Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
; Bressi Ranch-Lennar Communities Part 2; Bressi Ranch Mass Grading Part 2; 2002-06-01
c APPENDIX 3 RATIONAL METHOD COMPUTER OUTPUT ULTIMATE CONDITION C C APPENDIX 3.1 C c SYSTEM 100 (ALINCANTE RD, 'D' ST) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 r************************* DESCRIPTION OF STUDY BRESSI RANCH - MASS GRADED CONDITIONS SYSTEM 100 (WESTERLY BACKBONE SYSTEM) 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325wli.dat TIME/DATE OF STUDY: 10:05 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 2 25.0 3 12.0 20.0 20.0 7.0 0.018/0.018/0.020 0.020/0.020/ --- 0.020/0.020/ — 0.67 2.00 0.0312 0.167 0.0150 0.50 1.50 0.0312 0.125 0.0150 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 100.00 TO NODE 100.10 IS CODE >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S- CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 433.00 DOWNSTREAM ELEVATION = 431.00 = 21 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.818 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF{CFS) = 0.62 FLOW PROCESS FROM NODE 100.10 TO NODE 100.20 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 431.00 DOWNSTREAM(FEET) = 412.00 FLOW LENGTH(FEET} = 1150.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.62 PIPE TRAVEL TIME(MIN.) = 5.20 Tc(MIN.) = 11.20 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 100.20 = 1350.00 FEET. FLOW PROCESS FROM NODE 100.20 TO NODE 100.20 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.384 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 8.60 SUBAREA RUNOFF(CFS) = 35.82 TOTAL AREA(ACRES) = 8.70 TOTAL RUNOFF{CFS) = 36.44 TC(MIN) = 11.20 FLOW PROCESS FROM NODE 100.20 TO NODE 100.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 412.00 DOWNSTREAM(FEET) = 408.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 8.78 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.44 PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 11.96 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 100.30 = 1750.00 FEET, FLOW PROCESS FROM NODE 100.30 TO NODE 100.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.203 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 35.93 TOTAL AREA(ACRES) = 17.70 TOTAL RUNOFF(CFS) = 72.38 TC{MIN) = 11.96 FLOW PROCESS FROM NODE 100.30 TO NODE 101.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 408.00 DOWNSTREAM(FEET) = 407.50 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.76 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 72.38 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 11.99 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 101.00 = 1770.00 FEET. FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW}««< ELEVATION DATA: UPSTREAM(FEET) = 407.50 DOWNSTREAM(FEET) = 395.00 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.04 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 72.38 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN-) = 12.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 2000.00 FEET FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.18 RAINFALL INTENSITY(INCH/HR) = 4.15 TOTAL STREAM AREA(ACRES) = 17.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 72.38 FLOW PROCESS FROM NODE 102.20 TO NODE 102.20 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.} = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.36 TOTAL AREA(ACRES} = 0.70 TOTAL RUNOFF(CFS) = 4.36 FLOW PROCESS FROM NODE 102.20 TO NODE 102.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 2 ARE: FLOW PROCESS FROM NODE 102.30 TO NODE 102.30 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED TC(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF{CFS) = 4.36 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 4.36 FLOW PROCESS FROM NODE 102.30 TO NODE 102.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 3 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 72.38 4.36 4.36 Tc (MIN.) 12.18 6.00 6.00 INTENSITY (INCH/HOUR) 4.155 6.559 6.559 AREA (ACRE) 17.70 0.70 0.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 54.57 54.57 77.90 Tc (MIN. ; 6.00 6.00 12.18 INTENSITY (INCH/HOUR) 6.559 6.559 4.155 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 77.90 Tc(MIN.) = TOTAL AREA(ACRES) = 19.10 LONGEST FLOWPATH FROM NODE 102.30 TO NODE 12.18 102.00 = 23000.00 FEET. FLOW PROCESS FROM NODE 102.00 TO NODE 105.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ELEVATION DATA: UPSTREAM(FEET) = 395.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 379.00 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.28 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 77.90 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 12.83 LONGEST FLOWPATH FROM NODE 102.30 TO NODE 105.00 = 23600.00 FEET, FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 12.83 RAINFALL INTENSITY{INCH/HR) = 4.02 TOTAL STREAM AREA(ACRES) = 19.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 77.90 FLOW PROCESS FROM NODE 105.20 TO NODE 105.21 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER {AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 405.00 DOWNSTREAM ELEVATION = 404.