HomeMy WebLinkAboutCT 06-06; VILLAGES OF LA COSTA OAKS NORTH 3.7; TENTATIVE MAP DRAINAGE STUDY; 2006-08-17I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HUNSAKER
&ASSOCIATES
RECEIVED
SEP a ? i~:l6
...-.....". 5 A N DIE G 0, INC.
. CITY OF CARLSBAD
PLANNING DEPT PLANNING
ENGINEERING
SURVEYING
IRVINE
LOS ANGELES
RIVERSIDE
SAN DIEGO
DAVE HAMMAR
LEX WILLIMAN
ALiSA VIALPANDO
DAN SMITH
RAY MARTIN
CHUCK CATER
10179 Huennekens SI.
San Diego, CA 92121
(8S8) 558-4500 PH
(858) 558-1414 FX
www.HunsakerSD.com
Info@HunsakerSD.com
TENTATIVE MAP Z .. a/ .
DRAINAGE STUDY ~
for L{
LA COSTA OAKS NORTH\bv()~
NEIGHBORHOOD 3.7
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
c/o Morrow Development
1903 Wright Place
Suite 180
Carlsbad,CA 92008
W.O. 2352-172
August 17, 2006
P EllMI A Y
Eric Mosolgo, R.C.E.
Water Resources Department Manager
Hunsaker & Associates San Diego, Inc.
AD:kc H:\REPORTSI2352\172ITM Study 02.doc
w.o. 2352-172 6117/20066:42 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North Neighborhood 3.7 -City of Carlsbad, California
Drainage Study
August, 2006
. Dear Sir/Madam,
All plan check comments have been addressed such that we deem this Drainage Study
complete. Further discussions are welcome in regards to this Drainage Study.
The comments regarding the Drainage Study for La Costa Oaks North Neighborhood 3.7
have been addressed in the following manner:
1. Redlines on Drainage Study and Hydrology Map
R: All redlines comments within the drainage study and hydrology map have been
addressed for better understanding.
The "Mass-Graded Drainage Study for La Costa Oaks North Neighborhoods 3.2,
3.6 & 3. 7, dated October 2005" included in Chapter 4 of this report, includes
drainage analysis for Avenida Soledad. A note with this statement has been
included in the hydrology map.
H:\REPORTS\2352\172\Response to July. 2006 City of Carlsbad (DRAINAGE).doc
8/15/2006 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
TABLE OF CONTENTS
Chapter 1 -Executive Summary
1.1 Introduction
1.2 Summary of Existing Conditions
1.3 Summary of Developed Condition
1.4 Summary of Results
1.5 References
Chapter 2 -Methodology
2.1 County of San Diego Drainage Design Criteria
2.2 Design Rainfall Determination
-100-Year, 6-Hour Rainfaliisopiuvial Map
-100-Year, 24-Hour Rainfaliisopiuvial Map
2.3 Runoff Coefficient Determination
2.4 Peak Intensity Determination
-Urban Watershed Overland Time of Flow Nomograph
-San Diego County Intensity-Duration Design Chart
2.5 Gutter and Roadway Discharge (Velocity Chart)
2.6 Manning's Equation Nomograph
2.7 Model Development Summary
(from San Diego County Hydrology Manual)
Chapter 3 -100-Year Hydrologic Model for Developed Conditions
Chapter 4 -100-Year Hydrologic Model for Existing Conditions
"Mass Graded Drainage Study for La Costa Oaks North
Neighborhoods 3.2, 3.~ & 3.7"
Existing Condition Hydrology Map
Chapter 5 -Developed Condition Hydrology Map
SECTION
II
III
IV
V
AD:ad H:IREPORTSI235211721TM Study 02.doc
w.o.2352·172 8I1512001l9:34 AM
,,.. 'I
I
I
I
I
I
,I
'I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 1 -EXECUTIVE SUMMARY
1.1 -Introduction
The La Costa Oaks North Neighborhood 3.7 site is located east of Rancho Santa Fe
Road in the City of Carlsbad, California (see vicinity map below).
All runoff from the site will drain to two (2) proposed storm drain systems along
Avenida Soledad. Runoff from this storm drain eventually discharges into Sari
Marcos Creek.
This study analyzes developed conditions 100-year peak flowrates from the
proposed development site.
Treatment of storm water runoff from the site has been addressed in a separate
report -the "Storm Water Management Plan for La Costa Oaks North-
Neighborhood 3.7, dated August, 2006".
Per County of San Diego drainage criteria, the Modified Rational Method should be
used to determine peak design flowrates when the contributing drainage area is less
than 1.0 square mile. Since the total watershed area discharging from the site is
less than 1.0 square mile, the AES-2003 computer software was used to model the
runoff response per the Modified Rational Method. Methodology used for the
computation of design rainfall events, runoff coefficients, and rainfall intensity values
are consistent with criteria set forth in the "County of San Diego Drainage Design
Manual." A more detailed explanation of methodology used for this analysis is listed
in Chapter 2 of this report.
+
LA COSTA VICINITY MAP
NTS
AD:ad H:IREPORTSI235211721TM Study 02.doc
w.o.2352-172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM prainage Study
1.2 -Summary of Existing Conditions
Located on a 13.8 acre site, the proposed La Costa Oaks North -Neighborhood 3.7
has been mass graded per the "Mass Graded and Erosion Control Plans for La
Costa Oaks North Neighborhood 3.6 & 3.7" by Hunsaker & Associates, dated
February 20006.
The project site has been graded into three (3) mass-graded pads for future single
family development. Runoff from the three graded pads and future Avenida Soledad
will drain into three desilt basins prior to discharging into an existing 30" RCP system
per DraV\fing Nos. 419-6a and 368-2 and San Marcos Creek (See Table 1).
Table 1 -Summary of Existing Conditions
Drainage Location Area (Acres) 100-Year Peak Flow
(cfs)
Existing 30" RCP 7.4 18.6 (Avenida Soledad)
Proposed Storm Drain 2.0 5.4 (San Marcos Creek)
Peak flow rates listed above were obtained from the "Mass-Graded Drainage Study
for La Costa Oaks North Neighborhoods 3.2,3.6 & 3.7". Rational Method output is
located in Chapter IV.
1.3 -Summary of Developed Conditions
The proposed La Costa Oaks North -Neighborhood 3.7 will consist of 44 single-
family residences, servicing private roads, sidewalks, public open space, associated
utilities and internal storm drain systems. Per criteria set forth in the "2003 San
Diego County Hydrology Manual", runoff coefficient of 0.57 was selected to quantify
the rainfall to runoff response from the respective single-family development and
landscaped graded areas.
Runoff from the developed site will discharge to two (2) receiving storm drains within
Avenida Soledad. Runoff from the eastern portion of the proposed La Costa Oaks
North -t'Jeighborhood 3.7 will be conveyed by curb and gutter until being
intercepted via curb inlets. Flow is then directed via storm drain and discharging into
San Marcos Creek.
Runoff from the western portion of the proposed La Costa Oaks North-
Neighborhood 3.7 will also be conveyed by curb and gutter until being intercepted
via curb inlets. Flow is then directed via storm drain that connects into the existing
30" RCP along Avenida Soledad.
AD:ad H:IREPORTSI235211721TM Study 02.doc
w.o.2352·172 811712006 8:21 AM
I
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
Prior to discharging to the proposed storm drain systems, first flush runoff will be
treated via eight (8) curb inlet filters and two (2) CDS treatment units in accordance
with standards set forth by the Regional Water Quality Control Board and the City of
Carlsbad Stormwater Standards Manual (see Storm Water Management Plan for La
Costa Oaks North -Neighborhood 3.7, Hunsaker & Associates, August 2006).
Table 2 -Summary of Developed Conditions
Drainage Location Area (Acres) 100-Year Peak Flow·
(cfsl
Existing 30" RCP 6.8 16.7 (Avenida Soledad)
Proposed Storm Drain 2.6 7.1 (San Marcos Creek) ..
1.4 -Results and Recommendations
Table 3 on the following page summarize developed versus existing conditions
drainage areas and resultant 1 DO-year peak f10wrates at the storm drain discharge
locations. Per San Diego County rainfall isolpluvial maps, the design 1 DO-year
rainfall depth for the site area is 2.9 inches.
Table 3 -Summary of Peak Flows
Outlet Location Drainage Area 100-Year Peak Flow
(Ac) (cfs)
Existing Conditions
(30" RCP -Avenida 7.4 18.6
Soledad)
Developed Conditions
(30" RCP -Avenida 6.8 16.7
Soledad)
Difference -0.6 -1.9 -
Existing Conditions 2.0 5.4 (San Marcos Creek)
Developed Conditions 2.6 7.1 (San Marcos Creek)
Difference + 0.6 + 1.7
Per Table 3 above, developed peak flow discharge to the existing 30-inch RCP
under Avenida Soledad for the proposed project site has been reduced from those
flows found in current conditions by approximately 1.9 cfs. And developed peak flow
directed to San Marcos Creek however has been increased by approximately 1.7
cfs, to a predicted M cfs.
1,\
AD:ad H:IREPORTS\23521172\TM Study 02.dQC
w.O.2352·172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
Peak flow rates listed above were generated based on criteria set forth in "San
Diego County Hydrology Manual" (methodology presented in Chapter II of this
report). Rational Method output is located in Chapter III.
Final storm drain and inlet design details will be provided at the final engineering
stage of the development.
AD:ad H:IREPORTS\23521172ITM Study 02.doc
w.o.2352-172 8115120069:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
1.5 -References
County of San Diego Hydrology Manual, June 2003
"Storm Water Management Plan for La Costa Oaks North -Neighborhood 3.7",
Hunsaker & Associates, San Diego, Inc., August 2006.
"Mass-Graded Drainage Study for La Costa Oaks North -Neighborhood 3.2,3.6 &
3.7': Hunsaker & Associates, San Diego, Inc., October 2005.
"Mass Grading and Erosion Control Plans for La Costa Oaks North -Neighborhood
3.6 & 3.7': Hunsaker & Associates, San Diego, Inc., February 2006.
AD:ad H:IREPORTSI23521172ITM Study 02.doc
w.o.2352·172 811512006 9:34 AM
I
I
I II
I
I
I
I
I
I
I
I
I
I
I
I
I
I .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY
AD:ad H:IREl'ORTS123521172ITM Study 02.doc
w.o.2352.172 8115/20069:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRATE DETERMINATION
. (ULTIMATE CONDITIONS)
2.1 -County of San Diego Design Criteria
AD:ad H:\REPORTS\235211721TM Study 02.doc
w.o.2352-172 8/1512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
Modified Rational Method Hydrologic Analysis
Computer Software Package -AES-2003
Design Storm'-1 aD-year return interval
Land Use -Single-Family residential;
Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have
very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils
with a high swelling potential, soils with a high permanent water table, soils with clay
pan or clay layer at or near the surface, and shallow soils over nearly impervious
materials, Group D soils have a very slow rate of water transmission.
