HomeMy WebLinkAboutCT 14-06; AFTON WAY; DRAINAGE STUDY FOR AFTON WAY; PUD 14-09, HDP 14-05, DWG 495-9, DWG 495-9A, GR2016-0050, ROW 2016-0061, SWMP 16-26; 2016-08-24--1
J
-,
l
. j
_J
I _J
--,
-_J
__ )
CT 14-06, HDP 14-05, PUD 14-09
CF,IVED
OCT ll 2016
lAI\ID ENT
ENGlNEERII\IG
AFTON WAY
2200AFTONWAY
CITY OF CARLSBAD
Prepared for:
Presidio Pebble Creek Carlsbad & LLC
301 West 28th Street, Suite A
National City, CA 91950
Prepared by:
bl-IA,
5115.A.venida Encinas, Suite L
·· carlsbad, CA 92008-4387
(760) 931-8700
July 7, 2016
~evised August 24, 2016
W.O. 983-1326-600 MM
_J
-,
·1
__ J
__ J
.-,
J
l
_j
TABLE OF CONTENTS
I. Discussion:
Vicinity Map ............................................................................. 3
Purpose and Scope ................................................................... 4
Project Description .................................................................. 4
Pre-Development Conditions ................................................. 5
Post-Development Conditions ................................................ 7
Study Method ........................................................................... 9
Conclusions ............................................................................. 16
Declaration of Responsible Charge ..................................... 17
II. Exhibits:
Existing Condition Hydrology Map & Proposed Condition
Hydrology Map ....................................................................... 18
III. Calculations:
A. Existing Condition Hydrology Calculations .................. 19
100 Year Storm .......................................................... 20
B. Proposed Condition Hydrology Calculations ............... .30
100 Year Storm .......................................................... 31
C. Hydraulic Calculations ................................................... .50
Biofiltration Basin Outlet Detail .............................. 50
Modified Type A-7 Clean Out Detail ..................... .53
Orifice Calculations for Junction Box ...................... 54
D. Hydraulic Elements Calculations .................................. .56
Curb Inlet Sizing Calculations .................................. 56
Pipe Diameter Calculations ...................................... 60
Hydraulic Grade Line (HGL) Calculations ............. 62
HGLMap ................................................................... 74
Rip Rap Energy Dissipater Table ............................ 75
IV. References .................................................................................................................. 76
AhoN WAy
CT 14~06, HDP 14~0~, PUD 14~09
DnAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
I
-,
- l
-1
j
. _J
l
_J
-l
VICINITY MAP
~
NO SCALE
AfroN WAy
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAqE Srudy
I. DISCUSSION
!
bHA, Inc.
land planning, civil engineering, surveying
__ )
-1
J
_J
J
l
-1
l J
_j
_J
I _J
PURPOSE AND SCOPE
The purpose of this report is to publish the results of hydrology and hydraulic computer analysis
for the development of 2200 Afton Way, City of Carlsbad. The proposed project is a 5.12-acre
site with 3.92 acres being developed and 1.20 acres remaining undeveloped. The scope is to
study the existing and proposed hydrology and hydraulics as it influences the surrounding
properties during a 100-year frequency storm event, and make recommendations to intercept,
contain and convey QlOO to the historic point of discharge.
PROJECT DESCRIPTION
The Afton Way Project is located in the County of San Diego (APN 167-531-45 and APN 167-
250-06). The project site is a 4.94-acres and is divided by east and westbound Carlsbad Village
Drive. The subject property located south of Carlsbad Village Drive, known as Parcel 1 for
reference, is approximately 4.57 acres and is bordered by Carlsbad Village Drive to the north,
and existing residential developments to the east, south, and west. Topographically, the property
consists of gently sloping hillside terrain with elevations ranging from a high of approximately
280 feet Mean Sea Level (MSL) near the southwestern property line to a low of approximately
205 feet MSL at the property's northeastern corner. Currently, the property is occupied by one
residential structure with two sheds. An existing crib wall, approximately 26 feet high and 300
feet long, is located along the north boundary of the site. Site drainage is presently accomplished
through a generally northeasterly trending ravine and sheet flows southeasterly to drainage
facilities along Carlsbad Village Drive. Existing brow ditches at the top of cut slopes along the
southeastern project boundary direct runoff to existing catch basins, which ultimately discharge
into the storm drain system underneath Carlsbad Village Drive. Existing brow ditches at the top
of cut slopes along the crib wall direct runoff to sidewalk underdrain pipes at various locations
along Carlsbad Village Drive and eventually enter the storm drain system underneath Carlsbad
Village Drive via a Type B Curb Inlet at the east corner of the project boundary. Vegetation
consists of native grasses and eucalyptus trees over the majority of the site. The on-site soil
classification is Type Band Type D from USDA Web Soil Survey (see References). Existing
land-use is 1.00 DU/Ac, proposed land-use is 2.88 DU/Ac.
The subject property located north of Carlsbad Village Drive, Parcel 2, is approximately 0.37
acres and is bordered by Carlsbad Village Drive to the south, Rising Glen Way to the east, and
a multi-story apartment complex to the north. Topographically, the property is a hillside
dominated by an east to west trending ridge that rises approximately 50 feet above the lowest
site terrain along the northwestern property line. Site terrain continues to support bare ground
and scattered shrubs. The on-site soil classification is Type-D from USDA Web Soil Survey (see
References). Existing land-use is undisturbed natural terrain and proposes to remain
undisturbed. For the nature of this report, only Parcel 1 is proposing to be developed. The
AhoN WAy
CT 14~06, HOP 14~0~, PUD 14~09
DRAiNAqE Srudy
bttA, Inc.
land planning, civil engineering,
-1
! ~ ~l
:_J
project site drains to one Point of Compliance (POC), located east of the project site near
Carlsbad Village Drive.
This Report is intended to include a separate Hydromodification Memo containing SWMM
calculations specific to this project site in the associated Storm Water Quality Management Plan
(SWQMP) for this project. See References for copy of Title Page, "Technical Memorandum:
SWMM Modeling for Hydromodification Compliance for Afton Way, City of Carlsbad", from Tory
R. Walker Engineering dated June 17, 2015. SWMM analyses were prepared for the pre and
post-developed conditions at the site in order to determine if the proposed LID biofiltration
facilities meet the Hydromodification Management Plan (HMP) requirements for the Q2 to Q10
return periods. Based on the hydrologic model used in the technical memorandum titled above,
a separate SWMM analysis will be prepared that describes the pre and post-development
hydrologic analysis ensures that post-development peak flow is less than or equal to pre-
development peak flow for the 6-hour 100-year storm event at the project's point of compliance
(POC-1). See References for copy of Title Page, "Technical Memorandum: Determination of Pre-
and Post-Developed JOO-year Peak Flow, Afton Way, City of Carlsbad", from Tory R. Walker
Engineering dated June 17, 2015.
PRE-DEVELOPMENT CONDITIONS
The existing drainage area is divided into six drainage basins and one POC, located east of the
project site near Carlsbad Village Drive. The Existing Condition Hydrology Map shows four
drainage basins labeled Basin A through D in Parcel 1, and two drainage basins labeled Basin E
and F in Parcel 2. Storm flows affecting Parcel 1 are limited to the rainfall coming from the top
of the ravine and downhill on the property. Basin A sheet flows from the southwest side of the
existing residence, across the existing driveway and into an existing brow ditch at the top of the
cut slope along the southeasterly project boundary line. An existing catch basin at the east corner
of the project boundary intercepts this runoff and connects to the existing storm drain system
underneath Carlsbad Village Drive.
Basin B sheet flows from the top of the southwesterly ravine and towards the easterly boundary
of the subject property and into an existing brow ditch. The brow ditch conveys flow into an
existing catch basin where it enters the storm drain system underneath Afton Way. This storm
drain system connects with the existing storm drain system underneath Celinda Drive and
eventually Carlsbad Village Drive.
Basin C is limited to the storm flows that land on the existing driveway, with some flow-on from
the ravine located between the neighboring properties and upstream of the driveway. Runoff is
carried through the existing curb and gutter along the driveway and discharges onto Afton Way
and toward curb inlets on Celinda Drive.
AFTON WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
bliA, Inc.
land planning, civil engineering, surveying 5
j
_j
-,
Basin D is north of Basin A and sheet flows from the top of the ridge west of the existing on-site
property and towards Carlsbad Village Drive through a series of brow ditches and sidewalk
underdrain pipes. Basin D also includes run-on coming from the highest point of Carlsbad
Village Drive to the existing Type-B Curb Inlet at the southwest corner of the intersection of
Celinda Drive and Carlsbad Village Drive.
Basin E is in the northwest portion of Parcel 2. Runoff sheet flows from the top of the ridge and
onto Carlsbad Village Drive, then discharges into an existing Type-B Curb Inlet at the northwest
corner of Celinda Drive and Carlsbad Village Drive also identified as POC-2. Basin E also
includes run-on coming from the highest point of Carlsbad Village Drive to the existing curb
inlet.
Basin F is located in Parcel 2 and sheet flows east from the top of the hill towards the existing
parking lot in the back of the existing multi-story apartment complex. This area that acts in a
sheet flow condition comprises approximately 0.23 acres. Sheet flow analysis is not necessary
for this area as the proposed project does not propose any new impervious area added to Basin
F. In addition, no impervious contributing area is added to Basin E and therefore does not
include a post-development hydrologic analysis.
The following table summarizes the existing condition runoff information from the site. Please
refer to the Existing Condition Hydrology Map for drainage patterns, areas, and Points of
Compliance.
TABLE I-Summary of Existing Condition Peak Flows
Discharge Location Drainage Area (Ac) 100-Year Peak Flow (cfs)
Basin A 1.34 2.53
Basin B 3.17 3.03
Basin C 0.47 1.10
Basin D 2.84 5.65
Denotes combined QlOO (cfs) from Basin A and Basin D outleting to POC-1.
AhoN WAy
CT 14~06, HDP 14~0~, PUD 14~09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil
·1
·1
l
_J
! \
POST-DEVELOPMENT CONDITIONS
The Afton Way Project proposes the development of 8 residential lots and grading of pads and
driveways, and a new public cul-de-sac on Afton Way. The project also proposes drainage facility
improvements consisting of minor concrete drainage channels, storm drain pipes, curb inlets,
and two detention-biofiltration basins for storm water treatment and hydromodification. Storm
water runoff from the project site is routed to one POC, located east of the project site near
Carlsbad Village Drive. Runoff is drained to tow independent onsite receiving biofiltration LID
IMPs called Basin 1 and Basin 2. The disturbed area is approximately 3.37 acres of the 4.94 acre
site. Proposed land-use is 2.88 DU/Ac. '
The existing residential structure and sheds will be removed as part of the Afton Way Project.
The project as proposed will endeavor to maintain the existing cross lot drainage condition for
both overall rate and flow conditions. Only Basins A through D are being developed and will
consider urban runoff flow rates, durations and velocities. The developed Basin A, or DMA 1,
will encompass runoff from Lots 1-6, which will be directed to the front of each lot and onto the
proposed cul-de-sac. Runoff will then travel via curb and gutter to a proposed Type-B Curb
Inlet on the south side of Afton Way. Runoff from Lots 7 and 8 will be directed to the front of
each lot and onto the proposed cul-de-sac, then travel via curb and gutter to a proposed Type-B
Curb Inlet on the north side of Afton Way. The proposed curb inlets will connect to a proposed
18" -dia PVC storm drain pipe adjacent to the eastern project boundary. The 18" -dia storm drain
pipe will discharge into a modified Type A-7 Clean Out (per SDRSD D-09). The cleanout will
include (2) orifices to distribute flow. The size of the orifices are a function of the size of each
basin divided by the area of the two basins combined. See the Hydraulic Calculations section
for a detail of the junction box and orifice calculations. Once flows are routed via the proposed
orifices, the flows are then conveyed via storm drain pipes to the receiving biofiltration LID
IMPs called Basin 1 and Basin 2 for treatment and detention. Outflows from the basins will be
conveyed via 12" -dia storm drain pipe to the existing Type-B Curb Inlet at POC-1.
The majority of the off-site run-on from Basin B will be intercepted by a proposed brow ditch
along the southern and eastern project boundary line and directed to a proposed catch basin on
the south side of Afton Way. The catch basin will connect to a proposed 18"-dia storm drain
system which will connect to the existing 18" -dia storm drain system underneath Afton Way and
eventually Carlsbad Village Drive.
The off-site run-on from Basin C will be intercepted by a proposed brow ditch along the western
project boundary line and directed to a proposed catch basin near the congruent property line
of Lot 4 and Lot 5. The catch basin will outlet to a proposed 18" -dia PVC storm drain system
which will travel under the proposed cul-de-sac and connect to the existing 18" -dia storm drain
system underneath Afton Way and eventually Carlsbad Village Drive.
AhoN WAy
CT 14~06, HDP 14~05, PUD 14~09
DRAiNAqE Srndy
bl-IA, Inc.
land planning, civil engineering,
-,
-,
- J
-1
J
-,
--1
--,
_J
. _J
--,
The remaining runoff in Basin D is proposed to be intercepted by the existing brow ditches at
the top of cut slopes along the crib wall and directed to the existing sidewalk underdrain pipes
at various locations along Carlsbad Village Drive. The runoff will then enter the existing storm
drain system underneath Carlsbad Village Drive as historically.
The proposed drainage facility improvements will consist of minor concrete drainage channels,
storm drain pipes, curb inlets, and two detention-biofiltration basins. The biofiltration basins
proposed for the four main Drainage Basins A -D are designed so that increases in the drainage
discharge rate and velocity will be mitigated up to the 100-year runoff. The proposed
biofiltration basins will serve to detain the very minor calculated increase in runoff created by
the proposed development, and to mitigate any concentration of storm water discharge that
might cause erosion.
Table 2 on the following page summarizes the expected cumulative 100-year peak flow rates
from Drainage Basins A -D hydrologic subareas. Per the San Diego County rainfall Isopluvial
maps, the design 100-year rainfall depth for the site area is 2.6 inches.
TABLE 2-Summary of Developed Conditions Peak Flows
Discharge Drainage Area Undetained 100-Year
Location (Ac) Peak Flow (cfs) Detained 100-Year Peak Flow (cfs)
Basin A 3.30 5.71 2.36**
Basin B 1.63 1.46 1.46
Basin D 2.91 5.76 5.76
9.64**
Denotes combined QlOO (cfs) from Basin A and Basin D outleting to POC-1 .
** Note: Detained 100-Year Peak Flow Rates from Technical Memorandum: Determination of Pre-
and Post-Developed JOO-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAqE Srudy
bl-iA, Inc.
land planning, civil engineering, surveying
_J
_J
-1
l
! _.I
Table 3 compares the cumulative pre and post-developed peak flow conditions.
TABLE 3-Summary of Pre vs Post Peak Flows
Drainage Area (acres) 100-Year Peak Flow (cfs)
Pre-Developed Condition 7.82 12.15
Post-Developed Undetained
Conditions 7.86 11.81
Post-Developed Detained Conditions 7.86 9.64**
DIFFERENCE 0.04 -2.51
** Note: Detained 100-Year Peak Flow Rates from Technical Memorandum: Determination of Pre-
and Post-Developed JOO-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015.
STUDY METHOD
The method of analysis was based on the Rational Method according to the San Diego County
Hydrology Manual. The Hydrology and Hydraulic Analysis were done on HydroSoft by
Advanced Engineering Software 2013.
Design Storm -100-year return interval
Land Use -Residential
Soil Type -The site was modeled with Type B and Type D hydrologic soils as determined from
the NRCS Web Soil Survey. Type B soils have moderate infiltration rates when thoroughly
wetted. Type D soils have very slow infiltration rates when thoroughly wetted.
Rainfall Intensity-Initial time of concentration (Tc) values based on Table 3-2 of the San Diego
County Hydrology Manual (SD HM). Rainfall Isopluvial Maps from the SD HM were used to
determine P 6 for 100 year storm, see References.
Rainfall Intensity = I = 7.44x(P6)x(Tc) "" -0.645
P6 for 100 year storm= 2.6"
P 6 for 10 year storm = 1. 7"
P 6 for 2 year storm = 1.2"
AfrnN WAy
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAqE Swdy
bl-IA, Inc.
land planning, civil engineering, surveying
-,
_J
_J
_J
__ )
,_J
_J
__ J
--,
--_J
The Rational Method provided the following variable coefficients:
Runoff Coefficients -In accordance with the County of San Diego standards, runoff coefficients
were based on land use and soil type. The site consists of soils in hydrologic soil groups of Type-
B and Type-D, see Web Soil Survey in the References section of this report. The line depicting
the Type-B and Type-D soils has been transposed from the Web Soil Survey and included in the
Existing and Proposed Hydrology Maps. An appropriate runoff coefficient (C) for each type of
land use in the subarea was selected from Table 3-1 of SD HM and multiplied by the percentage
of total area (A) included in that class. The sum of the products for all land uses is the weighted
runoff coefficient (2,[CA]).
For all of the landscaped areas, a runoff coefficient assuming 0% impervious was used based on
the under-lying soil type, 0.25 for Type-B and 0.35 for Type-D soils. All streets and driveways
were considered 95% impervious, and assigned a runoff coefficient of 0.87.
Impervious area from the existing single-family residence was also considered in the Existing
Condition Weighted Runoff Coefficient Calculations, due to the residence conveying some of the
site's surface runoff to the historic discharge points.
Drainage basin areas were determined from the proposed grades shown on the Grading Plans for
Afton Way TM and 200-scale existing topographic maps from the County of San Diego. All pad
areas were considered to include a roof area and future extension of driveway area of 3,500 square
feet. Driveway areas ( including panhandle driveways) were calculated based on the proposed final
driveway areas and total 15,596 square feet. Public cul-de-sac area was calculated based on the
proposed final cul-de-sac area and totals 14,111 square feet. At Final Grading, pad areas will also
be calculated with a weighted runoff coefficient based on building footprints and final extension
of driveway areas.
The exhibits show the offsite area, proposed on-site drainage system, on-site subareas, and nodal
points. Table 4 summarizes the Composite C-values calculated in the Existing and Proposed
Conditions.
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
_J
_ __J
·• _J
I __ .J
J
_.)
·-,
-,
~1
I _J
TABLE 4-Weighted Runoff Coefficient Value Calculations for Existing and Proposed
Condition Hydrology
Existing Hydrology-Afton Way
Up Node Down Node Total Acreage C1 Al (acres) C2 A2 (acres) (3 A3 (acres) Ccomp
3 1 1.34 0.25 0.00 0.35 1.20 0.87 0.14 0.41
6 4 3.17 0.25 3.17 0.35 0.00 0.87 0.00 0.25
9 7 0.47 0.25 0.32 0.35 0.00 0.87 0.15 0.45
16 14 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25
14 13 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64
13 12 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42
12 12 0.29 0.25 0.00 0.35 0.29 0.87 0.00 0.35
12 11 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73
11 10 0.36 0.25 0.00 0.35 0.19 0.87 0.17 0.60
19 18 1.14 0.25 0.00 0.35 0.13 0.87 1.01 0.81
' ; i . ' .
