HomeMy WebLinkAboutCT 15-08; Carlsbad Ranch PA 5 (Marbrisa - Phase 3); RESPONSE TO CITY COMMENTS DATED 6/10/16 TEMPORARY SHORING; 2016-07-08SHORING DESIGN GROUP
r ---
July 8, 2016
I
~ . ( ~ ' •, ~ v I • 1'._ •
Mr. Mark Elliott \)~3, C[, } t~ }t L
I Office (760) 722-1400
Elliott Drilling Services, Inc. I I Fax(760)722-1404
1342 Barham Drive I -·-San Marcos, CA 92078 --I
Re: Marbrisa JOB #16-115
Carlsbad, California
Subject: Response to City Comments, Dated 6/10/2016
Dear Mr. Elliott:
Shoring Design Group is in receipt of the plan review comments prepared by the City of Carlsbad, regarding the
above referenced project. In response, Shoring Design Group (SDG) offers the following responses:
Response to Comments
1. The global safety factor used in the temporary shoring design calculations is based on a LD (Allowable)
temporary construction condition of 1.25 (See attachment #1 reference table). CBC Section 1807.2, which
states a 1.50 s_afety factor, pertains to conventional cast in place permanent walls & not shoring. Also
note, that the passive pressure used in the temporary design, IS based on a permanent structure
recommendation (Section 4.11), resulting in a conservative allowable value for temporary conditions.
2. Temporary shoring will be subjected to a service life less than 1-year & does not require seismic loading.
Although it should be noted that shoring, supporting adjacent building surcharge, is capable of
withstanding seismic loading (non-governing). See attachments #2 & 3 for reference.
Should you have any additional questions or comments regarding this matter, please advise.
Sincerely,
SHORING DESIGN GROUP,
Roy P. Reed, P.E.
Project Engineer
RECEIVED
AUG 0 I 2016
LAND DEVELOPMENT
ENGF,~FE.T(!NG
Enclosed: Attachment #1: Allowable Stress Safety Factors (SLD Table)
Attachment #2: SB #3, 9-14 H+D+L+0.70E
Attachment #3: SB #4-8, H+D+L+0.70E
.
~ 2
H
1
Attachment 1
FHWA
are likely to control the design in most cases. Therefore, the corresponding nail strength
factors for Load Combination Groups IV and Vll are also shown in table 4.5.
TABLE4.5
TRENGTH FACTORS AND FACTORS OF SAFETY-SLD
Element Strength Factor Strength Factor Strength Factor
(Group I) (Group IV) (Group Vll)
a (Seismic)
Nail Head Strength aF = Table 4.4 see Table 4.4 see Table 4.4
Nail Tendon Tensile <XN = 0.55 1.25(0.55)=0.69 1.33(0.55)= 0. 73
Strength
Ground-Grout Pullout CXQ = 0.50 1.25(0.50)=0.63 1.33(0.50)=0.67
Resistance
1.08 (1.20*) 1.01 (1.13*)
Soil-Temporary Construction F=l.20 (1.35*) 5 NA NA
Conditiont
[ I' .,-y-' '("'".wf,, .,--y '('""'("" vF•;>F'-" n . "'*l-
.>.. )..~~."'~ Use 1.25 Soil Global FS
Allowable Nail Head Load (TF) = <XF(Nominal Nail Head Strength)= <XF TFN
Allowable Nail Tendon Load (TN) ,;. aN (Tendon Yield Strength)= aN T NN
Allowable Pullout Resistance (Q) = <XQ (Ultimate Pullout Resistance)= <XQ Qu
Minimum Required Global Soil Factor of Safety ''F' (Group I)= 1.35 (= 1.50 for critical structures).
Minimum Required Global Soil Factor of Safety ''F' (Group IV)= 1.35/1.25 = 1.08 (= 1.20 for critical
structures.
Minimum Required Global Soil Factor of Safety "F' (Group VII) = 1.3511.33 = 1.0 l ( = 1.13 for critical
structures).
Minimum Required Global Soil Factor of Safety ."F' -Temporary Construction Condition = 1.20 ( = 1.35
for critical structures). ·
* Soil Factors of Safety for Critical Structures.
t Refers to temporary condition existing following cut excavation but before nail installation. Does not
refer to "temporary" versus "permanent" wall.
Step 5 -Select Trial Nail Spacings and Lengths
As discussed in section 4.3.2 and as shown on figure 4.7, satisfaction of the strength limit
state requirements will not of itself ensure an appropriate design. Additional constraints are
required to provide for an appropriate nail layout. The following empirical constraints on
the design analysis nail length pattern -are therefore recommended for use when performing
the lirniti~g equilibrium design calculations: ·
(a) Nails with heads located in the upper half of the wall height should be of uniform
length.
