HomeMy WebLinkAboutCT 14-08; WESTIN HOTEL AND TIMESHARE; DRAINAGE STUDY; DWG 496-2A, ADJ 16-08; 2016-07-22AIN E STU y
LOT 9 DEVELOPMENT
PREPARED FOR:
GRAND PACIFIC CARLSBAD, L.P.
5900 PASTEUR COURT, SUITE 200
CARLSBAD, CA 92008
f"l (760)431-8500
PREPARATION DATE: 7-22-16
Revision: 10-26-2016
PREPARED BY:
ROBERT D. DENTINO
RCE 45629
GRAND PACIFIC RESORT
CARLSBAD, CALIFORNIA
1#.1@3~
ENGINEERING
EXCEL Job No. 13-070
NOV 21 2016
;:, 4lfd:1tJ.~B~~c:\, ,"''""~-% '" " ·",</,·~4F?t:'11zB~~;BH8] x:---/ · teten"tlnoJ~excii~n~neer~ng.net]
Jfii~B'f~. · ., ~e);g~ 0 ,r-·*·-~ ~1)~!f!L -11~0 , ,~,, ~.ixce!et1) 111eering.net] "
DR/\li''.i\GE STUDY -OCTOBER 2016
I I LJ
L_J
Table of Contents
I. Project Overview .................................................................................................... 3
Location
Existing Conditions
Proposed Facilities
II. Methodology .......................................................................................................... 4
Hydrology
Hydraulics
III. Calculations ........................................................................................................... 4
Determine the Watershed that the Project Affects
Determine the Runoff Coefficients for the Site
Calculate Q100 using the Rational Method
Detention Calculations
Design of Proposed Storm Drain Facilities
IV. Conclusion ............................................................................................................. 9
V. Declaration of Responsible Charge ...................................................................... 9
VI. Attachments .......................................................................................................... 11
Attachments
Attachment A
Vicinity Map
Attachment B
San Diego County Drainage Manual Graphs and Tables
Soils Group Map
Attachment C
Pre-Development Hydrologic Map
Post-Development Hydrologic Map
Attachment D
Civil-D Pre-Development Hydrology Calculations
Attachment E
Civil-D Post-Development Hydrology Calculations
Attachment F
Storm Drain Calculations
DR/\INAG[ STUDY -OCI OBLR 2016 2
Project Overview
Purpose
This report is in support of the Precise Grading Plans for Westin Lot 9 Development Tract no.09-03. The
purpose of this report is to describe the procedures used in the hydrologic and hydraulic models, estimate
peak discharge magnitudes and to size the proposed storm drain pipes in order to preserve the water quality
and channel stability of the downstream watershed.
Location
The proposed development is located in the City of Carlsbad County of San Diego, CA on the west side of
The N Crossing Drive Cul-de-sac, approximately 560 ft north from the intersection of Grand Pacific Drive
and The Crossings Drive. See Attachment 1 -Vicinity Map. The site is surrounded by open space to the East
and North. To the West and South lies existing hotel facilities.
Existing Conditions
The site is approximately 3.98 acres with a 1.36 acre graded pad. Currently the site houses a large water tank
with a patch of asphalt slurry. Recently a large patch of asphalt was removed and the site was graded to make
a dirt lot.
The runoff for the current site is discharged into 4 different outfalls:
Outfall-A -at the North-Western portion of the project. The tributary area to this outfall is labelled as Basin
1A and is only a very small area (.463 Acres). The water leaves the lot nine development area and then is
discharged onto the existing hotel facility grounds. From there it is then collected by area drains and
discharged into the storm sewer.
Outfall-B -located at the south end of the project. The runoff contributing to this outfall comes from the 2:1
slopes to the south of the project. This area is labelled as Basin 1B and is .806 Acres. The runoff discharges
from the site onto an existing parking lot where it flows through a gutter approximately 150 ft. before
entering a grate and get discharged into the existing storm drain facilities.
Outfall-C -lies to the East of the Project. Discharge from the site is conveyed directly onto The Crossings
Drive where it is then discharged into the curb inlet in the street. The contributing area to this outfall is
labelled as Basin C-1.
Outfall-D -located at the North of the project. Runoff from Basin D-1 will exit the site by way of an existing
ditch.
Proposed Facilities
The proposed development will demolish the onsite water tank. The proposed site plan includes a
combination of parking areas and underground parking, swimming pools, landscaping, hotel buildings with
associated structures. Infrastructure improvements are proposed to include new storm-drains as well as water
and sewer main extensions and new dry utilities runs/ extensions to service the lots.
In the post-development conditions the runoff for the site will still be discharge through the 4 separate
outfalls:
Outfall-A, at the North-Western portion of the project -For the post-developed condition the contributory
area will become only slightly smaller as a building footprint will infringe upon this area and divert the runoff
to different outfalls. No impermeable area on the project will contribute to this outfall.
DR/\IN/\GE SI UDY -OC!OllcR 2016 3
Outfall-B, at the south end of the project -Runoff from this portion of the site will be diverted into a single
bio-retention basin. After the runoff is treated by the pond it will conveyed directly into the existing brow
ditch located at the bottom of the existing slope on the south portion of the property. From this brow ditch
the runoff flows onto the existing parking lot where it is then collected in an existing catch basin and
continuing on in the existing storm drain system.
Outfall-D, to the North of the project -For the post development conditions basin D-1 will be split into 3
different basins. Flow from these basins will be diverted into 3 different bio-retention ponds. Basin D-1 will
contribute to IMP (Pond) IV, Basin D-2 will contribute to IMP II and Basin D-3 will contribute to IMP-II.
After the runoff is treated in the ponds it will be piped through the site through a series of storm drains and
then exit the site by way of an existing ditch.
Methodology
Hydrology
The Rational Method as outlined in the San Diego County Hydrology Manual 2003 Edition was followed in
this study. The CIVILCADD/CIVILDESIGN software version 7.9 was used to calculate the Stormwater
peak flows. San Diego 2003 rational method module was selected so that the changes from 2003 manual has
taken into account such as time concentration and urban area runoff coefficient. Also in 2013, the program
updated the slope input for initial basin's steep slope greater than 30%.
The hydrology analysis was done only for 100 year storm event. The 2 and 10 year storm events were covered
in the Hydromodification Analysis using Continuous Hydrologic Simulation. The hydrologic model, USEPA
Storm Water Management Model (SWMM), was used to perform the simulation of continuous water
movements through various patterns of land uses in the watershed.
Hydraulics
The Ifydra flow storm Sewers version 8.0 software was used in the hydraulic calculations to size the proposed
storm drain pipes. Said software uses the energy-based Standard step method when computing the hydraulic
profile. This methodology is an iterative procedure that applies Bernoulli's energy equation between the
downstream and upstream ends of each line in the system. It uses Manning's equation to determine head
losses due to pipe friction.
The Hydreflow Ifydrographs version 8.0 software was used in the hydraulic calculations involving the sizing of the
storage ponds onsite. This software uses the hydrograph information that is calculated using the rational
method hydrograph generating program by Rick Engineering Company to determine the Peak flows from the
onsite ponds and Underground pipe storage. The inputs to the hydrograph generating program were
generated from the Civil D Post-Development calculations.
Calculations
Determine the Watershed that the Project Effects
As shown in the figure below the project lies within the Carlsbad Hydologic Unit. For details see the storm water
management plan.
4
" "" __ -"_ -?~~---;_--: :_. -:,?
Figure 1 Carlsbad HydroJogic Unit Watershed
Determine the Runoff Coefficients for the Site
The runoff coefficients were calculated for each drainage area according to the percentage of permeable area
in each and the soil type encountered in that area. According to the soils report for the site the site lies on a
boundary between class B and class D soils, therefore part of the site is considered to be class B while the
remainder is class D. The soils map from this report can be found in Attachment B of this report. This map
was superimposed onto the drainage map in order to determine the percentage of each area that lies in the
class B and class D soil classes. Both the Pre and Post development drainage maps can be found in
Attachment C of this report. The percent impermeable surface and the percentage of area in each soil type
was inputted into the Civil D program. The program then utilized table 3-1 from the San Diego County
Hydrology Manual to calculate the C-value for that area. For example the drainage area from points 29 to 12
was calculated was calculated to be 77% impermeable surface. According to the above referenced table the
site was considered to be High Density Residential ( 43 DU/ A). 100% of the area is located in Class D soil.
Using these values and the table the following C-value can be calculated. The C values for the majority of the
site were calculated using the above method, however there were several areas of the site that had been
previously calculated in the Hydrology and Hydraulic Study for Carlsbad Ranch, Planning Area 5-Resort Site,
Phase 1, performed by Excel Engineering, dated August 23, 2005. In order to be consistent with this previous
study the Southern and Western portions of the site were assumed to be Neighborhood Commercial with a
C-value of .76.
Calculate Q100 using the Rational Method
Hydrologic calculations were computed using the CivilD program based on 4 basins (labeled as Basin A, B, C,
and D) for pre-development, post-development/no detention and post-development/with detention. The
layout of the drainage areas for both Pre and Post development are shown in Attachment C of this report.
The CivilD printouts of these calculations can be found in Attachment D, E and F of this report.
The 100-year on-site developed peak storm flows (CFS) have been calculated. These numbers are used to size
the proposed storm drain pipes and storage ponds later in this report.
Detention Calculations
After the 100 year flows where determined using the CivilD program the runoff flow was determined to be
higher for the post development conditions than the pre-developed conditions for outfall B and D. In order
to mitigate this flow, detention ponds will need to be utilized to limit the peak flow to a value that is less than
DR/\l~'/\GL:SlUDY -OCi OBl:R 2016
,,,,,.,
' I
L_J
the pre-developed condition. An underground pipe storage will be used to mitigate the flow for Outfall B.
The hydraflow hydragraphs program by Intelisolve was used to calculate the peak flows from the different
storage ponds in for Outfall B and D. The program uses the following procedure to perform these
calculations: I ~ I Q = CA-v2gh * Nh
The phase 1 Discharge is calculated as: this is a condition where water level in the pond is less than the level
of riser's crest and Nh (number of holes in the riser). A is the total area of the orifices of the stand pipe riser
and is vary on each stage depend on the depth of water level in the pond.
The Second Stage (Phase 2) is the phase where the water surface in the pond starts increasing higher than the
riser's crest. As the depth of water increases, the flow will transition to sharp-crested weir and an orifice-type
flow. The transition in this horizontal orifice and weir flow depend upon the area of the top of the riser
structure. Though the transition from weir flow to orifice flow is somewhat gradual, it is commonly assumed
to occur at a discrete water surface elevation to simplify the analysis. The transition water surface elevation is
found by calculating the point at which the weir equation and orifice equation yield the same discharge.
The sharp-crested weir has relatively thin crest such that the water will tend to develop a nappe as it flows
over the crest and is calculated as follows:
Q C H1.s = SCWL
Where,
C sew = sharp-crested weir coefficient
L = Length of weir crest (ft)
H = head above of weir crest, excluding velocity head (ft)
The orifice flow can be calculated using this following equation:
Q = CA~2g(h-hR)
Where,
C= 0.6 for sharp edge coefficient
A= area of the horizontal orifice (ft2)
g = gravitational acceleration (ft/ s2)
h= elevation of water above the orifice (ft)
hR = elevation of the crest of the riser orifice (ft)
C is the coefficient of orifice equal to 0.6 taken from Smith's Coefficient of Discharge Table 21-9 Standard
Handbook for Civil Engineers by Frederick S. Merritt, third edition. The third stage (phase 3) is when the
riser totally submerged; the water surface in the pond exceeds the riser crest and the flow can enter the
culvert at a faster rate than it can exit (outlet control condition). the Culvert will take control of the flow not
the orifices or the riser's crest anymore, the outlet hydraulics for pipe flow can be determined from the
following equation that is derived through the use of the Bernoulli and continuity principles (NRCS, 1984):
Q=A~2!h n2
kp = 5087----;j; n13 Where,
k= 1+km+ kpL
Where,
h= elevation head differential (h=head water -tail water)
km = Coefficient of minor losses (use 1.0)
kp = Pipe friction coefficient
n = Manning's n-value
D = Pipe diameter (ft)
L = Culvert Length (ft)
Dl?1\ii'!1\G;_: Si UDY -OC!OSU< 2016 6
Before performing the actual pond routing, the pond data was set up in a spreadsheet depth vs. storage vs.
discharge relationship, please see outlet rating curve table below as sample. A more detailed table is found in
Attachment H.
Table 1 IMP-IV STORAGE VS DEPTH VS DISCHARGE
. 2.00 258.00
3.50 259.50
4.50 260.50
5.50 • 261.50
Note:
814
998
870
1,577
814
1,812
2,682
4,259
.037
.049
.055
1.459
Clv A= Culvert A represents the discharge from the ultimate outlet pipe (18" HDPE pipe)
Clv B = Culvert B represents the discharge from the orifice on the bottom of the pond (2" diameter)
Wr A= Weir A represents the discharge from the top of circular riser (3 ft diameter)
There is no soil percolation test data provided for this bioretention basin therefore, no infiltration rate
included in the basin calculation and assumed no percolation to the native soil.
Detention Pond Stage/Storage & Routing
Stage-storage curves define the relationship between the depth of water (stage) and the storage (volume)
available in the reservoir. Stage-storage curves are typically developed using topographic mapping and/ or
grading plans for detention facility. The equation for stage-storage curve is determined by average-end area
calculation as follows:
V, = ( A1 + A2) (h -h )
1,2 2 2 I
Routing is the process of analyzing flows entering and leaving the pond in order to determine the change of
the water surface elevation within the facility over time. The storage routing in this report is performed by
Hydraflow program; the fundamental of the calculation is based on conservation of mass (inflow-outflow=
L'iStorage), approximated as a finite-difference as:
Sn+1 -Sn -In+ In+1 On+ On+1
/).t 2 2
Where,
S,,+1 -Sn = Storage within a detention facility at a time step n and n + 1, respectively (ft3)
& = time interval (sec);
In+ I,,+i = inflow rate at a time step n and n+1, respectively (cuft/s); and
O,, +On+! = Outflow rate at a time step n and n+1, respectively (cuft/s).
Emergency Spillway Calculations
For the IMPs on the project there is only one overflow spillway that can be modeled as weir. Therefore, the
outlet-rating curve is straightforward. The emergency spillway must be able to convey the un-attenuated peak
flow of, ignoring the storage inside of the bio-retention basins. The invert of the emergency spillway is placed
just above the maximum water surface elevation. The maximum spillway depth is found by taking the
difference between the top of embankment and the maximum water surface elevation. Allowing for 0.5 foot
of required freeboard, the spillway flow cannot be more than 1.0 ft deep. The minimum length of the
emergency spillway can be found using the broad crested weir equation:
L= Q C H312
hew
Storage Indication
From inflow hydrograph and out-let rating curve, the storage indication is used to determine routing
characteristics of the pond. This equation below is used by the computer program to demonstrate that the
pond will empty within less than 72 hours and is presented in graphic shown on the next page.
(. 2Sn+1 a 1 _ ( .. 25n a ·1 ( L . r . \At+ n+1) -·. !::. t -n / + n + n+1)
Where,
Sn = Storage within a detention facility at a time step n (ft3)
8n+I = Storage within a detention facility at a time step n+l (ft3)
M = time interval (sec);
1n + 1n+I = inflow rate at a time step n and n+l, respectively (cuft/s); and
on +On+I = Outflow rate at a time step n and n+l, respectively (cuft/s).
Routing IMP· IV
Q (cfs) Hyd. No. 2 --100 Yr a (els)
4.00 -,----r----...-----,.-----,---,----.-----,----,----,----r---~ 4.00
0.00 ..t;;~=l====::::t=-_1.'.::::::::i=r==:r==t==:::i===±==b==-1.--1-0.00
0.0 1.7 3.3 5.0 6.7 8.3 10.0 11.7 13.3 15.0 16.7 18.3
--l-lydNo.2 --HydNo.1 Time (hrs)
From the graph above, we are confident to say that the pond will not cause the draw down time exceeds more than 72
hours that may result in vector breeding. No 24 hour settlement time is needed since this is a bio-retention system not a
conventional detention pond.
Design of Proposed Storm Drain Facilities
The proposed storm drain sizes have been shown in the Hydrologic Software and the calculations run as part of that
program that the HGL within the pipes does not come within several feet of overtopping the inlet grate elevations. The
maximum HGL above the top of underground storm drain pipe is less than a half foot. Therefore, no additional
calculations have been done for the on-site system.
DR,\i~IAG[ STUDY· OCIOl3lR 2016 8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Conclusio n
A 100-year 6-hour storm event was analyzed to ensure the proposed project will be capable to handle runoff without
damage to existing public facilities and outlet velocities will be controlled through detention systems to minimize
downstream erosion. This project will not negatively impact the existing downstream storm drain facilities. The resulting
100-year total flow rates shown in Table 6 assumes that all storm water runoff from the 100-year storm is collected from
the surface by the storm drain inlets and is routed to the Detention system and discharged to public storm drains. In low
storm cases, the runoff generated by the site will be allowed to percolate through bio-retention systems prior to entering
the public storm drainage system. This will add some additional lag times to the time of concentrations not accounted
for by the CivilD hydrology program. Should these bio-retention mechanisms fail and not allow for percolation through
the media, emergency spillways are provided to allow overtop the Q 100 out of the bio-retention ponding system.
PEAK FLOW OVERVIEW
8
7 _____.-._
6
,---.._ (/)
t:..L. 5 u ..._,
~ 4 r-< ~ 3 ~ 0 .....i 2 t:..L.
0
Existing
After D etention
Before Detention
o.oo P.75
Outfall A
0.80
0.00
0.75
Existing
.87
4.41
0.00
Outfall 8 Outfall C
5.09 2.65
0.00 2.06
4.41 6.87
After Detention Before Detention
Table 6 -Peak Flows Summary Table
DR/'INAG[ S UDY OC\01.ltR 2016
Outfall D
3.92
3.86
7.18
.I
9
l j
Declaration of Responsible Charge
I hereby declare that I am the engineer of work for this project. That I have exercised responsible
charge over the design of the project as defined in section 6703 of the business and professions
codes, and that the design is consistent with current design. I understand that the check of the
project drawings and specifications by the City of Carlsbad is confined to a review only and does not
relieve me, as engineer of work, of my responsibilities for project design.
ENGINEER OF WORK
Excel Engineering
440 State Place
Escondido, CA 92029
Tel-(760)745-8118
Fax -(760)745-1890
Project Number: 13-070
Robert D. Dentino, RCE 45629
Registration Expire: December 31, 2016
DR/\II\/\G[ sruov -OCTOB[R 20 16
10-26-2016
10
Attachments
DR/\IN;\GI:: STUDY -OCIOBL:R 2016 11
Attachment A
Vicinity Map
:
' ~
VICINITY MAP
CITY OF OCEANSIDE
PACIFIC
OCEAN
7a
CITY OF ENCINITAS
NOT TO
SCALE
CITY OF VISTA
;, C J
Attachment B
San Diego County Drainage Manual Graphs and Table
Soils Group Map
' id
bJ
~ .... ~ ~ ~ ~
33•3oc--Orange / ·· : .,. :--S?. / I
County · ···· · ... C:f : .... I t
(i;J;;;;:i;~;;~j·
· •• 5:fr····
33•15·--·-
,, ....... ·
-0
Q)
(') ,,.. -
I ~ ~
~ ~
33'30'
·,. +~~~<~:::c;~;:r~:.)·\·=:1
·········1\.\/ ::~~:: ... ::::::::~
•• •.•• :· ·•••• ........ ~?~:15'
33'00' -; ~.{-: • :· 11 i. ~41''~ '--.)=> .1 I ·: :_.f.1.'./__ ll<·. '! . -, 81'-· _::~ •.• ..-1 t aa·oo·
32'45'
32'30' g
!::
0
(')
(.I)
~ -:,
~ !::
g
!::
.......... ----··'!
3
"O (D
~
0
;:;;;r ... ~-g .. /. . ' , . 4~} • -' .-·"', .. ' "'
. .... 'tr\ ,83>' ( \ •• •· ·' ..... .. : ~-.··! . \ ' ' ,;:-\-·· 32'45'
Mex
I t ~ ~
...... · .... ' r·· .. ·· .... ·-·L \ ~o. ·· .. \ ·· ..... t . ··.
32'30'
County of San Diego
Hydrology Manual
• Rainfall Isopluvials
100 Year Rainfall Event-24 Hours
lsopluvial (inches)
DPW -C:GIS
~(IIP.~~ ~"""'"..rr,,'~
~
SltiGIS
\Xf-c Haw San Dic~u Cm,1.reJ!