Proposed Hydrology-Afton Way
Up Node Down Node Total Acreage C1 Al (acres) C2 A2 (acres) (3 A3 (acres) Ccomp
405 303 0.22 0.25 0.14 0.35 0.08 0.87 0.00 0.29
124 122 0.21 0.25 0.00 0.35 0.13 0.87 0.08 0.55
122 121 0.12 0.25 0.04 0.35 0.04 0.87 0.04 0.49
121 120 1.78 0.25 1.00 0.35 0.00 0.87 0.78 0.52
115 114 0.31 0.25 0.00 0.35 0.23 0.87 0.08 0.48
114 113 0.11 0.25 0.03 0.35 0.05 0.87 0.06 0.69
113 112 0.47 0.25 0.24 0.35 0.22 0.87 0.23 0.55
145 143 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25
144 142 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64
142 141 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42
141 141 0.27 0.25 0.00 0.35 0.27 0.87 0.00 0.35
141 140 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73
140 -0.40 0.25 0.00 0.35 0.23 0.87 0.17 0.57
· Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site
existingsoiltypes. See References.
The outlet structure for Basin 1 and Basin 2 have been designed based on results from the
Technical Memorandum: SWMM Modeling for Hydromodification Compliance for Afton Way,
dated April 9, 2015 from Tory R. Walker Engineering under separate cover (see References
section of this Report for copy of Title Page. See Attachments section in the Storm Water
Management Plan associated with this project for copy of Technical Memorandum). This
SWMM Model demonstrates Hydromodification Compliance at the proposed basins for the Q2
to Q10 return periods as specified in the County of San Diego Hydromodification Plan (HMP).
Based on the hydrologic model used in the technical memorandum titled above, a separate
AfroN WAy
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srndy
bl-tA, Inc.
land planning, civil engineering, surveying
_ _J
J
_J
SWMM analysis has been prepared that describes the pre and post-development hydrologic
analysis ensures that post-development peak flow is less than or equal to pre-development peak
flow for the 6-hour 100-year storm event at the project's point of compliance (POC-1). See
References for copy of Title Page, Technical Memorandum: Determination of Pre-and Post-
Developed 100-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015. The
Rational Method study provided herein incorporates the outlet structure design in the Technical
Memorandum, and is meant to enhance the study from Tory R. Walker Engineering, Inc. to show
the site can sufficiently convey the 100 year storm event.
HMP MODELING
The two IMPs are responsible for handling hydromodification requirements for the project site.
In developed conditions, Basins 1 and Basin 2 will have a surface depth of 3 feet and 2.5 feet and
a riser spillway structure ( see dimensions in Tables 5 and 6). Flows will discharge from the
biofiltration cells via a low flow orifice outlet within the gravel layer or a surface slot with the
riser structure. The top of the riser· structure will act as a spillway, such that peak flows can be
safely discharged to the receiving storm drain system.
Beneath the invert of the basins' lowest surface discharge lies the proposed LID biofiltration
portion of the drainage facility. This portion of the basins is comprised of 12 inches of surface
storage, an 18-inch layer of amended soil ( a highly sandy, organic rich composite with an
infiltration capacity of at least 5 inches/hr) and a 12-inch layer of gravel for additional detention
and to accommodate the French drain system. These systems will treat storm water and convey
flows to a small diameter lower outlet orifice. Once flows have been routed by the outlet
structures, flows will then discharge independently from each basin to the receiving POC
discharge location.
The biofiltration basins were modeled using the biofiltration LID module within SWMM. Please
refer to Page 2 of the Technica!Mem:orandum for details explaining the biofiltration module.
AhoN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAGE Srudy
bl-tA, Inc.
land
_J
__ J
--,
_J
J
-,
J
-"l
_ _J
• _J
_J
-,
l
' __ J
---,
_J
BMP MODELING FOR HMP PURPOSES
Two LID IMP biofiltration basins are proposed for hydromodification conformance for the
project site. Basin dimensions are summarized in Table 5 below.
Biofiltration
IMP
Basin 1
Basin 2
Notes:
TABLE 5-Summary Of Developed Dual Purpose IMP
IMP DIMENSIONS
BMPArea<1> Gravel Amended Soil Surface Lower Orifice
(ft2) Depth<2> (in) (in) Depth<4> (in) D (in)l3l
1,805 12 18 12,30 1.25
485 12 18 12,30 1.25
(1): Area of amended soil equal to area of gravel.
(2): Gravel depth needed to comply with hydromodification conditions.
(3): Diameter of the orifice in the gravel layer with invert at bottom of layer, tied with HMP min.
threshold (10%Qi).
(4): First number is the surface depth of the BMP up to the slot invert. Second number is the total
surface depth from bottom of surface pond to top pond wall.
TABLE 6-Summary OfBiofiltration Basin Riser Details
Slot Dimensions Slot Invert
HMP Detention Elevation<4> (in) Weir Length,
Basin h (in) BsLor (in) Invert Elevation
Basin 1 3 24 12.00 8'@ 1.75' Elev.
Basin 2 3 24 12.00 8' @ 1.75' Elev.
Notes: (1): All elevations measured from the bottom of the surface of the basin.
(2): Assumed 3' x 3' box riser with internal 2' x 2' opening (8 feet internal perimeter).
Drawdown Calculations
To ensure compliance with the 72 hour drawdown requirements per Section 6.4.6 of the Final
HMP dated March 2011, drawdown calculations are provided in Attachment 4 of the Technical
Memorandum. The calculated drawdown times for Basin 1 and 2 are 22.16 hours and 6.93 hours
respectively.
Summary of Results
Table 7 on the following page compares the existing and proposed development drainage areas
and discharge points for Basins A through D, as well as the POC. While the actual developed
drainage area and discharge points for Basins A through Basin D differ from the original
AfroN WAy
CT 14--06, HDP 14--0~, PUD 14--09
DRA.iNA.qE Srndy
bl-M, Inc.
landplanning, civil engineering, surveying
_J
--,
J
J
_j
,--,
__ j
_J
_J
-· -~
undeveloped existmg condition, any negative impacts created by these area diversions are
mitigated by the proposed detention-biofiltration basins. As can be seen from Table 7, overall
detained runoff discharge rates are actually less than that of the undeveloped existing condition.
The Type-D soil on-site provides little infiltration capacity, resulting in larger runoff flows
downstream. For the 100-year event, all storm drain facilities have been sized to convey the
design flowrate based on Rational Method calculations, including the overflow catch basins in
the biofiltration basins. Despite an additional 1.5 acres draining to POC-1 in the proposed
condition, the results of the Peak Flows Calculation Table in the Technical Memorandum show
that the outlet structure designed by Tory R. Walker Engineering can sufficiently mitigate
storm water flows for the Q2, Q10 and 0100 return periods, as specified in the City of Carlsbad
HMP for Hydromodification compliance. The site demonstrates compliance with the HMP as
all storm drain facilities are sized to convey the 100 year storm event, while Mitigated flows for
the 2 through 10 year Return Period are less than the Existing Condition. Based on this
conclusion, the proposed re-routing of the existing drainage areas will have minimal impact
downstream.
AfroN WAy
CT 14.-06, HOP 14.-05, PUD 14.-09
DRAiNAGE Srudy
bl-tA, Inc.
J j -I l.__ -~I '~ _j L__ _j
TABLE 7-Summary of Existing Vs. Proposed Peak Flows by Node
Existing Condition Proposed Undetained Condition
Node Acres Q(cfs) Tc (min) Node Acres Q (cfs) Tc (min)
Basin A 1 1.34 2.53 9.29 107 3.30 5.71 14.29
BasltJ B 4 3.17 3.03 12.34 302 1.63 1.46 14.03 Basin C 7 0.47 1.10 7.68
Basin D 10 2.84 5.65 10.26 105 2.91 5.76 10.20
Roc~1, -. ?10 --\ _ 4.18 IY 'B.tJ2-10.26_ -·-ic--105/ <•:. 6.2r------.--__ '1Q.3$ t"14'._29 • '
Total 7.8 12.15 12.34 7.8 11.81 14.29
'. Denotes combined QlOO (cfs) from Basin A and Basin D outleting at existing Type-B Curb Inlet.
Afton Way TM
2200 Afton Way
Preliminary Drainage Study
bl-tA, Inc.
land planning, civil engineering, surveying
~--' ~I
Proposed Detained Condition
Acres Q (cfs) Tc (min)
3.30 2.36 254.29
1.63 1.46 14.03
2.91 5.76 10.20
6.20'' ·--· 8.18 -., --? -2s4.29 . -----
7.8 9.64 254.29
L
_j
-_J
J
__ J
_J
--1
-,
--1
j
j
_I
CONCLUSION
The 2200 Afton Way project satisfies the drainage requirements of the City of Carlsbad. All
storm drain facilities have been sized to convey the 100-year storm event without any adverse
effects, and the 2-year through 10-year storm events will not release increase flowrates compared
to the Existing Conditions per HMP requirements. Based on this conclusion, runoff released
from the proposed project site will unlikely cause any adverse impact to downstream water
bodies or existing habitat integrity. Sediment will likely be reduced upon site development.
Afton Way TM
2200 Afton Way
Preliminary Drainage Study
bJ-iA, Inc.
land planning, civil engineering, surveying
~-j
--,
_J
_J
-,
, __ I
I , __ )
J
-,
__ J
DECLARATION OF RESPONSIBLE CHARGE
I hereby declare that I am the Engineer of Work for this project, that I have exercised
responsible charge over the design of the project as defined in section 6703 of the business and
professions code, and that the design is consistent with current standards.
I understand that the check of project drawings and specifications by the City of Carlsbad is
confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities
for project design.
AfrnN WAy
CT 14--06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srudy
0-,-(
Date
bHA, Inc.
land planning, civil engineering, surveying
. 1
i _)
_j
II. EXHIBITS
EXISTING CONDITION HYDROLOGY MAP
&
PROPOSED CONDITION HYDROLOGY MAP
AhoN WAy
CT 14 ... 06, HDP 14 ... 05, PUD 14 ... 09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying ~ 1 ______________ _,! 18 k--
__ , ---~, .... ,..., ............... ,,,..,' "'r.nr, 0, ,,.,~AD\ 1 ~')h DDflD 1-.1vnRn-nt1i1A rlwn 10/fl/701 fi 12:17:49 PM
LOT3
P£ 265
LOT~
255 Pf
l
SEE BASIN D: OFF-SITE
DRAINAGE DETAIL, THIS SHEET
LOT4
P£ 260
LOT5
P£ 255 -//-
'f
.. '
I LOTS
P£ 240
•,JBASINA
I
PROPOSED CONDITION HYDROLOGY MAP
AFTON WAY SUBDIVISION, CARLSBAD, CA
.,
'
1
' --~
' '
' ' L j. _.,~
' "" j '
i '
DARY
' ' ' '
.. ·:-;t·:s~. ,,
. . ,._ ~ ...,
\ \'
'' \, ';. -· ~1 .):
. '.
--\;
I
LEGEND: PROJECT CHARACTERISTICS
SURFACE NODE
SURFACE RUNOFF (Q1DD)
BASIN AREA (ACRES)--@
BASIN LIMIT
SUB-BASIN LIMIT
FLOWPATH
FLOW DIRECl/ON
PROPERTY LINE
BROW DITCH
SOIL CLASS/FICA 7/0N
BOUNDARY
11!1!11111-~---
=
SOIL TYP£ B&D
PROJECT AR£A 4.94 ACR£S
DISTURBED AR£A 3.37 ACR£S
PROPOSED IMPERVIOUS AR£A 1.26 ACRES
PROPOSED P£RVIOUS AR£A 2.11 ACRES
WEIGHTED RUNOFF COEFFICIENT VALUE TABLE:
Prop<>sed Hydrology-Afton Way
Up Node Down Node Total Acreage C1 At {acres) c, A2 (acres) (3 A3 (acres) Ccon1p
405 303 0.22 0.25 0.14 0.35 0.08 0.87 0.00 0.29
124 122 0.21 0.25 0.00 0.35 0.13 0.87 0.08 0.55
122 121 0.12 0.25 0.04 0.35 0.04 0.87 0.04 0.49
121 120 1.78 0.25 1.00 0.35 0.00 0.87 0.78 0.52
115 114 0.31 0.25 0.00 0.35 0.23 0.87 0.08 0.48
114 113 0.11 0.25 0.03 0.35 0.05 0.87 0.06 0.69
113 112 0.47 0.25 0.24 0.35 0.22 0.87 0.23 0.55
145 143 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25
144 142 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64
142 141 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42
141 141 0.27 0.25 0.00 0.35 0.27 0.87 0.00 0.35
141 140 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73
140 . 0.40 0.25 0.00 0.35 0.23 0.87 0.17 0.57
Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site
existing soil types. See References.
SUMMARY OF DEVELOPED CONDITIONS PEAK FLOWS
DISCHARGE LOCA TJON DRAINAGE AREA (AC) UNDETAIN£D 100-Y£AR DETAINED 100-Y£AR
P£AK FLOWS (CFS) PEAK FLOWS (CFS}
NOD£ 107 J.JO 5.71 2.36'
NODE 302 1.63 1.46 1.46
NOD£ 105 2.91 5.76 5.76
POC-1 6.21 10.35 8.18'
TOTAL 7.84 11.81 9.64•
• NOTE: VALUES WITH ASTERISK(•) CALCULATED PER TECHNICAL MEMORANDUM: DETERMJNAl/ON OF PRE-AND
POST-D£V£LOPED 100-YEAR PEAK FLOW, AFTON WAY, CARLSBAD, CA, JVNE 17, 2015" PREPARED BY TORY R.
WALKER ENGINEERING. SEE DRAINAGE REPORT FOR COPY OF TECHNICAL MEMORANDUM .
TYPE B BROW
DITCH PER SDRSD
D-75
?fW 1!.._0' D££P ROOTED, DENSE,
----.DROUGHT TOLERANT
Pt:ANTING SUITABLE FOR WELL~
SLOT ORIFICE TO ALLOW
100 YR PREDEVELOPM£NT
FLOW
DRAINW-SOJk. TYPE G-1 CATCH B),SIN WITH GRATED INLET
215.5' FOR POST DEV£LOPM£NT 100YR FLOW
)
214.25 RIM-EXIST. GROUND 18" ENGINEERED BASIN 1 ----.
SOIL MIX
1' V2 STORAGE LAY£R---
(2"-PEA GRAVEL OVER 10"-J/4" "\_
CRUSHED ROCK) 212.5'
6" PERFORA T£D PVC
UNDERDRAIN PIPE
PLACE PIPE WITH BW 210'
PERFORATIONS AT THE INVERT
IMPERMEABLE LINE,R---,,.
THROUGHOUT
RESTRJCTOR PLAT£ TO LIMIT------
FLOW FROM V2 STORAGE
AR£A, 2.25" DRAIN DOWN
HOLE 18" ENGINEER£
SOIL MIX
UNDERDRAIN PIPE
PLACE PIPE WITH
PERFORA TJONS AT THE INVERT
BASIN 2
209.2
TYP£ G-1 CATCH BASIN
......_i,v1TH GRATED INLET FOR POST
Dt\l'ELnPM£NT 100YR FLOW ~ 210' ----. .-----
t·' "-
--==-F2:.::·5t-7r-;SLOT ORIFICE iD'AUQW
L 100 YR
PREDEVELOPMENT FLOW
,+~-1---RESTRICTOR PLATE AT £ND OF
P£RF PIP£ IN BASIN 2 TO LIMIT
FLOW FROM V2 STORAGE AR£A,
OUTFLOW -
1. 00" DRAIN DOWN HOLE
1' V2 STORAGE LA Y£R
(2"-PEA GRAVEL OVER
10"-J/4" CRUSHED ROCK)
72" HOPE
OUTLET PIPE
12" HOPE OUTLET PIPE
FROM RIS£R/BASIN 1
IMPERMEABLE LINER
THROUGHOUT
SECTIOND-D
50' 25'
~
BIOFILTRATION BASIN DETAIL
o' 50· 1 oo· 150·
~~~I iiiiiiiiiiiiiiiiiiiiiiiiiiiiii l~~"""ll
SCALE: 1" = 50'
b~A,lnc.
land planning, clvll englnee~ng, surveying
5115 AVENIDA ENCINAS
SUITE "L"
CARLSBAD, CA. 92008-4387
(760) 931-8700
NOT TO SCALE
PROPOSED CONDITION
HYDROLOGY MAP
AFTON WAY SUBDIVISION
CARLSBAD, CA
OFF-SITE DRAINAGE DETAIL
J ·,·.
' ' '
I ' :
. \ I j / I
K•\Civil 30\1326\PROD\DWG\HYDRO & SWMP\1326-PROP HYDRO-DMAdwg, 8/24/201611:31:32 AM
SEE BASIN D: OFF-SITE
DRAINAGE DETAIL, THIS SHEET
'
;/
I / .
/
/
/ / . ' '
-
I
' '/'.
/I
\
/. /\
, . .,, ,"
EXISTING CONDITION HYDROLOGY MAP
AFTON WAY SUBDIVISION, CARLSBAD, CA
', ;_/-".'//:-:_.::,'
,_I .; ".'\,.'.' -<.\','·
,\). ''.:,\.):/),.'::\'.\'/ . .,:\\
·.-.,; ,· ,1·,.-',';:,:,:.-·..-:·'''
\ \ "
' // rr li ,/ / !I/! /
I /j:
~./'U····. /j'/
' ' .'
' ,,. I [;~· .. /:: I~--.----. /:. ~ ..
/
-"-\·.\ .
~-
.. PARC,f~2
/ ·'; ' :" 'i
/
' I ,/! I
• : I
,' !
'
•
. . :_.
jl •I
,/
/' ,.
" j !
/1
.:/;}
, :1 .,,
;,· /
i .· :j ,' : J
l-
1 / / -' ./
:.1 .• , . 1 1--, ! ...
ii!
' I ''! .. l . '
\~
! ,.
