Loading...
HomeMy WebLinkAboutCT 14-09; UPTOWN BRESSI RANCH; DRAINAGE STUDY; 2017-06-09'I T\4-D DRAINAGE STUDY I FOR S I UPTOWN BRESSI 1 (FINAL ENGINEERING) S GR2017-0018 DWG 502-8A I Job Number 17169A $ES Brendan -Hastie Sk No 6580 EXP. X I R.C.E#65809 Exp.09/17 S I .S Prepared For: I . Sarah Morrell (Owner) Kevin McCook (Owner) Shea Homes Shea Business Properties 9900 Mesa Rim Road 9900 Mesa Rim Road San Diego, California 92121 . San Diego, California 92121 S I . Prepared By: I Rick Engineering Company S 5620 Friars Road San Diego, California 92110-2596 I. S (619)291-0707 5 S S 5 March 29, 2017 5 - Revised: June 9, 2017 S I I . _•S S S TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................... 2.0 Hydrology ...................................................................... . ................................................. .......... 4 3.0 Hydraulics ................................................................................................................................8 4.0 Detention ................................................................................................................................... 5.0 Conclusion ..............................................................................................................................10 Figures: FigureI:- Vicinity Map ................................................................................................... 3 Tables: Table 2.1: Summary of Peak Discharge Rates................................................................. rel Appendices: Appendix A: Modified Rational Method Analyses (100-year, 6-hour) [Post-Project] Appendix B: Backup Calculations for Weighted Runoff Coefficient Appendix C: AES Pipe Flow Hydraulic Analyses [Post-project] Appendix D: Detention Analysis Appendix E: Reference Drawings Appendix F:. Drainage Study Map for Bressi Ranch [Pre-Project] Map Pockets: - Map Pocket 1: Drainage Study Map for Bressi Ranch [Post-Project] - / / Prepared By: BH:ASH:rf7Report/17169-A.004 Rick Engineering Company - Water Resources Division 3-29-17 Revised: 6-9-17 1 DRAINAGE STUDY - FOR I UPTOWN BRESSI I . ,. REVISION PAGE June 9,2017. This Drainage Study presents a revision to the March 29, 2017 plan pursuant to the first plan check comments from the City of Carlsbad. Rick Engineering Company's response to the City of I .Carlsbad plan check comments is included with 'the original copy of the drainage study report dated, March 29, 2017. In summary The revisions to the report include, . I . Report narrative has been updated to address City comments. AES pipeflow results have been included for the proposed storm drain backbone and I major laterals. . . . . Drainage study map has been updated. . I . Grammatical errors have been corrected. ' All the plan check comments have been addressed and changes and/or additions have been provided. I . .. . . I I Prepared By: / BH:ASH:rfReportJ17I69-A.004 S Rick Engineering Company— Water Resources Division' . 3-29-17 Revised: 6-9-17 1.0 INTRODUCTION Project Description: This drainage report presents final hydrologic and hydraulic analyses for,-Lots 29, 30, 31 and 32 of the Bressi Ranch community in the City of Carlsbad (herein referred to as "the project"). The proposed project encompasses a 17.6 acre site and is located/at the southwest corner of the - intersection of Palomar Airport Road and El Fuerte Street; e"ntersection is located approximately 0.5 miles east of the intersection of Palomar Airport Road and El Camino Real. Gateway Road fronts theproperty along the south and Colt Place fronts the property along the west. See Figure 1, Vicinity Map, located at the end of Section 1.0. The project site was previously graded as part of the Bressi Ranch, Planning Area 4 project, under City of Carlsbad drawing number 400-8A,thich was approved in December of 2003. The site has since remained undeveloped after completion of the mass grading operation. The existing terrain slop'es at 2% to 2.5% from the northast to the southwest. Subsequent grading and improvements were installed as part of drawiniimbers: 400-8B, 400-8D, and 421-3. The final analysis presented herein supersedes the drainag/study report titled, "Preliminary Drainage Study for Bressi Ranch (Lots29 thru 32)," last revised March 25, 2015, prepared by Rick Engineering Company (J47169). Hydrology and Hydraulics: Hydrology and hydraulics are discussed in detail in Sections 2.0 and 3.0 of this report. Water Quality: The project will include low impact development (LID) site design, source control, pollutant control, and hydromodification management BMPs to achieve water uality treatment and hydromodification management. Refer to the report titled, "Priority Del4ment Project (PDP) Storm Water Quality , Management Plan (SWQMP) for Bressi Ranch (Lots 29 thru 32)," -dated March 29, 2017, prepared by Rick Engineering Company (Job No. 171 69-A), for further discussion of storm water quality requirements and post-construction BMPs. I Prepared By: BH:ASH:rfYReportJ17I69-A.004 Rick Engineering Company - Water Resources Division 1 3-29-17 Revised: 6-9-17 I , I Offsite Detention: 1 Pursuant to the Project Design Consultants (PDC) report titled "Drainage Report Bressi Ranch Mass Grading and Backbone Improvements", dated: February 01, 2003 regional detention is provided for the westerly portion of Bressi Ranch within Open Space Area 1 (OS-1 Basin) located adjacent to Alicante Road south of Town Garden Road. The OS-i Basin was designed to reduce peak flows I such that the total combined 100-year peak flows do not exceed existing conditions. I Storm water runoff from the subject property is currently collected on-site and conveyed within an existing public storm drain system located within Gateway Road; the backbone system conveys \ I runoff southerly within Alicante Road and ultimately discharges to the OS-1 Basin. As the project - proposes to change the land use and zoning from Cômmercialllndustrial to a mix of Multi Family i Residential and Commercial/Industrial resulting in' a decrease in proposed impervious surfaces, it is expected that on-site improvements associated with this development will not increase peak I discharges to downstream detention facilities above the peak discharge anticipated for a commercial/industrial development. The overall project's peak flow runoff is less than the 100-year design flows used in the mass grading phase and reflected on the as-built storm drain plans for the I system installed to 'receive runoff from this project site. The preliminary hydrologic analysis presented herein supports the decrease in discharge. The OS-1 Basin discharges to a7downstream detention basin located at the intersection of Alicante I Road and Poinsettia Lane (Alic'ante Basin). Said detention facility subsequently discharges to the La Costa golf resort; the golf course ultimately discharges to the Batiquitos Lagoon. / 'I I S . .. . I . I , . I Prepared By BH ASH rflReportll7l69 A 004 Rick Engineering Company - Water Resources Division ' 2 . 3-29-17 Revised: 6-9-17 I ... . Ii I . . . .. I.. I . I .Prepared By: . BH:ASH:rtlReportl17169-A.004 Rick Engineering Company - Water Resources Division 3 . 3-29-17 Revised: 6-9-17 / 2.0 HYDROLOGY Hydrologic Methodology and Criteria: - The 100-year 6-hour project peak flow rates were determined for runoff from the project site using the Modified Rational Method. The hydrologic methodology and criteria utilized for the project has been taken from the San Diego Cô TnHjdr5lö72IcThal7une 2003. Modified Rational Method Methodology and Criteria: The San Diego County Hydrology Manual June 2003 requires that the modified rational method be used for hydrologic analjsis of a watershed less than approximately 1.0 square mile. The drainage area tributary to each of the proposed storm drain systems total less than 1.0 square mile. The Modified Rational Method computer program developed by Advanced Engineering Software * (AES) was used for this study because it saiisfies the County of San Diego's design criteria. The hydrologic model is developed by creating independent node-link models of each interior drainage basin and linking these sub-models together at confluence points. The program has the capability to perform calculations for 15 hydrologic processes. These processes are assigned code numbers that appear in the results. The code numbers and their significance are as follows: Subarea Hydrologic Processes (Codes). Code Confluence analysis at a node Code Initial subarea analysis s Code Pipe flow travel time (computer-estimated pipe sizes) Code Pipe flow travel time (user-specified pipe size) Code Trapezoidal channel travel time Code Street flow analysis through a subarea Code User-specified information at a node Code Addition of the subarea runoff to mainline Code V-Gutter flow thiough subarea Code Copy mainstream data onto a memory bank Code - 11: Confluence a memory bank with the mainstream memory Code Clear a memory bank Code Clear the mainstream memory . Code Copy a memory bank onto the mainstream memory. Code Hydrologic data bank storage functions Prepared By: - BH:ASH:rflReportl17169-A.004 Rick Engineering Company - Water Resources Division 4 3-29-17 Revised: 6-9-17 I In order to perform the post-project hydrologic analysis; base information for the study area is I required. This information includes the land uses, drainage facility locations, flow patterns, drainage basin boundaries, and topographic elevations.. The project was split into five (5) major basins, each I . labeled "DMA-#". The information used for post-project analysis can be found in-the exhibit titled, "Drainage Study Map for Bressi Ranch [Post-project]", included in Map Pocket 1. The hydrologic I conditions were analyzed in accordance with the County of San Diego's hydrology criteria as follows Design Storm: 6-hour Precipitation (inches): P2.8 I Soil Type: Rainfall Data: - Based on 6-hour Rainfall Isopluvial U . Modified runoff coefficients from the San Diego County Hydrology Manual were used for post- project hydrologic analysis. A weighted average of runoff coefficients for each major basin area was calculated based on the proposed pervious and impervious areas. The weighted runoff coefficients, I along with a sample calculation, can be seen in Appendix B. Results: I The results of the Modified Rational Method analysis for the post-project are provided in Appendix A of this report. The map titled "Drainage Study Mapor Bressi Ranch [Post-Project Condition]," I . located m Map pocket 1, presents the drainage area boundaries, nodes, and areas used in the Modified Rational Method analysis. I - The pre-project flows, as compared within this study, were referenced from the as-built plans titled I "Storm Drain Improvement Plans Bressi Ranch Industrial" (DWG 400-8D). The 100-year peak discharges are annotated on the profiles of the existing backbone system within Gateway Road. I Refer to Appendix F for the pre-project condition map with outlet locations. I.Table 2.1 presents a summa of the Modified Rational Method analyses for the post-prOject condition compared to the existing pre-project outlet location flows referenced on the I .aforementioned off-site improvement plans for Gateway Road. I Prepared By: . BH:ASH:rf/Reporti17169-A.004 Rick Engineering Company - Water Resources Division 5 3-29-17 Revised: 6-9-17 I -. - 1 I •0 Table 2.1: Summary of 100-Year 6-Hour Pre-Project and Post-Project Peak Discharge Rates for Bressi Ranch 100-Year, Existing Drainage Basin 6-Hour Peak Outfall Capacit Mitigation Measure Flow Rate (cfs) (cfs) As-built Plan Design Flow - - Pre- Project 35.8 30" RCP from Sta. 1+93.7 to Sta. 3+74.0 Colt Place None, existing pipe is DMA-1 & adequate for post- Post-Project DMA-5 Outlet [Node 195-196] 36.9 66.8 project peak flow rate Pre-Detention per AES Pipeflow analysis. Post-Project [Node 195-196] 36.9 Post-Detention _@ Node _250 As-built Plan Design Flow - - Pre- Project 24" RCP from Sta. 44+52.4 to Sta. 18.0 None, existing pipe is 47+05.5 Gateway Road adequate for post- DMA-2 & 28.7 project peak flow rate Post-Project DMA-4 Outlet [Node 295] 34.8 per AES Pipeflow Pre-Detention analysis post- detention at Node Post-Project [Node 295] 21.7 250. Post-Detention _@ Node _250 As-built Plan Design Flow - - Pre- Project m 24" RCP fro Sta. 41+62.81 to Sta. 31.5 None, existing pipe is 44+52.4 Gateway Road adequate for post- project peak flow rate Post-Project DMA-3 Outlet [Node 320] 43.1 37.9 per AES Pipeflow Pre-Detention analysis post- detention at Node Post-Project [Node 320] 28.3 250.- Post-Detention @ Node 250 As-built Plan Design Flow - - Pre- Project Total at D/S of Colt Place & Gateway Road 74.7 Manhole 36" RCP @ Sta. 41+62.81 Gateway (Intersection) Road None, pre-project Colt Place 141.8 peak flows exceed Post-Project & [Node 199] 77.6 post-project peak Gateway Pre-Detention flows post-detention. Road Post-Project [Node 199] 56.3 Post-Detention _@ Node _250 Notes: I. The capacity of the existing storm drain system in Gateway Rd. was calculated using normal depth per as build slopes. Prepared By: BH:ASH:rf7ReportJl7 169-A.004 Rick Engineering Company - Water Resources Division 6 3-29-17 Revised: 6-9-17 I The project site in the post-project condition has been divided into five (5) separate drainage basins: DMA-1, DMA-2, DMA-3, DMA-4 and DMA-5 In general, DMAl9torm water runoff is conveyed through the proposed storm drain system' on the residential side of the project, toward an outlet connecting to existing 36 inch storm drain on Colt Place. DM-A2 storm water runoff is conveyed overland of the commercial side of the project, and is collected and conveyed via on-site storm drain facilities toward Gateway Road. The collected runoff enters the existing 24 inch storm drain within Gateway Road replacing Outlet #4 of the existing system. IDMA-3 storm water runoff is conveyed overland and is also collected and conveyed via on-site storm drain facilities toward Gateway Rd. prior to entering the existing storm drain line within Gateway Rd, replacing Outlet #3 of the existing system. DMA4is conveyed overland to two (2) bioretention basins located behind the main entrance curb returns then it is collected and conveyed via proposed storm drain facilities into Gateway Rd. and tiesinto-the DM-A-5is conveyed through the proposed storm drain system to an existing '30:inch storm drain line within eoltPlace. The development proposes to utilize one (1) existing connection points to the public storm'drain system, and three (3) new connections. A detailed pipe-flow analysis on the off-site storm drain commencing at the intersection of Colt Place and Gateway Road has been performed to ensure adequate capacity. Please refer Appendix C for the AES pipe flow analysis results. The project site's runoff is less than the 100-year design flows used in the mass grading phase. The decrease in peak discharge is attributed to the change from Commercial/Industrial to Multi-Family Residential coupled with an increased time of concentration due to on-site routing and detention. Prepared By: Rick Engineering Company - Water Resources Division 7 BH:ASH:r'ReportI17 I 69-A.004 3-29-17 Revised: 6-917 I 3.0 HYDRAULICS / Hydraulic Methodology and Criteria: I The 100-year, 6-hour proposed peak flow rates determined using the Modified Rational Method were usedto determine sizes for the on-site storm drain facilities. AES pipe-flow analysis was performed I for the proposed on-site storm drain main line systems and major laterals to determine pipe sizes, hydraulic grade lines and velocity of flow. Detailed AES pipe-flow analysis has also been performed on the off-site storm drain to ensure adequate capacity. I Pipe Sizing Results: Please refer to Appendix C for the AES Pipe flow analysis results of the off-site storm drains I commencing at the intersection of Colt Place and Gateway Road; and orsite main line systems and major laterals for the project. Water tight joints have been proposed for storm drain pipes under pressure flow. I H I I I I I i I I .. Prepared By: B11 :AS H :rf/Report/ 17169-A.004 Rick Engineering Company - Water Resources Division 8 3-29-17 Revised: 6-9-17 I I I I I I I I I I 4.0 DETENTION ANALYSIS For the post-project condition, three (3) underground detenti vaults are proposed in DMA 1, DMA 2 and DMA 3. The detention vaults in DMA 1 and DMA 3 are used only for water quality flow control and hydromodification (HMP) purposes. However, the detention vault in DMA 2 has been sized to accommodate the 100-Year peak flow in addition to the water quality and HMP volume. For the design of detention facility, the modified rational method hydrologic analysis was performed to determine the 100-year flow rates for both the pre-project condition and the post-projed condition. Pre-project and post-project rational method output for the project is provided in Appendices A of this report. Hydrograph Development: The sizing of a detention facility requires an inflow hydrograph to .obtain the necessary storage volume. The modified rational method only yields a peak discharge and time of concentration, and does not yield a hydrograph. In order to convert the peak discharge and time of concentration into a hydrograph, Rick Engineering's program, RatHydro was used. RatHydro generates a hydrograph from the following inputs: Time of concentration, 6-Hour Precipitation depth, basin area, rational method runoff coefficient, and peak discharge rate. The generated hydrograph can then be used as the inflow hydrograph for basin sizing within HEC-1. HEC-1 Methodology and Criteria: I 100-year hydrographs and elevation-storage outflow rating curves were used in the HEC-i hydrologic model to perform routing calculations for the detention basin, and to determine the 100- year detention volume required for the basin to reduce the post-project peak discharge rate back to the pre-project peak discharge rate. Detention Results: The 100-year, 6-hour post-project peak discharge rates were routed using the HEC-1 hydrologic I , model to determine the detention volume required to'reduce the post-project peak discharge rates back to the pre-project peak discharge rates for 100-Year storm event. The HEC-1 detention I analyses computer output is located in Appendix D of this report. Please refer Appendix A for the I 100-year, 6-hour post project peak discharge rates post-detention. Prepared By: BH:ASH:rflReporti 17 I69-A.004 Rick Engineering Company - Water Resources Division 9 3-29-17 Revised: 6-9-17 I I I • S , - ;. 1•' 5.0 CONCLUSION I This drainage report presents the 100-year post-project hydrologic analyses for the Bressi Ranch I project. The post-project condition peak discharge rates were determined using the Modified Rational Method based on the hydrologic methodology and criteria described in the County of San I Diego Hydrology Manual June 2003. I The 100-year, 6-hour proposed peak flow rates determined using the Modified Rational Method were used to determine storm drain pipe sizes for the on-site drainage facilities. The storm drain system is I designed to convey flow in an open channel condition where feasible. Pipe flow analyses were performed on the offsite storm drains to ensure adeuate capacity. The development proposes to U utilize one (1) of the three (3) existing pints of connection to the public storm drain system and proposes three (3) new connections to the existing line on Gateway Rd. The project site's runOff is I less than the 100-year design flows used in the mass grading phase:.. The decrease in peak discharge is attributed to the land use change from Commercial/Industrial to Multi-Family Residential coupled I with an increased time of concentration due to on-site routing and proposed detention. The post- project discharges were compared to the peak discharges as 'annotated on the "Storm Drain Improvement Plans Bressi Ranch Industrial" (DWG 400-81)). I 2016. Post-project storm water runoff will be treated per the BMP Design Manual, dated February 16, Please to the "Priority refer report titled, Development Project (PDP) Storm Water Quality Management Plan (SWQMP) for Bressi Ranch (Lots 29 thru 32)," dated March 29, 2017, prepared by Rick Engineering Company (Job No. 17169-A) for more information with regard to water quality. In order to meet the HMP Criteria and to address downstream conditions of concern, a I . hydromodification management plan is also discussed within the PDP SWQMP for the project. I • -. .. - .- I Prepared By: BH:ASH:rflReporti17169-A.004 Rick Engineering Company - Water Resources Division 10 3-29-17 Revised: 6-9-17 I n BRP100.RES I * * * * * * * * * * * * * * * * * k* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT U 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1261 I Analysis prepared by: Rick Engineering Company 5620 Friars Road I .. San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 DESCRIPTION OF STUDY ************************** I * BRESSI RANCH JN: 17169-A BASINS DMA-1, DMA-2, DMA-3, DMA-4 * * POST-PROJECT 100-YEAR 6-HR STORM EVENT * I FILE NAME: BRP100.RAT TIME/DATE OF STUDY: 09:18 06/05/2017 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: U --2003-SAN-DIEGO-MANUAL-CRITERIA - USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 I SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION. SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS I *USER...DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR I NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (Fr) (Fr) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.1670.0150 2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0100 0.125 0.0180 I .GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN I OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cz<<<< I *USER SPECIFIED(SUBAREA) USER-SPECIFIED RUNOFF COEFFICIENT =..7700 S.C.S. CURVE NUMBER (AMC II)= 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 I UPSTREAM ELEVATION(FEET) = 422.00 - DOWNSTREAM ELEVATION(FEET) = 419.90 - ELEVATION DIFFERENCE(FEET) = 2.10 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.031 1 Pagel I I I BRP100.RES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY 'IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 11 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<cz< ELEVATION DATA: UPSTREAM(FEET) = 414.90 DOWNSTREAM(FEET) = FLOW LENGTH(FEET) = 415.62 MANNING'S N = 0.013 410.70 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.3 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 3.22 - GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 0.57 I PIPE TRAVEL TIME(MIN.) = 2.15 Tc(MIN.) = 5.18 LONGEST FLOWPATH FROMN0DE 100.00 TO NODE 110.00 = 475.62 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.18 RAINFALL INTENSITY(INCH/HR) = 7.21 TOTAL STREAM AREA(ACRES) = 0.10 I PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.57 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 417.50 I DOWNSTREAM ELEVATION(FEET) = 416.80 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.371 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 I TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 I FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 416.80 DOWNSTREAM(FEET) 416.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 78.00 CHANNEL SLOPE CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 = 0.0103 I MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): Page 2 I I I BRP100.RES USER-SPECIFIED RUNOFF COEFFICIENT = .7-700 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.14 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.26 AVERAGE FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) = 0.57 TC(MIN.) = 4.95 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.14 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.70 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 2.59 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 113.00 = 138.00 FEET'. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 113.00 TO NODE 110.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 411.60 DOWNSTREAM(FEET) = 410.74 FLOW LENGTH(FEET) = 83.47 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.37 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES' = PIPE-FLOW(CFS) = 1.70 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 5.26 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 110.00 = 221.47 FEET. I FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CON FLUENCED STREAM VALUES<<<<< U TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.26 U RAINFALL INTENSITY(INCH/HR) = 7.14 TOTAL STREAM AREA(ACRES) = 0.30 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.70 ** CONFLUENCE DATA ** I STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.57 5-.18 7.212 0.10 I' 2 1.70 5.26 7.137 0.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. U PEAK FLOW RATE TABLE STREAM ** RUNOFF Tc INTENSITY NUMBER (CFS) (Mm.) (INCH/HOUR) 1 2.24 5.18 7.212 L. I 2. 2.27 5.26 7.137 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.27 - Tc(MIN.) = 5.26 TOTAL AREA(ACRES) = 0.4 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 475.62 FEET. Page '3 I ' ' I I I I I I I 1. I 1 I. I , I .. I I I , p. I I I. I I I BRP100.RES FLOW PROCESS FROM NODE 110.00 TO NODE. 115.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.74 DOWNSTREAM(FEET) = 408.30 FLOW LENGTH(FEET) = 235.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.62 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.27 S PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 6.11 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 115.00 = 710.72 FEET. FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.482 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 10.48 TOTAL AREA(ACRES) = 2.5 TOTAL RUNOFF(CFS).= 12.48 TC(MIN.) = 6.11 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE =. >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<cz< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:, TIME OF CONCENTRATION(MIN.) = 6.11 RAINFALL INTENSITY(INCH/HR) = 6.48 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE= 12.48 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< .*USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 418.50 DOWNSTREAM ELEVATION(FEET) = 417.90 ELEVATION DIFFERENCE(FEET) = 0.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.601 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL.INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) =. 0.57 . TOTAL AREA(ACRES) .= 0.10 TOTAL RUNOFF(CFS) = 0.57 FLOW PROCESS FROM NODE 186.00 TO NODE 187.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<-<< >>->>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< Page 5, I I BRP100. RES I ELEVATION DATA: UPSTREAM(FEET) = 417.90 DOWNSTREAM(FEET) = 417.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 82.00. CHANNEL SLOPE = 0.0110 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 1 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.176 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 I TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.84 , TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.21 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 0.62 TC(MIN.) = 5.22 I SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.55 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.36 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 187.00 = 142.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 187.00 TO NODE 180.00 IS CODE = 41. >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<cz<< ELEVATION DATA: UPSTREAM(FEET) = 410.70 DOWNSTREAM(FEET) = 409.40 FLOW LENGTH(FEET) = 133.31 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.81 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.11 PIPE TRAVEL TIME(MIN.) = 0.58 TC(MIN.) = 5.80 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 180.00 = 275.31 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 180.00 TO NODE • 180.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.702 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT =,.7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 6.71 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 7.74 TC(MIN.) = 5.80 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 180.00 TO NODE 115.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 409.40 DOWNSTREAM(FEET) = 408.30 FLOW LENGTH(FEET) = 94.85 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 7.74 PIPE TRAVEL TIME(MIN.) = 0.24 TC(MIN.) = 6.04 Pages I Li I I I I I I I I HI I I BRP100.RES I .LONGEST FLOWPATH FROM NODE 185.00 TO NODE 115.00 = 370.16 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE ----------------------------------------------------------------------------- = I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.04 RAINFALL INTENSITY(INCH/HR) = 6.53 TOTAL STREAM AREA(ACRES) = 1.50 I .PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA 'NUMBER (CFS) (MIN.) (INCH/HOUR) ('ACRE) 1 12.48 , 6.11 6.482 2.50 2 7.74 6.04 6.530 1.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 2 STREAMS. PEAK FLOW RATE TABLE . STREAM RUNOFF Tc INTENSITY I NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.12 6.04 6.530 2 20.16 6.11 6.4,82 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.16 Tc(MIN.) = 6.11 TOTAL AREA(ACRES) = 4.0 LONGEST FLOWPATH FROM NODE 100.0030 NODE 115.00 = 710.72 FEET. FLOW PROCESS FROM NODE '115.00 TO NODE 120.00 IS CODE 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<-z< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 408.30 DOWNSTREAM(FEET) = 407.50 I FLOW LENGTH(FEET) = 92.34 MANNING'S N = 0.013. DEPTH OF FLOW IN 30.0 INCH, PIPE IS 16.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.58 , GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 20.16 I PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 6.31. LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 803.06 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 120.00 TO NODE ' 120.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWcz<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.346 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 I AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = ' 1.47 TOTAL AREA(ACRES) = 4.3 TOTAL RUNOFF(CFS) = 21.01 TC(MIN.) = 6.31 . . Page '6 ft P1 Li I BRP100.RES I * FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = '407.50 DOWNSTREAM(FEET) = 406.40 FLOW LENGTH(FEET) = 103.60 MANNING'S N = 0.013 I DEPTH OF FLOW IN 30.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.27 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 21.01 I PIPE TRAVEL TIME(MIN.) = 0.21 TC(MIN.) = 6.52 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 125.00 = 906.66 FEET. I FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE, = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.215 I *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II)?= 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 I SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.44 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS)= 22.01 TC(MIN.) = 6.52 FLOW PROCESS FROM NODE 125.00 TO NODE 130.00 IS CODE = 41 -------------------------------------------------------------------------- >>>>>-COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I , >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 406.40 DOWNSTREAM(FEET) = 405.60 FLOW LENGTH(FEET) = 86.20 MANNING'S N = 0.013 I , DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.95 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.01 PIPE TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 6.70 I LONGEST .FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 992.86 FEET. FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.106 I ' *USER SPECIFIED(SUBAREA) USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 I SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.76 TOTAL AREA(ACRES)/= 5.4 TOTAL RUNOFF(CFS) = 25.39 TC(MIN.) = 6.70 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *•* * * * * * I FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< i Page I I I BRP100.RES >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.60 DOWNSTREAM(FEET) = 403.90 FLOW LENGTH(FEET) = 168.20 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.50 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 25.39 PIPE TRAVEL TIME(MIN.) = 0.33 TC(MIN.) = 7.03 LONGEST FLOWPATH FROM NODE 100.00 TO NODE .135.00 = 1161.06 FEET. FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<cz<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.03 RAINFALL INTENSITY(INCH/HR) = 5.92 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.39 FLOW PROCESS FROM NODE 140.00 TO NODE 145.