(b) Nails with heads located in the lower half of the wall height should be considered
to have a reduced length in accordance with the reCommendations given on figure
4.11.
121
Attachment 2
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
( 1) Levels of Tiedback Soldier Beam
Sb_No := "3 , 9-14"
Soldier Beam & Tieback Attributes
Pile := "Concrete Embed"
H :=l7·ft = Soldier beam retained height
XS := 0
Hs := 0· ft --> = Height of retained slope (As applicable)
ys := 0
xt := 8· ft =Tributary width of soldier beam
dia := 24· in = Soldier beam shaft diameter
N = 1 = Number of tieback levels
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
dt:= 15 -ft =Assumed soldier beam embedment depth (Initial Guess)
Distance Between Tieback Levels Tieback Inclinations from Horizontal
SJ := 6.5-ft TOW--> B.O.E.
N
~ := 25·deg
I
--> Level 1 lnclincation
sN+ I : = H -L si
i =I
= Distance between lowest level tieback & bottom of excavation
s2 = 10.5 ft
Tieback Attributes
ftb := 3500· psf
Pull:= 100%
0 := 35·deg
x_S:= O·ft
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
= Allowable bond capacity between soil & post-grouted anchor
= Diameter of drilled tieback
= Tieback test load
= Active wedge failuire plane measured from the vertical
= Active wedge failure plane horizontal offset
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
AISC Steel Construction Manual 13th Edition
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
0 := 1.67 = Allowable strength reduction factor AISC E1 & F1
Fy := 50· ksi =Soldier beam yield stress-ASTM A992
OS:= 1.33 =Temporary overstress for short duration loading
Soldier Beam Attributes
Beam= "Wl4 x 30"
A= 8.9·in2 bf = 6.7·in h := d -2·tf K:= I AISC Table C-C2.2
2 n ·E
-z . 3 Fy x = 47.3·m E := 29000· ksi Fe n
[ K Lu'n )
2 >-:=-d = 13.8·in tf = 0.4· in
~ = 0.3·in rx= 5.7·in I . 4 J . 4 x = 29I·m = 0.4·m
rx )
Column Classification: --> Fully Restrained Against LTB & FLB
Os= I
min( Qa) = 0.8 Q := Qa· Os ---> Local Bucklikng Factor
An n E
if --:::;4.71 · -Fer := n
0.658 ·Fy·Q n
K·Lu' H
rx Fy =Nominal compressive stress-AISC E.3-2 & E3-3
0.877 ·Fe otherwise n
Beam Classification: ··> Fully Restrained Against LTB & FLB
Mn :=
[ (
:A->-pf l~
M -(M -0.70·Fy·Sx)·
p p >-rt ->-pf )j
if Flange = "Slender"
Z · Fy· OS otherwise X
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
if Flange = "Non-Compact"
Flange = "Compact"
Web = "Compact"
Fe
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soil Parameters
Active Pressure Load Geometry
Pa := 25· pcf
c1 := 0.20· H
Cz := 0.20· H
c3 : = H -c1 -c2
Passive Pressure Load Geometry
Pp := 350· pcf
p ·= "n/a" max·
<!> : = 30· deg
de':= dia
-I be := 0.08·deg ·<!>·de'
a_ratio:= min( be , ll
xt )
= Active earth pressure
= Trapazodial soil loading coefficient -Top
= Trapazodial soil loading coefficient -Bottom
= Trapazodial soil loading coefficient -Middle
= Passive earth pressure
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
=Maximum passive earth pressure ("n/a" = not applicable)
= Passive pressure offset at subgrade
= Internal soil friction angle (Below subgrade)
= Effective soldier beam diameter below subgrade
= Effective soldier beam width below subgrade
= Soldier beam arching ratio
Axial Resistance Soil Strength Parameters
qa := 0· psf = Allowable soldier beam tip end bearing pressure
fs := 600· psf = Allowable soldier skin friction
w= o.33 = Coefficient of friction between shoring bulkhead &. retained soil
p' := 7i· dia if Pile = "Concrete Embed"
2·( bf + d) otherwise
= Applied perimeter along frictional toe resistance
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soil Parameters (Continued)
Soil Pressure Profile