, '
/·
' '
LEGEND: PROJECT CHARACTERISTICS
SURFACE NODE
SURFACE RUNOFF (0100)
BASIN AREA (ACRES)~
BASIN LIMIT
SUB-BASIN LIMIT
FLOWPATH
------
FLOW DIRECTION
PROPERTY LINE
BROW DITCH = =
SOIL CLASS/FICA T/ON ----
BOUNDARY
=
SOIL TYPE B&D
PROJECT AREA 4.94 ACRES
APN 167-531-45 &
167-250-06
WEIGHTED RUNOFF COEFFICIENT VALUE TABLE:
50'
Existing Hydrology-Afton Way
Up Node Down Node Total Acreage c, Ai (acres) Cz A2 (acres) (3 A3 (cicres) Ccornp
3 1 1.34 0.25 0.00 0.35 1.20 0.87 0.14 0.41
6 4 3.17 0.25 3.17 0.35 0.00 0.87 0.00 0.25
9 7 0.47 0.25 0.32 0.35 0.00 0.87 0.15 0.45
16 14 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25
14 13 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64
13 12 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42
12 12 0.29 0.25 0.00 0.35 0.29 0.87 0.00 0.35
12 11 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73
11 10 0.36 0.25 0.00 0.35 0.19 0.87 0.17 0.60
19 18 1.14 0.25 0.00 0.35 0.13 0.87 1.01 0.81
Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site
existing soil types. See References .
SUMMARY OF EXISTING CONDITIONS
PEAK FLOWS
DISCHARGE LOCATION DRAINAGE AREA (AC) 100-YEAR PEAK FLOWS
(CFS)
BASIN A (NODE 1) 1.34 2.53
BASIN B (NODE 4) 3.17 3.03
BASIN C (NODE 7) 0.47 1.10
BASIN D (NODE 10) 2.84 5.65
POC-1 (NODE 10) 4.18 8.02
TOTAL 7.8 12.15
NOTE: POC-1 REPRESENTS COMBINED 0100 (CFS) FROM BASIN A (NODE 1) AND BASIN D
(NODE 10) OUTLET/NG AT THE EXISTING TYPE-8 CURB INLET. THE TOTAL DRAINAGE.
REPRESENTS BASINS A -0 .
25' o' so' 100' 150'
~~
SCALE: 1" = 50'
bJ.iA,lnc.
land planning, cMI englnee~ng, suiveylng
5115 AVENIDA ENCINAS
SUITE "L"
CARLSBAD, CA. 92008-4387
(760) 931-8700
EXISTING CONDITION
HYDROLOGY MAP
AFTON WAY SUBDIVISION
CARLSBAD, CA
. .J
,_ I
__J
.J
__ J
--,
--J
-,
_ _i
III. CALCULATIONS
A. EXISTING CONDITION HYDROLOGY CALCULATIONS
AhoN WA.y
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
bliA, Inc.
land planning, civil engineering, surveying
.J
, ___ j
·1
- J
C .J
l
lOOYEARSTORM
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACK.AGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2013 Advanced Engineering Software (aes)
Ver. 20.0 Release Date: 06/01/2013 License ID 1459
Analysis prepared by:
BHA, Inc
5115 Avenida Encinas, Suite L
Carlsbad, CA 92008-4387
(760) 931-7780
************************** DESCRIPTION OF STUDY**************************
* 100 YEAR EXISTING HYDROLOGY ANALYSIS
* AFTON WAY SUBDIVISION
* SEE HYDROLOGY MAP FOR NODE LOCATIONS, AND BASIN INFORMATION
**************************************************************************
FILE NAME: 1326El00.DAT
TIME/DATE OF STUDY: 09:08 06/20/2016
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.600
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*
*
*
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT)
MODEL*
MANNING
FACTOR
(n)
1 32.0 27.0 0.018/0.018/0.020 0.50 1.50 0.0313 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth= 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4100
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 78.00
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
_j
-_)
_)
_I
- J
UPSTREAM ELEVATION(FEET) = 280.00
DOWNSTREAM ELEVATION(FEET) 273.00
ELEVATION DIFFERENCE(FEET) 7.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.279
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.615
SUBAREA RUNOFF(CFS) 0.16
TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) 0.16
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 1.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 273.00 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE
CHANNEL BASE (FEET) 25. 00 "Z" FACTOR = 2. 000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.603
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4100
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
1. 00
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.03 TRAVEL TIME(MIN.)
Tc(MIN.) = 9.26
1. 39
2.01
3.98
197.93
0.1564
1. 28 SUBAREA AREA(ACRES)
AREA-AVERAGE RUNOFF COEFFICIENT
SUBAREA RUNOFF(CFS)
0.410
2.42
TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) 2.53
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.)
LONGEST FLOWPATH FROM NODE 3.00 TO NODE
2.35
1. 00 = 558.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 1. 00 TO NODE 10.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USiNG'-USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 197.93 DOWNSTREAM(FEET)
FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 16.09
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 2.53
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.29
192.28
LONGEST FLOWPATH FROM NODE 3.00 TO NODE 10.00 584.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE
AFTON WAy
CT 14--06, HDP 14--05, PUD 14--09
DRAiNAGE Srudy
6.00 TO NODE 5.00 IS CODE= 21
bl-IA, Inc.
land planning, civil engineering,
J
l
- J
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 301.00
DOWNSTREAM ELEVATION(FEET) = 295.00
ELEVATION DIFFERENCE(FEET) = 6.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.420
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.894
SUBAREA RUNOFF(CFS) 0.12
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.12
****************************************~***********************************
FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 295.00 DOWNSTREAM(FEET) 232.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 454.00 CHANNEL SLOPE 0.1388
CHANNEL BASE(FEET) 25.00 "Z" FACTOR= 10.000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.825
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.63
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.93
AVERAGE FLOW DEPTH(FEET) 0.03 TRAVEL TIME(MIN.) 3.92
Tc(MIN.) = 12.34
SUBAREA AREA(ACRES) 3.07 SUBAREA RUNOFF(CFS) 2.94
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) 3.03
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.)
LONGEST FLOWPATH FROM NODE 6.00 TO NODE
2.45
4.00 = 554.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 9.00 TO NODE 8.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 92.00
UPSTREAM ELEVATION(FEET) = 283.00
DOWNSTREAM ELEVATION(FEET) = 275.00
ELEVATION DIFFERENCE(FEET) = 8.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.458
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.474
SUBAREA RUNOFF(CFS) 0.26
TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) 0.26
****************************************************************************
AhoN WAy
CT 14--06, HDP 14--05, PUD 14--09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
_J
_J
J
-'
-i
FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 275.00 DOWNSTREAM(FEET) 221.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 370.00 CHANNEL SLOPE 0.1459
CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.192
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.69
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.77
AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.) 2.23
Tc(MIN.) = 7.68
SUBAREA AREA(ACRES) 0.38 SUBAREA RUNOFF(CFS) 0.89
AREA-AVERAGE RUNOFF COEFFICIENT 0.450
TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) 1.10
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.)
LONGEST FLOWPATH FROM NODE 9.00 TO NODE
2.74
7.00 = 462.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 16.00 TO NODE 15.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00
UPSTREAM ELEVATION(FEET) = 280.00
DOWNSTREAM ELEVATION(FEET) = 272.00
ELEVATION DIFFERENCE(FEET) = 8.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.770
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.246
SUBAREA RUNOFF(CFS) 0.11
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.11
****************************************************************************
FLOW PROCESS FROM NODE 15.00 TO NODE 14.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 272.00 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 206.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.819
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.52
AfroN WAy
260.50
0.0558
b~A, Inc. CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srndy land planning, civil engineering,
J
~I
l
-,
j
TRAVEL TIME THRU SUBAREA
AVERAGE FLOW DEPTH(FEET}
Tc(MIN.} = 6.44
SUBAREA AREA(ACRES}
BASED ON VELOCITY(FEET/SEC.)
0.23 TRAVEL TIME(MIN.)
0.57 SUBAREA RUNOFF(CFS)
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.)
5.13
0.67
0.83
0.93
LONGEST FLOWPATH FROM NODE 16.00 TO NODE
5. 96
14.00 = 272.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 14.00 TO NODE 13.00 IS CODE= 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION# 1 USED}<<<<<
UPSTREAM ELEVATION(FEET} = 260.50 DOWNSTREAM ELEVATION(FEET}
STREET LENGTH(FEET} = 227.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL} 0.018
OUTSIDE STREET CROSSFALL(DECIMAL} 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
252.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.24
6.00 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
3.24
STREET FLOW TRAVEL TIME(MIN.) = 1.17
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA}:
USER-SPECIFIED RUNOFF COEFFICIENT= .6400
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.374
0.77
Tc(MIN.)
5.225
7.61
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
0.30
0.9
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.85
1.43
1. 00
1. 84
FLOW VELOCITY(FEET/SEC.) = 3.41 DEPTH*VELOCITY(FT*FT/SEC.) 0.86
LONGEST FLOWPATH FROM NODE 16.00 TO NODE 13.00 = 499.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 13. 00 TO NODE 12.00 IS CODE= 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION# 1 USED}<<<<<
UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 184.00 CURB HEIGHT(INCHES) = 6.0
AhoN WAy
242.00
CT 14~06, HDP 14~05, PUD 14~09
DRAiNAqE Srndy
bHA, Inc.
land planning, civil engineering, surveying
.J
I
_J
. J
__ J
_J
·,
: __ .I
. _j
. l
:_J
.1
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
7.27 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
4.19
STREET FLOW TRAVEL TIME(MIN.) = 0.73
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4200
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.393
1. 09
Tc (MIN.)
4.925
8.34
SUBAREA AREA(ACRES) 0.62
TOTAL AREA(ACRES) = 1.6
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET)' = 0.27 HALFSTREET FLOOD WIDTH(FEET) 8.01
2.48
1. 28
3.02
FLOW VELOCITY(FEET/SEC.) = 4.35 DEPTH*VELOCITY(FT*FT/SEC.) 1.19
LONGEST FLOWPATH FROM NODE 16.00 TO NODE 12.00 = 683.00 FEET .
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.925
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT= 0.3859
SUBAREA AREA(ACRES) 0.29 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
TC(MIN.) = 8.34
0.50
3.52
****************************************************************************
FLOW PROCESS FROM NODE 12.00 TO NODE 11.00 IS CODE= 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION# 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 401.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
AhoN WAy
213.00
b~A, Inc. CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srudy land civil engineering,
__ )
j
-J
j
J
--·1
_i
J
' -1
-SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1
STREET PARKWAY CRGSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.29
8.74
5.23
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 1.28
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .7300
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.450
1.49
Tc(MIN.)
4.492
9.62
SUBAREA AREA(ACRES) 0.42
TOTAL AREA(ACRES) = 2.3
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 9.06
4.20
1. 38
4.58
FLOW VELOCITY(FEET/SEC.) = 5.37 DEPTH*VELOCITY(FT*FT/SEC.) 1.56
LONGEST FLOWPATH FROM NODE 16.00 TO NODE 11.00 = 1084.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 11. 00 TO NODE 11.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.492
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
TC(MIN.) = 9.62
COEFFICIENT= 0.4411
0.21 SUBAREA RUNOFF(CFS)
2.5 TOTAL RUNOFF(CFS) =
0.33
4.91
****************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE= 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION# 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 213.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 199.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
200.94
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section= 0.0200
AhoN WAy
CT 14,06, HOP 14,05, PUD 14,09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
J
J
_J
_J
_.)
J
J
_J
-1
_J
_J
·1
j
' ,_ J
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.31
10.12 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
5.20
STREET FLOW TRAVEL TIME(MIN.) = 0.64
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED (SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT= .6000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.461
1. 61
Tc (MIN.)
4.310
10.26
SUBAREA AREA(ACRES) 0.36
TOTAL AREA(ACRES) = 2.8
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 10.33
5.38
0.93
5.65
FLOW VELOCITY(FEET/SEC.) = 5.26 DEPTH*VELOCITY(FT*FT/SEC.) 1.65
LONGEST FLOWPATH FROM NODE 16.00 TO NODE 10.00 = 1283.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE= 11
>>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 5.65 10.26 4.310
LONGEST FLOWPATH FROM NODE 16.00 TO NODE
** MEMORY BANK# 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 2.53 9.29 4.595
LONGEST FLOWPATH FROM NODE 3.00 TO NODE
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 7.64 9.29 4.595
2 8.02 10.26 4.310
AREA
(ACRE)
2.84
10.00
AREA
(ACRE)
1. 34
10.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 8.02 Tc(MIN.) = 10.26
TOTAL AREA(ACRES) = 4.2
1283.00 FEET.
584.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 19.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .8700
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
AfroN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srudy
bl-IA, Inc.
land planning, civil engineering, surveying
J
J
_J
_J
--,
_J
_J
_J
J
_J
UPSTREAM ELEVATION(FEET) = 260.50
DOWNSTREAM ELEVATION(FEET) 260.20
ELEVATION DIFFERENCE(FEET) 0.30
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.688
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH= 50.00
(Reference: Table 3-lB of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.850
NOTE: RAINFALL INTENSITY IS BASED ON Tc= 5-MINUTE.
SUBAREA RUNOFF(CFS) 0.66
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.66
****************************************************************************
FLOW PROCESS FROM NODE 19.00 TO NODE 18.00 IS CODE= 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION# 1 USED)<<<<<
UPSTREAM ELEVATION(FEET} = 260.20 DOWNSTREAM ELEVATION(FEET}
STREET LENGTH(FEET} = 975.00 CURB HEIGHT(INCHES} = 6.0
STREET HALFWIDTH(FEET} = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET} 27.00
INSIDE STREET CROSSFALL(DECIMAL} 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL} 0.020
209.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb} 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} 2.99
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 8.01
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.31
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.17
STREET FLOW TRAVEL TIME(MIN.) = 3.77 Tc(MIN.) 7.46
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.292
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .7500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT 0.760
SUBAREA AREA(ACRES) 1.15 SUBAREA RUNOFF(CFS) = 4.56
TOTAL AREA(ACRES} = 1.3 PEAK FLOW RATE(CFS) 5.07
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 10.12
FLOW VELOCITY(FEET/SEC.) = 4.90 DEPTH*VELOCITY(FT*FT/SEC.) 1.52
LONGEST FLOWPATH FROM NODE 20.00 TO NODE 18.00 = 1075.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.292
Af-roN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
_j
-,
. j
_J
J
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
S.C.S. CURVE NUMBER (AMC II) 0
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES)
TC(MIN.) 7.46
COEFFICIENT
0.23
1. 5
= 0.6971
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS)
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
1.5 TC(MIN.)
5.50
END OF RATIONAL METHOD ANALYSIS
AhoN WAy
7.46
0.43
5.50
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
--1
_J
_J
J
_J
-,
J
-1
I _j
B. PROPOSED CONDITION HYDROLOGY CALCULATIONS
AfroN WAy
CT 14~06, HDP 14~05, PUD 14~09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
__ J
100 YEAR STORM
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2013 Advanced Engineering Software (aes)
Ver. 20.0 Release Date: 06/01/2013 License ID 1459
Analysis prepared by:
BHA, Inc
5115 Avenida Encinas, Suite L
_j Carlsbad, CA 92008-4387
__ I
_ .. J
_J
_J
_ _I
_J
-,
- J
(760) 931-7780
************************** DESCRIPTION OF STUDY**************************
* 100 YEAR PROPOSED HYDROLOGY ANALYSIS
* 2200 AFTON WAY
* SEE HYDROLOGY MAP FOR NODE LOCATIONS, AND BASIN INFORMATION
**************************************************************************
FILE NAME: 1326P100.DAT
TIME/DATE OF STUDY: 13:42 08/23/2016
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.600
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*
*
*
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW
HALF-CROWN TO
WIDTH CROSS FALL
NO. (FT) (FT)
STREET-CROSSFALL:
IN-I OUT-/PARK-
SIDE I SIDE/ WAY
CURB
HEIGHT
(FT)
GUTTER-GEOMETRIES:
WIDTH LIP HIKE
(FT) (FT) (FT)
MODEL*
MANNING
FACTOR
(n)
--------------------------
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth= 0.00 FEET
as (Maximum Allowable Street Flow Depth) -(Top-of-Curb)
2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 406.00 TO NODE 405.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT
INITIAL SUBAREA FLOW-LENGTH(FEET)
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
.2500
91. 00
bttA, Inc.
land planning, civil engineering, surveying
_J
_J
_._)
·~J
_J
.J
._J
__ J
•-I
UPSTREAM ELEVATION(FEET) = 282.00
DOWNSTREAM ELEVATION(FEET) 274.00
ELEVATION DIFFERENCE(FEET) 8.00
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 7.072
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.477
SUBAREA RUNOFF(CFS) 0.12
TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) 0.12
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 303.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 274.00 DOWNSTREAM(FEET) 259.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 142.00 CHANNEL SLOPE 0.1021
CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.040 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.214
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.24
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.67
AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 3.55
Tc(MIN.) = 10.62
SUBAREA AREA(ACRES) 0.22 SUBAREA RUNOFF(CFS) 0.23
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.)
0.33
LONGEST FLOWPATH FROM NODE 406.00 TO NODE
0.81
303.00 = 233.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 303.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 305.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 301.00
DOWNSTREAM ELEVATION(FEET) = 295.00
ELEVATION DIFFERENCE(FEET) = 6.00
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.420
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.894
SUBAREA RUNOFF(CFS) 0.12
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.12
****************************************************************************
FLOW PROCESS FROM NODE
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
305.00 TO NODE 304.00 IS CODE= 51
bHA, Inc.
land planning, civil engineering, surveying
_)
• j
_j
__ ;
__ _j
_J
i ___ J
-.J
__ j
__ J
' __ )
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 295.00 DOWNSTREAM(FEET) 271.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 143.00 CHANNEL SLOPE 0.1678
CHANNEL BASE(FEET) 50.00 "Z" FACTOR= 5.000
MANNING'S FACTOR= 0.040 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.721
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.28
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.53
AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.) 4.46
Tc(MIN.) = 12.88
SUBAREA AREA(ACRES) 0.33 SUBAREA RUNOFF(CFS) 0.31
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.01 FLOW VELOCITY(FEET/SEC.) 0.76
0.40
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 304.00 = 243.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 271.00 DOWNSTREAM(FEET) 259.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 182.00 CHANNEL SLOPE 0.0632
CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.620
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.54
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.38
AVERAGE FLOW DEPTH(FEET) 0.22 TRAVEL TIME(MIN.) 0.56
Tc(MIN.) = 13.44
SUBAREA AREA(ACRES) 0.31 SUBAREA RUNOFF(CFS) 0.28
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) 0.67
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.24 FLOW VELOCITY(FEET/SEC.) 5.75
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 303.00 = 425.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE= 11
>>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA**
STREAM RUNOFF Tc
NUMBER (CFS) (MIN.)
1 0.67 13.44
LONGEST FLOWPATH FROM NODE
AfroN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srudy
INTENSITY AREA
(INCH/HOUR) (ACRE)
3.620 0.74
306.00 TO NODE 303.00 425.00 FEET.
bHA, Inc.
land planning, civil engineering, surveying
-·1
J
... J
-,
_J
--,
.J
--,
_J
_J
** MEMORY BANK# 1 CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 0.33 10.62 4.214 0.31
LONGEST FLOWPATH FROM NODE 406.00 TO NODE 303.00 233.00 FEET.
