 2008
CT 05-11
Prepared For:
RECEIVED
JUL ~ n ?'~q
CITY OF CARLSBAD
PLANNING DEPT
ACACIA INVESTORS, LLC
1650 Hotel Circle North, Suite 200
San Diego, CA 92108
Prepared By:
PROJECT DESIGN CONSULTANTS
Planning: Landscape Architecture I Environmentall Engineering I Survey
PDe Job No. 3330
Prepared by: C. Pack, P .E.
Under the supervision of
Debby Re ,PE RCB 56148
Registration E4pires 12/31108
701 B Stros\, Suite 900
San Oieoo, CA 92101
619.235.6471 Tel
619.234 ;0349 F~x
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,1
I
'I
I
DATE: July 30, 2008 FILE: 3330.00
TO: City of Carlsbad
FROM: C. Pack, Project Design Consultants
SUBJECT: Bridges at A viara Drainage Report, Plan Check, Response to review comments
This report was revised to accommodate City comments dated May 19., 2008. Please see
Appendix 8 for the response to City comments.
I
II
I
I
I
I
I
I
I
,I
I
I
I
I
I
I
I
'I
I
TABLE OF CONTENTS·
1. INTRODUCTION ........................................................................................... 1 •••••••••••••••••••••• 1
2. EXISTING AND PROPOSED DRAINAGE PATTERNS AND IMPROVEMENTS .......... 2
2.1 Existing Drainage Patterns ........... , ......................................................................... , ........ 2
2.2 Proposed Drainage Improvements .......................................................... II ...... " ..... ! ........ 3
3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS ...................................... 5
3.1 Hydrology Criteria .................................................................. " ...................................... 5
3.2
3.3
3.4
3.6
3.7
Hydrologic Methodology f ••••• I ••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••••••• , •••••••••••••••••••••••• 5
Description of Hydrologic Modeling Software .............................................................. 6
Hydrology Results .~tr ... ;.:s:s.f.? ........................................................................ ,. ........ 6
, Comparison of Proposed Flow Rates in Line A to As-built Flows ................................ 8
Detention Volun1e Estin1ates ., ..... , ......... , .............. , ................... , ......... , ......................... 1'0
4. HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS ..................................... 11
5. RELEASE OF LIABILITY ....... , ...... , ........................ , .. , .................................................... , ... -12
6. CONCLUSION .... , .... , ................ , .......................................................................................... 12
FIGURES
Figure 1: Project Vicinity Map ....... , .... , ................................. , ... ' ... , ... , ........................................... 1
TABLES
Table 1: Hydrology Criteria ................ " ................ , ........................................ , ......................... t •••••• 5
Table 2: Hydrology Results for Lots 1 and 2 .................................................................................. 7
Table 3: Hydrology Results for Lot 3 Alternatives ........................................................................ 8
Table 4: Detention Basin Suitln1ary for Lots 1 and 2 ................................................................... 11
Table 5: Detention Basin Summary fot Lot 3 Alternatives .......................................................... 11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
1
2
3
4
5
6
7
8
APPENDICES
Isopluvial Maps
Existing Conditions Rational Method Computer Output
Proposed Conditions Rational Method Computer Output
Preliminary Detention Calculations
Preliminary Energy Dissipation Calculations
Storm Drain As-builts and Excerpts from Poinsettia Place Drainage Report
Drainage Exhibits
A -Existing Conditions Hydrology Map
B -Proposed Conditions Hydrology Map
C -Backbone Flow Comparison Exhibit
Responses to City Comments
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
'I
1. INTRODUCTION
This drainage report supports the preliminary design of the proposed storm drain improvements
associated with The Bridges at Aviara, (Project). The project is located in the City ef CarlSbad
and is bound generally by Cassia Road to the north, undeveloped land to the south,' Ambrosia
Lane to the west, and EI Camino Real to the east. The site is located between the existing
western terminus of Poinsettia Lane and the existing eastern terminus of Poinsettia Lane. The
total project site consists of 60.9 acres. Figure 1 shows the vicinity map for the project.
Figure 1: Project Vicinity Map
P:13330IENORlREPORTSIDRAINlREPORTl3330DR·4th,doc
1
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
I
I
I
'I
I
The purpose of this report is to determine hydrologic impact, if any, to the existing City of
Carlsbad storm drain facilities or natural drainage, and provide peak 100-year discharge values
for existing and proposed conditions.
The drainage analyses presented herein reflect a Tentative Map level-of-effort, which include
peak 100-year storm event hydrologic analyses using relative street and lot grades. Hydraulic
analyses for detention, inlets, pipe inverts and HGL's will be provided during final engineering.
Therefore, the purpose of this report submittal is to acquire from the City: 1) concept approval
of the proposed storm drain layout, 2) approval of the methodology used in the evaluation of the
Project storm drain system hydrology, and 3) identification of critical path drainage issues that
need to be addressed during final engineering.
The Project will meet State NPDES construction and municipal stormwater permit requirements.
The construction phase BMPs associated with the Project will be addressed in the Grading and
Erosion Control Plans and the SWPPP. The post-construction BMPs for the Project are currently
being developed in conjunction with the overall Water Quality Technical Report (WQTR) for
The Bridges at Aviara project. The final post-construction BMP design will be provided during
final engineering.
2. EXISTING AND PROPOSED DRAINAGE PATTERNS AND IMPROVEMENTS
The following sections provide descriptions of the existing and proposed drainage patterns and
improvements for the Project.
2.1 Existing Drainage Patterns
The site currently consists of mostly undeveloped land with some agricultural fields. Slopes
vary from moderate to steep and cover is brush with some cultivated agricu1tural fields. There
are no drainage structures located on the property. The only utilities are SDQ&E overhead
power lines crossing near the southwest corner of the site. Drainage is divided generally ~y a
ridge line running from southwest to northeast through the northwest corner of the project site.
Under existing conditions approximately 11.5 acres within the property boundary drains westerly
from the ridgeline. A small sliver of area drains to the west in the southwest corner of the site.
P:13330\ENORIREPORTS\DRAIN\REPORT\3330DR·4t11,doc
2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
The rest of the area drains to a natural drainage channel located in the middle of the property and
then drains to the south. The site accepts a considerable amouht of offsite nm-on from upstream
properties, including a portion of the existing limits of Poinsettia Lane. In addition to the ortsite
flow through the site, there are offsite areas along the northern property boundary that contribute
runoff to the site.
The off-site existing City improvements consist of street curb and gutter, curb inlets and. a main
line storm drain in Poinsettia Lane that heads south along the westerly property boundary. That
existing storm drain, built per Drawing 341-5 (CT 92-3), collects the project drainage to the west
of the ridgeline. The drainage heading to the very northwest property comer enters -an existing
sump and drains to Storm Drain Line A via a lateral (Storm Drain Line Q per sheet 8, Drawing
341-5A, see Appendix 6). The rest of the project area to the west of the ridgeline flows overland
and enters Storm Drain Line A farther downstream. The flow enters Line A at two locations: an
F-type catch basin located on the east side of the intersection of Calliandra Road and Ambrosia
Lane, and the 6'xlO' box culvert tmdemeath Ambrosia Lane, which doubles as an animal
crossing. Approximately 140 feet ftom the culvert outlet, the drainage is picked up via a public
Storm Drain Line K and then piped into Storm Drain Line A, as shown on sheet 9 of Drawing
341-5 (CT 92-3, see Appendix 6). Storm Drain Line A then empties to the south of Calliandra
Road and discharges to the north end of the A viara golf course.
The rest of the project area drains to the natural drainage channel traversing the site.
Downstream of the project boundary, this runoff drainage flows south toward Aviara Parkway.
See Exhibit A for the existing conditions hydrology map. In order to adequately compare
existing flows to proposed flows at each of the project outfalls and to provide a valid
comparison, the limits of the existing drainage boundaries match the limits of the proposed
drainage boundaries. This was needed because of the large number of drainage outfalls, and lack
of concentration points in the pre-developed condition.
2.2 Proposed Drainage Improvements
The proposed project consists of building a multi-family residential development 'consisting of
multiple buildings with the associated landscaping, paving, storm drain improvements, utilities,
l':13330IENORIREPORTSIDRAfNIREPOR1\3330DR·4th,doc
3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
and some uncovered parking. The northern development (Lots 1 and 2) is a senior housing
development and the southern development (Lot 3) is a small senior affordable housing
development. Lot 3 is also being considered for a different site plan as a multi-family
development, and this site plan is considered "Project Alternative A" for Lot 3. Drainage
calculations for both of the Lot 3 site plans are included herein, to support either development
alternative. For the senior housing on Lots 1 and 2, all of the residential buildings will have one
level of underground parking except for the two buildings at the northeast comer. These two
buildings will be elevated and the garages will be at grade. It is assumed that for all of the Lot 1
and 2 senior housing, the garage floor will drain to the sanitary sewer, since the site will be
designed so that storm runoff will not enter the garages. Therefore, since underground parking
will preclude muon, the only drainage required in the garages will be for nuisance flows and
spills, which can be connected to the sanitary sewer. The project street improvements include
the extension of Poinsettia Lane. Part of the extension will include a bridge over the canyon to
the east of the proposed housing.
The on-site drainage improvements consist of a series of building down drains, private streets,
gutters, curb inlets, catch basins in landscaped recreation areas that all tie into an underground
storm drain system. Flow is conveyed to outlets at existing natural canyon locations, or into
backbone storm drain systems. Detention basins will be located at the outlet pOints where
needed to provide the necessary reduction in peak discharge back to the existing condition peak
discharge. See Exhibit B for the proposed conditions hydrology map.
The area just north of the project and south of Cassia Road is being entitled by Hunsaker and
Associates (Poinsettia Place, CT 04-10). This area will drain to the lateral at the existing sump
location at the northwest comer of the project via a proposed storm drain underneath the
extension of Poinsettia Lane. The 100-year maximum discharge and tributary area from
Hunsaker's preliminary drainage report (dated April 28th, 2004) was used in the analysis
included hel'ein to account for the future condition. It is unknown at this time if Poinsettia Place
will be built prior to this project, so the ultimate condition flowrate was taken from the Hunsaker
report and used in the overall analysis for both existing and proposed conditions. See Appendix
6 for excerpts from the Poinsettia Place preliminary drainage report.
P:\3330\ENOR\R.EPORTS\DRAlN\REPORT\3330DR·4th,doc
4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS
This section of the report summarizes the drainage criteria that were used in the hydrologic
analysis and key elements of the methodology.
3.1 Hydrology Criteria
This section of the report summarizes the drainage criteria that were used in the hydrologic
analysis and key elements of the methodology. Also included is a description of the computer
model used in the computations.
The drainage basins were delineated using available topography and the preliminary proposed
grading layout for the project. Table 1 summarizes the key hydrology aSStIDlptions and criteria
used for the hydrologic modeling.
Table .1: Hydrology Criteria
Existing and Proposed Hydrology: 100-year storm frequency
Soil Type: Hydrologic Soil Group D {
Land Use / Runoff Coefficients: Based on criteria presented in· the 2003 Countx of San
Diego Hxdrologx Manual.
Rainfall intensity: Based on intensity duration frequency relationships
presented in the 2003 Countx of San Diego Hydrologx
Manual.
3.2 Hydrologic Methodology
The Modified Rational Method was used to determine the 1 OO-year peak discharge flows for the
design of the storm drain improvements. The goal of the Project hydrology analysis was to:
• Determine existing and design peak 100-year flows for the sizing of the onsite storm
drain system gutters, curb inlets, catch basins and underground storm drain sy~tem that
convey flow to the discharge locations. From an analytical perspective, the Project
hydrology was prepared using relative lot and street grades.
P:13330IENORlREPORTSIDRAINlREPORT\3330DR·4th.doc
5
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
• Verify that the Project does not adversely impact the existing City storm drain
improvements or natural drainage. A comparative analysis was performed between the
existing peak 100-year discharge and project peak 100-year discharge at various
locations. For results of the analysis see Exhibit A and B for existing and proposed
conditions hydrology maps, and Appendices 2 and 3 for existing and proposed conditions
Rational Method computer output.
3.3 Description of Hydrologic Modeling Software
The Modified Rational Method was used to determine the 100-year storm flow for the design of
the storm system. The Advanced Engineering Software (ABS) Rational Method Program was
used to perform the hydrologic calculations. This section provides a brief explanation of the
computational procedure used in the computer model.
The AES Modified Rational Method Hydrology Program is a computer-aided design program
where the user develops a node link model of the watershed. Developing independent node link
models for each interior watershed and linking these sub-models together at confluence points
creates the node link model. The intensity-duration-frequency relationships are applied to each
of the drainage areas in the model to get the peak flow rates at each point of interest.
3.4 Hydrology Results
In general, the Project hydrology results presented herein were used to 1) verify that the project
does not adversely impact the existing City storm drain system or natural drainage, and 2)
determine where detention was necessary.
Storm runoff from the Project will be collected and conveyed to several locations.
The off site area to the north of the site (from Node 100 to 111) is unchanged and will be
intercepted at the edge of the site by a brow ditch. The drainage will pe collected in a brow ditch
and discharged into the proposed Poinsettia Lane storm drain system in the northwest corner of
the site that drains to the backbone Storm Drain Line A. No detention of this· flow is required.
P:13330111NGRlREPORTSIORAINIREPORT\33300R·4th,doc
6
I
I
I
I
I
I
I
I
I
I
I
I
I
"I
I
I
I
~I
I
The drainage in System 300 will be piped to the proposed detention basin near Building 8. The
proposed discharge for System 500 and System 650 (or System 600, if the project alternative is
selected) will also require detention. Tables 2 and 3 suml?arize the hydrology results for the
project outfalls for the existing and proposed conditions.
Table 2: Hydrology Results/or Lots 1 and 2
EXISTING CONDITIONS PROPOSED CONDITIONS
COlltrih. Q.olltrih.
Poi1lt o(Jllterest Q100 Area Area
(Deser/ntioll ) S~tem Notle(sl tml [geresl Sj!§tem Notle(.<;) Q100 (efs) [geresl
Northwest Area System System
(drains to existing 100 165 13.1 9.98 100 149 25.5 22.71
backbone Storm System System
Drain Line A) 130 149 19.7 20.06 200 230 12.6 3.49
System
190 200 5.5 2.5
Total at outfall= 38.3 32.54 38.1 26.2
52.8
System System (undetained),
210 220 10.3 5.09 300 399 7.9 (detained) 13.37
Lot 1 Southwest & System System
120 180 23.2 14.58 900 920 5.1 0.99 Southeast Area System (drains to canyon of
proposed bridge) 400 470 18.7 3.88
18.7
System (undetained),
500 570 1.6 (detained) 7.66
System
700 705 0.2 0.08
Total at outfall= 33.5 19.67 33.5 25.98
P:13330IENORIREI'ORTSIDRAJN\REPORT\3330DR·4ul,doc
7
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I
I
I
I
-I
Table 3: Hydrology Results/or Lot 3 Alternatives
PROJECT ALTERNATIVE 'A'
PROPOSED CONDITIONS (pROPOSED CONDIl'lONS)
EXISTING CONDITIONS (Sen lor Affordable) (Multi-family)
QJ.JJJ..~ ~ !.iJlJJ1lJJJ...
i!.aiJJ.laU!!tlwJ. d.WJ.. dwL
Co'l!§.g.1:ifi.liaul ~ f:!!JJkfJl f£bl lmul SJ!J1lttL f:!!JJkfJl QlQeC£Ctl lmul Sxsl!lL f:!!JJkfJl QlOO C£C!'l fn£Wl
Lot 3 Arcn (drains to System System
west townrds Ambrosin 230 235 2 0.79 800 804 I.S 0.24 NIA . . .
Lnne)
Totul at outfall" 2 0.79 1.5 u.~" 0 u
14.0 12.2
Lot 3 Aren (drains to System System (undelllined). System (Wldelllincd).
cast towards nntural 240 250 5.1 2.28 650 666 5.1 (detained) 2.74 600 630 5.1 (detilined) 2.96
drninQge)
Totnlnl outfall-5.1 :l.:lH 5.1 2.74 5.1 2.96
Tables 2 and 3 compare the existing and proposed peak flow rates for each outfall. Each outfall
consists of one or more drainage systems, and the flow rates of each of the drainage systems are
totaled to provide an adequate comparison between existing and proposed conditions. Drainage
to Public Storm Drain Line A does not require detention due to the reduction of drainage area in
the proposed condition. For the areas draining into the canyon, two detention areas are provided
so that the combined flows of the detained rates exiting the basins plus the peak flow rates from
the other outfalls do not exceed the pre-development peak flow rates. A large detention basin
will be provided near Building 4. The detention basins near Building 8 for System 500 will be a
dual water quality/detention basin. Lot 3 runoff will be detained with a small detention basin,
located near the southeast corner of the pad.
I
The proposed Poinsettia Lane storm drain located north of the property bOll1ldary will be
constnlcted per the Poinsettia Place Tentative Map (prepared by Hunsaker and Associates),
unless that project is stalled. In that case, this project will need to do the offsite improvements.
3.6 Comparison of Proposed Flow Rates in Line A to As-built Flows
The hydrology results presented herein show that the proposed condition peak flow rate across
the westerly project boundary will not increase above pre-project condition peak flows.
However, the City has requested additional explanation regarding the capacity of the existing
Storm Drain Line A along the westerly property line, since flows are being added to it from the
project and the new extension of Poinsettia Lane. Due to the proposed lug connection (Node.
P:\3330IENOR\R£PORTSIDRAIN\REPORT\3330DR·4th.doc
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
225), much of the onsite runoff will enter Line A farther upstream than it does in the pre-project
condition. However, because Storm Drain Line A was built with water tight joints at that
location, and the proposed lateral peak flow rate is so small in comparison to the main line peak
flow, it is reasonable to assume that there will not be any significant hydraulic impacts.
Therefore, reanalyzing the hydraulics of Storm Drain Line A would not be warranted.
The backbone Line A peak flow rates, as shown on the as-builts, do not directly -correlate to the
peak flow rates in the drainage reports available in the City's files. Only two reports were
located for the Aviara Phase III project. The first report, Hydrology Study for Aviara Phase IlL
CT 85-35, prepared by P&D Consultants, was last revised April 2, 1996. This study contains
hydrology information for the mass-graded condition of the Phase III area. However, it is
obvious that changes in the drainage design (due to construction changes and upstream storm
drain improvements) occurred after the report was last revised.
The second report, Hydrology Study and Inlet Calculations for Aviara Unit 1, Phase III,
prepared by Leppert Engineering Corporation, is dated April 19, 1999. Updated hydrology
infonnation is not included in this report, however, it does document that a total of 17 cfs from
properties to the east was estimated as the design flow for the F-type catch basin that ties into
Line A.
Exhibit C highlights the discrepancies in peak flow rates between the reference reports and the
as-built plans. The as-built peak flow for Line Q, at the junction with Line A, is listed as 102.6
cfs. This is obviously incorrect, as the difference in the flow on the as-builts at the-jtmction is
only 28.6 cfs. (The flow listed on the downstream pipe, minus the upstream pipe, minus the other
lateral, is only 28.6 cfs). Apparently the flow rate for Line Q was never updated on the as-builts
to account for the construction of the Cassia Road storm drain, which reduced the tributary area
to Line Q.
Therefore, it can be assumed that the combined capacity allowable into Line A from the project
is 45.6 cfs (28.6 cfs assumed from the as-built information, and 17 cfs from the Leppert report.)
,
The total proposed peak flow into Line A is the sum of System 100 (25.5 cfs into Line Q),
System 200 (12.6 cfs into Line A), and the downstream offsite area that drains to the F-type
catch basin. The offsite area to the F-type catch basin, as shown on Exhibit C, is 1.66 acres.
P:\3330IENORIREPORTSIDRAIN\REPORTl3330DR·4tll,doc
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
With an assumed nmoffrate of 1.7 cfs/acre, the offsite area would generate 2.8 cfs. That would
bring the total proposed flow to 40.9 cfs, well below the 45.6 cfs of allowable capacity.
Therefore, the existing Line A will have enough capacity for the proposed condition peak flow
rates.
3.7 Detention Volume Estimates
The results in Tables 2 and 3 are dependent on sufficient detention volumes to attem1ate the
proposed peak flows so that the results are less than or equal to pre-development peak flow rates.
The detention basin routing and design of the outlet structures will be performed during final
engineering. However, detention volume estimates are needed at this preliminary stage to verify
the project has sufficient detention volume. For this reason, Haestad Method's PondPack
software was used to determine the detention volume required to attenuate the peak flow down to
the required rate. Refer to Appendix 4 for the calculations.
For each drainage system going into a detention basin, the peak inflow hydrograph was
generated with Rick Engineering Rational Method Hydrograph Generator. This program
develops a synthetic hydro graph per the 2003 County Hydrology Manual by using the results of
the AES output. The inflow hydro graph was then input into PondPack and the curvilinear
estimate was used to determine the volume required to attenuate the flow down to the target rate.
Tables 4 and 5 summarize the detention volumes required and detention volumes provided per
the tentative map. Note that during final engineering, a portion of the drainage from the building
pad near Building 6 may be changed to connect through building down drains and/or area drains
to Node 535 to alleviate the amount of detention required for System 300.
!':13330IENORIREJ>ORTS\DRA1N\REJ>ORTl3330DR·4th,doc
10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
'I
Table 4: Detention Basin Summary for Lots 1 and 2
Detention
Lgcation gf Drainage Volume Water QualitX Volume
Detention Basin SYstem Reauired Volume Reauired Provided NQtes: .
Basin near N/A, nota WQ Assume 5' de~p ofW~ter
Building 4 System 300 0.93 basin 1.0AF storage, l' allowance for
spillway
Dual w~ter
quality/detention basin,
Interconnected oversized to allow for
basins near System 500 0.5 0.21 AF 1.0AF water quality volume in
Building 8 addition to detention
volume, l'allowance for
spillway
Table 5.; Detention Basin Summary for Lot 3 Altematives
Detention
Drainage Volume Water QualitX Volume
DescriDtion Svstem Reauired Volume Reauired Provided Notes:
Senior Affordable N/A, not a WQ Assume 4' deep of
Site plan, Basin in System 650 0.11 AF basin 0.12 AF water storage, I'
Lot 3 allowance for spillway
Project
Alternative 'A', N/A, not a WQ Assume 4' deep of
Multi-family site System 600 0.11 AF basin 0.15 AF water storage, I'
plan, Basin in Lot allowance for spillway
3
4. HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS
Hydraulic calculations will be performed during final engineering. However, preliminary energy
dissipation calculations at the project outfalls have been completed to show whether or not the
outlets provide enough energy dissipation to minimize scouring. For the five canyon discharge
locations, an impact basin for energy dissipation is proposed. The energy loss through the unit is
calculated according to the HEC-14 methodology. See calculations in Appendix 5. The veloGity
at the outlet of the box is computed and then the riprap class is sized per the velocity table on
Regional Standard Drawing D-40.
P:13330\ENOR\REPORTSIDRAlN\REI'ORT\3330DR·4th,doc
11
I
I
I
I
I
I
I
I
I
I
I.
I
I
I.
I
I.
I
I
I
5. RELEASE OF LIABILITY
Due to the location of the underground parking entrances for the podium buildings, sUmp inlets
are required to pick up the runoff from the driveway ramps. In some locations the surrounding
grading does not allow for an emergency overland release. In other locations, Driveway G for
example, the developer directed that no emergency overland release be created. In lieu of an
emergency overland release, PDC has designed dual pipes at these locations so that if one lateral
pipe Clogs, the sump location will still drain. Sound engineering practice suggests that for sump
locations, the situation be evaluated to determine what would happen in an emergency situation
if the inlet or pipe was clogged. If the sump inlets at the bottom of the driveways were to
become clogged, the water would pond at the bottom of the driveway, and if there was enough
runoff volume, the water would pond into the underground parking garage. The developer is
aware of this design situation and takes responsibility for damages that may occur as a result of
flooding. The probability of flooding into the garage is very low, due to the fact that such a
small area is . actually draining to the sump driveway inlets. In any case, PDC assumes no
liability for such an occurrence, and will not be held responsible for any potential damage due to
an improperly maintained storm drain system.
6. CONCLUSION
This drainage report has been prepared in support of the preliminary design of the storm drain
improvements for the tentative map for the Bridges at A viara. The ptlrpose of this report is to
provide peak discharges for use in designing the private and public storm drain systems for the
project and to verify that the detention volume provided is adequate to detain the post-project
flows to the pre-project flows. The hydrology results Indicate that the' peak flow from the
developed site will be less than the existing flows with the detention basins provided. Therefore,
the storm drain system will be sufficient to satisfy City criteria in the post-development
condition.
P:\3330IENORlItEI'ORTSIDRAINlItEI'ORTl3330DR·4th,doc
12
I
I
I
I
I
I
'I
I
I
1
I
I
'II
I
I
I
'I
I
'II
1
I
I
I APPENDIX 1
I Isopluvial Maps
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
----------~--------
~WI FNlJ.t PROJl!:CT LOCATION . . p= 1.2~ INCHES
County of San Diego
Hydrology Manual
Rainfall Isopluvials
2 Year R2iD&II Event -(0 Hours
Isopb;IaI (IIncbes)
DPW *GIS -=---
::;:e-
S1iiGIS ""t!=s.,D<p~
N :..-.:==-~-====-CII'-.:w __ ~ ----
::===:;===.=~~
3 0 3 IIiIes
~
-------------------
d biN!M PROJECT LOCATION
P= 1.90 INCHES
County of San Diego
Hydrology Manual
Rairifall Isop/uvials
2 Year R2infaIl Eveat -24 Hours
--~r-)
~1S ~
~
S11iGIS ~.Hz.cs..DIq;o~
,-, ~~-----.,.,.., :'=-"=""':~~ ~-......~ 'IIWIo,..... _____ ,..,..... =--'i n .. _
" --'*"---~....,....,.---
3 0 3 loWes ,.........,
-------------------
County of San Diego
Hydrology Manual
Rainfall Isopluvials
10 Year R2inbIl Event - 6 HOIIn
1s<:!*MoI(""""")
DPW *GIS ~
~
S1iiGIS
"" lI=~ nq.,a,.ao!
~-=.==~c:..-==-C'~ __ ~ .......... ........,.. -.... "' ... _-........... __ h
~ ~ ... _ ..... -------......--....... ....
3 0 3 IIies ~
-------------------
County of San Diego
Hydrology Manual
Rainfall Isopluvials
10 Yeu-R2infaD Event -24 Hours
IsqiitMaICn:l>es>
DPW ~GIS
~
S1liGIS ~ ""l'-=SclJ\q>~
N ~~~c:..-==-D'~_~----==-~ ~ ......... -.".--~-..... -""-!IIio*o __ _ -__ ce ali ... ____ _ ---
3 0 3 Miles
~
- - - - - - - - - ---- - - --. - - -
County of San Diego
Hydrology Manual
Rainfall Isop/uvials
100 Yeoar RabttlI1J Event -6 Hours
Isq;tM3I (n:iles}
DPW "*GIS ..=:.-;-
~
S1iiGIS ..-eI!=ScD:pa...o!!
""'-~~CW--cl. ___
0II_~~1I:::I.~ ~-~~ .......,. ...... ...,.--.
3 0 3 lilies ~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-- -------, -------- --
10.0 I" i" I I 1111 ill! ! Ii 'I I ! Ii 9.1) '" 1111111 ! Directions for Application: i' '" ,.. I ""111 1m , I! ! "I I II 8.0 I" .' (1) From ~lion maps determine 61r and 24 hr amounts '" r... ,.. I' I 1111111 I II ! U III 7.0 for the selected frequency. These maps are included in the
6.0'" '" EQUATION ! Ii County Hydrology Manual (10, 50. and 100 yr-maps included
"'", I = 7.44 Ps 0-0·645 III in the Design and Procedure Manual).
5.0 '" I :: Inlensity CmIhr) (2) Atijust 6 hr precipitation rtf nece5SaIY) so that it is within I" I 1'", ..... ro-I Ps ;; 6-Hour Precipilation (in) I the range of 45% to 65% of the 24 hr precipilalion (not 4.1)
appflCaple to Desert). I' t' I'
"'I'
1111110 :: Duration (min) il (3) Plot 6 hr precipilafion on the right side of the chart. lllllllllltliUl I I I ~ I ! 1111 I· 3.0
(4) Draw a line through the point paraDe! to the plolled rIlleS. r---... Uililil III I I ! I hi II "'-(5) This line is the intensity-duration curve for the location i'r-. -..~~ I , I I II I I IIII!I i being analyzed. I II~ 2.0
1'1" ~~ I 'N: t:S i I I Iii ~ Application Form:
!III ~ : I .. N-! <{> (a) Selected frequency £_ year ~ ::J: 1i I' I ., l*~ ~rnll II 0 0
II iii II I I .. I I! ~ (b) P6 = 1.25 in .• P24 = 1.90 'p:: ~ %(2) ~ t' I I, ~ ~~1 ~ I~ I I ~ 24 ... 'i-tJ. (e) Adjusted P6(2) = 1.24 in . .c . , 9-g1.0 , 6.0-g. ~0.9 I I I~ Ii' I . lI~h ,. 5.5!!!. I 1 '" I ! N-. I I ~ I~! . 0" (d) Ix = __ min. ~0.8 . 5.0;;;J
~0.7 I ,N,. ., I. If. INII ~ 4.55' (e) 1= __ inJhr. 1t'R f'r{ I~I • <>
I ;1 4.0 ii 0.6 . . . ~ r 3.S..e. -, .. 1'1 ii-I I . II ! · ' . Note: This chart replaces the Intensity-Duralion-Frequency 0.5 • I! I ~! i.. 3.0 curves used since 1965. .~~ ~1.J i -·~i ! ~
0.4 i L. 2.5 -_.-.. ; ... -I-.....+--_ .. L .... L-rh--'--__ · _-' ____ 1... ... _. NJ.~ ~U I i I I! PS'--' -+. Pf'-f-i+2f : "f+~ r}·!·~",.-i "-7-¥-'1-~~' -').. DUiaiiOri
0.3 I . I ! !~ 2.0 ==t _21>3 1~~!L~.l§:§l?~:9~ll~!.~~~13.1.!;.!4.~~8.! · .. 2.12 3.1814.2-41 5.30\6.36 7.42nL~~";10.l!9.iJl;66 12.12 "-to '.6!U~ 3.37:~J..!~0!! !?'~J..~1.:~.L?~i ~~J.~:P rR-..1.1. : : .. 1.5 -15 ~1;~)J=,!jL~ .~~e3.89 ~~ 5..19i~ !6:~L?,B J:~ .. .' --20 J~. h~t~).!!L:z,.I!?!!!::?!I.!El8~~~_~~..4 §:~ .!!<1.5 , ---25 02 : ." ---'30 ~Jj1~ }~t~i~~i~~·t{~ 1·::~~t~j ~~. . , . "II~;' , . ~ .. 40 .!!-.!i!.I1.~h~~I::!.~t~~~~~]:iH~45] 3.}~ I ~:;3: · -.-n I 1.0 .-:'< -.. .. _._._50 ~'I~l'~H~tH~i~tt~";~r~H:~'i-~:: , f f . I ; , I ! ~. ---go --"1-' I· .. ' .. .-.... 1. -.. • .....1.: ... .. ,. • . I -. I-I ! :; 0.41 !~~!!!!.~ '!',??'!Jl~:~ ~.63.l_'~J:2,1!4 L?~.L~~. 0000-, ; .. ~ ; ! i! 120 :ll:-I~Jtift~ l~JJl±~H~UJR~ · ! ! , , . ~;; '-1" · . I ,j I' • Ii' 110 ~"i~~ o.li?'j0.7I! ~~_'_~.1.~j .. ~~!!,:!.!,~111.4.~,p2? 0.1 ; . .!
. ~ .. -022 0.33 O.Q 0.54 0.65'0.76
H
0.81_.0.98! 1.08 i 1.19.i 1.30 5 6 1 8 910 15 20 30 40 50 _2 3 4 5 6 ru[N:~I~.-,!:m~19.~ ~~I~!5T~T.f@'.lJ.:.1i Miooles Holm; 0.17 !Q.25 0.33 0.4210.s0!0.58 OS! O.75l 0""-1_0.921 1.00 -0Ur3ti0n
FIGURE
....... ;q.ou ... onDes;gnC''''''-T....... ~
HazAIaIICciunty ~y IdanuaIIInt .. Dur Design Chart.FH8
M·~".
-------------------
10.0 ro;::+-q:--rc;:J-,;::fo;rr-nrhrrrTITTTTTTmlnrnmnmTTfTTTmrmnim1lrrn;i-;rl-..,....,,,,,-;-:77r;;-;-r.:,mrnr;;i-
9.6 ~ i"'o I'" illUII! I I J! i i Ii Directions for Application:
8.0 ~ ~ I' r-. tIllUlI I I! ; ! II. (1) From precipitalion maps determine 6 hrand24 hramounts
7.0t'-i' ~ t--r-. 11111111 J I! , ! for the selected frequency. These maps are included in the
60 f' t'-t--r-I • r-mtr EQUATION I !i ?xriY ~ Manual (10, SO. and 100 yr maps included · r-• 111111 ::: 7.44 P6 0-0·645 I m the Design and Procedure Manual).
5.0 • r-. I" i"'-~ 11111 I = Intensity (m/hr) (2) Adjust 6 hr precipitation (if necessary) so that it is within ~ ~f'..... i'" r-. r--.... U PS::: 6-Hour Precipitation (in) ~ the mnge of 45% to 65% of the 24 hr precipitation (not
4.0 I"-l"1li III D ::: Duration (min) j' appIicaple to ~esert).
i' ~~""'i"'r--I" IIPr I". I 111111 II (3) Plot 6 hr precipitatiooon the right side of the charl
3.0 iIIiII !IIiI . I I . : U II III' liti (4) Draw a line through the point parallel to the plotted lines. NMTtI:ti"ti~tlil'1Jtttt11ttttnlKU:lffJI1t1mtfttwmtlmDt:ftHltt'i!iii,·trtHttitltlrtffim!![t (5) This line is the intensity-duration curve for the location
20 t'-j' I': rl--II I! i IIII I . bemganalyzed.
· I' 'h ~ I i I I i I ~ Application Form: I ... ~ i>-, , b ± (a) Selected frequency ~ year
"L." ...... I'l . Ii I II I! 0 2 i' '1 I"'~I I Jh!'M-R ~. Ii ~ (b) P6::: 1.75 in .• P24::: 3.10 '_p = ~ %(2)
ill . N. N--'i'i'l'''"" IN" ~ 24 ~ 1.0 . I I' I ~ LI i' Q. 11 ~ i 1'1 l' 6.0 -i (e) Adjusted p6(2) = 1.75 in.
::;;'09 I I I ~ 11' I I ~ I a·, . 5.5 § . '~0'8 ! ~ I I ~! I N I II .: 5.0 g (d) Ix = __ mm_ ~O:7 I I !J! 1 ' I~ I I ~ ".5~ (e) 1= __ in./hr. \.6 . ~ r± ['tll ;.~I ~~.; . I I : I~ I~ ~ ! J..I I ":! Note: This chart ret>!aces the Inlensily-Oumlion-Frequency 0.5 . I -l!l'" I 1;'-. ~ .~ 3.0 CUJves used SInce 1965.
04 !IIIIIIIIII n I n I ~ . ~ i ;1 ;~ 2.5 -. -...... , -'I'-f-P' --_L_ ... .E_-l-_t..._ .. .:.. __ ". ___ L ._.
· , ! III J r: ~." 'I P6 1 I 1.!1 2 2.5 t 3 1 3.5; .. ! 4.5 5, 5.5 l 6 i ..... II I I ~ t, tiurailori -rr-.'=ti . ·r-TlTr.-··'· j"-'-r7 n-c'
03 I I ~. I . "'~ 2.0 __ • _~ ~g;.P.i6.5'!J;7~:9~ll~---H~:13.:.~?;..!.4.:!9~~! · "' • " ____ . 2.12 3.184.24 5.30,6.36 7.4218~...L~_,~~~ill.!.i :!2.72
, • __ 1.. 1.68,2.53 3.3?~H.5.O!! 5.!!On7.:,!J.!:!!I!.~'~'~i:~~ !.Il.'!~
1.5 _!~! '~I~L~4 2:!9J~15.191~.!!l.M~ i.!.1317.7!. III . .:: _'~ !1~ 2,.-~~!·~~.I~I~r::;~.L4£t§~J.~ ~,~ 02 . . . .' O.ll;!_i~:~ !~J~~:'~I~~!-7;l1.4.~ '_~'~i.5..1.3.1 ~~. · . " :, .. , ~.L1~~P~i·2.071.~:'!! ~.L~.I~?3 t4:1~.i ~~.~~,~
:. . . ., . 1 0 ~![9.!~.031..1~ •. '.·~i2:0!t2: .. '.l2.!6--'~I!1.i.~:45j 3:?l11 :4.13 : ;' :! '. .;;. . :':-!~If.~i+~H:k!IC~~l.!t~-~ ~H:~H~H~
11111111 ~: : • -+ ;' ':;;: __ 1iA(!~~!~~11~n~ ]~~ ).631'~j 2.04 i.~.!..?-~:
HI-t+-HH--t-M-HrHHi-ttt1i11ttiUittlllltmlllHtHrtttttirtttiHtIH ' ..i I; I Il i, __ ..1 ... ~...jl!2t!~ !-~J.l.w ~,1!J ~~.1.1~P:?QP~'i_2,.~ UllllU tlIHtHl ..:! ,! I:.J. ! ! 1~ ~J4?,44t~ !!;?:3'11!J,,~ ,.;~1..',1,~".1-E t'}·4;:!: ',11.2_ ... !.-~ 01 IIIIIIII! ! ! 'J !; ;! I!' l. __ , ~.~~~ 0.65"~~O-!!~'~II'!:!'!!"J.31i1''''t1~ · HH-++-iH--+-...... ....,..'+'L.L.I-'-t ............. .IJ.IlfUU!-WIT'-'..I.li..,....~ . 240 022 0.33 0.43 0.54 0.65-1~.7G 0.81",0.96; J:C)8 i 1.19 i 1..30
5 6 1 8 9"10 15 20 ... _ ... 30 40 50 2.!.._" 5 6 --:::'3i!!! ~ .[~ g]! ~i;~Lii;~ 9~Iy.~I!J~J.J~IIJ!
...... "'es OuraIion ......... " 3&!1 0.17 IQ.2S 0.33 0.42 0.50 0..58 0.67! 11.75 10.&410.9211.00
FIGURE Int.~Des;gnChart-TempI... . ~
HazUaVCourlIy ~ UanualIInCOut Design Chart.FH8 .
--=--
-_.'-.-- --- --------- --
10.0 "'" • ..... rill I , •• It ' 90 I ... i'o..' '" ~ i. j ! i : I" II Directions for Application:
8:0 I'-~ " ! I ! !; II: I III !; (1) From precipitation maps delennine 6 hrand 24 hi' amounts
701'-""''' ~I' 1111111 I I ~: II; I !: for the selected frequency. These maps are induded in the . ~~r-.. .... I' EQUATION!' ComIyHydrologyMamal(10.50.and100yrmapsincluded
6.0 ~ ~ I' I ::: 7.44 Ps D.().645 I'll in the Design and Procedure Manual).
5.0 1'0.. "-t-.. I = Intensity rllllhr) (2) Adjust 6 hr precipitation rlf necessary) so thai it is within
1'0.. t'-" ~ '" ~ I' '" I PS ::: 6-Hour Precipitation rUl) II the ~ange of 45% to 65% of the 24 hr precipitation (not
... 0", I !III D = Duration (min) III appIlCapie to Desert).
I'-. • " I'-I' . I'" I I I I I (3) Plot S fir precipitalion on the right side of the chart.
3.0 " !II i I : I I , II II I!; (4) Draw a line through the point paralel to the plotled lines. :-.... ii' 'I II III II!! (5) This line is \he intensily-duration curve for the location
r-..", : ~ I I I I I III being analyzed.
2.0 " I .••• I
r-. ' :.....!. '" i'o~' i I II i I i"1 Application Fonn:
'" I • r I" I I I' . I'; l>: ,I ~ ~ (a) Selected frequency ~ year
g III If IHH i ~1'St1'l D-~ '~JI II'!;! ~ (b)Ps=2.70 in.,P24 =4.70 ,-=~%(2) ~ 11m ! N.. I i'lI'! I I r-iJ' • it ~ P24 .fi ~r" I IJ .... 1 ~1 f.;! I 1" ,; .g. (e) Atijusted P6(2)::: 2.70 in.
c
1.O Imll .,. iX I' ....... I I~: ,. 6.0;;. =0.9 III ! I '''' I.... ,"'.. .. I;' I ':. 5.5 a . ~ ; ! ~ r;.! I No I ., :: 5.0 g (d) I,,::: __ rom.
eO.
S L 'lUI 1111 ; .... ! 'I 1II..1~ I~I' I 4.5= .!!0.7I1mJlI , '...... . ll'hl I~ I •. I. g (e) I::: __ inJbr .
