Loading...
HomeMy WebLinkAboutCT 14-06; AFTON WAY; DRAINAGE STUDY FOR AFTON WAY; PUD 14-09, HDP 14-05, DWG 495-9, DWG 495-9A, GR2016-0050, ROW 2016-0061, SWMP 16-26; 2016-08-24--1 J -, l . j _J I _J --, -_J __ ) CT 14-06, HDP 14-05, PUD 14-09 CF,IVED OCT ll 2016 lAI\ID ENT ENGlNEERII\IG AFTON WAY 2200AFTONWAY CITY OF CARLSBAD Prepared for: Presidio Pebble Creek Carlsbad & LLC 301 West 28th Street, Suite A National City, CA 91950 Prepared by: bl-IA, 5115.A.venida Encinas, Suite L ·· carlsbad, CA 92008-4387 (760) 931-8700 July 7, 2016 ~evised August 24, 2016 W.O. 983-1326-600 MM _J -, ·1 __ J __ J .-, J l _j TABLE OF CONTENTS I. Discussion: Vicinity Map ............................................................................. 3 Purpose and Scope ................................................................... 4 Project Description .................................................................. 4 Pre-Development Conditions ................................................. 5 Post-Development Conditions ................................................ 7 Study Method ........................................................................... 9 Conclusions ............................................................................. 16 Declaration of Responsible Charge ..................................... 17 II. Exhibits: Existing Condition Hydrology Map & Proposed Condition Hydrology Map ....................................................................... 18 III. Calculations: A. Existing Condition Hydrology Calculations .................. 19 100 Year Storm .......................................................... 20 B. Proposed Condition Hydrology Calculations ............... .30 100 Year Storm .......................................................... 31 C. Hydraulic Calculations ................................................... .50 Biofiltration Basin Outlet Detail .............................. 50 Modified Type A-7 Clean Out Detail ..................... .53 Orifice Calculations for Junction Box ...................... 54 D. Hydraulic Elements Calculations .................................. .56 Curb Inlet Sizing Calculations .................................. 56 Pipe Diameter Calculations ...................................... 60 Hydraulic Grade Line (HGL) Calculations ............. 62 HGLMap ................................................................... 74 Rip Rap Energy Dissipater Table ............................ 75 IV. References .................................................................................................................. 76 AhoN WAy CT 14~06, HDP 14~0~, PUD 14~09 DnAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying I -, - l -1 j . _J l _J -l VICINITY MAP ~ NO SCALE AfroN WAy CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAqE Srudy I. DISCUSSION ! bHA, Inc. land planning, civil engineering, surveying __ ) -1 J _J J l -1 l J _j _J I _J PURPOSE AND SCOPE The purpose of this report is to publish the results of hydrology and hydraulic computer analysis for the development of 2200 Afton Way, City of Carlsbad. The proposed project is a 5.12-acre site with 3.92 acres being developed and 1.20 acres remaining undeveloped. The scope is to study the existing and proposed hydrology and hydraulics as it influences the surrounding properties during a 100-year frequency storm event, and make recommendations to intercept, contain and convey QlOO to the historic point of discharge. PROJECT DESCRIPTION The Afton Way Project is located in the County of San Diego (APN 167-531-45 and APN 167- 250-06). The project site is a 4.94-acres and is divided by east and westbound Carlsbad Village Drive. The subject property located south of Carlsbad Village Drive, known as Parcel 1 for reference, is approximately 4.57 acres and is bordered by Carlsbad Village Drive to the north, and existing residential developments to the east, south, and west. Topographically, the property consists of gently sloping hillside terrain with elevations ranging from a high of approximately 280 feet Mean Sea Level (MSL) near the southwestern property line to a low of approximately 205 feet MSL at the property's northeastern corner. Currently, the property is occupied by one residential structure with two sheds. An existing crib wall, approximately 26 feet high and 300 feet long, is located along the north boundary of the site. Site drainage is presently accomplished through a generally northeasterly trending ravine and sheet flows southeasterly to drainage facilities along Carlsbad Village Drive. Existing brow ditches at the top of cut slopes along the southeastern project boundary direct runoff to existing catch basins, which ultimately discharge into the storm drain system underneath Carlsbad Village Drive. Existing brow ditches at the top of cut slopes along the crib wall direct runoff to sidewalk underdrain pipes at various locations along Carlsbad Village Drive and eventually enter the storm drain system underneath Carlsbad Village Drive via a Type B Curb Inlet at the east corner of the project boundary. Vegetation consists of native grasses and eucalyptus trees over the majority of the site. The on-site soil classification is Type Band Type D from USDA Web Soil Survey (see References). Existing land-use is 1.00 DU/Ac, proposed land-use is 2.88 DU/Ac. The subject property located north of Carlsbad Village Drive, Parcel 2, is approximately 0.37 acres and is bordered by Carlsbad Village Drive to the south, Rising Glen Way to the east, and a multi-story apartment complex to the north. Topographically, the property is a hillside dominated by an east to west trending ridge that rises approximately 50 feet above the lowest site terrain along the northwestern property line. Site terrain continues to support bare ground and scattered shrubs. The on-site soil classification is Type-D from USDA Web Soil Survey (see References). Existing land-use is undisturbed natural terrain and proposes to remain undisturbed. For the nature of this report, only Parcel 1 is proposing to be developed. The AhoN WAy CT 14~06, HOP 14~0~, PUD 14~09 DRAiNAqE Srudy bttA, Inc. land planning, civil engineering, -1 ! ~ ~l :_J project site drains to one Point of Compliance (POC), located east of the project site near Carlsbad Village Drive. This Report is intended to include a separate Hydromodification Memo containing SWMM calculations specific to this project site in the associated Storm Water Quality Management Plan (SWQMP) for this project. See References for copy of Title Page, "Technical Memorandum: SWMM Modeling for Hydromodification Compliance for Afton Way, City of Carlsbad", from Tory R. Walker Engineering dated June 17, 2015. SWMM analyses were prepared for the pre and post-developed conditions at the site in order to determine if the proposed LID biofiltration facilities meet the Hydromodification Management Plan (HMP) requirements for the Q2 to Q10 return periods. Based on the hydrologic model used in the technical memorandum titled above, a separate SWMM analysis will be prepared that describes the pre and post-development hydrologic analysis ensures that post-development peak flow is less than or equal to pre- development peak flow for the 6-hour 100-year storm event at the project's point of compliance (POC-1). See References for copy of Title Page, "Technical Memorandum: Determination of Pre- and Post-Developed JOO-year Peak Flow, Afton Way, City of Carlsbad", from Tory R. Walker Engineering dated June 17, 2015. PRE-DEVELOPMENT CONDITIONS The existing drainage area is divided into six drainage basins and one POC, located east of the project site near Carlsbad Village Drive. The Existing Condition Hydrology Map shows four drainage basins labeled Basin A through D in Parcel 1, and two drainage basins labeled Basin E and F in Parcel 2. Storm flows affecting Parcel 1 are limited to the rainfall coming from the top of the ravine and downhill on the property. Basin A sheet flows from the southwest side of the existing residence, across the existing driveway and into an existing brow ditch at the top of the cut slope along the southeasterly project boundary line. An existing catch basin at the east corner of the project boundary intercepts this runoff and connects to the existing storm drain system underneath Carlsbad Village Drive. Basin B sheet flows from the top of the southwesterly ravine and towards the easterly boundary of the subject property and into an existing brow ditch. The brow ditch conveys flow into an existing catch basin where it enters the storm drain system underneath Afton Way. This storm drain system connects with the existing storm drain system underneath Celinda Drive and eventually Carlsbad Village Drive. Basin C is limited to the storm flows that land on the existing driveway, with some flow-on from the ravine located between the neighboring properties and upstream of the driveway. Runoff is carried through the existing curb and gutter along the driveway and discharges onto Afton Way and toward curb inlets on Celinda Drive. AFTON WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy bliA, Inc. land planning, civil engineering, surveying 5 j _j -, Basin D is north of Basin A and sheet flows from the top of the ridge west of the existing on-site property and towards Carlsbad Village Drive through a series of brow ditches and sidewalk underdrain pipes. Basin D also includes run-on coming from the highest point of Carlsbad Village Drive to the existing Type-B Curb Inlet at the southwest corner of the intersection of Celinda Drive and Carlsbad Village Drive. Basin E is in the northwest portion of Parcel 2. Runoff sheet flows from the top of the ridge and onto Carlsbad Village Drive, then discharges into an existing Type-B Curb Inlet at the northwest corner of Celinda Drive and Carlsbad Village Drive also identified as POC-2. Basin E also includes run-on coming from the highest point of Carlsbad Village Drive to the existing curb inlet. Basin F is located in Parcel 2 and sheet flows east from the top of the hill towards the existing parking lot in the back of the existing multi-story apartment complex. This area that acts in a sheet flow condition comprises approximately 0.23 acres. Sheet flow analysis is not necessary for this area as the proposed project does not propose any new impervious area added to Basin F. In addition, no impervious contributing area is added to Basin E and therefore does not include a post-development hydrologic analysis. The following table summarizes the existing condition runoff information from the site. Please refer to the Existing Condition Hydrology Map for drainage patterns, areas, and Points of Compliance. TABLE I-Summary of Existing Condition Peak Flows Discharge Location Drainage Area (Ac) 100-Year Peak Flow (cfs) Basin A 1.34 2.53 Basin B 3.17 3.03 Basin C 0.47 1.10 Basin D 2.84 5.65 Denotes combined QlOO (cfs) from Basin A and Basin D outleting to POC-1. AhoN WAy CT 14~06, HDP 14~0~, PUD 14~09 DRAiNAGE Srndy b~A, Inc. land planning, civil ·1 ·1 l _J ! \ POST-DEVELOPMENT CONDITIONS The Afton Way Project proposes the development of 8 residential lots and grading of pads and driveways, and a new public cul-de-sac on Afton Way. The project also proposes drainage facility improvements consisting of minor concrete drainage channels, storm drain pipes, curb inlets, and two detention-biofiltration basins for storm water treatment and hydromodification. Storm water runoff from the project site is routed to one POC, located east of the project site near Carlsbad Village Drive. Runoff is drained to tow independent onsite receiving biofiltration LID IMPs called Basin 1 and Basin 2. The disturbed area is approximately 3.37 acres of the 4.94 acre site. Proposed land-use is 2.88 DU/Ac. ' The existing residential structure and sheds will be removed as part of the Afton Way Project. The project as proposed will endeavor to maintain the existing cross lot drainage condition for both overall rate and flow conditions. Only Basins A through D are being developed and will consider urban runoff flow rates, durations and velocities. The developed Basin A, or DMA 1, will encompass runoff from Lots 1-6, which will be directed to the front of each lot and onto the proposed cul-de-sac. Runoff will then travel via curb and gutter to a proposed Type-B Curb Inlet on the south side of Afton Way. Runoff from Lots 7 and 8 will be directed to the front of each lot and onto the proposed cul-de-sac, then travel via curb and gutter to a proposed Type-B Curb Inlet on the north side of Afton Way. The proposed curb inlets will connect to a proposed 18" -dia PVC storm drain pipe adjacent to the eastern project boundary. The 18" -dia storm drain pipe will discharge into a modified Type A-7 Clean Out (per SDRSD D-09). The cleanout will include (2) orifices to distribute flow. The size of the orifices are a function of the size of each basin divided by the area of the two basins combined. See the Hydraulic Calculations section for a detail of the junction box and orifice calculations. Once flows are routed via the proposed orifices, the flows are then conveyed via storm drain pipes to the receiving biofiltration LID IMPs called Basin 1 and Basin 2 for treatment and detention. Outflows from the basins will be conveyed via 12" -dia storm drain pipe to the existing Type-B Curb Inlet at POC-1. The majority of the off-site run-on from Basin B will be intercepted by a proposed brow ditch along the southern and eastern project boundary line and directed to a proposed catch basin on the south side of Afton Way. The catch basin will connect to a proposed 18"-dia storm drain system which will connect to the existing 18" -dia storm drain system underneath Afton Way and eventually Carlsbad Village Drive. The off-site run-on from Basin C will be intercepted by a proposed brow ditch along the western project boundary line and directed to a proposed catch basin near the congruent property line of Lot 4 and Lot 5. The catch basin will outlet to a proposed 18" -dia PVC storm drain system which will travel under the proposed cul-de-sac and connect to the existing 18" -dia storm drain system underneath Afton Way and eventually Carlsbad Village Drive. AhoN WAy CT 14~06, HDP 14~05, PUD 14~09 DRAiNAqE Srndy bl-IA, Inc. land planning, civil engineering, -, -, - J -1 J -, --1 --, _J . _J --, The remaining runoff in Basin D is proposed to be intercepted by the existing brow ditches at the top of cut slopes along the crib wall and directed to the existing sidewalk underdrain pipes at various locations along Carlsbad Village Drive. The runoff will then enter the existing storm drain system underneath Carlsbad Village Drive as historically. The proposed drainage facility improvements will consist of minor concrete drainage channels, storm drain pipes, curb inlets, and two detention-biofiltration basins. The biofiltration basins proposed for the four main Drainage Basins A -D are designed so that increases in the drainage discharge rate and velocity will be mitigated up to the 100-year runoff. The proposed biofiltration basins will serve to detain the very minor calculated increase in runoff created by the proposed development, and to mitigate any concentration of storm water discharge that might cause erosion. Table 2 on the following page summarizes the expected cumulative 100-year peak flow rates from Drainage Basins A -D hydrologic subareas. Per the San Diego County rainfall Isopluvial maps, the design 100-year rainfall depth for the site area is 2.6 inches. TABLE 2-Summary of Developed Conditions Peak Flows Discharge Drainage Area Undetained 100-Year Location (Ac) Peak Flow (cfs) Detained 100-Year Peak Flow (cfs) Basin A 3.30 5.71 2.36** Basin B 1.63 1.46 1.46 Basin D 2.91 5.76 5.76 9.64** Denotes combined QlOO (cfs) from Basin A and Basin D outleting to POC-1 . ** Note: Detained 100-Year Peak Flow Rates from Technical Memorandum: Determination of Pre- and Post-Developed JOO-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015 AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAqE Srudy bl-iA, Inc. land planning, civil engineering, surveying _J _J -1 l ! _.I Table 3 compares the cumulative pre and post-developed peak flow conditions. TABLE 3-Summary of Pre vs Post Peak Flows Drainage Area (acres) 100-Year Peak Flow (cfs) Pre-Developed Condition 7.82 12.15 Post-Developed Undetained Conditions 7.86 11.81 Post-Developed Detained Conditions 7.86 9.64** DIFFERENCE 0.04 -2.51 ** Note: Detained 100-Year Peak Flow Rates from Technical Memorandum: Determination of Pre- and Post-Developed JOO-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015. STUDY METHOD The method of analysis was based on the Rational Method according to the San Diego County Hydrology Manual. The Hydrology and Hydraulic Analysis were done on HydroSoft by Advanced Engineering Software 2013. Design Storm -100-year return interval Land Use -Residential Soil Type -The site was modeled with Type B and Type D hydrologic soils as determined from the NRCS Web Soil Survey. Type B soils have moderate infiltration rates when thoroughly wetted. Type D soils have very slow infiltration rates when thoroughly wetted. Rainfall Intensity-Initial time of concentration (Tc) values based on Table 3-2 of the San Diego County Hydrology Manual (SD HM). Rainfall Isopluvial Maps from the SD HM were used to determine P 6 for 100 year storm, see References. Rainfall Intensity = I = 7.44x(P6)x(Tc) "" -0.645 P6 for 100 year storm= 2.6" P 6 for 10 year storm = 1. 