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 0.86 10.62 4.214
2 0.95 13 .44 3.620
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 0.95 Tc (MIN.) = 13.44
TOTAL AREA(ACRES) = 1. 0
****************************************************************************
FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE= 12
>>>>>CLEAR MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 302.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 249.00 DOWNSTREAM(FEET) 204.23
FLOW LENGTH(FEET) = 349.50 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 9.99
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 0.95
PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 14.03
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 302.00 774.50 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 2 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 506.00 TO NODE 505.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00
UPSTREAM ELEVATION(FEET) = 304.00
DOWNSTREAM ELEVATION(FEET) = 282.00
ELEVATION DIFFERENCE(FEET) = 22.00
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 6.352
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.870
AfroN WAy
CT 14,06, HDP 14,05, PUD 14,09
DnAiNAGE Srndy
bl-IA, Inc.
land planning, civil engineering, surveying
__ j
I
_J
'-~j
__ ;
__ J
_j
-_i
_J
SUBAREA RUNOFF(CFS}
TOTAL AREA(ACRES} =
0.12
0.08 TOTAL RUNOFF(CFS} = 0.12
******~*********************************************************************
FLOW PROCESS FROM NODE 505.00 TO NODE 504.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT}<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 282.00 DOWNSTREAM(FEET) 232.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 411.00 CHANNEL SLOPE 0.1217
CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.319
*USER SPECIFIED(SUBAREA}:
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.45
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.} 6.53
AVERAGE FLOW DEPTH(FEET} 0.19 TRAVEL TIME(MIN.} 1.05
Tc(MIN.} = 7.40
SUBAREA AREA(ACRES} 0.50 SUBAREA RUNOFF(CFS} 0.66
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES} = 0.6 PEAK FLOW RATE(CFS}
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET} = 0.23 FLOW VELOCITY(FEET/SEC.} 7.55
0.77
LONGEST FLOWPATH FROM NODE 506.00 TO NODE 504.00 = 491. 00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 504.00 TO NODE 302.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT}<<<<<
ELEVATION DATA: UPSTREAM(FEET} = 226.00 DOWNSTREAM(FEET} 204.23
FLOW LENGTH(FEET} = 56.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} = 13.80
GIVEN PIPE DIAMETER(INCH} = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 0.77
PIPE TRAVEL TIME(MIN.} = 0.07 Tc(MIN.) = 7.47
LONGEST FLOWPATH FROM NODE 506.00 TO NODE 302.00 547.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE= 11
>>>>>CONFLUENCE MEMORY BANK# 2 WITH THE MAIN-STREAM MEMORY<<<<<
**MAINSTREAM CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS} (MIN.} (INCH/HOUR}
1 0.77 7.47 5.288
LONGEST FLOWPATH FROM NODE 506.00 TO NODE
AREA
(ACRE}
0.58
302.00 547.00 FEET.
** MEMORY BANK# 2 CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS} (MIN.) (INCH/HOUR)
AfroN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srudy
AREA
(ACRE}
bl-IA, Inc.
land planning, civil engineering, surveying
_J
_ J
--1
1 0.95 14.03 3.522 1. 05
LONGEST FLOWPATH FROM NODE 306.00 TO NODE 302.00 774.50 FEET.
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 1. 28 7.47 5.288
2 1. 46 14.03 3.522
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 1.46 Tc(MIN.) = 14.03
TOTAL AREA(ACRES) = 1. 6
****************************************************************************
FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 12
>>>>>CLEAR MEMORY BANK# 2 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 145.00 TO NODE 144.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00
UPSTREAM ELEVATION(FEET) = 280.00
DOWNSTREAM ELEVATION(FEET) = 272.00
ELEVATION DIFFERENCE(FEET) = 8.00
5.770 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN. )
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY(INCH/HOUR) =
10.%, IS USED IN Tc CALCULATION!
6.246
SUBAREA RUNOFF(CFS) 0.11
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0 .11
****************************************************************************
FLOW PROCESS FROM NODE 144.00 TO NODE 143.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 272.00 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 206.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.819
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .2500
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.52
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.13
AVERAGE FLOW DEPTH(FEET) 0.23 TRAVEL TIME(MIN.) 0.67
Tc(MIN.) = 6.44
260.50
0.0558
SUBAREA AREA(ACRES) 0.57 SUBAREA RUNOFF(CFS) 0.83
AREA-AVERAGE RUNOFF COEFFICIENT 0.250
TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS)
END .OF SUBAREA CHANNEL FLOW HYDRAULICS:
AhoN WAy
CT 14,06, HOP 14,0~, PUD 14,09
DRAiNAGE Srudy land planning, civil engineering,
0.93
bl-IA, Inc.
. .J
_J
---)
DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) 5.96
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 143.00 = 272. 00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 143.00 TO NODE 142.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 260.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 227.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH{FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
252.00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.24
5.90 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 1.14
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
3.31
0.78
Tc(MIN.)
5.236
USER-SPECIFIED RUNOFF COEFFICIENT= .6400
AREA-AVERAGE RUNOFF COEFFICIENT 0.374
7.58
SUBAREA AREA(ACRES) 0.30
TOTAL AREA(ACRES) = 0.9
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.85
1.43
1. 01
1. 84
FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY(FT*FT/SEC.) 0.86
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 142.00 = 499.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 142.00 TO NODE 141.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 184.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
AhoN WAy
242.00
0.0150
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
j
J
j
.J
J
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.49
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.26
HALFSTREET FLOOD WIDTH(FEET) = 7.16
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.27
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.10
STREET FLOW TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) 8.30
100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.939
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4200
AREA-AVERAGE RUNOFF COEFFICIENT 0.393
SUBAREA AREA(ACRES) 0.62 SUBAREA RUNOFF(CFS) = 1.29
TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) 3.02
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.90
FLOW VELOCITY(FEET/SEC.) = 4.43 DEPTH*VELOCITY(FT*FT/SEC.) 1.20
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 141.00 = 683.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 141. 00 TO NODE 141.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.939
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
AREA-AVERAGE RUNOFF COEFFICIENT= 0.3863
SUBAREA AREA(ACRES) 0.27 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) =
TC(MIN.) = 8.30
0.47
3.49
****************************************************************************
FLOW PROCESS FROM NODE 141. 00 TO NODE 140.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 401.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
213. 00
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
AfroN WAy
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALFSTREET FLOOD WIDTH(FEET) = 8.64
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.28
4.18
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE · Srudy land planning, civil engineering,
bl-tA, Inc.
j
,)
_j
.J
_)
__ J
c_J
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 1.27
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .7300
AREA-AVERAGE RUNOFF COEFFICIENT 0.450
1. 50
Tc (MIN.)
4.507
9.57
SUBAREA AREA(ACRES) 0.42
TOTAL AREA(ACRES) = 2.2
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.96
1.38
4.57
FLOW VELOCITY(FEET/SEC.) = 5.42 DEPTH*VELOCITY(FT*FT/SEC.) 1.58
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 140.00 = 1084.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
---------=-----------------=======-----------------=========================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.507
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
TC(MIN.) = 9.57
COEFFICIENT= 0.4400
0.26 SUBAREA RUNOFF(CFS)
2.5 TOTAL RUNOFF(CFS) =
0.41
4.98
****************************************************************************
FLOW PROCESS FROM NODE 140.00 TO NODE 105.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 213.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 199.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 32.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
200.94
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.31
10.12 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 0.63
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
5.25
1. 64
Tc (MIN.)
4.325
USER-SPECIFIED RUNOFF COEFFICIENT= .5700
AREA-AVERAGE RUNOFF COEFFICIENT 0.458
SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS)
AhoN WAy
5.47
10.20
0.99
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAGE Srudy
bl-iA, Inc.
land planning, civil engineering, surveying
_J
_ _J
• . .J
I .J
_)
J
J
J
TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) 5.76
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 10.33
FLOW VELOCITY(FEET/SEC.) = 5.34 DEPTH*VELOCITY(FT*FT/SEC.) 1.68
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 105.00 = 1283.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 3 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 124.00 TO NODE 123.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .5500
INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00
UPSTREAM ELEVATION(FEET) = 260.00
DOWNSTREAM ELEVATION(FEET) = 259.20
ELEVATION DIFFERENCE(FEET) = 0.80
URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 7.982
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH 65.00
(Reference: Table 3-lB of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.066
SUBAREA RUNOFF(CFS) 0.20
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.20
****************************************************************************
FLOW PROCESS FROM NODE 123.00 TO NODE 122.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 259.20 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE
CHANNEL BASE (FEET) 50. 00 "Z" FACTOR = 2. 000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.937
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .5500
1. 00
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.35
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.)
Tc(MIN.) = 11.80
SUBAREA AREA(ACRES) 0.14
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 0.2
SUBAREA RUNOFF(CFS)
0.550
PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.} 0.45
0.35
3.82
258.40
0.0100
0.30
0.45
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 122.00 = 160.00 FEET.
AfroN WAy
CT 14;06, HDP 14;05, PUD 14;09
DRAiNAGE Srndy
bl-IA, Inc.
land planning, civil engineering,
J
_J
-1
_J
-J
J
J
J
****************************************************************************
FLOW PROCESS FROM NODE 122.00 TO NODE 121.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 258.40 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 124.00 CHANNEL SLOPE
CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 0.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) =
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.754
*USER SPECIFIED(SUBAREA) :
USER-SPECIFIED RUNOFF COEFFICIENT= .4900
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
1. 00
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.)
AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.)
0.57
2.28
0.91
242.00
0.1323
Tc(MIN.) = 12.71
SUBAREA AREA(ACRES) 0.12 SUBAREA RUNOFF(CFS)
0.528
0.22
AREA-AVERAGE RUNOFF COEFFICIENT
TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) 0.65
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.01 FLOW VELOCITY(FEET/SEC.) 2.64
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 121.00 = 284.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 121.00 TO NODE 120.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 37.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
221.35
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED
STREET FLOW DEPTH(FEET) = 0.24
FLOW:
5.97 HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 0.67
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
5.29
1. 25
Tc(MIN.)
3.631
USER-SPECIFIED RUNOFF COEFFICIENT= .5200
AREA-AVERAGE RUNOFF COEFFICIENT 0.521
13.38
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
1. 78
2.1
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
AfroN WAy
2.33
3.36
3.99
CT 14--06, HDP 14--0~, PUD 14--09
DRAiNAGE Srndy
bl-tA, Inc.
land planning, civil engineering, surveying
_j
_J
- j
I _)
_J
J
-1
--l
J
_J
.J
, __ _J
_J
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.91
FLOW VELOCITY(FEET/SEC.) = 5.85 DEPTH*VELOCITY(FT*FT/SEC.) 1.59
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 120.00 = 498.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 120.00 TO NODE 112.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 217.36 DOWNSTREAM(FEET)
FLOW LENGTH(FEET) = 41.11 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.19
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 3.99
PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 13.49
216.94
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 112.00 539 .11 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 120.00 TO NODE 112.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 116. 00 TO NODE 115.00 IS CODE= 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 274.00
DOWNSTREAM ELEVATION(FEET) = 260.00
ELEVATION DIFFERENCE(FEET) = 14.00
6.267 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.)
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE,
100 YEAR RAINFALL INTENSITY(INCH/HOUR) =
10.%, IS USED IN Tc CALCULATION!
5.922
SUBAREA RUNOFF(CFS) 0.08
TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) 0.08
****************************************************************************
FLOW PROCESS FROM NODE 115. 00 TO NODE 115.00 IS CODE= 7
>>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 6.27 RAIN INTENSITY(INCH/HOUR) = 5.92
TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.10
****************************************************************************
FLOW PROCESS FROM NODE 115. 00 TO NODE 114.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
AfroN WAy
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srudy
bHA, Inc.
land planning, civil engineering, surveying
_j
- J
j
J
~J
_J
_J
J
_J
- J
)
ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) 258.80
CHANNEL LENGTH THRU SUBAREA(FEET) 175.00 CHANNEL SLOPE 0.0069
CHANNEL BASE (FEET) 50. 00 "Z" FACTOR = 2. 000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.474
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .4800
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.36
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.36
AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 8.06
Tc(MIN.) = 14.33
SUBAREA AREA(ACRES) 0.31 SUBAREA RUNOFF(CFS) 0.52
AREA-AVERAGE RUNOFF COEFFICIENT 0.473
TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) 0.42
0.58
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 114.00 = 275.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114. 00 TO NODE 113.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 258.00 DOWNSTREAM(FEET) 242.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE 0.1103
CHANNEL BASE(FEET) 20.00 "Z" FACTOR = 2.000
MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.291
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .6900
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.70
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.93
AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 1.25
Tc(MIN.) = 15.58
SUBAREA AREA(ACRES) 0.11 SUBAREA RUNOFF(CFS) 0.25
AREA-AVERAGE RUNOFF COEFFICIENT 0.525
TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS)
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.)
0.80
LONGEST FLOWPATH FROM NODE 116.00 TO NODE
2.19
113.00 = 420.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 113. 00 TO NODE 112.00 IS CODE= 61
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STANDARD CURB SECTION USED)<<<<<
UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET) = 159.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 37.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00
INSIDE STREET CROSSFALL(DECIMAL) 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) 0.018
AfroN WAy
223.64
CT 14--06, HDP 14--0~, PUD 14--09
DRAiNAqE Srudy
bl-IA, Inc.
land planning, civil engineering, surveying
__ J
_J
J
__ _J
_J
_J
' _j
i
' _J
_ __J
___ J
--,
.J
-1
-J
--1
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.19
3.52
5.22
HALFSTREET FLOOD WIDTH(FEET) =
AVERAGE FLOW VELOCITY(FEET/SEC.)
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.)
STREET FLOW TRAVEL TIME(MIN.) = 0.51
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .5500
AREA-AVERAGE RUNOFF COEFFICIENT 0.538
1. 01
Tc (MIN.)
3.224
16.09
SUBAREA AREA(ACRES) 0.47
TOTAL AREA(ACRES) = 0.9
SUBAREA RUNOFF(CFS) =
PEAK FLOW RATE(CFS)
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) 4.51
1.21
0.83
1. 61
FLOW VELOCITY(FEET/SEC.) = 5.32 DEPTH*VELOCITY(FT*FT/SEC.) 1.12
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 112.00 = 579.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 112. 00 TO NODE 112.00 IS CODE= 11
>>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<<
---------------------------======-=----------------=========================
** MAIN STREAM CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 1. 61 16.09 3.224 0.93
LONGEST FLOWPATH FROM NODE 116. 00 TO NODE 112.00 579.00 FEET.
** MEMORY BANK# 1 CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 3.99 13. 49 3. 611 2.11
LONGEST FLOWPATH FROM NODE 124.00 TO NODE 112.00 53 9. 11 FEET.
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 5.35 13.49 3. 611
2 5.18 16.09 3.224
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 5.35 Tc(MIN.) = 13 .49
TOTAL AREA(ACRES) = 3.0
****************************************************************************
FLOW PROCESS FROM NODE 1. 00 TO NODE
>>>>>CLEAR MEMORY BANK# 1 <<<<<
AfroN WA.y
CT 14;06, HDP 14;0~, PUD 14;09
DRAiNAqE Srndy
2.00 IS CODE= 12
bJ-tA, Inc.
land planning, civil
_J
J
_i
_J
-1
_J
_j
J
-I
___ J
_j
_j
J
__ J
j
' _J
****************************************************************************
FLOW PROCESS FROM NODE 112.00 TO NODE 111.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
----========================================================================
ELEVATION DATA: UPSTREAM(FEET) = 216.61 DOWNSTREAM(FEET) 215.58
FLOW LENGTH(FEET) = 30.02 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 10.41
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 5.35
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.54
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 111.00 609.02 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 111. 00 TO NODE 111. 00 IS CODE = 7
>>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 13.74 RAIN INTENSITY(INCH/HOUR) = 3.57
TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) = 4.22
****************************************************************************
FLOW PROCESS FROM NODE 111.00 TO NODE 110.10 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 215.00 DOWNSTREAM(FEET) 212.55
FLOW LENGTH(FEET) = 12.15 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 19.04
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 4.22
PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.75
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 110.10 621.17 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 110 .10 TO NODE 110.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) 212.55 DOWNSTREAM(FEET)
MANNING'S N = 0.011 FLOW LENGTH(FEET) = 10.00
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.)
(PIPE FLOW VELOCITY CORRESPONDING
AT DEPTH= 0.82 * DIAMETER)
4.21
TO NORMAL-DEPTH FLOW
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 4.22
PIPE TRAVEL TIME(MIN.) = 0.04 Tc (MIN.) =
212.50
LONGEST FLOWPATH FROM NODE 116. 00 TO NODE
13.79
110. 00 631.17 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
AfroN WAy
CT 14~06, HDP 14~0~, PUD 14~09
DRAiNAqE Srndy
110. 00 TO NODE 110.00 IS CODE= 81
bHA, Inc.
land
_ _J
~I
--,
J
J
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.561
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .3500
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
TC(MIN.) = 13.79
COEFFICIENT= 0.4817
0.20 SUBAREA RUNOFF(CFS)
2.6 TOTAL RUNOFF(CFS) =
0.25
4.46
****************************************************************************
FLOW PROCESS FROM NODE 110. 00 TO NODE 109.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 212.50 DOWNSTREAM(FEET) 203.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 77.00 CHANNEL SLOPE 0.1234
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR= 5.000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00
CHANNEL FLOW THRU SUBAREA(CFS) = 4.46
FLOW VELOCITY(FEET/SEC.) = 3.33 FLOW DEPTH(FEET) = 0.09
TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 14.18
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 109.00 708.17 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 109.00 TO NODE 107.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 203.76 DOWNSTREAM(FEET) 203.40
FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 8.15
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 4.46
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.21
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 107.00 726.17 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE= 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 111.00 TO NODE 111. 00 IS CODE = 7
>>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 13.74 RAIN INTENSITY(INCH/HOUR) = 3.57
TOTAL AREA(ACRES) = 0.64 TOTAL RUNOFF(CFS) = 1.12
****************************************************************************
FLOW PROCESS FROM NODE
AfroN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srudy
111.00 TO NODE 108.10 IS CODE= 41
bHA, Inc.
land planning, civil engineering, surveying
_ _J
_J
_j
_J
I ,_J
, _ _)
I L_J
-'
l __ _j
__ j
_J
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 215.00 DOWNSTREAM(FEET) 207.55
FLOW LENGTH(FEET) = 55.43 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 11.21
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 1.12
PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 13.82
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 108.10 781.60 FEET.
