Loading...
HomeMy WebLinkAboutCT 15-08; Carlsbad Ranch PA 5 (Marbrisa - Phase 3); RESPONSE TO CITY COMMENTS DATED 6/10/16 TEMPORARY SHORING; 2016-07-08SHORING DESIGN GROUP r --- July 8, 2016 I ~ . ( ~ ' •, ~ v I • 1'._ • Mr. Mark Elliott \)~3, C[, } t~ }t L I Office (760) 722-1400 Elliott Drilling Services, Inc. I I Fax(760)722-1404 1342 Barham Drive I -·-San Marcos, CA 92078 --I Re: Marbrisa JOB #16-115 Carlsbad, California Subject: Response to City Comments, Dated 6/10/2016 Dear Mr. Elliott: Shoring Design Group is in receipt of the plan review comments prepared by the City of Carlsbad, regarding the above referenced project. In response, Shoring Design Group (SDG) offers the following responses: Response to Comments 1. The global safety factor used in the temporary shoring design calculations is based on a LD (Allowable) temporary construction condition of 1.25 (See attachment #1 reference table). CBC Section 1807.2, which states a 1.50 s_afety factor, pertains to conventional cast in place permanent walls & not shoring. Also note, that the passive pressure used in the temporary design, IS based on a permanent structure recommendation (Section 4.11), resulting in a conservative allowable value for temporary conditions. 2. Temporary shoring will be subjected to a service life less than 1-year & does not require seismic loading. Although it should be noted that shoring, supporting adjacent building surcharge, is capable of withstanding seismic loading (non-governing). See attachments #2 & 3 for reference. Should you have any additional questions or comments regarding this matter, please advise. Sincerely, SHORING DESIGN GROUP, Roy P. Reed, P.E. Project Engineer RECEIVED AUG 0 I 2016 LAND DEVELOPMENT ENGF,~FE.T(!NG Enclosed: Attachment #1: Allowable Stress Safety Factors (SLD Table) Attachment #2: SB #3, 9-14 H+D+L+0.70E Attachment #3: SB #4-8, H+D+L+0.70E . ~ 2 H 1 Attachment 1 FHWA are likely to control the design in most cases. Therefore, the corresponding nail strength factors for Load Combination Groups IV and Vll are also shown in table 4.5. TABLE4.5 TRENGTH FACTORS AND FACTORS OF SAFETY-SLD Element Strength Factor Strength Factor Strength Factor (Group I) (Group IV) (Group Vll) a (Seismic) Nail Head Strength aF = Table 4.4 see Table 4.4 see Table 4.4 Nail Tendon Tensile <XN = 0.55 1.25(0.55)=0.69 1.33(0.55)= 0. 73 Strength Ground-Grout Pullout CXQ = 0.50 1.25(0.50)=0.63 1.33(0.50)=0.67 Resistance 1.08 (1.20*) 1.01 (1.13*) Soil-Temporary Construction F=l.20 (1.35*) 5 NA NA Conditiont [ I' .,-y-' '("'".wf,, .,--y '('""'("" vF•;>F'-" n . "'*l- .>.. )..~~."'~ Use 1.25 Soil Global FS Allowable Nail Head Load (TF) = <XF(Nominal Nail Head Strength)= <XF TFN Allowable Nail Tendon Load (TN) ,;. aN (Tendon Yield Strength)= aN T NN Allowable Pullout Resistance (Q) = <XQ (Ultimate Pullout Resistance)= <XQ Qu Minimum Required Global Soil Factor of Safety ''F' (Group I)= 1.35 (= 1.50 for critical structures). Minimum Required Global Soil Factor of Safety ''F' (Group IV)= 1.35/1.25 = 1.08 (= 1.20 for critical structures. Minimum Required Global Soil Factor of Safety "F' (Group VII) = 1.3511.33 = 1.0 l ( = 1.13 for critical structures). Minimum Required Global Soil Factor of Safety ."F' -Temporary Construction Condition = 1.20 ( = 1.35 for critical structures). · * Soil Factors of Safety for Critical Structures. t Refers to temporary condition existing following cut excavation but before nail installation. Does not refer to "temporary" versus "permanent" wall. Step 5 -Select Trial Nail Spacings and Lengths As discussed in section 4.3.2 and as shown on figure 4.7, satisfaction of the strength limit state