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 IN SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 415.10 DOWNSTREAM ELEVATION(FEET) = 413.90 ELEVATION DIFFERENCE(FEET) = 1.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.652 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<-<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)-<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.80 DOWNSTREAM(FEET) = 413.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0107 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.23 AVERAGE FLOW DEPTH(FEET) = . 0.20 TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 4.21 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.57 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.14 Page 8 I 1 I I I I I I I I I I I I I I I / I I BRP100.RES I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.38 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 150.00 = 135.00 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.41 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.54 I * I FLOW PROCESS FROM NODE 150.00 TO NODE 154.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>->->>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT).<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 408.23 DOWNSTREAM(FEET) = 406.81 FLOW LENGTH(FEET) = 138.98 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.55 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.54 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 4.63 I LONGEST FLOWPATH FROM NODE 140.00 TO NODE 154.00 = 273.98 FEET. FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 81 I >>>'->ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.Sw CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 8.52 I TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 13.07 TC(MIN.) = 4.63 I FLOW PROCESS FROM NODE 154.00 TO NODE 135.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 406.80 DOWNSTREAM(FEET) = 403.90 FLOW LENGTH(FEET) = 65.26 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 12.47 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.07 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 4.72 Page 9 I 1 I I 1 I I P L I I I 1 Ll BRP100.RES LONGEST FLOWPATH FROM NODE 140.00 TO NODE 135.00 = 339.24 FEET. FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = ---------------------------------------------------------------------------- >>>>->DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CON FLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 4.72 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.07 ** CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 25.39 7.03 5.920 . 5.40 2 13.07 4.72 7.377 2.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. . PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER .. (CFs) (MIN.) (INCH/HOUR) 1 33.44 4.72 7.377. 2 35.87 7.03 5.920 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.87 TC(MIN.) = 7.03 TOTAL AREA(ACRES) = 7.7 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 135.00 = 1161.06 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 135.00 TO NODE 160.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 403.90 DOWNSTREAM(FEET)*= 396.30 FLOW LENGTH(FEET) = 114.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH-PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.51 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.87 . PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 7.14 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 1275.66 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 160.00 TO NODE 195.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 396.30 DOWNSTREAM(FEET) = 394.80 FLOW LENGTH(FEET) = 152.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 19.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.18 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.87 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 7.41 Page 10 I LT I I [I LI] I BRP100.RES LONGEST FLOWPATH FROM NODE 100.00 TO NODE 195.00 = 1428.06 FEET. * FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = ------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.41 RAINFALL INTENSITY(INCH/HR) = 5.72 TOTAL STREAM AREA(ACRES) = 7.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.87 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 413.00 DOWNSTREAM ELEVATION(FEET) = 409.00 ELEVATION DIFFERENCE(FEET) = 4.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.901 100 YEAR RAINFALL INTENSITY(INCH7HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 51 ----------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 409.00 DOWNSTREAM(FEET) = 407.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 70.00 CHANNEL SLOPE = 0.0286 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.95 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.27 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 0.36 TC(MIN.) = 2.26 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.63 AREA-AVERAGE RUNOFF COEFFICIENT = 0.860 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.27 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.39 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 135.00 FEET. * FLOW PROCESS FROM NODE 192.00 TO NODE 194.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< Page 11 I I I Li I 1 I I I I I I I I I I I BRP100.RES I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) 394.80 DOWNSTREAM(FEET) = 393.60 FLOW LENGTH(FEET) = 156.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 21.4 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 8.40 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES '= 1 PIPE-FLOW(CFS) = 36.86 - PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 7.72 I LONGEST FLOWPATH FROM NODE 100.00 TO NODE 196.00 = 1584.16 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 196.00 TO NODE 199.00 IS CODE= 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<cz< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)cz<<<< I ELEVATION DATA: UPSTREAM(FEET) = 393.60 DOWNSTREAM(FEET) = 392.50 FLOW LENGTH(FEET) = 72.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.91 I GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.86 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 7.83 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 199.00 = 1656.16 .FEET. I FLOW PROCESS FROM NODE 199.00 TO NODE 199.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< I FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< * USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 421.75 DOWNSTREAM ELEVATION(FEET) = 421.45 - I ELEVATION DIFFERENCE(FEET) = 0.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.650 ( WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 50.00 I ) (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR)= 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. I SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE. 201.00 TO NODE 205.0015 CODE- 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I . ELEVATION DATA: UPSTREAM(FEET) =417.55 DOWNSTREAM(FEET) = 416.71 FLOW LENGTH(FEET) 151.87 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.0 INCHES . i Page 13 . I I 1' BRP100.RES I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM(FEET) = 397.86 FLOW LENGTH(FEET) = 53.21 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCHPIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) '= 1.27 I LONGEST PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 2.39 FLOWPATH FROM NODE 190.00 TO NODE 194.00 = 188.21 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 194.00 TO NODE 195.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<c<-< I ELEVATION DATA: UPSTREAM(FEET) = 397.53 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 272.00 MANNING'S N = 0.013 = 393.72 DEPTH OF FLOW IN 30.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.10 I GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 1.27 PIPE TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 3.50 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 195.00 = 460.21 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I = FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<-<-<<< I >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 3.50 RAINFALL INTENSITY(INCH/HR)= 7.38 TOTAL STREAM AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.27 I CONFLUENCE DATA STREAM ** RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1 35.87. 7.41 5.722 7.70 2 1.27 3.50 7.377 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 29.09 3.50 7.377 I l 2 36.86 7.41 5.722 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 36.86 Tc(MIN.) = 7.41 TOTAL AREA(ACRES) = 7.9 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 195.00 = 1428.06 FEET. I FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<-<-<-<< -, I . Page 12 .. I [1 I BRP100. RES I PIPE-FLOW VELOCITY(FEET/SEC.) = 2.61 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.60 PIPE TRAVEL TIME(MIN.) = 0.97 TC(MIN.) = 5.62 I . LONGEST FLOWPATH FROM NODE 200.00 TO NODE 205.00 = 211.87 FEET. FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81 ---------------------------------------------------------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .= 6.843 *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.66 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.22 I * I FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 416.61 DOWNSTREAM(FEET) = 416.40 FLOW LENGTH(FEET) = 42.75 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.43 I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.22 PIPE TRAVEL TIME(MIN.) = 0.21 TC(MIN.) = 5.83' LONGEST FLOWPATH FROM NODE 200.00 TO NODE 210.00 = 254.62 FEET. I * FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.685 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 4.33 TOTAL AREA(ACRES) = 1.2 'TOTAL RUNOFF(CFS) = 6.50 I TC(MIN.) = 5.83 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I . FLOW PROCESS FROM NODE' 210.00 TO NODE 215.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 416.36 DOWNSTREAM(FEET) = 415.10 FLOW LENGTH(FEET) = 167.72 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.38 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.50 PIPE TRAVEL TIME(MIN.) = 0.52 TC(MIN.) = 6.35 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 215.00 = 422.34 FEET. Page 14 I. I I BRP100.RES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.326 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT =. .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 5.12 TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 11.27 TC(MIN.) = 6.35 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<.<<< ELEVATION DATA: UPSTREAM(FEET) = 415.06 DOWNSTREAM(FEET) = 413.85 FLOW LENGTH(FEET) = 120.17 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.94 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.27 PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 6.63 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 = 542.51 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW' PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.147 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 14.44 TC(MIN.) = 6.63 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 216.00 TO NODE 220.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.81 DOWNSTREAM(FEET) = 413.41 FLOW LENGTH(FEET) = 39.81 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC'.) = 7.35 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 , PIPE-FLOW(CFS) = ' 14.44 PIPE TRAVEL TIME(MIN.)' = 0.09 TC(MIN.) = 6.72 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 220.00 = 582.32 FEET. FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<.<<<< Page 15 I I Li I I I I I I I I I I I I I I I I BRP100.RES I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.72 RAINFALL INTENSITY(INCH/HR) = 6.09 I TOTAL STREAM. AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.44 I FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 / INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 I UPSTREAM ELEVATION(FEET) = 421.75 DOWNSTREAM ELEVATION(FEET) = 421.21 ELEVATION DIFFERENCE(FEET) = 0.54 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.118 I WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 58.00 (Reference: Table 3-18 of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 I FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< U >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< E LEVATION DATA: UPSTREAM(FEET) = 417.21 DOWNSTREAM(FEET) = 416.24 FLOW LENGTH(FEET) = 137.09 MANNING'S N = 0.013 I DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.86 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.60 \PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 4.92 I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 223.00 = 197.09 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 223.00 TO NODE 223.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< - ----------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 ' NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.99 TC(MIN.) = . 4.92 I FLOW PROCESS FROM NODE 223.00 TO NODE 224.00 IS CODE = 41 ---------------------------------------------------------------------------- i Page 16 I I I BRP100.RES I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 416.14 DOWNSTREAM(FEET) = 415.81 I FLOW LENGTH(FEET) = 69.59 MANNING'S N= 0.013 ASSUME FULL-FLOWING PIPELINE . PIPE-FLOW VELOCITY(FEET/SEC.) = 3.80 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 2.99 PIPE TRAVEL TIME(MIN.) = 0.30 TC(MIN.) = 5.22 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 224.00 .= 266.68 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - FLOW PROCESS FROM NODE 224.00 TO NODE .224.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL' INTENSITY(INCH/HOUR) = 7.173 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 - AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) 4.07 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 6.97 I TC(MIN.) = 5.22 FLOW PROCESS FROM NODE 224.00 TO NODE 224.50 IS CODE = 41 ----------------------------------------------------------------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT).<<<<< ELEVATION DATA: UPSTREAM(FEET) = 415.77 DOWNSTREAM(FEET) = 415.09 I FLOW LENGTH(FEET) 135.02 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.88 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 6.97 PIPE TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 5.48 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 224.50 = 401.70 FEET. I * FLOW PROCESS FROM NODE 224.50 TO NODE 224.50 IS CODE = 81 - >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.957 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = - 1.3 TOTAL RUNOFF(CFS) = 7.33 I TC(MIN.) = 5.48 * FLOW PROCESS FROM NODE 224.50 TO NODE 225.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< Page 17 I''' I I BRP100 . RES I ELEVATION DATA: UPSTREAM(FEET) = 415.05 DOWNSTREAM(FEET) = 414.64 FLOW LENGTH(FEET) = 58.32 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 9.33 I PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.33 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 5.58 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 225.00 = 460.02, FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 225.00 TO NODE 225.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.873 *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S..C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.67 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.91 I : : * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 225.00 TO NODE 220.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<cz< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 414.54 DOWNSTREAM(FEET) = 413.41 - FLOW LENGTH(FEET) = 140.83 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.77 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBEROF PIPES = 1 PIPE-FLOW(CFS) = 8.91 PIPE TRAVEL TIME(MIN.) = 0.41 TC(MIN.) = 5.99 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 220.00 = 600.85 FEET. FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< -------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 5.99 ' RAINFALL INTENSITY(INCH/HR) = 6.57 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.91 -- CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (cFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.44 6.72 6.094 2.90 I 2 8.91 5.99 6.568 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** - STREAM RUNOFF Tc INTENSITY I Page 18 - I I I. BRP100.RES I NUMBER (CFS) (MIN.) (INCH/HOUR) 1 21.76 5.99 6.568 2 22.70 6.72 6.094 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 22.70 Tc(MIN.) = 6.72 TOTAL AREA(ACRES) = 4.5 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 220.00 = 600.85 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 220.00 TO, NODE 226.00 IS CODE = 41 ---------------------------------------------------------------------------- ,>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.37 DOWNSTREAM(FEET) = 412.84 FLOW LENGTH(FEET) = 65.16 MANNING'S N = 0.013 I DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.70 I PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 6.87 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 226.00 = 666.01 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * I FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 412.80 DOWNSTREAM(FEET) = 412.43 - FLOW LENGTH(FEET) = 46.05 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.57 - I GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.70 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 6.97 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 227.00 = 712.06 FEET. FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 81 ------------------------------------------------------------------------------ I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.955 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) = 22.70 I TC(MIN.) = 6.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<cz<<< I ELEVATION DATA: UPSTREAM(FEET) = 412.39 DOWNSTREAM(FEET) = 412.26 FLOW LENGTH(FEET) = 16.58 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.8 INCHES I Page 19 I -I I I . BRP100.RES I PIPE-FLOW VELOCITY(FEET/SEC.) = 7.50 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.70 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.01 I LONGEST FLOWPATH FROM NODE 221.00 TO. NODE 228.00 = 728.64 FEET. FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = I . >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN.) = 7.01 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 4.60 . PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.70 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 260.00 TO NODE 261.00 IS CODE = 21 ---------------------------------------------------------------------------- I >>>>>RATIONAL METHOD INITIAL.' SUBAREA ANALYSIS<.<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II)= 0 I INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00 UPSTREAM ELEVATION(FEET) = 429.00 DOWNSTREAM ELEVATION(FEET) = 425.75 ELEVATION DIFFERENCE(FEET) = 3.25 I SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.233 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN - THE MAXIMUM OVERLAND FLOW LENGTH = 87.11 (Reference: Table 3-1B of Hydrology Manual) I THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 I . TOTAL AREA(ACRES) =0.10 TOTAL RUNOFF(CFS) = 0.60 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 51' I . >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<-<< ------------ ELEVATION DATA: UPSTREAM(FEET) = 425.75 DOWNSTREAM(FEET) = 421.75 I .CHANNEL LENGTH THRU SUBAREA(FEET) = 166.00 . CHANNEL SLOPE = 0.0241 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 15.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .= 7.377 . I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. - *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.73 AVERAGE FLOW DEPTH(FEET) = 0.15 TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 4.25 I SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.60 AREA-AVERAGE RUNOFF COEFFICIENT = 0.810 TOTAL AREA(ACRES) = 0.2 - PEAK FLOW RATE(CFS) = 1.20 Page 20 . . I. ... I I BRP100.RES END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.93 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 262.00 = 261.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 262.00 TO NODE 228.00 IS CODE = 41 ----------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 417.55 DOWNSTREAM(FEET) = 412.26 FLOW LENGTH(FEET) = 32.51 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.71 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.20 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 4.30 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 228.00 = 293.51 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 4.30 ' RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) 0.20. PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20 ** CONFLUENCE DATA "' I, I I I I I U STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) I 1 22.70 7.01 5.935 2 1.20 4.30 7.377 RAINFALL INTENSITY AND TIME OF CONCENTRATION I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY I NUMBER (CFS) (MIN.) (INCH/HOUR) 1 19.46 4.30 7.377 2 23.66 7.01 5.935 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 23.66 Tc(MIN.) = TOTAL AREA(ACRES) = 4.8 LONGEST FLOWPATH FROM NODE 221.00 TO NODE AREA (ACRE) 4.60 0.20 RATIO 7.01 228.00 = 728.64 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 228.00 TO NODE 235.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<cz< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 412.22 DOWNSTREAM(FEET) = 411.25 FLOW LENGTH(FEET) = 122.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 18.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 - - Page 21. I I I I I I I BRP100. RES PIPE-FLOW(CFS) = 23.66 PIPE TRAVEL TIME(MIN.) = 0.27 TC(MIN.) = 7.27 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 235.00 = 850.64 FEET. * I FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.793 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.88 TOTAL AREA(ACRES) = 5.2 TOTAL RUNOFF(CFS) = 24.40 TC(MIN.) = 7.27 FLOW PROCESS FROM NODE 235.00 TO NODE 236.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 411.21 DOWNSTREAM(FEET) = 410.95 FLOW LENGTH(FEET) = 26.98 MANNING'S N = 0.013 I DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.26 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.40 I PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 7.33 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 236.00 = 877.62 FEET. I FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 410.91 DOWNSTREAM(FEET) = 410.69 FLOW LENGTH(FEET) = 26.79 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 18.3 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 7.76 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.40 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 7.38 I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 240.00 = 904.41 FEET. FLOW PROCESS FROM NODE 241.00 TO NODE 240.00 IS CODE = 81 ---------------------------------------------------------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.737 *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES)= 0.80 SUBAREA RUNOFF(CFS) = 3.72 TOTAL AREA(ACRES) = 6.0 TOTAL RUNOFF(CFS) = 27.88 I TC(MIN.) = 7.38 I Page 22 I i I I I BRP100.RES FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE '= 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<cz >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.65 DOWNSTREAM(FEET) = 410.21 FLOW LENGTH(FEET) = 57.97 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.72 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.88 PIPE TRAVEL TIME(MIN.) = 0.13 TC(MIN.) = 7.51 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 245.00 = 962.38 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<cz<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<.<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.11 DOWNSTREAM(FEET) = 410.06 FLOW LENGTH(FEET) 10.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.68 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.88 PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 7.54 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 250.00= 972.38 FEET. FLOW PROCESS FROM NODE 242.00 TO NODE 250.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.660 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 - * AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.75 TOTAL AREA(ACRES) = 6.6 TOTAL RUNOFF(CFS) = 30.26 TC(MIN.) = 7.54 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<-<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.54 RAINFALL INTENSITY(INCH/HR) = 5.66 TOTAL STREAM AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30.26 FLOW PROCESS FROM NODE 270.00 TO NODE 271.00 IS CODE = 21 - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< * *USER SPECIFIED(SUBAREA): * USER-SPECIFIED RUNOFF COEFFICIENT = .8100 ..Page 23 •- -. I I I I I, El I L I i I BRP100.RES. S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 63.00 UPSTREAM ELEVATION(FEET) = 428.25 DOWNSTREAM ELEVATION(FEET) = 425.75 ELEVATION DIFFERENCE(FEET) = 2.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.617 100 YEAR RAINFALL INTENSITY(INCH/HOUR) ,= 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 I '1 I P I I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW •PROCESS FROM NODE 271.00 TO NODE . 272.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 425.75 DOWNSTREAM(FEET) = 423.75 CHANNEL LENGTH THRU SUBAREA(FEET) = 118.00 CHANNEL SLOPE = 0.0169 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 15.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc.= 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.49 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.66 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 0.74 - Tc(MIN.) = 3.36 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.79 AREA-AVERAGE RUNOFF COEFFICIENT = 0.810 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 2.39 END OF SUBAREA CHANNEL FLOW HYDRAULICS: I DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 2.97 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 272.00 = 181.00 FEET. I FLOW PROCESS FROM NODE 272.00 TO NODE 275.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<.czz< ELEVATION DATA: UPSTREAM(FEET) = 419.19 DOWNSTREAM(FEET) = 412.82 FLOW LENGTH(FEET) = 72.03 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.50 I. GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.39 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.)= 3.47 I . LONGEST FLOWPATH FROM NODE 270.00 TO NODE 275.00 = 253.03 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): . . USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 . I . Page 24 I I BRPIOO.RES I AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 2.99 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 5.38 TC(MIN.) = 3.47 I * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 275.00 TO NODE 250.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 412.. 72 DOWNSTREAM(FEET) = 410.06 FLOW LENGTH(FEET) = 30.64 MANNING'S N = 0.013 I DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.94 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 5.38 I PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 3.51 LONGEST FLOWPATH FROM NODE 270.0070 NODE 250.00 = 283.67 FEET. ' FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.51 RAINFALL INTENSITY(INCH/HR) = 7.38 I TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.38 CONFLUENCE DATA ** I STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.26 7.54 5.660 6.60 2 5.38 3.51 7.377 0.90 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.60 3.51 7.377 I 2 34.39 7.54 5.660 COMP - UTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.39 Tc(MIN.) = 7.54 TOTAL AREA(ACRES) = 7.5 I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 250.00 = 972.38 FEET. FLOW PROCESS FROM NODE 250.00 TO NODE 280.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 409.86 DOWNSTREAM(FEET) = 405.53 FLOW LENGTH(FEET) = 207.29 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 10.95 i Page 25 I I I BRP100.RES PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.39 PIPE TRAVEL TIME(MIN.) = 0.32 TC(MIN.) = 7.85 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 280.00 = 1179.67 FEET. FLOW PROCESS FROM NODE 280.00 TO NODE 280.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.513 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7994 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.32 TOTAL AREA(ACRES) = 7.9 TOTAL RUNOFF(CFS) = 34.81 TC(MIN.) = 7.85 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 280.00 TO NODE 290.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.43 DOWNSTREAM(FEET) = 405.20 FLOW LENGTH(FEET) = 47.50 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 11.08 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.81 PIPE TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 7.93 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 290.00 = 1227.17 FEET. FLOW PROCESS FROM NODE 290.00 TO NODE 295.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.16 DOWNSTREAM(FEET) = 405.03 FLOW LENGTH(FEET) = 27.12 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) =. 11.08 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.81 PIPE TRAVEL TIME(MIN.) = 0.04 TC(MIN.) = 7.97 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 295.00 = 1254.29 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 295.00 TO-NODE 320.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 404.77 DOWNSTREAM(FEET) = 401.83 FLOW LENGTH(FEET) = 248.87 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE / PIPE-FLOW VELOCITY(FEET/SEC.) = 11.08 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) Page 26 [1 U I U I I I [1 Li I 1 I I LI I I I I I I I I I I I Li I I fl Li I I I I BRP100. RES GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 34.81 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 8.34 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 3Z0.00 = 1 1503.16 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ============================================================= FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 -------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 83.00 UPSTREAM ELEVATION(FEET) = 421.25 DOWNSTREAM ELEVATION(FEET) = 420.00 ELEVATION DIFFERENCE(FEET) = 1.25 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.228 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.59 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 424.50 DOWNSTREAM(FEET) = 419.25 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE = 0.0219 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.25 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.10 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) 4.52 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.25 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.88 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) 3.50 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 323.00 FEET. * FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 41 - Page 27 I I BRP100.RES I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<.zcz<< ELEVATION DATA: UPSTREAM(FEET) = 414.66 DOWNSTREAM(FEET) = 413.05 FLOW LENGTH(FEET) = 53.95 MANNING'S N = 0.013 I .DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 'PIPE-FLOW(CFS) = 1.88 PIPE TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 4.65 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 376.95 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 3.14 l TC(MIN.) = 4.65 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<.cz.<.<< ELEVA1ION DATA: UPSTREAM(FEET) = 413.01 DOWNSTREAM(FEET) = 411.89 I FLOW LENGTH(FEET) = 111.85 MANNING'S N = 0.013 DEPTH.OF FLOW IN 12.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = .. 4.89 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 3.14 PIPE TRAVEL TIME(MIN.) = 0.38 TC(MIN.) = 5.04 LONGEST FLQWPATH FROM NODE 300.00 TO NODE 304.00 = • 488.