HomeMy WebLinkAboutCT 06-06; VILLAGES OF LA COSTA OAKS NORTH 3.7; DRAINAGE STUDY; 2007-07-11PLANNING
ENGINEERING
SURVEYING
IRVINE
LOS ANGELES
RIVERSIDE
SAN DIEGO
ARIZONA
DAVE HAMMAR
LEX WILLIMAN
ALiSA VIALPANDO
DAN SMITH
RAY MARTIN
CHUCK CATER
9707 Waples Street
San Diego, CA 92121
(858) 558-4500 PH
(858) 558-1414 FX
www.HunsakerSD.com
Info@HunsakerSD.com
HUNSAKER
&ASSOCIATES
5 AND lEG 0, INC.
DRAINAGE STUDY
for
RECEIVED
JUL 13 2001
ENG\NEER\NG
DEPARTMENT
LA COSTA OAKS NORTH
NEIGHBORHOOD 3.7
CT06-06
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
c/o Morrow Development
1903 Wright Place
Suite 180
Carisbad,CA 92008
~ a-
""'~ ~
~
w.o_ 2352-178 \ 4
July 11, 2007
Hunsaker & Associates
San Diego, Inc.
David A. Blalock, R.C.E.
a
<0 z
~ o w
o
z
MJ:kc H:\REPORTSI23521178IA02.doc ~
w.o 2352-178 7/11/20071.52 PM CT~\':' <u~ ~1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
TABLE OF CONTENTS
Chapter 1 -Executive Summary
1.1 Introduction
1.2 Summary of Existing Conditions
1.3 Summary of Developed Condition
1.4 Summary of Results
1.5 Conclusion
1.6 References
Chapter 2 -Methodology
2.1 County of San Diego Drainage Design Criteria
2.2 Design Rainfall Determination
-100-Year, 6-Hour Rainfaliisopiuvial Map
100-Year, 24-Hour Rainfallisopiuvial Map
2.3 Runoff Coefficient Determination
2.4 Peak Intensity Determination
-Urban Watershed Overland Time of Flow Nomograph
-San Diego County Intensity-Duration Design Chart
2.5 Gutter and Roadway Discharge (Velocity Chart)
2.6 Manning's Equation Nomograph
2.7 Model Development Summary
(from San Diego County Hydrology Manual)
SECTION
II
Chapter 3 - 1 OO-Year Hydrologic Model for Developed Conditions III
Chapter 4 -100-Year Hydrologic Model for Existing Conditions IV
"Mass Graded Drainage Study for La Costa Oaks North
Neighborhoods 3.2, 3.6 & 3.7"
Chapter 5 -Storm Drain Hydraulic Analysis V
Chapter 6 -Inlet Sizing VI
Chapter 7 -Brow Ditch Sizing VII
Chapter 8 -CDS Unit Sizing VIII
Chapter 9 -Hydrology Maps IX
9.1 Existing Condition Hydrology Map
9.2 Developed Condition Hydrology Map
MJ:mj H:IREPORTSI23521178111A02 (2).doc
w.o.2352·178 7111120071:52 PM
~
I
I
I
I .
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 1 -EXECUTIVE SUMMARY
1.1 -Introduction
The La Costa Oaks North Neighborhood 3.7 site is located in the City of Carlsbad,
California (see vicinity map below). Neighborhood 3.7 is bounded to the north by an
existing San Diego Gas and Electric transmission easement that is undisturbed in a .
natural native condition. To the east lies more undisturbed native land within the city
limits of the City of Carlsbad and more easterly is an existing development,
University Commons, within the limits of the City of San Marcos. Westerly and
north-westerly of Neighborhood 3.7 exists Rancho Santa Fe Road, a portion of
Avenidad Soledad and La Costa Oaks North Neighborhood 3.6. To the south of
Neighborhood 3.7 lies existing Mahr Reservoir, owned and maintained by Vallecitos
Water District. In preparation for Neighborhood 3.7's ultimate development,
provisions were taken for the Mahr Reservoir Spillway during construction of
underlying improvements and mass grading associated with CT 99-04-03. These
provisions included spillway modifications that interconnect the spillway to an
underground storm drain pipe system. This downstream storm drain system has
adequate capacity to protect the dam embankment from overtopping by receiving
discharges from the spillway without introducing any back water effects that would
impact spillway efficiency.
All runoff from the site will drain to two (2) existing storm drain systems along
Avenida Soledad constructed under CT 99-04-03. Runoff from these storm drain
systems eventually discharges into San Marcos Creek.
This study analyzes developed conditions 1 ~O-year peak flowrates from the
proposed development site.
Treatment of storm water runoff from the site has been addressed in a separate
report -the "Storm Water Management Plan for La Costa Oaks North-
Neighborhood 3.7", dated July, 2007.
Per County of San Diego drainage criteria, the Modified Rational Method should be
used to determine peak design flowrates when the contributing drainage area is less
than 1.0 square mile. Since the total watershed area discharging from the site is
less than 1.0 square mile, the AES-2003 computer software was used to model the'
runoff response per the Modified Rational Method. Methodology used for the
computation of design rainfall events, runoff coefficients, and rainfall intensity values
are consistent with criteria set forth in the "County of San Diego Drainage Design
ManuaL" A more detailed explanation of methodology used for this analysis is listed
in Chapter 2 of this report.
MJ:mj H:\REPORTS\23521178\11A02 (2).doc
w.o.2352·178 7/11120071:52 PM
,
,)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
MASTeR 7ENTAn\£
MAP BOUNDARY
+
LA COSTA VICINITY MAP
NTS
1.2 -Summary of Existing Conditions
Located on a 13.8 acre site, the proposed La Costa Oaks North -Neighborhood 3.7
has been mass graded per the "Mass Graded and Erosion Control Plans for La
Costa Oaks North Neighborhood 3.6 & 3.7" by Hunsaker & Associates, dated
October 2005.
The project site has been graded into three (3) mass-graded pads for future single
family development. Runoff from the two westerly graded pads and a portion of
future Avenida Soledad will drain into two desilt basins prior to discharging into an
existing 3D-inch RCP system per Drawing No. 429-70 and ultimately to San Marcos
Creek (See Table 1). Runoff from the third mass-graded pad to the east and the
remaining portion of future Avenida Soledad also drains into a desilt basin prior to
discharging into an existing 24-inch RCP system per Drawing No. 429-70 and
ultimately to San Marcos Creek (See Table 1).
Table 1 -Summary of EXisting Conditions
Drainage Location
Existing 3D-inch RCP
(Avenida Soledad
·Westerly Discharge)
Existing 24-inch RCP
(Avenida Soledad
Easterly Discharge)
Area (Acres)
7.4
2.0
1 OO-Year Peak Flow
(cfs)
\
18.6
5.4
MJ:mj H:IREPORTS\2352\178111A02 (2).doc
w.o.2352'178 7/11/20071:52 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
Peak flow rates listed above were obtained from the "Mass-Graded Drainage Study
for La Costa Oaks North Neighborhoods 3.2, 3.6 & 3.7" by Hunsa_ker & Associates,
dated February 2006. Rational Method output is located in Chapter IV.
1.3 -Summary of Developed Conditions
The proposed La Costa Oaks North -Neighborhood 3.7 will consist of 43 single-
family residences and a recreation lot. Development of the project site will also
include private roads, sidewalks, associated utilities and an internal storm drain
system. Per criteria set forth in the "2003 San Diego County Hydrology Manual", a
runoff coefficient of 0.57 was selected to quantify the rainfall to runoff response from
the single-family development.
Runoff from the developed site wi" discharge to two (2) existing receiving storm
drain systems. Runoff from the western portion of the proposed La Costa Oaks
North -Neighborhood 3.7 will also be conveyed via curb and gutter into four (4Ycurb
inlets within Avenida Soledad. Flows are then conveyed via storm drain in a
westerly direction, discharging to an existing 30-inch RCP within Avenida Soledad.
Runoff from the eastern portion of the proposed. La Costa Oaks North -
Neighborhood 3.7 will be conveyed via curb and gutter to two (2) receiving curb
inlets. Flow is intercepted then conveyed via storm drain in a southerly direction,
outfalling to the adjacent hillside. The flow continues in an easterly direction,
eventually being picked up by an existing storm drain system provided by the City of
San Marcos, and ultimately discharging into San Marcos Creek.
Flows from both locations will receive primary treatment via two (2) CDS units
located within the eastern and western storm drain systems, in accordance with
standards set forth by the Regional Water Quality Control Board and the City of
Carlsbad Stormwater Standards Manual (see Storm Water Management Plan for La
Costa Oaks North -Neighborhood 3.7, Hunsaker & Associates, April 2007).
Table 2 -Summary of Developed Conditions
Drainage Location
Existing 30-inch RCP
(Avenida Soledad
Westerly Discharge)
Existing 24-inch RCP
(Avenida Soledad
Easterly Discharge]
Area (Acres)
6.7
2.6
100-Year Peak Flow
_(cfsl
16.7
\
7.6
MJ:mj H:IREPORTSI2352117811\A02 (2).doc
w.o.2352·178 7/11/20071:52 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oa.ks North -Neighborhood 3.7
Drainage Study
1.4 -Results and Recommendations
Table 3 below summarizes the developed and existing conditions for the La Costa
Oaks North -Neighborhood 3.7 and the resultant 100-year peak f10wrates at the
storm drain discharge locations. Per San Diego County rainfall isopluvial maps, the
design 1 OO-year rainfall depth for the site area is 2.9 inches.
Table 3 -Summary of Peak Flows
Outlet Location Drainage Area 100-Year Peak Flow
(Ac) . (cfs)
Existing Condition
30-inch RCP (Avenida 7.4 18.6 Soledad Westerly
Discharge)
Developed Condition
30-inch RCP (Avenida 6.7 16.7 Soledad Westerly
Discharge)
Difference -0.7 -1.9
Existing Condition
24-inch RCP (Avenida 2.0 5.4 Soledad Easterly
Discharge)
Developed Condition
24-inch RCP (Avenida 2.6 7.6 Soledad Easterly
Discharge)
Difference + 0.6 +2.2
Per Table 3 above, the developed peak flow discharge to the existing 30-inch RCP
under Avenida Soledad for the proposed project site has been reduced by
approximately 1.9 cfs from the current conditions. The developed peak flow
discharge to the existing 24-inch RCP outfall directed easterly to the adjacent hillside
and eventually being picked up by an existing storm drain system provided by the
City of. San Marcos that ultimately discharges into San Marcos Creek is
approximately 7.6 cfs, an increase of 2.2 cfs from results obtained from the "Mass-
Graded Drainage Study prepared for La Costa Oaks North Neighborhood 3:2, 3.6 &
3.7"
MJ:mj H:IREPORTSI23521178IA02.doc
w.o.2352·178 7111/20072:22 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
Table 4 -Summary of Total Peak Flows
La Costa Oaks Drainage Area 100-Year Peak Flow
North 3.7 Site (Ac) (cfs)
Pre-Developed 9.4 24.0 Condition
Developed Condition 9.3 , 24.3
Difference -0.1 + 0.3
Table 4 above summarizes the overall discharge for the entire project site. The
combined flows leaving the project site are increased by 0.3 cfs.
Peak flow rates listed above were generated based on criteria set forth in "San
Diego County Hydrology Manual". Rational Method output is located in Chapter 3.
Storm drain hydraulic analysis is located in Chapter 5, inlet sizing in Chapter 6, brow
ditch sizing in Chapter 7, and CDS unit sizing in Chapter 8 of this report.
1.5 -Conclusion
Drainage design, including watershed delineation and storm drain sizing, should
results in minimal impact to downstream property owners. Construction of the storm
drain improvements as shown herein should safely collect and convey peak
discharge through the developments.
1.6 -References
County of San Diego Hydrology Manual, June 2003
"Storm Water Management Plan for La Costa Oaks North -Neighborhood 3.7",
Hunsaker & Associates, San Diego, Inc., July 2007.
"Mass-Graded Drainage Study for La Costa Oaks North -Neighborhood 3.2, 3.6 &
3.7': Hunsaker & Associates, San Diego, Inc., October 2005.
"Mass Grading and Erosion Control Plans for La Costa Oaks North -Neighborhood
3.6 & 3.7': Hunsaker & Associates, San Diego, Inc., February 2006.
MJ:mJ H:IREPORTSI2352117811IA02 (2).doc
w.o,2352·178 7/11120071:52 PM
>-0::: « (f) 0 z w
0 => 0 0 z CD
0 I
0 W 0
Z I w I-
W (f) z 0
0::: ---1 (f)
(!) W s: W s:
W I-0 0 0 « ---1 0 0::: ...J s: LL Z CD
-------.--- ---------
I
I,
I II
I
I
I
I
I
-I
I~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY
AD:rn] H:IREPORTSI23521178IStudy 01.doc
w.o.2352.178 4/111200712:49 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION'
(ULTIMATE CONDITIONS)
2.1 -County of San Diego Design Criteria
AD:rn) H:IREPORTS\23521178IStudy 01.doc
w.o.2352.178 4/11/2007 12:49 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
Modified Rational Method Hydrologic Analysis
Computer Software Package -AES-2003
Design Storm - 1 OO-year return interval
Land Use -Single-Family residential;
Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have
very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils
with a high swelling potential, soils with a high permanent water table, soils with clay
pan or clay layer at or near the surface, and shallow soils over nearly impervious
materials, Group D soils have a very slow rate of water transmission.
Runoff Coefficient -In accordance with the County of San Diego standards, runoff
coefficients were based on land use.
. Rainfall Intensity -Initial time of concentration values were determined usin-g the
County of San Diego standards. The rainfall intensity-duration-frequency curve for
the San Diego County was used to determine rainfall intensities.
Method of Analysis -The Rational Method is the most widely used hydrologic model
for estimating peak runoff rates. Applied to small urban and semi-urban areas with
drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall
intensity, a runoff coefficient, and drainage area to peak runoff rate. This
relationship is expressed by the equation:
Q = CIA, where:
Q = The peak runoff rate in cubic feet per second at the point of analysis.
