HomeMy WebLinkAboutCT 13-02; COASTAL 10; PERMANENT SHORING; 2014-06-121•
- 4
4 -
yr , Tt
Design Criteria
1 State of California CALTRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM)
- - - -
'- -t -
Geotechnical Information
These calculations are based on the Geotechnical Report issued by
Firm Name East County Soils
Project Number: 12-1147G1 -. - •
-. - 4 - , I Dated: 10-Jan-13
.-
Design Parameters: - - - -
. Cantilevered Shoring Rctraincd Shoring • .
Active Pressure . 35 Calculate Active Pressure N below Excavation?
-
Passive Pressure - 400 psf/ft - : O.pf/ft
Max Passive Pressure -. 0 psf . • -
___________________ ___________________ • .Soil Internal Friction Angle (Ø):.30jdegees .
Drilled Pile Diameter (d): varies feet
- - .- _1- •- *
For the typical spacing of 8 feet on center. Calculated User Input
and 2'-0" Diameter Caissons, use an Arching Factor of 3 r
and 2'-6" Diameter Caissons, use an Arching Factor of
- I
and 3' 0" Diameter Caissons, use an Arching Factor of 2.4 [, - - - - -- - - -
- -
Overstress Factor
Short term increases are allowed to allowable stresses (up to 133%) per
TSM 5.3 except in the following situations -.
1. Excavations are not temporary (in service m4ore than 90 days) *
2 Dynamic Loadings are present (seismic, pile driving, etc)
3 Excavations are adjacent to railroads
;4. Analysis ofhorizontal struts.
1
Allow Overstress? ,',NO
J.
Pile Spacing (s) Arching Factor
<3*d 3
>3*d 0.08*0 (<3)
*minimum surcharge toa depthoflo.o* Minimum Surcharge* loopsf - -- -•
.
Factor of Safety &8.1 -
I
Arching
per TSM
Global Parameters:
Active Pressure: 35
Passive Pressure: 400
Max Passive Pressure: 0
Factor Of Safety: 1.5
Seismic Load 13 H Design Parameters:
Beam Callouts Design Cut on 5th. (If
different from
Cut)
Surch (psf)surch
R1O
'
al depth of ext.
surch (ft)
Exter BEAM
Spacing (ft.) Caisson Dia. (ft.)
DEPTH
RESTRICTIONS (MAX SIZE
INCHES)
1
E1-E5 9 100 4.212 2.99997 8 2.5 20
E6 10 100 5.2 3.3333 8 2.5 20
E7-E8 10 100 10 5.2 3.3333 8, 2.5 20
E9 10.5 100 10 5.733 3.499965 8 2.5 20
E10-Ell 12 100 10 7.488 3.99996 8 2.5 20
E12 11.5 100 10 6.877 3.833295 8 2.5 20
E13 12 100 10 7.488 3.99996 8 2.5 20
E14-E15 13.5 100 10 9.477 4.499955 8 2.5 20
E16-E17 14.5 100 10 8.19975 4.833285 6 3 20
E18-E19 12 100 10 5.616 3.99996 6 3 20
E20 13 100 10 6.591 4.33329 6 3 20
E21 13.5 100 10 7.10775 4.499955 6 3 20
E22-E23 14.5 100 10 8.19975 4.833285 6 3 20
E24-E25 16.5 100 10 10.6178 5.499945 6 3 20
E26-E27 17 100 10 11.271 5.66661 6 3 20
E28 18 100 10 12.636 5.99994 6 3 20
E29-E32 18.5 100 10 13.3478 6.166605 6 3 20
E33 7.5 100 10 2.19375 2.499975 6 3 20
- Neglect the top •2 feet of soil
Desicin Results - Results for Schedule
*all dimensions in feet
Callout Beam Size Deflection Req. Moment Embed. (ft.)
E1-E5 W18X35 0.18 153.51 12.00
E6 W18X46 0.20 198.55 13.00
E7-E8 W18X46 0.20 198.55 13.00
E9 W18X46 0.25 223.90 13.50
E10-Ell W18X65 0.29 312.40 15.00
E12 W18X60 0.26 280.73 14.50
E13 W18X65 0.29 312.40 15.00
E14-E15 W18X86 0.34 421.55 16.50
E16-E17 W18X71 0.50 364.35 16.00
E18-E19 W18X50 0.33 224.21 13.50
E20 W18X60 0.37 274.84 14.50
E21 W18X65 0.40 302.80 15.00
E22-E23 W18X76 0.44 364.35 16.00
E24-E25 W18X97 0.57 511.87 18.00
E26-E27 W18X106 0.59 554.23 18.50
E28 W18X119 0.66 646.03 19.00
E29-E32 W18X130 0.66 - 695.59 19.50
E33 W18X35 0.07 70.15 9.50
Callout Beam Size Caisson
Diameter
Cut on Emb. Sched. Total
El-ES W18X35 2.5 9.0 14.0 23.0
E6 W18X46 2.5 10.0 15.0 25.0
E7-E8 W18X46 2.5 10.0 15.0 25.0
E9 W18X46 2.5 10.5 15.5 26.0
E1O-El1 W18X65 2.5 12.0 17.0 29.0
E12 W18X60 2.5 11.5 16.5 . 28.0
E13 W18X65 2.5 12.0 17.0 29.0
E14-E15 W18X86 2.5 13.5 18.5 32.0
E16-E17 W18X71 3 14.5 18.0 32.5
E18-E19 W18X50 3 - 12.0 15.5 27.5
E20 W18X60 3 13.0 16.5 29.5
E21 W18X65 3 13.5 17.0 30.5
E22-E23 W18X76 3 14.5 18.0 32.5
E24-E25 W18X97 3 16.5 20.0 36.5
E26-E27 W18X106 3 17.0 20.5 37.5
E28 W18X119 3 18.0 21.0 39.0
E29-E32 W18X130 3 18.5 21.5 40.0
E33 W18X35 3 7.5 11.5 19.0
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): El-ES
Beam Callout: El-ES
Wall Height, H: 9 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure No beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 9 0.315 0.035
Active Pressure, 0 3 ; (Sp)(A)(H) = 2.52 kips/ft
Active Pressure 2, C 32: (Sp)(A)(DJ = 0.28 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.8 kips/ft
Passive Pressure, o P: (Arch)(d)(P)(DJ = 3 D kips/ft
Force {ki(:!s} Arm {ft}
Pal = n 3 (H)(l/2) = 11.340 X ( 3
Pa2 = r)a(DJ = 0.000 D X ( D/2)
Pa3 = o ai(D)(l/2) = 0.000 02 X ( D/3J
P, = o,(H) = 8.000 X ( 4
PE= E = 4.212 X ( 6
PP= (1p(D)(l/2J = 1.50 02 X ( D/3J
Driving Moment, OM= X003+Y02+ZD+C X0 : 0.00 Y: 0.00
Resisting Moment, RM= (XR)D"3 XR: 0.5
RM with F.0.S. = (XRJD"3 XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
9
Starting
Pressure
0
35 pcf
400 pcf
0 psf
100 psf
10 ft
4.212 kips
3 ft
H,psf
Ending Ending
Depth Pressure
20.8965 4.758583
I -6 -5 -4 -3 -2 -1
Slope
0.4
0 1 2
~~-,.-~~~__,.~P.R~SS!:/Bl..~k~sf~-........-~~~~ 0
Moment at U !k·ttl
+D) = 34.02 + 11.34 D
= 0.00 02
= 0.00 D3
+DJ 8.00 D + 32
+DJ 4.21 D + 25.27213
= 0.50 03
Z: 23.55 C: 91.29
ZR: 0 C: 0 <-Terms divided by
-5
--10 .t!
:r: !:;:
~ -15
-20
-25
1.5
- V - VV - - )V_
•
Calcs for Beam(s):El-ES continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c (XR)DA3 = 0.00 solve for 0 by changing the depth of Embed, 0
Embedment Dpth 9 91371 ft J
,
Rotaiion Increase perTSM 61118965 ftJ
Determine the Depth of Zero Shear Plane: (Substitute Y for- D):
- V
PA1+PA2Y+PA3V2+PS+PE PpY2 = 000 Plane of Zero Shear is located at 3.96 feet below bottom of excavation
- .1. - V VV •.
V V V V. . . .: V • -
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(V3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y3/3)=;:j53 509 k ft
V
V
- '. - - •V
Determine the Pile Deflection (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
2/3 d= 1 67 feet below bottom of excavation
Deflection Due To:
V
Active Pressure 0.0449 in -- -'
Solider Beam Selection User Input Beam Uniform Surcharge 00567 in
External Surcharge 00739 in Use W18X35 0
Total Deflection 0.1755 in
,.
Mpx/O = 165669 k PASS
lxx= 510 in A4
Wall Height = 9 ft
Required Embed = 12 ft -
Total Beam Length 21 ft ,'- 'Bea
Caisson Diameter = 25 ft
V
V - VV -
V V ••V• 'V V
VVVVV
V
•V 4 V - - V - - 4 . I -.
-
VV• V V5V - V - V -- - - -V •V -
V •V V _• VVVV •. .
V V VV
- V V V - . Vt" . V . -. V V .•
V - V -
V V - •_V VV
V V •VV' • •• •V - 0 V V VV .V V V VS VV!'•.
-
V -V
V * .5. V
V V •V*V VV *V V : ,c ..
V
V
,V
5V V . 'V V * •i V •VV
VVV VVVI V
-
V
•V .V V •V VVV •
-V VVSV
- VVV
- V V V 4 •V V V V V V
V V V
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): E6
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d :
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1 -ft ksf
Active Pressure, n.:
Active Pressure 2, n.2:
Surch. Pressure, o ,:
Passive Pressure, crP:
Pal= n.(H)(l/2) =
P.2 = o .(D) =
P03 = oai(D)(l/2) =
P, = o ,(H) =
PE= E =
PP= 11p(D)(l/2) =
E6
10 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
10 0.35
10 0.1 -ft ksf
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kiQs)
14.000
0.000
0.000
8.000
5.200
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)DA3
RM with F.0.S. = (XR)DA3
Slope
0.035
0
kcf
Active
Un. Surch.
Ext. Surch.
Units
2.8 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft)
X ( 3.333
D X ( D/2)
D2 X ( D/3)
X ( 5
X 6.667
D2 X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 5,2 kips
Depth o f Ext. Surch, De: 3.3333 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
Starting
Depth
10
I -6
I I
I l j
Starting
Pressure
0
-4
Ending Ending
Depth Pressure
22.895 5.158006
-2
PRESSURE (ksf
.~
~
Moment at o I k-ttl
0
+D) = 46.67 + 14.00 D
= 0.00 D2
= 0.00 03
+D) = 8.00 D + 40
+D) 5.20 D + 34.66684
= 0.50 03
Z: 27.20 C: 121.33
Slope
0.4
ZR: 0 C: 0 <-Terms divided by
2
0
-5
--10 ~
t ~ -15
-20
-25
1.5
-. ?- -- - • a
Calcs for Beam(s) E6 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3YDA2zDc(xR)DA3 = -0.00 -
solve for 0 by changing the depth of Embed, D: - -; • -
- Embedrnent Depth 10745ë ft
Rotaonai Increase per TSM 6.1: 12.895
Determine the Depth of Zero Shear Plane (Substitute Y for D)
PA1+PA2Y+PMY2+Ps+PE-PPY2 = 0.00 Plane of Zero Shear is located at 4.26 feet below bottom of excavation. -
Determine the Maximum Moment at Point of Zero Shear: *
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) p(y3/3)=j55 1 kft
Determine the Pile Deflection (Use superposition principle) -
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. . - - - V • -
2/3 d= 1.67 feet below bottom of excavation
Deflection Due To: . .
V
Active Pressure 0.04i8 in Solider Beam Selection - I User Input Beam- Uniform Surcharge: 0.0661,in
External Surcharge 00839 in - Use W18X46 W18X46
Total Deflection 0.1989 in Mpx/Q = 226 214 k' PASS
V V V
VxxV712inA4
V
V
Wall Height = 10 ft -
RequiredEmbed= 13ft 4
Total Beam Length = 23ftt
V V -
-
- 4 - 5 CãissôñDiametér= -: ' 2;ft V
V
V
-, •V V V
V V
•
V
• V V
V
V
a
V -
V - V - V
V V• - V
-.
V V
V V V -
V
•• •. V' -
V
-
V •V V VV •
-
--
• •••V
-
-
- V
V V •
-
V
.- S V --
- '•Vi V -- •V
- - •
V
V t.V ••1VV -
'V
-V • V -•
V V • - • V V V Vt VV V
V - -
- - - V - • VV
- - V
•V VV.V
- V V - V VV
V
V - S
V
•V V
V V
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): E7-E8
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0.1
Active Pressure, (1 .:
Active Pressure 2, o.2:
Surch. Pressure, o,:
Passive Pressure, CJ'P:
Pa1 = n.(H)(l/2) =
P.2 = r).(D) =
Pa3 = 0 az(D)(l/2) =
P, = o,(H) =
PE= E =
PP= Oµ(D)(l/2) =
E7-E8
10 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
10 0.35
10 0.1
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force {ki~s}
14.000
0.000
0.000
8.000
5.200
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM= (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
0
2.8 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft}
X ( 3.333
D X ( D/2)
D2 X ( D/3)
X ( 5
X 6.667
Dz X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
Un i. Surch. Depth:
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
10
[ ! -6
r
'
Starting
Pressure
0
-4
35 pcf
400 pcf
0 psf
100 psf
10 ft
5.2 kips
3..3333 ft
H,psf
Ending Ending
Depth Pressure
22.895 5.158006
-2
PRESSURE ksf
Moment at o (k-tt}
0
+D) = 46.67 + 14.00 D
= 0.00 D2
= 0.00 D3
+D) = 8.00 D + 40
+D) 5.20 D + 34.66684
= 0.50 D3
Z: 27.20 C: 121.33
Slope
0.4
ZR: 0 C: 0 <-Terms divided by 1.5
2
0
-5
--10 .:::
it c.. ~ -15
-20
-25
-
-
1• I
••-
S -. •
,• . - 4•
Caics for Beam(s): E7-E8
-
' continued -
Set Driving Moment equal to Resisting Moment and
- (XD)Dd3+YDA2+ZD+C(XR)DA3 = 0.00 . solve for by changing the depth of Embed, D:
- -
jEmbedP'F'nt Depth::,,10 7458 ft
Rotational Increase per TSMGI 1,12 895 ft j
Determine the Depth of Zero Shear Plane: (Substitute Y for b):
- -
- PA1+PA2Y+PMY2+PS+PE-PPY2 = 0.00 Plane of Zero Shear is located at . 4.26 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(Y+H/3)+PA2(Y /2)PA3(Y /3)+Ps(Y+H/2)+PE(Y+H-DE)-Pp(Y /3)=
-5..----. 1. L198.551_k4tJ : I
Determine the Pile Deflection: (Use superposition principle)
r
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. --
2/3 d= 1.67 feet below bottom of excavation
Deflection Due To: -. -
-.