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.344 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 I AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 8.11 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = 11.24 I TC(MIN.) = 5.04 FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 41 ---------------------------------------------------------------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 411.89 DOWNSTREAM(FEET) = 410.30 i Page 28 I MAIN STREAM CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER . (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.24 5.20 7.192 1.80 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 320.00 = MEMORY BANK # 2 CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 34.81 8.34 5.303 . 7.90 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 320.00 = ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 32.94 5.20 1 7.192 2 43.10 8.34 5.303 i 617.47 FEET. 1503.16 FEET. ly I I I I BRP100.RES I FLOW LENGTH(FEET) = 2.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 34.41 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 11.24 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 5.04 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 305.00 = 490.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 305.00 TO NODE 315.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)cz<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.30 DOWNSTREAM(FEET) = 404.80 FLOW LENGTH(FEET) = 117.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.35 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.24 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.19 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 315.00 = 607.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE • 315.00 TO NODE 320.00 IS CODE = 41 ----------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (ExISTING. ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 404.80 DOWNSTREAM(FEET) = 401.83 FLOW LENGTH(FEET) = 9.67 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.52 GIVEN PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.24 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.20 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 320.00 = 617.47 FEET. FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE--------------------------------------------------------------------- = 11 >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< 1 I I U I I Li I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I Page 29 I, I . I BRP100.RES I PEAK FLOW RATE(CFS) = 43.10 TC(MIN.) = 8.34 TOTAL AREA(ACRES) = 9.7 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 320.00 TO NODE 199.00 IS CODE >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< = 41 >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET)--401.33 DOWNSTREAM(FEET) 393.21 FLOW LENGTH(FEET) = 290.10 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 13.72 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 43.10 PIPE TRAVEL TIME(MIN.) = 0.35 TC(MIN.) = 8.69 I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 199.00 = 1793.26 FEET. * FLOW PROCESS FROM NODE 199.00 TO NODE 199.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< I MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 43.10 8.69 5.163 9.70 I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 199.00 = . MEMORY BANK # 1 CONFLUENCE DATA 1793.26 FEET. STREAM RUNOFF Tc INTENSITY AREA NUMBER (cFS) (MIN.) (INCH/HOUR) (ACRE) I . 1 36.86 7.83 5.523 7.90 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 199.00 = 1656.16 FEET. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (cFS) (MIN.) (INCH/HOUR) " 1 75.69 7.83 5.523 2 77.56 8.69 5.163 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 77.56 TC(MIN.) = 8.69 TOTAL AREA(ACRES) = 17.6 END OF STUDY SUMMARY: I TOTAL AREA(ACRES) = 17.6 TC(MIN.) = 8.69 PEAK FLOW RATE(CFS) = 77.56 1 END OF RATIONAL METHOD ANALYSIS HI I S Page 30 [III I I BRP100D.RES I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE I Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1261 I Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 I Ph 619-291-0707 Fx 619-291-4165 *********************** DESCRIPTION OF STUDY ********************** I * BRESSI RANCH 3N17169A 100-YR 6-HR RUN WITH DETENTION Q S * • *DMA 1_5 * I FILE NAME: BRP100D.RAT • TIME/DATE OF STUDY: 14:03 06/05/2017 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --2003-SAN-DIEGO-MANUAL-CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 I SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD I NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER_DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* ' HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE NO. (FT) (Fr) SIDE / SIDE/ WAY (Fr) (Fr) (Fr) (FT) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0100 0.125 MANNING FACTOR (n) 0.0150 0.0180 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.50 FEET • as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) I (Depth)*(velocity) Constraint = 6.0 (Fr*Fr/s) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 • >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I *USER SPECIFIED(SUBAREA) USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 5 1 UPSTREAM ELEVATION(FEET) = 422.00 DOWNSTREAM ELEVATION(FEET) = 419.90 ELEVATION DIFFERENCE(FEET) = 2.10 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.031 i S Pagel D I 1 BRP100D.RES I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<cz<<< ELEVATION DATA: UPSTREAM(FEET) = 414.90 DOWNSTREAM(FEET) = 410.70 FLOW LENGTH(FEET) = 415.62 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.22 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.57 PIPE TRAVEL TIME(MIN.) = 2.15 TC(MIN.) = 5.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 475.62 FEET. FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE---------------------------------------------------------------------------- = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.18 RAINFALL INTENSITY(INCH/HR) = 7.21 TOTAL STREAM AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.57 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 417.50 DOWNSTREAM ELEVATION(FEET) = 416.80 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.371 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 416.80 DOWNSTREAM(FEET) = 416.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 78.00 CHANNEL SLOPE = 0.0103 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): Page 2 I I I I I 1 I I I I I 1 El 1 I 1 BRP100D.RES. I USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.14 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.26 I AVERAGE FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) = 0.57 TC(MIN.) = 4.95 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.14 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.70 I END OF SUBAREA CHANNEL FLOW HYDRAULICS:' DEPTH(FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 2.59 FLOWPATH FROM NODE 111.00 TO NODE 113.00 = 138.00 FEET. I LONGEST FLOW PROCESS FROM NODE 113.00 TO NODE 110.00 IS CODE = 41 I ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< -ELEVATION DATA: UPSTREAM(FEET) = 411.60 DOWNSTREAM(FEET) = 410.74 I FLOW LENGTH(FEET) = 83.47 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.37 - -- GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES '= I PIPE-FLOW(CFS) = 1.70 . PIPE TRAVEL TIME(MIN.) =0.32 Tc(MIN.) = 5.26 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 110.00 = 221.47 FEET. * FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = I . >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.26 I RAINFALL INTENSITY(INCH/HR) = 7.14 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.70 I CONFLUENCE DATA ** - STREAM RUNOFF Tc INTENSITY AREA NUMBER (cFs) (MIN.) (INCH/HOUR) - (ACRE) 1 0.57 . 5.18 7.212 0.10 I 2 1.70 5.26 7.137 0.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA-USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE . I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.24 5.18 7.212 I 2 2.27 5.26 7.137 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . . PEAK FLOW RATE(CFS) = 2.27 Tc(MIN.) = 5.26 ' TOTAL AREA(ACRES) = 0.4 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 475.62 FEET. Page 3 J , .. . .. I LII BRP100D..RES I FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ' ELEVATION DATA: UPSTREAM(FEET) = 410.74 DOWNSTREAM(FEET) = 408.30 FLOW LENGTH(FEET) = 235.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.62 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.27 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 6.11 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 115.00 = 710.72 FEET. I * FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.482 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 10.48 TOTAL AREA(ACRES) = 2.5 TOTAL RUNOFF(CFS) = 12.48 I TC(MIN.) = 6.11 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = --------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.11 RAINFALL. INTENSITY(INCH/HR) = 6.48 TOTAL STREAM AREA(ACRES) = 2.50 I PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.48 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 418.50 DOWNSTREAM ELEVATION(FEET) = 417.90 I ELEVATION DIFFERENCE(FEET) = 0.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.601 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. I SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 186.00 TO NODE - 187.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW-<<-cz-<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< i Page I I BRP100D.RES ELEVATION DATA: UPSTREAM(FEET) = 417.90 DOWNSTREAM(FEET) = 417.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 82.00 CHANNEL SLOPE = 0.0110 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.176 USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 ' TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.84 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.21 AVERAGE FLOW DEPTH(FEET) = 0.20 ITRAVEL TIME(MIN.) = 0.62 TC(MIN.) = 5.22 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.55 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.36 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 187.00 = 142.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 187.00 TO NODE 180.00 IS CODE = 41 -------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)cz<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.70 DOWNSTREAM(FEET) = 409.40 FLOW LENGTH(FEET) = 133.31 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.81 'GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 1.11 PIPE TRAVEL TIME(MIN.) = 0.58 TC(MIN.) = 5.80 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 180.00 = 275.31 FEET. FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<cz< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.702 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 6.71 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 7.74 TC(MIN.) = 5.80 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 180.00 TO NODE 115.00 IS CODE 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRUSUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 409.40 DOWNSTREAM(FEET) = 408.30 FLOW LENGTH(FEET) = 94.85 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS '9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.74 ' PIPE TRAVEL TIME(MIN.) = • 0.24 TC(MIN.) = 6.04 Page I I I I I I I I I I I I BRP100D.RES LONGEST FLOWPATH FROM NODE 185.00 TO NODE 115.00 = 370.16 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE---------------------------------------------------------------------------- = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENTSTREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.04 RAINFALL INTENSITY(INCH/HR) = 6.53 TOTAL STREAM AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.74 CONFLUENCE DATA STREAM RUNOFF TC INTENSITY AREA NUMBER (cFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.48 6.11 6.482 2.50 2 7.74 6.04 6.530 1.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY U NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.12 6.04 6.530 2 20.16 6.11 6.482 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.16 Tc(MIN.) = TOTAL AREA(ACRES) = 4.0 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 6.11 115.00 = 710.72 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)czcz<<< ELEVATION DATA: UPSTREAM(FEET) = 408.30 DOWNSTREAM(FEET) = 407.50 FLOW LENGTH(FEET) = 92.34 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.58 GIVEN PIPE DIAMETER(INCH) =. 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.16 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 6.31 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 803.06 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.346 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.47 TOTAL AREA(ACRES) = 4.3 TOTAL RUNOFF(CFS) = 0 21.01 TC(MIN.) = 6.31 Page 6 1 I ru I I I I I I I I I I I I I L] BRP100D.RES I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 407.50 DOWNSTREAM(FEET) = 406.40 FLOW LENGTH(FEET) = 103.60 MANNING'S N = 0.013 I DEPTH OF FLOW IN 30.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.27 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES.,= 1 PIPE-FLOW(CFS) = 21.01 I PIPE TRAVEL TIME(MIN.) = 0.21 TC(MIN.) = 6.52 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 125.00 = 906.66 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.215 *USER. SPECIFIED(SUBAREA): - USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 I SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.44 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) = 22.01 TC(MIN.) = 6.52 FLOW PROCESS FROM NODE 125.00 TO NODE 130.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 406.40 DOWNSTREAM(FEET) = 405.60 FLOW LENGTH(FEET) = 86.20 MANNING'S N = 0.013 I .DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.5 INCHES - PIPE-FLOW VELOCITY(FEET/SEC.) = 7.95 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.01 PIPE TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 6.70 I LONGEST FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 992.86 FEET: FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.106 I *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 I . SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.76 TOTAL AREA(ACRES) = 5.4 TOTAL RUNOFF(CFS) = . 25.39 TC(MIN.) -= 6.70 . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< Page 7 I I I BRP100D.RES >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.60 DOWNSTREAM(FEET) = 403.90 FLOW LENGTH(FEET) = 168.20 MANNING t S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.50 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 25.39 PIPE TRAVEL TIME(MIN.) = 0.33 TC(MIN.) = 7.03 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 135.00 = 1161.06 FEET. FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE---------------------------------------------------------------------------- = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEzcz<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.03 RAINFALL INTENSITY(INCH/HR) = 5.92 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.39 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 140.00 TO NODE 145.00 IS CODE = 21 ----------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<cz<< *USER SPECIFIED(SUBAREA): - USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 415.10 DOWNSTREAM ELEVATION(FEET) = 413.90 ELEVATION DIFFERENCE(FEET) = 1.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.652 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.80 DOWNSTREAM(FEET) = 413.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0107 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.23 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 4.21 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.57 AREA-AVERAGE RUNOFF COEFFICIENT = 0.770 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.14 Page 8 I I I I I I I I I I I I I I I I I I n BRP100D.RES I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.38 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 150.00 = 135.00 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE-PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =. 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700' SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.41 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.54 I TC(MIN.) = 4.21 I ,. FLOW PROCESS FROM NODE 150.00 TO NODE 154.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE ,(EXISTING ELEMENT).<.<<<< I ELEVATION DATA: UPSTREAM(FEET) = 408.23 DOWNSTREAM(FEET) = 406.81 FLOW LENGTH(FEET) = 138.98 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.55 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.54 PIPE TRAVEL TIME(MIN'.) = 0.42 TC(MIN.) = 4.63 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 154.00 = 273.98 FEET. FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<'<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. I *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7700 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 8.52 I TOTAL AREA(ACRES) 2.3 TOTAL RUNOFF(CFS) = 13.07 TC(MIN.) = 4.63 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 154.00 TO NODE 135.00 IS CODE = 41 - ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 406.80 DOWNSTREAM(FEET) = 403.90 FLOW LENGTH(FEET) = 65.26 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 12.47 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.07 PIPE TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 4.72 Page I I . BRP100D. RES I LONGEST FLOWPATH FROM NODE 140.00 TO NODE 135.00 = * 339.24 FEET. FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 4.72 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 2.30 I PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.07 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 25.39 7.03 5.920 5.40 2 13.07 4.72 7.377 2.30 I CONFLUENCE RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 33.44 4.72 7.377 2 35.87 7.03 5.920 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 35.87 Tc(MIN.) = 7.03 TOTAL AREA(ACRES) = 7.7 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 135.00 = 1161.06 FEET. I FLOW PROCESS FROM NODE 135.00 TO NODE 160.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 403.90 DOWNSTREAM(FEET) = 396.30 I FLOW LENGTH(FEET) = 114.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.51 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = I PIPE-FLOW(CFS) = 35.87 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 7.14 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 1275.66 FEET. I FLOW PROCESS FROM NODE 160.00 TO NODE 195.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)cz<<<< I ELEVATION DATA: UPSTREAM(FEET) = 396-.30 DOWNSTREAM(FEET) = 394.80 FLOW LENGTH(FEET) = 152.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 19.5 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 9.18 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 35.87 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 7.41 I Page 10 I I P L BRP1000. RES I LONGEST FLOWPATH FROM NODE 100.00 TO NODE 195.00 = 1428.06 FEET. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN.) = 7.41 RAINFALL INTENSITY(INCH/HR) = 5.72 TOTAL STREAM AREA(ACRES) = 7.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.87 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8600 I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 413.00 DOWNSTREAM ELEVATION(FEET) = 409.00 ELEVATION DIFFERENCE(FEET),= 4.00 I / SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.901 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS. BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 - FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 51 ------------ I >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<-<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 409.00 DOWNSTREAM(FEET) = 407.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 70.00 CHANNEL SLOPE = 0.0286 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8600 S.C.S. CURVE NUMBER (AMC II) = 0 I TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.95 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.27 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 2.26 I SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.63 AREA-AVERAGE RUNOFF COEFFICIENT = 0.860 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.27 - I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.39 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 135.00 FEET. * 1 FLOW PROCESS FROM NODE 192.00 TO NODE 194.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<-<<< i Page 11 I I I BRP100D.RES >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400:00 DOWNSTREAM(FEET) = 397.86 FLOW LENGTH(FEET) = 53.21 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = - 1.27 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 2.39 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 194.00 = 188.21 FEET. FLOW PROCESS FROM NODE 194.00 TO NODE 195.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) 397.53 DOWNSTREAM(FEET) = 393.72 FLOW LENGTH(FEET) = 272.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.10 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 1.27 PIPE TRAVEL TIME(MIN.) = 1.11 TC(MIN.) = 3.50 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 195.00 = 460.21 FEET. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.50 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.27 I CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) I 2 1 35.87 1.27 7.41 3.50 5.722 7.377 7.70 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA USED FOR 2 STREAMS. I .CONFLUENCE PEAK FLOW RATE TABLE ** . STREAM RUNOFF Tc INTENSITY NUMBER (cES) (MIN.) (INCH/HOUR) 29.09 3.50 . 7.377 I l 2 - 36.86 7.41 5.722 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS)= 36.86 . Tc(MIN.) = 7.41 I TOTAL AREA(ACRES) = 7.9 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 195.00 = 1428.06 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< Page 12 I I I I I I I 1 I I I I E I BRP100D.RES I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<.<< ELEVATION DATA: UPSTREAM(FEET) = 394.80 DOWNSTREAM(FEET) = 393.60 FLOW LENGTH(FEET) = 156.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 21.4 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 8.40 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 36.86 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 7.72 I LONGEST FLOWPATH FROM NODE 100.00 TO NODE 196.00 = 1584.16 FEET. * FLOW PROCESS FROM NODE 196.00 TO NODE 199.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 393.60 DOWNSTREAM(FEET) = 392.50 FLOW LENGTH(FEET) = 72.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE 15 17.4 INCHES PIPE-FLOW VELOCITY(FEET/SECO.) = 10.91 I GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.86 PIPE TRAVEL TIME(MIN.) = 0.11 TC(MIN.) = 7.83 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 199.00 = 1656.16 FEET. I FLOW PROCESS FROM NODE 199.00 TO NODE 199.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 421.75 DOWNSTREAM ELEVATION(FEET) = 421.45 ELEVATION DIFFERENCE(FEET) = 0.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.650 0 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 50.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 FLOW PROCESS FROM NODE 201.00 TO NODE 205.00 IS CODE = 41 >>>>->COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< 0 >>>->>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 417.55 DOWNSTREAM(FEET) = 416.71 FLOW LENGTH(FEET) = 151.87 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.0 INCHES Page 13 I I I I I I I I I I I BRP100D.RES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.61 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 0.60 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 5.62 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 205.00 = 211.87 FEET. FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.843 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.66 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.22 TC(MIN.) = 5.62 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<.z< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 416.61 DOWNSTREAM(FEET) = 416.40 FLOW LENGTH(FEET) = 42.75 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.43 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 2.22 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 5.83 LONGEST FLOWPATH FROM NODE 200.00 TO NODE .210.00 = 254.62 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-<<<-cz< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.685 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 4.33 TOTALAREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 6.50 TC(MIN.) = 5.83 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< - >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 416.36 DOWNSTREAM(FEET) = 415.10 FLOW LENGTH(FEET) = 167.72 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.38 GIVEN PIPE DIAMETER(INCH) = 1800 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.50 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 6.35 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 215.00 = 422.34 FEET. Page 14 I I I I I P I I I L I I I I I I I I I BRP100D.RES I * FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ---------IJ_: 6.326 _ YEAR *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT- .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 5.12 TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 11.27 TC(MIN.) = 6.35 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 415.06 DOWNSTREAM(FEET) = 413.85 FLOW LENGTH(FEET) = 120.17 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.94 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 11.2.7 PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 6.63 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 = 542.51 FEET. FLOW PROCESSFROM NODE 216.00 TO NODE 216.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.147 *USER SPECIFIED(SUBAREA): USER-SPECIFIED-RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.70 SUBAREA.RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 14.44 I TC(MIN.) = 6.63 . FLOW PROCESS FROM NODE 216.00 TO NODE 220.00 IS CODE = 41 ---------------------------------------------------------------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<.<< ELEVATION DATA: UPSTREAM(FEET) = 413.81 DOWNSTREAM(FEET) = 413.41 I FLOW LENGTH(FEET) = 39.81 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.35 . GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 14.44 PIPE TRAVEL TIME(MIN.) = .0.09 TC(MIN.) = 6.72 LONGEST FLOWPATH FROM NODE 200.00 TO NODE' 220.00 = 582.32 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< i . Page 15 I I I BRP100D.RES I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.72. I RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.44 I FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<cz<<< l *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 I UPSTREAM ELEVATION(FEET) = 421.75 DOWNSTREAM ELEVATION(FEET) = 421.21 ELEVATION DIFFERENCE(FEET) = 0.54, SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.118 I WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 58.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) =..,- 0.10 TOTAL RUNOFF(CFS) = 0.60 I ---------------------------------------------------------------------------- FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>->>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 417.21 DOWNSTREAM(FEET) = 416.24 FLOW LENGTH(FEET) = 137.09 MANNING'S N = 0.013 I DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.86 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.60 I PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 4.92 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 223.00 = 197.09 FEET. FLOW PROCESS FROM NODE 223.00 TO NODE 223.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I .NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.99 TC(MIN.) = 4.92 FLOW PROCESS FROM NODE 223.00 TO NODE 224.00 IS CODE = 41 Page 16 I .. I I BRP100D.RES I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<cz<< ELEVATION DATA: UPSTREAM(FEET) = 416.14 DOWNSTREAM(FEET) = 415.81 FLOW LENGTH(FEET) = 69.59 MANNING'S N = 0.013 I ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.80 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 2.99 PIPE TRAVEL TIME(MIN.) = 0.30 TC(MIN.) = 5.22 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 224.00 = 266.68 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.173 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 4.07 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 6.97 I TC(MIN.) = 5.22 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.00 TO NODE 224.50 IS CODE = 41 ---------------------------------------------------------------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 415.77 DOWNSTREAM(FEET) = 415.09 I FLOW LENGTH(FEET) = 135.02 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.88 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.97 PIPE TRAVELTIME(MIN.)= 0.25 TC(MIN.) = 5.48 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 224.50 = 401.70 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.50 TO NODE 224.50 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.957 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 7.33 I. TC(MIN.) = 5.48 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.50 TO NODE 225.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREAz<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ---------------- Page17 I I L BRP100D.RES I ELEVATION DATA: UPSTREAM(FEET) = 415.05 DOWNSTREAM(FEET) = 414.64. FLOW LENGTH(FEET) = 58.32 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE I PIPE-FLOW VELOCITY(FEET/SEC.) = 9.33 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 7.33 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 5.58 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 225.00 = 460.02 FEET. I * FLOW PROCESS FROM NODE 225.00 TO NODE 225.00 IS CODE = 81 I >>>>>-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<-<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.873 *USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .8100, S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.67 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.91 I TC(MIN.) = 5.58 FLOW PROCESS FROM NODE 225.00 TO NODE 220.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 414.54 DOWNSTREAM(FEET) = 413.41 FLOW LENGTH(FEET) = 140.83 MANNING'S N = 0.013 DEPTH OF FLOW IN . 18.0 INCH PIPE IS 14.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.77 I . GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 8.91 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 5.99 I .LONGEST FLOWPATH FROM NODE 221.00. TO NODE 220.00 = 600.85 FEET. FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE---------------------------------------------------------------------------- = I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<-<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-<<<<< TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 5.99 RAINFALL INTENSITY(INCH/HR) = 657 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.91 I ** CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (cFS) (MIN.) (INCH/HOUR) (ACRE) I i 14.44 6.72 6.094 2.90 2 8.91 5.99 6.568 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY I . Page 18 I I BRP100D.RES I NUMBER (CFS) (MIN.) (INCH/HOUR) 1 21.76 5.99 6.568 2 22.70 6.72 6.094 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 22.70 TC(MIN.) = 6.72 TOTAL AREA(ACRES) = 4.5 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 220.00 = 600.85 FEET. I FLOW PROCESS FROM NODE 220.00 TO NODE 226.