7" P 6 for 2 year storm = 1.2" AfrnN WAy CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAqE Swdy bl-IA, Inc. land planning, civil engineering, surveying -, _J _J _J __ ) ,_J _J __ J --, --_J The Rational Method provided the following variable coefficients: Runoff Coefficients -In accordance with the County of San Diego standards, runoff coefficients were based on land use and soil type. The site consists of soils in hydrologic soil groups of Type- B and Type-D, see Web Soil Survey in the References section of this report. The line depicting the Type-B and Type-D soils has been transposed from the Web Soil Survey and included in the Existing and Proposed Hydrology Maps. An appropriate runoff coefficient (C) for each type of land use in the subarea was selected from Table 3-1 of SD HM and multiplied by the percentage of total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient (2,[CA]). For all of the landscaped areas, a runoff coefficient assuming 0% impervious was used based on the under-lying soil type, 0.25 for Type-B and 0.35 for Type-D soils. All streets and driveways were considered 95% impervious, and assigned a runoff coefficient of 0.87. Impervious area from the existing single-family residence was also considered in the Existing Condition Weighted Runoff Coefficient Calculations, due to the residence conveying some of the site's surface runoff to the historic discharge points. Drainage basin areas were determined from the proposed grades shown on the Grading Plans for Afton Way TM and 200-scale existing topographic maps from the County of San Diego. All pad areas were considered to include a roof area and future extension of driveway area of 3,500 square feet. Driveway areas ( including panhandle driveways) were calculated based on the proposed final driveway areas and total 15,596 square feet. Public cul-de-sac area was calculated based on the proposed final cul-de-sac area and totals 14,111 square feet. At Final Grading, pad areas will also be calculated with a weighted runoff coefficient based on building footprints and final extension of driveway areas. The exhibits show the offsite area, proposed on-site drainage system, on-site subareas, and nodal points. Table 4 summarizes the Composite C-values calculated in the Existing and Proposed Conditions. AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying _J _ __J ·• _J I __ .J J _.) ·-, -, ~1 I _J TABLE 4-Weighted Runoff Coefficient Value Calculations for Existing and Proposed Condition Hydrology Existing Hydrology-Afton Way Up Node Down Node Total Acreage C1 Al (acres) C2 A2 (acres) (3 A3 (acres) Ccomp 3 1 1.34 0.25 0.00 0.35 1.20 0.87 0.14 0.41 6 4 3.17 0.25 3.17 0.35 0.00 0.87 0.00 0.25 9 7 0.47 0.25 0.32 0.35 0.00 0.87 0.15 0.45 16 14 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25 14 13 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64 13 12 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42 12 12 0.29 0.25 0.00 0.35 0.29 0.87 0.00 0.35 12 11 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73 11 10 0.36 0.25 0.00 0.35 0.19 0.87 0.17 0.60 19 18 1.14 0.25 0.00 0.35 0.13 0.87 1.01 0.81 ' ; i . ' . Proposed Hydrology-Afton Way Up Node Down Node Total Acreage C1 Al (acres) C2 A2 (acres) (3 A3 (acres) Ccomp 405 303 0.22 0.25 0.14 0.35 0.08 0.87 0.00 0.29 124 122 0.21 0.25 0.00 0.35 0.13 0.87 0.08 0.55 122 121 0.12 0.25 0.04 0.35 0.04 0.87 0.04 0.49 121 120 1.78 0.25 1.00 0.35 0.00 0.87 0.78 0.52 115 114 0.31 0.25 0.00 0.35 0.23 0.87 0.08 0.48 114 113 0.11 0.25 0.03 0.35 0.05 0.87 0.06 0.69 113 112 0.47 0.25 0.24 0.35 0.22 0.87 0.23 0.55 145 143 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25 144 142 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64 142 141 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42 141 141 0.27 0.25 0.00 0.35 0.27 0.87 0.00 0.35 141 140 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73 140 -0.40 0.25 0.00 0.35 0.23 0.87 0.17 0.57 · Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site existingsoiltypes. See References. The outlet structure for Basin 1 and Basin 2 have been designed based on results from the Technical Memorandum: SWMM Modeling for Hydromodification Compliance for Afton Way, dated April 9, 2015 from Tory R. Walker Engineering under separate cover (see References section of this Report for copy of Title Page. See Attachments section in the Storm Water Management Plan associated with this project for copy of Technical Memorandum). This SWMM Model demonstrates Hydromodification Compliance at the proposed basins for the Q2 to Q10 return periods as specified in the County of San Diego Hydromodification Plan (HMP). Based on the hydrologic model used in the technical memorandum titled above, a separate AfroN WAy CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srndy bl-tA, Inc. land planning, civil engineering, surveying _ _J J _J SWMM analysis has been prepared that describes the pre and post-development hydrologic analysis ensures that post-development peak flow is less than or equal to pre-development peak flow for the 6-hour 100-year storm event at the project's point of compliance (POC-1). See References for copy of Title Page, Technical Memorandum: Determination of Pre-and Post- Developed 100-year Peak Flow from Tory R. Walker Engineering dated June 17, 2015. The Rational Method study provided herein incorporates the outlet structure design in the Technical Memorandum, and is meant to enhance the study from Tory R. Walker Engineering, Inc. to show the site can sufficiently convey the 100 year storm event. HMP MODELING The two IMPs are responsible for handling hydromodification requirements for the project site. In developed conditions, Basins 1 and Basin 2 will have a surface depth of 3 feet and 2.5 feet and a riser spillway structure ( see dimensions in Tables 5 and 6). Flows will discharge from the biofiltration cells via a low flow orifice outlet within the gravel layer or a surface slot with the riser structure. The top of the riser· structure will act as a spillway, such that peak flows can be safely discharged to the receiving storm drain system. Beneath the invert of the basins' lowest surface discharge lies the proposed LID biofiltration portion of the drainage facility. This portion of the basins is comprised of 12 inches of surface storage, an 18-inch layer of amended soil ( a highly sandy, organic rich composite with an infiltration capacity of at least 5 inches/hr) and a 12-inch layer of gravel for additional detention and to accommodate the French drain system. These systems will treat storm water and convey flows to a small diameter lower outlet orifice. Once flows have been routed by the outlet structures, flows will then discharge independently from each basin to the receiving POC discharge location. The biofiltration basins were modeled using the biofiltration LID module within SWMM. Please refer to Page 2 of the Technica!Mem:orandum for details explaining the biofiltration module. AhoN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAGE Srudy bl-tA, Inc. land _J __ J --, _J J -, J -"l _ _J • _J _J -, l ' __ J ---, _J BMP MODELING FOR HMP PURPOSES Two LID IMP biofiltration basins are proposed for hydromodification conformance for the project site. Basin dimensions are summarized in Table 5 below. Biofiltration IMP Basin 1 Basin 2 Notes: TABLE 5-Summary Of Developed Dual Purpose IMP IMP DIMENSIONS BMPArea<1> Gravel Amended Soil Surface Lower Orifice (ft2) Depth<2> (in) (in) Depth<4> (in) D (in)l3l 1,805 12 18 12,30 1.25 485 12 18 12,30 1.25 (1): Area of amended soil equal to area of gravel. (2): Gravel depth needed to comply with hydromodification conditions. (3): Diameter of the orifice in the gravel layer with invert at bottom of layer, tied with HMP min. threshold (10%Qi). (4): First number is the surface depth of the BMP up to the slot invert. Second number is the total surface depth from bottom of surface pond to top pond wall. TABLE 6-Summary OfBiofiltration Basin Riser Details Slot Dimensions Slot Invert HMP Detention Elevation<4> (in) Weir Length, Basin h (in) BsLor (in) Invert Elevation Basin 1 3 24 12.00 8'@ 1.75' Elev. Basin 2 3 24 12.00 8' @ 1.75' Elev. Notes: (1): All elevations measured from the bottom of the surface of the basin. (2): Assumed 3' x 3' box riser with internal 2' x 2' opening (8 feet internal perimeter). Drawdown Calculations To ensure compliance with the 72 hour drawdown requirements per Section 6.4.6 of the Final HMP dated March 2011, drawdown calculations are provided in Attachment 4 of the Technical Memorandum. The calculated drawdown times for Basin 1 and 2 are 22.16 hours and 6.93 hours respectively. Summary of Results Table 7 on the following page compares the existing and proposed development drainage areas and discharge points for Basins A through D, as well as the POC. While the actual developed drainage area and discharge points for Basins A through Basin D differ from the original AfroN WAy CT 14--06, HDP 14--0~, PUD 14--09 DRA.iNA.qE Srndy bl-M, Inc. landplanning, civil engineering, surveying _J --, J J _j ,--, __ j _J _J -· -~ undeveloped existmg condition, any negative impacts created by these area diversions are mitigated by the proposed detention-biofiltration basins. As can be seen from Table 7, overall detained runoff discharge rates are actually less than that of the undeveloped existing condition. The Type-D soil on-site provides little infiltration capacity, resulting in larger runoff flows downstream. For the 100-year event, all storm drain facilities have been sized to convey the design flowrate based on Rational Method calculations, including the overflow catch basins in the biofiltration basins. Despite an additional 1.5 acres draining to POC-1 in the proposed condition, the results of the Peak Flows Calculation Table in the Technical Memorandum show that the outlet structure designed by Tory R. Walker Engineering can sufficiently mitigate storm water flows for the Q2, Q10 and 0100 return periods, as specified in the City of Carlsbad HMP for Hydromodification compliance. The site demonstrates compliance with the HMP as all storm drain facilities are sized to convey the 100 year storm event, while Mitigated flows for the 2 through 10 year Return Period are less than the Existing Condition. Based on this conclusion, the proposed re-routing of the existing drainage areas will have minimal impact downstream. AfroN WAy CT 14.-06, HOP 14.-05, PUD 14.-09 DRAiNAGE Srudy bl-tA, Inc. J j -I l.__ -~I '~ _j L__ _j TABLE 7-Summary of Existing Vs. Proposed Peak Flows by Node Existing Condition Proposed Undetained Condition Node Acres Q(cfs) Tc (min) Node Acres Q (cfs) Tc (min) Basin A 1 1.34 2.53 9.29 107 3.30 5.71 14.29 BasltJ B 4 3.17 3.03 12.34 302 1.63 1.46 14.03 Basin C 7 0.47 1.10 7.68 Basin D 10 2.84 5.65 10.26 105 2.91 5.76 10.20 Roc~1, -. ?10 --\ _ 4.18 IY 'B.tJ2-10.26_ -·-ic--105/ <•:. 6.2r------.--__ '1Q.3$ t"14'._29 • ' Total 7.8 12.15 12.34 7.8 11.81 14.29 '. Denotes combined QlOO (cfs) from Basin A and Basin D outleting at existing Type-B Curb Inlet. Afton Way TM 2200 Afton Way Preliminary Drainage Study bl-tA, Inc. land planning, civil engineering, surveying ~--' ~I Proposed Detained Condition Acres Q (cfs) Tc (min) 3.30 2.36 254.29 1.63 1.46 14.03 2.91 5.76 10.20 6.20'' ·--· 8.18 -., --? -2s4.29 . ----- 7.8 9.64 254.29 L _j -_J J __ J _J --1 -, --1 j j _I CONCLUSION The 2200 Afton Way project satisfies the drainage requirements of the City of Carlsbad. All storm drain facilities have been sized to convey the 100-year storm event without any adverse effects, and the 2-year through 10-year storm events will not release increase flowrates compared to the Existing Conditions per HMP requirements. Based on this conclusion, runoff released from the proposed project site will unlikely cause any adverse impact to downstream water bodies or existing habitat integrity. Sediment will likely be reduced upon site development. Afton Way TM 2200 Afton Way Preliminary Drainage Study bJ-iA, Inc. land planning, civil engineering, surveying ~-j --, _J _J -, , __ I I , __ ) J -, __ J DECLARATION OF RESPONSIBLE CHARGE I hereby declare that I am the Engineer of Work for this project, that I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions code, and that the design is consistent with current standards. I understand that the check of project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for project design. AfrnN WAy CT 14--06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srudy 0-,-( Date bHA, Inc. land planning, civil engineering, surveying . 1 i _) _j II. EXHIBITS EXISTING CONDITION HYDROLOGY MAP & PROPOSED CONDITION HYDROLOGY MAP AhoN WAy CT 14 ... 06, HDP 14 ... 05, PUD 14 ... 09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying ~ 1 ______________ _,! 18 k-- __ , ---~, .... ,..., ............... ,,,..,' "'r.nr, 0, ,,.,~AD\ 1 ~')h DDflD 1-.1vnRn-nt1i1A rlwn 10/fl/701 fi 12:17:49 PM LOT3 P£ 265 LOT~ 255 Pf l SEE BASIN D: OFF-SITE DRAINAGE DETAIL, THIS SHEET LOT4 P£ 260 LOT5 P£ 255 -//- 'f .. ' I LOTS P£ 240 •,JBASINA I PROPOSED CONDITION HYDROLOGY MAP AFTON WAY SUBDIVISION, CARLSBAD, CA ., ' 1 ' --~ ' ' ' ' L j. _.,~ ' "" j ' i ' DARY ' ' ' ' .. ·:-;t·:s~. ,, . . ,._ ~ ..., \ \' '' \, ';. -· ~1 .): . '. --\; I LEGEND: PROJECT CHARACTERISTICS SURFACE NODE SURFACE RUNOFF (Q1DD) BASIN AREA (ACRES)--@ BASIN LIMIT SUB-BASIN LIMIT FLOWPATH FLOW DIRECl/ON PROPERTY LINE BROW DITCH SOIL CLASS/FICA 7/0N BOUNDARY 11!1!11111-~--- = SOIL TYP£ B&D PROJECT AR£A 4.94 ACR£S DISTURBED AR£A 3.37 ACR£S PROPOSED IMPERVIOUS AR£A 1.26 ACRES PROPOSED P£RVIOUS AR£A 2.11 ACRES WEIGHTED RUNOFF COEFFICIENT VALUE TABLE: Prop<>sed Hydrology-Afton Way Up Node Down Node Total Acreage C1 At {acres) c, A2 (acres) (3 A3 (acres) Ccon1p 405 303 0.22 0.25 0.14 0.35 0.08 0.87 0.00 0.29 124 122 0.21 0.25 0.00 0.35 0.13 0.87 0.08 0.55 122 121 0.12 0.25 0.04 0.35 0.04 0.87 0.04 0.49 121 120 1.78 0.25 1.00 0.35 0.00 0.87 0.78 0.52 115 114 0.31 0.25 0.00 0.35 0.23 0.87 0.08 0.48 114 113 0.11 0.25 0.03 0.35 0.05 0.87 0.06 0.69 113 112 0.47 0.25 0.24 0.35 0.22 0.87 0.23 0.55 145 143 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25 144 142 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64 142 141 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42 141 141 0.27 0.25 0.00 0.35 0.27 0.87 0.00 0.35 141 140 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73 140 . 0.40 0.25 0.00 0.35 0.23 0.87 0.17 0.57 Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site existing soil types. See References. SUMMARY OF DEVELOPED CONDITIONS PEAK FLOWS DISCHARGE LOCA TJON DRAINAGE AREA (AC) UNDETAIN£D 100-Y£AR DETAINED 100-Y£AR P£AK FLOWS (CFS) PEAK FLOWS (CFS} NOD£ 107 J.JO 5.71 2.36' NODE 302 1.63 1.46 1.46 NOD£ 105 2.91 5.76 5.76 POC-1 6.21 10.35 8.18' TOTAL 7.84 11.81 9.64• • NOTE: VALUES WITH ASTERISK(•) CALCULATED PER TECHNICAL MEMORANDUM: DETERMJNAl/ON OF PRE-AND POST-D£V£LOPED 100-YEAR PEAK FLOW, AFTON WAY, CARLSBAD, CA, JVNE 17, 2015" PREPARED BY TORY R. WALKER ENGINEERING. SEE DRAINAGE REPORT FOR COPY OF TECHNICAL MEMORANDUM . TYPE B BROW DITCH PER SDRSD D-75 ?fW 1!.._0' D££P ROOTED, DENSE, ----.DROUGHT TOLERANT Pt:ANTING SUITABLE FOR WELL~ SLOT ORIFICE TO ALLOW 100 YR PREDEVELOPM£NT FLOW DRAINW-SOJk. TYPE G-1 CATCH B),SIN WITH GRATED INLET 215.5' FOR POST DEV£LOPM£NT 100YR FLOW ) 214.25 RIM-EXIST. GROUND 18" ENGINEERED BASIN 1 ----. SOIL MIX 1' V2 STORAGE LAY£R--- (2"-PEA GRAVEL OVER 10"-J/4" "\_ CRUSHED ROCK) 212.5' 6" PERFORA T£D PVC UNDERDRAIN PIPE PLACE PIPE WITH BW 210' PERFORATIONS AT THE INVERT IMPERMEABLE LINE,R---,,. THROUGHOUT RESTRJCTOR PLAT£ TO LIMIT------ FLOW FROM V2 STORAGE AR£A, 2.25" DRAIN DOWN HOLE 18" ENGINEER£ SOIL MIX UNDERDRAIN PIPE PLACE PIPE WITH PERFORA TJONS AT THE INVERT BASIN 2 209.2 TYP£ G-1 CATCH BASIN ......