.$ . . 111111111 I I'K r ~ ~ I • I, 4.0 ~
0.6 lID i I II i N-.! I ~. i!i 3.5 ~ Note: This chart rep!aces the Intensily-Duration-Frequency
no: Ii.tI i" I 1;00 . •. 3.0 curves used s.nce 1965.
v." ! I III i il! ': ,
04 ; Ii' ~ I ; ,: 2.5 _ ..... _._ ... -.i .... I-:..-i---L_._;-*_j __ .. _--' __ ; ....... . ll~ NJ III ~ I I' 'I~ ~ .... --__ ! ... dl~~_L~_l-~_I-_ ~ .; -4A·-~-· .. -~~l-6_. ,Ii' I . Duoation I~I III;""I!I'I;' •
111111111111111:1 I . • .... I ! i! 2.0 -2.6313.95 5.2116..59;7.90'9.22il054!11.BO'13.17:14.~p5..81
0.3 • . I~: :. --7 2.t~"fiii4~I6:36t¥.'42f8:481-9M:lo:tiOHI.56~12:"72
.. -to _~l~~~~1~~j:~U#.lT~~~~~.pt'1.!l:I1
; 1.5 -~-}~H~I~-~I~~j;~'NH'~i~i{~'i:!:'
. . : --25 'o:i1:di;Jo',m' 2:iii!ZaClI327iT73' ~.20 !-~mI5.13q;:60
• • • ... II 10 __ £l.~!!:9.11:~i.1~J.!·~i2,07 2,4~.!.2.7~19.1.q,45j3:79i.:U3.
1 ,. 1'1 ':'. • ___ !10 !.l!I.I!!~L~.J-'!I.!.:~~:i).;.~.?::~L~:~_L~~i.~!l!!.L~'i'~'
! I .; ... __ ~ ~'I~P'~ t;,D,.,.~~"-!!!!1[2"21.2,39.!:z.65 i.2..!!2. ;1.18 .
I • " !!C.! o..~_ ~1.~11!!~~'1/~P~ ~~ 1.63_l~~ 1.2,~ L?~.L~~!? r I;' I! . __ ~ . -~-i~!I~I' o.8.U.U~ 9~U~J.1.~j):!01.1.1!?i_2,~ , . ! l ! 1_~l!!:~1~ 9:.?i1io.~ 1·031J.:~.j.1:.3?U·47.l.I~~! 1.7!,
n 1111111111111 . 1111111111111111 ! iJ ! , II !! Il! _....!... __ ~_I'O?:II~ .!L~W?ll ~~tP~-l ... 1=~!I_U.,:)l1.1;~L'ft,l
v. . 2 0.22 0.33.0.43 0.54!O.65.0.7!L0.871 0.99! 1.08! 1.19! 1.30 5 6 78 910 15 20 30 40 50 2 3.. 5 6 -0.19 !O:2aiO..3S oA7'0.s6io:66~.75.1"O.as"Tii9in:ii3Ti:13
Minutes Hours --o:17i<i25i0:J3'·o:.iFo.SO·o:s8roS·j a75T0§41 if921'-i1if Ouralion . ,
FIGURE
,"",,,,,,,,"'60.. 0...,0 Chart-T .... Ia.. ~
~I ~rogeoIogy IolanuaInnt ... Dur o.siQn Ctiart.FHS
I
I
I 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX 2
Existing Conditions Rational Method Computer Output
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software ~aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA
* EXISTING CONDITIONS, SYSTEM 100
* 100 YEAR STORM EVENT
**************************************************************************
FILE NAME: SlOOEI00.DAT
TIME/DATE OF STUDY: 16:11 07/23/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'l'HOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
* -k
*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= =====~===~~====== ===~~= ===== ====== ==~== ======~
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth -0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
************************************************************************** ••
FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=====================~===========~==========================================
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 81
INITIAL SUBAREA FLOW-LENGTH (FEET) = 46.00
UPSTREAM ELEVATION (FEET) = 314.20
DOWNSTREAM ELEVATION (FEET) = 312.00
ELEVATION DIFFERENCE (FEET) = 2.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.435
100 YEAR RAINFALL IN'l'ENSI'l'Y(INCH/HOUR)'" 6.741
SUBAREA RUNOFF (CFS) = 0.12
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.12
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 165.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
=====~==~=========c=========~===============================================
ELEVATION DATA: UPSTREAM (FEET) Q 312.00 DOWNSTREAM (FEET) ~ 220.40
CHANNEL LENGTH THRU SUBAREA (FEET) = 1237.00 CHANNEL SLOPE 0.0741
CHANNEL BASE (FEET) .., 5.00 ~Z~ FAC'l'OR"" 99.000
MANNINGtS FACTOR ... 0.030 MAXIMUM DEPTH (FEET) = 1.00
100 YEAR RAINFALL INTENSI'rY(INCH/HOUR) =: 3.758
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS ~D~
S.C.S. CURVE NUMBER (AMC II) 81
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) ... 6.97
2.57
8.01
TRAVEL 'rIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH (FEET) "" 0.14 TRAVEL TIME(MIN.) '"
Tc(MIN.) ~ 13.45
SUBAREA AREA(ACRES)
AREA-AVl!:RAGE RUNOFF
'l'O'l'AL AREA (ACRES) ""
= 9.93 SUBAREA RUNOFF (CFS) =
0.350
13.06
COEFFICIEN'£ ==
9.98 PEAI< FLOW RATE (CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) -3.02
13.13
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 165.00 = 1283.00 FEET.
====~~~~~==~=============================================~===========~======
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE (CFS) '"
9.98 TC(MIN.) ""
13.13
13.45
===~m=~====================================================~===~======m=====
=========~~~~=========~===~================~================================
END OF RATIONAL ME'l'HOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*******************************************************~********~***********
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* EXISTING CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 120 *
**************************************************************************
FIlIE NAME: S120El00. DAT
TIME/DATE OF STUDY: 15:43 07/22/2008
---------------------------------------------------------------------~--~---
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONF1UENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARI<-HEIGHT WIDTH LIP JUKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== =~======= ================= ~===== ===== ====G= =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 D.Ol~O
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth -0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-ot-Curb)
2. (Depth) 'A' (Velocity) Constraint = 6.0 (FT*FT/S)
~'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 120.00 fro NODE 125.00 IS CODE = 22
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
~=========~=====~=====g==========================~==========================
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
$OIL CLASSIF'ICA'I'ION IS "0"
S.C.S. CURVE NUMBER (AMC II) 81
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA (ACRES) -0.08 TOTAL RUNOFF(CFS) 0.20
****************************************************************************
FLOW PROCESS FROM NODE 125.00 TO NODE 180.00 IS CODE == 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
===========~=========c======c===============================================
ELEVA'I'ION DATA: UPS'1'REAM(FEET) = 312.00 DOWNSTREAM (FEET) c 212.00
CHANNEL LENG'I'H 'l'HRU SUBAREA (FE:ET) = 989.00 CHANNEL SLOPE 0.1011
CHANNE',L BASE (FEET) '" 5.00 "Z» FACTOR:o 99.000
MANNING I S F'AC'I'OR "" 0.030 MAXIMUM DEPTH (FEET)'" 1.00
100 YEAR RAINFALL IN'fENSITY (INCH/HOUR) = 4.543
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT"" .3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 81
TRAVEL 'l'IME COMPUTED USING ES'I'IMATED now (CFS) "" 11.55
'l'RAVEL TIME 'l'HRU SUBJ.~REA BASED ON VELOCITY (FEE'l'/SEC. ) 3.28
AVERAGE FLOW DEP'l'H(FEE'l')'" 0.16 TRAVEL TIME(MIN.) == 5.02
Tc(MIN.) ~ 10.02
SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF
TOTAL AREA(ACRES) =
13.81
COEFFICIENT '"
13.89
SUBAREA RUNOFF(CFS)
0.350
21. 96
'PEAr< FLOW RATE (CFS) ... 22.09
END OF SUBAEEl~ CHANNEL FLOW HYDRAUl.ICS:
DEPTH (FEET) -0.22 FLOW VELOCITY(FEET/SEC.) 3.86
LONGEST FLOWPATH FROM NODE 120.00 TO NODE 180.00 = 1051.00 FEET.
****************************************************************************
jJ'LOW PROCESS FROM NODE 176.00 TO NODE 180.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=====~====~========================Q========================:====~~======~~~~
100 YEAR RAINFALL IN'l'ENSI'fY (INCH/HOUR) = 4.543
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 81
AREA-AVERJ.\GE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) -0.48
TOTAL AREA (ACRES) -14.19 TOTAL RUNOFF(CFS) -22.56
TC(MIN.) m 10.02
*******~*******************************************************************.
FLOW PROCESS FROM NODE 178.00 '1'0 NODE 180.00 IS CODE -81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
~=========~=~~=~=====================c=========================~~=~=~~======
100 YEAR RAINFALL IN'fENSI'rY (INCH/HOUR) = 4.543
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS »D"
S.C.S. CURVE NUMBER (AMC II)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.39
TOTAL AREA(ACRES) = 14.58
81
= 0.3500
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
0.62
23.18
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TC(MIN.) = 10.02
=============~==============================================================
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
14.58 TC(MIN.) =
23.18
10.02
=========~==========~g==~===m=~======================================~==~===
======================~=================~==~===~=~=~================~=======
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I-
I
I
I,
I
I
I'
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite SOO
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330 -THE BRIDGES A'I' AVIARA *
* EXISTING CONDITIONS, SYSTEM 130 *
* 100 YEAR STORM EVENT *
**************************************************************************
FILE NAME: S130EIOO.DAT
TIME/DATE OF STUDY: 10:51 07/22/2008
--------~-------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) '" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 1S.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR ,RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE I SIDE/ WAY (FT) (FT) (PT) (FT) (n)
=== ====~ ========= ===========~===== ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONS1'RAIN'l'S:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth)'''(Velocity) Constraint .. 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.~'
********************'*******************************************************
FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 22
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
===m==~===~======~~===~===g============~====~===============================
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D~
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) -5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) 0.87
TOTAL AREA (ACRES) = 0.14 TOTAL RUNOFF(CFS) 0.87
****************************************************************************
FLOW PROCESS FROM NODE 132.00 TO NODE 134.00 IS CODE = 61
»»>COMPUTE S'rREET FLOW TRAVEL TIME THRU SUBAREA«<<<
»»> (STANDARD CURB SECTION USED)««<
===========c=================~~==============================c==============
UPSTREAM ELEVATION (FEET) = 272.00 DOWNSTREAM ELEVATION(FEET) ... 246.00
STREET LENGTH (FEET) = 767.00 CURB HEIGHT (INCHES) = 6.0
STREET HALFWIDTH(FEET) -51.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) ... 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREE'r PARKWAY CHOSSFALL(DECIMAl.) 0.020
Manning's FRICTION FAC'I'OR for St:reetflow Section(curb-to-curb)'" 0.0150
Manning's FRIC'l'ION FACTOR for J3ack-or-Walk Flow Secti.on "" 0.0200
**TRAVEL 'rIME COMI?U'l'ED USING ES'l'IMA'rED FLOW (CFS) =-3.32
STREET FLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.30
HALFSTREET FLOOD WIDTH (FEET) -8.67
AVERAGE FLOW VELOCI'I'Y(FEET/SEC.) "" 3.82
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.14
STREE'l' FLOW 'rRAVEL TIME(MIN.) '" 3.35 Tc(MIN.) "" 8.35
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5 .112
GENERAL INDUSTRIAL RUNOFF COEFFICIENT .... 8700
SOIL CLASSIFICA'I'ION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 97
ARll:A-AVERAGE RUNOFF COll:FFICIENT == 0.870
SUBAREA AREA(ACHES) 1.09 SUBAREA RUNOFF(CFS) = 4.85
To'rAL ARJl:A (ACRES) '" 1. 23 PEAK FLOW RA'l'E (CFS) = 5.4"/
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) -0.34 HALFSTREET FLOOD WIDTH (FEET) = 10.75
FLOW VELOCITY(FEET/SEC.) -4.30 DEPTH*VELOCITY(FT*FT/SEC.) -1.47
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 134.00 = 767.00 FEET.
*****'**********************'***********************************************
FLOW PROCESS FROM NODE'. 134.00 'ro NODI~ 149.00 IS CODE -31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
ELEVATION DA'l'l~: UJ?S'l'REAM(FEET) "" 240.00 DOWNSTREAM(FEE'r)
FLOW LENGTH (FEET) -208.00 MANNING'S N -0.013
ESTIMATED PIPE DIAME'l'ER (INCH) INCRE]'\SED '1'0 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 15.16
ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES =
PIPE-FLOW (CFS) = 5.47
1
212.00
I
'I
I
'I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) =
LONGEST FLOWPATH FROM NODE 130.00 TO NODE
8.58
149.00 '" 975.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 134.00 TO NODE 149.00 IS CODE -1
-----------------------------------------------------------~----~~----------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
==============================~========~~~==============================F===
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 8.58
RAINFALL INTENSITY (INCH/1-JR) '" 5.02
TOTAL STREAM AREA(ACRES) = 1.23
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.47
**********************************************************~**********~******
FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 7 . ---------------------------------------------------------------------~---------
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN)" 14.59 RAIN INTENSITY (INCH/HOUR) ... 3.57
TOTAL AREA(ACRES) = 17.63 TOTAL RUNOFF (CFS) ~ 14.40
*********************************************************************'******
FLOW PROCESS FROM NODE 14 0.00 TO NODE 149.00 IS CODE = 31
, -----------------------------------------------------------------------------
»»>COMPUTE PIPE-FLOW TRAVEL 'l'IME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
~=================~==============g============================~============~
ELEVATION DATA: UPSTREAM (FEET) ~ 222.00 DOWNSTREAM (FEET) =
FLOW LENGTH (FEET) = 282.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 11.96
ESTIMATED PIPE DIAMETER (INCH) -18.00
PIPE-FLOW (CFS) = 14.40
0.39
NUMBER OF PIPES =
212.00
1
PIPE TRAVEL 'rIME (MIN.) ...
LONGEST FLOWPATH FROM NODE
Tc(MIN.) ""
0.00 TO NODE
14.98
149.00 282.00 FEET.
*************************************************************~~*******~*****
FLOW PROCESS FROM NODE 149.00 'fO NODE 149.00 IS CODE ~ 81
----------------------------------------------------------------------------
»>>>ADDITION OF SUBAREA '1'0 MAINLINE PEAI< FLOW«<<<
=~~===============~~========g=====~=====================================z===
100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) "" 3.505
RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100
SOIL CLASSIFICATION IS »D»
S.C.S. CURVE NUMBER (AMC II) = 82
AREA-AVERAGE RUNOFF COEFFICIENT = 0.2406
SUBAREA AREA(ACRES) = 1.20
TOTAL AREA(ACRES) ~ 18.83
TC(MIN.) = 14.98
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) -=
1.72
15.88
**********************~*******~*********************************************
FLOW PROCESS FROM NODE 140.00 TO NODE 149.00 IS CODE ... 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================~=====~=========
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 14.98
RAINFALL INTENSITY (INCH/HR) = 3.50
'roTAL S'l'REAM AREA (ACRES) = 18.83
PEAK FLOW RATE (CFS) AT CONFLUENCE = 15.88
** CONFLUENCE DATA * 'k
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 5.47 8.58 5.023
2 15.88 14.98 3.505
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE 'k *
S'l'REAM RUNOFF Tc INTENSITY
NUMBER (CfS) (MIN. ) (INCH/HOUR)
1 14.56 8.58 5.023
2 19.70 14.98 3.505
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
AREA
(ACRE)
1. 23
18.83
RATIO
PEAK FLOW RATE (CFS) 19.70 Tc(MIN.) = 14.98
TOTAL AREA(ACRES) = 20.06
LONGEST nOWPA'l'H FROM NODE 130.00 TO NODE 149.00 "" 975.00 fEET.
====================c=======================================================
END OF STUDY SUMMARY:
TOTAL, AREA (ACRES) =
PEAK FLOW RATE (CFS) = 20.06 TC(MIN.) =
19.70
14.98
==~~========~========c====~========================~========================
==============~================~========~==========~======c========~=~====~=
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***********************************************************************'****
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes}
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* EXISTING CONDITIONS, SYSTEM 190 *
* 100 YEAR STORM EVENT *
**************************************************************************
FILE NAME: S190E100.DAT
TIME/DATE OF' STUDY: 07: 52 07/23/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES)" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAJd METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PAR1<-HEIGHT WIDTH LIP HIKE FAC'l'OR
NO. (FT) (F'!') SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
~g= ====~ ======~== =========~======~ ====== ===== ====== =====:==
3. 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET fLOW-DEJ?'fH CONSTRAINTS:
1. Relative Flow-Depth -0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint"" 6.0 (FT*F'l'/S)
*SIZE PIPE WITH A now CAPACITY GREATER '£HAN
OR EQUAL TO THE UPS'l'REAM TRIBUTARY PIPE.';"
****************************************************************************
FLOW PROCESS FROM NODE 190.00 TO NODE 195.00 IS CODE ~ 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 83
INITIAL SUBAREA FLOW-LENGTH(FEET) = 46.00
UPSTREAM ELEVATION(FEET) c 263.00
DOWNSTREAM ELEVA'rrON (FEE'l') = 257.00
ELEVATION DIFFERENCE (FEET) = 6.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.250
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINF]'\LL IN'rENSITY(INCH/HOUR) ... 7.114
NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
SUBAREA RUNOFF (CFS) = 0.12
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) '" 0.12
••••••• * •• *.*.** •••••••• ** ••••• ** ••• *.** •• **** •• ****************************
FLOW PROCESS FROM NODE 195.00 '1'0 NODE 200.00 IS CODE ~ 51
»»>COMPUTE 'l'RAPEZOIDAL CHANNEL FLOW«<<<
>>>>>TRAVELTIME 'rHRU SUBAREA (EXISTING ELEMENT) ««<
==~=~==============c~~~~=m==================================~===~===========
ELEVATION DATA: UPSTREAM (FEET) -257.00 DOWNSTREAM (FEET) = 220.00
CHANNEL LENGTH THRU SUBAREA (FEET) = 273.00 CHANNEL SLOPE -0.1355
CHANNEL BASE(FEE:'n =: 5.00 "Z" b~ACTOR = 99.000
MANNING'S FAC'l'OR .. 0.030 MAXIMUM DEP'L'H (FEET) = 1.00
100 YEAR RAINFALL IN'l'ENSI'l'Y (INCH/HOUR) = 6.229
OPEN BRUSH FAIR COVER RUNOF'F COEIJ'FICIENT = .3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) c 83
'l'RAVEL TIME COMJ?U'l'ED USING ESTIMATED FLOW (CPS) ... 2.84
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) -2.40
AVERAGE FLOW DEPTH(FEE'l') '" 0.09 ~rRAVEL TIME(MIN.) 1.89
'l'c(MIN.) = 6.14
SUBAREA AREA(ACRES) = 2.45 SUBAREA RUNOFF(CFS) = 5.34
AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
TOTAL AREA(ACRES) ~ 2.50 PEAK FLOW RATE(CFS) = 5.45
END OF SUBAREA CHANNIl:L FLOW HYDRAULICS:
DEPTH (FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 3.04
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 =
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RA'I'E(CFS)
2.50 TC(MIN.) =
5.45
END OF' RATIONAL METHOD ANALYSIS
6.14
319.00 FEET.
I
,I
I
I
I
I
I
I
I
I
,'I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
******************************************************************~*********
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* EXISTING CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 210 *
**************************************************************************
FILE NAME: S210EI00.DAT
TIME/DATE OF STUDY: 15:46 07/22/2008
------------------------------------------------------------------------~---
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPI'l'ATION (INCHES)'" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE'" 0.85
SAN DIEGO HYDROLOGY MANUAL "e"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE/SIDE/WAY (PT) (FT) (E"T) (FT) (n)
=== ===== ==~==~=== ======~==~~~====~ ==~=~= =~==~ §===== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONS'l'RAINTS:
1. Relative Flow-Depth. = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint'" 6.0 (FT\\"FT/S)
·SIZE PIPE WITH A FLOW CAPACITY GREA'IIER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS ~~ROM NODE 210.00 11'0 NODE 215.00 IS CODE = 22
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "D"
S . C. S. CURVE NUMBER (AMC n.) = 81
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) = 0.15
TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF (CFS) 0.15
****************************************************************************
FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
~==========================================================================~
ELEVATION DATA: UPSTREAM (F'EE'1') = 257.00 DOWNSTREAM (FEET) = 191.00
CHANNEL LENGTH THRU SUBAREA (FEET) -355.00 CHANNEL SLOPE 0.1859
CHANNEL BASE (FEET) == 5.00 HZ" FACTOR = 99.000
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) ~ 1.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.797
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) == 81
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) ... 4.29
'!'RAVEL TIME '1'HRU SUBAREA BASED ON VELOCITY (FEET/SEC.) 3.17
AVERAGE FLOW DEP'I'H(FEET) 0.09 Tl~VEL TIME(MIN.) '" 1.87
Tc(MIN.) ~ 6.87
SUBAREA AREA(ACRES) = 4.04 SUBAREA RUNOFF(CFS) = 8.20
AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
TOTAL AREA (ACRES) == 4.10 PEAr< FLOW RA'rE(CFS) .., 8.32
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 3.74
LONGEST FLOWPATH FROM NODE 210.00 TO NODE 220.00 == 355.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 218.00 TO NODE 220.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAr< FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) '" 5.797
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 81
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) = 0.~9 SUBAREA RUNOFF(CFS) ro 0.99
TOTAL AREA (ACRES) = 4.59 TOTAL RUNOFF(CFS) ~ 9.31
TC(MIN.) = 6.87
****************************************************************************
FLOW PROCESS FROM NODE 219.00 '1'0 NODE 220.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAr< FLOW««<
=~========~=================~=============~===~=====================~=~~====
100 YEAR RAINFALL INTENSI',ry (INCH/HOUR) = 5.797
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
ARE]'\-lWERAGE RUNOFF COEFFICIEN'!,
81
'" 0.3500
SUBAREA AREA(ACRES) 0.50
TOTAL AREA(ACRES) = 5.09
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
1. 01
10.33
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
,I
I
I
I·
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
TC(MIN.) = 6.87
==========================~=======g================~========================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
PEAK FLOW RATE(CFS) =
5.09 TC(MIN.) =
10.33
6.87
================================~===========================================
=====================================================================~======
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL 'METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(e) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
'1< 3330.00 -THE BRIDGES AT POINSETTIA .1<
* EXISTING CONDITIONS, SYSTEM 230 *
* 100 YEAR STORM EVENT *
**************************************************************************
FILE NAME: S230EI00.DAT
TIME/DATE OF STUDY: 16:17 07/23/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GAADIEN'rS(DECIMAL) TO USE FOR FRICTION SLOPE"" 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-V-ALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
'kUSER-DEFINED STREE'1'-SEC'l'IONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSS FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP I-lIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ==~============== ====== ====== ===== =====~~
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.03130.167 0.0150
GLOBA·L STREET FLOW-DEP'I'H CONSTRAINTS:
1. Relative Flow-Depth -0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 6.0 (F'l"kFT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER 'l'HAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 230.00 '1'0 NODE 235.00 IS CODE = 22
--------------------------------------------------------------------~-------
. >>>>>RATIONAL METHOD INI'l'IAL SUBAREA ANALYSIS<<<<<
=================~~==~===~==================================~===============
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~ 81
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 0.35
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF (CFS) = 0.35
•••••••••••••••••••••••• * •••• ** ••• ****** ••• *.*.**.**.*.*.**** •• **.*.********
FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 81
»»>ADDI'rION OF SUBAREA TO MAINLINE PEAK FLOW«<<<
==================~=========================================================
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 7.114
ANNUAL GRASS (DRYLAND) GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.65
TOTAL AREA(ACRES) = 0.79
TC(MIN.) = 5.00
80
= 0.3500
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF(CFS) =
1. 62
1. 97
=======~===============================~===m================================
END OF STUDY SUMMARY:
TOTAL1AREA(ACRES) Q
PEAK FLOW RATJ!:(CFS)
0.79 TC(MIN.) ==
1. 97
END OF RA'I'IONAL ME'l'HOD ANALYSIS
5.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(0) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA * * EXISTING CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 240 *
**************************************************************************
FILE NAME: S240EI00.DAT
'rIME/DATE OF STUDY: 17: 26 07/21/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES)'" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCEN'l' OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE == 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RA'l'IONAL METHOD
NOTE: OSE MODIFIED RATIONAL ME'rHOD PROCEDURES FOR CONl:"'LUENCE ANALYSIS
*USER-DEFINED S'rREET-SECTIONS FOR COUPLED PIPEFLOW AND S'rREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSITALL IN-/ OUT-/PARK-HEIGH'r WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (JrT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street:. Flow Depth) -(,J'op-oi-Curb)
2. (Depth) * (Velocity) Constraint =: 6.0 (F'£*F'I'/S)
·SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL '1'0 THE tJPS'l'REAM TRIBUTARY PIPE. 'A'
****************************************************************************
FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE = 22
>>>>>RA'rIONAL METHOD INI'l'IAL SUBAREA ANALYSIS««<
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) 81
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF (CFS) = 0.32
TOTAL AREA (ACRES) = 0.13 TOTAL RUNOFF(CFS) 0.32
*********************************************************************.******
FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE -51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
~~=c===============~============~====================~======================
ELEVATION DATA: UPSTREAM (FEET) = 266.00 DOWNSTREAM (FEET) = 229.00
CHANNEL LENGTH 'fHRU SUBAREA (FEET) = 172.00 CHANNEL SLOPE"" 0.2151
CHANNEL BASE (FEET) '" 5.00 "Z" FACTOR = 99.000
MANNING' S F'AcrrOl~ = 0.030 MAXIMUM DEPTH (FEEfr) "" 1. 00
100 YEAR RAINFALL IN'l'ENSI'I'Y(INCH/HOUR)" 6.357
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) 81
TRAVEL 'I'IMB COMPUTED USING ESTIMATED FLOW (CFS) = 2.71
'l'RAVEL TIME 'rHRU SUBAREA BASED ON VELOCI'l'Y(FEE'I'/SEC.) 3.01
AVERAGE FLOW DEP'l'H (FEET)'" 0.07 'l'RAVEL 'l'IME (MIN.) c: 0.95
Tc(MIN.) ~ 5.95
SUBAREA AREA(l·~CI~ES) 2.15 SUBAREA RUNOFJ!'(CFS) 4.78
AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
'r'OTAL AREA (ACRES) =: 2.28 PEAr<: FLOW RA'I'E (CPS) '-" 5 • 0 7
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) -0.10 FLOW VELOCITY(FEET/SEC.) = 3.62
LONGEST FLOWPATH FROM NODE 240.00 TO NODE 250.00 =
END OF STUDY SUMMARY:
TOTAL ARE]'\ (l-l.CRES)
PE:A[<: now RA'rE (C FS)
2.28 'l'C(MIN.)-=
5.07
END OF RATIONAL METHOD ANALYSIS
5.95
172.00 FEE'r.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
" I
I
I 3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX 3
Proposed Conditions Rational Method Computer Output
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
**************************************************************~*************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS, SYSTEM 100 *
* 100 YEAR STORM EVENT *
**************************************************************************
FILE NAME: SlOOPIOO. DArl'
TIME/DATE OF STUDY: 16:20 07/23/2008
---------------------------------------------~------------------------------USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-------------------------------------------------------------------~--~-----2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) ~ 100.00
6-HOUR DURA'UON PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE'" 0.95
SAN DIEGO, HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARI<-HEIGHT WIDTH LIP H11<E FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
;1. 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL S'l'REET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth ~ 0.00 FEET
os (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint -6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACI'rY GREATER THAN
OR EQUAL TO THE UPSTREAM TRlBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21
----------------------------------------------------------~---.--------------
»»>RATIONAL ME'l'HOD INITIAL SUBAREA ANALYSIS«<<<
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) g 81
INITIAL SUBAREA FLOW-LENGTH(FEET) a 46.00
UPSTREAM ELEVATION (F'EE'r) == 314.20
DOWNSTREAM ELEVATION(FEET) -312.00
ELEVATION DIFFERENCE (FEET) -2.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.435
100 YEAR RAINFALL IN'l'ENSI'l'Y(INCH/HOUR) = 6.741
SUBAREA RUNOFF(CFS) = 0.12
TOTAL AREA (ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.12
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 111.00 IS CODE = 51
»»>COMPU'l'E ~l'RAPEZOIDAL CHANNEL FLOW«<<<
>>>>>rrRAVELTIME THRU SUBAREA (EXISTING ELEMEN'I') ««<
ELEVATION DA'I'A: UPSTREAM (FEET) "" 312.00 DOWNSTREAM (FEET) '" 256.00
CHANNEL LENGTH THRU SUBAREA (FEET) -525.00 CHANNEL SLOPE w 0.1067
CHANNEL BASE(FEE'l') == 5.00 "Z" FAC'l'OR'" 99.000
MANNING'S FAC'fOR ... 0.030 MJ.\XIMUM DEPTH (F'EET) = 1.00
100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) = tJ • 622
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) -81
'l'RAVEL nME COMPU'I'ED USING ESTIMATED FLOW (CFS) ... 1.75
TFJWEL TIME r1'l-Il<'U SUBAREA BASED ON VELOCITY (FEE'l'/SEC.) "" 2.03
AVEl<.J.~GE FLOW DEI?~rl1(F'EE'1') '" 0.07 'rRAVEL TIME(MIN.):= 4.32
Tc(MIN.) = 9.76
SUBAl<.J~A AREA(J.\CRES) = 1.95 SUBAREA RUNOn"(CFS) 3.15
AREl·~-AVERAGE l<.UNOFF COE',J:FICIENT 0.350
'l'O'l'AL AREA (ACRES) .., 2.00 PEl.l.I< FLOW RATE (CFS) = 3.2<1
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTI-I(FEE'1') = 0.09 FLOW VELOCITY(FEET/SEC.) 2.39
LONGEST FLOWPATH FROM NODE 100.00 '1'0 NODE 111.00-571.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 111.00 TO NODE 115.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TI<.AVEL 'l'1ME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) -256.00 DOWNSTREAM (FEET) =
FLOW LENGTH (FEET) = 101.00 MANNING'S N -0.013
ESTIMATED PIPE DIAM8TER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) -14.20
ESTIMATED PIPE DIAMETER(INCH) -18.00
PIPE-FLOW (CFS) = 3.2~
NUMBER OF PIPES ='
0.12 Tc(MIN.) =
1
238.00
PIPE TRAVEL, 'rIME (MIN.) ""
LONGEST FLOWPATH I:ROM NODE; 100.00 TO NODE
9.88
115.00 675.00 FEET.
************************~***************************************************
FLOW l?ROCI!:8S FROM NODE 113.00 '1'0 NODE 115.00 IS CODE ~ 81
. »>>>ADDl'l'ION OF' SUBAREA '1'0 MAINLINE PJ!:].I.I< FLOW«<<<
1 00 YEAR RAINFJ.\LL INTENSI'l'Y (INCH/HOUR) ::: 4.586
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
GENERAL INDUSTRIAL RUNOFF COEFFICIENT
SOIL CLASSIFICATION IS "D"
= .8700
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.13
TOTAL AREA(ACRES) = 2.13
TC(MIN.) = 9.88
97
.. 0.3817
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) ..
0.52
3.73
****************************************************************************
FLOW PROCESS FROM NODE 115.00 TO NODE 135.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 238.00 DOWNSTREAM (FEET) =
FLOW LENGTH (FEET) = 145.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES
PIPE-FLOW VELOCI'I'Y (FEET ISEC. ) 6.00
ESTIMATED PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW (CFS) = 3.73
NUMBER OF PIPES =
0.40 Tc(MIN.) =
1
236.00
PIPE TRAVEL TIME(MIN.) ~
LONGEST FLOWPATH FROM NODE 100.00 TO NODE
10.28
135.00 "" 820.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 115.00 '1'0 NODE 135.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
================~=====================~==~~==========~=====================~
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.28
RAINFALL INTENSITY (INCH/HR) = 4.47
TOTAL STREAM AREA (ACRES) = 2.13
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.73
*************'**************************************************************
FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 22
----------------------------------------------------~-----------------------»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=============~~=====~=~~~==~~=~===============~==~====~==============~======
GENERAL INDUS'['RIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) = 0.87
TOTAL AREA (ACRES) = 0.14 TOTAL RUNOFF(CFS) = '0.87
****************************************************************************
FLOW PROCESS FROM NODE 122.00 TO NODE 124.00 IS CODE = 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STANDARD CURB SECTION U8ED)««<
==========~=====~~===~===~=====~=====~==========================~==~========
UPSTREAM ELEVATION (FEET) = 272.00 DOWNSTREAM ELEVATION (FEET) = 242.40
STREET LENGTH (FEET) = 987.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) -51.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRIC'I'ION FACTOR for Streetflow Section (curb-to-curb)'" 0.0150
Manning's FRIC'l'ION FAC'l'OR for Back-of-Walk Flow Section = 0.0200
**TRAVEL TIME COMPU'l'ED USING ES'l'IMATED FLOW (CFS) == 3.77
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.31
HALFSTREET FLOOD WIDTH (FEET) -9.42
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.75
PRODUCT OF DEI?TH&VELOCITY (FToI'F'J:'/SEC.) 1.18
STREET FLOW '1'RAVEL TIME (MIN.) = 4.39 Tc (MIN.)" 9.39
100 YEAR RAINE"Al,L INTENSITY (INCH/HOUR) = 4.739
GENERAL INDUSTRIAL RUNOFF COEFFICIEN'I' =: .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
Al~EA-AVERAGE RUNOF'F COEFFICIENT 0.870
SUBAREA AREA (ACRES) 1.38 SUBAREA RUNOFF(CFS) = 5.69
TOTAL AREA (ACRES) ,.,. 1.52 J?EAI< IT'LOW RATE (CFS) 6.27
I~ND OF SUBAREA s'rREET now HYDRAULICS:
DEPTH (FEET) -0.36 HALFSTREET FLOOD WIDTH (FEET) = 11.67
FLOW VELOCITY(FEET/SEC.) -4.23 DEPTH*VELOCITY(FT*FT/SEC.) -1.52
LONGEST FLOW PATH FROM NODE 120.00 TO NODE 124.00 = 1132.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 124.00 TO NODE 135.00 IS CODE = 31
>>>>>COMPUTE PIPE-E'LOW TRAVEL TIME 'l'HRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVA'I'ION DATA: UPSTREAM (!.'"EE'r) ... 237.00 DOWNSTREAM (E'EE'I') ... 236.00
E'LOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.B INCHES
PIPE-ITLOW VELOCITY(FEE'r/SEC.) '" 10.18
ESTIMATED PIPE DIAMETER(INCH) -18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 6.27
PIPE TRAVEL 'l'IME (MIN.) "" 0.04 Tc (MIN.)"" 9.43
LONGEST FLOWPATH E'ROM NODE 120.00 TO NODE 135.00 M 1157.00 FEET.
********************'**************'****************************************
FLOW PROCESS FROM NODE 124.00 TO NODE 135.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS ~ 3
CONFLUENCE VALUES USED FOIl. INDEPENDENT STI\EAM 2 ARE:
TIME 01:" CONCEN'I'RATION(MIN.) 9.43
RAINFALL IN'I'ENSITY (INCH/HH)" 4 . 7 3
TO'.I'AL s'rREAM AREA (ACRES) "" 1.52
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.27
****************************************************************************
FLOW PROCESS FROM NODE 130.00 TO NODE 133.00 IS CODE ~ 22
, -----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=====================c=======~===========================================~m=
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 94
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 7.114
SUBAREA RUNOFF(CFS) 6.35
TOTAL AREA (ACRES) = 1.13 TOTAL RUNOFF(CFS) = 6.35
****************************************************************************
FLOW PROCESS FROM NODE 133.00 '1'0 NODE 135.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< .
ELEVATION DA'1'A: UPSTREAM (FEET) .,. 237.00 DOWNSTREAM (FEET) 236.00
FLOW LENGTH(F'EET)" 58.00 MANNING'S N:= 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.50
ESTIMATED PIPE DIAME~rER(INCH) '" 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 6.35
PIPE TRAVEL TIME(MIN.) ~ 0.13 Tc(MIN.) ~ 5.13
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 135.00 58.00 FEET.
***************~************************************************************
FLOW PROCESS FROM NODE 133.00 TO NODE 135.00 IS CODE = 1
--------------------------------------------.------~-------------~-~---------»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
TIME OF CONCEN'1'RATION (MIN. ) 5.13
RAINFALL INTENSI'rY(INCH/HR) '" 7.00
TOTAL STREAM AREA(ACRES) = 1.13
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.35
y"* CONFLUENCE DATA * ,'"
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 3.73 10.28 4.469
2 6.27 9.43 4.726
3 6.35 5.13 6.998
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 3 STREAMS.
'k" PEAI< FLOW RATE TABLE ;"k
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
AREA
(ACRE)
2.13
1. 52
1.13
RATIO
1
2
3
11. 62
13.97
13.71
5.13
9.43
10.28
COMPUTED CONFLUENCE ESTIMATES ARE
PEAl< fLOW RA'm (CFS) = 13.97
TOTAL AREA (ACRES) = 4.78
6.998
4.726
4.469
AS FOLLOWS:
Tc(MIN.) = 9.43
LONGEST FLOWPATH FROM NODE 120.00 'ro NODE 135.00 = 1157.00 fEET.
****************************************************************************
FLOW PROCESS FROM NODE 135.00 TO NODE 145.00 IS CODE = 31
----------------------------------------------------------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»>>>USING COMPUTER-ES'rIMA'l'ED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) Q 236.00 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET) "" 29.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 11.76
ESTIMATED PIPE DIAMETER (INCH) '" 18.00 NUMBER OF PIPES =
PIPE-FLOW (CFS) = 13.97
0.04 Tc(MIN.) = 9.47
1
235.00
PIPE 'I'RAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 120.00 'ro NODE 3.45tOO = 1186.00 FEE'l'.
****************************************************************************
FLOW PROCESS FROM NODE 135.00 TO NODE 145.00 IS CODE ." 1 ,
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
=~~====~==~==============~~===~~======c=============================c=======
TOTAL NUMBER OF STREAMS = 2
CONFLUE:NCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRA'rION (MIN. ) 9.47
gAINfALL INTENSI'l'Y (INCH/HR) == 4.71
TOTAL STREAM AREA (ACRES) = 4.78
PEAK FLOW RATE (CFS) AT CONfLUENCE == 13.97
****************************************************************************
FLOW PHOCESS FROM NODE 140.00 TO NODE 145.00 IS CODE <= 7
»»>USEH SPECIFIED HYDROLOGY INFORMATION AT NODE««<
USER-SPECIfIED VALUES ARE AS FOLLOWS:
'l'C(MIN)" 14.59 RAIN I N'rENS I'rY (INCH/HOUR) 0:: 3.57
TOTAL AREA(ACRES) B 17.63 TOTAL HUNOFF(CFS) m U .40
*********'******************************************************************
FLOW PH-OCESS FROM NODE 140.00 '1'0 NODE 145.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM fOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
'rIME: Of CONCENTRATION (MIN. ) 14 .59
RAINFALL INTENSI'rY (INCH/HR) = 3.57
TO'l'AJ., STREAM AgEA (ACRES) == 17.63
PEl·\I< FLOW RATE (CFS) AT CONFLUENCE = 14 . 40
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOOR) (ACRE)
1 13.97 9.47 4.713 4.78
2 14.40 14.59 3.566 17.63
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLOENCE FORMULA USED FOR 2 STREAMS.
H PEAK FLOW RA1'E TABLE **
STRj!:AM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 23.32 9.47 4.713
2 24.97 14.59 3.566
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 24.97 Tc(MIN.) = 14.59
TOTAL AREA(ACRES) = 22.41
LONGEST FLOWPATH FROM NODE 120.00 TO NODE 145.00 "" J,18'6.00 FEET.