***~************************************************************************
FLOW PROCESS FROM NODE 108.10 TO NODE 108.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 207.55 DOWNSTREAM(FEET) 207.50
FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.45
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 1.12
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.87
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 108.00 791.60 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE= 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.547
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT= .6800
AREA-AVERAGE RUNOFF
SUBAREA AREA(ACRES)
TOTAL AREA(ACRES) =
TC(MIN.) = 13.87
COEFFICIENT= 0.5066
0.06 SUBAREA RUNOFF(CFS)
0.7 TOTAL RUNOFF(CFS) =
0.14
1. 26
****************************************************************************
FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE= 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 207.50 DOWNSTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 29.00 CHANNEL SLOPE
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR= 5.000
MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00
CHANNEL FLOW THRU SUBAREA(CFS) = 1.26
FLOW VELOCITY(FEET/SEC.) = 1.93 FLOW DEPTH(FEET) = 0.04
TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 14.12
205.00
0.0862
LONGEST FLOWPATH FROM NODE 116. 00 TO NODE 107.00 820.60 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
AhoN WAy
CT 14~06, HDP 14~0~, PUD 14~09
DRAiNAGE Srndy
107.00 TO NODE 107.00 IS CODE= 11
bl-IA, Inc.
land planning, civil engineering, surveying
-,
___ J
j
_j
--1
-,
_J
1
--,
_J
,_j
>>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<<
============================================-------========-----------------
**MAINSTREAM CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 1.26 14.12 3.506
LONGEST FLOWPATH FROM NODE 116.00 TO NODE
** MEMORY BANK# 1 CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 4.46 14.21 3.492
LONGEST FLOWPATH FROM NODE 116. 00 TO NODE
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 5.69 14.12 3.506
2 5. 71 14.21 3.492
AREA
(ACRE)
0.70
107.00
AREA
(ACRE)
2.60
107.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 5.71 Tc(MIN.) = 14.21
TOTAL AREA(ACRES) = 3.3
820.60 FEET.
726.17 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 12
>>>>>CLEAR MEMORY BANK# 1 <<<<<
****************************************************************************
FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 203.07 DOWNSTREAM(FEET)
FLOW LENGTH(FEET) = 40.74 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 18.09
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 5.71
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.25
196. 83
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 106.00 861. 34 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE= 41
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 196.50 DOWNSTREAM(FEET)
FLOW LENGTH(FEET) = 34.09 MANNING'S N = 0.011
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 15.70
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
AhoN WAy
193.00
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
'~-_)
i
J
.J
_j
-.i
l
-,
__ .J
PIPE-FLOW(CFS) = 5.71
PIPE TRAVEL TIME(MIN.)
LONGEST FLOWPATH FROM NODE
0.04 Tc(MIN.} =
116. 00 TO NODE
14.29
105.00 895.43 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE= 11
>>>>>CONFLUENCE MEMORY BANK# 3 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.} (INCH/HOUR} (ACRE)
1 5. 71 14.29 3.480 3.30
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 105.00
** MEMORY BANK# 3 CONFLUENCE DATA**
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS} (MIN.} (INCH/HOUR} (ACRE}
1 5.76 10.20 4.325 2.91
LONGEST FLOWPATH FROM NODE 145.00 TO NODE 105.00
** PEAK FLOW RATE TABLE**
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS} (MIN.) (INCH/HOUR}
1 9.84 10.20 4.325
2 10.35 14.29 3.480
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS)
TOTAL AREA(ACRES} =
END OF STUDY SUMMARY:
TOTAL AREA(ACRES}
PEAK FLOW RATE(CFS}
10.35 Tc(MIN.} =
6.2
6. 2 TC (MIN. } =
10.35
END OF RATIONAL METHOD ANALYSIS
AhoN WAy
14.29
14.29
895.43 FEET.
1283.00 FEET.
CT 14..-06, HDP 14 ... 0~, PUD 14..-09
DRAiNAGE Srndy
bliA, Inc.
land planning, civil engineering, surveying
L L.J ~-.J
C. HYDRAULIC CALCULATIONS
BIOFILTRA TION BASIN OUTLET DETAIL
~~~ ', ·· -:rw 220'
nPE s sRow D11r:H ---~L ..</ · _ DE_FP Roo rrn, D~~sE Dt~auDHT
/ FOR WElLD!f11/N[O SOIL
PER SDRSD U 75 ... './§_ ,,,----tDLERANr PLA1m1vC SUITABL[ ----
jLQT ORIFICE TO ALLOW 100--, /)fl£ C-1 CAI('/-/ BAS! Vvl/H CRA![D l!VlE!
YR PRW[V[LOPM[NT. FWW . ~ ( IW Zl.'Lf /rmPQ'!JT DflvfLOPM[ I IOQ'(R FLOW
27425 RIM
/8'11 LNG1NEERW -BASIN 1 .. ____ ~ EXIST. GROUND
SOIL MIX t ~ l ~~-/' TYP[ G 1 CATO-I [JASIN
1' V2 STORAGE LA YER ----·············· · .. -.. -· r:~ BASIN 2'____ I wm1 GRA rm tNLU FOR POST
(2J'--PEA CRAV[L OvER /OJ'--J/4'J . "'i /-OtVEWt?A,f!JvT 10UYR FLOW
, · "' I 210 c.R/!Sr!W ROCK) 27 2 J _ _ ........ , . /
8'' PEF!fORA!W PVC UNDrnDRAIN PIPE
PLACE Pll'E WITH PEflFQRAT/QNS AT THE ~
INVERT BW ;710'
!WPERM[ABLE LIND?
Tf/ROUGl!OU T
R[STR!CrOR PlAT[ 70 I/Mir -----
FL()W FROM V2 STORAGE AR[A,
DRAIN DOVv'N HOLE
I 8'" [NGINCER[O
SOIL MIX
203. 76
IE our
205 BW
B' PERFORA T[[J PVC UNDERDRAIN
PiP[
PLACE PIPE WITH PEflFQRA1/QN5 ····-··········-···----AT THE/WERT
Not to Scale
IMP H (FT) Hmax (FT) Hg (FT)
1 1.00 2.50 1.00
2 1.00 2.50 1.00
t '\ y '
··SLOT ORIFICE TO ALLOW
/00 YR PREDEVELOPMENT
FLOW
, 111 ,11 RES TRIC TOR Pl A ff A T END Of
PERf PIPE IN GASIN 2 TO UMIT
fWW FROM V2 STORAGE ARU
1 GO' DRAIN D0vi1II /-IOU.
-I -"-1' V2 STD.RAGt' l!\ YER
(2"-P£A GRA vn ovrn
-.:::.-:..~ ~[ OUr c_>-cc-10" J/4" CRUSllfD ROCK) \ ~ :.-:.---:-:---::1' \ 0 U lfl cfCiT1 .
\
~ L_____J :::::.-:..-::_~j,(------12" HOPE
E IN OUTLET PIPE
1 --12" HOPE OU /LU PIP[
1 FROM Rl5ER/BAS1N 7
I IMPERMEABLE LINER
T/-/RCJUG/IOU T
LID Orifice (IN) Agravel (FT2) Abot (FT2) .
1.25 1,805 1,805
1.25 485 485
bHA, Inc. Afton Way TM
2200 Afton Way land planning, civil engineering, surveying
Preliminary Drainage Study
/__ j _) L _J
SLOT INVERT ELEV.
' -~ _J L
B -I I..... --i
1-Bs -1
1---Btot = BOX DIMENSION
t __
l--/Is
---1
H
0UTLET STRUCTURE DETAIL -SECTION (TYP)
NOT to SCALE
SLOT
OUTLET Bs (FT) Hs (Ft) ELEV (FT) L (FT)
1 2.00 0.25 1.00 8.00
2 2.00 0.25 1.00 8.00
Note: L = TOTAL LENGTH OF WEIR (FT). AS RISER IS SQUARE, L = 8 FT
Bs = THIS WIDTH OF THE SLOT CAN BE DISTRIBUTE ON TWO SIDES.
AhoN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srudy
bHA, Inc.
land planning, civil engineering, surveying
WEIR
H (FT)
1.75
1.75
j J
_J
_J
Afton Way TM
2200 Afton Way
Preliminary Drainage Study
D = 6"
3 IB"x/6" STAINLESS ANCHOR
OLTS WITH WING TYPE NUTS
RESTR/CTOR PLATE
--LID ORIFICE
BOTTOM BA9/V
ORIFICE DETAIL
NOT TO SCALE
IMP D(in) d (in)
1 6 1.25
2 6 1.25
bHA, Inc.
land planning, civil engineering, surveying
.J
_J
.. I
MODIFIED TYPE A-7 CLEAN OUT DETAIL
OUTLET 12"' OIJ1l.ET 12"
SO U/!IE B1 r+-'""T"!....i--+-+-+-11-i-h '5IJ UN! 82
l
B
PLAN VIEW
zoo·
.J.5()'
215.58 IE IN
10" DIA. ORIFICE 215.31 IE ORIFICE
5" DIA. ORIFICE 215.50 IE OUT
SECTION A-A SECTIONB-B
MODIFIED TYPEA-7 CLEAN OUT DETAIL
ArroN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DnAiNAGE Srndy
NOT 10 SCALE
bl-tA, Inc.
land planning, civil engineering, surveying
L '--J
ORIFICE CALCULATIONS FOR JUNCTION BOX
Orifice 1= 10.08 in
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
;Q.&4[)· • 'b.55. ·-·
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
0.84 0.55
Afton Way TM
2200 Afton Way
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
l;f 0.(103 r-,
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
0.603
Preliminary Drainage Study
2.00 1.58 3.37
2.10 1.68 3.48
2.20 1.78 3.58
2.30 1.88 3.68
2.40 1.98 3.77
2.50 2.08 3.87
2.60 2.18 3.96
2.70 2.28 4.05
2.80 2.38 4.14
ttf riz .. 90~.:1 :. 2.zH[;', :;:::{4.22
3.00 2.58 4.31
3.10 2.68 4.39
3.20 2.78 4.47
3.30 2.88 4.55
3.40 2.98 4.63
3.50 3.08 4.71
3.60 3.18 4.78
3.70 3.28 4.86
3.80 3.38 4.93
3.90 3.48 5.00
4.00 3.58 5.07
4.10 3.68005 5.14
L L_ _I L _ _J L
Orifice 2= 5.08 in
0.42 0.14 0.603 2.00 L79 0.91 4.28
0.42 0.14 0.603 2.10 1.89 0.94 4.41
0.42 0.14 0.603 2.20 1.99 0.96 4.54
0.42 0.14 0.603 2.30 2.09 0.99 4.66
0.42 0.14 0.603 2.40 2.19 1.01 4.78
0.42 0.14 0.603 2.50 2.29 1.03 4;90
0.42 0.14 0.603 2.60 2.39 1.05 5.01
0.42 0.14 0.603 2.70 2.49 1.08 5.12
0.42 0.14 0.603 2.80 2.59 1.10
•<042 '',,,: 1: . '~ ' < :~f;~ 0.14 i. {iii · -0.60'.{ff .. t-12.:90 '<".«,,:,' .'' 2.6.Qf • ltit.12 ...•.•.
0.42 0.14 0.603 3.00 2.79 1.14 5.45
0.42 0.14 0.603 3.10 2.89 1.16 5.55
0.42 0.14 0.603 3.20 2.99 1.18 5.65
0.42 0.14 0.603 3.30 3.09 1.20 5.75
0.42 0.14 0.603 3.40 3.19 1.22 5.85
0.42 0.14 0.603 3.50 3.29 1.24 5.94
0.42 0.14 0.603 3.60 3.39 1.26 6.04
0.42 0.14 0.603 3.70 3.49 1.27 6.13
0.42 0.14 0.603 3.80 3.59 1.29 6.22
0.42 0.14 0.603 3.90 3.69 1.31 6.31
0.42 0.14 0.603 4.00 3.79 1.33 6.40
0.42 0.14 0.603 4.10 3.89 1.35 6.49
bl-IA, Inc.
land planning, civil engineering, surveying
J
_J
-, I
J
J
Weir Equation for 100 Year flow
D=
Q=CwLD15, (O/CwL)0·67
Q= 5.34
Cw= 3
L= 6.5
D= 0.42
Q per ft= 0.82
Length required for 4.22 cfs
L= 5.15
Length required for 1.12 cfs
L= 1.37
Afton Way TM
2200 Afton Way
Preliminary Drainage Study
bl-tA, Inc.
land planning, civil engineering, surveying
_J
_j
---,
-l
D. HYDRAULIC ELEMENTS CALCULATIONS
****************************************************************************
HYDRAULIC ELEMENTS -I PROGRAM PACKAGE -
(C) Copyright 1982-2013 Advanced Engineering Software (aes)
Ver. 20.0 Release Date: 06/01/2013 License ID 1459
Analysis prepared by:
BHA, Inc
5115 Avenida Encinas, Suite L
Carlsbad, CA 92008-4387
(760) 931-8700
CURB INLET CALCULATIONS
NODE120:
TIME/DATE OF STUDY: 12:10 02/10/2015
Problem Descriptions:
Node 120: Curb Inlet Sizing
Street Depth of Flow
QlOO
TIME/DATE OF STUDY: 10:15 06/20/2016
Problem Descriptions:
Node 120-Curb Inlet Calculations
Street Depth of Flow
****************************************************************************
>>>>STREETFLOW MODEL INPUT INFORMATION<<<<
CONSTANT STREET GRADE(FEET/FEET) = 0.150000
CONSTANT STREET FLOW(CFS) = 3.99
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 37.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.018000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 7.60
AVERAGE FLOW VELOCITY(FEET/SEC.) 6.23
PRODUCT OF DEPTH&VELOCITY = 1.66
Problem Descriptions:
Node 120-Curb Inlet Calculations
Length of Curb Opening
AfroN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DnAiNAGE Srudy land
bliA, Inc.
_j
J
_J
_j
_J
_)
_J
****************************************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Lt=
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 3.99
GUTTER FLOWDEPTH(FEET) = 0.27
BASIN LOCAL DEPRESSION(FEET) = 0.33
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH
1. 58
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
15.77
FLOW INTERCEPTION
0.55
0.69
0.85
1. 02
1.18
1. 34
1. 50
1. 67
1. 83
1. 96
2.10
2.23
2.35
2.48
2.60
2.72
2.84
2.94
3.04
3.23
3.32
3.42
3.51
3.60
3.68
3.77
3.86
3.94
3.99
L= 0.65*Lt= (0.65)*15.77= 10.25, use 11.0'
Specify L= 11.0' on plans,
per San Diego County Drainage
Design Manual page 2-5 and SDRSD D-02
(see References)
AfroN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAGE Srndy
bl-iA, Inc.
land planning, civil engineering, surveying
_J
__ J
_j
_ j
NODE112:
TIME/DATE OF STUDY: 12:10 02/10/2015
Problem Descriptions:
Node 112-Curb Inlet Sizing
Street Depth of Flow
QlOO
TIME/DATE OF STUDY: 12:14 02/10/2015
==================================================----===========-----------
Problem Descriptions:
Node 112-Curb Inlet Sizing
Street Depth of Flow
QlOO
****************************************************************************
>>>>STREETFLOW MODEL INPUT INFORMATION<<<<
CONSTANT STREET GRADE(FEET/FEET) = 0.150000
CONSTANT STREET FLOW(CFS) = 1.61
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 37.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00
INTERIOR STREET CROSSFALL(DECIMAL) = 0.018000
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018000
CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50
CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50
CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125
CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
STREET FLOW DEPTH(FEET) = 0.21
HALFSTREET FLOOD WIDTH(FEET) = 4.27
AVERAGE FLOW VELOCITY(FEET/SEC.) 5.65
PRODUCT OF DEPTH&VELOCITY = 1.17
Problem Descriptions:
Node 112-Curb Inlet Calculations
Length of Curb Inlet
****************************************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 1.61
GUTTER FLOWDEPTH(FEET) = 0.21
BASIN LOCAL DEPRESSION(FEET) = 0.33
FLOWBY BASIN ANALYSIS RESULTS:
AhoN WAy
CTl4 ... 06, HDP 14 ... 05, PUD 14 ... 09
DRAiNAqE Srndy
bl-tA, Inc.
land planning, civil engineering, surveying
J
-1
_j
--,
. J
--_)
~I
_J
BASIN WIDTH
0.83
1. 00
1. 50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.50
7.00
7.50
8.00
Lt= 8.29
AfroN WAy
FLOW INTERCEPTION
0.21
0.25
0.38
0.50
0.62
0.73
0.84
0.94
1. 03
1.13
1. 20
1. 36
1.43
1. 50
1. 57
1. 61
L= 0.65*Lt= (0.65)*8.29= 5.39, use 6.0'
Specify L= 6.0' on plans,
per San Diego County Drainage
Design Manual page 2-5 and SDRSD D-02
(see References)
CT 14.-06, HDP 14.-05, PUD 14.-09
DRAiNAGE Srndy
bliA, Inc.
land planning, civil engineering, surveying
l
J
J
_J
-,
PIPE DIAMETER CALCULATIONS
NODE120:
TIME/DATE OF STUDY: 10:25 06/20/2016
Problem Descriptions:
Node 120-Pipe Diameter Calculations
****************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
PIPE SLOPE(FEET/FEET)
PIPEFLOW(CFS)
0.0100
3.99
MANNINGS FRICTION FACTOR= 0.011000
NODE 112:
TIME/DATE OF STUDY: 10:27 06/20/2016
Problem Descriptions:
Node 112-Pipe Diameter Calculations
****************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
PIPE SLOPE(FEET/FEET)
PIPEFLOW(CFS)
0.0104
5.35
MANNINGS FRICTION FACTOR= 0.011000
NODEllO:
TIME/DATE OF STUDY: 11:03 06/20/2016
Problem Descriptions:
Node 110-Pipe Diameter Calculations
****************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
PIPE SLOPE(FEET/FEET) 0.1400
PIPEFLOW(CFS) 3.75
MANNINGS FRICTION FACTOR= 0.011000
>>>>>SOFFIT-FLOW PIPE DIAMETER(FEET)
NODE 108:
TIME/DATE OF STUDY: 11:07 06/20/2016
AhoN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAGE Srndy
0.584 < 12"-dia proposed HDPE SD
bHA, Inc.