_i,v1TH GRATED INLET FOR POST Dt\l'ELnPM£NT 100YR FLOW ~ 210' ----. .----- t·' "- --==-F2:.::·5t-7r-;SLOT ORIFICE iD'AUQW L 100 YR PREDEVELOPMENT FLOW ,+~-1---RESTRICTOR PLATE AT £ND OF P£RF PIP£ IN BASIN 2 TO LIMIT FLOW FROM V2 STORAGE AR£A, OUTFLOW - 1. 00" DRAIN DOWN HOLE 1' V2 STORAGE LA Y£R (2"-PEA GRAVEL OVER 10"-J/4" CRUSHED ROCK) 72" HOPE OUTLET PIPE 12" HOPE OUTLET PIPE FROM RIS£R/BASIN 1 IMPERMEABLE LINER THROUGHOUT SECTIOND-D 50' 25' ~ BIOFILTRATION BASIN DETAIL o' 50· 1 oo· 150· ~~~I iiiiiiiiiiiiiiiiiiiiiiiiiiiiii l~~"""ll SCALE: 1" = 50' b~A,lnc. land planning, clvll englnee~ng, surveying 5115 AVENIDA ENCINAS SUITE "L" CARLSBAD, CA. 92008-4387 (760) 931-8700 NOT TO SCALE PROPOSED CONDITION HYDROLOGY MAP AFTON WAY SUBDIVISION CARLSBAD, CA OFF-SITE DRAINAGE DETAIL J ·,·. ' ' ' I ' : . \ I j / I K•\Civil 30\1326\PROD\DWG\HYDRO & SWMP\1326-PROP HYDRO-DMAdwg, 8/24/201611:31:32 AM SEE BASIN D: OFF-SITE DRAINAGE DETAIL, THIS SHEET ' ;/ I / . / / / / . ' ' - I ' '/'. /I \ /. /\ , . .,, ," EXISTING CONDITION HYDROLOGY MAP AFTON WAY SUBDIVISION, CARLSBAD, CA ', ;_/-".'//:-:_.::,' ,_I .; ".'\,.'.' -<.\','· ,\). ''.:,\.):/),.'::\'.\'/ . .,:\\ ·.-.,; ,· ,1·,.-',';:,:,:.-·..-:·''' \ \ " ' // rr li ,/ / !I/! / I /j: ~./'U····. /j'/ ' ' .' ' ,,. I [;~· .. /:: I~--.----. /:. ~ .. / -"-\·.\ . ~- .. PARC,f~2 / ·'; ' :" 'i / ' I ,/! I • : I ,' ! ' • . . :_. jl •I ,/ /' ,. " j ! /1 .:/;} , :1 .,, ;,· / i .· :j ,' : J l- 1 / / -' ./ :.1 .• , . 1 1--, ! ... ii! ' I ''! .. l . ' \~ ! ,. , ' /· ' ' LEGEND: PROJECT CHARACTERISTICS SURFACE NODE SURFACE RUNOFF (0100) BASIN AREA (ACRES)~ BASIN LIMIT SUB-BASIN LIMIT FLOWPATH ------ FLOW DIRECTION PROPERTY LINE BROW DITCH = = SOIL CLASS/FICA T/ON ---- BOUNDARY = SOIL TYPE B&D PROJECT AREA 4.94 ACRES APN 167-531-45 & 167-250-06 WEIGHTED RUNOFF COEFFICIENT VALUE TABLE: 50' Existing Hydrology-Afton Way Up Node Down Node Total Acreage c, Ai (acres) Cz A2 (acres) (3 A3 (cicres) Ccornp 3 1 1.34 0.25 0.00 0.35 1.20 0.87 0.14 0.41 6 4 3.17 0.25 3.17 0.35 0.00 0.87 0.00 0.25 9 7 0.47 0.25 0.32 0.35 0.00 0.87 0.15 0.45 16 14 0.64 0.25 0.64 0.35 0.00 0.87 0.00 0.25 14 13 0.30 0.25 0.11 0.35 0.00 0.87 0.19 0.64 13 12 0.62 0.25 0.45 0.35 0.00 0.87 0.17 0.42 12 12 0.29 0.25 0.00 0.35 0.29 0.87 0.00 0.35 12 11 0.42 0.25 0.00 0.35 0.07 0.87 0.35 0.73 11 10 0.36 0.25 0.00 0.35 0.19 0.87 0.17 0.60 19 18 1.14 0.25 0.00 0.35 0.13 0.87 1.01 0.81 Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site existing soil types. See References . SUMMARY OF EXISTING CONDITIONS PEAK FLOWS DISCHARGE LOCATION DRAINAGE AREA (AC) 100-YEAR PEAK FLOWS (CFS) BASIN A (NODE 1) 1.34 2.53 BASIN B (NODE 4) 3.17 3.03 BASIN C (NODE 7) 0.47 1.10 BASIN D (NODE 10) 2.84 5.65 POC-1 (NODE 10) 4.18 8.02 TOTAL 7.8 12.15 NOTE: POC-1 REPRESENTS COMBINED 0100 (CFS) FROM BASIN A (NODE 1) AND BASIN D (NODE 10) OUTLET/NG AT THE EXISTING TYPE-8 CURB INLET. THE TOTAL DRAINAGE. REPRESENTS BASINS A -0 . 25' o' so' 100' 150' ~~ SCALE: 1" = 50' bJ.iA,lnc. land planning, cMI englnee~ng, suiveylng 5115 AVENIDA ENCINAS SUITE "L" CARLSBAD, CA. 92008-4387 (760) 931-8700 EXISTING CONDITION HYDROLOGY MAP AFTON WAY SUBDIVISION CARLSBAD, CA . .J ,_ I __J .J __ J --, --J -, _ _i III. CALCULATIONS A. EXISTING CONDITION HYDROLOGY CALCULATIONS AhoN WA.y CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy bliA, Inc. land planning, civil engineering, surveying .J , ___ j ·1 - J C .J l lOOYEARSTORM **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACK.AGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1459 Analysis prepared by: BHA, Inc 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (760) 931-7780 ************************** DESCRIPTION OF STUDY************************** * 100 YEAR EXISTING HYDROLOGY ANALYSIS * AFTON WAY SUBDIVISION * SEE HYDROLOGY MAP FOR NODE LOCATIONS, AND BASIN INFORMATION ************************************************************************** FILE NAME: 1326El00.DAT TIME/DATE OF STUDY: 09:08 06/20/2016 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS * * * *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) MODEL* MANNING FACTOR (n) 1 32.0 27.0 0.018/0.018/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth= 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 78.00 AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying _j -_) _) _I - J UPSTREAM ELEVATION(FEET) = 280.00 DOWNSTREAM ELEVATION(FEET) 273.00 ELEVATION DIFFERENCE(FEET) 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.279 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.615 SUBAREA RUNOFF(CFS) 0.16 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) 0.16 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 1.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 273.00 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE CHANNEL BASE (FEET) 25. 00 "Z" FACTOR = 2. 000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.603 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4100 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1. 00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.03 TRAVEL TIME(MIN.) Tc(MIN.) = 9.26 1. 39 2.01 3.98 197.93 0.1564 1. 28 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA RUNOFF(CFS) 0.410 2.42 TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) 2.53 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 3.00 TO NODE 2.35 1. 00 = 558.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1. 00 TO NODE 10.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USiNG'-USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 197.93 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.09 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 2.53 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.29 192.28 LONGEST FLOWPATH FROM NODE 3.00 TO NODE 10.00 584.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE AFTON WAy CT 14--06, HDP 14--05, PUD 14--09 DRAiNAGE Srudy 6.00 TO NODE 5.00 IS CODE= 21 bl-IA, Inc. land planning, civil engineering, J l - J >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 301.00 DOWNSTREAM ELEVATION(FEET) = 295.00 ELEVATION DIFFERENCE(FEET) = 6.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.420 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.894 SUBAREA RUNOFF(CFS) 0.12 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.12 ****************************************~*********************************** FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 295.00 DOWNSTREAM(FEET) 232.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 454.00 CHANNEL SLOPE 0.1388 CHANNEL BASE(FEET) 25.00 "Z" FACTOR= 10.000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.825 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.63 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.93 AVERAGE FLOW DEPTH(FEET) 0.03 TRAVEL TIME(MIN.) 3.92 Tc(MIN.) = 12.34 SUBAREA AREA(ACRES) 3.07 SUBAREA RUNOFF(CFS) 2.94 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) 3.03 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 6.00 TO NODE 2.45 4.00 = 554.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 8.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 92.00 UPSTREAM ELEVATION(FEET) = 283.00 DOWNSTREAM ELEVATION(FEET) = 275.00 ELEVATION DIFFERENCE(FEET) = 8.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.458 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.474 SUBAREA RUNOFF(CFS) 0.26 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) 0.26 **************************************************************************** AhoN WAy CT 14--06, HDP 14--05, PUD 14--09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying _J _J J -' -i FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 275.00 DOWNSTREAM(FEET) 221.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 370.00 CHANNEL SLOPE 0.1459 CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.192 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.69 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.77 AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.) 2.23 Tc(MIN.) = 7.68 SUBAREA AREA(ACRES) 0.38 SUBAREA RUNOFF(CFS) 0.89 AREA-AVERAGE RUNOFF COEFFICIENT 0.450 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) 1.10 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 9.00 TO NODE 2.74 7.00 = 462.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 15.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00 UPSTREAM ELEVATION(FEET) = 280.00 DOWNSTREAM ELEVATION(FEET) = 272.00 ELEVATION DIFFERENCE(FEET) = 8.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.770 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.246 SUBAREA RUNOFF(CFS) 0.11 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.11 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 14.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 272.00 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 206.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.819 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.52 AfroN WAy 260.50 0.0558 b~A, Inc. CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srndy land planning, civil engineering, J ~I l -, j TRAVEL TIME THRU SUBAREA AVERAGE FLOW DEPTH(FEET} Tc(MIN.} = 6.44 SUBAREA AREA(ACRES} BASED ON VELOCITY(FEET/SEC.) 0.23 TRAVEL TIME(MIN.) 0.57 SUBAREA RUNOFF(CFS) AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) 5.13 0.67 0.83 0.93 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 5. 96 14.00 = 272.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 13.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED}<<<<< UPSTREAM ELEVATION(FEET} = 260.50 DOWNSTREAM ELEVATION(FEET} STREET LENGTH(FEET} = 227.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL} 0.018 OUTSIDE STREET CROSSFALL(DECIMAL} 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 252.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 6.00 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.24 STREET FLOW TRAVEL TIME(MIN.) = 1.17 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA}: USER-SPECIFIED RUNOFF COEFFICIENT= .6400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.374 0.77 Tc(MIN.) 5.225 7.61 SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = 0.30 0.9 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.85 1.43 1. 00 1. 84 FLOW VELOCITY(FEET/SEC.) = 3.41 DEPTH*VELOCITY(FT*FT/SEC.) 0.86 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 13.00 = 499.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 13. 00 TO NODE 12.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED}<<<<< UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 184.00 CURB HEIGHT(INCHES) = 6.0 AhoN WAy 242.00 CT 14~06, HDP 14~05, PUD 14~09 DRAiNAqE Srndy bHA, Inc. land planning, civil engineering, surveying .J I _J . J __ J _J ·, : __ .I . _j . l :_J .1 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 7.27 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 4.19 STREET FLOW TRAVEL TIME(MIN.) = 0.73 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.393 1. 09 Tc (MIN.) 4.925 8.34 SUBAREA AREA(ACRES) 0.62 TOTAL AREA(ACRES) = 1.6 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET)' = 0.27 HALFSTREET FLOOD WIDTH(FEET) 8.01 2.48 1. 28 3.02 FLOW VELOCITY(FEET/SEC.) = 4.35 DEPTH*VELOCITY(FT*FT/SEC.) 1.19 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 12.00 = 683.00 FEET . **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.925 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT= 0.3859 SUBAREA AREA(ACRES) 0.29 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.34 0.50 3.52 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 11.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 401.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 AhoN WAy 213.00 b~A, Inc. CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srudy land civil engineering, __ ) j -J j J --·1 _i J ' -1 -SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 STREET PARKWAY CRGSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 8.74 5.23 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.28 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7300 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.450 1.49 Tc(MIN.) 4.492 9.62 SUBAREA AREA(ACRES) 0.42 TOTAL AREA(ACRES) = 2.3 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 9.06 4.20 1. 38 4.58 FLOW VELOCITY(FEET/SEC.) = 5.37 DEPTH*VELOCITY(FT*FT/SEC.) 1.56 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 11.00 = 1084.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 11. 00 TO NODE 11.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.492 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = TC(MIN.) = 9.62 COEFFICIENT= 0.4411 0.21 SUBAREA RUNOFF(CFS) 2.5 TOTAL RUNOFF(CFS) = 0.33 4.91 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 213.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 199.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 200.94 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section= 0.0200 AhoN WAy CT 14,06, HOP 14,05, PUD 14,09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying J J _J _J _.) J J _J -1 _J _J ·1 j ' ,_ J **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 10.12 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 5.20 STREET FLOW TRAVEL TIME(MIN.) = 0.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT= .6000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.461 1. 61 Tc (MIN.) 4.310 10.26 SUBAREA AREA(ACRES) 0.36 TOTAL AREA(ACRES) = 2.8 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 10.33 5.38 0.93 5.65 FLOW VELOCITY(FEET/SEC.) = 5.26 DEPTH*VELOCITY(FT*FT/SEC.) 1.65 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 10.00 = 1283.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.65 10.26 4.310 LONGEST FLOWPATH FROM NODE 16.00 TO NODE ** MEMORY BANK# 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.53 9.29 4.595 LONGEST FLOWPATH FROM NODE 3.00 TO NODE ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.64 9.29 4.595 2 8.02 10.26 4.310 AREA (ACRE) 2.84 10.00 AREA (ACRE) 1. 34 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 8.02 Tc(MIN.) = 10.26 TOTAL AREA(ACRES) = 4.2 1283.00 FEET. 584.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 19.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .8700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 AfroN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srudy bl-IA, Inc. land planning, civil engineering, surveying J J _J _J --, _J _J _J J _J UPSTREAM ELEVATION(FEET) = 260.50 DOWNSTREAM ELEVATION(FEET) 260.20 ELEVATION DIFFERENCE(FEET) 0.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.688 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH= 50.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.850 NOTE: RAINFALL INTENSITY IS BASED ON Tc= 5-MINUTE. SUBAREA RUNOFF(CFS) 0.66 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.66 **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 18.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED)<<<<< UPSTREAM ELEVATION(FEET} = 260.20 DOWNSTREAM ELEVATION(FEET} STREET LENGTH(FEET} = 975.00 CURB HEIGHT(INCHES} = 6.0 STREET HALFWIDTH(FEET} = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET} 27.00 INSIDE STREET CROSSFALL(DECIMAL} 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL} 0.020 209.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb} 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} 2.99 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 8.01 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.31 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.17 STREET FLOW TRAVEL TIME(MIN.) = 3.77 Tc(MIN.) 7.46 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.292 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.760 SUBAREA AREA(ACRES) 1.15 SUBAREA RUNOFF(CFS) = 4.56 TOTAL AREA(ACRES} = 1.3 PEAK FLOW RATE(CFS) 5.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 10.12 FLOW VELOCITY(FEET/SEC.) = 4.90 DEPTH*VELOCITY(FT*FT/SEC.) 1.52 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 18.00 = 1075.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.292 Af-roN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying _j -, . j _J J *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 S.C.S. CURVE NUMBER (AMC II) 0 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) TC(MIN.) 7.46 COEFFICIENT 0.23 1. 