• .
_______________________________ ______________ Active Pressure: 0.0488 in
. -. Solider Beam S&ect:n User Input Brn Uniform Surcharge: 0.0661 in . • .
External Surcharge: 0.0839 in • - Use W18X46 . W18X46
Total Deflection: 0.1989 in Mpx/? = 226.214 k - PASS
. .-
-
. ' - Ixx=. 712 in1'4 :
•
-
- -• . Wall Height = •. loft
. - .
•- - P.equiredEmhd= • • 13 ft -
Total Beam Length = 23 ft
- . - .. . -•
-
Caisson Diameter = - 2.5 ft
.;.
•• - .•'-. .5 --, S
• - . _-
. - - •
- S
_5
• -V . ,.-
5, -•••- • - -
. . .T
-
. •
•' • . ..
-
- •• • -V.- - • •-.
- -
* _ . . -- .5- - I-' -
- ,5 - . .--_• . •'•r' • - -. - . -. - -• . -. -5 - _-,. •.,
- .
••
•- -•, .. .
••... f_ -• -
Cantilevered Permanent Shorimz Desien -AASHTO Methodoloev Cales of Beam(s): E9
Beam Callout: E9
Wall Height, H: 10.5 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure No beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
0 0 10.5 0.3675
0 0.1 0.1
Active Pressure, o.: (Sp)(A}(H) =
Active Pressure 2, (1 •2: (Sp)(A)(D) =
Surch. Pressure, o,: (Su}(Sp) =
Passive Pressure, <,-p: (Arch)(d}(P)(D) =
Force (ki~s}
P.1 = n .(H}(l/2) = 15.435
P.2 = (J'.(D) = 0.000
Pa3 = o ai(D}(l/2) = 0.000
P, = o5(H) = 8.000
PE= E = 5.733
PP= <'p(D)(l/2) = 1.50
Driving Moment, DM = X0 D3+YD2+ZD+C
Resisting Moment, RM = (XR)D113
RM with F.O.S. = (XR)D113
Slope
0.035
0
2.94 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft}
X 3.5
D X ( D/2)
D2 X ( D/3)
X ( 5.5
X 7
D2 X ( D/3)
X0 : 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
10.5
! -6
I r
t
Starting
Pressure
0
-4
35 pcf
400 pcf
O psf
100 psf
10 ft
5.733 kips
3.5 ft
H,psf
Ending Ending
Depth Pressure
23.8965 5.358603
-2
PRESSURE ksf
Moment at CJ(k-tt'l
0
+D) = 54.02 + 15.44 D
= 0.00 D2
= 0.00 D3
+D) = 8.00 D + 44
+D) 5.73 D + 40.1312
= 0.50 D3
Z: 29.17 C: 138.15
Slope
0.4
2
0
-5
-10
,t!
::x: -15 f--a..
LU
0
-20
! -25
-30
C: 0 <-Terms divided by 1.5
i
I
'-4
V •
' - -4 -. - - - V •
-. _•V • .9 - V V,• 94
Caics for Beam(s) E9 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+YDA2+ZD+c (XR)DA3 = 0.00 solve for 0 by changing the depth of Embed, D: "• V V
V V V
V V V
[,20% Rota'tional Increas perTSM 6 1 13 3965 ft - V •V V - •V* J9VV_9_ _V tVV rV -- _•_V99j__9_44-___9•___,_4_•9V_•V__4_4_tfl_4V,_9_V_____*9_--_Vfl_Vt
9. . - • - V Determine the Depth of Zero Shear Plane: (Substitute V for D): '
V
' 0.00 Plane of Zero Shear is located at 4.41 feet below bottom of excavation.
V
Determine the Maximum Moment at Point of Zero Shear: V' 'V
V V
V -
V
•• :-
V
2 3 3 1V :zVrr-- 94 V V MM =PAl(Y+H/3)+PA2(V /2)+PA3(Y /3)+Ps(Y+H/2)+PE(Y+H-DE)-Pp(Y /3)=2239024k-ft. V V V
4 4 -
,
V V
V VV
• - V - -
Determine the Pile Deflection (Use superposition principle) ..
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.9 '
V . • V '
V V
V V • -
2/3 d= 1.67 feet below b6tto6i of excavation •, V
V
V
Deflection Due To: V V V V:
' V
• V
:- V Active Pressure 0.0594 in ' * I V . V •,.' •V
• SoliderBeamSelection V , 1User input Beam. Uniform Surcharge: .0.0821 in. V V - 94V • .VV9 '9'-V' 99V94 V •.:• 'V, VV& ''" V9,
External Surcharge 0.1041 in Use W18X46' 0'
Total Deflection 02456 in 94 Mpx/Q =' 226214 k PASS
.9 - lxx=. 712 n'4
V ,
449
4 Wa!lVHeight=V. 10.5ft V V
Required Embed = 13.5 ft
.9Total Beam Length = 24 ft
;Caisson Diameter .: V
V . V -, V
V V - - -,
4•V
V - V -
V
_., V - 'V
4 V V 9 VV
V 4 9 4
- V V•V - . - V V
-
tV: V
V . ' V
V - 4
* • - V
, 4 - 4 V -4 V - ' •'V', • 4, - •V •, • •
4 • V •4 V - . . V 94 V , - - •4. Vt . . .
Vt - . -- V • -
V
• • •- -
4*9 V 9' V
V
- - V • V
: - 4 .
V
. :.- •- .., V .V -' -
-
-
-
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): ElO-Ell
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, CJ.:
Active Pressure 2, c •2:
Surch. Pressure, o ,:
Passive Pressure, o P:
P.1 = n.(H)(l/2) =
P.2 =o.(D)=
P.3 = oai(D)(l/2) =
P, = o ,(H) =
Pe= E =
Pp= n p(D)(l/2) =
ElO-Ell
12 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
12 0.42
0.1
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force {ki12s}
20.160
0.000
0.000
8.000
7.488
1.50
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
0
3.36 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft}
X 4
D X ( D/2)
D2 X ( D/3)
X ( 7
X 8
D2 X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting Starting
Depth Pressure
12 0
I -8 -6
35 pcf
400 pcf
0 psf
100 psf
10 ft
7.488 kips
4 ft
H,psf
Ending Ending
Depth Pressure
26.9108 5.96431
Moment at O I k-ttl
+D) = 80.64
= 0.00 D2
= 0.00 D3
+D) = 8.00 D
+D) 7.49 D
= 0.50 D3
Z: 35.65 C:
+
+
+
196.54
20.16 D
56
59.9043
Slope
0.4
ZR: 0 C: 0 <-Terms divided by
-5
-10
:E.
:i: -15
l:i:: UJ 0
1.5
-20
-25
-30
,
Caics for Beam(s): E10-Ell . continued
Set Driving Moment eqtial to Resisting Moment and (xD)DA3+yDA2+zo+c(xR)DA3 = 0.00 - solve for 0 by changing the depth of Embed, D: .
[20onal Increase perTSM 61 '14 9108 ft j
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
= 0.00 Plane of Zero Shear is located at 4.87 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(V+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE)
Determine the Pile Deflection: (Use superposition principle) - -
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. .
- 2/3 d= 1.67 feet below bottom of excavation -
Deflection Due To: S
Active Pressure: 0.0681 in . . Solider Br9m Selection - User Input Beam Uniform Surcharge: 0.0967 in .
External Surcharge: 0.1256 in . - . use W18X65 0
Total Deflection: 0.2903 in
-
Mp 1 = 332.003k -
-
PASS
XX 1070 inA4
-: - - Wall Height = 12 t
-
• -
.Rq'jired En'bed= 15 ft •
-
-
Total Beam Length = 27 ft
-
• Caisson Diameter = 2.5.,ft -
-- -
I. - - H -
- - - -
- - & -
-
-
•..,-
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): El2
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1 -ft ksf
Active Pressure, c1 a:
Active Pressure 2, c a2:
Surch. Pressure, o ,:
Passive Pressure, c1 P:
Pal= 11 3(H)(1/2) =
P02 = r, .(D) =
P03 = o ai(D)(1/2) =
P, = o ,(H) =
Pe= E =
PP= Cµ(D)(1/2) =
E12
11.5 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
11.5 0.4025
10 0.1 -ft ksf
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
18.515
0.000
0.000
8.000
6.877
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D/\3
RM with F.0.S. = (XR)D/\3
Slope
0.035
0
kcf
Active
Un. Surch.
Ext. Surch.
Units
3.22 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft}
X ( 3.833
X ( D/2)
X ( D/3)
X ( 6.5
X 7.667
X ( D/3)
X0 : 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acf 1ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 6.877 kips
Depth o f Ext. Surch, D1:: 3.8333 ft
Seismic Pressure, Se: H,psf
+D)
+D)
+D)
Resisting Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
11.5 0 25.9044 5.76174
-4 -2
PRESSURE
Moment at o !k-ttl
70.97
0.00 D2
= 0.00 D3
= 8.00 D
6.88 D
= 0.50 D3
+
+
+
18.52 D
52
52.72393
Z: 33.39 C: 175.70
Slope
0.4
ZR: 0 C: 0 <-Terms divided by
2
0
-5
-10
¢:
J: -15
!;: w 0
1.5
-20
-25
-30
-4 .4
't -- . . . - . p '
- e - -
4
. ' . . - . ' -:
•
. '' . ,
Calcs for Beam(s): E12, ' continued '. - * •'
.4
-
4
Set Driving Moment equal to Resisting Moment and
- (XD)Dft3+YDA2+ZD+C(XR)DA3 = 0.00 solve for 0 by changing the depth of Embed, D: . . .
jbedment Depth 12 0036
20% Rotational Increase per TSM 61 44044 ft _J
Determine the Depth of Zero Shear Plane: (Substitute V for D): . '
• •- . 4
.
4
= 0.00 Plane of Zero Shear is located at , 4.72 feet belw l5ottorri of excavation.
Determine the Maximum Momentat Point of Zero Shear:
MM = PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)-fPs(Y+H/2)+PE(Y+H DE) P(Y3/3)= 280731 k ft "1
Determine the Pile Deflection: (Use superposition principle)
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
2/3 d= 1.67 feet below bottom of excavation
- - ,
Deflection Due To:
.4 . . Active Pressure i 00622 n 4 . " ' ' '" ;. .44 .4' ' \ ' .44 "4
Solider Beam Selection ......- .4User.Input Beam Uniform Surcharge: • - 0.088 in . . . '-:
.4 --- .4.
.4
External Surcharge 0.1129 in Use W18X60 0
Total Deflection 0.263 in Mpx/Q i=',.:306:72 k' PASS
'ixx ' 984mM
.4 .4
' ' '
. .4 -c ' ,WalI.Height=- '11.5,ft ':--
Requmred Embed = 14 5 ft
-
-'4
Total Beam Length'4= 26ft
-
.4
Caisson Dià meter, ' ,.,'2:5'ft
.
4
4-
.4
.4 •8 .4 .
.4
.4 .-
.4
.4 .4-. .4 . .
2' •' -.
4
-. 4. .4,4 ' •- 7' .4
.4
.4 . .4 .4 -.4
.4 -
.4 - . .44 .4 .4 .4 - .4 .4. .4 ::•
.4 - ." •.-.
-.4 .4 , . .4 .. . .4 . .
-.4 '.4- .4- . . .4 4.
S
. - .4 --___;4 •2 •4
-4
.4 .,•,4 . -. . . 4
..
.4 -:
Cantilevered Permanent Shorine: Desie:n · AASHTO Methodoloe:v Cales of Beam(s): E13
Beam Callout: E13 Wall Pressures
Wall Height, H: 12 ft Act ive Pressure, A: 35 pcf
Beam Spacing, Sp: 8 ft Pa ss ive Pressure, P: 400 pcf
Caisson Diameter, d: 2.5 ft M ax Passive Pres: O psf
Arching, Arch: 3 Unifor m Surcharge, Su: 100 psf
Active Pressure No Un
beyond Cut Depth? " Extern
i. Surch. Depth: 10 ft
al Surcharge, E: 7.488 kips
Factor Of Saftey: 1.5 Depth o f Ext. Surch, DE: 4 ft
Max Beam Depth?: 20 Seismi c Pressure, Se: H,psf
Driving Pressures: Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
Starting Starting
Depth Pressure
Ending Ending
Depth Pressure
Slope
0 0 12 0.42 0.035 12 0 26.9108 5.96431 0.4
0 2
0
I ~ ~ 4 ~ i ~~~~~~~~P~R~E~S~SU~R~E::..\:.:k~sf.,_~--.--~--,
Active Pressure, er.: (Sp)(A)(H) = 3.36 kips/ft
-5 I f
Active Pressure 2, 0 .2: (Sp)(A)(D) = 0.28 D kips/ft -10
Surch. Pressure, o ,: (Su)(Sp) = 0.8 kips/ft -Passive Pressure, c1 P: (Arch)(d)(P)(D) = 3 D kips/ft £
:i: -15 .... 0.. UJ 0
-20
I -251
I ' -30,
Force {ki~s} Arm {ft} Moment at O ! k-ft}
P.1 = n .(H)(l/2) = 20.160 X ( 4 +D) = 80.64 + 20.16 D
P.2 =0 .(D)= 0.000 D X ( D/2) = 0.00 D2
Pal = o .2(D)(1/2) = 0.000 D2 X ( D/3) = 0.00 03
P, = o ,(H) = 8.000 X ( 7 +D) = 8.00 D + 56
Pe= E = 7.488 X 8 +D) 7.49 D + 59.9043
PP= op(D)(l/2) = 1.50 D2 X ( D/3) = 0.50 D3
Driving Moment, DM = X0 D3+YD2+ZD+C X0: 0.00 Y: 0.00 Z: 35.65 C: 196.54
Resisting Moment, RM = (XR)DA3 XR: 0.5
RM with F.O.S. = (XR)D"3 XR: 0.33 YR: 0 ZR: 0 C: 0 <-Terms divided by 1.5
. I
V • 4
V * V .