requirements will not of itself ensure an appropriate design. Additional constraints are required to provide for an appropriate nail layout. The following empirical constraints on the design analysis nail length pattern -are therefore recommended for use when performing the lirniti~g equilibrium design calculations: · (a) Nails with heads located in the upper half of the wall height should be of uniform length. (b) Nails with heads located in the lower half of the wall height should be considered to have a reduced length in accordance with the reCommendations given on figure 4.11. 121 Attachment 2 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 ( 1) Levels of Tiedback Soldier Beam Sb_No := "3 , 9-14" Soldier Beam & Tieback Attributes Pile := "Concrete Embed" H :=l7·ft = Soldier beam retained height XS := 0 Hs := 0· ft --> = Height of retained slope (As applicable) ys := 0 xt := 8· ft =Tributary width of soldier beam dia := 24· in = Soldier beam shaft diameter N = 1 = Number of tieback levels Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 dt:= 15 -ft =Assumed soldier beam embedment depth (Initial Guess) Distance Between Tieback Levels Tieback Inclinations from Horizontal SJ := 6.5-ft TOW--> B.O.E. N ~ := 25·deg I --> Level 1 lnclincation sN+ I : = H -L si i =I = Distance between lowest level tieback & bottom of excavation s2 = 10.5 ft Tieback Attributes ftb := 3500· psf Pull:= 100% 0 := 35·deg x_S:= O·ft 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd = Allowable bond capacity between soil & post-grouted anchor = Diameter of drilled tieback = Tieback test load = Active wedge failuire plane measured from the vertical = Active wedge failure plane horizontal offset Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 AISC Steel Construction Manual 13th Edition Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 0 := 1.67 = Allowable strength reduction factor AISC E1 & F1 Fy := 50· ksi =Soldier beam yield stress-ASTM A992 OS:= 1.33 =Temporary overstress for short duration loading Soldier Beam Attributes Beam= "Wl4 x 30" A= 8.9·in2 bf = 6.7·in h := d -2·tf K:= I AISC Table C-C2.2 2 n ·E -z . 3 Fy x = 47.3·m E := 29000· ksi Fe n [ K Lu'n ) 2 >-:=-d = 13.8·in tf = 0.4· in ~ = 0.3·in rx= 5.7·in I . 4 J . 4 x = 29I·m = 0.4·m rx ) Column Classification: --> Fully Restrained Against LTB & FLB Os= I min( Qa) = 0.8 Q := Qa· Os ---> Local Bucklikng Factor An n E if --:::;4.71 · -Fer := n 0.658 ·Fy·Q n K·Lu' H rx Fy =Nominal compressive stress-AISC E.3-2 & E3-3 0.877 ·Fe otherwise n Beam Classification: ··> Fully Restrained Against LTB & FLB Mn := [ ( :A->-pf l~ M -(M -0.70·Fy·Sx)· p p >-rt ->-pf )j if Flange = "Slender" Z · Fy· OS otherwise X 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd if Flange = "Non-Compact" Flange = "Compact" Web = "Compact" Fe Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soil Parameters Active Pressure Load Geometry Pa := 25· pcf c1 := 0.20· H Cz := 0.20· H c3 : = H -c1 -c2 Passive Pressure Load Geometry Pp := 350· pcf p ·= "n/a" max· <!> : = 30· deg de':= dia -I be := 0.08·deg ·<!>·de' a_ratio:= min( be , ll xt ) = Active earth pressure = Trapazodial soil loading coefficient -Top = Trapazodial soil loading coefficient -Bottom = Trapazodial soil loading coefficient -Middle = Passive earth pressure Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 =Maximum passive earth pressure ("n/a" = not applicable) = Passive pressure offset at subgrade = Internal soil friction angle (Below subgrade) = Effective soldier beam diameter below subgrade = Effective soldier beam width below subgrade = Soldier beam arching ratio Axial Resistance Soil Strength Parameters qa := 