P_H := Pa·H = Fully developed active pressure
Marbrisa
Eng : RPR Sheet __ of __
Date: June 8, 2016
[
p _H -Pps + p max l
dmax ·= if P = "n/a" 2dt · max ' ' ) Pp-Pa
= Depth to maximum passive earth pressure
(As applicable)
Psoil(y) :=
P_H --.y if y < c1 c1
P _H if c1 :-;; y :-;; c1 + c3
p _H -[ P _H 1. ( y -c1 -c3) if c1 + c3 < y :-;; H
c2 )
-a_ratio· Pp · (y-H) -a_ratio· Pps if H < y :-;; H + dmax
-a_ratio· P max otherwise
Soil Pressure Loading Diagram
o .. ----~r-----r-----~--~
10
-3000 -2000 -1000
Soil Pressure (psf)
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
0
Depth to point of zero pressure "0"
0 := O·ft if Psoil(H + O.J .ft) :-;; 0
e ~ O.Ol ·ft
temp~ Psoil(H +e)
while temp > 0
e ~ e + O.oiO ·ft
temp~ Psoil(H +e)
return e
0 =Oft
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Lateral Live Load Surcharge
Uniform Loading
Full := O·psf
Partial := 0· psf
Hpar := O·ft
= Uniform loading full soldier beam height
= Uniform loading partial soldier beam height
= Height of partial uniform surcharge loading
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Ps (y) := Full + Partial if 0· ft ~ y ~ Hpar
Full if Hpar < y ~ H Uniform surcharge profile per depth
0· psf otherwise
Eccentric/Conncentric Axial &. Lateral Point Loading
Pv := O·kip
e := O·in
0· kip·ft Me :=---
Ph := O·lb
zh :=O·ft
=Applied axial load per beam
= Eccentricity of applied compressive load
= Eccentric bending moment
= lateral pont load at depth "zh"
= Distance to lateral point load from top of wall
Seismic Lateral Load (Monobe-Okobe, ASCE 7 Load Combo)
EFP ~= 0.70· ( 18· pcf)
Es := EFP·H
Es Eq ( y) : = Es --· y if y ~ H
H
0· psf otherwise
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
= Seismic force equivalent fluid pressure
= Maximum seismic force pressure
= Maximum seismic force pressure
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Boussinesq Loading
q := 5· ksf
x1 := 12.67 ·ft
z':= 2·ft
K := 0.50
= Strip load bearing intensity
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
= Distance from bulkhead to closest edge of strip load
= Distance from bulkhead to furthest edge of strip load
= Distance below top of wall to strip load surcharge
= Coefficient for flexural yeilding of members
K = 1.00 (Rigid non-yielding)
K = 0. 75 (Semi-rigid)
K = 0.50 (Flexible)
o(y) := e2 (y) -e1 (y)
1\(y)
a(y) := e1 (y) + -2-
Boussinesq Equation
Pb(y) := O·psf if O·ft ::::; y ::::; z'
2·q·K·n-1·(1\(y-z')-sin(l\(y-z'))·cos(2 ·a(y-z'))) if z'< y:::; H
0· psf otherwise
Maximum Boussinesq Pressure
b.y := 5· ft
Given
d -Pb(b.y) = O·psf
db.y
Pb(Find(L.\y)) = 151.3·psf
H ~ Pb (y) dy = 1.7· klf
0
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Lateral Surcharge Loading
Pressure (psf)
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soldier Beam Tieback Reactions
Total Load per Depth i := 1, 2 .. N
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Pnet(y) := Psoil(y) + Ps(y) + Eq(y) + Pb(y) --->Distributed Loading
Ph= 0· kip® zh = 0· ft ---> Point Load
Point Loading Distributed Shear & Moment
zarray:= if zh :<:::: s1
otherwise
c:~2
E
temp ~ L si -zh
i =I
while 0 ~ temp
E
temp~ L \-(zh + O.I·ft)
i =I
return c:
Tieback N Horizontal Reactions
M'(z'. \ + if[zarray :<:::: i + I , (z'. -zh \ Ph , ql
1+ I ) 1+ I ) xt j
T·=----~----------~ i" z'. 1-s. 1+ 1
Tieback Reaction
Tl=7.7·klf
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
V ( y) ,= ~ Y Pnet (y) dy ---> Distributed Shear I ft
0
M'(y) ,= ~ Y V(y) dy +Me---> Distributed Bending I ft
0
Hinge Support Points
z'1 := s1 z' .-s. + z'. if i < N i+l 1+1 1
s. + z'. + 0 otherwise 1+ I 1
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Maximum Bending Moments
Marbrisa