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.37 DOWNSTREAM(FEET) = 412.84 FLOW LENGTH(FEET) = 65.16 MANNING'S N = 0.013 I : DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.70 PIPE TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 6.87 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 226.00 = 666.01 FEET. FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 41 1 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 412.80 DOWNSTREAM(FEET) = 412.43 FLOW LENGTH(FEET) = 46.05 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.57 I GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.70 PIPE TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 6.97 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 227.00 = 712.06 FEET. FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 81 ---------------------------------------------------------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.955 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT =A100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) = 22.70 I TC(MIN.) = 6.97 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)-<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 412.39 DOWNSTREAM(FEET) = 412.26 FLOW LENGTH(FEET) = 16.58 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.8 INCHES Page 19 I I I BRP100D.RES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.50 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 22.70 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.01 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 228.00 = 728.64 FEET. FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE---------------------------------------------------------------------------- = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1ARE: TIME OF CONCENTRATION(MIN.) = 7.01 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.70 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 260.00 TO NODE 261.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>-RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00 UPSTREAM ELEVATION(FEET) = 429.00 DOWNSTREAM ELEVATION(FEET) = 425.75 ELEVATION DIFFERENCE(FEET) = 3.25 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.233 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 87.11 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS, BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 51. >>>>>CMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 425.75 DOWNSTREAM(FEET) = 421.75 CHANNEL LENGTH THRU SUBAREA(FEET) = 166.00 CHANNEL SLOPE = 0.0241 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 15.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.73 AVERAGE FLOW DEPTH(FEET) =. 0.15 TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 4.25 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.60 AREA-AVERAGE RUNOFF COEFFICIENT = 0.810 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.20 I Page 20 I I I Li I I I I I I I I I I I I I I BRP100D.RES I END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.93 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 262.00 = 261.00 FEET. I FLOW PROCESS FROM NODE 262.00 TO NODE 228.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 417.55 DOWNSTREAM(FEET) = 412.26 FLOW LENGTH(FEET) .= 32.51 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.4 INCHES V PIPE-FLOW VELOCITY(FEET/SEC.) = 10.71 I GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 1.20 V V PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 4.30 I V LONGEST FLOWPATH FROM NODE .260.00 TO NODE 228.00 = 293.51 FEET. = FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE ---------------------------------------------------------------------------- I .>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CON FLUENCED STREAM VALUES<<<<< I - TOTAL NUMBER OF STREAMS = 2 V CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 4.30 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.20 I PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20 ** CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 22.70 7.01 5.935 4.60 2 1.20 4.30 7.377 0.20 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. V ** PEAK FLOW RATE TABLE ** I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 19.46 4.30 7377 2 23.66 7.01 5.935 V I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.66 TC(MIN.) = 7.01 TOTAL AREA(ACRES) = V 4.8 I * LONGEST FLOWPATH FROM NODE 221.00 TO NODE 228.00 = * * * * * * * * * * * * * * *•* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 728.64 FEET. * * * * * * * * * * * * * FLOW PROCESS FROM NODE 228.00 TO NODE 235.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<.cz<<< ELEVATION DATA: UPSTREAM(FEET) = 412.22 DOWNSTREAM(FEET) = 411.25 I FLOW LENGTH(FEET) = 122.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 18.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = I V V Page 21 I I I BRP100D.RES PIPE-FLOW(CFS) =. 23.66 PIPE TRAVEL TIME(MIN.) = 0.27 TC(MIN.) = LONGEST FLOWPATH FROM NODE 221.00 TO NODE 7.27 235.00 = 850.64 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.793 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 rS.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.88 TOTAL AREA(ACRES) = 5.2 TOTAL RUNOFF(CFS) = 24.40 TC(MIN.) = 7.27 * FLOW PROCESS FROM NODE 235.00 TO NODE 236.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 411.21 DOWNSTREAM(FEET) = 410.95 FLOW LENGTH(FEET) = 26.98 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.26 GIVEN PIPE DIAMETER(INCH) 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.40 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 7.33 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 236.00 = 877.62 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 410.91 DOWNSTREAM(FEET) = 410.69 FLOW LENGTH(FEET) = 26.79 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE is - 18.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.76 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.40 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 7.38 LONGEST F.LOWPATH FROM NODE 221.00 TO NODE 240.00 = 904.41 FEET. FLOW PROCESS FROM NODE 241.00 TO NODE 240.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------- 100YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.737 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.72 TOTAL AREA(ACRES) = 6.0 TOTAL RUNOFF(CFS) = 27.88 TC(MIN.) = 7.38 Page 22 1 I I I I I I I I I I I I [1, Li I BRP100D.RES FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = '410.65 DOWNSTREAM(FEET) = 410.21 FLOW LENGTH(FEET) = 57.97 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.72 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 27.88 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.51 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 245.00 = 962.38 FEET. FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE = 41 I ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<cz<<< ELEVATION DATA: UPSTREAM(FEET) = 410.11 DOWNSTREAM(FEET) = 410.06 I FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.68 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1. PIPE-FLOW(CFS) = 27.88 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.54 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 250.00 = 972.38 FEET. I FLOW PROCESS FROM NODE 242.00 TO NODE 250.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.660 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 I S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) =. 2.75 TOTAL AREA(ACRES) = 6.6 TOTAL RUNOFF(CFS) = 30.26 I TC(MIN.) = 7.54 FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = I >>>>->DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<<<cz< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.54 I RAINFALL INTENSITY(INCH/HR) = 5.66 TOTAL STREAM AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30.26 I FLOW PROCESS FROM NODE 270.00 TO NODE 271.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 i Page 23 I I F1Li BRP100D.RES I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 63.00 UPSTREAM ELEVATION(FEET) = 428.25 DOWNSTREAM ELEVATION(FEET) = 425.75 ELEVATION DIFFERENCE(FEET) = 2.50 I SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.617 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.60 I TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.60 I .FLOW PROCESS FROM NODE 271.00 TO NODE 272.00 IS CODE = 51 --------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< ------------------------------------------- >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ---------------- I ELEVATION DATA: UPSTREAM(FEET) = 425.75 DOWNSTREAM(FEET) = 423.75 CHANNEL LENGTH THRU SUBAREA(FEET) = 118.00 CHANNEL SLOPE = 0.0169 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 15.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.49 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.66 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 0.74 Tc(MIN.). = 3.36 I SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.79 AREA-AVERAGE RUNOFF COEFFICIENT = 0.810 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 2.39 I .END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 2.97 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 272.00 = 181.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 272.00 TO NODE 275.00 IS CODE = 41 -------------- -------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 419.19 DOWNSTREAM(FEET) = 412.82 FLOW LENGTH(FEET) =. 72.03 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.0 INCHES I PIPE-FLOW VELOCITY(FEET/SEC.) = 10.50 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.39 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 3.47 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 275.00 = 253.03 FEET. FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I . NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8100 S.C.S. CURVE NUMBER (AMC II) = 0 I . Page 24 P1 I I BRP100D.RES AREA-AVERAGE RUNOFF COEFFICIENT = 0.8100 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 2.99 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 5.38 TC(MIN.) = 3.47 * FLOW PROCESS FROM NODE 275.00 TO NODE 250.00 IS CODE = ----------------------------------------------------------------------------- 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)cz<<cz< ELEVATION DATA: UPSTREAM(FEET) = 412.72 DOWNSTREAM(FEET) = 410.06 FLOW LENGTH(FEET) = 30.64 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.94 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 5.38 PIPE TRAVEL TIME(MIN.) = 0.04 TC(MIN.) = 3.51 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 250.00 = 283.67 FEET. A- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * = FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<cz<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.51 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.38 - ** CONFLUENCE DATA * STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.), (INCH/HOUR) (ACRE) 1 30.26 7.54 5.660 6.60 2 - 5.38 3.51 7.377 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.60 3.51 7.377 2 34.39 7.54 5.660 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.39 TC(MIN.) = 7.54 TOTAL AREA(ACRES) = 7.5 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 250.00 = 972.38 FEET. FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE-<<<<< - USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.67 RAIN INTENSITY(INCH/HOUR) = 4.52 TOTAL AREA(ACRES) = 7.50 TOTAL RUNOFF(CFS) = 21.00 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Page 25 1 fl I I I I I I I I I I I I I I I BRP100D. RES I FLOW PROCESS FROM NODE 250.00 TO NODE 280.00 IS CODE = >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< 41 >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 409.86 DOWNSTREAM(FEET) = 405.53 FLOW LENGTH(FEET) = 207.29 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.62 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 21.00 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 11.00 FLOWPATH FROM NODE 221.00 TO NODE 280.00 = 1179.67 FEET. I LONGEST FLOW PROCESS FROM NODE 280.00 TO NODE 280.00 IS CODE = 81 I ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.438 USER SPECIFIED(SUBAREA): I USER-SPECIFIED RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6179 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.07 I TC(MIN.) TOTAL AREA(ACRES) = 7.9 TOTAL RUNOFF(CFS) = 21.66 = 11.00 I >>>>>COMPUTE FLOW PROCESS FROM NODE 280.00 TO NODE 290.00 IS CODE = PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< 41 >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.43 DOWNSTREAM(FEET) = 405.20 I FLOW LENGTH(FEET) = 47.50 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.90 I . PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.66 PIPE TRAVEL TIME(MIN.) = f 0.11 Tc(MIN.) I LONGEST FLOWPATH FROM NODE 221.00 TO NODE 290.00 = 1227.17 FEET. FLOW PROCESS FROM NODE 290.00 TO NODE 295.00 IS CODE = 41 I ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 405.16 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 27.12 MANNING'S N = 0.013 = 405.03 I ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.90 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.66 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 11.18 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 295.00 = 1254.29 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 295.00 TO NODE 320.00 IS CODE = 41 I Page 26 I I I BRP100D.RES I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 404.77 DOWNSTREAM(FEET) = 401.83 FLOW LENGTH(FEET) = 248.87 MANNING'S N = 0.013 I DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.44 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.66 I PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 11.67 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 320.00 = 1503.16 FEET. I FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ---------------------------------------------------------------------------- I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0' I INITIAL SUBAREA FLOW-LENGTH(FEET) = 83.00 UPSTREAM ELEVATION(FEET) = 421.25 DOWNSTREAM ELEVATION(FEET) = 420.00 ELEVATION DIFFERENCE(FEET) = 1.25 I SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.228 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.59 (Reference: Table 3-1B of Hydrology Manual) I THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 I TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 51 ---------------------------------------------------------------------------- I >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 424.50 DOWNSTREAM(FEET) = 419.25 I CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE = 0.0219 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 I TRAVEL TIME COMPUTED USING ESTIMATED. FLOW(CFS) = 1.25 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.10 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 4.52 I SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.25 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.88 i Page 27 I I H I I I I I I I I I I I 1 I I I I BRP100D.RES END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC..) = 3.50 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 323.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 414.66 DOWNSTREAM(FEET) = 413.05 FLOW LENGTH(FEET) = 53.95 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.88 PIPE TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 4.65 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 376.95 FEET. FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWcz<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 3.14 TC(MIN.) = 4.65 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.01 DOWNSTREAM(FEET) = 411.89 FLOW LENGTH(FEET) = 111.85 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = ' 4.89 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 3.14 PIPE TRAVEL TIME(MIN.) = 0.38 TC(MIN.) = 5.04 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 488.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81 ------------------------------------------ -- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =. 7.344 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 8.11 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = 11.24 TC(MIN.) = 5.04 Page 28 ) I. I BRP100D.RES I FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 411.89 DOWNSTREAM(FEET) = 410.30 FLOW LENGTH(FEET) = 2.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 34.41 I GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.24 - PIPE TRAVEL TIME(MIN.) = 0.00 TC(MIN.) = 5.04 I LONGEST FLOWPATH FROM NODE 300.00 TO NODE 305.00 = 490.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 305.00 TO NODE 315.00 IS CODE = 41 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENJT)<.cz<<< I ELEVATION DATA: UPSTREAM(FEET) = 410.30 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 117.00 MANNING'S N = 0.013 - = 404.80 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.35 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 11.24 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.19 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 315.00 = 607.80 FEET. FLOW PROCESS FROM NODE 315.00 TO NODE 320.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 404.80 DOWNSTREAM(FEET) = 401.83 FLOW LENGTH(FEET) = 9.67 MANNING'S N = 0.013 I DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.52 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 11.24 I LONGEST PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.20 FLOWPATH FROM NODE 300.00 TO NODE 320.00 = 617.47 FEET. FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 11 I >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<cz<<< MAIN STREAM CONFLUENCE DATA STREAM ** I RUNOFF Tc INTENSITY AREA NUMBER (CFs) (Mm.) (INCH/HOUR) (ACRE) 1 11.24 5.20 7.192 1.80 I LONGEST FLOWPATH FROM NODE 300.00 TO NODE 320.00 = 617.47 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.66 11.67 4.271 7.90 LONGEST FLOWPATH FROM NODES 221.00 TO NODE 320.00 = 1503.16 FEET. I : Page 29 I I I I BRP100D.RES I PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (cFs) (MIN.) (INCH/HOUR) 1 20.89 5.20 7.192 2 28.33 11.67 4.271 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS) = 28.33 Tc(MIN.) = 11.67 TOTAL AREA(ACRES) = 9.7 I FLOW PROCESS FROM NODE 320.00 TO NODE 199.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<-<-z< I >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 401.33 DOWNSTREAM(FEET) = 393.21 I FLOW LENGTH(FEET) = 290.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.67 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = I PIPE-FLOW(CFS) = 28.33 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 12.05 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 199.00 = 1793.26 FEET. I FLOW * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PROCESS FROM NODE 199.00 TO NODE 199.00 IS CODE = >>->>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY-<-<-<<< I ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (cFs) (MIN.) (INCH/HOUR) (ACRE) I i 28.33 12.05 1 4.183 9.70 LONGEST FLOWPATH FROM NODE 221.00 TO NODE 199.00 = 1793.26 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** I STREAM RUNOFF TC INTENSITY AREA NUMBER (cFS) (MIN.) (INCH/HOUR) (ACRE) 1 36.86 7.83 5.523 7.90 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 199.00 = 1656.16 FEET. I PEAK FLOW RATE TABLE STREAM ** RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) I 1 55.28 7.83 5.523 2 56.25 12.05 4.183 / COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 56.25 Tc(MIN.) = 12.05 I TOTAL AREA(ACRES) = 17.6 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.6 TC(MIN.) 12.05 I PEAK FLOW RATE(CFS) = 56.25 END OF RATIONAL METHOD ANALYSIS I I I I APPENDIX B I Backup Calculations For - : - Wighted Runoff Coefficient • : I I 1 I H Hi - • •. I 'S I - - - - - - - - - - - - - - - - - - Weighted Runoff Coefficient Calculation C values from San Diego County Hydrology Manual Impervious areas: 0.9 Pervious areas: 0.35 A Area Total Area (acres) Assumed Pervious Area (acres) Percent Pervious Percent Impervious Weighted Average C-value DMA-1 7.5 1.75 23% 77% 0.77 DMA-2 7.5 1.26 17% 83% 0.81 DMA-3 1 1.8 1 0.17 9% 91% 0.85 DMA-4 0.4 0.22 55% 45% 0.60 DMA-5 0.2 0.016 8% 1 92% 0.86 Sample Calculation for DMA-1: Pervious Area 1.75 acres Percent Pervious = Total Area 7.5 cres x 100 = x 100 = 23% a (Total Area - Pervious Area) (7.5 acres - 1.75 acres) Percent Impervious x 100 = x 100 ='77% Total Area 7.5 acres Weighted C value = Percent Pervious x .35 + Percent Impervious x .90 = .77 -- - - --------------.--------------------- --------------------.---- __-__-_ -V -_VVV-__- -_VV - - - - - - - - MI'- (NMI - - - - - - - - Bressi Ranch Drainage Study Pipe Sizing - - - REC. No. 17169A ' -- - - - June 09 2017 - - - I - - - - - - Storm Drain Size - The purpose of this table is to provide an estimated pipe size to convey the 100-year flow rates with a sizing factor. - - - V - Manning'sn: 1 -0.013 I . . - Sizing Factor (%): I 30 - Slope at: 0.5% - - 1.0% - 2.0% 3.0% -. • Q.100 (cfs) Qiao with Sizing - Factor • (cfs) Minimum Pipe Size (feet) Recommended - Pipe Size (inches) Minimum Pip"e Size (feet) Recommended Pipe Size (inches) Minimum Pipe Size 2 (feet) Recommended - Pipe Size - (inches) Minimum Pipe Size (feet) Recommended Pipe Size (inches) 2.0 2.6 1.01 - 12" 0.89 12' 0.78 -10.1 10" 0.72 10" 5.0 . 6.5 1.43 181,1.25 18..1.10 - 18" - 1.02 18" - 7.5 9.8 1.66 24' 1.46 18" 1.28 18" - 1.19_. 18" - 10.0 13.0 1.85 24" 1.62 24' 1.43 - 18' - .32 . 15.0 19.5 . 2.15 - 30" - - 1.89 - -24"___- 1.66 24" _- .54 _- 24" -20.0 26.0 -2.40 30' 2.11 30' 1.85 24" 1.71 - _24" 25.0 -32.5 2.61 36" 2.29 - .30" 2.01 -24" ___- _1.86 24" 30.0 -39.0 . -2.79 - - 36" - - 2.45 30" 2.15 30" - 1.99 - - 24' 350 455 296 36 260 36 228 30 211 30 - - 40.0 52.0 - 3.11 - - 42" 2.73 . 36" - 2.40 ---30" - 2.22 - 30"- 50.0 - 65.0 3.38 42"" 2.97 - 36" - -2.61 :36" 2.42 ..' 30" 60.0 - 78.0 3.62 48" 3.18 - 42" 2.79 36" 2.59 - 36" - - 70.0 91.0 3.83 - -- 48'. - 3.37 42" 2.96 36' - 2.74 36" 80.0 - - - 104.0 4.03 54' 3.54 48" 3.11 42" 2.88 36' 90.0 - 117.0 4.21 54" 3.70 48' 3.25 42' - 3.01 - 42" - 110.0 143.0 4.54 - 60' 3.99 48" 3.50 42" 3.25 42" 145.0 188.5 - 5.04 -72" 4.42 54" 3.89 48" _- 3.60 48" -. 170.0 221.0 5.35 72" 4.70 - 60" 4.12 54" 3.82 48" - 240.0 312.0 6.09 1 - 84" 1 5.35 72" 1 4.69 1 60" 1 4.35 - 54 - 350.0 . 455.0 7.01 - 96" 1 6.16 84" - 5.41 1 - 72" 1 5.01 1 Note. - - - - 1. "cfs" = cubic feet per second. V - 2. Minimum pipe sizes are calculated using the Manning's equation and are based on the flow rates with 30% factor. . - - - . - -•.1 V - - • V -- -" .- • •-- - V - - - - - '-V - V , - J - •' - , - , ' - . V • V. - --V. • -."' - - - _ , . - • - V - - .:- - - V - - - V. - - -- V •• ,- -V V - • - - . ,- -V-V. ,, V ,• V...= - --V I I BRPGATED. RES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 DESCRIPTION OF STUDY ************************** * 17169-A BRESSI RANCH * * PIPE FLOW MAINLINE GATEWAY RD * * 100 YEAR DETENTION Q * FILE NAME: BRPGATED.PIP TIME/DATE OF STUDY: 14:50 06/05/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 199.00- 5.49 1375.28 1.31 790.73 } FRICTION } HYDRAULIC JUMP 320.00- 1.83*Dc 679.48 1.83*Dc 679.48 } JUNCTION 320.00- 2.61* 604.40 1.45 470.26 } FRICTION } HYDRAULIC JUMP 295.00- 1.66*Dc 1 458.60 1.66*Dc 458.60 } JUNCTION 295.00- 2.32* 548.93 1.66 DC 458.60 } FRICTION 290.00- 2.49* 580.66 1.66 DC 458.60 } JUNCTION 290.00- 2.73* 629.48 1.66 DC 458.60 } FRICTION 280.00- 2.87* 656.95 1.66 DC 458.60 } JUNCTION 280.00- 4.25* 909.82 1.05 558.65 I FRICTION } HYDRAULIC JUMP 252.00- 1.64*Dc 438.95 1.64*Dc 438.95 I JUNCTION 252.00- 2.54* 572.97 1.07 547.99 I FRICTION I HYDRAULIC JUMP 251.00- 1.64*DC 438.95 1.64*Dc 438.95 I CATCH BASIN 251.00- -1.78 0.17 1.64*Dc 129.24 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. * DOWNSTREAM PIPE FLOW CONTROL DATA: Page 1 1 I I I I I I I I I I IL I BRPGATED.RES I NODE NUMBER = PIPE FLOW = 199.00 28.33 CFS FLOWLINE ELEVATION = PIPE DIAMETER = 24.00 393.21 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 398.700 FEET NODE 199.00 : HGL = < 398.700>;EGL= < 399.963>;FLOWLINE= < 393.210> I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 199.00 TO NODE 320.00 IS CODE = 1 UPSTREAM NODE 320.00 ELEVATION = 401.33 (HYDRAULIC JUMP OCCURS) I CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 28.33 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 290.10 FEET MANNING'S N = 0.01300 I HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS --------------------------------------- - NORMAL DEPTH(FT) = 1.29 CRITICAL DEPTH(FT) = 1.83 I IUPSTREAM-CONTROL ASSUMED FLOWDEPTH(FT) 1.83 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.834 9.385 3.203 679.48 0.064 1.813 9.463 3.204 679.66 I 0.257 11.791 9.545 3.207 680.16 0.583 1.769 9.634 3.211 681.01 1.051 1.747 9.728 3.218 682.19 1.669 1.726 9.827 3.226 683.72 2.448 1.704 9.932 3.236 685.58 I 3.403 1.682 10.042 3.249 687.80 4.550 1.660 10.159 3.264 690.37 5.912 1.639 10.280 3.281 693.31 7.514 1.617 10.408 3.300 696.62 I 9.388 1.595 10.543 3.322 700.31 11.572 1.573 10.683 3.347 704.40 14.117 1.552 10.830 3.374 708.90 17.084 1.530 10.984- 3.404 713.81 I 20.554 1.508 11.144 3.438 719.17 24.635 * 1.486 11.312 3.475 724.97 29.471 1.465 11.488 3.515 731.24 I 35.266 42.319 '1.443 1.421 11.672 11.863 3.559 3.608 738.00 745.27 51.096 1.399 12.064 3.661 753.07 62.373 1.378 12.273 3.718 761.42 77.612 1.356 12.493 3.781 770.35 100.096 1.334 12.722 3.849 779.88 I 140.359 1.312 12.961 3.923 790.05 290.100 1.311 12.977 - • 3.928 790.73 I HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.49 I PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I 0.000 283.S61 5.490 2.000 9.018 9.018 6.753 3.263 1375.28 691.11 - ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 - i - • Page • 11 1 I BRPGATED. RES I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ - CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I 283.561 2.000 9.015 3.263 691.11 284.018 1.993 9.018 3.257 689.97 284.407 1.987 9.023 3.252 688.97 284.756 1.980 9.030 3.247 688.05 1.973 9.038 3.243 687.20 1 285.074 285.366 1.967 9.048 3.239 686.42 285.635 1'.960 9.058 3.235 685.68 285.885 1.954 9.069 3.232 685.01 286.115 1.947 9.081 3.228 684.37 I 286.328 1.940 9.094 3.225 683.79 286.525 1.934 9.107 3.222 683.24 286.707 1.927 9.121 3.220 682.74 286.874 1.920 9.136 3.217 682.28 I 287.027 1.914 9.152 3.215 681.85 287.167 1.907 9.168 3.213 681.47 287.293 1.901 9.185 3.211 681.12 I 287.407 287.508 1.894 9.203 3.210 1.887 9.221 3.208 680.80 680.52 287.597 1.881 9.239 3.207 680.28 287.674 1.874 9.258 3.206 680.06 287.738 1.867 9.278 3.205 679.89 I 287.791 1.861 9.298 3.204 679.74 287.832 1.854 9.319 3.204 679.63 287.862 1.848 9.341 3.203 679.55 287.879 1.841 9.363 3.203 679.50 287.885 1.834 9.385 3.203 679.48 I 290.100 1.834 9.385 3.203 679.48 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 276.75 FEET UPSTREAM OF NODE 199.00 I I DOWNSTREAM DEPTH = 2.084 FEET, UPSTREAM CONJUGATE DEPTH = 1.558 FEET NODE 320.00 .: HGL = < 403.164>;EGL= < 404.533>;FLOWLINE= < 401.330> I * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NODE 320.00 TO NODE 320.00 IS CODE = 5 * * * * * * * * * * * * * * UPSTREAM NODE 320.00 ELEVATION = 401.66 (FLOW UNSEALS IN REACH) I ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (Er/SEC) UPSTREAM 21.66 24.00 0.00 401.66 1.66 6.895 DOWNSTREAM 28.33 24.00 - 401.33 1.83 9.388 LATERAL #1 6.67 18.00 62.00 401.83 1.00 3.774 I. LATERAL #2 0.00 0.00 0.00 0.00 000 0.000 Q5 0-.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917 I DOWNSTREAM: MANNING'S AVERAGED FRICTION N = 0.01300; FRICTION SLOPE = 0.01363 SLOPE IN JUNCTION ASSUMED AS 0.01140 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET I JUNCTION LOSSES JUNCTION LOSSES =, (DY+HV1-HV2)+(ENTRANCE LOSSES) = ( 0.472)+( 0.000) = 0.472 NODE 320.00 : HGL = < 404.267>;EGL= < 405.005>;FLoWLINE= < 401.660> Page 3 I 1 I BRPGATED.RES I * FLOW PROCESS FROM NODE 320.00 TO NODE 295.00 IS CODE = 1 UPSTREAM NODE 295.00 ELEVATION = 404.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): ------------------------------------------------------------------------------ - I PIPE FLOW = 21.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 258.77 FEET MANNING'S N = 0.01300 I HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.45 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.66 I UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS), 0.000 1.664 7.752 2.598 458.60 0.035 1.655 7.788 2.598 458.62 I 0.143 0.330 1.647 1.638 7.825 7.863 2.598 2.599 458.67 458.77 0.602 1.629 7.902 2.599 458.90 0.967 1.621 7.941 2.600 459.06 , I 1.435 2.015 1.612 1.603 7.981 8.022 2.602 2.603 459.27 459.52 2.719 1.595 8.063 2.605 459.80 3.563 1.586 8.105 2.607 460.13 4.562 1.577 8.148 2.609 460.49 5.739 1.568 8.192 2.611 ' 460.90 I 7.119 1.560. 8.237 2.614 461.34 8.734 1.551 8.282 2.617 461.83 10.624 1.542 8.328 2.620 462.36 12.841 1.534 . 8.375 2.624 462.94 ,I 15.453 1.525 8.423 2.628 463.56 18.553 1.516 8.472 2.632 464.22 22.271 1.508 8.522 2.636 464.92 26.796, 1.499 8.572 2.641 465.68 I 32.425 1.490 8.624 2.646 466.47 39.653 1.482 8.676 2.651 467.32 49.405 1.473 8.729 2.657 468.21 I 63.768 89.428 1.464 1.456 8.784 8.839 2.663 2.670 469.15 470.13 258.770 1.455 8.845 2.670 470.26 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS - ' I DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 2.61 PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ' HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.607 6.895 3.345 604.40 I 212.844 2.000 6.895 2.738 485.43 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 I. GRADUALLY VARIED DISTANCE FROM FLOW PROFILE COMPUTED INFORMATION: FLOW DEPTH VELOCITY / SPECIFIC PRESSURE+ CONTROL(FT) ' (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) Page . I, I I BRPGATED.RES 212.844 216.606 2.000 6.892 1.987 6.899 2.738 2.726 485.43 483.07 219.664 1.973 6.911 2.715 480.93 222.379 1.960 6.926 2.705 478.95 224.850 1.946 6.944 2.695 - 477.09 227.130 1.933 6.965 2.686 475.34 229.251 1.919 6.987 2.678 473.69 231.234 1.906 7.012 2.670 472.14 233.094 1.8920 7.039 2.662 470.68 ' 234.844 1.879 7.068 2.655 469.31 236.490 1.866 7.098 2.648 468.02 238.038 1.852 7.130 2.642 466.82 239.492 1.839 7.164 2.636 465.70 240.856 1.825 7.200 2.631 464.66 242.130 1.812 7.237 2.626 463.71 243.315 1.798 7.276 2.621 462.83 244.409 1.785 7.316 2.617 , 462.04 245.413 1.771 7.358 2.613 461.33 246.322 1.758 7.402 2.609 460.69 247.134 1.745 7.447 2.606 460.14 247.844 1.731 7.494 ,, 2.604 459.68 248.445 248.931 1.718 7.542 1.704 7.592 2.601 2.600 459.29 458.99 249.293 1.691 7.644 2.599 458.77 249.521 . 1.677 7.697 2.598 458.64 249.600 1.664 7.752 2.598 458.60 1.664 7.752 2.598 458.60 258.770 OF HYDRAULIC JUMP ANALYSIS------------------------ -------------------------END I PRESSURE+MOMENTUM BALANCE OCCURS-AT 241.94 FEET UPSTREAM OF NODE 320.00 DOWNSTREAM DEPTH = 1.814 FEET, UPSTREAM CONJUGATE DEPTH = 1.521 FEET * FLOW PROCESS FROM NODE 295.00 TO NODE 295.00 IS CODE = 5 UPSTREAM NODE 295.00 ELEVATION = 405.03 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW 'DIAMETER ANGLE (cFs) (INCHES) (DEGREES) FLOWLINE CRITICAL ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 21.66 24.00 56.00 405.03 1.66 6.895 DOWNSTREAM 21.66 24.00 - 404.77 1.66 7.754 LATERAL #1 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 Q5 ,0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*v1*CoS(DELTA1)_Q3*v3*CoS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00893 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00905 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) '/JUNCTION LOSSES = ( 0.724)+( 0.000) = 0.724 NODE 295.00 : HGL < 407.354>;EGL= < 408.092>;FLOWLINE= < 405.030> * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM * * * * * * * * * * * * * * * * * * * * * * * * * NODE 295.00 TO NODE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 290.00 IS CODE = 1 UPSTREAM NODE ------------------------------------------------------------------------------ 290.00 ELEVATION = 405.22 (FLOW IS UNDER PRESSURE) Pages I Li I BRPGATED. RES I CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 38.38 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 21.66)/( 226.225))*2 = 0.00917 I HF=LkSF = ( 38.38)*(0.00917) = 0.352 - FLOW PROCESS FROM NODE 290.00 TO NODE 290.00 IS CODE = 5 I UPSTREAM NODE 290.00 ELEVATION = 405.26 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 21.66 24.00 34.00 405.26 1.66 6.894 DOWNSTREAM 21.66 24.00 - 405.22 1.66 6.895 I LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00917 I JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.037 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-Hv2)+(ENTRANCE LOSSES) I JUNCTION LOSSES = ( 0.289)+( 0.000) = 0.289 NODE 290.00 : HGL = < 407.995>;EGL= < 408.733>;FLOWLINE= < 405.260> I FLOW PROCESS FROM NODE 290.00 TO NODE 280.00 IS CODE = 1 UPSTREAM NODE 280.00 ELEVATION = 405.42 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 32.74 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 21.66)/( 226.'222))*2 = 0.00917 I HF=L*SF = ( 32.74)(0.00917) = 0.300 NODE 280.00 : HGL = < 408.295>;EGL= < 409.033>;FLOWLINE= < 405.420> FLOW PROCESS FROM NODE 280.00 TO NODE 280.00 IS CODE = 5 I UPSTREAM NODE 280.00 ELEVATION = 405.46 (FLOW IS UNDER PRESSURE) -- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (Fr/SEC) UPSTREAM 21.00 24.00 80.00 405.46 1.64 6.685 I DOWNSTREAM 21.66 24.00 - 405.42 f 1.66 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 6.895 0.000 0.000 Q5 0.66===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS(DELTA1) _Q3V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00862 i Page I 1 I BRPGATED.RES I DOWNSTREAM: MANNING'S AVERAGED FRICTION N = 0.01300; SLOPE IN JUNCTION FRICTION SLOPE ASSUMED AS 0.00889 = 0.00917 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.148 FEET I JUNCTION JUNCTION LOSSES LOSSES = (DY+Hv1-Hv2)+(ENTRANCE = ( 1.227)+( 0.148) LOSSES) = 1.374 NODE 280.00 : HGL = < 409.713>;EGL= < 410.407>;FLOwLINE= < 405.460> I FLOW PROCESS FROM NODE 280.00 TO NODE ' 252.00 IS CODE = 1 UPSTREAM NODE 252.00 ELEVATION = 409.40 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): ------------------------------------------------------------------------------ I PIPE FLOW = 21.