C = A runoff coefficient representing the area -averaged ratio of runoff to
rainfall intensity.
I = The time-averaged rainfall intensity in inches per hour corresponding
to the time of concentration.
A = The drainage basin area in acres.
To perform a node-link study, the total watershed area is divided into subareas
which discharge at designated nodes.
The procedure for the subarea summation model is as follows:
(1) Subdivide the watershed into an initial subarea. (generally 1 lot) and
subsequent subareas, which are generally less than 10 acres in size.
Assign upstream and downstream node numbers to each subarea.
(2) Estimate an initial T c by using the appropriate nomograph or overland flow
velocity estimation.
AD:mj H.IREPORTSI23521178ISludy 01.doc
w.o.2352-178 41111200712:37 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
(3) Using the initial Te, determine the corresponding values of I. Then Q = C I
A.
(4) Using Q, estimate the travel time between this node and the next by
Manning's equation as applied to the particular channel or conduit linking
the two nodes. Then, repeat the calculation for Q based on the revised
intensity (which is a function of the revised time of concentration)
The nodes are joined together by links, which may be street gutter flows, drainage
swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer
subarea menu is as follows:
SUBAREA HYDROLOGIC PROCESS
1. Confluence analysis at node.
2. Initial subarea analysis (including time of concentration calculation).
3. Pipeflow travel time (computer estimated).
4. Pipeflow travel time (user specified).
5. Trapezoidal channel travel time.
6. Street flow analysis through subarea.
7. User -specified information at node.
8. Addition of subarea runoff to main line.
9. V-gutter flow through area.
10. Copy main stream data to memory bank
11. Confluence main stream data with a memory bank
12. Clear a memory bank
At the confluence point of two or more basins, the following procedure is used to
combine peak flow rates to account for differences in the basin's times of
concentration. This adjustment is based on the assumption that each basin's
hydrographs are triangular in shape.
(1). ,If the collection streams have the same times of concentration, then
the Q values are directly summed,
AD:mJ H:IREPORTS\2352117B1Study 01.doc
w.o.2352·178 41111200712:37 PM
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
(2). If the collection streams have different times of concentration, the
smaller of the tributary Q values may be adjusted as follows:
(i). The most frequent case is where the collection stream with the
longer time of concentration has the larger Q. The smaller Q
value is adjusted by the ratio of rainfall intensities.
(ii). In some cases, the collection stream with the shorter time of
concentration has the larger Q. Then the smaller Q is adjusted
by a ratio of the T values.
AD:m] H:IREPDRTSI23521178IStudy 01.doc
w.o.2352-178 4/1112007 12:37 PM
. -l'I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK·
FLOWRA TE DETERMINATION .
(ULTIMATE CONDITIONS)
2.2 -Design Rainfall Determination
AD.rn] H:IREPDRTSI23521178\Sludy 01.doc
w.o.2352-178 4/11/200712:49 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD· PEAK
FLOWRA TE DETERMI·NATION .
(ULTIMATE CONDITIONS) .
2.2 -100-Year, 6-Hour Rainfall Isopluvial M'ap
AD:mj H:IREPORTS\23521176IStudy 01.doc
w.o.2352-176 4/11/200712:49 PM
I
. I
I
- -
orange County
S \'t1::;'
"
1,u11..ry~il*W.QII,. ...
co
-
o CO
" .. .,.
-----
l!iJMa
-- - ---
'''-;----'\" .... ...... ";"'.. ::.~~ .. \
.............. ...... .. ............. , .. ),Q .................. \, \,
...... "".. .. .... "'\ '\ .... '" ..... " "\ \
........ .. .... ,\ \.\ '\ '\ ................ :~5 3~O
'\ I '\ \ \, 2.75 .... ,.. ,l
\\ \'....... \\ \\, '\, ... _ ..
\ \,' ...... ,\\ '\ .. w~..,. :, \ \ \.
1 \ \ " , . , , . .
'",-'. }
!
-
:3
"CI
<D
..
o
o c
" '<
---
County of San Diego
Hydrology Manual
Rainfall IsopluvlaIs
100 Year Rainfall Event· 6 Hours
/"/ Isopluvial (inches)
~O)I(." :: 2. ,9 11'\
Map Notes
Staleplane ProJecIlOl1, Zone6. NADD3
CreaUon Date: June 22. 2001
NOTTO BE USED FOR DESIGN CAlCULATIONS
Q
7.5
-
MILES ~1J!..lt~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METH'ODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.2 -100-Year, 24-Hour Rainfaliisopiuvial Map
AD:mj H:IREPORTSI23521178ISludy 01.doc
w.o.2352-178 41111200712:49 PM
-,-
:PlZcJ£~T
S 1"fF .., ..
1&U1laII1_k~B""'~1.-1
"
-
o " .. ..
.".
1---.. --
'-"'",
/ \ ........ 'II ' "' .. _,' ", .. ........
l]i!ana
----- -
e
.. ..:....,) . .. .. -.. ~~..--'~~ --_ -", <\, C-::::"" 5.0 ······<:::::'::-':"')0\ ' .. ' ....... ~! 1b.~, d.q 6'f \ \, ......... l-.......... : ....... , .... , ........... :) \ /
\, \\ '\ 5e \" .. , " .. -....... \\ :\ "''\ ""\ "' ..... '10 ..... 6 j 1:0 \ \ \ ......... \: '\ .. \ 4:~ \ \. I
3
"" ..
- --
County of San Diego
Hydrology Manual
Rainfall IsopJuvJaJs
100 Year Rainrall Event· 24 Hours
/"/ Isopluvial (inches)
'\? tDO, 'Z..~ ':. 5. z.
Map Notes
Stateplane ProJeGtion. Zoneo, NADBJ
Creation Date: June 22, 2001
NOTTO BE USED FOR DESIGN CALCULATIONS
Q
-
o 7.S ~-----MIlES fl.!!!..~
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRATE DETERMINATION
(ULTIMATE CONDITIONS)
2.3 -Runoff Coefficient Determination
AD:mj H:IREPORT5I235211781Sludy 01.doc
w.o.2352-178 4111/2007"12:49 PM
----- -.. --- - ---- - ---
San Diego County Hydrology Manual
Date: June 2003
Table 3-1
Section:
Page:
RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient "c"
Soil T~Ee
NRCS Elements COUll Elements %IMJ>ER. A B
Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25
Low Density Residential (LDR) Residential, 1.0 Du/A or less 10 0.27 0.32
Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38
Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41
Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45
Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51
Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54
Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58
High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67
High Density Residential (HDR) Residential, 43.0 DUiA or less 80 0.76 0.77
Commercia1lIndustriai (N. Com) Neighborhood Commercial 80 0.76 0.77
CommerciallIndustrial (G. Com) General Commercial 85 0.80 0.80
CommerciallIndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84
CommerciallIndustrial (Limited I.) Limited Industrial 90 0.83 0.84
CommerciallIndustrial (General I.) General Industrial 95 0.87 0.87
C
0.30
0.36
0.42
0.45
0.48
0.54
0.57
0.60
0.69
0.78
0.78
0.81
0.84
0.84
0.87
3
6of26
D
0.35
0.41
0.46
0.49
0.52
0.57
0.60
0.63
'0.71
0.79
0.79
0.82
0.85
0.85
0.87
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff
coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area
is located in Cleveland National Forest).
DU/A = dwelling units per acre
NRCS = National Resources Conservation Service
3-6
I
I
I
I
I
I
I
'I
I
I
I
I
I'
I'
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRATE DETERMIN·ATION
(ULTIMATE CONDITIONS)
2.4 -Peak Intensity Determination
AD:mj H:IREPORTSI2352117BISludy 01,doc
w.o.2352·178 4111/200712:49 PM
-- ---------.. ,--. ---- -
10.0
'~.O
"""
...... 1 .....
"""'" ~ J Directions for Application:
8.0 i' ...... I ..... I' I (1) From precipitation maps determine 6 hr and 24 hr amounts
7.01' ,
"""
~ ~ I for the selected frequency. These maps are included in the
6.0'" "'i', ~ I'~ !'~ I' EQUATION County Hydrology Manual (10, 50, and 100 yr maps included
'"
.... 1"-""", !"" I = 7.44 Pa 0-0.645 In the Design and Procedure Manual).
5.0 ~ I = Intensity (in/hr) (2) Adjust 6 hr preclpitatlon (If necessary) so that it Is within '" !""I"-!'or... I" P 6;::; 6-Hour Precipitation ( In) the range of 45% to 65% of the 24 hr precipitation (not 4.0 "" applicaple to Desert). 1", " r D = Duration (min) ......... i • i'" (3) Plot 6 hr preCipitation on the right side of the chart •
3.0 'or.... ...
(4) Draw a line through the point parallel to the plotted lines. .... I' ..... (5) This line is the intensity-duration curve for the location i' ....
.... 1"-beIng analyzed. I' "'I' 2:0 I'.
.... 1" 'r" i',i" r..1"" Application Form:
1'-1' I ... i"1"" 0> (a) Selected frequency ___ year :c B' ..... 1'", r-., i"1'" 0 P t: (b)P6= __ In''P24= __ Ip6 = %(2) 0
I'" ... ~ i'" ""I"" "'0
'I"-iil 24 ill I' (c) Adjusted P6(2);::; __ in. .t: Q. g1.0 6.0 "9.
';:0.9 " 5.5 ~ (d) 1x = __ min. ~0.8 " 5.0 g
~0.7 "" 4.55' (e) I ;::; __ In./hr. l"-n 4.0 g
0.6 3.6 .!!!. Note: This chart replaces the Intensity~Duratlon·Frequency
0;5 I ... 3.0 curves used since 1965. I""
0.4 2.5 r.-,-La-r--z+f.lrhc!-3:S-I·--;r i-·;i:~~:"-T'-F5:5-j-'6-· pr-i',r-.,
~r-. our-ilion -_ .. ( .. ·I .... r--r1-1 I d-~f I ,-I-f'-T-"-i-
2.0 --5
2.63 13.!15 527 ~<;O!lL~-¥,-2?1'!.l;4~'_~1~tIf,~§Jll 0.3 ~--7 .. ~ .1:.~4 _~~+6.3~1g _8:.1.11_ J~,~.,~qg. 1.1&6 j?.:.?'~ --1-0 ... 1.:.68 2.533.37 4.21 5.05. 5;~rW-4 7:..~_ 8.42 _gJQ:.!l
1.5 "'-15 -~:~J~ },fslllli}!1ir {;rjTK~: :},:;. ~
0.2 ----·· .. 25 JIP ... 1.:4.9 ,~~~,1.. ,~;3!3J?!~0 .~;g? _?,7;3 I 4:~0 ... 1~67,. ,.5 •. 1.3, ,.5.:tl(). ---30 iliti~i1t~r.oijl':~i~ti~j 1.0 ·--'·-40 --so ---60 ·_-so Jl41-!1,6-,-"" c141lH±~~ ~4l!-4''1 __ 'L~ -"'~ -no ..P.:.~, .. o.:.~! ,9,,~.,9.:.~5_ .1p.? ."_'~ J.3~_t . .JA? .... 1,,1..0. lA~ .. 2:o.~ .-----t5(j 0.29 0.44 0.59 0.7310,l}!l1~ .!:.~§ ._'.:~~. _!:~IJ...!:~~I 1.76 -----m ~~W~:~ :t~:~±l1r-0_1
, ~~ 5 6 7 8 910 15 20 30 40 50 2 3 4 5 6 300 _9"!~ ogl} 9~~ .Q,i7 .M~.~~§. _Q2f>.. Q~Il!>, .. Q-'.~,i.L1:.0~ .. ...1:.1.3_ Minutes Hours '-360 0.17,0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.84, 0.92 1.00 Duration
FIGU.RE
3-1
I
I
I'
I
I
Ii
I
I
I'
'I'
I
I
I
I
I
I'
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.4 -Urban Watershed Overla'nd
Time of flow Nomograph
. AD:mJ H:IREPORTSI23521178\Sludy 01,doc
w.O.2352,178 4111/200712:49 PM
--------~~~--------
li:i ~
£:
ill ~ ~ en C5
ill ~ :::l ~ ~ 3:
1001 1.5 I m./// I .. ~
~ z • IJJ/ ~ /:A ~ ~I ~120::E
~
ill :2 i=
§
IJ.
~-~--4 ~._-~10~
~ '0
EXAMPLE:
Given: Watercourse Distance (D) = 70 Feet
Slope ($) =1.3%
Runoff Coefficient (C) = 0.41
Overland Flow Time (T) '" 9.5 Minutes
T-1.8 (1.1-C)VD
3VS
0:: ~
SOURCE: Airport Drainage. Federal Aviation Administration. 1965
FIGURE
Rational Formula -Overland Time of Flow Nomograph 3·3
I
I
I
I
I:
I
I
I
I
I
I
I
I"
I
I
I
I
'I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.4 -Natural Watershed Overland
Time of flow Nomograph
AD:mj H:IREPORTS\2352\1781S1udy 01.doc
w.o.2352·178 '4/11/200712:49 PM
I
I
I
I:
I
I'
I
I
I
I
I
I
I-
I
I
I
I
I
AE
Feet
5000
4000
Tc
Tc
L
.6.E
EQUATION
= C~~3y.385
=
=
=
Time of concentration (hours)
Watercourse Distance (miles)
Change in elevation along
effective slope line (See Figure 3-5)(feet)
__ .. _ 3~OO
2000
300
200
100
5
AE
SOURCE: California Division of Highways (1941) and Kirpich (1940)
L Miles Feet
0.5
L
.
3000 ,
~ooo
1800
1600
1400
1200
1000
900
BOO
700
600
500
200
,
Nomograph for Determination of
, ,
Tc
Hours Minutes
4 240
3
2
1
, , ,
Tc
180
120
60
50
6
5
3
Time of Concentration (Tc) or Travel Time (Tt) for Natural watersheds
FIGURE
~
I
I
I
I
I
I
I:
I
I
I'
I
I
I-
I
I
I'
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
·FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS) .