Runoff Coefficient -In accordance with the County of San Diego standards, runoff
coefficients were based on land use.
Rainfall Intensity -Initial time of concentration values were determined using the
County of San Diego standards. The rainfall intensity-duration-frequency curve for
the San Diego County was used to determine rainfall intensities.
Method of Analysis -The Rational Method is the most widely used hydrologic model
for estimating peak runoff rates. Applied to small urban and semi-urban areas with
drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall
intenSity, a runoff coefficient, and drainage area to peak runoff rate. This
relationship is expressed by the equation:
Q = CIA, where:
Q = The peak runoff rate in cubic feet per second at the point of analysis.
C = A runoff coefficient representing the area -averaged ratio of runoff to
rainfall intensity.
I = The time-averaged rainfall intensity in inches per hour corresponding
to the time of concentration.
A = The drainage basin area in acres.
To perform a node-link study, the total watershed area is divided into subareas
which discharge at deSignated nodes.
The procedure for the subarea summation model is as follows:
(1) Subdivide the watershed into an initial subarea (generally 1 lot) and
subsequent subareas, which are generally less than 10 acres in size.
Assign upstream and downstream node numbers to each subarea.
(2) Estimate an initial T c by using the appropriate nomograph or overland flow
velocity estimation.
AO:ad H:IREPORTSI235211721TM Study 02.doc
w.o.2352·172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
(3) Using the initial T c, determine the corresponding values of I. Then Q = C I
A.
(4) Using· Q, estimate the travel time between this node and the next by
Manning's equation as applied to the particular channel or conduit linking
the two nodes. Then, repeat the calculation for Q based on the revised
intensity (which is a function of the revised time of concentration)
The nodes are joined together by links, which may be street gutter flows, drainage
swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer
subarea menu is as follows:
SUBAREA HYDROLOGIC PROCESS
1. Confluence analysis at node.
2. Initial subarea analysis (including time of concentration calculation).
3.
4.
5.
6.
7.
8.
9.
Pipeflow travel time (computer estimated).
Pipeflow travel time (user specified).
Trapezoidal channel travel time.
Street flow analysis through subarea ..
User -specified information at node.
Addition of subarea runoff to main line.
V-gutter flow through area.
10. Copy main stream data to memory bank
11. Confluence main stream data with a memory bank
12. Clear a memory bank
At the confluence point of two or more basins, the following procedure is used to
combine peak flow rates to account for differences in the basin's times of
concentration. This adjustment is based on the assumption that each basin's
hydrographs are triangular in shape. .
(1). If the· collection streams have the same times of concentration, then
the Q values are directly summed,
AD:ad H:IREPORTS\23521172ITM Study 02.doc
w.o.2352·172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
(2). If the collection streams have different times of concentration, the
smaller of the tributary Q values may be adjusted as follows:
(i). The most frequent case is where the collection stream with the
longer time of concentration has the larger Q. The smaller Q
value is adjusted by the ratio of rainfall intensities.
(ii). In some cases, the collection stream with the shorter time of
concentration has the larger Q. Then the smaller Q is adjusted
by a ratio of the T values.
AD:ad H:IREPORTS\235211721lM Study 02.doc
w.o.2352-172 8115/20069:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRATE DETERMINATION
(ULTIMATE CONDITIONS)
2.2 -Design Rainfall Det~rl!lirJation
AD:ad H:IREPORTS123521172ITM Study 02.doc
w.o.2352-172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
. METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.2 -100-Year, 6-Hour Rainfaliisopiuvial Map
AD:ad H:IREPORTS1235211721TM Study 02.doc
w.o.2352·172 811512006 9:34 AM
-
11;-'
-
... ..
IpI/Cllly..hydrt{ploW~CIIIy.aml
-
0
" " .,
'"
- --
, ........ ~ ,'-----~
njJana
---------
", .. \""'>,\, "'<:",,:\.Q '~~\,=",-____ ~_-l
\\ '\'" ........ \'" '\ ............ \", \
\, "" \ \ \ "" "" " \ \! \ \ \ 2.75 "" ',,~;5 3:0
.. \ \ .. " .. J \ "" \ \, \. "'",--'
'\ \ / ....... ":\ '\ \ ...... , I,~~ \\ \ \ !I \___..... ~
. '4.5_} \ "
.. ~-~. 3
'tI
"
'"
0
0
c
:>
""
- --
County of San Diego
Hydrology Manual
Rainfall Isopluvials
100 Year Rainfall Event-6 Hours
/V' Isopluvial (inches)
Map Notes
Stateplane Projection. zoneS. NADa3
CreaMn Date: June 22. 2001
NOTTO BE USED FOR DESIGN CALCULATIONS
Q
-
o 7.5 P""""""""l~
MILES ~m~&
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.2 -100-Year, 24-Hour Rainfall IsopluVial Map
AD:ad H.IREPORTSI235211721TM Study 02.doc
w.o. 2352·172 8115/2006 9:34 AM
- ---- --- - --- --
Orange
T!juana
Icbl/c:my_~ploWIlp:zdllo::lllY.ad.
3
'0
" ..
("j
o c
"
-- --
County of San Diego
Hydrology Manual
RalnfallIsopluvlals
100 Year Rainfall Event -24 Hours
/"/ Isopluvial (inches)
Map Notes
Stateplane Projection. Zone6. NADa3
Creation Date: June 22. 2001
NOTTO BE USED FOR DESIGN CALCULATIONS
Q
-
o 7.5 ~-.......,
MILES amecf*J ...... _-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.3 -Runoff Coefficient Determination
AD:ad H:IREPORTSI235211721TM Study 02.dDC
w.o.2352-172 8115/2006 9:34 AM
---.. - _ .. -
San Diego County Hydrology Manual
Date: June 2003
-....
Table 3-1
---- - ---
Section:
Page:
3
6of26
RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient "C"
Soil T~Ee
NRCS Elements Coun Elements %IMPER. A B C P
Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35
Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41
Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46
Low Density Residential (LDR) Residential, 2.9 DUiA or less 25 0.38 0.41 0.45 0.49
Medium Density Residential (MDR) Residential, 4.3 DUiA or less 30 0.41 0.45 0.48 0.52
Medium Density Residential (MDR) Residential, 7.3 DUiA or less 40 0.48 0.51 0.54 0.57
Medium Density Residential (MDR) Residential, 10.9 DUiA or less 45 0.52 0.54 0.57 0.60
Medium Density Residential (MDR) Residential, 14.5 DUIA or less 50 0.55 0.58 0.60 0.63
High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71
High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79
CommerciallIndustrial (N. Com) Neigh~orhood Commercial 80 0.76 0.77 0.78 0.79
Commercialllndustrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82
Commercialllndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85
Commercialllndustrial (Limited 1.) Limited Industrial 90 0.83 0.84 0.84 0.85
CommerciallIndustrial (General 1.) General Industrial 95 0.87 0.87 0.87 0.87
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff
coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natUral forever (e.g., the area
is located in Cleveland National Forest).
DU/A = dwelling units per acre
NRCS = National Resources Conservation Service
3-6
I
I
I
I
I
I
I
I
I
I
I'
I
I-
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.4 -Peak Intensity Determination
AD:ad H:IREPORTSI235211721TM Study 02.doc
w,o.2352-172 811512006 9:34 AM
--
10.0
9.0
8.0
7.0
6.0
5.0
r.....
i'.
4.0 I .....
1 3.0
2~0 I
'C' 5 t. bOo
·~o.
~o.
o.
o.
o.
o
o
o
I
I
I ,
i
;
I
I
!
I
r..... ,
~ ,
" ":-...
~ i'
'" "" r....
~ .. r....
"-"':-...
--
I"" r-.... r..... !"I'
'!o.,. " r..... .... i' i'
1'-0. i' " I .. " " '" r"'o
.. " " I"-1" '" .... " I" r... • " ... " "-I"-...
" " I-r-
I .....
~ r... r...1"-I"
"", I'
-i-I----
5 6 7 8 910 15
.. --
-
IIfIi
20 30
Minutes
1I1I
40 50
Duration
.. --
EQUATION
I = 7.44 Pe 0-0.645
I = Intensity (in/hr)
P6 = 6-Hour Precipitation (I o = DUration (min)
r-. ...
i' r... ... .... i' ~ "" .. I' I.
" '" r... '" I ... '" i' 1-"
I"-" " "'r-...
t... " I"-
"'I'
\ ... '" ... 1-"
r'--:-...
1"-"
.. -
2 3 4
Hours
-
n)
5 6
-------
9> :r; o c: ...
l 6.0 '9.
5.5 ~
5.0 g
4.55' o 4.0 iir
3.5.!!!.
3.0
2.5
2.0
1.5
1.0
'DlrectIons for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100yrmaps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipita.tion (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart .
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency __ year
(b) P6 :: __ in., P24 = __ .pPe = %(2)
24 (c) Adjusted P6(2);: __ in.
(d) Ix = __ min.
(e) I = __ in.lhr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
Intensity-Duration Design Chart -Template rIG U REI 3-1
-
I
I
I
I
I
I
I
I
I
I-
I
I,
,I
I
I'
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.4 -Urban Watershed Overland
Time of flow Nomograph
AD:ad H:IREPORTSI235211721TM Study 02.doc
w.o. 2352.17~ 811512006 9:34 AM
--- -
tu ~
~
~ z ~ CIJ 5
LU ~ :::> ~ LU !;(
3:
-_ .. -... -... -------
100 1 1.5 IU/tI I I 1.1 :I: w~~ u
~ ::> z
01aL • IJ//L / A ~ ~I ~120~
~ w :2 i=
~
__ _ ~-10 ~
::s 0:: ~
~~~------L-----~------~------~----~------~----~IO
EXAMPLE:
Given: Watercourse Distance (D) = 70 Feet
Slope (5) =1.3%
Runoff Coefficient (C) = 0.41
Overland Flow Time (T) = 9.5 Minutes
T= 1.8 (1.1-C)Vo
3VS
SOURCE: Airport Drainage, Federal Aviation Administration, 1965
FIGURE
Rational Formula -Overland Time of Flow Nomograph 3·3
- -
I
I
I
I
I
I
I
I·
I
I
I·
I
I
I'
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.4 -Natural Watershed Overland
Time of flow' Nomograph
AD:ad H:IREPORTS\2352\ 172ITM Study OZ.doc
w.o. 2352-172 8115/2006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~E
Feet
LlE
5000
4000
3000
2000
20
10
Tc =
Tc =
L =
..6.E =
EQUATION
C~~3y.385
Time of concentration (hours)
Watercourse Distance (miles)
Change in elevation along
effective slope tine (See Figure 3--5}(feet)
L
Miles Feet
0.5
L
4000
.... .