0· psf = Allowable soldier beam tip end bearing pressure fs := 600· psf = Allowable soldier skin friction w= o.33 = Coefficient of friction between shoring bulkhead &. retained soil p' := 7i· dia if Pile = "Concrete Embed" 2·( bf + d) otherwise = Applied perimeter along frictional toe resistance 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soil Parameters (Continued) Soil Pressure Profile P_H := Pa·H = Fully developed active pressure Marbrisa Eng : RPR Sheet __ of __ Date: June 8, 2016 [ p _H -Pps + p max l dmax ·= if P = "n/a" 2dt · max ' ' ) Pp-Pa = Depth to maximum passive earth pressure (As applicable) Psoil(y) := P_H --.y if y < c1 c1 P _H if c1 :-;; y :-;; c1 + c3 p _H -[ P _H 1. ( y -c1 -c3) if c1 + c3 < y :-;; H c2 ) -a_ratio· Pp · (y-H) -a_ratio· Pps if H < y :-;; H + dmax -a_ratio· P max otherwise Soil Pressure Loading Diagram o .. ----~r-----r-----~--~ 10 -3000 -2000 -1000 Soil Pressure (psf) 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd 0 Depth to point of zero pressure "0" 0 := O·ft if Psoil(H + O.J .ft) :-;; 0 e ~ O.Ol ·ft temp~ Psoil(H +e) while temp > 0 e ~ e + O.oiO ·ft temp~ Psoil(H +e) return e 0 =Oft Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Lateral Live Load Surcharge Uniform Loading Full := O·psf Partial := 0· psf Hpar := O·ft = Uniform loading full soldier beam height = Uniform loading partial soldier beam height = Height of partial uniform surcharge loading Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Ps (y) := Full + Partial if 0· ft ~ y ~ Hpar Full if Hpar < y ~ H Uniform surcharge profile per depth 0· psf otherwise Eccentric/Conncentric Axial &. Lateral Point Loading Pv := O·kip e := O·in 0· kip·ft Me :=--- Ph := O·lb zh :=O·ft =Applied axial load per beam = Eccentricity of applied compressive load = Eccentric bending moment = lateral pont load at depth "zh" = Distance to lateral point load from top of wall Seismic Lateral Load (Monobe-Okobe, ASCE 7 Load Combo) EFP ~= 0.70· ( 18· pcf) Es := EFP·H Es Eq ( y) : = Es --· y if y ~ H H 0· psf otherwise 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd = Seismic force equivalent fluid pressure = Maximum seismic force pressure = Maximum seismic force pressure Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Boussinesq Loading q := 5· ksf x1 := 12.67 ·ft z':= 2·ft K := 0.50 = Strip load bearing intensity Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 = Distance from bulkhead to closest edge of strip load = Distance from bulkhead to furthest edge of strip load = Distance below top of wall to strip load surcharge = Coefficient for flexural yeilding of members K = 1.00 (Rigid non-yielding) K = 0. 75 (Semi-rigid) K = 0.50 (Flexible) o(y) := e2 (y) -e1 (y) 1\(y) a(y) := e1 (y) + -2- Boussinesq Equation Pb(y) := O·psf if O·ft ::::; y ::::; z' 2·q·K·n-1·(1\(y-z')-sin(l\(y-z'))·cos(2 ·a(y-z'))) if z'< y:::; H 0· psf otherwise Maximum Boussinesq Pressure b.y := 5· ft Given d -Pb(b.y) = O·psf db.y Pb(Find(L.\y)) = 151.3·psf H ~ Pb (y) dy = 1.7· klf 0 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Lateral Surcharge Loading Pressure (psf) Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soldier Beam Tieback Reactions Total Load per Depth i := 1, 2 .. N Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Pnet(y) := Psoil(y) + Ps(y) + Eq(y) + Pb(y) --->Distributed Loading Ph= 0· kip® zh = 0· ft ---> Point Load Point Loading Distributed Shear & Moment zarray:= if zh :<:::: s1 otherwise c:~2 E temp ~ L si -zh i =I while 0 ~ temp E temp~ L \-(zh + O.I·ft) i =I return c: Tieback N Horizontal Reactions M'(z'. \ + if[zarray :<:::: i + I , (z'. -zh \ Ph , ql 1+ I ) 1+ I ) xt j T·=----~----------~ i" z'. 