2.5 -Gutter and Roadway Discharge
(Velocity Chart)
AD:mj H:IREPORTSI2352117BISludy 01.doc
w.o.2352·178 4111/200712:49 PM
I
I
I
I
I
I-
'I
I,
I
I-
I
I
I
I
I
I
I
I'
I
1-+-1,5'---+1
I~n= .015~1 ....... __ --2% ~ -n= .0175 --------~------~ 2%
2
EXAMPLE:
Concrete
Gutter
Given:Q=10 S=2.5%
3 4
Chart gives: Depth = 0.4. Velocity = 4.4 f.p.s.
Paved
5 6 7 8 9 10
Discharge (C.F.S.)
SOURCE: San Diego County Department of Special District Services Design Manual
Gutter and Roadway Discharge -Velocity Chart
RESIDENTIAL STREET
ONE SIDE ONLY
20 30 40 50
FIGURE
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRATE DETERMINATION
(ULTIMATE CONDITIONS)
2.6 -Manning's Equation Nomograph
AD:mJ H:IREPORTSI235211781SIudy 01.doc
w.o.2352-178 4/11/200712.:49 PM
I
I
EQUATION: V = 1.49 R2i3 5112
I
I
n
0.3 0.2 rO
•
0.2 rO
0.3
0.15
I 30
0.01 0.4
0.10
0.09
I 0.08 20 0.07
0.06
0.05
I 0.04 O.S 0.02
0.03 0.9
I
I
I
I
I
1.0
0::: > 0.02 /1 c: 0.03 1 / § 8 I cr a5 -c: -J!! /" ~ 7 Q) 0 '0 .E .!: IE .... 6 Q) 0.04 Q) 0 a. / -t) a5 0.01 y~ Q) 5 CIl J!! 0.009 ~~ J!! CIl .!: O.OOB t) y> ~ .!: ~ fO.05
W 0.007 :::i ~ 4 :c 0-::J (!) 0.06 0 0.006 «
3/ "0 ::J ..J 0::: g 0 CIl 0.005 0 0::: 0.07 >-W 3 0.004~~ :c > 0.08 ~ 4 0.09
0.10 0.002 5 2
6 I 7
8
I 0.001 9
0.0009 10 1.0 0.2 0.0008
0.0007 0.9
I
0.0006 0.8
0.0005 0.7
0.3 0.0004 O.S
I 0.0003 20 0.5 0.4
GENERAL SOLUTION
I SOURCE: USDOT. FHWA, HDS-3 (1961)
FIGURE
I Manning's Equation Nomograph ~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.7 -Model Development Summary
(from San Diego County Hydrology Manual)
AD:m] H:IREPORTS\235211iilIStudy 01.doc
-w.o.2352·178 4111/200712:49 PM
4._ .. _. _______
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD
Section:
Page:
3
20 of 26
This section describes the development of the necessary data to perform RM calculations.
Section 3.3 describes the RM calculation process. Input data for calculating peak flows and
Tc's with the RM should be developed as follows:
1. On a topographic base map, outline the overall drainage area boundary, showing
adjacent drains, existing and proposed drains, and overland flow paths.
2. Verify the accuracy of the drainage map in the field.
3. Divide the drainage area into subareas by locating significant points of interest. These
divisions should be based on topography, soil type, and land use. Ensure that an
appropriate first subarea is delineated. For natural areas, the first subarea flow path
length should be less than or equal to 4,000 feet plus the overland flow length (Table
3-2). For developed areas, the initial subarea flow path length should be consistent
with Table 3-2. The topography and slope within the initial subarea should be
generally uniform.
4. Working from upstream to downstream, assign a number representing each subarea in
the drainage system to each point of interest. Figure 3-8 provides guidelines for node
numbers for geographic infortnation system (-GIS)-based studies.
5. Measure each subarea in the drainage area to determine its size in acres (A).
6. Determine the length and effective slope of the flow path in each subarea.
7. Identify the soil type for each subarea.
3-20
-------------------
.,.,...,..
Study Area SC ,.r·' L
I I ~ Il t ... , " I ,/
", ,./' l,.
Study Area LA
CD Define Study Areas
(Two-Letter 10)
o Define Maps
(or Subregions
on Region Basis)
o Define Model
Subareas on
Map Basis
,. .'
I " t.,'" , I ,
I '
I ' ,,! ,,'
,I , " ,
, ,
",,1
I' ... ...
........ -.... _-..
" ...... --" ........... '
.... I ' . ..-......
o Define Major Flowpaths
in Study Area
CD Define Regions on
Study Area Basis
Subarea 10 =
(LA010112)
N~::: 1
Region#-----, 1
Study Area (10) # 1
o Define Model Nodes
(Intersection of
Subarea Boundaries
with Flowpath Lines)
GIS/Hydrologic lIIIodel
Data Base Linkage Setup:
Nodes, Subareas; Links
LA 01 01 03
(]) Number Nodes
FIGURE
[EJ
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
22of26
8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the
subarea contains more than one type of development classification, use a proportionate
average for C. In deterrnining C for the subarea, use future land use taken from the
applicable community plan, Multiple Species Conservation Plan, National Forest land
use plan, etc.
9. Calculate the CA value for the subarea.
10. Calculate the :L(CA) va~ue(s) for the subareas upstream of the point(s) of interest.
11. Deterrnine P6 and P24 for the study using the isopluvial maps provided in Appendix B.
Ifnecessary, adjust the value for P6 to be within 45% to 65% of the value for P24.
See Section 3.3 for a description ofthe RM calculation process.
3.3 PERFORMING RATIONAL METHOD CALCULATIONS
This section describes the RM calculation process. Using the input data, calculation of peak
flows and Te's should be perforrned as follows:
1. Deterrnine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section
3.1.4. If the watershed is natural, the travel time to the downstream end of the first
subarea can be added to Tito obtain the Te. Refer to paragraph 3.1.4.2 (a).
2. Deterrnine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5
minute time to deterrnine intensity for calculating the flow.
3. Calculate the peak discharge flow rate for the subarea, where Qp = :L(CA) I. \
In case that the downstream flow rate is less than the upstream flow rate, due to the
long travel time that is not offset by the additional subarea runoff, use the upstream
peak flow for design purposes until downstream flows increase again.
3-22
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
4. Estimate the Tt to the next point of interest.
5. Add the Tt to the previous Tc to obtain a new 'Fe.
Section:
Page:
6. Continue with step 2, above, until the final point of interest is reached.
3
230f26
Note: The MRM should be used to calculate the pea~ discharge when the.re is a junction
from independent subareas into the drainage system.
3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS)
The purpose of this section is to describe the steps necessary to develop a hydrology report
for a small watershed using the MRM. It is necessary to use the MRM if the watershed
contains junctions of independent drainage systems. . The process is based on the design
manuals of the City/County of San Diego. The general process description for using this
method, including an example of the application of this method, is described below.
The engineer should only use the MRM for drainage areas up to approximately 1 square mile
in size. If the watershed will significantly exceed 1 square mile then the NRCS method
described in Section 4 should be used. The engineer may choose to use either the RM or the
MRM for calculations for up to an approximately I-square-mile area and then transition the
study to the NRCS method for additional downstream areas that exceed approximately 1
square mile. The transition process is described in Section 4.
3.4.1 Modified Rational Method General Process Description
The general process for the MRM differs from the RM only when a junction of independent
drainage systems is reached. The peak Q, Te, and I for each of the independent drainage
systems at the point of the junction are calculated by the RM. The independent drainage
systems are then combined using the MRM procedure described below. The peak Q, Te, and
I for each of the independent drainage systems at the point of the junction must be calculated
prior to using the MRM procedure to combine the independent drainage systems, as these
3-23
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
24of26
values will be used for the MRM calculations. After the independent drainag~ systems have
been combined, RM calculations are continued to the next point of interest.
3.4.2 Procedure for Combining Independent Drainage Systems at a Junction
Calculate the peak Q, Te, and I for each of the independent drainage systems at the point of
the junction. These values will be used for the MRM calculations.
At the junction of two or more independent drainage systems, the respective peak flows are
combined to obtain the maximum flow out of the junction at Te. Based on the approximation
that total runoff increases directly in proportion to time, a general equation may be written to
determine the maximum Q and its corresponding Te using the peak Q, Te, and I for each of
the independent drainage systems at the point immediately before the junction .. The general
equation requires that contributing Q's be numbered in order of increasing Te.
Let QI, TI, and II correspond to the tributary area with the shortest Te. Likewise, let Q2, T2,
and h correspond to the tributary area with the next longer Te; Q3, T3, and 13 correspond to
the tributary area with the next longer Te; and so on. When only two independent drainage
systems are combined, leave Q3, T3, and 13 out of the equation. C.ombine the independent
drainage systems using the junction equation below:
Junction Equation: Tl < Tz < T3
3-24
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
250f26
Calculate Qn, QT2, and QT3. Select the largest Q and use the Tc associated with that Q for
further calculations (see the three Notes for options). If the largest calculated Q's are equal
(e.g., Qn = QT2 > QT3), use the shorter of the Tc's associated with that Q.
This equation may be expanded for a junction of more than three independent drainage
systems using the same concept. The concept is that when Q from a selected subarea (e.g.,
Q2) is combined with Q from another subarea with a shorter Tc (e.g., Q1), the Q from the
subarea with the shorter Tc is reduced by the ratio of the I's (I21I1); and when.Q from a
'selected subarea (e.g., Q2) is combined with Q from another subarea with a longer Tc (e.g.,
Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T21T3).
Note #1: At a junction of two independent drainage systems that have the same Tc, the
tributary flows may be added to obtain the Qp.
This can be verified by using the junction equation above. Let Q3, T3, and 13 = O. When T1
and T2 are the same, II and I2 are a,lsp the same, and T1/T2 and hill = 1. TI/T2 and I21I1 are
cancelled from the equations. At this point, Qn = QT2 = QI + Q2.
Note #2: In the upstream part of a watershed, a conservative computation is acceptable.
When the times of concentration (Tc's) are relatively close in magnitude (within 10%), use
the shorter Tc for the intensity and the equation Q = :E(CA)I.
Note #3: . An optional method of determining the To is to use the equation
To = [(2: (CA)7.44 P6)/Q] 1.55
This equation is from Q = 2:(CA)1 = 2:(CA)(7.44 P6/Tc·645 ) and solving for Te. The
advantage in this option is that the To is consistent with the peak flow Q, and avoids
inappropriate fluctuation in downstream flows in some cases.
3-25
I .
I
:1
I
1:-
I~ .
I
I'
I
I
I
I
I'
I
I
I
I
I
I·
III
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 3
100 YEAR DEVELOPED CONDIT'IONS'
HYDROLOGY ANALYSIS
AD:mj H;\REPORTSI2352\1761SIudy 01.doc
w.o.2352-178-41111200712:49 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1239
Analysis prepared by:
HUNSAKER & ASSOCIATES -SAN DIEGO
10179 Huennekens Street
San Diego, Ca. 92121
(858) 558-4500
************************** DESCRIPTION OF STUDY **************************
* LA COSTA OAKS NORTH -NEIGHBORHOOD 3.7 *
* 100-YEAR DEVELOPED CONDITION HYDROLOGICAL ANALYSIS *
* W.O.# 2352-178 7/10/07 *
**************************************************************************
FILE NAME: H:\AES2003\2352\178\DEV100.DAT
TIME/DATE OF STUDY: 17:05 07/10/2007
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.900
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
HALF-CROWN TO STREE~-CROSSFALL: CURB GUTTER-GEOMETRIES:
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT)
---===== ========= ================= ====== ======
1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313
2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET'
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
-----
0.125
0.125
MODEL*
MANNING
FACTOR
(n)
=======
0.0150
0.0150
+--------------------------------------------------------~----------------~+ I START OF EASTERLY FLOW I I ' I
II +--------------------------------------------------------------------------+
****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE =21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 8.7
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 643.30
DOWNSTREAM ELEVATION(FEET) = 642.60
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME PF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY(INCHjHOUR)
SUBAREA RUNOFF (CFS) 0.34
65.00
7.504
5.881
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.34
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 642.60 DOWNSTREAM ELEVATION(FEET) = 631.80
STREET LENGTH(FEET) = 355.50 CURB HEIGHT(INCHES) 6.0"
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.25
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 7.39
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.38
PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC.) 0.93
STREET FLOW TRAVEL TIME(MIN.) = 1.75 Tc(MIN.) 9.26
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.136
RESIDENTAIL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA (ACRES) 1.30
TOTAL AREA(ACRES) = 1.40
0.570
SUBAREA RUNOFF (CFS) 3.81
PEAK FLOW RATE(CFS) =
END OF SUBAREA STREET" FLOW HYDRAULICS:
DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.73
FLOW VELOCITY(FEET/SEC.) = 3.85 DEPTH*VELOCITY(FT*FT/SEC.) =
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 420.50
1. 23
FEET.