3000 ....
:zoo
..... ..... .....
Tc
Hours Minutes
4
3
2
1
30
20
.... ..... ....
5
3
Tc
I SOURCE: California Division of Highways (1941) and Kirpich (1940)
I Nomograph for Determination of
Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds
I.
FIGURE
~
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS) ,
2.5 -Gutter and Roadway Discharge
(Velocity Chart)
AD:ad H:IREPORTSl235211721TM Study 02.doc
w.o. 2352-172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
6
5
4
Q)
Co 0 3 en -Q)
~ en -0 ~ 1.:
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
1+--1.5'~1
I~n = .015~1-,,-_...;-_-2% ~ _n=.0175 --------~------~ 2%
2
EXAMPLE:
Concrete
Gutter
Given: Q = 10 S = 2.5%
3 4
Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s.
Paved
5 6 7 8 9 10
Discharge (C.F.S.)
SOURCE: San Diego County Department of Special District Services Design Manual
Gutter and Roadway Discharge -Velocity Chart
RESIDENTIAL STREET
ONE SIDE ONLY
20 30 40 50
FIGURE
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.6 -Manning's Equation Nomograph
AD:ad H:IREPORTS\23521172ITM Study 02.doc
w.o. 2352·172 811512006 9:34 AM
I
I EQUATION: V= 1.49 R2/3S1/2
n
I 0.3 0.2 fO
~
I 0.2 rO
0.3
0.15 30
I 0.01 0.4
0.10
0.09
I
0.08 20 0.07
0.06
0.05
I 0.04 0.8 0.02
0.03 0.9
1.0
I
I
I
I
c::: > 0.02 , /, 0.03 IJ) Q) / § ,
(5 ~ -/ 0 0> .E .S IJ) .... C/) 0.04 0> ::::> 0.. ...... 0.01 is / y~ 1i5 0> 2 ~ 0.009 ~ ~«y ~ 0.05 .S 0.008 C) y!> ~. .S
LIJ 0.007 ::J ~ ":4 a. ::::> 0 0.006 ~ 3/ "g ..J C/) 0.005 Cl ..J 0.07 >-LIJ 3 0.004 ~::r: > 0.08 ~I:).
~ 4 0;09
I 0.10 0.002 5 2
6
I 7
8
0:001 9
I 0.0009 10 1.0 0.2 0.0008
0.0007 0.9
0.0006 0.8
I 0.0005 0.7
0.3 0.0004 0.6
I 0.0003 20 0.5 0.4
GENERAL SOLUTION
I SOURCE: USDOT, FHWA, HDS-3 (1961)
I Manning's Equation Nomograph
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 2
METHODOLOGY -RATIONAL METHOD PEAK
FLOWRA TE DETERMINATION
(ULTIMATE CONDITIONS)
2.7 -Model Development Summary
(from San Diego County Hydrology Manual)
AD:ad H:lRepORTSI23521172ITM SlUcIy 02.doc
w.o.2352·172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD
Section:
Page:
3
20of26
This section describes the development of the necessary data to perform RM calculations.
Section 3.3 describes the RM calculation process. Input data for calculating peak flows and
Tc's with the RM should be developed as follows:
1. On a topographic base map, outline the overall drainage area boundary, showing
adjacent drains, existing and proposed drains, and overland flow paths.
2. Verify the accuracy of the drainage map in the field.
3. Divide the drainage area into subareas by locating significant points of interest. These
divisions should be based on topography, soil type, and land use. Ensure that an
appropriate first subarea is delineated. For natural areas, the first subarea flow path
length should be less than or equal to 4,000 feet plus the overland flow length (Table
3-2). For developed areas, the initial subarea flow path length should be consistent
with Table 3-2. The topography and slope within the initial subarea should be
generally uniform.
4. Working from upstream to downstream, assign a number representing each subarea in
the drainage system to eachyoint .of interest. Figure 3-8 provides guidelines for node
numbers for geographic information system (GIS)-based studies.
5. Measure each subarea in the drainage area to determine its size in acres (A).
6. Determine the length and effective slope of the flow path in each subarea.
7. Identify the soil type for each subarea.
3-20
-------------------
,..---.
Study Area SC ,r-L
/ .
! 11
l" " I ,/
'"1/' L·'
Study Area LA
o Define Study Areas
(Two-Letter 10)
o Define Maps
(or Subregions
on Region Basis)
o Define Model
Subareas on
Map Basis
,,, .. .. .. .-, ..
, .. __ 4: ........... .,. ................ _ .. -.... , · . t .. ' I
• " t · . , ~,,, " " , .' ........
\,:,/ /' \' , ' \' , I .. , l' · · · ·
CD Define Major Flowpaths
in Study Area
o Define Regions on
Study Area Basis
R~::~:-----------l-TIl Study Area (10) # i
Subarea 10=
(LA010112)
o Define Model Nodes
(Intersection of
Subarea Boundaries
with Flowpath Lines)
GIS/Hydrologic Model
Data Base Linkage Setup:
Nodes, Subareas, Links
LA 01 01 03
o Number Nodes
IF I~_~R EI
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
22of26
8. Detennine the runoff coefficient (C) for each subarea based on Table 3-1. If the
subarea contains more than one type of development classification, use a proportionate
average for C. In detennining C for the subarea, use future land use taken from the
applicable community plan, Multiple Species Conservation Plan, National Forest land
use plan, etc.
9. Calculate the CA value for the subarea.
10. Calculate the L(CA) value(s) for the subareas upstream of the point(s) of interest.
11. Detennine P6 and P24 for the study using the isopluvial maps provided in Appendix B.
Ifnecessary, adjust the value for P6 to be within 45% to 65% of the value for P24.
See Section 3.3 for a description of the RM calculation process.
3.3 PERFORMING RATIONAL METHOD CALCULATIONS
This section describes the RM calculation process. Using the input data, calculation of peak
flows and Te's should be perfonned as follows:
1. Detennine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section
3.1.4. If the watershed is natural, the travel time to the downstream end of the first
subarea can be added to Ti to obtain the Te. Refer to paragraph 3.1.4.2 (a).
2. Detennine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5
minute time to detennine intensity for calculating the flow.
3. Calculate the peak discharge flow rate for the subarea, where Qp = L(CA) I.
In case that the downstream flow rate is less than the upstream flow rate, due to the
long travel time that is nQt offset by the additional subarea runoff, use the upstream
peak flow for design purposes until downstream flows increase again.
3-22
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
4. Estimate the Tt to the next point of interest.
5. Add the Tt to the previous Te to obtain a new Te.
Section:
Page:
6. Continue with step 2, above, until the final point of interest is reached.
3
230f26
Note: The MRM should be used to calculate the peak discharge when-there is a junction
from independent subareas into the drainage system.
3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS)
The purpose of this section is to describe the steps necessary to develop a hydrology report
for a small watershed using the MRM. It is necessary to use the MRM if the watershed
contains junctions of independent drainage systems. The process is based on the design
manuals of the City/County of San Diego. The general process description for using this
method, including an example of the application ofthis method, is described below.
The engineer should only use the MRM for drainage areas up to approximately 1 square mile
in size. If the watershed will significantly exceed 1 square mile then the NRCS method
described in Section 4 should be used. The engineer may choose to use either the RM or the
MRM for calculations for up to an approximately I-square-mile area and then transition the
study to the NRCS method for additional downstream areas that exceed approximately 1
square mile. The transition process is described in Section 4.
3.4.1 Modified Rational Method General Process Description
The general process for the MRM differs from the RM only when a junction of independent
drainage systems is reached. The peak Q, Te, and I for each of the independent drainage
systems at the point of the junction are calculated by the RM. The independent drainage
systems are then combined using the MRM procedure described below. The peak Q, Te, and
I for each of the independent drainage systems at the point of the junction must be calculated
prior to using the MRM procedure to combine the independent drainage systems, as these
3-23
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
24of26
values will be used for the MRM calculations. After the independent drainage systems have
been combined, RM calculations are continued to the next point of interest.
3.4.2 Procedure for Combining Independent Drainage Systems at a Junction
Calculate the peak Q, Te, and I for each of the independent drainage systems at the point of
the junction. These values will be used for the :MRM calculations.
At the junction of two or more independent drainage systems, the respective peak flows are
combined to obtain the maximum flow out of the junction at Te. Based on the approximation
that total runoff increases directly in proportion to time, a general equation may be written to
determine the maximum Q and its corresponding Te using the peak Q, Te, and I for each of
the independent drainage systems at the point immediatel~ before the junction. The general
equation requires that contributing Q' s be numbered in order of increasing Te.
Let Ql, Tj, and II correspond to the tributary area with the shortest Te. Likewise, let Q2, T2,
and h correspond to the tributary area with the next longer Te; Q3, T3, and h correspond to
the tributary area with the next longer Te; and so on. When only two independent drainage
systems are combined, leave Q3, T 3, and 13 out of the equation. Combine the independent
drainage systems using the junction equation below:
Junction Equation: T 1 < T 2 < T 3
3-24
I
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
San Diego County Hydrology Manual
Date: June 2003
Section:
Page:
3
250f26
Calculate QT!, QT2, and QT3. Select the largest Q and use the Tc associated with that Q for
further calculatioiis (see the three Notes for options). If the largest calculated Q's are equal
(e.g., Qn = QT2 > QT3), use the shorter of the Tc's associated with that Q.
This equation may be expanded for a junction of more than three independent drainage
systems using the same concept. The concept is that when Q from a selected subarea (e.g.,
Q2) is combined with Q from another subarea with a shorter Tc (e.g., Qr), the Q from the
subarea with the shorter Tc is reduced by the ratio of the I's (I2Ilr); and when Q from a
selected subarea (e.g., Q2) is combined with Q from another subarea with a longer Tc (e.g.,
Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T21T3).
Note #1: At a junction of two independent drainage systems that have the same Tc, the
tributary flows may be added to obtain the Qp.
This can be verified by using the junction equation above. Let Q3, T3, and 13 = O. When T r
and T2 are the same, Ir and h are also the same, and Tr/T2 and hllr = 1. Tr/T2 and hllr are
cancelled from the equations. At this point, QT! = QT2 = Qr + Q2.
Note #2: In the upstream part of a watershed, a conservative computation is acceptable.
When the times of concentration (Tc's) are relatively close in magnitude (within 10%), use
the shorter Tc for the intensity and the equation Q = ~(CA)I.
Note #3: . An optional method of determining the Tc is to use the equation
Tc = [(2: (CA)7.44 P6)/Q] 1.55
This equation is from Q = 'L(CA)I = 'L(CA)(7.44 P6/Tc·645 ) and solving for Tc. The
advantage in this option is that the T c is consistent with the peak flow Q, and avoids
inappropriate fluctuation in downstream flows in some cases.