1-s. 1+ 1 Tieback Reaction Tl=7.7·klf 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd V ( y) ,= ~ Y Pnet (y) dy ---> Distributed Shear I ft 0 M'(y) ,= ~ Y V(y) dy +Me---> Distributed Bending I ft 0 Hinge Support Points z'1 := s1 z' .-s. + z'. if i < N i+l 1+1 1 s. + z'. + 0 otherwise 1+ I 1 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Maximum Bending Moments Marbrisa Eng : RPR Sheet __ of __ Date: June 8, 2016 Distance to zero shear points between levels (local Maxima) i := 1, 2 .. N + 1 r ·= E ~ 0· ft i" while if(i ::; N, temp < 0, temp > 0) E: ~ E: + 0.10-ft temp<-v(z'1+ c > { < N, t, return E Maximum Bending Moments n := 1,2 .. N+2 N M := n M'(z' \ + i{zarray ::; I , (z'1-zh)· Ph , ql if n = 1 n J xt J otherwise E ~ 1 if n ::; N + 1 e: ~ 2 otherwise Pzarray ~ i{zh ::; z' + r , [(z' + r '-zh~· Ph , ql n-1 n-1 n-1 n-1 x ) t J n-e: n-e: -M'(z' + r \ + (z' + r \ ""'"' n-I n-1 J n-I n-I J L...J Tn -""'"' (T · z' \ -Pzarray + Ms. [r . ( E -l)J L...J n n J n-1 Tieback Reaction T1 = 7.7-klf 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd n =l n =I Zero Shear Depths (Between Levels) r = ft ( 6.5 \ 3.9) Maximum Bending /ft [ 9.5 \ kip M = 4 l·ft·-ft -4.1 ) Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Minimum Lateral Embedment Depth (Equillibrium) Dh := E +---O.IO·ft Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 temp<-~ H+O.€ Psoil(y)· [€-[y-(H + 0)]] dy + [V(H + 0) + :h -± T1-Ms i., H+O t i = I ) while temp > 0 E +---E + O.lO·ft temp+-~ Psoil(y)·[E -[y -(H + 0)]] dy+ V'(H + 0) + :h-L ( H+O+e: [ N H+O t i = I return c: Dh = 6.8ft Bending Moment Diagram o.---------~--------~---------. Maximum Bending Moments 8 ~ Q) o:l ..... Q) :.a 10 0 en OIJ c 0 Mmax = 76.3· ft· kip -< ...c:: ..... 0... Q) Cl -50 0 50 100 Moment (ft-kip) 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Combined Forces: AISC Steel Construction Manual 13th Edition Beam= "W14 x 30" ---> Selected Soldier Beam Allowable Shear Vmax = 27.8· kip = Maximum shear load Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Va := 0.60· Fy· d· ~ f2 =Allowable shear load-AISC G21.a Shear:= if(Vmax :::; Va , "Ok", "No Good") Va = 66.9· kip Allowable Bending Moment Bending = "Yielding" Mn Ma :=- 0 =Allowable Bending Moment-AISC F1 Allowable Concentric Loading Buckling= "Local" ---> min ( Q) = 0.8 Shear= "Ok" Mmax = 76.3· ft. kip Ma = 157 · ft· kip =Allowable concentric force-AISC E.3-1 Pr : = Pv if n = I n Combined Interaction AISC H1-1a & H1-1b Interaction := n Pr n -?: 0.20 Pc n Prn IMn ·Xtl --+ otherwise 2·Pc Ma n 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd =Tieback drag-down force Ok Soldier _Beam = "Ok" max( Interaction) = 0.49 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Approximate Soldier Beam Deflection Using 2nd Order Moment Area Function a := s1 = Cantilevered length L:= s2 =Simply supported length between levels 1 & 2 Maximum Cantilevered Deflection Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 r 'll M' ( y) · ( L + a -y) dy r L+a l ~a M'(y) ·Y dy M' ( y) · ( L + a -y) d ~a ~'ll J{~>t+ 0 ll.c := + E·l X Maximum Deflection in Remaining Levels ll.s. := 1 ( a+r1 j1 M' ( y) · [(a + r 1) -y] dy· xt ~a E·l X E·l X z' r 2 M'(y)·(L +a -y) dy ~a r,.xt E·l X L otherwise Maximum Deflections E·l X if i = 1 ll.c = 0.2· in Maximum Design Deflection: ll.max := 1· in ·Xt Deflection := if( max(ll.c, max(ll.s)) :s; ll.max, "Ok", "No Good") max(ll.s) = O.OS·in Deflection = "Ok" 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Minimum Tieback Properties Tieback Constraints (As applicable): Removal:= "n/a" =Tieback removal depth below existing grade Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Coupler:= 0· ft = Distance measured along anchor between removal depth & coupler Encroachment := 0· ft =Allowable encroachment width with the Public-Right-of-Way Lock off & Test Loads FS, PTI 8.3.2 & 8.3.3 --> Design := 0.80 Anchor Type: Removable = Grade 150 Threadbar, Fub : = 50· ksi Abandon = 7-wire strand, As= 0.217·in2 (Single strand) T(xt Tdesign. := ( ) 1 cos~. 