- Calcs for Beam(s) E13 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c (XR)DA3 0.00
solve for 0 by changing the depth of Embed, D:
_20%
-:-
-* ,V ;_ •
8ment Depth:, 'Em"be 12;4256
Roiatio~il Incre ___ ____ 14,§1
Determine the Depth of Zero Shear Plane: (Substitute V forD):
PA1+PA2Y+PMY2+PS+PE PpY2 = 0.00 Plane of Zero Shear is located at 4.87 feet below bottom of excavation
- '
Determine the Maximum Moment at Point of Zero Shear:
MM = PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(V+H/2)+PE(Y+H DE) P(Y/3)=312 4 k ft 7 • 1
Determine the Pile Deflection (Use superposition principle) ,
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
- 2/3 d= 1.67 feet below bottom of excavation
Deflection Due To: V• _________________________________ .-:
Active Pressure: 0.0681 in. :
. Solider Bea Selection m User Input Beam 3in
Uniform Surcharge 00967 in .
External Surcharge 0.1256 in Use W18X65 '-
Total Deflection 02903 in r Vt
Mpx/Q = 3A2.003 k PASS
lxx= 1070 A4
Wall Height 12 ft
Required Embed 15 ft
- Total Bear Length = 27 ft
Caisson Diameter= 25 ft
* I V..-
- V V
V• V
- V _VVJ .VV
V *1_V
-
'I
. - - •
- V
V V V• -. V
-
V -
••&V
Cantilevered Permanent Shorine: Oesie:n -AASHTO Methodoloe:v Cales of Beam(s): El4-El5
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o a:
Active Pressure 2, -:1a2:
Surch. Pressure, Os:
Passive Pressure, 0 P:
Pal= n.(H)(l/2} =
P.2 = ().(D) =
Pa3 = o ai(D)(l/2) =
Ps = o,(H) =
PE= E =
E14-E15
13.5 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
13.5 0.4725
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
25.515
0.000
0.000
8.000
9.477
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM= (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
3. 78 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft)
X 4.5
X ( D/2)
X ( D/3)
X ( 8.5
X ( 9
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Passi ve Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 9.477 kips
Depth o f Ext. Surch, DE: 4.5 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
13.5 0 29.9399 6.575943 0.4
-6 -4 -2 0 2 4
0
-8 PRESSURE (!ill,.,._ ____ _
+D) =
=
=
+D} =
+D)
=
Z: 42.99
ZR: 0
Moment at O ! k-ttl
114.82
0.00 D2
0.00 D3
8.00 D
9.48 D
0.50 D3
C:
C:
+
+
+
25.52 D
68
85.29343
268.11
0 <-Terms divided by
•5 I
-10
-;,:--15 t ::x: .... ~ -20
Cl
-25
-30
-35
1.5
1.-
Calcs for Beam(s):• E14415- continued
Set Driving Moment equal to Resisting Moment and (xD)D3+yDA2+zD+cxR)DA3 = 0.00 -solve for 0 by changing the depth of Embed, D:. -
Embedment Depth 13 6999 ft
20% Rotatiônal Increase per T5M611 16 4399 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D): -
0.00 - Plane of Zero Shear is located at 5.35 feet below bottom of excavation.
-
*
Determine the Maximum Moment at Point of Zero Shear:
3 42MM,<= PAI(Y+H/3)+PA2(Y2/2)-tPA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y/3)=i 553 k ' j
-
-
Determine the Pile Deflection (Use superposition principle)
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
- - 2/3 d= 1.67 feet below bottom of excavation .
Deflection Due To: - ..
Active Pressure: - 0.0777 in - - - Solide Beam Selection .User Input Bern Uniform Surcharge: 0.1091 in
External Surcharge: - 0.1493 in . Use W18X86 0
Total Deflection: - 0.3361 in - - r1p-../ = 453.739k' PASS
- . - ..-. .. 1530 in'4 I
- - - '.VjIIHeiIit= 13.5ft
,,-• • - :Required Embec1 -. 16.5 ft •
•- •
- .- -
Fotal Bearri Ler.gth = 30 ft
-
-
•
-
- Caissàn Diarnter = . - 2.5 ft
v - - -
- •* — I • ,.,
- •t -
-• e.
-. -: - ..- - . -•
-
-
..•
- -- (
i-S . -- *• • - • •
• -• - •
1 • •
- • • • •
- 1 - - - .-•
- •
-•-
-r
• - -- -- . -•• -
..
- •.'- - --
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): E16-E17
Beam Callout: E16-E17
Wall Height, H: 14.5 ft
Beam Spacing, Sp: 6 ft
Caisson Diameter, d: 3 ft
Arching, Arch: 2.4
Active Press ure
beyond Cut Depth? No
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 14.5 0.5075 0.035
0 0.1 10 0.1 0
Active Pressure, ci.: (Sp)(A)(H) = 3.045 kips/ft
Active Pressure 2, o •2: (Sp)(A)(D) = 0.21 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.6 kips/ft
Passive Pressure, P P: (Arch)(d)(P)(D) = 2.88 D kips/ft
Force {kiQs} Arm {ft}
P.1 = n .(H)(l/2) = 22.076 X ( 4.833
P.2=o .(D)= 0.000 D X ( D/2)
P.3 = oai(D)(l/2) = 0.000 D2 X ( D/3)
P, = o ,(H) = 6.000 X ( 9.5
PE= E = 8.200 X 9.667
Pp= op(D)(l/2)= 1.44 02 X ( D/3)
Driving Moment, DM = X003+YD2+ZD+C X0: 0.00 Y: 0.00
Resisting Moment, RM = (XR)D"3 XR: 0.48
RM with F.O.S. = (XR)D113 XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pct
Pass ive Pressure, P: 400 pct
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su:
i. Surch. Depth:
100 psf
Un 10 ft
Extern al Surcharge, E: 8.1998 kips
Depth o f Ext. Surch, DE: 4.8333 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
+D)
+D)
+O)
Starting
Depth
14.5
I -s
! l I i l I
I
I I '
=
=
=
=
=
Z: 36.28
Starting
Pressure
0
-6 -4
Ending Ending
Depth Pressure
30.2087 6.283484
-2 0
PRESSURE ksf
Moment at a !K-ftl
106.70 + 22.08 D
0.00 D2
0.00 D3
6.00 D + 57
8.20 D + 79.26465
0.48 D3
C: 242.97
Slope
0.4
2
ZR: 0 C: 0 <· Terms divided by
4
0
-5
-10
=-15 :t;:..
::i: f-~ -20 a
-25
-30
-35
1.5
Calcs for Beam(s): E16-E17 - continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c(xR)DA3 = 0.00
solve for 0 by changing the depth of Embed, D;
....____
JErnbedent Depth 13.0906ft
[ 20% Rotational Increase per TSMb1 15 7087 ft J
Determine the Depth of Zero Shear Plane: (Substitute V for D):
= . 0.00 Plane of Zero Shear is located at 5.02 feet below bottom of excavation. -
Determine the Maximum Moment at Point of Zero Shear: - - '-. •, - :'. -
2 3 MM= 11 , '•
2
r
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. - . :-
- ' 2/3 d= 2 feet belocv bottom of excavation
Deflection Due To:'-
Active Pressure: 0.1196 in Solider Beam Selection 'iser Input Beam
Uniform Surcharge: . 0.1549 in
External Surcharge: - 0.221 in * ..- use W18X71 • '0
Total Deflection: .0.4955 in - . r.ipx/c = 364:604 k ..•- PASS
lxx = 1170 mM
- ' - ?.'.jll Height = - 14.5 ft
Requird[rnhed=. - 16 ft '
lotal Beam L'nth 30.5
.. aissor' iameter = 3 it -
- - .4 .
-- -2-
-
-- t__• .•. - . . - -- -. -4 -
-' _- .- •- . --4.'. . -. -V -.
- . - • . .- *
- •, -
•,!
- •, -- .4 ' --V - - •- - -
'V
4.- --V. •• . - - - -
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): E18-E19
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1
Active Pressure, n.:
Active Pressure 2, (1'.2:
Surch. Pressure, o ,:
Passive Pressure, fl P:
P.1 = '"•(H)(l/2) =
P.2 = r) .(D) =
P.3 "' o ai(D)(l/2) =
P,"' o,(H)=
PE= E =
PP= cr p(D)(l/2) =
E18-E19
12 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
12 0.42
10 0.1
(Sp)(A)(H)"'
(Sp)(A)(D)"'
(Su)(Sp)"'
(Arch)(d)(P)(D)"'
Force {kips)
15.120
0.000
0.000
6.000
5.616
1.44
Driving Moment, OM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
0
2.52 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm (ft)
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Uniform Surcharge, Su:
Un i. Surch. Depth:
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting Starting
Depth Pressure
12 0
-6 -4
35 pcf
400 pcf
0 psf
100 psf
10 ft
5.616 kips
4 ft
H,psf
Ending Ending Slope
Depth Pressure
25.405 5.361987 0.4
-2
PRESSURE ksf
0
Moment at O I k-ttl
X
X
4 +D) = 60.48 + 15.12 D
D ( 0/2) =
( D/3) =
X ( 7 +D)
X ( 8 +D)
02 X ( D/3) =
X0: 0.00 Y: 0.00 Z: 26.74
XR: 0.48
XR: 0.32 YR: 0 ZR: 0
0.00 02
0.00 D3
6.00 D +
5.62 D +
0.48 03
42
44.92822
C: 147.41
C: 0 <-Terms divided by
2
0
-5
, -10
.;:::
:J: -15 .... 0.. w 0
-20
-25
-30
1.5
-
Calcs for Beam(s) E18 E19 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c(xR)DA3 = 0.00
solve for 0 b changing the depth of Embed, D:. -
- JTmbedment Depth 11.1708 ft
20%R6tati6naU6creaseprIsI111.3405rt J
Determine the Depth of Zero Shear Plane: (Substitute V for D): -
0.00 Plane of Zero Shear is located at . 4.31 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear: . .
MM= P3 2 P 3(Y/3P5(H/2)+PHDE)P,(Y/32 k-ft ...:
-
Determine the Pile Deflection: (Use superposition principle) -.
-
-
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
.2/3 d= 2 feet below bottom'of excavation. .
Deflection Due To:
Active Pressure: 0.0811 in -, .. . . Solider. Beam Selection user Input Bea
Uniform Surcharge: 0.1086 in . ,. . .
External Surcharge: 0.1394 in -. . x.Use W18X50 W18X50
Total Deflection: 0.3291 in . . . . Mpx/) = 252.162 k PASS
lxx= 800in"4
Wall Height = 12 ft
Required Enitd = i15 ft
- Total Beam Length = 25 5 ft
caisson Diameter = . -3,ft
S .
r
-S $
7 ..t. I .
- •. -. •$
-
Cantilevered Permanent Shoring Design -AASHTO Methodology Cales of Beam(s): E20
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, n .:
Active Pressure 2, c1•2:
Surch. Pressure, o ,:
Passive Pressure, P p:
Pai= n .(H)(l/2) =
P.2 = r1 .(D) =
P.3 = o ai(D)(l/2) =
P,= o ,(H)=
Pe= E =
Driving Moment, DM =
Resisting Moment, RM =
E20
13 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
13 0.455
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
17.745
0.000
0.000
6.000
6.591
1.44
X0D3 +YD2 +ZD+C
(XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
2.73 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm (ft}
X ( 4.333
X ( D/2)
X ( D/3)
X ( 8
X 8.667
X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.48
XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Passi ve Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 6.591 kips
Depth o f Ext. Surch, DE: 4.3333 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
Starting Starting Ending Ending Slope
+D)
+D)
+D)
Depth Pressure Depth Pressure
13 0 27.3226 5.729045 0.4
• Moment at U (k-ttl
76.90 +
0.00 D2
= 0.00 D3
= 6.00 D +
6.59 D +
= 0.48 D3
17.75 D
48
57.12229
2
Z: 30.34 C: 182.02
ZR: 0 C: 0 <· Terms divided by
4
0
-5
-10
¢!
:I: -15 I-a.. w 0
-20
-2s '
-30
1.5
- -., • .-
- 4
- - Calcs for Beam(s) E20 - continued
Set Driving Moment equal to Resisting Moment and • (xD)DA3+YDA2+zD+c(xR)oA3 = 0.00
solve for 0 by changing the depth of Embed, D:
nbedmnt e Depth 11 9355 ft
I 20% Rotat,aHncrease per TSM 61 14 3226 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D) -
= 0.00 Plane of Zero Shear is located at 4.59 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:'
MM= PAI(Y /3)+PA2(Y/2)A3(Y/3)+PS(Y1/2)+PE(Y+ )p(Y/3)-j74.842 k-ft
.