***************~************************************************************
FLOW PROCESS FROM NODE 145.00 TO NODE 149.00 IS CODE ~ 31
>>>>>COMPUTE PIPE-FLOW TRAVEL 1'IME 'l'HRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
==~===========~===~m======~====================~=~==========~=====~======~~=
ELEVATION DATA: UPSTREfIM(FEET)"" 235.00 DOWNSTREAM (FEET) "" 211.60
FLOW LENGTH(FEE'r) "" 177.00 MANNING'S N = 0.013
DEP'rH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 22.58
ESTIMATED PIFE DIAMETER (INCH) '" 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 24.97
PIPE TRAVEL TIME (MIN.)'" 0 .13 Tc (MIN.) '" 14.72
LONGEST FLOW PATH FROM NODE 120.00 TO NODE 149.00 1363.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 149.00 fro NODE 149.00 IS CODE = 81
---------------------------------------------------~-----------~-----~------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) "" 3.545
RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100
SOIL CLASSIFICA'rION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.30
82
= 0.3166
0.44
TOTAL AREA(ACRES) = 22.71
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) -25.49
TC(MIN.) = 14.72
END OF STUDY SUMMARY:
TOTAL AREA(ACRES). =
PEAI< FLOW RA'rE (CFS)
22.71 TC(MIN.) =
25.49
14.72
===~=~============~===========~====a~====~=============~~=~=================
END OF RA'l'IONAL METHOD ANALYSIS
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM' PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
*********************-"****_ DESCRIPTION OF STUDY ****-"*-1<-"*****-11*****-,,*-1<,**** ~
* 3330.00 -THE BRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS •
* 100 YEAR STORM EVENT, SYSTEM 200 *
**************************************************************************
FILE NAME: S200P100.DAT
TIME/DATE OF STUDY: 11:22 07/22/2008
OSER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) "" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE ~ 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint'" 6.0 (FT*F'l'/S)
-"SIZE PIPE WITH A FLOW CAPACITY GREA'l'ER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 22
»»>RATIONAL ME'l'HOD INITIAL SUBAREA ANALYSIS««<
RESIDENTIAL (2.9 DU/AC OR LESS) RUNOFF COEFFICIENT = .4900
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 85
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 1.08
TOTAL AREA (ACRES) = 0.31 TO'1'AL RUNOFF (CFS) .,. 1. 08
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 210.00 IS CODE = 31
»>>>COMPUTE PIPE-FLOW 'l'RAVEL 'rIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
========================================~===~~m==~==~=======================
ELEVATION DATA: UPSTREAM (FEET) = 239.80 DOWNSTREAM (FEET) = 229.00
FLOW LENG'I'H(FEET)'" 360.00 MANNING'S N '" 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.56
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) "" 1.08
PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 6.08
LONGES'r FLOWPATH FROM NODE 200.00 TO NODE 210.00'" 360.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 205.00 '1'0 NODE 210.00 IS CODE -81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RIUNFALL INTENSITY (INCH/HOUR) "" 6.271
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900
SOIL CLASSIFICA'frON IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) = 0.85
TOTAL AREA(ACRES) 1.16
TC(MIN.) = 6.08
94
r.::: 0.7098
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) ~
4.21
5.16
****************************************************************************
FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINF'ALL INTENSITY (INCH/HOUR) 6.271
GENERAL INDUS'rRIAL RUNOFF COEFFICIEN'l' ..,. .8700
SOIL CLASSIFICA'l'ION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.08
'I'O'l'AL AREA (ACRES) ." 1 . 2 4
TC(MIN.) -6.08
97
'" 0.7202
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) g
0.44
5.60
****************************************************************************
FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE -81
>>>>>ADDI'l'ION OF SUBAREA 'ro MAINLINE PEJ.\K FLOW<<<<<
100 YEAR RAINFALL IN'rENSITY (INCH/HOUR) ... 6.271
GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700
SOIL CLASSIFICATION IS "0"
I
'I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.08
TOTAL AREA(ACRES) = 1.32
TC(MIN.) = 6.08
97
=0.7292
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF(CFS) = 0.44
6.04
****************************************************************************
FLOW PROCESS FROM NODE 220.00 TO NODE 215.00 IS CODE = 81
--------------------------~-------------------------------------------------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
==========================~===================~===================m=========
100 YEAR RAINFALL INTENSITY (INCH!HOUR) "" 6.271
RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.90
TOTAL AREA(ACRES) = 2.22
TC(MIN.) = 6.08
94
... 0.7539
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
4.46
10.49
*********************************************************.****************~.
FLOW PROCESS FROM NODE 215.00 TO NODE 225.00 ~S CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 229.00 DOWNSTREAM (FEET) 225.00
FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 13.93
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) ~ 10.49
PIPE 'rRAVEL 'rIME (MIN.).. 0.07 Tc (MIN.).. 6.15
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 225.00 422.00 FEET.
*************************'**************************************************
FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE =, 31
-----------------------------------------------------------~--~---~-~-------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=====~m==~=============================g======~===~==~========~~============
ELEVATION DA'l'A: UPS'l'REAM(FEET) "" 225.00 DOWNS '1' REAM (FEET) = 222.00
FLOW LENGTH (FEET) = 282.00 MANNING'S N -0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.82
ESTIMATED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 10.49
PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 6.84
LONGEST FLOW PATH FROM NODE 200.00 TO NODE 230.00 = 704.00 FEET.
******************************~*********************************************
FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
======~===========-======~===~~=============~================~=====~========
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 6.84
RAINFALL IN'l'ENSI'l'Y(INCH/HR) = 5.81
TOTAL STREAM AREA (ACRES) -2.22
PEAK IT'LOW RATE (CFS) AT CONFLUENCE "" 1 0 . 4 9
****************************************************************************
FLOW PROCESS FROM NODE 222.00 TO NODE 230.00 IS CODE ~ 21
»»>RATIONAL ME'l'l-IOD INI'l'IAL SUBAREA ANALYSIS««<
===mc=================~=====================================================
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS »0»
S.C.S. CURVE NUMBER (AMC II) = 81
INITIAL SUBAREA FLOW-LENGTH(FEET) -702.00
UPSTREAM ELEVATION (FEET) = 258.00
DOWNSTREAM ELEVATION(FEET) = 222.00
ELEVATION DIFFERENCE (FEET) = 36.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.829
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OV1I:RLAND FLOW LENG'l'H = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR rU\TNFALL INrl'ENSI'l'Y (INCH/HOUR) '" 5.327
SUBAREA RUNOFF(CFS) = 2.37
TOTAL AREA (ACRES) -1.27 TOTAL RUNOFF(CFS) 2.37
*'**************************************************************************
FLOW PROCESS FROM NODE 222.00 TO NODE 230.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
'I'IME OF CONCENTRATION (MIN.) =: 7.83
RAINFJ.\LL IN'l'ENSI'I'Y (INCH/HR) = 5.33
TOTAL STREAM AREA (ACRES) -1.27
PEJ.\I<: now RA'l'E (CFS) 1-\T CONFLUENCE =: 2.37
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 10.49
2 2.37
'rc
(MIN. )
6.84
7.83
INTENSI'rY
( INCH/HOUR)
5.810
5.327
AREA
(ACRE)
2.22
1. 27
RIUNFALL IN'l'li;NSn'y J-'lND 'l'1ME OF CONCEN'l'Rl.\'l'ION RATIO
CONl!'LUl~NCE FORMULA USED FOR 2 STREAMS.
'k ·A· PEI-\K
srl'REAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CF'S)
J2.56
11.99
'l'ABLE **
Tc
(MIN. )
6.8t]
7.83
INTENSITY
( INCH/HOUR)
5.810
5.327
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW AATE(CFS) = 12.56 Tc(MIN.) "" 6.84
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 3.49
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 230.00 = 704.00 FEET.
============================~~G====~~===========================~===========
END OF STUDY SUMMARY:
TOTAL AREA (ACRES) g
PEAK FLOW RATE(CFS)
3.49 TC(MIN.) =
12.56
6.84
========================================~=============~=====================
=================================================c=================~~=======
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
**********************************~*****************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE SRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 300 *
********************************~****************~************************
FILE NAME: S300PI00.DAT
TIME/DATE OF STUDY: 14:03 07/22/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) ~ 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOl'E: USE MODIFIED RA'l'IONAL ME'rHOD PROCEDURES FOR CONFLUENCE ANALYSIS
-kUSER-DEFINED STREET-SEC'l'IONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-I OUT-/PARI<-HEIGHT WIDTH LIP HII<E FACTOR
NO. (FT) (FT) SIDE; I SIDEI WAY (FT) (FT) (FT) (F'r) (n)
===== ========= ==============~~= =~=~=~ ====== ======~
1 41. 0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 ~.125 0.0150
GLOBAL STREB'l' FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth -1.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint == 10.0 (F'r-kFT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER 'rl-IAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*************~*******~******'***************************.*******************
FLOW PROCESS FROM NODE 300.00 TO NODE 302.00 IS CODE = 22
------------------------------------------------------------------------~---
»»>RATIONAL METHOD INITIAL SOBAREA ANALYSIS««<
RESIDENTIAL (1. DUlAC OR LESS) RUNOFF COEFFICIENT = .4100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBiR (AMC II) = 82
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINfALL IN'l'ENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) = 0.93
TOTAL AREA(ACRES) c 0.32 TOTAL RUNOFF (CFS) = 0.93
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 31
»>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=~========~=================-=========================================~=====
ELEVATION DATA: UPSTREAM (FEET) = 261.50 DOWNSTREAM (FEET) ~ 258.00
FLOW LENGTH (FEET) -158.00 MANNING'S N = 0.013
ES'l'IMATED PIPE DIAMETER (INCH) INCREASED '1'0 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) -4.76
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.93
PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 5.55
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 158.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 30<1.00 TO NODE 304.00 IS CODE ~ 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RIUNFALL INTENSITY (INCH/HOUR)'" 6.649
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF' COEFFICIENT
SUBAREA AREA(ACRES) ~ 1.15
TOTAL AREA(ACRES) = 1.47
TC(MIN.) = 5.55
94
"" 0.7073
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) ~
6.0~
6.91
************'***************************************************************
FLOW PROCESS FROM NODE 304.00 'l'O NODE 305.00 IS CODE -31
>>>>>COMPU'l'JE PIPE-FLOW TRAVEl, TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVA'1'ION DA'rJ~: UPS'l'EEAM(F8ET) "" 249.20 DOWNSTREAM(F'EE~l') ...
FLOW LENGTH (PEET) -32.00 MANNING'S N -0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.38
ESTIMATED PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW(CFS) -6.91
NUMBER OF PIPES
0.07 Tc(MIN.) = 5.62
1
248.70
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOW PATH FEOM NODE 300.00 '1'0 NODE 305.00 == J.90.00 FEE'r.
******'*'***'***************************************************************
now PROCESS FROM NODE 305.00 '1'0 NODE 305.00 IS CODE = 81
»»>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAI< FLOW««<
10~ YEJ.\R RAINFALl. INTENSITY (INCH/HOUR) "" 6.593
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.23
TOTAL AREA(ACRES) 1.70
TC(MIN.) "" 5.62
97
'" 0.7293
SUBAREA RUNOFF(CFS) ""
TOTAL RUNOFF(CFS) g
1.32
8.17
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 315.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=================~====~=================~===================~~===~==========
ELEVATION DATA: UPSTREAM (FEET) = 248.70 DOWNSTREAM (FEET) 243.00
FLOW LENGTH (FEET) = 229.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 9.17
ESTIMATED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) "" 8.17
PIPE TRAVEL TIME(MIN.) ~ 0.42 Tc(MIN.) = 6.04
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 315.00 419.00 FEET.
************************************************~***************************
FLOW PROCESS FROM NODE 307.00 'ro NODE 310.00 IS CODE ~ 81
--------------------------------------------------------------~---~---------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=================~===================~===========~=~~==========~==g~====~===
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 6.297
RESIDENTAIL (24. DU!AC OR LESS) RUNOFF COEFFICIENT = .7100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA (ACRES) 1.38
TOTAL AREA(ACRES) ~ 3.08
TC(MIN.) = 6.04
92
'" 0.7206
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF(CFS) =
·6.17
13.98
********************************************************~*******************
FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE ~ 81
------------------------------------------------------------------~-~----~-~
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
==================z=~===============================~==~=====~=~~=~~=~=====~
100 YEAR RAINFALL INTENSITY (INCH!HOUR) '" 6.297
LIMITED INDUSTRIAL RUNOFF COEFFICIENT = .8500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA (ACRES) 0.64
TOTAL AREA (ACRES) = 3.72
TC(MIN.) = 6.04
96
"" 0.7429
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF (CFS) =
3.43
17.40
****************************************************************************
FLOW PROCESS FROM NODE 310.00 TO NODE 315.00 IS CODE = ~1
------------------------------------------------------------~---------~-----
»>>>COMPUTE PIPE-FLOW, TRAVEL 'rIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
I
----------~~~-.......
============================================m=~===========================~=
ELEVATION DATA: UPSTREAM (FEET) c 242.50 DOWNSTREAM (FEET) = 242.30
FLOW LENGTH (FEET) = 19.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.8 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) = 7.94
ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 17.40
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 6.08
LONGES'f FLOWPATH FROM NODE 300.00 TO NODE 315.00 438.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 312.00 TO NODE 315.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
==================================~====================================~c===
100 YEAR RAINFALL IN'fENSI'rY (INCH/HOUR) = 6.270
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.41
TO'l'AL AREA (ACRES) = 4 . 13
TC(MIN.) ~ 6.08
97
.." 0.7555
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) -
2.24
19.56
****************************************************************************
FLOW PROCESS FROM NODE 315.00 'fO NODE 330.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=~=~=========mc====c==================c=====================================
ELEVATION DATA: UPSTREAM (FEET) = 242.30 DOWNSTREAM (FEET) 241.30
FLOW LENGTH(FEET) ~ 99.00 MANNING'S N = 0.013
DEPTH OF now IN 24.0 INCH PIPE IS 17.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 7.96
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES ~ 1
PIPE-FLOW (CFS) = 19.56
PIPE TRAVEL TIME(MIN.)'" 0.21 Tc(MIN.) ~ 6.29
LONGEST FLOWPA'l'H FROM NODE 300.00 '1'0 NODE 330.00 c: 537. 00 FEI~T.
********************************************************************'******~
FLOW PROCESS FROM NODE 320.00 'fO NODE 330.00 IS CODE ~ 81
>>>>>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAt< FLOW<<<<<
100 YEAR RAINFALL IN'l'ENSITY (INCH/HOUR) "" 6 .136
LIMITED INDUSTRIAL RUNOFF COEFFICIENT -.8500
SOIL CLASSIFICATION IS "0"
S . C . S. CURVE NUMBER (AMC II) = 96
AREA-AVERAGE RUNOFF COEFFICIENT ~ 0.7615
SUBAREA AREA(ACRES) 0.28 SUBAREA RUNOFF(CFS)
'l'OTAL AREA(ACRES) :: 4.41 'rOTAL l<.UNOFF(Cf'S) =
TC(MIN.) = 6.29
1. 46
20.61
************************************6***************************************
FLOW PROCESS FROM NODE 325.00 '1'0 NODE 330.00 IS CODE = 81
»>>>ADDI'l'ION OF SUBAREA TO MAINLINE PEAI< FLOW««<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
================================================================~==========~
100 YEAR RAINFALL INTENSITY (INCH/HOUR) :: 6.136
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) ~ 0.18
~OTAL AREA(ACRES) 4.59
TC(MIN.) = 6.29
97
= 0.7658
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) = 0.96
21. 57
****************************************************************************
FLOW PROCESS FROM NODE 330.00 TO NODE 350.00 IS CODE = 31
----------------------------------------------------------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=====m======~=========~~=~~=====~========================================~==
ELEVATION DATA: UPSTREAM (FEET)" 241. 30 DOWNSTREAM (FEET).... 238 .. 30
FLOW LENGTH (FEET) = 305.00 MANNING'S N = 0.013
OEPTH OF FLOW IN 24.0 INCH PIPE IS 19.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 7.93
ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 21.57
PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) ~ 6.93
LONGEST FLOWPA'rJ-I FROM NODE 300.00 TO NODE 350.00.. 842.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 330.00 TO NODE 350.00 IS CODE g 1
---------------------------------------------------------------------~------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
==============~=======================================~========~=~==========
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 6.93
RAINFALL INTENSITY (INCH/HR) = 5.76
TOTAL STREAM AREA(ACRES) = 4.59
PEAr<: FLOW RATE (CFS) A'l' CONFLUENCE'" 21.57
****************************************************************************
FLOW PROCESS FROM NODE 344.00 TO NODE 345.00 IS CODE = 22
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
GENJ!:RAL INDUSTRIAL RUNOFF COEFFICIENT"" . 8700
SOIL CLASSInCATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL IN'rENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) = 1.42
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) ~.42
****************************************************************************
FLOW PROCESS FROM NODE 342.00 TO NODE 345.00 IS CODE = 81
»»>ADDITION OJ~ SOBAREA TO MAINLINE PEAl< FLOW««<
==================~============================~============================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) ... 7.114
RESIDENTAIL (24. DU/AC OR LESS) .RUNOFF COEFFICIENT = .7100
SOIL CLASSIFICATION
S.C.S. CURVE NUMBER
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
'l'OTAL AREA (ACRES) I:
TC(MIN.) = 5.00
IS "D"
(AMC II)
COEFFICIENT
= 0.85
1. 08
92
= 0.7441
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
4.29
5.72
******************************.****.****************************************
FLOW PROCESS FROM NODE 345.00 TO NODE 350.00 IS CODE = 31
»»>COMPU'l'E PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPU'rER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 242.80 DOWNSTREAM (FEET) = 240.40
FLOW LENGTH (FEET) ... 241.00 MANNING'S N = 0.013
ES'l'IMATED PIPE DIAMETER (INCH) INCREASED '1'0 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.94
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 5.72
PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 5.68
LONGEST FLOWPATH FROM NODE 344.00 TO NODE 350.00 -241.00 FEET .
• *****************************.************* •• * ••••••• *.*******.**.****.****
FLOW PROCESS FROM NODE 345.00 TO NODE 350.0'0 IS CODE = J.
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
=~=====~=~==============================~========m==========================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 5.68
RlUNFALL INTENSITY (INCH/HR) = 6.56
TOTAL STREAM AREA(ACRES) -1.08
PEAK FLOW RA'l'E (CFS) A'l' CONFLUENCE = 5. 7~
'Id CONFLUENCE DATA H
S'rREAM RUNOFF
NUMBER (CFS)
1 21. 57
2 5.72
Te
(MIN. )
6.93
5.68
RAINFALL IN'rENSITY AND TIME
CONFLUENCE FORMULA USED FOR
·k 'k PEAI< FLOW RATE TABLE 'A' 0)..
Sl'1~El·\M RUNOFF 'l'e
NUMBER (CFS) (MIN. )
J. 23.38 5.68
2 26.59 6.93
OF
2
INTENSITY
( INCH/HOUR)
5.764
6.555
CONCENTRATION
STREAMS.
INrrENSITY
(INCH/HOUR)
6.555
5.764
ES'I'IMA1'ES ARE
26.59
5.67
COMPUTED CONFLUENCE
PEAK FLOW RA1'E (eFS)
TOTAL AREA(ACRES) ...
LONGEST FLOW PATH FROM
AS FOLLOWS:
1'e(MIN.) .,
NODE 300.00 '1'0 NODE
AREA
(ACRE)
4.59
1. 08
RATIO
6.93
350.00 "" 842.00 F'EE'l'.
*******************.***.*********** •• ***************************************
----------
I·
I
I
I
I
,I
I
I
I
I
I
I
I
I
I
I
I •
:1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 350.00 T·O NODE 360.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
~====~===~======~=======~~~===============~~==~=~========================~==
ELEVATION DATA: UPSTREAM (FEET) ". 235.10 DOWNSTREAM (FEET) "" 234 .. 20
FLOW LENGTH (FEET) = 89.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 8.61
ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 26.59
PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 7.10
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 360.00 = 931.00 FEET.
******************************************************************~********
FLOW PROCESS FROM NODE 355.00 TO NODE 360.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
========~~=======~==================~==================~============~=======
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.673
GENERAL INDUSTRIAL RUNOFF COEFFICIENT ~ .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.78
TOTAL AREA(ACRES) 6.45
TC(MIN.) ~ 7.10
97
'" 0.7747
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) = 3.85
28.3.5
****************************************************************************
FLOW PROCESS FROM NODE 357.00 TO NODE 360.00 IS COPE = 81
--~--------------------------------------------------------------------------»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
======================================================~===========~=====~===
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ... 5.673
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.38
TOTAL AREA(ACRES) = 6.83
TC(MIN.) ~ 7.10
97
... 0.7800
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
1. 88
30.23
****************************************************************************
FLOW PROCESS FROM NODE 360.00 TO NODE 368.00 IS CODE = ~1
----'------------------------------------------------------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=========~==~=======~======~===========~====================================
ELEVATION DATA: UPSTREAM (FEET) = 234.20 DOWNSTREAM (FEET) = 233.00
FLOW LENGTH(FEET) -121.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 8.92
ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 30.23
PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 7.33
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 368.00 = 1052.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 360.00 TO NODE 368.00 IS CODE :: 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================~===============
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDEN'1' S'l'REAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 7.33
RAINFALL INTENSITY (INCH/HR) = 5.56
TOTAL STREAM AREA(ACRES) = 6.83
PEAI< FLOW RATE (CFS) A'l' CONFLUENCE = 30.23
****************************************************************************
FLOW PROCESS FROM NODE 360.00 TO NODE 365.00 IS CODE ~ 22
-----------~----------------------------------------------------------------»>>>RATIONAL METHOD INI'1'IAL SUBAREA ANALYSIS««<
==================~==============~========================c=~=c=~~~~~~~~~====
RESIDENTAIL (24. DUlAC OR LESS) RUNOFF COEFFICIENT c .7100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 92
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL IN'l'ENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF(CFS) = 7.22
TOTAL AREA (ACRES) = 1.43 TOTAL RUNOFF(CFS) ~ 7.22
****************************************************************************
Jr'LOW PROCESS FROM NODE 365.00 TO NODE 365.00 IS CODE = 81
»»>ADDI'l'ION OF SUBAREA TO MAINLINE PJ~AI< FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7252
SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.93
TOTAL AREA(ACRES) -1.58 TOTAL RUNOFF(CFS) = 8.15
TC(MIN.) = 5.00
****************************************************************************
FLOW PROCESS FROM NODE 365.00 '1'0 NODE 368.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESlZE (NON-PRESSURE FLOW) <<<<<
EJ~EVATION DATA: UPSrl'REAM (C"1EE;'l') = 234.92 DOWNST1\EAM (FEET) 233.00
FLOW LENGTH (FEET) c 192.00 MANNING'S N -0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.43
ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 8.15
PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 5.50
LONGEST FLOWPATH FROM NODE; 360.00 '1'0 NODE 368.00 "" 421.00 FEET.
.*******************************************************************'******'
FLOW PROCESS FROM NODE 365.00 TO NODE 368.00 IS CODE '" 1
----------------------------------------------~-----------------------------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
==~================================================~=====~==~===============
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 5.50
RAINFALL INTENSITY(INCH/HR) = 6.69
TOTAL STREAM AREA(ACRES) = 1.58
PEAK FLOW RATE(CFS) AT CONFLUENCE ~ 8.15
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 30.23 7.33 5.560
2 8.15 5.50 6.692
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE -It *
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUl~)
1 33.26 5.50 6.692
2 37.00 7.33 5.560
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 37.00 Tc (MIN.) ...
TOTAL AREA(ACRES) = 8.41
AREA
(ACRE)
6.83
1. 58
RATIO
7.33
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 368.00 1052.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 368.00 TO NODE 375.00 IS CODE'" 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=====~=============~========~==~==~====~====================~===~==========~
ELEVATION DATA: UPS'l'REAM(FEET) = 233.00 DOWNSTREAM (FEET) <= 232.90
FLOW LENGTH (FEET) = 7.80 MANNING'S N ... 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 10.29
ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES =. 1
PIPE-FLOW (CFS) ~ 37.00
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.34
LONGEST FLOW PATH FROM NODE 300.00 TO NODE 375.00 = 1059:80 FEET.
****~***********************************************************************
FLOW PROCESS FROM NODE 368.00 TO NODE 375.00 IS .CODE = 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
==~==============~==========~=====~==~================~============~=g======
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 7.34
RAINFALL INTENSI'rY(INCH/HR) = 5.55
TOTAL STREAM AREA(ACgES) = 8.41
PEAK FLOW RATE (CFS) AT CONFLUENCE = 37.00
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••••••
FLOW PROCESS FROM NODE 370.00 TO NODE 372.00 IS CODE = 22
>>>>>RA1'IONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
=================================================c==============c==========:
RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT = .7100
SOIL CLASSIFICATION IS ~D~
S.C.S. CURVE NUMBER (AMC II) = 92
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114
SUBAREA RUNOFF (CFS) 5.71
TOTAL AREA (ACRES) = 1.13 TOTAL RUNOFF(CFS) 5.71
**** •• ** •• * ••••• * ••••••• *** •••• *.****.* •••••••••••••••••••••••••••••••••••••
FLOW PROCESS FROM NODE 372.00 TO NODE 372.00 IS CODE ~ 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
GENERAL INDUSTRIAL RUNOb"'F COEFFICIENT"" .8700
SOIL CLASSIFICATION IS ~D~
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA (ACRES) 0.10
TOTAL AREA (ACRES) = 1.23
TC(MIN.) = 5.00
97
... 0.7230
SUBAREA RUNOFF(Cb"'S) =
TOTAL RUNOb"'F(CFS) -
0.62
6.33
••••••••• * •••••••••••••••••••••••••••••• * •••••••••••••••••••••••••••••••••••
FLOW PROCESS FROM NODE 372.00 '1'0 NODE 375.00 IS CODE = 31
>>>>>COMPu'rE PIPE-FLOW TRAVEL 'rIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVA1'ION D]'\TA: UPSTRE1~M(lfEE'r)::: 234.80 DOWNSTREAM (FEE'l')
FLOW LENGTH (FEET) = 192.00 MANNING'S N -0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.07
ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES
PIPE-FLOW(CFS) = 6.33
0.53 Tc(MIN.) ~ 5.53
1
232.90
PIPE TRJWEL 1'IME (MIN.) ""
LONGEST 11'J.,OWPATH mOM NODI!: 370.00 TO NODE 375.00 = 23092.00 FEET .
•••••••• * ••••••• ** ••••••• *.~*.**.* ••••• * •••••••••••••••••••••••••••••• * •••••
FLOW PROCESS FROM NODE 372.00 'ro NODE 375.00 IS CODE ""
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS "" 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
'l'1ME OF' CONCEN'I'RA'rION (MIN. ) 5.53
RAINFJ,\LL INTENSITY (INCH/HR) "" 6.67
TOTAL STREAM AREA(ACRES) ~ 1.23
PEAI~ FLOW RATE (CFS) A'l' CONFJ~UENCE "" 6.33
,A' 'k CONFLUENCE DATA ~"k
S1'REAM RUNOFF Tc INTENSI'rY AREA
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
'I
I
I
I
I
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 37.00 7.34 5.554 8.41
2 6.33 5.53 6.668 1.23
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
'II'll PEAK FLOW RATE TABLE ,It'll
STREAM RUNOFF Tc INTENSITY
NUMBER (eFS) (MIN. ) ( INCH/HOUR)
1 37.14 5.53 6.668
2 42.27 7.34 5.554
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 42.27 Tc (MIN.) == 7.34
TOTAL AREA (ACRES) .. 9.64
LONGEST FLOWPATH FROM NODE 370.00 TO NODE 375.00 = 23092.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 375.00 TO NODE 380.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) .. 232.90 DOWNSTREAM (FEET) = 230.50
FLOW LENGTH (FEET) = 240.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 9.68
ES'rIMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES.. 1
PIPE-FLOW (CFS) = 42.27
PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 7.75
LONGEST FLOW PATH FROM NODE 370.00 TO NODE 380.00 = 23332.00 FEET.
**********************'***************************************~*************
FLOW PROCESS FROM NODE 377.00 TO NODE 380.00 IS -CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=g~~========~=~~~~===~====================~=======================~=========
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.361
GENll:RAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C;S. CURVE NUMBER (AMe II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) = 0.41
TOTAL AREA (ACRES) = 10.05
TC(MIN.) = 7.75
97
"" 0.7681
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
NOTE: PEAI'< FLOW M'rE DEFAULTED TO UPSTREAM VALUE
1. 91
42.27
****************************************************************************
FLOW PROCESS FROM NODE 379.00 TO NODE '380.00 IS CODE = 81
---------------------------------------------------------~------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSIT:((INCH/HOUR) 5.361
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) = 0.40
~l'O'I'AL AREA (ACRES) = 10. 45
TC(MIN.) = 7.75
== 0.7720
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF(CFS) =
1. 87
43.25
****************************************************************************
FLOW PROCESS FROM NODE 380.00 TO NODE 398.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
================~====~======================================================
ELEVATION DATA: UPSTREAM (FEET) = 230.50 DOWNSTREAM (FEET) = 229.90
FLOW LENGTH(FEE'I') = 58.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 9.86
ES'l'IMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 43.25
PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 7.85
LONGEST FLOWPATH FROM NODE 370.00 TO NODE 398.00 = 23390.00 FEET.
****************************************************************************
FLOW PROCESS F'ROM NODE 380.00 '1'0 NODE 398.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
~~~===~==========~===~~===============~=====================================
'I'O'1'AL NUMBER OF S'rREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
'rIME OF CONCENTRATION (MIN.)" 7.85
RAINFALL IN'I'ENSI'I'Y (INCH/HR) = 5.32
'ro'r AI, STREAM AREA (ACRES) "" 1 0 . 4 5
PEAK FLOW RA'l'E(CFS) AT CONFLUENCE = 43.25
****************************************************************************
FLOW PROCESS FROM NODE 381. 00 '1'0 NODE 382.00 IS CODE = 22
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
====~=n==~========~~~=~==~=========~==cc====================================
GENERAL INDUS'l'RIAL RUNOFF COEFFICIEN'l' = .8700
SOIL CLASSIFIC].\'l'ION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAIN~~ALL INTENSITY (INCH/HOUR) I: 7.114
SUBAREA RUNOFF(CFS) = 0.74
TOTAL AREA(ACRES) -0.12 TOTAL RUNOFF(CFS) w 0.74
****************************************************************************
FLOW PROCESS FROM NODE 382.00 TO NODE 385.00 IS CODE = 62
»»>COMPu'rE S'I'REE'r FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»> (STREET TABLE SECTION # 1 U8ED)««<
UPSTRl~AM ELEVA'I'ION(FE:E'1') = 240.70 DOWNSTREAM ELEVATION(F'EET) I: 236.60
STREET 1ENGTH(FEET) -210.00 CURB HEIGHT (INCHES) = 6.0
8TREET HALFWIDTH(F'EET) -41.00
DISTANCE FROM CROWN 'ro CROSSFALL GRADEBREAI< (FEE'l') = 20.00
INSIDE STREET CROSSFALL(DECIMAL) g 0.020
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
OBTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) "" 0.0150
Manning's FRICTION FACTOR for Back-of-Walk F'low Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
S'l'REETFLOW MODEL RESULTS USING ES'rIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 6.79
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.61
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68
STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.)
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 6.103
GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700
SOIL CLASSIFICATION IS "D" .
S.C.S. CURVE NUMBER (AMC II) m 97
AREA-AVERAGE RUNOFF COEFFICIENT 0.870
6.34
SUBAREA AREA (ACRES) = 0.29
TOTAL AREA(ACRES) ~ 0.41
SUBAREA RUNOFF(CFS)
PEAK FLOW RATE(CFS) ~
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) .. 0.29 HALFSTREET FLOOD WI DTH (F'EET) 8.09
1. 51
1. 54
2.18
FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT/SEC.) = 0.81
LONGEST FLOWPATH FROM NODE 381.00 TO NODE 385.00 = 210.00 F~ET.
*************************************************************************~**
FLOW PROCESS FROM NODE 385.00 TO NODE 392.00 IS CODE ~ 31
-----------------------------------------------------~----------~-~--------~ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 230.00 DOWNSTREAM (FEET) = . 229.00
FLOW LENGTH (FEET) ~ 94.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.71
ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 2.18
PIPE TRAVEL TIME(MIN,) ~ 0.33 Tc(MIN.) = 6.67
LONGEST FLOWPATH FROM NODE 381.00 TO NODE 392.00 = 304.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 388.00 TO NODE 390.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=~~==~===========~=~======~================g~====~=========mg=m=============
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.905
RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT"" .7100
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) = 1.50
TOTAL AREA(ACRES) 1.91
TC(MIN.) = 6.67
92
... 0.7443
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
6.29
8.40
****************************************************************************
FLOW PROCESS FROM NODE 390.00 TO NODE 392.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=====================================================================c======
100 YEAR RAINFALL INTENSITY (INCH/HOUR) -= 5.905
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
son. CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNm"'F COEFFICIENT
SUBAREA AREA(ACRES) = 0.07
TOTAL AREA(ACRES) 1.98
TC(MIN.) = 6.67
97
"" 0.7488
SUBAREA RUNOFF (CFS) =
TOTAL RUNOFF (CFS) = 0.36
8.76
****************************************************************************
FLOW PROCESS FROM NODE 392.00 '1'0 NODE 396.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
==========g~=========~===~=~~==~=============================~==============
ELEVATION DATA: UPSTREAM (FEET) ~ 233.10 DOWNSTREAM (FEET) 232.96
FLOW LENGTH (FEET) -14.00 MANNING'S N -0.013
Dli:PTH Ob"' FLOW IN 18.0 INCH PIPE IS 12.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.51
ESTIMl.';TED PIPE DIAME'rEH (INCH)'" 18.00 NUMBER OF PIPES '"" 1
PIPE-FLOW (CFS) = 8.76
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.)... 6.71
LONGES'1' FLOWPATH FROM NODE 381.00 TO NODE 396.00 "" 318.00 FEE'r.
****************************************************************************
FLOW PROCESS FROM NODE 394.00 TO NODE 396.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
~=~======~~~~======z====~===~~~======~============~==========~=====~==~=~===
100 YEAR RAINFALL INTENSI~['Y (INCH/HOUR) 5.885
GENERAL INDUSTRIAL RUNOFF COEFFICIEN'r .... 8700
SOIL CLASSIF'ICA'l'ION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~ 97
AREA-AVERAGE RUNOFF COEFFICIENT ... 0.7524
SUBAREA AREA(ACRES) 0.06 SUBAREA RUNOFF(CFS) = 0.31
TOTAL AREA (ACRES) ~ 2.04 TOTAL RUNOFF(CFS) -9.03
TC(MIN.) = 6.71
****************************************************************************
FLOW PROCESS FROM NODE 396.00 TO NODE 398.00 IS CODE c 31
>>>>>COMPu'rE PIPE-FLOW 'l'RiWEL 'rIME 'l'HRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
===~=======~=============~~~~~=~=====c============================~=========
ELEVATION DATA: UJ?S1~REAM(F'J~ET) == 232.96 DOWNSTREAM (FEET) ... 232.18
FLOW LENGTH (FEET) = 78.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES
PIPE-FLOW VELOCITY(FEE'l'/SEC.) '" 6.54
ESTIMA'I'E;D PIPE DIAME'l'I!:R (INCIl)" 18.00 NUMBER OF PIPES =
PIPE-FLOW (CFS) -9.03
PIPE 'rMVEL TIME (MIN.) ...
LONGEST FLOWPATH FROM NODE
0.20 Tc(MIN.) =
381. 00 TO NODE
6.91
398.00
1
396.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 396.00 TO NODE 398.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
~=======~=============~=~========~=====~g~=================================~
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRA'l'ION (MIN. ) 6.91
RAINFALL INTENSITY(INCH/HR) = 5.78
TOTAL STREAM AREA(ACRES) = 2.04
PEAI< FLOW RATE (CFS) AT CONFLUENCE = 9. 03
H CONFLUENCE DATA **
STREAM RUNOFF To INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 43.25 7.85 5.318
2 9.03 6.91 5.775
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
*'it PEAI< FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CrS) (MIN. ) ( INCH/HOUR)
1 48.85 6.91 5.775
2 51. 57 7.85 5.318
ESTIMATES ARE COMPUTED CONFLUENCE
PEAK FLOW RATE (CFS)
TOTAL AREA(ACRES) =
LONGEST F10WPATH FROM
AS FOLLOWS:
= 51. 57 Tc (MIN.) '"
12.49
NODE 370.00 TO NODI!:
AREA
(ACRE)
10.45
2.04
RATIO
7.85
398.00 = 23390.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 398.00 TO NODE 399.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) '" 232.18 DOWNSTREAM (FEET) .., 205.00
FLOW LENGTH (FEET) ~ 75.00 MANNING'S N ~ 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 39.05
ESTIMA'l'ED PIPE DIAMETER (INCH) "" 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 51.57
PIPE 'l'RAVEL 'rIME(MIN.) = 0.03 Tc(MIN.) = 7.88
LONGEST FLOWPATH FROM NODE 370.00 TO NODE 399.00 = 23465.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 399.00 TO NODE 399,00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
===~g==~=======m==~=~======~====================~===========================
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.304
RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT -.4100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOE"F COEFFICIENT
SUBAREA AREA(ACRES) = 0.88
'rOTAL AREA(ACRES) = 13.37
TC(MIN.) = 7.88
82
= 0.7452
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
1.91
52.84
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE (CFS)
13.37 TC(MIN.) =
52.84
7.88
=================~=====~=========~===================c===~==~====~=ae=======
g==c=========~==================~==================~========================
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
******************************************~*********************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 400 *
**************************************************************************
FILE NAME: S400PIOO.DAT
TIME/DATE OF STUDY: 17:31 07/22/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) '" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRIC1'ION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREE'rFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-j-IEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (F'l') SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
~===== ===== =====~=
1 41.0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET nOW-DEPTH CONS'l'RAIN'I'S:
1. Relative Flow-Depth = 1.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-oi-Curb)
2. (Depth) * (Velocity) Constraint"" 10.0 (F'l"kITT/S)
'I<SIZE PIPE WITH A now CAPACITY GREA'l'ER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 400.00 TO 'NODE 405.00 IS CODE = 22
---------------------------------------------------------------------_._-----
»>>>RATIONAL METHOD INITIAl, SUBAREA ANALYSIS«<<<
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. C~RVE NUMBER (AMC II) ~ 97
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSI'rY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) c 0.37
To'rAL AREA(J-\CJ,ES) .,. 0,06 TO'l'AL RUNOFF(CFS) = 0.37
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 455.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED)««<
~=~===================~=========g=~~~===================m=============~~====
UPs'rREAM ELEVA'rION(FEET) == 247.40 DOWNSTREAM ELEVA'rrON(FEET) == 235.00
STREET LENGTH (FEET) = 306.00 CURB HEIGHT (INCHES) 6.0
STREET HALFWIDTH(FEET) -41.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAI«FEET)
INSIDE STREET CROSSFALL(DECIMAL) "" 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1
STREET PARI<WAY CROSSFALL(DECIMAL) :: 0.020
20.00
Manning's lTRIC'nON FAC'l'OR for Streetflow Section (curb-to-curb) ,-" 0,0150
Manni.ng's FRIC'nON FACTOR for Back-of-Walk Flow Section I: 0.0200
"kW'I'RAVEL 'rIME: COMPUTED LlSING ESTIMATED FLOW (CFS) ... 2.53
STREET FLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) a 0.27
HALFSTREET FLOOD WIDTH (FEET) ~ 7.33
AVERAGE: I!'LOW VELOCI'l'Y (FEET / SEC.) "" 3 . 8 7
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
STREE'r now 'l'RAVEL TIME (MIN.):= 3..32 'I'c (MIN.) = 6.32
100 YEl·\R RAINFALL INTENSITY (INCH/HOUR) ..., 6.117
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT ~ .7900
SOIL CLASSIFICA'I'ION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 94
AREA-AVERAGl~ RUNOFF COr~JrF'ICIENT == 0.795
SUBAREA AREA (ACRES) 0.89 SUBAREA RUNOFF(CFS) c 4.30
TO'I'A:L AREA (ACRES) "" 0.95 PEAI< FLOW RA'I'E (CFS) := 4.62
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) -0,32 HALFSTREET FLOOD WIDTH (FEET) 9.61
FLOW VELOCITY(FEET/SEC.) -4.43 DEPTH*VELOCITY(FT*FT/SEC.) 1,41
LONGES'I' ITLOWPA'l'H FROM NODE 400.00 TO NODE 455.00 '" 306.00 FEE'I'.
*********'************.*********************************'****'******'*******
FLOW PROCESS FROM NODE 455.00 TO NODE 460.00 IS CODE = 31
>>>>>COMPU'I'E PIPE-FLOW 'l'RAVEL 1'IME ~rHRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) -230.00 DOWNSTREAM (FEET)
now LENG~l'H(FJ~ET) "" 10.00 MI\NNING'S N '" 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) • 12.99
ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES =
PIPE-FLOW(CFS) = 4.62
1
229.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
PI~E TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
LONGEST FLOWPATH FROM NODE 400.00 TO NODE
6.33
460.00 316.00 FEET.
**************************************************************************~*
FLOW PROCESS FROM NODE 455.00 TO NODE 460.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
=====~===================g~====~===================================~~=======
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 6.33
RAINFALL INTENSITY (INCH/HR) = 6.11
TOTAL STREAM AREA(ACRES) '" 0.95
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.62
****************************************************************************
FLOW PROCESS FROM NODE 420.00 TO NODE 420.00 IS CODE = 22
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
===========~=~============~=================================================
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) 0.19
TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.19
****************************************************************************
FLOW PROCESS FROM NODE 420.00 TO NODE 425.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
>>>>>USING COMPU'rER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<<
=======~~====~~========~====================================================
ELEVATION DATA: UPSTREAM (FEET) "" 240.10 DOWNSTREAM (FEET) "" 239.80
FLOW LENGTH (FEET) ~ 27.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 0.19
PIPE TRAVEL TIME (MIN.) = 0.19 trc (MIN.) = 5.19
LONGEST FLOWPATH FROM NODE 420.00 TO NODE 425.00 = 182.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE: 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=========~======~=====~=~=====~=~=======~========:========~=======~=========
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.943
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.03
TOTAL AREA (ACRES) 0.06
TC(MIN.) = 5.19
97
= 0.8700
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF(CFS) g
0.18
0.36
****************************************************************************
FLOW PROCESS FROM NODE 425.00 '1'0 NODE 440.00 IS CODE c 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
==================;======================================~==================
ELEVATION DATA: UPSTREAM (FEET) = 239.80 DOWNS'l'REAM(FEET) 238.40
FLOW LENGTH (FEET) I: 142.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 2.72
ESTIMATED PIPE DIAMETER(INCH) -18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 0.36
PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 6.06
LONGEST FLOWPATH FROM NODE 420.00 TO NODE 440.00 324.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 430.00 TO NODE 435.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
~=~~=====~=~============================~ec=========================~==~c=~~
100 YEAR RAINFALL IN'I'ENSI'l''f (INCH/HOUR) = 6.283
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 1.56
TOTAL AREA(ACRES) = 1.62
TC(MIN.) = 6.06
94
= 0.7930
SUBAREA RUNOFF (CFS) =
TOTAL RUNOFF(CFS) =
7.74
8.07
****************************************************************************
F'LOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) '" 6.283
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIEN'l'
SUBAREA AREA(ACRES) = 0.03
TOTAL AREA(ACRES) = 1.65
TC(MIN.) = 6.06
97
= 0.7944
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) -
0.16
8.24
**'*************************************************************************
now PROCESS FROM NODE 440.00 TO NODE 450.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TRAVEL 1'IME 'l'HRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) -237.00 DOWNSTREAM (FEET) = 236.70
FLOW LENGTH (FEET) -33.00 MANNING'S N z 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.19
ESTIMATED PIPE DIAME'rER(INCH) 18.00 NUMBER OF PIPES'" 1
PIPE-FLOW (CFS) = 8.24
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
LONGEST FLOW PATH FROM NODE 420.00 TO NODE
6.15
450.00 357.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 445.00 TO NODE 450.00 IS CODE =,81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================~===============
100 YEAR RAINFALL INTENSITY(INCH/HOUR) ~ 6.224
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.02
TOTAL AREA(ACRES) ~ 1.67
TC(MIN.) = 6.15
97
'" 0.7953
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
0.11
8.27
****************************************************************************
FLOW PROCESS FROM NODE 450.00 TO NODE 460.00 1s CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
==~=========~~=======~==~==~=~~~~=====~~=====~==============================
ELEVATION DATA: UPSTREAM (FEET) = 236.70 DOWNSTREAM (FEET) 235.60
FLOW LENGTH (FEET) ~ 114.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.35
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 8.27
PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 6.45
LONGEST FLOWPATH FROM NODE 420.00 TO NODE 460.00 471.00 FEET.
