Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 13-03; Robertson Ranch West Village; Supplementary Drainage Calculations; 2016-03-17
u ,_, u l_cj l IJ;I SUPPLEMENTARY DRAINAGE CALCULATIONS FOR CONSTRUCTION CHANGE #2 DWG 477-6 FOR El Camino Real Widening From Cannon Road To Tamarack Avenue Job No. 10-1307 March 17, 2016 Prepared For: TOLL BROTHERS A California Limited Liability Company 725 W. Town & Country Rd. Suite 200 Orange, CA 92868 (714) 347-1300 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, California 92008-6603 Tel: (760)931-7700 Fax: (760) 931-8680 RCE 32014 Exp. 12/31116 1 RECEIVED MAR 1 7 2016 LAND DEVELOPMENT ENGINEERING ECR3U.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST SUITE 100 CARLSBAD, CA 92010 ************************** DESCRIPTION OF STUDY * STORM DRAIN REVISIONS 3/17/16 ************************** * DOUBLE 42 INCH PIPES IN ECR ;, REVISED BY AM ************************************************************************** FILE NAME: ECR3U.DAT TIME/DATE OF STUDY: 08:34 03/17/2016 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: ""~'" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 1.00- } 1.00- } 1.10- MODEL PRESSURE PRESSURE+ FLOW PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) 3.58* 1917.24 2.50 DC PRESSURE+ MOMENTUM(POUNDS) 1579.66 PIPE ENLARGEMENT 3. 58"~' FRICTION 3. 48"' 1917.24 2.50 De 1855.60 2.50 De MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1579.66 1579.66 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 39.82 PIPE FLOW= 63.75 CFS PIPE DIAMETER= 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 43.400 FEET NODE 1. 00 : HGL = < 43.400>;EGL= < 44.082>;FLOWLINE= < 39.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1.00 1.00 TO NODE ELEVATION = 1.00 IS CODE = 4 39.82 (FlOW IS UNDER PRESSURE) CALCULATE SUDDEN PIPE ENLARGEMENT LOSSES(LACRD): PIPE FLOW = 63.75 CFS PIPE DIAMETER: UPSTREAM= 42.00 INCHES; DOWNSTREAM FLOW VELOCITY: UPSTREAM= 6.63 FEET/SEC.; DOWNSTREAM SUDDEN PIPE-FLOW ENLARGEMENT LOSSES = ((V1-V2)**2)/64.4 = (( 6.626-6.626)**2)/64.4 = 0.000 42.00 INCHES 6. 63 FEET /SEC. NODE 1. 00 : HGL = < 43.400>;EGL= < 44.082>;FLOWLINE= < 39.820> ****************************************************************************** Page 1 ECR3U.RES FLOW PROCESS FROM NODE UPSTREAM NODE 1.10 1.00 TO NODE 1.10 IS CODE = 1 ELEVATION= 40.36 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 63.75 CFS PIPE DIAMETER= 42.00 INCHES PIPE LENGTH = 109.98 FEET MANNING'S N 0.01300 ====================================================================:========== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.58 ====================================================================:========== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL ( FT) 0.000 89.381 PRESSURE HEAD(FT) 3.580 3.500 VELOCITY (FT/SEC) 6.626 6.626 SPECIFIC ENERGY(FT) 4.262 4.182 PRESSURE+ MOMENTUM(POUNDS) 1917.24 1869.21 NORMAL DEPTH(FT) = 2.61 CRITICAL DEPTH(FT) = 2.50 ====================================================================:========== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 ====================================================================:========== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 89. 