5 = 0.6971 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 1.5 TC(MIN.) 5.50 END OF RATIONAL METHOD ANALYSIS AhoN WAy 7.46 0.43 5.50 CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying --1 _J _J J _J -, J -1 I _j B. PROPOSED CONDITION HYDROLOGY CALCULATIONS AfroN WAy CT 14~06, HDP 14~05, PUD 14~09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying __ J 100 YEAR STORM **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1459 Analysis prepared by: BHA, Inc 5115 Avenida Encinas, Suite L _j Carlsbad, CA 92008-4387 __ I _ .. J _J _J _ _I _J -, - J (760) 931-7780 ************************** DESCRIPTION OF STUDY************************** * 100 YEAR PROPOSED HYDROLOGY ANALYSIS * 2200 AFTON WAY * SEE HYDROLOGY MAP FOR NODE LOCATIONS, AND BASIN INFORMATION ************************************************************************** FILE NAME: 1326P100.DAT TIME/DATE OF STUDY: 13:42 08/23/2016 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS * * * *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO WIDTH CROSS FALL NO. (FT) (FT) STREET-CROSSFALL: IN-I OUT-/PARK- SIDE I SIDE/ WAY CURB HEIGHT (FT) GUTTER-GEOMETRIES: WIDTH LIP HIKE (FT) (FT) (FT) MODEL* MANNING FACTOR (n) -------------------------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth= 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 405.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT INITIAL SUBAREA FLOW-LENGTH(FEET) AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy .2500 91. 00 bttA, Inc. land planning, civil engineering, surveying _J _J _._) ·~J _J .J ._J __ J •-I UPSTREAM ELEVATION(FEET) = 282.00 DOWNSTREAM ELEVATION(FEET) 274.00 ELEVATION DIFFERENCE(FEET) 8.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 7.072 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.477 SUBAREA RUNOFF(CFS) 0.12 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) 0.12 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 303.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 274.00 DOWNSTREAM(FEET) 259.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 142.00 CHANNEL SLOPE 0.1021 CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.040 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.214 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.24 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.67 AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 3.55 Tc(MIN.) = 10.62 SUBAREA AREA(ACRES) 0.22 SUBAREA RUNOFF(CFS) 0.23 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.) 0.33 LONGEST FLOWPATH FROM NODE 406.00 TO NODE 0.81 303.00 = 233.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 303.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 305.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 301.00 DOWNSTREAM ELEVATION(FEET) = 295.00 ELEVATION DIFFERENCE(FEET) = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.420 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.894 SUBAREA RUNOFF(CFS) 0.12 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.12 **************************************************************************** FLOW PROCESS FROM NODE AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy 305.00 TO NODE 304.00 IS CODE= 51 bHA, Inc. land planning, civil engineering, surveying _) • j _j __ ; __ _j _J i ___ J -.J __ j __ J ' __ ) >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 295.00 DOWNSTREAM(FEET) 271.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 143.00 CHANNEL SLOPE 0.1678 CHANNEL BASE(FEET) 50.00 "Z" FACTOR= 5.000 MANNING'S FACTOR= 0.040 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.721 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.28 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.53 AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.) 4.46 Tc(MIN.) = 12.88 SUBAREA AREA(ACRES) 0.33 SUBAREA RUNOFF(CFS) 0.31 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.01 FLOW VELOCITY(FEET/SEC.) 0.76 0.40 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 304.00 = 243.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 271.00 DOWNSTREAM(FEET) 259.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 182.00 CHANNEL SLOPE 0.0632 CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.620 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.54 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.38 AVERAGE FLOW DEPTH(FEET) 0.22 TRAVEL TIME(MIN.) 0.56 Tc(MIN.) = 13.44 SUBAREA AREA(ACRES) 0.31 SUBAREA RUNOFF(CFS) 0.28 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) 0.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.24 FLOW VELOCITY(FEET/SEC.) 5.75 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 303.00 = 425.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 303.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 0.67 13.44 LONGEST FLOWPATH FROM NODE AfroN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srudy INTENSITY AREA (INCH/HOUR) (ACRE) 3.620 0.74 306.00 TO NODE 303.00 425.00 FEET. bHA, Inc. land planning, civil engineering, surveying -·1 J ... J -, _J --, .J --, _J _J ** MEMORY BANK# 1 CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.33 10.62 4.214 0.31 LONGEST FLOWPATH FROM NODE 406.00 TO NODE 303.00 233.00 FEET. ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 0.86 10.62 4.214 2 0.95 13 .44 3.620 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 0.95 Tc (MIN.) = 13.44 TOTAL AREA(ACRES) = 1. 0 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE= 12 >>>>>CLEAR MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 302.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 249.00 DOWNSTREAM(FEET) 204.23 FLOW LENGTH(FEET) = 349.50 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.99 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 0.95 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 14.03 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 302.00 774.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 2 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 506.00 TO NODE 505.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 304.00 DOWNSTREAM ELEVATION(FEET) = 282.00 ELEVATION DIFFERENCE(FEET) = 22.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 6.352 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.870 AfroN WAy CT 14,06, HDP 14,05, PUD 14,09 DnAiNAGE Srndy bl-IA, Inc. land planning, civil engineering, surveying __ j I _J '-~j __ ; __ J _j -_i _J SUBAREA RUNOFF(CFS} TOTAL AREA(ACRES} = 0.12 0.08 TOTAL RUNOFF(CFS} = 0.12 ******~********************************************************************* FLOW PROCESS FROM NODE 505.00 TO NODE 504.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT}<<<<< ELEVATION DATA: UPSTREAM(FEET) = 282.00 DOWNSTREAM(FEET) 232.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 411.00 CHANNEL SLOPE 0.1217 CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.319 *USER SPECIFIED(SUBAREA}: USER-SPECIFIED RUNOFF COEFFICIENT= .2500 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.45 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.} 6.53 AVERAGE FLOW DEPTH(FEET} 0.19 TRAVEL TIME(MIN.} 1.05 Tc(MIN.} = 7.40 SUBAREA AREA(ACRES} 0.50 SUBAREA RUNOFF(CFS} 0.66 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES} = 0.6 PEAK FLOW RATE(CFS} END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET} = 0.23 FLOW VELOCITY(FEET/SEC.} 7.55 0.77 LONGEST FLOWPATH FROM NODE 506.00 TO NODE 504.00 = 491. 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 302.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT}<<<<< ELEVATION DATA: UPSTREAM(FEET} = 226.00 DOWNSTREAM(FEET} 204.23 FLOW LENGTH(FEET} = 56.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 13.80 GIVEN PIPE DIAMETER(INCH} = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 0.77 PIPE TRAVEL TIME(MIN.} = 0.07 Tc(MIN.) = 7.47 LONGEST FLOWPATH FROM NODE 506.00 TO NODE 302.00 547.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 2 WITH THE MAIN-STREAM MEMORY<<<<< **MAINSTREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY NUMBER (CFS} (MIN.} (INCH/HOUR} 1 0.77 7.47 5.288 LONGEST FLOWPATH FROM NODE 506.00 TO NODE AREA (ACRE} 0.58 302.00 547.00 FEET. ** MEMORY BANK# 2 CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY NUMBER (CFS} (MIN.) (INCH/HOUR) AfroN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srudy AREA (ACRE} bl-IA, Inc. land planning, civil engineering, surveying _J _ J --1 1 0.95 14.03 3.522 1. 05 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 302.00 774.50 FEET. ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1. 28 7.47 5.288 2 1. 46 14.03 3.522 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 1.46 Tc(MIN.) = 14.03 TOTAL AREA(ACRES) = 1. 6 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 12 >>>>>CLEAR MEMORY BANK# 2 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 144.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00 UPSTREAM ELEVATION(FEET) = 280.00 DOWNSTREAM ELEVATION(FEET) = 272.00 ELEVATION DIFFERENCE(FEET) = 8.00 5.770 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN. ) WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 10.%, IS USED IN Tc CALCULATION! 6.246 SUBAREA RUNOFF(CFS) 0.11 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0 .11 **************************************************************************** FLOW PROCESS FROM NODE 144.00 TO NODE 143.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 272.00 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 206.00 CHANNEL SLOPE CHANNEL BASE(FEET) 0.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.819 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .2500 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.52 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.13 AVERAGE FLOW DEPTH(FEET) 0.23 TRAVEL TIME(MIN.) 0.67 Tc(MIN.) = 6.44 260.50 0.0558 SUBAREA AREA(ACRES) 0.57 SUBAREA RUNOFF(CFS) 0.83 AREA-AVERAGE RUNOFF COEFFICIENT 0.250 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) END .OF SUBAREA CHANNEL FLOW HYDRAULICS: AhoN WAy CT 14,06, HOP 14,0~, PUD 14,09 DRAiNAGE Srudy land planning, civil engineering, 0.93 bl-IA, Inc. . .J _J ---) DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) 5.96 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 143.00 = 272. 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 143.00 TO NODE 142.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 260.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 227.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH{FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 252.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 5.90 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.14 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): 3.31 0.78 Tc(MIN.) 5.236 USER-SPECIFIED RUNOFF COEFFICIENT= .6400 AREA-AVERAGE RUNOFF COEFFICIENT 0.374 7.58 SUBAREA AREA(ACRES) 0.30 TOTAL AREA(ACRES) = 0.9 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) 6.85 1.43 1. 01 1. 84 FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY(FT*FT/SEC.) 0.86 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 142.00 = 499.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 142.00 TO NODE 141.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 184.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) AhoN WAy 242.00 0.0150 CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying j J j .J J Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.49 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 7.16 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.27 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.10 STREET FLOW TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) 8.30 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.939 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4200 AREA-AVERAGE RUNOFF COEFFICIENT 0.393 SUBAREA AREA(ACRES) 0.62 SUBAREA RUNOFF(CFS) = 1.29 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) 3.02 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.90 FLOW VELOCITY(FEET/SEC.) = 4.43 DEPTH*VELOCITY(FT*FT/SEC.) 1.20 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 141.00 = 683.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 141. 00 TO NODE 141.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.939 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 AREA-AVERAGE RUNOFF COEFFICIENT= 0.3863 SUBAREA AREA(ACRES) 0.27 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.30 0.47 3.49 **************************************************************************** FLOW PROCESS FROM NODE 141. 00 TO NODE 140.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 401.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 213. 00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 AfroN WAy **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 8.64 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.28 4.18 CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE · Srudy land planning, civil engineering, bl-tA, Inc. j ,) _j .J _) __ J c_J PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.27 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7300 AREA-AVERAGE RUNOFF COEFFICIENT 0.450 1. 50 Tc (MIN.) 4.507 9.57 SUBAREA AREA(ACRES) 0.42 TOTAL AREA(ACRES) = 2.2 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.96 1.38 4.57 FLOW VELOCITY(FEET/SEC.) = 5.42 DEPTH*VELOCITY(FT*FT/SEC.) 1.58 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 140.00 = 1084.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------=-----------------=======-----------------========================= 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.507 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = TC(MIN.) = 9.57 COEFFICIENT= 0.4400 0.26 SUBAREA RUNOFF(CFS) 2.5 TOTAL RUNOFF(CFS) = 0.41 4.98 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 105.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 213.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 199.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 27.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 200.94 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 10.12 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.63 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): 5.25 1. 64 Tc (MIN.) 4.325 USER-SPECIFIED RUNOFF COEFFICIENT= .5700 AREA-AVERAGE RUNOFF COEFFICIENT 0.458 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) AhoN WAy 5.47 10.20 0.99 CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAGE Srudy bl-iA, Inc. land planning, civil engineering, surveying _J _ _J • . .J I .J _) J J J TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) 5.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 10.33 FLOW VELOCITY(FEET/SEC.) = 5.34 DEPTH*VELOCITY(FT*FT/SEC.) 1.68 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 105.00 = 1283.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 3 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 123.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 260.00 DOWNSTREAM ELEVATION(FEET) = 259.20 ELEVATION DIFFERENCE(FEET) = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 7.982 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH 65.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.066 SUBAREA RUNOFF(CFS) 0.20 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) 0.20 **************************************************************************** FLOW PROCESS FROM NODE 123.00 TO NODE 122.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 259.20 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE CHANNEL BASE (FEET) 50. 00 "Z" FACTOR = 2. 000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.937 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5500 1. 00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.35 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) Tc(MIN.) = 11.80 SUBAREA AREA(ACRES) 0.14 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 0.2 SUBAREA RUNOFF(CFS) 0.550 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.} 0.45 0.35 3.82 258.40 0.0100 0.30 0.45 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 122.00 = 160.00 FEET. AfroN WAy CT 14;06, HDP 14;05, PUD 14;09 DRAiNAGE Srndy bl-IA, Inc. land planning, civil engineering, J _J -1 _J -J J J J **************************************************************************** FLOW PROCESS FROM NODE 122.00 TO NODE 121.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 258.40 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 124.00 CHANNEL SLOPE CHANNEL BASE(FEET) 20.00 "Z" FACTOR= 0.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.754 *USER SPECIFIED(SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT= .4900 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1. 