1 = Tieback design lock off load Ttest := Pull· Tdesign = Tieback test load Minimum Anchor Sizes: Refer to Attached Threadbar Data For All Bar Sizes Level 1 Type1 = "Strand" Anchor1 = 2 Tdesign 1 = 68· kip Ttest1 = 68· kip Note: Minimum Strand Size Governed by: Tdesign As· F u · Design ---> Max Ttest 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Minimum Embedment Depth (Tieback Dragdown & lateral Embed FS) Allowable Axial Resistance N Q(y) := p'.fs-y -Pv -L i =I Dv := c:+-O·ft temp+--Q(e:) while temp < 0 E f-E + 0.10·ft temp+-Q(e:) return e: Dh':= E +--O.lO·ft Dv = 2.3 ft d. 2 n · 1a -qa if Pile = "Concrete Embed" 4 ( br d· qa) otherwise I H+O+e: [ N temp+-~ Psoil(y)·[e:-[y -(H +O)]]dy + V'(H +O)+ :h -L H+O t i = I l Ti-Ms l·e: ) while temp > 0 E f-E + 0.10·ft temp<-~ H+<»< Psoii(Y)· [<-[y -(H + 0)]] dy + [v· (H + 0) + :h -i T;-Ms i. FSd· < H+O t i = I ) return e: Dh' = 7.2 ft Dtoe := Ceil(max(Dh', Dv), ft) 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd = Minimum factor of safety for lateral embedment Does not govern Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Design Summary Soldier Beam Attributes Beam= "W14 x 30" H = 17ft Dtoe =8ft H + Dtoe = 25 ft dia = 24·in ~max = 0.2· in Distance Between Tieback Levels s = ft ( 6.5 l 10.5) TOW--> Level1 Level 1 --> B.O. E. Tieback Level 1 Type! = "Strand" Anchor1 = 2 Sb_No = "3, 9-14" Pile = "Concrete Embed" = Soldier beam retained height = Soldier beam embedment depth =Total length of soldier beam = Soldier beam shaft diameter =Tributary width of soldier beam = Maximum soldier beam deflection Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 3-Strand anchor capable of supporting 68-kip tieback load for seismic + building 1 Tieback H = 17', sb 3, 9-14 with Building & Seismic Surcharge.xmcd Attachment 3 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 ( 1 ) Levels of Tiedback Soldier Beam Sb_No := "4-8" Soldier Beam & Tieback Attributes Pile := "Concrete Embed" H:= 25·ft = Soldier beam retained height XS := 0 Hs := O·ft --> = Height of retained slope (As applicable) ys := o xt := 8· ft = Tributary width of soldier beam dia := 24· in = Soldier beam shaft diameter N = 1 = Number of tieback levels Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 dt:= 15·ft =Assumed soldier beam embedment depth (Initial Guess) Distance Between Tieback Levels Tieback Inclinations from Horizontal Sl := 8·ft TOW--> B.O.E. N SN+I := H-L \ i =I 52= 17ft Tieback Attributes ftb := 3500· psf diatb := 6· in Pull := 100% 0:= 35·deg x_f):= O·ft 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz ~ := 25·deg I --> Level1 lnclincation = Distance between lowest level tieback & bottom of excavation = Allowable bond capacity between soil & post-grouted anchor = Diameter of drilled tieback = Tieback test load = Active wedge failuire plane measured from the vertical = Active wedge failure plane horizontal offset Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 AISC Steel Construction Manual 13th Edition Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 0 := 1.67 = Allowable strength reduction factor AISC E1 & F1 Fy:= 50· ksi =Soldier beam yield stress-ASTM A992 OS := 1.33 =Temporary overstress for short duration loading Soldier Beam Attributes Beam= "W16 x 40" A= I 1.8·in2 h := d-2·tr K:= I AISC Table C-C2.2 2 TI . E -z . 