3-25
I
I'
I
I
'I,
I'
'I:
I
I
I
I
I
,I
I
,I,
I
I
I
I
III
I
I.
I
I
I
.1'
I
I
I
I
I
I
I
I.
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 3
100 YEAR DEVELOPED CONDITIONS
HYDROLOGY ANALYSIS
AD:ad H:IREPORTSI23521172ITM Study 02.doc
w.o.2352-172 8115/2006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2003 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2003 License ID 1239
Analysis prepared by:
HUNSAKER & ASSOCIATES -SAN DIEGO
10179 Huennekens Street
San Diego, Ca. 92121
(858) 558-4500
************************** DESCRIPTION OF STUDY **************************
* LA COSTA OAKS NORTH -NEIGHBORHOOD 3.7
* 100-YEAR DEVELOPED CONDITIONS HYDROLOGY ANALYSIS
* AUGUST, 2006
W.O.# 2352-172
**************************************************************************
FILE NAME: H:\AES2003\2352\172\DEV-100.DAT
TIME/DATE OF STUDY: 09:16 08/15/2006
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT (YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.900
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DEClMAL) TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL*
*
*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
========= =================
1 20.0 15.0 0.020/0.020/ ---0.50 1.50 0.0313
2 17.0 12.0 0.020/0.020/0.005 0.50 1.50 0.0313
3 16.0 11.0 0.020/0.020/0.005 0.50 1.50 0.0313
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
0.125 0.0150
0.125 0.0150
0.125 0.0150
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 643.30
DOWNSTREAM ELEVATION(FEET) = 642.65
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.691
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
(Reference: Table 3-lB of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.788
SUBAREA RUNOFF(CFS) 0.36
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) 0.36
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 61
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STANDARD CURB SECTION USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 640.94 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 425.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
630.00
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.005
12.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.82
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 6.92
AVERAGE FLOW VELOCITY(FEET!SEC.) 3.04
PRODUCT OF DEPTH&VELOCITY(FT*FT!SEC.) 0.80
STREET FLOW TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) 10.02
100 YEAR RAINFALL INTENSITY (INCH!HOUR) 4.879
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 1.04 SUBAREA RUNOFF (CFS) 2.89
TOTAL AREA(ACRES) = 1.15 PEAK FLOW RATE(CFS) 3.20
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.08
FLOW VELOCITY(FEET!SEC.) = 3.39 DEPTH*VELOCITY(FT*FT!SEC.) 1.04
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 490.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 620.00 DOWNSTREAM (FEET) 615.00
FLOW LENGTH(FEET) = 76.80 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 9.84
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 3.20
PIPE TRAVEL TIME (MIN.) = 0.13 Tc(MIN.) = 10.15
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 566.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.15
RAINFALL INTENSITY(INCH!HR) = 4.84
TOTAL STREAM AREA (ACRES) = 1.15
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.20
1
****************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 641.60
DOWNSTREAM ELEVATION (FEET) = 640.95
ELEVATION DIFFERENCE(FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 7.691
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 5.788
SUBAREA RUNOFF (CFS) 0.49
TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.49
****************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION ~ 2 USED)««<
============================================================================
UPSTREAM ELEVATION(FEET) = 640.52 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 467.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.005
630.00
Manning's FRICTION FACTOR for Streetf10w Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.24
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
HALF STREET FLOOD WIDTH(FEET) = 7.95
AVERAGE FLOW VELOCITY(FEET/SEC.) 2.98
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.85
STREET FLOW TRAVEL TIME (MIN.) = 2.61 Tc(MIN.) 10.30
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.793
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 1.27 SUBAREA RUNOFF(CFS) 3.47
TOTAL AREA(ACRES) = 1.42 PEAK FLOW RATE(CFS) 3.88
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.11
FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY(FT*FT/SEC.) 1.12
LONGEST FLOWPATH FROM NODE 4.00 TO NODE 6.00 = 532.00 FEET.
* ** '* * * ** * * ** * * ** * * * * ** * * * * * * * * * ** * * * * * * ** * ** * * * * * * *"* * * * * * * * ** * * ** *** * * ** *** *
FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 10.30
RAINFALL INTENSITY (INCH/HR) = 4.79
TOTAL STREAM AREA(ACRES) = 1.42
PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.88
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 3.20
2 3.88
Tc
(MIN.)
10.15
10.30
INTENSITY
( INCH/HOUR)
4.839
4.793
AREA
(ACRE)
1.15
1.42
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 7.02 10.15 4.839
2 7.05 10.30 4.793
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 7.05 Tc(MIN.) = 10.30
TOTAL AREA(ACRES) = 2.57
1
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 566.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 100.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 615.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 105.90 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 14.07
605.00
3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 7.05
Tc(MIN.) = 10.43 PIPE TRAVEL TIME(MIN.) = 0.13
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 672.70 FEET.
+--------------------------------------------------------------------------+ I END OF EASTERN CONTRIBUTING AREA TO SAN MARCOS CREEK I
I I I I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 627.90
DOWNSTREAM ELEVATION(FEET) = 627.25
ELEVATION DIFFERENCE(FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.691
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.788
SUBAREA RUNOFF(CFS) 0.82
TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.82
****************************************************************************
FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 2 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 626.20 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 844.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 17.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.005
611.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 4.93
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.36
HALFSTREET FLOOD WIDTH(FEET) = 11.70
AVERAGE FLOW VELOCITY (FEET/SEC.) 3.31
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.19
STREET FLOW TRAVEL TIME (MIN.) = 4.24 Tc(MIN.) 11.93
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.359
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 3.27 SUBAREA RUNOFF(CFS) 8.13
TOTAL AREA(ACRES) = 3.52 PEAK FLOW RATE(CFS) 8.75
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.42 HALF STREET FLOOD WIDTH(FEET) 14.80
FLOW VELOCITY(FEET/SEC.) = 3.79 DEPTH*VELOCITY(FT*FT/SEC.) 1.60
LONGEST FLOW PATH FROM NODE 7.00 TO NODE 9.00 = 909.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 200.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 606.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO lS.000
DEPTH OF FLOW IN lS.0 INCH PIPE IS 9.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.52
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = S.75
PIPE TRAVEL TlME(MIN.) = 0.06 Tc(MIN.) = 12.00
1
605.00
4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LONGEST FLOWPATH FROM NODE 7.00 TO NODE 200.00 = 945.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE =
~~~~~DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.00
RAINFALL INTENSITY (INCH/HR) = 4.34
TOTAL STREAM AREA(ACRES) = 3.52
PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.75
1
****************************************************************************
FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 21
~~~~~RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 630.00
DOWNSTREAM ELEVATION(FEET) = 628.00
ELEVATION DIFFERENCE (FEET) = 2.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.288
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.369
SUBAREA RUNOFF(CFS) 0.42
TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.42
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 62
~~~»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION * 1 USED)««<
UPSTREAM ELEVATION(FEET) = 628.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 458.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.02
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.22
HALF STREET FLOOD WIDTH(FEET) = 4.50
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.17
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.69
STREET FLOW TRAVEL TlME(MIN.) = 2.41 Tc(MIN.) 7.69
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.786
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 0.36 SUBAREA RUNOFF(CFS) 1.19
611.00
0.0150
TOTAL AREA(ACRES) = 0.46 PEAK FLOW RATE(CFS) 1.52
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) 5.73
FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 6.00 TO NODE 11.00 = 523.00
0.82
FEET.
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 200.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 606.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 7.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 10.41
ESTIMATED PIPE DIAMETER (INCH) 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 1.52
1
605.00
5
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE TRAVEL TIME (MIN.) ~ 0.01
LONGEST FLOWPATH FROM NODE
Tc{MIN.) ~
6.00 TO NODE
7.71
200.00 530.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE ~ 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION{MIN.) 7.71
RAINFALL INTENSITY(INCH/HR) ~ 5.78
TOTAL STREAM AREA{ACRES) ~ 0.46
PEAK FLOW RATE(CFS) AT CONFLUENCE ~ 1.52
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 8.75 12.00 4.345
2 1.52 7.71 5.781
RAINFALL INTENSITY AND TIME OF CONCENTRATION
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 7.13 7.71 5.781
2 9.89 12.00 4.345
COMPUTED CONFLUENCE ESTIMATES ARE'AS FOLLOWS:
AREA
(ACRE)
3.52
0.46
RATIO
PEAK FLOW RATE (CFS) 9.89 Tc (MIN.) ~ 12.00
TOTAL AREA{ACRES) ~ 3.98
LONGEST FLOWPATH FROM NODE 7.00 TO NODE 200.00 945.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 203.00 IS CODE ~ 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) ~ 605.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) ~ 312.00 MANNING'S N ~ 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 13.66
ESTIMATED PIPE DIAMETER(INCH) ~ 18.00
PIPE-FLOW (CFS) ~ 9.89
0.38
NUMBER OF PIPES
12.38
1
584.00
PIPE TRAVEL TIME (MIN.) ~
LONGEST FLOWPATH FROM NODE
Tc(MIN.) ~
7.00 TO NODE 203.00 1257.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE ~ 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE ~ 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT ~ .5700
S.C.S. CURVE NUMBER (AMC II) ~ 0
INITIAL SUBAREA FLOW-LENGTH(FEET) ~ 65.00
UPSTREAM ELEVATION{FEET) ~ 603.50
DOWNSTREAM ELEVATION{FEET) ~ 602.85
ELEVATION DIFFERENCE(FEET) ~ 0.65
SUBAREA OVERLAND TIME OF FLOW(MIN.) ~ 7.691
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.788
SUBAREA RUNOFF(CFS) 1.09
TOTAL AREA(ACRES) ~ 0.33 TOTAL RUNOFF(CFS) 1.09
****************************************************************************
FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE ~ 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 3 USED)««<
6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
UPSTREAM ELEVATION(FEET) = 601.40 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 16.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 11.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.005
595.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.30
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
HALF STREET FLOOD WIDTH(FEET) = 8.05
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.00
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.86
STREET FLOW TRAVEL TIME(MIN.) = 1.61 Tc(MIN.) 9.30
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.120
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 0.83 SUBAREA RUNOFF(CFS) 2.42
TOTAL AREA(ACRES) = 1.16 PEAK FLOW RATE(CFS) 3.39
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.60
FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY(FT*FT/SEC.) 1.04
LONGEST FLOWPATH FROM NODE 12.00 TO NODE 14.00 = 355.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 14.00 TO NODE 201.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 590.10 DOWNSTREAM (FEET) 589.10
FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 12.59
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 3.39
PIPE TRAVEL TIME (MIN.) = 0.01 Tc(MIN.) = 9.31
LONGEST FLOWPATH FROM NODE 12.00 TO NODE 201.00 363.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 9.31
RAINFALL INTENSITY (INCH/HR) = 5.12
TOTAL STREAM AREA(ACRES) = 1.16
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.39
****************************************************************************
FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 "IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 609.30
DOWNSTREAM ELEVATION(FEET) = 608.65
ELEVATION DIFFERENCE (FEET) = 0.65
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 7.691
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.788
SUBAREA RUNOFF(CFS) = 0.73
TOTAL AREA(ACRES) =' 0.22 TOTAL RUNOFF(CFS) 0.73
7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA~~~«
»»>(STREET TABLE SECTION H 3 USED)««<
UPSTREAM ELEVATION(FEET) = 605.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 332.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 16.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.005
11.00
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.74
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
HALF STREET FLOOD WIDTH(FEET) = 6.50
AVERAGE FLOW VELOCITY(FEET/SEC.) 3.22
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.82
STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) 9.41
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.081
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA (ACRES) 0 . 70 SUBAREA RUNOFF (CFS) 2 . 03
595.00
0.0150
TOTAL AREA (ACRES) = 0 . 92 PEAK FLOW RATE (CFS) 2 . 66
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.05
FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY(FT*FT/SEC.) 1.00
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 17.00 = 397.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 17.00 TO NODE 201.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA~<~«
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<~«<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 590.10 DOWNSTREAM (FEET) 589.10
FLOW LENGTH(FEET) = 21.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.36
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.66
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 9.45
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 201.00 418.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.45
RAINFALL INTENSITY(INCH/HR) = 5.07
TOTAL STREAM AREA (ACRES) = 0 • 92
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.66
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 3.39 9.31 5.116
2 2.66 9.45 5.067
AREA
(ACRE)
1.16
0.92
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE
STREAM RUNOFF
NUMBER (CFS)
Tc
(MIN.)