N THISMAPIS PROVIDEDWiTHOUTWAllRANTVOFMYl<!tlO. EITHER EXPRESS
f OA:lMPUEO,!NCW~NG..1!1JTNOTLlt.lf'TEDTO,l'Hl!!IMl"W!DWARRANTJES Of MERCHANTABILnY AND FTTM:SS f'OA A PAAllCUt.AR PURPOSE Copyr!Jt,1$anGlS.A,IRij11t:1Receirwd.
s
TIIOiprocub~..,..ilU\inbrml,tianfrwtlhaSANOAG~g·.-1 Elnkwmalk1r,Sy&lemwlllcilcanotbe~•c.it!he IO?ittef>ll'Jf~OfSAf.oiAG..
Tblspioduo:IIIIB)'llOnlainnfOffflllliono,hi<:hhallbeflnrePloduced...m pe«nission{l(Mledbylhmal~Map,,.
3 0 3Miles
~
r C
r·· ] [
g
:::
Orange j
!!! :::
--1 [ J
~ ? ~
[
g
~
(!1
~
33•30•
,, • ., County · , .• ,. Rivemide County • • ~ ,. . •.
. • ,-·cc-·-... , -, ., ·, .. ··• ·.. r·-.\
i~
33•15•-1 •)
OCEANSIDE
WES IN LOT 9 --.::a, .. ,~
CARLSSAO
-0
! '))
0 .,..
~ .,.. 33•00· 0
32•45• -------+--
0
0
(.<)
')) :,
~"' l---------1--g !!! ::: 8 :::
• •• ·······-)\,_ ---.: ··"""'l ),//-'~;~
~ iis ~
,:~-
\~
........
\
---+-+-/-33•00•
(!1
~
.••••.•. 1;:tfff···
3 '"O CD ..,
~
32•30•
County of San Diego
Hydrology Manual
• .
Rairifall Isopluvials
100 Year Rainfall Event - 6 Hours c==~~a;:::-1
DPW •GIS
~
SlliGIS ~-a,,,.~~ ~,...,_.s~ \X•'c Hav.: San Di-.iu Cnvtrcd!
N THIS MAP IS-FROVfDED WITHOVf WAAfWITY OF Nrf KIND. EITHER EXPRESS
f ORIMPUEO,lNCLIJDING.eofNOTLlt.llTEDTO. 'Tl,fffMPUEOWARAANTIES. Of MERCHANTAEULm' ANO FtTNESS FOR APARTICULAA PURPOSE. ~htSanGISA11Rlghls~
s
'hriliproduct&mJYCGlltalnlrdcmwltionfMmlhefiMOA,GR~ ElntormllianSystam..t.lch~bl~l'IIC,oullho 'Millen pe~of SANDAG.
lbEsprocludmsyconlaininlannabon1"hiffihD$l-,1eJ)IO<luco:,dw11h
pem\llllliangrll!Hdby~Brolher.Maps.
3 0 3Miles
~
10.0
9.0
8.0
7.0
-... :::, 0
6.0
5.0
4.0
3.0
2.0
~ 1
-~1.0
;:o.9
~0.8
2 .s0.7
0.6
0.5
0.4
0.3
0.2
0. I
1'. ' ....... ' ~"' .... I I i
' 1' ... ~ ~ ~ .... ..
N. 1' .... , ........ .... , ..... "' 'i.. i !
'I,... .... ... ........ ...... N ~ ;,-{... .... , ...... ........ i ' ... ! ..
l' i{ .... ~ '14:
j I i""' '~ I~ ' I {J I ,I
l i""IIII i ! l1 1-
......... ~J f""'"" ..L ' I I
1 ! r'
1 11
'f I l
~"/....1.._ I
I l ........
I I I I I I ' I i i ' I
l i I
I I I {
i I
' ! j I
I I I
i I I
:
11
I I l
! I I I l ! ' I , I I I I
' J_ ... . .. .J.
................ --f .... L. .... +·· ·---~~ .j,,..._1-~ "--
I
-----1--·-+-+·· ..... ···--............ +· . ......u.....u I
' -, i -+--i I
I i i
l I i
5 6 7 8 9 10
r L_
"', .. .. l "' "i.. !
"" ~ .. ' i.. ... """ .... "" I i.
i..., ""i.. .. ~ .. .... "" i.i. l ... i..,. I .. ~ i..,. ~ i..., ""' ~ .... ~ ~ i.. ... .. l
"i.. i.
1"t.i.. .. .. l ""' i. .... I ,.
j "'r-. "i.
"'i.. "' .. l "i..
! .. j
'
l
I I l
i !
I I l
I I I
! !
..j..
l ....
I
; '
' I '"• -..... ·1
! '
I I iii! 11 l
15 20 30
Minutes
I
i
EQUATION
I = 7.44 P5 o·0.645
I = Intensity (in/hr)
P5 = 6-Hour Precipitation (in)
~ D = Duration (min) ...... ~ i.
~ ' I I "i.
"i.
"i. i.
·"p,, loi. t' ii l r-.. ... ' .. i.
i. " ....
"~I .. I i. ,. r-.. 'i.. "i. 1 .. r-..,
. .. ""' """ i. ! ' r-.. .... ...
""""
.. I"
.... i. ~ ... .... .. .... r,,,."' ~"' "i. "" "r-. .. I", ~ " ~~ r-.. "'"' '" ..
"'" ,. .... "' "'r.... l"'I"' I' .. ,~ '"l"'i..
...... I r-..r.. "' .. I ....
i. ,. ! l"'I"' ~ .. .. I".,
N I"
1~"' ~~
'" I"
.... ~ I'"
I
---t,-.-... , '"--'' •· .. •· . L ...
-
I I II Iii II II I I I
40 50 2 3 4
Hours
Duration
I I
I
l I !
l I
l I
i
I
' ..
I
1 ..
!
I
5 6
'{) ::r g ... ,, a Q. 6.0 '2.
5.5 i
5.0 g
4.5 '§'
0 4.0 i5
3.5 .!!!.
3.0
2.5
2.0
1.5
1.0
Intensity-Duration Design Chart • Template
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100 yr maps induded
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency.~ year
p
(b) P5 = -~ in., P 24 = -~ 'P 6 = _EI__ c10(2)
24
(c) Adjusted P6<2> = __ in.
(d) tx = __ min.
(e) I= __ in./hr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
PG ... , .. 1 : 1.5 [2 -~ 2.51_ 3 .:_3.5 [ _4 __ .4.5 5 5.5 _6
Duration: I I . I I I I . I I I I I
.... 5 2.63 ;3.95; 5.27, 6.59, 7.90,9.22, 10.5411.86: 13.17• 14.49, 15.81
.......... 1.:f12 fa:1ii!'4.2<i's.aofs.36:1.421 s.48:: 9.54 :10.aoi11.ssT12.12
---fo-T.s1f1'2.sala.:i11'4.21 rs:osfs.ooi .. a.14; 1.sa' s.421'9.2i 110.11
__ 1_5 J,a~J]J1s[~.s9Ji241~.s~J:4.M[s:.19 })ii.4}:s,,ilfL'f13J:1:if
20 1.08 i1.62i2.15i2.S9)3.23l3.77; 4.31: 4.85 i 5.39 i 5.93 ! 6.46
25 o.93 : 1.40 ~1.81, 2.33 ;2:so Ta.21 t:fi:f:4:20~-(si :·5:13 l 5.60
----:30 o:s3J1.24\1.66[2.01J2,49[2.9o\ 3.32 :3,73 :.4.15 /_4.ssf4.9s
...... _40 .o,sg ;_t.03L1,3s;1.721..2.01:2.41 :2.1a ,3.10, 3.4s: 3.79 j 4.13 _ -· so .o,ao J0.90L1 .19U ,4911 .79 :.2,09[.2,39 j 2,69 L_2.98 J...3.28 .L3.58 60 o.53 :o.ao,1.00: 1,33,1.59;1.as, 2.12, 2.391 2.65 l 2.92 !. 3.18 ---90 ·0:41 Io.61 !0.82 j 1.02 l 1.23; 1.43 ! 1.63 l 1.84 i 2.04 12.25 l 2.45 :·:~:~-J20 §:i4'Jo:5mfssro.esfJ02]T.1 il [1 .36. j'f.53. r,. 70 l) .87 f2.04 ..
__ 1sc, __ ll,?9 Jll.4_4L0,59j_(),73J..Cl.88U.03L.1_.1a .J1.32 L 1.47 u.e2 ;_1.?6
180 0.26 J0.39f0.5210.65i0.78l0.9111.04 ! 1.18 ! 1.31 i 1.44 i 1.57 -·--······· .... ..... .. ... . ... ... ·•·· ., ....... ,. . •.• .. ·-j'··.. . ........ . .. , ..... •-.. , ... . 240 0.22 10.33!0.4310.54i0.6510.76! 0.87 , 0.98 , LOS : .t.19 i 1.30 ·---. ·o:r!i ro:2sfo:381o.41 lo.ss; o.661"0.15 ; o.as i o.94 : 1.03 Tf 1a .......... 360 · o: 11 To.2sio.33 ni:42 re.so i'o.sa f'o.si 1 ... o.7s l ... o:i34-:-o.92 T1.oo
FIGURE
I s-1 I
f' --~ .'.> ff L
c C
Sain Dieso County Hydrology Manual
Date: June 2003
1· a bl.e 3-1
Section:
P~!!,e,:
RUNOFt"' CO&FFlC.'1IE!\'T$ FOR URB,AN A .. REAS
Land Use
NRCS Ekments
UndiswmeidNatural Terra.in (Naturat)
Low Den:si.ty Resir.lentinl (I.DR)
Low Dm;ity Resid~ntia.1 (LDR)
L-ow Density Residentia.l (LDR)
Mediwn Den.'>ity Resjdential (tvIDR)
b.,fediwn Density Rcsidc:ntial (!\,IDR)
M.edium De~[ty Residential (r.llDR.)
Medium Den.s~t)· Residential (ll.IDR)
High De1uil'J Ref>idential (HDR)
High Demdty Ref>idential (HDR)
Ca.,mm ercialllndustrial (N. Com)
Commt'rcialflndu:slrial (G. Com)
Commm-cia1'1ndustrial (O.P. Cow)
Commerciali1ndustrial (Limited
Commerci-all1ndustrial (General
Couty F.lerm:mu.
Penmitl'.!mt Open ~pace
ResidentiaJ. i .0 DUlA or len
Re!iidentinl, 2, 0 orJe1>,'i,
Res:identia~ 2.9 DUiA or Jess
Resj;de!ntia!I. 4.3 DUlA O!l' .Jess
Res~dentiall, 7.3 DU/A or less
Res:ide:ntial, 10.9 DU/A or ~ss
Residen1ia3, 14.5 DU/A or Jiess
Res:identia~, 24.0 DU/A or less
Residentiall. 43.0 DU/A or ltISS
Neighoorht0od Conlim.er.c:ial
General C01nnltrclll'll
OfficG f'rofesionalJ'Commercial
Limited lnduxtriai
General Iudustrial
JO
20
25
30
40
45
so
65
80
80
85
90
90
95
.A
o.
0,34
0.38
0.41
0.48
0.52
0.55
0.66
0.16
0.16
0. 80
0.83
0,83
0.87
Runoff Coeffic:ient
B
(),2,5
OAJ
OA5
0.51
054
0.58
(J67
0.77
rxn
OJ!O
0.84
0.84
0.87
1 -=~=1 c::::1
C
0.3Q
Q,36
C~.42
0.45
0.48
0.54
0.57
0.60
0.69
0.78
o.·,s
0.81
0.84
0.84
run
3
6of26
0.35
OA6
OA9
052
0.57
0.60
0.63
0.71
0.79
0.79
0.82
0 .. 85
0.85
o.:s1
*The values associated with 0% impei:viou.1 may be u:ied for direct calculm.ion of th.e coefficient ar1 dest::ribed in Sectioo 3. B .2 ('represenll.in,g the pervio!k"i runPfl
coeffidem. Cp. for the soil type),. or areas that will remain undimirbed in perpetuity. Justifi.cfrtion must be given tlmtthe :mm will remein mtural fbreve,r (e.g., the area
is located .in C1el/'dand National
DUlA = ~·illing units per a.ere
Nl(CS "'National Resources Ooni;encr11tion SeIVire
3--6
100 I l,Li ] ;
z 0 -w u z '<:t I-22 ~ w w 0::: :::J 0 0 a: ~ ~
E:XA.MF!lE:
Given: WamrmuF.se, Di£ltanoo (D) ·!;;l Feet
Slope (s) ""1
Runoff Coefficient (C) ::::;; ,0,41
Overland Flow Ti:me (1'.) ::: 9,5, MinutElllli
SOURCE: A1rpo,rt Oralna!,ile, Federal Avtalion Admlnislratiion, 1.965
T:::. 1.S{1.HJ} Vo
''It,~ ,, w:s
.. ~
w ~ F
~ 0 ...I IJ,.'
10 o 5 p;::
·~
0
FIGURE
Rational Formula • Overland Time ,of Flow Homograph 3 .• 3
" ~ r L -·
San Diego Cnunty Hydrrology Manual
Date: June 2003
Section:
Page:
3
12 of 26
Note that the Initial Time of Concentration should be reflective of the ieneral land-use at the
upstrean1 end of a drainage basin. A s.ingle lot with an area of t,11m or less acres does not have
a significant effe,ct where the drainage basin area is 20 to 600 acres.
Table 3-2 provides: limits of the length {Maximum Length (LM)) of sheet flow to be used in
hydrology :studies. b1itial T, va]ues based on average C va1ues f~r fbe Land Use EJe1:nent are
also included. 'These values ca11 be used in planning and design a.pplica:tions as described
below, Exceptions may be approved by tile ''Regulating Ageni:ryn ,~then :submitted with a
detailed study.
Tahle3-2
MAXU\fUM OV.ERLAND FLOW LENGTH (LM)
& INITIAL TIME OF CONCENTRATION .~~~--~~--,-~~~-,-
Element* DU/ 5% l 't» l.O'H•
Acre LM T,
Natura] 70 100 6.9
LDR 100
LDR 2.9
75 4.9
43 50 75 3,.8
50 75 3.8
G. Com 4.7 4.1 75 3.6 85 3.4
O.PJCom 50 4"' ·"' .3.7 70 3.1 80 2.9 2.2
Limited l 50 4.2 3.7 70 I 3.1 80 2.9 2.2
General I. 50 3.7 3.2 70 2.7 80 :2.6 1.9
*See Table 3~1 for 1nore detailed description
3-12
ml I • ~
~ I I -
~ I .I ~
~ I ' ~
ri u
r'l ~
.6.E
feet
3H
20
u,
AE
T,c:
Tc
L
~E
=
;;:
=:
='
EQUATION (!11~)0.3J5
Ttme of ,cc,oceDlr•tion (houni:j
Watercourse Distar1ce {mile$}
Cha~e in elevation .along
effective slope tine (See figure 3-!HfNQ
L Mlln r:•et
Tc
Hours! Minutes
1 00
so
.ill)
l!lO
21)!
1$
3000 16
. ' 0,5
L
' 14 ' ' ' , 10
,: .. ;9
Tc
8
1
6
N9mog!raph forJ>et•mlna:tlon ·01
Time of ConC$nfrafion (f ct or Travel lime. (liJ for Na1uro1 watershed, 3-4
Wai:ershed Divide ·
I 6E
! .I I
D
(Wahlnlhtt
Computation of Effective Slope for Natural Watersheds
~ I '
FIGURE -l
-.5 I _____ ,J
~-
ts
16
14
12
10·
9
8
'l
6
s
4
!. ~ 0 3 (ij
'W l!1 00 u 2 'if!. UI
1;,(j:
1\;t;
r" ...
1',(l
0.9
o.a
0.7
OJ;,
0.6
n 0.4
EXAMPUa:
Gl',en: Q :ii 10 S" :U%
C!llmt giwi: Di!plll ·::: il,4, \!tltH:lty ::: r.p&,
Gutter and Roadway Discharge -Velocity Chart
RESmENT!At STREET
ONE SID£ ONtY
FIGURE
3-6
ilJll
lJ(J!:]
ll001
O'OtllJ!i
1Hl!lQ13
IJ.D001
rlOlllli1i
Iltll'.I0:5
DOOM
tlJJcma
EQUATION:V:u 1.49 R1':i s111
n
l'.U)
s,
J('
2n
GENERAL SOLUTION
~· D
{):]
I !i"ffi!'I
ILIJ&
(1.10
~
o.~.
~ -(J.::J i ! -
;[J.i ~ ~
FIGURE ~
l3" 7' SIT N
l3" 7'44"N
3: ;,,;
!2
~
i-
I
i
;
i
i
3: ;,,;
!2
~
411140
471140
N
A
Hydrologic Soil Group-San Diego County Area, California
(Hydrologic Soil Group)
471170 471200 471230 4712(,0 471290 471320
471170 471200 471230 471260 471290 411320
Map Salle: 1: 1,340 if priud a, A land5Clpe (11" X 8.5") sheet. ------======-------------============>Metes 0 ~ ~ 00 ~ -------=======-------------===========~Feet 0 50 100 200 300
Map pojectjon: \'Rb MertalDr Caner CDOlt1ilates: WGS84 Edge tics: UTM Zone 1 lN WGS84
USDA Natural Resources Web Soil Survey
;ope~· 4 oil S --CoC::--:Stion --au
471350 47139J
471350 47131ll
3: ~ !!!
~
411410
L ~ . .ce.a..-1 l3"7'S1TN
471410
3: ~
!2
~
~
I
i
;
i
i
10/23/2014
of 4,
l3" 7'44"N
-
=
--LIi c-.1 CIIII
Hydrologic Soil Group-San Diego County Area, California
(Hydrologic Soil Group) - - - -
MAP LEGEND MAP INFORMATION
Area of lnternt (AOI) D Area of Interest (AOI)
Solla
Soll Rating Polygons
D A
D AID
DB
D BID
D C
0 C/D
DD
D Not rated or not available
Soll Rating LlnH
A
.-, AID
.-, B
,_, BID
.-, C
CID
D
--Not rated or not available
Soll Rating Points
• A
• AID
• B
• BID
Natural Resources
Conservation Service
• C
• CID
• D
a Not rated or not available
Water Features
Streams and Canals
Transportation
+++ Rails
,,...,, Interstate Highways
_..,i, US Routes
Major Roads
Local Roads
Background
• Aerial Photography
Web Soil Survey
National Cooperative Soil Survey
The soil surveys that comprise your AOI were mapped at 1 :24,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil line
placement. The maps do not show the small areas of contrasting
soils that could have been shown at a more detailed scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more accurate
calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of
the version date(s) listed below .
Soil Survey Area:
Survey Area Data:
San Diego County Area, California
Version 8, Sep 17, 2014
Soil map units are labeled (as space allows) for map scales 1 :50,000
or larger.
Date(s) aerial images were photographed: May 3, 2010-Jun 19,
2010
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor shifting
of map unit boundaries may be evident.
10/23/2014
Page 2 of 4
IC:I -
' bad
Hydrologic Soil Group-San Diego County Area, California Hydrologic Soil Group
Hydrologic Soil Group
Hydrologic Soil Group:-San Diego County Area, California
Map unit symbol Map unit name Rating Acres inAOI Percent of AOI
hbd8 Las Flores loamy fine D 0.8
sand, 2 to 9 percent
slopes
hbdd Las Flores loamy fine D 1.4
sand, 15 to 30 percent
slopes
hbdz Marina loamy coarse B 1.9
sand, 2 to 9 percent
slopes
Totals for Area of Interest 4.1
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (AID, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water table, soils that have a claypan or clay layer
at or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (AID, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
USDA Natural Resources
'"""""" Conservation Service
Web Soil Survey
National Cooperative Soil Survey
20.0%
33.4%
46.6%
100.0%
10/23/2014
Page 3 of4
Hydrologic Soil Group-San Diego County Area, California
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
USDA Natural Resources ~ Conservation Service
Web Soil Survey
National Cooperative Soil Survey
u
(~1
lcc!icl
10/23/2014
Page 4 of4 ~J
r=:w'j
I
I~
\~:
Attachment C
Pre-Development Hydrologic Map
Post-Development Hydrologic Map
.' .•. A "' ... ~ ".
-'
· .... ~. ·: ..