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 31
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 627.60 DOWNSTREAM (FEET) 624.10
FLOW LENGTH(FEET) = 34.50 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES
PIPE-FLOW VELOCITY(FEETjSEC.) 12.36
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 4.10
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 9.30
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 455.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
»»>DESIGNATE INDEPE~ENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 9 . 30
RAINFALL INTENSITY(INCHjHR) = 5.12
TOrAL STREAM AREA (ACRES) = 1.40
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.10
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 641.50
DOWNSTREAM ELEVATION(FEET) = 640.80
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCHjHOUR)
SUBAREA RUNOFF (CFS) 0.34
65.00
7.504
5.881
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.34
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
?»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
=====================================================================~======
UPSTREAM ELEVATION(FEET) = 640.80 DOWNSTREAM ELEVATION(FEET) 631.70
STREET LENGTH(FEET) = 347.30 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.94
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 7.11
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.10
PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC.) 0.83
STREET FLOW TRAVEL TIME(MIN.) = 1.86 Tc(MIN.) 9.37
100 YEAR RAINFALL INTENSITY(INCH/HOUR} 5.096
RESIDENTAIL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 1.10 SUBAREA RUNOFF (CFS) 3.20
TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE (CFS) '= 3.49
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET} = 9.36
FLOW VELOCITY(FEET/SEC.} = 3.51 DEPTH*VELOCITY(FT*FT/SEC.) 1.10
LONGEST FLOWPATH FROM NODE 4.00 TO NODE 6.00 = 412.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) 9 . 37
RAINFALL INTENSITY(INCH/HR} = 5.10
TOTAL STREAM AREA(ACRES) = 1.20
PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.49
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 4.10 9.30 5.119
2 3.49 9.37 5.096
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 7.56 9.30 5.119
2 7.57 9.37 5.096
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 7.57 Tc(MIN.) =
TOTAL AREA(ACRES) = 2.60
LONGEST FLOWPATH FROM NODE 1.00 TO NODE
AREA
(ACRE)
1.40
1.20
RATIO
9.37
6.00 455.00 FEET.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*****************************************************************~**********
FLOW PROCESS FROM NODE 6.00 TO NODE 100.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTRBAM(FEET) = 623.30 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 118.20 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.4 INCHES
PIPE-FLOW VELOCITY(FEET/sEC.) 7.16
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 7.57
PIPE TRAVEL TIME (MIN.) = 0.28 Tc(MIN.) = 9.64
621. 60
1
LONGEST FLOWPATH FROM NODE 1. 00 TO NODE 100.00 573 . .20 FEET.
+--------------------------------------------------------------------------+ I END OF EASTERLY FLOW 'I
I I I I +--------------------------------------------------------------------------+
+---------------------------------------------------~----------------------+ I START OF WESTERLY FLOW I
I I I I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DulAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 640.00
DOWNSTREAM ELEVATION(FEET) = 639.30
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.504
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.881
SUBAREA RUNOFF (CFS) 0.34
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.34
****************************************************************************
FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 627.90 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 760.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
611.10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Streetflow section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 4.53
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
HALFSTREET FLOOD WIDTH(FEET) = 8.05
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.96
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.85
STREET FLOW TRAVEL TIME(MIN.) = 4.28 Tc(MIN.) 11.78
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.396
RESIDENTAIL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 3.30
TOTAL AREA(ACRES) = 3.40
0.570
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) 10.58
8.27
FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOW PATH FROM NODE 15.00 TO NODE 17.00 = 825.00
8.52
1.16
FEET.
****************************************************************************
FLOW' PROCESS FROM NODE 17.00 TO NODE 20.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 601.30 DOWNSTREAM (FEET) 600.60
FLOW LENGTH(FEET) = 33.30 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.51
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 8.52
PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 11.85
LONGEST FLOW PATH FROM NODE 15.00 TO NODE 20.00 858.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
=========================================================~==================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.85
RAINFALL INTENSITY(INCH/HR) = 4.38
TOTAL STREAM AREA(ACRES) = 3.40
PEAK FLOW RATE (CFS) AT CONFLUENCE = 8.52
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
I
I
I
I
I
I
I
I
I
I
I
.1
I
I
I
I
I
I
I
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UP$TREAM ELEVATION(FEET) = 629.00
DOWNSTREAM ELEVATION(FEET) = 625.80
ELEVATION DIFFERENCE (FEET) = 3.20
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.521
100 YEAR RAINFALL INTENSITY(INCHjHOUR) 7.641
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF (CFS) = 0.44
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.44
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>-(STREET TABLE SECTION # 2 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 625.80 DOWNSTREAM ELEVATION(FEET) = 611.10
STREET LENGTH(FEET) = 456.40 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.14
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.23
HALFSTREET FLOOD WIDTH(FEET) = 5.09
AVERAGE FLOW VELOCITY(FEETjSEC.) 3.02
PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.69
STREET FLOW TRAVEL TIME(MIN.) = 2.52 Tc(MIN.) 7.04
100 YEAR RAINFALL INTENSITY(INCHjHOUR) 6.128
RESIDENTAIL (7.3 DUjAC OR LESS) 'RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.40
TOTAL AREA(ACRES) = 0.50
0.570
SUBAREA RUNOFF(CFS) 1.40
PEAK FLOW RATE(CFS) = 1.7,5
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.44
FLOW VELOCITY(FEETjSEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) = 0.84
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 521.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 600.70 DOWNSTREAM (FEET) 600.60
FLOW LENGTH(FEET) = 3.50 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.15
ES~IMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.75
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.05
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 20.00 524.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) 7.05
RAINFALL INTENSITY(INCH/HR) = 6.12
TOTAL STREAM AREA(ACRES) = 0.50
PEAK FLOW RATE(CFS)-AT CONFLUENCE = 1.75
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 8.52 11.85 4.380
2 1. 75 7.05 6.122
AREA
(ACRE)
3.40
0.50
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 6.82 7.05 6.122
2 9.77 11.85 4.380
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 9.77 Tc(MIN.) = 11.85
TOTAL AREA(ACRES) = 3.90
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 20.00 858.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE = 31"
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
===================================================================~========
ELEVATION DATA: UPSTREAM (FEET) = 600.60 DOWNSTREAM (FEET) =
FLOW LENGTH(FEET) = 290.20 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES
577.50
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE-FLOW VELOCITY(FEETjSEC.)
ESTIMATED PIPE DIAMETER(INCH)
PIPE-FLOW (CFS) = 9.77
14.47
18.00 NUMBER OF PIPES
Tc(MIN.) = 12.18
1
PIPE TRAVEL TIME(MIN.) = 0.33
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 25.00 1148.50 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS liD"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 609.30
DOWNSTREAM ELEVATION(FEET) = 608.60
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.504
100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.881
SUBAREA RUNOFF (CFS) 0.34
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.34
****************************************************************************
FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 608.60 DOWNSTREAM ELEVATION(FEET) = 593.90
STREET LENGTH(FEET) = 295.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Sect~on 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.21
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.24
HALFSTREET FLOOD WIDTH(FEET) = 5.52
AVERAGE FLOW VELOCITY(FEETjSEC.) 3.81
PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.90
STREET FLOW TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) 8.80
100 YEAR RAINFALL INTENSITY(INCHjHOUR) 5.308
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) 87
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA (ACRES) 1.90 SUBAREA RUNOFF (CFS) 5.75
TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE (CFS) = 6.05
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) 7.58
FLOW VELOCITY(FEETjSEC.) = 4.37 DEPTH*VELOCITY(FT*FT/SEC.) 1.21
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 360.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 52.00 TO NODE 42.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 586.90 DOWNSTREAM (FEET) 581.90
FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 16.72
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES .= 1
PIPE-FLOW (CFS) = 6.05
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 8.82
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 42.00 389.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
.»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN. ) 8.82
RAINFALL INTENSITY(INCH/HR) = 5.30
TOTAL STREAM AREA(ACRES) = 2.00
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.05
********************************************************.********~**~*******
FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DUjAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 610.20
DOWNSTREAM ELEVATION(FEET) = 609.50
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCHjHOUR)
SUBAREA RUNOFF (CFS) = 0.34
65.00
7.504
5.881
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.34
****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 2 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 609.50 DOWNSTREAM ELEVATION(FEET) 587.60
STREET LENGTH(FEET) = 178.30 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DEClMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) , 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREEr PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.66
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.16
HALF STREET FLOOD WIDTH(FEET) = 1.50
AVERAGE FLOW VELOCITY(FEET/SEC.) 6.61
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.03
STREET FLOW TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) 7.95
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.664
RESIDENTAIL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) 0.65
TOTAL AREA(ACRES) = 0.30 PEAK FLOW RATE (CFS) '= 0.97
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.17 HALFSTREET FLOOD WIDTH(FEET) = 2.18
FLOW VELOCITY(FEET/SEC.) = 5.84 DEPTH*VELOCITY(FT*FT/SEC.) 0.99
LONGEST FLOW PATH FROM NODE 40.00 TO NODE 42.00 = 243.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
======================================~=====================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) 7.95
RAINFALL INTENSITY(INCH/HR) = 5.66
TOTAL STREAM AREA(ACRES) = 0.30
PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.97
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 6.05 8.82 5.297
2 0.97 7.95 5.664
AREA
(ACRE)
2.00
0.30
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO.
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF
NUMBER (CF S)
1
2
6.42
6.96
Tc
(MIN. )
7.95
8.82
INTENSITY
( INCH/HOUR)
5.664
5.297
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 6.96 Tc(MIN.) =
TOTAL AREA(ACRES) = 2.30
8.82
LONGEST FLOW PATH FROM NODE 50.00 TO NODE 42.00 389.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 42.00 TO NODE 25.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 581.60 DOWNSTREAM (FEET) = 577.50
FLOW LENGTH(FEET) = 33.30 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 15.42
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 6.96
PIPE TRAVEL TIME(MIN.) = 0.04 TC(MIN.) = 8.86
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 25.00 422.30 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 6.96 8.86 5.283 2.30
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 25.00 422.30 FE;ET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE)
1 9.77 12.18 4.302 3.90
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 25.00 1148.50 FEET.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 14.06 8.86 5.283
2 15.43 12.18 4.302
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 15.43 Tc(MIN.) = 12.18
TOTAL AREA(ACRES) = 6.20
I
I
I
I
I
I~
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 12'
»»>CLEAR MEMORY BANK # 1 ««<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.18
RAINFALL INTENSITY (INCH/HR) = 4.30
TOTAL STREAM AREA(ACRES) = 6.20
PEAK FLOW RATE (CFS) AT CONFLUENCE = 15.43
****************************************************************************
FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
RESIDENTAIL (7.3 DulAC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS liD"
S.C.S. CURVE NUMBER (AMC II) = 87
INITIAL SUBAREA FLOW-LENGTH(FEET) =
UPSTREAM ELEVATION(FEET) = 611.20
DOWNSTREAM ELEVATION(FEET) = 610.50
ELEVATION DIFFERENCE (FEET) = 0.70
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
SUBAREA RUNOFF (CFS) 0.34
65.00
7.504
5.881
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.34
**********************************************************************.*****
FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 2 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 610.50 DOWNSTREAM ELEVATION(FEET) 587.90
STREET LENGTH(FEET) = 218.40 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
0.97
,"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREET FLOW DEPTH{FEET) = 0.18
HALFSTREET FLOOD WIDTH(FEET) = 2.62
AVERAGE FLOW VELOCITY (FEET/SEC.) 5.18.
PRODUCT OF DEPTH&VELOCITY{FT*FT/SEC.) = 0.93
STREET FLOW TRAVEL TIME{MIN.) = 0.70 Tc{MIN.) 8.21
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.551
RESIDENTAIL (7.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5700
SOIL CLASSIFICATION IS "D"
S.C.S. CURVE NUMBER (AMC II) = 87
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.40
TOTAL AREA{ACRES) = 0.50
0.570
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE (CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.21 HALFSTREET FLOOD WIDTH{FEET) 4.32
1.27
FLOW VELOCITY{FEET/SEC.) = 5.20 DEPTH*VELOCITY{FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 283.40
1.58
1.10
FEET.
****************************************************************************
FLOW PROCESS FROM NODE 32.00 TO NODE 25.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 577.50 DOWNSTREAM (FEET) 577.40
FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.7 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) 6.11
ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.58
PIPE TRAVEL TIME (MIN.) = 0.01 Tc(MIN.) = 8.22
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 25.00 286.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) 8.22
RAINFALL INTENSITY{INCH/HR) = 5.55
TOTAL STREAM AREA(ACRES) = 0.50
PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.58
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) ( INCH/HOUR)
1 15.43 12.18 4.302
2 1.58 8.22 5.547
AREA
(ACRE)
6.20
0.50
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREAM
NUMBER
1
2
RUNOFF
(CFS)
11. 99
16.66
Tc
(MIN. )
8.22
12.18
INTENSITY
( INCH/HOUR)
5.547
4.302
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 16.66 Tc(MIN.) = 12.18
TOTAL AREA(ACRES) = 6.70
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 25.00 1148. SO FEET.
+--------------------------------------------------------------------------+ I END OF WESTERLY FLOW I
I I I I
+-----------------------~--------------------------------------------------+
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE (CFS)
6.70 TC(MIN.) =
16.66
12.18
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
I
I
I
I'
I
I'
I' lV-
I'
I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 4
100 YEAR EXISTING CONDITIONS
HYDROLOGY ANALYSIS
"Mass-Graded Drainage Study for La
Costa Oaks North Neighborhoods 3.2, 3.6
& 3.7"
AD:rn] H:\REPORTSI2352117BISludy 01.doc
w.o.2352·178 4/111200712:49 PM
~;,.~-•••••••• , •••• _-_ ....... '.' •• ' ... ' -:.···-.... :-.~-::-...... • .... :_·:.-· .... ..-l .-•• ••• •• ·,,·-.· ••• • ••• ·.·.·_'.·_ •• __ .·0_·_ •• ·_-:. :' ___ -_'·'-..-•• ·o· __ •.•.•.. ,.. •• • • _ '0' •. '·..-.·0 ___ ·_0'0_· ____ .." ___ • ___ 00 •• , ..... ~ .•• _____ ............... _ ._ ...... ..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MASS-GRADED
DRAINAGE STUDY
for
LA COSTA OAKS NORTH
NEIGHBORHOODS 3.2, 3.6 & 3.7
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
clo Morrow Development
1903 Wright Place
Suite 180 . .
Carlsbad, CA 92008
w.o. 2352-119
October 24,2005
Hunsaker & Associates
San Diego, Inc.
Raymond L. Martin, R.C.E.