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF{CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 FLOW PROCESS FROM NODE 105.21 TO NODE 105.22 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 404.00 DOWNSTREAM(FEET) = 382.00 FLOW LENGTH(FEET) = 1200.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.11 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN.) = 6.44 Tc(MIN.) = 12.44 LONGEST FLOWPATH FROM NODE 105.20 TO NODE 105.22 = 1300.00 FEET FLOW PROCESS FROM NODE 105.22 TO NODE 105.22 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.099 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) - 10.35 SUBAREA RUNOFF(CFS) = 40.30 TOTAL AREA(ACRES) = 10.40 TOTAL RUNOFF(CFS) = 40.62 TC(MIN) = 12.44 FLOW PROCESS FROM NODE 105.22 TO NODE 105.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW} <«« ELEVATION DATA: UPSTREAM(FEET) = 382.00 DOWNSTREAM(FEET) = 380.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.99 ESTIMATED PIPE DIAMETER{INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 40.62 PIPE TRAVEL TIME{MIN.) = 0.95 Tc(MIN.) = 13.39 LONGEST FLOWPATH FROM NODE 105.20 TO NODE 105.30 = 1700.00 FEET. FLOW PROCESS FROM NODE 105.30 TO NODE 105.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.908 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 10.40 SUBAREA RUNOFF(CFS) = 38.61 TOTAL AREA(ACRES) = 20.80 TOTAL RUNOFF(CFS) = 79.23 TC(MIN) = 13.39 FLOW PROCESS FROM NODE 105.30 TO NODE 105.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 379.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.0 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 13.94 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 79.23 PIPE TRAVEL TIME{MIN.} = 0.06 Tc(MIN.) = 13.45 LONGEST FLOWPATH FROM NODE 105.20 TO NODE 105.00 = 1750.00 FEET. FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.45 RAINFALL INTENSITY(INCH/HR) = 3.90 TOTAL STREAM AREA(ACRES) = 20.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 79.23 FLOW PROCESS FROM NODE 105.30 TO NODE 105.30 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN-) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE{CFS} AT CONFLUENCE = 3.12 FLOW PROCESS FROM NODE 105.50 TO NODE 105.50 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 77.90 12.83 4.017 19.10 2 79.23 13.45 3.897 20.80 3 3.12 6.00 6.559 0.50 4 3.12 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 101.02 6.00 6.559 2 101.02 6.00 6.559 3 158.58 12.83 4.017 4 158.51 13.45 3.897 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 158.58 Tc(MIN.) = 12.83 TOTAL AREA(ACRES) = 40.90 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 105.00 = 60000.00 FEET, FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 375.50 DOWNSTREAM(FEET) = 370.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.82 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 158.58 PIPE TRAVEL TIME(MIN.} = 0.18 Tc(MIN.) = 13.01 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 106.00 = 60200.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.01 RAINFALL INTENSITY(INCH/HR) = 3.98 TOTAL STREAM AREA(ACRES) = 40.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 158.58 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.65 RAIN INTENSITY(INCH/HOUR) = 3.40 TOTAL AREA(ACRES) = 5.95 TOTAL RUNOFF(CFS) = 21.67 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.65 RAINFALL INTENSITY(INCH/HR) = 3.40 TOTAL STREAM AREA(ACRES) = 5.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.67 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 158.58 13.01 3.982 40.90 2 21.67 16.65 3.396 5.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 177.06 13.01 3.982 2 156.91 16.65 3.396 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS} = 177.06 Tc(MIN.) = 13.01 TOTAL AREA(ACRES) = 46.85 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 106.00 = 60200.00 FEET, FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM{FEET) = 370.00 DOWNSTREAM(FEET) = 337.00 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 25.58 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 177.06 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN-) = 13.37 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 107.00 = 60750.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.37 RAINFALL INTENSITY(INCH/HR) = 3.91 TOTAL STREAM AREA(ACRES) = 46.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 177.06 FLOW PROCESS FROM NODE 107.10 TO NODE 107.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.74 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS} = 3.74 FLOW PROCESS FROM NODE 107.10 TO NODE 107.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.74 FLOW PROCESS FROM NODE 107.20 TO NODE 107.30 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 386.00 DOWNSTREAM ELEVATION = 385.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 FLOW PROCESS FROM NODE 107.30 TO NODE 107.40 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON- PRES SURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 385.00 DOWNSTREAM(FEET) = 373.00 FLOW LEHGTH(FEET) = 800.