\
\
\
\
\
\ \
\ \
\ \
\ \
\
.·--\
~e-A
oe-clb
A=.452 AC
POC "A"
PRE-DEVELOPMENT=.80 CFS
POST-DEVELOPEMENT=. 75
Q100
Q100 CFS A= .324 AC k---1/',-L--'
I
I
I
\
I
I 1 I •
-
' NEIGHBORHOOD COMMERCIAL C \
FACTOR IS USED TO 8£ CONSISTENT
/YITH APPRO/lO HYDROLOGY ANO
HYDRAULIC STUDY FOR CARLSBAD
RANCH, PLANNING AREA 5-RESORT
SITE, Pf/ASE I, PEl?fORMEO BY EXCcl
£NC/NEER/NC,
DATED AUGUST 23, 2005
\
\
\
I
\
I
\
I
\
Q100
Q100
/
\
262
I
I
I
I
*' /v I
-/ ;:,,. --,f
\p="li...l 2~J ACRES
POC
87% IMPERVIOUS
100% SOIL TYPE B
"B"
I
I
I ,,
PRE-DELOPMENT=5.09
POST-DETENTION=4.41
-~ 'sf , ' (
/
/
(
I
I
/
/
/
CFS
,
A=.965
CFS A=.955
~
AC
AC
POC "D"
Q100 PRE-DEVELOPMENT=3.92 CFS
Q100 POST-DETENTION=3.86 CFS
A=l.960 AC
A=l.688 AC
I
I
I
\
\
I
I
\
\
I
I
I
I
.,-,
I
/
---
POST-LJE/P£0PN.BHT
HYLJ../?0£00/C
.MAP
\
I
\ /
:(
;\ '~ \
LOT.P LJ.En?LO.P.A:D?NT
CA./?£SDA4 CA
' ~ I~,
/
'CALE t '=JO•
6() 9() 120
I
•
'' ...
I
\
\
I
. ·, ... ·. -
,;·
\
' I
I ,./
/
/
/
7 /__.., .. .,-'
@ OUTFALL "D"
168 Q100=3.92 CFS
A=l.960 AC
SUMMARY TABLE
PR£-0£VEZOP£M£NT POST 0£VEZOP£M£NT UN-MIT/CA!EO POSf::lJEVEZOPEI.IENT MIT/CA TEO
OUTFALL (}!00 (CFs) AREA (ACREs) Tc (MIN) 0100 (CFS) AREA (ACRES) Tc (MIN) 0100 (CFS) AREA (ACR£s,i--Tc (MIN)
+--c:c:-:---,l---=--1---:::c::::--+---:·-·-·-· -----+--~~
A ----+--0.:c.. :.:79'------1--·'-'4.~52=--__,1--__,8.,-9,.-,4_-+-_0. {<!__1--__,· J._,4.-cc9cc---+--7.::. J.-::'Jcc----+-0. 6. __ '8_-+ __ 0._. J._4._9 _____ 7. ,J._'J __
3.40 6.J4 !./97 5.J8 4.0J !.!97 !!.00 5.09 .965
.924
B
C 2.65 !2.72 2.5J .5!7 2.45 2.5J 0.517 2.45 ---....J.-----··· 0 J.92 !.960 4.66 8.26 2.J20 4.57 J.75 2.320 !!.00 -1--''='-=.,---r--=c=c::=:-+-=-----+--='-':......-1--------------TOTAL 12.45 4.J01 17.81 4.J8J to.99 4.J8J L.....c.=..c..=._..L_....C.Cc.=_~~~-~---·~-~
.P..RB-.LJEVE.£0.P.MEH.T
HY.LJ/?0£00/C
AfA.P
LOT .9 .0..IJ'fP£.0.P.AfB.Nr
CA.i.£SBA4 CA
SCALE !'=JO'
0 J0~~~60 90
11
Jt?O
i
I
I I
lclJ
,-,
LJ
Attachment D
CivilD Pre-Development Hydrology Calculations
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 05/09/15
13070 WESTIN LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
PRE-DEVELOPMENT OUTFALL A
FILE: 13070PREA.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.500
P6/P24 = 57.8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 15.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1. 000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[LOW DENSITY RESIDENTIAL
(1. 0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.320
Initial subarea total flow distance 85.000(Ft.)
Highest elevation= 265.000(Ft.)
Lowest elevation= 260.000(Ft.)
Elevation difference= 5.000(Ft.) Slope= 5.882 %
Top of Initial Area Slope adjusted by User to 4.545 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 4.54 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration 8.48 minutes
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC= [l.8*(1.1-0.3200)*( 100.000A.5)/( 4.545A(l/3)]= 8.48
Rainfall intensity (I) = 4.874(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.320
Subarea runoff= 0.131(CFS)
Total initial stream area= 0.084(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 16.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.255(Ft.), Average velocity=
******* Irregular Channel Data***********
0.418(CFS)
4.296(Ft/s)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL A
Page 1 of 2
Information entered for subchannel number 1 :
Point number
1
•x• coordinate
0.00
•y• coordinate
1. 00
2 1.50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 0.418(CFS)
flow top width= 0.764(Ft.)
velocity= 4.296(Ft/s)
area= 0.097(Sq.Ft)
Froude number= 2.121
Upstream point elevation= 260.000(Ft.)
Downstream point elevation 242.000(Ft.)
Flow length= 120.000(Ft.)
Travel time 0.47 min.
Time of concentration= 8.94 min.
Depth of flow= 0.255(Ft.)
Average velocity= 4.296(Ft/s)
Total irregular channel flow= 0.418(CFS)
Irregular channel normal depth above invert elev. 0.255(Ft.)
Average velocity of channel(s) 4.296(Ft/s)
Adding area flow to channel
Rainfall intensity (I)= 4.709(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai= 0.100
Sub-Area C Value= 0.386
0.270
0.000
0.730
Rainfall intensity= 4.709(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.373 CA= 0.169
Subarea runoff= 0.664(CFS) for 0.368(Ac.)
Total runoff= 0.795(CFS) Total area=
Depth of flow= 0.324(Ft.), Average velocity
End of computations, total study area=
0.452(Ac.)
5.044(Ft/s)
0.452 (Ac.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL A
Page2 of2
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 05/09/15
13070 WESTIN LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
PRE-DEVELOPMENT OUTFALL B
FILE:13070PREB.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) =
24 hour precipitation(inches) =
P6/P24 = 57.8%
2.600
4.500
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1. 000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[COMMERCIAL area type
(Neighborhod Commercial )
Impervious value, Ai = 0.800
Sub-Area C Value = 0.770
Initial subarea total flow distance 80.000(Ft.)
Highest elevation= 265.000(Ft.)
Lowest elevation= 242.000(Ft.)
Elevation difference 23.000(Ft.) Slope= 28.750 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 28.75 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7700)*( 100.000A.5)/(
1.94 minutes
slope (1/3) l
28.750A(l/3)]=
Calculated TC of 1.939 minutes is less than 5 minutes,
1. 94
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.770
Subarea runoff= 0.306(CFS)
Total initial stream area= 0. 058 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 17.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.461(Ft.), Average velocity=
******* Irregular Channel Data***********
2.260(CFS)
7.090(Ft/s)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL B
Page 1 of4
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.013
Sub-Channel flow 2.260(CFS)
flow top width= 1.383(Ft.)
velocity= 7.090(Ft/s)
area= 0.319(Sq.Ft)
Froude number= 2.602
Upstream point elevation=
Downstream point elevation
Flow length= 345.000(Ft.)
Travel time 0.81 min.
242.000(Ft.)
230.000(Ft.)
Time of concentration= 2.75 min.
Depth of flow= 0.461(Ft.)
Average velocity= 7.090(Ft/s)
Total irregular channel flow= 2.260(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 7.090(Ft/s)
Adding area flow to channel
0.461(Ft.)
Calculated TC of 2.750 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.770 CA= 0.615
Subarea runoff= 3.909(CFS) for 0.74l(Ac.)
Total runoff= 4.215(CFS) Total area=
Depth of flow= 0.582(Ft.), Average velocity=
0.799(Ac.)
8.285(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.799(Ac.)
Runoff from this stream 4.215(CFS)
Time of concentration
Rainfall intensity=
2.75 min.
6.850(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 20.000 to Point/Station 18.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
A
B
C
D
0.000
1.000
0.000
0.000
Initial subarea total flow distance
Highest elevation= 259.000(Ft.)
Lowest elevation= 241.000(Ft.)
82.000(Ft.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL B
Page 2 of4
"1ll i '
~ i lilii!l
Elevation difference 18.000(Ft.) Slope= 21.951 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 21.95 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7700)*( 100.000A.5)/(
2.12 minutes
slope (1/3) l
21.951A(l/3)]=
Calculated TC of 2.121 minutes is less than 5 minutes,
2.12
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.770
Subarea runoff= 0.253(CFS)
Total initial stream area= 0.048(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 19.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.287(Ft.), Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1.00
2
3
1. 50
3.00
Manning's 'N' friction factor 0.013
Sub-Channel flow 0.564(CFS)
0.00
1. 00
flow top width= 0.860(Ft.)
velocity= 4.575(Ft/s)
area= 0.123(Sq.Ft)
Froude number= 2.129
Upstream point elevation=
Downstream point elevation
Flow length= 110.000(Ft.)
Travel time 0.40 min.
241.000(Ft.)
238.000(Ft.)
Time of concentration= 2.52 min.
Depth of flow= 0.287(Ft.)
Average velocity= 4.575(Ft/s)
Total irregular channel flow= 0.564(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 4.575(Ft/s)
Adding area flow to channel
0.564(CFS)
4.575(Ft/s)
0.287(Ft.)
Calculated TC of 2.522 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
0.000
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.770 CA= 0.128
Subarea runoff= 0.622(CFS) for 0.118(Ac.)
Total runoff= 0.876(CFS) Total area=
Depth of flow= 0.338(Ft.), Average velocity=
0.166(Ac.)
5.106(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 19.000 to Point/Station 17.000
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL B
Page 3 of4
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.353(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
2
3
'X' coordinate
0.00
1. 50
3.00
'Y' coordinate
1. 00
0.00
1. 00
Manning's 'N' friction factor 0.016
Sub-Channel flow 0.876(CFS)
flow top width= 1.060(Ft.)
velocity= 4.675(Ft/s)
area= 0.187(Sq.Ft)
Froude number= 1.960
Upstream point elevation=
Downstream point elevation
Flow length= 245.000(Ft.)
Travel time 0.87 min.
238.000(Ft.)
230.000(Ft.)
Time of concentration= 3.40 min.
Depth of flow= 0.353(Ft.)
Average velocity= 4.675(Ft/s)
Total irregular channel flow= 0.876(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 4.675(Ft/s)
4.675(Ft/s)
0.353(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.166(Ac.)
Runoff from this stream 0.876(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
3.40 min.
6.850(In/Hr)
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 4.215 2.75 6.850
2 0.876 3.40 6.850
Qmax(l)
1. 000 * 1.000 * 4.215) +
1. 000 * 0.810 * 0.876) + 4.924
Qmax(2)
1. 000 * 1.000 * 4.215) +
1.000 * 1.000 * 0.876) + 5.090
Total of 2 streams to confluence:
Flow rates before confluence point:
4.215 0.876
Maximum flow rates at confluence using above data:
4.924 5.090
Area of streams before confluence:
0.799 0.166
Results of confluence:
Total flow rate= 5.090(CFS)
Time of concentration= 3.396 min.
Effective stream area after confluence
End of computations, total study area=
0.965(Ac.)
0. 965 (Ac.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL B
Page 4 of 4
n San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 05/09/15
13070 WESTIN LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
PRE-DEVELOPMENT OUTFALL c
FILE:13070PREc.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.500
P6/P24 = 57.8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai= 0.100
Sub-Area C Value= 0.320
0.000
1. 000
0.000
0.000
Initial subarea total flow distance 65.000(Ft.)
Highest elevation= 263.000(Ft.)
Lowest elevation= 262.000(Ft.)
Elevation difference 1.000(Ft.) Slope= 1.538 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85.00 (Ft)
for the top area slope value of 1.54 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration 11.21 minutes
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC= [1.8*(1.1-0.3200)*( 85.000A.5)/( 1.538A(l/3)]= 11.21
Rainfall intensity (I) = 4.069(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.320
Subarea runoff= 0.046(CFS)
Total initial stream area= 0.035(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.459(Ft.), Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
1.297(CFS)
4.097(Ft/s)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL C
Page 1 of2
Sub-Channel flow l.297(CFS)
flow top width= 1.378(Ft.)
velocity= 4.097(Ft/s)
area= 0.317(Sq.Ft)
Froude number= 1.507
Upstream point elevation=
Downstream point elevation
Flow length= 370.000(Ft.)
Travel time 1.51 min.
262.000(Ft.)
239.000(Ft.)
Time of concentration= 12.72 min.
Depth of flow= 0.459(Ft.)
Average velocity= 4.097(Ft/s)
Total irregular channel flow= 1.297(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 4.097(Ft/s)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.781
3.751(In/Hr) for a
0.000
0.470
0.000
0.530
0.459(Ft.)
100.0 year storm
Rainfall intensity= 3.751(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.763 CA= 0.705
Subarea runoff= 2.600(CFS) for 0.889(Ac.)
Total runoff= 2.645(CFS) Total area=
Depth of flow= 0.600(Ft.), Average velocity
End of computations, total study area=
0.924(Ac.)
4.897(Ft/s)
0.924 (Ac.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL C
Page 2 of2
~ I,
L..J
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 05/11/15
13070 WESTIN LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
PRE-DEVELOPMENT OUTFALL D
FILE: 13070PRED.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.500
P6/P24 = 57.8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1. 000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[INDUSTRIAL area type
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value= 0.870
Initial subarea total flow distance 72.000(Ft.)
Highest elevation= 262.000(Ft.)
Lowest elevation= 261.000(Ft.)
Elevation difference= 1.000(Ft.} Slope= 1.389 %
Top of Initial Area Slope adjusted by User to 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.00 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [1.8*(1.1-0.8700)*( 60.000A.5)/(
3.21 minutes
slopeA (1/3)]
1.000A (1/3) ]=
Calculated TC of 3.207 minutes is less than 5 minutes,
3.21
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff= 0.679(CFS)
Total initial stream area= 0 .114 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 9.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation=
Downstream point/station elevation
257.SOO(Ft.)
203.000(Ft.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 1 of 6
Pipe length 300.00(Ft.) Slope= 0.1817 Manning's N 0.013
No. of pipes 1 Required pipe flow 0.679(CFS)
Nearest computed pipe diameter 6.00(In.)
Calculated individual pipe flow 0.679(CFS)
Normal flow depth in pipe= 2.19(In.)
Flow top width inside pipe= 5.78(In.)
Critical Depth= 5.00(In.)
Pipe flow velocity= 10.49(Ft/s)
Travel time through pipe= 0.48 min.
Time of concentration (TC) = 3.68 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 10.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.252(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1.50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 0.679(CFS)
flow top width= 0.757(Ft.)
velocity= 7.115(Ft/s)
area= 0.095(Sq.Ft)
Froude number= 3.530
Upstream point elevation=
Downstream point elevation
Flow length= 84.000(Ft.)
Travel time 0.20 min.
203.000(Ft.)
168.000(Ft.)
Time of concentration= 3.88 min.
Depth of flow= 0.252(Ft.)
Average velocity= 7.115(Ft/s)
Total irregular channel flow= 0.679(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 7.115(Ft/s)
7.115(Ft/s)
0.252(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 10.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.114(Ac.)
Runoff from this stream 0.679(CFS)
Time of concentration
Rainfall intensity=
3.88 min.
6.850(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.200
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.800
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value= 0.392
Initial subarea total flow distance
Highest elevation= 263.000(Ft.)
Lowest elevation= 257.000(Ft.)
Elevation difference= 6.000(Ft.)
197.000(Ft.)
Slope 3.046 %
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 2 of6
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 3.05 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration 8.79 minutes
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3))
TC= [l.8*(1.1-0.3920)*( 100.000A.5)/( 3.046A(l/3)]= 8.79
Rainfall intensity (I) = 4.760(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.392
Subarea runoff= l.935(CFS)
Total initial stream area= 1.037(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation= 252.500(Ft.)
Downstream point/station elevation 220.000(Ft.)
Pipe length 176.00(Ft.) Slope 0.1847 Manning's N 0.013
No. of pipes= 1 Required pipe flow l.935(CFS)
Nearest computed pipe diameter 6.00(In.)
Calculated individual pipe flow 1.935(CFS)
Normal flow depth in pipe= 4.07(In.)
Flow top width inside pipe= 5.61(In.)
Critical depth could not be calculated.
Pipe flow velocity= 13.65(Ft/s)
Travel time through pipe 0.21 min.
Time of concentration (TC) = 9.01 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 10.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.396(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number •x• coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 1.935(CFS)
flow top width= l.189(Ft.)
velocity= 8.213(Ft/s)
area= 0.236(Sq.Ft)
Froude number= 3.251
Upstream point elevation=
Downstream point elevation
Flow length= 171.000(Ft.)
Travel time 0.35 min.
220.000(Ft.)
168.000(Ft.)
Time of concentration= 9.35 min.
Depth of flow= 0.396(Ft.)
Average velocity= 8.213(Ft/s)
Total irregular channel flow= 1.935(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 8.213(Ft/s)
8.213(Ft/s)
0.396(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/StatioD 10.000 to Point/Station 10.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area l.037(Ac.)
Runoff from this stream= l.935(CFS)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 3 of 6
Time of concentration
Rainfall intensity=
9.35 min.
4.574(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21.000 to Point/Station 22.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai= 0.100
Sub-Area C Value= 0.410
0.000
0.000
0.000
1. 000
Initial subarea total flow distance 65.000(Ft.)
Highest elevation= 258.000(Ft.)
Lowest elevation= 236.000(Ft.)
Elevation difference 22.000(Ft.) Slope= 33.846 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 33.85 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [1.8*(1.1-0.4100)*( 100.000A.5)/(
3.84 minutes
slopeA(l/3)]
33.846A(l/3)]=
Calculated TC of 3.840 minutes is less than 5 minutes,
3.84
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.410
Subarea runoff= 0.236(CFS)
Total initial stream area= 0. 084 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 23.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.401(Ft.), Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1.00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 1.254(CFS)
flow top width= 1.203(Ft.)
velocity= 5.196(Ft/s)
area= 0.241(Sq.Ft)
Froude number= 2.045
Upstream point elevation=
Downstream point elevation
Flow length= 167.000(Ft.)
Travel time 0.54 min.
236.000(Ft.)
216.000(Ft.)
Time of concentration= 4.38 min.
Depth of flow= 0.401(Ft.)
Average velocity= 5.196(Ft/s)
Total irregular channel flow= 1.254(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 5.196(Ft/s)
Adding area flow to channel
1. 254 (CFS)
5.196(Ft/s)
0.401(Ft.)
Calculated TC of 4.375 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 4 of 6
Ld
~
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1. 000
[LOW DENSITY RESIDENTIAL
(1. 0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.410
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.410 CA= 0.332
Subarea runoff=
Total runoff=
Depth of flow=
2.036(CFS) for 0.725(Ac.)
2.272(CFS) Total area=
0.501(Ft.), Average velocity=
0.809(Ac.)
6.028(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23.000 to Point/Station 10.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.417(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
2
3
'X' coordinate
0.00
1. 50
3.00
'Y' coordinate
1. 00
0.00
1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 2.272(CFS)
flow top width= 1.25l(Ft.)
velocity= 8.715(Ft/s)
area= 0.261(Sq.Ft)
Froude number= 3.364
Upstream point elevation=
Downstream point elevation
Flow length= 150.000(Ft.)
Travel time 0.29 min.
216. 000 (Ft.)
168.000(Ft.)
Time of concentration= 4.66 min.
Depth of flow= 0.417(Ft.)
Average velocity= 8.715(Ft/s)
Total irregular channel flow= 2.272(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 8.715(Ft/s)
8.715(Ft/s)
0.417(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 10.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 3
Stream flow area= 0.809(Ac.)
Runoff from this stream 2.272(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
4.66 min.
6.850(In/Hr)
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 0.679 3.88 6.850
2 1.935 9.35 4.574
3 2 .272 4.66 6.850
Qmax(l)
1. 000 * 1. 000 * 0.679) +
1.000 * 0.415 * 1.935) +
1. 000 * 0.832 * 2 .272) + 3.373
Qmax(2)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 5 of6
0.668 * 1.000 * 0.679) +
1.000 * 1.000 * 1.935) +
0.668 * 1. 000 * 2.272) + 3.906
Qmax(3)
1. 000 * 1.000 * 0.679) +
1. 000 * 0.498 * 1.935) +
1.000 * 1. 000 * 2 .272) + 3. 916
Total of 3 streams to confluence:
Flow rates before confluence point:
0.679 1.935 2.272
Maximum flow rates at confluence using above data:
3.373 3.906 3.916
Area of streams before confluence:
0.114 1.037 0.809
Results of confluence:
Total flow rate= 3.916(CFS)
Time of concentration= 4.662 min.