Vice President
AH:ad H:IREPORTSI2352111913rd SubmitlaM03.doc
W.O.2352-119 Bflll20069:22AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1239
Analysis prepared by":
HUNSAKER & ASSOCIATES -SAN DIEGO
10179 Huennekens Street
San Diego, Ca. 92121
(858) 558-4500
****************w********* DESCRIPTION OF STUDY **************************
* LA COSTA OAKS NORTH -NEIGHBORHOODS 3.2, 3. 6 AND 3.7 *
* 100-YR MASS-GRADED HYDROLOGIC ANALYSIS (USING ULTIMATE "C"-V~UES) *
* W.O.# 2352-119 PREPARED BY: AH *
**************************************************************************
FILE NAME: H:\AES2003\2352\119\MGULT.DAT
TIME/DATE OF STUDY: 17:52 10/20/2005
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.900
SPECIFIED MINIMuM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 20.0 15.0 0.020/0.020/ ---0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-CUrb)
2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
+--------------------------------------------------------------------------+ I I I BEGIN MASS-GRADED NEIGHBORHOOD 3.7 -EAST (NODE SERIES 800) I
I I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
UPSTREAM ELEVATION(FEET) = 646.20
DOWNSTREAM ELEVATION(FEET) = 644.70
ELEVATION DIFFERENCE(FEET) = 1.50
SUBAREA OVERLAND TIME OF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.26
6.558
6.415
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.26
****************************************************************************
FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 644.70 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 302.70 CHANNEL SLOPE =
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
638.00
0.0221
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.767
*USER SPECIFIED(SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.BB
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.32
AVERAGE FLOW DEPTH(FEET) 0.15 TRAVEL TIME (MIN.) 3.B3
Tc(MIN.) = 10.39
SUBAREA AREA (ACRES) 1.90 SUBAREA RUNOFF(CFS) 5.16
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA(ACRES) = 1.97 PEAK FLOW RATE(CFS) 5.35
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) 1.52
LONGEST FLOWPATH FROM NODE B01.00 TO NODE B03.00 = 377.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE B03.00 TO NODE BOO.OO IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««<
ELEVATION DATA: UPSTREAM(FEET) = 629.20 DOWNSTREAM (FEET) 607.00
FLOW LENGTH(FEET) = 63.60 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 3.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 20.00
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.35
PIPE TRAVEL TIME (MIN.) = 0.05 Tc(MIN.) = 10.44
LONGEST FLOWPATH FROM NODE 801.00 TO NODE BOO.OO 441.30 FEET.
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.7 -EAST (NODE SERIES 800) I I BEGIN MASS-GRADED NEIGHBORHOOD 3.7 -WEST AND AVENIDA SOLEDAD -EAST I I OF RANCHO SANTA FE ROAD (NODE SERIES 500) I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 502.00 TO NODE 504.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
UPSTREAM ELEVATION(FEET) = 623.80
DOWNSTREAM ELEVATION(FEET) = 622.20
ELEVATION DIFFERENCE(FEET) = 1.60
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.41B
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.504
SUBAREA RUNOFF (CFS) 0 .41
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF (CFS) 0.41
****************************************************************************
FLOW PROCESS FROM NODE 504.00 TO NODE 503.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 622.20 DOWNSTREAM (FEET) 613.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 420.90 CHANNEL SLOPE 0.0219
CHANNEL BASE (FEET) 0.00 liZ" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.546
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 4.78
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.47
AVERAGE FLOW DEPTH(FEET) O.lB TRAVEL TIME(MIN.) 4.76
Tc(MIN.) = 11.lB
SUBAREA AREA(ACRES) 3.31 SUBAREA RUNOFF(CFS) 8.58
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) 8.B6
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) 1.74
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 503.00 = 495.90 FEET.
J1to?OlW ~~ !hw/;.)
(~/VJ~S" &-~)
2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 527.00 TO NODE 503.00 IS CODE = Bl
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.546
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6322
SUBAREA AREA(ACRES) 0.67 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 4.09 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.1B
2.B9
11. 76
****************************************************************************
FLOW PROCESS FROM NODE 503.00 TO NODE 505.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTlME THRU SUBAREA (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 613.00 DOWNSTREAM (FEET) 591.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 42B.00 CHANNEL SLOPE 0.0514
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.950
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .BOOO
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 13.37
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.62
AVERAGE FLOW DEPTH(FEET) 0.23 TRAVEL TIME(MIN.) = 2.73
Tc(MIN.) = 13.91
SUBAREA AREA(ACRES) 1.02 SUBAREA RUNOFF(CFS) 3.22
AREA-AVERAGE RUNOFF COEFFICIENT 0.666
TOTAL AREA(ACRES) = 5.11 PEAK FLOW RATE (CFS) 13.44
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) 2.63
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 505.00 = 923.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.91
RAINFALL INTENSITY(INCH/HR) = 3.95
TOTAL STREAM AREA (ACRES) = 5.11
PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.44
1
****************************************************************************
FLOW PROCESS FROM NODE 501.00 TO NODE 525.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
UPSTREAM ELEVATION(FEET) = 596.40
DOWNSTREAM ELEVATION(FEET) = 594.90
ELEVATION DIFFERENCE (FEET) = 1.50
SUBAREA OVERLAND TIME OF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.62
6.55B
6.415
TOTAL AREA (ACRES) = 0 .17 TOTAL RUNOFF(CFS) 0.62
****************************************************************************
FLOW PROCESS FROM NODE 525.00 TO NODE 505.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTlME THRU SUBAREA (EXISTING ELEMENTl««<
ELEVATION DATA: UPSTREAM (FEET) = 594.90 DOWNSTREAM (FEET) = 591.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 197.20 CHANNEL SLOPE 0.0198
CHANNEL BASE (FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.194
*USER SPECIFIED (SUBAREA) :
3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-I
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.77
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.30
AVERAGE FLOW DEPTH(FEET) 0.17 TRAVEL TIME (MIN.) 2.54
Tc(MIN.) = 9.10
SUBAREA AREA(ACRES) 2.10 SUBAREA RUNOFF (CFS) 6.22
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 6.72
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.21 FLOW VELOCITY(FEET/SEC.) 1.54
LONGEST FLOWPATH FROM NODE 501.00 TO NODE 505.00 = 272.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
_»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.10
RAINFALL INTENSITY (INCH/HR) = 5.19
TOTAL STREAM AREA(ACRES) = 2.27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.72
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 13.44 13.91 3.950
2 6.72 9.10 5.194
AREA
(ACRE)
5.11
2.27
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 15.51
2 18.55
TABLE **
Tc
(MIN.)
9.10
13.91
INTENSITY
( INCH/HOUR)
5;194
3.950
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 18.55 Tc(MIN.) = 13.91
TOTAL AREA(ACRES) = 7.38
1
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 505.00 923.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 506.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««<
ELEVATION DATA: UPSTREAM (FEET) = 581.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 80.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 24.41
GIVEN PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW (CFS) = 18.55
NUMBER OF PIPES
0.05 TC(MIN.) =
1
564.30
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
13.96
506.00 1004.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 506.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) l3 . 96
RAINFALL INTENSITY(INCH/HR) = 3.94
TOTAL STREAM AREA (ACRES) = 7 .38
PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.55
1
****************************************************************************
FLOW PROCESS FROM NODE 507.00 TO NODE 507.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 19.00 RAIN INTENSITY(INCH/HOUR) = 3.23
1 £)(I81lNG ~ ~ 12-c. P
(/N6NIIJfj Jo UWhJ )
4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 25.00 TOTAL RUNOFF(CFS) = 12.80
+--------------------------------------------------------------------------+ I Data in the Code 7 above is from the reservoir and was obtained from I I the "preliminary Hydrology for Villages of La Costa -The Ridge and The I I Oaks" prepared by Hunsaker & Associates on 04/25/2001. I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 507.00 TO NODE 506.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 584.90 DOWNSTREAM (FEET) 563.80
FLOW LENGTH(FEET) = 54.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 26.88
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 12.80
PIPE TRAVEL TIME (MIN.) = 0.03 TC(MIN.) = 19.03
LONGEST FLOWPATH FROM NODE 501.00 TO NODE 506.00 326.50 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 506.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 19.03
RAINFALL INTENSITY(INCH/HR) = 3.23
TOTAL STREAM AREA(ACRES) = 25.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.80
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 18.55 13.96 3.940
2 12.80 19.03 3.226
AREA
(ACRE)
7.38
25.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NliMBER (CFS) (MIN.) (INCH/HOUR)
1 27.94 13.96 3.940
2 27.99 19.03 3.226
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 27.99 Tc(MIN.) = 19.03
TOTAL AREA(ACRES) = 32.38
1
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 506.00 1004.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 508.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 563.30 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 157.60 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 9.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 21.45
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 27.99
0.12 TC(MIN.) = 19.16
1
544.90
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 50S.00 1161.S0 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 50S.00 TO NODE 508.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 19.16
RAINFALL INTENSITY (INCH/HR) 3.21
TOTAL STREAM AREA(ACRES) = 32.3S
5
I -'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.99
****************************************************************************
FLOW PROCESS FROM NODE 518.00 TO NODE 511.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
========================================================================~===
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 627.00
DOWNSTREAM ELEVATION(FEET) = 617.00
ELEVATION DIFFERENCE(FEET) = 10.00
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 6 .108
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.715
SUBAREA RUNOFF (CFS) 0.24
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.24
****************************************************************************
FLOW PROCESS FROM NODE 511.00 TO NODE 510.00 IS CODE = 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW««<
»»>TRAVELTlME THRU SUBAREA««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 617.00 DOWNSTREAM (FEET) = 556.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 567.40 CHANNEL SLOPE = 0.1068
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.24
FLOW VELOCITY(FEET/SEC) = 1.83 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TlME(MIN.) = 5.17 Tc(MIN.) = 11.28
LONGEST FLOWPATH FROM NODE 518.00 TO NODE 510.00 = 662.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 511. 00 TO NODE 510.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.522
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) 1.29 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.39 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.28
2.04
2.20
****************************************************************************
FLOW PROCESS FROM NODE 509.00 TO NODE 510.00 IS CODE = Bl
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4 .522
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4876
SUBAREA AREA (ACRES) 0.90 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 2.29 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.2B
2.85
5.05
****************************************************************************
FLOW PROCESS FROM NODE 510.00 TO NODE 508.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 547.90 DOWNSTREAM (FEET) 545.40
FLOW LENGTH(FEET) = 24.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 12.70
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES ~
PIPE-FLOW (CFS) = 5.05
PIPE TRAVEL TIME (MIN.) = 0.03 TC(MIN.) = 11.31
LONGEST FLOWPATH FROM NODE 518.00 TO NODE 508.00 687.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 508.00 TO NODE 508.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>AND COMPUTE VAR~OUS CONFLUENCED STREAM VALUES~~~~~
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN. ) 11. 31
RAINFALL INTENSITY{INCH/HR) = 4.51
TOTAL STREAM AREA{ACRES) = 2.29
PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.05
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 27.99 19.16 3.213
2 5.05 11.31 4.514
AREA
(ACRE)
32.38
2.29
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 24.97
2 31.58
TABLE **
Tc
(MIN.)