3 Fy x = 73·m E := 29000· ksi Fe n ( K Lu'0 I' >-:=-d = 16·in tf = 0.5·in I . 4 J . 4 = 518 ·m = 0.8·m X rx ) ~ = 0.3·in rx = 6.6·in Column Classification: --> Fully Restrained Against L TB & FLB ~=I min{ Oa) = 0.8 Q := Qa·~ --->Local Bucklikng Factor An n E if --~4.71· -0.658 · Fy·Q n K·Lu' ~ rx Fy =Nominal compressive stress-AISC E.3-2 & E3-3 0.877 ·Fe otherwise n Beam Classification: --> Fully Restrained Against L TB & FLB Mn:= if Flange = "Slender" Zx · Fy· OS otherwise 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz if Flange = "Non-Compact" Flange = "Compact" Web = "Compact" Fe Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soil Parameters Active Pressure Load Geometry Pa := 25-pcf c1 := 0.20-H c2 := 0.20-H Passive Pressure Load Geometry Pp := 350· pcf p ·= "n/a" max· <!>:= 30-deg de':= dia -I be:= 0.08-deg ·<!>·de' a_ratio =min[::, 1 ~ = Active earth pressure = Trapazodial soil loading coefficient -Top = Trapazodial soil loading coefficient -Bottom = Trapazodial soil loading coefficient -Middle = Passive earth pressure Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 =Maximum passive earth pressure ("n/a" =not applicable) = Passive pressure offset at subgrade = Internal soil friction angle (Below subgrade) = Effective soldier beam diameter below subgrade = Effective soldier beam width below subgrade = Soldier beam arching ratio Axial Resistance Soil Strength Parameters qa := 0· psf = Allowable soldier beam tip end bearing pressure fs := 600· psf = Allowable soldier skin friction J..L:= 0.33 = Coefficient of friction between shoring bulkhead & retained soil p': = TI· dia if Pile = "Concrete Embed" 2 · ( bf + d) otherwise = Applied perimeter along frictional toe resistance 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soil Parameters (Continued) Soil Pressure Profile P_H := Pa·H = Fully developed active pressure Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 ( p _H -Pps + p max) dmax ·= if P = "n/a" 2dt -------. max ' ' ) Pp-Pa =Depth to maximum passive earth pressure (As applicable) Psoil(y) := P_H --.y if y < c1 c1 P _H if c1 ~ y ~ c1 + c3 p _H - ( P _H )_ ( y -c1 -c3) if c1 + c3 < y ~ H c2 ) -a_ratio· Pp · (y-H) -a_ratio· Pps if H < y ~ H + dmax -a_ratio· P max otherwise Soil Pressure Loading Diagram orT-----r-----r----~---~ -3000 -2000 -1000 Soil Pressure (psf) 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz 0 Depth to point of zero pressure "0" 0:= O·ft if Psoil(H + O.l·ft) ~ 0 e:~O.Ol·ft temp~ Psoil(H + e:) while temp > 0 e: ~ e: + O.GlO ·ft temp~ Psoil(H + e:) return e: 0 =Oft Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Lateral Live Load Surcharge Uniform Loading Full := 0· psf Partial:= 0· psf Hpar := O·ft = Uniform loading full soldier beam height = Uniform loading partial soldier beam height = Height of partial uniform surcharge loading Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Ps (y) := Full+ Partial if 0· ft ::; y ::; Hpar Full if Hpar < y ::; H Uniform surcharge profile per depth 0· psf otherwise Eccentric/Conncentric Axial &. Lateral Point Loading Pv := 0-kip e:= 0-in 0· kip·ft Me :=--- Ph:= 0-lb zh:= O·ft =Applied axial load per beam = Eccentricity of applied compressive load =Eccentric bending moment = lateral pont load at depth "zh" = Distance to lateral point load from top of wall Seismic Lateral Load (Monobe-Okobe) -ASCE 7 Load Combo EFP:= 0.70( 18-pcf) Es := EFP·H Eq(y) := Es Es --· y if y ::; H H 0· psf otherwise 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz = Seismic force equivalent fluid pressure = Maximum seismic force pressure =Maximum seismic force pressure Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Boussinesq Loading q:= 2.5-ksf x1 := 7·ft z':= 2·ft K := 0.50 = Strip load bearing intensity Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 = Distance from bulkhead to closest edge of strip load = Distance from bulkhead to furthest edge of strip load = Distance below top of wall to strip load surcharge = Coefficient for flexural yeilding of members K = 1.00 (Rigid non-yielding) K = 0. 