Eng : RPR Sheet __ of __
Date: June 8, 2016
Distance to zero shear points between levels (local Maxima) i := 1, 2 .. N + 1
r ·= E ~ 0· ft i"
while if(i ::; N, temp < 0, temp > 0)
E: ~ E: + 0.10-ft
temp<-v(z'1+ c > { < N, t,
return E
Maximum Bending Moments n := 1,2 .. N+2
N
M := n M'(z' \ + i{zarray ::; I , (z'1-zh)· Ph , ql if n = 1
n J xt J
otherwise
E ~ 1 if n ::; N + 1
e: ~ 2 otherwise
Pzarray ~ i{zh ::; z' + r , [(z' + r '-zh~· Ph , ql n-1 n-1 n-1 n-1 x ) t J
n-e: n-e:
-M'(z' + r \ + (z' + r \ ""'"' n-I n-1 J n-I n-I J L...J Tn -""'"' (T · z' \ -Pzarray + Ms. [r . ( E -l)J L...J n n J n-1
Tieback Reaction
T1 = 7.7-klf
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
n =l n =I
Zero Shear Depths
(Between Levels)
r = ft (
6.5 \
3.9)
Maximum Bending /ft
[
9.5 \
kip
M = 4 l·ft·-ft
-4.1 )
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Minimum Lateral Embedment Depth (Equillibrium)
Dh := E +---O.IO·ft
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
temp<-~ H+O.€ Psoil(y)· [€-[y-(H + 0)]] dy + [V(H + 0) + :h -± T1-Ms i.,
H+O t i = I )
while temp > 0
E +---E + O.lO·ft
temp+-~ Psoil(y)·[E -[y -(H + 0)]] dy+ V'(H + 0) + :h-L ( H+O+e: [ N
H+O t i = I
return c:
Dh = 6.8ft
Bending Moment Diagram
o.---------~--------~---------. Maximum Bending Moments
8 ~ Q)
o:l ..... Q) :.a 10 0 en
OIJ c 0 Mmax = 76.3· ft· kip -< ...c:: ..... 0... Q)
Cl
-50 0 50 100
Moment (ft-kip)
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Combined Forces: AISC Steel Construction Manual 13th Edition
Beam= "W14 x 30" ---> Selected Soldier Beam
Allowable Shear
Vmax = 27.8· kip = Maximum shear load
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Va :=
0.60· Fy· d· ~
f2
=Allowable shear load-AISC G21.a
Shear:= if(Vmax :::; Va , "Ok", "No Good") Va = 66.9· kip
Allowable Bending Moment
Bending = "Yielding"
Mn
Ma :=-
0
=Allowable Bending Moment-AISC F1
Allowable Concentric Loading
Buckling= "Local" ---> min ( Q) = 0.8
Shear= "Ok"
Mmax = 76.3· ft. kip
Ma = 157 · ft· kip
=Allowable concentric force-AISC E.3-1
Pr : = Pv if n = I n
Combined Interaction AISC H1-1a & H1-1b
Interaction := n
Pr n
-?: 0.20
Pc n
Prn IMn ·Xtl
--+ otherwise
2·Pc Ma n
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
=Tieback drag-down force
Ok
Soldier _Beam = "Ok"
max( Interaction) = 0.49
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Approximate Soldier Beam Deflection Using 2nd Order Moment Area Function
a := s1 = Cantilevered length
L:= s2 =Simply supported length between levels 1 & 2
Maximum Cantilevered Deflection
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
r 'll M' ( y) · ( L + a -y) dy
r L+a l ~a M'(y) ·Y dy M' ( y) · ( L + a -y) d ~a ~'ll J{~>t+ 0 ll.c := +
E·l X
Maximum Deflection in Remaining Levels
ll.s. := 1
( a+r1
j1 M' ( y) · [(a + r 1) -y] dy· xt ~a
E·l X
E·l X
z'
r 2
M'(y)·(L +a -y) dy ~a r,.xt
E·l X L
otherwise
Maximum Deflections
E·l X
if i = 1
ll.c = 0.2· in Maximum Design Deflection: ll.max := 1· in
·Xt
Deflection := if( max(ll.c, max(ll.s)) :s; ll.max, "Ok", "No Good")
max(ll.s) = O.OS·in
Deflection = "Ok"
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Minimum Tieback Properties
Tieback Constraints (As applicable):
Removal:= "n/a" =Tieback removal depth below existing grade
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Coupler:= 0· ft = Distance measured along anchor between removal depth & coupler
Encroachment := 0· ft =Allowable encroachment width with the Public-Right-of-Way
Lock off & Test Loads FS, PTI 8.3.2 & 8.3.3 --> Design := 0.80
Anchor Type: Removable = Grade 150 Threadbar, Fub : = 50· ksi
Abandon = 7-wire strand, As= 0.217·in2 (Single strand)
T(xt
Tdesign. := ( ) 1 cos~.