Effective stream area after confluence
End of computations, total study area=
1.960(Ac.)
1. 960 (Ac.)
13070 LOT 9 DEVELOPMENT
PRE-DEVELOPMENT OUTFALL D
Page 6 of6
M w
~ ; I
! j l..iii
~ I
: I ~
' u
Attachment E
CivilD Post-Development Hydrology Calculations
' ~
r,
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/19/16
13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
POST-DEVELOPMENT UNMITIGATED OUTFALL A
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.500
24 hour precipitation(inches) = 4.500
P6/P24 = 55.6%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 16.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai= 0.100
Sub-Area C Value= 0.395
0.000
0.170
0.000
0.830
Initial subarea total flow distance 138.000(Ft.)
Highest elevation= 263.000(Ft.)
Lowest elevation= 242.000(Ft.)
Elevation difference 21.000(Ft.) Slope= 15.217 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 15.22 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration 5.12 minutes
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC= [l.8*(1.1-0.3947)*( 100.000A.5)/( 15.217A(l/3)]= 5.12
The initial area total distance of 138.00 (Ft.) entered leaves a
remaining distance of 38.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.27 minutes
for a distance of 38.00 (Ft.) and a slope of 15.22 %
with an elevation difference of 5.78(Ft.) from the end of the top area
Tt = [ll.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr)
13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
POST-DEVELOPMENT UNMITIGATED OUTFALL A
Page 1 of 2
0.265 Minutes
Tt=[(ll.9*0.0072A3)/( 5.78)]A.385= 0.27
Total initial area Ti 5.12 minutes from Figure 3-3 formula plus
0.27 minutes from the Figure 3-4 formula 5.39 minutes
Rainfall intensity (I) = 6.276(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.395
Subarea runoff= 0.503(CFS)
Total initial stream area= 0.203 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 16.000
**** SUBAREA FLOW ADDITION****
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai= 0.100
Sub-Area C Value= 0.320
6.276(In/Hr)
0.000
1. 000
0.000
0.000
Time of concentration= 5.39 min.
for a 100.0 year storm
Rainfall intensity= 6.276(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.367 CA= 0.119
Subarea runoff= 0.243(CFS) for 0.12l(Ac.)
Total runoff= 0.746(CFS) Total area
End of computations, total study area=
13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
POST-DEVELOPMENT UNMITIGATED OUTFALL A
0. 324 (Ac.)
0.324 (Ac.)
Page 2 of 2
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/25/16
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
100 YR STORM EVENT
FILE:13070POSTB.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.500
P6/P24 = 57.8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 19.000 to Point/Station 18.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[COMMERCIAL area type
{Neighborhod Commercial )
Impervious value, Ai = 0.800
Sub-Area C Value= 0.770
Initial subarea total flow distance 80.000{Ft.)
Highest elevation= 265.000{Ft.)
Lowest elevation= 242.000{Ft.)
Elevation difference 23.000{Ft.) Slope= 28.750 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 28.75 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance{Ft.)A.5)/(%
TC= [l.8*(1.1-0.7700)*{ 100.000A.5)/(
1.94 minutes
slopeA (1/3)]
28.750A(l/3)]=
Calculated TC of 1.939 minutes is less than 5 minutes,
1. 94
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area {Q=KCIA) is C = 0.770
Subarea runoff= 0.375{CFS)
Total initial stream area= 0. 071 {Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 37.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.290{Ft.), Average velocity=
******* Irregular Channel Data***********
0.802{CFS)
6.344{Ft/s)
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
Page 1 of7
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.013
Sub-Channel flow 0.802(CFS)
flow top width= 0.871(Ft.)
velocity= 6.344(Ft/s)
area= 0.126(Sq.Ft)
Froude number= 2.935
Upstream point elevation=
Downstream point elevation
Flow length= 155.000(Ft.)
Travel time 0.41 min.
242.000(Ft.)
234. 000 (Ft.)
Time of concentration= 2.35 min.
Depth of flow= 0.290(Ft.)
Average velocity= 6.344(Ft/s)
Total irregular channel flow= 0.802(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 6.344(Ft/s)
Adding area flow to channel
0.290(Ft.)
Calculated TC of 2.346 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
1.000
0.000
0.000
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.770 CA= 0.179
0.855(CFS) for 0.162(Ac.) Subarea runoff=
Total runoff=
Depth of flow=
l.229(CFS) Total area=
0.34l(Ft.), Average velocity=
0. 233 (Ac.)
7.059(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 37.000 to Point/Station 37.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.233(Ac.)
Runoff from this stream l.229(CFS)
Time of concentration
Rainfall intensity=
2.35 min.
6.850(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23.000 to Point/Station 24.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
0.000
1.000
0.000
0.000
Initial subarea total flow distance
Highest elevation= 264.000(Ft.)
Lowest elevation= 260.590(Ft.)
Elevation difference= 3.410(Ft.)
178.000(Ft.)
Slope 1.916 %
13070 WESTIN LOT 9 DEVELOPMENT
POC -B POST-DEVELOPMENT NO DETENTION
Page 2 of 7
~ -.i
piillf,
I
Top of Initial Area Slope adjusted by User to 1.843 %
Bottom of Initial Area Slope adjusted by User to 1.843 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of 1.84 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration 4.20 minutes
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC= [l.8*(1.1-0.7700)*( 75.000A.5)/( l.843A(l/3)]= 4.20
The initial area total distance of 178.00 (Ft.) entered leaves a
remaining distance of 103.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.29 minutes
for a distance of 103.00 (Ft.) and a slope of 1.84 %
with an elevation difference of 1.90(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr)
1.289 Minutes
Tt=[(ll.9*0.0195A3)/( l.90)]A.385= 1.29
Total initial area Ti 4.20 minutes from Figure 3-3 formula plus
1.29 minutes from the Figure 3-4 formula 5.48 minutes
Rainfall intensity (I) = 6.453(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.770
Subarea runoff= 0.979(CFS)
Total initial stream area= 0. 197 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 24.000 to Point/Station 37.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 125.00(Ft.) Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.)
255.770(Ft.)
235.000(Ft.)
0.1662 Manning's N
0.979(CFS)
Calculated individual pipe flow 0.979(CFS)
Normal flow depth in pipe= 2.ll(In.)
Flow top width inside pipe= 9.14(In.)
Critical Depth= 4.98(In.)
Pipe flow velocity= 10.53(Ft/s)
Travel time through pipe= 0.20 min.
Time of concentration (TC) = 5.68 min.
0.013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 37.000 to Point/Station 37.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.197(Ac.)
Runoff from this stream 0.979(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
5.68 min.
6.308(In/Hr)
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 1.229 2.35 6.850
2 0. 979 5.68 6.308
Qmax (1)
1.000 * 1.000 * 1. 229) +
1.000 * 0.413 * 0. 979) + 1.633
Qmax(2)
0.921 * 1.000 * 1.229) +
1.000 * 1.000 * 0. 979) + 2 .111
Total of 2 streams to confluence:
Flow rates before confluence point:
1.229 0. 979
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
Page 3 of 7
Maximum flow rates at confluence using above data:
1.633 2.111
Area of streams before confluence:
0.233 0.197
Results of confluence:
Total flow rate= 2.lll(CFS)
Time of concentration 5.683 min.
Effective stream area after confluence 0. 430 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 37.000 to Point/Station 17.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.530(Ft.), Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
'X' coordinate
0.00
'Y' coordinate
1. 00
2 1.50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0. 013
Sub-Channel flow 2.859(CFS)
flow top width= l.590(Ft.)
velocity= 6.785(Ft/s)
area= 0.421(Sq.Ft)
Froude number= 2.323
Upstream point elevation= 235.000(Ft.)
Downstream point elevation 230.000(Ft.)
Flow length= 189.000(Ft.)
Travel time 0.46 min.
Time of concentration= 6.15 min.
Depth of flow= 0.530(Ft.)
Average velocity= 6.785(Ft/s)
Total irregular channel flow= 2.859(CFS)
2.859(CFS)
6. 785 (Ft/s)
Irregular channel normal depth above invert elev. 0.530(Ft.)
Average velocity of channel(s) 6.785(Ft/s)
Adding area flow to channel
Rainfall intensity (I) = 5.996(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
0.000
0.000
Rainfall intensity= 5.996(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.770 CA= 0.592
Subarea runoff=
Total runoff=
Depth of flow=
l.440(CFS) for 0.339(Ac.)
3.550(CFS) Total area=
0.575(Ft.), Average velocity=
0.769(Ac.)
7.163(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.769(Ac.)
Runoff from this stream 3.550(CFS)
Time of concentration
Rainfall intensity=
6.15 min.
5. 996 (In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
Page 4 of 7
~
I I ~
Process from Point/Station 20.000 to Point/Station
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
[COMMERCIAL area type
(Neighborhod Commercial )
Impervious value, Ai = 0.800
Sub-Area C Value = 0.770
Initial subarea total flow distance 92.000(Ft.)
Highest elevation= 263.000(Ft.)
Lowest elevation= 241.000(Ft.)
Elevation difference= 22.000(Ft.) Slope= 23.913 %
Top of Initial Area Slope adjusted by User to 23.171 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
21.000
for the top area slope value of 23.17 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7700)*( 100.000A.5)/(
2.08 minutes
slope (1/3) l
23.171A(l/3)]=
Calculated TC of 2.084 minutes is less than 5 minutes,
2.08
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.770
Subarea runoff= 0.364(CFS)
Total initial stream area= 0.069(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21.000 to Point/Station 22.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.306(Ft.), Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1.00
2 1.50 0.00
3 3.00 1.00
Manning's 'N' friction factor 0. 013
Sub-Channel flow 0. 673 (CFS)
flow top width= 0.919(Ft.)
velocity= 4.780(Ft/s)
area= 0.14l(Sq.Ft)
Froude number= 2.153
Upstream point elevation=
Downstream point elevation
Flow length= 110.000(Ft.)
Travel time 0.38 min.
2 4 1 . 0 0 0 ( Ft . )
238. 000 (Ft.)
Time of concentration= 2.47 min.
Depth of flow= 0.306(Ft.)
Average velocity= 4.780(Ft/s)
Total irregular channel flow= 0. 673 (CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 4.780(Ft/s)
Adding area flow to channel
0. 673 (CFS)
4. 780 (Ft/s)
0.306(Ft.)
Calculated TC of 2.467 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.970
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.030
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
Page 5 of7
[COMMERCIAL area type
{Neighborhod Commercial
Impervious value, Ai= 0.800
Sub-Area C Value= 0.771
Rainfall intensity= 6.850{In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
{Q=KCIA) is C = 0.770 CA= 0.143
0.618{CFS) for 0.117{Ac.) Subarea runoff=
Total runoff=
Depth of flow=
0.982{CFS) Total area=
0.353{Ft.), Average velocity=
0. 186 (Ac.)
5.254(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 17.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.175(Ft.), Average velocity 3.215{Ft/s)
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
2
3
'X' coordinate
0.00
0.10
10.00
'Y' coordinate
0.50
0.00
0.50
Manning's 'N' friction factor 0.016
Sub-Channel flow 0.982(CFS)
flow top width= 3.495{Ft.)
velocity= 3.215{Ft/s)
area= 0.305(Sq.Ft)
Froude number= 1.917
Upstream point elevation=
Downstream point elevation
Flow length= 245.000(Ft.)
Travel time 1.27 min.
238.000(Ft.)
230. 000 (Ft.)
Time of concentration= 3.74 min.
Depth of flow= 0.175(Ft.)
Average velocity= 3.215(Ft/s)
Total irregular channel flow= 0. 982 {CFS)
Irregular channel normal depth above invert elev. 0. 175 {Ft.)
Average velocity of channel(s) 3.215(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.186{Ac.)
Runoff from this stream 0.982{CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
3.74 min.
6.850{In/Hr)
Stream
No.
Flow rate
(CFS)
TC
{min)
Rainfall Intensity
(In/Hr)
1 3.550 6.15 5. 996
2 0.982 3.74 6.850
Qmax { 1)
1.000 * 1.000 * 3.550) +
0.875 * 1. 000 * 0. 982) + 4.410
Qmax(2)
1.000 * 0.608 * 3.550) +
1.000 * 1.000 * 0.982) + 3.140
Total of 2 streams to confluence:
Flow rates before confluence point:
3.550 0.982
13070 WESTIN LOT 9 DEVELOPMENT
POC - B POST-DEVELOPMENT NO DETENTION
Page 6 of 7
' ~
fll!ll I I 1.1 -
I ' '~<iii
Maximum flow rates at confluence using above data:
4.410 3.140
Area of streams before confluence:
0.769 0.186
Results of confluence:
Total flow rate= 4.410(CFS}
Time of concentration= 6.147 min.
Effective stream area after confluence
End of computations, total study area=
0. 955 (Ac.)
0. 955 (Ac.)
13070 WESTIN LOT 9 DEVELOPMENT
POC -B POST-DEVELOPMENT NO DETENTION
Page 7 of7
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/13/16
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
POST-DEVELOPMENT BEFORE DETENTION
FILE:13070POSTC.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.500
P6/P24 = 57.8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 27.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.030
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.970
[COMMERCIAL area type
(Neighborhod Commercial )
Impervious value, Ai = 0.800
Sub-Area C Value = 0.789
Initial subarea total flow distance 175.000(Ft.)
Highest elevation= 264.000(Ft.)
Lowest elevation= 259.000(Ft.)
Elevation difference= 5.000(Ft.) Slope= 2.857 %
Top of Initial Area Slope adjusted by User to 1.333 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.33 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7894)*( 60.000A.5)/(
3.93 minutes
slopeA (1/3) l
l.333A(l/3)]=
Calculated TC of 3.935 minutes is less than 5 minutes,
3.93
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I} = 6.850(In/Hr} for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.789
Subarea runoff= l.233(CFS)
Total initial stream area= 0.228(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 41.000 to Point/Station 2.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.374(Ft.), Average velocity=
l.849(CFS}
8.817(Ft/s)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 1 of 20
PT
/~
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.013
Sub-Channel flow l.849(CFS)
flow top width= l.122(Ft.)
velocity= 8.817(Ft/s)
area= 0.210(Sq.Ft)
Froude number= 3.593
Upstream point elevation=
Downstream point elevation
Flow length= 180.000(Ft.)
Travel time 0.34 min.
258.000(Ft.)
245.200(Ft.)
Time of concentration= 4.28 min.
Depth of flow= 0.374(Ft.)
Average velocity= 8.817(Ft/s)
Total irregular channel flow= l.849(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 8.817(Ft/s)
Adding area flow to channel
0.374(Ft.)
Calculated TC of 4.275 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.770
1.000
0.000
0.000
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.780 CA= 0.356
Subarea runoff=
Total runoff=
Depth of flow=
l.203(CFS) for 0.228(Ac.)
2.436(CFS) Total area=
0.415(Ft.), Average velocity=
0.456(Ac.)
9.445(Ft/s)
EXCEL ENGINEERING NOTE: This peakflow enters gravel storage underneath the pervious paver, calculated by using Rick Engineering
hydrograph program and then entered in the Civi13D Hydraflow Hydrograph program as follows:
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 2 of 20
Hyd. No. 11
Inflow to perv paver
Hydrograph type
Storm frequency
Time interval
= Manual
= 100 yrs
= 5min
Peak discharge
Time to peak
Hyd. volume
= 2.440 cfs
= 4.08 hrs
= 3,672 cuft
a {cts)
3.00
2.00
1.00
0.00 I
0.0 1.0 2.0
Inflow to perv paver
Hyd. No.11-100Year
,)
3.0 4.0 5.0 6.0
a (cfs)
3.00
2.00
1.00
0.00
7.0
Time{hrs)
-HydNo.11
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station e l evation
Pipe length 128.00(Ft .) Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.)
24 5 .200(Ft.)
237.750 (Ft .)
0.0582 Manning's N
2. 436 (CFS )
Calculated individual pipe flow 2.436(CFS)
Normal flow depth in pipe ~ 4 .37 (In.)
Flow top width inside pipe= 11.SS(In.)
Critical Depth= 8.02(In.)
Pipe flow velocity= 9.42(Ft/s )
Travel time through pipe = 0 .23 min.
Time of concentration (TC) = 4.50 min.
0. 013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal s tream number 1
Stream flow area= 0.456(Ac .)
Runoff from this stream 2.436(CFS)
Time of concentration
Rainfall intensity=
4.50 min.
6 .850(In/Hr)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 3 of 20
6
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 26.000 to Point/Station 28.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[COMMERCIAL area type
(Neighborhod Commercial }
Impervious value, Ai = 0.800
Sub-Area C Value = 0. 790
Initial subarea total flow distance 61.000(Ft.}
Highest elevation= 242.000(Ft.}
Lowest elevation= 241.220(Ft.}
Elevation difference 0.780(Ft.} Slope= 1.279 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft}
for the top area slope value of 1.28 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration 3.98 minutes
TC= [l.8*(1.l-C}*distance(Ft.}A.5)/(% slopeA(l/3)]
TC= [l.8*(1.1-0.7900)*( 60.000A.5}/( l.279A(l/3}]= 3.98
The initial area total distance of 61.00 (Ft.} entered leaves a
remaining distance of 1.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.04 minutes
for a distance of 1.00 (Ft.} and a slope of 1.28 %
with an elevation difference of O.Ol(Ft.) from the end of the top area
Tt = [ll.9*length(Mi)A3)/(elevation change(Ft.))JA.385 *60(min/hr)
0.042 Minutes
Tt=[(ll.9*0.0002A3)/( O.Ol)JA.385= 0.04
Total initial area Ti 3.98 minutes from Figure 3-3 formula plus
0.04 minutes from the Figure 3-4 formula= 4.02 minutes
Calculated TC of 4.024 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA} is C = 0.790
Subarea runoff= 0.476(CFS)
Total initial stream area= 0. 088 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 28.000 to Point/Station 38.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.539(Ft.}, Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.016
Sub-Channel flow l.496(CFS)
flow top width= l.618(Ft.)
velocity= 3.429(Ft/s)
area= 0.436(Sq.Ft)
Froude number= 1.164
Upstream point elevation=
Downstream point elevation
Flow length= 222.000(Ft.}
2 41 . 2 2 0 ( Ft . )
2 3 9 . 0 0 0 ( Ft . }
Travel time 1.08 min.
Time of concentration= 5.10
Depth of flow= 0.539(Ft.)
Average velocity= 3.429(Ft/s)
min.
l.496(CFS}
3.429(Ft/s}
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 4 of 20
Total irregular channel flow=
Irregular channel normal depth
Average velocity of channel(s)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Va l ue= 0.787
1 . 496 (CFS)
above invert elev.
3.429(Ft/s)
6.76l(In/Hr) for a
0.000
0.160
0.000
0.840
0.539(Ft.)
100.0 year storm
Rainfall intensity= 6.76l(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCI A) is C = 0.787 CA= 0.366
Subarea runoff= l .999(CFS) for 0.377 (Ac.)
Total runoff= 2 .476(CFS) Total area=
Depth of flow= 0.65l(Ft.), Average vel ocity=
0. 465 (Ac.)
3.889(Ft/s)
EXCEL ENGINEERING NOTE: This peakflow enters detention pipe storage underneath the parking lot adjacent to BMP-3 pond, calculated
by using Rick Engineering hydrograph program and then entered in the Civil3D Hydraflow Hydrograph program as follows:
Hyd. No.13
inflow to det pipe
Hydrograph type
Storm frequency
Time interval
Q (cfs)
3.00
2.00
1.00
0.00
0.0 1.0
-HydNo.13
= Manual
= 100 yrs
= 5min
2.0
Peak discharge
Time to peak
Hyd. volume
Inflow to det pipe
Hyd. No. 13-100 Year
~
3.0 4.0 5.0
= 2.500 cfs
= 4.08 hrs
= 3,720 cuft
6.0
Q(cfs)
3.00
2.00
1.00
0.00
7.0
Time (hrs)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Stati on 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 104.00(Ft.) Slope
239 .000(Ft .)
237.750 (Ft.)
0.0120 Manning 's N 0.013
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 5 of 20
I
I
No. of pipes= 1 Required pipe flow 2.476(CFS}
Given pipe size= 12.00(In.}
Calculated individual pipe flow 2.476(CFS}
Normal flow depth in pipe= 6.94(In.}
Flow top width inside pipe= ll.85(In.}
Critical Depth= 8.09(In.}
Pipe flow velocity= 5.27(Ft/s}
Travel time through pipe= 0.33 min.