381 109.980 FLOW DEPTH (FT) 3.500 3.476 VELOCITY (FT/SEC) 6.624 6.630 SPECIFIC ENERGY(FT) 4.182 4.159 PRESSURE+ MOMENTUM(POUNDS) 1869.21 1855.60 NODE 1.10 : HGL = < 43.836>;EGL= < 44.519>;FLOWLINE= < 40.360> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.10 FLOWLINE ELEVATION = 40.36 ASSUMED UPSTREAM CONTROL HGL = 42.86 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS -\'- Page 2 Head losses for transition structure per San Diego County Drainage Manual {May 2005) Friction losses (pressure flow) Q=VA k (A)213 V=--s'/' n p Q = 63.75 n = 0.013 A= 11.38 p = 13.5 sf= o.oo3 Ht= 0.03 Structure head loss HL = 0.19 HGL = 43.84 + 0.22 HGL = 44.11 L= 10 k=1.49 for English units (feet and seconds) A=Flow area of the pipe, culvert, or channel. P=Wetted perimeter Q=Discharge (flow rate) S=Downward (longitudinal) slope of the culvert. V=Average velocity in the pipe, culvert, or channel. K = 0.45 vo = 5.2 (cleanout angled through 22.5 approximately) Head losses for box culvert per San Diego County Drainage Manual (May 2005) Friction losses (pressure flow) Q=VA k (A)"' V=--s'" Il p Q = 127.5 n = 0.013 A= 21 p = 19 st = o.oo2456 H1= 0.05 Bend losses Kb = 0.38 Hr= 0.22 HGL = 44.06 + 0.27 HGL = 44.33 L= 20.92 k=l.49 for English units (feet and seconds) A=Flow area of the pipe, culvert, or channel. P=Wetted perimeter Q=Discharge (flow rate) S=Downward (longitudinal) slope of the culvert. V=Average velocity in the pipe, culvert, or channel. Kb = 0.0033i'1 !:::,. = 114.26 V2 = 6.07 Head losses for transition structure per San Diego County Drainage Manual {May 2005) Friction losses {pressure flow) Q=VA k (A)213 V=--s'/2 n p Q = 127.5 n = 0.013 A= 17.5 p = 17 sf= o.oo3888 0.04 Structure head loss HL = 0.09 Expansion Loss HL = 0.12 HGL = 44.33 + 0.24 HGL = 44.57 L= 10 k=1.49 for English units (feet and seconds) A=Flow area of the pipe, culvert, or channel. P=Wetted perimeter Q=Discharge (flow rate) S=Downward (longitudinal) slope ofthe culvert. V=Average velocity in the pipe, culvert, or channel. K = e K = 0.15 Vo= 6.07 0.28 7.97 6.07 (cleanout straight through) ECR4.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST SUITE 100 CARLSBAD, CA 92010 ************************** DESCRIPTION OF STUDY ************************** ,., CONSTRUCTION CHANGE: MAIN STORM DRAIN LINE EL CAMINO REAL -·· * REVISED 3/17/16 ;, REVISED BY AM ************************************************************************** FILE NAME: ECR4.DAT TIME/DATE OF STUDY: 10:06 03/17/2016 ****************************************************************************** NODE NUMBER 1.40- } 2.00- } 2.10- } 3.00- } 3.10- } 4.00- } 4.10- } 5.00- } 5.10- } 6.00- } 6.10- } 7.00- } 7.10- } 8.00- } 8.10- } 9.00- } 9.10- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "'~'" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION 4.02* 4090.88 3.38 De 4.14'~' 4. 55'~ 4.81'1' 4.87'~' 5.47'~' 5. 59''' 5. 82'~' 5.61* 5. 66'~' 4184.13 4443.52 4645.79 4691.12 5164.77 5172.74 5352.33 5122.21 5163.03 5.82* 5163.43 } HYDRAULIC JUMP 5.39 4822.57 5.00 3.24 De 3.83 3.11 De 3.09 De 4412.14 3381.06 3174.83 2973.20 2914.91 Page 1 3.38 De 3.37 De 3.37 DC 3.37 DC 3.37 DC 3.34 DC 2.90 3.08 2.34 2.19 1.87'1' 1. 83* 2. 44'~' 2. 061' 2 .151' 2 .16'~' PRESSURE+ MOMENTUM(POUNDS) 3882.82 3882.82 3809.04 3809.04 3809.04 3809.04 3718.78 3825.92 3669.83 4256.06 4273.37 5012.85 4904.65 3760.23 3659.46 3520.07 3428.51 ECR4.RES } FRICTION 10.00-3.09 De 2914.91 2.61* 3031.42 } JUNCTION 10.10-3.03 De 2754.01 2. 50-1' 2891.11 } FRICTION 11.00-3. 03-i'De 2754.01 3.03-I'De 2754.01 } JUNCTION 11.10-5. 38''' 4161.46 1. 97 3395.14 } FRICTION } HYDRAULIC JUMP 11.20-3. 01-I'De 2722.61 3. 01-I'De 2722.61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 1.40 FLOWLINE ELEVATION= 40.55 PIPE FLOW= 127.50 CFS PIPE DIAMETER= 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 44.570 FEET NODE 1.40 : HGL = < 44.570>;EGL= < 46.168>;FLOWLINE= < 40.550> ****************************************************************************** 2.