11.31
19.16
INTENSITY
(INCH/HOUR)
4.514
3.213
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE{CFS) 31.58 Tc{MIN.) = 19.16
TOTAL AREA{ACRES) = 34.67
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 508.00 1161. 80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 508.00 TO NODE 514.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA~~~~~
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)~~«<
ELEVATION DATA: UPSTREAM (FEET) = 544.60 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = ·173.te MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 9.7 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) = 23.13
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 31.58
0.12 Tc(MIN.) =
521. 90
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.28
514.00 1335.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 514.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 19.28
RAINFALL INTENSITY(INCH/HR) = 3.20
TOTAL STREAM AREA(ACRES) = 34.67
PEAK FLOW RATE{CFS) AT CONFLUENCE = 31.58
1
****************************************************************************
FLOW PROCESS FROM NODE 512.00 TO NODE 526.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 605.00
DOWNSTREAM ELEVATION(FEET) = 590.00
ELEVATION DIFFERENCE (FEET) = 15.00
, SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605
SUBAREA RUNOFF(CFS) 0.28
TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) 0.28
****************************************************************************
FLOW PROCESS FROM NODE 526.00 TO NODE 513.00 IS CODE = 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW««<
»»>TRAVELTlME THRU SUBAREA««<
ELEVATION DATA: UPSTREAM (FEET) = 590.00 DOWNSTREAM (FEET) = 536.00
7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CHANNEL LENGTH THRU SUBAREA(FEET) = 351.80 CHANNEL SLOPE = 0.1535
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.28
FLOW VELOCITY(FEET/SEC) = 2.19 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TlME(MIN.J = 2.67 Tc (MIN. J = 8.94
LONGEST FLOWPATH FROM NODE 512.00 TO NODE 513.00 = 451.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 526.00 TO NODE 513.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.253
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) 1.04 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 1.16 TOTAL RUNOFF(CFS) =
TC (MIN.) =' 8.94
1.91
2.13
****************************************************************************
FLOW PROCESS FROM NODE 513.00 TO NODE 514.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 530.00 DOWNSTREAM (FEET) 522.00
FLOW LENGTH(FEET) = 60.20 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 11.24
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.13
PIPE TRAVEL TIME (MIN.) = 0.09 Tc(MIN.) = 9.03
LONGEST FLOWPATH FROM NODE 512.00 TO NODE 514.00 512.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 514.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.03
RAINFALL INTENSITY(INCH/HR) = 5.22
TOTAL STREAM AREA(ACRES) = 1.16
PEAK FLOW RATE(CFS) AT CONFLUENCE 2.13
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 31.58 19.28 3.199
2 2.13 9.03 5.219
AREA
(ACRE)
34.67
1.16
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 21.49 9.03 5.219
2 32.89 19.28 3.199
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 32.89 Tc(MIN.) = 19.28
TOTAL AREA(ACRES) = 35.83
1
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 514.00 1335.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 515.00 TO NODE 516.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.199
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.2845
SUBAREA AREA(ACRES) 0.18 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) = 36.01 TOTAL RUNOFF(CFS) = 0.20
32.89
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TC(MIN.) = 19.28
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 519.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 521.60 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 124.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 10.2 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) = 22.46
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 32.89
0.09 Tc(MIN.) =
507.00
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.37
519.00 1459.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 528.00 TO NODE 520.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.189
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.2887
SUBAREA AREA(ACRES) 0.23 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 36.24 TOTAL RUNOFF(CFS) =
TC(MIN.) = 19.37
0.70
33.37
****************************************************************************
FLOW PROCESS FROM NODE 519.00 TO NODE 517.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 507.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 12.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 18.17
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 33.37
0.09 TC(MIN.) = 19.46
1
501.00
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 517.00 1552.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 517.00 TO NODE 500.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 501.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 145.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 13.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.43
GIVEN PIPE DIAMETER(INCH) = 30.00
PIPE-FLOW (CFS) = 33.37
NUMBER OF PIPES
0.16 Tc(MIN.) =
1
495.00
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.62
500.00 1698.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 529.00 TO NODE 521.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.164
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES)
TC(MIN.) = 19.62
COEFFICIENT = 0.2947 o .33 SUBAREA RUNOFF (CFS)
36.57 TOTAL RUNOFF(CFS) =
0.99
34.10
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-I
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE~«~~
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 10.50 RAIN INTENSITY(INCH/HOUR} = 4.73
TOTAL AREA(ACRES) = 1.45 TOTAL RUNOFF(CFS) = 3.15
+--------------------------------------------------------------------------+ I The Code 7 above is refernced from the "Drainage Study for Villages I I of La Costa Oaks North Temporary RV Site" prepared by Hunsaker & I I Associates and dated 05/14/2004 (Node 203 to Node 205 in said report) . I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<~«~
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.} 10.50
RAINFALL INTENSITY(INCH/HR} = 4.73
TOTAL STREAM AREA(ACRES) = 1.45
PEAK FLOW RATE(CFS} AT CONFLUENCE = 3.15
1
****************************************************************************
FLOW PROCESS FROM NODE 523.00 TO NODE 530.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<~«<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET} = 100.00
UPSTREAM ELEVATION(FEET} = 591.00
DOWNSTREAM ELEVATION(FEET} = 575.00
ELEVATION DIFFERENCE (FEET) = 16.00
6.267 SUBAREA OVERLAND TIME OF FLOW (MIN.) =
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY (INCH/HOUR) =
10.t, IS USED IN Tc CALCULATIONl
6.605
SUBAREA RUNOFF (CFS) 0.25
TOTAL AREA(ACRES} = 0.11 TOTAL RUNOFF(CFS} 0.25
****************************************************************************
FLOW PROCESS FROM NODE 530.00 TO NODE 524.00 IS CODE = 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW~««
»»>TRAVELTIME THRU SUBAREA~««
ELEVATION DATA: UPSTREAM (FEET) = 575.00 DOWNSTREAM (FEET) = 541.00
CHANNEL LENGTH THRU SUBAREA(FEET} = 168.80 CHANNEL SLOPE = 0.2014
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS} = 0.25
FLOW VELOCITY(FEET/SEC} = 2.51 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.} = 1.12 Tc(MIN.) = 7.39
LONGEST FLOWPATH FROM NODE 523.00 TO NODE 524.00 = 268.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 530.00 TO NODE 524.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.941
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6800
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5845
SUBAREA AREA(ACRES) 0.27 SUBAREA RUNOFF(CFS}
TOTAL AREA (ACRES) 0 .38 TOTAL RUNOFF (CFS) =
TC(MIN.} = 7.39
1.09
1.32
****************************************************************************
FLOW PROCESS FROM NODE 524.00 TO NODE 522.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED}««<
UPSTREAM ELEVATION(FEET} = 541.00 DOWNSTREAM ELEVATION(FEET) = 504.20
10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREET LENGTH(FEET) = 439.40
STREET HALFWIDTH(FEET) = 20.00
CURB HEIGHT(INCHES)
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
6.0
15.00
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.87
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALFSTREET FLOOD WIDTH(FEET) = 7.53
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.64
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.56
STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.} 8.69
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.351
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9100
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.823
SUBAREA AREA(ACRES) 1.05 SUBAREA RUNOFF(CFS) 5.11
0.0150
TOTAL AREA(ACRES) = 1.43 PEAK FLOW RATE(CFS) 6.30
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.41
FLOW VELOCITY(FEET/SEC.) = 6.28 DEPTH*VELOCITY(FT*FT/SEC.) 1.97
LONGEST FLOWPATH FROM NODE 523.00 TO NODE 522.00 = 708.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) B.69
RAINFALL INTENSITY(INCH/HR) = 5.35
TOTAL STREAM AREA (ACRES) = 1 . 43
PEAK FLOW RATE (CFS) AT CONFLUENCE 6 .30
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 3.15
2 6.30
Tc
(MIN.)
10.50
8.69
INTENSITY
( INCH/HOUR)
4.735
5.351
AREA
(ACRE)
1.45
1.43
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 8.91
2 B.73
TABLE **
Tc
(MIN.)
8.69
10.50
INTENSITY
( INCH/HOUR)
5.351
4.735
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS} = B.91 Tc(MIN.) =
TOTAL AREA (ACRES) = 2. BB
B.69
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 522.00 169B.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 500.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 496.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET} = B.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} = 14.76
GIVEN PIPE DIAMETER(INCH} = 24.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = B.91
0.01 Tc(MIN.} =
1
495.20
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
B.69
500.00 1706.50 FEET.
**********************************~*****************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 11
11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 8.91 8.69 5.348
AREA
(ACRE)
2.88
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 500.00
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 34.10 19.62 3.164
AREA
(ACRE)
36.57
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 500.00
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 24.02 8.69 5.348
2 39.37 19.62 3.164
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 39.37 Tc(MIN.) = 19.62
TOTAL AREA(ACRES) = 39.45
1706.50 FEET.
1698.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 1 ««<
============================================================================
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.7 -WEST AND AVENIDA SOLEDAD -EAST OF I I RANCHO SANTA FE ROAD (NODE SERIES 500) I I BEGIN MASS-GRADED NEIGHBORHOOD 3.6 (NODE SERIES 600) I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 601.00 TO NODE 607.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
=====================~======================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 507.90
DOWNSTREAM ELEVATION(FEET) = 501.80
ELEVATION DIFFERENCE (FEET) = 6.10
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.437
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.641
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.39
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.39
****************************************************************************
FLOW PROCESS FROM NODE 607.00 TO NODE 602.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 501.80 DOWNSTREAM (FEET)
~L LENGTH THRU SUBAREA (FEET) = 411.90 CHANNEL SLOPE
477.00
0.0602
CHANNEL BASE(FEET) 0.00 nz" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.170
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.84
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC. )
AVERAGE FLOW DEPTH(FEET) 0.21 TRAVEL TIME (MIN.) =
Tc(MIN.) = 6.97
SUBAREA AREA(ACRES) 5.84
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 5.92
SUBAREA RUNOFF (CPS)
0.630
PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.27 FLOW VELOCITY(FEET/SEC.) 3.16
LONGEST FLOWPATH FROM NODE 601.00 TO NODE 602.00 =
2.72
2.53
22.70
23.01
506.90 FEET.
12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 477.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 895.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.5 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) 15.42
ESTIMATED PIPE DIAMETER{INCH) = 21.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 23.01
0.97 Tc{MIN.) = 7.93
1
429.30
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 601. 00 TO NODE 603.00 1402.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 5.673
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S . C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA (ACRES)
TOTAL AREA{ACRES)
TC{MIN.) = 7.93
COEFFICIENT = 0.6300
4.87 SUBAREA RUNOFF (CFS)
10.79 TOTAL RUNOFF (CFS) =
17.41
38.56
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION{MIN.) 7.93
RAINFALL INTENSITY{INCH/HR) = 5.67
TOTAL STREAM AREA(ACRES) = 10.79
PEAK FLOW RATE{CFS) AT CONFLUENCE = 38.56
1
****************************************************************************
FLOW PROCESS FROM NODE 604.00 TO NODE 608.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH{FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 579.30
DOWNSTREAM ELEVATION{FEET) = 560.00
ELEVATION DIFFERENCE (FEET) = 19.30
SUBAREA OVERLAND TIME OF FLOW{MIN.) = 6.267
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605
SUBAREA RUNOFF{CFS) 0.32
TOTAL AREA{ACRES) = 0.14 TOTAL RUNOFF{CFS) 0.32
****************************************************************************
FLOW PROCESS FROM NODE 608.00 TO NODE 605.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 553.00 DOWNSTREAM (FEET) 458.00
FLOW LENGTH{FEET) = 560.40 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.1 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 6.91
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.32
PIPE TRAVEL TIME{MIN.) = 1.35 TC{MIN.) = 7.62
LONGEST FLOWPATH FROM NODE 604.00 TO'NODE 605.00 660.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 608.00 TO NODE 605.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«~«
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.823
c,'
13
I
I
I
I
I-
I
I
I:
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
= .3700
o
USER-SPECIFIED RUNOFF COEFFICIENT
S • C . S. CURVE NUMBER (AMC II) =
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3679
SUBAREA AREA(ACRES) 1.22
TOTAL AREA(ACRES) 1.36
TC(MIN.) = 7.62
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
2.63
2.91
****************************************************************************
FLOW PROCESS FROM NODE 609.00 TO NODE 610.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.823
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3892
SUBAREA AREA(ACRES) 0.18 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.54 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.62
0.58
3.49
****************************************************************************
FLOW PROCESS FROM NODE 605.00 TO NODE 606.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 458.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 613.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.12
ESTIMATED PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW (CFS) = 3.49
NUMBER OF PIPES
1.43 TC(MIN.) =
1
442.90
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE
9.05
606.00 1273.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 605.00 TO NODE 606.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.210
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4124
SUBAREA AREA(ACRES) 0.26 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 1.80 TOTAL RUNOFF(CFS) =
TC(MIN.) = 9.05
0.75
3.87
****************************************************************************
FLOW PROCESS FROM NODE 606.00 TO NODE 603.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 442.90 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.88
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 3.87
0.40 Tc(MIN.) = 9.46
1
429.30
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 603.00 1513.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) 9.46
RAINFALL INTENSITY (INCH/HR) = 5.07
TOTAL STREAM AREA(ACRES) = 1.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.87
1
14
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
I
I
I
I
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA
NtlMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 38.56 7.93 5.673 10.79
2 3.87 9.46 5.065 1.80
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.·
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NtlMBER (CFS) (MIN.) (INCH/HOUR)
1 41.81 7.93 5.673
2 38.30 9.46 5.065
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 41.81 Tc(MIN.) = 7.93
TOTAL AREA(ACRES) = 12.59
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 603.00 1513.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 600.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 421.40 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 61.40 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 14.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.68
GIVEN PIPE DIAMETER (INCH) = 36 . 00 NtlMBER OF PIPES
PIPE-FLOW (CFS) = 41.81
0.07 Tc(MIN.) = 8.00
1
419.10
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 600.00 1574.80 FEET.
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.6 (NODE SERIES 600) I
I BEGIN MASS-GRADED NEIGHBORHOOD 3.2 (NODE SERIES 700) I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 701.00 TO NODE 707.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S . C. S . CURVE NtlMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 421.70
DOWNSTREAM ELEVATION(FEET) = 413.60
ELEVATION DIFFERENCE (FEET) = 8.10
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 4.724
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.641
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.97
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 0.97
****************************************************************************
FLOW PROCESS FROM NODE 707.00 TO NODE 702.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 413.60 DOWNSTREAM (FEET) 380.00
FLOW LENGTH(FEET) = 406.40 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.51
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NtlMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.97
PIPE TRAVEL TIME (MIN.) = 0.90 Tc(MIN.) = 5.63
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 702.00 501.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 707.00 TO NODE 702.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.081
15
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 1.80 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 2.03 TOTAL RUNOFF (CFS) =
TC(MIN.) = 5.63
7.01
7.91
****************************************************************************
FLOW PROCESS FROM NODE 702.00 TO NODE 703.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM (FEET) 370.00
FLOW LENGTH(FEET) = 153.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 12.72
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 7.91
PIPE TRAVEL TlME(MIN.) = 0.20 Tc(MIN.) = 5.83'
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 703.00 654.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 702.00 TO NODE 703.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.923
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C. S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 1.61 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 3.64 TOTAL RUNOFF(CFS) =
TC(MIN.) = 5.83
6.13
13.86
****************************************************************************
FLOW PROCESS FROM NODE 703.00 TO NODE 704.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 363.00 DOWNSTREAM (FEET) 347.40
FLOW LENGTH(FEET) = 57.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) = 24.89
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 13.86
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.86
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 704.00 711.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 704.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 5.86
RAINFALL INTENSITY(INCH/HR) = 6.89
TOTAL STREAM AREA(ACRES) = 3.64
PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.86
1
****************************************************************************
FLOW PROCESS FROM NODE 705.00 TO NODE 706.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 392.00
DOWNSTREAM ELEVATION(FEET) = 390.00
ELEVATION DIFFERENCE (FEET) = 2.00
SUBAREA OVERLAND TIME OF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.32
5.488
7.195
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) 0.32
16
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 706.00 TO NODE 704.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 390.00 DOWNSTREAM (FEET) 349.50
FLOW LENGTH(FEET) = 566.90 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.4 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 5.08
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.32
PIPE TRAVEL TIME(MIN.) = 1.S6 Tc(MIN.) = 7.35
LONGEST FLOWPATH FROM NODE 705.00 TO NODE 704.00 631.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 706.00 TO NODE 704.00 IS CODE = Sl
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.960
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 0.36 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 0.44 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.35
1.lS
1.44
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 704.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.35
RAINFALL INTENSITY(INCH/HR) = 5.96
TOTAL STREAM AREA(ACRES) = 0.44
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.44
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 13.86 5.S6 6.894
2 1.44 7.35 5.960
AREA
(ACRE)
3.64
0.44
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 15.01
2 13.42
TABLE **
Tc
(MIN.)