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN.) = 4.62 Tc(MIN-) = 10.62 LONGEST FLOWPATH FROM NODE 107.20 TO NODE 107.40 = 900.00 FEET. FLOW PROCESS FROM NODE 107.40 TO NODE 107.40 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.538 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 4.35 SUBAREA RUNOFF(CFS) = 18.75 TOTAL AREA(ACRES) = 4.40 TOTAL RUNOFF(CFS) = 19.07 TC(MIN) = 10.62 FLOW PROCESS FROM NODE 107.40 TO NODE 107.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 372.00 DOWNSTREAM(FEET) = 367.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 9.30 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.07 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 11.16 LONGEST FLOWPATH FROM NODE 107.20 TO NODE 107.50 = 1200.00 FEET. FLOW PROCESS FROM NODE 107.50 TO NODE 107.50 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.396 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 15.45 TOTAL AREA(ACRES) = 8.10 TOTAL RUNOFF(CFS) = 34.52 TC(MIN) = 11.16 FLOW PROCESS FROM NODE 107.50 TO NODE 107.60 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 367.00 DOWNSTREAM(FEET) - 363.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.86 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.52 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 11.67 LONGEST FLOWPATH FROM NODE 107.20 TO NODE 107.60 = 1500.00 FEET. FLOW PROCESS FROM NODE 107.60 TO NODE 107.60 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.272 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 15.42 TOTAL AREA(ACRES) = 11.90 TOTAL RUNOFF(CFS) = 49.94 TC(MIN) = 11.67 FLOW PROCESS FROM NODE 107.60 TO NODE 107.70 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 363.00 DOWNSTREAM(FEET) = 337.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 33.20 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 49.94 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 11.72 LONGEST FLOWPATH FROM NODE 107.20 TO NODE 107.70 = 1600.00 FEET. FLOW PROCESS FROM NODE 107.70 TO NODE 107.70 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.260 USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.98 TOTAL AREA(ACRES} = 12.90 TOTAL RUNOFF(CFS) = 52.92 TC(MIN) = 11.72 FLOW PROCESS FROM NODE 107.70 TO NODE 107.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 337.10 DOWNSTREAM(FEET) = 337.00 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.78 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 52.92 PIPE TRAVEL TIME(MIN.} = 0.02 Tc(MIN-) = 11.73 LONGEST FLOWPATH FROM NODE 107.20 TO NODE 107.00 = 1610.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 11.73 RAINFALL INTENSITY{INCH/HR) = 4.26 TOTAL STREAM AREA(ACRES) = 12.90 PEAK FLOW RATE(CFS) AT CONFLUENCE - 52.92 3 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 177.06 3.74 52.92 Tc(MIN. ; 13.37 6.00 11.73 INTENSITY (INCH/HOUR) 3.912 6.559 4.256 AREA (ACRE) 46.85 0.60 12.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 143.69 218.12 227.94 Tc (MIN. ! 6.00 11.73 13.37 INTENSITY (INCH/HOUR) 6.559 4.256 3.912 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS} = 227.94 Tc(MIN.) = 13.37 TOTAL AREA(ACRES) = 60.35 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 107.00 = 60750.00 FEET, ************ FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 337.00 DOWNSTREAM(FEET) = 327.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.59 ESTIMATED PIPE DIAMETER{INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 227.94 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN-) = 13.50 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 108.00 = 60950.00 FEET, FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION{MIN.) = 13.50 RAINFALL INTENSITY(INCH/HR) = 3.89 TOTAL STREAM AREA(ACRES) = 60.35 PEAK FLOW RATE(CFS) AT CONFLUENCE = 227.94 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC{MIN) = 12.24 RAIN INTENSITY{INCH/HOUR} = 4.14 TOTAL AREA(ACRES) = 16.25 TOTAL RUNOFF(CFS) = 69.61 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.24 RAINFALL INTENSITY(INCH/HR) = 4.14 TOTAL STREAM AREA(ACRES) = 16.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 69.61 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 227.94 13.50 3.888 60.35 2 69.61 12.24 4.141 16.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 283.62 12.24 4.141 2 293.30 13.50 3. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 293.30 TcfMIN.) = 13.50 TOTAL AREA(ACRES) = 76.60 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 108.00 = 60950.00 FEET, FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 327.00 DOWNSTREAM(FEET) = 318.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 41.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 23.74 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 293.30 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 13.67 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 109.00 = 61200.00 FEET, FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} ««< ELEVATION DATA: UPSTREAM(FEET) = 318.00 DOWNSTREAM(FEET) = 307.00 FLOW LENGTH(FEET) = 260.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.60 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 293.30 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN-) = 13.84 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 110.00 - 61460.00 FEET, FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 305.00 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 46.