- - -
Determine the Pile Deflection: (Use superposition principle) . • .. . -. . -•
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. . • . •
- 2/3 d= 2 feet below bottor of excavation • • .
Deflection Due To: .
Active Pressure: -- 0.091 in - - - ... . . - - -•1
• Solider Beam Selection User Input Beam,.I Uniform Surcharge: 0.1211 in
External Surcharge: 0.1615 in : -. -- -. Use W18X60 W18X60
Total Deflection: - 0.3736 in ivlp.S. = 306. 72, k PASS
-- -
- .Ixx= 984in1'4 . -.
--
-
• Wall Height •••• 13 :
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): E21
Beam Callout: E21
Wall Height, H: 13.5 ft
Beam Spacing, Sp: 6 ft
Caisson Diameter, d: 3 ft
Arching, Arch: 2.4
Active Pressure
beyond Cut Depth?
No
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 13.S 0.4725 0.035
0 0.1 0
Active Pressure, er.: {Sp)(A)(H) = 2.835 kips/ft
Active Pressure 2, cr.2: (Sp)(A)(D) = 0.21 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.6 kips/ft
Passive Pressure, Cl P: (Arch)(d){P){D) = 2.88 D kips/ft
Force {ki12s} Arm {ft}
Pai= (1.(H)(l/2) = 19.136 X 4.5
P.2=o .{D)= 0.000 D X { D/2)
P.3 = o ai(D){l/2) = 0.000 D2 X ( D/3)
P, = n ,{H) = 6.000 X ( 8.5
PE= E = 7.108 X 9
PP= <i p(D)(l/2) = 1.44 D2 X { D/3)
Driving Moment, DM = X0D3+YD2+ZD+C X0: 0.00 Y: 0.00
Resisting Moment, RM = {XR)DA3 XR: 0.48
RM with F.0.S. = (XR)DA3 XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: O psf
Uniform Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 7.1078 kips
Depth o f Ext. Surch, DE: 4.5 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
I
'
+D)
+D)
+D)
Starting
Depth
13.S
-8
~
I
=
=
=
=
=
Z: 32.24
Starting
Pressure
Ending Ending
Depth Pressure
0 28.2834 5.913351
-6 -4 -2 0 PRESSURE ksf
l
Moment at U 11<-ttl
86.11 + 19.14 D
0.00 D2
0.00 D3
6.00 D + 51
7.11 D + 63.97007
0.48 D3
C: 201.08
Slope
0.4
2
ZR: 0 C: 0 <-Terms divided by
4
0
-5
-10
~
:i: -15 .... 0..
UJ 0
-20
-25
-30
1.5
5-
- . Caics for Beam(s): E21 continued -
Set Driving Moment equl to Resisting Moment and (Xo)DA3DA2+ZD+C(XR)DA3 0.00 -•
solve for 0 by changing the depth of Embed, D:
ent Depth 123195 ft
°RotionaIlncreaperTSM6 114 7834 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D):
2 21
-
0.00 Plane of Zero Shear is located at 4.73 feet below bottoth of excavation:
- -S
Determine the Maximum Moment at Point of Zero Shear: - .- -
MMpj<= - .
Determine the Pile Deflection (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. .-
- .
2/3 d= 2 feet below bottom of excavation . : --
-
Deflection Due To--
Active Pressure: 0.0976 in --.:-i-: .- -.
t
Solider Beam-Selection . User Input Be.am Uniform Surcharge: 0.1289 in
External Surcharge 0.1756 in Use W18X65 W18X65
Total Deflection 0.4021 in Mpx/C) = 332.003 k PASS
Ixx= 1070 A4
Wall Height = '13.5 ft
- Required Ethbed = 15 ft -
""Total
.5 . - . .•.,s..5•.__SS.5_
Beam Length = 28 51ft
- Caisson Diamter="" 3 ft
- . •
-
. .
- * .
)5
S .. - •
- -. - .• - p... ... t' - S - . S - - -.
5___ 5 H' . - -. ., • . •5 S - -.
- .5- .4•• -. - . p4 - p V - P -. -
a. . . .. .. _.• ;. V
-. s
-
ZI
. -.
• r . -. . S • . - -
-
-. . S - -
t • -'S . l_ •. .. - I - .
.5.,
.. . p
• . p
--
S - S .• ,p4pP. S - . .
Cantilevered Permanent Shoring Design -AASHTO Methodology Cales of Beam{s): E22-E23
Beam Callout: E22-E23
Wall Height, H: 14.5 ft
Beam Spacing, Sp: 6 ft
Caisson Diameter, d: 3 ft
Arching, Arch: 2.4
Active Pressure No beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 14.5 0.5075 0.035
0 0.1 10 0.1 0
Active Pressure, <1a: (Sp)(A)(H) = 3.045 kips/ft
Active Pressure 2, o ai: (Sp)(A)(D) = 0.21 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.6 kips/ft
Passive Pressure, o P: (Arch)(d)(P)(D) = 2.88 D kips/ft
Force {ki~s} Arm {ft}
Pal= n a(H)(l/2) = 22.076 X ( 4.833
P.2=0.(D)= 0.000 D X ( D/2)
Pa3 = o .2(D)(l/2) = 0.000 D2 X ( D/3)
P, = o,(H) = 6.000 X ( 9.5
PE= E = 8.200 X ( 9.667
PP= ('p(D)(l/2) = 1.44 D2 X ( D/3)
Driving Moment, OM= X0D3+YD2+ZD+C X0: 0.00 Y: 0.00
Resisting Moment, RM = (XR)D"3 XR: 0.48
RM with F.O.S. = (XR)D"3 XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su :
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, De:
Seismic Pressure, Se:
Resisting Pressures:
35 pcf
400 pcf
0 psf
100 psf
10 ft
8.1998 kips
4.8333 ft
H,psf
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
14.5 0 30.2087 6.283484 0.4
-8 -6 -4 -2 0 2 PRESSURE ksf
I
Moment'at O (k-ttl
+D) = 106.70 + 22.08 D
= 0.00 D2
= 0.00 D3
+D) = 6.00 D + 57
+D) 8.20 D + 79.26465
= 0.48 D3
Z: 36.28 C: 242.97
ZR: 0 C: O <· Terms divided by
4 -0
-5
-10
;:--15 ~
:I: .... fr; -20
(!l
-25
-30
-35
1.5
Caics for Beam(s) E22 E23 icontinued
Set Driving Moment qual to Resisting Moment and (xD)DA3+yDA2+zD+cxR)DA3 0.00 solve for by changing the depth of Embed, 0:,
EiIedmen(Depth 13 0906 ft '
20% Rotational Increase per TSM 6 1 15 7087 ft
-
Determine the Depth of Zero Shear Plane (Substitute Y for D)
= 0.00 Plane of Zero Shear is located at 5.02 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear: - ..
MM = PAI(Y+H/3)+PAZ(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE)
__________
1- . • - 4 *
Determine the Pile Deflection: (Use superposition principle)
. •
-
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. . -
-. • .
2/3 d= 2 feet belov bottom of excavation -
Deflection Due To: -. •, - - -
Active Pressure 0.1052 in Solider Beam Selection User Input Beam Uniform Surcharge 0.1363 in
External Surcharge 0.1945 in , Use W18X76 . W18X76
Total Deflection 0.4359 in Mpx/Q = 40652 k' PASS
lxx= 1330 in'4
Wall Height = -145 ft
Required Embed = 16 ft -
Total Beam Length
4
. -
.
-4
-:;-.3-ft ,
-- - .---. •
- . -
--4
1 4
--
4
c
*
* 4
1
. .-• . .... -* . -
- --4. • .• •
- ..-
-I - .-
.- -4 -- •- ---4- -
-
- •.• .-'- . . . * - - _ -. -
. • -
-
-• - .•
Cantilevered Permanent Shorim~ Desie:n -AASHTO Methodoloe:v Cales of Beam(s}: E24-E25
Beam Callout: E24-E25 Wall Pressures
Wall Height, H: 16.5 ft Acti ve Pressure, A: 35 pcf
Beam Spacing, Sp: 6 ft Passi ve Pressure, P: 400 pcf
Caisson Diameter, d: 3 ft M ax Passive Pres: 0 psf
Arching, Arch: 2.4 Uniform Surcharge, Su: 100 psf
Active Pressure No Uni
beyond Cut Depth? Extern
. Surch. Depth: 10 ft
al Surcharge, E: 10.618 kips
Factor Of Saftey: 1.5 Depth o f Ext. Surch, De: 5.4999 ft
Max Beam Depth?: 20 Seismic Pressure, Se: H,psf
Driving Pressures: Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
Starting Starting
Depth Pressure
Ending Ending Slope
Depth Pressure
0 0 16.5 0.5775 0.035 16.5 0 34.0733 7.029335 0.4
0 0.1 0
-8 -6 -4 -2 0 2 4
PRESSURE ksf 0
-5
Active Pressure, o .: (Sp)(A)(H) = 3.465 kips/ft -10
Active Pressure 2, (1 •2: (Sp)(A)(D) = 0.21 D kips/ft
Surch. Pressure, o ,: (Su)(Sp) = 0.6 kips/ft -15
Passive Pressure, <l'p: (Arch)(d)(P)(D) = 2.88 D kips/ft ¢'.
:t: -20 ~ 0.. w a -25
-30
-35
-40
Force {kii:1s} Arm {ft} Moment at O lk-ttl
P.1 = n .(H)(l/2) = 28.586 X 5.5 +D) = 157.22 + 28.59 D
P02 =00(D)= 0.000 D X ( D/2) = 0.00 D2
Pal= Oa2(D)(1/2) = 0.000 D2 X ( D/3) 0.00 D3
P, = o ,(H) = 6.000 X ( 11.5 +D) = 6.00 D + 69
PE= E = 10.618 X ( 11 +D) 10.62 D + 116.7958
PP= (ip(D)(l/2) = 1.44 D2 X ( D/3) = 0.48 D3
Driving Moment, DM = XoD3+YD2+ZD+C X0: 0.00 Y: 0.00 Z: 45.20 C: 343.02
Resisting Moment, RM = (XR)D"3 XR: 0.48
RM with F.O.S. = (XR)D"3 XR: 0.32 YR: 0 ZR: 0 C: 0 <-Terms divided by 1.5
- -
. 'V . i. S
V •,., - . 4-.- -. -
5
S.. ,SS ,..
5'.
V.
-
• - $ .- V.. ..
5-
- : • -- -• V . ,• . * -
I Calcs for Beam(s) E24 E25 continued
Set Driving Moment equal to Resisting Moment and (XD)DA3+yDA2.fZD+C.(XR)DA3
solve for 0 by changing the depth of Embed, 0:
j Embedment Depth 14 6444 ft
Ji 20% Rotational lncrease'per4TSM 6 1 17 5733t ft
Determine the Depth of Zero Shear Plane: (Substitute V for 0): . . .
= 0.00 Plane of Zero Shear is located at 5.60 feet below bottom of excavation.
. .5 ,- -
5V
•.
5,
'.
V.-
- -
.'
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(Y+H/3)+PAZ(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y/3)=511'867*kft
-Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. - •'• - . . S - -.
2/3 d= 2 feet below bottom of excavation
Deflection Due To:
Active Pressure 0.1369 in Solider Beam Selection ' User Input Beam, Uniform Surcharge 0.1675 in
External Surcharge 0.2648 in UseW18X97 0
Total Deflection 0.5692 in Mpx/Q = 526 281 k' PASS
lxx='- _175.0 -in
Wall Height 165 ft
Required Embed = 18 ft -.-
-V.--
'Toal Beam Length = 34,5 ft
'-Caisson Diametr
- - V • -: -
S
V -. -
* - • - - -V.-
V1
S * •'•• . - ,,VV -
S.
-
-
V
-: '. 4. . .- tV
-- ,: . V.
- •VSV
. ••..1 -- -- -V
4 -
, . .•,, . V - V - . .. . V - - . V.- - •3V - . - . . -
S S • -
V V V •'%-• V . .-, -
V - ,•, :-- V• • S. V -
1 - . •-: 'i -- .5
I • . • •,
•'V • 4
S--V
V. _5
- ..
.
. S -
Cantilevered Permanent Shorin2 Desiizn -AASHTO Methodoloizv Cales of Beam(s): E26-E27
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, CJ .:
Active Pressure 2, 0 32:
Surch. Pressure, o ,:
Passive Pressure, (1 P:
Pa1 = n.(H)(l/2) =
P.2 =rJ .(D)=
Pa3 = oai(D)(l/2) =
P, = o,(H) =
PE= E =
E26-E27
17 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
17 0.595
(Sp){A)(H) =
(Sp)(A)(D) =
(Su}(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
30.345
0.000
0.000
6.000
11.271
1.44
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM= (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
3.57 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm (ft}
X ( 5.667
X ( D/2)
X ( D/3)
X ( 12
X ( 11.33
X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.48
XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Uniform Surcharge, Su :
Un i. Surch. Depth:
Extern al Surcharge, E:
Depth o f Ext. Surch, De:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
17
Starting
Pressure
0
35 pcf
400 pcf
O psf
100 psf
10 ft
11.271 kips
5.6666 ft
H,psf
Ending Ending
Depth Pressure
35.0422 7.216862
-8 -6 -4 -2 0
.--------"-P"""RESSURE (ksf
Moment at o [k-ttl
Slope
0.4
2 4
-----0
-5
-10
-15
~ :c -20 .... 0.. UJ o -25
-30
-35
-40
+D) = 171.96 + 30.35 D
0.00 02
= 0.00 03
+D) = 6.00 D
+D) 11.27 D
= 0.48 03
Z: 47.62 C:
ZR: 0 C:
+
+
72
127.7386
371.69
0 <· Terms divided by 1.5
p
2 • I - - ..... .