*****************************************************************~**********
FLOW PROCESS FROM NODE 450.00 TO NODE 460.00 IS CODE ~
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.45
RAINFALL IN'rENSITY(INCH/HR)"" 6.04
TOTAL STREAM AREA(ACRES) = 1.67
PEAK FLOW RATE (CFS) AT CONFLUENCE = 8.27
** CONFLUENCE DATA U
STREAM RUNOFF
NUMBER (CFS)
1 4.62
2 8.27
Tc
(MIN. )
6.33
6.45
INTENSITY
( INCH/HOUR)
6.109
6.037
AREA
(ACRE)
0.95
1. 67
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
* * PEAK FLOW RATE TABLE 'I<~'
STREAM RUNOFF
NUMBER (eFS)
Tc
(MIN. )
INTENSITY
( INCH/HOUR)
1
1
2
12.74
12.83
6.33
6.45
6.109
6.037
ESTIMATES ARE AS FOLLOWS:
= 12.83 Tc(MIN.) ~
2.62
6.45
COMPUTED CONFLUENCE
PEAK now RATE (CFS)
TO'l'AL A1\EA (ACRES) =
LONGES'r FLOWPA'l'H FROM NODE 420.00 'l'O NODE 460.00 "" 4 71 . 0 0 FEET.
•••••••••• * •• **.****.********* •• ***.**.* ••••• * •• **.** •• ** •• ***** •• *****.*.**
FLOW PROCESS FROM NODE 460.00 TO NODE 465.00 IS CODE = 31
»»>COMPU'l'E: PIPE-l"LOW TRAVl!:L TIME THRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=====~=======~=====~=~===========================================~=~========
ELEVA'l'ION DA'l'A: UPS'l'REAM (FEET) = 235. 60 DOWNST1\EAM (FEET) ""
FLOW LENGTH (FEET) -28.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.2 INCHES
PIPE-FL0W VELOCITY(FEET/SEC.) ~ 7.39
ESTIMATED PIPE DIAMETER(INCH) m 21.00
PIPE-FLOW (CFS) = 12.83
NUMBER OF PIPES =
0.06 Tc(MIN.) ==
235.30
1
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOW PATH FROM NODE 420.00 TO NODE
6.51
465.00 = 499.00 FEET.
**.** ••• t •• * •••• *.* •••• * •••••••••• *** ••• *** •••••••••••••••••••• * •••••••••• *.
FLOW P1\OCI~SS FROM NODE 465.00 '1'0 NODE 465.00 IS CODE = 81
»>>>ADDJ:'rION OF SUBAREA TO MIUNLINE PJ~AK FLOW«<<<
100 YE].\1\ RAINFALL INTENSI'l'Y (INCH/HOUR) == 5.999
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) -
AREA-IWERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.59
TOTAL AREA(ACRES) 3.21
TC(MIN.) ~ 6.51
94
== 0.7942
SUBAREA RUNOFF(CFS) ~
TOTAL RUNOFF (CFS) =
2.80
15.29
.* ••••••• * •••••••• ** •••• ***.*** ••• * •• * •••••• * •••• *** •••••••••••••••••••••• *.
now P1\OCESS FROM NODE ~65.00 TO NODE 470.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRIWEL 'rIME 'l'BRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DA'rA: UPS'l'REAM(IT'EE'l') "" 235.30 DOWNSTREAM (FEET) ""
FLOW LENGTH (FEET) -59.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 1B.0 INCH PIPE IS 6.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 29.84
ESTIMATED PIPE DIAMETER (INCH) '" 18.00
PIPE-FLOW (CFS) ~ 15.29
NUMBER OF PIPES c
0.03 Tc(MIN.)::::
1.
212.00
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATB FROM NODI!:: 420.00 '1'0 NODE
6.55
470.00 :::: 558.00 FEE'r.
*** •• ***** ••• ** •••• *** ••• **t.,***.** •• * •••••••• * ••• * •• * •••• *.***.*** ••• **.*.
fLOW P1\OCESS FROM NODE 468.00 '1'0 NODE 470.00 IS CODE ~ 81
»»>ADD'ITION OF SUBAREA 'l'0 MAINLINE PEAr<: FLOW««<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
=====~==============~===========~=====~=~===============================g===
.100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.979
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICA'rION IS liD"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.30
TOTAL AREA (ACRES) 3.51
TC(MIN.) = 6.55
97 = 0.8007
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
1. 56
16.80
****************************************************************************
FLOW PROCESS FROM NODE 469.00 TO NODE 470.00 IS CODE = 81
------------------------------------------------------------------~--~---~--
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.979
GENERAL INDUSTRIAL RUNOFF COEFFICIENT ~ .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA (ACRES) = 0.37
TOTAL AREA(ACRES) = 3.88
TC(MIN.) = 6.55
END OF STUDY SUMMARY:
97
... 0.8073
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
TOTAL AREA(ACRES) =
PEAI< FLOW RATE(CFS) =
3.88 TC(MIN.) ~
18.73
1. 92
18.73
6.55
=====================~===============================g======~~=====~========
===m========m======~==~=============~===m=============~=====================
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF ST~DY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS *
* 100 YEAR STORM EVENT, SYSTEM 500 *
**************************************************************************
FILE NAME: S500P100.DAT
TIME/DATE OF STUDY: 17:~7 07/22/2008
-.------------------------------------------------------------~~-------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL IN F'ORMAT ION :
------------------------------------------------------------------~----~----
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVEN'r (YEAR) "" 100.00
6-HOUR DURATION PRECIPITA'l'ION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARI<:-HEIGHT WIDTH LXP HII<:E FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
===== ====~~=== ==============~== ====== ====== ===== =======
1 41.0 20.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEP'I'H CONS'l'RAIN'I'S:
1. Relative Flow-Depth -1.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-oi-Curb)
2. (Depth)"'(Ve1ocity) Constraint"" 10.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 500.00 '1'0 NODE 510.00 IS CODE = 22
------------------------------------------------------------~-----------~---
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~ 94
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) 4.78
TOTAL AREA (ACRES) ~ 0.85 TOTAL RUNOFF(CFS) = 4.78
****************************************************************************
FLOW PROCESS FROM NODE 510.00 TO NODE 535.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW 'l'RAVEL 'l'IME THRU SUBAREA<<<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
=============c===========~==~~==~~===========~=======m===============~======
ELEVATION DATA: UPSTREAM (FEET) "" 253.00 DOWNSTREAM (FEET) 252.00
FLOW LENGTH (FEET) = 78.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 6.24
ESTIMATED PIPE DIAMETER(INCH)'" 18.00 NUMBER OF' PIPES" 1
PIPE-FLOW (CFS) = 4.78
PIPE TRAVEL TIME (MIN.)'" 0.21 're (MIN.) = 5. 2J.
LONGEST FLOW PATH FROM NODE 500.00 TO NODE 535.00 = 78.00 FEET.
*************************************~**************************************
now PROCESS FROM NODI3 535. 00 ~l'O NODE 535.00 IS CODE = 81
>>>>>ADDI'TION OF SUBAREA '1'0 MAINLINE PEAK FLOW«<<<
100 YEAR RAINFALL IN'l'ENSI'l'Y (INCH/HOUR) "" 6.929
GENERAL INDUS'I'RIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II).. 97
AREA-AVERAGE RUNOFF COEFE'ICIEN'l' = 0.8070
SUBAREA AREA(ACRES) 0.23 SUBAREA RUNOFF(CFS) = 1.39
'I'O'l'AL AREA (ACRES) 1.08 TOTAL RUNOFF(CFS) => 6.04
TC(MIN.) = 5.21
****************************************************************************
FLOW PROCESS FROM NODE 535.00 '1'0 NODE 560.00 IS CODE ~ 31
>>>>>COMPU'l'}!: PIPE-FLOW TRAVEL 'l'IME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 257.80 DOWNSTREAM (FEET) -257.40
FLOW LENGTH (FEET) = 4.00 MANNING'S N -0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES
PIPE-FLOW VELOCI'rY(JTEE'l'!SI:~C.) '" 14.02
ESTIMATED PIPE DIAMETER(INCH): 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 6.04
PIPE 'rRAVJ!:L 'l'IME(MIN.).. 0.00 Te(MIN.) = 5.21
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 560.00 = 82.00 FEET.
**********************~***************************.*************************
FLOW PROCESS FROM NODE 550.00 'TO NODE 560.00 IS CODE ~ 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
====~~~================~==~~======~~==~==========~===~=========~===~~=======
100 YEl-\.R RAINFALL INrrl~NSI'1'Y (INCH/HOUR) "" 6.925
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
GENERAL INDUSTRIAL RUNOFF COEFFICIENT .8700
SOIL CLASSIFICATION IS ~'D"
S.C.S. CURVE NUMBER (AMC II) = 97
AREA-AVERAGE RUNOFF COEFFICIENT = 0.8114
SUBAREA AREA(ACRES) 0.08 SUBAREA RUNOFF(CFS) = 0.48
TOTAL AREA(ACRES) = 1.16 TOTAL RUNOFF (CFS) = 6.52
TC(MIN.) = 5.21
************************************************************~***************
FLOW PROCESS FROM NODE 560.00 TO NODE 570.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
===========~======================~==~~==~=======g===========~===~===~==~===
ELEVATION DATA: UPSTREAM (FEET) = 257.40 DOWNSTREAM (FEET) = 255.40
FLOW LENGTH (FEET) = 202.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.11
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 6.52
PIPE TRJ~VEL TIME(MIN.) = 0.55 Tc(MIN.) = 5.76
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 570.00 "" 284.00 FEE'l'.
****************************************************************~***********
FLOW PROCESS FROM NODE 565.00 TO NODE 570.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAr<: FLOW«<<<
===========~===~=======~===~===~=~~===~==============~===g===~=======~~=====
100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) = 6.491
RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT'" .7100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 1.56
TOTAL AREA(ACRES) 2.72
TC(MIN.) = 5.76
92
"" 0.7532
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
7.19
13.30
****************************************************************************
FLOW PROCESS FROM NODE 565.00 TO NODE 570.00 IS CODE = 1
~---------------------------------------------------------------------------»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
~=======~==========~=======~===================~=========================~==
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 5.76
RAINFALL INTENSITY (INCH/HR) ... 6.49
TOTAL STREAM AREA(ACRES) g 2.72
PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.30
****************************************************************************
FLOW PROCESS FROM NODE 580.00 TO NODE 582.00 IS CODE = 22
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<<<
=====~=====~~======~~==~~==========~===g===~==============~=================
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT -.3500
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC +1) ~ 81
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTgNSITY(INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.20
****************************************************************************
FLOW PROCESS FROM NODE 582.00 TO NODE 584.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
~===========================================================================
ELEVATION DATA: UPSTREAM (FEET) = 312.00 DOWNSTREAM (FEET) = 249.00
CHANNEL LENGTH TI-IRU SUBAREA (FEET) = 512.00 CHANNEL SLOPE = 0.1230
CHANNEL BASE(FEET) '" 5.00 "z" FACTOR = 99.000
MANNING'S FACTOR == 0.030 MAXIMUM DEP'I'H(FEET) = 1.00
100 YEAR RAINFALL INTENSITY (INCH/HOUR) c: 5.242
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICA'l'ION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 81
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.48
TRJ\VEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.82
AVERAGE FLOW DEPTH (FEET) == 0.10 'rRAVEL TIME(MIN.) "" 3.03
Tc(MIN.) = 8.03
SUBAREA AREA(ACRES) 4.61 SUBAREA RUNOFF(CFS) ~ 8.46
AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
'1'O'l'AL AREA (ACRES) = 4.69 PEAK FLOW RA'l'E (CFS) 8.60
E:ND OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.14 FLOW VELOCITY(FEET/SEC.) 3.25
LONGEST FLOWPATH FROM NODE 580.00 TO NODE 584.00 = 590.00 ~"EErl'.
****************************************************************************
FLOW PROCESS FROM NODE 584.00 TO NODE 588.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
====~=====~=======e=~~~============~=======================~~=~===~=========
ELEVA'I'ION DATA: UPSTREAM (FEET)'" 2 4 5 . 90 DOWNSTREAM (ITEE'r) == 243.90
now LENGTH (FEET) ... 347.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES
PIPE-ITLOW VELOCI'l'Y(ITEET/SEC.) 5.33
ESTIMATED PIPE DIAMETER (INCH) -21.00 NUMBER OF PIPES -1
PIPE-FLOW (CFS) = 8.60
PIPE rrRAVEL TIME (MIN.) "" 1. 09 'rc (MIN.) "" 9.11
LONGES'l' nOWPArl'H FROM NODE 580.00 TO NODE 588.00 "" 937.00 F'EE'l'.
****************************************************'***********************
Jn~OW PROCESS F'ROM NODE 586.00 '].'0 NODE 588.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
=~==~~====~=~=============~=================~============~====~==~~=Q==~===~
100 YEAR RAINFALL INTENSI'l'Y (INCH/HOUR) '" 4.830
RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT· .5200
SOIL CLASSIFICA'l'ION IS "0"
S.C.S. CURVE NUMBER (AMe II) = 86
AREA-AVERAGE RUNOc~E' COEFFICIEN'I' =: 0.3586
SUBAREA AREA (ACRES) "" 0.25 SUBAREA RUNOFF(CFS) = 0.63
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 4.94 TOTAL RUNOFF(CFS) 8.60
TC(MIN.) = 9.11
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 588.00 TO NODE 570.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
=============~~===~===~=c====~=====m========================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 9.11
RAINFALL INTENSITY (INCH/HR) == 4.83
TOTAL STREAM AREA(ACRES) m 4.94
PEAK FLOW RA'l'E (CPS) AT CONFLUENCE:. 8.60
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 13.30 5.76 6.491
2 8.60 9.11 4.830
RAINFALL INTENSI'l'Y AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
* .. -PEAr" FLOW RATE TABLE -k*
STREAM RUNOFF 'fc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 18.74 5.76 6.491
2 18.50 9.11 4.830
ESTIMATES ARE AS FOLLOWS:
18.74 Tc(MIN.) =
7.66
COMPUTED CONFLUENCE
PEAK FLOW RATE (CFS)
TOTAL AREA(ACRES) ~
LONGEST F'LOWPA'l'H FROM
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
NODE 580.00 TO NODE
7.66 TC(MIN.) ~
18.74
END OF RATIONAL METHOD ANALYSIS
AREA
(ACRE)
2.72
4.94
RATIO
5.76
570.00
5.76
937.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*~**************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(0) Copyright 1982-2005 Advanced Enginee~ing Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY **************************
* 3330.00 -THE BRIDGES AT POINSETTIA *
* PROPOSED CONDITIONS *
* 100 YR STORM EVENT, SYSTEM 600 (PROJECT ALTERNA'rIVE 'A') *
**************************************************************************
FILE NAME: S600P100.DAT
TIME/DATE OF STUDY: 16:49 07/21/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'1'HOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=~= ===== ===~==~~= ================= ~===== ===== ====== ===== ======~
1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth)'k (Velocity) Constraint ... 10.0 (FT*FT/S)
*SIZE PIPE WI'l'H A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 615.00 TO NODE 620.00 IS CODE = 21
»»>RATIONAL METHOD INI'l'IAL SUBAREA ANALYSIS««< '
===========g=====~~=================~~========================~========~====
RESIDENTAIL (24. DU/AC OR LESS) RUNOFF COEFFICIENT = .7100
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 92
-------------------------"
INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 249.00
DOWNSTREAM ELEVATION (FEET) = 247.70
ELEVATION DIFFERENCE (FEE'll) = 1. 30
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.304
WARNING: INI'l'IAL SUBAREA FLOW PATH LENGTH IS GREATER 'l'HAN
THE MAXIMUM OVERLAND FLOW LENGTH = 68.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND now LENGTH IS USED IN Tc Cl-\LCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.848
SUBAREA RUNOFF (CFS) 2.53
TOTAL AREA (ACRES) == 0.52 TOTAL RUNOFF (CFS) = 2.53
****************************************************************************
FLOW PROCESS FROM NODE 620.00 TO NODE 625.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
=========================~~==========m=========~======~=====================
UPSTREAM ELEVATION (FEET) = 247.70 DOWNSTREAM ELEVATION (FEET) = 244.70
STREET LENGTH (FEET) -270.00 CURS HEIGHT (INCHES) -6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
S'IIREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
H'fRAVEL TIME COMPUTED USING ES'rIMA'l'ED FLOW (CFS) "" 6.34
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.41
HALFSTREET FLOOD WIDTH(FEET) n 14.33
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.92
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.21
STt\EE'l' FLOW 'l'RAVEL TIME (MIN.) == 1. 54 Tc (MIN.) == 6.84
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.810
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT -.7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) ~ 94
ARE':l-\-AVERAGrr: RUNOFF COEFFICIENT = 0.771
SUBAREA AREA (ACRES) 1.66 SUBAREA RUNOFF(CFS) = 7.62
TOTAL AREA(ACRES) -2.18 PEAK FLOW RATE(CFS) = 9.76
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) -0.47 HALFSTREET FLOOD WIDTH (FEET) Q 17.00
FLOW VELOCITY(FEET/SEC.) -3.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50
LONGES'r FLOWPA'rH FROM NODE 615.00 TO NODE 625.00 = 370.00 F1BE'r.
***************************************~************************************
FLOW PROCESS FROM NODE 600.00 '1'0 NODE 625.00 IS CODE = 81
»»>ADDI'l'ION OF SUBAREA '1'0 MAINLINE PEAK FLOW««<
===============~=================~=~======~=================================
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.810
RESIDENTAIL (14.5 DulAC OR LESS) RUNOFF COEFFICIENT .6300
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) ... 89
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7382
SUBAREA AREA (ACRES) 0.66 SUBAREA RUNOFF(CFS) = 2.42
TOTAL AREA(ACRES) 2.84 TOTAL RUNOFF(CFS) = 12.18
TC(MIN.) = 6.84
**************************************************************************~*
FLOW PROCESS FROM NODE 625.00 TO NODE 630.00 IS CODE = 31
---------------------------------------------------.-------------------------
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 247.00 DOWNSTREAM (FEET) ~ 242.00
FLOW LENGTH(FEET) = 152.00 MANNING'S N = 0.013
DEP'l'H OF FLOW IN 18.0 INCH PIPE IS 11. 0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 10.73
ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 12.18
PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 7.08
LONGEST FLOWPA'l'H FROM NODE 615.00 'fO NODE 630.00 "" 522'.00 FE;ET.
************************'***************************************************
FLOW PROCESS FROM NODE 630.00 TO NODE 630.00 IS CODE ~ 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAr<: FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) ... 5.684
RESIDENTIAL (1. DUlAC OR LESS) RUNOFF COEFFICIENT = .4100
SOIL CLASSIFICA'l'ION IS "D"
S.C.S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) = 0.12
TOTAL AREA(ACRES) ~ 2.96
TC(MIN.) ~ 7.08
82
= 0.7249
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
0.28,
12.20
==================~====~======~===~====~==========~==============~==========
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
2.96 TC(MIN.) ~
12.20
END OF RATIONAL METHOD ANALYSIS
7.08
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***********~*****************************************************~**********
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Softwar.e (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 8 Street
Suite 800
San Diego, Ca. 92101
************************** DESCRIPTION OF STUDY ********************~*****
* 3330 -THE BRIDGES AT AVIARA *
* PROPOSED CONDITIONS, LOT 3, SYSTEM 650 *
* 100 YEAR STORM EVENT *
**************************************************************************
FILE NAME: S650PI00.DAT
TIME/DATE OF STUDY: 16:24 07/23/2008
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) "" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL ME'l'HOD
NOTE: USE MODIFIED'RATIONAL METHOD PROCEDURES FOR CONFliuENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GU'l'TER-GEOMETRIES : MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE/SIDE/WAY (F'l') (FT) (FT) (FT) (n)
========= =~=======~======= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 ~.oo 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONS'l'RAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A E'LOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 650.00 TO NODE 652.00 IS CODE = 22
»»>RA'l'IONAL METHOD INITIAL SUBAREA ANALYSIS«<<<
=========~==========~~g===~=======~===~======================~=========~====
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICA'l'ION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) -5.000
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 0.56
TOTAL AREA (ACRES) = 0.09 TOTAL RUNOFF (CFS) = 0.56
**************************************************************************'*
FLOW PROCESS FROM NODE 652.00 TO NODE 654.00 IS CODE = 62
»>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
»»>(STREET TABLE SECTION l' 1 USED)««<
=================================~=======~===================c========~~~===
UPs'rREAM ELEVATION (FEET) 249.70 DOWNSTREAM El,EVA'I'ION(FEET)
STREET LENGTH (FEET) == 82.00 CURB HEIGHT (INCHES) = 8.0
STREET HALFWIDTH(FEET) == 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAI<:(FEET) == 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1
S'l'REET PARKWAY CROSSFALL (DECIMAL) 0.020
248.50
Manning's FRICTION FACTOR for Street flow Section (curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 3.58
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) = 0.36
HALFSTREET FLOOD WIDTH (FEET) c 11. 05
AVERAGE FLOW VELOCI'rY (FEET/SEC.) 2.78
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.00
STREET FLOW TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 5.49
100 YEAR RAINFALL INTENSITY (INCH/HOUR) == 6.697
RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900
SOIL CLJ.'ISSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) = 9~
AREA-AVERAGE RUNOFF COEFFICIENT ~ 0.796
SUBAREA AREA (ACRES) = 1.14 SUBAREA RUNOFF(CFS) = 6.03
TOTAL AREA (ACRES) = 1.23 PEAK FLOW RATE(CFS) = 6.56
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) -0.42 HALFSTREET FLOOD WIDTH (FEET) = 14.41
FLOW VELOCITY(FEET/SEC.) -3.20 DEPTH*VELOCITY(FT*FT/SEC.) -1.34
LONGEST FLOWPATH FROM NODE 650.00 TO NODE 654.00 = 119.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 654.00 '1'0 NODE 666.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TRAVEL 'l'IME 'l'HRU SUBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPS'rREAM(FEET)'" 245.00 DOWNSTREAM (FEET) '" 242.00
FLOW LENGTH (FEET) = 287.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 6.25
ESTIMATED PIPE DIAME'rER(INCH) = 18.00 NUMBER OF' PIPES"" 1
PIPE-FLOW (CFS) = 6.56
PIPE TRAVEL TIME(MIN.) ~ 0.76 Tc(MIN.) = 6.26
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWl?ATH FROM NODE 650.00 TO NODE 666.00 '" 406.00 FE$T.
****************************************************************************
FLOW PROCESS FROM NODE 654.00 TO NODE 666.00 IS CODE '" 1
----------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
========================g=================~=========~========~======~=======
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 6.26
RAINFALL INTENSITY (INCH/HR) = 6.16
TOTAL STREAM AREA(ACRES) = 1.23
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.56
. *************************************~**************************************
FLOW PROCESS FROM NODE 660.00 TO NODE 662.00 IS CODE = 22
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 97
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTENSI'rY(INCH/HOOR) 7.114
SUBAREA. RUNOFF(CFS) 0.68
TO:t'AL AREA (ACRES) := 0.11 TOTAL RUNOFF (CFS) '" 0.68
****************************************************************************
FLOW PROCESS FROM NODE 662.00 '1'0 NODE 6~4.00 IS CODE -62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED)««<
UPSTREAM ELEVATION(FEET) = 249.60 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) -186.00 CORB HEIGHT (INCHES) -B.O
STREET HALFWIDTH(FEET) "" 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) "" 20.00
INSIDE STREET CROSSFALL(DECIMAL) "" 0.018
OUTSIDE S'l'REET CROSSFALL (DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF m 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
247.50
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) "" 0.0150
Manning's FRIC'l'ION FACTOR for Back-oi-Walk Flow Section 0.02(,)0
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 4.13
STREETFl.OW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH (FEET) -0.39
HALFSTREET FLOOD WIDTH (FEET) -12.46
AVERAGE )J'LOW VELOCITY (FEET ISEC.)'" 2.61
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) ~ 1.01
STREE'l' FLOW TRAVEL TIME (MIN.) = 1.19 Tc n,lIN. ) 6.19
100 YEAR RAINFALL IN'l'ENSr'!'Y (INCH/HOUR) "" 6.201
RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 94
------------~~~
AREA-AVERAGE RUNOFF COEFFICIENT =
SUBAREA AREA(ACRES) 1.40
TOTAL AREA(ACRES) -1.51
0.796
SUBAREA RUNOFF(CFS) =
PEAK FLOW RA'l'E (CFS) ""
END OF SUBAREA STREE'l' FLOW HYDRAULICS:
DEPTH (FEET) -0.45 HALFSTREET FLOOD WIDTH (FEET) 16.05
6.86
7.45
FLOW VELOCITY(FEET/SEC.) -2.99 DEPTH*VELOCITY(FT*FT/SEC.) -1.34
LONGEST FLOW PATH FROM NODE 660.00 'ro NODE 664.00 = 473.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 664.00 TO NODE 666.00 IS CODE = 31
>>>>>COMPu'rE PIPE-FLOW 'rRAVEL TIME 'rHRU SUBAREA«:«<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
~~========2================~=====~=======~================================~=
ELEVATION DATA: UPSTREAM (FEET) ~ 243.00 DOWNSTREAM (FEET) c 242.00
FLOW LENGTH (FEET) ~ 37.00 MANNING'S N = 0.013
ES'rIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.23
ESTIMATED PIPE DIAMETER (INCH) ~ 18.00 NUMBER OF PIPES = 1
PIPE-1T'LOW (CFS) = 7.45
PIPE TRAVEL TIME(MIN.) ~ 0.07 Tc(MIN.) = 6.25
LONGEST FLOW PATH FROM NODE 660.00 TO NODE 666.00 = 510.00 FEET.
'***********************'***************************************************
FLOW PROCESS FROM NODE 664.00 TO NODE 666.00 IS CODE =
»»>DESIGNATE INDEPENDEN'l' S'.rREAM FOR CONFLUENCE<<<<<
»»>AND COMPu'rE VARIOUS CONFLUENCED S'l'REAM VALUES«<<<
1
==~~===========c================~==c===~==~================~c===============
TOTAL NUMBER OF STREAMS -2
CONFLUENCE VAWES USED FOR INDEPENDEN'l' STREAM 2 ARE:
'l'IME OF CONCEN'I'RATION (MIN.).. 6.25
RAINF1\LL INTENSITY (INCH/HR) "" 6.16
To'rAL S'I'RE:AM AREA (:L\CRES) "" 1. 51
PEAK E"LOW RATE (CFS) A'I' CONFLurr:NCE '" 7.45
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 6.56
2 7.45
Tc
(MIN. )
6.26
6.25
I N'I'ENS I'I'Y
(INCH/HOUR)
6.157
6.158
AREA
(ACRE)
1. 23
1. 51
RlUNFALL IN'l'ENSITY AND TIME OF CONCENTRATION RA'rIO
CONFLUENCE FORMULA USED E'OR 2 S'l'REAMS.
"k PEAI<:
STREAM
NUMBER
1
2
FLOW RA'l'E
RUNOFF'
(CFS)
14.00
14.01
Tl·\BLE " .,.
'l'e
(MIN. )
6.25
6.26
IN'l'ENSI'l'Y
( INCH/HOUR)
6.158
6.157
ES'l'IMATES ARE
14.01
2.74
AS FOLLOWS:
'l'c (MIN.) = 6.26
COMPUTED CONFLUENCE
PI~J\I<: FLOW RJ.\TE(CF'S)
TOTAL AREA(ACRES) =
LONGEST FLOWPATH FROM NODE 660.00 TO NODE 666.00 510.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
=========~=================~==========~=========~~==~=============~=========
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
PEAK FLOW RATE(CFS) = 2.74 TC(MIN.) =
14.01
6.26
==~==~===~======~=~=~~~====~=~====~======~=~=================~==============
===========================~=====~==~===========~=~======================~==
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••••• **.
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
San Diego, Ca. 92101
•••••••••••••••••••••••••• DESCRIPTION OF STUDY •••• *, •••••••••• *, •• *.***.
• 3330.00 -THE BRIDGES AT POINSETTIA •
• PROPOSED CONDITIONS, SYSTEM 700 *
'I< 100 YEAR STORM EVENT • •••••••• , •••••••• * ••••••••••••• ** ••••••••••••••••• , •• ** ••••• ,** •• , ••••••••
FILE NAME: S700PI00.DAT
TIME/DATE OF STUDY: 16:26 07/23/2008
-----------------------------------------------------~----------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--------------------------------------------------~-------------------------2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) ~ 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) -18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
'USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETl!'LOW MODEV
HALF'-CROWN TO STREET-CROSS FALL : CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARI<:-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (F'.r) (n)
1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.lQ5 0.0150
GLOBAL STREET FLOW-DEFTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth)' (Velocity) Constraint == J.O.O (FT*FT/S)
'SIZE PIPE WITH A FLOW CAPACITY GREATEiR THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.'
** •• * •• ,,*.*.,** •••• * ••• * •••• , •• , •• *,**.**,,* ••• *.** •• , •••••• * ••• *~."*"*'.
FLOW PROCESS FROM NODE 700.00 TO NODE 705.00 IS CODE = 22
----------------------------------------------------------------------.------
>>>>>RATIONAl. METHOD INITIAL SUBAREA ANALYSIS<<<<<
OPEN BRUSH GOOD COVER RUNOFF COEFFICIENT = .3500
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 81
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RAINFALL INTENSI'I'Y(INCH/HOUR) = 7.114
SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) ~ 0.20
============================~=~=======c====~===============c===~========~===
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) =
PEAK FLOW RATE (CFS)
0.08 TC(MIN.) ""
0.20
5.00
===========================~~========~=~c==============================~====
===~=================c===============~=============================~~=~=====
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
RATIONAL METHOD HYDROLOGY COMPU'l'ER PROGRAM l?ACI,AGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,3.981 HYDROLOGY MANUAL
(e) Copyright 1982-2005 Advanced Engineering Software (aes)
Ver. 2.0 Release Dlta: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suit", 800
San Diego, Ca. 92101
******.***~*'**·*.*k~*'·.* DESCR1PTION OF STUDY ***************-*********'
* 3330 BRIDGES AT AVIARA *
• PROPOSED CONDITIONS FOR LOT 3, SYSTEM BOO *
* 100 Yl!:AR S'fORM' 'i.' •
*******'**~.~*~**~i*~*1·.'**~ ••• '1'._*~.'*~*******************************
FILE NAt'1E: S800PI00.D,l\'f
TIME/DATE OF STUDY: 16:29 07/23/2008
USER SPECIFl ED lIYLll{010GY AND HYDRAULIC t'10DEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) -100.00
6-HOUR DURATION PRECJPITM'J:ON (INCHES) '" 2.700
SPECIFIED MINIMUM PIPE SrZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRAD:rr~NTS (l)1!:CIMAL) ',ro USE FOR ITRICnON SLOPE Oil 0.95
SAN DIEGO HYI)ROLOGY MANUM, "C"-Vf\LUES USED FOR RA'l1I ONl--\.l, METHOD
NOTE: USE MODIF.! EI) F\Nl'IONAL tvJETI10D rl\OCEDURES FOl\ CONFLUENCE ANALYSIS
~USER-DErINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
HALF-CROWN TO STREET-rROSSFALL: CURB GUTTER-GEOMETRIES:
WIDTH CROSSFALL IN-/ Ol.l'l'-/ PAJU<-HEIGH'l' WIDTH l,IP HII\E
NO. (FT) (FT) SIDE / SIDE/ ViJAY (FT) (FT) (F'll) (lrr)
[VJODl~JJ~'
[vJANNING
FAC'rOR
(n)
1 30.0 ;~O. 0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL S'I'l~ISE'1' FLOW-DEPTH C:ONS'.l'PJUtns:
1. r~t;lhlti VI?! flo\~-DiO'pth c--0.00 FEE:T
CIS (t'1~\ximuln AIJ owablc S\:J E,,:,I: lTlt)l<v D0pth) -(Top-of-Curb)
2. (Depth)'" (V(c'l(>cHy) ('on:;:tJ;dilll: ,y 6.0 (F'l'*Fl'/S)
"SIZE PIPE ItJJ'l'H A fLOW CJ:\PACTf'Y Gl\L:.:l-~'J'I!:r<. 'l'HAN
OR EQUAL TO THE UPSTREAM TRiBUTARY PIPE ....
FLOW J?EOCESS FHOM NODE 800.00 TO [\JODE 80~.OO IS CODE ~ 22
»>~·>RJ.\1':roNAL MISTHO[J I NJ 'J'J J-\L ~;llBl,\l\EA AN1·\LYS I S««<
G:ENEP,AL INDUS'l'RU\L P.ONOf'F (,()I~fF1(, lENT ,,~ . f3700
SOIL CLASSIFICATION IS "0"
S. C'. S. CURVE NUf"JBh:R (AMe J I) 97
USER SPECIFIED Tc(MIN.) ~ 5.000
100 YEAR RIUm4 AI"L INTENSITY (TNCH/HOlm) "/ .114
SUBAREA RUNOFF(CFS) -1.19
TOTAL AREA(ACRES) ~ 0.24 TOTAL RUNOFF(CFS)
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEll.l\ Fl.OW I\ATE(CFS)
O.2tJ '.l'C(tvJIN.) '"
1. 4 9
END OF RATIONAL METHOD ANALYSIS
1. 4 9
5.00
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
*****k***********~***********"'*'******'**'****'***************************
RATIONAL ME'I'HOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2005 Advanced Engineering Software (Ies)
Ver. 2.0 Release Date: 06/01/2005 License ID 1509
Analysis prepared by:
Project Design Consultants
701 B Street
Suite 800
Sin Diego, Ca. 92101
**********'****'~*'*~***'* DESCRIPTION OF STUDY ************************** * 3330 BRIDGES AT AVIARA
,A' 100 YEAR FLOWS
* PROPOSED CONDITIONS, SYSTEM 900
FILE NAME: S900F100.DAT
TltvlE/DATE OF STUDY: J.4: 15 07/2212008
OSER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMA'l'ION:
2003 SAN DIEGO MANUAL CRITEJUA
USER SPECIFIED STORM EVENT(YEAR) -100.00
6-HOUR DURA'rION PRECIPITATION (INCHES)" 2.700
SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE e 0.95
SAN DIEGO HYDROLOGY MANUAL "e"-VALUES USED FOR RATIONAL ME'rHOD
NOTE: USE MODIFII::D ltl\TIONAJd ME'l'HOD PROCEDORES FOR CONFLrJENCE ANALYSIS
'kOSER-DEFINED STREErr-SEC1'IONS FOR COUPLED PIPEFLOW AND S'l'REETFLOW MODEJ~'A
*
HALF-CROWN '1'0 STRIl:ET-Cl'\()SSfALl,: CURB GUTTER-GEOME'rRIES: MANNING
NID'rH CROSSF'ALL IN-/ ()UT-/I?~\m<:-HEIGHT WIDTH LIP JU1<E ],.-'AC'rOR
NO. (F'r) (FT) SIDl~ / SIDE/ WAY (F'r) (lTT) (F'r) (F'I') (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL S'l'REET FlrOW-DEPTH CONSTRIUNTS:
1. Relative Flow-Depth e 0.00 FEET
as (Mr.lximwTI IHlc)wab1e' Street Flol'i Depth) -('l'op-of-Curb)
2. (Depth) ''"(VelocHy) Constraint .. 6.0 (FT"'F'r/S)
'. 81 ZE PIPE NI'l'H A FLOW Cl·\PACI'l'Y GREA'I'ER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.·
FLOW PROCIESS FROM NODE 900.00 TO NODE 905.00 IS CODE ~ 22
»»>RA'l'IONAL METHOD HII'['lAl, SU13M8A ANI~1YSIS««<
GEN1ERAL INDUS'l'lUAL RUNOFF COEFFICIENT ~" .8700
SOIL CLASSIFICATION IS "0»
S.C.S. CURVE NUMBER (AMe II) -97
USER SPECIFIED Tc(MIN.) -5.000
100 YEAl~ R1UNb~ALL INTENSITY (INCH/HOUR) 7.114
SUBAREA H.tJNOJ:F' (CF'S) 1.11
TOTAL AREA (ACRES) .-. 0.18, 'rOTAJd RUNOE'J:(CFS) '" 1.1J
905.00 '1'0 NODE 910.00 IS CODE ~ 62
»»>COMPU'I'E STREE'l' now TRAVEL TIME rl'HRll SUBARI~A«<<<
»»>(5'1'R8ET TABLE SECTION # 1 U8ED)««<
UPSTREAM ELEVATION(FEET) ~ 250.00 DOWNSTREAM ELEVATION (J:EET) -241.00
STREET LENGTH (FEET) ~ 290.00 CURB HEIGHT(INCHES) ~ 8.0
S'J'l<'E.:t~T Hl\J.J:'WID'rH (F'EE'r) '" 30.00
DIS'l'l-\NCE FROM CROWN 'ro Cl\OSSFALL GRADEBREAlq l!'EE~t') "" 20.00
INSIDE ATREreT CROSS FALL (DECIMAL) m 0.018
OUTS Hl!~ ~:'l'E8[~'l' CROSS!?ALL (DECIMAL) .. 0.018
,c;r!~CIF'H:1'l ~J[JMBlJa\ OF' l'IALF'S'l'I\EE~'S CAFUWING RUNOFF <> 1
STREET PARKWAY CROSSFA11 (DECJMAL) ~ 0.020
Mc1 nrd,l 1',' ,~: F'I,J CTION FACTOR for Strl?(lltfJ.ow Saction (curb-to-c:urb) 0,0:1.50
Mt'll'In inq I H Fr·~JC'J'ION F'ACTOR for l3acr.-oi-Walk Flow Section "-, 0.0200
'~',I'RAVE:L 'l'JMJ.:: COMPU'l'E:D USING ES'UMA'l'ED In.JOW (CL"S)
r;'l'l'.J::E'I'Fl,OW MODEL ggSUL'l'S LJ:~INCi l!':S'l'IMA1'ED now:
STR8ET FLOW DE~TH(FEET) ~ 0.28
HALFSTREET FLOOD WIDTH(FEET) a 6.53
AVERAGF. t::LOlAl Vr~LOCI'l'Y(~~EE:"'/SEC.) .. ' 3.36
PROnUr.T OF DEPTH&VELOCI'l'Y(F'I"j'J:'T/SEC.) 0.94
STr\I~IS'.l' lTLOvJ Tl\AVEL ~1'IME(MIN.) '" 1.44 'l'c(MIN.) "" 6.44
100 Y87\]\ RIUNFALL INTENSITY (INCH/HOUE)" 6.043
GENERl\l, 11'-lDUS'1'R1J.\1" RUNOFF' COEfFICIENT'" • 8700
SOIL CLA!:~J fH'ATWN J.S "0"
~.r.8. ~URVE NUMBER (AMe Il) ~ 97
AR~l\-AV8RAG8 RUNOFF COEFFJC1ENT 0.870
1. 93
SLJBAg~A AREA (ACRES) 0.31 SUBAREA RUNOFF(CFS) ~ 1.63
']'O'J'AL, Al\r.:l\(J.\C[~ES) .. O,t19 PEAl, FLOW 1,A'l'E;(CIfS) 2.58
E:NI.l 01" :-:lIB/-\P.F:A s'rl\l~J~'T' Fl"OW IIY[lRAULICS:
LJI~P'J'Jl ( n:I':'l') ,.. O. 3 0 HALIi'STI~l;;J!:'!' IY'J~O()D WJ. ['lrl'H ( rEE'l') 7 • 7f3
fLOW VF.:I,()('T'T"((IT!·:E'r/r:to:c:.) "" 3.51 DJ~P'1'I'I';VJl:LOCl'l'Y(F"I""l'''r/S8C.) "-' '1.06
T.Oi'Jl;I';S'l' FLOvJPJ.\'J'1l mOtvl l'-IO[)E 900.00 '1'0 t~ODE 910.00 "" 290.00 1-'1:.:1::']'.