Time of concentration (TC} = 5.43 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** SUBAREA FLOW ADDITION****
Rainfall intensity (I} =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[COMMERCIAL area type
(Neighborhod Commercial}
Impervious value, Ai= 0.800
Sub-Area C Value= 0.790
6.494 (In/Hr}
0.000
0.000
0.000
1.000
Time of concentration= 5.43 min.
for a 100.0 year storm
Rainfall intensity= 6.494(In/Hr} for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA} is C = 0.789 CA= 0.665
Subarea runoff l.841(CFS} for 0.378(Ac.}
Total runoff= 4.317(CFS} Total area= 0.843(Ac.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.843(Ac.}
Runoff from this stream 4.317(CFS}
Time of concentration=
Rainfall intensity=
Summary of stream data:
5.43 min.
6.494 (In/Hr}
Stream
No.
Flow rate
(CFS}
TC
(min}
Rainfall Intensity
(In/Hr}
1 2.436 4.50 6.850
2 4.317 5. 43 6. 4 94
Qmax(l)
1.000 * 1.000 * 2. 436) +
1.000 * 0.829 * 4.317) + 6.013
Qmax(2}
0.948 * 1.000 * 2. 436) +
1.000 * 1.000 * 4.317) + 6. 626
Total of 2 streams to confluence:
Flow rates before confluence point:
2.436 4.317
Maximum flow rates at confluence using above data:
6.013 6.626
Area of streams before confluence:
0.456 0.843
Results of confluence:
Total flow rate= 6.626(CFS}
Time of concentration 5.432 min.
Effective stream area after confluence 1. 299 (Ac.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 39.000
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 6 of 20
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 80.00(Ft.) Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.)
233. 850 (Ft.)
233.000(Ft.)
0.0106 Manning's N
6.626(CFS)
0.013
NOTE: Normal flow is pressure flow in user
The approximate hydraulic grade line above
3.574(Ft.) at the headworks or inlet
selected pipe size.
the pipe invert is
of the pipe(s)
Pipe friction loss= 2.766(Ft.)
Minor friction loss= l.658(Ft.) K-factor= 1.50
Pipe flow velocity= 8.44(Ft/s)
Travel time through pipe 0.16 min.
Time of concentration (TC) = 5.59 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= l.299(Ac.)
Runoff from this stream 6.626(CFS)
Time of concentration
Rainfall intensity=
5.59 min.
6.375(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 40.000 to Point/Station 45.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.790
A 0.000
B 0.000
C 0.000
D 1.000
Initial subarea total flow distance 59.000(Ft.)
Highest elevation= 241.000(Ft.)
Lowest elevation= 238.250(Ft.)
Elevation difference 2.750(Ft.) Slope= 4.661 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95.00 (Ft)
for the top area slope value of 4.66 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7900)*( 95.000A.5)/(
3.26 minutes
slope (1/3) l
4.661A(l/3)]=
Calculated TC of 3.256 minutes is less than 5 minutes,
3. 26
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.790
Subarea runoff= 0.195(CFS)
Total initial stream area= 0.036(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 45.000 to Point/Station 39.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.183(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
2
'X' coordinate
0.00
0.10
'Y' coordinate
0.50
0.00
3.858(Ft/s)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 7 of 20
~
[ I -
~ I '
3 1.50 0.50
Manning's 'N' friction factor 0.016
Sub-Channel flow 0.195(CFS)
flow top width= 0.550(Ft.
velocity= 3.858(Ft/s)
area= 0.05l(Sq.Ft)
Froude number = 2.244
Upstream point elevation=
Downstream point elevation
Flow length= 86.000(Ft.)
Travel time 0.37 min.
238.250(Ft.)
233.000 (Ft .)
Time of concentration = 3.63 min.
Depth of flow= 0.183(Ft.)
Average velocity= 3.858(Ft/s)
Total irregular channel flow= 0.195(CFS)
Irregular channel normal depth above invert elev. 0.183(Ft.)
Average velocity of channel(s) 3.858(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39 .000
**** SUBAREA FLOW ADDITION****
Calculated TC of 3.627 minutes is less than 5 minutes,
resetting TC to 5 .0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[COMMERCIAL area type
(Neighborhod Commercial )
Impervious value, Ai= 0.800
Sub-Area C Value= 0.790
Time of concentration= 3.63 min.
Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.790 CA = 0.039
Subarea runoff 0.070(CFS) for 0.013(Ac .)
Total runoff= 0.265(CFS) Total area= 0.049(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39 .000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.049(Ac.)
Runoff from this stream 0 .265(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
3.63 min.
6.850(In/Hr)
Stream
No.
Flow rate
(CFS )
TC
(min)
Rainfall Intensity
( In/Hr)
1 6. 626 5.59 6.375
2 0.265 3.63 6.850
Qmax(l)
1 .000 * 1 .000 * 6. 62 6) +
0.931 * 1.000 * 0.265) + 6.873
Qmax(2)
1.000 * 0. 64 9 * 6. 62 6) +
1.000 * 1.000 * 0. 265) + 4.565
Total of 2 streams to confluence:
Flow rates before confluence point:
6.626 0.265
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 8 of 20
Maximum flow rates at confluence usi ng above data:
6.873 4.565
Area of streams before confluence:
1.299 0.049
Re sults of confluence:
Total flow rate= 6.873(CFS)
Time of concentration= 5.590 min .
Effective stream area after confluence
End of computations, total study area=
l.348 (Ac .)
1 . 348 (Ac .)
EXCEL ENGINEERING NOTE: This section discuss detention calculation in the system. First detention calculation from nodes 27-41-2. A
hydrograph was created in the previous pages and then routed to gravel storage at node 2. This pervious paver has gravel storage of 36 inch
thick with circular shaped surface. Volume is calculated manually by multiplying surface area x depth x 0.4 (porosity). Note: paver thickness
and sand bed are not counted.
Hyllrallow Hydrograpt"' Extension ror AuloCAOe> C ivtl )0® 2015 by Autodos • Inc. v10.4
Pond No. 6 • storage!
Pond Data
Pond ttorao• 11 band on uHr-dtflntd Y1lue1.
Sta~ I Storage Table
Stage(ft) Elevation (ft) Contour 1re1 (sqft)
0.00 24t .74 nla
1.00 24Z.74 n/a
2.00 20.74 nil
3.00 244.74 "'·
Ina. Storage (~uft)
0
1.028
1,028
,028
Morn!-ay. 10/ 17 12016
Total storage {cuft)
0
1.028
2.056
3,084
C ulv•rt I Orifice Structures Weir Structures
RIH(ln)
Span (In)
No. llalTe la
tnvon El. (fl)
Length (It)
Slope(%)
N-Valu.
OriflceC~ff.
Multl~1"9'
300
200
000
5:.~ff'h
[A] [BJ [CJ [PrfRsrJ
: 12.00 0.50 2.00 0.00
• 12.00 0.50 2.00 0.00
• 1 2 0
• 240.74 241.741 244.50 0.00
• 128.00 0.00 0.00 0.00
• 1.00 0.00 0.00 nJ•
, .OtJ .013 .013 1\/o
• 0.60 0.60 0.60 0.60 . "'· Yes Yes No
2001notlv.:a CulwC-l'r, 2-4<1 50
aoo•-;. 'i i \,\'crA-C.!Qv 203 -
,---
0 50anCM"'-
C,Ml-1...,2<17< ~
// //////. r///// ,;
CrestL•n (ft)
CreatEl.(fl)
WolrCoeff.
Weir Type
Muhl•St191
Exfil.(lnlhr)
TWElev.(tl)
~~c~~~~ ~
--\.....
~ NTS
[A] (BJ [CJ
= 8.00 0.00 0.00
• 245.31 0.00 0.00
• J,33 3.33 J.33
• 1
• Yes No No
• 0.000 (by Wet a oa)
• 0.00
...,, "'"""" [le-, 4174
Culv,L 12601 r of 1:2 01n @ I C:l%
[DJ
0.00
000
33J.
No
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 9 of 20
Hyd. No.12
ouflow paver
Hydrograph type
Storm frequency
Time interval
Inflow hyd. No.
Reservoir name
Storag& Indication method used.
Q (cfs)
3.00
2.00
1.00
0.00 ...
0 15 30
= Reservoir
= 100 yrs
= 5min
= 11 -Inflow to perv paver
= storage
Peak discharge
Time to peak
Hyd. volume
Max. Elevation
Max. Storage
ouflow paver
Hyd. No. 12 •• 100 Year
-
'
i
I
45 60 75 90 105
=
=
= = =
-
120
0.094 cfs
6.00 hrs
3,616 cuft
244.74 ft
3,083 cuft
Q (ds)
3.00
2.00
1.00
135
0.00
150
-HydNo.12 -HydNo.11 II I 11 1 I Total storage used = 3,083 cufl Time (hrs)
(Node 2) 36" Gravel Storage underneath pervious paver as detention
Qin =2.44 cfs
Qout=0.096 cfs = 0.1 cfs
OUTFALL C · 13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 10 of 20
EXCEL ENGINEERING NOTE: This section discuss detention calculation in the system. Detention calculation from nodes 26-28-38. A
hydrograph was created in the previous pages and then routed to detention pipe storage between nodes 38 and 4.
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 30® 2015 by Autodesk, Inc. v10.4
Hyd. No. 14
outflow
Hydrograph type
Storm frequency
Time interval
Inflow hyd . No.
Reservoir name
Storage Indication method used.
Q (cfs)
3.00
2.00
1.00
0.00
,
0 60
= =
= = =
Reservoir Peak discharge
100 yrs Time to peak
5 min Hyd. volume
13 - inflow to det pipe Max. Elevation
det pipe Max. Storage
outflow
Hyd. No. 14 --100 Year
,-
'~
-J t\ ~
120 180 240 300
Monday, 10 I 24 / 2016
= 0.695 cfs
= 250 min
= 3,720 cuft
= 276.55 ft
= 758 cuft
I•
\,.
360
Q (cfs)
3.00
2.00
1.00
0.00
420
-HydNo.14 -HydNo.13 11 1 11 I I I Total storage used = 758 cuft Time (min)
(Node 38) 36" Gravel Storage underneath pervious paver as detention
Qin= 2.5 cfs
Qout= 0.696 cfs = 0.7 cfs
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 11 of 20
Pond Report
Hydra/low Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4
Pond No. 7 -det pipe
Pond Data
Monday, 10 /24 /2016
UG Chambers -Invert elev. = 238.22 ft, Rise x Span = 3.00 x 3.00 ft, Barrel Len = 124.20 ft, No. Barrels = 1, Slope = 0.50%, Headers = No
Stage I Storage Table
Stage (ft) Elevation (ft) Contour area (sqft) Iner. Storage (cuft) Total storage (cuft)
0.00 238.22 n/a 0 0
0.36 238.58 n/a 12 12
0.72 238.94 n/a 65 78
1.09 239.31 n/a 105 182
1.45 239.67 n/a 124 306
1.81 240.03 n/a 133 439
2.17 240.39 n/a 133 572
2.53 240.75 n/a 124 696
2.90 241 .12 n/a 105 801
3.26 241 .48 n/a 65 866
3.62 241 .84 n/a 12 878
Culvert I Orifice Structures Weir Structures
[AJ [BJ [CJ [PrfRsrJ [AJ [BJ [CJ [DJ
Rlse(ln) 12.00 4.00 Inactive 0.00 Crest Len {ft) = 16.00 0.00 0.00 0.00
Span {In) = 12.00 4.00 36.00 0.00 Crest El. (ft) = 243.00 0.00 0.00 0.00
No. Barrels = 1 1 0 WeirCoeff. = 3.33 3.33 3.33 3.33
Invert El. (ft) = 237.88 238.20 238.20 0.00 Weir Type = 1
Length (ft) = 50.00 0.00 0.00 0.00 Multi-Stage = Yes No No No
Slope (%) = 0.50 0.00 0.00 n/a
N-Value = .013 .013 .013 n/a
Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfll.(ln/hr) = 0.000 (by Wet area)
Multi-Stage = n/a Yes Yes No TW Elev. (ft) = 0.00
Note: Culvert/Orifice outflows are analyzed under inlet (le) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
Stage (ft) Stage I Discharge Elev (ft)
4.00 ~----,----""T"----r-----,--------,----~-----,-----,------,,-----r 242.22
0.00 --'-"==------'-----'-----'------l..-----'-------L-------'------''-----'-----'-238.22
0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80
-TotalQ Discharge ( cfs)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 12 of 20
4 00
3.00
2.00
100
0.00
Stage (ft)
--
16.00 ft Riser
WeirA -Elev. 243.00
4.00 in orifice
CulvB -Inv. 238.20 \
LI
\ Top of pond
Elev 241 84 \ -
-
Section CulvA • 50.0 LF of 12.0 in@ 0.50%
~ \_ ottom of pond
lev. 238.22
---100-yr
EXCEL ENGINEERING NOTE : A The detention values then re-entered in civilD by replacing the upstream inflow hydrographs with user
defined flow from Hydra/low hydrograph detention routing.
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/19/16
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION
FILE: 13070POSTC1.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation (inches ) = 2 .600
24 hour precipitation(inches) = 4.500
P6/P24 = 57 .8%
San Diego hydrology manual 'C' values used
100.0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 2.000
**** USER DEFINED FLOW INFORMATION AT A POINT****
User specified 'C' value of 0.780 given for subarea
Rainfall intensity (I) = 4 .27l (In/Hr) for a 100 .0 year storm
User specified values are as follows:
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 13 of 20
TC= 10.40 min. Rain intensity= 4.27(In/Hr)
Total area= 0.456(Ac.) Total runoff= O.lOO(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 128.00(Ft.} Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.)
245.200(Ft.)
237.750(Ft.)
0.0582 Manning's N
0.lOO(CFS)
Calculated individual pipe flow O.lOO(CFS)
Normal flow depth in pipe= 0.91(In.)
Flow top width inside pipe= 6.34(In.)
Critical Depth= l.55(In.)
Pipe flow velocity= 3.67(Ft/s)
Travel time through pipe= 0.58 min.
Time of concentration (TC) = 10.98 min.
0.013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.456(Ac.)
Runoff from this stream O.lOO(CFS)
Time of concentration
Rainfall intensity=
10.98 min.
4. 124 ( In/Hr}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Station 38.000
**** USER DEFINED FLOW INFORMATION AT A POINT****
User specified 'C' value of 0.790 given for subarea
Rainfall intensity (I) = 4.271(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC= 10.40 min. Rain intensity= 4.27(In/Hr)
Total area= 0.465(Ac.) Total runoff= 0.700(CFS}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 104.00(Ft.} Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.)
239.000(Ft.}
237.750(Ft.)
0.0120 Manning's N
0.700(CFS)
Calculated individual pipe flow 0.700(CFS)
Normal flow depth in pipe= 3.44(In.)
Flow top width inside pipe= 10.85(In.)
Critical Depth= 4.18(In.)
Pipe flow velocity= 3.76(Ft/s)
Travel time through pipe= 0.46 min.
Time of concentration (TC) = 10.86 min.
0. 013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** SUBAREA FLOW ADDITION****
Rainfall intensity (I) =
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
A
B
C
D
4.154(In/Hr)
0.000
0.000
0.000
1.000
for a 100.0 year storm
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 14 of 20
[COMMERCIAL area type
(Neighborhod Commercial
Impervious value, Ai= 0.800
Sub-Area C Value= 0.790
Time of concentration= 10.86 min.
Rainfall intensity= 4.154(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.790 CA= 0.666
Subarea runoff 2.066(CFS} for 0.378(Ac.)
Total runoff= 2.766(CFS} Total area= 0.843(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.843(Ac.}
Runoff from this stream 2.766(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
10.86 min.
4. 154 (In/Hr}
Stream
No.
Flow rate
(CFS}
TC
(min}
Rainfall Intensity
(In/Hr}
1 0.100 10.98 4.124
2 2.766 10.86 4.154
Qmax ( 1)
1.000 * 1.000 * 0.100) +
0.993 * 1.000 * 2. 766) + 2.847
Qmax (2)
1.000 * 0.989 * 0.100) +
1.000 * 1.000 * 2. 766) + 2.865
Total of 2 streams to confluence:
Flow rates before confluence point:
0.100 2.766
Maximum flow rates at confluence using above data:
2.847 2.865
Area of streams before confluence:
0.456 0.843
Results of confluence:
Total flow rate= 2.865(CFS)
Time of concentration 10.861 min.
Effective stream area after confluence l.299(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 39.000
**** PIPEFLOW TRAVEL TIME (User specified size} ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 80.00(Ft.) Slope
No. of pipes= 1 Required pipe flow
Given pipe size= 12.00(In.}
233.850(Ft.}
233.000(Ft.}
0.0106 Manning's N
2.865(CFS}
Calculated individual pipe flow 2.865(CFS}
Normal flow depth in pipe= 7.97(In.}
Flow top width inside pipe= ll.34(In.}
Critical Depth= 8.71(In.)
Pipe flow velocity= 5.17(Ft/s}
Travel time through pipe= 0.26 min.
Time of concentration (TC} = 11.12 min.
0.013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS****
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 15 of 20
I Ld
,,__
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 1.299(Ac.)
Runoff from this stream 2.865(CFS)
Time of concentration
Rainfall intensity=
11. 12 min.
4.091(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 40.000 to Point/Station 45.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1. 000
[COMMERCIAL area type
(Neighborhod Commercial )
Impervious value, Ai = 0.800
Sub-Area C Value = 0.790
Initial subarea total flow distance 59.000(Ft.)
Highest elevation= 241.000(Ft.)
Lowest elevation= 238.250(Ft.)
Elevation difference 2.750(Ft.) Slope= 4.661 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95.00 (Ft)
for the top area slope value of 4.66 %, in a development type of
Neighborhod Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(%
TC= [l.8*(1.1-0.7900)*( 95.000A.5)/(
3.26 minutes
slopeA (1/3)]
4,661 A (1/3) ]= 3.26
Calculated TC of 3.256 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.790
Subarea runoff= 0.195(CFS)
Total initial stream area= 0.036(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 45.000 to Point/Station 39.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.183(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.50
2 0.10 0.00
3 1.50 0.50
Manning's 'N' friction factor 0.016
Sub-Channel flow 0.195(CFS)
flow top width= 0.550(Ft.)
velocity= 3.858(Ft/s)
area= 0.05l(Sq.Ft)
Froude number= 2.244
Upstream point elevation=
Downstream point elevation
Flow length= 86.000(Ft.)
Travel time 0.37 min.
238.250(Ft.)
233.000(Ft.)
Time of concentration= 3.63 min.
Depth of flow= 0.183(Ft.)
Average velocity= 3.858(Ft/s)
Total irregular channel flow= 0.195(CFS)
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 3.858(Ft/s)
3.858(Ft/s)
0.183(Ft.)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 16 of 20
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39.000
**** SUBAREA FLOW ADDITION****
Calculated TC of 3.627 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[COMMERCIAL area type
(Neighborhod Commercial)
Impervious value, Ai= 0.800
Sub-Area C Value= 0.790
Time of concentration=
Rainfall intensity=
3.63 min.
6.850(In/Hr} for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA} is C = 0.790 CA= 0.039
Subarea runoff 0.070(CFS} for 0.013(Ac.}
Total runoff= 0.265(CFS} Total area= 0.049(Ac.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.049(Ac.}
Runoff from this stream 0.265(CFS}
Time of concentration=
Rainfall intensity=
Summary of stream data:
3.63 min.
6.850(In/Hr}
Stream
No.
Flow rate
(CFS)
TC
(min}
Rainfall Intensity
(In/Hr}
1 2.865 11.12 4.091
2 0. 265 3.63 6.850
Qmax(l)
1.000 * 1.000 * 2.865) +
0.597 * 1.000 * 0. 265) + 3.023
Qmax(2)
1.000 * 0.326 * 2.865) +
1.000 * 1.000 * 0. 265) + 1.200
Total of 2 streams to confluence:
Flow rates before confluence point:
2.865 0.265
Maximum flow rates at confluence using above data:
3.023 1.200
Area of streams before confluence:
1.299 0.049
Results of confluence:
Total flow rate= 3.023(CFS}
Time of concentration 11.118 min.
Effective stream area after confluence l.348(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 39.000
**** 6 HOUR HYDROGRAPH ****
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Hydrograph Data -Section 6, San Diego County Hydrology manual, June 2003
Time of Concentration= 11.12
Basin Area= 1.35 Acres
6 Hour Rainfall= 2.600 Inches
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 17 of 20
I
I
Runoff Coefficient 0.787
Peak Discharge= 3.02 CFS
Time (Min) Discharge (CFS)
0 0.000
11 0. 164
22 0. 168
33 0.175
44 0.179
55 0.187
66 0. 192
77 0.202
88 0.208
99 0.221
110 0.228
121 0.245
132 0.254
143 0.276
154 0.289
165 0.321
176 0.340
187 0.390
198 0.423
209 0.517
220 0.589
231 0.865
242 1. 219
253 3.023
264 0.694
275 0. 464
286 0.363
297 0.304
308 0.265
319 0.236
330 0.214
341 0. 197
352 0.183
363 0 .171
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
End of computations, total study area= 1.348 (Ac.)