A
IV
Caics for Beam(s) E26427 ' continued
Set Driving Moment equal to Resisting Moment and (xD)0A3+yDA2+zo+c (XR)DA3 = .. 0 00 solve for oby changing the depth ofEmbed, 0
- - - -
- jEmbedment Depth 15 0351 ft
-'
S - F -
20 RotatonalIncease per TSM 6.1: 18.0422,ft — •••_ ..•%S••.•_. ---.--.-------.---. 44••.,a.
Determine the Depth of Zero Shear Plane: (Substitute V for D): .
PA1+PA2Y+PA3Y2+Ps+PE PpY2 = 0.00 Plane of Zero Shear is located at 5 75 feet below bottom of excavation
-
A -
.. .
Determine the Maximum Moment at Point of Zero Shear:
r -------- .: U'
I MM = PAI(Y+H/3)+PA2(Y /2)+PA3(Y /3)+Ps(Y+H/2)+PE(Y+H DE) P(V3
/:)=
3kft
Determine the Pile Deflection (Use superposition principle)
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
'i'. -. '•
2/3 d= 2 feet below bottom of excavation
Deflection Due To: - •- _________________________________ _______________
Active Pressure: -. 0.1422 in ::. - •• * - - - • . Soli der Beam Selection . . . User-Input-Beam
- Uniform Surcharge: -, in .0.1712
External Surcharge: 0.2778 in . . Use W18X106 .. 0 .
Total Deflection: 0.5912 in . 1 Mpx/ = 574185k -. PASS -
- I 4+ s F'
lxx= 1910 InA4
+ . ++ - -
-: -Wall Heighf= - 17 ft
- •-1
-
Required Embed 18.5 ft
Total Beam Length 35.5 ft
Caissá Diameter
- s .. . -
--
+ •,• ,•' • * • : r - -
. .5 -•- . • -. -.+ -.'- -•. .:'- _•5
5
.•S • . - -•-
'
I -' •_ - 'A '•"
+ + ' • j. .
•' S. • F 5• ''. - '
-.
4 , -_-
p -.
4 •4;
•
-S * -F
-' •- -'
_ • - . ,- .
- - . . . -• . . . - 5 .....-. . •.
F,- . 4 - .
4-
r - - - . . . . *
- -, 4-: • . -S
. _ .
. •
• •
.
•
- . • -
F. .• . . . +
4,.
. +- •.• -: •
- . - •--+ •4 ',.'. . + -
- - -
'• . •, - ++ . . + - . - •• + 4' '• . . -
.5_•._ 4• -••, S.5
• •• •
-. a-
, F..
:--. -
? •, •p - -. .
. +
Cantilevered Permanent Shoring Design -AASHTO Methodology Cales of Beam(s): E28
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, n.:
Active Pressure 2, o.2:
Surch . Pressure, 0 5:
Passive Pressure, <, P:
P.1 = n .(H)(l/2) =
P.2 = n .(D) =
P.3 = o .2(D)(1/2) =
P5 = 0 5(H) =
PE= E =
Pµ = (.1µ(0)(1/2) =
E28
18 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
18 0.63
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force {kips)
34.020
0.000
0.000
6.000
12.636
1.44
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM "' (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
3. 78 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm {ft)
X 6
X ( D/2)
X ( D/3)
X ( 13
X 12
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.48
XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 12.636 kips
Depth o f Ext. Surch, DE: 5.9999 ft
Seismic Pressure, Se: H,psf
+D)
+D)
+D)
Resisting Pressures:
Starting
Depth
18
Starting
Pressure
0
Ending Ending
Depth Pressure
36.9827 7.593067
; -10 -8 -6 -4 -2 0
~--.------'PRE~URE {ksf I
Moment at O jk-ttl
= 204.12 +
= 0.00 D2
= 0.00 D3
= 6.00 D +
12.64 D +
= 0.48 D3
34.02 D
78
151.6328
Z: 52.66 C: 433.75
Slope
0.4
2
ZR: 0 C: 0 <-Terms divided by
4
0
-5
-10
-15
.; ~ I :t: -20' !i: t.U
O -25
-35
-40
1.5
Calcs for Beam(s) E28 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+YDA2+zD+c (XR)DA3 = 0.00
solve for by changing the depth of Embed, D:
J Embedmnt Depth 15 8189 ft
20%Ratiora Increase perTSM 61189827 ft
Determine the Depth of Zero Shear Plane (Substitute V for D) -
= 0.00 Plane of Zero Shear is located 'at. 6.05 fet below bottom of excavation. p
Determine the Maximum Moment at Point of Zero Shear
MM= . . . -
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
.
2/3 d= 2 feet below bottom of excavation .
Deflection Due To:
Active Pressure 0.158 in Solider Beam Selection User Input Beams Uniform Surcharge: 0.1837 in
External Surcharge 0.3145 in Use W18X119 0
Total Deflection —.0.6561 In Mpx/O = 654.025Y.
-
PASS
- lxx=- • 2190 A4
WallHeight= 18ft
Required Embed = 19 ft
Total Beam Length = 37 ft
Caisson Diameter 3 ft -
S
J- I-
.-- -.---• -.- -- -.- 4 - •
1 - P
* .- - - - - I •, -
-. -. -..- - -- • - .. .-.*.•. --V. -- - -
0 _. 4 - • --I - -. -
Cantilevered Permanent Shorin2 Desien -AASHTO Methodoloev Cales of Beam(s): E29-E32
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o a:
Active Pressure 2, (la2:
Surch. Pressure, Os:
Passive Pressure, 11 P:
Pal= •'.ia(H)(l/2) =
P.2 =n .(D)=
Pal= CJ.i(D)(l/2) =
Ps = Os(H) =
PE= E =
E29-E32
18.5 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
18.5 0.6475
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
35.936
0.000
0.000
6.000
13.348
1.44
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM= (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
3.885 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm (ft)
X ( 6.167
X ( D/2)
X ( D/3)
X ( 13.5
X ( 12.33
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.48
XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 13.348 kips
Depth o f Ext. Surch, De: 6.1666 ft
Seismic Pressu re, Se: H,psf
+D)
+D)
+D)
Resisting Pressures:
Starting
Depth
18.5
-10 -8
Starting
Pressure
0
-6
Ending Ending
Depth Pressure
37.9543 7.781709
-4 -2 0
,----.------'PRESSURE (ksf).
Moment at u !k-ttl
= 221.61 +
= 0.00 02
= 0.00 03
= 6.00 D +
13.35 D +
= 0.48 03
35.94 D
81
164.6231
Z: 55.28 C: 467.23
Slope
0.4
2
ZR: 0 C: 0 <-Terms divided by
4 -0
-5
-10
-15
¢:
:t: -20 I-0.. LU 0 -25
-30
-35
-40
1.5
9 .4
..1
V. - VV• •jV - . .4 - .
4 1
Caics for Beam(s) E29 E32 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zo+c (XR)0A3 = 0.00 solve forO by changing the depth of Embed, D:
Determine the Depth of Zero Shear Plane: (Substitute V for D):
PA1+PA2Y+PA3Y2+PS+PE-PPY2 = 0.00 Plane of Zero Shear is located at 6.20 feet below bottom of excavation.
• V
Determine the Maximum Moment at Point of Zero Shear: .
MM=
- . V - 4-; .• . V V
Determine the Pile Deflection: (Use superposition principle)
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
2/3 d= 2 feet below bottom of excavation
Deflection Due To: V V V V
V
Active Pressure 0.158 in Solider Beam Selection User Input Beam Uniform Surcharge: 0.1804 in !..V ... V ..:VV
,
V
External Surcharge 03174 in Use W18X130
Total Deflection 0.6558 in Mpx/Q = 723 886 k PASS
4 1V 4
lxx=-. 2460 nM
Wall Height = 185 ft
Required Embed = . 19 5 ft -
Total Beam Length = 38 ft
4 V'4 Caisn Diameter = 3 so ft
V '
V - - .. . * V •
- - . - V -
V • • •$V - V
V - • V - •V *
V V
V V - V -
V V
-
V.V V 4V4
- • V V
-- - •V - fl V -
4
4V
V -
•V
• V
V V V
- - V
V . . V • •. -
* /
- ; : •
V ,• V
-V •_4V • - .
•V
•
V V • -
V V - -. V4VV , V •V
- - . •,_; 4. V
A -
V
• V • - . - .- V.
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s}: E33
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, n 3;
Active Pressure 2, 0 32:
Surch. Pressure, o 5:
Passive Pressure, <1 P:
Pat = (i .(H)(l/2) =
Pa2 = ,') a(D) =
Pa3 = o •2(D)(1/2) =
Ps = o s(H) =
Pe = E =
E33
7.5 ft
6 ft
3 ft
2.4
No
1.5
20
Ending Ending
Depth Pressure
7.5 0.2625
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
5.906
0.000
0.000
6.000
2.194
1.44
Driving Moment, DM = X0 D3+Y02+ZD+C
Resisting Moment, RM = (XR)D ... 3
RM with F.O.S. = (XR)DA3
Slope
0.035
1.575 kips/ft
0.21 D kips/ft
0.6 kips/ft
2.88 D kips/ft
Arm (ft}
X 2.5
X ( D/2)
X ( D/3)
X ( 2.5
X ( 5
X ( 0/3)
X0: 0.00 Y: 0.00
XR: 0.48
XR: 0.32 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Passi ve Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 2.1938 kips
Depth o f Ext. Surch, DE: 2.5 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
+D)
+D)
+D)
Starting
Depth
7.5
-4
=
=
=
=
=
Z: 14.10
Starting
Pressure
0
Ending Ending
Depth Pressure
16.8289 3.731553
-3 -2 -1 0 PRESSURE (ksf
· Moment at O !k-ttf
14.77
0.00 D2
0.00 D3
6.00 D
2.19 D
0.48 D3
C:
+
+
+
40.73
5.91 D
15
10.9688
Slope
0.4
1
ZR: 0 C: 0 <-Terms divided by
2
0
-2
-4
-6 --,i::'. -8 I
:I: !t -10 w 0
1.5
-12
-14
-16
-18
S S ••4 - .5.. -- -
. • . .' a - •
r *
S.--
S. - Calcs for Beam(s): E33 -S .5 5• -S-•... .4_i -
.- continued
Set Driving Moment equal to Resisting Moment and (XD)DA3+YDA2+ZD+C (XR)DA3 = 0.00 1
solve for 0 by changing the depth of Embed, D: -
* Embedment Depth 7 77407 ft
20% Rotational Increase perTS'M,6. 1 9.328W ft
Determine the Depth of Zero Shear Plane (Substitute V for D) *
= 0.00 Plane of Zero Shear is located at 3.13 feet below bottomof excavation.
Determine the Maximum Moment at Point of Zero Shear
MM<= PAI(Y+H/3)+PAZ(Y2/2)+PA3(V3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y/3)=i '5-J
Determine the Pile Deflection (Use superposition principle)
Utilize a point of fixity equivalent to 2/3d below bottom of excavation 14
2/3 d= 2 feet below bottom of excavation
Deflection Due To
Active Pressure 0.021 in * - Sohder Beam Selection User Input Beam Uniform Surcharge -0.0213 in
External Surcharge 00293 in Use W18X35 W18X35
Total Deflection 0.0716 in Mpx/Q = 165 669 k' PASS
5-
lxx= 510 in4
sWall Height = 7 5 ft
I Required Embed= 951ft
45
Tota
Ca
l Beath Length 17 ft
5-isson Diameter i3 ft
S •-• - ,.:. • .5- .. -, . - 5--.
- 5' •.
4.. 5- . - . - 4$. .'_ -. S
- --
- A S_i S ."- 5- •.
a S -- . • . .
-
--S . -
4. 5.
5- - . . . .5 . 4- .•
-. •
-. 5-
-. . - - - . -. 5- •
• •-- • -
- .5 - 1-. -• a •• -
.5- -- .. . - • - . -_ . - . . S
•!
.5--
- .45 -. ?5 4 -- S S -- -•
a.
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): Wl
Beam Callout: Wl
Wall Height, H: 7 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure No
beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
0 0 7 0.245
0 0.1 10 0.1 --ft ksf ft ksf
Active Pressure, c1 a: (Sp)(A)(H) =
Active Pressure 2, o 32: (Sp)(A)(D) =
Surch. Pressure, n 5: (Su)(Sp) =
Passive Pressure, 11 P: (Arch)(d)(P)(D) =
Force {ki12sl
Pal = (•3(H)(1/2) = 6.860
P.2 =n .(D)= 0.000
Pa3 = o ai(D)(l/2) = 0.000
P5 = 0 5(H) = 8.000
Pe= E = 2.548
PP= (, p(D)(l/2) = 1.50
Driving Moment, OM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)D"3
Slope
0.035
0
kcf
Active
Un. Surch.
Ext. Surch.
Units
1.96 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ftl
X ( 2.333
D X ( D/2)
D2 X ( 0/3)
X ( 2
X ( 4.667
D2 X ( 0/3)
Xo: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Uniform Surcharge, Su:
Uni . Surch. Depth:
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
7
-5 -4
Starting
Pressure
0
-3
35 pd
400 pd
0 psf
100 psf
10 ft
2.548 kips
2.3333 ft
H,psf
Ending Ending
Depth Pressure
16.908 3.963218
0
Moment at o I k-tt!
+D) = 16.01 + 6.86 D
= 0.00 D2
= 0.00 03
+D) = 8.00 D + 16
+D) 2.55 D + 11.89073
= 0.50 03
Z: 17.41 C: 43.90
Slope
0.4
1
ZR: 0 C: 0 <-Terms divided by
2
0
-2
-4
-6 -¢! -8
:I: t -10 w 0
-12
-14
-16
-18
1.5
• .. - . .
Vt V.
V V - ..V V V ..
-
.•V - V. -
•V t V -
r V
- * Calcs for Beam(s): Wi continued .