75 (Semi-rigid) K = 0.50 (Flexible) &(y) := e2 (y)-e1 (y) &(y) a(y) := e1 (y) + -2- Boussinesq Equation Pb(y):= O·psf if O·ft~y~z· 2·q·K·n-1·(&(y-z')-sin(&(y-z'))·cos(2·a(y -z'))) if z'<y ~ H 0· psf otherwise Maximum Boussinesq Pressure ~y := 5·ft Given d -Pb(~y) = O·psf d~y Pb(Find(~y)) = 395.5·psf H ~ Pb(y)dy=5.4·klf 0 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz 20 I Lateral Surcharge Loading I I / / I / --- ' ' 200 / / / Pressure (pst) \ I I 400 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Soldier Beam Tieback Reactions Total Load per Depth i := 1, 2 .. N Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Pnet(y) := Psoil(y) + Ps(y) + Eq(y) + Pb(y) --->Distributed Loading Ph= 0· kip® zh = 0· ft ---> Point Load Point Loading Distributed Shear & Moment zarray := if zh ~ s1 otherwise €:~2 E temp~~ s -zh ~ i i =I while 0 ~ temp E temp~ L \-(zh+ O.J .ft) i =I return e Tieback N Horizontal Reactions M'(z'. \ + if[zarray ~ i + I , (z'. -zh \ Ph , ql 1+ I J 1+ I J xt j T ·= --------~~---------------------= i" z'. 1-s. 1+ 1 Tieback Reaction T1 = 17.3·klf 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz V' (y) ,= ~ Y Pnet (y) dy ---> Distributed Shear I ft 0 M'(y) ,= ~ Y V' (y) dy + Me---> Distributed Bending I ft 0 Hinge Support Points z' .-s. 1 + z'. if i < N i+l 1+ 1 -I Mn·O s. + z'. + 0 otherwise 1+1 1 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Maximum Bending Moments Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Distance to zero shear points between levels (Local Maxima) i := 1,2 .. N + 1 r ·= c:~O ·ft ;- N ) Ti ,L Til i =I ) while if(i $; N, temp < 0, temp > 0) E ~ E + O.IO·ft temp<-V(t; + E > { < N, t l return c: Maximum Bending Moments n:= 1,2 .. N +2 M := n M'(z' 1 + i{zarray $; 1, (z'1-zh)· Ph , ql if n = 1 n ) xt J otherwise c: ~ I if n $; N + 1 c: ~ 2 otherwise Pzarray ~ i{zh $; z' + r , [(z' + r \-zhl· Ph , ql n-1 n-1 n-1 n-1 ; J xt J n-c: n-c: -M'(z' + r 1 + (z' + r \ """' n-I n-1) n-1 n-1 ) L...J Tn -"""' (T .z' 1 -Pzarray + Ms·[r . (c:-l)J L...J n n) n-1 Tieback Reaction T1 = 17.3 ·klf 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz n =I n =I Zero Shear Depths (Between Levels) r = ft ( 9.4' 5.2) Maximum Bending /ft ( 22.8' kip M = 22 l·ft-- ft -9.7) Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Minimum Lateral Embedment Depth (Equillibrium) Dh := e:~O.IO·ft temp~~ Psoil(y)·[e:-[y-(H + 0)]] dy+ V(H + 0) + :h-L r~~E [ N H+O t i = I while temp > 0 e: ~ e: + 0.10-ft Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 temp~~ Psoil(y)·[e:-[y-(H+O)]]dy+ V'(H+O)+ :h-L r H+~E [ N H+O t i =I return e: Dh =9ft Bending Moment Diagram 10 20 -200 -100 0 Moment (ft-kip) 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz 100 Maximum Bending Moments Mmax = 182.2-ft-kip 200 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Combined Forces: AISC Steel Construction Manual 13th Edition Beam= "Wl6 x 40" --->Selected Soldier Beam Allowable Shear Vmax = 57.4· kip = Maximum shear load Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Va := 0.60· Fy· d· ~ n =Allowable shear load-AISC G21.a Shear := if(Vmax :-::; Va , "Ok", "No Good") Va = 87.7· kip Allowable Bending Moment Bending = "Yielding" Mn Ma :=- 0 = Allowable