INTENSITY
(INCH/HOUR)
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
2
6.01
6.02
9.31
9.45
5.116
5.067
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS} 6.02 Tc(MIN.} =
TOTAL AREA (ACRES) = 2.08
9.45
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 201.00 418.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 589.10 DOWNSTREAM (FEET) 585.00
FLOW LENGTH(FEET} = 47.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH} INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} 13.08
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 6.02
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.51
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 202.00 465.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 9.51
RAINFALL INTENSITY(INCH/HR) = 5.05
TOTAL STREAM AREA (ACRES) = 2.08
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.02
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 18.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET} = 65.00
UPSTREAM ELEVATION(FEET) = 611.00
DOWNSTREAM ELEVATION(FEET} = 609.00
ELEVATION DIFFERENCE(FEET) = 2.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.42
5.288
7.369
TOTAL AREA(ACRES} = 0.10 TOTAL RUNOFF(CFS} 0.42
****************************************************************************
FLOW PROCESS FROM NODE 18.00 TO NODE 202.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 609.00 DOWNSTREAM ELEVATION(FEET}
STREET LENGTH(FEET} = 198.00 CURB HEIGHT(INCHES) 6.0.
STREET HALFWIDTH(FEET} = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET} 15.00
INSIDE STREET CROSSFALL(DECIMAL} 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb}
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
1.50
STREET FLOW DEPTH(FEET) = 0.16
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
5.84
STREET FLOW TRAVEL TIME (MIN.) = 0.56
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
0.91
Tc(MIN.}
6.902
0.73
5.85
590.00
0.0150
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA AREA(ACRES) 0.16
TOTAL AREA (ACRES) ~ 0.26
0.570
SUBAREA RUNOFF (CFS) ~
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) ~ 0.19 HALF STREET FLOOD WIDTH(FEET) 2.98
0.63
FLOW VELOCITY(FEET/SEC.) = 4.94 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 9.00 TO NODE 202.00 = 263.00
1.02
0.92
FEET.
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 5.B5
RAINFALL INTENSITY(INCH/HR) = 6.90
TOTAL STREAM AREA (ACRES) = 0 .26
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.02
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 6.02 9.51 . 5.046
2 1.02 5.B5 6.902
AREA
(ACRE)
2.0B
0.26
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
5.42
6.77
TABLE
Tc
(MIN.)
5.B5
9.51
INTENSITY
(INCH/HOUR)
6.902
5.046
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 6 . 77 Tc (MIN.) =
TOTAL AREA (ACRES) = 2.34
9.51
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 202.00 465.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 5B5.00 DOWNSTREAM (FEET) 584.00
FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN IB.O INCH PIPE IS B.2 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) B.5B
ESTIMATED PIPE DIAMETER(INCH) = IB.OO NUMBER OF PIPES 1
PIPE-FLOW (CFS) ~ 6.77
PIPE TRAVEL TIME (MIN.) = O.OB Tc(MIN.) = 9.59
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 203.00 505.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 9.59
RAINFALL INTENSITY (INCH/HR) = 5.02
TOTAL STREAM AREA(ACRES) ~ 2.34
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.77
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 19.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 611.00
DOWNSTREAM ELEVATION(FEET) = 609.00
10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ELEVATION DIFFERENCE (FEET) = 2.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.288
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.369
SUBAREA RUNOFF(CFS) 0.42
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.42
****************************************************************************
FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 609.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 212.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb)
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.10
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.19
HALF STREET FLOOD WIDTH(FEET) = 3.34
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.92
STREET FLOW TRAVEL TIME (MIN.) = 0.74 Tc(MIN.) 6.03
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.772
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
SUBAREA AREA(ACRES) 0.35 SUBAREA RUNOFF(CFS) = 1.35
590.00
0.0150
TOTAL AREA(ACRES) = 0.45 PEAK FLOW RATE (CFS) 1.74
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.22 HALF STREET FLOOD WIDTH(FEET) 4.79
FLOW VELOCITY(FEET/SEC.) = 5.00 DEPTH*VELOCITY(FT*FT/SEC.) 1.11
LONGEST FLOWPATH FROM NODE 11.00 TO NODE 20.00 = 277.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 203.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 585.00 DOWNSTREAM (FEET) 584.00
FLOW LENGTH(FEET) = 6.70 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 11.00
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.74
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 6.04
LONGEST FLOWPATH FROM NODE 11.00 TO NODE 203.00 283.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«~«
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.04
RAINFALL INTENSITY (INCH/HR) = 6.76
TOTAL STREAM AREA (ACRES) = 0 .45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.74
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 6.77 9.59 5.020
2 1. 74 6.04 6.764
AREA
(ACRE)
2.34
0.45
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
1
11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 6.76 6.04 6.764
2 8.05 9.59 5.020
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 8.05 Tc(MIN.) = 9.59
TOTAL AREA(ACRES) = 2.79
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 203.00 505.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 11
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 8.05 9.59 5.020
AREA
(ACRE)
2.79
LONGEST FLOWPATH FROM NODE 15.00 TO NODE 203.00
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE)
1 9.89 12.38 4.258 3.98
LONGEST FLOWPATH FROM NODE 7.00 TO NODE 203.00
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 15.71 9.59 5.020
2 16.72 12.38 4.258
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 16.72 Tc(MIN.) = 12.38
TOTAL AREA (ACRES) = 6 . 77
505.00 FEET.
1257.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 1 ««<
+--------------------------------------------------------------------------+ I END OF WESTERN CONTRIBUTING AREA TO EXISTING STORM DRAIN SYSTEM I
I I I I +--------------------------------------------------------------------------+
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
6.77 TC(MIN.) =
16.72
12.38
==========~===~===============================~=============================
END OF RATIONAL METHOD ANALYSIS
12
I
I
I
I.
I . .
I
I
I
I
I
I. .
I
I
I
I
I
I
I
I
IV
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 4
100 YEAR EXISTING CONDITIONS
HYDROLOGY ANALYSIS
"Mass-Graded Drainage Study for La
Costa Oaks North Neighborhoods 3.2, 3.6
& 3.7"
AD:ad H:IREPORTSI235211721TM Study 02.doc
w.o.2352·172 811512006 9:34 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MASS-GRADED
DRAINAGE STUDY
for
LA COSTA OAKS NORTH
NEIGHBORHOODS 3.2, 3.6 & 3.7
City of Carlsbad, California
Prepared for:
Real Estate Collateral Management Company
c/o Morrow Development
1903 Wright Place
Suite 180
Carlsbad, CA 92008
w.o. 2352-11 9
October 24, 2005
Hunsaker & Associates
San Diego, Inc.
Raymond L. Martin, R.C.E.
Vice President
AH:ad H:IREPORTSI23S2I11913nl SubmittallA03.doc
W.O.235.2.119 8/11/20069:22 AM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,19S1 HYDROLOGY MANUAL
{c} Copyright 19S2-2003 Advanced Engineering Software {aes}
Ver. 1.5A Release Date: 01/01/2003 License ID 1239
Analysis prepared by:
HUNSAKER & ASSOCIATES -SAN DIEGO
10179 Huennekens Street
San Diego, Ca. 92121
{S5S} 55S-4500
************************** DESCRIPTION OF STUDY **************************
* LA COSTA OAKS NORTH -NEIGHBORHOODS 3.2, 3.6 AND 3.7
* 100-YR MASS-GRADED HYDROLOGIC ANALYSIS {USING ULTIMATE "C"-VALUES} *
* W.O.# 2352-119 PREPARED BY: AH *
**************************************************************************
FILE NAME: H:\AES2003\2352\119\MGULT.DAT
TIME/DATE OF STUDY: 17:52 10/20/2005
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT{YEAR} = 100.00
6-HOUR DURATION PRECIPITATION {INCHES} = 2.900
SPECIFIED MINIMUM PIPE SIZE{INCH} = lS.00
SPECIFIED PERCENT OF GRADIENTS{DECIMAL} TO USE FOR FRICTION SLOPE = 0.90
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR
NO. {FT} {FT} SIDE / SIDE/ WAY {FT} {FT} {FT} {FT} {n}
1 20.0 15.0 0.020/0.020/ ---0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) -{Top-of-CUrb}
2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
+--------------------------------------------------------------------------+ I I I BEGIN MASS-GRADED NEIGHBORHOOD 3.7 -EAST (NODE SERIES SOO) I
I I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE SOl.00 TO NODE S02.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED {SUBAREA} :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH{FEET} = 75.00
UPSTREAM ELEVATION(FEET} = 646.20
DOWNSTREAM ELEVATION(FEET} = 644.70
ELEVATION DIFFERENCE {FEET} = 1.50
SUBAREA OVERLAND TIME OF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR}
SUBAREA RUNOFF {CFS} 0.26
6.558
6.415
TOTAL AREA (ACRES) = 0 . 07 TOTAL RUNOFF{CFS} 0.26
****************************************************************************
FLOW PROCESS FROM NODE S02.00 TO NODE 803.00 IS CODE = 51
~---------------------------------------------------------------------------»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT} ««<
ELEVATION DATA: UPSTREAM {FEET) = 644.70 DOWNSTREAM (FEET) 63S.00
CHANNEL LENGTH THRU SUBAREA(FEET} = 302.70 CHANNEL SLOPE = 0.0221
CHANNEL BASE(FEET} = 0.00 "Z" FACTOR = 99.990
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.767
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.88
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.32
AVERAGE FLOW DEPTH(FEET) 0.15 TRAVEL TIME(MIN.) 3.83
Tc(MIN.) = 10.39
SUBAREA AREA (ACRES) 1.90 SUBAREA RUNOFF (CFS) 5.16
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA(ACRES) = 1.97 PEAK FLOW RATE(CFS) = 5.35
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) 1.52
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 377.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 803.00 TO NODE 800.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 629.20 DOWNSTREAM (FEET) 607.00
FLOW LENGTH(FEET) = 63.60 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 3.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 20.00
GIVEN PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.35
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 10.44
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 800.00 441.30 FEET.