Set Driving Moment equal to Resisting Moment and (XD)DA3+YDA2+ZD+C (XR)DA3 = 0.00 -
V solve for 0 by changing the depth of Embed, D: V
V
V
rEmbedment Depth 8 2567 ft
- {VV__VV__ - •VVVVVJ
20% Rotation Increase perTSM 61990804 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D):
0.00 Plane of Zero Shear is located at - V 3.41 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear: V •
V
V V
MM= PAl(Y-i-H/3)+PAZ(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) p(y3/3)= 4328
- V - . • V -. - I V.V --
- V V -
Determine the Pile Deflection (Use superposition principle)
- -
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
2/3 d= 1.67 feet below bottom of excavation
Deflection Due To:
Active Pressure 0.0171 in Solider Beam Selection User Input Beam Uniform Surcharge 00154 in
External Surcharge 00252 in Use W18X35 W18X35 --
Total Deflection 00577 in Mpx/C) = 165.669 k' PASS
V lxx = , 510 inA4
Wall Height = 7 ft
Required Embed = 10 ft
TotalBeam Length = 17 ft
Caisson Diameter = 2 5ft
V
V
-.
•V*V V SV -
V V ••
V.-
V ..V 4.V V
* V V.:V - V
• V V *
- •
• V -. V
-S V
V
V V V V
•
. V * V V
--V. - • . 4-
V V V_
VV
V
.
., V •V ...
. V - ••,, -
V - V
•
•
V V.V V
. I -V - - . V V V
- • V
V V
V V•
V
V• .. - .
-
V •VV V
V V V* ..
* 3_ -- V V V V V•
- VV
V
VV
-
-V VV
V
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): W2-W3
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
0 0.1
Active Pressure, <' a:
Active Pressure 2, lT a2:
Surch. Pressure, o ,:
Passive Pressure, o P:
Pal= n 0(H)(1/2) =
P02 ='1 .(D)=
P.3 = o ai(D)(l/2} =
P, = o ,(H} =
Pe= E =
PP= op(D}(l/2) =
W2-W3
12.5 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
12.5 0.4375
0.1
(Sp){A)(H} =
(Sp)(A){D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
21.875
0.000
0.000
8.000
8.125
1.50
Driving Moment, OM = X0 D3+YD2+ZD+C
Resisting Moment, RM= (XR}D"3
RM with F.O.S. = (XR}D/\3
Slope
0.035
0
3.5 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft)
Wall Pressures
Acti ve Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se :
Resisting Pressures:
Starting
Depth
12.5
-8
Starting
Pressure
0
-6 -4
35 pcf
400 pcf
0 psf
100 psf
10 ft
8 .125 kips
4.1666 ft
H,psf
Ending Ending
Depth Pressure
27.9189 6.167543
Moment at O (k-ttl
Slope
0.4
2
X ( 4.167 +D} 91.15 + 21.88 D
D
D2
X
X
X
X
X
Xo: 0.00
XR: 0.5
XR: 0.33
( D/2)
( D/3)
( 7.5
8.333
( D/3)
Y: 0.00
YR: 0
=
=
+D)
+D}
=
Z: 38.00
ZR: 0
0.00 D2
0.00 D3
8.00 D +
8.13 D +
0.50 D3
60
67.70867
C: 218.85
C: 0 <-Terms divided by
4
0
-5
-10 -~
:i: -15 f--a. UJ 0
-20
-25
-30
1.5
S .-. -. S ••,
45 *
45 S 4. * - , - .., .-- 5 . .--';--r- .-;• -<• . .
-• ... r
-
-.5..
-5 - S - - 4 • . 'S ..
Calcs for Beam(s) W2 W3 continued
5, .5
Set Driving Moment equal to Resisting Moment and (xo)DA3+yDA2+zD+c (xR)DA3 = 0.00 solve for 0 by changing the depth of Embed, 0: ., - - . -•
- '. - - .-•
Embedment Depth .-.- ---.---
12.849 ft j
- [ 20% Ro2njlncr ease per TSM61 15'4189 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D):
PA1+P42Y+PP3Y2+Ps+PE pPy2 =, 000 Plane of Zero Shear is located at 5.03 feet below bottom of excavation
-. . •- - . - • -•.._ . ' •• - : --
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(V3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y/3)=53kft
Determine the Pile Deflection (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. .5
5.
5 -. -
2/3 d= 1.67 feet below bottom of excavation
4.
'• Deflection Due To: - - . .
. -,
Active Pressure: - 0.0737 in . ....... •• . .. +
Solider Beam Selection User Input Beam. Uniform Surcharge 0.1046 in ç
External Surcharge: - 0.1379 in Use W18X71
Total Deflection 0.3163 in ..i . Mpx/O = '364.604 k PASS
Ixx= 1170 in'4
Wall Height = 12.S ft
Required Embed = 15.5 ft
- Total Beam Length = 28 ft
Caisson Diameter = 2.5 ft :
I
. -- '
. • •_+5_ -
-
-- 4
C •+ 4 5 . S
- . . . •' -
S
- - 5? - -
I-
- * • - 5 _•5 5_. - - - I. - - _5 - S •
•
....
- • . +5 ., S S -
S S - 5 5 - -
V •
_ r . . • 'S •
-, . • - *
S. •
-
.5.. - S
. -- S -.:t• - - . 5'. 454, 5---
515 S -
- -.5 -
5
S ...-S 5. -- .-. +.
S . - . -•
. -• .. S
.5
5. 'S • 1 S5
5 555 •. • .--'S -,
5
S - .
.5.
5__'•'• .5
-. 5_ . - S. - • - . 4 - " - . .5' ", . • -T ' _*_ -
S. • 4 - . -. •
5 -.. ._*
-S. ' . 5. S.-.,. - •5_
- - - .5 '55
-.
5 S
S
..•s. . -. .
5 5 .5 - .5 -• 5,-S
Cantilevered Permanent Shorin2 Desien -AASHTO Methodoloev Cales of Beam(s): W4-WS
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d :
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, c1a:
Active Pressure 2, t1 •2:
Surch. Pressure, o ,:
Passive Pressure, c1 P:
P.1 = n .(H)(l/2) =
P02 =o.(D)=
Pal = 0 02(0)(1/2) =
P, = o,(H) =
Pe= E =
W4-WS
11 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
11 0.385
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
16.940
0.000
0.000
8.000
6.292
1.50
Driving Moment, OM = X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.0.5. = (XR)D"3
Slope
0.035
3.08 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft)
X ( 3.667
X ( D/2)
X ( D/3)
X ( 6
X 7.333
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 6.292 kips
Depth o f Ext. Surch, DE: 3 .6666 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
Starting
Depth
11
-6
Starting
Pressure
0
-4
Ending Ending
Depth Pressure
24.8996 5.559836
-2 0
Slope
0.4
2
------,---...... P-RESSURE.~ ...... -----, 0
+D) =
=
=
+D) =
+D)
=
Z: 31.23
ZR: 0
Moment at O !k-ttl
62.11
0.00 02
0.00 03
8.00 D
6.29 D
a.so 03
C:
C:
+
+
+
16.94 D
48
46.14156
156.25
0 <-Terms divided by
-5
-10
i
:i:: -15 t-0.. UJ 0
-20
-25
-30
1.5
Calcs for Beam(s) W4-W5 continued
Set Driving Moment equal to Resisting Moment and (XD)D3+YDA2+ZD+C(XR)DA3 = - -. 0.00
- solve for 0 by changing the depth of Embed, D:
-. Jiedment Dep:h: :.11.583 ft
-
[ °!ncp i____13 8996 tt --
Determine the Depth of Zero Shear Plane: (Substitute V for D): .
= 0.00 Plane of Zero Shear is located at 4.56 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
MM PAl(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) Pp(Y3/3)=L51 263 kftJ
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.- .
2/3 d="1.67 feet below bottom of excavation
.
S .
-
Deflection Due To:
S ... . . Active Pressure: 0.0638 in .' -
. Solider Beam Selection ,User- Input Brn-
Uniform Surcharge: 0.0895 in . .
External Surcharge: 0.1139 in : - . IJ:c W18X50 - 0
Total Deflection: 0.2672 in
- -.
. %Mpx/l = 252.162 V PASS -
lxx= . 800 in4
. - Y'" Height
-.
11 -
Required Embed
Total Beam Length - -2 ft
Caison Diameter,—= 2.5 ft
--
- ••5'__•_ .. -. S :. • S
45;
S •• -- . : . - . • -. _ S .. - --
5'
- S • S
-
. •. - k . . .--_.-S
s-
- S - - - - -. '-. -- ••• * I. - - - -.
- S . :-' - -
•
- - •.• . . - - -
- - . S - . - •• - ---n: -
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): W6
Beam Callout: W6
Wall Height, H: 10 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure No beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
0 0 10 0.35
0 0.1 10 --ft ksf ft ksf
Active Pressure, er.: (5p)(A)(H) =
Active Pressure 2, Cl •2: (Sp)(A)(D) =
Surch. Pressure, o ,: (Su)(Sp) =
Passive Pressure, ri P: (Arch)(d)(P)(D) =
Force {kii;isl
P.1 = n.(H)(l/2) = 14.000
P.2 =().(0)= 0.000
P a3 = o ai(D)(l/2) = 0.000
P, = o,(H) = 8.000
Pe= E = 5.200
PP= o p(D)(l/2) = 1.50
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D/\3
RM with F.O.S. = (XR)D/\3
Slope
0.035
0
kcf
Active
Un. Surch.
Ext. Surch.
Units
2.8 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft}
X ( 3.333
D X ( D/2)
D2 X ( D/3)
X ( 5
X 6.667
D2 X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres:
Unifor m Surcharge, Su:
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, DE:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
10
I -6
Starting
Pressure
0
-4
35 pcf
400 pcf
0 psf
100 psf
10 ft
5.2 kips
3.3333 ft
H,psf
Ending Ending
Depth Pressure
22.895 5.158006
-2
PRESSURE (Jill
Moment at O lk-ttl
0
+DJ = 46.67 + 14.00 D
= 0.00 02
0.00 D3
+D) = 8.00 D + 40
+D) 5.20 D + 34.66684
= 0.50 D3
Z: 27.20 C: 121.33
Slope
0.4
ZR: 0 C: O <-Terms divided by
2
0
-5
--10 ¢!
:I: l-a.
):5 ·15
-20
-25
1.5
- -
4
/
- .9. - - - *4 _- • 8
Caics for Beam(s) W6 continued
-' • . -. .. - 4: ._7.-
Set Driving Moment equal to Resisting Moment and (x DI) DA3 ;YD A2+zD+c (XR)DA3 = 0.00 solve for 0 by changing the depth of Embed, D
-: --- •:.
Determine the Depth of Zero Shear Plane (Substitute V for D) -.
0.00 Plane of Zero Shear is located at 4.26 feet below bottom of excavation:
Determine the Maximum Moment at Point of Zero Shear: - .- •
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) p(v3/3)=j8 551 ICft 7j
.. *-
Determine the Pile Deflection: (Use superposition principle)
.• -Utilize a point of fixity equivalent to 2/3d below bottom of excavation. •
2/3 d= 1.67 feet below bottom of excavation
Deflection Due To: -. •
•
Active Pressure 0.0488 in - -
Solider Beam Selection User Input Beam 4 Uniform Surcharge: - 0.0661 in
External Surcharge 0.0839 in Use W18X46 W18X46
Total Deflection 0.1989 in Mpx/Q = 226 214 k PASS
I - -- -
- jxx=' 712 in-4"
- . Wall Height = 10 ft
Required Embed = 13 ft
4 Total Beam Length = 23 ft
Caisson Diameter = 2 5cft
- . - -a- * - -4
- . - . a - •. - --+- - + -
- -•. -
-a-
e -> *_+ 4 -. . - ••
- '4 - -
44 4
I
'
- - - - -
4 +..' -:-+ - ., - . -V-. •
4-
.4 '•_ .--- --4 +,
I
- -4. - - * -.
• - - h - ' - * - j •I
++ - .. -. - . - ..- . :4
4
4- 4
"S -- -
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): W7
Beam Callout: W7
Wall Height, H: 9 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure
beyond Cut Depth? No
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
0 0 9 0.315 0.035
0.1 10 0
Active Pressure, o .: (Sp)(A)(H) = 2.52 kips/ft
Active Pressure 2, o •2: (Sp)(A)(D) = 0.28 D kips/ft
Surch. Pressure, o ,: {Su)(Sp) = 0.8 kips/ft
Passive Pressure, n P: {Arch)(d){P){D) = 3 D kips/ft
Force {ki~s} Arm {ft}
P.1 = c;.{H)(l/2) = 11.340 X { 3
P.2 =n .{D)= 0.000 D X { D/2)
P.3 = o.2{D)(l/2) = 0.000 D2 X { D/3)
P,= o,{H)= 8.000 X ( 4
PE= E = 4.212 X { 6
PP= c p{D){l/2) = 1.50 D2 X { D/3)
Driving Moment, DM = X0D3+YD2+ZD+C X0: 0.00 Y: 0.00
Resisting Moment, RM = {XR)D"3 XR: 0.5
RM with F.O.S. = {XR)D"3 XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A:
Pass ive Pressure, P:
M ax Passive Pres :
Unifor m Surcharge, Su :
i. Surch. Depth: Un
Extern al Surcharge, E:
Depth o f Ext. Surch, De:
Seismic Pressure, Se:
Resisting Pressures:
Starting
Depth
9
Starting
Pressure
0
.4
35 pcf
400 pcf
0 psf
100 psf
10 ft
4.212 kips
3 ft
H,psf
Ending Ending Slope
Depth Pressure
20.8965 4.758583 0.4
-3 -2 -1 0 1 2 f -6 -5
f :
PRESSURE (ksf) ___ _...,. __ 0
-5
l --10 ¢'.
::I: f--0... ~ -15
-201
-25
Moment at O (k-ttl
+D) = 34.02 + 11.34 D
= 0.00 D2
= 0.00 D3
+D) 8.00 D + 32
+D) 4.21 D + 25.27213
= 0.50 D3
Z: 23.55 C: 91.29
ZR: 0 C: 0 <-Terms divided by 1.5
I
.• - - - '-
-- .