1
= Tieback design lock off load
Ttest := Pull· Tdesign = Tieback test load
Minimum Anchor Sizes: Refer to Attached Threadbar Data For All Bar Sizes
Level 1 Type1 = "Strand"
Anchor1 = 2
Tdesign 1 = 68· kip
Ttest1 = 68· kip
Note: Minimum Strand Size
Governed by:
Tdesign
As· F u · Design
---> Max
Ttest
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Minimum Embedment Depth (Tieback Dragdown & lateral Embed FS)
Allowable Axial Resistance
N
Q(y) := p'.fs-y -Pv -L
i =I
Dv := c:+-O·ft
temp+--Q(e:)
while temp < 0
E f-E + 0.10·ft
temp+-Q(e:)
return e:
Dh':= E +--O.lO·ft
Dv = 2.3 ft
d. 2 n · 1a -qa if Pile = "Concrete Embed"
4
( br d· qa) otherwise
I H+O+e: [ N temp+-~ Psoil(y)·[e:-[y -(H +O)]]dy + V'(H +O)+ :h -L
H+O t i = I
l
Ti-Ms l·e:
)
while temp > 0
E f-E + 0.10·ft
temp<-~ H+<»< Psoii(Y)· [<-[y -(H + 0)]] dy + [v· (H + 0) + :h -i T;-Ms i. FSd· <
H+O t i = I )
return e:
Dh' = 7.2 ft
Dtoe := Ceil(max(Dh', Dv), ft)
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
= Minimum factor of safety for lateral embedment
Does not govern
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Design Summary
Soldier Beam Attributes
Beam= "W14 x 30"
H = 17ft
Dtoe =8ft
H + Dtoe = 25 ft
dia = 24·in
~max = 0.2· in
Distance Between Tieback Levels
s = ft (
6.5 l
10.5)
TOW--> Level1
Level 1 --> B.O. E.
Tieback Level 1
Type! = "Strand"
Anchor1 = 2
Sb_No = "3, 9-14"
Pile = "Concrete Embed"
= Soldier beam retained height
= Soldier beam embedment depth
=Total length of soldier beam
= Soldier beam shaft diameter
=Tributary width of soldier beam
= Maximum soldier beam deflection
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
3-Strand anchor capable of supporting 68-kip tieback load for seismic + building
1 Tieback H = 17', sb 3, 9-14 with Building
& Seismic Surcharge.xmcd
Attachment 3
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
( 1 ) Levels of Tiedback Soldier Beam
Sb_No := "4-8"
Soldier Beam & Tieback Attributes
Pile := "Concrete Embed"
H:= 25·ft = Soldier beam retained height
XS := 0
Hs := O·ft --> = Height of retained slope (As applicable)
ys := o
xt := 8· ft = Tributary width of soldier beam
dia := 24· in = Soldier beam shaft diameter
N = 1 = Number of tieback levels
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
dt:= 15·ft =Assumed soldier beam embedment depth (Initial Guess)
Distance Between Tieback Levels Tieback Inclinations from Horizontal
Sl := 8·ft TOW--> B.O.E.