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 124.00 FEET MANNING'S N = 0.01300 I, HYDRAULIC JUMP: NORMAL DEPTH(FT) DOWNSTREAM RUN = 1.02 ------------------------------------------------------------------------------ ANALYSIS RESULTS CRITICAL DEPTH(FT) = 1.64 I UPSTREAM CONTROL GRADUALLY VARIED ASSUMED FLOWDEPTH(FT) FLOW PROFILE = 1.64 COMPUTED INFORMATION: I DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH (FT) 1.642 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 7.608 --------------------------------------------------- .PRESSURE+ MOMENTUM(POUNDS) 2.541 438.95 0.037 1.617 7.715 2.542 439.09 0.153 1.592 7.828 2.544 439.54 0.354 1.567 7.948 2.549 440.29 I 0.650 1.543 8.073 2.555 441.36 1.048 1.518 8.205 2.564 442.77 1.561 1.493 8.344 2.575 444.51 2.202 1.469 8.490 2.589 446.61 I 2.986 1.444 8.644 2.605 449.09 3.933 1.419 8.805 2.624 451.95 5.064 1.395 8.975 2.646 455.23 I 6.408 7.997 1.370 1.345 9.153 9.341 2.672 2.701 458.93 463.07 9.874 1.321 9.539 2.734 467.69 12.092 1.296 9.747 2.772 472.80 I , 14.720 17.848 1.271 1.247 9.966 10.197 2.814 2.862 478.44 484.63 21.600 1.222 10.440 2.915 491.40 26.148 1.197 10.697 2.975 498.79 31.746 38.789 1.173 1.148 10.968 11.254 3.042 3.116 506.85 515.60 ,I 47.937 1.123 11.558 3.199 525.10 60.428 1.098 11.878 3.291 535.40 79.050 1.074 12.218 3.393 546.56 . 112.740 1.049 12.579 3.508 558.64 I 124.000 1.049 12.580 3.508 558.65 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ RESULTS I IDOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 4.25 PRESSURE FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM CONTROL(FT) 0000 PRESSURE HEAD(FT) 4.253 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 6.685 PRESSURE+ MOMENTUM(POUNDS) 4.947 909.82 Page El 1 I BRPGATED. RES I 97.310 ASSUMED DOWNSTREAM 2.000 6.685 2.694 468.07 PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I --DISTANCE-FROM -DEPTH--VELOCITY FLOW SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 97.310 2.000 6.682 2.694 468.07 97.861 1.986 6.689 2.681 465.54 I 98.353 1.971 6.702 2.669 463.24 98.808 1.957 6.718 2.658 461.11 99.235 1.943 6.737 2.648 459.10 99.637 1.928 6.759 2.638 457.21 I 100.017 1.914 6.784 2.629 455.43 100.376 1.900 6.810 2.620 453.75 100.715 1.885 6.839 2.612 452.17 101.036 1.871 6.870 2.604 450.67 I 101.338 1.857 6.902 2.597 449.28 101.623 1.842 6.937 .2.590 447.97 101.890 1.828 6.973 2.583 446.74 I 102.139 102.371 1.814 7.011 1.799 7.051 2.577 2.572 445.61 444.57 102.585 1.785 7.093 2.567 443.61 102.781 1.771 7.137 2.562 442.74 102.959 1.756 7.182 2.558 441.95 I . 103.119 1.742 7.229 2.554 441.26 103.259 1.728 7.277 2.550 440.65 103.380 1.713 7.328 2.548 440.14 103.480 1.699 7.380 2.545 439.71 103.560 1.685 7.434 2.543 439.38 I 103.618 1.670 7.490 2.542 439.14 103.653 1.656 7.548 2.541 439.00 103.665 1.642 7.608 2.541 438.95 124.000 1.642 7.608 2.541 438.95 I OF HYDRAULIC JUMP ANALYSIS------------------------ -----------------------END I PRESSURE+MOMENTUM BALANCE OCCURS AT 87.45 FEET UPSTREAM OF NODE 280.00 I DOWNSTREAM DEPTH = 2.228 FEET, UPSTREAM CONJUGATE DEPTH = 1.156 FEET I NODE 252.00 : HGL =< 411.042>;EGL= < 411.941>;FLOWLINE= <409.400> I UPSTREAM FLOW PROCESS FROM NODE NODE 252.00 TO NODE 252.00 ELEVATION = 252.00 IS CODE = 5 409.44 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) FLOWLINE CRITICAL ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 21.00 24.00 58.00 409.44 1.64 6.684 DOWNSTREAM 21.00 24.00 - 409.40 1.64 7.610 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY(Q2*V2_Q1*V1*COS Q4*V4*COS(DELTA4))/((A1+A2)16 (DELTA1) Q3*V3*COS (DELTA3)- 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00862 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00860 I AVERAGED FRICTION JUNCTION LENGTH SLOPE IN JUNCTION ASSUMED = 4.00 FEET AS 0.00861 FRICTION LOSSES = 0.034 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) I Page 11 I I BRPGATED. RES I JUNCTION LOSSES NODE 252.00 : = ( 0.728)+( 0.000) HGL = < 411.975>;EGL= = 0.728 < 412.669>;FLowLINE= - < 409.440> I * FLOW PROCESS FROM NODE 252.00TO NODE 251.00 IS CODE = 1 UPSTREAM NODE 251.00 ELEVATION = 412.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): ------------------------------------------------------------------------------ PIPE FLOW = 21.00 CFS PIPE DIAMETER = 24.00 INCHES I - PIPE LENGTH = 92.81 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT)I = ------- 1-------CRITICAL -------------------------------------------- DEPTH(FT) = 1.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.64 ---------- 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) 0.000 (FT) 1.642 (FT/SEC) ENERGY(FT) 7.608 2.541 MOMENTUM(POUNDS) 438.95 0.038 1.617 7.714 2.542 439.09 0.154 1.593 7.826 2.544 439.53 I 0.357 0.655 1.568 1.544 7.943 8.067 2.549 2.555 440.26 441.31 1.057 1.520 8.197 2.564 442.67 1.574 1.495 8.334 • 2.574 444.38 2.220 3.010 1.471 1.446 8.478 8.629 2.587 2.603 446.43 448.84 I 3.964 1.422 8.788 2.622 451.63 5.103 1.398 8.954 2.643 454.82 6.456 1.373 9.130 2.668 458.42 I 8.056 9.945 1.349 1.324 9.314 9.508 2.697 2.729 462.46 466.95 12.176 1.300 9.712 2.765 471.93 14.819 - 1.276 9.926 •. 2.807 477.41 I 17.964 21.734 1.251 1.227 10.152 10.390 2.853 2.904 483.42 ( 490.00 26.304 1.202 10.641 2.962 497.18 31.927 1.178 10.906 3.026 504.99 I 38.999 48.180 1.154 1.129 11.186 11.481 3.098 3.177 513.48 522.68 60.714 1.105 11.794 3.266 532.66 79.391 1.080 12.125 3.365 543.46 I 92.810 HYDRAULIC JUMP: 1.071 UPSTREAM RUN ANALYSIS 12.261 RESULTS 3.407 -------------------------------- 547.99 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.54 I PRESSURE FLOW PROFILE COMPUTED ------------- INFORMATION: I DISTANCE FROM CONTROL(FT) 0.000 PRESSURE HEAD(FT) 2.535 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 6.685 3.229 PRESSURE+ MOMENTUM(POUNDS) 572.97 23.875 2.000 6.685 2.694 468.07 I ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: i .. ------------------------------------------------------------------------- Page9 I I BRPGATED.RES I DISTANCE FROM CONTROL(FT) FLOW DEPTH (Fr) VELOCITY (FT/SEC) SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUNDS) 23.875 2.000 6.682 2.694 468.07 24.445 1.986 6.689 2.681 465.54 24.952 1.971 • 6.702 2.669 463.24 I 25.422 1.957 6.718 2.658 461.11 25.862 1.943 6.737 2.648 459.10 26.277 1.928 6.759 2.638 457.21 26.669 1.914 6.784 2.629 455.43 27.039 1.900 6.810 2.620 45375 I : 27.389 1.885 6.839 2.612 452.17 27.720 1.871 6.870 " 2.604 450.67 28.032 1.857 6.902 2.597 449.28 28.325 1.842 6.937 2.590 447.97 I 28.601 1.828 6.973 2.583 446.74 28.858 1.814 7.011 2.577 445.61 29.097 1.799 7.051 2.572 444.57 29.318 1.785 7.093 2.567 443.61 I 29.520 1.771 7.137 2.562 442.74 29.704 1.756 7.182 2.558 441.95 29.869 1.742 7.229 2.554 441.26 I 30.013 30.138 1.728 1.713 7.277 7.328 2.550 2.548 440.65 440.14 30.242 1.699 7.380 2.545 439.71. 30.324 1.685 7.434 2.543 439.38 30.384 1.670 7.490 2.542 439.14 I 30.421 1.656 7.548 2.541 439.00 30.433 1.642 7.608 2.541 438.95 92.810 1.642 7.608 2.541 438.95 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 6.16 FEET UPSTREAM OF NODE 252.00 I I DOWNSTREAM DEPTH = 2.397 FEET, UPSTREAM CONJUGATE DEPTH = 1.075 FEET NODE 251.00 : ----------------------------------------------------------------------------- HGL = < 413.962>;EGL= < 414.861>;FLOWLINE= < 412.320> I FLOW PROCESS FROM NODE 251.00 TO NODE 251.00 IS CODE = 8 UPSTREAM NODE 251.00 ELEVATION = 416.82 (FLOW IS SUBCRITICAL) I (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1 21.00 CFS PIPE DIAMETER = 24.00 INCHES 1 FLOW VELOCITY = CATCH BASIN ENERGY 34.05 FEET/SEC. VELOCITY HEAD = 18.003 FEET LOSS = .2(VELOCITY HEAD) = .2( 18.003) = 3.601 NODE 251.00 : HGL = < 418.462>;EGL=< 418.462>;FLOWLINE= < 416.820> I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 251.00 FLOWLINE ELEVATION = 416.82 ' ASSUMED UPSTREAM CONTROL HGL = 418.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I I, I Page 10 S I- I I I I BRPCOLT. RES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PIPE-FLOW HYDRAULICS .COMPUTERPROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 DESCRIPTION OF STUDY * 17169-A Bressi Ranch * Pipeflow Main Line Colt P1 100-Year * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPCOLT.PIP TIME/DATE OF STUDY: 17:50 03/30/2017 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 199.00- 6.16* 2427.92 1.45 908.13 } FRICTION 196.00- 5.69* 2219.59 1.31 992.43 I JUNCTION 196.00- 477* 1614.99 • 1.73 899.65 } FRICTION 195.00- 4.10* 1408.67 2.05 DC 863.09 } JUNCTION 195.00- 5•54* 1821.72 1.11 1248.85 } FRICTION } HYDRAULIC JUMP 160.00- 2.03 Dc 830.61 1.22* 1124.35 } JUNCTION 160.00- 2.03 Dc 830.61 1.24* 1109.51 } FRICTION 155.00- 2.03*DC 830.61 2.03*Dc 830.61 } CATCH BASIN 155.00- • 1.05 116.75 2.03*Dc 246.95 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 199.00 FLOWLINE ELEVATION = 392.54 PIPE FLOW = 36.86 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 398.700 FEET NODE 199.00 : HGL = < 398.700>;EGL= < 399.122>;FLOwLINE= < 392.540> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 199.00 TO NODE 196.00 IS CODE = Pagel I I I H [1 I I I 1 $ I I I U I BRPCOLT.RES UPSTREAM NODE 196.00 ELEVATION = 393.22 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.86 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 68.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2= (( 36.86)/( 666.992))**2 = 0.00305 HF=LSF = ( 68.00)(0.00305) = 0.208 ------------------------------------------------------------------------------ NODE 196.00 : HGL = < 398.908>;EGL= < 399.330>;FLOWLINE= < 393.220> * FLOW PROCESS FROM NODE 196.00 TO NODE 196.00 IS CODE = 5 UPSTREAM NODE 196.00 ELEVATION = 393.72 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 36.86 30.00 0.00 393.72 2.06 7.509 DOWNSTREAM 36.86 36.00 - 393.22 1.97 5.215 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2 *v2 _Q1*V1*COS (DELTA1) _Q3*V3 *COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRIcTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00808 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00305 AVERAGED FRICTION SLOPE INJUNCTION ASSUMED AS 0.00556 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-Hv2)+(ENTRANcE LOSSES) JUNCTION LOSSES = ( 0.037)+( 0.000) = 0.037 NODE 196.00 :.HGL = < 398.491>;EGL= < 399.367>;FLOWLIr'JE= < 393.720> FLOW PROCESS FROM NODE 196.00 TO NODE 195.00 IS CODE = 1 UPSTREAM NODE 195.00 ELEVATION =- 395.72 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.86 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 164.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 36.86)/( 410.169))*2 = 0.00808 HF=LSF = ( 164.25)(0.00808) = 1.326 - NODE 195.00 : HGL = < 399.818>;EGL= < 400.693>;FLOWLINE= < 395.720> FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 5 UPSTREAM NODE 195.00 ELEVATION = 396.06 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 35.87 30.00 90.00 396.06 2.03 7.307 DOWNSTREAM 36.86 30.00 - 395.72 2.06 7.509 LATERAL #1 0.99 30.00 0.00 395.79 k 0.32 0.202 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS(DELTA1)_Q3*V3*CO5(DELTA3)_ Page 2 I I I U I I I I I I I 1 I I I I F, I . BRPCOLT.RES - I Q4*v4*C0sELTA4/(1+A216. 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00765 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00808 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00786 I JUNCTION LENGTH = FRICTION LOSSES = 4.00 FEET 0.031 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES .,= (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.735)+( 0.000) = 1.735 " NODE 195.00 : HGL = < 401.599>;EGL= < 402.428>;FLOwLINE= < 396.060> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 195.00 TO NODE 160.00 IS CODE = 1 I UPSTREAM NODE '160.00 ELEVATION = 400.43 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): - PIPE FLOW = 35.87 CFS PIPE DIAMETER = 30.00 INCHES I PIPE LENGTH = HYDRAULIC JUMP: DOWNSTREAM 84.27 FEET MANNING'S RUN ANALYSIS RESULTS N = 0.01300 - I NORMAL DEPTH(FT) = 1.07 CRITICAL DEPTH(FT) = 2.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 I L GRADUALLY VARIED FLOW DISTANCE FROM CONTROL(FT) PROFILE COMPUTED INFORMATION: FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (Fr) (FT/SEC) ENERGY(FT) F1OMENTUM(POUNDS) 0.000 1.220 15.066 4.747 1124.35 2.051 1.214 15.158 4.785 1129.93 I 4.211 1.209 15.252 4.823 1135.60 6.490 1.203 15.347 4.862 1141.34 8.899 1.197 15.443 4.903 1147.18 I 11.451 14.161 1.191 15.541 1.185 15.639 4.944 4.986 1153.10 1159.12 17.046 1.180 15.739 5.028 1165.22 20.127 1.174 15.840 5.072 1171.42 I 23.427 26.975 1.168 15.942 1.162 16.046 , 5.117 5.162 1177.71 1184.10 30.805 1.156 16.150 5.209 1190.58 34.960 1.150 16.257 5.257 1197.16 I 39.492 44.467 1.145 16.364 1.139 16.473 5.305 5.355 1203.85 1210.63 49.969 1.133 16.584 5.406 1217.52 56.111 1.127 16.695 ' 5.458 1224.51 63.044 70.980 1.121 16.809 1.116 16.924 5.511 5.566 1231.61 1238.82 I 80.230 1.110 17.040 5.621 1246.14 84.270 1.108 17.083 5.642 1248.85 " HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.54 I I - PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC' CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) 0.000 5.539 7.307 - 68.743 2.500 7.307 PRESSURE+ MOMENTUM(POUNDS) 6.368 1821.72 3.329 890.83 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 i Page -3 I I BRPCOLT. RES I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .68.743 2.500 7.305 3.329 890.83 69.125 2.481 ..7.313 3.312 . 885.65 69.468 2.463 7.328 3.297 880.95 69.788 2.444 7.347 3.282 876.56 70.089 2.425 7.369 3.269 872.43 I 70.374 2.406 7.395 3.256 868.53 70.643 2.388 7.424 3.244 864.86 70.898 2.369 7.455 3.232 861.38 71.140 2.350 7.488 3.221 858.11 I 71.369 2.331 7.524 3.211 855.02 71.585 2.313 7.563 3.201 852.12 71.789 2.294 7.603 3.192 849.40 2.275 7.646 3.183 846.87 1 71.980 72.159 2.256 7.690 3.175 844.51 72.325 2.238 7.737 3.168 842.34 72.479 2.219 7.786 3.161 840.34 I 72.619 72.747 2.200 7.837 2.181 7.891 3.155 3.149 838.53 836.89 72.861 2.163 7.946 3.144 835.44 72.962 2.144 8.003 3.139 834.18 73.049 2.125 8.063 3.135 833.10 I 73.121 2.106 8.125 3.132 832.21 73.178 2.088 8.189 3.130 831.51 73.219 2.069 8.255 . 3.128 831.01 73.245 2.050 8.323 3.127 830.71 73.253 2.031 8.394 3.126 830.61 I 84.270 2.031 8.394 3.126 . . 830.61 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 45.73 FEET UPSTREAM OF NODE 195.00 I I DOWNSTREAM DEPTH = 3.517 FEET, UPSTREAM CONJUGATE DEPTH = 1.146 FEET NODE 160.00 : HGL = < 401.650>;EGL=< 405.177>;FLOWLINE= < 400.430> I FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 5 UPSTREAM NODE 160.00 ELEVATION = 400.76 (FLOW IS SUPERCRITICAL) I CALCULATE JUNCTION PIPE ------------------------------------------------------------------------------ LOSSES: FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM . 35.87 30.00 0.00 400.76 2.03 14.823 DOWNSTREAM 31-.871 30.00 - 400.43 2.03 5070 I LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY= (Q2*V2_Q1v1*Cos (DELTA1) -Q3 *v3 *COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03177 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03321 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03249 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.130 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) I JUNCTION LOSSES = ( 0.231)+( 0.000) = 0.231 NODE 160.00 : HGL = < 401.996>;EGL= < 405.408>;FLOWLINE= < 400.760> Page4 I I I BRPCOLT.RES I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 160.00 TO NODE 155.00 IS CODE = 1 UPSTREAM NODE 155.00 ELEVATION = 403.56 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES(LACECD): PIPE FLOW = 35.87 CFS PIPE DIAMETER = 30.00 INCHES PIPE' LENGTH = 57.03 FEET MANNING'S N = 0.01300 I . NORMAL DEPTH(FT) =1.09 CRITICAL DEPTH(FT) = 2.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.03 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM 'FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 1 0.000 CONTROL(FT) 0.039 (Fr) (FT/SEC) 2.031 8.394 1.994 8.543 ENERGY(FT) MOMENTUM(POUNDS) 3.126 830.61 3.128 831.02 0.159 1.956 8.702 3.133 832.30 0.370 1.919 8.871 3.141 834.47 I 0.680 1.101 1.881 9.050 1.843 9.241 3.154 3.'.170 837.58 841.67 1.645 1.806 9.445 3.192 846.80 2.330 1.768 9.661 3.218 853.00 I 3.172 4.195 1.731 9.890 1.693 10.134, 3.250 3.289 860.36 868.93 5.425 6.895 1.655 10.394 1.618 10.671 3.334 3.387 878.80 890.03 8.646 1.580 10.965 3.448 902.74 10.728 1.543 11.279 3.519 917.00 I ' .13.206 1.505 11.614 3.601 932.95 16.164 1.467 11.972 3.695 950.70 19.712 1.430 12.355 3.802 970.41 24.002 1.392 12.765 3.924 992.22 I 29.244 . 1.355 13.205 4.064 1016.31 35.752 d.317 13.677 4.224 1042.90 44.009 1.279 14.186 4.406 1072.20 I 54.830 57.030 1.242 14.734 1.236 , 14.818 4.615 4.648 1104.47 1109.51 NODE 155.00 : HGL = < 405.591>;EGL= < 406.686>;FLOWLINE= < 403.560> I FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 8 UPSTREAM NODE 155.00 ELEVATION = 405.86 (FLOW IS SUBCRITICAL), I .(NOTE: POSSIBLE CALCULATE CATCH JUMP IN OR UPSTREAM OF STRUCTURE) BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 35.87 CFS PIPE DIAMETER = 30.00 INCHES FLOW VELOCITY = 19.70 FEET/SEC. VELOCITY HEAD = 6.026 FEET I CATCH BASIN' ENERGY LOSS = .2*(VELOCITY HEAD)- .2*( 6.026) = 1.205 NODE 155.00 : HGL = < 407.891>;EGL= < 407.891>;FLOWLINE= < 405.860> I * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW * * * * * * * * * * * * * * * * * * * * * * * * CONTROL DATA: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NODE NUMBER = 155.00 FLOWLINE ELEVATION = 405.86 ASSUMED UPSTREAM CONTROL HGL = 407.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I Page 5 1 E Fl I BRPGATL RES PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 ************************** DESCRIPTION OF STUDY ************************** * 17169A BRESSI RANCH * * 100-YR 6-HR * * PIPEFLOW FOR LATERAL CONNECTING TO GATEWAY RD MAINLINE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPGATL.LAT TIME/DATE OF STUDY: 11:4506/16/2017 * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM -. NODAL POINT STATUS TABLE (Note: "h" indicates nodal pointdata used.) UPSTREAM RUN DOWNSTREAM RUN NODE - MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 320.00- 3.48k 439.14 0.93 241.98 } FRICTION 315.00- 3.04- 390.70 1.28 DC 211.76 } JUNCTION 315.00- 379k 473.85 0.84 264.58 } FRICTION 310.00- 2.93* 379.48 0.70 316.51 } JUNCTION 310.00- 2.65* 348.14 0.69 320.47 } FRICTION } HYDRAULIC JUMP 305.00- 2.08 284.86 0.54* 435.46 } JUNCTION 305.00- 1.79 253.52 0.52* 462.32 } FRICTION 304.50- 1.28*Dc 211.76 '1 1.28Dc 211.76 } CATCH BASIN 304.50- 0.08 3.31 1.28*Dc 59.46 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 320.00 FLOWLINE ELEVATION = 401.20 PIPE FLOW = 11.24 CFS PIPE DIAMETER = 18.00 INCHES 'ASSUMED DOWNSTREAM CONTROL HGL = 404.676 FEET NODE 320.00': HGL =< 404.676>;EGL= < 405.304>;FLOWLINE=< 401.200> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS 'FROM NODE 320.00 TO NODE 315.00 IS CODE = Pagel I Li I I I I I I I I I I I I. I L I LI I n BRPGATL. RES UPSTREAM NODE 315.00 ELEVATION = 401.75 (FLOW IS - UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.24 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 9.67 FEET MANNING'S N = 0.01300 SF=(Q/K)fr*2 = (( 11.24)/( 105.044))**2 = 0.01145 HF=LSF = ( 9.67)*(0.01145) = 0.111 - NODE 315.00 : HGL = < 404.787>;EGL= < 405.415>;FLOWLINE= < 401.750> FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 5 UPSTREAM NODE 315.00 ELEVATION = 402.08 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11.24 18.00 80.00 402.08 1.28 6.361 DOWNSTREAM 11.24 18.00 - 401.75 1.28 6.361 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===QS EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01145 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01145 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01145 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.084)+( 0.000) = 1.084 NODE 315.00 : HGL = < 405.871>;EGL= < 406.499>;FLOWLINE= < 402.080> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 315.00 TO NODE 310.00 IS CODE = 1 UPSTREAM NODE 310.00 ELEVATION = 403.62 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.24 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 59.76 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 11.24)/( 105.043))**2 = 0.01145 HF=L*SF = ( 59.76)*(0.01145) = 0.684 NODE 310.00 : HGL = < 406.555>;EGL= < 407.183>;FLOWLINE= < 403.620> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t* * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 5 UPSTREAM NODE 310.00 ELEVATION = 403.95 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT..) (FT/SEC) UPSTREAM 11.24 18.00 0.00 403.95 1.28 6.361 DOWNSTREAM 11.24 18.00 - 403.62 1.28 6.361 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00. 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Page 2 I I I I I I I I I I I I [II I I I I I I BRPGATL. RES Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRIcTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01145 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01145 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01145 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = (O.046)+( 0.000) = 0.046 NODE 310.00 HGL = < 406.601>;EGL= < 407.229>;FLOWLINE= < 403.950> FLOW PROCESS FROM NODE 310.00 TO NODE 305.00 IS CODE = 1 UPSTREAM NODE 305.00 ELEVATION = 404.99 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES(LACFCD): PIPE FLOW = 11.24 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 40.71 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: ------------------------------------------------------------------------------ DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) ------------------------------------------------------------------------------ = 0.90 CRITICAL DEPTH(FT) = 1.28 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.540 19.618 6.520 435.46 3.397 0.554 18.934 6.125 421.09 6.848 0.569 18.293 5.768 '- 407.67 10.357 0.583 17.692 5.446 395.12 13.931 0.597 17.126 5.155 383.37 17.577 0.612 16.593 4.890 372.36 21.305 0.626 16.091 4.649 362.03 25.125 0.640 15.617 4.430 352.33 29.048 0.655 15.168 4.229 343.21 33.088 0.669 14.744 4.046 334.63 37.263 0.683 14.342 3.879 326.56 40.710 0.695 14.036 3.756 320.47 HYDRAULIC JUMP: ------------------------------------------------------------------------------ UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.65 PRESSURE FLOW PROFILE COMPUTED(INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.651 6.361 3.279 348.14 40.710 2.077 6.361 2.705 284.86 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 8.07 FEET UPSTREAM OF NODE 310.00 DOWNSTREAM DEPTH = 2.537 FEET, UPSTREAM CONJUGATE DEPTH = 0.667 FEET NODE 305.00 : ----------------------------------------------------------------------------- HGL = < 405.530>;EGL= < 411.510>;FLOWLINE= < 404.990> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 5 UPSTREAM NODE 305.00 ELEVATION = - 1405.32 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: I Page 3 1 I L I L LI I I n LJ U I I I I I I. BRPGATL.RES I PIPE UPSTREAM FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 11.24 18.00 0.00 405.32 1.28 VELOCITY (FT/SEC) 20.895 DOWNSTREAM 11.24 18.00 7 404.99 1.28 .19.624 I LATERAL #1 LATERAL #2 0.00 0.00 0.00 0.00 0,001 0.00 0.00 0.00 0.00 0.00 0.000 0.000 QS 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:' Dv=(Q2*v2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ I Q4*V4*CO5(DELTA4))/((A1+A2)161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.17720 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.14895 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.16307 I JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.652 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) I JUNCTION LOSSES = ( 1.106)+( 0.000) = 1.106 NODE 305.00 : HGL = < 405.836>;EGL= < 412.616>;FLOwLINE= < 405.320> I FLOW PROCESS FROM NODE 305.00 TO NODE 304.50 IS CODE = 1 UPSTREAM NODE 304.50 ELEVATION = 411.94 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION PIPE FLOW = ------------------------------------------------------------------------------ LOSSES(LACFCD)': 11.24 CFS PIPE DIAMETER = 18.00 INCHES I PIPE LENGTH = 13.51 FEET . MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = 1.28 I UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM ------------------------- FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) 0.000 (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.281 6.990 2.040 211.76 I 0.005 0.022 1.246 7.162 2.043 1.210 7.354 2.051 212.01 212.76 0.050 1.175 7.566 2.064' 214.06 0.093 1.140 7.800 2.085 215.93 I 0.152 0.230 1.104 8.058 2.113 1.069 8.342 2.150 218.41 221.57 0.330 1.033 8.654 .. 2.197 225.45 0.454 0.998 8.998 2.256 230.13 0.609 0.801 0.963 9.377 2.329 0.927 9.796 . 2.418 235.70 242.24 I 1.035 0.892 10.260 2.528 249.87 1:323 0.857 10,. 775 2.661 258.73 1.676 0.821 11.349 2.822 268.99 2.111 0.786 11.990 3.019 280.83 I 2.649 .0.750 12.710 . 3.260 294.50 3.320 0.715 13.522 3.556 310.29 4.166 0.680 14.442 3.920 328.57 I 5.247 6.654 0.644 15.492 4.373 0.609 16.697 4.940 349.78 374.50 8.532 0.573 18.092 5.659 403.46 11.128 0.538 19.719 6.580 437.61 I 13.510 ' NODE 304.50 : 0.516 20.889 7.295 HGL = < 413.221>;EGL= < 413.980>;FLOWLINE= < 462.32 411.940> I ' Page I BRPGATL.RES FLOW PROCESS FROM NODE 304.50 TO NODE 304.50 IS CODE = 8 UPSTREAM NODE 304.50 ELEVATION = 414.05 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ----------------------------------------------------------------------------- CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 11.24 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 20.86 FEET/SEC. VELOCITY HEAD = 6.754 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2( 6.754) = 1.351 NODE 304.50,: HGL = < 415.331>;EGL= < 415.331>;FLOWLINE= < 414.050> 'UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 304.50 FLOWLINE ELEVATION = '414.05 ASSUMED UPSTREAM CONTROL HGL = 415.33 FOR DOWNSTREAM RUN ANALYSIS ------------------------ END OF GRADUALLY VARIED FLOW ANALYSIS 2 p I Page 5 I 1, BRPDMA1.RES I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) I Ver. (c) Copyright 1982-2012 Advanced Engineering 19.1 Release Date: 08/09/2012 Software (aes) License ID 1261 Analysis prepared by: Rick Engineering Company - I 5620 Friars Road San Diego, CA. 92110 - . Ph 619-291-0707 Fx 619-291-4165 I ******************* DESCRIPTION OF STUDY ****************** • * 17169A UPTOWN BRESSI * PIPEFLOW FOR DMA-1 STORM DRAIN BACKBONE I * 100-YEAR * 6-HR * FILE NAME: BRPDMA1.PIP I TIME/DATE OF STUDY: 11:17 06/08/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "h" indicates nodal point data used.) - UPSTREAM RUN . DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 134.00- 4.46* 1237.74 1.42 542.67 I }.FRICTION 130.00- 4.09* 1123.90 1.72 DC 517.17 } JUNCTION I 130.00- } 4.22* 1121.10 FRICTION 1.37 477.45 127.00- 393* 1032.95 1.64 DC 456.75 } JUNCTION I 127.00- } FRICTION 4.01* 1037.64 '1.35 444.82 125.00- 3.69* 939.17 1.59 Dc 427.30 } JUNCTION I 125.00- } 4.23* 1086.18 FRICTION 1.27 425.72 120.00- 3.66* 912.98 1.26 427.04 } JUNCTION } I 120.00- FRICTION 3.63* , 897.27 1.26 414.02 190.00- } ' 3.22* \ 771.08 JUNCTION 1.54 DC 391.13 190.00- 3.27* 779.00 1.28 397.75 } FRICTION I 115.00- 2.88* 658.71 1.52 DC 380.37 } JUNCTION 115.00- 2.42* 373.74 1.08 224.56 I . } 114.50- FRICTION 2.21* 333.55 1.27 DC 216.03 } JUNCTION 114.50- 2.42* 345.12 0.96 178.46 I } 114.00- FRICTION 1.61* 201.51 1.15 DC 169.81 } JUNCTION 114.00- 1.83* 208.03 0.85 134.08 I - , Page 1 I I BRPDMA1. RES I } FRICTION } HYDRAULIC JUMP 110.00- 1.03*Dc 126.85 1.03*Dc 126.85 } JUNCTION 110.00- 1.62* 115.13 0.66 57.78 I } FRICTION } HYDRAULIC JUMP 106.00- 0.78*Dc' 55.36 0.78*Dc 55.36 } JUNCTION 106.00- 1.07* 38.75 0.47 27.53 } FRICTION } HYDRAULIC.-JUMP 105.00- 0.62*Dc 24.98 0.62*Dc 24.98 I } CATCH BASIN 105.00- -2.55 0.03 0.62*Dc 8.46 I MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA I DESIGN MANUALS. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.00 FLOWLINE ELEVATION = 402.41 I ASSUMED PIPE FLOW = 25.39 CFS PIPE DIAMETER = 30.00 INCHES DOWNSTREAM CONTROL HGL = 406.870 FEET NODE 134.00 : HGL = < 406.870>;EGL= < 407.285>;FLOwLINE= < 402.410> * I FLOW PROCESS FROM NODE 134.00 TO NODE 130.00 IS CODE = 1 UPSTREAM NODE 130.00 ELEVATION = 402.97 (FLOW IS UNDER. PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): I PIPE FLOW = 25.39 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 49.16 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 25.39)/( 410.186))**2 = 0.00383 I HF=L*SF = ( 49.16)*(0.00383) = 0.188 NODE 130.00 : HGL = < 407.058>;EGL= < 407.474>;FLOwLINE= < 402.970> I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 5 * * * * * * * * * * * * UPSTREAM NODE 130.00 ELEVATION = 403.07 (FLOW IS UNDER PRESSURE) ----------------------------------- 1 I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 23.14 30.00 28.00 403.07 1.64 6OWNSTREAM C25:39' 30.00 - 402.97 1.72 LATERALJt1 1.13 12.00 90.00 404.57 0.45 4.714 (57.1721 1.439 I LATERAL #2 1.12 12.00 67.00 404.57 0.45 Q5 0.00==Q5 EQUALS BASIN INPUT=== 1.426 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS (DELTA1)_Q3*v3*CoS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00318 I DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00383 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00351 JUNCTION LENGTH = 4.00 FEET . FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET I JUNCTION LOSSES = (DY+HV1-HV2)-s-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.161)+( 0.000) = 0.161 NODE 130.00 : HGL = < 407.290>;EGL= < 407.635>;FLOWLINE= < - - 403.070> I Page I I BRPDMA1. RES I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 130.00 TO NODE 127.00 IS CODE = 1 UPSTREAM NODE 127.00 ELEVATION = 403.47 (FLOW IS UNDER PRESSURE) I CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.14 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 35.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 23.14)/( 410.130))**2 = 0.00318 I HF=L*SF = ( 35.25)k(0.00318) = 0.112 NODE 127.00 : HGL = < 407.402>;EGL= < 407.747>;FLOWLINE= < 403.470> I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 5 * * * * * * * * * * * * UPSTREAM NODE 127.00 ELEVATION = 403.53 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (Fr/SEC) UPSTREAM 22.01 30.00 26.00 403.53 1.60 4.484 I DOWNSTREAM 23.14 30.00 - 403.47 1.64 LATERAL #1 1.13 12.00 90.00 405.03 0.45 4.714 1.439 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 QS 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00288 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00318 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00303 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET I JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) LOSSES = ( 0.108)+( 0.000) = 0.108 ,JUNCTION NODE 127.00 : HGL = < 407.543>;EGL= < 407.855>;FLOWLINE= < 403.530> FLOW PROCESS FROM NODE 127.00 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 403.98 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.01 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 44.64 FEET MANNING'S N = 0.01300 I SF=(Q/K)**2 = (( 22.01)/( 410.169))**2 = 0.00288 HF=L*SF = ( 44.64)*(0.00288) = 0.129 NODE 125.00 : HGL = < 407.672>;EGL= < 407.984>;FLoWLINE= < 403.980> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 5 UPSTREAM NODE 125.00 ELEVATION = 404.08 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) -- VELOCITY (Fr/SEC) UPSTREAM 21.01 30.00 90.00 404.08 1.56 4.280 I DOWNSTREAM 22.01 30.00 - 403.98 1.60 LATERAL #1 1.00 12.00 90.00 405.58 0.42 4.484 1.273 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== Page 3 I I I BRPDMA1. RES LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1COS(DELTA1)_Q3*V3*CO5(DELTA3)_ Q4V4*COS(DELTA4))/((A1+A2)*16. 