5.86
7.35
INTENSITY
( INCH/HOUR)
6.894
5.960
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 15.01 TC(MIN.) =
TOTAL AREA(ACRES) = 4.08
LONGEST FLOWPATH FROM NODE 701.00 TO NODE
5.86
704.00 711.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 700.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) 347.10 DOWNSTREAM (FEET) 346.00
FLOW LENGTH(FEET) = 42.90 MANNING'S N 0.024
ASSUME FULL-FLOWING PIPELINE
pIPE-FLOW VELOCITY(FEET/SEC.) 8.49
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 15.01
PIPE TRAVEL TIME (MIN.) = 0.08 Tc(MIN.) = 5.95
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 700.00 754.60 FEET.
+--------------------------------------------------------------------------+
17
I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
END MASS-GRADED NEIGHBORHOOD 3.2 (NODE SERIES 700)
+------------------------------------------------------------~-------------+
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
4 • 08 TC (MIN.) =
l5.0l
END OF RATIONAL METHOD ANALYSIS
5.95
18
I
I
I
I
I
I
I
I
I v
I
I
I
I
I
'I
I
:1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-La Costa Oaks North -Neighborhood 3_7
.Drainage Study
CHAPTER 5
STORM DRAIN
HYDRAULIC ANALYSIS
AD:rn] H:IREPORTS\235211781Study 01.doc
w.o;2352-178 4/11/20072:03 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LA COUNTY PUBLIC WORKS
PROJECT: LA COSTA OAKS NORTH 3. 7
DESIGNER: MJ
CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2
8 1
2 10 7.6 7.6 40.10 605.00 621.15
2 11 7.6 7.6 47.36 621.55 623.28
CTL/TW D
605.00
0.00 24.
0.00 18.
STORM DRAIN ANALYSIS
(INPUT)
W S KJ KE KM
O. 3 0.15 0.00 0.05
O. 1 0.00 0.20 0.11
LC L1 L3
1 11 o
o o o
L4 A1 A3
o o. o.
o O. O.
REPT: PC/RD4412.1
DATE: 07/11/07
PAGE 1
A4 J N
O. 4.00 0.013
O. 4.00 0.013
I
LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS
I
PROJECT: LA COSTA OAKS NORTH 3.7 I DESIGNER: MJ
I
I
I
I
I
I
I
I
I
I
I
I
Q D W DN
(CFS) (IN) (IN) (FT)
DC
(FT)
FLOW
TYPE
SF-FULL
(FT/FT)
1 HYDRAULIC GRADE LINE CONTROL = 605.00
V 1 V 2
(FPS) (FPS)
FL 1
(FT)
FL 2
(FT)
HG 1
CALC
HG 2
CALC
7.6 24 0 0.31 0.98 PART 0.00113 23.7 11.7 605.00 621.15 605.32 621.67
7.6 18 0 0.64 1.07 PART 0.00523 10.0 5.7-621.55 623.28 622.22 624.35
D 1
(FT)
0.32
0.67
D 2
(FT)
TW
CALC
0.52 0.00
1.07 624.94
REPT: PC/~4412.2
DATE: 07/11/07
PAGE 1
TW
CK
0.00
0.00
REMARKS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X (N) -DISTANCE IN FEET FROM DOWNSTREA]>l END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER
X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F (J) -THE COM.PUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) -DEPTH OF WATER ~EFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D (AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
EOJ 7/11/2007 8:39
I LA COUNTY PUBLIC WORKS
I
PROJECT: LA COSTA OAKS NORTH 3.7 I DESIGNER: MJ
CD L2 MAX Q ADJ Q LENGTH FL" 1
1
12 7.6 7.6 26.33 623.28
13 4.1 4.1 34.50 624.13
I
I
I
I
I
I
I
I
I
I
I
I
I
FL 2 CTL/TW D
625.24
623.80 0.00 18.
627.59 0.00 18.
STORM DRAIN ANALYSIS
(INPUT)
W S KJ KE
o. 3 0.15 0.20
o. 1 0.00 0.20
KM LC Ll L3
0.05 1 13 o
0.18 o o o
L4 A1 A3
o o. o.
o o. o.
REPT: PC/RD4412.1
DATE: 07/11/07
PAGE 1
A4 J N
o. 4.00 0.013
o. 4.00 0.013
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
I
I
I
LA COUNTY PUBLIC WORKS
PROJECT: LA COSTA OAKS NORTH 3.7
DESIGNER: MJ
LINE
NO
Q D W DN
(CFS) (IN) (IN) (FT)
DC FLOW
(FT) TYPE
SF-FULL
(FT/FT)
1 HYDRAULIC GRADE LINE CONTROL 625.24
12 7.6 18
13 4.1 18
x =
o
o
1. 74
0.76
0.35
X(N)
1.07
0.77
FULL 0.00523
SEAL 0.00152
0.00 X(J) =
STORM DRAIN ANALYSIS
V 1 V 2
(FPS) (FPS)
4.3
2.3
1. 92
4.3
4.5
F(J)
FL 1
(FT)
623.28
624.13
1.59
FL 2
(FT)
623.80
627.59
D(BJ)
HG 1
CALC
625.24
HG 2
CALC
625.39
625.80 628.36
0.37 D(AJ)
D 1
CFT)
1.96
1. 67
1.48
D 2
(FT)
1.59
0.77
TW
CALC
0.00
628.73
REPT: PC/RD4412.2
DATE: 0.7/11/07
PAGE 1
TW
CK
0.00
REMARKS
0.00 HYD JUMP
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER
X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE· UPSTREAM END OF THE LINE
HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
EOJ 7/11/2007 9: 7
I LA COUNTY PUBLIC WORKS
I
PROJECT: LA COSTA OAKS NORTH 3. 7 I DESIGNER: MJ
CD L2 MAX Q ADJ Q LENGTH FL 1
1
I 2 20 16.7 16.7 76.20 564.30
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FL 2
573.34
CTL/TW D
564.14
0.00 18.
STORM DRAIN ANALYSIS
(INPUT)
W S KJ KE KM
o. 1 0.00 0.20 0.05
LC Ll
1 o
L3
o
REPT: PC/RD4412.1
DATE: 07/11/07
PAGE 1
L4 Al A3 A4 J N
o o. o. o. 4.00 0.013
I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS
I
PROJECT: I DESIGNER:
LA COSTA OAKS NORTH 3.7
MJ
LINE
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Q D W DN
(CFS) (IN) (IN) (FT)
DC
(FT)
FLOW SF-FULL
TYPE (FT/FT)
HYDRAULIC GRADE LINE CONTROL 564.14
V 1 V 2
(FPS) (FPS)
16.7 18 o 0.71 1.43 PART 0.02527 19.3 9.6
FL 1
(FT)
FL 2
(FT)
HG 1
CALC
HG 2
CALC
564.30 573.34 565.04 574.77
D 1
(FT)
0.74
D 2
(FT)
TW
CALC
1.43 576.49
REPT: PC/RD4412.2
DATE: 07/11/07
PAGE 1
TW
CK
0.00
REMARKS
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER
X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PAR~
HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
EOJ 7/11/2007 9:31
I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1
I (INPUT) DATE: 07/ll/07
PAGE 1
PROJECT: LA COSTA OAKS NORTH 3.7 I DESIGNER: MJ
CD L2 MAX Q ADJQ LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC Ll L3 L4 Al A3 A4 J N
18 1 576.17
2 21 16.7 16.7 38.00 573.34 577.ll 0.00 18. O. 3 0.50 0.00 1.10 1 22 30 35 O. 90. 90. 4.00 0.013
I 2 22 9.8 9.8 166.55 577.45 596.55 0.00 18. O. 3 0.15 0.00 0.05 0 23 0 0 o. o. O. 4.00 0.013
I 2 23 9.8 9.8 123.75 596.88 600.25 0.00 18. O. 3 0.50 0.00 0.05 0 24 SO 0 90. 90. O. 4.00 0.013
2 24 8.5 8.5 33.25 600.58 601.25 0.00 18. O. 1 0.00 0.20 0.05 0 0 0 0 0.' O. O. 4.00 0.013
I 2 30 1.6 1.6 3.25 577.45 577 .51 0.00 18. O. 1 0.00 0.20 0.05 22 0 0 o O. 0., O. 4.00 0.013
2 35 7.0 7.0 33.25 577.45 581. 58 0.00 18. O. 3 0.15 0.20 0.05 22 36 0 o 45. o. O. 4.00 0.013 I, 2 36 6.1 6.1 29.04 581. 91 586.94 0.00 18. O. 1 0.00 0.20 0.05 0 0 0 Q O. O. O. 4.00 0.013
so 1.8 1.8 3.25 600.58 600.65 0.00 18. O. 1 0.00 0.20 0.05 24 .0 o o O. O. O. 4.00 0.013
I
I
I
I
I
I
I
I
I
I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2
DATE: 07/11/07
I PAGE 1
PROJECT: LA COSTA OAKS NORTH 3.7 I DESIGNER: MJ
LINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 FL 2 .HG 1 HG 2 D 1 D 2 TW TW
1-NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS
1 'HYDRAULIC GRADE LINE CONTROL 576.17
I 21 16.7 18 0 0.75 1.43 FULL 0.02527 9.5 9.5 573.34 577.11 576.17 578.66 2.83 1.55 0.00 0.00
22 9.8 18 0 0.54 1.21 SEAL 0.00870 5.5 11.3 577.45 596.55 580.47 597.29 3.02 0.74 0.00 0.00 HYD JUMP
I X = 1.82 X(N) 83.11 X(J) = 1.82 F(J) 5.36 D(B'J) 0.54 D(AJ) 2.82
23 9.8 18 0 0.81 1.21 PART 0.00870 10.1 6.4 596.88 600.25 597.69 601.46 0.81 1.21 0.00 0.00
I 24 8.5 18 0 0.81 1.13 FULL 0.00655 4.8 4.8 600.58 601. 25 602.65 602.86 2.07 1. 61 603.29 0.00
I.
22 HYDRAULIC GRADE LINE CONTROL 579.56
I 30 1-.6 18 0 0.34 0.47 FULL 0.00023 0.9 0.9 577.45 577.51 579.56 579.57 2.11 2.06 579.58 0.00
I
22 HYDRAULIC GRADE LINE CONTROL 579.56
I 35 7.0 18 0 0.44 1. 02 PART 0.00444 14.7 9.5 577.45 581. 58 577.92 582.23 0.47 0.65 0.00 O.O~
I 36 6.1 18 0 0.38 0.95 PART 0.00337 15.0 5.2 581. 91 586.94 582.33 587.89 0.42 0.95 588.3,9 0.00
I 24 HYDRAULIC GRADE LINE CONTROL 602.05
I 50 1.8 18 0 0.34 0.50 PART 0.00029 1.0 1.0 600.58 600.65 602.05 602.05 1.47 1.40 602.07 0.00
I
I
I
I
I
I
I
I
1
I
I,
I
I
1
I
1
I
I
I
I
I
I
I
I
V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER
X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D (AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE L~NE
EOJ 7/ll/2007 11: 6
I
I
I ~
~
1IO 1IO IlIO lSI -------SCIoLE l"lIO'
HUNSAKER
& ASSOCIATES
SUI IlIlC~ IMe.
VICINITY MAP
.. IS
II
STORM LEGEND FOR
LA COSTA OAKS NORTH
NEIGHBORHOOD 3.7
CllYOF CALIFORNIA
SHEET
1
OF
1
I .
I
I:
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
. ' , " -. ." .. -~
. -. .
,~ , .
VI
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I'
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 6
INLET SIZING
. AD:mj H:IREPORTS\235211781Sludy 01,doc
w.o.2352·178 4/11120072:03 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LA COSTA OAKS NORTH 3.7
Type Inlet Street
of at SIope1
Inlet Node S(%)
ON-GRADE 3 3.30%
ON-GRADE 6 3.30%
ON-GRADE 17 1.00%
ON-GRADE 12 1.00%
ON-GRADE 32 12.00%
ON-GRADE 42 12.00%
1 From street profiles in Improvement Plans
2 From AES ouput
CURB INLET SIZING
Surface Gutter Flow
Flow 2 Depression Depth3
Q (cfs) a (ft) y (ft)
4.1 0.33 0.31
3.5 0.33 0.30
8.5 0.33 0.45
1.8 0.33 0.28
1.6 0.33 0.21
1.0 0.33 0.18
3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3
Required
Length of
Opening 4 (ft)
11.4
10.1
17.5
5.3
5.8
3.8
The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y.
Typical cross-section of a Type G gutter is used for the analysis.
Equation Taken from the San Diego County Drainage Design Manual
4 From Equation: Q = 0.7L(a+y)"3/2
5 Length shown on plans (Required Length of Opening + 1 foot)
Type Inlet Surface Required Use
of at Flow 1 Length of Length 3
Inlet Node . Q (cfs) Opening 2 (ft) (ft.)
SUMP 52 6.1 3.4 5
1 From AES ouput
2 From The'Orifice Equation: Q = C*A (2*g*H)1/2
The Orifice Coefficient, C = 0.6, and Gravitational Constant, g = 32.2 ftls2, and AREA, A = L*h '
The Inlet Opening Height, h = 0.5 ft, Per SDRSD D-2
The Head Measured from the Centroid of Orifice, H = 10" (Ponded to TC)-3" (centroid) = 0.58 ft
:. Q = .6*L *0.5*(2*32.2*0.58)112, Therefore L=Q/1.8'
3 Length shown on plans (Required Length of Opening + 1 foot)
612812007
A
Use
Length 5
(ft.)