00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.01 TRAVEL TIME(MIN.) 0.57 2.28 0.91 242.00 0.1323 Tc(MIN.) = 12.71 SUBAREA AREA(ACRES) 0.12 SUBAREA RUNOFF(CFS) 0.528 0.22 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) 0.65 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.01 FLOW VELOCITY(FEET/SEC.) 2.64 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 121.00 = 284.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 120.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 221.35 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED STREET FLOW DEPTH(FEET) = 0.24 FLOW: 5.97 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.67 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): 5.29 1. 25 Tc(MIN.) 3.631 USER-SPECIFIED RUNOFF COEFFICIENT= .5200 AREA-AVERAGE RUNOFF COEFFICIENT 0.521 13.38 SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = 1. 78 2.1 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) AfroN WAy 2.33 3.36 3.99 CT 14--06, HDP 14--0~, PUD 14--09 DRAiNAGE Srndy bl-tA, Inc. land planning, civil engineering, surveying _j _J - j I _) _J J -1 --l J _J .J , __ _J _J END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.91 FLOW VELOCITY(FEET/SEC.) = 5.85 DEPTH*VELOCITY(FT*FT/SEC.) 1.59 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 120.00 = 498.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 112.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 217.36 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 41.11 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.19 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 3.99 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 13.49 216.94 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 112.00 539 .11 FEET. **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 112.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 116. 00 TO NODE 115.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 274.00 DOWNSTREAM ELEVATION(FEET) = 260.00 ELEVATION DIFFERENCE(FEET) = 14.00 6.267 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 10.%, IS USED IN Tc CALCULATION! 5.922 SUBAREA RUNOFF(CFS) 0.08 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) 0.08 **************************************************************************** FLOW PROCESS FROM NODE 115. 00 TO NODE 115.00 IS CODE= 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 6.27 RAIN INTENSITY(INCH/HOUR) = 5.92 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.10 **************************************************************************** FLOW PROCESS FROM NODE 115. 00 TO NODE 114.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< AfroN WAy CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srudy bHA, Inc. land planning, civil engineering, surveying _j - J j J ~J _J _J J _J - J ) ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) 258.80 CHANNEL LENGTH THRU SUBAREA(FEET) 175.00 CHANNEL SLOPE 0.0069 CHANNEL BASE (FEET) 50. 00 "Z" FACTOR = 2. 000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.474 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .4800 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.36 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 0.36 AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 8.06 Tc(MIN.) = 14.33 SUBAREA AREA(ACRES) 0.31 SUBAREA RUNOFF(CFS) 0.52 AREA-AVERAGE RUNOFF COEFFICIENT 0.473 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) 0.42 0.58 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 114.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114. 00 TO NODE 113.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 258.00 DOWNSTREAM(FEET) 242.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 145.00 CHANNEL SLOPE 0.1103 CHANNEL BASE(FEET) 20.00 "Z" FACTOR = 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.291 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .6900 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.93 AVERAGE FLOW DEPTH(FEET) 0.02 TRAVEL TIME(MIN.) 1.25 Tc(MIN.) = 15.58 SUBAREA AREA(ACRES) 0.11 SUBAREA RUNOFF(CFS) 0.25 AREA-AVERAGE RUNOFF COEFFICIENT 0.525 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.) 0.80 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 2.19 113.00 = 420.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 113. 00 TO NODE 112.00 IS CODE= 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 242.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 159.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00 INSIDE STREET CROSSFALL(DECIMAL) 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) 0.018 AfroN WAy 223.64 CT 14--06, HDP 14--0~, PUD 14--09 DRAiNAqE Srudy bl-IA, Inc. land planning, civil engineering, surveying __ J _J J __ _J _J _J ' _j i ' _J _ __J ___ J --, .J -1 -J --1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 3.52 5.22 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.51 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5500 AREA-AVERAGE RUNOFF COEFFICIENT 0.538 1. 01 Tc (MIN.) 3.224 16.09 SUBAREA AREA(ACRES) 0.47 TOTAL AREA(ACRES) = 0.9 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) 4.51 1.21 0.83 1. 61 FLOW VELOCITY(FEET/SEC.) = 5.32 DEPTH*VELOCITY(FT*FT/SEC.) 1.12 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 112.00 = 579.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 112. 00 TO NODE 112.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<< ---------------------------======-=----------------========================= ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1. 61 16.09 3.224 0.93 LONGEST FLOWPATH FROM NODE 116. 00 TO NODE 112.00 579.00 FEET. ** MEMORY BANK# 1 CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.99 13. 49 3. 611 2.11 LONGEST FLOWPATH FROM NODE 124.00 TO NODE 112.00 53 9. 11 FEET. ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.35 13.49 3. 611 2 5.18 16.09 3.224 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 5.35 Tc(MIN.) = 13 .49 TOTAL AREA(ACRES) = 3.0 **************************************************************************** FLOW PROCESS FROM NODE 1. 00 TO NODE >>>>>CLEAR MEMORY BANK# 1 <<<<< AfroN WA.y CT 14;06, HDP 14;0~, PUD 14;09 DRAiNAqE Srndy 2.00 IS CODE= 12 bJ-tA, Inc. land planning, civil _J J _i _J -1 _J _j J -I ___ J _j _j J __ J j ' _J **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 111.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ----======================================================================== ELEVATION DATA: UPSTREAM(FEET) = 216.61 DOWNSTREAM(FEET) 215.58 FLOW LENGTH(FEET) = 30.02 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.41 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 5.35 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.54 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 111.00 609.02 FEET. **************************************************************************** FLOW PROCESS FROM NODE 111. 00 TO NODE 111. 00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.74 RAIN INTENSITY(INCH/HOUR) = 3.57 TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) = 4.22 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 110.10 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 215.00 DOWNSTREAM(FEET) 212.55 FLOW LENGTH(FEET) = 12.15 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.04 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 4.22 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.75 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 110.10 621.17 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110 .10 TO NODE 110.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) 212.55 DOWNSTREAM(FEET) MANNING'S N = 0.011 FLOW LENGTH(FEET) = 10.00 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) (PIPE FLOW VELOCITY CORRESPONDING AT DEPTH= 0.82 * DIAMETER) 4.21 TO NORMAL-DEPTH FLOW GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 4.22 PIPE TRAVEL TIME(MIN.) = 0.04 Tc (MIN.) = 212.50 LONGEST FLOWPATH FROM NODE 116. 00 TO NODE 13.79 110. 00 631.17 FEET. **************************************************************************** FLOW PROCESS FROM NODE AfroN WAy CT 14~06, HDP 14~0~, PUD 14~09 DRAiNAqE Srndy 110. 00 TO NODE 110.00 IS CODE= 81 bHA, Inc. land _ _J ~I --, J J >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.561 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .3500 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = TC(MIN.) = 13.79 COEFFICIENT= 0.4817 0.20 SUBAREA RUNOFF(CFS) 2.6 TOTAL RUNOFF(CFS) = 0.25 4.46 **************************************************************************** FLOW PROCESS FROM NODE 110. 00 TO NODE 109.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 212.50 DOWNSTREAM(FEET) 203.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 77.00 CHANNEL SLOPE 0.1234 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR= 5.000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.46 FLOW VELOCITY(FEET/SEC.) = 3.33 FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 14.18 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 109.00 708.17 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 107.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 203.76 DOWNSTREAM(FEET) 203.40 FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.15 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 4.46 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.21 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 107.00 726.17 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111. 00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.74 RAIN INTENSITY(INCH/HOUR) = 3.57 TOTAL AREA(ACRES) = 0.64 TOTAL RUNOFF(CFS) = 1.12 **************************************************************************** FLOW PROCESS FROM NODE AfroN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srudy 111.00 TO NODE 108.10 IS CODE= 41 bHA, Inc. land planning, civil engineering, surveying _ _J _J _j _J I ,_J , _ _) I L_J -' l __ _j __ j _J >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 215.00 DOWNSTREAM(FEET) 207.55 FLOW LENGTH(FEET) = 55.43 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.21 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 1.12 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 13.82 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 108.10 781.60 FEET. ***~************************************************************************ FLOW PROCESS FROM NODE 108.10 TO NODE 108.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 207.55 DOWNSTREAM(FEET) 207.50 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.45 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 1.12 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.87 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 108.00 791.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.547 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .6800 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = TC(MIN.) = 13.87 COEFFICIENT= 0.5066 0.06 SUBAREA RUNOFF(CFS) 0.7 TOTAL RUNOFF(CFS) = 0.14 1. 26 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 207.50 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 29.00 CHANNEL SLOPE CHANNEL BASE(FEET) = 15.00 "Z" FACTOR= 5.000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.26 FLOW VELOCITY(FEET/SEC.) = 1.93 FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 14.12 205.00 0.0862 LONGEST FLOWPATH FROM NODE 116. 00 TO NODE 107.00 820.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE AhoN WAy CT 14~06, HDP 14~0~, PUD 14~09 DRAiNAGE Srndy 107.00 TO NODE 107.00 IS CODE= 11 bl-IA, Inc. land planning, civil engineering, surveying -, ___ J j _j --1 -, _J 1 --, _J ,_j >>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================-------========----------------- **MAINSTREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.26 14.12 3.506 LONGEST FLOWPATH FROM NODE 116.00 TO NODE ** MEMORY BANK# 1 CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.46 14.21 3.492 LONGEST FLOWPATH FROM NODE 116. 00 TO NODE ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.69 14.12 3.506 2 5. 71 14.21 3.492 AREA (ACRE) 0.70 107.00 AREA (ACRE) 2.60 107.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 5.71 Tc(MIN.) = 14.21 TOTAL AREA(ACRES) = 3.3 820.60 FEET. 726.17 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 12 >>>>>CLEAR MEMORY BANK# 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 203.07 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 40.74 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.09 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 5.71 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.25 196. 83 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 106.00 861. 34 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 196.50 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 34.09 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.70 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 AhoN WAy 193.00 CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying '~-_) i J .J _j -.i l -, __ .J PIPE-FLOW(CFS) = 5.71 PIPE TRAVEL TIME(MIN.) LONGEST FLOWPATH FROM NODE 0.04 Tc(MIN.} = 116. 00 TO NODE 14.29 105.00 895.43 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 3 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.} (INCH/HOUR} (ACRE) 1 5. 71 14.29 3.480 3.30 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 105.00 ** MEMORY BANK# 3 CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS} (MIN.} (INCH/HOUR} (ACRE} 1 5.76 10.20 4.325 2.91 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 105.00 ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER (CFS} (MIN.) (INCH/HOUR} 1 9.84 10.20 4.325 2 10.35 14.29 3.480 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) TOTAL AREA(ACRES} = END OF STUDY SUMMARY: TOTAL AREA(ACRES} PEAK FLOW RATE(CFS} 10.35 Tc(MIN.} = 6.2 6. 2 TC (MIN. } = 10.35 END OF RATIONAL METHOD ANALYSIS AhoN WAy 14.29 14.29 895.43 FEET. 1283.00 FEET. CT 14..-06, HDP 14 ... 0~, PUD 14..-09 DRAiNAGE Srndy bliA, Inc. land planning, civil engineering, surveying L L.J ~-.J C. HYDRAULIC CALCULATIONS BIOFILTRA TION BASIN OUTLET DETAIL ~~~ ', ·· -:rw 220' nPE s sRow D11r:H ---~L ..</ · _ DE_FP Roo rrn, D~~sE Dt~auDHT / FOR WElLD!f11/N[O SOIL PER SDRSD U 75 ... './§_ ,,,----tDLERANr PLA1m1vC SUITABL[ ---- jLQT ORIFICE TO ALLOW 100--, /)fl£ C-1 CAI('/-/ BAS! Vvl/H CRA![D l!VlE! YR PRW[V[LOPM[NT. FWW . ~ ( IW Zl.'Lf /rmPQ'!JT DflvfLOPM[ I IOQ'(R FLOW 27425 RIM /8'11 LNG1NEERW -BASIN 1 .. ____ ~ EXIST. GROUND SOIL MIX t ~ l ~~-/' TYP[ G 1 CATO-I [JASIN 1' V2 STORAGE LA YER ----·············· · .. -.. -· r:~ BASIN 2'____ I wm1 GRA rm tNLU FOR POST (2J'--PEA CRAV[L OvER /OJ'--J/4'J . "'i /-OtVEWt?A,f!JvT 10UYR FLOW , · "' I 210 c.R/!Sr!W ROCK) 27 2 J _ _ ........ , . / 8'' PEF!fORA!W PVC UNDrnDRAIN PIPE PLACE Pll'E WITH PEflFQRAT/QNS AT THE ~ INVERT BW ;710' !WPERM[ABLE LIND? Tf/ROUGl!OU T R[STR!CrOR PlAT[ 70 I/Mir ----- FL()W FROM V2 STORAGE AR[A, DRAIN DOVv'N HOLE I 8'" [NGINCER[O SOIL MIX 203. 76 IE our 205 BW B' PERFORA T[[J PVC UNDERDRAIN PiP[ PLACE PIPE WITH PEflFQRA1/QN5 ····-··········-···----AT THE/WERT Not to Scale IMP H (FT) Hmax (FT) Hg (FT) 1 1.00 2.50 1.00 2 1.00 2.50 1.00 t '\ y ' ··SLOT ORIFICE TO ALLOW /00 YR PREDEVELOPMENT FLOW , 111 ,11 RES TRIC TOR Pl A ff A T END Of PERf PIPE IN GASIN 2 TO UMIT fWW FROM V2 STORAGE ARU 1 GO' DRAIN D0vi1II /-IOU. -I -"-1' V2 STD.RAGt' l!\ YER (2"-P£A GRA vn ovrn -.:::.-:..~ ~[ OUr c_>-cc-10" J/4" CRUSllfD ROCK) \ ~ :.-:.---:-:---::1' \ 0 U lfl cfCiT1 . \ ~ L_____J :::::.-:..-::_~j,(------12" HOPE E IN OUTLET PIPE 1 --12" HOPE OU /LU PIP[ 1 FROM Rl5ER/BAS1N 7 I IMPERMEABLE LINER T/-/RCJUG/IOU T LID Orifice (IN) Agravel (FT2) Abot (FT2) . 1.25 1,805 1,805 1.25 485 485 bHA, Inc. Afton Way TM 2200 Afton Way land planning, civil engineering, surveying Preliminary Drainage Study /__ j _) L _J SLOT INVERT ELEV. ' -~ _J L B -I I..... --i 1-Bs -1 1---Btot = BOX DIMENSION t __ l--/Is ---1 H 0UTLET STRUCTURE DETAIL -SECTION (TYP) NOT to SCALE SLOT OUTLET Bs (FT) Hs (Ft) ELEV (FT) L (FT) 1 2.00 0.25 1.00 8.00 2 2.00 0.25 1.00 8.00 Note: L = TOTAL LENGTH OF WEIR (FT). AS RISER IS SQUARE, L = 8 FT Bs = THIS WIDTH OF THE SLOT CAN BE DISTRIBUTE ON TWO SIDES. AhoN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srudy bHA, Inc. land planning, civil engineering, surveying WEIR H (FT) 1.75 1.75 j J _J _J Afton Way TM 2200 Afton Way Preliminary Drainage Study D = 6" 3 IB"x/6" STAINLESS ANCHOR OLTS WITH WING TYPE NUTS RESTR/CTOR PLATE --LID ORIFICE BOTTOM BA9/V ORIFICE DETAIL NOT TO SCALE IMP D(in) d (in) 1 6 1.25 2 6 1.25 bHA, Inc. land planning, civil engineering, surveying .J _J .. I MODIFIED TYPE A-7 CLEAN OUT DETAIL OUTLET 12"' OIJ1l.ET 12" SO U/!IE B1 r+-'""T"!....i--+-+-+-11-i-h '5IJ UN! 82 l B PLAN VIEW zoo· .J.5()' 215.58 IE IN 10" DIA. ORIFICE 215.31 IE ORIFICE 5" DIA. ORIFICE 215.50 IE OUT SECTION A-A SECTIONB-B MODIFIED TYPEA-7 CLEAN OUT DETAIL ArroN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DnAiNAGE Srndy NOT 10 SCALE bl-tA, Inc. land planning, civil engineering, surveying L '--J ORIFICE CALCULATIONS FOR JUNCTION BOX Orifice 1= 10.08 in 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 ;Q.