F'I,OW 1:'!\OC8SS FROM N(lDl~ r.J]O.OO '1'0 NODE 915.00 IS CODE ~ 31
-------------------------------------------------------------------_ .. _------
',',;.;, "C:()Ml'lJ'I'J.o~ PlPE:-FLOW '.l'E1WE:L 'J'lME ',['I-II\U StlBAREJ.\<'««
;. ,;.»USJNG CUMPll'J'ER-ES'l':lMl\'rBl) I?IJ?ESIZE (NON-PRESSURE FLOW) <<<<<
E'd;~V/\'l']()N !lATh: IJP;:'l'rU~Alvl(F'EI':'l')"' 23'/.00 DOWN~:~rRIT:l\M(F'mE'r) I'l', 23G.O()
F"t.()W U,:Nl.i'J' I,! (l:'E:I::'j') ~' (l/l.OO Ml-HINING'S N"" 0.0]3
I':I:'J' HWT't::I) l'1 F'E l1J l-\ME'l'E:R (INCH) :rNCf\El\SI~D ~1'0 18. 000
l'l1':I''!'H <>[0' 1"WW IN In.O 'INCH PIP!!: l8 G.!.) INCI,n:;S
1'.lI'E-I:'WW VEL,()1.'J'l'Y(F'I~I!:'f/S8(".)·' 5.1~
1':~:'r:llvJl,\',n:l) PHI!: !JH\Mrr;'.l'J~R(INC'IJ)'" 18.00 NUMBEr<. OF' PIPES ~', 1
I'fF'E-F'l,()W(C},'r:) 0' ::..5£l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE TRAVEL TIME(MIN.) ~
LONGES'r FLOWPATH FMM NODE
0.27 Tc(MIN.) g
900.00 TO NODE
6.71
915.00 "" 374. OOFEE',r.
~****~*.***** •• ****~*'***.****~****.****************************************
FLOW PROCESS FROM NODE 915.00 TO NODE 915.00 IS CODE ~ 81
----------------------------------------------------------------------------
>>>>>ADDI'rION OF SUBAREA TO MAIN1.INE PEAI< F'LOW«<<<
100 YEAR RAINFALL IN'rENSI'.rY(INCH!HOUR) 5.883
GENERAL INDUSTRIAL RUNOff COEF'FICIENT ... 8700
SOIL CLASSIFICATION IS "0"
S.C.S. CURVE NUMBER (AMC II) m
AREA-AVERAGE RUNOFF' COEFFICIENT
SUBAR£A AREA(ACRES) '" 0.50
TOTAL AREA (ACRES) -0.99
TC(MIN.) -6.71
97
'" 0.8700
SUBAREA RUNOFF(CFS) =
TOTAL RUNOFF (CFS) -
2.56
5.07
FLOW PROCESS FROM NODE 915.00 TO NODE 920.00 IS CODE = 31
»»>CO[YIPUT'E PlPll:-F'LON TRAV1I:L 'rIJ'lJE 'l'HRIJ SllBAREA«<<<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE F'LOW)««<
ELEVA'l'ION l)J\T,l\: UPS'l'REAM(FEll:'l') '" 23G.OO DOltJNSTREAM(FEE'f) 196.00
FLOW LENGTH (FEET) -120.00 MANNING'S N ~ 0.013
ES'J'IMA'fED PIPE DIA~lE1'ER (INCH) INCI~EASED 'l'O 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES
PIPE-FLOW VELOCIT¥(FEET/SEC.) 20.44
ESTIMATED PIPE DIAMETER (INCH) -18.00 NUMBER OF PIPES ~ 1
PIPE-FLOW (CFS) ~ 5.07
PIPE TRAVEL TltvlE (MIN.)'" 0 .10 fl'e: (MIN.)... 6.81
LONGEST FLOWPATH FROM NODE 900.00 TO NODE 920.00 -494.00 FEET.
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
l?EAI< FLOW RA'l'l~(CFS)
0.99 TC(MIN.) ~
5.07
END OF RA'I'IONJ.\L METHOD i'\NALYSIS
6.61
I I
"'''' I ~ :5
:0 8 }) fi1 ~~ I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX 4
Preliminary Detention Calculations
I
I
I,
I
'I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
System 300 Detention Estimates
I
I
RATIONAL METHOD HYDROGRAPH PROGRAM
I, COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/22/2008
HYDROGRAPH FILE NAME System300.txt
TIME OF CONCENTRATION 8 MIN.
I 6 HOUR RAINFALL 2.7 ' INCHES
BASIN AREA 13.37 ACRES
RUNOFF COEFFICIENT 0.745
PEAK DISCHARGE 52.84 CFS
'I TIME (MIN) 0 DISCHARGE (CFS) .. 0
TIME (MIN) == 8 DISCHARGE (CrS) = 1.6
I TIME (MIN) 16 DISCHARGE (CFS) 1.6
TIME (MIN) '" 24 DISCHARGE (CrS) 1.7
TIME (MIN) 32 DISCHARGE (CrS) 1.7
TIME (MIN) 40 DISCHARGE (CrS) 1.8
I TIME (MIN) 48 DISCHARGE (CrS) 1.8
TIME (MIN) 56 DISCHARGE (CFS) 1.9
TIME (MIN) 64 DISCHARGE (eFS) 1.9
TIME (MIN) 72 DISCHARGE (CFS) ... 2
I TIME (MIN) ... 80 DISCHARGE (CFS) '" 2
TIME (MIN) .., 88 DISCHARGE (CFS) '" 2.1
'rIME (MIN) 96 DISCHARGE (CFS) 2.1
I 'rIME (MIN) 104 DISCHARGE (crs) 2.2
TIME (MIN) '" 112 DISCHARGE (ers) 2.3
TIME (MIN) 120 DISCHARGE (ers) 2.4
TIME (MIN) 128 DISCHARGE (ers) 2.5
I TIME (MIN) 136 DISCHARGE (CFS) '" 2.6
'1'IME (MIN) 144 DISCHARGE (ers) .. 2.7
TIME (MIN) 152 DISCHARGE (CFS) .,. 2.9
TIME (MIN) 160 DISCHARGE (CFS) 3
I TIME (MIN) 168 DISCHARGE (CFS) "" 3.3
'rIME (MIN) 176 DISCHARGE (CFS) 3.5
'rIME (MIN) '" 184 DISCHARGE (CFS) '" 3.8
TIME (MIN) 192 DISCHARGE (CFS) 4.1
I TIME (MIN) 200 DISCHARGE (CFS) '" 4.7
TIME (MIN) 208 DISCHARGE (CFS) 5.1
TIME (MIN) = 216 DISCHARGE (CFS) .. 6.2
I TIME (MIN) 224 DISCHARGE (CFS) "" 7.1
TIME (MIN) 232 DISCHARGE (CFS) 10.4
TIME (MIN) 240 DISCHARGE (CFS) 14.1
'rIME (MIN) ." 248 DISCHARGE (CFS) 52.84
I TIME (MIN) 256 DISCHARGE (CFS) 8.3
TIME (MIN) 264 DISCHARGE (crs) "" 5.6
TIME (MIN) .. 272 DISCHARGE (crs) ... 4.4
TIME (MIN) "" 280 DISCHARGE (crs) 3.6
I TIME (MIN) 288 DISCHARGE (CFS) 3.2
TIME (MIN) "" 296 DISCHARGE (crs) 2.8
TIME (MIN) 304 DISCHARGE (crs) 2.6
'1'IME (MIN) 312 DISCHARGE (crs) 2.4
I TIME (MIN) '" 320 DISCHARGE (CFS) '" 2.2
TIME (MIN) 328 DISCHARGE (crs) 2
TIME (MIN) 336 DISCHARGE (crs) ... 1.9
I TIME (MIN) g~ 344 DISCHARGE (crs) 1.8
TIME (MIN) 352 DISCHARGE (CFS) 1.7
TIME (MIN) "" 360 DISCHARGE (crs) 1.7
TIME (MIN) 368 DISCHARGE (crs) 0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Type .... Target Outflow Volume Estimates Page 0.01
Nome .... POND 10
File .... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.l'PW l)E:,ENTl D~l
\IOLU~I\£ REQVI RE.J)
DETENTION STORAGE ESTIMATES Target Peak Outflow Rate
I?'
Return
Events
Peak In Target Lower Linear Curvlinr Upper Total
(cfs) (ets) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (/lc'-H)
100 52.940 7.900 .590 .650
CALCULATION TIME RANGES
Return
Events
100
Lower
From To
(min) (min)
3.77 257.19
SIN: 621C0212E1CD
PondPaek Ver. 9.0046
Linear Curvilinear
From '1'0 From To
(min) (min) (min) (min)
3.20 257.19 .00 257.19
Project Dosign Consultants
'l'ime: 5: 11 PM
.925 1. 799 2.227
Upper Total
From To From To
(min) (min) (min) (min)
.00 257.19 .00 368.00
Date: 7/23/2008
I
I
.1
I
-I
I
I
I
I
I
I
I .co 0.0 roM
S,E eO)
I '0->-~ J:CI)
I
I
I
I
I
I
o o ,....
I I
o ~--------------~------------~ 0 ~
0 0 M
~
~ .-
0 1 0 N '1 1
L= ! ,
I-
o' 0 ,....
t-
o
o I_I_I-I-_I·~-I-I_I_I._I_I _ 0
o 0 0 0 0 0 o~· CD U') ~ M N ,....
(Sp) MOl.:!
-c: 'E --0)
E
i=
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
. System 500 Detention Estimates
!
I
I
RATIONAL METHOD HYDROGRAPH PROGRAM
I COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/23/2008
HYDROGRAPH FILE NAME System500.txt
I TIME OF CONCENTRATION 6 MIN.
6 HOUR RAINFALL 2.7 INCHES
BASIN AREA 7.66 ACRES
RUNOFF COEFFICIENT 0.499
I PEAK DISCHARGE 18.74 CFS
TIME (MIN) '" 0 DISCHARGE (CFS) 0
I TIME (MIN) 6 DISCHARGE (CFS) 0.6
TIME (MIN) 12 DISCHARGE (CFS) 0.6
TIME (MIN) ... 18 DISCHARGE (CFS) 0.6
TIME (MIN) 24 DISCHARGE (CrS) .. 0.6
I TIME (MIN) 30 DISCHARGE (CrS) 0.7
TIME (MIN) = 36 DISCHARGE (CrS) 0.7
TIME (MIN) 42 DISCHARGE (CFS) '" 0.7
'rIME (MIN) '" 48 DISCHARGE (CFS) 0.7
I TIME (MIN) '" S4 DISCHARGE (CrS) "" 0.7
TIME (MIN) "" 60 DISCHARGE (CrS) 0.7
TIME (MIN) 66 DISCHARGE (CrS) "" 0.7
TIME (MIN) '" 72 DISCHARGE (CFS) 0.8
I TIME (MIN) 78 DISCHARGE (CFS) ::: 0.8
TIME (MIN) 84 DISCHARGE (CFS) "" 0.8
TIME (MIN) 90 DISCHARGE (CrS) "" 0.8
I TIME (MIN) 96 DISCHARGE (CFS) .. 0.8
TIME (MIN) 102 DISCHARGE (CF'S) 0.9
TIME (MIN) '" 108 DISCHARGE (CFS) 0.9
TIME (MIN) "" 114 DISCHARGE (CFS) = 0.9
I TIME (MIN) 120 DISCHARGE (CrS) '" 0.9
TIME (MIN) '" 126 DISCHARGE (CFS) 1
TIME (MIN) = 132 DISCHARGE (CrS) '" 1
TIME (MIN) 138 DISCHARGE (CF'S) 1
I 'l'IME (MIN) 144 DISCHARGE (CrS) '" 1.1
TIME (MIN) .. 150 DISCHARGE (CFS) '" 1.1
TIME (MIN) lS6 DISCHARGE (CFS) "" 1.2
TIME (MIN) ... 162 DISCHARGE (CrS) 1.2
I '.rIME (MIN) '" 168 DISCHARGE (CFS) '" 1.3
'.rIME (MIN) 174 DISCHARGE (CFS) 1.4
TIME (MIN) 180 DISCHARGE (CrS) '" 1.4
I 'rIME (MIN) 186 DISCHARGE (CFS) 1.5
TIME (MIN) 192 DISCHARGE (CrS) .., 1.6
TIME (MIN) 198 DISCHARGE (CFS) "" 1.8
'l'IME (MIN) '" 204 DISCHARGE (eFS) 1.9
I TIME (MIN) '" 210 DISCHARGE (CfS) 2.2
TIME (MIN) == 216 DISCHARGE (eFS) = 2.3
TIME (MIN) '" 222 DISCHARGE (CfS) 2.9
TIME (MIN) '" 228 DISCHARGE (CFS) .. 3.3
I TIME (MIN) 234 DISCHARGE (crs) 4.8
TIME (MIN) '" 240 DISCHARGE (CFS) '" 12.2
'rIME (MIN) 246 DISCHARGE (ers) '" 18.74
TIME (MIN) 252 DISCHARGE (CFS) .. 3.8
I 'rIME (MIN) 258 DISCHARGE (crs) = 2.6
TIME (MIN) 264 DISCHARGE (CfS) 2
'rIME (MIN) 270 DISCHARGE (crs) "" 1.7
I
I
I
I
TIME (MIN) .. 276 DISCHARGE (CFS) 1.5
I TIME (MIN) ...
TIME (MIN) "" TIME (MIN) ...
282 DISCHARGE (CFS) 1.3
288 DISCHARGE (CFS) 1.2
294 DISCHARGE (CFS) = 1.1
TIME (MIN) .. 300 DISCHARGE (CFS) = 1
I 'I'IME (MIN)
TIME (MIN)
TIME' (MIN) ...
306 DISCHARGE (CFS) 0.9
312 DISCHARGE (CFS) = 0.9
318 DISCHARGE (CFS) .. 0.8
I' 'rIME (MIN) '"
TIME (MIN)
TIME (MIN) ...
324 DISCHARGE (eFS) 0.8
330 DISCHARGE (CFS) 0.8
336 DISCHARGE (CFS) 0.7
TIME (MIN) '" 342 DISCHARGE (CFS) ..., 0.7
I TIME (MIN) ""
TIME (MIN)
TIME (MIN)
348 DISCHARGE (CE'S) 0.7
354 DISCHARGE (CFS) ". 0.7
360 DISCHARGE (CE'S) =-0.6
TIME (MIN) 366 DISCHARGE (CFS) 0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Type •... Target Outflow Volume Estimates
Name ...• POND 10
Page 0.01
File ...• P:\3330\ENGR\REPORTS\DRAIN\l.'ONDl.'ACK\l?RELIM-VOL.l?PW
DETENTION S~'ORAGE ESTIMATES Target Peak Outflow Rate
Return
Events
100
Peak In Target
(ds) (c£5)
16.740 1. 600
Lower
(ac-ft)
.326
CALCULATION TIME RANGES
Return
Events
100
Lower
From To
(min) (min)
3.20 273.00
Linear
From To
(min) (min)
.00 273.00
Linear Curvlinr Upper
(ac-ft) (ac-ft) (ac-ft)
.442 .503 .743
Curvilinear Upper
From To From To
(min) (min) (min) (min)
.00 273.00 .00 273.00
yE-IENTI or~
VOL.UM~
RF-e:< IJ \ ~< ~l>
Total
(ac-ft)
.857
Total
From To
(min) (min)
.00 366.00
SIN: 621C0212E1CD
PondPack Ver. 9.0046
Project Design Consultants
Time: 5:21 PM Date: 7/231200B
-------------------
20!
18I 1
16t
141 1
-121 :[ + ~ 10-o 1
u:: 81 1
6+
4t
2I 1
Hydrograph
System 500
! ,---9--;;-, o ' .~'$llmk~"""~ u i
r100 o 100 200 300
Time (min)
~
400
s500
Curvilinear Est 100
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
System 600 Detention Estimates (LOT 3 ALTERNATIVE 'A ')
I
I RATIONAL METHOD HYDROGRAPH PROGRAM
I COPYRIGH'r 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 4/17/2008
HYDROGRAPH FILE NAME System600.txt
I TIME OF CONCENTRATION 7 MIN.
6 HOUR RAINFALL 2.7 INCHES
BASIN AREA 2.96 ACRES
RUNOFF COEFFICIENT 0.725
I PEAK DISCHARGE 12.2 CFS
TIME (MIN) =: 0 DISCHARGE (CFS) ... 0
I TIME (MIN) 7 DISCHARGE (CrS) 0.3
TIME (MIN) 14 DISCHARGE (CrS) := 0.4
TIME (MIN) 21 DISCHARGE (CrS) .. 0.4
'1'IME (MIN) 28 DISCHARGE (CrS) 0.4
I TIME (MIN) 35 DISCHARGE (CFS) 0.4
TIME (MIN) 42 DISCHARGE (CrS) 0.4
TIME (MIN) 49 DISCHARGE (CrS) "" 0.4
TIME (MIN) 56 DISCHARGE (CrS) 0.4
I TIME (MIN) 63 DISCHARGE (CrS) 0.4
1'IME (MIN) '" 70 DISCHARGE (CrS) 0.4
TIME (MIN) "" 77 DISCHARGE (CFS) 0.4
TIME (MIN) '" 84 DISCHARGE (CFS) 0.4
I TIME (MIN) 91 DISCHARGE (CFS) O.S
TIME (MIN) 98 DISCHARGE (CrS) 0.5
TIME (MIN) 105 DISCHARGE (CFS) '" 0.5
I TIME (MIN) '" 112 DISCHARGE (CrS) '" 0.5
TIME (MIN) 119 DISCHARGE (CrS) 0.5
TIME (MIN) 126 DISCHARGE (CrS) "" 0.5
1'IME (MIN) 133 DISCHARGE (CrS) '" 0.6
I TIME-(MIN) 140 DISCHARGE (CrS) 0.6
TIME (MIN) 147 DISCHARGE (CFS) "" 0.6
TIME (MIN) .. 154 DISCHARGE (CrS) .. 0.6
TIME (MIN) 161 DISCHARGE (CrS) 0.7
I TIME (MIN) "" 168 DISCHARGE (CrS) 0.7
TIME (MIN) 175 DISCHARGE (CrS) 0.8
TIME (MIN) 182 DISCHARGE (CFS) = 0.8
I TIME (MIN) 189 DISCHARGE (CrS) 0.9
TIME (MIN) 196 DISCHARGE (CFS) 1
TIME (MIN) 203 DISCHARGE (CrS) .. 1.1
TIME (MIN) 210 DISCHARGE (CrS) 1.2
I TIME (MIN) '" 217 DISCHARGE (CrS) 1.5
TIME (MIN) 224 DISCHARGE (CrS) 1.7
TIME (MIN) '" 231 DISCHARGE (CrS) =: 2.4
TIME (MIN) 238 DISCHARGE (CrS) 3.5
I TIME (MIN) 245 DISCHARGE (CrS) 12.2
1'IME (MIN) = 252 DISCHARGE (CrS) 2
TIME (MIN) ... 259 DISCHARGE (CrS) 1.3
1'IME (MIN) 266 DISCHARGE (CrS) 1
I 1'IME (MIN) 273 DISCHARGE (CrS) =: 0.9
TIME (MIN) .. 280 DISCHARGE cers) 0.7
TIME (MIN) 287 DISCHARGE (CFS) '" 0.7
I TIME (MIN) 294 DISCHARGE (CE'S) 0.6
'rIME (MIN) .. 301 DISCHARGE (CFS) 0.6
TIME (MIN) 308 DISCHARGE (crs) 0.5
TIME (MIN) 315 DISCHARGE (crs) 0.5
I
I
I
I
TIME (MIN) 322 DISCHARGE (CFS) c 0.5
I TIME (MIN) 329
TIME (MIN) "" 336
TIME (MIN) 343
DISCHARGE (CFS) 0.4
DISCHARGE (CFS) 0.4
DISCHARGE (CFS) 0.4
TIME (MIN) = 350 DISCHARGE (CFS) 0.4
I TIME (MIN) .. 357
TIME (MIN) 364
DISCHARGE (CFS) 0.4
DISCHARGE (CFS) 0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I
I
I
I
I
I
I
Type ...• Target Outflow Volume Estimates
Name .... POND 10
Page 0.01
File .... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.PPW
DETENTION STORAGE ESTIMATES Target Peak Outflow Rate
Return
Events
100
Peak In Target
(efs) (cfs)
12.200 5.100
Lower
(ae-tt)
.052
CALCULATION TIME RANGES
Return
Events
100
Lower
From ~'o
(min) (min)
3.99 249.87
Linear
From To
(min) (min)
3.85 249.87
Linear Curvlinr
(ne-ft) (ae-ft)
Upper
(ae-it)
.065 I .108 .371
Curvllinear Upper
From To From To
(min) (min) (min) (min)
2.57 249.87 .00 249.87
-----' l>r~,:r:Gf\ln oi-J
VOLVME-
Total
(Ole-it)
.481
~'ot!ll
From To
(min) (min-)
.00 364.00
\2.~QU \ ~~J>
SIN: 621C0212E1CD
PondPack Ver. 9.0046
Project Design Consultants
Time: 5:26 PM Date: 7/23/2008
-------------------
141
12f
10I
~ 81 ~ I
~ -
o 61
LL i
!
41 ~ I
2f
Hydrograph
System 600, Project Alternative 'A' for Lot 3
o T -~-xro...,"!J;~~_~M~ >;U;,;f.l,~ ; i i
-100 o 100 200
Time (min)
.,
300 400
""~
S600
Curvilinear Est 100
I
I
I System 650 Detention Estimates
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RATIONAL METHOD HYDROGRAPH PROGRAM
I COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/21/2008
HYDROGRAPH FILE NAME Systern650.txt
I TIME OF CONCENTRATION 6 MIN.
6 HOUR RAINFALL 2.7 INCHES
BASIN AREA 2.74 ACRES
RUNOFF COEFFICIENT 0.796
I PEAK DISCHARGE 14.01 CFS
TIME (MIN) 0 DISCHARGE (CFS) 0
I TIME (MIN) .. 6 DISCHARGE (CFS) '" 0.4
TIME (MIN) '" 12 DISCHARGE (CFS) 0.4
TIME (MIN) "" 18 DISCHARGE (CPS) ... 0.4
TIME (MIN) .. 24 DISCHARGE (CPS) 0.4
I TIME (MIN) 30 DISCHARGE (CFS) ... 0.4
TIME (MIN) "" 36 DISCHARGE (CPS) O.tl
TIME (MIN) 42 DISCHARGE (CFS) '" 0.4
TIME (MIN) 48 DISCHARGE (CPS) '" 0.4
I TIME (MIN) 54 DISCHARGE (CrS) 0.4
TIME (MIN) 60 DISCHARGE (CFS) 0.4
TIME (MIN) 66 DISCHARGE (CrS) '" 0.4
'l'IME (MIN) "" 72 DISCHARGE (CrS) 0.4
I TIME (MIN) 78 DISCHARGE (CPS) 0.4
TIME (MIN) 84 DISCHARGE (CFS) 0.4
TIME (MIN) 90 DISCHARGE (CrS) 0.5
I TIME (MIN) 96 DISCHARGE (CrS) 0.5
TIME (MIN) '" 102 DISCHARGE (CrS) 0.5
TIME (MIN) => 108 DISCHARGE (CrS) '" 0.5
TIME (.MIN) ... 114 DISCHARGE (CrS) 0.5
I TIME (MIN) = 120 DISCHARGE (Cb~S) 0.5
TIME (MIN) "" 126 DISCHARGE (CrS) .. 0.6
TIME (MIN) 132 DISCHARGE (CFS) 0.6
TIME (MIN) ... 138 DISCHARGE (CrS) 0.6
I TIME (MIN) 144 DISCHARGE (CrS) 0.6
TIME (MIN) "" 150 DISCHARGE (CrS) "" 0.6
TIME (MIN) 156 DISCHARGE (CFS) 0.7
TIME (MIN) 162 DISCHARGE (CFS) 0.7
I TIME (MIN) 168 DISCHARGE (CrS) 0.7
TIME; (MIN) 174 DISCHARGE (CrS) ... 0.8
TIME (MIN) 180 DISCHARGE (CFS) "" 0.8
I 'l'IME (MIN) '" 186 DISCHARGE (CFS) "" 0.9
TIME (MIN) .. 192 DISCHARGE (CFS) "'" 0.9
TIME (MIN) 198 DISCHARGE (CPS) 1
TIME (MIN) 204 DISCHARGE (CFS) 1.1
I 'rIME (MIN) '" 210 DISCHARGE (CrS) 1.2
TIME (MIN) 216 DISCHARGE (CFS) "" 1.3
'l'IME (MIN) 222 DISCHARGE (CPS) 1.6
TIME (MIN) 228 DISCHARGE (CFS) 1:9
I TIME (MIN) "" 234 DISCHARGE (CrS) '" 2.7
TIME (MIN) 240 DISCHARGE (CFS) 3.6
TIME (MIN) "" 246 DISCHARGE (CFS) ,.. 14.01
TIME (MIN) 252 DISCHARGE (CFS) .. 2.2
I TIME (MIN) "" 258 DISCHARGE (CFS) "" 1.5
TIME (MIN) 264 DISCHARGE (CFS) .. 1.1
TIME (MIN) "270 DISCHARGE (CPS) 1
I
I
II
I
TIME (MIN) 276 DISCHARGE (CrS) '" 0.8
I TIME (MIN) ""
TIME (MIN) ...
TIME (MIN) '"
282 DISCHARGE (CrS) "" 0.7
288 DISCHARGE (CrS) 0.7
294 DISCHARGE (CrS) 0.6
TIME (MIN) 300 DISCHARGE (CrS) .. 0.6
I TIME (MIN)
TIME (MIN)
TIME (MIN)
306 DISCHARGE (CrS) 0.5
312 DISCHARGE (CrS) 0.5
318 DISCHARGE (CPS) "" 0.5
TIME (MIN) = 324 DISCHARGE (CrS) "" 0.5
I TIME (MIN)
TIME (MIN)
TIME (MIN) =
330 DISCHARGE (CFS) 0.4
336 DISCHARGE (CrS) 0.4
342 DISCHARGE (CrS) 0.4
I TIME (MIN) ""
TIME (MIN) ""
TIME (MIN) ""
348 DISCHARGE (CFS) 0.4
354 DISCHARGE (CrS) 0.4
360 DISCHARGE (CF'S) 0.4
TIME (MIN) "" 366 DISCHARGE (CrS) 0
I
I
I
I
I
I
'I
I,
I
I
I
I
I
,
!.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Type ...• Target Outflow Volume Estimates
Name ...• POND 10
Page 0.01
File •... P:\3330\ENGR\REPORTS\DRAIN\PONDPACK\PRELIM-VOL.PPW
DETENTION STORAGE ESTIMATES Target Peak Outflow Rate
Return
Events
100
Peak In Target
(efs) (efs)
14.010 5.100
Lower
(ae-tt)
.059
CALCULATION TIME RANGES
Return
Events
100
Lower
From To
(min) (min)
4.01 250.53
Linear
From To
(min) (min)
3.90 250.53
Linear Curvlinr
(Ole-tt) (ae-ft)
Upper
(ae-ft)
.070 .111 .378
Curvi linear Upper
From To From To
(min) (min) (min) (min)
2.90 250.53 .00 250.53
%TEtJT10N
\}OLVME..
Total
(tle-ft)
.489
'~€.cQ V 1 R~ .. I>
Total
From To
(min) (min)
.00 366.00
SIN: 621C0212E1CD
PondPaek Ver. 9.0046
Project Design Consultants
Time: 5:28 PM Date: 7/23/2006
-------------------
~
16l
141 !
121 I T
.-. 10t ~ L i' 8 1
o I u: T 6f
4I 1
2t
Hydrograph
System 650 (Lot 3, Senior Affordable site plan)
oT ~=:r!'"~~~~~W-
w ~~ i -... ~ . . ~
-100 ,.: \ o 100 200 300
Time (min)
s650
~ Curvilinear Est 100
400
~I
:;g '" <I< § :u c
() ~ ~ J:J iii en
s
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX 5
Preliminary Energy Dissipation Calculations
I
I
I
I
I
I
I
!= I
I
I
I
I
I 1";
"'"
I
I
I
I
I
I
notch lS2mm
,plCTOR'lAl. 'VIEW
I
_
'fit -
NOTES SECTlON A-A
AogT!tgole cOroJf woll
Choooel Invert
'1. ~~"nt ~d ~rl (torth lCXl,4inq)= '961 ~g/t)l, m (00 p.c,f.) WO~mlWn OJUIIl ~Iocltr =: 10.7m '(JS')/S'
2. Concr~li lIoon b4 332 kg/101~~-22lttpo ~C~325O) ,
3. R'elllll'll'dng WII c.onform tD :ASnI ,dcsJgriolion .A61~ ,C!ld may bt grade ~p or :00.. RcI(IlOI'CIoo ~h!ll!~' pklc:ea with Slmm (t) tleor ~QfIQ1lte ~ 'UJlle" noted o~, Sp~ \theM nof' bt permitttd fl)!~P( 0$ iJ:IdIctJIeP on 11)0 'p/Q~
4. for 'Pipe grode$ net ~c~r.g 21m. InlGt box rJ1QY bl! ~lled,
5.., U rill,t box b omitted, cooslru<:t, 'pipe eolia' 00 $\low!). , .' e. Unlm noted oIIlO1"1ri$e, on nllnfon:in9 bot benils Ilhdl be 'fobricated tilh standard 'books. '
7 .. F"IVll foot ,tliQb cl10ln fink fencing. emb(Jd posl J8' dCI!P :in •• ' and ~tJ50, 'with olem a 'mOrtar.
~. In Sorldy and Sillyaoir:
, ci) Rlprop and aggfcgoto bote cutoff. wlJ1/ ntqlIlred lit :the ,M!J' of ~ oprOn,
b) fllto, doth (~ob'lilCl' X or equmlonl) thOlI bt IJUte_lid, tm hCti~. lIoil bct81!, :minimum 9'~m (tit) ~!lP.S 01 .)pin'"
9. ~ rep j)1')~ $QbbaUe clcs511lcalion wan be os ~ on ~. " , ~',~ SEt D419.
,ReYlslorl B ved Dote Rt~ OY','I'HC WI ,C1too SAN D'EGO REGIONAL STANDARD DflAWING IU:~ sr~ ~ ORIGiNAL
CONCRETE ENERGY DISSIPATOR
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Revision By
ORIGINAL
Add Metric
Reformotted
METRIC DIMENSIONS TABLE, FOR STRUCTURE DETAILS SEE D-041A.
Pipe Die 457mm 610mm 9.Hm 11.0m 12.00m 14.63m IM6m IS.29m' 21.9Sm
NeD (SQ. m) .154 .292 .456 657 .893 1.17 .1.~ 1.82 2.63
Mox. 0 (cu mle .594 1.08 1.67 2.41 3.26 4026 5.41 6.66 9.60
Vi 1.66m l.80m 2.13m 2.B2m 3.2Om 3.58m 3.98 ~.34 5.03m
H 1.30m l.60m 1.90m 2.21m 2.44m 2.7~m 2.67m J.2Bm '3.73m
L 2.2~m 2.7~m 3.25m 3.7Bm ~.27m 4.7Bm 5.28m 5.79m 6.71m
0 99lmm 1.19m 1.~ l.60m 1.83m 1.00m ' 2.2-1m 2.+1m 2.82m
b 1.24m 1.55m l.85m 2.16m 2.«m 2.72m 3.OSm 3.35m 3.87m
c 711mm 864mm 1.02m 1.17m 1.35m 1.5Om t.65m 1.80m 2.11m
d 279mm 356mm 400mm ~82mm 533mm 610mm 660mm 737mm 838mm
e 152mm 152mm 203mm 203mm 254mm 2~mm 305mm 305mm 38lmm
f 457mm 610mm 762mm 914mm 914mm 914mm 914mm 91~mm 914mm
Q 635mm 762mm 914mm I.07m 1.19m 1.35m I.SOm 1.63m 1.88m
Tf 203mm 2~mm 305mm
Th 178mm 241mm 267mm
Tf I 78mm 241mm 267mm
To 17Bmm 203mm
IMPERIAL DIMENSIONS TABLE, FOR STRUCTURE DETAILS SEE D-41A.
Pipe Dia (in 18 24 30 36 42 48 ~ 60 72
,
NeD (sq.ft. 1.77 3.14 4.91 7.07 9.62 12.57 15.90 19.63 28.27
Max. Q (cfa 21 38 59 85 115 151 191 236 339
Vi 5'-S' 6'-9' 8'-0' 9'-J' 10'-S' 11'-g' 3'-0' 14'-J' 16'-S"
H f-3' 5'-3' 6'-3' 7'-3' 8'-0' g'-O' g'-g' 10'-9" 12'-3'
l 7'-4' g'-O' 0'-8 '12'-4 14'-0' 15'-8' 17'-4' 19'-0' 22'-0
0 3'-3' 3'-11 4'-7' 5'-3' 6'-0' 6'-9' 7'-." 6'-0' 9'-3"
b 4'-1' 5'-1' 6'-1' 7'-1' 8'-0' 8'-11 10'-0' 11'-0' 12'-9'
c 2'-4' 12'-10 3'-~' 3'-10 4'-5" .'-11 5'-5' 5'-11 6'-11
d ~'-11 1'-t 1'-4' 1'-7' I'-g' 2'-0' 2'-2" 2'-5' 2'-9'
e 0'-6" O'-S' O'-S' O'-S' 0'-10 0'·10 1'-0' 1'-0' 1'-3'
f I'-S' 2'-0' 2'-6' 3'-0' 3'-0' 3'-0' 3'-0' 3'-0" 3'-0'
Q 2'-1 2'-6' 3'-0' 3'-6' 3'-11 4'-5' 4'-11 5'-4' 6'-2'
TI S" 10" 12'
Th 7' 9112' 10 1/2'
Tw 7' 91/2' 10 1/2' ,
To 7' 8'
Approved Dote RECOMMENDED BY 11-IE SAN DIEGO
2/75 SAN DIEGO REGIONAL STANDARD DRAWING REGIONAL STANDARDS COMMITIEE
Kercheval
T. Stanton 03/003 1~~Tf.t'I1J 9/()1jtOO9
T. Stanton 04/06 CONCRETE ENERGY OISSIPATOR Chfllroeraon R.C.E. 19246 Dote
DRAWING 0-41B NUMBER
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
S ::> S' ~
r,-., c .... -,5 C! ,.., ,
~
0:: 0
~
~
0:: 0
~
Concrete
3D OR 3W
PLAN
SECTION 8-8
152mm (6")
Wide Slot
•
NOTES
Design veloclt~ Rock T (min)
m/sec (ft/sec * Classification
1.8-3 No. 2 Backing 320mm (1.1 ft) (6-10)
3-3.7 220 kg 823mm (2.7ft) (10-12) (1/4 ton)
3.7-4.3 450 kg 1.1 m (3.5ft) (12-14) (1/2 ton)
('3-4.9 14-16) 900 ~) (.1 ton 103m (404ft)
4.9-5.5 1.B tonne 1.6m (SAft) (16-18) (2 ton)
'over 5.5 mps (18 fps) requires special design
o = Pipe Diameter
W = Bottom Width of Channel
r Blanket
Sill, Closs
249kg/rri' -C-13Mpa (420-C-2000) Concrete
SECTION A-A
1. Plans sholl specify:
A) Rock Closs and thlckl)ess (T).
B) Fllter material. number of laysrs and thickness. 2. RIp rap sholl be either quarry stone or broken concrete (if shown on the plans.) Cobbles are not acceptable.
3. Rip rap sholl be placed over filter blonket which may be either granular material or filter fabric (woven filter
slit film fabric sholl not be used).
4. See Regional Supplement Amendments for selection
of filter blanket.
5. Rip rap energy dissipators shal! be designated as eith!lr Type 1 or Type 2. Type 1 sholl be with concrete sill;
Type 2 shalf be without sill.
SAN DIEGO REGIONAL STANDARD DRAWING
RIP RAP
ENERGY OISSIPATOR
~!e7!eOO6 •
holrpcrson R.C.E. 19245 Dolo
DRAWING
NUMBER 0·40
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,~ PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
WWW.PRO]ECTDESIGN.COM
PROJECT 1S~\()G,E S
SUBJECT "&EL-1tJ!. ENER.~Y DiSSlfA-77DN
PAGE: OF __ JOB NO. : 3'3~
DRAWN BY: ___ DATE: 1!~~Ia",-=B,---_
CHECKED BY: DATE: ____ _
>is-k-M 3co ovef:-bJ1 Lo~,*,-(NtU r "'J foas/~)
IM1fN/f-Bas,'/? ~'jl'.....-
J)=== 2,('1;;::2 I J Q -;::. 7. q e-.f~
~ \ ) 'Jo =: ·ILf.LfGt(5 (~Wf>Pb) Sy6~ "300')
A;; QIv~::::. 7q·/I~. 'i~ -:;:. 0.55
':je:::: lA/z)V?'-:::: (O.55/1.)h ~ (9.52--:::. ~,VjV~ ckp+k 0(. .f'(ot,J ~-eriJ Ji'$$if""1oY-
S+er i) CoMpl.{.+-e.. t=; .t ~~J cd-~ of riF') ~o
1=;~ \10 ::; _l~.tfb ...-~ ~.5
~ Jt?Z:l)(6,sZ)
\-1-0 ::: ~ -I-:!,.,?-:::.. o.55.r (JLf!!.(P1. :;:. '3.1;
'j 1..(71-.'0)
St-q 3) 'D.t,-k:rIV\\~ Vro/~ -{;-ow-. r;j~ve.. q.l~. CtJculk I'""4.JL wl£1l o~ ~;Y\.J WI!>
W~ = 'Ao _ ::::-1:t ___ 3.~
\..\0 I~i!> 1.0
?u-'eSt> p-~\) \N~::: '.75
Skr l{) 1>1~'e>\.s pe-r l)-LJ I 1-51>
Skt' s) \)t.-iex\ll!i~ -v;,i-t v'e-loc.Z~., \l B
\-l~ -::> -Q 'r' V: ::::-\+0 (\ -t \
wI? \)13> ~ t> )
JL. :;: 0.57 ~ rt" 9, \S
\-\;) ..J
v,z.. ~~:::. ~ +-_ f, =-,/;,91(1-0,51) l~.75) Vi 1{p .. 'L}
Vv:-,,; q. CJ, fp -?'" ~frnr ~UcvJ'~ "b-Lf/ skul~ k #2 Bf/c,t./N{j
I
I I
I I & ~ I
I I~' ---' I I I ~///b-~
"JCA.\ / I I 'C;'~' /
I
I [>--i -<::; li / / V (J
I S? I I ~
I ~I I Ii
I / / I I
/ ~ \~ I ~I ~ ,. -\
I I II \\ ~
1/ /( / )
I (Jv/
I
I
I
I
I
'-~
x1 ~5. 7 p!
& x185.5
/
/
/
I
I~~~~~~~LLUL~~~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
3.0
V
/
V V
/'
V /'
V
2.0
(.0 1.0
.0 2.0 3.0 4.0 . 5.{1 $.0 7.0 8.0 &.0
Figure 9.14. Design Curve for USBR Type VI Impact Basin
Once the basin width, WB, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry
in the table to determine the other dimensions. Interpolation is not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2,
entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy 1055 was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
90
80
/" /
/ /'
L
i=' z w 70 ~ w !1.