Bending Moment -AISC F1 Allowable Concentric Loading Buckling= "Local" ---> min(Q) = 0.8 Shear= "Ok" Mmax = 182.2· ft-kip Ma = 242.2-ft·kip =Allowable concentric force-AISC E.3-1 Pr : = Pv if n = I n Combined Interaction AISC H 1-1 a & H 1-1 b Interaction := n Pr n -~0.20 Pc n Prn IMn -xtl --+ otherwise 2· Pc Ma n 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz =Tieback drag-down force Soldier _Beam = "Ok" max( Interaction) = 0.76 Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Approximate Soldier Beam Deflection Using 2nd Order Moment Area Function a:= s1 = Cantilevered length = Simply supported length between levels 1 & 2 Maximum Cantilevered Deflection Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 r 11 M' ( y) · ( L + a -y) dy r L+a l ~a M'(y)·Y dy M' ( y) · ( L + a -y) d ~a ~1') j(~}.+ 0 llc := + E·l X Maximum Deflection in Remaining Levels lls. := 1 ( a+r1 j 1 M' ( y) · [(a + r 1) -y] dy-xt ~a E-1 X E-1 otherwise Maximum Deflections X E-1 X .0-c = -0.11 · in Maximum Design Deflection: ·Xt E·l X if i = 1 L .0-max := J. in Deflection:= if( max(llc, max( .0-s)) ::; .0-max, "Ok" , "No Good") max(lls) = 0.53· in Deflection = "Ok" 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Minimum Tieback Properties Tieback Constraints (As applicable): Removal := "n/a" =Tieback removal depth below existing grade Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 Coupler := 0· ft = Distance measured along anchor between removal depth ft coupler Encroachment := 0· ft =Allowable encroachment width with the Public-Right-of-Way Lock off ft Test Loads FS, PTI 8.3.2 ft 8.3.3 --> Design:= 0.80 Anchor Type: Removable = Grade 150 Threadbar, Fub := 50· ksi Abandon = 7-wire strand, As= 0.217 -in2 (Single strand) = Tieback design lock off load Ttest := Pull· Tdesign = Tieback test load Minimum Anchor Sizes: Refer to Attached Threadbar Data For All Bar Sizes Level1 Type 1 = "Strand" Anchor1 = 4 Tdesign 1 = 153-kip Ttest1 = 153 -kip Note: Minimum Strand Size Governed by: Tdesign As· F u · Design --·> Max Ttest 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Minimum Embedment Depth (Tieback Dragdown & Lateral Embed FS) Allowable Axial Resistance d. 2 Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 N Q(y) := p'.fs-y-Pv-L i =I TI· 1a -qa if Pile = "Concrete Embed" 4 Dv := c: +--O-ft ( bf d· qa) otherwise temp+--Q(c:) while temp < 0 E +--E + 0.10 ·ft temp+--Q(c:) Dv = 5 ft return c: Minimum Lateral Embedment Depth (Global Safety) = Minimum factor of safety for lateral embedment Dh':= c: +--O.lO·ft temp+--L Psoil(y)· [c:-[y-(H + 0)]] dy + V'(H + 0) + Ph -L ( H+O+c: [ N ~H+O xt i = I while temp > 0 E +--E + 0.10-ft temp+--~ Psoil(y)· [c:-[y -(H + 0)]] dy + V'(H + 0) + :h -L ( H+O+c: [ N H+O t i = I return c: Dh' = 9.6ft Dtoe: = Ceil (max ( Dh', Dv) , ft) 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz = Minimum factor of safety for lateral embedment Does not govern Shoring Design Group 7755 Via Francesco Unit 1 San Diego, CA 92129 Design Summary Soldier Beam Attributes Beam= "W16 x 40" H =25ft Dtoe = lOft H + Dtoe = 35ft dia = 24-in b. max = 0.53 ·in Distance Between Tieback Levels ( 8 1 s = 17 /t TOW--> Level1 Level1 --> B.O.E. Tieback Level 1 Type! = "Strand" Anchor1 = 4 Sb_No = "4-8" Pile = "Concrete Embed" = Soldier beam retained height = Soldier beam embedment depth =Total length of soldier beam = Soldier beam shaft diameter =Tributary width of soldier beam = Maximum soldier beam deflection Marbrisa Eng: RPR Sheet __ of __ Date: June 8, 2016 4-Strand anchor capable of supporting 153-kip tieback load for se1smic + buildmg 1 Tieback H = 25', sb 4-8 with Elevator & Seismic Surcharge.xmcdz