&4[)· • 'b.55. ·-· 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 0.84 0.55 Afton Way TM 2200 Afton Way 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 l;f 0.(103 r-, 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.603 Preliminary Drainage Study 2.00 1.58 3.37 2.10 1.68 3.48 2.20 1.78 3.58 2.30 1.88 3.68 2.40 1.98 3.77 2.50 2.08 3.87 2.60 2.18 3.96 2.70 2.28 4.05 2.80 2.38 4.14 ttf riz .. 90~.:1 :. 2.zH[;', :;:::{4.22 3.00 2.58 4.31 3.10 2.68 4.39 3.20 2.78 4.47 3.30 2.88 4.55 3.40 2.98 4.63 3.50 3.08 4.71 3.60 3.18 4.78 3.70 3.28 4.86 3.80 3.38 4.93 3.90 3.48 5.00 4.00 3.58 5.07 4.10 3.68005 5.14 L L_ _I L _ _J L Orifice 2= 5.08 in 0.42 0.14 0.603 2.00 L79 0.91 4.28 0.42 0.14 0.603 2.10 1.89 0.94 4.41 0.42 0.14 0.603 2.20 1.99 0.96 4.54 0.42 0.14 0.603 2.30 2.09 0.99 4.66 0.42 0.14 0.603 2.40 2.19 1.01 4.78 0.42 0.14 0.603 2.50 2.29 1.03 4;90 0.42 0.14 0.603 2.60 2.39 1.05 5.01 0.42 0.14 0.603 2.70 2.49 1.08 5.12 0.42 0.14 0.603 2.80 2.59 1.10 •<042 '',,,: 1: . '~ ' < :~f;~ 0.14 i. {iii · -0.60'.{ff .. t-12.:90 '<".«,,:,' .'' 2.6.Qf • ltit.12 ...•.•. 0.42 0.14 0.603 3.00 2.79 1.14 5.45 0.42 0.14 0.603 3.10 2.89 1.16 5.55 0.42 0.14 0.603 3.20 2.99 1.18 5.65 0.42 0.14 0.603 3.30 3.09 1.20 5.75 0.42 0.14 0.603 3.40 3.19 1.22 5.85 0.42 0.14 0.603 3.50 3.29 1.24 5.94 0.42 0.14 0.603 3.60 3.39 1.26 6.04 0.42 0.14 0.603 3.70 3.49 1.27 6.13 0.42 0.14 0.603 3.80 3.59 1.29 6.22 0.42 0.14 0.603 3.90 3.69 1.31 6.31 0.42 0.14 0.603 4.00 3.79 1.33 6.40 0.42 0.14 0.603 4.10 3.89 1.35 6.49 bl-IA, Inc. land planning, civil engineering, surveying J _J -, I J J Weir Equation for 100 Year flow D= Q=CwLD15, (O/CwL)0·67 Q= 5.34 Cw= 3 L= 6.5 D= 0.42 Q per ft= 0.82 Length required for 4.22 cfs L= 5.15 Length required for 1.12 cfs L= 1.37 Afton Way TM 2200 Afton Way Preliminary Drainage Study bl-tA, Inc. land planning, civil engineering, surveying _J _j ---, -l D. HYDRAULIC ELEMENTS CALCULATIONS **************************************************************************** HYDRAULIC ELEMENTS -I PROGRAM PACKAGE - (C) Copyright 1982-2013 Advanced Engineering Software (aes) Ver. 20.0 Release Date: 06/01/2013 License ID 1459 Analysis prepared by: BHA, Inc 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (760) 931-8700 CURB INLET CALCULATIONS NODE120: TIME/DATE OF STUDY: 12:10 02/10/2015 Problem Descriptions: Node 120: Curb Inlet Sizing Street Depth of Flow QlOO TIME/DATE OF STUDY: 10:15 06/20/2016 Problem Descriptions: Node 120-Curb Inlet Calculations Street Depth of Flow **************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<<<< CONSTANT STREET GRADE(FEET/FEET) = 0.150000 CONSTANT STREET FLOW(CFS) = 3.99 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.018000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.60 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.23 PRODUCT OF DEPTH&VELOCITY = 1.66 Problem Descriptions: Node 120-Curb Inlet Calculations Length of Curb Opening AfroN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DnAiNAGE Srudy land bliA, Inc. _j J _J _j _J _) _J **************************************************************************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Lt= Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.99 GUTTER FLOWDEPTH(FEET) = 0.27 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH 1. 58 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 15.77 FLOW INTERCEPTION 0.55 0.69 0.85 1. 02 1.18 1. 34 1. 50 1. 67 1. 83 1. 96 2.10 2.23 2.35 2.48 2.60 2.72 2.84 2.94 3.04 3.23 3.32 3.42 3.51 3.60 3.68 3.77 3.86 3.94 3.99 L= 0.65*Lt= (0.65)*15.77= 10.25, use 11.0' Specify L= 11.0' on plans, per San Diego County Drainage Design Manual page 2-5 and SDRSD D-02 (see References) AfroN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAGE Srndy bl-iA, Inc. land planning, civil engineering, surveying _J __ J _j _ j NODE112: TIME/DATE OF STUDY: 12:10 02/10/2015 Problem Descriptions: Node 112-Curb Inlet Sizing Street Depth of Flow QlOO TIME/DATE OF STUDY: 12:14 02/10/2015 ==================================================----===========----------- Problem Descriptions: Node 112-Curb Inlet Sizing Street Depth of Flow QlOO **************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<<<< CONSTANT STREET GRADE(FEET/FEET) = 0.150000 CONSTANT STREET FLOW(CFS) = 1.61 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 32.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.018000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.27 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.65 PRODUCT OF DEPTH&VELOCITY = 1.17 Problem Descriptions: Node 112-Curb Inlet Calculations Length of Curb Inlet **************************************************************************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.61 GUTTER FLOWDEPTH(FEET) = 0.21 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: AhoN WAy CTl4 ... 06, HDP 14 ... 05, PUD 14 ... 09 DRAiNAqE Srndy bl-tA, Inc. land planning, civil engineering, surveying J -1 _j --, . J --_) ~I _J BASIN WIDTH 0.83 1. 00 1. 50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.50 7.00 7.50 8.00 Lt= 8.29 AfroN WAy FLOW INTERCEPTION 0.21 0.25 0.38 0.50 0.62 0.73 0.84 0.94 1. 03 1.13 1. 20 1. 36 1.43 1. 50 1. 57 1. 61 L= 0.65*Lt= (0.65)*8.29= 5.39, use 6.0' Specify L= 6.0' on plans, per San Diego County Drainage Design Manual page 2-5 and SDRSD D-02 (see References) CT 14.-06, HDP 14.-05, PUD 14.-09 DRAiNAGE Srndy bliA, Inc. land planning, civil engineering, surveying l J J _J -, PIPE DIAMETER CALCULATIONS NODE120: TIME/DATE OF STUDY: 10:25 06/20/2016 Problem Descriptions: Node 120-Pipe Diameter Calculations **************************************************************************** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< PIPE SLOPE(FEET/FEET) PIPEFLOW(CFS) 0.0100 3.99 MANNINGS FRICTION FACTOR= 0.011000 NODE 112: TIME/DATE OF STUDY: 10:27 06/20/2016 Problem Descriptions: Node 112-Pipe Diameter Calculations **************************************************************************** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< PIPE SLOPE(FEET/FEET) PIPEFLOW(CFS) 0.0104 5.35 MANNINGS FRICTION FACTOR= 0.011000 NODEllO: TIME/DATE OF STUDY: 11:03 06/20/2016 Problem Descriptions: Node 110-Pipe Diameter Calculations **************************************************************************** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< PIPE SLOPE(FEET/FEET) 0.1400 PIPEFLOW(CFS) 3.75 MANNINGS FRICTION FACTOR= 0.011000 >>>>>SOFFIT-FLOW PIPE DIAMETER(FEET) NODE 108: TIME/DATE OF STUDY: 11:07 06/20/2016 AhoN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAGE Srndy 0.584 < 12"-dia proposed HDPE SD bHA, Inc. __ I _J - J Problem Descriptions: Node 108-Pipe Diameter Calculations **************************************************************************** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< PIPE SLOPE(FEET/FEET) PIPEFLOW(CFS) 0.1400 0.91 MANNINGS FRICTION FACTOR= 0.011000 >>>>>SOFFIT-FLOW PIPE DIAMETER(FEET) AhoN WAy CT 14.-06, HDP 14.-0'7, PUD 14.-09 DnAiNAGE Srndy 0.343 < 12"-dia proposed HDPE SD bHA, Inc. land planning, civil engineering, surveying -, -1 --1 _J _ _J i _.J ,-, _J L ___ J ---J _j l I __ J ,_J HYDRAULIC GRADE LINE (HGL) CALCULATIONS NODE 504 -NODE 302.1: FILE NAME: 1326HGL.DAT -TIME/DATE OF STUDY: 14:36 08/18/2016 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER= 302.10 FLOWLINE ELEVATION PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = ASSUMED DOWNSTREAM CONTROL HGL 206.780 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM 206.78 0.77 NODE 302.10 : HGL= < 208.280>;EGL= < 208.283>;FLOWLINE= < 206.780> PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 504.00 IS CODE= 1 UPSTREAM NODE 504.00 ELEVATION= 217.72 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 0.77 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 504.00 39.00 FEET MANNINGS N = 0.01300 (( 0.77)/( 105.043))**2 = 0.0000537 39.00)*( 0.0000537) = 0.002 : HGL= < 208.282>;EGL= < 208.285>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 10.94 217.720> NODE 504.00 : HGL= < 219.220>;EGL= < 219.223>;FLOWLINE= < 217.720> PRESSURE FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE= 8 UPSTREAM NODE 504.00 ELEVATION = 226.72 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 0.77 PIPE DIAMETER(INCH) 18.00 PRESSURE FLOW VELOCITY HEAD= 0.003 CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.003) = 0.001 NODE 504.00 : HGL= < 219.224>;EGL= < 219.224>;FLOWLINE= < 226.720> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL= 9.00 NODE 504.00 : HGL= < 228.220>;EGL= < 228.220>;FLOWLINE= < 226.720> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM AfroN WAy CT 14.-06, HDP 14 ... 0~, PUD 14.-09 DRAiNAGE Srudy bl-rn, Inc. land planning, civil engineering, surveying -, _J -, --, -, _J l , _ _) -, 1_J NODE 303 -NODE 302: FILE NAME: 1326HGL2.DAT TIME/DATE OF STUDY: 15:49 08/23/2016 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER= 302.00 PIPE DIAMETER(INCH) = 18.00 ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION PIPE FLOW(CFS) = 204.200 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM 204. 20 1.46 NODE 302.00 : HGL= < 205.700>;EGL= < 205.71l>;FLOWLINE= < 204.200> PRESSURE FLOW PROCESS FROM NODE 302.00 TO NODE 302.10 IS CODE= 1 UPSTREAM NODE 302.10 ELEVATION= 206.45 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 1.46 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 302.10 9.00 FEET MANNINGS N = 0.01300 (( 1.46)/( 105.043))**2 = 0.0001932 9.00)*( 0.0001932) = 0.002 : HGL= < 205.702>;EGL= < 205.712>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 2.25 206.450> NODE 302.10 : HGL= < 207.950>;EGL= < 207.96l>;FLOWLINE= < 206.450> PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE= 5 UPSTREAM NODE 302.10 ELEVATION= 206.78 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 0. 9 18.00 1. 767 0.538 0.000 2 l. 5 18.00 1.767 0.826 3 0.5 18.00 1.767 0.289 75.290 4 0.0 0.00 0.000 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) )/((Al+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE= 0.00008 DOWNSTREAM FRICTION SLOPE= 0.00019 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00014 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS= 0.001 ENTRANCE LOSSES= 0.000 AFTON WAy HV 0.004 0.011 CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy land planning, civil engineering, bl-IA, Inc. --, _j _) I _ _J __ J -, _J _ __; JUNCTION LOSSES= DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES 0.012+ 0.004-0.011+( 0.001)+( 0.000) = 0.006 NODE 302.10 : HGL= < 207.962>;EGL= < 207.967>;FLOWLINE= < 206.780> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.32 NODE 302.10 : HGL= < 208.280>;EGL= < 208.284>;FLOWLINE= < 206.780> PRESSURE FLOW PROCESS FROM NODE 302.10 TO NODE 302.20 IS CODE= 1 UPSTREAM NODE 302.20 ELEVATION= 214.49 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): 0.95 CFS PIPE DIAMETER 18.00 INCHES PIPE FLOW= PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 302.20 37.21 FEET MANNINGS N = 0.01300 (( 0.95)/( 105.043))**2 = 0.0000818 37.21)*( 0.0000818) = 0.003 : HGL= < 208.283>;EGL= < 208.288>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 7. 71 214.490> NODE 302.20 : HGL= < 215.990>;EGL= < 215.994>;FLOWLINE= < 214.490> PRESSURE FLOW PROCESS FROM NODE 302.20 TO NODE 302.30 IS CODE= 3 UPSTREAM NODE 302.30 ELEVATION= 229.92 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES CENTRAL ANGLE= 39.000 DEGREES PIPE LENGTH= 74.44 FEET MANNINGS N 0.01100 PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY 0.54 FEET PER SECOND VELOCITY HEAD 0.004 BEND COEFFICIENT(KB) = 0.1646 HB=KB*(VELOCITY HEAD) = ( 0.165)*( 0.004) = 0.001 PIPE CONVEYANCE FACTOR 124.142 FRICTION SLOPE(SF) 0.0000586 FRICTION LOSSES= L*SF = ( 74.44)*( 0.0000586) = 0.004 NODE 302.30 : HGL= < 215.995>;EGL= < 216.000>;FLOWLINE= < 229.920> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 15.42 NODE 302.30 : HGL= < 231.420>;EGL= < 231.424>;FLOWLINE= < 229.920> PRESSURE FLOW PROCESS FROM NODE 302.30 TO NODE 302.30 IS CODE= 2 UPSTREAM NODE 302.30 ELEVATION= 230.25 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY 0.54 FEET PER SECOND VELOCITY HEAD 0.004 HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000 NODE 302.30 : HGL= < 231.420>;EGL= < 231.425>;FLOWLINE= < 230.250> Af-roN WAy CT 14,06, HOP 14,0'i, PUD 14,09 0RAiNAGE Srudy bl-tA, Inc. surveying __ J _J PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33 NODE 302.30 : HGL= < 231.750>;EGL= < 231.754>;FLOWLINE= < 230.250> PRESSURE FLOW PROCESS FROM NODE 302.30 TO NODE 302.40 IS CODE= 1 UPSTREAM NODE 302.40 ELEVATION= 230.90 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 302.40 64.96 FEET MANNINGS N = 0.01300 (( 0.95)/( 105.043))**2 = 0.0000818 64.96)*( 0.0000818) = 0.005 : HGL= < 231.755>;EGL= < 231.760>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.64 230.900> NODE 302.40 : HGL= < 232.400>;EGL= < 232.404>;FLOWLINE= < 230.900> PRESSURE FLOW PROCESS FROM NODE 302.40 TO NODE 302.40 IS CODE= 2 UPSTREAM NODE 302.40 ELEVATION= 231.23 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY= 0.54 FEET PER SECOND VELOCITY HEAD= 0.004 HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000 NODE 302.40 : HGL= < 232.400>;EGL= < 232.405>;FLOWLINE= < 231.230> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33 NODE 302.40 : HGL= < 232.730>;EGL= < 232.734>;FLOWLINE= < 231.230> PRESSURE FLOW PROCESS FROM NODE 302.40 TO NODE 302.50 IS CODE= 1 UPSTREAM NODE 302.50 ELEVATION= 246.27 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH 110.88 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 0.95)/( 105.043))**2 = 0.0000818 HF=L*SF = ( 110.88)*( 0.0000818) = 0.009 NODE 302.50 : HGL= < 232.739>;EGL= < 232.744>;FLOWLINE= < 246.270> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 15.03 NODE 302.50 : HGL= < 247.770>;EGL= < 247.774>;FLOWLINE= < 246.270> PRESSURE FLOW PROCESS FROM NODE 302.50 TO NODE 302.50 IS CODE= 2 UPSTREAM NODE 302.50 ELEVATION= 246.60 AfroN WAy CT 14.-06, HDP 14--0~, PUD 14.-09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying i _J I __ j c _J __ ) J CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY 0.54 FEET PER SECOND VELOCITY HEAD 0.004 HMN = .05*(VELOCITY HEAD) = .05*( 0.004) 0.000 NODE 302.50 : HGL= < 247.770>;EGL= < 247.775>;FLOWLINE= < 246.600> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.33 NODE 302.50 : HGL= < 248.lOO>;EGL= < 248.104>;FLOWLINE= < 246.600> PRESSURE FLOW PROCESS FROM NODE 302.50 TO NODE 303.00 IS CODE= 1 UPSTREAM NODE 303.00 ELEVATION= 253.02 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 0.95 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH 23.47 FEET MANNINGS N = 0.01300 SF={Q/K)**2 (( 0.95)/( 105.043))**2 = 0.0000818 HF=L*SF = ( 23.47)*( 0.0000818) = 0.002 NODE 303.00 : HGL= < 248.102>;EGL= < 248.106>;FLOWLINE= < 253.020> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 6.42 NODE 303.00 : HGL= < 254.520>;EGL= < 254.524>;FLOWLINE= < 253.020> PRESSURE FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE= 8 UPSTREAM NODE 303.00 ELEVATION= 260.40 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 0.95 PIPE DIAMETER(INCH) 18.00 PRESSURE FLOW VELOCITY HEAD= 0.004 CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.004) = 0.001 NODE 303.00 : HGL= < 254.525>;EGL= < 254.525>;FLOWLINE= < 260.400> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL= 7.37 NODE 303.00 : HGL= < 261.900>;EGL= < 261.900>;FLOWLINE= < 260.400> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM NODE 120 -NODE 110: FILE NAME: 1326HGL3.DAT TIME/DATE OF STUDY: 15:31 08/23/2016 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER= 110.00 PIPE DIAMETER(INCH) = 12.00 AhoN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srndy FLOWLINE ELEVATION PIPE FLOW(CFS) = 212.50 4.22 land planning, civil bl-iA, Inc. j --I -, .J __ ) ' _ __) -, I , ___ / __J _j , __ J --, -, ASSUMED DOWNSTREAM CONTROL HGL = 213.440 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM NODE 110.00 : HGL= < 213.500>;EGL= < 213.948>;FLOWLINE= < 212.500> PRESSURE FLOW PROCESS FROM NODE 110.00 TO NODE 110.10 IS CODE= 1 UPSTREAM NODE 110.10 ELEVATION= 212.55 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 4.22 CFS PIPE DIAMETER 12.00 INCHES PIPE LENGTH 10.00 FEET MANNINGS N = 0.01100 SF=(Q/K)**2 (( 4.22)/( 42.106))**2 = 0.0100448 HF=L*SF = ( 10.00)*( 0.0100448) = 0.100 NODE 110.10 : HGL= < 213.600>;EGL= < 214.049>;FLOWLINE= < 212.550> PRESSURE FLOW PROCESS FROM NODE 110.10 TO NODE 110.10 IS CODE= 6 UPSTREAM NODE 110.10 ELEVATION= 212.55 CALCULATE PRESSURE FLOW ANGLE-POINT LOSSES(LACRD): PIPE FLOW= 4.22 CFS PIPE DIAMETER= 12.00 INCHES PIPE ANGLE POINT DELTA= 26.00 DEGREES PRESSURE FLOW ANGLE-POINT COEFFICIENT KA= 0.0950 PRESSURE FLOW VELOCITY= 5.37 FEET/SEC. VELOCITY HEAD= 0.448 HAPT=KA*(VELOCITY HEAD) NODE 110.10 : HGL= < (0.0950)*( 0.448) 0.043 213.643>;EGL= < 214.09l>;FLOWLINE= < 212.550> PRESSURE FLOW PROCESS FROM NODE 110.10 TO NODE 111.00 IS CODE= 1 UPSTREAM NODE 111.00 ELEVATION= 215.