./ V /-/ r--~MPACT /
BASINV' ,/'
~RAULIC 'UII.-I
I V ~ HORIZ:ONTAL FLOOR
/ 30
20
10
1.0 2.0 3.0 ~s 4.0 5.0 .. 6.0
Fr = Vof(gYe)1/2
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present. Riprap should be placed downstream of the basin
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance
velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations
within these parameters. Velocities up to 15.2 m/s (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USSR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
--- - ------ -- - ---- - -
FILE: SYSTEM300.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 1
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:10:52:35
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 300
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1. I Elev I Depth I Width IDia.-FTlor I.D. I ZL IPrs/pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I@ I I I
117.000 187.570 .460 188.030 7.90 14.46 3.25 191.28 .00 1. 00 1. 68 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.445 .0100 .0909 .04 .46 4.47 .82 .0l3 .00 .00 PIPE
I I I I I I I I I
117.445 187.574 .458 188.033 7.90 14.53 3.28 191.31 .00 1.00 1. 68 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
3.555 .0100 .0981 .35 .46 4.50 .82 .013 .00 .00 PIPE
I I I I I I I I I
121. 000 187.610 .444 188.054 7.90 15.24 3.61 191.66 .00 1.00 1. 66 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
36.476 .1056 .1031 3.76 .44 4.81 .44 .0l3 .00 .00 PIPE
I I I I I I I I I
157.476 191.462 .447 191.909 7.90 15.07 3.53 195.43 .00 1. 00 1. 67 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
29.108 .1056 .0951 2.77 .45 4.73 .44 :0l3 .00 .00 PIPE
I I I I I I I I I
186.584 194.536 .462 194.998 7.90 14.37 3.21 198.20 .00 1.00 1.69 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
12.261 .1056 .0831 1.02 .46 4.43 .44 .0l3 .00 .00 PIPE
I I I I I I I I I
198.845 195.831 .478 196.309 7.90 13.70 2.91 199.22 .00 1.00 1.71 2.000 .000 .00 1 .0
-1--1--1--1--1--I:" -1--1--1--1--1--1--I-I-
7.562 .1056 .0727 ,55 .48 4.15 .44 .013 .00 .00 PIPE
I I I I I I I I I
206.407 196.629 .494 197.123 7.90 13.06 2.65 199.77 .00 1.00 1.73 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
5.322 .1056 .0636 .34 .49 3.89 .44 .013 .00 .00 PIPE
I I I I I I I I I
211.729 197.191 .511 197.703 7.90 12.45' 2.41 200.11 .00 1.00 1. 74 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
4.018 .. 1056 .0556 .22 .51 3.64 .44 .0l3 .00 .00 PIPE
I I I I I I I I I
215.747 197.616 .529 198.145 7.90 11.87 2.19 200.33 .00 1. 00 1. 76 2.000 .000 .00 1 .0
-1--1--1--1--1--.1--1--1--1--1--1--1--I-I-
3.178 .1056 .0486 .15 .53 3.41 .44 .0l3 .00 .00 PIPE
- -- ------- ---- - --- -
FILE: SYSTEM300.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:10:52:35
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 300
************************************************************************************************************************** ********
I Invert I Depth I ' Water I Q I Vel Vel i Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth
Station I Elev I (FT) I E1ev I (CFS) I (FPS) Head I Grd.El. I E1ev I Depth I width IDia.-FTlor I.D.I ZL IPrs/pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I 'I I I I I I
218.926 197.951 .547 198.498 7.90 11.32 1. 99 200.49 .00 1.00 1. 78 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
2.568 .1056 .0426 .11 .55 3.19 .44 .013 .00 .00 PIPE
I I I I I I I I I 221.494 198.223 .566 198.789 7.90 10.79 1.81 200.60 .00 1.00 1. 80 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
2.114 .1056 .0373 .08 .57 2.98 .44 .013 .00 .00 PIPE
I I I I I I I I I
223.608 198.446 .586 199.032 7.90 10.29 1. 64 200.68 .00 1. 00 1.82 2.000 .000 .00 1 .0
-1--1--1--1--:1--1--1--1--1--1--1--1--I-I-
1. 774 .1056 .0326 .06 .59 2.79 .44 .013 .00 .00 PIPE
I I I I I I I I I
225.382 198.633 .606 199.239 7.90 9.81 1.50 200.73 .00 1.00 1. 84 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1. 479 .1056 .0285 .04 .61 2.61 .44 .013 .00 .00 PIPE
I I I I I I I I I
226.861 198.789 .628 199.417 7.90 9.36 1.36 200.78 .00 1.00 1. 86 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.260 .1056 .0250 .03 .63 2.44 .44 .013 .00 .00 PIPE
I I I I I I I I I
228.121 198.922 .650 199.573 7.90 8.92 1.24 200.81 .00 1.00 1. 87 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.067 .1056 .0219 .02 .65 2.29 .44 .013 .00 .00 PIPE
I I I I I I I I I 229.188 199.035 .673 199.708 7.90 8.51 1.12 200.83 .00 1.00 1.89 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.916 .1056 .0192 .02 .67 2.14 .44 .013 .00 .00 PIPE
I I I I I I I I I
230.104 199.132 .696 199.828 7.90 8.11 1.02 200.85 .00 1.00 1.91 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I"" 1-
.764 .1056 .0168 .01 .70 2.00 .44 .013 .00 .00 PIPE
I I I I I I I I I
230.868 199.213 .721 199.934 7.90 7.73 .93 200.86 .00 1.00 1.92 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.643 .1056 .0147 .01 .72 1. 87 .44 .013 .00 .00 PIPE
- - --
FILE: SYSTEM300.WSW
- -- -----
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 300
-----
PAGE 3
Date: 7-24-2008 Time:10:52:35
************************************************************************************************************************** ********
I Invert I Depth I Water I Q Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR I Type Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
231.511
-1-
.537
I
232.048
-1-
.443
I
232.491
-1-
.360
I
232.850
-1-
.275
I
233.125
-1-
.208
I
233.334
-1-
.148
I
233.482
-1-
.083
I
199.280
-1-
.1056
I
199.337
-1-
.1056
I
199.384
-1-
.1056
I
199.422
-1-
.1056
I
199.451
-1-
.1056
I
199.473
-1-
.1056
I
199.489
-1-
.1056
I I
.747 200.028
-1--1-
I
.774
-1-
I
.802
-1-
I
.831
-1-
I
.862
-1-
I
.894
-I-
I
.927
-I-
I
200.111
-1-
I
200.186
-1-
I
200.253
-I-
I
200.313
-1-
I
200.367
-I-
I
200.416
-I-
I
7.90
-I-
I
7.90
-I-
I
7.90
-1-
I
7.90
-I-
I
7.90
-I-
I
7.90
-I-
I
7.90
-I-
7.37
-1-
7.03
-1-
6.70
-1-
6.39
-1-
6.09
-1-
5.81
-1-
5.54
-1-
I
.84
-1-
.0129
I
.77
-1-
.0113
I
.70
-1-
.0100
I
.63
-1-
.0087
I
.58
-1-
.0077 , I
.52
-1-
.0068 , I
.48
-1-
.0059
I
200.87
-1-
.01
200.88
-1-
.01
200.88
-1-
.00
200.89
-1-
.00
200.89
-1-
.00
200.89
-1-
.00
200.89
-1-
.00
.00
-1-
.75
I
.00
-1-
.77
I
.00
-1-
.80
I
.00
-1-
.83,
i
.00
-1-
.86
I
.00
-1-
.89
I
.00
-1-
.93
I
1.00
-I-
I. 75
1.00
-I-
I. 63
1.00
-1-
1.52
1.00
-1-
1.42
1.00
-1-
1.33
1.00
-1-
1.24
1.00
-I-
LlS
1.93
.44
1. 95
.44
1.96
.44
1. 97
.44
1. 98
.44
1. 99
.44
1.99
.44
2.000
-1--1-
.0l3
2.000
-1--1-
.0l3
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.0l3
2.000
-1--1-
.013
2.000
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1
1-
PIPE
I
1
1-
PIPE
I,
1
1-
PIPE
1
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
.0
.0
.0
.0
.0
.0
.0
-
I
233.565
-1-
.025
I
199.497
-1-
.1056
I
.962
-I-
I
200.460
-I-
I
7.90
-I-
5.28
-1-
, .43
-1-
.0052
200.89
-1-
.00
.00
-1-
.96
1.00 2.00 2.000
I
.000
-1-
.00
.00 1 .0
I
233.590
-1-
I
199.500
-1-
I
1.000
-1-
I
200.500
-1-
I
7.90
-1-
5.03
-1-
I
.39 200.89
-1--1-
I
.00,
-1-
-1-
1.08
1.00
-1-
-1--1-
.44 .0l3
2.00 2.000
-1--1-
I
.000
-1-
.00
.00
1-
PIPE
I
1
1-
.0
-
- - - - --- ---- - - - - - ---
FILE: SYSTEM300.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-24-2008 Tirne:10:52:34
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 2.000
W S P G W PAGE NO 1
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM. ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM 300
W S P G W PAGE NO 2
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT W S ELEV
117.000 187.570 1 187.570
ELEMENT NO 2 IS A REACH * * * u/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
121.000 187.610 1 .013 .000 .000 .000 0
ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MANH
233.590 199.500 1 .013 .000 .000 .000 0
ELEMENT NO 4 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV
233.590 199.500 1 199.500
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
',; PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
WWW.PROJECTDESIGN.COM
Iwtf()Vf-J?~JI1 Pa& J1.
j)~ 2'111 -:.=-2-/ I ()::: 15.3 c,t::,
PROJECT '?>12-{P6.6S
SUBJECT [?€LIM. f{tvf3f<6Y 7)1551 f,fTJoN
PAGE: OF JOB NO. : 3~ --
DRAWN BY: DATE: 7/21/08 ----j---+. ~--
CHECKED BY: DATE: ___ _
5-kf J) Vt) -:: Zp. 95 ~f" (~Y'1 W5P~) 5J5-ktM lfoo)
-1-= (o/j/g) ;; &'YZ-<'.1?) ::: 0.73
~e::: (A /1.) 1ft. ::. ~:'i3/z, )h-::;:: O. 60 --ec;.,/Vai~ I de.p ft. 0.( flow ~J J$,'t~f)l
Skp ~) Conrufrt-Fr ~ ~r d ~ of r~) I.J()
[..:::. Vo zo.Q5 _ 1.·7
r ~ ~ ~)(W) -.
Stet 3) 1kkn'Vj/~ tf.o/vJ!3 /i-r;W'/ hjuY'~ q.li. WU1,£:vfe-Yoltjd. w/djh of bez.5(J" w~
~ ~ g ~.2!i-:: Lj,q
tlo;1N~ 1.6
Jtr "f-sJ) lJ-Y0 ~:: &.75
Silt 'f) /);~tYl5/();'S petr lJ-,/1 i'SD
1&::: .. ~ -+ §. ==
%Vg J
lit. -:: @. 15
1-10
1-1. (i -i)
J»' Fj. CJJ 5
I-//):::: /5.., -l-V/" :;:
C-;;'75) v[> z.(1,z.~) 78 (1 -O,.7?)
Vg:: 10.2.. .\fs -'Y /Zt'fY"1 .f;;/lofllY /)-'1/ S~CJu/j b~ \/~ -\-I>",
220
I
I
I
I
I
I
I
I
I IxtT~~~~
I
I
I
I
I·
I
I
I -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i=' z
9
8
0
0
W 70 ~ ~75
oj 60
i'
/ V
/" /"
V /'
/ ,.:
Cl) ffi 50
ffi
u. Q
BASIN-z-r--IMPACTv/ V /'
L
//
~ 40 g
30
20
10 1.0
J
I
2.0 3.0
/ ~~ ~RAULIC JUMP=-~RIZONTAL FLOOR
4.0 Lf.75.0
Fr I: Vo f(gYe)112
6.0 7.0
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present. Riprap should be placed downstream of the basin
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance
velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations
within these parameters. Velocities up to 15.2 m/s (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USSR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
3.0
I
2:.0 /
/ /
./ V
V 1/
V
1.0
~.o 2.1) 3.0 4.0 tf, 7 S.O S.D . 1.0 8.0
Fr = Vj(gYe)1/2
Figure 9.14. Design Curve for USBR Type VI Impact Basin
Once the basin width, WB, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value of Ws to the nearest entry
in the table to determine the other dimensions. Interpolation is not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2,
entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
--- -
FILE: SYSTEM400.WSW
- - -- - --
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 400
-- --- --
PAGE 1
Date: 7-29-2008 Time: 2:48:12
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo wth
station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/pip
-1--1- -1--1--1--1--1- -1--1- -1--1--1--1--I
L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR I Type Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I
118.000
-1-
10.222
I
128.222
-1-
13.593
I
141.815
-1-
10.150
I
151.966
-1-
8.166
I
160.132
-1-
6.868
I
167.000
-1-
JUNCT STR
I
171.000
-1-
.466
I
171.466
-1-
18.690
I
190.156
-1-
10.185
I
199.130
-1-
.1210
I
200.367
-1-
.1210
I
202.012
-1-
.1210
I
203.241
-1-
.1210
I
204.229
-1-
.1210
I
205.060
-1-
.0825
I
205.390
-1-
.3414
I
205.549
-1-
.3414
I
211.930
-1-
.3414
I I
.566 199.696
-1--1-
I
.555
-1-
I
.536
-I-
I
.518
-I-
I
.501
-1-
I
.485
-I-
I
.472
-I-
I
.472
-1-
I
.488
-1-
I
200.922
-1-
I
202.548
-I-
I
203.759
-I-
I
204.730
-1-
I
205.545
-I-
I
205.862
-I-
I
206.021
-1-
I
212.418
-1-
I
15.30 ~
-1--I-
I
6.81
-1-
.1554
I
15.30
-1-
I
15.30
-I-
I
15.30
-I-
I
15.30
-1-
I
15.30
-I-
I
15.30
-I-
I
15.30
-1-
I
15.30
-1-
21.49
-1-
22.54
-1-
23.64
-1-
24.79
-1-
26.00
-1-
I
7.17
-1-
.1724
I
7.89
-1-
.1970
I
8 .. 68
-1-
.2252
I
9.54
-1-
.2576
I
10.50
-1-
.2908
I
27.0311.34
-1--I-
.• 3065
27.02
-1-
25.76
-1-
I
11.34
-1-
.2871
I
10.31
-1-
.2511
206.51
-1-
1.59
208.09
-1-
2.34
210.44
-1-
2.00
212.43
-1-
1.84
214.27
-I-
I. 77
216.04
-1-
1.16
217.20
-1-
.14
217.36
-1-
5.37
222.72
-1-
2.56
.00
-1-
.57
I
.00
-1-
.56
I
.00
-1-
.54
I
.00
-1-
.52
I
.00
-1-
.50
I
.00
-1-
.49
.00
-1-
.47
I
.00
-1-
.47
I
.00
-1-
.49
1.41
-1-
5.80
1.41
-1-
6.01
1.41
-1-
6.42
1. 41
-1-
6.85
1. 41
-1-
7.32
1.41
-1-
7.82
1.41
-1-
8.25
1.41
-1-
8.25
1.41
-1-
7.72
1. 80
.60
1. 79
.60
1. 77
.60
1. 75
.60
1. 73
.60
1.71
1. 70
.46
1. 70
.46
1.72
.46
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
.0
.0
.0
.0
.0
.0
.0
.0
.0
-
-- -- -
FILE: SYSTEM400.WSW
-- --- --
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
--- - - -
PAGE 2
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 400
************************************************************************************************************************** ********
I Invert
Station I Elev
-1--1-
L/E1em ICh Slope I
Depth I
(FT) I
-I-
I
Water
Elev
I
I
-I-
I
Q
(CFS)
I Vel
I (FPS)
-1--I-
Vel I
Head I
-1-
I SF Ave I
Energy I Super I Critical I Flow ToplHeight/IBase Wtl
Grd.EI.1 Elev I Depth I width IDia.-FTlor I.D.I
-1--1--1--1--1--1-
HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I
ZL
ZR
INo Wth
IPrs/Pip
-I
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1*****
IType Ch
1*******
I I
200.341 215.407
-1--1-
6.852 .3414
I
207.192
-1-
5.063
I
212.255
-1-
3.950
I
216.205
-1-
3.194
I
219.399
-1-
2.640
I
222.040
-1-
2.220
I
224.259
-1-
1.890
I
226.149
-I-
I. 624
I
227.772
-1-
1.409
I
217.747
-1-
.3414
I
219.475
-1-
.3414
I
220.824
-1-
.3414
I
221. 914
-1-
.3414
I
222.816
-1-
.3414
I
223.574
-1-
.3414
I
224.219
-1-
.3414
I
224.773
-1-
.3414
I
.505
-I-
I
.522
-1-
I
.540
-I-
I
.559
-I-
I
.578
-I-
I
.598
-I-
I
.619
-1-
I
.641
-1-
I
.664
-1-
I
215.912
-I-
I
218.269
-1-
I
220.015
-1-
I
221.383
-I-
I
222.492
-I-
I
223.414
-I-
I
224.193
-1-
I
224.860
-1-
I
225.437
-1-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-1-
24.56
-1-
23.42
-1-
22.33
-1-
21.29
-1-
20.30
-1-
19.36
-1-
18.45
-1-
17.60
-1-
16.78
-1-
I
9.37
-1-
.2196
I
8.52
-1-
.1920
I
7.74
-1-
.1680
I
7.04
-1-
.1470
I
6.40
-1-
.1287
I
5.82
-1-
.1126
I
5.29
-1-
.0986
I
4.81
-1-
.0864
I
4.37
-1-
.0757
225.28
-1-
1.50
226.79
-1-
.97
227.76
-1-
.66
228.42
-1-
.47
228.89
-1-
.34
229.23
-1-
.25
229.48
-1-
.19
229.67
-1-
.14
229.81
-1-
.11
.00
-1-
.51
I
.00
-1-
.52
I
.00
-1-
.54
I
.00
-1-
.56
I
.00
-1-
.58
I
.00
-I-
.60
I
.00
-1-
.62
I
.00
-1-
.64
I
.00
-1-
.66
1. 41
-1-
7.23
1.41
-1-
6.77
1. 41
-1-
6.34
1. 41
-1-
5.93
1.4.1
-1-
5.55
1.41
-1-
5.19
1.41
-1-
4.86
1.41
-1-
4.54
1.41
-1-
4.25
1. 74
.46
1. 76
.46
1. 78
.46
1. 80
.46
1.81
.46
1.83
.46
1. 85
.46
1. 87
.46
1.88
.46
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
. 1 .0
1-
PIPE
-
- - - --
FILE: SYSTEM400.WSW
- ----'--
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
----- -
PAGE 3
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 400
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallF10w ToplHeight/IBase Wtl
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL
INO Wth
IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem I Ch Slope I I I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I ZR
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1*****
I I
229.181 225.254
-1--1-
1.222 .3414
I
230.403
-1-
1.071
I
231.474
-1-
.935
I
232.409
-1-
.824
I
233.233
-1-
.720
I
233.954
-I-
.633
I
234.586
-1-
.556
I
235.142
':'1-
.484
I
235.626
-1-
.423
I
225.671
-1-
.3414
I
226.037
-1-
.3414
I
226.356
-1-
.3414
I
226.637
-1-
.3414
I
226.883
-1-
.3414
I
227.099
-1-
.3414
I
227.289
-1-
.3414
I
227.454
-1-
.3414
I I
.687 225.941
-1--1-
I
.712
-I-
I
.737
-I-
I
.764
-1-
I
.791
-1-
I
.820
-I-
I
.850
-1-
I
.881
-1-
I
.914
-1-
I
226.383
-I-
I
226.774
-I-
I
227.120
-1-
I
227.428
-1-
I
227.703
-I-
I
227.950
-1-
I
228.170
-1-
I
228.368
-1-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-I-
I
15.30
-1-
16.00
-1-
15.25
-1-
14.54
-1-
13.87
-1-
13.22
-1-
12.60
-1-
12.02
-1-
11.46
-1-
10.93
-1-
I
3.97
-1-
.0663
I
3.61
-1-
.0582
I
3.28
-1-
.0510
I
2.99
-1-
.0447
I
2.71
-1-
.0393
I
2.47
-1-
.0345
I
2.24
-1-
.0303
I
2.04
-1-
.0266
I
1.85
-1-
.0234
229.91
-1-
.08
230.00
-1-
.06
230.06
-1-
.05
230.11
-1-
.04
230.14
-1-
.03
230.17
-1-
.02
230.19
-1-
.02
230.21
-1-
.01
230.22
-1-
.01
.00
-1-
.69
I
.00
-I-
.71
I
.00
-1-
.74
I
.00
-I-
.76
I
.00
-1-
.79
I
.00
-1-
.82
I
.00
-1-
.85
I
.00
-1-
.88
I
.00
-1-
.91
1.41
-1-
3.97
1.41
-1-
3.71
1.41
-1-
3.47
1.41
-1-
3.24
1.41
-1-
3.03
1.41
-1-
2.83
1.41
-1-
2.64
1.41
-1-
2.46
1.41
-1-
2.30
1.90
.46
1.92
.46
1.93
.46
1.94
.46
1.96
.46
1.97
.46
1.98
.46
1.99
.46
1.99
.46
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
2.000
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
IType Ch
1*******
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
.0
.0
.0
.0
.0
.0
.0
.0
.0
-
--- - - -- - -- -- - -- --- -
FILE: SYSTEM400.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 4
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 2:48:12
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 400
************************************************************************************************************************** ********
I Invert· I Depth I Water I Q I Vel Vel I Energy I Super I critical I Flow TOp I Height/I Base wtl INo Wth
Station I E1ev I (FT) I E1ev I (CFS) I (FPS) Head I Grd.E1.1 E1ev I Depth I Width IDia.-FTlor 1.D.1 ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/E1em ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I I I I
236.049 227.599 .948 228.547 15.30 10.42 1.69 230.23 .00 1. 41 2.00 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.365 .3414 .0206 .01 .95 2.14 .46 .013 .00 .00 PIPE
I I I I I I I I I
236.414 227.723 .984 228.708 15.30 9.93 1.53 230.24 .00 1.41 2.00 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.313 .3414 .0181 .01 .98 1. 99 .46 .013 .00 .00 PIPE
I I I I I I I I I
236.727 227.830 1.022 228.852 15.30 9.47 1.39 230.25 .00 1.41 2.00 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.269 .3414 .0160 .00 1.02 1.86 .46 .013 .00 .00 PIPE
I I I I I I I I I
236.997 227.922 1.061 228.983 15.30 9.03 1.27 230.25 .00 1.41 2.00 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.223 .3414 .0141 .00 1.06 1.73 .46 .013 .00 .00 PIPE
I I I I I I I I I
237.220 227.999 1.103 229.102 15.30 8.61 1.15 230.25 .00 1.41 1.99 2.000 .000 .00 1 .0
-1--1--1--1--1--1-~I--1--1--1--1--1--I-I-
.184 .3414 .0124 .00 1.10 1.61 .46 .013 .00 .00 PIPE
I I I I I I I I . I
237.404 228.061 1.147 229.209 15.30 8.21 1.05 230.25 .00 1.41 1.98 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.149 .3414 .0110 .00 1.15 1.49 .46 .013 .00 .00 PIPE
I I I I I I I I I
237.553 228.112 1.193 229.305 15.30 7.83 .95 230.26 .00 1.41 1.96 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.113 .3414 .0097 .00 1.19 1.38 .46 .013 .00 .00 PIPE
I I I I I I I I I
237.666 228.151 1.242 229.393 15.30 7.46 .86 230.26 .00 1.41 1.94 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.080 .3414 .0086 .00 1.24 1.28 .46 .013 .00 .00 PIPE
I I I I I I I I I
237.746 228.178 1.294 229.472 15.30 7.11 .79 230.26 .00 1.41 1.91 2.000 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.049 .3414 .0076 .00 1.29 1.18 .46 .013 .00 .00 PIPE
---.-- - ------ - - -- -
FILE: SYSTEM400.WSW W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
PAGE 5
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 400
Date: 7-29-2008 Time: 2:48:12
************************************************************************************************************************** ********
I Invert I
Station I Elev I
-1--1-
L/Elem ICh Slope I
Depth I Water
(FT) I Elev
-I-
I
I
I
-I-
I
Q
(CFS)
I Vel Vel
I (FPS) Head I
-1--1--I-
I SF Ave I
Energy I Super I Critical I Flow ToplHeight/IBase Wtl
Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I
-1--1--1--1--1--1-
HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I
INo Wth
ZL IPrs/Pip
-I
ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I I I I I I
237.795
-1-
.015
I
237.810
-1-
228.195 1.349 229.544 15.30 6.78 .71 230.26 .00 1.41 1.87 2.000 .000 .00 1 .0
-1--1--L--1--1--1--1--1--1--1--1--1-1-
.3414 .0068 .00 1.35 1.09 .46 .0l3 .00 .00 PIPE
I I I I I I I
228.200 1.410 229.610 15.30 6.46 .65 230.26 .00 1.41 1.82 2.000 .000
-1--1--1--1--1--1--1--1--1--1--1--1-
.00 1 .0
1-
--
-- ---- - -- -- - - ------
FILE: SYSTEM400.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 2:48:10
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 2.000
W S P G W PAGE NO 1
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM. ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM 400
W S P G W PAGE NO 2
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET * * *
U/S DATA STATION INVERT SECT W S ELEV
118.000 199.130 1 119.130
ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
167.000 205.060 1 .013 .000 .000 .000 0
ELEMENT NO 3 IS A JUNCTION * * * * * * *
U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4
171.000 205.390 1 0 0 .013 .000 .000 .000 .000 .000 .000
RADIUS ANGLE
.000 .000
ELEMENT NO 4 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
237.810 228.200 1 .013 .000 .000 .000 0
ELEMENT NO 5 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV
237.810 228.200 1 228.200
I IV PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
PROJECT ~p'?-~IQ=~8:::::..:8===--_____ _
SUBJECT fj¥L-/rv!. ~@G. Y f;15S1 fATloN
PAGE: __ OF JOB NO.: 3>3>3D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
WWW.PROJECTDESIGN.COM
DRAWN BY : DATE: 7!7A('og
CHECKED BY: ___ DATE: ____ _
Sj,,-/tm 500 Ouf.;;t( Ll?ae6'oYt (DtAGrlJ of [JJ~&w:Jt-V7 / ~lew/ld/tA. basil'1.) Ne Coyner-)
/~aof ~tft5/11 j).t5~1'\.
'j)::: fe" -::;;. /'5/ ) tP:: I. ~_ cf5
S.Jep / ) lh: 12.5 fF5 (~W5P~ ) Sys~ li?oo)
11-:: &/110 :::: /. &;/11. S-=-o :\2.9 ~ 1-
/ 'It I", "lll-J":: cA/z.) ~ ~172f 'L-) ::: 6.25 ::: ~Ju/vt:V/e4 clt.j>..fh 0.( (low ~-kY!'J d1$sfp:d--o;--
slet ;2) CtnnfJute-;:;. rf ~r d t/4J t?/ ftr) f/-0
;;. :::. ~:: \tS _ :;; Lj.tf
j~~ ~
l~o -:= je -r :if> "2-:::: 6.15 -I-~:: 2.~7 :J z{ -; 1.:!t)
SIej "3) ~-lermt~ JI,,/W~ ~ hJ"'y-e 1,/11. CaJc;uWe. ~d. w/dftt. 0.(' b45'J,...) WE>
V6 :;:;. Ito • ::: 11-;;: ? 7$ I
Yo! W~ 0,72
Per--7<SJ/ ~-Lfl} We,::' 5:5/
1
I
1
I
I' 230
1
1
1
1
1
21
214.5
x
IL-~--~~~~~--~~~~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
.0
V
co ~ ::c
L .0 V V
/ .0 '/
? /"
1
V V
~.o 2.0 i:1 3.0 4.0 1.0 8.0 $.0
Figure 9.14. Design Curve for USBR Type VI Impact Basin
Once the basin width, Ws, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value of Ws to the nearest entry
in the table to determine the other dimensions. Interpolation is not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (N2) 1/2,
entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II. o
90
80
..".-/
/ /'"
v ./
~IMPACT /
V / V
BASINV'
£
//
I HYDRAULIC JUMP-I / ~ HORIZONTAL FLOOR
30
20
10 1.0 2.0 3.0 4.0 4!1' 5.0 6.0 7.0
Fr = Vof(gYe)1/2
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present: Riprap should be placed downstream of the basin
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance
velocities as high as 15.2 mls (50 ftls). Therefore, use of the basin is limited to installations
within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USSR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
-- - -
FILE: SYSTEM500.WSW
-- --- - -
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 500
- -----
PAGE 1
Date: 7-24-2008 Time:11:26: 1
************************************************************************************************************************** ********
I Invert
Station I Elev
-1--1-
L/Elem ICh Slope I
Depth I Water I
(FT) I Elev I
-1--I-
I I
Q
(CFS)
I Vel Vel
I (FPS) Head I
-1--1--I-
I SF Ave I
Energy I Super I Critical I Flow ToplHeight/IBase wtl
Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I
-1--1--1--1--1--1-
HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I
INo Wth
ZL IPrs/Pip
-I
ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I
115.330 218.630
-1--1-
.873 .0100
I
116.203
-1-
1.090
I
117.292
-1-
1.038
I
118.330
-1-
36.062
I
154.392
-1-
14.714
I
169.106
-1-
8.258
I
177.364
-1-
3.686
I
181.050
-1-
2.312
I
183.362
-1-
1. 650
I
218.639
-1-
.0100
I
218.650
-1-
.0100
I
218.660
-1-
.2973
I
229.380
-1-
.2973
I
233.754
-1-
.2973
I
236.208
-1-
.2973
I
237.304
-1-
.2973
I
237.992
-1-
.2973
I I
.188 218.818
-1--1-
I
.183
-I-
I
.178
-I-
I
.172
-1-
I
.172
-I-
I
.174
-I-
I
.180
-I-
I
.186
-I-
I
.192
-1-
I
218.822
-I-
I
218.828
-I-
I
218.832
-I-
I
229.552
-1-
I
233.928
-I-
I
236.389
-I-
I
237.490
-I-
I
238.184
-1-
I I
1.60 §? 2.43
-1--1--1-
I
1. 60
-1-
I
1. 60
-1-
I
1. 60
-1-
I
1. 60
-I-
I
1. 60
-I-
I
1. 60
-I-
I
1. 60
-I-
I
1. 60
-1-
12.91
-1-
13.54
-'1-
14.20
-1-
14.20
-1-
13.95
-1-
13.30'
-1-
12.68
-.1-
12.09
-1-
.2164
I
2.59
-1-
.2428
I
2.84
-1-
.2786
I
3.13
-1-
.2975
I
3.13
-1-
.2901
I
3.02
-1-
.2647
I
2.75
-1-
.2311
I
2.50
-1-
.2017
I
2.27
-1-
.1759
221.25
-1-
.19
221. 41
-1-
.26
221.67
-1-
.29
221. 96
-1-
10.73
232.68
-1-
4.27
236.95
-1-
2.19
239.14
-1-
.85
239.99
-1-
.47
240.45
-1-
.29
.00
-1-
.19
I
.00
-1-
.18
I
.00
-1-
.18
I
.00
-1-
.17
I
.00
-1-
.17
I
.00
-1-
.17
I
.00
-1-
.18
I
.00
-1-
.19
I
.00
-1-
.19
.48
-1-
6.14
.48
-1-
6.40
.48
-1-
6.83
.48
-1-
7.29
.48
-1-
7.29
.48
-1-
7.11
.48
-1-
6.67
.48
-1-
6.26
.48
-1-
5.86
.99
.40
.98
.40
.97
.40
.96
.17
.96
.17
.96
.17
.98
.17
.99
.17
1.00
.17
1.500
-1--1-
.013
1.500
-1--1-
.0l3
1.500
-1--1-
.0l3
1.500
-1--1-
.0l3
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
, I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
- -
--- ---- - --- -- - --- --
FILE: SYSTEM500.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:ll:26: 1
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 500
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I 185.013 238.482 .198 238.680 1. 60 11.53 2.06 240.74 .00 .48 1.02 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.256 .2973 .1535 .19 .20 5.50 .17 .013 .00 .00 PIPE
I I I I I I I I I
186.269 238.856 .205 239.061 1. 60 10.99 1. 88 240.94 .00 .48 1. 03 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.003 .2973 .1341 .13 .21 5.15 .17 .013 .00 .00 PIPE
I I I I I I I I I
187.271 239.154 .212 239.366 1. 60 10.48 1.71 241. 07 .00 .48 1.05 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.822 .2973 .1171 .10 .21 4.83 .17 .013 .00 .00 PIPE
I I I I I I I I I
188.093 239.398 .219 239.617 . 1. 60 9.99 1.55 241.17 .00 .48 1.06 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--1-· I-
.687 .2973 .1022 .07 .22 4.53 .17 .013 .00 .00 PIPE
I I I I I I I I I 188.780 239.602 .226 239.828 1. 60 9.53 1. 41 241.24 .00 .48 1.07 1.500 .000 .00 1 :0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.577 .2973 .0892 .05 .23 4.24 .17 .013 .00 .00 PIPE
I I I I I I I I I
189.357 239.774 .234 240.008 1.60 9.08 1.28 241.29 .00 .48 1.09 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.495 .2973 .0780 .04 .23 3.98 .17 .013 .00 .00 PIPE
I I I I I I I I I 189.852 239.921 .242 240.163 1. 60 8.66 1.16 241.33 .00 .48 1.10 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.427 .2973 .0681 .03 .24 3.73 .17 .013 .00 .00 PIPE
I I I I I I I I I 190.279 240.048 .250 240.298 1.60 8.26 1.06 241.36 .00 .48 1.12 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--1-. 1-
.371 .2973 .0594 .02 .25 3.50 .17 .013 .00 .00 PIPE
I I I I I I I I I
190.650 240.158 .258 240.416 1. 60 7.87 .96 241.38 .00 .48 1.13 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.320 .2973 .0519 .02 .26 3.28 .17 .013 .00 .00 PIPE
-- --- - - - - - - - - ---- --
FILE: SYSTEM500.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-24-2008 Time:11:26: 1
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 500
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICritica11Flow ToplHeight/IBase wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El. I Elev I Depth I Width IDia.-FTlor I.D. I ZL IPrs/pip
-1--1- -1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I liN" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I I I I I I
190.970 240.253 .267 240.520 1. 60 7.51 .88 241.40 .00 .48 1.15 1.500 .000 .00 1 .0
-1--1--1- -1--1--1--1--1--1--1--1--1--I-I-
.280 .2973 .0454 .01 .27 3.07 .17 .0l3 .00 .00 PIPE
I I I I I I I I I
191.250 240.336 .276 240.612 1.60 7.16 .80 241. 41 .00 .48 1.16 1.500 .000 .00 1 .0
-1--1--1- -1--1--1--1--1--1- -1- -1--1--I-I-
.246 .2973 .0396 .01 .28 2.88 .17 .0l3 .00 .00 PIPE
I I I I I I I I I
191.496 240.409 .285 240.695 1. 60 6.82 .72 241.42 .00 .48 1.18 1.500 .000 .00 1 .0
-1--1--1--1--1--1- -1--1--1- -1- -1--1--I-I-
.212 .2973 .0346 .01 .29 2.70 .17 .0l3 .00 .00 PIPE
I I I I I I I I I
191.708 240.473 .295 240.768 1. 60 6.51 .66 241. 43 .00 .48 1.19 1. 500 .000 .00 1 .0
-1--1- -1--1--1--1- -1--1--1--1--1--1--I-I-
.186 .2973 .0302 .01 .30 2.53 .17 .0l3 .00 .00 PIPE
I I I I I I I I I
191.895 240.528 .305 240.833 1. 60 6.20 .60 241.43 .00 .48 1.21 1.500 .000 .00 .1 .0
-1--1--1- -1--1- -1--1--1--1--1--1- -1--I-I-
.164 .2973 .0264 .00 .31 2.37 .17 .013 .00 .00 PIPE
I I I I I I I I I
192.058 240.577 .315 240.892 1. 60 5.92 .54 241.44 .00 .48 1.22 1.500 .000 .00 1 .0
-1--1- -1--1--1- -1- -1--1--1--1--1--1--I-I-
.140 .2973 .0231 .00 .32 2.22 .17 .013 .00 .00 PIPE
I I I I I I I I I 192.199 240.618 .326 240.944 1. 60 5.64 .49 241. 44 .00 .48 1.24 1.500 .000 .00 1 .0
-1--1- -1- -1--1--1--1- -1--1--1--1- -1--I-I-
.122 .2973 .0202 .00 .33 2.08 .17 .013 .00 .00 PIPE
I I I I I I I I I
192.321 240.655 .337 240.992 1. 60 5.38 .45 241.44 .00 .48 1.25 1.500 .000 .00 1 .0
-1--1--i--i--1--1--1--1--i--1--i- -i--I-i-
.107 .2973 .0176 .00 .34 1. 94 .17 .0l3 .00 .00 PIPE
I I I I I I I I I
192.428 240.686 .348 241. 034 1. 60 5.l3 .41 241. 44 .00 .48 1.27 1.500 .000 .00 1 .0
-1- -1--1--1--1--1--1--1--1--1- -1--1--I-I-
.089 .2973 .0154 .00 .35 1.82 .17 .0l3 .00 .00 PIPE
----
FILE: SYSTEM500.WSW
-- - - -- -
W S P G W -CIVILDESIGN Version 14.06
Program Package serial Number: 1355
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM. ENERGY DISSIPATION CALCS
SYSTEM 500
-- ---- -
PAGE 4
Date: 7-24-2008 Time:11:26: 1
************************************************************************************************************************** ********
I Invert
Station I E1ev
-1--1-
L/E1em ICh Slope I
Depth I
(FT) I
-I-
I
Water
E1ev
I
I
-I-
I
Q
(CFS)
I Vel
I (FPS)
-1--I-
Vel I
Head I
-1-
I SF Ave I
Energy I Super I Critical I Flow ToplHeight/IBase wtl
Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I
-1--1- -1--1--1--1-
HF I SE Dpth I Froude N I Norm Dp I "N" I X-Fall I
ZL
ZR
INo Wth
IPrs/pip
-I
IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I
192.517 240.713
-1- -1-
.073 .2973
I
192.590
-1-
.062
I
192.652
-1-
.052
I
192.704
-1-
.039
I
192.743
-1-
.031
I
192.774
-1-
.020
I
192.795
-1-
.014
I
192.809
-1-
.001
I
192.810
-1-
I
240.735
-1-
.2973
I
240.753
-1-
.2973
I
240.768
-1-
.2973
I
240.780
-1-
.2973
I
240.789
-1-
.2973
I
240.795
-1-
.2973
I
240.800
-1-
.2973
I
240.800
-1-
I
.360
-I-
I
.373
-I-
I
.386
-I-
I
.399
-I-
I
.413
-I-
I
.427
-I-
I
.442
-I-
I
.457
-I-
I
.475
-1-
I
241. 073
-I-
I
241.108
-I-
I
241.139
-I-
I 241.167
-I-
I
241.193
-I-
I
241.216
-1-
I
241.238
-I-
I
241.257
-I-
I
241.275
-1-
I
1. 60
-I-
I
1. 60
-I-
I
1.60
-I-
I
1. 60
-I-
I
1. 60
-I-
I
1. 60
-I-
I
1. 60
-I-
I
1.60
-I-
I
1.60
-1-
4.89
-1-
4.66
-1-
4.44
-1-
4.24
-1-
4.04
-1-
3.85
-1-
3.67
-1-
3.50
-1-
3.33
-1-
.37
-1-
.0135
I
.34
-1-
.0118
I
.31
-1-
.0103
I
.28
-1-
.0090
I
.25
-1-
.0079
I
.23
-1-
.0069
I
.21
-1-
.0060
I
.19
-1-
.0053
I
.17
-1-
241. 44
-1-
.00
241.45
-1-
.00
241. 45
-1-
.00
241. 45
-1-
.00
241. 45
-1-
.00
241. 45
-1-
.00
241. 45
-1-
.00
241.45
-1-
.00
241.45
-1-
.00
-I-
.36
I
.00
-1-
.37
I
.00
-1-
.39
I
.00
-1-
.40
I
.00
-1-
.41
I
.00
-1-
.43
I
.00
-1-
.44
I
.00
-1-
.46
I
.00
-1-
.48
-I-
I. 70
.48
-I-
I. 60
.48
-1-
1.50
.48
-I-
I. 40
.48
-1-
1.31
.48
-1-
1.23
.48
-I-
LlS
.48
-1-
1.07
.48
-1-
1.28
.17
1.30
.17
1. 31
.17
1.33
.17
1.34
.17
1.35
.17
1.37
.17
1.38
.17
1.40
1.500
-1--1-
.013
1.500
-1- -1-
.013
1. 500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
-
--- -- - - ----- - - ---- -
FILE: SYSTEMSOO.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-24-2008 Time:ll:2S:S9
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(I) Y(2) Y(3) Y(4) Y(S) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 I.S00
W S P G W PAGE NO 1
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM. ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM SOO
W S P G W PAGE NO 2
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT . W S ELEV
l1S.330 218.630 1 218.630
ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
118.330 218.660 1 .013 .000 .000 .000 0
ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
192.810 240.800 1 .0l3 .000 .000 .000 0
ELEMENT NO 4 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV
192.810 240.800 1 240.800
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
'I
1
1
)
I~ PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
WWW.PROJECTDESIGN.COM
Sy5>~ (Dco o~4.QJ L,~01t\....
\W'\f~ ~S:1o"\ 'P.e..Slj V\
1/:::: \~ If ~ IS I I Q:: 5:',\ c-fs
A ~ Qf.Jo -:.:. 5 1/13.0'\ ~ O:?,q ft ....
PROJECT P~(\)~£25
SUBJECT ~L-IM. ~tvq;.§y 1:>fSOSJ?ATI'ON
PAGE: OF __ JOB NO. : 33~O
DRAWN BY: ____ DATE: _ '/Z1.!./-!-=..0-u-O __
CHECKED BY: DATE: ____ _
'je.-::: CA/"7--)/z, ~ (rif?')'/z, ::; b\~'1 -:-4viv~f d.erfk of' t:lPw ~~ d.t$~{ft:Jrr
~~) ~wk ~ d" ~~j ~ ~ i ftpeJ ~
r.: "" S--=-\3>.ot'! ... ::;; 35
C' ~ J~ ~.2-) ( o.~l.j)
1.-...,a'Z 'e\o -::: ~t..r ~ =-o,tt~ -I-..0.v -\ ::.. ~. \
, z-(?> 1-:1-)
5!e.r 3} \>eJ-e'rvvd~ tlro/lJ..j~ ~M f;"6\}.~ 1·l~. G-l~l&\..-k 'V~f' I"OtAtk o~ {"-'l.S1r...,I liVE
Wl;~ Ho __ ~ ::: ~.~
\-\o/Ws /.0
'P.w-'\<.St> 1>-4-1 ~ Wy, --;;... 5. S I
S-kr I.\} 'Dt~ic>I/I.':> r "P-q\ ~!>
SkfS) ~lV\.i..-...e. ~'i~ ~~~ J VIS
\.\p ~ Q -r \j~"L ~ ~o (I -~ \
~ \1~ ~ ~<> )
~:: 651 p~ 'ft'~. 't .15
",0
I:+a ::. SIt +-v~ -z.. _ 3 \ 1/ () 57) ('5!5){VS} --;;vi -.. (I - . .