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 2.00 1.40 TO NODE ELEVATION = 40.75 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 127.50 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH 40.48 FEET MANNING'S N 0.01300 SF=(Q/K)**2 = (( 127.50)/( 1436.438))**2 = 0.00788 HF=L*SF = ( 40.48)*(0.00788) = 0.319 NODE 2.00 : HGL = < 44.889>;EGL= < 46.487>;FLOWLINE= < 40.750> ****************************************************************************** 2.10 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 2.10 2.00 TO NODE ELEVATION = 40.77 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 125.80 48.00 127.50 48.00 0.85 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 40.77 40.75 90.00 41.95 0.00 0.00 Q5 0.85===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2,.'V2-QFVFCOS(DEL TAl) -Q3'''V3-I'COS(DEL TA3)- CRITICAL DEPTH(FT.) 3.37 3.38 0.34 0.00 Q4-I'V4"'COS(DEL TA4)) / ( (Al+A2) "'16 .l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00767 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00788 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00777 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 10.011 10.146 0.481 0.000 FRICTION LOSSES 0.031 FEET ENTRANCE LOSSES 0.320 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.073)+( 0.320) = 0.393 NODE 2.10 : HGL = < 45.324>;EGL= < 46.88l>;FLOWLINE= < 40. 770> ****************************************************************************** Page 2 ECR4.RES 2.10 TO NODE 3.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 3.00 ELEVATION = 41.24 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 125.80 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH 94.91 FEET MANNING'S N 0.01300 SF=(Q/K)**2 = (( 125.80)/( 1436.437))**2 = 0.00767 HF=L*SF = ( 94.91)*(0.00767) = 0.728 NODE 3.00 : HGL = < 46.052>;EGL= < 47.609>;FLOWLINE= < 41. 240> ****************************************************************************** 3.10 IS CODE= 2 FLOW PROCESS FROM NODE UPSTREAM NODE 3.10 3.00 TO NODE ELEVATION = 41.26 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW= 125.80 CFS FLOW VELOCITY= 10.01 FEET/SEC. HMN = .05*(VELOCITY HEAD) = .05*( PIPE DIAMETER VELOCITY HEAD 1.556) = 0.078 48.00 INCHES 1. 556 FEET NODE 3.10 : HGL = < 46.130>;EGL= < 47.686>;FLOWLINE= < 41. 260> ****************************************************************************** 4.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 4.00 3.10 TO NODE ELEVATION = 42.38 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 125.80 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH 224.78 FEET MANNING'S N 0.01300 SF=(Q/K)**2 = (( 125.80)/( 1436.437))**2 = 0.00767 HF=L*SF = ( 224.78)*(0.00767) = 1.724 NODE 4.00 : HGL = < 47.854>;EGL= < 49.410>;FLOWLINE= < 42.380> ****************************************************************************** 4.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 4.10 4.00 TO NODE ELEVATION = 42.40 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 123.70 48.00 125.80 48.00 2.10 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 42.40 42.38 90.00 42.55 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2'''V2-Q1 "''VFCOS (DEL TAl) -Q3"''V3"'COS (DEL TA3)- CRITICAL DEPTH(FT.) 3.34 3.37 0.55 0.00 Q4"''V4''COS (DEL TA4)) / ( (A1+A2) ''16 .l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00742 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00767 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00754 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 9.844 10.011 1.188 0.000 FRICTION LOSSES 0.030 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.082)+( 0.000) = 0.082 NODE 4.10 : HGL = < 47.987>;EGL= < 49.492>;FLOWLINE= < 42.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5.00 4.10 TO NODE 5.00 IS CODE= 1 ELEVATION 43.39 (FLOW IS UNDER PRESSURE) Page 3 ECR4.RES CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 123.70 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH 164.38 FEET MANNING'S N 0.01300 SF=(QIK)**2 = (( 123.70)1( 1436.439))**2 = 0.00742 HF=L*SF = ( 164.38)*(0.00742) = 1.219 NODE 5.00 : HGL = < 49.206>;EGL= < 50.71l>;FLOWLINE= < 43.390> ****************************************************************************** 5.10 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 5.10 5.00 TO NODE ELEVATION = 43.72 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 121.88 48.00 123.70 48.00 1. 