EXCEL ENGINEERING NOTE: Next calculation is the ultimate detention at the downstream BMP-3: biofiltration as detention pond to
attenuate the peak flow.
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 18 of 20
= 3.020 cfs
= 4.22 hrs
Hyd. No.1
BMP 3 Inflow
Hydrograph type
Storm frequency
nme interval
Manual
100 yrs
= 11 min
Peak discharge
Time to peak
Hyd. volume = 9,075 cuft
Q(cfs)
4.00
3 00
2.00
1.00
0.00 ,/
0.0 0.9
-HydNo.1
1.8
Pond No. • -BMPl w11h Gravel
Pond Data
BMP 3 Inflow
H)'d. No 1 -100 Year
I
I
L-/
2.8 3.7
'I'---
' 4.6 5.5
Pond slorlfe Is b1Md on u,er-dtflned velues.
Stage/ Storage Table
Stage (t) e,.., .. tton (ft) Contour •re• ( sqft: Iner Storage (euft) Tot•I ,tonoge (c..rt)
0.00 2.3-4.75 rta 0 0 .. so 236.25 rte 1.174 1,174
3.00 237.75 rte 1,174 2,J.Ca
S 50 2:0.25 rte 3,3'1 5,689
Culvert I Orifice Structures Weir Strvctures
[4J [BJ [CJ [PrfRuJ [AJ [BJ
H1se(1nj " 1800 3.00 0.50 0.00 c,.stLen in) = 12.00 o.ou
S1111n (11) • 1800 300 050 000 CrHIEl.(fi) • 240 00 0.00
Ne. Bareis = I 1 I 0 \Yolr Coeff = 3 33 3 33
lrmtrt B. (ft) • 2:n.29 23925 234.75 0.00 \YllirT-= I
Length [ft) • 1560 0.00 0.00 0.00 Multi.Stage • Yes No
Slepe (~) -o.w 000 0 00 n/o
N-V81ue z .013 013 013 n/e
Ont,eecoen • o.w 0.60 0.60 0.60 f.xfil.~n/hr) • 0.000 (Dy wee arta)
llluht..Si.ge .. "'' Yes YB$ No 1W Elev. (II = 000
Q (cls)
4.00
300
2.00
1.00
000
6.4
rme(hrs)
[CJ
0.00
000
3 33
No
[DJ
0.00
000
333
0
~-o.i1,~"''0r'1Cot oot'JOW5 M e,iff>t_td vr!ff' lnill (te.)~ttl Ollflettoc)ccr•,ot ,vtw ,is,,,,a•~•d 10t ontw;.e~1UY11 (te.)¥.d ,n~ (1)
Stage I Storage I Discharge Table
Stage Storqe Ele\elior ClvA Clv8 n cuft ft Cfl cfl
0.00 0 231.75 J.00 0.00 ·.so 1,174 235 25 ~-00 0.00
)00 z.~& ~775 J 011. 000
S.50 5.6~9 24) 25 5 23 oc 0.22 le
ClvC PrlRsr Wrll. WrB
cfs els cfs cfs
0.00 o.oc
0.00 le 0 DC o o· k. 0 OC o.o· 1c 4 ~
WrC
cf•
WrO ertil User Total
els els cf• cfs
o.ooc oooc
0~
5.22E
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 19 of 20
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Hyd.No.2
BMP3
Hydrograph type
Storm frequency
Time interval
Inflow hyd. No.
Reservoir name
Storage Indication method used.
=
=
=
=
=
Reservoir
100 yrs
11 min
1 -BMP 3 Inflow
BMP3 with Gravel
Peak discharge = 2.059 cfs
Time to peak = 4.40 hrs
Hyd. volume = 7,842 cuft
Max. Elevation = 240.25 ft
Max. Storage = 5,478 cuft
BMP3 a (cfs) Hyd. No. 2 --100 Year a (cfs)
4.00 4.00
3.00
2.00
1.00
I
~ nr,,
I I I I 1111 1/1 I I I 0.00
0.0 0.9 1.8 2.8 3.7
-HydNo.2 -HydNo.1
Qi n= 3.02 cfs
Qout = 2.059 = 2 .06 cfs
J ,
' ~ ' 4.6 5.5 6.4 7.3
.___ ..... I Total storage used e 5,478 cuft
8.3
3.00
2.00
1.00
0.00
9.2
Time (hrs)
OUTFALL C -13070 LOT 9 DEVELOPMENT
100 YEAR STORM EVENT
Page 20of 20
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 h ydrology manual
Rational Hydrology Study Date: 10/25/16
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
FILE: 13070POSTDdet.RD3
********* Hydrology Study Control Information**********
Program License Serial Number 6312
Rational hydrology study storm event year is
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) -
24 hour precipitation(inches) =
P6/P24 = 57.8%
2.600
4.500
San Diego hydrology manual 'C' values used
bmp1
Hydrograph type = Reservoir
Stonn frequency = 100 yrs
Time interval = 5min
Inflow hyd. No. = 5 -BMP1
Reservoir name = BMP 1
bmp1
100.0
Peak discharge
Time to peak
Hyd. volume
Max. Elevation
Max. Storage
a (cts)
3.00
Hyd. No. 6 -100 Year
2.00
1.00
_) ~
0.00 f. 11 I IJ"
0.0 1.0 2.0 3.0 4.0 5.0
= =
=
=
=
·-
6.0
--HydNo 6 -HydNo 5 c:=::J Tolal slOl'age used = 685 cufl
1.420 crs
4.17 hrs
3,287 cuft
261.50 ft
685 curt
a (eta)
3.00
200
1.00
0.00
7.0
Time (hrs)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 1 of 12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Pond Report
HydrafbwHydrogrlll)hs Ellle"6ion fc, AJto:::A~Ci\113)®2015 )Y Au;~s~ Inc vlO ,
Pond No. 3 • BMP 1
Pond Data
Pond ltongt I• baaed oa user-driMd YIIHs.
Stage I Storage Table
'"'101ft) ~lovdlcn Cftl C-cur .,,. • ., (cq+.I
0.00 26(0( 00
1 50 261 SC 00
Iner. Sto·ogo (1ufl)
0
745
TIP-$08Y 10/ 2;/ 2016
Total otor:1go (,u11)
C
74~
Culven t Ortflct Struc1Ure1 Weir Strvc11.1re1
[Al (BJ (CJ (PrfRsrJ (A) [BJ (CJ (DJ
Rise Cin) • 12.00 0.00 2.00 0.00 Crea Lffl lit) = 12.00 o.co 0.00 0.00
s.,... c,n) • 12.00 o.oo 6.00 O.OC• c .. .aE.(f:) • 21>1 311 0(0 000 0 00
No. krell • 1 0 4 C• 'ltelrCceff • 333 U3 3.33 S 33
hvtrtEI. 1ft) • 2>6.75 0.00 26(UO C•.OC• 'ltelrType = 1
Length (ftl • 5').00 0.00 0.00 0.00 Muh-Slagt : YH No N> tlo
Slo,e1%) -H.00 0.00 0.00 rva
N-V1lua • .(•13 .013 .013 rla
OritceCmff • 060 0.60 0.60 0.6C Erfll (ln'hrl " O.S90 (by Wot area)
llllull-tt• • n:~ No Yes Ho lWEl ... (t) • 0.00
~<* ('Wf!t'(),,IN ~ tf• ~~ .l"'d,,t W'lii'i4 !1tl .....,eui.t lbl">c(),l"lllaf 'N•+t l"lff"I ~4W/'li»d f•tetllt•....,....~• (<I ~'ttill~r'N-(t)
Stage I Stor11ge I Discharge Table
Stat• St0fa9e E'-ation CIYA CIY I CIYC
ft cuft ft ell els cb
0.00 0 2EO.CO 0.00 0.00
1.:K) 74:1 Zfl1 :lO 0.771,. • %61\.
Po ra No. 3 -BMP 1
1200ftR,..-
WorA. Ekw 26' l9 --.
20,c.601'ICY(at
Cu!YC. ,.,.. 260 60 ~
-100 --
-000
S:&90 fn) '' ·,,
Pro.eel 13-070 DEl !:NTION CALCS.gpw
Pr1Rer V.'r I\ \Yrlil w,c V.rD Exfil u.er Tool
cf• cle cb cf1 cle cfl cfs ch
0.00 0.000 c..oco
1.40 0.000 2 711
H)d••llow flydrog,lfllw ~""'°" fo, AYtoCAO• c;.130.'1201~ by Autodaslt Joe •10 4
Tapolpa"' ciev 2a, so 1
---'-~-nu ....
~ NTS
, o!oond 6000
Cu1YA·5=c,r ;f1201@:l~OJ'
-10Jv-
,,,~ nyo~,aph • 5 w .. ,a, ·BM>,
I Tuesday 1012512016
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AITTR DETENTION -OUTFALL D
Page 2 of 12
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 1.000
**** USER DEFINED FLOW INFORMATION AT A POINT****
User s pecified 'C' value of 0.770 given for subarea
Rainfall intensity (I) = 4.271(In/Hr) for a 100.0 year storm
User s pecified values are as follows:
TC= 10.40 min . Rain intensity= 4.27(In/Hr)
Total area= 0 .420 (Ac .) Total runoff= l.420(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 46.000
**** PIPEFLOW TRAVEL TIME (Use r s pecified size) ****
256.000 (Ft .)
235.710(Ft.)
Upstream point/station elevation=
Downstream point/station elevation
Pipe l ength 343.00(Ft.) Slope
No. of pi pes= 1 Required pi pe flow
0.0592 Manning's N
l.420(CFS)
0. 013
Given pipe size= 12.00(In.)
Calculated individual pipe flow l.420(CFS )
Normal flow depth in pipe= 3.29(In.)
Flow top width inside pipe= 10.70(In.)
Cr itical Depth -6 .0S(In .)
Pipe flow velocity= 8.14(Ft/s)
Travel time through pi pe = 0.70 min.
Time of concentration (TC) = 11.10 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 46.000 to Point/Station 46.000
**** CONFLUENCE OF MINOR STREAMS****
Along Ma in Stream number: 1 in normal s tream number 1
Stream flow area= 0.420 (Ac.)
Runoff f rom this stream 1.420(CFS)
Time of conce ntration
Rainfall intensity=
11.10 min.
4.095(In/Hr)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 3 of 12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Hyd.No.8
BMP 2
Hydrograph type
Storm frequency
Time interval
Inflow hyd. No.
Reservoir name
Reservoir
100 yrs
5min
1 -Inflow Hyd BMP2
BMP2
5..,._ lncficabon IMlhod .. ed £.dllrol,on nlnocted ~om -
Q(cls)
200
1.00
0.00
0.0 0.8 1.7
BMP2
Hyd. No. 8 •• 100 Year
/, 111 V
2.5 3.3
Peak discharge
Time to peak
Hyd. volume
Max. Elevation
Max. Storage
4.2
l'I
50
= 0.795 els
= 4.08 hrs
1,168 curt
240.18 ft
= 358 cuft
Q(cls)
200
1.00
0.00
5.8
--HydNo.8 --HydNo 7 c::::::::J Total Moragc UIGd = 358 cull Tome (ln)
Pc nd No. 4 -BMP 2
100 "' .. "" [In 1400.S \ ~:.:d!!::'w~ --:;: --
~ooo
1-..11 :,,r.·
Pro.•::t 1J.-070Dt1[NIIONCALCSgpw
Mvd'lllo-~.uw .. .._" • .t..mCAOIC"' J:)Y 2'1l9t,\...t0ffl,,, '"< v10,4
CW140H --,
--..._ p;;-
~ NTS
I
.. _ ,.,.
c ......... :lr ,,,10 ~10~""
".
wo.-llfl'I• IJM.t -""c•Jftde\lP1
I Tuosd,oy 1012~/2016
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 4 of 12
Pond No. 4 • BMP 2
Pond Data
Pond 1torage 11 bHed o~ U$tr-defined v,t,n.
Stage I Storage Table
St,ge(ft)
000
1.00
Elev1llon (ft)
239 75
Contour ua (•cit)
240 25
Culvert I Orifice Stnictures
(A]
RiH(n) • 12 00
Sp,n ~n) = 12.00
No. 81rrels • 1
lnv•rt Iii. (II) : 236.10
Length (ft) = 66 00
Slope(%) • 050
N-Valn • .013
OTifict Coeff. • 0.60
MUlll·Sl'9t = "'"
(DJ
000
0.00
0
0.00
000
000
.013
0.60
NO
00
00
[CJ
2.00
12.00
2
2111.7S
0.00
000
.01l
0.60
Yet
(PrfRsr)
0 co
0.(0
0
o.co
0 co
nle
n/1
O.fO
No
Iner. Storage (cult)
D
459
lolal aloroge (cuft)
0
459
Weir Structures
c ,.al len (II)
CrntEl.(ftl
WtlrCoefl.
W•ir Ty,,.
M11ti-Stag0
EJlfil.(inlhr)
TVIEIW. (Ill
(A] [DJ
• 12.0C 0 00
z 240.(3 0.00
• 3.33 3.53
=• = Yes No
= 1.38C (by Wei area)
= 000
(CJ
0.00
0.00
3.33
(DJ
0.00
0.00
3.33
N? No
Nat Clhtr!IOlll<e Q.Cfl°'"' "IM!yze4 Wldt· lnll< IC) lndOUCol(O<) '""'°' w .. ,_. _ klr .,,..,. """"""'IICJ""' ...,,,.,,....,. (•
Stage I Storage I Discharge Table
!bge
fl
0.00
1 00
Stor,ge Elev1tlon Clv A Clv B ClvC PrfRsr Wr A WrB w,c Wr D Ellfil User ToUII
cul\ ft cfe cl& .,,. cf& cfa cf• cf& cf• cfe cfa
C
4SS
230.26
240.25
).00
>.27 DC
0.00
I 04 le
0.00
4.12
o.o::ro
0.0:>0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 47.000
**** USER DEFINED FLOW INFORMATION AT A POINT****
User specified 'C' value of 0.790 given for subarea
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
User specified values are as fol lows:
TC• 5.00 min. Rain intensity= 6.85(In/Hr)
Total area = 0.232(Ac.) Total runoff= 0.800(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 47.000 to Point/Station 46.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation= 236.380 (Ft.)
Downstream point/station elevation• 235.710(Ft.)
Pipe length 38.00(Ft.) Slope• 0.0176 Manning 's N -0.013
No. of pipes - 1 Required pipe flow 0.SOO(CFS)
Given pipe size• 12.00(In.)
Calculated individual pipe flow 0.800 (CFS)
Normal flow depth in pi pe= 3.34(In.)
Flow top width inside pipe • 10.76(In.)
Critical Depth= 4.48(In.)
Pipe flow velocity= 4.48(Ft/s)
Travel time through pipe= 0.14 min.
Time of concentration (TC) = 5.14 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 46.000 to Point/Station 46.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0 .232(Ac.)
Runoff from this stream 0.800(CFS)
Time of concentration•
Rainfall intensity=
Summary of stream data:
Stream
No.
Flow rate
(CFS)
5.14 min.
6.728(In/Hr)
TC
(min)
Rainfall Intensity
( In/Hr)
0.000
5.15t
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 5 of 12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 1 .420 11.10 4 .095
2 0.800 5.14 6. 728
Qmax(l)
1.000 * 1.000 * 1 .420) +
0 .609 * 1.000 * 0. 800) + 1 .907
Qmax(2)
1.000 * 0. 4 63 * 1 . 420) +
1 .000 * 1.000 * 0 . 800) + = 1.458
Total of 2 streams to confluence:
Flow rates before confluence point:
1 .420 0 .800
Maximum flow rates at confluence using above data :
1 .907 1.458
Area of streams before confluence:
0 .420 0.232
Results of confluence:
Total flow rate = l.907(CFS)
Time of concentration 11.102 min.
Effective stream area after confluence 0 . 652 (Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 46.000 to Point/Station 33 .000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
235.710(Ft.)
234.340 (Ft .)
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 131.00(Ft .) Slope
No . of pipes= 1 Required pipe flow
0.0105 Manning 's N
1. 907 (CFS)
0. 013
Given pipe size= 18.00(In.)
Calculated individual pipe flow l .907(CFS)
Normal flow depth in pipe = 5 .13(In.)
Flow top width inside pipe= 16.25(In.)
Critical Depth= 6.24(In.)
Pipe flow velocity= 4.59(Ft/s)
Travel time through pipe= 0 .48 min .
Time of concentration (TC) = 11 .58 min .
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 33.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= 0.652(Ac.)
Runoff from this stream l .907 (CFS)
Time of concentration 11.58 min.
Rainfall intensity -3.986(In/Hr)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 6 of 12
Hyd. No. 4
BMP4
Hydrograph type
Storm frequency
Time interval
Inflow hyd. No.
Reservoir name
= Reservoir = 100 yrs
= 5 min = 3 • BMP 4 Inflow
= BMP4
Storage lnd1c.at on metllod used Ext ltretion elClracted from Outflow
a (cfs)
3.00
2.00
1.00
'1 11111 11111 0.00
0.0
I I.Jr
1.0
BMP4
Hyd. No 4 -100 Year
20 3.0 4.0
Peak discharge
Time to peak
Hyd. volume
Max. Elevation
Max. Storage
~ ...
5.0 6.0
=
=
=
=
=
1.780 cfs
4.08 hrs
3,333 curt
259.20 ft
651 cuft
Q(cfs)
3.00
2.00
1.00
0.00
7 0
-HydNo.4 -HydNo.3 c=:::::J Total storage used = 651 cvf\ Time (hrs)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 7 of 12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Pond No. 2 • BMP 4
Pond Data
Pond 1tor111e 11 baaed on 111tr-1leflned values.
Stage I Storage Tabl•
si.ve (ft) Elevation (fl) Contour nrH (aqfl) Iner. Stor•v-(cufl) Total ator•ge (cufl}
0.00 257.70 00
1.50 259 20 00
Culvert I Orifice Structures
[AJ [BJ [CJ
Rlse{ln) = 12.00 0.00 2.00
Sp•n(ln) = 12.00 0.00 8.00
No. Bar,rels = 1 0 4
lnvol't E.I. (ft) • 2S2.70 0.00 258.M>
Ltngth (ft) = 162.00 0.00 0.00
$lopt 1•.41 = 13.00 0.00 0.00
N·VIIU. :: .013 013 013
Orifice Coeff. a 060 0.60 0.60
111111 ultl.Suige = n/a No Yet
[PrfRsrJ
0.00
0.00
0
0.00
0.00
nJa
n/8
0.60
No
0 0
711 711
Weir Structure~
Crest Len (ft)
CrHI El. (fl)
WelrCoeff.
Weir Type
Multi-St-age
Exfll.(lnllv)
lW Elev. (fl)
[A] (BJ
• 12.00 0.00
" 259.04 0.00
= 3 33 333
"'1 = Yos No
• 0.730(byWelDfea)
= 0.00
(CJ (DJ
0.00 0.00
0.00 0.00
333 3 33
No No
-C\llvol1'0nfoc,o outilc>v4oro ""'Y'""' 1MTder lnl• fir;/..., .. ,.., (O<l ..,.."'11 Wolr -·•-••lor -trill<e cordd•..,• lo<I-.,..,.,_._ (t)
Stage I Storage I Discharge Table
St..ge Storage Elevetlon Clv A Clv 8 Clv C PrlRar Wr A Wr B Wr C Wr D Exfll User Total n ~"'" n ~. ~. ~,, m m m m m ~fl m ~fl
0.00
1.50
Po n
0
711
257.70
259.20
No. 2 -BMP 4
0.00
8.02 lc
... AA ,0. ....
Wo •A • Clo¥ 259 04 ::) ,nx1n,H~rs
\.oUft'W' • 11·y .,__, -\
._ 1.00
-ox,
'/'~l'//1'. '~/I'.'' ,,,--... ., s:;aoe:,h,
P•o,ecl 13-070 DI: TENTION CALCS gpw
--
000
1.54 le
T ..