13
12
19
7
~ 7
5
H:\EXCELI2352\178\1nlets.x1s
I
I
I
I
I
I
I
I
I
I
I
I
I VIII
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 7
BROW DITCH SIZING·
AD:mj H:IREPORTS\235211781Sludy 01.doc
w.o.2352-178 4/11/20072:03 PM
I
I
I
I
I
I
I
'1
I
I
I NOTES:
I
I
I
I
I
I
I
I 6/27/2007
BROW DITCH SIZING
LA COSTA OAKS NORTH 3.7
Brow Ditch Conveyed Brow Ditch
ID Node1 Flow2 (cfs) Size3 (tt)
A 0.34 2
B 0.60 3
C 0.70 3
1 Refer to Developed Condition Hydrology Map (Chapter IX)
2 Flows from AES output (Chapter III)
3 Refer to Grading Plans for brow ditch details
Maximum Capacities for Brow Ditches
Brow Ditch Brow Ditch Maximum
Size (ft) Min. Slope (%) Flow (cfs)
2 1.00 2.73
3 1.00 13.98
Based on a brow ditch minimum slope, s = 1'.00%, and Manning's n = 0.015
Refer to attached FlowMaster output for calculations
Refer to Sheet 3 Grading Plans for brow ditch details
1 of 1 H:\EXCEL \2525\001 \B-DITCH.xls
I
I
I Worksheet for 2-ft BROW DITCH
I Friction Method: Manning Fonnula
Solve For:
I
Nonnal Depth
Roughness Coefficient: 0.015
Channel Slope: 0.01000 ftlft
Diameter: 2.00 ft I
Discharge: 2.73 ff/s
I
I Flow Area: 0.62 ft2
Wetted Perimeter: 2.10 ft
TopWiqth: 1.74 ft
Critical Depth: 0.58 ft
Percent Full: 25.2 % I
Critical Slope: 0.00593 ftlft
Velocity: 4.39 ftls
Velocity Head: 0.30 ft I
Specific Energy: 0.80 ft
Froude Number: 1.29
Maximum Discharge: 21.09 ff/s I
Discharge Full: 19.61 ff/s
Slope Full: 0.00019 ftlft
Flow Type: SuperCritical I
I
_ •. "' ... ' ;-;; .. ' "=~~'R"~~~~ ~~~--Downstream Depth:' 0.00 ft
Length: 0.00 ft
I
Number Of Steps: o
I Profile Description: N/A
Profile Headloss: O.OC ft
Average End Depth Over Rise: 0.00 %
Nonnai Depth Over Rise: 0.00 %
Downstream Velocity: 0.00 ftls I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Worksheet for 3-ft TERRACE DITCH
Solve For: Normal Depth
Roughness Coefficient: 0.015
Channel Slope: 0.01000 ftlft
Diameter: 3.00 ft
Discharge: 13.98 ft'/s
Normal Depth: 1.00 ft
Flow Area: 2.08 ft·
Wetted Perimeter: 3.70 ft
TopWidlh: 2.83 ft
Critical Deplh: 1.19 ft
Percent Full: 33.5 %
Critical Slope: 0.00530 ftlft
Velocity: 6.73 fils
Velocity Head: 0.70 ft
Specific Energy: 1.71 ft
Froude Number: 1.39
Maximum Discharge: 62.18 ff'/s
Discharge Full: 57.80 W/s
Sl.ope Full: 0.00058 fIIff
Flow Type: SuperCrilical
~ _9.'. -k... _, ~:= ~~--Downstream Deplh: 0.00 ft
Length:
Number Of Sleps:
Profile Description:
Profile Headloss:
Average End Depth Over Rise:
Normal Depth Over Rise:
Downstream Velocity:
0.00
o
N/A
0.00
0.00
0.00
0.00
ft
ft
%
%
fils
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Brow Ditch
ID Node1
A
B
C
BROW DITCH SIZING
LA COSTA OAKS NORTH 3.7
Determination of Flow to Brow Ditches
Total Area Total Conveyed Area to
(acres) Flow'l (cfs) Brow Ditch (acres)
0.10 0.34 0.08
3.30 8.3 0.23
1.90 5.8 0.22
Total Area = Area to Brow Ditch
Total Conveyed Flow Conveyed Flow to Brow Ditch
Example:
3.3 =
8.3
0.23
X
X= 0.6 cfs
Conveyed Flow
to Brow Ditch (cfs)
0.3
0.6
0.7
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
. CHAPTER 8
CDS UNIT SIZI.NG
AD:rnJ H:IREPORTS1235211781Study 01.doc
w.o.2352·178 4/11/20072:03 PM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
WEST
LA COSTA OAKS NORTH -NEIGHBORHOOD 3.7
CARLSBAD,CA
JULY 11,2007
PROJECT PARAMETERS ' , , -
.-.-, ,-
CDS Model PMSU2020
Q treat 1.1 cfs CDS treatment capacity = 1.1 cfs / Q85 = 0.8 cfs
Q system 16.7 cfs Assumed -Engineer to verify
H cds 0.48 ft Required Head Difference to Process Q treat
DIS Pipe Size 2.0 ft
DIS Pipe Slope 0.1171 flfft
U/S Pipe Size 2.0 ft
U/S Pipe Slope 0.1109 flfft
PMSU'WEIR'SUMMARY: , -_ .. -. ---
PMSU Weir Height I 1.17 I ft I
PMSU Weir Length I 3.58 I ft I
HYDRAULIC IMPACT OF CDS UNIT AT SYSTEM 'FLOW' : -'.::: ' ' .. -
SO Station DIS of CDS 67+40.31
1 Pipe Invert EI dIs of CDS 572.84
2 Finished Grade EI @ CDS 582.65
3 EGL EI dis of CDS 575.02
HGL EI dIs of CDS 574.32 Critical Depth in dIs Pipe
4 Hcont 0.02 ft Contraction Loss from CDS Manhole to dIs Pip'e
5 EGL EI dis of Baffle 575.04
HGL EI dIs of Baffle 574.61
6 Baffle Loss 1.20 ft Loss ThrouQh Baffle Orifice
7 EGL EI dis of Weir 576.24
HGL EI dis of Weir 576.23
8 Hweir 0.16 ft Loss From Flow Over Submerqed Weir
9 EGL EI u/s of Weir 576.45
HGL EI u/s of Weir 576.39
10 Hexp 0.19 ft Expansion Loss from u/s Pipe to CDS Manhole
11 EGL u/s of CDS Unit 576.64
HGL EI u/s of CDS Unit 576.17
SO Station U/S of CDS 67+45.31
Increase in HGL 1.85 ft
Freeboard U/S of CDS Unit 6.48 ft
~;.~:, '," --, ·URSTREAM CONVEY'ANCE,SYSTEM::CHECK'ArSYSTEM'F(OW.
Length to U/S Manhole/CB 38.50 ft
Rim Elevation at UlS ManholelCB 587.64
Friction Loss to U/S Manhole/CB 0.21
HGL EI at U/S ManholelCB 576.38
Freeboard at U/S Manhole/CB 11.26
Loss of Head Due to Contractions
For Higher Velocities with H > 1.0 foot:
For Lower Velocities with H < 1.0 foot:
Loss of Head Due to Baffle
For BafflelOrifice (pressure):
Loss of Head Due to Weir
For Weir (free discharge):
ft
ft NO FLOODING OCCURS AT U/S MANHOLE/CB
Hcont = (1/c -1)2 * [v2/2g] c = 0.582 + 0.0418/(1.1 -r)
r = ratio of pipe diameters
Hcont = 0.7*(v1 -v2)2/2g
Hbaffle = [Q I c Aorf 12g c = 0.6
Hweir = [Q I CL]213 c = 3.08
For Submerged Weir: Hweir = Hu/s -Hd/s
Hu/s = [Q I Ks * CL]213 C = 3.08
Ks = [1 -(Hd/s 1 Hu/s) 1.;0.385
Loss of Head Due to Expansion/Enlargement:
For All Situations: Hexp = 1.098 [(v1 -v2) 1.91~ 12g
.. ~. .,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
EAST
LA COSTA OAKS NORTH -NEIGHBORHOOD 3.7
CARLSBAD,CA
JULY 11, 2007
,PROJECT PARAMETERS' .. "
" ' " -,-
CDS Model PMSU20 15
o treat 0.7 cfs CDS treatment capacity = 0.7 cfs / 085 = 0.3 cfs
o system 7.6 cfs Assumed -Engjneer to verify
H cds 0.35 ft Required Head Difference to Process 0 treat
DIS Pipe Size 2.0 ft
DIS Pipe Slope 0.0387 ftlft
U/S Pipe Size 2.0 ft
U/S Pipe Slope 0.0158 ft/ft
,,' PMSUWEIR SUMMARY -.. , "
PMSU Weir Height I 1.00 I ttl
PMSU Weir Length I 3.5 I ft I
HYDRAULIC IMPACT OF CDS, UNI'F. AT:,SYSrEM"FLOW:", :_ , :'c '.
SO Station DIS of CDS 90+71.83
1 Pipe Invert EI dis of CDS 623.28
2 Finished Grade EI @ CDS 631.66
3 EGL EI dis of CDS 624.64
HGL EI dIs of CDS 624.26 Critical Depth in dIs Pipe
4 Hcont 0.07 It Contraction Loss from CDS Manhole to dis Pipe
5 EGL EI dis of Baffle 624.71
HGL EI dis of Baffle 624.62
6 Baffle Loss 0.25 ft Loss Through Baffle Orifice
7 EGL EI dis of Weir 624.96
HGL EI dIs of Weir 624.95
8 Hweir 0.31 It Loss From Flow Over Submerged Weir'
9 EGL EI u/s of Weir 625.34
HGL EI u/s of Weir 625.26
10 Hexp 0.00 ft Expansion Loss from u/s Pipe to CDS Manhole
11 EGL u/s of CDS Unit 625.34
HGL EI u/s of CDS Unit 625.24
SO Station U/S of CDS 90+66.83
Increase in HGL 0.98 ft
Freeboard U/S of CDS Unit 6.42 ft
'"
, _ ('.: ~::,.~:. t. I-~-'¥ ~ ',: ,: :'UPST.REAM,CONVEY.ANCE SYSTEM:CHECKAT,SYSTEM F£OW>;.;-' ::.'./ f: '~;;',:!:':, :/:
Length to U/S Manhole/CB 8.50
Rim Elevation at U/S Manhole/CB 630
Friction Loss to U/S Manhole/CB 0.01
HGL EI at U/S Manhole/CB 625.24
Freeboard at U/S Manhole/CB 4.76
Loss of Head Due to Contractions
For Higher Velocities with H > 1.0 foot:
For Lower Velocities with H < 1.0 foot:
Loss of Head Due to Baffle
For Baffle/Orifice (pressure):
Loss of Head Due to Weir
For Weir (free discharge):
ft
-,
ft
ft NO FLOODING OCCURS AT U/S MANHOLE/CB
Hcont = (1/c -1)2 • [v2/2g1 c = 0.582 + 0.0418/(1.1 -r)
r = ratio of pipe diameters
Hcont = 0.7*(v1 -v2)2 129
Hbaffle = [0/ c Aor]2 I 29 c = 0.6
Hweir = [0 / CL]213 C = 3.08
For Submerged Weir: Hweir = Hu/s -Hd/s
Hu/s = [0 I Ks • CL]213 C = 3.08
Ks = [1 -(Hd/s I Hu/s) 1.5t·3B5
Loss of Head Due to Expansion/Enlargement:
For All Situations: Hexp = 1.098 [(v1 -v2) 1,919]/29
I
I
I
I'
I
I
I'
I
I
I
I
I
I
I
,I
J
I
I
I
, '
. . . .
IX
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER,9 .
HYDROLOGY MAPS
AD:rn] H:\REPORTS\2352\178\Sludy 01.doc
w.o.2352·178 4/11/20072:03 PM
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 9
HYDROLOGY MAPS
9.1 -Existing Condition Hydrology Map
AD:rn) H:IREPDRTSI23521178ISludy 01.doc
w.o.2352-178 4111120072:03 PM
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
Drainage Study
CHAPTER 9
HYDROLOGY MAPS
9.2 -Developed Condition Hydrology_ Map_
AD:mj H:IREPORTS\23521178\Sludy 01_doc
w_o 2352·178 4/11/20072:03 PM
5~O~~~~~5~O~ .... 1~OO~~~~150 ~ I I I
SCALE 1'-50'
.'
-J. ....
,--, ::-'';:',
'. '-~ ~
"
.'~' -
",
LEGEND
WATERSHED BOUNDARY
FLOWLINE
NODES
BROW DITCH NODES
/
-
. , • •
/
.
/
/
/
/
/ /
/
/
/
/ I
/
/
/
/
1
IS96.81
/
/ .
/ /
2 3 4 5
IS98.01 IS99.31 1601.81
/
"
/
6
" / f
, " ,
/
---
/ .
1602.81
1603.sl.
8
I 60S. 8 I
------------
1623.81
15
14
1622.91
13
1622.41
12
1621.81
"
. '
, '.
17 18
1624.91 162s.91
/
-,---------
21
2
23
1622.1 1 .
24
1621.71
19
1626.91
/
I
\
.---
\
. •
32
1641:5 1'"
31
Q,oo=
A=
Tc=
\
---'---
39
1638.71
'.'
I
5
37
1639.91
38 I 639.S I
/
"
,----
-.~--
".
/ /
• ,
/49" / / /
, ,
, ,
'" f _ " /
HOA ·OPEN SPACE
. 'J.9/ACRES ..:
,
/
/
/
/
/ / /
/
/
/ ,
. ;.. .
CITY OF ENCINITAS
VICINITY MAP
. ,
/
!
"
"
.'
, . ,
' ..
"
/
~.--
,/
"
/
/
NTS
\
,
'. \ " ' '. . ,
\ ..
/
/
/ / "
/ ,/
/
/
/ /
/
,
\
'.
. '. " , . , ,~-:
\ '-. ,
/
/
/
/
PREPARED BY: DEVELOPED CONDITIONS HYDROLOGY MAP
FOR
HUNSAKER
& ASSOCIATES
SAN DIEGO, INC.
PLANNING 10179 Huennekens Street
ENGINEERING San Diego, ca 91121
SURVEYING PH(B58)558-4500· FX(S58)558·1414
LA COSTA OAKS NORTH
NEIGHBORHOOD 3.7
CITY OF CARLSBAD, CALIFORNIA
R'\0712\8.Hyd\ 712$H04-DEV-FINALdwg[
\
" •
\ • \,' \
/
,/
i
/
! ,
/
/
!
./
/
/
,
/
SHEET
.t
OF