81 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 43.72 43.39 90.00 45.20 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-Ql"'Vl"'COS (DEL TAl) -Q3"'V3*COS (DEL TA3)- CRITICAL DEPTH(FT.) 3.32 3.34 0. 51 0.00 Q4'"V4,.'COS (DEL TA4)) I ( (Al+A2) "'16 .l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00720 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00742 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00731 JUNCTION LENGTH 5.00 FEET VELOCITY (FTISEC) 9.699 9.844 1. 024 0.000 FRICTION LOSSES 0.037 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.080)+( 0.000) = 0.080 NODE 5.10 : HGL = < 49. 331>; EGL= < 50.792>;FLOWLINE= < 43. 720> ****************************************************************************** 6.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 6.00 5.10 TO NODE ELEVATION = 45.35 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 121.88 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH 233.64 FEET MANNING'S N 0.01300 SF=(QIK)**2 = (( 121.88)1( 1436.438))**2 = 0.00720 HF=L*SF = ( 233.64)*(0.00720) = 1.682 NODE 6.00 : HGL = < 51. 013>; EGL= < 52.474>;FLOWLINE= < 4S. 350> ****************************************************************************** 6.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 6.10 6.00 TO NODE ELEVATION = 45.36 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 118.55 48.00 121.88 48.00 3.33 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 45.36 45.35 90.00 46.61 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-Ql-I'Vli'COS(DEL TAl) -Q3'''V3"'COS (DEL TA3)- Q4"'V4 ,.,COS (DEL TA4)) I ( (Al+A2) ,.,16 .l)+FRICTION LOSSES Page 4 CRITICAL DEPTH(FT.) 3.28 3.32 0.70 0.00 VELOCITY (FTISEC) 9.434 9.699 1.884 0.000 ECR4.RES UPSTREAM: MANNING'S N = 0.01300; DOWNSTREAM: MANNING'S N = 0.01300; AVERAGED FRICTION SLOPE IN JUNCTION FRICTION SLOPE = 0.00681 FRICTION SLOPE = 0.00720 ASSUMED AS 0.00700 JUNCTION LENGTH 1.50 FEET FRICTION LOSSES 0.011 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.089)+( 0.000) = 0.089 0.000 FEET NODE 6.10 : HGL = < 51.181>; EGL= < 52.563>;FLOWLINE= < 45.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 7.00 6.10 TO NODE 7.00 IS CODE= 1 ELEVATION = 46.61 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 118.55 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 119.70 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.73 CRITICAL DEPTH(FT) = 3.28 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.87 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 11.686 23.538 35.575 47.815 60.282 73.002 86.004 99.324 113.005 119.700 FLOW DEPTH (FT) 1.869 1.903 1. 937 1. 972 2.006 2.040 2.074 2.109 2.143 2.177 2.193 VELOCITY (FT/SEC) 20.580 20.102 19.646 19.209 18.792 18.392 18.010 17.643 17.291 16.953 16.797 SPECIFIC ENERGY(FT) 8.449 8.182 7.934 7.705 7.493 7.296 7.114 6.945 6.788 6.643 6. 577 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS PRESSURE+ MOMENTUM(POUNDS) 5012.85 4915.56 4823.45 4736.24 4653.66 4575.45 4501. 39 4431.27 4364.87 4302.03 4273.37 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.82 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.821 9.434 7.203 5163.43 119.700 5.386 9.434 6.768 4822.57 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 102.39 FEET UPSTREAM OF NODE 6.10 I I DOWNSTREAM DEPTH= 5.449 FEET, UPSTREAM CONJUGATE DEPTH= 1.919 FEET I NODE 7.00 : HGL = < 48.479>;EGL= < 55.059>;FLOWLINE= < 46.610> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 7.10 CALCULATE JUNCTION LOSSES: 7.00 TO NODE 7.10 IS CODE= 5 ELEVATION= 47.16 (FLOW IS SUPERCRITICAL) PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) Page 5 ECR4.RES UPSTREAM 115.64 48.00 0.00 47.16 3.24 DOWNSTREAM 118.55 48.00 46.61 3.28 LATERAL #1 1. 