__ I
_J
- J
Problem Descriptions:
Node 108-Pipe Diameter Calculations
****************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
PIPE SLOPE(FEET/FEET)
PIPEFLOW(CFS)
0.1400
0.91
MANNINGS FRICTION FACTOR= 0.011000
>>>>>SOFFIT-FLOW PIPE DIAMETER(FEET)
AhoN WAy
CT 14.-06, HDP 14.-0'7, PUD 14.-09
DnAiNAGE Srndy
0.343 < 12"-dia proposed HDPE SD
bHA, Inc.
land planning, civil engineering, surveying
-,
-1
--1
_J
_ _J
i _.J
,-,
_J
L ___ J
---J
_j
l
I __ J
,_J
HYDRAULIC GRADE LINE (HGL) CALCULATIONS
NODE 504 -NODE 302.1:
FILE NAME: 1326HGL.DAT
-TIME/DATE OF STUDY: 14:36 08/18/2016
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER= 302.10 FLOWLINE ELEVATION
PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) =
ASSUMED DOWNSTREAM CONTROL HGL 206.780
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
206.78
0.77
NODE 302.10 : HGL= < 208.280>;EGL= < 208.283>;FLOWLINE= < 206.780>
PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 504.00 IS CODE= 1
UPSTREAM NODE 504.00 ELEVATION= 217.72
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 0.77 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 504.00
39.00 FEET MANNINGS N = 0.01300
(( 0.77)/( 105.043))**2 = 0.0000537
39.00)*( 0.0000537) = 0.002
: HGL= < 208.282>;EGL= < 208.285>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 10.94
217.720>
NODE 504.00 : HGL= < 219.220>;EGL= < 219.223>;FLOWLINE= < 217.720>
PRESSURE FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE= 8
UPSTREAM NODE 504.00 ELEVATION = 226.72
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW(CFS) = 0.77 PIPE DIAMETER(INCH) 18.00
PRESSURE FLOW VELOCITY HEAD= 0.003
CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.003) = 0.001
NODE 504.00 : HGL= < 219.224>;EGL= < 219.224>;FLOWLINE= < 226.720>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL= 9.00
NODE 504.00 : HGL= < 228.220>;EGL= < 228.220>;FLOWLINE= < 226.720>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
AfroN WAy
CT 14.-06, HDP 14 ... 0~, PUD 14.-09
DRAiNAGE Srudy
bl-rn, Inc.
land planning, civil engineering, surveying
-,
_J
-,
--,
-,
_J
l , _ _)
-,
1_J
NODE 303 -NODE 302:
FILE NAME: 1326HGL2.DAT
TIME/DATE OF STUDY: 15:49 08/23/2016
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER= 302.00
PIPE DIAMETER(INCH) = 18.00
ASSUMED DOWNSTREAM CONTROL HGL
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
204.200
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
204. 20
1.46
NODE 302.00 : HGL= < 205.700>;EGL= < 205.71l>;FLOWLINE= < 204.200>
PRESSURE FLOW PROCESS FROM NODE 302.00 TO NODE 302.10 IS CODE= 1
UPSTREAM NODE 302.10 ELEVATION= 206.45
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 1.46 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 302.10
9.00 FEET MANNINGS N = 0.01300
(( 1.46)/( 105.043))**2 = 0.0001932
9.00)*( 0.0001932) = 0.002
: HGL= < 205.702>;EGL= < 205.712>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 2.25
206.450>
NODE 302.10 : HGL= < 207.950>;EGL= < 207.96l>;FLOWLINE= < 206.450>
PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE= 5
UPSTREAM NODE 302.10 ELEVATION= 206.78
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 0. 9 18.00 1. 767 0.538 0.000
2 l. 5 18.00 1.767 0.826
3 0.5 18.00 1.767 0.289 75.290
4 0.0 0.00 0.000 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4) )/((Al+A2)*16.1)
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE= 0.00008
DOWNSTREAM FRICTION SLOPE= 0.00019
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00014
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS= 0.001
ENTRANCE LOSSES= 0.000
AFTON WAy
HV
0.004
0.011
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy land planning, civil engineering,
bl-IA, Inc.
--,
_j
_)
I _ _J
__ J
-,
_J
_ __;
JUNCTION LOSSES= DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.012+ 0.004-0.011+( 0.001)+( 0.000) = 0.006
NODE 302.10 : HGL= < 207.962>;EGL= < 207.967>;FLOWLINE= < 206.780>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.32
NODE 302.10 : HGL= < 208.280>;EGL= < 208.284>;FLOWLINE= < 206.780>
PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 302.20 IS CODE= 1
UPSTREAM NODE 302.20 ELEVATION= 214.49
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
0.95 CFS PIPE DIAMETER 18.00 INCHES PIPE FLOW=
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 302.20
37.21 FEET MANNINGS N = 0.01300
(( 0.95)/( 105.043))**2 = 0.0000818
37.21)*( 0.0000818) = 0.003
: HGL= < 208.283>;EGL= < 208.288>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 7. 71
214.490>
NODE 302.20 : HGL= < 215.990>;EGL= < 215.994>;FLOWLINE= < 214.490>
PRESSURE FLOW PROCESS FROM NODE 302.20 TO NODE 302.30 IS CODE= 3
UPSTREAM NODE 302.30 ELEVATION= 229.92
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
CENTRAL ANGLE= 39.000 DEGREES
PIPE LENGTH= 74.44 FEET MANNINGS N 0.01100
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY 0.54 FEET PER SECOND
VELOCITY HEAD 0.004 BEND COEFFICIENT(KB) = 0.1646
HB=KB*(VELOCITY HEAD) = ( 0.165)*( 0.004) = 0.001
PIPE CONVEYANCE FACTOR 124.142 FRICTION SLOPE(SF) 0.0000586
FRICTION LOSSES= L*SF = ( 74.44)*( 0.0000586) = 0.004
NODE 302.30 : HGL= < 215.995>;EGL= < 216.000>;FLOWLINE= < 229.920>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 15.42
NODE 302.30 : HGL= < 231.420>;EGL= < 231.424>;FLOWLINE= < 229.920>
PRESSURE FLOW PROCESS FROM NODE 302.30 TO NODE 302.30 IS CODE= 2
UPSTREAM NODE 302.30 ELEVATION= 230.25
CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY 0.54 FEET PER SECOND
VELOCITY HEAD 0.004
HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000
NODE 302.30 : HGL= < 231.420>;EGL= < 231.425>;FLOWLINE= < 230.250>
Af-roN WAy
CT 14,06, HOP 14,0'i, PUD 14,09
0RAiNAGE Srudy
bl-tA, Inc.
surveying
__ J
_J
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33
NODE 302.30 : HGL= < 231.750>;EGL= < 231.754>;FLOWLINE= < 230.250>
PRESSURE FLOW PROCESS FROM NODE 302.30 TO NODE 302.40 IS CODE= 1
UPSTREAM NODE 302.40 ELEVATION= 230.90
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 302.40
64.96 FEET MANNINGS N = 0.01300
(( 0.95)/( 105.043))**2 = 0.0000818
64.96)*( 0.0000818) = 0.005
: HGL= < 231.755>;EGL= < 231.760>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.64
230.900>
NODE 302.40 : HGL= < 232.400>;EGL= < 232.404>;FLOWLINE= < 230.900>
PRESSURE FLOW PROCESS FROM NODE 302.40 TO NODE 302.40 IS CODE= 2
UPSTREAM NODE 302.40 ELEVATION= 231.23
CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY= 0.54 FEET PER SECOND
VELOCITY HEAD= 0.004
HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000
NODE 302.40 : HGL= < 232.400>;EGL= < 232.405>;FLOWLINE= < 231.230>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33
NODE 302.40 : HGL= < 232.730>;EGL= < 232.734>;FLOWLINE= < 231.230>
PRESSURE FLOW PROCESS FROM NODE 302.40 TO NODE 302.50 IS CODE= 1
UPSTREAM NODE 302.50 ELEVATION= 246.27
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH 110.88 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 0.95)/( 105.043))**2 = 0.0000818
HF=L*SF = ( 110.88)*( 0.0000818) = 0.009
NODE 302.50 : HGL= < 232.739>;EGL= < 232.744>;FLOWLINE= < 246.270>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 15.03
NODE 302.50 : HGL= < 247.770>;EGL= < 247.774>;FLOWLINE= < 246.270>
PRESSURE FLOW PROCESS FROM NODE 302.50 TO NODE 302.50 IS CODE= 2
UPSTREAM NODE 302.50 ELEVATION= 246.60
AfroN WAy
CT 14.-06, HDP 14--0~, PUD 14.-09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
i
_J
I
__ j
c _J
__ )
J
CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY 0.54 FEET PER SECOND
VELOCITY HEAD 0.004
HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000
NODE 302.50 : HGL= < 247.770>;EGL= < 247.775>;FLOWLINE= < 246.600>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33
NODE 302.50 : HGL= < 248.lOO>;EGL= < 248.104>;FLOWLINE= < 246.600>
PRESSURE FLOW PROCESS FROM NODE 302.50 TO NODE 303.00 IS CODE= 1
UPSTREAM NODE 303.00 ELEVATION= 253.02
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH 23.47 FEET MANNINGS N = 0.01300
SF={Q/K)**2 (( 0.95)/( 105.043))**2 = 0.0000818
HF=L*SF = ( 23.47)*( 0.0000818) = 0.002
NODE 303.00 : HGL= < 248.102>;EGL= < 248.106>;FLOWLINE= < 253.020>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 6.42
NODE 303.00 : HGL= < 254.520>;EGL= < 254.524>;FLOWLINE= < 253.020>
PRESSURE FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE= 8
UPSTREAM NODE 303.00 ELEVATION= 260.40
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW(CFS) = 0.95 PIPE DIAMETER(INCH) 18.00
PRESSURE FLOW VELOCITY HEAD= 0.004
CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.004) = 0.001
NODE 303.00 : HGL= < 254.525>;EGL= < 254.525>;FLOWLINE= < 260.400>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL= 7.37
NODE 303.00 : HGL= < 261.900>;EGL= < 261.900>;FLOWLINE= < 260.400>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
NODE 120 -NODE 110:
FILE NAME: 1326HGL3.DAT
TIME/DATE OF STUDY: 15:31 08/23/2016
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER= 110.00
PIPE DIAMETER(INCH) = 12.00
AhoN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srndy
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
212.50
4.22
land planning, civil
bl-iA, Inc.
j
--I
-,
.J
__ )
' _ __)
-,
I , ___ /
__J
_j
, __ J
--,
-,
ASSUMED DOWNSTREAM CONTROL HGL = 213.440
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
NODE 110.00 : HGL= < 213.500>;EGL= < 213.948>;FLOWLINE= < 212.500>
PRESSURE FLOW PROCESS FROM NODE 110.00 TO NODE 110.10 IS CODE= 1
UPSTREAM NODE 110.10 ELEVATION= 212.55
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 4.22 CFS PIPE DIAMETER 12.00 INCHES
PIPE LENGTH 10.00 FEET MANNINGS N = 0.01100
SF=(Q/K)**2 (( 4.22)/( 42.106))**2 = 0.0100448
HF=L*SF = ( 10.00)*( 0.0100448) = 0.100
NODE 110.10 : HGL= < 213.600>;EGL= < 214.049>;FLOWLINE= < 212.550>
PRESSURE FLOW PROCESS FROM NODE 110.10 TO NODE 110.10 IS CODE= 6
UPSTREAM NODE 110.10 ELEVATION= 212.55
CALCULATE PRESSURE FLOW ANGLE-POINT LOSSES(LACRD):
PIPE FLOW= 4.22 CFS PIPE DIAMETER= 12.00 INCHES
PIPE ANGLE POINT DELTA= 26.00 DEGREES
PRESSURE FLOW ANGLE-POINT COEFFICIENT KA= 0.0950
PRESSURE FLOW VELOCITY= 5.37 FEET/SEC.
VELOCITY HEAD= 0.448
HAPT=KA*(VELOCITY HEAD)
NODE 110.10 : HGL= <
(0.0950)*( 0.448) 0.043
213.643>;EGL= < 214.09l>;FLOWLINE= < 212.550>
PRESSURE FLOW PROCESS FROM NODE 110.10 TO NODE 111.00 IS CODE= 1
UPSTREAM NODE 111.00 ELEVATION= 215.00
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD}:
PIPE FLOW= 4.22 CFS PIPE DIAMETER 12.00 INCHES
PIPE LENGTH
SF=(Q/K}**2
HF=L*SF = (
12.15 FEET MANNINGS N = 0.01100
(( 4.22)/( 42.106))**2 = 0.0100448
12.15)*( 0.0100448) = 0.122
NODE 111.00 : HGL= < 213.765>;EGL= < 214.213>;FLOWLINE= < 215.000>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 2.23
NODE 111.00 : HGL= < 216.000>;EGL= < 216.448>;FLOWLINE= < 215.000>
PRESSURE FLOW PROCESS FROM NODE 111. 00 TO NODE 111.00 IS CODE= 7
UPSTREAM NODE 111. 00 ELEVATION= 215.50
CALCULATE PRESSURE FLOW SUDDEN PIPE REDUCTION LOSSES(LACRD):
PIPE FLOW= 5.35 CFS
UPSTREAM PIPE DIAMETER= 18.00 INCHES
DOWNSTREAM PIPE DIAMETER 12.00 INCHES
PRESSURE FLOW VELOCITY= 6.81 FEET/SEC.
AFTON WAy
CT 14.-06, HDP 14.-0~, PUD 14--09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
-,
J
_J
_J
J
_J
_J
_J
I _J
--,
--,
_ _j
-,
VELOCITY HEAD= 0.72
PIPE REDUCTION LOSS COEFFICIENT KC= 0.273
HC(PER LACFCD)=KC*(VELOCITY HEAD) = ( 0.273)*( 0.72) = 0.197
NODE 111.00 : HGL= < 216.503>;EGL= < 216.645>;FLOWLINE= < 215.500>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.50
NODE 111.00 : HGL= < 217.000>;EGL= < 217.142>;FLOWLINE= < 215.500>
PRESSURE FLOW PROCESS FROM NODE 111. 00 TO NODE 111.10 IS CODE= 1
UPSTREAM NODE 111.10 ELEVATION= 216.31
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 5.35 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 111.10
70.78 FEET MANNINGS N = 0.01100
(( 5.35)/( 124.142))**2 = 0.0018572
70.78)*( 0.0018572) = 0.131
: HGL= < 217.131>;EGL= < 217.274>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.68
216.310>
NODE 111.10 : HGL= < 217.810>;EGL= < 217.952>;FLOWLINE= < 216.310>
PRESSURE FLOW PROCESS FROM NODE 111.10 TO NODE 112.00 IS CODE= 3
UPSTREAM NODE 112.00 ELEVATION= 216.61
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA):
PIPE FLOW= 5.35 CFS PIPE DIAMETER 18.00 INCHES
CENTRAL ANGLE= 38.000 DEGREES
PIPE LENGTH= 30. 02 FEET MANNINGS N 0. 01100
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY 3.03 FEET PER SECOND
VELOCITY HEAD 0.142 BEND COEFFICIENT(KB} = 0.1624
HB=KB*(VELOCITY HEAD) = ( 0.162)*( 0.142) = 0.023
PIPE CONVEYANCE FACTOR 124.142 FRICTION SLOPE(SF) 0.0018572
FRICTION LOSSES= L*SF = ( 30.02)*( 0.0018572) = 0.056
NODE 112.00 : HGL= < 217.889>;EGL= < 218.031>;FLOWLINE= < 216.610>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.22
NODE 112.00 : HGL= < 218.llO>;EGL= < 218.252>;FLOWLINE= < 216.610>
PRESSURE FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE= 8
UPSTREAM NODE 112.00 ELEVATION= 216.94
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD}:
PIPE FLOW(CFS) = 5.35 PIPE DIAMETER(INCH} 18.00
PRESSURE FLOW VELOCITY HEAD= 0.142
CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.142) = 0.028
NODE 112.00 : HGL= < 218.281>;EGL= < 218.28l>;FLOWLINE= < 216.940>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
AfroN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAGE Srndy
bl-IA, Inc.
land planning, civil engineering, surveying
_J
_J
, __ )
__ J
--,
, __ _J
' --'
-_J
--,
__ J
--,
.J
-~1
_J
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.16
NODE 112.00 : HGL= < 218.440>;EGL= < 218.440>;FLOWLINE= < 216.940>
PRESSURE FLOW PROCESS FROM NODE 112.00 TO NODE 220.00 IS CODE= 1
UPSTREAM NODE 220.00 ELEVATION= 217.36
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 3.99 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 220.00
41.11 FEET MANNINGS N = 0.01100
(( 3.99)/( 124.142))**2 = 0.0010330
41.11)*( 0.0010330) = 0.042
: HGL= < 218.403>;EGL= < 218.482>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL= 0.46
217.360>
NODE 220.00 : HGL= < 218.860>;EGL= < 218.939>;FLOWLINE= < 217.360>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
NODE 111 -NODE 108:
FILE NAME: 1326HGL4.DAT
TIME/DATE OF STUDY: 15:34 08/23/2016
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER= 108.00
PIPE DIAMETER(INCH) = 12.00
ASSUMED DOWNSTREAM CONTROL HGL
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
208.230
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
207.50
1.12
NODE 108.00 : HGL= < 208.500>;EGL= < 208.532>;FLOWLINE= < 207.500>
PRESSURE FLOW PROCESS FROM NODE 108.00 TO NODE 108.10 IS CODE= 1
UPSTREAM NODE 108.10 ELEVATION= 207.55
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES
PIPE LENGTH 10.00 FEET MANNINGS N = 0.01100
SF=(Q/K)**2 (( 1.12)/( 42.106))**2 = 0.0007075
HF=L*SF = ( 10.00)*( 0.0007075) = 0.007
NODE 108.10 : HGL= < 208.507>;EGL= < 208.539>;FLOWLINE= < 207.550>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.04
NODE 108.10 : HGL= < 208.550>;EGL= < 208.582>;FLOWLINE= < 207.550>
AfroN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAqE Srndy
bl-tA, Inc .
land planning, civil_ engineering,
l
__ J
J
_J
__ J
_J
j
--,
_j
__ J
-,
_j
,_J
_)
~l
j
'_.I
PRESSURE FLOW PROCESS FROM NODE 108.10 TO NODE 108.10 IS CODE= 6
UPSTREAM NODE 108.10 ELEVATION= 207.55
CALCULATE PRESSURE FLOW ANGLE-POINT LOSSES(LACRD):
PIPE FLOW= 1.12 CFS PIPE DIAMETER= 12.00 INCHES
PIPE ANGLE POINT DELTA= 17.86 DEGREES
PRESSURE FLOW ANGLE-POINT COEFFICIENT KA= 0.0584
PRESSURE FLOW VELOCITY= 1.43 FEET/SEC.