•
Calcs for Beam(s) Wi continued
Set Driving Moment equal to Resisting Moment and.(XD)0A3+YDA2+ZD+c (XR)DA3 = 0.00
solve for 0 by changing the depth of Embed, D:
EmbedmentDepth 991371ft -
[2O%RotaonaUncreaseperT5M61 118965 ft :
Determine the Depth of Zero Shear Plane: (Substitute V for D): -
-
= 0.00 Plane of Zero Shear is located at 3.96 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear .
MM= PAl(H/3) A2(1'/2)+PA3(1'/3) S(Y+H/2)-i-PE(Y+ )(Y/3)-153.9 ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity, equivalent to 2/3d below bottom of excavation ' -
2/3 d= 1.67 feet below bottom of excavation -
Deflection Due To: -
Active Pressure: 0.0449 in - : - - -
- Solider Bern selection user input Beam Uniform Surcharge: -: ,0.0567 in
External Surcharge: 0.0739 in - - (.i€ W18X35 011
Total Deflection: L 0.1755 in -r. = 165.669:k"' . PASS
- - - = I 510.in1'4
- • .
S WallHeight
Required Embed = 12 ft
- Total Beam Length = S 21 ft.
Caisson Diameter ,= 2.5 ft
- -4 •- -S t - •
5• - - - j._• S
:--. .' • . 5-. -• - . -
- • 1 - •• . -
• •• • .5-S
- •••
- .. ••. :- - •5
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): W8-W9
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Ca isson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o .:
Active Pressure 2, c.2:
Surch. Pressure, o ,:
Passive Pressure, fl P:
Pal = n.{H){l/2) =
P.2 =0 .{D)=
Pa3 = o.2{D)(1/2) =
P, = o,{H) =
Pe= E =
W8-W9
8 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
8 0.28
{Sp)(A)(H) =
{Sp){A){D) =
{Su){Sp) =
{Arch)(d)(P){D) =
Force {kips)
8.960
0.000
0.000
8.000
3.328
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM= {XR)D"3
RM with F.O.S. = {XR)D"3
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 3.328 kips
Depth o f Ext. Surch, DE: 2.6666 ft
Seismi c Pressure, Se: H,psf
Resisting Pressures:
Slope Slope Starting Starting
Depth Pressure
Ending Ending
Depth Pressure
0.035 8 0 18.9021 4.36086 0.4
-5 -4 -3 ·2 ·1 0 1 _______ ....,P..:..,RESSURE ksf
1
2.24 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft} Moment at O (k-ttl
X { 2.667 +DJ 23.89 + 8.96 D
X { D/2)
X { D/3)
X { 3
X 5.333
X { D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
=
+D)
+D)
=
Z: 20.29
ZR: 0
0.00 D2
0.00 D3
8.00 D +
3.33 D +
a.so D3
24
17.74942
C: 65.64
C: 0 <· Terms divided by
2
0
-2
.4
-6 I
I
-·8 .i
:I: -10,
I-0... ~ -12!
·14
-16
-18
I -20
1.5
.. - . . . .
. S.
4.-
- .24 - '• - - 4
Calcs for Beam(s) WS W9 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c(xR)DA3 = - 0.00 - solve for 0 by changing the depth of Embed, D:
- - - Jmbedment Depth 9 08512 ft
otational_Increase per TSM_6.1:____10.90214ft
. --4. •
Determine theDepthof Zero Shear Plane: (Substitute V forD): - -
= 0.00 Plane of Zero Shear is loèated at 3.68 fet belo bottom of excavation.
DeterminetheMaximumMomentatPointof Zero Shear: :
MM= PAi(Y+H/3)A2(Y/2)A3(Y/3)+PS(Y+H/2)+l'E(Y+DHPP/3)=L.115.385kft.t .
.•
. -
Determine the Pile Deflection: (Use superposition princiDle) ::- - -. - •.
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
2/3 d= 1.67 feet below bottom of excavation •
. -
DeflectionDue To: - * - . : • . -
Active Pressure: .. 0.0284 in -oli - . dr B-:rn Selection -User, Input Bzim Uniform Surcharge: 0.0317 in .-
External Surcharge: 0.0445in . . . Use W18X35 W18X35
Total Deflection: - 0.1045 in 165.669 k"'; PASS
-. Ixx= 510 in 1'4
Wall Height = 8 ft
P lured Embed = 11 ft
lut31 Beam Length = 19 .ft- -.
Cais.on Diameter = 2 5 ft
.4 - .• .-
•
4.. 4 4.. .4. ,.. .4. • .
-
.4. . • - -. _ . . . .
.
-.
.
.
.4..
-
• -4.... 4.J
4.'
- T -. . .
. . - -• - .- .4.
:. •- . .
4.. .
. _•'. . •. -• .
4 •.4 4. - -. -.4. 9 - *
4 - 4 - 4..
-- •. .4 r,_4 . . . .4
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): W8-W9
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Ca isson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o .:
Active Pressure 2, c.2:
Surch. Pressure, o ,:
Passive Pressure, fl P:
Pal = n.{H){l/2) =
P.2 =0 .{D)=
Pa3 = o.2{D)(1/2) =
P, = o,{H) =
Pe= E =
W8-W9
8 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
8 0.28
{Sp)(A)(H) =
{Sp){A){D) =
{Su){Sp) =
{Arch)(d)(P){D) =
Force {kips)
8.960
0.000
0.000
8.000
3.328
1.50
Driving Moment, DM = X0D3+YD2+ZD+C
Resisting Moment, RM= {XR)D"3
RM with F.O.S. = {XR)D"3
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 3.328 kips
Depth o f Ext. Surch, DE: 2.6666 ft
Seismi c Pressure, Se: H,psf
Resisting Pressures:
Slope Slope Starting Starting
Depth Pressure
Ending Ending
Depth Pressure
0.035 8 0 18.9021 4.36086 0.4
-5 -4 -3 ·2 ·1 0 1 _______ ....,P..:..,RESSURE ksf
1
2.24 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft} Moment at O (k-ttl
X { 2.667 +DJ 23.89 + 8.96 D
X { D/2)
X { D/3)
X { 3
X 5.333
X { D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
=
+D)
+D)
=
Z: 20.29
ZR: 0
0.00 D2
0.00 D3
8.00 D +
3.33 D +
a.so D3
24
17.74942
C: 65.64
C: 0 <· Terms divided by
2
0
-2
.4
-6 I
I
-·8 .i
:I: -10,
I-0... ~ -12!
·14
-16
-18
I -20
1.5
. ..
S -
t
- •.- - .' - - 4-,'- •- - - :- •.
•.;• -.---, 4 -.5-. 4 . , •,••. ''I F] 4*.; FF
-
.
- -
-
Calcs for Beam(s) W10 Wil cortunued
C
Set Driving Moment equal to Resisting Moment and (xo)DA3+yDA2+zD+c (XR)DA3 = 0.00
for by the depth Embed 0 solve .0 changing of
9.9,137i ft
rincrease
Determine the Depth of Zero Shear Plane (Substitute Y for 0)
= 0.00 Plane of Zero Shear is located at - 3.96 feet below bottom of excavation: -
S -4- -
- - 4. • 4 • .. L
-, -
Determine the Maximum Moment at Point of Zero Shear:
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) P(Y3/3)=']
Determine the Pile Deflection (Use superposition Principle) -
Utilize a point of fixity equivalent to 2/3d below bottom of excavation t -
2/3 d= 1.67 feet below bttom of excavation
Deflection Due To:
Active Pressure 00449 in Solider Beam Selection User Input Beam
Uniform Surcharge: 0.0567 in -. - .
.-- -- - -: _______________,•;•
External Surcharge 00739 in Use W18X35 -0
Total Deflection 0.1755 in - Mpx/Cl = 165 669 k' PASS
lxx = 510 in4 ..
Wall Height.=-.Z"
Required Embed = ' 12 ft
T en otal Beam Lgth
Caisson Diameter , 2 5 ft
4 - . -F ••.
-
-
*
4 -F., - --F • • ' -. F -
• - :- • -.
, r • ... - . - - -
. ., . . . - , •
_4__ $ - •44 .4 .4
-- , 4 . . - - . -' - - -F- •.. -
-
-4 .. -
- - - , . - ,., • F F
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s): Wl2
Beam Callout: W12
Wall Height, H: 8.5 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure No
beyond Cut Depth?
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
0 0 8.5 0.2975
0 10 0.1 -Emmi
ft ksf ft ksf
Active Pressure, o.: {Sp)(A)(H) =
Active Pressure 2, c1.2: (Sp)(A){D) =
Surch. Pressure, C's: (Su)(Sp) =
Passive Pressure, fl'p: (Arch)(d){P)(O) =
Force (ki12s}
P.1 = n.(H)(l/2) = 10.115
P.2 = r1 .(O) = 0.000
Pa3 = o .2(D)(l/2) = 0.000
P5 = 0 5(H) = 8.000
PE= E = 3.757
PP= <' p(D){l/2) = 1.50
Driving Moment, DM = X003+Y02+ZO+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = (XR)0"3
Slope
0.035
0
kcf
Active
Un. Surch.
Ext. Surch.
Units
2.38 kips/ft
0.28 0 kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft}
X ( 2.833
0 X ( 0/2)
D2 X ( 0/3)
X ( 3.5
X 5.667
D2 X ( 0/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 3.757 kips
Depth o f Ext. Surch, De: 2.8333 ft
Seismi c Pressure, Se: H,psf
Resisting Pressures:
I
I
+O)
+D)
+D)
Starting
Depth
8.5
-5
I
=
=
=
Z: 21.87
.4
Starting
Pressure
0
-3
Ending Ending
Depth Pressure
19.8989 4.559575
·2 -1 0 PRESSURE ksf
· Moment at U (k-ttl
28.66 + 10.12 0
0.00 02
0.00 D3
8.00 D + 28
3.76 D + 21.28977
0.50 D3
C: 77.95
Slope
0.4
1
ZR: 0 C: 0 <-Terms divided by
2
0
-5
--10' ¢:
:r: I-0.. ~ ·15,
-20
-2s:
1.5
4.
- '4 l.
:;. S . .. -•
Caics for Beam(s): W12. . continued; 4
Set Driving Moment equal to Resisting Moment and ' (XD)DA+YDA2+ZD+C(XR)DA3 = 0.00
solve for Oby changing the depth of Embed, D: -. -
jTmbedment Deth 499l2ft
RotationaHncreaseperTSM6.1: 11.3989 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D): .
= 0.00 Plane of Zero Shear is located at 3.82 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear: .
M= PAI(Y+H/3)+PA2(Y2/2)-fPA3(Y3/3)+Ps(Y+I-$/2)-FPE(Y+H DE)
Determine the Pile Deflection: (Use superposition principle) .
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
2/3 d= 1.67 feet below bottom of excavation -
.
- Deflection Due To:
Active Pressure: 0.0359 in . . . - . .
- . . oIid•r Be3rn Se ection, L.J'-?r Input Beam
Uniform Surcharge: 0.043 in - ..
External Surcharge: 0.0577 in Use W18X35 - W18X35
Total Deflection: 0.1366 in . . Mpx/' =--165.669W - -. PASS
cO inA4
- .
- Wall Height=- S. .
-
. -
-Required Embed = 11.5 ft -
- 'Total Beam Length = 20 f
.
ft Caisson Diarneter 2.5
. -I
- 14 -
Cantilevered Permanent Shorine Desien -AASHTO Methodoloev Cales of Beam(s): W13
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, O'a:
Active Pressure 2, cra2:
Surch. Pressure, o,:
Passive Pressure, f1 P:
P.1 = n.(H)(l/2) =
P.2 =o.(D)=
Pa3 = o •2(D)(l/2) =
P, = o ,(H) =
Pe= E =
PP= c:ip(D)(l/2) =
W13
8 ft
8 ft
2.5 ft
3
"
No
1.5
20
Ending Ending
Depth Pressure
8 0.28
(Sp}(A)(H) =
(Sp)(A)(D) =
{Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
8.960
0.000
0.000
8.000
3.328
1.50
Driving Moment, DM = X0 D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"'3
RM with F.O.S. = (XR)D"'3
Slope
0.035
2.24 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft)
X ( 2.667
X ( D/2)
X ( D/3)
X ( 3
X ( 5.333
X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pd
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su : 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 3.328 kips
Depth o f Ext. Surch, DE: 2.6666 ft
Seismi c Pressure, Se: H,psf
Resisting Pressures:
Starting Starting Ending Ending Slope
Depth Pressure Depth Pressure
8 0 18.9021 4.36086 0.4
-5 -4 -3 -2 -1 0 1 2
PRESSURE (ksfl__..---.-~ 0
+D) =
=
+D) =
+D)
=
Z: 20.29
ZR: 0
1 j
I
l
1
I
Moment at o (k-ttl
23.89 +
0.00 D2
0.00 D3
8.00 D +
3.33 D +
0.50 D3
l
8.96 D
24
17.74942
~
C: 65.64
C: 0 <-Terms divided by
-2
-4
-6
--8 ~
:I: -10 t;:
~ -12
-14
-16
-18
-20
1.5
L -: .-
Caics for Beam(s): W13 continued .. .
Set Driving Moment equal to Resisting Moment and (xD)DA+yDA2+ZD+c(xR)DA3 =
solve for 0 by changing the depth of Embed, D: .
Embedment DepthS 9.08512 ft
20% RotationaHncrease per TSM t' 1 10.9021 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D): -
- PAl+PA2Y+PY 2 +PS+PE-PPY 2 = 0.00 Plane of Zero Shear is located at . 3.68 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear
MM= PAI(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE)115.3854
Determine the Pile Deflection: (Use superposition principle)
a point of fixity equivalent to 2/3d below bottom of excavation.