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.7 -EAST (NODE SERIES 800) I I BEGIN MASS-GRADED NEIGHBORHOOD 3.7 -WEST AND AVENIDA SOLEDAD -EAST I I OF RANCHO SANTA FE ROAD (NODE SERIES 500) I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 502.00 TO NODE 504.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
UPSTREAM ELEVATION(FEET) = 623.80
DOWNSTREAM ELEVATION(FEET) = 622.20
ELEVATION DIFFERENCE (FEET) = 1.60
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 6 .418
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.504
SUBAREA RUNOFF(CFS) 0.41
TOTAL AREA (ACRES) = 0 .11 TOTAL RUNOFF (CFS) 0.41
****************************************************************************
FLOW PROCESS FROM NODE 504.00 TO NODE 503.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM(FEET) = 622.20 DOWNSTREAM (FEET) 613.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 420.90 CHANNEL SLOPE 0.0219
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.546
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 4.78
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.47
AVERAGE FLOW DEPTH(FEET) 0.18 TRAVEL TIME (MIN.) 4.76
TC(MIN.) = 11.18
SUBAREA AREA(ACRES) 3.31 SUBAREA RUNOFF (CFS) 8.58
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 8.86
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) 1.74
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 503.00 = 495.90 FEET.
J1kJ?OJe!J hP,P(v] ~ /t-J
(~ fVJ~S" &2-~)
2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 527.00 TO NODE 503.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.546
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6322
SUBAREA AREA(ACRES) 0.67 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 4.09 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.18
2.89
11. 76
****************************************************************************
FLOW PROCESS FROM NODE 503.00 TO NODE 505.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
ELEVATION DATA: UPSTREAM (FEET) = 613.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 428.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.950
*USER SPECIFIED (SUBAREA) :
USER-SPECIF~ED RUNOFF COEFFICIENT = .8000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 13.37
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.62
AVERAGE FLOW DEPTH(FEET) 0.23 TRAVEL TIME(MIN.) = 2.73
TC(MIN.) = 13.91
SUBAREA AREA (ACRES) 1. 02 SUBAREA RUNOFF (CFS)
AREA-AVERAGE RUNOFF COEFFICIENT 0.666
TOTAL AREA(ACRES) = 5.11 PEAK FLOW RATE(CFS) =
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) 2.63
591. 00
0.0514
3.22
13.44
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 505.00 = 923.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.91
RAINFALL INTENSITY (INCH/HR) = 3.95
TOTAL STREAM AREA (ACRES) = 5 .11
PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.44
****************************************************************************
FLOW PROCESS FROM NODE 501.00 TO NODE 525.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 75.00
UPSTREAM ELEVATION(FEET) = 596.40
DOWNSTREAM ELEVATION(FEET) = 594.90
ELEVATION DIFFERENCE (FEET) = 1.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.558
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.415
SUBAREA RUNOFF(CFS) 0.62
TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) 0.62
****************************************************************************
FLOW PROCESS FROM NODE 525.00 TO NODE 505.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 594.90 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 197.20 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.194
*USER SPECIFIED (SUBAREA) :
591. 00
0.0198
3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
USER-SPECIFIED RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.77
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) 1.30
AVERAGE FLOW DEPTH(FEET) 0.17 TRAVEL TIME(MIN.) 2.54
Tc(MIN.) = 9.10
SUBAREA AREA(ACRES) 2.10 SUBAREA RUNOFF(CFS) 6.22
AREA-AVERAGE RUNOFF COEFFICIENT 0.570
TOTAL AREA (ACRES) = 2.27 PEAK FLOW RATE(CFS) = 6.72
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.21 FLOW VELOCITY(FEET/SEC.) 1.54
LONGEST FLOWPATH FROM NODE 501.00 TO NODE 505.00 = 272.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.10
RAINFALL INTENSITY (INCH/HR) = 5.19
TOTAL STREAM AREA (ACRES) = 2 .27
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.72
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 13.44 13 .91 3.950
2 6.72 9.10 5.194
AREA
(ACRE)
5.11
2.27
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 15.51 9.10 5.194
2 18.55 13.91 3.950
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 18.55 Tc(MIN.) = 13.91
TOTAL AREA(ACRES) = 7.38
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 505.00 923.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 506.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 581.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 80.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 24.41
GIVEN PIPE DIAMETER(INCH) = 18.00
PIPE-FLOW (CFS) = 18.55
NUMBER OF PIPES
0.05 Tc(MIN.) = 13.96
1
564.30
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 506.00 1004.20 FEET.
****************************************************~***********************
FLOW PROCESS FROM NODE 506.00 TO NODE 506.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.96
RAINFALL INTENSITY (INCH/HR) = 3.94
TOTAL STREAM AREA(ACRES) = 7.38
PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.55
1
****************************************************************************
FLOW PROCESS FROM NODE 507.00 TO NODE 507.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 19.00 RAIN INTENSITY(INCH/HOUR) = 3.23
£)(lmNG ~ 1112-C P
({N6lJ/{M Jo~)
4
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL AREA(ACRES) = 25.00 TOTAL RUNOFF(CFS) = 12.80
+--------------------------------------------------------------------------+ I Data in the Code 7 above is from the reservoir and was obtained from I I the "Preliminary Hydrology for Villages of La Costa -The Ridge and The I I Oaks" prepared by Hunsaker & Associates on 04/25/2001. I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 507.00 TO NODE 506.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 584.90 DOWNSTREAM (FEET) 563.80
FLOW LENGTH(FEET) = 54.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 26.88
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 12.80
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 19.03
LONGEST FLOWPATH FROM NODE 501.00 TO NODE 506.00 326.50 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 506.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 19.03
RAINFALL INTENSITY (INCH/HR) = 3.23
TOTAL STREAM AREA(ACRES) = 25.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.80
** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 18.55 13.96 3.940
2 12.80 19.03 3.226
AREA
(ACRE)
7.38
25.00
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 27.94 13.96 3.940
2 27.99 19.03 3.226
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 27.99 Tc(MIN.) = 19.03
TOTAL AREA(ACRES} = 32.38
1
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 506.00 1004.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 508.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 563.30 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 157.60 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 9.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 21.45
GIVEN PIPE DIAMETER(INCH) = 30.00
PIPE-FLOW (CFS) = 27.99
NUMBER OF PIPES
0.12 Tc(MIN.} = 19.16
1
544.90
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 508.00 1161. 80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 508.00 TO NODE 508.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.} 19.16
RAINFALL INTENSITY (INCH/HR) 3.21
TOTAL STREAM AREA(ACRES) = 32.38
5
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.99
****************************************************************************
FLOW PROCESS FROM NODE 518.00 TO NODE 511.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 627.00
DOWNSTREAM ELEVATION(FEET) = 617.00
ELEVATION DIFFERENCE(FEET) = 10.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.108
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.715
SUBAREA RUNOFF(CFS) 0.24
TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.24
****************************************************************************
FLOW PROCESS FROM NODE 511.00 TO NODE 510.00 IS CODE = 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA««<
ELEVATION DATA: UPSTREAM (FEET) = 617.00 DOWNSTREAM (FEET) = 556.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 567.40 CHANNEL SLOPE = 0.1068
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.24
FLOW VELOCITY(FEET/SEC) = 1.83 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TlME(MIN.) = 5.17 Tc(MIN.) = 11.28
LONGEST FLOWPATH FROM NODE 518.00 TO NODE 510.00 = 662.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 511.00 TO NODE 510.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.522
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) 1.29 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 1.39 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.28
2.04
2.20
****************************************************************************
FLOW PROCESS FROM NODE 509.00 TO NODE 510.00 IS CODE = B1
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.522
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4876
SUBAREA AREA(ACRES) 0.90 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 2.29 TOTAL RUNOFF(CFS) =
TC(MIN.) = 11.2B
2.B5
5.05
****************************************************~***********************
FLOW PROCESS FROM NODE 510.00 TO NODE 50B.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 547.90 DOWNSTREAM (FEET) 545.40
FLOW LENGTH(FEET) = 24.BO MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 12.70
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 5.05
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 11.31
LONGEST FLOWPATH FROM NODE 51B.00 TO NODE 50B.00 6B7.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 508.00 TO NODE 50B.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 11.31
RAINFALL INTENSITY (INCH/HR) ~ 4.51
TOTAL STREAM AREA(ACRES) ~ 2.29
PEAK FLOW RATE(CFS) AT CONFLUENCE ~ 5.05
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 27.99
2 5.05
Tc
(MIN.)
19.16
11.31
RAINFALL INTENSITY AND TIME
CONFLUENCE FORMULA USED FOR
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc
NUMBER (CFS) (MIN.)
1 24.97 11.31
2 31.58 19.16
OF
2
INTENSITY
(INCH/HOUR)
3.213
4.514
CONCENTRATION
STREAMS.