Clev 259 20
1----
~ NTS
000
2.56
0.000
0.000
0000
4.096
H)<f •llo,,.· 4yo,og•"1'~• E>tor, o, for AutoCl,Ol c~, 3Dt 2015 by A-111< of<C •'0 ~
\
....__ ~
i..v
CMl)On(j 5770
Culv4-1&,: rc11n n Ii) 1300'.i
-ttt'lv"
hi°" ~~,fll)h • 3 Menua . a•1? • r'low
I Tuesday 10 / 2512015
13070 LOT 9 DEVELOPMENT· 100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION · OUTFALL D
Page 8 of 12
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29 .000 to Point/Station 12.000
**** USER DEFINED FLOW INFORMATION AT A POINT****
User specified 'C' value of 0.780 given for subarea
Rainfall intensity (I) = 6.850 (In/Hr) for a 100.0 year storm
User s pecified values are as follows :
TC= 5 .00 min . Rain intensity= 6.85 (In/Hr)
Total area= 0.48l(Ac.) Total runoff= l .780 (CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 33.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation=
Downstream point/station elevation
Pipe length 162.00 (Ft.) Slope
No . of pipes= 1 Required pipe flow
Given pipe s ize= 12.00(In.)
255.200 (Ft.)
234.340 (Ft .)
0.1288 Manning 's N
l.780 (CFS)
Calculated individual pipe flow l.780 (CFS )
Normal flow depth in pipe -3.02(In.)
Flow top width inside pipe = 10.42(In.)
Critical Depth= 6.82(In.)
Pipe flow velocity= ll.46(Ft/s)
Travel time through pipe • 0.24 min.
Time of concentration (TC) = 5.24 min.
0.013
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 33 .000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.481(Ac.)
Runoff from this stream l.780(CFS)
Time of concentration=
Rainfall intensity=
Summary of stream data:
5.24 min.
6.650(In/Hr)
Stream
No .
Flow rate
(CFS )
TC
(min)
Rainfall Inte nsity
( In/Hr)
1 1.907 11 . 58 3.986
2 1 .780 5 .24 6.650
Qmax(l)
1.000 * 1.000 * 1.907) +
0.599 * 1.000 * 1.780) + -2. 974
Qmax(2)
1.000 * 0. 452 * 1.907) +
1.000 * 1.000 * 1. 780) + = 2. 642
Total of 2 streams to confluence:
Flow rates before confluence point:
1.907 1 .780
Max imum flow rates at confluence using above data:
2.974 2.642
Area of streams before confluence:
0.652 0.481
Results of confluence:
Total flow rate= 2.974(CFS)
Ti me of concentration 11.578 min.
Effective stream area after confluence 1.133 (Ac .)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 32 .000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation= 234.340 (Ft.)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 9 of 12
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
221.000(Ft.) Downstream point/station elevation=
Pipe length 127.00(Ft.) Slope=
No. of pipes= 1 Required pipe flow
0.1050 Manning's N
2.974(CFS)
0.013
Given pipe size= 18.00(In.)
Calculated individual pipe flow 2.974(CFS)
Normal flow depth in pipe= 3.59(In.)
Flow top width inside pipe= 14.39(In.)
Critical Depth= 7.86(In.)
Pipe flow velocity= 11.84(Ft/s)
Travel time through pipe= 0.18 min.
Time of concentration (TC) = 11.76 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 11.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Depth of flow= 0.464(Ft.), Average velocity
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
2
3
'X' coordinate
0.00
1.50
3.00
'Y' coordinate
1. 00
0.00
1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 2. 974 (CFS)
flow top width= l.392(Ft.}
velocity= 9.210(Ft/s)
area= 0.323(Sq.Ft)
Froude number= 3.370
Upstream point elevation=
Downstream point elevation
Flow length= 171.000(Ft.}
Travel time 0.31 min.
221.000(Ft.)
168.000(Ft.)
Time of concentration= 12.07 min.
Depth of flow= 0.464(Ft.)
Average velocity= 9.210(Ft/s}
Total irregular channel flow= 2.974(CFS}
Irregular channel normal depth above invert elev.
Average velocity of channel(s} 9.210(Ft/s)
9.210(Ft/s)
0.464(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 11.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 1
Stream flow area= l.133(Ac.)
Runoff from this stream 2.974(CFS)
Time of concentration
Rainfall intensity=
12.07 min.
3.881(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** INITIAL AREA EVALUATION****
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
[LOW DENSITY RESIDENTIAL
(1. 0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value= 0.410
Initial subarea total flow distance
Highest elevation= 244.000(Ft.)
Lowest elevation= 231.000(Ft.)
57. 000 (Ft.)
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 10 of 12
Elevation difference 13.000(Ft.) Slope= 22.807 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft}
for the top area slope value of 22.81 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration
TC= [1.8*(1.l-C}*distance(Ft.}A.5)/(%
TC= [1.8*(1.1-0.4100)*( 100.000A.5}/(
4.38 minutes
slopeA(l/3)]
22.807A(l/3)]= 4.38
Calculated TC of 4.380 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I} = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA} is C = 0.410
Subarea runoff= 0.132(CFS}
Total initial stream area= 0.047(Ac.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to Point/Station 36.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
Estimated mean flow rate at midpoint of channel
Depth of flow= 0.337(Ft.}, Average velocity=
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 1. 00
2 1. 50 0.00
3 3.00 1. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow 0.845(CFS}
flow top width= l.OlO(Ft.}
velocity= 4.977(Ft/s)
area= 0.170(Sq.Ft}
Froude number= 2.138
Upstream point elevation=
Downstream point elevation
Flow length= 108.000(Ft.}
Travel time 0.36 min.
231.000(Ft.}
216.000(Ft.}
Time of concentration= 4.74 min.
Depth of flow= 0.337(Ft.}
Average velocity= 4.977(Ft/s}
Total irregular channel flow= 0.845(CFS}
Irregular channel normal depth above invert elev.
Average velocity of channel(s) 4.977(Ft/s}
Adding area flow to channel
0.845(CFS}
4. 977 (Ft/s}
0. 337 (Ft.}
Calculated TC of 4.741 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I} = 6.850(In/Hr} for a 100.0 year storm
Decimal fraction soil group A 0.000
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less }
Impervious value, Ai= 0.100
Sub-Area C Value= 0.410
0.000
0.000
1.000
Rainfall intensity= 6.850(In/Hr} for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA} is C = 0.410 CA= 0.228
Subarea runoff=
Total runoff=
Depth of flow=
l.427(CFS} for 0.508(Ac.}
l.559(CFS} Total area=
0.423(Ft.}, Average velocity=
0. 555 (Ac.)
5.800(Ft/s}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 36.000 to Point/Station 11.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME****
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 11 of 12
l ..•. ; -
""' ! I ~
Depth of flow= 0.362(Ft.), Average velocity= 7.93l(Ft/s)
******* Irregular Channel Data***********
Information entered for subchannel number 1 :
Point number
1
'X' coordinate
0.00
'Y' coordinate
l. 00
2 1.50 0.00
3 3.00 l. 00
Manning's 'N' friction factor 0.030
Sub-Channel flow l.559(CFS)
flow top width= l.086(Ft.)
velocity= 7.93l(Ft/s)
area= 0.197(Sq.Ft)
Froude number= 3.285
Upstream point elevation=
Downstream point elevation
Flow length= 150.000(Ft.)
Travel time 0.32 min.
216.000(Ft.}
168.000(Ft.)
Time of concentration= 5.06 min.
Depth of flow= 0.362(Ft.)
Average velocity= 7.931(Ft/s)
Total irregular channel flow= l.559(CFS}
Irregular channel normal depth above invert elev.
Average velocity of channel(s} 7.931(Ft/s}
0.362(Ft.}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 11.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main Stream number: 1 in normal stream number 2
Stream flow area= 0.555(Ac.}
Runoff from this stream l.559(CFS}
Time of concentration=
Rainfall intensity=
Summary of stream data:
5.06 min.
6.801(In/Hr)
Stream
No.
Flow rate
(CFS}
TC
(min)
Rainfall Intensity
(In/Hr)
1 2. 974 12.07 3.881
2 1.559 5.06 6.801
Qmax (1)
1.000 * 1.000 * 2. 974) +
0.571 * 1.000 * 1. 559) + 3.863
Qmax(2}
1.000 * 0.419 * 2. 974) +
1.000 * 1.000 * 1. 559) + 2.805
Total of 2 streams to confluence:
Flow rates before confluence point:
2.974 1.559
Maximum flow rates at confluence using above data:
3.863 2.805
Area of streams before confluence:
1.133 0.555
Results of confluence:
Total flow rate= 3.863(CFS}
Time of concentration= 12.066 min.
Effective stream area after confluence
End of computations, total study area=
l.688(Ac.}
1.688 (Ac.}
13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT
POST-DEVELOPMENT AFTER DETENTION -OUTFALL D
Page 12 of 12
Attachment F
Storm Drain Network
P,rcrt1
1
Outfall
Project File: POC-C 2-4.stm Number of lines: 2 Date: 10/24/2016
Storm Sewers v10.40
E -(/) ~ N () (.) 0 a. Q) ~
C1) ---0 ~
l.
~
C1)
~ C1)
"' E ~
0 ..,
"'
L£'8£Z '13 ·r.u1 oc:·svc: ·13 w,~ -oo·cz+ ~ ets
88' L£Z '13 ·r.u1 88'L£Z '13 ·r.u1 UI
l"O
0 o·cvz ·13 ·pwo
~ :u 1 -00'9Z+O BlS
SL'L£C: '13 ·r.u1
o·ovz ·13 ·pwo
-oo·oo+o ets
g
> Q)
uJ
0 0 ll") in N
0 0 Ii)
in N
0 ~ .... in N
0 ~
:ii N
0 0 ,....: v N
0 0 (") v N
\
0 0
(") v N
'
\
\
\
\\
0 0 0) C') N
0
0 0)
C')
N
~ ll ..:
(§
~
I ...
" 5:
t;;
~
c:i
i('
,I~
~
a
0 0 Ii) C') N 0 C') 0 N
0 ....
0 0
0 co
R g
0 0 Ii)
C')
N
0 (0
0 in
0 v
0 C')
0 N
.c u ro Q)
0::::
...J (.9 w
...J (.9
0 J:
0
stcfrril sewef ,1abliiLti6n1
Station Len Drng Area Rn off AreaxC Tc Rain Total Cap ~el
coeff (I) flow full
Line To Iner Total Iner Total Inlet Syst
Line
(ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s)
1 End 26.000 0.00 0.00 0.00 0.00 0.00 0.0 12.7 0.0 0.10 2.52 1.56
2 1 97.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.10 2.53 1.44
-
Project File: POC-C 2-4.stm
NOTES:lntensity = 127.16 / (Inlet time+ 17.80) '0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box
Pipe Invert Elev
Size Slope Dn Up
(in) (%) (ft) (ft)
12 0.50 237.75 237.88
12 0.51 237.88 238.37
Number of lines: 2
HGLElev
Dn Up
(ft) (ft)
237.88 238.02
238.04 238.50
p
~---
Grnd I Rim Elev
Dn Up
(ft) (ft)
240.00 243.00
243.00 245.20
-J-ge 1
Line ID
Run Date: 10/24/2016
Storm Sewers v10.40
Hydraulic Grade Line Computations Page 1
Line Size Q Downstream Len Upstream Check JL Minor
coeff loss
Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy
elev elev head elev elev elev head elev Sf loss
(in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
1 12 0.10 237.75 237.88 0.13 0.06 1.67 0.04 237.92 0.604 26.000 237.88 238.02 0.14 O.Q7 1.46 0.03 238.06 0.411 0.508 0.132 0.62 0.02
2 12 0.10 237.88 238.04 0.16 0.06 1.20 0.02 238.07 0.237 97.000 238.37 238.50 j 0.13** 0.06 1.69 0.04 238.54 0.626 0.431 nla 1.00 0.04
Project File: POC-C 2-4.stm I Number of lines: 2 I Run Date: 10/24/2016
Notes: ; ** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box
-
11r---cllll -~~ er::-. .&l':~~ -~ If,'.--:"~ ~·-------fi ... c,~ .occ'.~~-'li:.:..::...·"_-.]I ~~-·;,..;J ~-"'-·
,-::::i
[. -1 f ] r":: .. -1 .[--).. !:--i IC l l .. J ...1: ll ,--~ 1:·--"'Hydraf ow ttGL \;omp1Ii:at1on t'rdceadre · ··
General Procedure:
Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction.
In a standard step, iterative procedure, Hydraflow assumes upstream HG Ls until the energy equation balances. If the energy equation
cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile
is then computed using the same procedure in a downstream direction using momentum principles.
Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
Col. 3 Total flow rate in the line.
Col. 4 The elevation of the downstream invert.
Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 7 Cross-sectional area of the flow at the downstream end.
Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7).
Col. 9 Velocity head (Velocity squared I 2g).
Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9).
Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation).
Col. 12 The line length.
Col. 13 The elevation of the upstream invert.
Col. 14 Elevation of the hydraulic grade line at the upstream end.
Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 16 Cross-sectional area of the flow at the upstream end.
Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16).
Col. 18 Velocity head (Velocity squared I 2g).
Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18).
Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
Col. 21 The average of the downstream and upstream friction slopes.
Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance.
Col. 23 The junction loss coefficient (K).
Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).
] F[
Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan
Project File: POC-D 1-33.stm
(,---. r-,a ,.-"-. .,---) ar---. --., -,J!II IIIL,-11 'fL,._:,lfl 11(_,_, 1t, _::Jiil l;":,,_,e:g
'Tl -r-' ',.,,. }!>rm Sec ... _51.40
J. -E] f~] [~-~j .IL ~torm Sewer Tabulation _] ] ] ~e1
Station Len Drng Area Rn off Area x C Tc Rain Total Cap ~el Pipe Invert Elev HGLElev Grnd I Rim Elev Line ID
coeff (I) flow full
Line To Iner Total Iner Total Inlet Syst Size Slope Dn Up Dn Up On Up
Line
(ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft)
1 End 122.50( 0.00 0.00 0.00 0.00 0.00 0.0 3.1 0.0 5.86 12.04 7.60 12 11.44 220.00 234.01 220.95 234.96 230.00 246.67 33-32
2 1 103.38( 0.00 0.00 0.00 0.00 0.00 0.0 2.3 0.0 3.53 12.35 3.61 18 1.38 234.01 235.44 234.96 236.16 246.67 243.20 A-7
3 2 25.800 0.00 0.00 0.00 0.00 0.00 0.0 2.1 0.0 3.53 10.74 4.24 18 1.05 235.44 235.71 236.16 236.43 243.20 243.20 A-6
4 3 40.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.26 4.14 2.77 12 1.35 235.71 236.25 236.43 236.72 243.20 240.00 A-8
5 3 24.000 0.00 0.00 0.00 0.00 0.00 0.0 1.8 0.0 2.38 10.93 3.30 18 1.08 235.71 235.97 236.43 236.55 243.20 241.83 A-5
6 5 170.00( 0.00 0.00 0.00 0.00 0.00 0.0 0.8 0.0 2.38 6.19 5.84 12 3.02 236.22 241.35 236.65 242.01 241.83 246.30 A-4
7 6 52.980 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 2.38 5.75 5.65 12 2.60 241.60 242.98 242.05 243.64 246.30 253.00 A-3
8 7 34.330 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.38 13.45 4.33 12 14.27 242.98 247.88 243.64 248.54 253.00 254.00 A-2
9 8 56.600 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.38 13.52 4.33 12 14.42 247.88 256.04 248.54 256.70 254.00 261.33 A-1
10 9 5.500 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.38 12.80 4.33 12 12.91 256.04 256.75 256.70 257.41 261.33 261.33 A-1
11 1 25.440 0.00 0.00 0.00 0.00 0.00 0.0 0.7 0.0 2.53 13.47 3.86 12 14.31 234.01 237.65 234.96 238.33 246.67 248.00 8-4
12 11 72.730 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.53 12.82 4.44 12 12.97 237.65 247.08 238.33 247.76 248.00 255.00 8-3
13 12 27.500 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 2.53 12.81 4.44 12 12.95 247.08 250.64 247.76 251.32 255.00 258.00 8-2
14 13 29.360 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.53 12.83 4.44 12 12.98 250.64 254.45 251.32 255.13 258.00 259.04 8-1
Project File: POC-D 1-33.stm Number of lines: 14 Run Date: 10/25/2016
NOTES:lntensity = 127.16 / (Inlet time+ 17.80)' 0.82; Return period =Yrs. 100 ; c = cir e = ellip b = box
Storm Sewers v10.40
Hydraulic Grade Line Computations Page 1
Line Size Q Downstream Len Upstream Check JL Minor
coeff loss
Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy
elev elev head elev elev elev head elev Sf loss
{in) (cfs) (ft) (ft) (ft) (sqft) (ftls) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
1 12 5.86 220.00 220.95 0.95 0.77 7.60 0.90 221.85 0.000 122.50 b234.01 234.96 0.95** 0.77 7.60 0.90 235.86 0.000 0.000 n/a 1.00 0.90
2 18 3.53 234.01 234.96 0.95 0.83 2.99 0.28 235.24 0.000 103.38 b235.44 236.16j 0.72** 0.83 4.24 0.28 236.44 0.000 0.000 n/a 1.00 0.28
3 18 3.53 235.44 236.16 0.72* 0.83 4.24 0.28 236.44 0.000 25.800 235.71 236.43 0.72** 0.83 4.24 0.28 236.71 0.000 0.000 n/a 1.00 0.28
4 12 1.26 235.71 236.43 0.72 0.37 2.09 0.18 236.61 0.000 40.000 236.25 236.72j 0.47** 0.37 3.44 0.18 236.91 0.000 0.000 n/a 1.00 0.18
5 18 2.38 235.71 236.43 0.72 0.64 2.86 0.22 236.64 0.000 24.000 235.97 236.55 j 0.58** 0.64 3.75 0.22 236.77 0.000 0.000 n/a 0.30 n/a
6 12 2.38 236.22 236.65 0.43* 0.32 7.36 0.29 236.94 0.000 170.00 D241.35 242.01 0.66** 0.55 4.33 0.29 242.30 0.000 0.000 n/a 0.51 0.15
7 12 2.38 241.60 242.05 0.45* 0.34 6.97 0.29 242.34 0.000 52.980 242.98 243.64 0.66** 0.55 4.33 0.29 243.93 0.000 0.000 n/a 0.15 0.04
8 12 2.38 242.98 243.64 0.66* 0.55 4.33 0.29 243.93 0.000 34.330 247.88 248.54 0.66** 0.55 4.33 0.29 248.83 0.000 0.000 n/a 0.82 0.24
9 12 2.38 247.88 248.54 0.66* 0.55 4.33 0.29 248.83 0.000 56.600 256.04 256.70 0.66** 0.55 4.33 0.29 256.99 0.000 0.000 n/a 0.15 0.04
10 12 2.38 256.04 256.70 0.66* 0.55 4.33 0.29 256.99 0.000 5.500 256.75 257.41 0.66** 0.55 4.33 0.29 257.70 0.000 0.000 n/a 1.00 0.29
11 12 2.53 234.01 234.96 0.95 0.57 3.28 0.31 235.27 0.000 25.440 237.65 238.33 j 0.68** 0.57 4.44 0.31 238.64 0.000 0.000 n/a 0.91 n/a
12 12 2.53 237.65 238.33 0.68* 0.57 4.44 0.31 238.64 0.000 72.730 247.08 247.76 0.68** 0.57 4.44 0.31 248.07 0.000 0.000 n/a 0.72 n/a
13 12 2.53 247.08 247.76 0.68* 0.57 4.44 0.31 248.07 0.000 27.500 250.64 251.32 0.68** 0.57 4.44 0.31 251.63 0.000 0.000 n/a 0.75 n/a
14 12 2.53 250.64 251.32 0.68* 0.57 4.44 0.31 251.63 0.000 29.360 254.45 255.13 0.68** 0.57 4.44 0.31 255.44 0.000 0.000 n/a 1.00 n/a
Project File: POC-D 1-33.stm I Number of lines: 14 I Run Date: 10/25/2016
Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box
---~· ---.sre----..-"·-,.., ll!E --·•
,., .. ,_
L_:J c·::i 1::=::1 C'.3 l~y:'.11 C:I CJI ~:I 1:=~I
Hya fafrow PIG· om putatioi1 fTrdceb u're n111 --c::::I
General Procedure:
Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction.
In a standard step, iterative procedure. Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation
cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile
is then computed using the same procedure in a downstream direction using momentum principles.
Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
Col. 3 Total flow rate in the line.
Col. 4 The elevation of the downstream invert.
Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 7 Cross-sectional area of the flow at the downstream end.
Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7).
Col. 9 Velocity head (Velocity squared / 2g).
Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9).
Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation).
Col. 12 The line length.
Col. 13 The elevation of the upstream invert.
Col. 14 Elevation of the hydraulic grade line at the upstream end.
Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 16 Cross-sectional area of the flow at the upstream end.
Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16).
Col. 18 Velocity head (Velocity squared / 2g).
Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18).
Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
Col. 21 The average of the downstream and upstream friction slopes.
Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance.
Col. 23 The junction loss coefficient (K).
Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).
I I G) r
m G) r
::;u
(l)
Q) 0 -:::I"
:§
0 0, 0
......
0 0
......
0, 0
N 8
N 0, 0
w 0 0
w 0,
0
• 0 0
• 0, 0
~ 0
0, 0,
0
Ol 8
N 0 (0 0 0 N N 0, 0 0 {~ ?: ~ ·~ 0 .
I
= :.>
~
f;°'
~ I
l~ N 0, ... 00 I ~ 8 ~ !:; N • ' 0
CX> 0
B) !:;
' ...... ......
0 ~ 0, @ * 0 CX> *
I
0, N
(0
CX> 0 !:;
' ......
N :
'@)
N
0)
0
*
' '\. \ ~ ... ~
i ~
\
I
I
.. ~ 0 i
I
N • ...... 0 0 \ \
=
~-0
,)
~
\
I
V
_J
0\
\
....... 1.-.J
\
-~ r ---
' ~
-~ -
' ~ 8
{i:l s
...... 0 ...._ r
...... ...... • "? :ii. @ N * ...... N co ......
':I!. 0
I
V
I\
~
"
N 0, --J 0 0
V
V
\
I\ ' ---
/
~
' '\
N --J w 0 0 N CX> (0 0 0 m (b < :§ Sta 0+00.00 -Outfall -0 Gmd. El. 230.1 Inv. El. 220.00
Sta 1 +22.50 -
Rim El. 246.67
Inv. El. 234.01
Inv. El. 234.01
Sta 2+25.88 -I
Gmd. El. 243.~
Inv. El. 235.44
Inv. El. 235.44
Sta 2+51.68 -I
Rim El. 243.20
Inv. El. 235.71
Inv. El. 235.71
Sta 2+75.68-1
Rim El. 241.8:
Inv. El. 235.97
Inv. El. 236.2:l
In
n: 1
Out
In
.n: 2
0
Out
In
n:3
Out
In
n:5
Out
In
Sta 4+45.68 -Ln:6
Rim El. 246.30
Inv. El. 241.35
Inv. El. 241.60
Sta 4+98.66 -I
Gmd. El. 253.C
Inv. El. 242.98
Inv. El. 242.98
Sta 5+32.99 -I
Gmd. El. 254.C
Inv. El. 247.88
Inv. El. 247.88
Sta 5+89.59 -I
Rim El. 261 .33
Inv. El. 256.04
-----Rim El. 261 .33
Out
In
n:7
,o
Out
In
n:8
0
Out
In
n:9
Out
In
n: 10
Inv. El. 256.75 Out
u. ... 0 .., 3 u. (D ~ (D .., "t a ... --(D
""O -,
.Q.
::!l ~
""O 0 ()
' 0 ......
I w w
CJ> 3
I I
I
I
I
I
~ .
LJ
'l'J
JOO 5WvSi ·13 ·11u1 i-o·esz ·13 w1~ • £0'SS+ ~ BJS
i,g·osi '13 'IIUI
i,g·osi ·13 ·11u1
UI
JOO
0 o·ssz ·13 ·pwo
£~ :u1 • L9'S(';+ ~ BIS
80'Lt,('; '13 ·11u1
80'LVZ '13 'IIUI
u1
JOO
0 o·ssi ·13 ·pwo
U :u1
u1
JOO
• H '86+0 BIS
S9'L£('; '13 'IIUI
S9"L£('; ·13 ·11u1
'8V('; '13 'PWE)
• »·si+o BIS
~O't,£('; '13 'IIUI
~o·v£i ·13 ·11u1
L9'9t,Z '13 WI~
oo·oo+o BJS
-~
> Cl)
uJ
0 0 ,...: ,..._ N
0 C> ,..._ ,..._
N
0 0 ,...: co N
0 0 ,...: co N
0 0 ,...: I{) N I
\
\
0 C> ,..._
I{)
N
1\
~~
~
I\
\
I\
\
'
0 0 ,...: v N
"'
0 0 ,...: v N
~ g ~ ~b ~ .. .. : ~ r
~
-_J
,;
@
.~ ... l•i \ ...
l....i
0 C> ,..._ M N
~ 0 I{) a,
N ...
@
~ ...
I -0 0 I{) ,...:
N
I
,1
I
0 0 ,...:
M N
(\ ~,
I
I
ff!. r;;
l<t ...
0 0 ,...: N N I{) ,..._ 0 I{)
I{)
N
0 0
I{) ,..._
0 I{)
~
~ .
ti
~ ~
J
0 0 ,...:
N N
I{)
N
0
2 -.c (.) co Cl) a=
...J 0 w
...J 0 J:
Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil JD® Pla n
Project File: POC-C 38-4 Adj.stm Number of lines: 9 Date: 10/25/201 6 - - - -- -
-----~ 40
-stJrrll Se\\fef-12~bll1litilin1 ) -~]Qe 1
Station Len Drng Area Rn off Areax C Tc Rain Total Cap ~el Pipe Invert Elev HGLElev Grnd I Rim Elev Line ID
coeff (I) flow full
Line To Iner Total Iner Total Inlet Syst Size Slope On Up Dn Up Dn Up
Line
(ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (Ws) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft)
1 End 26.750 0.00 0.00 0.00 0.00 0.00 0.0 4.4 0.0 2.48 2.48 4.02 12 0.49 237.75 237.88 238.42 238.69 .239.00 241.00
2 1 3.250 0.00 0.00 0.00 0.00 0.00 0.0 4.3 0.0 2.48 36.98 2.67 36 0.31 238.22 238.23 238.79 238.79 241.00 242.90
3 2 57.360 0.00 0.00 0.00 0.00 0.00 0.0 1.5 0.0 2.48 47.42 2.69 36 0.51 238.23 238.52 238.91 239.01 242.90 243.00
4 3 5.250 0.00 0.00 0.00 0.00 0.00 0.0 1.3 0.0 2.48 50.41 3.30 36 0.57 238.52 238.55 239.01 239.04 243.00 245.00
5 4 20.070 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.48 47.08 3.30 36 0.50 238.55 238.65 239.04 239.14 245.00 245.20
6 5 10.530 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.48 18.59 5.63 12 27.26 238.67 241.54 239.14 242.21 245.20 244.49
7 6 17.530 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 2.48 6.37 4.40 12 3.19 241.54 242.10 242.21 242.77 244.49 245.00
8 7 22.070 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 2.48 6.34 4.40 12 3.17 242.10 242.80 242.77 243.47 245.00 245.50
9 8 11.070 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.48 6.42 4.40 12 3.25 242.80 243.16 243.47 243.83 245.50 247.00
Project File: POC-C 38-4 Adj.stm Number of lines: 9 Run Date: 10/25/2016
NOTES:lntensity = 127 .16 I (Inlet time + 17.80) ' 0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box
Storm Sewers v10.40
Hydraulic Grade Line Computations Page 1
Line Size Q Downstream Len Upstream Check JL Minor
coeff loss
Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy
elev elev head elev elev elev head elev Sf loss
(in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
1 12 2.48 237.75 238.42 0.67 0.56 4.40 0.30 238.73 0.766 26.750 237.88 238.69 0.81 0.68 3.64 0.21 238.90 0.497 0.632 0.169 0.50 0.10
2 36 2.48 238.22 238.79 0.57 0.94 2.64 0.11 238.90 0.219 3.250 238.23 238.79 0.56 0.92 2.70 0.11 238.91 0.233 0.226 0.007 0.99 0. 11
3 36 2.48 238.23 238.91 0.68 0.75 2.08 0.17 239.08 0.000 57.360 238.52 239.01 j 0.49** 0.75 3.30 0.17 239.18 0.000 0.000 n/a 1.00 0.17
4 36 2.48 238.52 239.01 0.49* 0.75 3.30 0.17 239.18 0.000 5.250 238.55 239.04 0.49** 0.75 3.30 0.17 239.21 0.000 0.000 n/a 1.00 0.17
5 36 2.48 238.55 239.04 0.49* 0.75 3.30 0.17 239.21 0.000 20.070 238.65 239.14 0.49** 0.75 3.30 0.17 239.31 0.000 0.000 n/a 1.49 0.25
6 12 2.48 238.67 239.14 0.47 0.36 6.85 0.30 239.44 0.000 10.530 241.54 242.21 0.67** 0.56 4.40 0.30 242.52 0.000 0.000 n/a 0.15 0.05
7 12 2.48 241.54 242.21 0.67* 0.56 4.40 0.30 242.52 0.000 17.530 242.10 242.77 0.67** 0.56 4.40 0.30 243.08 0.000 0.000 n/a 1.00 0.30
8 12 2.48 242.10 242.77 0.67* 0.56 4.40 0.30 243.08 0.000 22.070 242.80 243.47 0.67** 0.56 4.40 0.30 243.78 0.000 0.000 n/a 1.00 0.30
9 12 2.48 242.80 243.47 0.67* 0.56 4.40 0.30 243.78 0.000 11.070 243.16 243.83 0.67** 0.56 4.40 0.30 244.14 0.000 0.000 n/a 1.00 0.30
Project File: POC-C 38-4 Adj.stm l Number of lines: 9 I Run Date: 10/25/2016
Notes:* Normal depth assumed.;** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box
·_--. c~=1 c:1 1c··3 r·=i c··.i C:I Storrr£·:-::Jv10'
Hyarafl"ow f1G'L re c:J ----
General Procedure:
Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to detemiine energy losses due to pipe friction.
In a standard step, iterative procedure. Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation
cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile
is then computed using the same procedure in a downstream direction using momentum principles.
Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
Col. 3 Total flow rate in the line.
Col. 4 The elevation of the downstream invert.
Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 7 Cross-sectional area of the flow at the downstream end.
Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7).
Col. 9 Velocity head (Velocity squared I 2g).
Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9).
Col. 11 The friction slope at the downstream end (the Sor Slope term in Manning's equation).
Col. 12 The line length.
Col. 13 The elevation of the upstream invert.
Col. 14 Elevation of the hydraulic grade line at the upstream end.
Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 16 Cross-sectional area of the flow at the upstream end.
Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16).
Col. 18 Velocity head (Velocity squared I 2g).
Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18).
Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
Col. 21 The average of the downstream and upstream friction slopes.
Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance.
Col. 23 The junction loss coefficient (K).
Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).
I~~~~~~~~~~~~ :x: G) 17"
m G)
r
::0 CD Q)
0 =r a
N ~ 0 0 N ~ 0 0 t 0 0 N ~ (0 0 0 N i 0 0 N 0, (0 0 0 0 I---..-.----T--rr~""T"T""---r---.--------,--+---r--r--r--r-t-r-1r--r~--+--.--.----.-.---~ ~ 1--',!!~--4-"''"*-+--+-h'4--+-+--+-+-+-+-t--if----i--t-t-+-+--+-+~
~ ; ~
i ~ I i
-1\
ill I I i I ~ ~ 11' I I I I I I I I I I I I I I I I I I
-.J 0,
I
.... ~~ 0 C 0 c;
' ~,
1
[V
~ ~ ~ N f-+--~-+-+--+-l-++H+-H-l~+-+-+-J--i--+-.+--+--1-l~~ [\ 0,
I I 11-1
.... l\ .... o,f-+--+-i!i.-+.-+--+-l---H-1~~+-+-+-J--i--+-+--+--1-l~~
0
N N .. 0 ~ ~ • c:: t
m ro < ;i -Sta 0+00.00 -Outfall Gmd. El. 239.00 Inv. El. 237.75 In Sta 0+26. 75 • Ln: 1 Rim El. 241.00 Inv. El. 237.88 Out
Inv. El. 236.22 In
Sta 0+30.00 -Ln: 2
Gmd. El. 242.90
Inv. El. 238.23 Out
Inv. El. 238.23 In
Sta 0+87.36 -Ln: 3
Gmd. El. 243.00
Inv. El. 238.52 Out
Inv. El. 238.52 In
Sta 0+92.61 -Ln: 4
Gmd. El. 245.00
Inv. El. 238.55 Out
Inv. El. 238.55 In
Sta 1+12.68 -Ln: 5
Rim El. 245.20
Inv. El. 238.65 Out
Inv. El. 238.67 In
Sta 1 +23.21 -Ln: 6
Gmd. El. 244.49
Inv. El. 241 .54 Out
Inv. El. 241 .54 In
Sta 1+40.74-Ln: 7
Gmd. El. 245.00
Inv. El. 242.10 Out
Inv. El. 242.10 In
Sta 1+62.81 -Ln: 8
Gmd. El. 245.50
Inv. El. 242.80 Out
Inv. El. 242.80 In ~ 1 11 I I ~l~I I • 11 1 I~ D I I I I ~ I I I I i tl'.: ~ N "t ~ ~ Sta 1+73.88 -Ln: 9
0 t .,,. R ~ c:: . !D . !D im El. 247.00
N ~ 0 0 ~ .:... g g g g Inv. El. 243.16 Out
~
@
~
N 0, *-
Cf; ~ 0 .., 3 Cf; (D ~ (D .., "t a .. --(D
""O -,
.Q.
:::!l in
""O 0 ()
()
<,.)
00
.&
~
CJ)
3
Hyafafiow Storm ~ewers t:xtensrorrror
Project File: POC-B.stm Number of lines: 7 Date: 10/24/2016
Storm Sewers v10.40
Storm Sewer Tabulation Page 1
Station Len Drng Area Rn off Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd I Rim Elev Line ID
coeff (I) flow full
Line To Iner Total Iner Total Inlet Syst Size Slope Dn Up Dn Up On Up
Line
(ft) (ac) (ac) (C) (min) (min) (In/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft)
1 End 5.000 0.00 0.00 0.00 0.00 0.00 0.0 7.2 0.0 0.98 3.66 5.12 6 42.60 232.52 234.65 232.99 235.12 235.00 237.00
2 1 34.000 0.00 0.00 0.00 0.00 0.00 0.0 7.1 0.0 0.98 3.51 5.11 6 39.26 234.65 248.00 235.12 248.47 237.00 253.00
3 2 37.000 0.00 0.00 0.00 0.00 0.00 0.0 6.9 0.0 0.98 2.36 5.11 6 17.65 248.00 254.53 248.47 255.00 253.00 260.89
4 3 1.500 0.00 0.00 0.00 0.00 0.00 0.0 6.8 0.0 0.98 447.5 6.82 X fflb 131 .32 255.68 257.65 255.74 257.89 260.89 261.58
5 4 1.500 0.00 0.00 0.00 0.00 0.00 0.0 6.7 0.0 0.98 0.00 0.19 X fflb -110.0 D257.43 255.78 260.93 260.93 261 .58 262.00
6 5 38.000 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 0.98 71 .14 0.10 42 0.50 255.59 255.78 260.93 260.93 262.00 261 .97
7 6 15.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.98 9.39 0.55 18 0.80 255.78 255.90 260.93 260.93 261 .97 262.00
Project File: POC-8.stm Number of lines: 7 Run Date: 10/24/2016
NOTES:lntensity = 127.16 / (Inlet time+ 17.80) '0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box -- - - - -
----------
=-J r J t J 1 L _ J r J ;, [-1 ~ Hydrauhc Grade [1ne Computaf1ons -] .J J E ;ge1
Line Size Q Downstream Len Upstream Check JL Minor
coeff loss
Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy
elev elev head elev elev elev head elev Sf loss
(in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
1 6 0.98 232.52 232.99 0.47 0.19 5.12 0.41 233.40 0.000 5.000 234.65 235.12 0.47** 0.19 5.11 0.41 235.53 0.000 0.000 n/a 0.75 n/a
2 6 0.98 234.65 235.12 0.47* 0.19 5.11 0.41 235.53 0.000 34.000 248.00 248.47 0.47** 0.19 5.11 0.41 248.88 0.000 0.000 n/a 0.69 n/a
3 6 0.98 248.00 248.47 0.47* 0.19 5.11 0.41 248.88 0.000 37.000 254.53 255.00 0.47** 0.19 5.11 0.41 255.41 0.000 0.000 n/a 0.15 n/a
4 42 0.98 255.68 255.74 0.06* 0.09 10.89 0.12 255.86 0.000 1.500 257.65 257.89 0.24** 0.36 2.76 0.12 258.01 0.000 0.000 n/a 0.17 0.02
18 B
5 42 0.98 257.43 260.93 3.50* 5.25 0.19 0.00 260.93 0.001 1.500 255.78 260.93 3.50 5.25 0.19 0.00 260.93 0.001 0.001 0.000 0.19 0.00
18 B
6 42 0.98 255.59 260.93 3.50 9.62 0.10 0.00 260.93 0.000 38.000 255.78 260.93 3.50 9.62 0.10 0.00 260.93 0.000 0.000 0.000 0.50 0.00
7 18 0.98 255.78 260.93 1.50 1.77 0.55 0.00 260.94 0.009 15.000 255.90 260.93 1.50 1.77 0.55 0.00 260.94 0.009 0.009 0.001 1.00 0.00
Project File: POC-8.stm I Number of lines: 7 I Run Date: 10/24/2016
Notes: * Normal depth assumed.; ** Critical depth. ; c = cir e = ellip b = box
Storm Sewers v1 o.,
Hydraflow HGL Computation Procedure
General Procedure:
Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction.
In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation
cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile
is then computed using the same procedure in a downstream direction using momentum principles.
Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
Col. 3 Total flow rate in the line.
Col. 4 The elevation of the downstream invert.
Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 7 Cross-sectional area of the flow at the downstream end.
Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7).
Col. 9 Velocity head (Velocity squared / 2g).
Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9).
Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation).
Col. 12 The line length.
Col. 13 The elevation of the upstream invert.
Col. 14 Elevation of the hydraulic grade line at the upstream end.
Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size.
Col. 16 Cross-sectional area of the flow at the upstream end.
Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16).
Col. 18 Velocity head (Velocity squared/ 2g).
Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head, (Col. 14 + Col. 18).
Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
Col. 21 The average of the downstream and upstream friction slopes.
Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance.
Col. 23 The junction loss coefficient (K).
Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).
c-~_:1 .::-'31 1 .. :1 c=a l[:::::11 £.:::-1 c~ £--:i
Page 1
£~~--c::=n !£.~JI
S!2 I
0
3
(J)
(1)
:i: (1)
iii
I G) r
m G) r
:::0 (I)
O> 0 ~
:§
N N w 0 0 0 ...... 0
N 0
:s
.i,.
0
g:
a,
0
-..J 0
CX> 0
(0 0
...... 0 0
......
0
......
N 0
...... w 0
...... .i,.
0
I (J ~ E ' C (E
i 0
N N w
0 0
N w a, 0 0 -i ' l\ K ' 0 ~ ;~
N w O> 0 0
N .i,. !!> 0 0 \ I\. \ i\ ~ f\ ~~ I\
i\ ·..: &-~,
,~ r--
I '
~
I
.... I m.
I~
:.
i ~
p.
i ~ i.. :~ ~ !,-...
= ~ : : ~
·~ l,.a. ID
OD I~
I
i ;
I"
to,
"' b
@
p
CX> 0 '#.
i..
t;
5 ~
N ~ 0 0
\
' \
\
1
~
I: ...
~ .
I~ I:)
i
N a, N 0 0
I/
1.../ --t\
N a, N 0 0
\
I/
i\
I\
~
N -..J 0, 0 0
N -..J 0,
0 0
N CX> CX> 0 0
N CX> CX> 0 0
m m < ;:i; ....... Sta 0+00.00 -1 Gmd. El. 235.1 Outfall -:o Inv. El. 232.52 In Sta 0+05.00 • Gmd. El. 237.0 Ln: 1 0 Out In Inv. El. 234.65 Inv. El. 234.65
Sta 0+39.00 • l
Gmd. El. 253.0
Inv. El. 248.00
Inv. El. 248.00
Sta O+ 76.00 • I
Rim El. 260.89
Inv. El. 254.53
Inv. El. 255.68
Sta O+ 77.50 • I
Gmd. El. 261.!
Inv. El. 257.65
Inv. El. 257.43
Sta O+ 79.00 • I
Rim El. 262.0C
Inv. El. 255.78
Inv. El. 255.59
Sta 1+17.00 •
n:2
,o
Out ·n
n:3
Out ·n
n:4
8
Out ·n
n:5
Out ·n
n:6
Rim El. 261 .97
Inv. El. 255.78
Inv. El. 255.78
Sta 1 +32.00 • I
Rim El. 262.00
Inv. El. 255.90
Out ·n
n:7
Out
I CJ. fl
I
a
I
I
I
D
D
I
3