51 18.00 90.00 46.94 0.46 LATERAL #2 1.40 18.00 90.00 46.94 0.44 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-QFVl"'COS (DEL TAl) -Q3"'V3"'COS(DEL TA3)- Q4 "'V4 "'COS (DEL TA4)) / ( (Al+A2) "'16. 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03549 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03441 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03495 JUNCTION LENGTH 4.00 FEET 20.688 20.586 0.854 0.792 FRICTION LOSSES= 0.140 FEET ENTRANCE LOSSES= 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.573)+( 0.000) = 0.573 NODE 7.10 : HGL = < 48.986>;EGL= < 55.632>;FLOWLINE= < 47.160> ****************************************************************************** 7.10 TO NODE 8.00 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 8.00 ELEVATION= 61.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 115.64 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 381.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.80 CRITICAL DEPTH(FT) = 3.24 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.44 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.437 14.419 5.668 3760.23 2.408 2.412 14.600 5.724 3788.17 5.011 2.386 14.787 5.783 3817.42 7.828 2.361 14.978 5.846 3848.01 10.880 2.335 15.175 5. 913 3880.00 14.192 2. 310 15.378 5.984 3913.42 17.792 2.284 15.586 6.059 3948.33 21.713 2.259 15.801 6.138 3984.77 25.994 2.234 16.022 6.222 4022.80 30.680 2.208 16.250 6.311 4062.48 35.827 2.183 16.484 6.405 4103.86 41.501 2.157 16.726 6. 504 4147.01 47.782 2.132 16.975 6.609 4191.99 54.771 2.106 17.232 6. 720 4238.87 62.595 2.081 17.498 6.838 4287.73 71.418 2.056 17.771 6.962 4338.63 81.453 2.030 18.053 7.094 4391.66 92.994 2.005 18.345 7.234 4446.92 106.448 1.979 18.646 7.381 4504.47 122.415 1. 954 18.957 7.537 4564.44 141.824 1.928 19.278 7.703 4626.91 166.230 1. 903 19.611 7.878 4691.99 198.553 1.877 19.955 8.064 4759.80 245.350 1. 852 20.310 8.262 4830.45 327.663 1. 827 20.679 8.471 4904.09 381.000 1.826 20.682 8.472 4904.65 ------------------------------------------------------------------------------ NODE 8.00 : HGL = < 63.797>;EGL= < 67.028>;FLOWLINE= < 61. 360> Page 6 ECR4.RES ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 8.10 8.00 TO NODE 8.10 IS CODE = 5 ELEVATION = 61.69 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 105.45 48.00 115.64 48.00 8.25 24.00 1. 94 18.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 61.69 61.36 90.00 63.36 90.00 63.86 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2'~'V2-Q1'~'V1''COS (DEL TAl) -Q3''V3i'COS (DEL TA3)- CRITICAL DEPTH(FT.) 3.11 3.24 1.02 0. 52 VELOCITY (FT/SEC) 16.161 14.424 5.103 3. 521 Q4'~V4 7'COS (DEL TA4)) / ( (Al+A2) 7'16 .l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01950 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.01370 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01660 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES = 0.066 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.778)+( 0.000) = 0.778 NODE 8.10 : HGL = < 63.750>;EGL= < 67.806>;FLOWLINE= < 61.690> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 9.00 8.10 TO NODE 9.00 IS CODE = 1 ELEVATION = 65.65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 105.45 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH = 196.