N
SN+I := H-L \
i =I
52= 17ft
Tieback Attributes
ftb := 3500· psf
diatb := 6· in
Pull := 100%
0:= 35·deg
x_f):= O·ft
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
~ := 25·deg
I
--> Level1 lnclincation
= Distance between lowest level tieback & bottom of excavation
= Allowable bond capacity between soil & post-grouted anchor
= Diameter of drilled tieback
= Tieback test load
= Active wedge failuire plane measured from the vertical
= Active wedge failure plane horizontal offset
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
AISC Steel Construction Manual 13th Edition
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
0 := 1.67 = Allowable strength reduction factor AISC E1 & F1
Fy:= 50· ksi =Soldier beam yield stress-ASTM A992
OS := 1.33 =Temporary overstress for short duration loading
Soldier Beam Attributes
Beam= "W16 x 40"
A= I 1.8·in2 h := d-2·tr K:= I AISC Table C-C2.2
2 TI . E
-z . 3 Fy x = 73·m E := 29000· ksi Fe n
( K Lu'0 I' >-:=-d = 16·in tf = 0.5·in
I . 4 J . 4 = 518 ·m = 0.8·m X rx )
~ = 0.3·in rx = 6.6·in
Column Classification: --> Fully Restrained Against L TB & FLB
~=I
min{ Oa) = 0.8 Q := Qa·~ --->Local Bucklikng Factor
An n E
if --~4.71· -0.658 · Fy·Q n
K·Lu' ~
rx Fy =Nominal compressive stress-AISC E.3-2 & E3-3
0.877 ·Fe otherwise n
Beam Classification: --> Fully Restrained Against L TB & FLB
Mn:=
if Flange = "Slender"
Zx · Fy· OS otherwise
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
if Flange = "Non-Compact"
Flange = "Compact"
Web = "Compact"
Fe
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soil Parameters
Active Pressure Load Geometry
Pa := 25-pcf
c1 := 0.20-H
c2 := 0.20-H
Passive Pressure Load Geometry
Pp := 350· pcf
p ·= "n/a" max·
<!>:= 30-deg
de':= dia
-I be:= 0.08-deg ·<!>·de'
a_ratio =min[::, 1 ~
= Active earth pressure
= Trapazodial soil loading coefficient -Top
= Trapazodial soil loading coefficient -Bottom
= Trapazodial soil loading coefficient -Middle
= Passive earth pressure
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
=Maximum passive earth pressure ("n/a" =not applicable)
= Passive pressure offset at subgrade
= Internal soil friction angle (Below subgrade)
= Effective soldier beam diameter below subgrade
= Effective soldier beam width below subgrade
= Soldier beam arching ratio
Axial Resistance Soil Strength Parameters
qa := 0· psf = Allowable soldier beam tip end bearing pressure
fs := 600· psf = Allowable soldier skin friction
J..L:= 0.33 = Coefficient of friction between shoring bulkhead & retained soil
p': = TI· dia if Pile = "Concrete Embed"
2 · ( bf + d) otherwise
= Applied perimeter along frictional toe resistance
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soil Parameters (Continued)
Soil Pressure Profile
P_H := Pa·H = Fully developed active pressure
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
(
p _H -Pps + p max)
dmax ·= if P = "n/a" 2dt -------. max ' ' ) Pp-Pa
=Depth to maximum passive earth pressure
(As applicable)
Psoil(y) := P_H --.y if y < c1 c1
P _H if c1 ~ y ~ c1 + c3
p _H - ( P _H )_ ( y -c1 -c3) if c1 + c3 < y ~ H
c2 )
-a_ratio· Pp · (y-H) -a_ratio· Pps if H < y ~ H + dmax
-a_ratio· P max otherwise
Soil Pressure Loading Diagram
orT-----r-----r----~---~
-3000 -2000 -1000
Soil Pressure (psf)
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
0
Depth to point of zero pressure "0"
0:= O·ft if Psoil(H + O.l·ft) ~ 0
e:~O.Ol·ft
temp~ Psoil(H + e:)
while temp > 0
e: ~ e: + O.GlO ·ft
temp~ Psoil(H + e:)
return e:
0 =Oft
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Lateral Live Load Surcharge
Uniform Loading
Full := 0· psf
Partial:= 0· psf
Hpar := O·ft
= Uniform loading full soldier beam height
= Uniform loading partial soldier beam height
= Height of partial uniform surcharge loading
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Ps (y) := Full+ Partial if 0· ft ::; y ::; Hpar
Full if Hpar < y ::; H Uniform surcharge profile per depth
0· psf otherwise