V~::. 8. 9_ ~5 -~ifv-<tf -PoHDWi~ t>-Lfl 5k~ld k ~2. bttd<.i~
I
I
I~~~~\
I ~H-4=4~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissip~tor required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
3,00
V
2.0 /
V V
,/
V /'
/
/.0
1.0
~.o 2.0 3.0 ? S 4.0 5.0 $.0
Fr = V J(gYe)l/t
7.0 8.0
Figure 9.14. Design Curve for USBR Type VI Impact Basin
Once the basin width, WB, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value ofWB to the nearest entry
in the table to determine the other dimensions. Interpolation is not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2)1/2,
entering the dissipator' from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i=' z
90
8 0
IIJ 70 ~ IIJ !h
/60
~51
>=' CI) 15 50
ffi
110 o
~ 40
30
20
f--IMPACT / BA,SIN~
I
I
./ V
V .-/'
/'
./ V v /
L.V
HYDRAULIC JUMP=--
/ ~ HORIZONTAL FLOOR
/
10
1.0 2.0 3.0 J.'S 4.0 .5.0 6.0 7.0
Fr = Vof(gYe)1J2
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present. Riprap should be placed downstream of the basin.
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance
velocities as high as 15.2 m/s (50 ftls). Therefore, use of the basin is limited to installations
within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USSR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
---------- ---- -- -
FILE: SYSTEM600.WSW W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
PAGE 1
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I
114.330
-1-
10.063
I
124.393
-1-
6.258
I
130.651
-1-
4.414
I
135.065
-1-
3.321
I
138.386
-1-
2.606
I
140.992
-1-
2.115
I
143.107
-I-
I. 735
I
144.842
-1-
1.453
I
146.295
-1-
1.217
I
234.430
-1-
.1061
I
235.497
-1-
.1061
I
236.161
-1-
.1061
I
236.629
-1-
.1061
I
236.982
-1-
.1061
I
237.258
-1-
.1061
I
237.482
-1-
.1061
I
237.666
-1-
.1061
I
237.821
-1-
.1061
I I
.409 234.839
-1--1-
I
.422
-I-
I
.437
-I-
I
.452
-I-
I
.468
-1'-
I
.485
-1-
I
.502
-1-
I
.520
-1-
I
.. 538
-1-
I
235.920
-I-
I
236.598
-I-
I
237.082
-I-
I
237.450
-1-
I
237.743
-1-
I
237.985
-1-
I
238.187
-1-
I
238.359
-1-
I I
5.10 § 2.66
-1--1--1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
I
5.10
-1-
12.47
-1-
11.89
-1-
11.34
-1-
10.81
-1-
10.31
-1-
9.83
-1-
9.37
-1-
8.94
-1-
.0839
I
2.42
-1-
.0734
I
2.20
-1-
.0642
I
2.00
-1-
.0562
I
1.82
-1-
.0493
I
1.65
-1-
.0432
I
1.50
-1-
.0378
I
1.36
-1-
.0331
I
1.24
-1-
.0290
237.50
-1-
.84
238.34
-1-
.46
238.80
-1-
.28
239.08
-1-
.19
239.27
-1-
.13
239.39
-1-
.09
239.48
-1-
.07
239.55
-1-
.05
239.60
-1-
.04
.00
-1-
.41
I
.00
-1-
.42
I
.00
-1-
.44
I
.00
-1-
.45
I
.00
-1-
.47
I
.00
-1-
.49
I
.00
-1-
.50
I
.00
-1-
.52
I
.00
-1-
.54
.87
-1-
4.27
.87
-1-
3.99
.87
-1-
3.74
.87
-1-
3.50
.87
-1-
3.27
.87
-1-
3.06
.87
-1-
2.86
.87
-1-
2.68
.87
-1-
2.50
1.34
.39
1.35
.39
1.36
.39
1. 38
.39
1.39
.39
1.40
.39
1.42
.39
1.43
.39
1.44
.39
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
.0
.0
.0
.0
.0
.0
.0
.0
.0
--
-----
FILE: SYSTEM600.WSW
------
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
- -- ----
PAGE 2
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3
************************************************************************************************************************** ********
I Invert
Station I Elev
-1--1-
Depth I
(FT) I
-I-
I
water
Elev
I
I
-I-
Q
(CFS)
I Vel
I (FPS)
-1--I-
I
Vel I
Head I
-1-
Energy I Super ICriticallFlow ToplHeight/IBase Wtl
Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I
-1--1--1--1--1--1-
ZL
INO Wth
IPrs/Pip
-I
L/Elem ICh Slope I I SF Ave I HF I SE Dpth I Froude N I Norm Dp I "N" I X -Fall I ZR
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1*****
I I I I I I I I I I
147.512 237.950 .557 238.507 5.10 8.52 1.13 239.63 .00 .87 1.45 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
1.023 .1061 .0255 .03 .56 2.34 .39 .013 .00 .00
I I I I I I I I
148.535 238.058 .577 238.635 5.10 8.12 1.02 239.66 .00 .87 1.46 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.862 .1061 .0223 .02 .58 2.18 .39 .013 .00 .00
I I I I I I I I
149.397 238.150 .598 238.748 5.10 7.75 .93 239.68 .00 .87 1.47 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.725 .1061 .0196 .01 .60 2.04 .39 .013 .00.00
I I I I I I I I
150.122 238.227 .620 238.847 5.10 7.39 .85 239.69 .00 .87 1.48 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.608 .1061 .0172 .01 .62 1.90 .39 .013 .00 .00
I I I I I I I I
150.729 238.291 .643 238.934 5.10 7.04 .77 239.70 .00 .87 1.48 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.506 .1061 .0151 .01 .64 1.78 .39 .013 .00.00
I I I I I I I I
151.235 238.345 .667 239.012 5.10 6.71 .70 239.71 .00 .87 1.49 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.416 .1061 .0133 .01 .67 1.66 .39 .013 .00 .00
I I I I I I I I
151.652 238.389 .692 239.081 5.10 6.40 .64 239.72 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.348 .1061 .0117 .00 .69 1.55 .39 .013 .00 .00
I I I I I I I I
152.000 238.426 .717 239.143 5.10 6.10 .58 239.72 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.257 .1061 .0103 .00 .72 1.44 .39 .013 .00 .00
I I I I I I I
152.256 238.453 .745 -239.198 5.10 5.82 .53 239.72 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1---1--1--1--1--1-
.204 .1061 .0091 .00 .75 1.34 .39 .013 .00 .00
IType Ch
1*******
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
-
- -- - --- -------- ----
FILE: SYSTEM600.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:23:52
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth
Station I E1ev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 E1ev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I 1 1 I I I
152.461 238.475 .773 239.248 5.10 5.55 .48 239.73 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.137 .1061 .0080 .00 .77 1.25 .39 .013 .00 .00 PIPE
1 1 I 1 I 1 I I I
152.598 238.489 .803 239.292 5.10 5.29 .43 239.73 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.076 .1061 .0070 .00 .80 1.16 .39 .013 .00 .00 PIPE
I I I I I I I I I
152.674 238.497 .835 239.332 5.10 5.04 .40 239.73 .00 .87 1.49 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.026 .1061 .0062 .00 .84 1.08 .39 .013 .00 .00 PIPE
I I I I I I I I I
152.700 238.500 .869 239.369 5.10 4.80 .36 239.73 .00 .87 1. 48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
----- --- ---------
FILE: SYSTEM600.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 3:23:51
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 1.500
W S P G W
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM 600, PROJECT ALTERNATIVE 'A' FOR LOT 3
W S P G W
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO
ELEMENT NO
ELEMENT NO
1 IS A SYSTEM OUTLET *
U/S DATA STATION
114.330
*
INVERT
234.430
* SECT
1
* 2 IS A REACH
U/S DATA STATION INVERT SECT
152.700 238.500 1
*
*
3 IS A SYSTEM HEADWORKS *
U/S DATA STATION INVERT SECT
152.700 238.500 1
N
.013
PAGE NO 1
PAGE NO 2
W S ELEV
234.430
RADIUS ANGLE ANG PT MAN H
.000 .000 .000 0
* W S ELEV
246.000
--
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,~ PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
WWW.PROJECTDESIGN.COM
PROJECT lSl2-I PG,E:5
SUBJECT ~IM. "EN~'1 D 1SS'lfATJ0N'
PAGE: OF __ JOB NO.: 3~"bO
DRAWN BY: ____ DATE: 7./2.1/06
CHECKED BY: DATE: ____ _
SyS1ewJ ~ 50 O~~ u,uCk9r\ ~ 6~ ~tl.S;V\, L,+ ~ ')
lvYtfa.vl-'Btt-sJk.. ~~1'1.--
l)::;.\9 U -:;:: IS' Q::: 5,\ cA,
Sky \) V" ~ 2o.o~ -Or $ (~M-l.Usr~) Sys-k-w.. 050)
A ~ a/v~;;:; s, I /zo. 08 = D. '2.. 5" .p.('"
je.:;:' [4/7--)/1.-::; (0.?--5/'2--)\1'2-""'" 0.3(, -::: e.rv"~~ d.etJI,.. o~ .p{ow %v~.~ ~"5Siftd-1Jor
s~ 2-) Cmy~ rr <t ~y at &J. of-(If€-) WO
F ... -:: \]<> :; u.06 ;::;. 5. '1
~ ~"2.'2--)( o.~0
\\ _ v"z... ...,.,..., ..,z.
\"\0 -Je.. -t ~ ~ D. 3C, -I-vv.Oo :::
2-d -z..{ 32..7.)
S~ ~) 'P.e,,~vv0~ lJ.o(W'6 ~ 1;tl\J..rt., 1.1~. ~ ~. W(J~, l'f 1oQ.$~".1 ~~
VJT;. ~ "-b ~. & -;-3. I
\Jso/w~ --2.1
fur ~Si> 1;)-lfl) Wi?::: s.S/"
"'9i~()VI.S pe-r 1:>-'1\ ~S"D
\.l~.n'\l\~~ ~~~ YeAOCA.'1) VC!,
U~ -::=....B---t' \I: _ II (\ _ t-\I,.\ w'Ov~ 2j" rIo ~J
'I1-~ 0.-7/ ~ h~ i.\?
\-\-0
Utl ~ (~)\" + ~ ::; r,.(p 1/-0 .7/\ c?5 V\Z! fpl(.'1 ( I '/
VB -.:: ID.~ ftS~ ~..ir~ tolloWi~ '0-'1 \ s~owlb \".e..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
:< ./ 2.0
1.0
l/ /
V
2.0 3.0
v
V V
L
4.0 5.0 s~ $J)
Fr = V J(gye) 1/2
7.0
Figure 9.14. Design Curve for USBR Type VI Impact Basin
8.0
Once the basin width, WB, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry
in the table to determine the other dimensions. Interpolation is"not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2) 1/2,
entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
9 0
80
~71 /
V /'
./
w 70 ~ W e:.
V V
f---IMPAY/ ,/
30
20
10 1.0
BASIN-z-
/
I
2.0 3.0
/
LRAULIC.' MP-
/ :.-;:> HORIZONTAL FLOOR
7.0 4.0 5.0 5 q 6.0
Fr = Vol(gYe)1/2 •
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent,
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present. Riprap should be placed downstream of the basin
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fels) and entrance
velocities as high as 15.2 mls (50 ftls). Therefore, use of the basin is limited to installations
within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USBR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
-- - -
FILE: SYSTEM650.WSW
- --- - - -
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 650, LOT 3
- - - ---
PAGE 1
Date: 7-29-2008 Time: 3:44:12
************************************************************************************************************************** ********
I Invert
Station I Elev
-1--1-
L/E1em ICh Slope I
Depth I
(FT) I
-I-
I
Water
Elev
I
I
-I-
I
Q
(CFS)
I Vel
I (FPS)
-1--I-
Vel I
Head I
-1-
I SF Ave I
Energy I Super I Critical I Flow ToplHeight/IBase wtl
Grd.El.1 Elev I Depth I Width IDia.-FTlor I.D.I
-1--1--1--1--1--1-
HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I
ZL
ZR
INo Wth
I Prs/Pip
-I
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1*****
IType Ch
1*******
I
114.330
-1-
4.720
I
119.050
-1-
29.588
I
148.638
-1-
9.364
I
158.002
-1-
5.392
I
163.394
-1-
3.711
I
167.105
-1-
2.787
I
169.892
-1-
2.180
I
172.072
-1-
1.777
I
173.849
-1-
1.470
I
217.460
-1-
.2995
I
218.874
-1-
.2995
I
227.736
-1-
.2995
I
230.540
-1-
.2995
I
232.155
-1-
.2995
I
233.267
-1-
.2995
I
234.101
-1-
.2995
I
234.754
-1-
.2995
I
235.287
-1-
.2995
I I
.302 217.762
-1--1-
I
.302
-I-
I
.312
-I-
I
.322
-I-
I
.333
-1-
I
.345
-I-
I
.356
-I-
I
.369
-1-
I
.381
-1-
I
219.176
-I-
I
228.048
-I-
I
230.863
-I-
I
232.488
-1-
I
233.612
-I-
I
234.457
-I-
I
235.124
-1-
I
235.668
-1-
I
5.10 ~
-1--I-
I
5.10 20.08
-1--I-
I
5.10 19.16
-1--I-
I
5.10 18.26
-1--I-
I
5.10 17.41
-1--I-
I
5.10 16.60
-1--I-
I
5.10 15.83
-1--I-
I
5.10 15.09
-1--I-
I
5.10 14.39
-1--1-
I
6.26
-1-
.2995
I
6.26
-1-
.2807
I
5.70
-1-
.2453
I
5.18
-1-
.2142
I
4.71
-1-
.1874
I
4.28
-1-
.1638
I
3.89
-1-
.1432
I
3.54
-1-
.1253
I
3.22
-1-
.1095
224.03
-1-
1.41
225.44
-1-
8.31
233.75
-1-
2.30
236.04
-1-
1.16
237.20
-1-
.70
237.89
-1-
.46
238.35
-1-
.31
238.66
-1-
.22
238.88
-1-
.16
.00
-1-
.30
I
.00
-1-
.30
I
.00
-1-
.31
I
.00
-1-
.32
I
.00
-1-
.33
I
.00
-1-
.35
I
.00
-1-
.36
I
.00
-1-
.37
I
.00
-1-
.38
.87
-1-
7.70
.87
-1-
7.70
.87
-1-
7.22
.87
-1-
6.76
.87
-1-
6.33
.87
-1-
5.93
.87
-1-
5.55
.87
-1-
5.20
.87
-1-
4.87
1.20
.30
1.20
.30
1.22
.30
1.23
.30
1.25
.30
1.26
.30
1.28
.30
1.29
.30
1.31
.30
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1.500
-1--1-
.013
1. 500
-1--1-
.013
1.500
-1--1-
.013
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
I
.000
-1-
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
I
1 .0
1-
PIPE
--
- -- -- -- - -- ---- -----
FILE: SYSTEM650.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 650, LOT 3
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uNn I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I
175.319 235.727 .394 236.121 5.10 13.72 2.92 239.04 .00 .87 1.32 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.236 .2995 .0958 .12 .39 4.56 .30 .013 .00 .00 PIPE
I I I I I I I I I
176.555 236.097 .408 236.505 5.10 13.08 2.66 239.16 .00 .87 1.34 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.055 .2995 .0838 .09 .41 4.27 .30 .013 .00 .00 PIPE
I I I I I I I I I
177.611 236.413 .422 236.835 5.10 12.47 2.42 239.25 .00 .87 1.35 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.905 .2995 .0734 .07 .42 3.99 .30 .013 .00 .00 PIPE
I I I I I I I I I
178.516 236.684 .437 237.121 5.10 11.89 2.20 239.32 .00 .87 1. 36 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.785 .2995 .0642 .05 .44 3.74 .30 .013 .00 .00 PIPE
I I I I I I I I I
179.301 236.919 .452 237.372 5.10 11.34 2.00 239.37 .00 .87 1.38 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.680 .2995 .0562 .04 .45 3.50 .30 .013 .00 .00 PIPE
I I I I I I I I I 179.981 237.123 .468 237.591 5.10 10.81 1.82 239.41 .00 .87 1.39 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.592 .2995 .0493 .03 .47 3.27 .30 .013 .00 .00 PIPE
I I I I I I I I I
180.573 237.300 .485 237.786 5.10 10.31 1.65 239.44 .00 .87 1.40 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.519 .2995 .0432 .02 .49 3.06 .30 .013 .00 .00 PIPE
I I I I I I I I I
181.092 237.456 .502 237.958 5.10 9.83 1.50 239.46 .00 .87 1.42 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.452 .2995 .0378 .02 .50 2.86 .30 .013 .00 .00 PIPE
I I I I I I I I I 181.544 237.591 .520 238.111 5.10 9.37 1.36 239.48 .00 .87 1.43 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.398 .2995 .0331 .01 .52 2.68 .30 .013 .00 .00 PIPE
-- - --- --- - - -- - ---- -
FILE: SYSTEM650.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 650, LOT 3
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I E1ev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I I I
181. 942 237.711 .538 238.249 5.10 8.94 1.24 239.49 .00 .87 1. 44 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.347 .2995 .0290 .01 .54 2.50 .30 .013 .00 .00 PIPE
I I I I I I I I
182.289 237.814 .557 238.371 5.10 8.52 1.13 239.50 .00 .87 1.45 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.301 .2995 .0255 .01 .56 2.34 .30 .013 .00 .00 PIPE
I I I I I I I I I 182.590 237.905 .577 238.482 5.10 8.12 1.02 239.51 .00 .87 1.46 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.260 .2995 .0223 .01 .58 2.18 .30 .013 .00 .00 PIPE
I I I I I I I I I
182.850 237.982 .598 238.581 5.10 7.75 .93 239.51 .00 .87 1.47 1.500 .000 .00 1 .0
-1--1--1"--1--1--1--1--1--1--1--1--1--I-I-
.224 .2995 .0196 .00 .60 2.04 .30 .013 .00 .00 PIPE
I I I I I I I I I
183.074 238.050 .620 238.670 5.10 7.39 .85 239.52 .00 .87 1.48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.191 .2995 .0172 .00 .62 1.90 .30 .013 .00 .00 PIPE
I I I I I I I I I
183.265 238.107 .643 238.750 5.10 7.04 .77 239.52 .00 .87 1.48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.162 .2995 .0151 .00 .64 1.78 .30 .013 .00 .00 PIPE
I I I I I I I I I
183.427 238.155 .667 238.822 5.10 6.71 .70 239.52 .00 .87 1.49 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.135 .2995 .0133 .00 .67 1.66 .30 .013 .00 .00 PIPE
I I I I I I I I I
183.562 238.196 .692 238.888 5.10 6.40 .64 239.52 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.114 .2995 .0117 .00 .69 1.55 .30 .013 .00 .00 PIPE
I I I I I I I I I
183.676 238.230 .717 238.947 5.10 6.10 .58 239.53 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.085 .2995 .0103 .00 .72 1.44 .30 .013 .00 .00 PIPE
- - - - -
FILE: SYSTEM650.wSW
- -- - - - -
W S P G W -CIVILDESIGN Version 14.06
Program Package Serial Number: 1355
- -- --
PAGE 4
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 3:44:12
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 650, LOT 3
************************************************************************************************************************** ********
I Invert Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase wtl
Station I E1ev (FT) I E1ev I (CFS) I (FPS) Head I Grd.EI.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL
INo Wth
IPrs/pip
-1--1- -1- -1--1--1- -1--1--1--1--1--1--1--I
L/E1em ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1*****
I I I I I I I I I I I I
183.761 238.255 .745 239.000 5.10 5.82 .53 239.53 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.068 .2995 .0091 .00 .75 1.34 .30 .013 .00 .00
I I I I I I I
183.829 238.276 .773 239.049 5.10 5.55 .48 239.53 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.046 .2995 .0080 .00 .77 1.25 .30 .013 .00 .00
I I I I I I I I
183.875 238.290 .803 239.093 5.10 5.29 .43 239.53 .00 .87 1.50 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.026 .2995 .0070 .00 .80 1.16 .30 .013 .00 .00
I I I I I I I I
183.901 238.297 .835 239.132 5.10 5.04 .40 239.53 .00 .87 1.49 1.500 .000 .00
-1--1--1--1--1--1--1--1--1--1--1--1--1-
.009 .2995 .0062 .00 .84 1.08 .30 .013 .00 .00
I I I I I I I I
183.910 238.300 .869 239.169 5.10 4.80 .36 239.53 .00 .87 1.48 1.500 .000 .00
-1- -1- -1--1--1--1--1--1--1--1--1--1--1-
IType Ch
1*******
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
PIPE
I
1
1-
.0
.0
.0
.0
.0
--
- - - - - ---- - - -- - -- -
FILE: SYSTEM650.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 3:44:11
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 1.500
W S P G W
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM 650, LOT 3
W S P G W
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO
ELEMENT NO
ELEMENT NO
1 IS A SYSTEM OUTLET *
U/S DATA STATION
114.330
*
INVERT
217.460
*
SECT
1
* 2 IS A REACH
U/S DATA STATION INVERT SECT
183.910 238.300 1
*
*
3 IS A SYSTEM HEADWORKS *
U/S DATA STATION INVERT SECT
183.910 238.300 1
N
.0l3
PAGE NO 1
PAGE NO 2
W S ELEV
217.460
RADIUS ANGLE ANG PT MAN H
.000 .000 .000 0
* W S ELEV
238.300
--
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,~ PROJECT DESIGN CONSULTANTS
PLANNING I LANDSCAPE ARCHITECTURE
ENVIRONMENTAL I ENGINEERING I SURVEY
WWW.PROJECTDESIGN.COM
Sy~ qOD ().N+~ Lo~~
\VVl.pll-M ~5~\-oo l>eo~1I\.
p-:; [0 /' ::: loS' } Q-:;; 5:1 cfs
PROJECT ~(2.-tD G\'~S
SUBJECT ~ELIM' ~'i "P\SSlf·,trnoN
PAGE: OF __ JOB NO.: 3"3:50
DRAWN BY: ___ DATE: "b.Plb'S
CHECKED BY: DATE: ____ _
S'+fr () Vo:: \q /1/ -q-s (~\VSf'~ ) SY6~ <tOO)
Step z.) CO\M.fVv4e Fr..r ~'1 o.--\-~ " r~ ~ -' \.tQ
Fr ::: ~ _ \or .97 ::::-5.9
Jjje -J('72.Z-)(O:~I)
5+€f~) 1I~W1;V\JV W"/W~ -h-oM jt;"8we Cf.I'1. Calcu{~k Jri1i Wt'ift-. df biD:T\) W~
WI):=: ~::: iJ--:: 3. J
\\o/VJy, Z II
p u-?-S'i) \)-1.{ \) w; -=: S.C; J
'.Dl~~~ ~ P-Lf I gsp
~M,r-e--~;1--.J~~ > v"$
~~ ~ +L ~ Wo(,-~) ~\J~ ~ ~h
~ '= 0.-1\ fC4" ~'~ q, V5
\~o
~ ~ @ ~)\1 ~ 'ole'" '" G.C.(I-O.7f) $. eo ~L{.'1
V~ ~ /f).q fp ....;> 'j!..''f~ ~[{eW;~ 1/-LfI slowld be J/~ f<x..t-•
:~)<~~~~07~~~S771~~~~~~~~S~~4~OO~
I
I
I
I
I
I
I
I
s
/ -
-
/
/
/
/
I 1~~~lU~1U~~liil
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
shows the relationship of the Froude number to the ratio of the energy entering the dissipator to
the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this
curve is permissible.
v
V /
/
/ /"
V
1.0
~.o ~.O 4.0 SJ.I S~ $.0 8.0 $.0
Fr = V j(gye) 1/2
Figure 9.14. Design Curve for USBR Type VI Impact Basin
Once the basin width, WB, has been determined, many of the other dimensions shown in Figure
9.13 follow according to Table 9.2. To use Table 9.2, round the value of WB to the nearest entry
in the table to determine the other dimensions. Interpolation is not necessary.
In calculating the energy and the Froude number, the equivalent depth of flow, Ye = (A/2)1f2,
entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other
words, the cross section flow area in the pipe is converted into an equivalent rectangular cross
section in which the width is twice the depth of flow. The conduit preceding the dissipator can
be open, closed, or of any cross section.
The effectiveness of the basin is best illustrated by comparing the energy losses within the
structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed
based on depth and velocity measurements made in the approach pipe and also in the
downstream channel with no tailwater. Compared with the natural hydraulic jump, the USSR
Type VI impact basin shows a greater capacity for dissipating energy.
9-36
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
9 0
80
~71 III 70 ~ III e:.
:/ 60 -:. = ~ CI) iii 50
Z J,U
110 o
B~SIN-z-... . _'MPACi?"/
:& 40
9
30
20
10 1.0
J
/
2.0
,/
V V
/'
V '/
'/
V ~RAULIC. MP-
/ :.-;> HORI:Z:ONTAL fLOOk
7.0 4.0 5.0 5f\ 6.0
Fr:: Vof(gYe)1/2
Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump
For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall
design as shown in Figure 9.13. The sill should be set as low as possible to prevent.
degradation downstream. For best performance, the downstream channel should be at the
same elevation as the top of the sill. A slot should be placed in the end sill to provide for
drainage during periods of low flow. Although the basin is depressed, the slot allows water to
drain into the surrounding soil.
For protection against undermining, a cutoff wall should be added at the end of the basin. Its
depth will depend on the type of soil present. Riprap should be placed downstream of the basin
for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.
The Los Angeles experiments simulated discharges up to 11.3 m3/s (400 fe/s) and entrance
, velocities as high as 15.2 mls (50 fils). Therefore, use of the basin is limited to installc;:ltions
within these parameters. Velocities up to 15.2 mls (50 ftls) can be used without subjecting the
structure to damage from cavitation forces. Some structures already constructed have
exceeded these thresholds suggesting there may be some design flexibility. For larger
installations where discharge is separable, two or more structures may be placed side by side.
The USSR Type VI is not recommended where debris or ice buildup may cause substantial
clogging.
9-39
-- -- -- --- - - ---- --- -
FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 1
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 900, NEAR BRIDGE
************************************************************************************************************************** ********
I Invert Depth I water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I Elev (FT) I Elev I (CFS) I (FPS) Head I Grd.El. I Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I
114.330 196.380 .303 196.683 5.10 ~ 6.19 202.88 .00 .87 1.20 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
47.350 .2948 .2947 13.96 .30 7.64 .30 .013 .00 .00 PIPE
I I I I I I I I I
161. 680 210.337 .303 210.640 5.10 19.97 6.19 216.83 .00 .87 1.20 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
29.625 .2948 .2783 8.25 .30 7.64 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
191. 305 219.069 .312 219.381 5.10 19.16 5.70 225.08 .00 .87 1.22 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
10.264 .2948 .2453 2.52 .31 7.22 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
201.569 222.094 .322 222.416 5.10 18.26 5.18 227.60 .00 .87 1.23 1.500 .000 .00 1 .0
-1--1--1--'1--1--1--1--1--1--1--1--1--I-I-
5.710 .2948 .2142 1.22 .32 6.76 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
207.280 223.778 .333 224.111 5.10 17.41 4.71 228.82 .00 .87 1.25 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
3.875 .2948 .1874 .73 .33 6.33 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
211.154 224.920 .345 225.265 5.10 16.60 4.28 229.55 .00 .87 1.26 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
2.888 .2948 .1638 .47 .35 5.93 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
214.042 225.771 .356 226.127 5.10 15.83 3.89 230.02 .00 .87 1.28 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1:--I-I-
2.249 .2948 .1432 .32 .36 5.55 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
216.291 226.434 .369 226.803 5.10 15.09 3.54 230.34 .00 .87 1.29 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.827 .2948 .1253 .23 .37 5.20 .30 .013 .00 .00 PIPE
I I I I I I I I I
218.118 226.972 .381 227.353 5.10 14.39 3.22 230.57 .00 .87 1.31 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.508 .2948 .1095 .17 .38 4.87 .30 .0l3 .00 .00 PIPE
--- - - - -- - ----- -- - --
FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 2
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 900, NEAR BRIDGE
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l E1ev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uN" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I
219.626 227.417 .394 227.811 5.10 13.72 2.92 230.73 .00 .87 1.32 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.266 .2948 .0958 .12 .39 4.56 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
220.891 227.790 .408 228.198 5.10 13.08 2.66 230.86 .00 .87 1.34 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
1.079 .2948 .0838 .09 .41 4.27 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
221. 970 228.108 .422 228.530 5.10 12.47 2.42 230.95 .00 .87 1.35 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.924 .2948 .0734 .07 .42 3.99 .30 .0l3 .00 .00 PIPE
I I I I I I I I I
222.895 228.380 .437 228.817 5.10 11.89 2.20 231. 01 .00 .87 1.36 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.801 .2948 .0642 .05 .44 3.74 .30 .013 .00 .00 PIPE
I I I I I I I I I
223.696 228.616 .452 229.069 5.10 11.34 2.00 231.07 .00 .87 1.38 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.694 .2948 .0562 .04 .45 3.50 .30 .013 .00 .00 PIPE
I I I I I I I I
224.390 228.821 .468 "229.289 5.10 10.81 1.82 231.10 .00 .87 1.39 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--I~ -1--1--I-I-
.603 .2948 .0493 .03 .47 3.27 .30 .013 .00 .00 PIPE
I I I I I I I I I
224.993 228.999 .485 229.484 5.10 10.31 1.65 231.13 .00 .87 1.40 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.529 .2948 .0432 .02 .49 3.06 .30 .013 .00 .00 PIPE
I I I I I I I I I 225.522 229.155 .502 229.657 5.10 9.83 1.50 231.16 .00 .87 1.42 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.461 .2948 .0378 .02 .50 2.86 .30 .013 .00 .00 PIPE
I I I I I I I I 1-
225.983 229.290 .520 229.811 5.10 9.37 1.36 231.17 .00 .87 1.43 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.405 .2948 .0331 .01 .52 2.68 .30 .013 .00 .00 PIPE
- ---- --- ---- - - -- - --
FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 3
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 900, NEAR BRIDGE
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow TOP I Height/I Base Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I uN" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I I I
226.388 229.410 .538 229.948 5.10 8.94 1.24 231.19 .00 .87 1. 44 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.353 .2948 .0290 .01 .54 2.50 .30 .013 .00 .00 PIPE
I I I I I I I I I
226.74l 229.514 .557 230.071 5.10 8.52 1.13 231.20 .00 .87 1. 45 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.306 .2948 .0255 .01 .56 2.34 .30 .013 .00 .00 PIPE
I I I I I I I I I
227.047 229.604 .577 230.181 5.10 8.12 1.02 231.21 .00 .87 1. 46 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.265 .2948 .0223 .01 .58 2.18 .30 .013 .00 .00 PIPE
I I I I I I I I I 227.312 229.682 .598 230.280 5.10 7.75 .93 231.21 .00 .87 1.47 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.228 .2948 .0196 .00 .60 2.04 .30 .013 .00 .00 PIPE
I I I I I I I I I
227.540 229.749 .620 230.369 5.10 7.39 .85 231.22 .00 .87 1.48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.195 .2948 .0172 .00 .62 1.90 .30 .013 .00 .00 PIPE
I I I I I I I I I
227.734 229.807 .643 230.450 5.10 7.04 .77 231.22 .00 .87 1.48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.164 .2948 .0151 .00 .64 1.78 .30 .013 .00 .00 PIPE
I I I I I I I I I 227.899 229.855 .667 230.522 5.10 6.71 .70 231.22 .00 .87 1.49 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.137 .2948 .0133 .00 .67 1. 66 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.036 229.896 .692 230.588 5.10 6.40 .64 231.22 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.116 .2948 .0117 .00 .69 1.55 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.152 229.930 .717 230.647 5.10 6.10 .58 231.23 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.086 .2948 .0103 .00 .72 1.44 .30 .013 .00 .00 PIPE
- -- --- - - -- -- ---- - --
FILE: SYSTEM900.WSW W S P G W -CIVILDESIGN Version 14.06 PAGE 4
Program Package Serial Number: 1355
WATER SURFACE PROFILE LISTING Date: 7-29-2008 Time: 4:18:57
3330 BRIDGES
PRELIM ENERGY DISSIPATION CALCS
SYSTEM 900, NEAR BRIDGE
************************************************************************************************************************** ********
I Invert I Depth I Water I Q I Vel Vel I Energy I Super I Critical I Flow ToplHeight/IBase Wtl INo Wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I width IDia.-FTlor I.D.I ZL IPrs/Pip
-1--1--1--1--1--1--1--1--1--1--1--1--1--I
L/Elem ICh Slope I I I I SF Ave I HF ISE DpthlFroude NINorm Dp I "N" I X-Fall I ZR IType Ch
*********1*********1********1*********1*********1*******1*******1*********1*******1********1********1*******1*******1***** 1*******
I I I I I I
228.238 229.955 .745 230.700 5.10 5.82 .53 231.23 .00 .87 1.50 1. 500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.069 .2948 .0091 .00 .75 1.34 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.308 229.976 .773 230.749 5.10 5.55 .48 231.23 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.047 .2948 .0080 .00 .77 1.25 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.355 229.990 .803 230.793 5.10 5.29 .43 231.23 .00 .87 1.50 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.026 .2948 .0070 .00 .80 1.16 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.381 229.997 .835 230.832 5.10 5.04 .40 231.23 .00 .87 1.49 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
.009 .2948 .0062 .00 .84 1.08 .30 .013 .00 .00 PIPE
I I I I I I I I I
228.390 230.000 .869 230.869 5.10 4.80 .36 231.23 .00 .87 1. 48 1.500 .000 .00 1 .0
-1--1--1--1--1--1--1--1--1--1--1--1--I-I-
-- --- - - - - -- - - -- - -
FILE: SYSTEM900.WSW W S P G W -EDIT LISTING -Version 14.06 Date: 7-29-2008 Time: 4:18:56
WATER SURFACE PROFILE -CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
CD 1 4 1 1.500
W S P G W
WATER SURFACE PROFILE -TITLE CARD LISTING
HEADING LINE NO 1 IS -
3330 BRIDGES
HEADING LINE NO 2 IS -
PRELIM ENERGY DISSIPATION CALCS
HEADING LINE NO 3 IS -
SYSTEM 900, NEAR BRIDGE
W S P G W
WATER SURFACE PROFILE -ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET * * *
U/S DATA STATION INVERT SECT
114.330 196.380 1
ELEMENT NO 2 IS A REACH * * *
U/S DATA STATION INVERT SECT
228.390 230.000 1
ELEMENT NO 3 IS A SYSTEM HEADWORKS *
U/S DATA STATION INVERT SECT
228.390 230.000 1
N
.013
*
W S ELEV
196.380
RADIUS
.000
W S ELEV
230.000
ANGLE
.000
PAGE NO 1
PAGE NO 2
ANG PT MAN H
.000 0
--
9
Ii I ~8 I
:tJ 8 ~~ I f)J
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX 6
Storm Drain As-builts & Excerpts from Poinsettia Place Drainage
Report
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
As-built Drawings (For Reference)
1
'I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
I
tllQ ~~ I ...
~ II)
179Jt1J!fJI11./.f(tIdII.b.M:
LEI'I'" .. r '1l(l,l1l~1lQ COl\\/. ~>(: OP.~~M' ~~~r.~f."ob
~ P&D CONSULTANTS
401 WE5T A SlIIttT, SUiTt 2~ S,IrH DlECO, CA, 02101 (11S)232-un
H·"f<}
pATe
UNTI-5.D'oIG 07112196 110 ••• 00 1310,4] 113".COR PLOT , 1'040'
45+00 46+00
44+~7 It ~\+!I INSTALL IZ" ,DErt.!C710N COUPLINGS
)
IJ'
6.$'
IX -
Q,~6J.Jcrs
/'00. 1/.2 I'PS
'C '--6" T'rPE A AC 8C1!M{CI! RSD G-$(BOTH SIDES
Z' AC ON COMPMTFO FILL
SEC770N IV AC SPILLWAY
NO SCALE
ENGINEER OF WORK
~ MANila c. NIETO 7.1$/1 EIIPIRES 0/1 6/JO""" If.c.c. J0714 /.!. ~ ,~ DArt:
<> RECLAlMeJ) VA TeR J)A TA
NO. DlLTAftClol!lNG MD/US LeNGTH RtAWtKS , .6 j4tJ9'{l,' IUOO.OO' 300.00' tr PVCCWS 00
2
J
40' 0' 40' eo' 120' ~ 3 GRAPHIC SCALE, ,-•• 0'
BENCHMARK
DESCRIPTION,
LOCATION,
RECORDS mOM,
ELEVATION:
OC-0170 DISC SET IN WE$! END HmWALl. or 24" R.C.P.
D •• 4041LE EA$I or INTERSECTON or LA COSTA A'-1:. AND SAliONY ROAD
COUNTY OF SAN DIEOO, DEPT. or PUBLIC WORKS, REPORT !MI10S-Ol,10/ls/es
'3.87 DATV~: M. S. l..
51+00 52+00
, ""', .. _. _._--------------,
LENOTH I!~N$
3<1ff.eo· eL.
1'00.00' 7I!J.0!!' aL
D. VA TERiiArA
11'!,00'
U,D,OO'
LtNrlTH a4~;e-o'
11!!. P9' ;4'''.'1 '
I riO/
I!C/J.4RKS
''40 1.1" PYC CWS 'W 1.1" PIll ClASS IW
1,(
CMWD 9.3-501
"
"'~ !h::' ..... cr.' ~
·1
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
~
I
I
rl)
\()
il)
r,l
::2;
a.:
(M:>7'A PAClT)
.. IjO'CMW&>
."\ ~'-"":l.
Lo-r .z
----------
*AVIARA*
·CARLSBAD . ·.TRACT NO.' 92-3
IMPROVEAfENT PLANS
AVIARA ipHAISE III, UNIT·1 INDE:X MAP LEGEND
'IP'cP' . ' .. , . ~:--o ~ . I .j\~e-~~ : ~ tfJ.,.~;t ;
-tb~ 1'I1"'~V .11 6 ) -; 9~.I\N t,-\.' fJft~(#I~Pl' ,,~ ~O.bPr:: Ii or) ~141\" f'~~~
R. OF'
~--:T7 ~-71
14m; / ! --~ ------
INDEX MAP
s.
'X. :it:> ""I""'" "OWL.
S. J 0774
Shoot Indox
1
2 3,8
9&10
11~/2'
Title
Nolos
Siroot Pion & Prontes
Siorm Droln & Sewor line A
ST"lf:II"!IIO I'GIINS
.!!-ltO _MI!t:>11II./ "'''IN.t: ~.
2} CACCIA IJ:MC> PLANe
~"'r
NOTE:
~T:I
SlIter ~.
stJ/JOMS/ON tf()IINDAlfY
"lrOPOS(t) STrNlM OIWN'
sm«r UGHr
WAIl!1f NlO ~IT VALIof'
1'.11. ASsrMIIL r
Lpr NO.
$J1/eET' lIMIt S/ON
(xISTlNt; STORM OIWN
ACCf:SS HOLt
r:TOI':M t:>~IIIN I..INE ~. (CTATION ISH'2:!: TO 17f .. 6 ~) CI1(:Ml!NTtY ~;,,:~o;l~Ij~:~~~~t;t~~ TZ~C ::;AI~f!~~ f!t~~~:J 1i!c}M /)~/i1N 'AN 71:I!"'CH IS TO tiE (;)(JIVE IN IIceO!lt:>ilNct: JW17"11 RUCOMMENt:>1I710NC f'~l!mfl:EC> MY II ~1~GN~I!'f:) sOILl~ ENt:IIV(tEIt
f':'tr::o~~6I1JNk~ ;;'~Yo::'e~~:~~N r:: :1f,~f'N:ee;II':o~t.r:
I!NG/IoJtrl!i<! ANI> THI! CITY INrf'CC TloN PEf'II"TMI!'NT. fTIII' II'Cf',II11t.' wo~ 111010 ~n:oMM~lVo.<IrION" If) NOT "'I':r 0f',..1( CONt:IJL TANr.r
"'-1111"7&.
VICINJTY
;.,
:.S1M1!J)J. o
~ .... --=---.-
~" I
'. 2 .,\ '. ...
!:!!!!'I!l!I!S';f_
0" I,
JlAP
, ~
fit
.~, f. C T J 0 j\J .2.2 ·1 SCALE "a200' OECLARAnON OF RESPONSIBLE CHARGE LEGAL DESCRIPnON
PORTIONS 01" SECTIONS :12 ANI) 17, TDWNSIIII' " SOUTlI. fIA~C ~ tl£3'r. !WI OI:flNARDIN(7 MCfIIOIlN, IN TIll: CITY or ~1/I.5/loW. r:ollNrr or SAN OItrIO, SrAIl' or CAUl'OlrN/.\ ACIXJIIOING TO 0I"f1I:/AL PlAT TIIl:flt:Of'. FL OF' S. 5fJ4 11. '0 F S. ),3 '76 .2 WOf/1( roR TIllS C//ARGt OW TIlt 6'0.1 or rile rill: Ot:Sf(;N IS
WATERLINE CONSTRUCTION· ORDI!R Of WORK
PHASe 1 ,Ilxlotlng 10"112' wolor llno '0' T •• k 1: Exl.llng wulot1lno SI.tlon 26'86: In,'oll \O"xl0-.0" no"god I •• W""
To.k 2:
To.k 3:
Blind nonO.' WOlt on4 .otllh. ExloUng wolollino SloIIO" 21+00.00: In.tollond cop block.