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.04 CRITICAL DEPTH(FT) = 3.11 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.15 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.469 9.155 14.078 19.258 24.722 30.499 36.622 43.131 50.073 57.505 65.493 74.121 83.491 93.733 105.012 117.549 131.640 147.701 166.342 FLOW DEPTH (FT) 2.154 2.149 2.145 2.140 2.135 2.131 2.126 2.122 2.117 2.112 2.108 2.103 2.099 2.094 2.089 2.085 2.080 2.076 2.071 2.066 VELOCITY (FT/SEC) 15.283 15.324 15.365 15.406 15.447 15.489 15.531 15.573 15.616 15.658 15.701 15.744 15.788 15.831 15.875 15.919 15.963 16.008 16.053 16.098 Page 7 SPECIFIC ENERGY(FT) 5.783 5.798 5.813 5.828 5.843 5.858 5.874 5.890 5.906 5.922 5.938 5.955 5.971 5.988 6.005 6.022 6.040 6.057 6.075 6.093 PRESSURE+ MOMENTUM(POUNDS) 3520.07 3526.43 3532.84 3539.30 3545.82 3552.38 3559.00 3565.68 3572.40 3579.18 3586.02 3592.91 3599.85 3606.85 3613.90 3621.01 3628.18 3635.40 3642.68 3650.02 188.508 196.000 2.062 2.060 ECR4.RES 16.143 16.156 6.111 6.116 3657.42 3659.46 NODE 9.00 : HGL = < 67.804>;EGL= < 71.433>;FLOWLINE= < 65.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 9.10 9.00 TO NODE 9.10 IS CODE= 5 ELEVATION = 65.98 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 103.95 48.00 105.45 48.00 1.50 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 65.98 65.65 90.00 65.98 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2''V2-Ql ''VI"' COS (DEL TAl) -QFVY'COS (DEL TA3)- CRITICAL DEPTH(FT.) 3.09 3.11 0.46 0.00 VELOCITY (FT/SEC) 15.048 15.288 0.849 0.000 Q4''V4''COS (DEL TA4)) / ( (Al+A2) '''16. l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01630 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01683 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01657 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES = 0.066 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.220)+( 0.000) = 0.220 NODE 9.10 : HGL = < 68.136>;EGL= < 71.653>;FLOWLINE= < 65.980> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 10.00 9.10 TO NODE 10.00 IS CODE = 1 ELEVATION = 68.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 103.95 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 147.97 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.05 CRITICAL DEPTH(FT) = 3.09 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.61 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2' 210 4.624 7.261 10.144 13.297 16.749 20.533 24.689 29.263 34.311 39.899 46.110 53.045 60.833 69.638 FLOW DEPTH (FT) 2.606 2.583 2.561 2.539 2.517 2.495 2.473 2.451 2.429 2.406 2.384 2.362 2.340 2' 318 2.296 2.274 VELOCITY (FT/SEC) 11.989 12.107 12.227 12.351 12.478 12.607 12.740 12.876 13.015 13.158 13.304 13.454 13' 607 13.764 13' 926 14.091 Page 8 SPECIFIC ENERGY(FT) 4.839 4.861 4.884 4.909 4.936 4.965 4.995 5.027 5.061 5.096 5.134 5.175 5.217 5.262 5.309 5.359 PRESSURE+ MOMENTUM(POUNDS) 3031.42 3043.30 3055.84 3069.09 3083.04 3097.71 3113.14 3129.32 3146.29 3164.07 3182.67 3202.12 3222.44 3243.66 3265.80 3288.89 ECR4.RES 79.679 2.252 14.261 5.411 3312.95 91.2 50 2.230 14.435 5.467 3338.02 104.764 2.207 14.613 5.525 3364.12 120.827 2.185 14.796 5.587 3391.29 140.377 2.163 14.985 5.652 3419. 56 147.970 2.156 15.044 5.673 3428.51 NODE 10.00 : HGL = < 71. 426>; EGL= < 73.659>;FLOWLINE= < 68.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 10.10 10.00 TO NODE ELEVATION = 10.10 IS CODE= 5 69.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 99.75 48.00 103.95 48.00 4.20 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 69.15 68.82 90.00 71.65 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2'~V2-QFVl"<COS (DEL TAl) -Q3-i<V3"<COS(DEL TA3)- CRITICAL DEPTH(FT.) 3.03 3.09 0.79 0.00 VELOCITY (FT/SEC) 12.048 11.992 4.486 0.000 Q4"<V4"<COS(DEL TA4)) / ( (Al+A2) "<16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00940 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00910 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00925 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.037 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.250)+( 0.000) = 0.250 NODE 10.10 : HGL = < 71.654>;EGL= < 73.908>;FLOWLINE= < 69.