Eccentric/Conncentric Axial &. Lateral Point Loading
Pv := 0-kip
e:= 0-in
0· kip·ft Me :=---
Ph:= 0-lb
zh:= O·ft
=Applied axial load per beam
= Eccentricity of applied compressive load
=Eccentric bending moment
= lateral pont load at depth "zh"
= Distance to lateral point load from top of wall
Seismic Lateral Load (Monobe-Okobe) -ASCE 7 Load Combo
EFP:= 0.70( 18-pcf)
Es := EFP·H
Eq(y) := Es Es --· y if y ::; H
H
0· psf otherwise
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
= Seismic force equivalent fluid pressure
= Maximum seismic force pressure
=Maximum seismic force pressure
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Boussinesq Loading
q:= 2.5-ksf
x1 := 7·ft
z':= 2·ft
K := 0.50
= Strip load bearing intensity
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
= Distance from bulkhead to closest edge of strip load
= Distance from bulkhead to furthest edge of strip load
= Distance below top of wall to strip load surcharge
= Coefficient for flexural yeilding of members
K = 1.00 (Rigid non-yielding)
K = 0. 75 (Semi-rigid)
K = 0.50 (Flexible)
&(y) := e2 (y)-e1 (y)
&(y)
a(y) := e1 (y) + -2-
Boussinesq Equation
Pb(y):= O·psf if O·ft~y~z·
2·q·K·n-1·(&(y-z')-sin(&(y-z'))·cos(2·a(y -z'))) if z'<y ~ H
0· psf otherwise
Maximum Boussinesq Pressure
~y := 5·ft
Given
d -Pb(~y) = O·psf
d~y
Pb(Find(~y)) = 395.5·psf
H ~ Pb(y)dy=5.4·klf
0
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
20
I
Lateral Surcharge Loading
I
I
/
/
I
/
---
' '
200
/
/
/
Pressure (pst)
\
I
I
400
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Soldier Beam Tieback Reactions
Total Load per Depth i := 1, 2 .. N
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Pnet(y) := Psoil(y) + Ps(y) + Eq(y) + Pb(y) --->Distributed Loading
Ph= 0· kip® zh = 0· ft ---> Point Load
Point Loading Distributed Shear & Moment
zarray := if zh ~ s1
otherwise
€:~2
E
temp~~ s -zh ~ i
i =I
while 0 ~ temp
E
temp~ L \-(zh+ O.J .ft)
i =I
return e
Tieback N Horizontal Reactions
M'(z'. \ + if[zarray ~ i + I , (z'. -zh \ Ph , ql
1+ I J 1+ I J xt j
T ·= --------~~---------------------= i" z'. 1-s. 1+ 1
Tieback Reaction
T1 = 17.3·klf
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
V' (y) ,= ~ Y Pnet (y) dy ---> Distributed Shear I ft
0
M'(y) ,= ~ Y V' (y) dy + Me---> Distributed Bending I ft
0
Hinge Support Points
z' .-s. 1 + z'. if i < N i+l 1+ 1
-I Mn·O
s. + z'. + 0 otherwise 1+1 1
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Maximum Bending Moments
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Distance to zero shear points between levels (Local Maxima) i := 1,2 .. N + 1
r ·= c:~O ·ft ;-
N )
Ti ,L Til
i =I )
while if(i $; N, temp < 0, temp > 0)
E ~ E + O.IO·ft
temp<-V(t; + E > { < N, t l
return c:
Maximum Bending Moments n:= 1,2 .. N +2
M := n M'(z' 1 + i{zarray $; 1, (z'1-zh)· Ph , ql if n = 1
n ) xt J
otherwise
c: ~ I if n $; N + 1
c: ~ 2 otherwise
Pzarray ~ i{zh $; z' + r , [(z' + r \-zhl· Ph , ql n-1 n-1 n-1 n-1 ; J xt J
n-c: n-c:
-M'(z' + r 1 + (z' + r \ """' n-I n-1) n-1 n-1 ) L...J Tn -"""' (T .z' 1 -Pzarray + Ms·[r . (c:-l)J L...J n n) n-1
Tieback Reaction
T1 = 17.3 ·klf
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
n =I n =I
Zero Shear Depths
(Between Levels)
r = ft (
9.4'
5.2)
Maximum Bending /ft
(
22.8'
kip
M = 22 l·ft--
ft
-9.7)
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Minimum Lateral Embedment Depth (Equillibrium)
Dh := e:~O.IO·ft
temp~~ Psoil(y)·[e:-[y-(H + 0)]] dy+ V(H + 0) + :h-L r~~E [ N
H+O t i = I
while temp > 0
e: ~ e: + 0.10-ft
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
temp~~ Psoil(y)·[e:-[y-(H+O)]]dy+ V'(H+O)+ :h-L r H+~E [ N
H+O t i =I
return e:
Dh =9ft
Bending Moment Diagram
10
20
-200 -100 0
Moment (ft-kip)
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
100
Maximum Bending Moments
Mmax = 182.2-ft-kip
200
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Combined Forces: AISC Steel Construction Manual 13th Edition
Beam= "Wl6 x 40" --->Selected Soldier Beam