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD}: PIPE FLOW= 4.22 CFS PIPE DIAMETER 12.00 INCHES PIPE LENGTH SF=(Q/K}**2 HF=L*SF = ( 12.15 FEET MANNINGS N = 0.01100 (( 4.22)/( 42.106))**2 = 0.0100448 12.15)*( 0.0100448) = 0.122 NODE 111.00 : HGL= < 213.765>;EGL= < 214.213>;FLOWLINE= < 215.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 2.23 NODE 111.00 : HGL= < 216.000>;EGL= < 216.448>;FLOWLINE= < 215.000> PRESSURE FLOW PROCESS FROM NODE 111. 00 TO NODE 111.00 IS CODE= 7 UPSTREAM NODE 111. 00 ELEVATION= 215.50 CALCULATE PRESSURE FLOW SUDDEN PIPE REDUCTION LOSSES(LACRD): PIPE FLOW= 5.35 CFS UPSTREAM PIPE DIAMETER= 18.00 INCHES DOWNSTREAM PIPE DIAMETER 12.00 INCHES PRESSURE FLOW VELOCITY= 6.81 FEET/SEC. AFTON WAy CT 14.-06, HDP 14.-0~, PUD 14--09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying -, J _J _J J _J _J _J I _J --, --, _ _j -, VELOCITY HEAD= 0.72 PIPE REDUCTION LOSS COEFFICIENT KC= 0.273 HC(PER LACFCD)=KC*(VELOCITY HEAD) = ( 0.273)*( 0.72) = 0.197 NODE 111.00 : HGL= < 216.503>;EGL= < 216.645>;FLOWLINE= < 215.500> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.50 NODE 111.00 : HGL= < 217.000>;EGL= < 217.142>;FLOWLINE= < 215.500> PRESSURE FLOW PROCESS FROM NODE 111. 00 TO NODE 111.10 IS CODE= 1 UPSTREAM NODE 111.10 ELEVATION= 216.31 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 5.35 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 111.10 70.78 FEET MANNINGS N = 0.01100 (( 5.35)/( 124.142))**2 = 0.0018572 70.78)*( 0.0018572) = 0.131 : HGL= < 217.131>;EGL= < 217.274>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.68 216.310> NODE 111.10 : HGL= < 217.810>;EGL= < 217.952>;FLOWLINE= < 216.310> PRESSURE FLOW PROCESS FROM NODE 111.10 TO NODE 112.00 IS CODE= 3 UPSTREAM NODE 112.00 ELEVATION= 216.61 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW= 5.35 CFS PIPE DIAMETER 18.00 INCHES CENTRAL ANGLE= 38.000 DEGREES PIPE LENGTH= 30. 02 FEET MANNINGS N 0. 01100 PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY 3.03 FEET PER SECOND VELOCITY HEAD 0.142 BEND COEFFICIENT(KB} = 0.1624 HB=KB*(VELOCITY HEAD) = ( 0.162)*( 0.142) = 0.023 PIPE CONVEYANCE FACTOR 124.142 FRICTION SLOPE(SF) 0.0018572 FRICTION LOSSES= L*SF = ( 30.02)*( 0.0018572) = 0.056 NODE 112.00 : HGL= < 217.889>;EGL= < 218.031>;FLOWLINE= < 216.610> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.22 NODE 112.00 : HGL= < 218.llO>;EGL= < 218.252>;FLOWLINE= < 216.610> PRESSURE FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE= 8 UPSTREAM NODE 112.00 ELEVATION= 216.94 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD}: PIPE FLOW(CFS) = 5.35 PIPE DIAMETER(INCH} 18.00 PRESSURE FLOW VELOCITY HEAD= 0.142 CATCH BASIN ENERGY LOSS= .2*(VELOCITY HEAD) = .2*( 0.142) = 0.028 NODE 112.00 : HGL= < 218.281>;EGL= < 218.28l>;FLOWLINE= < 216.940> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL AfroN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAGE Srndy bl-IA, Inc. land planning, civil engineering, surveying _J _J , __ ) __ J --, , __ _J ' --' -_J --, __ J --, .J -~1 _J LOST PRESSURE HEAD USING SOFFIT CONTROL 0.16 NODE 112.00 : HGL= < 218.440>;EGL= < 218.440>;FLOWLINE= < 216.940> PRESSURE FLOW PROCESS FROM NODE 112.00 TO NODE 220.00 IS CODE= 1 UPSTREAM NODE 220.00 ELEVATION= 217.36 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 3.99 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 220.00 41.11 FEET MANNINGS N = 0.01100 (( 3.99)/( 124.142))**2 = 0.0010330 41.11)*( 0.0010330) = 0.042 : HGL= < 218.403>;EGL= < 218.482>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL= 0.46 217.360> NODE 220.00 : HGL= < 218.860>;EGL= < 218.939>;FLOWLINE= < 217.360> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM NODE 111 -NODE 108: FILE NAME: 1326HGL4.DAT TIME/DATE OF STUDY: 15:34 08/23/2016 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER= 108.00 PIPE DIAMETER(INCH) = 12.00 ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION PIPE FLOW(CFS) = 208.230 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM 207.50 1.12 NODE 108.00 : HGL= < 208.500>;EGL= < 208.532>;FLOWLINE= < 207.500> PRESSURE FLOW PROCESS FROM NODE 108.00 TO NODE 108.10 IS CODE= 1 UPSTREAM NODE 108.10 ELEVATION= 207.55 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES PIPE LENGTH 10.00 FEET MANNINGS N = 0.01100 SF=(Q/K)**2 (( 1.12)/( 42.106))**2 = 0.0007075 HF=L*SF = ( 10.00)*( 0.0007075) = 0.007 NODE 108.10 : HGL= < 208.507>;EGL= < 208.539>;FLOWLINE= < 207.550> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.04 NODE 108.10 : HGL= < 208.550>;EGL= < 208.582>;FLOWLINE= < 207.550> AfroN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAqE Srndy bl-tA, Inc . land planning, civil_ engineering, l __ J J _J __ J _J j --, _j __ J -, _j ,_J _) ~l j '_.I PRESSURE FLOW PROCESS FROM NODE 108.10 TO NODE 108.10 IS CODE= 6 UPSTREAM NODE 108.10 ELEVATION= 207.55 CALCULATE PRESSURE FLOW ANGLE-POINT LOSSES(LACRD): PIPE FLOW= 1.12 CFS PIPE DIAMETER= 12.00 INCHES PIPE ANGLE POINT DELTA= 17.86 DEGREES PRESSURE FLOW ANGLE-POINT COEFFICIENT KA= 0.0584 PRESSURE FLOW VELOCITY= 1.43 FEET/SEC. VELOCITY HEAD= 0.032 HAPT=KA*(VELOCITY HEAD) (0.0584)*( 0.032) 0.002 NODE 108.10 : HGL= < 208.552>;EGL= < 208.583>;FLOWLINE= < 207.550> PRESSURE FLOW PROCESS FROM NODE 108.10 TO NODE 108.20 IS CODE= 1 UPSTREAM NODE 108.20 ELEVATION= 209.17 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 108.20 12.03 FEET MANNINGS N = 0.01100 (( 1.12)/( 42.106))**2 = 0.0007075 12.03)*( 0.0007075) = 0.009 : HGL= < 208.560>;EGL= < 208.592>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 1.61 209.170> NODE 108.20 : HGL= < 210.170>;EGL= < 210.202>;FLOWLINE= < 209.170> PRESSURE FLOW PROCESS FROM NODE 108.20 TO NODE 108.30 IS CODE= 3 UPSTREAM NODE 108.30 ELEVATION= 210.56 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES CENTRAL ANGLE= 30.000 DEGREES PIPE LENGTH= 10.38 FEET MANNINGS N 0.01100 PRESSURE FLOW AREA= 0.785 SQUARE FEET FLOW VELOCITY= 1.43 FEET PER SECOND VELOCITY HEAD= 0.032 BEND COEFFICIENT(KB) = 0.1443 HB=KB*(VELOCITY HEAD) = ( 0.144)*( 0.032) = 0.005 PIPE CONVEYANCE FACTOR 42.106 FRICTION SLOPE(SF) 0.0007075 FRICTION LOSSES= L*SF = ( 10.38)*( 0.0007075) = 0.007 NODE 108.30 : HGL= < 210.182>;EGL= < 210.213>;FLOWLINE= < 210.560> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 1.38 NODE 108.30 : HGL= < 211.560>;EGL= < 211.592>;FLOWLINE= < 210.560> PRESSURE FLOW PROCESS FROM NODE 108.30 TO NODE 111.00 IS CODE= 1 UPSTREAM NODE 111.00 ELEVATION= 215.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 1.12 CFS PIPE DIAMETER 12.00 INCHES PIPE LENGTH 33.02 FEET MANNINGS N 0.01100 SF=(Q/K)**2 (( 1.12)/( 42.106))**2 0.0007075 AhoN WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAqE Srudy bHA, Inc. land planning, civil engineering, surveying _ _) J J _j 33.02)*( 0.0007075) = 0.023 HF=L*SF = ( NODE 111.00 HGL= < 211.583>;EGL= < 211.615>;FLOWLINE= < 215.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL= 4.42 NODE 111.00 : HGL= < 216.000>;EGL= < 216.032>;FLOWLINE= < 215.000> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM NODE 109-NODE 105: FILE NAME: 1326HGL5.DAT TIME/DATE OF STUDY: 16:33 08/18/2016 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER= 105.00 FLOWLINE ELEVATION PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = ASSUMED DOWNSTREAM CONTROL HGL 193.000 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM 193.00 6.23 NODE 105.00 : HGL= < 194.500>;EGL= < 194.693>;FLOWLINE= < 193.000> PRESSURE FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE= 1 UPSTREAM NODE 106.00 ELEVATION= 196.50 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 106.00 34.09 FEET MANNINGS N = 0.01100 (( 5.72)/( 124.142))**2 = 0.0021230 34.09)*( 0.0021230) = 0.072 : HGL= < 194.603>;EGL= < 194.765>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 3.40 196.500> NODE 106.00 : HGL= < 198.000>;EGL= < 198.163>;FLOWLINE= < 196.500> PRESSURE FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE= 2 UPSTREAM NODE 106.00 ELEVATION= 196.83 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES PRESSURE FLOW AREA= 1.767 SQUARE FEET FLOW VELOCITY 3.24 FEET PER SECOND VELOCITY HEAD 0.163 HMN = .05*(VELOCITY HEAD) = .05*( 0.163) 0.008 NODE 106.00 : HGL= < 198.00S>;EGL= < 198.17l>;FLOWLINE= < 196.830> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL AhoN WAy CT 14 ... 06, HOP 14 ... 05, PUD 14 ... 09 DRAiNAGE Srndy bl-IA, Inc. __ J -J _J _J I -.J _I _J - j J J LOST PRESSURE HEAD USING SOFFIT CONTROL 0.32 NODE 106.00 : HGL= < 198.330>;EGL= < 198.493>;FLOWLINE= < 196.830> PRESSURE FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE= 1 UPSTREAJ,11 NODE 107.00 ELEVATION= 203.07 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= 5.72 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH SF={Q/K)**2 HF=L*SF = ( NODE 107.00 40.74 FEET MANNINGS N = 0.01100 (( 5.72)/( 124.142))**2 = 0.0021230 40.74)*( 0.0021230) = 0.086 : HGL= < 198.416>;EGL= < 198.579>;FLOWLINE= < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 6.15 203.070> NODE 107.00 : HGL= < 204.570>;EGL= < 204.733>;FLOWLINE= < 203.070> PRESSURE FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE= 5 UPSTREAM NODE 107.00 ELEVATION= 203.40 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 4.5 12.00 0.785 5.691 0.000 2 6.2 18.00 1. 767 3.525 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 5 l.8===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l) UPSTREAM MANNINGS N = 0.01100 DOWNSTREAM MANNINGS N = 0.01100 UPSTREAM FRICTION SLOPE= 0.01127 DOWNSTREAM FRICTION SLOPE= 0.00252 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00689 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS= 0.028 ENTRANCE LOSSES 0.039 HV 0.503 0.193 JUNCTION LOSSES= DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES= -0.085+ 0.503-0.193+( 0.028)+( 0.039) = 0.292 NODE 107.00 : HGL= < 204.52l>;EGL= < 205.024>;FLOWLINE= < 203.400> PRESSURE FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE= 1 UPSTREAM NODE 109.00 ELEVATION= 203.76 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW= PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 109.00 AhoN WAy 4.47 CFS PIPE DIAMETER 12.00 INCHES 17.87 FEET MANNINGS N = 0.01100 (( 4.47)/( 42.106))**2 = 0.0112702 17.87)*( 0.0112702) = 0.201 : HGL= < 204.723>;EGL= < 205.226>;FLOWLINE= < 203.760> CT 14--06, HDP 14--0~, PUD 14--09 DRAiNAGE Srndy bHA, Inc. land planning, civil engineering, surveying _i ___ I _J __ I __ J PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL= 0.04 NODE 109.00 : HGL= < 204.760>;EGL= < 205.263>;FLOWLINE= < 203.760> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM AfroN WAy CT 14~06, HOP 14~0~, PUD 14~09 DRAiNAGE Srudy bl-tA, Inc. land planning, civil engineering, surveying _.I -, _J _I _J -, _j l _J _J j -, __ j -, HGLMAP AFTON WAy CT 14,06, HDP 14,05, PUD 14,09 DRAiNAqE Srndy bl-iA, Inc. land planning, civil engineering, _J ----, _J __J _J LOT4 ___ ) LOTl ·. _1 PROPOSED TYPE 8 , CURB INLET l __ J _J / LEGEND: SURFACE NODE : __ J SURFACE RUNOFF (0100) HGLNODEMAP AFTON WAY, CITY OF CARLSBAD CT 14-06 \ \ \ \ \ LOT6 \ \ \ \ \ \ ~ SCALE: 1" = 50' LOT7 LOTS HGLNODEMAP AFTON WAY CT 14-06 J I RIP RAP ENERGY DISSIPATER TABLE: 110 4.22 4.21 108 1.12 3.45 AfroN WAy CT 14.-06, HDP 14--0~, PUD 14--09 DRAiNAGE Srndy No. 2 backing No. 2 backing 1.1 ft 3 ft 10ft 1.1 ft 3 ft 10ft bl-IA, Inc. land planning, civil engineering, surveying '_J _j _J _! ---, __ I ___ J _J AhoN WAy CT 14,06, HOP 14,0~, PUD 14,09 DRAiNAGE Srndy IV. REFERENCES bHA, Inc. land planning, civil engineering, surveying P 1712"'N 3 ~ !!: ~ = AhoN WAy 46~ 4694«> Hydrologic Soil Grcop-Sen Diego County ArH, C•ilarni• (Alon 'Wrf) 46948) 469620 - i"'dpScae l l,~1fprrada,Apcr,ret(as'xll")roeel N "" 0 25 so 100 I~ A 0 ~ 100 zo 300 Mop~. Wl!bMo-taU>' OmorQXJQ'\bS. Wt:E8<I fOijl! IICS: UIMlale llNWt:ES<I NIIIUral II-en WabSeilS-y c-ervllllOl'l~ce Nlllion11I CoopenltM Sol Survey D IOtl'N 469600 -3 1:; !!: ~ 8f1W2014 Page 1 of4 CT 14,06, HOP 14,0~, PUD 14,09 DnAiNAGE STUdy bliA, Inc. land planning, civil engineering, surveying 77 -- - --- H)Qdogic Soil Gniul>-Sen OiegoCountyhn. C•ffcmi• (Aton'Nrf) - - MAP LEGEND MAP INF OR MA TION Afton Way TM 2200 Afton Way !i1i ArHI f/1 ... tfffl (AOI) D -oflnl•es(AOI) ..... -111111111 l'elygeM D A D ND CJ • • Ill) D C D CID D D D Nat-ornat......,._ -111 .... Llnn -A -AID -I -Ill) -C -CID -D •• Nat-otnotew- -It .... ,....... • A • AID • B • Ml Natwatltnourc:es Conservation Senlce Preliminary Drainage Study • C • CID • D C Nat -ot not.,,_ ·-,·--Slr .... ,...tc .. • ...... Rik --~ -us11-. -Meio,11 ... L-R- -l"IUl'd • -l'hGlogr9plly Web Seti Survey NII.lone! Cocperative Soil Sulvey The soil surveys th81 con-.,rtH your AO! were nwpped 811:24,000. Waffling: Soll M8p may net be 11111d Ill this scale . Enlargement of maps beycnd the scale d rTWPplng can cause nou1uter1tendng d the deleil d mapping end accuracy of soil line plecement. The nwps do not show Ille tm•N ereu ol contruting soils thet could hew bea, shown Ill • more detailed scele. PlnH rely on the b• scele on eadl mep sheet for map rnee,urements . Soon:e ol M8p: Nlllural Resoun:es Conservaflon Selvtce Web Sol Survey URL: http://websoilsurvey.nrcs.usda.gOY Coordin81e System: Web Mercelor (EPSG:3357) Meps torn the Web Soil &J1vey ere based on the Web Mercator projection. which preseMt drection end shape but dislOlts distenca •nd ..... A prc,jection that preMMIS •n. such H the AlbefS e~l-era conic prcjection. sh<luld be used If more accurate celcullllieM d dltta11ce « •re• ere r84Jired. This product .. geller8led torn the USDA-NRCS c8ffflied d1U H d the version dllt(S) hied below. Sol S.nwy Alu: Sen Diego County .Area. Callfomie Survey .Area Olla: VenlOn 7, Noll 15, 2013 SOI mep unff s are labeled (es space allows) for mep scales 1 :50, 000 ort.rger. 0.le(s) aeriel imegn Wffll phdogr9phed: May 3, 2010-Jun 7. 2012 The orthophoto or other beH map on which the soil lines were compiled end dgillZed probebl'f differs frcm the becllground im11gery ct,c)leved on these maps. As • resul. scme minOr shifting of mep unff bound1ules nwy be evident • 9119/2014 Page2 d 4 bl-tA, Inc. land planning, civil engineering , surveying - - Hydrologio Sal G,oop-,San Diego County Area, California Hydrologic Soil Group Totals for Area of Interest Description Hydrologic soil groups are based on estimates of runoff potential Soils are assigned to one of four groups accorchng to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the Unrl.ed states are assigned to four groups (A, B, C, and D) and three dual classes (AID, BID, and CID). The groups are defined as follows: Group A Soils having a high infiltration rate (low runoff potental) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group 8. Soils having a moderate infiltration rate when thoroughly wet These consist chiefly of moderately deep or deep, moderately we.II drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist Chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmis_<;ion Group D. Soils having a very slow infiltration rate (high runoff potentral} when thoroughly wet These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water !able, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious materiaL These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, BID, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group Dare a1iiSigned to dual cia1iiSe1>, Survey A!\onWay 100.0% Page3 of4 b~A, Inc. Afton Way TM 2200 Afton Way land planning, civil engineering, surveying Preliminary DrainageStudy _ __,I _) -, I __ , _J rlYClro!ogic SOli Group-San Diego County Area, California AhoN WAy Rating Options Aggregation Method Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher CT 14.