INTENSITY
(INCH/HOUR)
4.514
3.213
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
AREA
(ACRE)
32.38
2.29
RATIO
PEAK FLOW RATE(CFS) 31.58 TC(MIN.) ~ 19.16
TOTAL AREA(ACRES) ~ 34.67
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 508.00 1161.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 508.00 TO NODE 514.00 IS CODE ~ 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) ~ 544.60 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) ~ 173.30 MANNING'S N ~ 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 9.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) ~ 23.13
GIVEN PIPE DIAMETER(INCH) ~ 30.00
PIPE-FLOW (CFS) ~ 31.58
NUMBER OF PIPES
0.12 Tc(MIN.) ~ 19.28
1
521.90
PIPE TRAVEL TIME (MIN.) ~
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 514.00 1335.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 514.00 IS CODE ~
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 19.28
RAINF,ALL INTENSITY(INCH/HR) ~ 3.20
TOTAL STREAM AREA(ACRES) ~ 34.67
PEAK FLOW RATE(CFS) AT CONFLUENCE ~ 31.58
1
****************************************************************************
FLOW PROCESS FROM NODE 512.00 TO NODE 526.00 IS CODE ~ 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT ~ .3500
S.C.S. CURVE NUMBER (AMC II) ~ 0
INITIAL SUBAREA FLOW-LENGTH(FEET) ~ 100.00
UPSTREAM ELEVATION(FEET) ~ 605.00
DOWNSTREAM ELEVATION(FEET) ~ 590.00
ELEVATION DIFFERENCE(FEET) ~ 15.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) ~ 6.267
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 6.605
SUBAREA RUNOFF(CFS) 0.28
TOTAL AREA(ACRES) ~ 0.12 TOTAL RUNOFF(CFS) 0.28
****************************************************************************
FLOW PROCESS FROM NODE 526.00 TO NODE 513.00 IS CODE ~ 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) ~ 590.00 DOWNSTREAM (FEET) ~ 536.00
7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CHANNEL LENGTH THRU SUBAREA(FEET) = 351.80 CHANNEL SLOPE = 0.1535
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.28
FLOW VELOCITY(FEET/SEC) = 2.19 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.67 Tc(MIN.) = 8.94
LONGEST FLOWPATH FROM NODE 512.00 TO NODE 513.00 = 451.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 526.00 TO NODE 513.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.253
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500
SUBAREA AREA(ACRES) 1.04 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) 1.16 TOTAL RUNOFF(CFS) =
TC(MIN.) = 8.94
1.91
2.13
****************************************************************************
FLOW PROCESS FROM NODE 513.00 TO NODE 514.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 530.00 DOWNSTREAM (FEET) 522.00
FLOW LENGTH(FEET) = 60.20 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) = 11.24
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 2.13
PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 9.03
LONGEST FLOWPATH FROM NODE 512.00 TO NODE 514.00 512.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 514.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.03
RAINFALL INTENSITY(INCH/HR) = 5.22
TOTAL STREAM AREA(ACRES) = 1.16
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.13
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 31.58
2 2.13
Tc
(MIN.)
19.28
9.03
INTENSITY
( INCH/HOUR)
3.199
5.219
AREA
(ACRE)
34.67
1.16
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 21.49
2 32.89
TABLE **
Tc
(MIN.)
9.03
19.28
INTENSITY
( INCH/HOUR)
5.219
3.199
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 32.89 Tc(MIN.) = 19.28
TOTAL AREA(ACRES) = 35.83
1
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 514.00 1335.10 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 515.00 TO NODE 516.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.199
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.2845
SUBAREA AREA (ACRES) 0.18 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) = 36.01 TOTAL RUNOFF(CFS) =
0.20
32.89
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
I
I
I
TC(MIN.) = 19.28
NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
****************************************************************************
FLOW PROCESS FROM NODE 514.00 TO NODE 519.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 521.60 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 124.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 10.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 22.46
GIVEN PIPE DIAMETER(INCH) = 30.00
PIPE-FLOW (CFS) = 32.89
NUMBER OF PIPES
0.09 TC(MIN.) =
1
507.00
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.37
519.00 1459.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 528.00 TO NODE 520.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.189
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.2887
SUBAREA AREA(ACRES) 0.23 SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) 36.24 TOTAL RUNOFF(CFS) =
TC(MIN.) = 19.37
0.70
33.37
****************************************************************************
FLOW PROCESS FROM NODE 519.00 TO NODE 517.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 507.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 12.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 18.17
GIVEN PIPE DIAMETER(INCH) = 30.00
PIPE-FLOW (CFS) = 33.37
NUMBER OF PIPES
0.09 Tc(MIN.) =
1
501.00
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.46
517.00 1552.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 517.00 TO NODE 500.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = .501.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 145.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 13.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.43
GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 33.37
0.16 Tc(MIN.) =
495.00
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 502.00 TO NODE
19.62
500.00 1698.20 FEET.
****************************************************~***********************
FLOW PROCESS FROM NODE 529.00 TO NODE 521.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.164
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES)
TC(MIN.) = 19.62
COEFFICIENT = 0.2947
0.33 SUBAREA RUNOFF(CFS)
36.57 TOTAL RUNOFF(CFS) =
0.99
34.10
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 10
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««<
============================================================================
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE = 7
»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««<
============================================================================
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 10.50 RAIN INTENSITY(INCH/HOUR) = 4.73
TOTAL AREA(ACRES) = 1.45 TOTAL RUNOFF(CFS) = 3.15
+--------------------------------------------------------------------------+ I The Code 7 above is refernced from the "Drainage Study for Villages I I of La Costa Oaks North Temporary RV Site" prepared by Hunsaker & I I Associates and dated 05/14/2004 (Node 203 to Node 205 in said report) . I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.50
RAINFALL INTENSITY(INCH/HR) = 4.73
TOTAL STREAM AREA(ACRES) = 1.45
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.15
****************************************************************************
FLOW PROCESS FROM NODE 523.00 TO NODE 530.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 591.00
DOWNSTREAM ELEVATION(FEET) = 575.00
ELEVATION DIFFERENCE(FEET) = 16.00
6.267 SUBAREA OVERLAND TIME OF .FLOW (MIN.) =
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY (INCH/HOUR) =
10.%, IS USED IN Tc CALCULATION!
6.605
SUBAREA RUNOFF(CFS) 0.25
TOTAL AREA (ACRES) = 0.11 TOTAL RUNOFF(CFS) 0.25
****************************************************************************
FLOW PROCESS FROM NODE 530.00 TO NODE 524.00 IS CODE = 53
»»>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW««<
»»>TRAVELTIME THRU SUBAREA««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 575.00 DOWNSTREAM (FEET) = 541.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 168.80 CHANNEL SLOPE = 0.2014
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.25
FLOW VELOCITY(FEET/SEC) = 2.51 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 7.39
LONGEST FLOWPATH FROM NODE 523.00 TO NODE 524.00 = 268.80 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 530.00 TO NODE 524.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.941
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6800
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES)
TC(MIN.) = 7.39
COEFFICIENT = 0.5845
0.27 SUBAREA RUNOFF(CFS)
0.38 TOTAL RUNOFF(CFS) = 1.09
1.32
****************************************************************************
FLOW PROCESS FROM NODE 524.00 TO NODE 522.00 IS CODE = 62
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»> (STREET TABLE SECTION # 1 USED) ««<
============================================================================
UPSTREAM ELEVATION(FEET) = 541.00 DOWNSTREAM ELEVATION(FEET) = 504.20
10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STREET LENGTH(FEET) = 439.40
STREET HALFWIDTH(FEET) = 20.00
CURB HEIGHT (INCHES) 6.0
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00
INSIDE STREET CROSSFALL(DECIMAL) 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.87
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALF STREET FLOOD WIDTH(FEET) = 7.53
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.64
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.56
STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) 8.69
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.351
'USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .9100
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.823
SUBAREA AREA(ACRES) 1.05 SUBAREA RUNOFF (CFS) 5.11
TOTAL AREA(ACRES) = 1.43 PEAK FLOW RATE(CFS) 6.30
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.41
FLOW VELOCITY(FEET/SEC.) = 6.28 DEPTH*VELOCITY(FT*FT/SEC.) 1.97
LONGEST FLOWPATH FROM NODE 523.00 TO NODE 522.00 = 708.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 522.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 8.69
RAINFALL INTENSITY(INCH/HR) = 5.35
TOTAL STREAM AREA(ACRES) = 1.43
PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.30
** CONFLUENCE DATA
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 3.15 10.50 4.735
2 6.30 8.69 5.351
AREA
(ACRE)
1.45
1.43
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TA8LE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 8.91 8.69 5.351
2 8.73 10.50 4.735
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS} 8.91 Tc(MIN.) = 8.69
TOTAL AREA(ACRES) = 2.88
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 522.00 1698.20 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 522.00 TO NODE 500.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 496.00 DOWNSTREAM (FEET) 495.20
FLOW LENGTH(FEET} = 8.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 14.76
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 8.91
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 8.69
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 500.00 1706.50 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 11
11
I
I
I
I
I
I
I
I
I:
I
I
I
I
I
I
I
I
I
»»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««<
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 8.91 8.69 5.348
AREA
(ACRE)
2.88
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 500.00 1706.50 FEET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 34.10 19.62 3.164
AREA
(ACRE)
36.57
LONGEST FLOWPATH FROM NODE 502.00 TO NODE 500.00 1698.20 FEET.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) ( INCH/HOUR)
1 24.02 8.69 5.348
2 39.37 19.62 3.164
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 39.37 Tc(MIN.) = 19.62
TOTAL AREA(ACRES) = 39.45
****************************************************************************
FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 12
»»>CLEAR MEMORY BANK # 1 ««<
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.7 -WEST AND AVENIDA SOLEDAD -EAST OF I I RANCHO SANTA FE ROAD (NODE SERIES 500) I I BEGIN MASS-GRADED NEIGHBORHOOD 3.6 (NODE SERIES 600) I
+--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 601. 00 TO NODE 607.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 507.90
DOWNSTREAM ELEVATION(FEET) = 501.80
ELEVATION DIFFERENCE(FEET) = 6.10
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.437
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.641
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINDTE.
SUBAREA RUNOFF(CFS) 0.39
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.39
****************************************************************************
FLOW PROCESS FROM NODE 607.00 TO NODE 602.00 IS CODE = 51
»»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««<
»»>TRAVELTlME THRU SUBAREA (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 501.80 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 411.90 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.170
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
0.50
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.84
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.)
AVERAGE FLOW DEPTH (FEET) 0.21 TRAVEL TIME (MIN.) =
Tc(MIN.) = 6.97
2.72
2.53
477.00
0.0602
5.84 SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA RUNOFF (CFS)
0.630
22.70
TOTAL AREA(ACRES) = 5.92 PEAK FLOW RATE(CFS) = 23.01
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH (FEET) = 0.27 FLOW VELOCITY(FEET/SEC.) 3.16
LONGEST FLOWPATH FROM NODE 601.00 TO NODE 602.00 = 506.90 FEET.