Groda AmbroolD LAM nnd connlruct now 12" pvc WIJI@tIiM.
MokO connoeUonl to o)CI§Ung IJn@ ot poml& In TMk 1 tlbov~.
Exl.,lng WtmlltlOO St.tlon 20-00: 100,"" 12".10" roducol ond In"oll
blind nong. on .".lIng 10" G.V.
(
.-1'.-,... ........ ". • • "~ .• NO"",' ~ """ ""V' ........ ~ .... ,... '-"v"
TII( '0' ML fMC ,'l'toN. "'''1IIle MAto'
511. .... " ... ItI/CIh:J .." • AoII> 2. •• .1
• cu/446 YHf'II t.4..w.s "'" f'AN'~. "--;;;t-., J'_" •..• /'~ ...
NO CONSIJI.TANrS, INC.
40/ II't:sr A sTllm SIIIIT :1500 Ijti~ %Cf~2J~-:mJ
~ T .. k4'
WahHlJM SIII\Jon 11+An,g .. : lnohtll and CAP block And DbDndol\lICmc .... o
llno b@twl}~n abO .... o »13110n5.
TMk G: SUHt grading OPOI6IJ0n8 ovot th@ nbovft Ott'lD ofwiltmilno
PHASE 2 ' Conn.cllonolo •• ,.tlno 18" .t .. lond 12" p,c wo'orllno. T~Dk ': Ofod8 Ambrosio ond POlnfiQUI~ L~noli with lomponuy DloP08 MAr tho •• ,.tlng watolll ..... ,hown on CIIy Cwg. 351·5 .h.ol. G ond 7. r •• k 2: Con.truet Ih. now 30" & 18" .t •• llln ... nd ,h. 12" pvc moln,ln
Amblo.'. 8nd Po' .. o"" Lin •• por CIIy Cwg 3M·5.
rook 3.
Took ~.
Conn{lct to both 0)(16Uoo tln61 ft! tho north end of Ambro~h} LA"~ ~,"d Ih@
w •• t ond of PolnB.m.!..n., . Abondonillunov81he o)(lollng molnt ft. required bctwoon Ih@ 1II\:>(}I,Ift
connoctlon polntl.
HOTE: PItAS! 1 TO BE COMPL!TI!D B!fOIl! PH"!! 2.
£NGIN££R OF WORK'
J.fANl)Cl t. 1VIt.IV r.1(1'11I1:9 ON 6/JO/OO ~~\l'. JOi24.·
~. .".
ENGINEER OF WORK
(FOfI /1:; AND PROCUDINO t:1s INIrIAl.liD IN ~!VI310N BOX}
..!.!Iid!:z STfiVI!N C, /tI!TTLI!" R. C. I. ~83U DATt
fiIrf'IHIISON,-$O-QO _~_ J
~i<'1Q(']..IMARK --------
c6M9v
'OAlt
DESCRIM'lON: OC-O 170 DISC scr IN WEST tND or SOUTlf
HCADWtIIJ. or 24-R.C.P.
ASSESSORS PARCEL NUMBER
IrS-O~O-II/,U.:l5 .+ :l1/J-080-:l~,2S
CALIFORNIA COORDINATES
N 331,000 E 1.605.000 •
DE:VELOPER
~r p~'tf~c;t;~bi1r ~~T' PARTNt:1ISlI1P
CAlll.SlIAO.CAJ.II'OIINVo,92()()9 (r~) 9.1/-/190
CARLSBAD MUNICIPAL
WATER DJSTRII
CITY OF CARLSBAD
FIRE DEPARTMENT
/lDDIl£) SHGGT""Z.I t; I/!/'I."tI!tJO Rt'OlJIlIGlPlrs,
tJy Dlli1/t".,..tN NO 01" f'.ll.s._Lr n.owJi!P.PCI'M our or.LF.H.s" I ~ t;' ~'IF't ~ OLOG. SPItlNJ(UV 'frS-NO. I" n.OW ___ C.P.1oI. ........ 0. n" •
W//J,IlM £ PLlJMMER (OiSr. EN(;//,) IlIIT ~ '8Md.. 1./:>tJ911
II.C.l'. ZlJ176 MIl(, SMIiii (nlU: MAlIS/tAl.) -riATC
i--, . [~1ml
i IMPROvtM~FJT PLANS I'OR:
CARLSBAD TRACT 92-3
~ :,&!, r:::..~:,!TA:::S
!;AH DIr.CO, CA ~"O, (619) 232-....
~ MANiJr.t l'. 1'111:70 4t~t: JOU4 • tlrl'IRt:S ON Q/J'O/~
O' 20p-i:--zd08' 800' f!S;eU I EZ!J
~~ GnAPHIC SCALE "=200'
OArr
LOc,t,TlON: D.4 MILt I:AST or nmRSECl10N or. LA COSTA Ave. .-NO $A)(ONY ROAD
RECORDS rna!.!: cou»TY or SAN DIEGO, DEPT, or PUBLIC WORKS, REPORT·S\lOIOO-OI, IO/I~/HS
CLtl'AlION: 13.87 DATUM: M. S. t..
• 7 or. ~ ~ IM-'-"~·. [III'. .~ _ ' _ CT 92-3-1 PHASE III ",UNIT I ~
-, • ~ ~ APP,_RQ.~D· u'Jl.'IllAJi llUllPS .1 --SCI: -'mD'41~C'IG'O ~Ht.!.:lJ.£..... -'dW "1~o-!'''';':,,: S· .. f·"! (). -• GO !l'I1.Al J!'L..... ' I Clll' &N«lN ~,R RCt 23009 [XPJ2-31-97 IiiiIT.'
" I'" '/& 'D S. S .. '! I /, J,iI • ,~ I5Qt BY' Ii "DI"\II.""'''' Uf\ If,..OJ.lUU" ujiij'( DA1 WiinAI. DA'tt I At. DAn: IHIn"", : _""_u _ J ~U·VlSlntJ DI!'~t'!R:IP"ON .,,' •• h ... ____ ._h_..... I
riLe, C,\1I3 •• W3UlIP1,WG CREATtD 12-20-9. IN tl3 •• ,OO 1310,.) 115/IIj:!r, 1.00 ,~.CMWO 93-50'1
, I ,II
"l,1
_I
...
-'v,.)
~1~ ....... ~ ...
~
,
~
~ ~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~I ~ ~ ~ 51 !i! ~ ~~; l!
~~I~ I' i
..c;..... Ii
~ ~ a.
~
2 :tSO-w z
ifih III
PROFILE: SEW R LINE II p:,'
& STORM ORA N LINE. "p:,'
a! ~
~
I ~
."
4Q'H7 ,
""'.20+12.00 ELl ~I' ) ~. a:
~
. -"""'--.---i---'
Ul It
f ~ ml ~ ~ ~ I J U' ~~ ~ T ~r~ oIDOo"'i=QIF;~~ I ,,--.... _,-'L..! • ..-:JIJ.lllllit!2;,<W __ ,:.~<' :";;;;»'I~ . t"731 !I'I!
11t~ '~ . EO , go.s Tl:t.lP, BASIN ,Ie' . , FLOOR
f PROF'ILE:STO M DRAIN A-I
HORIZ. '" -20' VERT. 1·.&'
c:ID
d Ii! ~ ; ~ a P
i
lo ...
~
,~ m
'~19 l
~
'l"'1l,U!:!!i ,i.IMI'M !2.B!!tUK'
8,4P'N24' Rep • 24.eo~
HOAIZ. 1'·4()' ~ Q ~:r~ ,~:;~' H~a_~~-1' 1'"L.ll!:J II'" --"'I ILrNrtA-2'1'" v o".~ :'0 ~§l'''. H-.'.Bei u ;"1 f1e~----l..--'IE!!T ,'.a' e . 1--1 . 170 ~'I' 1'1-11 ", .• . ~ !l88:M '&Is tlf/!I:,i~'l/" I· QI_,: en
0 S~I+I~R .DA TA
I/O. oo.r. NO IWJ/VS /.DI(/TH iIDWI~S
1 $1"·51'08*1: '".00' 10' PVC : SI4""'0II*C :13. DO' 10' PVCj J SOl'rJ3'IO'e 10.11' 10' DIP
0/ N1I1'QI''''!: 10.46' 10' PVC
5 N;f7'J9'ifO'E 800,n' 10' PVC , H"" '40 '~'C 30l,n' 8' PVC
?
6 ''1'4''11' 100. D(J' N,?" 10' PVC
P N-f"·J""D'~ H~_,_'O' 10'1'5
c:> STORM .DRAIN OA TA
I/O. ot:/.TA/flliARlNO IW)IIJII LENOTH ~ , In'I"4g' B? 00' 94,:11' 60' RCP(lIiOo-Di ••
2 SI4""OI)'! 113,'" 60' IICP( 11i00-D).
3 SDt4·0,',,'C 10,00' ?iI' IICI'(l3110-D).
4 N4'rU'<lO'C 17B,~I' 60' RCP(l3S0-D).
a $6"34'<11 'C 7"Dtf' 18' RCP(J3S0-D).
~ H4'1'U'40'C CDC,:/!' ,., RCNI31J0-D)
7 N41'J9'40'C 71,00' 54' IICP(J 31i0-D). e H41'30'4D't t3., 'C' 1S4' RCP(J31S0-D).
P $64 'If' '43" 08.6" e.' RCP(J3110-D).
10 N~'43''S3't ., .,. /I., IICP(J31i0-D).
•• Ref' f'lfCSSIH't!: I'm: (V"TC~ miNT .JOINTS)
••• 8' L.£NGTflS Vlrll HItNUr~rutrt:D CLIOItS , !tClt f'f!t£SSUfff: ",'"
\
"+00.S0 TO 12+37,110 StVotR: CONST. 0I71.F 01' CONCRCTI: BACKFILl. PER RSO 5-8
12HD.12 SEYlER Rrlo/OVE EX. PLUG"
CONNECT TO EXIST 10" PYC STUB IE IS1.42
~~.Z(~~~
0l1'l'Elfr Elliilif~\l'1\1 iolG'CI5I\~, B'(: I'iOf\.MAN ~,l<AWaUCI\I ReG ~\et'l Ii)(V. It,!>\·OQ
.ilA'ffiL..G.1151 '!'}
~ :~, ;~~u.;:::!TS
$All MOO, CAo 92101 (118)232-''''
UNlI-9.DIIG 01/1S196 11344,00 1310." 113H,COR PLOT • 1"'0'
sa D~ JoII-SA roR • ~I
J
DerAIL or £~ LINE' ".I' <r;.(.
I \iI, .... ~ ~~ il! I Accm It UnLIT"!' EAstN£Nr ~ • ~~~4G= ~r--~ . ~ LC:"~=~~"" ~
\ 6 tid?:=-= \ =-::;,, _~ j--¥-± f==-------~
ALL ~ THER ACCESS RD TO 'OLl.OW TOP 01' BASIN
CONNECl1ON)
~ -
12+3D,OI TO 12+~a.~s so CONST, RIP-RAP CHANNEL 1.100 n~ D-1~ ~ -, -.. n. -....... _ ... -NNE!.: SOO 'l'I"W 31,&.' • ~ •• e2 ~ (sr.t DETAIL show , , .25W' 01' e HON BLACK "'N..':!. COAlt!) CHAIN LINK' FE CE PER CITY 01' NO I S' 1. -
(I .00 RSO ~0t.l-1I2 \\ITH 2EA 20 \\IDE LOCI<INO OATES PCR RSO 1.1-6 S7?1~M P~I/IN /-INt! 'A' (3TAriO/J 11 .JZ I-Tl:I 17"'" es t) "tI/tRJ!H'~Y A'ru~ MrSl:~E)'s:'~~~1 ~A~~"?iA~K~W or UNED DITCH: REt.lOVE " 11M ~ROSIDN OAMAIJ/! WHIr.H IM~ Nor "UN It..ePAIRt:.P A7 rHe ~~T CITY Ul1LITY ESt.lT ' __ • 12'RCP \\1111 'U' T"IPE rII-Il!. OF r'11I$6' "'~-4'J/~r$. TN/!. /U.I'IfI.e ()~ 7?'I.e./MHA6ISP dn>~ 2~' C~-S~t'CDl1ONTO 9E AE"'SEO ~ HOI\!. PER RSO 0-36, DIIAIN 1)1/' r'1l6JJCH 1$ ~ 114 ~/vl! IN h(X.QItDIfAICc, WiT'''' • TW 10M5 ~/!.C.DMMI!ND"''7IQN~ I'Il,PI/ItED 8Y ... 'lal!N~"D 6DIL$ t!7WW/Ve'~.e
~~ -?,,1's:A-&
/J~Nun .. NIUO 11. C... JO?24 DA rr
E'XPlIIES ON 6/JO/OO
.0' 0' .0' &0' 120' e e;;;;
GRAPHIC SCAlE: '" •• 0'
--I 0.0' 5,&' I D.O' I .tNt) IIFP/lDYIlO 4Y iN~ aifY i!"/'/()IAlC.:',e. Tflf!. PIe',,, /l1!l'1/1~S -, •• SWIM. ~r /:IONI!" IJNDI!./t.. rl/I!" OlH/!"II-Vlforlew 01' 19 ~CllHI5I!f) .sCI<.:J /!"NMNC~IZ ,fND rNr CITY 1/'/6P~rl()N T.;>LJPl/Mri'II!N r: rHI~ RI!P/lI.e /,)O/l~ liNt> lUa"MHt:/'IDII7/0N~ /~ /'/0.,. MAT 0":' ";1;) CQN.s,,~rlfN7'~ m ~-r--li i 9 L. r.1'IU{nc.r.f'lII'lU Ut.""I'l!1'M["rfl -~'I
IMPROVEMENT PLANS I'OR: ~
~~~~~iLl.~~"''S'~5"~~~ltD CUSHION FROIo! RIP-RAP.
.16-SUMII, BENCHMAR
~I~-RAP CH~NNEl. PER R~~r-" ,",TH U? Tr
'''@iiiijl''!,UiiiiI'F-F't. leD,oe ~;~~!·~Eb'3~N&'t.Ul:RI L t\LfoRJ. s~~&.
DETAIL: RIP-RAP CHANNEL
NO SCALE
DESCRIPTION:
LOCA110N:
RECORDS P'lIOt.I:
tl£VATION:
OC-OI1Q DISC stT IN WEST
END 0, SOlfTH HEAOWAU. 01" 2~' R.C.P.
0,4 MILE EAST 01' INTl:ASEcnON or v. COSTA AYE. AND SAXON'!' ROAD
COUNTY or SAN 01[00, DEPt. or pueuc
13.&7 DATUt.I: 104. S. L..
-R
;lJfLr
'0 ~II!I.T '~I!'D mil/! r.dQl '" f'l(O,,~vr-t.
RE\>1SION DESCRIPTION
CARLSBAD TRACT 92-3
CIoIYI1l ;3-1101
--------------------------------------~-------------------------------------------------__._. -·------r"
~~
~~
Jl.' CJ\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
20+00 21+0Q
~
$ tf
" q ~ ).
22+00 23+OQ
~
1f :<
tJ
24+00
Lo"r -J
QIOOa 1611. II crs
Vloo-10.7 ll's
25+00 26+00. 28+00 29+00 30+00
NOTE: CONSmUCf m .11.1. WEAlHEA VEHICULM ACCESS ROAl) OWA Ii. or SEWER t.I~~ 12' WIDE
S~t SECTION lHlS SHEET.
LO"r :2
12' PfI) WA IrR (J15 HG)
SEE SlItEr 8
.,..-P ....
242
222
202
--::r7'_ ... '1 z:z::::...~
"~'I.~"" ~"\ "-~
I!I 0' PVC STUn OUT" END PLUG
TO LOT I 0 2.001': It 20M2 II"PYC S'lUD OUT .. END PLUO
~ " "-~ "
n: "'" m~IfJ/ur """'tor.'>.1 I~~' I!I TO LOT 2 02.00)1 IE 21'.80 "V, ~ -----------// L / #'X~ - - - - - -I..,... - - - - - - - - - - -~ __ =.=-__ 77 'Jt, .. ~.;;~kAlil·L,.iiE 'A' ----7-------~., = -:: --_-t ' ~ "'Q;~......:=:=-==~ =m: _ -I x==--" J_ I •
":"'f -\!1I to " .L-__ 1_ _.----I-2D
~I!'-
20.,0 II!. ex. IO'XIO'X6"EE"'/ S W~'GV TO RCMoIJH
-T---r-----
'" lXlST 20' CMJII) lSMT =1'~-
20+00 lit Rt:IJOYl' cx. 1:r1<10' I1EDI.lCEB:
~ ~
INSTAa fJf' 01/ EX 10'CV .t COI/$7 END
GAP BLOC/( I'EII If-/?
o S~II~l? DATA
NO. DCLr.o7Iil'NllllO IIA/)~ , N03'09'oq~ z N4l!f40~eO'JI --J Og",,'4,· 'DO. DO
4 NOO'3:t'J'f'r --~ NOO""J'I't --
~ NOP'Zd '43'11 --7 NOO'33'J1'£ --
WIOTH
J09.3{f·
e"'8'~ g.DtI·
11/4,1}9'
3110,00'
DO. 00'
248.1~·
.63/1.
p&n CONSULTANTS
~ l>Wo.Ac\"il'b,sUllt 2~
(81P)Zn-.... e
"~t.lAn~$
Ii' pvc
~. PVC
6' PI'C
trPVC
trPI'C
~-PI'C
~-PI'C
~NTI-IO.D\IG 07112",6 113~4,to C:ltO.~) 113~".CCR PLOT t 1'.40'
~
&l fd I
C> STaRN DRAIN DATA 1
NO. DCLTIVDCARINo. /W)1fJ$ WvGl1i RCt.W//($
'.UNOO"56 ':17'C IBO.ItIl· U ~IJljO-Q)
2· NDO':J3'/'I'C 4eU.4a· Q4-RCP(IJ~o-d)
JU NOC"nt/l'C ,0'.113' f8' RCP(ISSO-D( • NO} 'OI'OJ't: 103. SI' 0Ii' RCP(lJ~-D a
5
7
•• RCP M/:SS/mC PIPe (VItTeR TIG/IT> ,.11 ,,' Df' RCfI PRrS$L/RC P/fI& (sec PRDrlLC>
•••• ,~' or Rep PRt:SSUIIC PIPe ($C. PIIOI'lLe>
IGiNffR OF WORK
~
MANI/EL r. NI.TO 1I.e.r. J07U EXilllt'S ON 6/JO.tW
--11'--JF:"Qi-. _"' Y / ~
'I"~' ,.0' eo' dOl
CL GMPHIC SC>l.E: ,.' E''''
+:--+-1-~ .: --:::'~'J:::"''' / /_ _ _ ,
------:)<'>-~; ~I~/.,. .
SEE CRAIlIN.,>'(' "'" .. ~ BUll T -"11 ~,,-~ ,-" , ',.,.. ., • AS _, L ~ , ." ' .. ' " ,$). -11 -. -""'0--
JO' EA~EMtNT I
10' ~ ~
"7ds.-9~
DATE
!_'_O' :
I 6.
10
1 6', I
1
~I ~I~
12' 1liiiE WE C IlLt /trA Tlft//' ACCESS ROAD
" TO 1.1}' OPfN GRADED GRAVEL AGCIIEGltT'E 6' Tille/( 01/ 12' or 9$ir COMI'ACT'ED ""L
SECTIOI'{; 'ALL WEATHER' ACCESS RD
NO SCN..E
BENCHMARK
J
f:l .~ , ,y... , NOTE, de. JOe=. , .. " ,~. ~ •• " '" AT" c"S!~~;:l°f~':r . -:;;;;.. , .. " .. ~~~::::.::.b.. ____ . ,q.,#,# ...... \ W ,rACI'LIN. ft.!/' CITY 1)/111 ~ 11+4$.94. Ret _ _ " lJ>~ ~~ ~ _";...... . __
SIIr I) .t ~VErg/ABANDONEf g~ AND 20+0G,' TO 0. IIEM orrar:CN 1/+ "00 TO 26+65. BY GI/ADING mOM 2()+ AN() TO RrMAIN ___ .
PLAN: SEWER LINE "A"
&, STORM· DRAIN LINE" A"
SCALE: 1-• 40'
DESCRIPTION: OC-Ol70 DISC SET IN WEST END 'or SOUlH
HEAGWllLL OF 2." M.P.
LOCATION:
RECORDS mOM:
ELEVATION:
0.. MILE EAST or INTERSECTION OF LA COSTA AYE. M'lD SAXONY ROAl)
COUNlY OF sm OIECO. DEIIT. OF PUBLIC WORKS: ~EPORf SVC)10&-Ol.IO/1S/1l&
13.87 DATUM: M. S. L.
,., u._........................ ,~ ... ~~""~-~_l~ .. .. ~ ... ,.....,..' ... ~ .. -----~=----.
~
i I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
r-
CARLSBAD
WATI!IIWHI! COHSTIlUCTlON • OIID!II OP WORK PHASE 1 • (I.i.bn; 10'112' Wolo, lint '0'
T •• k 1:' E.lillno willriino Siolion :is.e&: InIlAlllo".10'.8' nAnglKl tM wnh • Blind nAngo. w •• t .na'lOulh.
E.I.llng wAtorlin. Slation 2HQO.Ce: In,t.II ond cop'bleck. To.k 2: G,.d. AmbrO.la Lo"" And conot,uct now 1~" pvc wOlorlln •• Took 3: . MAk.-ocnnocUon. to •• I,lIng IIno 01 pOlnl. In T .. k 1 obov •. To.k~: E.I.II.ng .... I.illM Gt.llon 20+0P: ,omove 1?'x10" roduCft' Bnd lillloU blind nong. on •• I.tlng 10' G.V.
Walo.lnB 610110" t1·45.~: m'lftn.nd CIP block Ind .bondonl,amov. IIno botwoln obovo Iiolionl,
To.k e: Stort gr'dlng opomllono ovo, Iho obov. 0'0' 0' wol.rilno,
PHil!! 2. Conooolion. t ••• I,lIng 18' .t •• lond 12~'p~c wIII,lIno,
Took 1: gmdo'Amb""I. Ind ~oln .. ttl. Llno, wnh lompo'A,y Ilop., n ...
tho IXI,ting wAlortlnoo A, ohown on ,Clly Cwo, 351·5 ,h.ot, e ond ?
Took 2: Con,truct Iho now 30" & 18' Itoil IInu And lhol2" pvo mlln, in
Ambro,!_ And PolnlOltl. Lonll POI City CWo 3&1.&, .
TMk 3' Conoool to bolh oxllling lin ... t the north ond 0' Amb,osl. Lont Bnd Ih. w •• lond 0' Poln~.III. Lin.. • , T •• k ~: Abondonl",mov. Ih ••• I,lIng moln ... ",qul .. d billw •• n Iho Abovt eonnft(:tlon polnti,
NOt!: I'HAS! 1 TO Be COMPI.!T!D I!'OR! PHAse t,
r----,
~ L-______ _
BENCHMARK
DESCRIPTION, OC-Ol?D DISC SEl IN WEST END or SO\ffii
LOCATION:
RECORDS FROM:
EI.£VATION'
Ht:AOWALI. or 24" R.C,P,
0,4 Milt rAST or IN'!£RSECTION or LA COSTA AVf., AND SAXONY ROAD
COUNlY OF SAN OIEOO. DEPT. or PUBUC
WORKS' REPO~T SV010G-Ol.1C/1&/C&
13,ft? DATUM: M, S, L,
~ ""VI$ED e/5/% ~ P&D TECHNOLOGIES
, 401 WC$T A mm SUITt zooo m9)~I§~~44~. mot
P3GPI.DIIO IN 1I3~4,OO (31M) 1l344,CCR PLOT I"~O'
L~ __
::rA ,Of'1?.",j'-o.l) Ijlt~/.., O~WI B. RAcu.NO. i J.!g~ ilf:ClSmA nOlI OiPIfIES B/JO/Df
l~
INDEX MAP
11f~~tA;,.I-
TRACT NO'$ ,92~3
VICINITY MAP GRADING PLANS
A VIARA PHASE III
SH«T'
J .
ENGINtER OF WORK
DECLARATION OF RESPONSIBLE CHARGE
yC DECtARE"",r I AM TIlE ENt:lNt:E1I 0,. WORI( !'rIR TIllS mAr I Ho4~ t:XERCISED RIfSI'ONSIIJLt: CH04ffGlf OVE'IP TIlt: 01" TIIIf I"ROJECT AS DmNItD IN SECTION ~7()J 0,. THE
T"W1T11 "a"8;J1Z'f'/;~AI/ft.R&s. AIIO THAT 7'/'IE DEC/GN IS
P .It 0 TrCHNOLOCIEC
CHIfCI( O!' PIfOJIfCT DffAlI'IliCS AND 0" CARLSBAD IS CONfflliD, TO A flEYlIfW 'Etf' Dlf,DN~C/NEER O!' 11'0//1(, 01" MY
~DI mr A STIIEET; SII/I"E ZIIOIl· SAN. DIEGO. C1'IIlIIlI (6111)IlJIl-~466
~ 'M;II/II!' t. NlI:TO <.(.... A. I:IfPlfll:S ON 6/Ja""O rw,/:. J0724 ~ i?" ,~ MIT
SYMBOL
@
~
------
I
RESOURCE AREA 90UNDARY
Ii!
DArt:
DESCRIPTION
or $IfCTlON$ 21 !/'IO n TrlIfflSHIP 12 soum, ""NIlr SAil Df.IIIWIOINO 1oI,II/DIAN, IN mf. ell'f or CARI.$/JAO. OF'SAN DIEIIO. STAn: or CWroHNI'. ACCOROINll TO :P/AT mF/lCOr.
.,..~/'..,. LDCflTION
tJLDMTI"D WtrillN II.P.N.~I
S'"tl6'·OofO·I? .. UlzS-
MLlI'f' COORO. INoa IS 1'17B·(.ZokJ
'-----~--~ SOURCE OF
--;;0"7' .-:L ZL:::~
'"'-
EARTHWORK QUANTITIES
D«:AVATIONt 1.ta~.oco CY f:l,/8ANKIoIENI'I 1.1n.ooo CY
tfli?LS8110 HUNlCIPflL
/r'IlTEf? f}/STRICT
tXPOlI1'I 0 ,R=MMliNOW ~r ~ 1..A.J!,.Y.r?f1446 lfL/.{aa
PRINT tw.IE INSPECTOR DATt I ~Ht[T II CITY OF CARLSBAD I ~ 1 ENGINEERINO DEPAR'lMENT~
~ t. ;.:y~ Z:..LI.:1rt 'I rGR~OING .Ie EROSION CONlROL PLANS rOR: I
WIWIIH E.PIVI1H~R(PIJ7'.FN4If) Ql?r~ ••• , "'''.8. """" CARLSBAD TRACT 92-3 I RI:'.£. ,zOI7" ,'Ii'" S>t ~:~: XI!:V~~~j • ..;~llr~ cAn'. I~"""" ~_.~ ..... _. _ ... __ '" ..... __ • __ _
~ t:i O· 200' 400' e~o' "u '~I Uf< VA\-
I'!D-'.f'lUI". ............. ,_!'J ...... ) :f()-3'I" I ~'CIC 1/3\-,
~!'
1 c
III
I ~ Ii 'ii
·1
: 1
,I ~ '. ! 'III ~h
1
;1
1
I
, I
I
1
i
II
i
i
i
;~
'm5d
i ... ..:1
t~ ?b
1
1
,I
1
1
'I
1
1
1
1
1
1
1
1
1
1
1
1
1
0-
.:-+ w w ::r: V')
C,1I3H\P30P9.dWO 1~ Ii 40'
SEE
\'
SEE SHEET /0
SHEET 7
/..0.,. I
I'V1'f,lRtI $I:-.C,~'i+~#J?~1i/ (N7'·"D'I~W 87.04')
F'1J1'(J~E PII~J.": .s.Il LIN/!. "cl ~,~ $wr. /+ PM PR,OP/LfJ
(tV "'·OIJ' lHo"4 !S7./6' ) 4~qRCP
SEE
BENCHMARK
OESCRIPTION, OC-0179 DISC SET IN WEST END OF SOUTH HEADWALL OF 24' R,C,P.
LOCATION,
RECORDS FRO!'!,
EL!:VATlON,
,0.4 MILE EAST OF INTERSECTION or lA COSTA AVO. AND SAXONY ROAD
COUNIY or SAN OIEOO. OEPT. or PUDLIC WORKS, REPORT SVOIOG-OI. lO/IG/8~
,I3.e7 DATUM, 1.4. S. L.'
//./ .-JJ..,,,j/¥ ~a ~ ~ -71"s: t'¢6
MANuBI_ l!!. Nllt.frJ:J Ileft g,,"£ p,.,~
6:>:1$17 LINe NORnt OF SiA. 1I .. """ • ..,f. ro RtSMAIN. EXIST UNe' ~ srA 1I-r15.'M-soum TO STA. ZO+OO ro ISs
ASI4NDONe.r:>/ReNlOYl!!P AS IiIE.(jilIIReD.
• AS BUll.·l·
~C.1qat....
tl'::.ftn "XI'.J:J.J..1.H. . ..u!J7:f;."L.. . '. ~o' o· . 40' eo' 120' E5-C!5 ORAPfliC SCALE, I'~~O'
." . '''''''\
\
~ ~ ---,
~ iU,~»
1.;',/
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
1.J;:.Jw\··,,j:··,j. .. I'lc.r ... blq:';I·V·I';;~~:X;+'·1 ',1 ·' .. ··:'····j:·w·";;lJ lr"I'·+21:8't.t:)~l~LU~-LJ Id;.~~+1X'
EiNGlNGE'B OF WORK
,~ ,woNI1t<1. IIr ~~ ...,/, r-L.. fP."1i<6~ ';NNI'f/l'&<> /fa., ,nt.of :t..L:!2!i.~ 1«> c>"re
~ REVISED 8151.., ~ P~D TECHNOLOGIES
40' WEST A STHtt'T. SUITt 2500 SAN D'EGO. CA 02'0' (elg)23~-446&
A3UllH3.DIIO 03/02195 11344.00 1310.4) 11344.COR PLOT I j"W
,1~t. C#JJ(,NI1'1'£CPVM liN TN# t"'~/tll! tJti AL.4 ttMINPtJR.eJ1P
C/Nt.R,lJ.lli PIP&' /'fll~r ~K 1M:Q1"t,:lUJ TD r/itINIPl! ... I1lNfHIIH
()/l'" /-YJ.. " ()Vt:1l TId! J:.gIHrl/j~/N4 WIIIiN n(K (JC1tf~N
,,&UJ<If"II.$ (kU/) U; tt.t:~, "fIlS C-bNt~UG.. t:e'414/11 ~T_4n1 IN 'T/!/lSQ ~""t:HIU 11/A,U M ,~. ;,&r>O i!U:
I'rJI1. VI!J,.DC.lrn"$ l!'/.I;Il""'N~ 'Zt> F:f',f,. ANfJ ~ • i)""'''' I':\I:
FIJI< V/lJ..tx:lTlflS d'tC.GI!f)IN'1'(') r.r.r;,
BENCHMARK·
OeSCRIPTIUN, OC-0179 DISC SET IN WEST END or SWill HEADW-'l.L or 24" R,C,P.
LOCATION, 0.4 MILE CAST or INTERSECTION ,....
or v. COS1A Ave. AND SAXONY ROAD
RECORDS rAOM: COUNTY or SAN DIEGO. DEPT. or PUDLIC W(\R~S: REPORT SV010G-Ol.l0/l~/e5
ELEVATION, 13.87 OAhJM, M. • L.
~ --~ ~.> "
-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Excerpts from Poinsettia Place TM Drainage Report
• II
II
II'
II
II'
II
II
II·
II .' • , , , , ,. ,. ,.
PLANNING
ENGINEERING
SURVEYING
IRVINE
LOS ANGELES
RIVERSIDE
SAN DIEGO
HUNSAKER
&ASSOCIATES
5 AND lEe 0, INC.
TENTATIVE MAP
DRAINAGE STUDY
for
RECEIVED
MAY 1 0 2004
CITY OF CARLSBAD
PLANNING DEPT.
POINSETTIA PLACE
DAVE HAMMAR
LEX WILLIMAN
ALISA VIALPANDO
DANSMITI-I '
RAY MARTIN
10179 HUClln'l.kens St.
San Diego, CA 92121
(858) 558·4,500 PH
(858) 558·1414 FX
www.Huns~kerSD.com
Info@HunsakerSD.com
City of Carlsbad, California
Prepared for:
Barratt American, Inc.
5950 Priestley Drive
Carlsbad, CA 92008
W.O. 0294-143
April 28th , 2004
EM:kd ' h:It.PO~l102o.1l1~31D01,doc
w.o.'02o.1.1~3 41301200.12:37 PM
I
I
--,
&I
f
f
f , , , , , , , , , ,
SRWB Development
Tentative Map Drainage Study
1.4 Summary of Results
Table 2 below summarizes developed condition drainage areas and resultant 100-
year peak f10wrate at the storm drain discharge location. Per San Diego County
rainfall isolpluvial maps, the design 100-year rainfall depth for the site area is 2.7
inches.
TABLE 3 • Summary of Peak Flows
Outlet Location Drainage Area 100·Year Peak Flow
(acres) (cfs)
Existing Conditions 17.6 19.7
Developed Conditions 17.6 14.4*
*=Developed flow routed through detention strueture.
Peak runoff from the SRWB developed site has been routed via the detention
structure from an inflow of 30 cfs to an outflow of 14.4 cfs. The basin has ~ base
elevation of 227 feet, with a peak water elevation of 230.8 feet experienced from the
100 year event. The proposed outlet structure is a 3 foot by 3 foot concrete riser
box, with a top elevation of 230.8 feet. At the base of this riser is a single 18" orifice,
enclosed in a protective screening "trash" rack to prevent blockage from vegetation
and other debris. Refer to Chapter V for calculations and sizing of this detention
structure.
Due to the routing of developed flows to below that of existing natural flows, the
development has no negative impact upon the existing flow of the tributary to which
the site drains to.
Peak flow rates listed above were generated based on criteria set forth in "San
Diego County Hydrology Manual" (methodology presented in Chapter III of this
report). Rational Method output is located in Chapter IV.
Final storm drain, inlet and rip rap design details will be provided at the final
engineering stage of the development.
References
"Hydrology Manual': County of San Diego Department of Public Works -Floqd
Control Division; Updated April 1993. '
IISan Diego County Hydrology Manual': County of San Diego Department of Public
Works -Flood Control Section; June 2003.
'Water Quality Technical Report for SRWB': Hunsaker & Associates San Diego,
Inc.; April 2004.
EM:kc h:1r11>Or11~\1431a01.doc
w.o. 029+14~ 4I3CI2OO4 8:11 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
EXHIBITC
BACKBONE FLOW COMPARISON EXHIBIT
OFFSITE AREA TO
F-TYP£=1.66 AC""\
(APPROX) \
SCALE: 1"=100'
JOB j: JJJO
~ ~~
P: \JJJO\ENGR\REPORTS\DRAIN\EXH\(B)Prop Cond.dwg 7/29/2008 6:41:JO PM
7/29/08
PREPARED B't
,~ PROJECT DESIGN CONSULTANTS r Planning I Landscape Archtteclure I Engineering I Survey
701 BSttMt.SulteBOO
San Diego. CASZ101
819.235.6471T&I
819.234.0349 fix.
E
FG 235.8
BWG. ~
GF 223.3-
-BlJJG:s ~--~----m~~
i;r 2258
BACKBONE FLOW COMPARISON
EXHIBIT
J
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I!
I
I
I
I
DATE:
TO:
FROM:
July 30, 2008 FILE: ·3330.00
City of Carlsbad
C. Pack, Project Design Consultants
I SUBJECT: Bridges at A viara Drainage Report, Plan Check, Response to review comments
I
I
I
I
I
I
I
I
I
I
I
I
•
I
I
City Comment #19 from City comments memo dated May 19, 2008 under "Engineering·
Concerns": Revise the TM to modify the storm drain outfall for Lot 3 so it does not·
discharge over a 2:1 slope, leading to erosion. Refer to redlines for clarification.
Response: Site and environmental constraints do not allow much flexibility for discharge
location. Discharge location for Lot 3 had been revised to more clearly show that the D·41
energy dissipater and riprap will be installed on a flat pad. Due to the very small diScharge flow
rate, this should minimize erosion.
City Comment #23 from City comments memo dated May 19, 2008 under "Engineering
Concerns": Revise the preliminary hydrology study to provide runoff estimates (QIOO) and
velocities (V100) under the Poinsettia Lane Bridge. Revise the TM to show the
approximate 100-year limits under the bridge. We received a response this is not a FEMA .
mapped area (and the requested information was not provided). Staff is not asking
whether it is FEMA mapped or not. We ask that you provide information in the study nnd
TM as it relates to this proposed bridge crossing for Poinsettia Lane. Thb is an important
design feature that should be evaluated and verified.
Response: Since the proposed bridge is so high and the expected flow rate in the canyon
is so low, the hydraulics of the flow would not affect the bridge design. Therefore, we agreed at
the meeting with City staff that this issue will be addressed during final engineering.
City Comment #24 from City comments memo dated May 19, 2008 under "Engineering
Concerns": Revise the preliminary hydrology study to verify capacity and sizing of existing
and proposed storm drain infrastructure. The study seems to focus on the sizing of private
systems, but this project is constructing both private and public storm drains, so it should
encompass both. The study should address the capacity of the existing storm drain along.
the westerly property line as flows are being added to it from the project and the new
extension of Poinsettia Lane. Refer to redlines for clarification.
Response: Revised text and calculations now include that portion of the Poinsettia Lane
extension. See Section 3.6 of revised report.
City Comment #25 from City comments memo dated May 19, 2008 under "Engineering
Concerns": Revise the preliminary hydrology study to address the preliminary sizing of
public storm drains along the northerly portion of Poinsettia Lane. There are storm
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
drains, inlets, and basin modifications proposed without hydrology/hydraulic analysis.
Provide sizing/capacity calculations for the 30-inch RCP under Poinsettia Lane and the
existing sump/basin north of building 1. The TM seems to show this basin will decrease in
size by this project and impervious runoff from proposed Poinsettia Lane is being added.
Revise the study and TM to address discrepancy.
Response: See Section 3.6 of revised report.
City Comment #26 from City comments memo dated May 19, 2008 under "Engineering
Concerns": Revise the preliminary hydrology map (proposed conditions to show the QIOO
e~pected after the effects of the proposed detention basins, as sized per Appendix 4. Revise
the hydrology study to include the basin sizing calculations for the existing sump/basin just
north of building 1. This project is affecting the size, capacity, and flow characteristics to
that basin and, therefore, must be analyzed with this project.
Response: QI00 values for pipes exiting detention basins have been added to revised
exhibits. The existing sump north of building 1 is not a basin, but additional calculations and
explanation are included in the revised report.
City Comment #27 from City comments memo dated May 19, 2008 under "Engineering
Concerns": Revise the TM (and hydrology study) to clarify how the storm drain inlets
along Poinsettia Lane (near sta 190+00) will drain north through bridge. It seems, with the
depth of the storm drain, these pipes will not fit within the bridge. Prior to resubmittal,
please coordinate the street drainage and bridge design to address this discrepancy.
Response: The area draining to the low spot on the bridge has been reduced with the
addition of upstream inlets before the abutments. The new design for the sump bridge inlets is to
have them drain straight down to the canyon below. The layout and sizing ofthat system will be
deferred to final engineering.
City Comment redlined report, page 3: Identify QI00, VIOO for Poinsettia Bridge Crossing.
Response: See response to Comment #23.
City Comment redlined report, page 4: Expand study to verify capacity before statement
can be made.
Response: See response to Comment #24.
City Comment redlined report, page 6: Not an accurate statement. System 100 also
comprised of Poinsettia Lane, which needs treatment. The sump basin also needs
evaluation with flows into it to verify adequacy.
Response: See response to Comment #25. Text has been changed and clarifIed on pages
6-7.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
City Comment redlined report, page 7: You actually add some area from Poinsettia Lane
(impervious). This study must be expanded before making this determination. Please
complete analysis to verify the sump (basin) sizing/capacity.
Response: Study has been expanded. See response to comment #25.
City Comment redlined report, page 8: "water quality/detention basin" circled and "Not
numerically sized in SWMP. Verify it serves as a treatment control and revise" was
written.
Response: This was munerically sized in the SWMP, in the BMP Design Criteria table.
This basin is a combined water quality/detention basin, so therefore it serves as a treatment
control BMP.
City Comment redlined report, page 9: "and public" was written after "private".
Response: Text has been updated.
City Comment redlined report, proposed condition hydrology map: New impervious area
being added to sump. Need to address hydrology/hydraulics here.
Response: See response to comment #25.
City Comment redlined report, proposed condition hydrology map: Basin sizing/capacity?
Qin? Qout? Do routing?
Response: Sump will be filled in. See response to comment #25.
City Comment redlined report, proposed condition hydrology map: Verify existing Q, 'Post
Q in pipe before stating no change
Response: See response to comment #24.
City C;omment redlined report, proposed condition hydrology map: QIOO after basins?
Response: Q 100 values for pipes exiting detention basins have been added to revised
exhibits.
City Comment redlined report, proposed condition hydrology map: Adress QI00, VIOO at
bridge crossing. Show 100 year limits on TM.
Response: See response to Comment #27.