1)+FRIcTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00262 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00288 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00275 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANcE LOSSES) JUNCTION LOSSES = ( 0.608)+( 0.000) = 0.608 NODE 125.00 : HGL = < 408.307>;EGL= < 408.592>;FLowLINE= < 404.080> FLOW PROCESS FROM NODE 125.00 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 404.85 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.01 CFs PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 77.96 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 21.01)/( 410..159))**2 = 0.00262 HF=L*SF = ( 77.96)*(0.00262) = 0.205 NODE 120.00 : HGL = < 408.512>;EGL= < 408.796>;FLOWLINE= < 404.850> * U FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 5 UPSTREAM NODE 120.00 ELEVATION .= 404.89 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ I PIPE ( UPSTREAM FLOW (CFs) 2L59, DIAMETER ANGLE (INCHES) (DEGREES) 30.00 58.00 FLOWLINE ELEVATION 404.89 CRITICAL DEPTH(FT.) 1.54 VELOCITY (FT/SEC) 4TI194 DOWNSTREAM 21.01 30.00 - 404.85 1.56 4.280 I LATERAL #1 0.42 0.42 48.00 404.89 0.03 436.539 LATERAL #2 0.00 0.00 0.00 .0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00252 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00262 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00257 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 120.00 : HGL = < 408.523>;EGL= < 408.796>;FLOWLINE= < 404.890> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 120.00 TO NODE 190.00 IS CODE = 1 UPSTREAM NODE 190.00 ELEVATION = 405.42 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.59 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 46.83 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 20.59)/( 410.163))**2 = 0.00252 HF=L*SF = ( 46.83)*(0.00252) = 0.118 ------------------------------------------------------------------------------ NODE 190.00 : HGL = < 408.641>;EGL= < 408.914>;FLOWLINE= < 405.420> Page 4 I I I I I I I i I I I I I I BRPDMA1.RES I FLOW PROCESS FROM NODE 190.00 TO NODE 190.00 IS CODE = 5 UPSTREAM NODE 190.00 ELEVATION = 405.48 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.16 30.00 31.00 405.48 1.52 4.107 DOWNSTREAM 20.59 30.00 - 405.42 1.54 4.194 I LATERAL #1 0.43 12.00 30.00 405.48 0.27 0.547 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ Q4V4COS(DELTA4))/((A1+A2)16. 1)+FRIcTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00242 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION' SLOPE = 0.00252 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00247 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.097)+( 0.000) = 0.097 NODE 190.00 : HGL = < 408.749>;EGL= < 409.011>;FLOWLINE= < 405.480> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 190.00 TO NODE 115.00 IS CODE = 1 UPSTREAM NODE 115.00 ELEVATION = 406.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.16 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 52.69 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 20.16)/( 410.215)Y*2 = 0.00242 HF=L*SF = ( 52.69)*(0.00242) = 0.127 NODE 115.00 : HGL = < 408.877>;EGL= < 409.139>;FLOWLINE= < 406.000> * FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 5 UPSTREAM NODE 115.00 ELEVATION = 407.11 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 12*41 24.00 90.00 407.11 20.16 30.00 - 406.00 DOWNSTREAM LATERAL #1 7.68 24.00 90.00 406.11 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2 _Q1*V1*COS (DELTA1) -Q3 *v3 *COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00304 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00242 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00273 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.633)+( 0.000) = 0.633 ------------------------------------------------------------------------------ Page 5 I I I I I I I CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.27 3.973 1.52 4.107 0.99 2.445 0.00 0.000 I I I I I I I BRPDMA1.RES NODE 115.00 : HGL = < 409.526>;EGL= < 409.771>;FLOwLINE= < 407.110> FLOW PROCESS FROM NODE 115.00 TO NODE 114.50 IS CODE = 1 UPSTREAM NODE 114.50 ELEVATION = 407.39 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.48 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 24.64 FEET MANNING'S N = 0.01300 SF=(Q/K)2 = (( 12.48)/( 226.234))**2 = 0.00304 HF=L*SF = ( 24.64)*(0.00304) = 0.075 NODE 114.50 : HGL = < 409.601>;EGL= < 409.846>;FLOWLINE= < 407.390> FLOW PROCESS FROM NODE 114.50 TO NODE 114.50 IS CODE = 5 UPSTREAM NODE 114.50 ELEVATION = 407.49 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (Fr/SEC) UPSTREAM 10.40 24.00 45.00 407.49 1.15 3.310 DOWNSTREAM 12.48 24.00 - 407.39 1.27 3.972 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.08===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*CoS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00211 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00304 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00258 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0.049 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.185)+( 0.049) = 0.234 NODE 114.50 : HGL = < 409.910>;EGL= < 410.080>;FLOwLINE= < 407.490> * FLOW PROCESS FROM NODE 114.50 TO NODE 114.00 IS CODE = 1 UPSTREAM NODE 114.00 ELEVATION = 408.43 (FLOW SEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 93.63 FEET MANNING'S N 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.42 PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------- DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.420 3.310 2.590 345.12 53.010 2.000 3.310 2.170 262.75 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.95 CRITICAL DEPTH(FT) = 1.15 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ Page 6 7 I I I I I I I I I I I I I I I I BRPDMA1. RES DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 53.010 2.000 3.309 / 2.170 262.75 57.052 1.966 3.322 2.138 256.39 60.906 1.932 3.344 2.106 250.26 64.654 1.899 3.374 2.075 244.32 68.318 1.865 3.409 2.045 238.57 71.911 1.831 3.450 2.016 232.99 75.439 1.797 -3.495 1.987 227.59 78.906 1.763 3.545 1.959 222.37 82.314 1.730 3.601 1.931 217.35 85.662 1.696 3.661 1.904 212.52 88.950 1.662 3.726 1.878 207.89 92.173 1.628 3.796 1.852 203.48 93.630 1.613 3.830 1.841 201.51 ------------------------------------------------------------------------------ NODE 114.00 : HGL = < 410.043>;EGL= < 410.271>;FLOWLINE= < 408.430> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 5 UPSTREAM NODE 114.00 ELEVATION = 408.53 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFs) (INCHES) (DEGREES) ELEVATION UPSTREAM 8.32 24.00 45.00 408.53 10.40 24.00 - 408.43 DOWNSTREAM LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 2.08===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00118 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00218 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00168 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.007 FEET ENTRANCE LOSSES = 0.046 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.164)+( 0.046) = 0.209 NODE 114.00 : HGL = < 410.361>;EGL= < 410.480>;FLOWLINE= < 408.530> FLOW PROCESS FROM NODE 114.00 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 409.66 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.32 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 112.87 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH(FT) = 1.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY' SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.028 5.116 1.434 126.85 Page i I I I I CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.03 2.760 1.15 3.832 0.00 0.000 0.00 0.000 Pi H I I 1 I I 1 I I I I BRPDMA1.RES I 0.021 0.088 1.020 1.012 5.164 5.212 1.434 1.435 126.86 126.90 0.204 1.005 5.262 1.435 126.95 0.375 0.997 ' 5.313 1.436 127.03 0.605 0.990 5.364 1.437 127.13 I 0.901 0.982 5.417 1.438 127.25 1.271 0.975 5.471 1.440 127.40 1.722 0.967 5.525 1.442 127.57 2.266 0.960 5.581 1.444 127.77 .2.914 0.952 5.638 ' 1.446 127.99 I. 3.681 . 0.945 5.696 1.449 128.24 4.584 0.937 5.756 1.452 128.51 5.647 0.930 5.816 1.455 128.81 6.897 0.922 5.878 1.459 .129.14' I 8.371 0.915 5.941 1.463 129.49 - 10.115 0.907 6.005 1.467 129.88 i 12.195 0.899 6.071 1.472 130.29 14.700 0.892 6.138 .. 1.477 130.73 I 17.763 0.884 6.207 1.483 131.20 21.589 0.877 6.277 1.489 131.71 26.522 0.869 6.349 1.496 132.24 I . 33.206 43.089 0.862 0.854 6.422 6.497 1.503 1.510 132.81 133.41 60.816 0.847 6.573 1.518 134.05 112.870 0.846 6.577 1.518 134.08 I HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.83 I . GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY- SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .0.000 1.831 2.759, 1.950 208.03 I 3.305 1.799 2.794 1.921 202.57 6.578 - 1.767 2.832 1.892 197.25 9.818 - 1.735 2.873 1.863 192.07 l - 13.027 16.203 1.703 1.671 2.918 2.967 1.835 ' 1.807 187.03 182.15 19.346 1.638 3.019 1.780 . 177.41 22.455 1.606 3.076 1.753 - 172.84 25.526 1.574 3.136 1.727 168.44 I 28.558 1.542 3.200 1.701 164.21 31.546 1.510 3.269 1.676 160.16 34.486 1.478 3.342 1.651 '-156.29 37.374 1.446 3.421 1.627 - 152.62 40.203 . 1.413 3.504 1.604 149.15 I 42.966 1.381 3.594 1.582 145.89 45.653 1.349 3.689 1.561 142.84 48.253 1.317 3.791 1.540 140.03 50.753 1.285 3.900 1.521 137.44 I , 53.135. 1.253 4.017 1.503 135.11 55.377 1.220 4.142 1.487 133.03 57.451 1.188 4.276 1.472 131.23 -59.323 1.156 4.420 ' 1.460 129.71 I 60.942 1.124 4.575 1.449 ' 128.49 62.243 1.092 4.741 1.441 127.60 63.133 1.060 4.921 1.436 127.04 I 63.471 112.870 1.028 1.028 5.116 5.116 1.434 1.434 126.85 126.85 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 54.37 FEET UPSTREAM OF NODE 114.00 i . Page 8 li I I BRPDMA1. RES I I DOWNSTREAM NODE 110.00 DEPTH HGL : = < = 1.235 FEET, UPSTREAM CONJUGATE DEPTH = 0.848 FEET 410.688>;EGL= < 411.094>;FLOWLINE= < 409.660> I FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 5 UPSTREAM NODE 110.00 ELEVATION = 409.76 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION ------------------------------------------------------------------------------ LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.16 18.00 0.00 409.76 0.78 2.354 DOWNSTREAM 8.32 24.00 - 409.66 1.03 5.117 I LATERAL #1 2.08 12.00 90.00 409.66 0.62 2.648 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.08===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3V3*COS(DELTA3)_ Q4V4COS(DELTA4))/((A1+A2)*16. 1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00157 I DOWNSTREAM: MANNING'S AVERAGED FRICTION N = 0.01300; FRICTION SLOPE = 0.00494 SLOPE IN JUNCTION ASSUMED AS 0.00325 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.081 FEET I JUNCTION JUNCTION LOSSES LOSSES =.(DY+HV1-HV2)+(ENTRANCE LOSSES) = ( 0.293)+( 0.081) = 0.374 NODE 110.00 : HGL = < 411.382>;EGL= < 411.468>;FLOwLINE= < 409.760> I FLOW PROCESS FROM NODE 110.00 TO NODE 106.00 IS CODE = 1 UPSTREAM NODE 106.00 ELEVATION = 411.45 (HYDRAULIC JUMP OCCURS) I CALCULATE FRICTION PIPE FLOW = ------------------------------------------------------------------------------ LOSSES(LACFCD): 4.16 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 168.20 FEET - MANNING'S N = 0.01300 I HYDRAULIC JUMP: NORMAL DEPTH(FT) DOWNSTREAM RUN ANALYSIS RESULTS = 0.66 CRITICAL DEPTH(FT) = 0.78 I UPSTREAM CONTROL GRADUALLY VARIED ASSUMED FLOWDEPTH(FT) = 0.78 FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.781 4.470 1.092 55.36 0.014 0.776 4.506 1.092 55.37 0.057 0.771 4.543 1.092 55.38 0.133 0.766 4.581 1.092 55.40 I . 0.244 0.761 4.620 1.093 55.42 0.394 0.756 4.659 1.093 55.45 0.587 0.751 4.699 1.094 55.50 I 0.828 1.121 0.746 4.739 1.095 0.741 4.780 1.096 55.55 55.60 1.475 0.736 4.822 1.097 55.67 1.896 0.731 4.865 1.099 55.74 I 2.395 2.982 0.726 4.908 1.100 0.721 4.953 1.102 . 55.82 55.92 3.672 4.483 0.716 4.998 / 1.104 0.711 5.043 1.106 56.02 56.12 Page 9 I I BRPDMA1. RES 5.439 0.706 5.090 1.108 56.24 6.570 0.701 5.137 1.111 56.37 7.918 0.696 5.186 .1.113 56.50 9.541 0.690 5.235 1.116 56.65 11.525 0.685 5.285 1.119. 56.81 14.001 0.680 5.336 1.123 56.97 17.193 0.675 5.388 1.126 57.15 21.515 0.670 5.441 1.130 57.33 27.904 0.665 5.495 1.135. 57.53 39.357 0.660 5.550 1.139 57.74 168.200 0.659 5.562 1.140 57.78 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.62 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.622 2.354 1.708 115.13 14.386 1.500 2.354 1.586 101.68 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) =. 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 14.386 1.500 2.353 1.586 101.68 17.648 1.471 2.364 1.558 98.60 20.801 1.442 2.383 1.531 > 95.61 23.893 1.414 2.409 1.504 92.70 26.937 1.385 2.439 . 1.477 89.87 29.940 1.356 2.474 1.451 87.12 32.906 1.327 2.514 1.426 84.44 35.836 1.299 2.558 1.400 81.86 38.731 1.270 2.606 1.376 79.36 41.591 1.241 2.660 1.351 . 76.95 44.414 1.212 2.717 1.327 74.64 47.198 1.184 2.780 1.304 72.43 49.939 1.155 2.848 1.281 70.33 52.633 1.126 2.922 1.259 68.34 55.275 1.097 3.002 1.237 66.46 57.857 1.069 3.088 1.217 64.71 60.370 1.040 3.181 1.197 63.07 62.802 1.011 3.281 1.179 61.58 65.138 0.982 3.390 1.161 60.22 67.359 0.954 3.508 1.145 59.01 69.439 0.925 3.636 1.130 57.95 71.341 0.896 3.775 1.118 57.06 73.017 0.867 3.927 1.107 56.34 74.394 0.839 4092 1.099 55.81 75.363 0.810 4.272 1.094 55.48 75.745 0.781 4.470 1.092 55.36 168.200 0.781 4.470 1.092 55.36 ------------------------END OF HYDRAULIC JUMP ANALYSIS----------------------- PRESSURE+MOMENTUM BALANCE OCCURS AT 69.85 FEET UPSTREAM OF NODE 110.00 DOWNSTREAM DEPTH = 0.919 FEET, UPSTREAM CONJUGATE DEPTH = 0.660 FEET NODE 106.00 : HGL = < 412.231>;EGL= ----------------------------------------------------------------------------- < 412.542>;FLOWLINE= < 411.450> c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Page 10 I I I I I I I I I I I I I I Fj I I I I BRPDMA1.RES I FLOW PROCESS FROM UPSTREAM NODE NODE 106.00 TO NODE 106.00 IS CODE = 5 106.00 ELEVATION = 411.65 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 2.08 12.00 90.00 411.65 0.62 2.648 DOWNSTREAM 4.16 18.00 - 411.45 0.78 ' 4.471 LATERAL #1 LATERAL #2 2.08 12.00 0.00 411.55 0.62 0.00 0.00 0.00 0.00 0.00 2.738 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3COS(DELrA3)_ I Q4*V4CO5(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00341 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00547 I AVERAGED FRICTION JUNCTION LENGTH SLOPE IN JUNCTION ASSUMED AS 0.00444 = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (Dv+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( O.290)+( 0.000) = 0.290 I NODE 106.00 : HGL = < 412.723>;EGL= < 412.832>;FLOWLINE= < 411.650> I FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1 UPSTREAM NODE 105.00 ELEVATION = 415.52 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.08 CFS PIPE DIAMETER = 12.00 INCHES I PIPE LENGTH = ------------------------------------------------------------------------------ 226.45 FEET 'MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS I -------0:47 --RIIICALDEPIH(FT)= 0.62 -- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.616 4.097 0.877 24.98 0.011 0.610 4.144 0.877 24.98 0.046 0.604 4.192 0.877 24.99 0.106 0.194 ' 0.598 4.242 0.878 0.592 4.293 0.879 25.01 25.03 I 0.314 0.586 4.345 0.880 25.07 0.468 0.580 4.398 0.881 25.11 0.661 0.575 4.453 0.883 25.15 0.896 0.569 4.510 0.885 ' 25.21 I 1.180 0.563 4.568 0.887 25.28 1.519 0.557 4.627 0.889 25.35 1.921 0.551 4.689 0.892 25.43 I 2.395 2.954 0.545 4.752 0.896 0.539 4.816 0.899 25.52 25.62 3.611 0.533 4.883 0.904 25.74 4.387 0.527 4.951 0.908 25.86 I 5.308 6.407 0.521 5.022 0.913 0.515 5.095 0.919 25.99 26.13 7.732 0.510 5.169 0.925 26.28 9.356 0.504 5.246 0.931 26.44 i Page 11 I I i BRPDMA1.RES I 11.387 14.011 0.498 0.492 5.326 5.407 0.938 0.946 26.62 26.81 17.571 0.486 5.492 0.955 27.00 22.845 0.480 5.579. 0.964 27.22 32.321 0.474 5.668 0.973 27.44 1 226.450 0.472 5.703 0.977 27.53 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS I DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.07 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.073 2.648 1.182 38.75 5.329 1.000 2.648 1.109 35.18 I ----- _ii GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM CONTROL(FT) FLOW DEPTH (Fr) ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.329 1.000 2.648 1.109 35.18 6.386 0.985 2.656 1.094 34.46 I . 7.388 0.969 2.672 1.080 33.78 8.356 0.954 2.692 1.067 33.11 9.298 0.939 2.716 1.053 32.48 10.217 0.923 2.744 1.040 31.86 11.115 0.908 2.776 1.028 31.26 I 11.993 0.892 2.810 1.015 30.69 12.850 0.877 2.848 1.003 30.13 13.689 0.862 2.889 0.991 29.60 .14.506 0.846 2.933 0.980 29.10 I 15.302 0.831 2.981 0.969 . 28.62 16.076 0.816 3.032 0.958 . 28.16 16.826 0.800 3.086 0.948 27.73 I 17.550 18.245 0.785 0.770 3.144 3.206 0.938 0.929 27.32 26.94 18.909 0.754 3.272 0.921 26.59 19.537 0.739 3.343 0.912 26.27 20.126 0.723 3.418 0.905 25.98 I 20.671 0.708 3.497 0.898 25.73 21.164 0.693 3.582 0.892 25.51 21.599 0.677 3.672 0.887 25.32 21.964 0.662 3.769 . 0.883 25.17 - 22.248 0.647 3.871 0.879 25.07 I 22.434 0.631 3.981 0.877 25.00 22.502 0.616 4.097 0.877 24.98 226.450 0.616 4.097 0.877 24.98 ------------------------- END OF HYDRAULIC JUMP ANALYSIS------------------------ I I PRESSURE+MOMENTUM BALANCE OCCURS AT 17.19 FEET UPSTREAM OF NODE 106.00 I DOWNSTREAM DEPTH = 0.793 FEET, UPSTREAM CONJUGATE DEPTH = 0.472 FEET NODE 105.00 : HGL = < 416.136>;EGL= ----------------------------------------------------------------------------- < 416.397>;FLOWLINE= < 415.520> I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 8 I UPSTREAM NODE (NOTE: POSSIBLE 105.00 ELEVATION = 419.00 JUMP IN OR UPSTREAM OF STRUCTURE) (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): i . . Page 12 I BRPDMA1. RES PIPE FLOW = 2.08 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 32.20 FEET/SEC. VELOCITY HEAD = 16.096 FEET CATCH BASIN ENERGY LOSS = .2(VELOCITY HEAD) = .2*( 16.096) = 3.219 ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 419.616>;EGL= < 419.616>;FLOwLINE= < 419.000> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.00 FLOWLINE ELEVATION = 419.00 ASSUMED UPSTREAM CONTROL HGL = 419.62 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 13 H I BRPDMA12 . RES PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) I Ver. (C) Copyright 1982-2012 Advanced Engineering Software (aes) 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company I . 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 I ************************** DESCRIPTION OF STUDY ********************** - * 17169A UPTOWN BRESSI * * PIPEFLOW FOR DMA-1 STORM DRAIN FROM NODE 171 TO 115 I * 100-YR 6-HR . .. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * £ FILE NAME: BRPDMA12.PIP * I TIME/DATE OF STUDY: 11:16 06/08/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 115.00-3.57' 540.18 0.81 122.19 I } FRICTION / 180.00- 2.69* 368.85 0.99 Dc 115.49 } JUNCTION 180.00- . 2.72 353.59 0.64 70.67 I } FRICTION 177.00- 1.60* 141.11 0.79 Dc 66.25 } JUNCTION I 177.00- 1.65* 138.98 0.52 } FRICTION 41.99 175.00- 0.93* 50.39 0.64 DC 39.41 } JUNCTION 175.00- 0.63 . 19.23 0.39* } FRICTION 22.15 I 171.00- 0.55*Dc . 18.71 0.55*Dc . } CATCH BASIN 18.71 I 171.00- - . -4.89 0.0,3 -- 0.55*Dc* MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 6.48 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA I DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: I NODE NUMBER = 115.00 FLOWLINE ELEVATION = 406.11 PIPE FLOW = 7.74 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.677 FEET I ------------------------------------------------------------------------------ NODE 115.00 : HGL = < 409.677>;EGL= < 409.771>;FLOWLINE= < 406.110> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 115.00 TO NODE 180.00 IS CODE = 1 i . Pagel I I I I BRPDMA12 . RES I UPSTREAM NODE 180.00 ELEVATION = 407.10 (FLOW IS UNDER CALCULATE FRICTION LOSSES(LACFCD): PRESSURE) PIPE FLOW = 7.74 CFS ( PIPE DIAMETER = 24.00 INCHES I PIPE LENGTH = 99.13 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.74)/( 226.207))**2 = 0.00117 HF=LSF = ( 99.13)(0.00117) = 1 0.116 I * NODE 180.00: HGL = < 409.793>;EGL= < 409.887>;FLOWLINE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 407.100> * * * * * * * * * * * FLOW PROCESS FROM NODE 48000 TO NODE 180.00 IS CODE = 5 UPSTREAM NODE 180.00 ELEVATION = 407.20 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) ' UPSTREAM 5.03 24.00 0.00 407.20 0.79 DOWNSTREAM 7.74 24.00 - 407.10 0.99 1.601 2.464 LATERAL #1 1.03 12.00 90.00 408.20 0.43 1.311 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I QS 1.68===Q5 EQUALS BASIN INPUT=== LACFC D AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ I Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00049 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00117 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00083 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0:003 FEET ENTRANCE LOSSES = 0.019 FEET I JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.058)+( 0.019) = 0.077 I NODE 180.00 : HGL = < 409.924>;EGL= < 409.964>;FLOWLINE= < 407.200> FLOW PROCESS FROM NODE 180.00 TO NODE 177.00 IS CODE = 1 I UPSTREAM NODE 177.00 ELEVATION = 408.36 (FLOW SEALS IN CALCULATE FRICTION LOSSES(LACFCD): REACH) - PIPE FLOW = 5.03 CFS PIPE DIAMETER = 24.00 INCHES I PIPE LENGTH = 113.77 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.72 I DISTANCE PRESSURE FLOW PROFILE COMPUTED INFORMATION: FROM PRESSURE VELOCITY SPECIFIC PRESSURE CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.724 1.601 2.764 + 353.59 I 74.639 2.000 1.601 2.040 211.64 NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) = 0.79 I ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 74.639 2.000 1.601 2.040 211.64 79.559 1.952 1.611 1.992 202.28 i Page I I I BRPDMA12 . RES I 84.419 89.245 1.903 1.630 1.944 1.855 1.654 1.897 193.08 184.07 94.043 1.806 1.684 1.850 175.26 98.816 1.758 1.719 1.804 166.68 I 103.565 108.289 1.710 1.758 1.758 1.661 1.803 1.712 158.32 150.22 112.989 1.613 1.852 1.666 142.40 113.770 1.605 1.861 1.659 141.11 I NODE 177.00 : HGL = < 409.965>;EGL= < 410.019>;FLOWLINE= < 408.360> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS' FROM NODE 177.00 TO NODE 177.00 Is CODE = 5 I UPSTREAM NODE 177.00 ELEVATION = 408.40 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: I PIPE UPSTREAM FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 3.35 24.00 45.00 408.40 0.64 VELOCITY (FT/SEC) 1.207 DOWNSTREAM 5.03 24.00 - 408.36 0.79 1.862 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 LATERAL #2 0.00 0.00 0.00 0.00 0.00 1.68===Q5 EQUALS BASIN INPUT=== 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Q4*V4OSELTA4/A1+A2)*16. 1)+FRICTION LOSSES I DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00022 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00051 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00037 JUNCTION LENGTH = 4.00 FEET I FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0.011 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.046)+( 0.011) = 0.057 I NODE 177.00 : HGL= < 410.053>;EGL= < 410.075>;FLOwLINE= < 408.400> I FLOW PROCESS FROM NODE 177.00 TO NODE 175.00 IS CODE = 1 UPSTREAM NODE 175.00 ELEVATION = 409.09 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): -- I PIPE PIPE FLOW = LENGTH = 3.35 CFS PIPE DIAMETER = 24.00 INCHES 68.32 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) = 0.64 I DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) 0.000 (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.653 1.206 1.675 138.98 3.994 1.612 1.234 1.636 132.23 I 7.979 11.956 1.572 1.265 1.596 1.531 1.298 1.557 125.65 119.25 15.923 1.491 1.334 1.518 113.05 19.880 1.450 1.373 1.479 107.05 I 23.825 27.756 1.410 1.415 1.441 1.369 1.461 1.402 101.25 95.66 31.673 1.329 1.511 1.364 90.29 35.571 1.288 1.566 1.326 85.14 I Page I I I BRPDMA12.RES - I 39.449 43.304 1.247 1.625 1.289 1.207 1.690 1.251 80.21 75.52 47.130 1.166 1.761 1.215 71.07 50.923 1.126 1.838 1.178 66.87 I 54.676 58.380 1.085 1.923 1.143 1.045 2.017 1.108 62.92 59.23 62.025 1.004 2.120 1.074 55.80 65.596 0.964 2.235 1.042 52.66 68.320 0.932 2.333 1.017 50.39 I ---------------- * FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 5 I UPSTREAM NODE 175.00 ELEVATION = 410.09 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) I CALCULATE JUNCTION PIPE LOSSES: FLOW DIAMETER ANGLE FLOWLINE CRITICAL (cFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 1.67 12.00 45.00 410.09 0.55 5.977 I DOWNSTREAM LATERAL #1 3.35 24.00 - 409.09 0.64 .0.00 0.00 0.00 0.00 0.00 2.334 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.68===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02212 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00112 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01162 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.017 FEET I JUNCTION LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) = ( 0.907)+( 0.017) = 0.924 NODE 175.00 : HGL = < 410.476>;EGL= < 411.030>;FLOWLINE= < 410.090> FLOW PROCESS FROM NODE 175.00 TO NODE 171.00 IS CODE = 1 UPSTREAM NODE 171.00 ELEVATION = 413.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION ------------------------------- LOSSES(LACFCD): PIPE FLOW = 1.67 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 152.92 FEET MANNING'S N = 0.01300 I .NORMAL DEPTH(FT) ------------------------------------------------------------------------------ = 0.38 CRITICAL DEPTH(FT) = 0.55 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I , DISTANCE FROM CONTROL(FT) 0.000 0.010 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (Fr) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.549 3.779 0.771 0.542 3.838 0.771 18.71 18.72 0.040 0.536 3.898 0.772 18.7,3 0.093 0.529 3.960 0.773 18.75 I 0.171 0.277 0.522 4.024 0.774 0.515 4.091 0.775 18.79 18.83 0.413 0.509 4.159 0.777 18.88 0.584 0.502 4.230 0.780 18.94 Page 4 I BRPDMA12.RES - 0.794 0.495 4.304 0.783 19.02 1.047 0.488 4.380 . 0.787 19.10 1.351 0.482 4.459 0.791 19.20 1.711 0.475 4.540 0.795 19.30 2.137 0.468 4.625 0.801 19.43 2.640 0.462 4.713 .0.807 19.56 3.234 0.455 4.804 0.813 19.71 3.937 0.448 4.898 0.821 19.87 4.772 0.441 4.996 0.829 20.04 5.773 0.435 5.098 0.838. . 20.23 6.984 0.428 5.204 0.849 20.44 8.470 0.421 5.315 0.860 20.67 10.335 . 0.414 5.430 0.872 20.91 12.751 0.408 5.549 . 0.886 21.17 16.038 0.401 5.674 0.901 21.44 20.922 0.394 5.804 0.918 21.74 29.724 0.387 5.940 0.936 22.06 152.920- 0.386 5.976 0.940 22.15 NODE 171.00 : HGL = < 414.189>;EGL= ------------------------------------------------------------------------------ < 414.411>;FLOWLINE= < 413.640> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 8 UPSTREAM NODE 171.00 ELEVATION = 419.35 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) - CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE.FLOW = 1.67 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 42.04 FEET/SEC. VELOCITY HEAD = 27.440 FEET CATCH BASIN-ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 27.440) = 5.488 NODE 171.00 : HGL = < 419.899>;EGL= < 419.899>;FLOWLINE= < 419.350> * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 171.00 FLOWLINE ELEVATION = 419.35 ASSUMED UPSTREAM CONTROL HGL = 419.90 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS II Page 5 I I BRPM12.RES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright. 1982-2012 Advanced Engineering Software (aes) Ver. 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx. 619-291-4165 DESCRIPTION OF STUDY 17169A BRESSI RANCH * * 100YR6HR * * STORM DRAIN LINE Ml . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPM12.PIP TIME/DATE OF STUDY: 11:00 06/19/2017 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 135.00- 4.91* 500.88 0.80 98.40 } FRICTION 154.00- 455* 461.72 0.96 DC 93.55 I JUNCTION .154.00- 4.63* 470.09 0.95 DC 93.56 I FRICTION 153.00- 455* 460.79 0.96 DC 93.55 I JUNCTION 153.00- 4.62*.,. 469.16 0.95 DC 93.56 I FRICTION 152.00- 4.28* 431.83 0.96 DC 93,.55 I CATCH BASIN 152.00- 0.41 18.74 0.96*Dc 31.34 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 135.00 FLOWLINE ELEVATION = 401.96 PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 406.870 FEET ------------------------------------------------------------------------------ NODE 135.00 : HGL = < 406.870>;EGL= < 407.061>;FLOWLINE= < 401.960> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 135.00 TO NODE 154.00 IS CODE = 1 UPSTREAM NODE 154.00 ELEVATION = 402.46 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES Page 1 I I I I I I I I I I I I I I I I I I BRPM12 . RES PIPE LENGTH = 41.59 FEET MANNING'S N = 0.01300 SF=(Q/K)*2 = (( 6.20)/( 105.040))*2 = 0.00348 HF=LSF = ( 41.59)*(0.00348) = 0.145 ------------------------------------------------------------------------------ NODE 154.00 : HGL = < 407.015>;EGL= < 407.206>;FLOWLINE= < 402.460> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 5 UPSTREAM NODE 154.00 ELEVATION = 402.51 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW i DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (Fr/SEC) UPSTREAM 6.20 18.00 45.00 402.51 0.96 3.509 DOWNSTREAM 6T20-' 18.00 - 402.46 0.96 43508 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 OOO 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2 _Q1*V1*COS (DELTA1) -Q3 *V3 *COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16. 1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00348 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00348 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00348 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.126)+( 0.000) = 0.126 NODE 154.00 : HGL = < 407.141>;EGL= < 407.332>;FLOwLINE= < 402.510> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 154.00 TO NODE 153.00 IS CODE = 1 UPSTREAM NODE 153.00 ELEVATION = 402.69 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.47 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.20)/( 105.058))**2 = 0.00348 HF=L*SF = ( 27.47)*(0.00348) = 1 0.096 NODE 153.00 : HGL = < 407.236>;EGL= < 407:428>;FLowLINE= < 402.690> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 5 UPSTREAM NODE 153.00 ELEVATION = 402.74 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.20 18.00 45.00 402.74 0.96 3.508 DOWNSTREAM 6.20 18.00 - 402.69 0.96 3.508 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00348 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00348 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00348 Page 2 H I I I I I I I I I I I I I I I Li I BRPM12.RES JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTR.ANcE LOSSES) JUNCTION LOSSES = ( 0.126)+( 0.000) = 0.126 NODE 153.00 : HGL = < 407.362>;EGL= < 407.554>;FLOwLINE= < 402.740> FLOW PROCESS FROM NODE 153.00 TO NODE 152.00 IS CODE = 1 UPSTREAM NODE 152.00 ELEVATION = 403.47 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 112.37 FEET " MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.20)/( 105.042))**2 = 0.00348 HF=L*SF = ( 112.37)*(0.00348) = 0.391 NODE 152.00 : HGL = < 407.754>;EGL= < 407.945>;FLOWLINE= < 403.470> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 8 UPSTREAM NODE 152.00 ELEVATION = 407.57 (FLOW SEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 13.75 FEET/SEC. VELOCITY HEAD = 2.936 FEET CATCH BASIN ENERGY LOSS = .2*(VELocITY HEAD) = .2*( 2.936) = 0.587 ------------------------------------------------------------------------------ NODE 152.00 : HGL = < 408.532>;EGL= < 408.532>;FLOWLINE= < 407.570> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 152.00 FLOWLINE ELEVATION = 407.57 ASSUMED UPSTREAM CONTROL HGL = 408.53 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I I I I I I I I I Page I I BRPDMA2 . RES PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) I Ver. (c) Copyright 1982-2012 Advanced Engineering 19.1 Release Date: 08/09/2012 Software (aes) License ID 1261 Analysis prepared by: .Rick Engineering Company I • 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 I DESCRIPTION OF STUDY ************************** * 17169A UPTOWN BRESSI * * PIPEFLOW FOR DMA-2 STORM DRAIN BACKBONE . * I * 100-YR * * * * * * * * 6-HR • * * * * * * * * * * * * * * * * *•* * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPDMA2.PIP I .TIME/DATE OF STUDY: 15:48 06/12/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "k" indicates nodal point data used.) UPSTREAM RUN . DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 245.00- 4.69* 1360.55 1.80 DC 586.80 I } FRICTION 240.00- . 