VELOCITY HEAD= 0.032
HAPT=KA*(VELOCITY HEAD) (0.0584)*( 0.032) 0.002
NODE 108.10 : HGL= < 208.552>;EGL= < 208.583>;FLOWLINE= < 207.550>
PRESSURE FLOW PROCESS FROM NODE 108.10 TO NODE 108.20 IS CODE= 1
UPSTREAM NODE 108.20 ELEVATION= 209.17
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 108.20
12.03 FEET MANNINGS N = 0.01100
(( 1.12)/( 42.106))**2 = 0.0007075
12.03)*( 0.0007075) = 0.009
: HGL= < 208.560>;EGL= < 208.592>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 1.61
209.170>
NODE 108.20 : HGL= < 210.170>;EGL= < 210.202>;FLOWLINE= < 209.170>
PRESSURE FLOW PROCESS FROM NODE 108.20 TO NODE 108.30 IS CODE= 3
UPSTREAM NODE 108.30 ELEVATION= 210.56
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA):
PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES
CENTRAL ANGLE= 30.000 DEGREES
PIPE LENGTH= 10.38 FEET MANNINGS N 0.01100
PRESSURE FLOW AREA= 0.785 SQUARE FEET
FLOW VELOCITY= 1.43 FEET PER SECOND
VELOCITY HEAD= 0.032 BEND COEFFICIENT(KB) = 0.1443
HB=KB*(VELOCITY HEAD) = ( 0.144)*( 0.032) = 0.005
PIPE CONVEYANCE FACTOR 42.106 FRICTION SLOPE(SF) 0.0007075
FRICTION LOSSES= L*SF = ( 10.38)*( 0.0007075) = 0.007
NODE 108.30 : HGL= < 210.182>;EGL= < 210.213>;FLOWLINE= < 210.560>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 1.38
NODE 108.30 : HGL= < 211.560>;EGL= < 211.592>;FLOWLINE= < 210.560>
PRESSURE FLOW PROCESS FROM NODE 108.30 TO NODE 111.00 IS CODE= 1
UPSTREAM NODE 111.00 ELEVATION= 215.00
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES
PIPE LENGTH 33.02 FEET MANNINGS N 0.01100
SF=(Q/K)**2 (( 1.12)/( 42.106))**2 0.0007075
AhoN WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAqE Srudy
bHA, Inc.
land planning, civil engineering, surveying
_ _)
J
J
_j
33.02)*( 0.0007075) = 0.023 HF=L*SF = (
NODE 111.00 HGL= < 211.583>;EGL= < 211.615>;FLOWLINE= < 215.000>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL= 4.42
NODE 111.00 : HGL= < 216.000>;EGL= < 216.032>;FLOWLINE= < 215.000>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
NODE 109-NODE 105:
FILE NAME: 1326HGL5.DAT
TIME/DATE OF STUDY: 16:33 08/18/2016
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA:
NODE NUMBER= 105.00 FLOWLINE ELEVATION
PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) =
ASSUMED DOWNSTREAM CONTROL HGL 193.000
L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
193.00
6.23
NODE 105.00 : HGL= < 194.500>;EGL= < 194.693>;FLOWLINE= < 193.000>
PRESSURE FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE= 1
UPSTREAM NODE 106.00 ELEVATION= 196.50
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 106.00
34.09 FEET MANNINGS N = 0.01100
(( 5.72)/( 124.142))**2 = 0.0021230
34.09)*( 0.0021230) = 0.072
: HGL= < 194.603>;EGL= < 194.765>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 3.40
196.500>
NODE 106.00 : HGL= < 198.000>;EGL= < 198.163>;FLOWLINE= < 196.500>
PRESSURE FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE= 2
UPSTREAM NODE 106.00 ELEVATION= 196.83
CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD):
PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES
PRESSURE FLOW AREA= 1.767 SQUARE FEET
FLOW VELOCITY 3.24 FEET PER SECOND
VELOCITY HEAD 0.163
HMN = .05*(VELOCITY HEAD) = .05*( 0.163) 0.008
NODE 106.00 : HGL= < 198.00S>;EGL= < 198.17l>;FLOWLINE= < 196.830>
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
AhoN WAy
CT 14 ... 06, HOP 14 ... 05, PUD 14 ... 09
DRAiNAGE Srndy
bl-IA, Inc.
__ J
-J
_J
_J
I -.J
_I
_J
- j
J
J
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.32
NODE 106.00 : HGL= < 198.330>;EGL= < 198.493>;FLOWLINE= < 196.830>
PRESSURE FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE= 1
UPSTREAJ,11 NODE 107.00 ELEVATION= 203.07
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH
SF={Q/K)**2
HF=L*SF = (
NODE 107.00
40.74 FEET MANNINGS N = 0.01100
(( 5.72)/( 124.142))**2 = 0.0021230
40.74)*( 0.0021230) = 0.086
: HGL= < 198.416>;EGL= < 198.579>;FLOWLINE= <
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 6.15
203.070>
NODE 107.00 : HGL= < 204.570>;EGL= < 204.733>;FLOWLINE= < 203.070>
PRESSURE FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE= 5
UPSTREAM NODE 107.00 ELEVATION= 203.40
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 4.5 12.00 0.785 5.691 0.000
2 6.2 18.00 1. 767 3.525
3 0.0 0.00 0.000 0.000 0.000
4 0.0 0.00 0.000 0.000 0.000
5 l.8===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.l)
UPSTREAM MANNINGS N = 0.01100
DOWNSTREAM MANNINGS N = 0.01100
UPSTREAM FRICTION SLOPE= 0.01127
DOWNSTREAM FRICTION SLOPE= 0.00252
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00689
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS= 0.028
ENTRANCE LOSSES 0.039
HV
0.503
0.193
JUNCTION LOSSES= DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES= -0.085+ 0.503-0.193+( 0.028)+( 0.039) = 0.292
NODE 107.00 : HGL= < 204.52l>;EGL= < 205.024>;FLOWLINE= < 203.400>
PRESSURE FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE= 1
UPSTREAM NODE 109.00 ELEVATION= 203.76
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW=
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
NODE 109.00
AhoN WAy
4.47 CFS PIPE DIAMETER 12.00 INCHES
17.87 FEET MANNINGS N = 0.01100
(( 4.47)/( 42.106))**2 = 0.0112702
17.87)*( 0.0112702) = 0.201
: HGL= < 204.723>;EGL= < 205.226>;FLOWLINE= < 203.760>
CT 14--06, HDP 14--0~, PUD 14--09
DRAiNAGE Srndy
bHA, Inc.
land planning, civil engineering, surveying
_i
___ I
_J
__ I
__ J
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL= 0.04
NODE 109.00 : HGL= < 204.760>;EGL= < 205.263>;FLOWLINE= < 203.760>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
AfroN WAy
CT 14~06, HOP 14~0~, PUD 14~09
DRAiNAGE Srudy
bl-tA, Inc.
land planning, civil engineering, surveying
_.I
-,
_J
_I
_J
-,
_j
l
_J
_J
j
-,
__ j
-,
HGLMAP
AFTON WAy
CT 14,06, HDP 14,05, PUD 14,09
DRAiNAqE Srndy
bl-iA, Inc.
land planning, civil engineering,
_J
----,
_J
__J
_J
LOT4
___ )
LOTl
·. _1 PROPOSED
TYPE 8
, CURB INLET
l __ J
_J
/
LEGEND:
SURFACE NODE : __ J
SURFACE RUNOFF (0100)
HGLNODEMAP
AFTON WAY, CITY OF CARLSBAD
CT 14-06
\
\
\
\
\
LOT6 \
\
\
\
\
\
~
SCALE: 1" = 50'
LOT7
LOTS
HGLNODEMAP
AFTON WAY
CT 14-06
J
I
RIP RAP ENERGY DISSIPATER TABLE:
110 4.22 4.21
108 1.12 3.45
AfroN WAy
CT 14.-06, HDP 14--0~, PUD 14--09
DRAiNAGE Srndy
No. 2 backing
No. 2 backing
1.1 ft 3 ft 10ft
1.1 ft 3 ft 10ft
bl-IA, Inc.
land planning, civil engineering, surveying
'_J
_j
_J
_!
---,
__ I
___ J
_J
AhoN WAy
CT 14,06, HOP 14,0~, PUD 14,09
DRAiNAGE Srndy
IV. REFERENCES
bHA, Inc.
land planning, civil engineering, surveying
P 1712"'N
3 ~
!!:
~
=
AhoN WAy
46~ 4694«>
Hydrologic Soil Grcop-Sen Diego County ArH, C•ilarni•
(Alon 'Wrf)
46948) 469620 -
i"'dpScae l l,~1fprrada,Apcr,ret(as'xll")roeel
N "" 0 25 so 100 I~
A 0 ~ 100 zo 300
Mop~. Wl!bMo-taU>' OmorQXJQ'\bS. Wt:E8<I fOijl! IICS: UIMlale llNWt:ES<I
NIIIUral II-en WabSeilS-y
c-ervllllOl'l~ce Nlllion11I CoopenltM Sol Survey
D IOtl'N
469600 -3
1:;
!!:
~
8f1W2014
Page 1 of4
CT 14,06, HOP 14,0~, PUD 14,09
DnAiNAGE STUdy
bliA, Inc.
land planning, civil engineering, surveying 77
-- - ---
H)Qdogic Soil Gniul>-Sen OiegoCountyhn. C•ffcmi•
(Aton'Nrf)
- -
MAP LEGEND MAP INF OR MA TION
Afton Way TM
2200 Afton Way
!i1i
ArHI f/1 ... tfffl (AOI)
D -oflnl•es(AOI) .....
-111111111 l'elygeM D A
D ND
CJ • • Ill)
D C
D CID
D D
D Nat-ornat......,._
-111 .... Llnn
-A -AID -I -Ill) -C -CID -D
•• Nat-otnotew-
-It .... ,.......
• A
• AID
• B
• Ml
Natwatltnourc:es
Conservation Senlce
Preliminary Drainage Study
• C
• CID
• D
C Nat -ot not.,,_ ·-,·--Slr .... ,...tc .. •
...... Rik --~ -us11-. -Meio,11 ...
L-R-
-l"IUl'd
• -l'hGlogr9plly
Web Seti Survey
NII.lone! Cocperative Soil Sulvey
The soil surveys th81 con-.,rtH your AO! were nwpped 811:24,000.
Waffling: Soll M8p may net be 11111d Ill this scale .
Enlargement of maps beycnd the scale d rTWPplng can cause
nou1uter1tendng d the deleil d mapping end accuracy of soil line
plecement. The nwps do not show Ille tm•N ereu ol contruting
soils thet could hew bea, shown Ill • more detailed scele.
PlnH rely on the b• scele on eadl mep sheet for map
rnee,urements .
Soon:e ol M8p: Nlllural Resoun:es Conservaflon Selvtce
Web Sol Survey URL: http://websoilsurvey.nrcs.usda.gOY
Coordin81e System: Web Mercelor (EPSG:3357)
Meps torn the Web Soil &J1vey ere based on the Web Mercator
projection. which preseMt drection end shape but dislOlts
distenca •nd ..... A prc,jection that preMMIS •n. such H the
AlbefS e~l-era conic prcjection. sh<luld be used If more accurate
celcullllieM d dltta11ce « •re• ere r84Jired.
This product .. geller8led torn the USDA-NRCS c8ffflied d1U H d
the version dllt(S) hied below.
Sol S.nwy Alu: Sen Diego County .Area. Callfomie
Survey .Area Olla: VenlOn 7, Noll 15, 2013
SOI mep unff s are labeled (es space allows) for mep scales 1 :50, 000
ort.rger.
0.le(s) aeriel imegn Wffll phdogr9phed: May 3, 2010-Jun 7.
2012
The orthophoto or other beH map on which the soil lines were
compiled end dgillZed probebl'f differs frcm the becllground
im11gery ct,c)leved on these maps. As • resul. scme minOr shifting
of mep unff bound1ules nwy be evident •
9119/2014
Page2 d 4
bl-tA, Inc.
land planning, civil engineering , surveying
- -
Hydrologio Sal G,oop-,San Diego County Area, California
Hydrologic Soil Group
Totals for Area of Interest
Description
Hydrologic soil groups are based on estimates of runoff potential Soils are
assigned to one of four groups accorchng to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long-duration storms.
The soils in the Unrl.ed states are assigned to four groups (A, B, C, and D) and
three dual classes (AID, BID, and CID). The groups are defined as follows:
Group A Soils having a high infiltration rate (low runoff potental) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
Group 8. Soils having a moderate infiltration rate when thoroughly wet These
consist chiefly of moderately deep or deep, moderately we.II drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
Chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmis_<;ion
Group D. Soils having a very slow infiltration rate (high runoff potentral} when
thoroughly wet These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water !able, soils that have a claypan or clay layer
at or near the surface, and soils that are shallow over nearly impervious materiaL
These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (AID, BID, or CID), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group Dare a1iiSigned to dual cia1iiSe1>,
Survey
A!\onWay
100.0%
Page3 of4
b~A, Inc. Afton Way TM
2200 Afton Way land planning, civil engineering, surveying
Preliminary DrainageStudy
_ __,I
_)
-,
I __ ,
_J
rlYClro!ogic SOli Group-San Diego County Area, California
AhoN WAy
Rating Options
Aggregation Method Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
CT 14.-06, HOP 14--0~, PUD 14.-09
DRAiNAGE Srudy
AllooWay
Survey Page 4 of 4
bl-fA, Inc.
land
SJ-taD'N
JP Olt"N
!
i
I
I
!
-
)
k !:
~
~
~
t k t
~ A
-
Hyo'ologle Soll Group-San Diego County lvea. Ca lfomla
-4!li!S'O --
----
Hlp-1:452f~cnA...,,,.(U'xl.!l')-
O!!"-_._.J!'=====,,~!"""--------~lO~========::::;'!O,..,. -0 lO ~ ~ ~
Hlp""""*"':Wlb_. Ol!W ........ :WG584 ldgltlb:lm!ZllnlUIIWGSM
~ ~o
-_,o
= Nalur• ltnourus
Conurnllon Senlce
Web Solt &xvey
N•ion•I Cooperative Soil survey
4(l;ll5lO -
~ -
Afton Way TM
2200 Afton Way land planning, civil engineering, surveying
Preliminary Drainage Study
-
.r015AO
-
)
i:; !:
~
~
I
I
!
!
a
-,:i
t i:; t
~
9/19/2014
Page 1 r:14
b~A, Inc.
-
J:l't lOU'N
.. IOl'FN
111!!1 c::::J - - - - -11111
H)idrdoglc Seil Grcup-Sell OlegoCountyAtee, C.lfomle
MAP LEGEND MAP INF OR MA TION
Afton Way TM
2200 Afton Way
!Ai
-flflnltrffl(AOII
D -oflnt-(~ --11 .... 'elneM
D " D AID
c::J II • 11D
D C
D c.o
D 0
D Not-Of not .. -
-11 .... L-
-" -AID -• -11D -C -c.o -0 .. Not-o,not .. -_ .. ..,._ . "
• AID
• I
• 1/D
Nlllurlllllesoun:es
ConHrwtlon Senlce
Preliminary Drainage Study
• C
• C/0
• D
D Not.-°' not _Ille w_, • ...,..
s..-... dc .....
n-..............
++t 11 .. -""_....,.._ -USlt-. --M...,11_
locallt-_.,.._,
• -PliclogNpl,y
Web Soil Surwy
Nlllonll Cocperllllw Sol Survey
The SOIi surwys 11111 COl'l'4)flse your AOI were M8pped 111:24,000.
W.mlng: Soll Mep mey not be valid at lllls scale.
Enlargement of meps beyond the scele c:A mepping can ceuse
ml1t111ders1Mding d Ille detail d mapping end 8CCUrecy of 1eil line
placement. The M8ps do not ,t,ow Ille sman areas d ccnlnlsting
SOIIS llllt COUid h-b .. n shciwn II • men deleiled scale.
Please rety on Ille ber scale a, each map sheet for map
measurements.
Source c:l Mep: Natural Resources Conservation Service
Wtb SOIi Surwy URL: http:/lflbsoilsurwy.nrcs.usda.gO\I
Coordlnlle Syltem: Web Mercllor (EPSG:3857)
Maps from the Web Soil SUrwy •• b1sed a, the Web Merc1tor
p~dion. wNc:h preseN"H clredion end shepe but clstoits
dlllMce and ere•. A ~dion 11111 pr-s arH, such es the
Albers e"'ei-.ee conk: piqedlon, should be used If more eccurate
c11ctHtten1 d dlttence or,,... ere requ!Nd.
This product Is genereted from Ille USOA-NRCS cettified deta as c:l
the venlon dete(s) Isled below .
Sol survey Nee: Sin Diego Counly keti, Cellfomle
Survey ,ltn Dela: Version 7. Nov 15, 2013
Sol mepunhere lebeled (as spece llllows)form8pscales 1 :50,000
orllrger.
Oete(s) 1erlal imeges were photogrlt)hed: Mey 3, 2010--Jun 19,
2010
The ortlloplloto or CIII« bese mep en WhlCII Ille S<lit !Ines were
compiled Ind clgitind problbly dflers fl'<lm Ille beck!1'0Und
lmegery dlsp1yed a, these meps. As I resul, sane minor shl1tln9
or map unN boundaries may be evident.
9119/2014
Page 2 c:l 4
bl-IA, Inc.
land planning, civil engineering, surveying
£:II
~-J
_j
I
j
-,
.. !
Hydrologic Soil Group-San Diego County Area, Calriamia
Hydrologic Soil Group
I Totals for Area of !nlerest
percent slopes.
eroded
Description
0.4
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long-duration storms.
The soils in the United states are assigned to four groups (A, 8, C, and D) and
three dual classes (AID, BID, and CID). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet These consist mainly of deep, weH drained to excessively drained sands or
gravelly sands. These soils have a high rate of Wl:lter transmission.
Group B. Soi!s having a moderate infiltration rate when thoroughly wet These
consist chielly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
Group C. Solis having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture orfine texture, These soils have a slow rate of water
transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential} when
thoroughly wet These consist chiefly of clays that have a high shrink,swell
potential, soils that heve a. high water table, soils that have a claypan or clay layer
at or near !he surface, and soils that are shallow over nearly imparvious material.
These soils have a very slow rate of water transmission.
If a soi! is assigned to a dual hydrologic group (AID, BID1 or C/D), the fif$1 letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff. None Specified
Survey Page3 of 4
bl-tA, Inc. Afton Way TM
2200 Afton Way land planning, civil engineering, surveying
Preliminary Drainage Study
_j
Hydrologic Sci! Grrup-$an Diego County Area, Ci,lijomia
Tie-break Rule: Higher
AhoN WAy
CT 14--06, HDP 14.-0~, PUD 14.-09
DRAiNAGE Srndy
Page4 of 4
bl-tA, Inc.
on >
;:::i -I :r :!: ..... ~
2 ~ ;p \ ~
.c, 0 "' m c,.. -<
IJ') '
-I :c: 8..o '< ""C
pi"
::J
Q_
"D pi"
::J ::J 5·
(0
0 ~
CD ::J cg_
::J CD ~ s·
(0
~ \ 0
,"1
""C
C:
0
~ 0 ...c,
~ c::,-c :::c:-< :.> CD ' ~--::J ::J
(0 ~
L J
\l 1 e 1110 18 20 3Q
Minules:
L _J
40 50 1
Oura!loo
I __ J 'L_ J
2 3 Hours
J L
5 e
j
f ,:,
~-6.0 '1,!,
s.s I
5.0 :, Uj
4,0 i
3'5-
3.0
ZS
2.0
1.5
1.0
Intensity-Duration Design Chart -Template
L I_ L _
Directions for Appllcatlon:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for tha selected frequency. These maps are included in lhe
County Hydrology Manual {10, 50, and 100 yr maps Included
ln the Design and Prooodure Manual).