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 11.00 10.10 TO NODE 11.00 IS CODE= 1 ELEVATION = 70.69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 99.75 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH = 153.49 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.45 CRITICAL DEPTH(FT) = 3.03 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.03 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.085 0.350 0.810 1.484 2.393 3.560 5.014 6.787 8.919 11.455 14.454 FLOW DEPTH (FT) 3.026 3.003 2.980 2.957 2.934 2.911 2.888 2.865 2.842 2.819 2.796 2. 773 VELOCITY (FT/SEC) 9. 777 9.854 9.932 10.013 10.095 10.179 10.265 10.354 10.444 10.537 10.631 10.728 Page 9 SPECIFIC ENERGY(FT) 4. 511 4. 512 4. 513 4. 515 4. 517 4. 521 4.525 4. 530 4.537 4. 544 4.552 4. 561 PRESSURE+ MOMENTUM(POUNDS) 2754.01 2754.24 2754.94 2756.11 2757.77 2759.92 2762. 57 2765.74 2769.43 2773.65 2778.42 2783.74 NODE 17.982 22.127 26.996 32.728 39.506 47.580 57.296 69.166 83.981 103.066 128.907 153.490 11.00 : HGL = < 2.750 2.727 2.704 2.680 2.657 2.634 2.611 2.588 2.565 2.542 2. 519 2.504 ECR4.RES 10.827 10.929 11.033 11.140 11.249 11.361 11.475 11. 592 11.712 11.835 11.962 12.044 4. 571 4.582 4. 595 4.609 4.624 4.640 4.657 4.676 4.697 4.719 4.742 4.758 73.716>;EGL= < 75.201>;FLOWLINE= < 2789.63 2796.11 2803.17 2810.85 2819.14 2828.07 2837.65 2847.89 2858.82 28'70.44 2882.78 2891.11 70.690> ********************************************************************k********* 11.10 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 11.10 11.00 TO NODE ELEVATION = 71.02 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 98.92 48.00 99.75 48.00 0.83 18.00 0.00 0.00 ANGLE (DEGREES) 90.00 FLOWLINE ELEVATION 71.02 70.69 0. 00 71.02 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 1'V2-Ql"'Vl"'COS (DEL TAl) -Q3 1'VFCOS (DEL TA3)- CRITICAL DEPTH(FT.) 3.01 3.03 0. 34 0.00 Q4 1'V4 "'COS (DEL TA4)) / ( (Al+A2) 1'16. 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00474 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00569 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00521 JUNCTION LENGTH 5.00 FEET VELOCITY (FT/SEC) 7.872 9.780 0.470 0.000 FRICTION LOSSES 0.026 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.164)+( 0.000) = 2.164 NODE 11.10 : HGL = < 76.403>;EGL= < 77.365>;FLOWLINE= < 71. 020> ****************************************************************************** 11.20 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 11.20 11.10 TO NODE ELEVATION = 73.08 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 98.92 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 41.08 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1. 52 CRITICAL DEPTH(FT) = 3.01 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.01 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.014 9.736 4.487 2722.61 0.056 2.954 9.939 4.489 2724.17 0.233 2.894 10.155 4.497 2728.94 0. 543 2.835 10.385 4. 510 27'37.09 Page 10 1. 003 1.630 2.446 3.476 4.750 6.305 8.184 10.440 13.139 16.365 20.222 24.847 30.421 37.191 41.080 2. 775 2.715 2.656 2.596 2.536 2.477 2.417 2.358 2.298 2.238 2.179 2.119 2.059 2.000 1.972 ECR4.RES 10.629 10.888 11.163 11.456 11.768 12.101 12.455 12.833 13.238 13.670 14.134 14.632 15.167 15.743 16.027 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 4.530 4. 557 4. 592 4.635 4.688 4.752 4.827 4.916 5.021 5.142 5.283 5.445 5.633 5.850 5.963 2748.80 2764.26 2783.69 2807.34 2835.45 2868.34 2906.32 2949.75 2999.04 30:i4. 65 3117.07 3186.89 3264.74 3351. 