4.68* . 1357.04 1.80 DC 586.80 } JUNCTION 240.00- - 5.01* . 1385.29 1.68 DC 490.29 } FRICTION 236.00- 4•97* 1374.52 1.68 DC 490.29 } JUNCTION I 236.00- } 5.27* 1467.91 FRICTION 1.48 501.63 235.00- 5.11* . 1418.07 1.68 Dc 490.29 } JUNCTION I 235.00- } FRICTION 5.13* 1409.34 1.47 480.00 228.00- 4 •57* 1236.56 1.66 DC 470.50 .} 228.00- } JUNCTION 4.62* 1235.15 . FRICTION 1.48 450.61 I 227.00- 4•54* 1210.90 1.53 447.24 } 227.00- JUNCTION - 4.52* . 1202.37 1.44 448.62 .} FRICTION I 226.00- 4.29* 1131.48 1.61'Dc 439.99 } JUNCTION 226.00- 4.29* . 1129.72 . 1.42 450.16 I } 220.00- FRICTION 3•95* ' 1027.44 1.61 DC 439.99 } JUNCTION 220.00- 4.27k . )770.54 1.19 . 270.26 I . ]- 216.00- FRICTION 4.04* 723.93 1.37 DC 262.49 } JUNCTION 216.00- 4.40* 745.68 1.05 194.31 I Page 1 , I I I BRPDMA2.RES } FRICTION I 215.50- 4.24* 713.35 1.20 DC 188.75 } JUNCTION 215.50- 4.38* 740.87 1.02 196.84 } FRICTION I 215.00- 3.67* 602.37 1.20 DC 188.75 } JUNCTION 215.00- 3.72* 593.75 0.94 165.39 } FRICTION 212.00- 3.26* 502.39 1.12 DC 158.12 I I JUNCTION 212.00- 3•43* 511.24 0.96 DC 110.12 } FRICTION 211.00- 3.23* 471.29 0.97 DC 110.10 I I JUNCTION 211.00- 3.25* 468.11 0.89 DC 92.18 I FRICTION 210.00- 3.02* 422.27 0.90 DC 92.13 I I JUNCTION 210.00- 3.13* 268.31 0.56 DC 24.63 I FRICTION I 205.00- JUNCTION I 2.94* 247.26 0.56 DC 24.63 205.00- 2.87* 239.38 0.56 DC 24.63 I FRICTION 204.00- 2.55* 204.21 0.56 DC 24.63 } JUNCTION I 204.00 - 2.53* 104.30 0.50 DC 15.01 I FRICTION 202.00- 2.39* 97.59 0.50 DC 15.01 JUNCTION I I 202.00- 2.45* 96.30 0.32 DC 5.01 } FRICTION 201.00- 2.25* 86.58 0.32 DC 5.01 I CATCH BASIN I 201.00- -1.64 0.05 0.32*DC 1.82 MAXIMUM NUMBER OF ENERGY BALANCES USED IN'EACH PROFILE = 25 I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 245.00 FLOWLINE ELEVATION = 410.50 PIPE FLOW = 27.88 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 415.190 FEET I NODE 245.00 HGL : = < 415.190>;EGL=< 415.691>;FLOWLINE= < 410.500> FLOW PROCESS FROM NODE 245.00 TO NODE 240.00 IS CODE = 1 I UPSTREAM NODE 240.00 ELEVATION ------------------------------------------------------------------------------ = 410.73 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.88 CFS PIPE DIAMETER = 30.00 INCHES I PIPE LENGTH = 47.30 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 27.88)/( 410.168))**2 = 0.00462 HF=L*SF = ( 47.30)*(0.00462) = 0.219 1 I NODE 240.00 : HGL = < 415.409>;EGL= --------------------------------------------------------- < 415.909>;FLOwLINE= < 410.730> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I * * * * 2 * * * * * Page f I I I I BRPDMA2.RES I UPSTREAM FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 5 NODE 240.00 ELEVATION= 410.78 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) I UPSTREAM 24.40 30.00 35.00 410.78 .1.68 4.971 DOWNSTREAM 27.88 30.00 - 410.73 1.80 5.680 LATERAL #1 3.48 12.00 80.00 410.78 0.80 4.431 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3CO5(DELTA3)_ I Q4*V4*CO5(DELTA4))/((A1+A2)161)+FRICTIoN LOSSES ) UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00354 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00462 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00408 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) I . JUNCTION LOSSES = ( 0.259)+( 0.000) = 0.259 ------------------------------------------------------------------------------ NODE 240.00 : HGL = < 415.785>;EGL= < 416.169>;FLOWLINE= < 410.780> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 240.00 TO NODE 236.00 IS CODE = 1 * * * * * * * * * * * I UPSTREAM NODE 236.00 ELEVATION = 410.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE 'FRICTION LOSSES(LACFCD): PIPE FLOW = 24.40 CFS PIPE DIAMETER = 30.00 INCHES I PIPE LENGTH = 26.80 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 24.40)/( 410.149))2 = 0.00354 HF=L*SF = ( 26.80)'(0.00354) = 0.1095 NODE 236.00: HGL = < 415.880>;EGL= < 416.264>;FLOWLINE= < 410.910> I FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 5 UPSTREAM NODE 236.00 ELEVATION = 410.95 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 24.40 30.00 55.00 410.95 1.68 4.971 . DOWNSTREAM 24.40 30.00 . - 410.91 1.68 4.971 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 . 0.00 0.00 0.00 0.00 0.000 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1'COS(DELTA1)_Q3*V3*Cos(DELrA3)_ I Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00354 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00354 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00354 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) I JUNCTION LOSSES = ( 0.345)+( 0.000) = 0.345 NODE 236.00 : HGL = < 416.225>;EGL= < 416.609>;FLOWLINE= < 410.950> i Page . I I I BRPDMA2.RES I * FLOW PROCESS FROM NODE 236.00 TO NODE 235.00 IS CODE = 1 UPSTREAM NODE 235.00 ELEVATION = 411.21 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.40 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 27.48 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 24.40)/( 410.140))**2 = 0.00354 HF=L*SF = ( 27.48)*(0.00354) = 0.097 I FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = S I UPSTREAM NODE 235.00 ELEVATION = 411.25 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (Fr/SEC) UPSTREAM 23.66 30.00 0.00 411.25 1.66 4.820 DOWNSTREAM 24.40 30.00 - 411.21 1.68 4.971 I LATERAL #1 0.74 12.00 60.00 411.25 0.36 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.942 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=Q2*V2_Q1*V1*COSDELTA1_Q3*V3*COSDELTA3_ I Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N =.0.01300; FRICTION SLOPE = 0.00333 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00354 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00343 I JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) I JUNCTION LOSSES = ( 0.034)+( 0.000) = 0.034 NODE 235.00 : HGL = < 416.380>;EGL= < 416.740>;FLOWLINE= < 411.250> I FLOW PROCESS FROM NODE 235.00 TO NODE 228.00 IS CODE = 1 UPSTREAM NODE 228.00 ELEVATION = 412.22 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.66 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 122.00 FEET MANNING'S N = 0.01300 SF=(Q/K)*2 = (( 23.66)/( 410.183))**2 = 0.00333 I NODE HF=L*SF = ( 122.00)*(0.00333) = 0.406 228.00 : HGL = < 416.786>;EGL=< 417.146>;FLOWLINE= < 412.220> FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = 5 - I UPSTREAM NODE 228.00 ELEVATION = 412.26 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 22.70 30.00 15.00 412.26 1.62 4.624 DOWNSTREAM 23.66 30.00 - 412.22 1.66 4.820 I LATERAL #1 0.96 12.00 90.00 412.26 0.41 LATERAL #2 0.00 0.00 0.00 0.00 0.00 1.222 0.000 Q5 ) 0.00===Q5 EQUALS BASIN INPUT=== u Page 4 I I I BRPDMA2.RES I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS(DELTA1)_Q3V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRIcTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00306 I ,AVERAGED DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00333 FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00319 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANcE LOSSES) I JUNCTION LOSSES = ( 0.064)+( 0.000) = 0.064 NODE 228.00 *: HGL = < 416.878>;EGL= < 417.210>;FLOwLINE= < 412.260> I FLOW PROCESS FROM NODE 228.00 TO NODE 227.00 IS CODE = 1 UPSTREAM NODE 227.00 ELEVATION = 412.39 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 16.59 'FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 22.70)/( 410.173))**2 = 0.00306 HF=L*SF = ( 16.59)(0.00306) = 0.051 NODE 227.00 : HGL = < 416.929>;EGL= < 417.261>;FLOwLINE= < 412.390> I FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 5 UPSTREAM NODE 227.00 ELEVATION = 412.43 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 22.50 30.00 0.00 412.43 1.61 4.584 DOWNSTREAM -2270 30.00 - 412.39 1.62 4624 U LATERAL #1 0.10 12.00 90.00 412.43 0.13 LATERAL #2 0.10 12.00 90.00 412.43. 0.13 0.127 0.127 Q5 0.00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1COS(DELTA1) _Q3*V3COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00301 I DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00306 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00304 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) ' JUNCTION LOSSES = ( 0.018)+( 0.000) = 0.018 NODE 227.00 : HGL = < 416.953>;EGL= < 417.279>;FLOWLINE= < 412.430> I FLOW PROCESS FROM NODE 227.00 TO NODE 226.00 IS CODE = 1 UPSTREAM NODE 226.00 ELEVATION = 412.80 (FLOW IS UNDER PRESSURE) I CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 46.05 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 22.50)/( 410.154))2 = 0.00301 I 1 HF=L*SF = ( 46.05)*(0.00301) = 0.139 --------------------------------------- NODE 226.00 : HGL = < 417.091>;EGL= < 417.418>;FLowLINE= < 412.800> Page 5 I I I BRPDMA2 . RES I FLOW PROCESS FROM NODE 226.00 TO NODE 226.00 IS CODE = 5 UPSTREAM NODE 226.00 ELEVATION = 412.84 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 22.50 30.00 15.00 412.84 1.61 4.584 DOWNSTREAM 22.50 30.00 - 412.80 1.61 4.584 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 I . LATERAL #2 0.00 0.00 0.00 0.00 0.00 .0000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00301 I DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00301 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00301 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET I JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.034)+( 0.000) = 0.034 NODE 226.00 : HGL = < 417.126>;EGL= < 417.452>;FLowLINE= < 412.840> I FLOW PROCESS FROM NODE 226.00 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 1 ELEVATION = 413.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): I. PIPE FLOW = 22.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 65.16 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 22.50)/( 410.200))**2 = 0.00301 HF=L*SF = ( 1 65.16)(0.00301) = 0.196 NODE 220.00 : HGL = < 417.322>;EGL= < 417.648>;FLOWLINE= < 413.370> I * * * * * UPSTREAM * * * * * * * NODE * * * * * * * * 220 * * 00 * * * * * * * * * * * ELEVATION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 5 * * * * * * * * * * * * . = 413.41 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL -- -- VELOCITY (CFs) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (ET/SEC) UPSTREAM 14.44 24.00 35.00 413.41 1.37 4.596 I DOWNSTREAM 22.50 30.00 - 413.37 1.61 LATERAL #1 8.06 24.00 80.00 413.41 1.01 4.584 2.566 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*v3*Cos (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00407 I DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00301 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00354 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET I JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.365)+( 0.000) = 0.365 NODE 220.00 : HGL = < 417.685>;EGL= < 418.013>;FLOwLINE= < 413.410> Page 11 I I BRPDMA2 . RES I * FLOW PROCESS FROM NODE 220.00 TO NODE 216.00 IS CODE = 1 UPSTREAM NODE 216.00 ELEVATION = 413.81 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ FRICTION LOSSES(LACFCD): 1 CALCULATE PIPE FLOW = 14.44 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 39.81 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 14.44)/( 226.223))**2 = 0.00407 I. HF=L*SF 39.81)*(000407) = 0.162 NODE 216.00 : HGL = < 417.847>;EGL= < 418.175>;FLOWLINE= < 413.810> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 5 UPSTREAM NODE 216.00 ELEVATION = 413.85 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11.27 24.00 35.00 413.85 1.20 3.587 I DOWNSTREAM 14.44 24.00 - 413.81 1.37 LATERAL #1 0.00 0.00 0.00 0.00 0.00 4.596 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 3.17===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1kCOS(DELTA1)_Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00248 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00407 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00328 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.066 FEET I JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTR.ANCE LOSSES) JUNCTION LOSSES = ( 0.214)+( 0.066) = 0.279 NODE 216.00 : HGL = < 418.254>;EGL= < 418.454>;FLOWLINE= < 413.850> I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 216.00 TO NODE 215.50 IS CODE = 1 UPSTREAM NODE 215.50 ELEVATION = 414.07 (FLOW IS UNDER PRESSURE) I CALCULATE FRICTION LOSSES(LACFCD): "PIPE FLOW = 11.27 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 22.19 FEET MANNING'S N = 0.01300 I HF=L*SF SF=(Q/K)**2 = (( I1.27)/( 226.198))**2 = 0.00248 = ( 22.19)*(0.00248) = 0.055 NODE 215.50 : HGL = < 418.309>;EGL= < 418.509>;FLowLINE= < 414.070> I FLOW PROCESS FROM NODE 215.50 TO NODE 215.50 IS CODE = 5 UPSTREAM NODE 215.50 ELEVATION = 414.11 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11.27 24.00 55.00 414.11 1.20 3.587 I DOWNSTREAM 11.27 24.00 - 414.07 1.20 LATERAL #1 0.00 0.00 0.00 0.00 0.00 3.587 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 QS 0.00===Q5 EQUALS BASIN INPUT==-- Page 7 I I I BRPDMA2.RES LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3 COS (DELTA3) - Q4*V4CO5(DELTA4))/((A1+A2)161)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00248 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00248 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00248 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTR.ANcE LOSSES) JUNCTION LOSSES = ( 0.180)+( 0.000) = 0.180 NODE 215.50 : HGL = < 418.490>;EGL= < 418.689>;FLOwLINE= < 414.110> FLOW PROCESS FROM NODE 215.50 TO NODE 215.00 IS CODE = 1 UPSTREAM NODE 215.00 ELEVATION = 415.06 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.27 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 98.11 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 11.27)/( 226.234))**2 = 0.00248 HF=L*SF = ( 98.11)*(0.00248) = 0.243 NODE 215.00 : HGL = < 418.733>;EGL= < 418.933>;FLOWLINE= < 415.060> I FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 5 UPSTREAM NODE 215.00 ELEVATION = 415.10 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.85 24.00 0.00 415.10 1.12 3.135 DOWNSTREAM 11.27 24.00 - 415.06 1.20 3.587 I LATERAL #1 1.42 12.00 60.00 415.10 0.50 1.808 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16 1)i-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00190 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00248 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00219 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.043)+( 0.000) = 0.043 NODE 215.00 : HGL = < 418.824>;EGL= < 418.976>;FLOWLINE= < 415.100> FLOW PROCESS FROM NODE 215.00 TO NODE 212.00 IS CODE = 1 UPSTREAM NODE 212.00 ELEVATION = 415.68 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.85 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 60.10 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.85)/( 226.240))**2 = 0.00190 HF=LSF = ( 60.10)*(0.00190) = 0.114 -- NODE 212.00 : HGL = < 418.937>;EGL= < 419.090>;FLOwLINE= < 415.680> Page I I I ri I I 1 I I I I I I 7 BRPDMA2 . RES FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 5 UPSTREAM NODE 212.00 ELEVATION = 415.78 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) - (INCHES) (DEGREES) ELEVATION UPSTREAM 7.46 24.00 90.00 415.78 985 24.00 - 415.68 DOWNSTREAM LATERAL #1 2.39 12.00 60.00 415.78 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: oY=(Q2*v2_Q1V1kCos(DELTA1)_Q3v3*CoS(DELTA3) - Q4V4COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00109 DOWNSTREAM: MANNING'S N = 0.01300; tFRICTION SLOPE = 0.00190 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00149 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.210)+( 0.000) = 0.210 NODE 212.00 : HGL = < 419.213>;EGL= < 419.300>;FLOWLINE= < 415.780> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 212.00 TO NODE 211.00 IS CODE = 1 UPSTREAM NODE 211.00 ELEVATION = 416.04 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.46 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 51.71 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.46)/( 226.259))**2 = 0.00109 HF=L*SF = ( 51.71)*(0.00109) = 0.056 NODE -' 211.00 : HGL = < 419.269>;EGL= < 419.357>;FLOWLINE= < 416.040> * FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 5 UPSTREAM NODE 211.00 ELEVATION = 416.08 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES), ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.50 24.00 11.00 416.08 0.90 2.069 DOWNSTREAM 7.46 24.00 - 416.04 0.97 2.375 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.96===QS EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1COS (DELTA1) _Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00083 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00109 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00096 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.018 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.027)+( 0.018) = 0.045 I Page I I CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.97 2.375 1.12 0.66 3.043 0.00 0.000 F, Ll 1 I I I I I I I I I I BRPDMA2.RES ' NODE 211.00 : HGL = < 419.335>;EGL= < 419.401>;FLOWLINE= < 416.080> * FLOW PROCESS FROM NODE 211.00 TO NODE 210.00 IS CODE = 1 I UPSTREAM NODE 210.00 ELEVATION = 416.36 (FLOW IS UNDER CALCULATE FRICTION LOSSES(LACFCD): PRESSURE) PIPE FLOW = 6.50 CFS PIPE DIAMETER = 24.00 INCHES I PIPE LENGTH = 55.91 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.50)/( 226.185))**2 = 0.00083 I HF=L*SF = ( 55.91)*(0.00083) = 0.046 ------------------------------------------------------------------------------ NODE 210.00 : HGL = < 419.381>;EGL= < 419.448>;FLOWLINE= < 416.360> I FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 5 UPSTREAM NODE 210.00 ELEVATION = 416.40 (FLOW IS UNDER PRESSURE) I ------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) I UPSTREAM 2.22 18.00 21.00 416.40 0.56 DOWNSTREAM 6.50 24.00 - 416.36 0.90 1.256 2.069 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 4.28===Q5 EQUALS BASIN INPUT=== LACFC D AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00045 I DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00083 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00064 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = 0.013 FEET I JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.098)+( 0.013) = 0.111 ------------------------------------------------------------------------------- 210.00 : HGL = < 419.534>;EGL= < 419.559>;FLOWLINE= < I NODE 416.400> FLOW PROCESS FROM NODE 210.00 TO NODE 205.00 IS CODE = 1 I UPSTREAM NODE 205.00 ELEVATION = 416.61 (FLOW IS UNDER CALCULATE FRICTION LOSSES(LACFCD): PRESSURE) PIPE FLOW = 2.22 CFS PIPE DIAMETER = 18.00 INCHES I PIPE LENGTH = 42.75 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.22)/( 105.017))**2 = 0.00045 1 HF=L*SF = ( 42.75)*(0.00045) = 0.019 - - I * NODE 205.00 : HGL = < 419.553>;EGL= < 419.578>;FLOwLINE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 416.610> * * * * * * * * * * * * FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 5 UPSTREAM NODE 205.00 ELEVATION = 416.71 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) I UPSTREAM 2.22 18.00 63.00 416.71 0.56 DOWNSTREAM 2.22 18.00 - 416.61 0.56 1.256 1.256 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Page 10 I I I I I I' BRPDMA2.RES Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS(DELTA1)_Q3*V3COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00045 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00045 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00045 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.002 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.029)+( 0.000) = 0.029 ------------------------------------------------------------------------------ NODE 205.00 : HGL = < 419.582>;EGL= < 419.606>;FLOwLINE= < 416.710> FLOW PROCESS FROM NODE 205.00 TO NODE 204.00 IS CODE = 1 UPSTREAM NODE 204.00 ELEVATION = 417.06 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.22 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 69.63 FEET MANNING'S N = 0.01300 SF(Q/K)2 = (( 2.22)/( 105.048))*2 = 0.00045 HF=L*SF = ( 69.63)*(0.00045) = 0.031 NODE 204.00 : HGL = < 419.613>;EGL= < 419.637>;FLowLINE= < 417.060> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 5 UPSTREAM NODE 204.00 ELEVATION = 417.10 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM L41 12.00 0.00 417.10 0.50 (i.795 DOWNSTREAM '222 18.00 - 417.06 0.56 12-56 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.81===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16. 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00157 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00045 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00101 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.005 FEET JUNCTION LOSSES = (DY+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.036)+( 0.005) = 0.041 'NODE 204.00 : HGL = < 419.628>;EGL= < 419.678>;FL0WLINE= < 417.100> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 204.00 TO NODE 202.00 IS CODE = 1 UPSTREAM NODE 202.00 ELEVATION = 417.30 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.41 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 40.29 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.41)/( 35.626))**2 = 0.00157 HF=L*SF = ( 40.29)*(0.00157) = 0.063 Page 11 I I U I I I [I I BRPDMA2.RES NODE 202.00 : HGL = < 419.691>;EGL= < 419.741>;FLOWLINE= < 417.300> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 5 UPSTREAM NODE 202.00 ELEVATION = 417.34 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.60 12.00 0.00 417.34 0.32 0.764 DOWNSTREAM 1.41 12.00 - 417.30 0.50 1.795 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.81===Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1*COS(DELTA1) _Q3*V3*COs (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00028 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00157 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00092 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.010 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANcE LOSSES) JUNCTION LOSSES = ( 0.045)+( 0.010) = 0.055 NODE 202.00 : HGL =..< 419.787>;EGL= < 419.796>;FLOWLINE= < 417.340> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 202.00 TO NODE 201.00 IS CODE = 1 UPSTREAM NODE 201.00 ELEVATION = 417.55 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 41.19 FEET MANNING'S N = 0.01300 SF=(Q/K)2 = (( 0.60)/( 35.618))**2 = 0.00028 HF=L*SF = ( 41.19)*(0.00028) = 0.012 NODE 201.00 : HGL = < 419.799>;EGL= < 419.808>;FLOWLINE= < 417.550> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE = 8 UPSTREAM NODE 201.00 ELEVATION = 421.45 (FLOW SEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) -------------------------------------------------------------------- CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 25.15 FEET/SEC. VELOCITY HEAD = 9.822 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 9.822) = 1.964 ------------------------------------------------------------------------------ NODE 201.00 : HGL = < 421.772>;EGL= < 421.772>;FLOWLINE= < 421.450> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 201.00 FLOWLINE ELEVATION = 421.45 ASSUMED UPSTREAM CONTROL HGL = 421.77 FOR DOWNSTREAM RUN ANALYSIS ------------ END OF GRADUALLY VARIED FLOW ANALYSIS [1 p I Page 12 i I I I I I I BRPDMA22.RE5 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE - (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) I Ver. (c) Copyright 1982-2012 Advanced Engineering software (aes) 19.1 Release Date: 08/09/2012 License ID 1261 - Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 I ************************** DESCRIPTION OF STUDY ' 17169A UPTOWN BRESSI * * PIPEFLOW FOR DMA-2 FROM NODE 220 TO 222 * I * 100-YR 6-HR * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPDMA22.PIP TIME/DATE OF STUDY: 18:12 06/12/2017 I l * * * * * * * * * * * * * * * * * * *•* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I . NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 220.00- 4.28* 691.97 0.93 142.38 I } FRICTION 225.00- 3•37* 513.27 1.07 DC 138.69 } JUNCTION 225.00- 3.46* 516.01 0.88 109.00 I } FRICTION 224.5.0- 3.13* 451.56 0.96 DC . 107.62 }.JUNCTION I; 224.50- 3.11* - 444.50 0.92 DC } FRICTION 100.87 224.00- 2.71* 364.99 0.94 DC - 100.83 } JUNCTION I 224.00- FRICTION 2.75* 132.31 0.74 DC } 40.65 223.00- 2.97* 143.11 0.74 Dc 40.65 } JUNCTION . 223.00- 3.14* 130.38 0.31 DC 5.02 I . FRICTION 222.50- 2.80* 113.51 0.27 5.32 } JUNCTION 222.50- 2.70k • 108.67 0.32 DC 5.01 } FRICTION - 222.00- . 2.40k 94.19 0.32 DC 5.01 } CATCH BASIN 222.00- -1.48 0.05 0.32*Dc , 7 ------------ 7 ----------------------------------------------------------------- 1.82 .1 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST I • CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: i . . • Page 1 . • II . •, . I I ... BRPDMA22.RES I NODE NUMBER = 220.00 FLOWLINE ELEVATION = 413.41 PIPE FLOW = 8.91 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 417.690 FEET I ------------------------------------------------------------------------------ NODE 220.00 : HGL = < 417.690>;EGL= < 417.815>;FLOwLiNE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 413.410> * * * * * * * * * * * FLOW PROCESS FROM NODE 220.00 TO NODE 225.00 IS CODE = 1 I UPSTREAM NODE 225.00 ELEVATION ,= 414.54 (FLOW IS UNDER CALCULATE FRICTION LOSSES(LACFCD): PRESSURE) PIPE FLOW = 8.91 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 140.83 FEET MANNING'S N = 0.01300 • I SF=(Q/K)**2 = (( 8.91)/( 226.232))**2 = 0.00155 . HF=LSF = ( 140.83)*(0.00155) = 0.218 - NODE 225.00.: HGL = < 417.908>;EGL= < 418.033>;FL0wLINE= < 414.540> FLOW PROCESS FROM NODE 225.00 TO NODE 225.00 IS CODE = 5 UPSTREAM NODE 225.00 ELEVATION = 414.64 (FLOW IS UNDER PRESSURE) I ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) I UPSTREAM 7.33 24.00 80.00 414.64 0.96 DOWNSTREAM 8.91 24.00 - 414.54 1.07 2.333 2.836 LATERAL #1 1.58 12.00 10.00 414.64 0.53 2.012 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)Q3*V3*CO5(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES I UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00105 DOWNSTREAM: MANNING'S N =0.01300; FRICTION' SLOPE = 0.00155 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00130 JUNCTION LENGTH = 4.00 FEET I FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.154)+( 0.000) = 0.154 I . ------------------------------------------------------------------------------ NODE 225.00 : HGL = < 418.103>;EGL= < 418.188>;FLOWLINE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 414.640> * * * * * * * * * * * * FLOW PROCESS FROM NODE 225.00 TO NODE 224.50 IS CODE = 1 I UPSTREAM NODE 224.50 ELEVATION = 415.03 (FLOW IS UNDER CALCULATE FRICTION LOSSES(LACFCD): PRESSURE) PIPE FLOW = 7.33 CFS PIPE DIAMETER ,= 24.00 INCHES PIPE LENGTH = 58.32 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.33)/( 226.241))2 = 0.00105 I HF=L*SF = ( . 58.32)*(O.00105) = 0.061 ------------------------------------------------------------------------------ NODE 224.50 : HGL = < 418.164>;EGL= < 418.249>;FLOWLINE= < 415.030> FLOW PROCESS FROM NODE 224.50 TO NODE 224.50 IS CODE = 5 UPSTREAM NODE 224.50 ELEVATION = 415.07 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) i . Page I ,' - I I [i1 BRPDMA22 . RES UPSTREAM 6.97 24.00 0.00 415.07 0.94 2.218 DOWNSTREAM 7.33 24.00 - 415.03 0.96 2.333 LATERAL #1 0.36 12.00 90.00 415.07 0.25 0.458 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1V1*COS (DELTA1) _Q3*V3COS (DELTA3) - Q4V4*COS(DELTA4))/((A1+A2)16. 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00095 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00105 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00100 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANcE LOSSES) JUNCTION LOSSES = ( 0.012)+( 0.000) = 0.012 NODE 224.50.: HGL = < 418.185>;EGL= < 418.261>;FLOWLINE= < 415.070> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.50 TO NODE 224.00 IS CODE = 1 UPSTREAM NODE 224.00 ELEVATION = 415.57 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCb): PIPE FLOW = 6.97 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 99.46 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.97)/( 226.215))**2 = 0.00095 HF=L*SF = ( 99.46)*(0.00095) = 0.094 ------------------------------------------------------------------------------ NODE 224.00 : HGL = < 418.279>;EGL=< 418.355>;FLOwLINE= < 415.570> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = 5 UPSTREAM NODE 224.00 ELEVATION = 415.61 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.99 12.00 0.00 415.61 0.74 3.807 DOWNSTREAM 6.97 24.00 - 415.57 0.94 2.219 LATERAL #1 3.98 12.00 90.00 415.61 0.85 5.067 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3) Q4*V4*CQS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00704 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00095 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00400 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.229)+( 0.000) = 0.229 ------------------------------------------------------------------------------ NODE 224.00 : HGL = < 418.360>;EGL= < 418.585>;FLOwLINE= < 415.610> FLOW PROCESS FROM NODE 224.00 TO NODE 223.00 IS CODE = 1 UPSTREAM NODE 223.00 ELEVATION = 416.14 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.99 CFS PIPE DIAMETER = 12.00 INCHES Page 3 I I 1 I [1 I I I Ll I I IT I I I BRPDMA22.RES I PIPE LENGTH = 106.54 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.99)/( 35.628))**2 = 0.00704 HF=L*SF = ( 106.54)*(0.00704) = 0.750 I ------------------------------------------------------------------------------ NODE 223.00 : HGL = < 419.110>;EGL= < 419.335>;FLOWLINE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 416.140> * * * * * * * * FLOW PROCESS FROM NODE 223.00 TO NODE 223.00 IS CODE = 5 I CALCULATE UPSTREAM NODE 223.00 ELEVATION = 416.24 (FLOW IS UNDER JUNCTION LOSSES: PRESSURE) PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.60 12.00 90.00 416.24 0.32 0.764 I DOWNSTREAM 2.99 12.00 - 416.14 0.74 3.807 LATERAL #1 2.39 12.00 48.00 41624 0.66 3.043 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1*COS(DELTA1) _Q3*V3*COS(DELTA3)_ I Q4*v4*CoDELTA4/A1+A2 *16.1 +FR1cT10N LOSSES UPSTREAM: REAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00028 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00704 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00366 I' JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.056)+( 0.000) = 0.056 I NODE 223.00 : HGL = < 419.382>;EGL= < 419.391>;FLOWLINE= < 416.240> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 223.00 TO NODE 222.50 IS CODE = 1 I UPSTREAM NODE 222.50 ELEVATION = -416.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 12.00 INCHES - I PIPE LENGTH = 55.29 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.60)/( 35.657))**2 = 0.00028 HF=L*SF = ( 55.29)*(0.00028) = 0.016 I NODE ------------------------------------------------------------------------------ 222.50: HGL = < 419.398>;EGL= < 419.407>-;FLOWLINE= < 416.600> FLOW PROCESS FROM NODE 222.50 TO NODE 222.50 IS CODE = 5 I UPSTREAM NODE 222.50 ELEVATION = 416.70 (FLOW IS UNDER --CALCULATE-JUNCTION -LOSSES: - ------------------------------------- PRESSURE) PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/sEc) 0.60 12.00 7.00 416.70 0.32 0.764 I 'LATERAL DOWNSTREAM 0.60 12.00 - 416.60 0.32 0.764 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 I Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELrA1)_Q3*v3*cos(DELTA3)_ I Q44*C05TA4/(1+A2)*16.1)+F1CT10N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00028 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00028 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00028 Page 4 I J BRPDMA22.RES JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTR.ANcE LOSSES) JUNCTION LOSSES = ( 0.001)+( 0.000) = 0.001 NODE 222.50 : HGL.