- . 2/3 d= 1.67 feet below bottornofexcavation - -
Deflection Due To:
Active Pressure: 0.0284 in . . .. . Solider Beam Selectic'r User Input l3rn
Uniform Surcharge: 0.0317 in . . -.
External Surcharge: 0.0445 in . Use W18X35 "'WA X85 *
Total Deflection: 0.1045 in S -Mpx/L= 165.669'k'' . PASS
. . . 4 x 510 ind4 -
- - . •. . : Wall Height =
. S • - - S
. . Required Embed = •. lift
:• Total Bea Length = - 19 ft m . .
- • • Caisson Diameter = 2.5 ft .
S - .
-
SI
5 5 - . . . • . - - 4
- _#•_ -
- S
.. -•
45 •
• -
-
--
S • * 5-
t- , - - - . *4 - - .5 5 •
•
Cantilevered Permanent Shorine: Desie:n -AASHTO Methodoloe:v Cales of Beam(s}: W14
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o.:
Active Pressure 2, o •2:
Surch. Pressure, o s:
Passive Pressure, (1 P:
P01 = n .(H)(l/2) =
P02 =r;0(D)=
P.3 = o ai(D)(l/2) =
Ps = Os(H) =
PE= E =
PP= n µ(D)(l/2) =
W14
8 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
8 0.28
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips}
8.960
0.000
0.000
8.000
3.328
1.50
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM = (XR)D"3
RM with F.O.S. = {XR)D"3
Slope
0.035
2.24 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft}
X ( 2.667
X ( D/2)
X ( D/3)
X ( 3
X 5.333
X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Passi ve Pressure, P: 400 pcf
M ax Passive Pres: O psf
Uniform Surcharge, Su: 100 psf
Uni . Surch. Depth: 10 ft
Extern al Surcharge, E: 3.328 kips
Depth o f Ext. Surch, DE: 2.6666 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
Starting Starting Ending Ending
+D)
+D)
+D)
Depth Pressure Depth Pressure
I -5
8 0 18.9021 4.36086
.4
=
=
=
=
.3 -2 -1 0 TSSURl~f
I l
I
f
Moment at o !k~ttl
23.89 +
0.00 02
0.00 03
8.00 D +
3.33 D +
0.50 D3
8.96 D
24
17.74942
Z: 20.29 C: 65.64
Slope
0.4
1
ZR: 0 C: 0 <-Terms divided by
2
0
·2
-4
-6
--8 ~
:i: -10 .... a.. ~ -12
-14
-16
-18
·20
1.5
Cales for Beam(s):
Set Driving Moment equal to Resisting Moment and
solve for O by changing the depth of Embed, D:
continued
(XD)DA3+YDA2+ZD+C-(XR)DA3 = 0.00
Embedment Depth: 9.08512 ft
20% Rotational Increase per TSM 6.1: 10.9021 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D):
2 2 PA1+PA2Y+PA3Y +P5+Pe-PpY = 0.00 Plane of Zero Shear is located at 3.68 feet below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear:
M MAX= P A1(Y+H/3)+P dY2/2)+P A3(Y3 /3)+Ps(Y+H/2)+PE(Y+H-DE)-Pp(Y3 /3)= 115.385 k-ft
Determine the Pile Deflection: (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation.
2/3 d= 1.67 feet below bottom of excavation
Deflection Due To:
Active Pressure:
Uniform Surcharge:
External Surcharge:
Total Deflection:
0.0284 in
0.0317 in
0.0445 in
0.1045 in
Solider Beatn Selection
Use W18X35
Mpx/0 = 165.669 k'
lxx = 510 inA4
Wall Height= 8 ft
Required Embed = 11 ft
Total Beam Length = 19 ft
Caisson Diameter = 2.5 ft
User Input Beam
W18X35
PASS
Cantilevered Permanent Shorimz Desien -AASHTO Methodoloev Cales of Beam(s): W15-W18
Beam Callout: W15-W18
Wall Height, H: 7 ft
Beam Spacing, Sp: 8 ft
Caisson Diameter, d: 2.5 ft
Arching, Arch: 3
Active Pressure
beyond Cut Depth?
No
Factor Of Saftey: 1.5
Max Beam Depth?: 20
Driving Pressures:
Starting Starting Ending Ending
Depth Pressure Depth Pressure
0 0 7 0.245
0 10 0.1
Active Pressure, n .: (Sp)(A)(H} =
Active Pressure 2, o •2: (Sp)(A}(O) =
Surch. Pressure, o,: (Su)(Sp) =
Passive Pressure, 11P: (Arch)(d}(P)(D} =
Force {ki12s}
P.1 = n .(H)(l/2) = 6.860
P.2 = o .(O) = 0.000
Pa3 = o .2(0)(1/2) = 0.000
P, = o,(H) = 8.000
PE= E = 2.548
PP= o µ(0)(1/2) = 1.50
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM = (XR}0"3
RM with F.O.S. = (XR)0"3
Slope
0.035
0
1.96 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm {ft}
X ( 2.333
D X ( D/2)
D2 X ( D/3)
X ( 2
X 4.667
D2 X ( D/3)
X0: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Act ive Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: 0 psf
Unifor m Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 2.548 kips
Depth o f Ext. Surch, DE: 2.3333 ft
Seismi c Pressure, Se: H,psf
Resisting Pressures:
Starting
Depth
Starting
Pressure
Ending Ending
Depth Pressure
7 0 16.908 3.963218
; -5 -4 -3
' ~ '
Moment at () ! k-ttl
+O} 16.01 + 6.86 D
= 0.00 02
= 0.00 03
+D) = 8.00 D + 16
+O} 2.55 D + 11.89073
= 0.50 03
Z: 17.41 C: 43.90
Slope
0.4
l 1
2
0
-2
-4
-6
¢! -8
;:: o.. -10 w 0
-12
-14
-16
-18
C: 0 <-Terms divided by 1.5
- - -
• . . -
-4
Calcs for Beam(s) W15 W18 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yDA2+zD+c(xR)DA3 =. 0.00
solve fo 0 by changing the depth of Embed, D:
- . - - r ----- Embedment Depth 8 2567 ft
20% Rotational I ncreaseperTSM61 9 90804 ft
Determine the Depth of Zero Shear Plane: (Substitute Y for D): - -
PA1+PA2Y+PMY2+PS+PE PY2 = 0.00 Plane of Zero Shear is located at 3 41 feet below bottom of excavation
Determine the Maximum Moment at Point of Zero Shear: -
MM= PA1(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) Pp(V3/3)=4328kft ']
4 -
Determine the Pile Deflection (Use superposition principle) - -. -
Utilize a point of fixity equivalent to 2/3d below bottom of excavation
2/3 d= 1.67 feet below bottom of excavationc
1
Deflection Due To:
Active Pressure 0.0171 in
Solider Beam Selection User Input Beam Uniform Surcharge: 00154 in
External Surcharge 0.0252 in Use W18X35 W18X35
Total Deflection 0.0577 in Mpx/C) = 165.669,k PASS
lxx 510 in'4
Wall Hight = 7 ft
Required Embed = 10 ft -
Total Beam Length = 17 ft
Caisson Diameter = 2 5 ft
4 .- - -. (- - •., .- ..-
-
- . v -- -- .-•
- -.- -- -.-- .-- I- -- - - .•
- - -
-- .- - --:-- .. -.-
Cantilevered Permanent Shorin2 Desi2n -AASHTO Methodolo2v Cales of Beam(s): W19
Beam Callout:
Wall Height, H:
Beam Spacing, Sp:
Caisson Diameter, d:
Arching, Arch:
Active Pressure
beyond Cut Depth?
Factor Of Saftey:
Max Beam Depth?:
Driving Pressures:
Starting Starting
Depth Pressure
0 0
Active Pressure, o .:
Active Pressure 2, <1 •2:
Surch. Pressure, o ,:
Passive Pressure, o P:
P.1 = n.(H)(l/2) =
P.2 =o .(D)=
Pa3 = o .2(D)(1/2) =
P, = o ,(H) =
PE= E =
PP= (1p(D)(1/2) =
W19
5 ft
8 ft
2.5 ft
3
No
1.5
20
Ending Ending
Depth Pressure
5 0.175
(Sp)(A)(H) =
(Sp)(A)(D) =
(Su)(Sp) =
(Arch)(d)(P)(D) =
Force (kips)
3.500
0.000
0.000
8.000
1.300
1.50
Driving Moment, OM= X0D3+YD2+ZD+C
Resisting Moment, RM= (XR)D113
RM with F.O.S. = (XR)D"3
Slope
0.035
1.4 kips/ft
0.28 D kips/ft
0.8 kips/ft
3 D kips/ft
Arm (ft)
X ( 1.667
X ( D/2)
X ( D/3)
X ( 0
X 3.333
X ( D/3)
Xo: 0.00 Y: 0.00
XR: 0.5
XR: 0.33 YR: 0
Wall Pressures
Acti ve Pressure, A: 35 pcf
Pass ive Pressure, P: 400 pcf
M ax Passive Pres: O psf
Uniform Surcharge, Su: 100 psf
Un i. Surch. Depth: 10 ft
Extern al Surcharge, E: 1.3 kips
Depth o f Ext. Surch, DE: 1.6667 ft
Seismic Pressure, Se: H,psf
Resisting Pressures:
+D)
+D)
+D)
Starting
Depth
5
-4
=
=
=
Z: 12.80
Starting
Pressure
Ending Ending
Depth Pressure
0 12.8733 3.149332
-3 -2 -1
PRESSURE (ksf
Moment at O !k-ttl
5.83
0.00 D2
0.00 D3
8.00 D
1.30 D
0.50 D3
C:
+
+
+
10.17
3.50 D
0
4.333355
Slope
0.4
a
ZR: 0 C: 0 <-Terms divided by
1
a
-2
-4
~ -6 t
:r ..... fu -8
0
-10
-12
-14
1.5
'5 St
--
I-
1
Caics for Beam(s) W19 continued
Set Driving Moment equal to Resisting Moment and (xD)DA3+yoA2+zD+c(xR)DA3 = 0.00
solve for 0 by changing the depth of Embed, 0:
ibednent Depth 6 56111 ft
RotaonaHncrease per TSM 61787333 ft
Determine the Depth of Zero Shear Plane: (Substitute V for D):
PA1+PA2Y+PA3Y2+PS+PE-PPY2 = 0.00 Plane of Zero Shear is located at 2.92 feat below bottom of excavation.
Determine the Maximum Moment at Point of Zero Shear: - - -
MM = PAl(Y+H/3)+PA2(Y2/2)+PA3(Y3/3)+Ps(Y+H/2)+PE(Y+H DE) Pp(Y/3)=IO2 kft
•1 -•-
_5•...
Determine the Pile Deflection (Use superposition principle)
-Utilize a point of fixity equivalent to 2/3d below bottom of excavation. . - . . ..
2/3 d= 1.67 feet below bottom of excavation - . •.
4 . -
- - . 5- St . - - 4
Deflection Due To:
Active Pressure ,. 0.005 in - - - S .,Solider113eamSelection:< User Input Beam
Uniform Surcharge: -• 0.0014 in -. - .S 1
External Surcharge 0.0063 in - Use .5W18X35 W18X35
Total Deflection 0.0128 in Mpx/Q = 165 669 k PASS
._,IxX,.7 - 510 ihA4 -
S •\ - . Wall Height = -. 5 ft 15
- RequiredErnbed= 8ft
* Total Beam Length = . 13 ft
.Caisson Diameter 2 5 ft
.. S - - Sr - - ... - . - S .
-5,
t -. ••I. -. 5,. .
-
., .: 14 - - S • -
- 55 .5•_ -. . S 5 • - - - ,5
- - -- ...- - • : - .
4' • - .' 5 . • '• .5 •' ,s
- '_ - -5 . I . .- _
. • -
-
5 - - . . I •,• -. __5_ 1 - 5
- • • -•
-•' -. - -. .-.- 1t\ - •. . - r • •- • - .fl - - .
. • '. . -. - - -. •
. •. a — L-. 4.
1-4
Lateral Earth Pressure on Lagéing Design Spreadsheet 1-
Project Coastal 10 Permanent Shoring rzrrm r,
JIill1 iti
Project # A15.0000 ,'IIIllI
Date 3/12/2014 f qH ir -•
Definition of Variables Driving Pressure
*
soidtcr
D f.. \12Height of Silo (ft.) - vøii
uniform d13t. Surcharge (pf)
lagging clear span (ft)
.
Vte 43 octivc crth prcurc coefficient
424 unit weight of soil (pcf)
& intcrnal anglc of friction (deg)
E.F.P. r - • 1equivalent fluid pressure (pcf)
• j__• • 1-'
WIAT tJlateral
"I c -
surcharge (psf)
.- - •
a 21.38812 cross section area of silo = 1/87112. . • -
W 32349 53 weight of soil silo = aD7 -
-,
T 19.30105 shear strength of soil zKatan(co) . •. . .
- -. • I •. - -. - -,. .5
The vertical force of the soil silo is given by
D1 S
F =W+wa—f—rldz 1) -
The angle of.the bottom of the wedge relative to the horizontal would be 45+(ço/2) according to
Rankine methods. (conservatively approximate this an to 45degrees for ease of integration.) The
horizontal pressure, P, on the lagging at a depth of D+1/2 can be shown as: • - •
1.• • -: •.
-
2 2a ()
After intergrating (1) and inserting into equation (2), lateral pressure at D+1/2:'4 -
P=Ka [.L+W+YD_L(Kntan((P)D2 )]
Determine the mximum pressure on the lagging by taking the partial derivative of the horizontal .
•
pressure (equation 3) with respect to Depth and setting the result equal to zero-.'• • . •• I •
-
1- 1— D] D L I J
Solving for D gives the height where the max pressure occurs
1-
= - - 11.56647 ft . (5) 4Ka tafl((p) ..
&
.-:-'- •-.. • . •