37 3395.14 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.38 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 30.452 PRESSURE HEAD(FT) 5.383 4.000 VELOCITY (FT/SEC) 7.872 7.872 SPECIFIC ENERGY(FT) 6.345 4.962 PRESSURE+ MOMENTUM(POUNDS) 4161.46 3077.28 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 30.452 4.000 7.869 4.962 3077.28 31.249 3.961 7.882 4.926 3048.87 31.982 3.921 7.906 4.892 3022.61 32.675 3.882 7.937 4.861 2997.82 33.335 3.842 7.974 4.830 2974.28 33.965 3.803 8.016 4.801 2951.89 34.569 3.763 8.063 4.773 2930.56 35.146 3.724 8.114 4.747 2910.26 35.699 3.684 8.169 4.721 2890.98 36.227 3.645 8.229 4.697 2872.68 36.731 3.605 8.292 4.674 2855.38 37.210 3.566 8.360 4.652 2839.06 37.664 3.527 8.431 4.631 2823.74 38.092 3.487 8.506 4.611 2809.42 38.494 3.448 8.585 4.593 2796.12 38.870 3.408 8.669 4.576 2783.84 39.217 3.369 8.756 4.560 2772.61 39.535 3.329 8.847 4.545 2762.45 39.822 3.290 8.942 4.532 2753.38 40.078 3.250 9.042 4.521 2745.41 40.300 3.211 9.146 4.511 2738.59 40.487 3.172 9.255 4.502 2732.93 40.636 3.132 9.368 4.496 2728.47 40.746 3.093 9.486 4.491 2725.24 40.814 3.053 9.608 4.488 2723.28 40.837 3.014 9.736 4.487 2722.61 41.080 3.014 9.736 4.487 2722.61 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 39.57 FEET UPSTREAM OF NODE 11.10 I DOWNSTREAM DEPTH= 3.324 FEET, UPSTREAM CONJUGATE DEPTH= 2.727 FEET I Page 11 ECR4.RES NODE 11.20 : HGL = < 76.094>;EGL= < 77.567>;FLOWLINE= < 73.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 11.20 FLOWLINE ELEVATION= 73.08 ASSUMED UPSTREAM CONTROL HGL = 76.09 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ~ Page 12 PROJECT DESCRIPTION These supplemental calculations were prepared to support a Construction Change for the Grading Widening of El Camino Real between Cannon Road and Tamarack A venue. The alignment for the storm drain was modified between the outlet at the culvert wingwall at station 482+32 and the cleanout at station 477+15. Also a section of the double 42 inch pipes will be replaced by a 48" pipe and a box culvert due to constraints presented by existing utilities in El Camino Real. \ HYDRAULICS Methodology for Storm Drains Hydraulic calculations were done using the software prepared by Advanced Engineering Software (AES). The software is similar to the Los Angeles County Flood Control Water Surface Profile Gradient program (WSPG). The following description of the computation theory is taken from Los Angeles County Flood Control documentation: "The computational procedure is based on solving Bernoulli's equation for the total energy at each section and Manning's formula for friction loss between the sections in a reach. The open channel flow procedure utilizes the standard step method. Confluences and bridge piers are analyzed using pressure and momentum theory. The program uses basic mathematical and hydraulic principles to calculate all such data as cross sectional area, wetted perimeter, normal depth, critical depth, pressure and momentum." The hydraulic analysis for the box culvert was done per the San Diego County Drainage Design Manual dated May 2005. Storm Drain BFA is included in Appendix 4. Exhibit M is the hydraulic map showing the nodes referenced in the analysis. 2 [ D [~ [' I~ ~ [I -L . l ·~ 4:ij r· J l L [J [ [ \ \ \ \ / \ \ ·\ \ \ \ \ \ \ \ \ . \ \ \ . \ \ \ \ \ \ \ ' \ ' ' ' ' ' ' ' ' ' '·. ' \: ' ., ' ' ' ' o' ' ' \ ' I I- I I I I I I I I \ \ \ / / / \ ' ' 'y \ / / / I I / I -~7 \ 200' sGA(E: 1 " =' 2oo' . \ / : I ' '\ \ \ I I I ~ ~ <; /~ ' ~ ' ~ t. · . . · f ~ I . \ (i I \ ~ ~ I ~ -----r... (i ,\~. I k--~ 9 ---~----~~~~-----~"l~' ~ zy ~/~ ~~ . -' "" ~ (. \7 .~ .~f ~ I .#""'~ Q\IJ" :sz ,. '!! " ~ ~ It r ... f \tl.i \ \ -,'=!, ' \ . >-~ ,J§~'Cl~AVf:NiJ£ c _ __. ... -~~-···..,.,..-··· _ .. /.,..~ y;:.-,..... .. ,...,-- EXHIBIT HYDRAULIC MAP FOR [L CAMINO REAL W/OENING I . G: \1 01307\Hydrology\ECR\1 007-HydraUTic-New-rev-160301 dwg Mar 17, 2016 10: 43am _I Xrefs: 1007WMAP; 1007ATP01; 1007AMAP; 9820GRD; 1007AUTL7; 1007wstr; 1007wpro; 1007WUTL; 1007ASITE