12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 477.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 895.80 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 15.42
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 23.01
0.97 Tc(MIN.) = 7.93
1
429.30
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 601. 00 TO NODE 603.00 1402.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL ,INTENSITY(INCH/HOUR) = 5.673
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .6300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6300
SUBAREA AREA(ACRES) 4.87 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 10.79 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.93
17.41
38.56
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 7.93
RAINFALL INTENSITY (INCH/HR) = 5.67
TOTAL STREAM AREA(ACRES) = 10.79
PEAK FLOW RATE(CFS) AT CONFLUENCE = 38.56
1
****************************************************************************
FLOW PROCESS FROM NODE 604.00 TO NODE 608.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 579.30
DOWNSTREAM ELEVATION(FEET) = 560.00
ELEVATION DIFFERENCE(FEET) = 19.30
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.605
SUBAREA RUNOFF(CFS) 0.32
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) 0.32
****************************************************************************
FLOW PROCESS FROM NODE 608.00 TO NODE 605.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 553.00 DOWNSTREAM (FEET) 458.00
FLOW LENGTH(FEET) = 560.40 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.1 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 6.91
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.32
PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) = 7.62
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 605.00 660.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 608.00 TO NODE 605.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.823
13
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .3700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3679
SUBAREA AREA{ACRES) 1.22 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) 1.36 TOTAL RUNOFF{CFS) =
TC{MIN.) = 7.62
2.63
2.91
****************************************************************************
FLOW PROCESS FROM NODE 609.00 TO NODE 610.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 5.S23
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.3892
SUBAREA AREA{ACRES) 0.18 SUBAREA RUNOFF{CFS)
TOTAL AREA (ACRES) 1.54 TOTAL RUNOFF{CFS) =
TC{MIN.) = 7.62
0.58
3.49
****************************************************************************
FLOW PROCESS FROM NODE 605.00 TO NODE 606.00 IS CODE = 31
»»>COMPUTE ptPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
ELEVATION DATA: UPSTREAM (FEET) = 458.00 DOWNSTREAM (FEET)
FLOW LENGTH{FEET) = 613.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.) 7.12
ESTIMATED PIPE DIAMETER{INCH) = lS.00
PIPE-FLOW (CFS) = 3.49
NUMBER OF PIPES
1.43 Tc{MIN.) =
1
442.90
PIPE TRAVEL TIME{MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE
9.05
606.00 1273.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 605.00 TO NODE 606.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.210
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.4124
SUBAREA AREA(ACRES) 0.26 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 1.80 TOTAL RUNOFF(CFS) =
TC(MIN.) = 9.05
0.75
3.87
****************************************************************************
FLOW PROCESS FROM NODE 606.00 TO NODE 603.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM(FEET) = 442.90 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.88
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 3.87
0.40 Tc(MIN.) = 9.46
1
429.30
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 603.00 1513.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE =
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
1
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 9.46
RAINFALL INTENSITY (INCH/HR) = 5.07
TOTAL STREAM AREA(ACRES) = 1.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.S7
14
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 38.56 7.93 5.673 10.79
2 3.87 9.46 5.065 1.80
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 41.81 7.93 5.673
2 38.30 9.46 5.065
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 41.81 Tc(MIN.) = 7.93
TOTAL AREA(ACRES) = 12.59
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 603.00 1513.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 603.00 TO NODE 600.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 421.40 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 61.40 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 14.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.68
GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 41.81
0.07 Tc(MIN.) = 8.00
1
419.10
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE 604.00 TO NODE 600.00 1574.80 FEET.
+--------------------------------------------------------------------------+ I END MASS-GRADED NEIGHBORHOOD 3.6 (NODE SERIES 600) I
I I I BEGIN MASS-GRADED NEIGHBORHOOD 3.2 (NODE SERIES 700) I +--------------------------------------------------------------------------+
****************************************************************************
FLOW PROCESS FROM NODE 701.00 TO NODE 707.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
============================================================================
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00
UPSTREAM ELEVATION(FEET) = 421.70
DOWNSTREAM ELEVATION(FEET) = 413.60
ELEVATION DIFFERENCE(FEET} = 8.10
SUBAREA OVERLAND TIME OF FLOW (MIN.) = 4.724
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.641
NOTE: RAINFALL INTENSITY IS BASED ON Tc = S-MINUTE.
SUBAREA RUNOFF(CFS) 0.97
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS} = 0.97
****************************************************************************
FLOW PROCESS FROM NODE 707.00 TO NODE 702.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««<
ELEVATION DATA: UPSTREAM (FEET) = 413.60 DOWNSTREAM (FEET) 380.00
FLOW LENGTH(FEET) = 406.40 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH} INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.51
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.97
PIPE TRAVEL TIME (MIN.) = 0.90 TC(MIN.) = 5.63
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 702.00 501.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 707.00 TO NODE 702.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.081
15
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA (ACRES) 1.80 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 2.03 TOTAL RUNOFF(CFS) =
TC(MIN.) = 5.63
7.01
7.91
****************************************************************************
FLOW PROCESS FROM NODE 702.00 TO NODE 703.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
=============================================================~==============
ELEVATION DATA: UPSTREAM (FEET) = 380.00 DOWNSTREAM (FEET) 370.00
FLOW LENGTH(FEET) = 153.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 12.72
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 7.91
PIPE TRAVEL TlME(MIN.) = 0.20 Tc(MIN.) = 5.83
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 703.00 654.40 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 702.00 TO NODE 703.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.923
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA(ACRES) 1.61 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 3.64 TOTAL RUNOFF(CFS) =
TC{MIN.) = 5.83
6.13
13.86
****************************************************************************
FLOW PROCESS FROM NODE 703.00 TO NODE 704.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
ELEVATION DATA: UPSTREAM (FEET) = 363.00 DOWNSTREAM (FEET) 347.40
FLOW LENGTH(FEET) = 57.30 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 24.89
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 13.86
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.86
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 704.00 711.70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 704.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 5.86
RAINFALL INTENSITY(INCH/HR) = 6.89
TOTAL STREAM AREA(ACRES) = 3.64
PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.86
****************************************************************************
FLOW PROCESS FROM NODE 705.00 TO NODE 706.00 IS CODE = 21
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
UPSTREAM ELEVATION(FEET) = 392.00
DOWNSTREAM ELEVATION(FEET) = 390.00
ELEVATION DIFFERENCE(FEET) = 2.00
SUBAREA OVERLAND TIME OF FLOW (MIN.) =
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SUBAREA RUNOFF(CFS) 0.32
5.488
7.195
TOTAL AREA (ACRES) = 0 . 08 TOTAL RUNOFF(CFS) 0.32
16
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE 706.00 TO NODE 704.00 IS CODE = 31
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) = 390.00 DOWNSTREAM (FEET) 349.50
FLOW LENGTH(FEET) = 566.90 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.08
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.32
PIPE TRAVEL TIME(MIN.) = 1.86 TC(MIN.) = 7.35
LONGEST FLOWPATH FROM NODE 705.00 TO NODE 704.00 631.90 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 706.00 TO NODE 704.00 IS CODE = 81
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.960
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT = .5500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5500
SUBAREA AREA (ACRES) 0.36 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) 0.44 TOTAL RUNOFF(CFS) =
TC(MIN.) = 7.35
1.18
1.44
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 704.00 IS CODE = 1
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.35
RAINFALL INTENSITY(INCH/HR) = 5.96
TOTAL STREAM AREA (ACRES) = 0.44
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.44
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 13.86
2 1.44
Tc
(MIN.)
5.86
7.35
INTENSITY
( INCH/HOUR)
6.894
5.960
AREA
(ACRE)
3.64
0.44
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE
STREAM RUNOFF
NUMBER (CFS)
1 15.01
2 13.42
TABLE **
Tc
(MIN.)
5.86
7.35
INTENSITY
(INCH/HOUR)
6.894
5.960
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 15.01 Tc(MIN.) =
TOTAL AREA(ACRES) = 4.08
LONGEST FLOWPATH FROM NODE 701.00 TO NODE
5.86
704.00 711. 70 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 704.00 TO NODE 700.00 IS CODE = 41
»»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<
»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««<
============================================================================
ELEVATION DATA: UPSTREAM (FEET) 347.10 DOWNSTREAM (FEET) 346.00
FLOW LENGTH(FEET) = 42.90 MANNING'S N = 0.024
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) 8.49
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 15.01
PIPE TRAVEL TIME (MIN.) = 0.08 Tc(MIN.) = 5.95
LONGEST FLOWPATH FROM NODE 701.00 TO NODE 700.00 754.60 FEET.
+--------------------------------------------------------------------------+
17
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
END MASS-GRADED NEIGHBORHOOD 3.2 (NODE SERIES 700)
+--------------------------------------------------------------------------+
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
4.08 TC(MIN.) =
15.01
END OF RATIONAL METHOD ANALYSIS
5.95
18
I
Ii
I
I
I:
I
I
I
I
I
I
I
I '
I
I
I
,1
I
I
, ',' V
, , , , ,
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
I
I
I
La Costa Oaks North -Neighborhood 3.7
TM Drainage Study
CHAPTER 5
DEVELOPED CONDITIONS
HYDROLOGY MAP
AO:ad H:IREPORTS1235211721TM Study 02.doc
w.o.2352-172 8115/2006 9:34 AM
-' -
"
, ,
LEGEND
WATERSHED
FLOWLINE
NODES
(
BOUNDARY
..... , "~,
'>-.
~ " "--..., ", ""-
~,'. -',"-
----.
-
o
REG AREA
NOTE:
CD
605.8
XXXX.X SF
/
/ /
622.7 ~--"""",,,,:?::=,-~--------
-®
623.8
SF
SF
xxxx.x SF
"
\
/
\
\ ,
,
I ~B
I ,
~j !
I
,
"
\ J
~--
®
-,
622.9
SF
PROPSED 24· STORM DR.!\}/I..,..;../'
----.
'-'-~-"-""" "', ,
* THE "MASS-GRADED DRAINAGE STUDY FOR LA COSTA OAKS NORTH
NEIGHBORHOODS 3.2, 3.6 & 3.7" INCLUDES DRAINAGE ANALYSIS FOR AVENIDA SOLEDAD
* SEE CHAPTER 4 OF THIS REPORT
H&A 8117/2006
/
/
/
PREPARED BY:
HUNSAKER
& ASSOCIATES
SAN DIEGO. INC.
PLANNING 10179 Huennekens Street
ENQNEERINC San DIego, Ca 92121
SURVEYING PH(858)558-4500· FX{858)55&1414
VICINITY MAP
-NTS
-~--
/
/ /
/ /
/
, , ,
\
"
, ,
\
\ ,
\
"
/
,
, ,
\
/
\
\ ,
\
,
/ '
/
/
/
/
/
/ /
/
/
/ ,/
/
-'-
. --.-
~'----'-
--,~;;: ---
/
/'
/
! (
,-
/
/ /
/
/ /
/
/
/
/
/
/
DEVELOPED CONDITIONS HYDROLOGY MAP
FOR
LA COSTA OAKS NORTH
NEIGHBORHOOD 3.7
CITY OF CARLSBAD, CALIFORNIA
/
/ "
/ /
SHEET
1
1