(2) Adjust El hr pn;{:1plta11on (if necessary) so that it is within
tile range of 45% to 65% of th!} 24 hr prec:lpltetion (not
appllcaple 10 Desert),
(3) Plot 6 hr precipitation on the light side of the chart.
(4) Draw a line through the poio1 parallel lo the ploUed lines.
(5) This !foe Is the Intensity-duration curve ror th_e location
being analyzed .
Applh::atlon Fann:
{a) Selected frequem;y __ year
p
{b) Pe= In., P24 = 'P 6 :::: %t21 -----24
{c} Adjusted P6!21 = __ in.
{d) Ix= __ min.
(e)I= __ in.lhr.
Note: Th,s chart replaces the lnlensity-Duralion-Frequency
crnves used since 1965.
~l ~
L
j
0 (") >
;:,;i -I ::r ~ ~ 0 z· ~ z ~ 0 ~ m o,. ~ (J) ~ ..... :I: C: o..O -< "'O
~ \ 0 ~"'
"'O
C:
0
~ \ 0 -0
m ::::,
0.
-0 m ::::, ::::, ::::r (0
0 ~:
(D ::::, cg_
::::,
(D
(D ::::,_
::::, <p
(/) 0-C ::i::-< );;,
(D "' ~-s-::::,
(0 c:,
L
ti ~
~ w 0 ~ t5 0
!.l.J ~ ::)
0 ~ !
L L L '-I __ _
1001 1.5 IV:Jf-1/ L I NW-»-, »" r /! .....,,.-130
0
~ z ~ A / A y: I ~ I I ~120 ~
w ~
5 ...J u.
10 ~
i
~--''--~~--''--~~--'~~~--'~~~--'~~~--'-~~~--"~~~-""O
EXAMPLE:
Given: Watercourse Distance {D) "' 70 Feet
Slopa (s) =1.3%
Runoff Coefficient CC) = 0,41
Overland Flow Time (T) = 9.5 Minutes
T= 1.S(U·C)VD 3lfs
SOURCE: Airport Drainage. Federal Aviation Administration, 1965
FIGURE
Rational Formula .. Overland Time of Flow Nomograph
11111
L _j
j
_J
j
--1
__ J
Ae
Feet
sooo Tc .. TrmeofGfffleentraticmjhou111J
2000
300
200
100
30
11!
AE
L "' Wat&rcou,_. Distance (milell)
l:i.E = Change In elevation along
effectiw slope li11e (Soe F,gure 3-5)(1-tl
Te
Hours MinlJ1es
611
S&
L M!le!i Feel :m
20
3000 o.s ' ' 2000 ' ' 1000 ' {6(10 ' 1400 ' 1200
1000 1 900
800 6
100
000 5-
5-00 4
400
300 3
L Tc
Nomograpn for Detennlnatlon of
Time of <:oncentrollon (Tc) or Travel Time fn) for Natural Wotershi!ds
AhoN WAy
CT 14.-06, HDP 14--0~, PUD 14.-09
DRAiNAGE Srndy
bl-IA, Inc.
land planning, civil engineering, surveying
j
Watershed
Divide
Area "A""' Area "B"
SOUR.CE: Cal!fomill Division of f-!igh'way& (1941) and Kt!plcl! (1940)
Computation of Effective Slope for Natural Water.sbeds
AhoN WAy
CT 14~06, HDP 14~01, PUD 14~09
DRAiNAGE Srudy land planning,
FIGURE
~
bHA, Inc.
--,
l
',_J
-,
-1
.. J
, _ _J
, __ .J
I ~J
___ j
w .... 1:l ,.
~ " ·-= ~~ ,:
"[ ;a . Cl') >. ti i .::: ~ bO -»
0 0 'll. ;.i te ~ i .s ::I !.'I:! ;::$R ..
0 ::ti I > u ~
AhoN WAy
CT 14~06, HDP 14~0~, PUD 14~09
DRAiNAGE Srudy
1i 1!. l
31 i JI!
..... ~ ...
I'-~ -t() -.._ ... a .t: -
~·· --
:::
() . N
\I
~
u i ii ft 1i 11
j;l ·J
Jil Jt I ii I ... :,\!I
-:1
bl-tA, Inc.
land planning, civil engineering, surveying
·1
- I
'
_J
' .J
, __ )
, ___ J
__ j
oa i iii a:E :;. .2 ::: } ...,
"' CIJ ~ .
!.I-< ... a ::::: .. oo > ~ :.l -l':'' 1111 oe Ji ~ ! §'R :. 8X :,:. ...
-AfroN WAy
CT 14--06, HDP 14--05, PUD 14.-09
DRAiNAGE Srndy
I
~ r. ,':i
J
::: ::::-':3-\""'" m -::-....
f.:t-C --.. ..
~ r---~ :s
::-
V)
\$) . -ll
':;r-
~
--, ·1 • ii· fl J s: :! !f t.l, 11 ;,
pi1 i· p ;t~,, •1 J iji~: ~. J· r,1 111 i ~~d .. ilt D H ti ... ~fl .nJ .. ! t :m
ot,,1! -:1
bliA, Inc.
land planning, civil engineering, surveying
.I
_i
__ J
,_..J
_)
_j
C-l .... -.; <i t'd ., a::E ,... = ;;, 1'.. "' . IZl ~ ! :a
~ QJj <.!
~ )O: oo .... ....... ~ ! oe ~ 1 §R " 8::t :I ;;.. =
AhoN WAy
CT 14,06, HOP 14,0~, PUD 14,09
DRAiNAGE Srudy
;' ~ e
31 i
::.-~
t-";j--ro -... .... St:. ~ (!
b t---~ --< $
::::-r:
\I
~
·:~ ii i ,... 'I 1, ,;11 f ii i~ n~ IJ I,,!, ril '" ~ . frh ~j h tnd :~ii 11 ff .. ,I -1' 111. .at~ :Ill c..e..,,; .3\. •• •
a,ii .:~ ;,;
...
b~A, Inc.
land planning, civil engineering, surveying
J
--,
J
_J
___ J
--,
___ )
-,
__ J
__ J
f-l;; -a .. 1;:! ,!
i~ "!i: ...
,:I ~ ;;. tr..! ;>-. ~ ;
tj,,,,I b.O "' =::: a 0..9 ~ ~ 08 i:;· "ij
§~ 0:: ~ ..
0 ::c: .I u ...
~
AFTON WA.y
CT 14.-06, HDP 14.-05, PUD 14--09
DRAiNAqE Srndy
I
:ii ! j
u i :i .,
'::::, ~ '. ll t"-"'j--::::,. h1 JJ -~ -...... ii· I· --{'n qi Q ~ ..
ti H1H I 0 J en ,~ .:1 ('()
~ ....
bJ.tA, Inc.
--l
' _)
' _ _)
_J
u .... .... ; r:;I 1:1
§~ ·;: 3 ~ ...
i '! ~~ li ....; -..
0 0 ";; ;.. -'-'l. ...
F~ J;~ .?I ;:, .i t;;:
;:I~
0 :I:: u
AhoN WAy
CT 14,06, HDP 14,0~, PUD 14,09
DRAiNAqE Srndy
Ii l l ;; i "
..... ~ ... -r-'.;3-... --«) C --.
C c:-J -II
~
ff i :• JJ •I 1, f• p th I 1·: l" t, •
J!f !l ~~w I 1di ; Q.l..,fl
Q~1t ·=~
bHA, Inc.
land planning, civil engineering, surveying
.J
---1,
J
_J
_J
J
j
oa ..;,: "' .it ~ ~~ ~ .::: ..
t/'J >. §-.
~ ii
4-, blJ ::::a > 0..9 "I i i i~ ~ :i!
0~
.. :I u ...
Vl ...
AfroN WAy
CT 14.-06, HOP 14.-05, PUD 14.-09
DnAiNAGE Srndy
J
j
J " J
::, ":::;.
';,}. t-t<\ -......... "' e ~
0 I)
rn I'-~ --~ ~
::,
~ co
ll a..
~
f!f 1: i ;.,; ,1 '1 i;,l Ji ?J •\· I I i~h .ii f
Ii ti u~ r fit! uj ! ..
i!!f Ht !I 1!l !I
"' -=1
"'
bl-tA, Inc.
land planning, civil engineering, surveying
_.I
_J
- I
_J
--,
,J
J
1--l a ..... ! ,i:! a~ ;;. :! ..:;: "" I ~~ §-.
.;::; i "'
0..9 :::: ~ l ~ 1 ~e i ~ i::: "Ct 6 >. .. ::c: ti ;.. u
AhoN WAy
CT 14.-06, HDP 14.-0~, PUD 14.-09
DnAiNAqE Srndy
II ' 11 I,
1:: • 'I t;; '::;1-, }11 11 ~ :: :::::: rn to rlt li -... . f3V'lt! ..
C !t' N ,-..«<ii'"' JUD ,I
-(I\ 11 ~.i.i' :;
ll t-'I
ro -~ o;;h -:I t'(\ -:z. .s
bliA, Inc.
land
cl
J
_J
··,
.J
' .__J
_J
-1
.J
' J
-,
1-1 a ~§ ~ fa :E ;;,. ... ~ ,.:;: ;... . IZl ;>... t:l ... .::; ti ~ bJ) .. :::: ~ 0..9 ~ ::I te :::· J! ~ 'Cl ! ;;, R .. o:::c:: :e > u <::t ..,
AhoN WAy
CT 14--06, HDP 14--05, PUD 14.-09
DRAiNAqE Srndy
I I;:-~ r,,.. ~ :;,
i ::::: \'r\ ts[ -.. ::i-'-j a ~ -11 I> ~ mt-1 t(),::::: ~
~~
i1 J ,1 i IJ ~ •
th ii
(11 ~ .. ,t :U: :a
bliA, Inc.
land planning, civil engineering, surveying
___ I
__J
_J
J
_J
_J
_J
--1
u -1 ti c::s <>
~~ "" = .:: "' ;,. .
v.:i @ ~ ii
<.;.... :::: ~ oo .g_ i -~e t: ~ ~ §R ~ .. l! 8 ::c ;,. a;
AhoN WAy
CT 14,06, HDP 14,05, PUD 14.-09
DnAiNAGE Srndy
'!! ,, ; j, .• :1 ,,
ti ::::: t~! l ; i i~t1 j• lj ... e ... ~ :;-~St l; I 31 I:: Cl) ~ ,~Si li~ }~ ,• ., -..._ t-l t~f1 di .l J -~ i ii1• lj' lt Q -!ah! eh ~to> ll
-:1 ms. <::t.
'< s
bHA, Inc.
land planning, civil engineering,
i _)
_j
_J
. _j
Cl ::a "-;: ~, ~ ~~ ;;,. ~ {
Cl) ;>. ~ ;;,
"! ~ blJ I:':! oo ~ -~ s ~e ,E a ~ :! §R "'! 8 :r:: ,1
AhoN WAy
CT 14--06, HDP 14--0~, PUD 14--09
DRAiNAGE Srudy
? ]
i 1 ... M
ii I :• 11 '::.,. •I :ii ":::: ~ r-:;:. fid1 ~ -t-r1~ -" qi ~ >?:end .. ur i jl gz;i, iHA ,, .,.. 0,11 .:1 ~ :.:
!I'>
bl-IA, Inc.
land planning, civil
L
"'Cl N )> "1 N ;::;, (I) 0 0 ,-.c, ::I s· )> ~ ..... ;::;, 0) ::i g '<
el ~ -i '< 0) :s:
u'<
pl s· ~ (I)
r.n s-~
~
0..
""O iii"" :::J 2.
:::J ~
Q. ~
Cl)
:::J CQ.
:::J
Cl) c::r gi_ ::c-
:::J J;>
CD '
(/) 5 C 0 < Cl)
's.
:::J CD
l_ L '-_j
Sl!o Diego Counly Hydrology l\·l:lmml
Onie: June 2003
L L L_
Section:
Page:
Table3-1
RUNOFF COEFFICIENTS FOR URBAN ARl£AS
Land Use RunoffCoefficie111 "C"
NRCS Elements Cooot Elements %IMPER. A B
Undisturbed Nntural Terrain (Natural) Pe1111a11ent Open Space o• o.::w 0.25
Low Doosity Residential (LDRl Residential, 1.0 DU/A or less 10 0.37 0.32
Low Density Residential (LOR) Residential, 2.0 DU/A or less 20 0.34 0.38
Low Density Resid~ntial (LDRl Residential, :t9 DC/A or less 25 0.38 0.41
Medium Density Residential (MDR} Residential, 4.J DLll A or less 30 o.41 0.45
Medium Density Residential (MORI Residential, 7.J DU/A w less 40 0.48 0.,51
Medium Density Residential {MDR} Residential, I0.9 DU/A or less 45 0.52 0.54
Medium Density Residential (MDR) Residootinl, 14.5 DU/A or less 50 o.ss 0.58
High D011Sity Residen!la! (HDR} Residential, 24.0 DU/A or less 65 0.66 0.67
High Density R~idenlia! (HDR) Residential, 43.0 OU/Ao, 1-llO 0.76 0.17
Commetcialflndustrinl (N. C<lll'!) Neighborhood Commercial 80 0.76 0.77
Commercial!lndustrial (G. Com} Gencrnl Commercial S.5 0.80 0.80
Commercial!lnd11s1rlal {0.11• Com) Office Professional/Commercial 90 0.83 0.84
Commercialllndus1rial (Limited I.) Limited Industrial 90 0.83 0.84
Commcrcialllndustrial {(Jenera! I,) Gmernl lndustriru 95 0.37 o.1!7
C
0.30
0.36
IJ,42
0.45
D.411
(l.~4
0.57
0.60
0.69
0.78
0.73
0.81
0.84
0.84
0.87
3
6of26
D
0.35
Ml
0.46
0.49
052
0.57
0.60
0.63
0.71
0.79
0.79
o.&2
0.85
O..S5
0.87
•111e values associated with 0% impervious may be used for direct cnlculalion oflhe runoff <:oeffident as deicribed i11 Section 3.1.2 (representing the pervious runoff
coefficient, Cp, for the soil type), or for areas that will remain tmdisturbed in perpeluil]I. Justifiootion must be given that the nrco will remain natural forever (e.g., thearea
is located in Clewland National Forest),
DU/A = dwelling units per am
NRCS = Nutiooal Resources Conservation Service
3-6
__ J
__ J
J
' _J
__ _)
_ _I
_.)
, _ __J
_j
-~'
AhoN WAy
San Diego County Hydrology Manlllil
Dale: June 21)03
Section:
Page:
Note that the Initial Time of Concentration should be reflective of the general land-use at the
upstream end of a drainage basin. A single lot with an area of two or less acres does not have
a significant effect where the drainage basin area is 20 to 600 acres.
Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in
hydrology studies. Initial lj values base-0 on average C values for the Land Use Element are
also included. These values can be used in planning._a!ld design applications as described
below. Exceptions may be approved by the "Regulating Agency" when submitted with a
detailed study.
Element*
Natural
LDR
LDR
LDR
MDR
MDR
MOR
MDR
HDR
HOR
N.Com
G.Com
O.P.ICom
Limited[.
General I.
Table3-2
MAXIMUM OVERLAND FLOW LENGTH (LM)
DUI
2
4.3
7.3
I0.9
14.5
24
43
& INITIAL TIME OF CONCENTRATION """"T...,_.,1 ----
.5% 1% 2% 3% 10% 1---.-~-+~-,-~-1-~ ....... ~--~....-~ I T, LM T; LM T; L11-1 T; LM T;
50 13.2 70 12.5
50 12.2
50 11.3
50 10.7
50 ]0.2
50 9
50
50 8.2
50 6.7
50 5.3
50 5 . .3
70 l l.5
70 i0.5
70
65
65
65
60
50 4.7 60
50
50
50
85 10.9 100 10.3 !00 8.7 100 6.9
85 10.0 JOO 9.5 100 8.0 100 6.4
85 9.2 100 8.8 100 1.4 100
8.8 95 8J 100 7.0 IOO
8.1 95 7.8 100 100 5.3
7.4 95 7.0 100 100 4.8
6.9 90 6.4 I 00 00 4.5
6.5 90 4.3
SJ 90 I 3.5
2.7
2.7
2.4
2.2
90 2.3 JOO 1.9
*See Table 3-1 for more detailed description
3-12
CT 14--06, HDP 14--05, PUD 14--09
DRAiNAGE Srndy
b~A, Inc.
land planning, civil engineering, surveying
.J
j
J
- l
J
-,
l
AfroN WAy
Chapter 2. Street Drainage and Inlets
and downstream face of the curb inlet (equal to an additional I foot of length for a SD-RSD
Type B inlet).
Partial Interception
l! is not always possible to intercept all gutter flow with a single inlet, and n portion of the
approaching; flow will continue past the inlet area as "bypass flow." The curb inlet must intercept
a minimum of 85 percent of the approaching flow where practical (see Section 2.2.2.2). The
designer may account for this flow bypass using the following procedure:
Step 1. Determine the clear opening length required to intercept 100 percent of the
approaching flow, Lf.
~. ~ QAl'l'!IOACI/ 7 (2-3)
0.7(a+ yyi·
Step 2, Compute the efficiency (E) for the opening length (L ') of the curb inlet to be
installed:
E=l-[1-(f )J$Jorl'<Lr
where ...
E
L'
Lr
"' curb-opening inlet efficiency;
length of clear opening of installed inlet (ft); and
length of clear opening of iulet for total interception {ft).
(2-4)
For tl1e minimum required efficiency of E=0.85, this general equation reduces to the fu!lowing
expression:
Step 3.
(2-S)
Calculate the amount of flow intercepted by the inlet and the bypass flow, and apply
to the bypass flow to the roadway flow calculations and inlet capacity calculations
downstream.
Q1Nl'fi11Clif'1' = EQ,IJ'PIIJIOAC/{ (1-6)
Curb Inlets in Sag
Cnrb inlets in sags or sump locations operate as weirs at shallow depths, and operate as orifices as
water depth increases. The designer shall estimate the capacity of the inlet under each condition
and adopt a design capacity equal to the smaller of the two results. When designing the size of a
facility, the designer shall use the larger of the sizes obtained by solving for the two conditions.
Inlets in sumps act ns weirs for shallow depths, which can be described using .Equation 2-8:
Q = CwLwd312 (2-8)
San Diego County Drainage Design Manual
July2005
Page2-5
CT 14--06, HOP 14--0~, PUD 14--09
DRAiNAGE Srndy land planning, civil engineering,
b~A, Inc.