-06, HOP 14--0~, PUD 14.-09 DRAiNAGE Srudy AllooWay Survey Page 4 of 4 bl-fA, Inc. land SJ-taD'N JP Olt"N ! i I I ! - ) k !: ~ ~ ~ t k t ~ A - Hyo'ologle Soll Group-San Diego County lvea. Ca lfomla -4!li!S'O -- ---- Hlp-1:452f~cnA...,,,.(U'xl.!l')- O!!"-_._.J!'=====,,~!"""--------~lO~========::::;'!O,..,. -0 lO ~ ~ ~ Hlp""""*"':Wlb_. Ol!W ........ :WG584 ldgltlb:lm!ZllnlUIIWGSM ~ ~o -_,o = Nalur• ltnourus Conurnllon Senlce Web Solt &xvey N•ion•I Cooperative Soil survey 4(l;ll5lO - ~ - Afton Way TM 2200 Afton Way land planning, civil engineering, surveying Preliminary Drainage Study - .r015AO - ) i:; !: ~ ~ I I ! ! a -,:i t i:; t ~ 9/19/2014 Page 1 r:14 b~A, Inc. - J:l't lOU'N .. IOl'FN 111!!1 c::::J - - - - -11111 H)idrdoglc Seil Grcup-Sell OlegoCountyAtee, C.lfomle MAP LEGEND MAP INF OR MA TION Afton Way TM 2200 Afton Way !Ai -flflnltrffl(AOII D -oflnt-(~ --11 .... 'elneM D " D AID c::J II • 11D D C D c.o D 0 D Not-Of not .. - -11 .... L- -" -AID -• -11D -C -c.o -0 .. Not-o,not .. -_ .. ..,._ . " • AID • I • 1/D Nlllurlllllesoun:es ConHrwtlon Senlce Preliminary Drainage Study • C • C/0 • D D Not.-°' not _Ille w_, • ...,.. s..-... dc ..... n-.............. ++t 11 .. -""_....,.._ -USlt-. --M...,11_ locallt-_.,.._, • -PliclogNpl,y Web Soil Surwy Nlllonll Cocperllllw Sol Survey The SOIi surwys 11111 COl'l'4)flse your AOI were M8pped 111:24,000. W.mlng: Soll Mep mey not be valid at lllls scale. Enlargement of meps beyond the scele c:A mepping can ceuse ml1t111ders1Mding d Ille detail d mapping end 8CCUrecy of 1eil line placement. The M8ps do not ,t,ow Ille sman areas d ccnlnlsting SOIIS llllt COUid h-b .. n shciwn II • men deleiled scale. Please rety on Ille ber scale a, each map sheet for map measurements. Source c:l Mep: Natural Resources Conservation Service Wtb SOIi Surwy URL: http:/lflbsoilsurwy.nrcs.usda.gO\I Coordlnlle Syltem: Web Mercllor (EPSG:3857) Maps from the Web Soil SUrwy •• b1sed a, the Web Merc1tor p~dion. wNc:h preseN"H clredion end shepe but clstoits dlllMce and ere•. A ~dion 11111 pr-s arH, such es the Albers e"'ei-.ee conk: piqedlon, should be used If more eccurate c11ctHtten1 d dlttence or,,... ere requ!Nd. This product Is genereted from Ille USOA-NRCS cettified deta as c:l the venlon dete(s) Isled below . Sol survey Nee: Sin Diego Counly keti, Cellfomle Survey ,ltn Dela: Version 7. Nov 15, 2013 Sol mepunhere lebeled (as spece llllows)form8pscales 1 :50,000 orllrger. Oete(s) 1erlal imeges were photogrlt)hed: Mey 3, 2010--Jun 19, 2010 The ortlloplloto or CIII« bese mep en WhlCII Ille S<lit !Ines were compiled Ind clgitind problbly dflers fl'<lm Ille beck!1'0Und lmegery dlsp1yed a, these meps. As I resul, sane minor shl1tln9 or map unN boundaries may be evident. 9119/2014 Page 2 c:l 4 bl-IA, Inc. land planning, civil engineering, surveying £:II ~-J _j I j -, .. ! Hydrologic Soil Group-San Diego County Area, Calriamia Hydrologic Soil Group I Totals for Area of !nlerest percent slopes. eroded Description 0.4 Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United states are assigned to four groups (A, 8, C, and D) and three dual classes (AID, BID, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet These consist mainly of deep, weH drained to excessively drained sands or gravelly sands. These soils have a high rate of Wl:lter transmission. Group B. Soi!s having a moderate infiltration rate when thoroughly wet These consist chielly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Solis having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture orfine texture, These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential} when thoroughly wet These consist chiefly of clays that have a high shrink,swell potential, soils that heve a. high water table, soils that have a claypan or clay layer at or near !he surface, and soils that are shallow over nearly imparvious material. These soils have a very slow rate of water transmission. If a soi! is assigned to a dual hydrologic group (AID, BID1 or C/D), the fif$1 letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Survey Page3 of 4 bl-tA, Inc. Afton Way TM 2200 Afton Way land planning, civil engineering, surveying Preliminary Drainage Study _j Hydrologic Sci! Grrup-$an Diego County Area, Ci,lijomia Tie-break Rule: Higher AhoN WAy CT 14--06, HDP 14.-0~, PUD 14.-09 DRAiNAGE Srndy Page4 of 4 bl-tA, Inc. on > ;:::i -I :r :!: ..... ~ 2 ~ ;p \ ~ .c, 0 "' m c,.. -< IJ') ' -I :c: 8..o '< ""C pi" ::J Q_ "D pi" ::J ::J 5· (0 0 ~ CD ::J cg_ ::J CD ~ s· (0 ~ \ 0 ,"1 ""C C: 0 ~ 0 ...c, ~ c::,-c :::c:-< :.> CD ' ~--::J ::J (0 ~ L J \l 1 e 1110 18 20 3Q Minules: L _J 40 50 1 Oura!loo I __ J 'L_ J 2 3 Hours J L 5 e j f ,:, ~-6.0 '1,!, s.s I 5.0 :, Uj 4,0 i 3'5- 3.0 ZS 2.0 1.5 1.0 Intensity-Duration Design Chart -Template L I_ L _ Directions for Appllcatlon: (1) From precipitation maps determine 6 hr and 24 hr amounts for tha selected frequency. These maps are included in lhe County Hydrology Manual {10, 50, and 100 yr maps Included ln the Design and Prooodure Manual). (2) Adjust El hr pn;{:1plta11on (if necessary) so that it is within tile range of 45% to 65% of th!} 24 hr prec:lpltetion (not appllcaple 10 Desert), (3) Plot 6 hr precipitation on the light side of the chart. (4) Draw a line through the poio1 parallel lo the ploUed lines. (5) This !foe Is the Intensity-duration curve ror th_e location being analyzed . Applh::atlon Fann: {a) Selected frequem;y __ year p {b) Pe= In., P24 = 'P 6 :::: %t21 -----24 {c} Adjusted P6!21 = __ in. {d) Ix= __ min. (e)I= __ in.lhr. Note: Th,s chart replaces the lnlensity-Duralion-Frequency crnves used since 1965. ~l ~ L j 0 (") > ;:,;i -I ::r ~ ~ 0 z· ~ z ~ 0 ~ m o,. ~ (J) ~ ..... :I: C: o..O -< "'O ~ \ 0 ~"' "'O C: 0 ~ \ 0 -0 m ::::, 0. -0 m ::::, ::::, ::::r (0 0 ~: (D ::::, cg_ ::::, (D (D ::::,_ ::::, <p (/) 0-C ::i::-< );;, (D "' ~-s-::::, (0 c:, L ti ~ ~ w 0 ~ t5 0 !.l.J ~ ::) 0 ~ ! L L L '-I __ _ 1001 1.5 IV:Jf-1/ L I NW-»-, »" r /! .....,,.-130 0 ~ z ~ A / A y: I ~ I I ~120 ~ w ~ 5 ...J u. 10 ~ i ~--''--~~--''--~~--'~~~--'~~~--'~~~--'-~~~--"~~~-""O EXAMPLE: Given: Watercourse Distance {D) "' 70 Feet Slopa (s) =1.3% Runoff Coefficient CC) = 0,41 Overland Flow Time (T) = 9.5 Minutes T= 1.S(U·C)VD 3lfs SOURCE: Airport Drainage. Federal Aviation Administration, 1965 FIGURE Rational Formula .. Overland Time of Flow Nomograph 11111 L _j j _J j --1 __ J Ae Feet sooo Tc .. TrmeofGfffleentraticmjhou111J 2000 300 200 100 30 11! AE L "' Wat&rcou,_. Distance (milell) l:i.E = Change In elevation along effectiw slope li11e (Soe F,gure 3-5)(1-tl Te Hours MinlJ1es 611 S& L M!le!i Feel :m 20 3000 o.s ' ' 2000 ' ' 1000 ' {6(10 ' 1400 ' 1200 1000 1 900 800 6 100 000 5- 5-00 4 400 300 3 L Tc Nomograpn for Detennlnatlon of Time of <:oncentrollon (Tc) or Travel Time fn) for Natural Wotershi!ds AhoN WAy CT 14.-06, HDP 14--0~, PUD 14.-09 DRAiNAGE Srndy bl-IA, Inc. land planning, civil engineering, surveying j Watershed Divide Area "A""' Area "B" SOUR.CE: Cal!fomill Division of f-!igh'way& (1941) and Kt!plcl! (1940) Computation of Effective Slope for Natural Water.sbeds AhoN WAy CT 14~06, HDP 14~01, PUD 14~09 DRAiNAGE Srudy land planning, FIGURE ~ bHA, Inc. --, l ',_J -, -1 .. J , _ _J , __ .J I ~J ___ j w .... 1:l ,. ~ " ·-= ~~ ,: "[ ;a . Cl') >. ti i .::: ~ bO -» 0 0 'll. ;.i te ~ i .s ::I !.'I:! ;::$R .. 0 ::ti I > u ~ AhoN WAy CT 14~06, HDP 14~0~, PUD 14~09 DRAiNAGE Srudy 1i 1!. l 31 i JI! ..... ~ ... I'-~ -t() -.._ ... a .t: - ~·· -- ::: () . N \I ~ u i ii ft 1i 11 j;l ·J Jil Jt I ii I ... :,\!I -:1 bl-tA, Inc. land planning, civil engineering, surveying ·1 - I ' _J ' .J , __ ) , ___ J __ j oa i iii a:E :;. .2 ::: } ..., "' CIJ ~ . !.I-< ... a ::::: .. oo > ~ :.l -l':'' 1111 oe Ji ~ ! §'R :. 8X :,:. ... -AfroN WAy CT 14--06, HDP 14--05, PUD 14.-09 DRAiNAGE Srndy I ~ r. ,':i J ::: ::::-':3-\""'" m -::-.... f.:t-C --.. .. ~ r---~ :s ::- V) \$) . -ll ':;r- ~ --, ·1 • ii· fl J s: :! !f t.l, 11 ;, pi1 i· p ;t~,, •1 J iji~: ~. J· r,1 111 i ~~d .. ilt D H ti ... ~fl .nJ .. ! t :m ot,,1! -:1 bliA, Inc. land planning, civil engineering, surveying .I _i __ J ,_..J _) _j C-l .... -.; <i t'd ., a::E ,... = ;;, 1'.. "' . IZl ~ ! :a ~ QJj <.! ~ )O: oo .... ....... ~ ! oe ~ 1 §R " 8::t :I ;;.. = AhoN WAy CT 14,06, HOP 14,0~, PUD 14,09 DRAiNAGE Srudy ;' ~ e 31 i ::.-~ t-";j--ro -... .... St:. ~ (! b t---~ --< $ ::::-r: \I ~ ·:~ ii i ,... 'I 1, ,;11 f ii i~ n~ IJ I,,!, ril '" ~ . frh ~j h tnd :~ii 11 ff .. ,I -1' 111. .at~ :Ill c..e..,,; .3\. •• • a,ii .:~ ;,; ... b~A, Inc. land planning, civil engineering, surveying J --, J _J ___ J --, ___ ) -, __ J __ J f-l;; -a .. 1;:! ,! i~ "!i: ... ,:I ~ ;;. tr..! ;>-. ~ ; tj,,,,I b.O "' =::: a 0..9 ~ ~ 08 i:;· "ij §~ 0:: ~ .. 0 ::c: .I u ... ~ AFTON WA.y CT 14.-06, HDP 14.-05, PUD 14--09 DRAiNAqE Srndy I :ii ! j u i :i ., '::::, ~ '. ll t"-"'j--::::,. h1 JJ -~ -...... ii· I· --{'n qi Q ~ .. ti H1H I 0 J en ,~ .:1 ('() ~ .... bJ.tA, Inc. --l ' _) ' _ _) _J u .... .... ; r:;I 1:1 §~ ·;: 3 ~ ... i '! ~~ li ....; -.. 0 0 ";; ;.. -'-'l. ... F~ J;~ .?I ;:, .i t;;: ;:I~ 0 :I:: u AhoN WAy CT 14,06, HDP 14,0~, PUD 14,09 DRAiNAqE Srndy Ii l l ;; i " ..... ~ ... -r-'.;3-... --«) C --. C c:-J -II ~ ff i :• JJ •I 1, f• p th I 1·: l" t, • J!f !l ~~w I 1di ; Q.l..,fl Q~1t ·=~ bHA, Inc. land planning, civil engineering, surveying .J ---1, J _J _J J j oa ..;,: "' .it ~ ~~ ~ .::: .. t/'J >. §-. ~ ii 4-, blJ ::::a > 0..9 "I i i i~ ~ :i! 0~ .. :I u ... Vl ... AfroN WAy CT 14.-06, HOP 14.-05, PUD 14.-09 DnAiNAGE Srndy J j J " J ::, ":::;. ';,}. t-t<\ -......... "' e ~ 0 I) rn I'-~ --~ ~ ::, ~ co ll a.. ~ f!f 1: i ;.,; ,1 '1 i;,l Ji ?J •\· I I i~h .ii f Ii ti u~ r fit! uj ! .. i!!f Ht !I 1!l !I "' -=1 "' bl-tA, Inc. land planning, civil engineering, surveying _.I _J - I _J --, ,J J 1--l a ..... ! ,i:! a~ ;;. :! ..:;: "" I ~~ §-. .;::; i "' 0..9 :::: ~ l ~ 1 ~e i ~ i::: "Ct 6 >. .. ::c: ti ;.. u AhoN WAy CT 14.-06, HDP 14.-0~, PUD 14.-09 DnAiNAqE Srndy II ' 11 I, 1:: • 'I t;; '::;1-, }11 11 ~ :: :::::: rn to rlt li -... . f3V'lt! .. C !t' N ,-..«<ii'"' JUD ,I -(I\ 11 ~.i.i' :; ll t-'I ro -~ o;;h -:I t'(\ -:z. .s bliA, Inc. land cl J _J ··, .J ' .__J _J -1 .J ' J -, 1-1 a ~§ ~ fa :E ;;,. ... ~ ,.:;: ;... . IZl ;>... t:l ... .::; ti ~ bJ) .. :::: ~ 0..9 ~ ::I te :::· J! ~ 'Cl ! ;;, R .. o:::c:: :e > u <::t .., AhoN WAy CT 14--06, HDP 14--05, PUD 14.-09 DRAiNAqE Srndy I I;:-~ r,,.. ~ :;, i ::::: \'r\ ts[ -.. ::i-'-j a ~ -11 I> ~ mt-1 t(),::::: ~ ~~ i1 J ,1 i IJ ~ • th ii (11 ~ .. ,t :U: :a bliA, Inc. land planning, civil engineering, surveying ___ I __J _J J _J _J _J --1 u -1 ti c::s <> ~~ "" = .:: "' ;,. . v.:i @ ~ ii <.;.... :::: ~ oo .g_ i -~e t: ~ ~ §R ~ .. l! 8 ::c ;,. a; AhoN WAy CT 14,06, HDP 14,05, PUD 14.-09 DnAiNAGE Srndy '!! ,, ; j, .• :1 ,, ti ::::: t~! l ; i i~t1 j• lj ... e ... ~ :;-~St l; I 31 I:: Cl) ~ ,~Si li~ }~ ,• ., -..._ t-l t~f1 di .l J -~ i ii1• lj' lt Q -!ah! eh ~to> ll -:1 ms. <::t. '< s bHA, Inc. land planning, civil engineering, i _) _j _J . _j Cl ::a "-;: ~, ~ ~~ ;;,. ~ { Cl) ;>. ~ ;;, "! ~ blJ I:':! oo ~ -~ s ~e ,E a ~ :! §R "'! 8 :r:: ,1 AhoN WAy CT 14--06, HDP 14--0~, PUD 14--09 DRAiNAGE Srudy ? ] i 1 ... M ii I :• 11 '::.,. •I :ii ":::: ~ r-:;:. fid1 ~ -t-r1~ -" qi ~ >?:end .. ur i jl gz;i, iHA ,, .,.. 0,11 .:1 ~ :.: !I'> bl-IA, Inc. land planning, civil L "'Cl N )> "1 N ;::;, (I) 0 0 ,-.c, ::I s· )> ~ ..... ;::;, 0) ::i g '< el ~ -i '< 0) :s: u'< pl s· ~ (I) r.n s-~ ~ 0.. ""O iii"" :::J 2. :::J ~ Q. ~ Cl) :::J CQ. :::J Cl) c::r gi_ ::c- :::J J;> CD ' (/) 5 C 0 < Cl) 's. :::J CD l_ L '-_j Sl!o Diego Counly Hydrology l\·l:lmml Onie: June 2003 L L L_ Section: Page: Table3-1 RUNOFF COEFFICIENTS FOR URBAN ARl£AS Land Use RunoffCoefficie111 "C" NRCS Elements Cooot Elements %IMPER. A B Undisturbed Nntural Terrain (Natural) Pe1111a11ent Open Space o• o.::w 0.25 Low Doosity Residential (LDRl Residential, 1.0 DU/A or less 10 0.37 0.32 Low Density Residential (LOR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Resid~ntial (LDRl Residential, :t9 DC/A or less 25 0.38 0.41 Medium Density Residential (MDR} Residential, 4.J DLll A or less 30 o.41 0.45 Medium Density Residential (MORI Residential, 7.J DU/A w less 40 0.48 0.,51 Medium Density Residential {MDR} Residential, I0.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residootinl, 14.5 DU/A or less 50 o.ss 0.58 High D011Sity Residen!la! (HDR} Residential, 24.0 DU/A or less 65 0.66 0.67 High Density R~idenlia! (HDR) Residential, 43.0 OU/Ao, 1-llO 0.76 0.17 Commetcialflndustrinl (N. C<lll'!) Neighborhood Commercial 80 0.76 0.77 Commercial!lndustrial (G. Com} Gencrnl Commercial S.5 0.80 0.80 Commercial!lnd11s1rlal {0.11• Com) Office Professional/Commercial 90 0.83 0.84 Commercialllndus1rial (Limited I.) Limited Industrial 90 0.83 0.84 Commcrcialllndustrial {(Jenera! I,) Gmernl lndustriru 95 0.37 o.1!7 C 0.30 0.36 IJ,42 0.45 D.411 (l.~4 0.57 0.60 0.69 0.78 0.73 0.81 0.84 0.84 0.87 3 6of26 D 0.35 Ml 0.46 0.49 052 0.57 0.60 0.63 0.71 0.79 0.79 o.&2 0.85 O..S5 0.87 •111e values associated with 0% impervious may be used for direct cnlculalion oflhe runoff <:oeffident as deicribed i11 Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain tmdisturbed in perpeluil]I. Justifiootion must be given that the nrco will remain natural forever (e.g., thearea is located in Clewland National Forest), DU/A = dwelling units per am NRCS = Nutiooal Resources Conservation Service 3-6 __ J __ J J ' _J __ _) _ _I _.) , _ __J _j -~' AhoN WAy San Diego County Hydrology Manlllil Dale: June 21)03 Section: Page: Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial lj values base-0 on average C values for the Land Use Element are also included. These values can be used in planning._a!ld design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Element* Natural LDR LDR LDR MDR MDR MOR MDR HDR HOR N.Com G.Com O.P.ICom Limited[. General I. Table3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) DUI 2 4.3 7.3 I0.9 14.5 24 43 & INITIAL TIME OF CONCENTRATION """"T...,_.,1 ---- .5% 1% 2% 3% 10% 1---.-~-+~-,-~-1-~ ....... ~--~....-~ I T, LM T; LM T; L11-1 T; LM T; 50 13.2 70 12.5 50 12.2 50 11.3 50 10.7 50 ]0.2 50 9 50 50 8.2 50 6.7 50 5.3 50 5 . .3 70 l l.5 70 i0.5 70 65 65 65 60 50 4.7 60 50 50 50 85 10.9 100 10.3 !00 8.7 100 6.9 85 10.0 JOO 9.5 100 8.0 100 6.4 85 9.2 100 8.8 100 1.4 100 8.8 95 8J 100 7.0 IOO 8.1 95 7.8 100 100 5.3 7.4 95 7.0 100 100 4.8 6.9 90 6.4 I 00 00 4.5 6.5 90 4.3 SJ 90 I 3.5 2.7 2.7 2.4 2.2 90 2.3 JOO 1.9 *See Table 3-1 for more detailed description 3-12 CT 14--06, HDP 14--05, PUD 14--09 DRAiNAGE Srndy b~A, Inc. land planning, civil engineering, surveying .J j J - l J -, l AfroN WAy Chapter 2. Street Drainage and Inlets and downstream face of the curb inlet (equal to an additional I foot of length for a SD-RSD Type B inlet). Partial Interception l! is not always possible to intercept all gutter flow with a single inlet, and n portion of the approaching; flow will continue past the inlet area as "bypass flow." The curb inlet must intercept a minimum of 85 percent of the approaching flow where practical (see Section 2.2.2.2). The designer may account for this flow bypass using the following procedure: Step 1. Determine the clear opening length required to intercept 100 percent of the approaching flow, Lf. ~. ~ QAl'l'!IOACI/ 7 (2-3) 0.7(a+ yyi· Step 2, Compute the efficiency (E) for the opening length (L ') of the curb inlet to be installed: E=l-[1-(f )J$Jorl'<Lr where ... E L' Lr "' curb-opening inlet efficiency; length of clear opening of installed inlet (ft); and length of clear opening of iulet for total interception {ft). (2-4) For tl1e minimum required efficiency of E=0.85, this general equation reduces to the fu!lowing expression: Step 3. (2-S) Calculate the amount of flow intercepted by the inlet and the bypass flow, and apply to the bypass flow to the roadway flow calculations and inlet capacity calculations downstream. Q1Nl'fi11Clif'1' = EQ,IJ'PIIJIOAC/{ (1-6) Curb Inlets in Sag Cnrb inlets in sags or sump locations operate as weirs at shallow depths, and operate as orifices as water depth increases. The designer shall estimate the capacity of the inlet under each condition and adopt a design capacity equal to the smaller of the two results. When designing the size of a facility, the designer shall use the larger of the sizes obtained by solving for the two conditions. Inlets in sumps act ns weirs for shallow depths, which can be described using .Equation 2-8: Q = CwLwd312 (2-8) San Diego County Drainage Design Manual July2005 Page2-5 CT 14--06, HOP 14--0~, PUD 14--09 DRAiNAGE Srndy land planning, civil engineering, b~A, Inc.