= < 419.399>;EGL < 419.408>;FLOWLINE= < 416.700> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 222.50 TO NODE 222.00 IS CODE = 1 UPSTREAM NODE 222.00 ELEVATION = 417.01 (FLOW IS UNDER PRESSURE) - CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 51.42 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.60)/( 35.623))**2 = 0.00028 HF=L*SF = ( 51.42)*(0.00028) = 0.015 NODE 222.00 : HGL = < 419.414>;EGL= < 419.423>;FLOWLINE= < 417.010> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 8 UPSTREAM NODE 222.00 ELEVATION = 420.90 (FLOW SEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 24.07 FEET/SEC. VELOCITY HEAD = 8.996 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 8.996) = 1.799 ------------ NODE 222.00 : HGL = < 421.222>;EGL= < 421.222>;FLOWLINE= < 420.900> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 222.00 FLOWLINE ELEVATION = 420.90 ASSUMED UPSTREAM CONTROL HGL = 421.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS BRPDMA3 . RES PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, ANDOCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.1 Release Date: 08/09/2012 License ID 1261 Analysis prepared by: Rick Engineering Company 5620 Friars Road San Diego, CA. 92110 Ph 619-291-0707 Fx 619-291-4165 DESCRIPTION OF STUDY * 17169A UPTOWN BRESSI * * PIPEFLOW FOR DMA-3 * 100-YR 6-HR * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: BRPDMA3.PIP TIME/DATE OF STUDY: 15:15 06/08/2017 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "k" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 304.00- 4.83* 460.71 0.39 55.70 } FRICTION 303.50- 3.62* 327.38 0.67 DC 38.46 } JUNCTION 303.50- 3•59* 323.89 0.57 40.25 } FRICTION 303.00- 3.05* 264.66 0.67 Dc ' 38.45 } JUNCTION 303.00- 3.08* 145.96 0.67 37.98 } FRICTION 302.50- 2.93* 138.97 0.72 Dc 37.71 } JUNCTION 302.50- 3.29* 145.66 ' 0.52 22.31 } FRICTION 302.00- 2.99* 130.83 0.58 Dc 21.86 } JUNCTION 302.00- 3.01* 126.66 0.30 16.65 } FRICTION 301.50- 1.56* 55.82 0.47 DC 12.84 I CATCH BASIN 301.50- -3.00 0.05 0.47*DC 4.53 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC ------------------------------------------------------------------------------ HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 304.00 FLOWLINE ELEVATION = 410.95 PIPE FLOW = 3.14 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL 415.780 FEET ------------------------------------------------------------------------------ Pagel I [TI I I Fill I I I 1 ri I I I 1 I [1 I I I BRPDMA3.RES I NODE 304.00 : HGL = < 415.780>;EGL= < 415.829>;FLOWLINE= < 410.950> FLOW PROCESS FROM NODE 304.00 TO NODE 303.50 IS CODE = 1 I UPSTREAM NODE CALCULATE FRICTION 303.50 ELEVATION = 412.18 (FLOW IS UNDER LOSSES(LACFCD): PRESSURE) PIPE FLOW = 3.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 23.29 FEET MANNING'S N = 0.01300 SF=(Q/K)2 = (( 3.14)/( 105.038))**2 = 0.00089 I HF=L*SF = ( 23.29)(0.00089) = 0.021 NODE 303.50 ------------------------------------------------------------------------------ : HGL = < 415.801>;EGL= < 415.850>;FLOWLINE= < 412.180> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 303.50 TO NODE 303.50 IS CODE = 5 UPSTREAM NODE 303.50 ELEVATION = 412.22 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.14 18.00 18.00 412.22 0.67 1.777 DOWNSTREAM 3.14 18.00 - 412.18 0.67 1.777 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00089 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00089 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00089 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (Dv+Hv1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.008)+( 0.000) = 0.008 NODE 303.50 : HGL = < 415.809>;EGL= < 415.858>;FLOwLINE= < 412.220> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 303.50 TO NODE 303.00 IS CODE = 1 UPSTREAM NODE 303.00 ELEVATION = 412.81 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 59.14 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.14)/( 105.062))**2 = 0.00089 HF=L*SF = ( 59.14)*(0.00089) = 0.053 NODE 303.00 : HGL = < 415.862>;EGL= < 415.911>;FLOWLINE= < 412.810> FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 5 UPSTREAM NODE 303.00 ------------------------------------------------------------------------------ ELEVATION = 412.85 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) ' UPSTREAM DOWNSTREAM 2.83 3.14 12.00 18.00 LATERAL #1 0.00 0.00 LATERAL -#2 0.00 0.00 [, I I I I I I E Ti Li I I I I ANGLE FLOWLINE (DEGREES) ELEVATION 67.00 412.85 - 412.81 0.00 0.00 0.00 0.00 Page 2 CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.72 3.603 0.67 1.777 0.00 0.000 0.00 0.000 I 9RPDMA3 . RES Q5 0.31===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3V3*CO5(DELTA3)_ Q4V4*COS(DELTA4))/((A1+A2)16. 1)+FRICTIoN LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00631 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00089 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00360 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.010 FEET JUNCTION LOSSES = (DY+Hv1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.206)+( 0.010) = 0.216 ------------------------------------------------------------------------------ NODE 303.00 : HGL = < 415.925>;EGL= < 416.127>;FLowLINE= < 412.850> FLOW PROCESS FROM NODE 303.00 TO NODE 302.50 IS CODE = 1 UPSTREAM NODE 302.50 ELEVATION = 413.23 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.83 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 37.61 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.83)/( 35.627))2 = 0.00631 HF=L*SF = ( 37.61)*(0.00631) = 0.237 NODE 302.50 : HGL = < 416.162>;EGL= < 416.364>;FLOWLINE= < 413.230> FLOW PROCESS FROM NODE 302.50 TO NODE 302.50 IS CODE = 5 UPSTREAM NODE 302.50 ELEVATION = 413.33 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.88 12.00 90.00 '413.33 0.58 2.394 DOWNSTREAM 2.83 12.00 - 413.23 0.72 3.603 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.95===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1) _Q3*v3CoS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00278 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00631 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00455 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.040 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.309)+( 0.040) = 0.349 ------------------------------------------------------------------------------ NODE 302.50 : HGL = < 416.624>;EGL= < 416.713>;FLOWLINE= < 413.330> FLOW PROCESS FROM NODE 302.50 TO NODE 302.00 IS CODE = 1 UPSTREAM NODE 302.00 ELEVATION = 413.75 (FLOW IS UNDER PRESSURE) ----------------------------------------------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.88 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 42.17 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.88)/( 35.626))**2 = 0.00278 HF=LSF = ( 42.17)*(0.00278) = 0.117 Page 3 Li 1 I I I I I I I I I I I I I I I I I I I BRPDMA3.RES I NODE 302.00 : HGL = < 416.741>;EGL= < 416.830>;FLOWLINE= < * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 413.750> * * * * * * * * * * * * * FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 5 I UPSTREAM NODE 302.00 ELEVATION = CALCULATE JUNCTION LOSSES: 413.85 (FLOW IS UNDER PRESSURE) PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.25 12.00 46.00 413.85 0.47 1.592 DOWNSTREAM 1.88 12.00 - 413.75 0.58 2.394 LATERAL #1 0.63 12.00 31.00 413.85 0.33 0.802 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16 1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00123 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00278 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00201 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000. FEET JUNCTION LOSSES = (DY+HV1-Hv2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.065)+( 0.000) = 0.065 NODE 302.00 : HGL = < 416.856>;EGL= < 416.895>;FLOWLINE= < 413.850> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 302.00 TO NODE 301.50 IS CODE = 1 UPSTREAM NODE 301.50 ELEVATION = 415.35 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.25 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 44.45 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.25)/( 35.627))**2 = 0.00123 HF=L'SF = ( 44.45)*(0.00123) = 0.055 NODE 301.50 : HGL = < 416.910>;EGL= < 416.950>;FLOwLINE= < 415.350> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 301.50 TO NODE 301.50 IS CODE = 8 UPSTREAM NODE 301.50 ELEVATION = 419.96 (FLOW SEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM. OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.25 CFS . PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 33.48 FEET/SEC. VELOCITY HEAD = 17.410 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 17.410) = 3.482 NODE 301.50 : HGL = < 420.432>;EGL= < . 420.432>;FLOwLINE= < 419.960> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 301.50 FLOWLINE ELEVATION = 419.96 ASSUMED UPSTREAM CONTROL HGL = 420.43 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I I I Page 4 I i [ii I L I I I [1 LI I Li 1 Rating Curve Development for Detention Vault in DMA-2 (Commercial lot-)] Bressi Ranch J-17169A March 21, 2017 Rating Curve Development Pre 0.3Q2 (cfs) 1.842 Orifice equation, 0= C0A(2gh)"2 Pre Q (cfs) 11.168 Weir equation, 0= CW1-1-1312 DMA ID Drainage Area (acres) HMP Restrictor? Orifice Sizing Weight Depth at HMP Volume (ft) Weighted Low Flow Orifice Diameter (in) Weighted Mid Flow Orifice Diameter (in) Maximum HMP Q (cfs) DMA-1 7.5 Yes 43.1% 3.69 2.5 12 4.5725 (DMA-2) (7.5) (Yes) (44.39f.) (4.09) (2.25) (10) (2.8299) DMA-3 1.8 Yes 10.3% 4.00 1.25 6 1.0549 DMA-4 0.4 No N/A N/A N/A N/A N/A DMA-5 0.2 No N/A N/A . N/A N/A N/A Total: I_8.4574 8.4574 cfs <11.168cfs, therefore, Oki DMA 1 Depth (ft) Low Flow Q (cfs)' Mid Flow Q (cfs) Overflow 0 (cfs)2 Total Q (cfs) 0 0.0000 0.0000 1 0.1554 0.1554 1.5 0.1939 0.1939 1.92 0.2212 0.0000 0.2212 3 0.2793 2.8800 3.1593 3.69 0.3108 4.2617 0.0000 4.5725 4.17 0.3310 5.0027 7.9813 13.3149 5 0.3632 6.0743 35.9847 42.4222 1 #NUMI DMA 2 (Depth (ftj( (Low Flow Q (th) iiiF (Overflow Q (cfs) (total Q(cfs)) (0) (0.0000) - (0.0000) (0.1266)(0.1266) (0.1836) (0.1836) (2.72) (0.2155) 0.0000: 0.2155 (3.5) (0)2454( (1.5830) (1.8283) (4.09) (0.2658) 2.5642) (0.0000) 1 2.8299) (5.15) (0.2990) (3.7263) (13.0960) (17.1213) (5.67) (0.3139) (4.1799) (23.8324) (28.3262) #NUMI #NUMI #NUM! #NUM! Depth (ft) Low Flow Q (cfs) Mid Flow Q (cfs) Overflow Q (cfs) Total Q (cfs) 0 0.0000 0.0000 1 0.0400 0.0400 [ 2 0.0573 0.0573 [ 2.69 0.0666 0.0000 0.0666 3 0.0705 0.2316 0.3020 4 0.0815 0.9734 1 0.0000 1 1.0549 5 0.0913 1.3569 12.0000 13.4482 #NlJM! #NUM! #NUMI #NUMI #NlJM! #NUMI #NUM! #NUMI o (o)ôoo) (5262.76( (4.12I) (1052533,( 9.242) (14308.14) (0.328) (,18419.6ij (0,423) (21051.05) (0.483) (26313.82) (0.604) Note: Orifice Coefficent = 0.6, Weir Coefficient = 3.0 The weir length in the cleanout DMA 1 is 8ft, DMA 2 is 6ft and DMA 3 is 4 ft. The "maximum percolation rate" is calculated based on the proposed bioretention basin surface area multiplied by the bioretention soil infiltration rate of 5 inches per hour. The low flow orifice is sized accordingly to ensure that the required water quality volume is treated by the bioretention soil. R:\i7iG9-A-UptownBressiRanch\WaterResources\Hydromodification\swMM\1716gstorageRaiflgcue$5ls5 I H I * FLOOD HYDROGRAPH PACKAGE (HEC-1) * * JUN 1998 - VERSION 4.1 RUN DATE 05JUN17 TIME 13:38:05 I BRESSI.OUT U.S. ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * (916) 756-1104 * U X X X)00000( X)000( X x x x x x xx x x x x x x x x . X)00000( )000(X X)O(XX X x x x x x X X XX)0000( X)O(XX X)O( THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF NEC-i KNOWN AS HEC1 (]AN 73), HEC1GS, HEC1DB, AND HECSKW. THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DNIBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AJ4PT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM NEC-i INPUT PAGE LINE ID ....... 1 .......2 .......3 .......4 .......5 ........6.......7.......8.......9......10 FREE 'DIAGRAM 1 I BRESSI RANCH 3-17169A 2 ID DETENTION ANALYSIS DMA-2 100-YR 6-HR POST-PROJECT 3 ID MARCH 23, 2017 - FILE NAME: BRESSI.HC1 4 IT 2 01JAN90 1200 200 5 10 5 0 6 KKBR100.OUT . 7 . KM RATIONAL METHOD HYDROGRAPH PROGRAM KM COPYRIGHT 1992, RICK ENGINEERING COMPANY 9 KM 6HR RAINFALL IS 2.8 INCHES 8 10 . KM RATIONAL METHOD RUNOFF COEFFICIENT IS . .81 ii KM RATIONAL METHOD TIME OF CONCENTRATION IS 8 YIN. 12 KM FOR THIS DATA TO RUN PROPERLY THIS IT CARD MUST BE -ADDED TO YOUR NEC-i 13 KM IT 2 01JAN90 1200 200 14 BA .0117 15 16 IN 8 01JAN90 1152 QI 0 0 1 1 1.1 1.1 1.2 1.2 1.2 1.3 17 QI 1.4 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.3 2.6 18 QI 3 • 3.5 4.5 6.6 34.4 7.9 ' 5.3 3.9 3.2 2.8 19 QI 2.4 2.2 2 1.9 1.7 1.6 1.5 1.5 1.4 1.3 20 QI 1.3 1.2 1.2 1.1 1.1 1.1 1 0 0 0 .21 QI 0 0. 0 0 0 0 0 22 (K DETAIN 23 KG 2 2 0 0 21 24 KM DETENTION BASIN FOR DMA-2 25 RS 1 STOR -1 26 SV 0 0.121 0.242 0.328 0.423 0.483 0.604 0.685 27 SQ 0 0.127 0.184 0.215 1.828 2.830 17.121 28.326 28 29 SE 100 101 102 102.72 103.5 104.09 105.15 105.67 z SCHEMATIC DIAGRAM OF STREAM NETWORK INPUT LINE (v) ROUTING (---s) DIVERSION OR PUMP FLOW . NO. (.) CONNECTOR (<---) RETURN OF DIVERTED OR PUMPED FLOW 6 BRi00.OU I 22 DETAIN (*) RUNOFF ALSO COMPUTES AT THIS LOCATION FLOOD HYDROGRAPH PACKAGE (NEC-1) * U.S. ARMY CORPS OF ENGINEERS JUN 1998 * HYDROLOGIC ENGINEERING CENTER * VERSION 4.1 609 SECOND STREET DAVIS, CALIFORNIA 95616 RUN DATE 05JUN17 TIME 13:38:05 (916) 756-1104 BRESSI RANCH 1-17169A DETENTION ANALYSIS DMA-2 100-YR 6-HR POST-PROJECT MARCH 23, 2017 - FILE NAME: BRESSI.NC1 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL s 10 IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE , IT HYDROGRAPH TIME DATA NMIN 2 MINUTES IN COMPUTATION INTERVAL IDATE 1JAN90 STARTING DATE ITIME 1200 STARTING TIME NQ 200 NUMBER OF HYDROGRAPH ORDINATES NDDATE 1JAN90 ENDING DATE NDTIME 1838 ENDING TIME ICENT 19 CENTURY MARK Pagel / . . I BRESSI.OUT COMPUTATION INTERVAL .03 HOURS Q TOTAL TIME EASE 6.63 HOURS ENGLISH UNITS - DRAINAGE AREA SQUARE MILES - PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET - FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FRET - SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT 22 KR : DETAIN -, 23 KO OUTPUT CONTROL VARIABLES IPRNT 2 PRINT CONTROL IPLOT 2 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH lOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVi 1 FIRST ORDINATE PUNCHED OR SAVED I5AV2 200 LAST ORDINATE PUNCHED OR SAVED TIMINT .033 TIME INTERVAL IN HOURS - DETENTION BASIN FOR DMA-2 HYDROGRAPH ROUTING DATA 25 RU STORAGE ROUTING - - . NSTPS 1 NUMBER OF SUBREACHES ITYP STOR TYPE OF INITIAL CONDITION RSVRIC -1.00 INITIAL CONDITION X .00 WORKING R AND 0 COEFFICIENT 26 SV - STORAGE .0 .1 .2 .3 .4 .5 .6 .7 27 SQ DISCHARGE 0. 0. 0. 0. 2. 3. 17. 28. 28 SE ELEVATION 100.00 101.00 102.00 102.72 103.50 104.09 105.15 105.67 HYDROGRAPH AT STATION DETAIN - DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE DA MON HRMN ORD OUTFLOW STORAGE STAGE 1 JAN 1200 1 0. .0 100.0 * 1 JAN 1414 68 0. .2 102.0 * j JAN 1628 135 2. .5 103.8 1 JAN 1202 2 0. .0 100.0 * 1 JAN 1416 69 0. .2 102.0 * 1 JAN 1630 136 2. .5 103.8 1 JAN 1204 3 0. .0 100.0 * 1 JAN 1418 70 0. .2 102.1 * 1 JAN 1632 137 2. .4 103.8 1 JAN 1206 4 0. .0 100.0 * 1 JAN 1420 71 0. .3 102.1 * 1 JAN 1634 138 2. .4 103.7 1 JAN 1208 5 0. .0 100.0 * 1 JAN 1422 72 0. .3 102.2 * 1 JAN 1636 139 2. .4 103.7 1 JAN 1210 6 0. .0 100.1 * 1 JAN 1424 73 .0. .3 102.2 1 JAN 1638 140 2. .4 103.7 1 JAN 1212 7 0. .0 100.1 * 1 JAN 1426 74 0. .3 102.3 * 1 JAN 1640 141 2. .4 103.7 1 JAN 1214 8 0. .0 100.1 * 1 JAN 1428 75 0. .3 102.3 1 JAN 1642 142 2. .4 103.7 1 JAN 1216 9 0. .0 100.1 * 1 JAN 1430 76 0. .3 102.4 1 JAN 1644 143 2. .4 103.7 1 JAN 1218 10 0. .0 100.2 * 1 JAN 1432 77 0. .3 102.5 1 JAN 1646 144 2. .4 103.6 1 JAN 1220 11 0. .0 100.2 1 JAN 1434 78 0. .3 102.5 * 1 JAN 1648 145 2. .4 103.6 1 JAN 1222 12 0. .0 100.2 * 1 JAN 1436 79 0. .3 102.6 1 JAN 1650 146 2. .4 103.6 1 JAN 1224 13 0. .0 100.2 * 1 JAN 1438 80 0. .3 102.7 1 JAN 1652 147 2. .4 103.6 1 JAN 1226 14 0. .0 100.3 * 1 JAN 1440 81 0. .3 102.7 1 JAN 1654 148 / 2. .4 103.6 1 JAN 1228 15 0. .0 100.3 1 JAN 1442 82 0. .3 102.8 1 JAN 1656 149 2. .4 103.6 1 JAN 1230 16 0. .0 100.3 * 1 JAN 1444 83 1. .3 102.9 * 1 JAN 1658 150 2. .4 103.6 1 JAN 1232 17 0. .0 100.3 1 JAN 1446 84 1. .4 .103.0 * 1 JAN 1700 151 2. .4 103.5 1 JAN 1234 18 0. .0 100.4 1 JAN 1448 85 1. .4 - 103.0 * 1 JAN 1702 152 2. .4 103.5 1 JAN 1236 19 0. .0 100.4 1 JAN 1450 86 1. .4 103.1 * 1 JAN 1704 153 2. .4 103.5 1 JAN 1238 20 0. .0 100.4 1 JAN 1452 87 1. .4 103.2 * 1 JAN 1706 154 2. .4 103.5 1 JAN 1240 21 0. .1 100.4 * 1 JAN 1454 88 1. .4 103.3 * 1 JAN 1708 155 2. .4 103.5 1 JAN 1242 22 0. .1 100.5 * 1 JAN 1456 89 2. .4 103.4 * 1 JAN 1710 156 2. .4 103.5 1 JAN 1244 23 I 0. .1 100.5 1 JAN 1458 90 2. .4 103.6 * 1 JAN 1712 157 2. .4 103.5 1 JAN 1246 24 0. .1 100.5 1 JAN 1500 91 -3. .5 104.0 * 1 JAN 1714 158 2. .4 103.5 1 JAN 1248 25 0. .1 100.5 1 JAN 1502 92 8. .5 104.5 * 1 JAN 1716 159 2. .4 103.4 1 JAN 1250 26 0. .1 100.6 * 1 JAN 1504 93 is. 6 105.0 * 1 JAN 1718 160 2. .4 103.4 1 JAN 1252 27 0. .1 100.6 * 1 JAN 1506 94 19. .6 105.3 * 1 JAN 1720 161 2. .4 103.4 1 JAN 1254 28 0. .1 100.6 1 JAN 1508 95 21. .6 . 105.3 * 1 JAN 1722-162 . 2. .4 103.4 1 JAN 1256 29 0. .1 100.6 * 1 JAN 1510 96 20. .6 105.3 * 1 JAN 1724 163 2. .4 103.4 1 JAN 1258 30 0. .1 100.7 * 1 JAN 1512 97 17. .6 105.2 * 1 JAN 1726 164 2. .4 103.4 1 JAN 1300 31 0. .1 100.7 * 1 JAN 1514 98 15. .6 105.0 * 1 JAN 1728 165 2. .4 '103.4 1 JAN 1302 32 0. .1 100.7 * 1 JAN 1516 99 12. .6 104.8 * 1 JAN 1730 166 2. .4 103.4 1 JAN 1304 33 0. .1 100.7 * 1 JAN 1518 100 11. .5 104.7 * -1 JAN 1732 167 2. .4 103.4 1 JAN 1306 34 0. .1 100.8 * 1 JAN 1520 101 9. .5 104.6 * 1 JAN 1734 168 2. .4 103.4 1 JAN 1308 35 0. .1 100.8 1 JAN 1522 102 8. .5 104.5 * 1 JAN 1736 169 2. .4 103.3 1 JAN 1310 36 0. .1 100.8 * 1 JAN 1524 103 7. .5 104.4 * 1 JAN 1738 170 1. .4 103.3 1 JAN 1312 37 0. .1 100.9 * 1 JAN 1526 104 ' 6. .5 104.4 * 1 JAN 1740 171 1. .4 103.3 1 JAN 1314 38 0. .1 100.9 * 1 JAN 1528 105 6. .5 104.3 1 JAN 1742 172 1. .4 103.3 1 JAN 1316 39 0. .1 100.9 * 1 JAN 1530 106 S. .5 104.3 1 JAN 1744 173 1. .4 103.3 1 JAN 1318 40 0. .1 100.9 * 1 JAN 1532 107 5. .5 104.2 1 JAN 1746 174 1. .4 103.3 1 JAN 1320 41 0. .1 101.0 * 1 JAN 1534 108 4. .5 104.2 * 1 JAN 1748 175 1. .4 103.3 1 JAN 1322 42 0. .1 101.0 * 1 JAN 1536 109 4. .5 104.2 1 JAN 1750 176 1. .4 103.3 1 JAN 1324 43 0. .1 101.0 * 1 JAN 1538 110 4. .5 104.2 1 JAN 1752 177 1. .4 103.3 1 JAN 1326 44 0. .1 '101.1 ,* 1 JAN 1540 111 4. .5 104.1 1 JAN 1754 178 1. .4 103.3 1 JAN 1328 45 0. .1 101.1 1 JAN 1542 112 3. .5 104.1 1 JAN 1756 179 1. .4 103.3 1 JAN 1330 46 0. .1 101.1 * 1 JAN 1544 113 3. .5 104.1 1 JAN 1758 180 1. .4 103.3 1 JAN 1332 47 0. .1 101.2 * 1 JAN 1546 114 3. .5 104.1 1 JAN 1800 181 1. .4 103.3 1 JAN 1334 48 0. .1 101.2 * 1 JAN 1548 115 3. .5 104.1 1 JAN 1802 182 1. .4 103.2 1 JAN 1336 49 0. .1 101.2 13AN 1550 116 3. .5 104.1 1 JAN 1804 183 1. .4 103.2 1 JAN 1338 50 0. .2 101.3 * 1 JAN 1552 117 3. .5 104.1 * 1 JAN 1806 184 1. .4 103.2 1 JAN 1340 51 0. .2 101.3 1 JAN 1554 118 3. :5 104.1 * 1 JAN 1808 185 1. .4 103.2 1 JAN 1342 52 0. .2 101.3 1 JAN 1556 119 3. .5 104.1 * 1 JAN 1810 186 1. .4 103.2 1 JAN 1344 53 0. .2 101.4 1 JAN 1558 120 3. .5 104.0 * 1 JAN 1812 187 1. .4 103.1 1 JAN 1346 54 0. .2 101.4 1 JAN 1600 121 3. .5 104:0 * 1 JAN '1814 188 1. .4 103.1. 1 JAN 1348 55 0. .2 101.4 1 JAN 1602 122 - 3. .5 104.0 * 1 JAN 1816 189 1.' .4 103.1 1 JAN 1350 56 0. .2 101.5 * 1 JAN 1604 123 3. .5 104.0 * 1 JAN 1818 190 1. .4 103.1 1 JAN 1352 57 0. .2 101.5 * 1 JAN 1606 124 3. .5 104.0 * 1 JAN 1820 191 1,. .4 103.0 - - • Page - - I I 1 I I , I I 1 I I I I I I I Li I BRESSI . OUT 1 JAN 1354 58 0. .2 101.5 * 1 JAN 1608 125 3. .5 104.0 1 JAN 1822 192 1. .4 103.0 1 JAN 1356 59 0. .2 101.6 * 1 JAN 1610 126 3. .5 104.0 1 JAN 1824 193 1. .4 103.0 1 JAN 1358 60 0. .2 101.6 1 JAN 1612 127 3. .5 103.9 1 JAN 1826 194 1. .4 103.0 1 JAN 1400 61 0. .2 101.7 * 1 JAN 1614 128 3. .5 103.9 * 1 JAN 1828 195 1. .4 103.0 1 JAN 1402 62 0. .2 101.7 1 JAN 1616 129 3. .5 103.9 1 JAN 1830 196 1. .4 103.0 1 JAN 1404 63 0. .2 101.7 1 JAN 1618 130 2. .5 103.9 * 1 JAN 1832 197 1. .4 102.9 1 JAN 1406 64 0. .2 101.8 * 1 JAN 1620 131 2. .5 103.9 1 JAN 1834 198 1. .4 102.9 1 JAN 1408 65 0. .2 101.8 1 JAN 1622 132 2. .5 103.8 1 JAN 1836 199 1. .4 102.9 1 JAN 1410 66 0. .2 101.9 * 1 JAN 1624 133 2. .5 103.8* 1 JAN 1838 200 1. .3 102.9 1 JAN 1412 67 0. .2 101.9 1 JAN 1626 134 2. . .5 103.8 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 6.63-HR + ((PS) (HR) (C PS) + 21. 3.13 2. 2. 2. 2. (INCHES) 1.698 1.700 1.700 1.700 (AC-PT) 1. 1. 1. . 1. PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE 6-HR 24-HR 72-HR 6.63-HR + (AC-PT) (HE) 1. 3.13 0. 0. 0. 0. PEAK STAGE TIME MAXIMUM AVERAGE STAGE 6-MR 24-HR 72-HR 6.63-HR + (FEET) (HR) - 105.33 3.13 102.89 102.63 102.63 102.63 CUMULATIVE AREA = :01 SQ MI STATION DETAIN (I) INFLOW, (0) OUTFLOW 0. 4. B. 12. 16 20 24. 28 32 36 0. 0. 0. (5) STORAGE .0 .0 .0 .0 .0 .0 .0 .2 .4 .6 .8 .0 .0 OAHRMN PER - 11200 13 --------------------------------- S---------. ---------. --------- 11202 201 . . S . 11204 301 . . S 11206 401 . . S . 11208 502 . .. S . 11210 602 .5 . 11212 70 I .5 . . 11214 80 I .S . . 11216 903 .S . 11218 100 I .S . 11220 110 .1 ................................................................ 11222 120 I .5 . 11224 130 I .5 . 11226 140 I . S . . 11228 150 I . S . 11230 160 I . S . . 11232 170 I . . S . 11234 180 I . S . 11236 190 I . S . 11238 200 I . S . 11240 210 .1 .................................................................. 11242 220 I . . s . 11244 230 I . . - . S . . 11246 240 I . . S . . 11248 250 I . . . S . . . 11250 260 I . S . . 11252 270 I S 11254 280 I . . S . 11256 290 I S . 11258 300 I . . . - S 11300 310 .1 ............................................................. 11302 320 I S . . 11304 330 I . - S . 11306 340 I . . . S . 11308 350 I . . S . 11310 360 I . . . - S 11312 370 I . S . 11314 380 I . . S . 11316 390 I . . S . 11318 400 I .. . S. . 11320 410 .1 ............ ... .............- ... . . s ........................... 11322 420 I . - S . 11324 430 I . S . 11326 440 I . S . . 11328 450 I S . 11330 460 I . S . 11332 470 I. . S -. 11334 480 I S . 11336 490 I . S . 11338 500 I . S . 11340 510 . I . . . .......................... ... ............................. 11342 520 I . - 5 . . 11344 530 I . . . . . - . S . . . 11346 540. I . . . . .....s. . . 11348 550 I . .. . . . . S. . . 11350 560 I . . . . . . S. 11352 570 I . . . . . . S. 11354 580 I . . . . . . S. . . 11356 590 I . . . . . . S . . 11358 600 I . . . . . . S . . 11400 .610 ............................................................. 11402 620 I - . . . . . . s . . 11404 630 I . . . . . . .5 . . 11406 640 I . . . . . . . 5. . . 11408 650 I . . . . . . .S . . 11410 660 I 11412 670 I S . . 11414 680 I . . . . . . . S . . 11416 690 I . . . . . . . S . . 11418 700 I .,. . . . . .5 . . 11420 710 . . I ........................................................... 11422 720 .1 . . . . . . . . S . . 11424 730 I . . . . . . . S . . 11426 740 I . . . . . . . S . . 11428 750 I . . . . - . . . U 11430 76.0 I . - . . . . . . S . . Page 3 11432 77.0 I . BRESSI.OUT 5 . 11434 78.0 I 0 S 79.0 I . S 11438 80.0 I . . S S S S S S 11436 11440 81.0........................................$ ...................... 11442 82.0 I . . S 0 11444 83.0 I . . - 5 S S . 11446 0 S . 11448 0 .1 . . S S S .. 11450 11452 11454 88 0 . I . S 0 . I . . . . 0 I S S S . 5 0 S. 0 S S . 11456 89 0 I S S S .s . 1145890 0 S I S 0 .5 5 . 11500 91................................................................. 11502 92 .0 S S $ 11504 93 0 . S S S I S . 11506 94 0 I. . .5 . S 11508 95'. 5 .1 . 0 .5 0 11510 96. I 0 . 5 .5 5 5 1151297. I .0 . S S . 11514 I 0 S S. 11516 I .0 S 5 5 5 5 . 11518100. . I 0 5 5 5 0 S . 11520 101 ................................................................... . i 0 . . $ . S 11524 .1 0 . . . S S S S . . . 11522 11526 .1 S 11528 I 0 . . S S - S S S . . . 11530 I. 0 S . . 11532 I. 0 . . 0 5 5 5 5 S . . . 11534 I .0 . . . . S S S S . . 11536 11538 11540 I 0 S I 0 S . . .1.0......................................................... S S S S S S S S S . S 11542 I 0 S S S S s 11544 10 . . . . S S 0 5 5 11546 10 . . S S S S S S 11548 10 . . S . S S S 11550 10 . . S S S S S $ 10 . . S S S S S S 11554 10 . . . . S S S S S . . . 11552 11556 10 . . S S S S S 11558 10 . . S S S S S S 11600 . . 10......................................................... 11602 I 0 . S S S S s . 11604123. 10 . S S S 5 5 5 s . 11606 124. I 0 . S S S $ 10 . . 5 5 . S S S S S S S 11610 10 . . 5 5 . S S $ 11608125. 11612 10 . . 5 S S . . . 11614 10 . 5 5 5 5 5 5 5 5 5 11616 10 5 5 5 5 5 5 S 11618 10 S S S S S S S . 11620 . I 0 .......................................................... P 11622132. 11624 11626134. 133. 10 5 5 5 I 0 S S S 10 S S 5 5 5 5 5 5 S S S S . S S S . 11628 I 0 . . S S S S S S S . 11630 I 0 . S . . . 11632 I 0 S $ 11634 I 0 . . 5 5 5 S S 5 5 5 5 5 11636 I 0 . . 5 5 5 5 S 10 S S S S S S S 5 S 11640 . 10...........................................................S 11638 11642 10 . . 5 5 5 5 5 5 5 11644 10 . . . S 5 5 S S S S . . 11646 10 5 5 5 11648 30 . . 5 5 S S . . . 11650 10 . . S S S 11652 10 . . S 10 5 5 5 S S S S 11656 I 0 S S 5 S 5 5 55 5 11654 11658150. 10 S S S 5 .5 5 11700 .1.0.......................................................... 5 5 11702 I 0 5 5 5 5 5 - 11704 I 0 5 5 5 11706 I 0 S S 5 5 5 .5 11708 10 5 5 5 5 . 5 5 ' .S . 10 . . S S 5 5 5 .s S 11710156. 11712 10 5 5 5 . 11714 10 . . S s 5 . . 5 5 .5 . S 11716 10 . . S 5 . .s 11718 10 5S . . 11720 .10 ............................................................ 11722 10 . . 5 . 10 . . 5 5 5 5 5 5 5 5 .5 11726 10 . . 5 5 5 5 5 5 5 11724 11728 10 . . S S S 5 5 5 I . s• 11730 10 S S 11732 10 . . . . S S S S 11734 10 5 11736 10 . . S S S 5 5 5 S S $ 11738 10 S S S S .10 ......................................................... 11742 30 S S S S S S 11740 11744 10 S S S S S - S S 11746 10 S S S S S S S 11748 '10 S S 5 5 5 5 5 5 S 11750 I S S S S S 11752 I S S S . S S ' 11754 I S S S S : 11756179. i S S S S S S S S 11758 I S S S S 11800 10............................................................. S 11802 182. 11 0 S S S S S 11804 183. 0 5 5 5 11806 184.1 0 - 5 5 5 5 S S S S s s S S 11808 1851 0 S S S S 11810 1861 0 S S S S S. 11812 1871 0 S S S S S. 11814 1881 0 . . 5 5 5 5 5 5 S. 11816 1891 0 . . 5 5 5 5 5 5 5 - S. 11818 1902 0 S S S S 5 S. 11820 1915 0 ............................................................ 11822 1921 0 5 Page S I. BRESSI.OUT 11824 1932 0 . . . . 0 S . . I . 11826 1942 0 . 1182819510 . 11830 1961 0 . . . . . . . . . . S . . 5. . . . . S . . . 11832 1971 0 . . . . . S . . 11834 1981 0 . . . . . S . . 1183619910 . . 11838 20010------------------------------------------------------------ . S. ---------------- 5 ------------ . ----------------------------- 1 RUNOFF SUMMARY I l FLOW IN CU3IC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERATION STATION FLOW PEAK - AREA STAGE MAX STAGE + 6-HOUR 24-HOUR 72-HOUR HYDROGRAPH AT I + BR100.OU 34. 3.07 3. 3. - 3. .01 ROUTED TO * - + DETAIN 21. 3.13 2. 2. 2. .01 - + 105.33 3.13 I NORMAL END OF HEC-1 - 0 0 0' 'I V I' :V .. V I V ! / I• V VV V I V V V V V' V — — — —. — — — — — - — —. — — — — — • H ' 0 1 .6 - ti3ORIM td ' . 1 .Aucm,rm,iL -:. © — WHOMM \. WAY El R fill ............. . 0 co 9 I ____ !p • ! Fb — i' • - 'Z•• .- kj4Th. - : — — — — — — —•---.-- .•t•- - •,_ p a • • -: - k - Z ttr -' tt : n " ' S S S V V Vi - - - Nxi IR to i;- Ii • I J I D f. I!1-: Ii 1! ii ,IIIIlnuI l ;IlJflN r- i ii Ii i U 0 0 • 1.1 II II I jd hi i 'I o ii U - -- • W k'2 8Ji - • • . c1 - AJOL O8OoPDMcJ I D 0 0 C 0 ~ I m 0 ml I ~ E m 0 ~ ID ~ 0 D ---aeo--·- ' llr lNilS' It -IT fO/f ""11.a l.' .. Nt.Ya.MH.ET•BTA ~ =r•NH i'~'I' I IICIU. r'•111' H I'"' t ! _J _ ICAlt· -.r. , • ....,,. '°'' ,· • .-l l • ~ 1«111. 14•44" lfllT l'•t' • ~1 CITY Of CARLS9AD ~==~~==t::::::::::::::::::::~~==t::::lt::t::jLl..J. DIOCJI..C Dtl'M1WDl1 M.U 0 D 0 ' l I -··-· --IIIO---. ---'-r l l i . ------t I . I jl , .. • .U;+<>o I I I I I i . i ' i . -I .. T~ ...,...----:--, . ~ ~-:-r--:-· ··-· ' . . . ... ' . 1 - • ! ' -·-i • I .. I • I • ' . I f ~r ff'D'~ ""' . . -~\_ t I . ·-i -... • ----· r -. __ ..,__ i . -• . I ' t I ~l ~ -·-l l .,rl ~ ·1 ~ --.. i --~~:@ f-1111&1:Ulii. ~-. A._ l . . ' . . ~~it . . . l . ' j • { • -----4 ----• • --·. sfOlil bRAIJ -----,'-ilOl)--U .. • , 1 • OA'Wff fD STA 2tif562Q. I I l l ......._,...., -'- I r I i -•'-.,.~ ti;.} t I I _,__ l l. I • . { i i . I • i • .• : -4 - . , . ' 1 -.l i ! i t f i I ~--.; I I I • l ; . l ~--·--*~ __ s-fMI._· -~r-"""" ...... • _· ·_· •• -121>-.. - ..... v.. .. I I ~ D I 0 I I PflOFLE: stoRM DP.AN . • GATEWAY RD STA 28+50.00 $CAIL· -,'wit'°'' ,,.., l l I I I l -tffl>-; I F'°" .. ! FROFUe ~oo», •!GATEWAY RD STA. 35+54.00 £Alt. HOIIZ. , • .;; 01. .... ,. I ' ,.._,. 10-~1 r.r •-* o.-12.tl .. ... . ,,. r ! t ·• fflOFILE: STORM DRAftl ---. - • GATEWAY RD EAST STA. 1t>t61.48 ~ lll1'l ,·-er. i'-? ! 1.;..t.•• ., I " •J.' • .. .• 'I • "" I I _, _____ .. 1 PROFf..E: STORM DRAJN • 420- ~---- • GA1EWAY RD STA 38+70.00 ~-r->C111r-, l I -i . ~-' . I I -8IO-.•• ---· ----GOC>- PROR..E: STORM ORAN • GA 7EWA Y RO STA 44+52.40 -P • ll:A<L i' ,-.lo· I&, ,.. r 14•iw,,-i,.ao 1.1 n,1:1 0... n.l'i «l't "'· -. ., ... ! PROR..E: STORM DRAIN • GA 7EWAY RD EAST STA. 4+o554 JC.Ill_ Hal!l I .4f IDll 1•-r I I ~- ' i aao- l I I __..l I I , PROF.f.E: STOliM DfWI . • GATEWAY RD EAST STA 7+<12.36 ""fL -,-_. IPI. J°_.' ;. .... . 290-• .MO-i I t 1 . PROFI.E: STORM ORAN • GATEWAY RD EAST STA. B+oo.04 ~-_rim···"'--~' f'ROFI.E! STORM DRAIN • AL.1CANJ'E ROAD STA 117+91.59 PROFI...E: $TOFIJ OFWN •liNOVATK:JNWAY8TA. 5f7DJ5 ' i ---I PRORL.E< STOFM DRAIN • Al..JCANTE ROAD STA 115+42.37 ~-1'•4(fUtr••' %AU: HIJll2. t··~· Ol r'rf' I l ' l SColl. -,_ •'•«r 0 /. 1""4' l---+~+-~~~~~~~~-t-~t---f-~t---1(:rr]l 0~f~~ I~ •~-+--+-~~~~~~~-t--f---ll---t---llfuiis~~~ I _ t.41EWAY IIOAD fi1TOf&t ORAN _ II ~0 · 1 I 0 C ~ I r w ID I m I ~ I 0 'f ~~ -·-·.._,··--···---S.O...C4•li81 ... ~, fAJt(t..lJ.t.e)fl &.e A...tx. ,·clk«4 111:t ~ o,1:.IC!.d.._ Do\lt D -~ D I ~ I --·-· ..l 1 l ----+---. 1 j BENCH MARK «"SOIi"-.l!!.m..1!2:~ir,.. ~ IU/9:':'l! W"Cr IOI 2! l«AIICII' ~it'W~~~LIJi,.1.§>i !'R 111199 lHtnG l I _J "° , M~,:~().>IJAI -. Cl/<I ·~ ! • /llll>lt' -"'"'.J •ai<lf1llN I I -· ---tOC>--~-------' --- _....;... ___ ------ Pl.ANNJNg AREA le LOT 15 PLAN: GATEWAY ROAD !CA:£· ... ,ii· ' . ! ---j j ! I l'!liP"C:JIO 4«>-IIJ i I I ---1-.,.@---- 111· iC' -t.JS ti • tsr 0.~ .11 ~~-LI .. 11"112' • u._-, IF• l~ O..• 7Sffi .... , ..... t-------·i---PRQFI..E:-. . • STO/f.f ORAIJ I' i • STA 52+'19.00 I $Oil. -! ,...,. l(ll ,._, ! ! 1 I t ___ J __ _ C ~ ..., Ci) 0 -.a::. -o ... Q (0 0 I I I I -0 n w ;£1 pJ i ' :D n " \ ' t f . • -------....... - / / ,.. I I ----- -----~·------_..-~· ~--·----------·--__ 4 ___ _ I r Ll fl I j •.o, l .l33HS BS -·- I _, __ _. ... ~ 0 ... \ ~, -- I 0 0 D D 0 D i l l I . l ' -r ' ; ~l I~ ! j I I , .. - ----- ..... ::..::: .. ,-, ___ ... ,.., __ :: ... h-{_.J (,..; \I) ~. ~ ~ ,._\ C, ~ a.. ;;, i ., ~ t: i" ~ j E' l:: lH :hi ~ ii 1 ~~. ~ 0 .. ~ ",.,: i: ;ill~ ~ <'. !U l4, bt:~ ... ~ .,;h ~~ ~~ ~!1'" .... t~ co --ki <> ii-: m~ ~ ~ -~£-~ £ ,:' M ;:i-. !ti s: lU ti) ... t; 0 a.. ffi - ~ 0:: 6 ~ .n ':::... . ..J \.~ ' t", .-t ~ -r ~' (t t~ ! -:t: ~ ~ i ;t Q\ ~ i I :;: ~~·i· ; l ~ Q ~ I t=XHIBIT SHOWING STORM DRAIN TO DOWNSTREAM CHANNEL f ,path U \TEMP'l.1S\16666\Catlsbad_MOP _2003_Dala.ffl)ld f ibl Date. 01/10/12 RECJN 16666 I .. It I APPENDIX F I Drainage Study Map For I:. Bressi Ranch (Lots 29 thru 32) . [Pre-Project] . H 1 . H I .. .. ':,.. .. I i . :..•,, I . I I: -H - I, i . I '¥ P~e -P~sec.r Q,oo 's PE~ ~~t<'\ D~,t-J Ar...~u 1 &.r,> ,rv APf'F:.Nf> I x_P IR4}£(f) 116 ® ® 8 LEGEND EXIST BOUNDAR'f ------ EXIST STORY DRAIN ----- EXIST £!'SEWER MAIN----- EXIST WATER UNE ----- EXIST RECUJMED WATER UN£ -- NO SCALE -··--- --s-- -w-- --RW-- ® BRESSI RANCH RICK CARLSBAD, CALIFORNIA 56:lO flUARS WAD SA/II DIEGO, Q\ '2110 •19.291 f1101 CfAX)619.29l A1'5 J-15'6& • ~. • th*•ft,IIIH!lif'l,.CID~ -·~ S...IMlsOW-·-·-·-·- ... ....,. 16666 PREPAIIEI If, 1Mn Pllll'NIEDr -S.P. 17-JAN-2012 I . ., . I - MAP POCKET 1 . I •- - Drainage 1 Study Map - - - For I Bressi Ranch (Lots 29 thru 32) I - - [Post-Project] 0 .1 . . I.: 0 :-• 0 Oi l o -. -' . I 0 . - 0 0 •0 I :0 0 •-;00 '- • '•• a a 0 Do, o un 0 -4- 0 - - - a a to NOT FOR CONSTRUCTION - EXHIBIT FOR DRAINAGE STUDY REPORT ONLY