Allowable Shear
Vmax = 57.4· kip = Maximum shear load
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Va :=
0.60· Fy· d· ~
n =Allowable shear load-AISC G21.a
Shear := if(Vmax :-::; Va , "Ok", "No Good") Va = 87.7· kip
Allowable Bending Moment
Bending = "Yielding"
Mn Ma :=-
0
= Allowable Bending Moment -AISC F1
Allowable Concentric Loading
Buckling= "Local" ---> min(Q) = 0.8
Shear= "Ok"
Mmax = 182.2· ft-kip
Ma = 242.2-ft·kip
=Allowable concentric force-AISC E.3-1
Pr : = Pv if n = I n
Combined Interaction AISC H 1-1 a & H 1-1 b
Interaction := n
Pr n
-~0.20
Pc n
Prn IMn -xtl
--+ otherwise
2· Pc Ma n
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
=Tieback drag-down force
Soldier _Beam = "Ok"
max( Interaction) = 0.76
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Approximate Soldier Beam Deflection Using 2nd Order Moment Area Function
a:= s1 = Cantilevered length
= Simply supported length between levels 1 & 2
Maximum Cantilevered Deflection
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
r 11
M' ( y) · ( L + a -y) dy
r L+a l ~a M'(y)·Y dy M' ( y) · ( L + a -y) d ~a ~1') j(~}.+ 0
llc := +
E·l X
Maximum Deflection in Remaining Levels
lls. := 1
( a+r1
j
1
M' ( y) · [(a + r 1) -y] dy-xt ~a
E-1 X
E-1
otherwise
Maximum Deflections
X
E-1 X
.0-c = -0.11 · in Maximum Design Deflection:
·Xt E·l X
if i = 1
L
.0-max := J. in
Deflection:= if( max(llc, max( .0-s)) ::; .0-max, "Ok" , "No Good")
max(lls) = 0.53· in
Deflection = "Ok"
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Minimum Tieback Properties
Tieback Constraints (As applicable):
Removal := "n/a" =Tieback removal depth below existing grade
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
Coupler := 0· ft = Distance measured along anchor between removal depth ft coupler
Encroachment := 0· ft =Allowable encroachment width with the Public-Right-of-Way
Lock off ft Test Loads FS, PTI 8.3.2 ft 8.3.3 --> Design:= 0.80
Anchor Type: Removable = Grade 150 Threadbar, Fub := 50· ksi
Abandon = 7-wire strand, As= 0.217 -in2 (Single strand)
= Tieback design lock off load
Ttest := Pull· Tdesign = Tieback test load
Minimum Anchor Sizes: Refer to Attached Threadbar Data For All Bar Sizes
Level1 Type 1 = "Strand"
Anchor1 = 4
Tdesign 1 = 153-kip
Ttest1 = 153 -kip
Note: Minimum Strand Size
Governed by:
Tdesign
As· F u · Design
--·> Max
Ttest
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Minimum Embedment Depth (Tieback Dragdown & Lateral Embed FS)
Allowable Axial Resistance
d. 2
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
N
Q(y) := p'.fs-y-Pv-L
i =I
TI· 1a -qa if Pile = "Concrete Embed" 4
Dv := c: +--O-ft
( bf d· qa) otherwise
temp+--Q(c:)
while temp < 0
E +--E + 0.10 ·ft
temp+--Q(c:) Dv = 5 ft
return c:
Minimum Lateral Embedment Depth (Global Safety)
= Minimum factor of safety for lateral embedment
Dh':= c: +--O.lO·ft
temp+--L Psoil(y)· [c:-[y-(H + 0)]] dy + V'(H + 0) + Ph -L ( H+O+c: [ N
~H+O xt i = I
while temp > 0
E +--E + 0.10-ft
temp+--~ Psoil(y)· [c:-[y -(H + 0)]] dy + V'(H + 0) + :h -L ( H+O+c: [ N
H+O t i = I
return c:
Dh' = 9.6ft
Dtoe: = Ceil (max ( Dh', Dv) , ft)
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz
= Minimum factor of safety for lateral embedment
Does not govern
Shoring Design Group
7755 Via Francesco Unit 1
San Diego, CA 92129
Design Summary
Soldier Beam Attributes
Beam= "W16 x 40"
H =25ft
Dtoe = lOft
H + Dtoe = 35ft
dia = 24-in
b. max = 0.53 ·in
Distance Between Tieback Levels
(
8 1
s = 17 /t TOW--> Level1
Level1 --> B.O.E.
Tieback Level 1
Type! = "Strand"
Anchor1 = 4
Sb_No = "4-8"
Pile = "Concrete Embed"
= Soldier beam retained height
= Soldier beam embedment depth
=Total length of soldier beam
= Soldier beam shaft diameter
=Tributary width of soldier beam
= Maximum soldier beam deflection
Marbrisa
Eng: RPR Sheet __ of __
Date: June 8, 2016
4-Strand anchor capable of supporting 153-kip tieback load for se1smic + buildmg
1 Tieback H = 25', sb 4-8 with Elevator &
Seismic Surcharge.xmcdz