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.05 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 293.30 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 13.97 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 111.00 = 61610.00 FEET, FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 13.97 RAINFALL INTENSITY(INCH/HR) = 3.80 TOTAL STREAM AREA(ACRES) = 76.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 293.30 FLOW PROCESS FROM NODE 111.11 TO NODE 111.12 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 321.00 DOWNSTREAM ELEVATION = 320.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 FLOW PROCESS FROM NODE 111.12 TO NODE 111.10 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 303.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N= 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.01 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.62 PIPE TRAVEL TIME(MIN.) = 3.33 Tc(MIN.) = 9.33 LONGEST FLOWPATH FROM NODE 111.11 TO NODE 111.10 = 900.00 FEET. FLOW PROCESS FROM NODE 111.10 TO NODE 111.10 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.935 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 23.91 TOTAL AREA(ACRES) = 5.20 TOTAL RUNOFF(CFS) = 24.53 TC(MIN) = 9.33 FLOW PROCESS FROM NODE 111.10 TO NODE 111.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 303.00 DOWNSTREAM(FEET) = 302.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 10.50 ESTIMATED PIPE DIAMETERfINCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.53 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN-) = 9.40 LONGEST FLOWPATH FROM NODE 111.11 TO NODE 111.00 = 950.00 FEET. FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 9.40 RAINFALL INTENSITY(INCH/HR} = 4.91 TOTAL STREAM AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.53 FLOW PROCESS FROM NODE 111.10 TO NODE 111.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.80 TOTAL AREA(ACRES) = 0.45 TOTAL RUNOFF(CFS) = 2.80 FLOW PROCESS FROM NODE 111.10 TO NODE 111.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS} AT CONFLUENCE = 2.80 FLOW PROCESS FROM NODE 111.20 TO NODE 111.20 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.61 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS} = 3.61 FLOW PROCESS FROM NODE 111.20 TO NODE 111.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.61 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 293.30 13.97 3.802 76.60 2 24.53 9.40 4.908 5.20 3 2.80 6.00 6.559 0.45 4 3.61 6.00 6.559 1.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 194.79 6.00 6.559 2 194.79 6.00 6.559 3 256.52 9.40 4.908 4 316.02 13.97 3.802 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 316.02 Tc(MIN.) = 13.97 TOTAL AREA(ACRES) = 83.25 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 111.00 = 61610.00 FEET, FLOW PROCESS FROM NODE 111.00 TO NODE 115.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 306.00 DOWNSTREAM(FEET) = 304.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 45.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.64 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 316.02 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN-) = 14.06 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 115.00 = 61710.00 FEET. FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.06 RAINFALL INTENSITY(INCH/HR) = 3.79 TOTAL STREAM AREA(ACRES) = 83.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 316.02 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.17 RAIN INTENSITY(INCH/HOUR) = 3.95 TOTAL AREA(ACRES) = 34.30 TOTAL RUNOFF(CFS) - 90.00 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 13.17 RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 34.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 90.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 316.02 14.06 3.787 83.25 2 90.00 13.17 3.950 34.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 392.99 13.17 3.950 2 402.31 14.06 3.787 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 402.31 Tc(MIN.) = 14.06 TOTAL AREA(ACRES) = 117.55 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 115.00 = 61710.00 FEET, FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 272.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 32.52 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 402.31 PIPE TRAVEL TIME(MIN.} = 0.26 Tc(MIN-) = 14.31 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 116.00 = 62210.00 FEET. FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 14.31 RAINFALL INTENSITY(INCH/HR} = 3.74 TOTAL STREAM AREA(ACRES) = 117.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 402.31 FLOW PROCESS FROM NODE 116.10 TO NODE 116.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.80 TOTAL AREA(ACRES) = 0.45 TOTAL RUNOFF(CFS) = 2.80 FLOW PROCESS FROM NODE 116.10 TO NODE 116.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY{INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.80 FLOW PROCESS FROM NODE 116.20 TO NODE 116.20 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 5.77 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 5.77 FLOW PROCESS FROM NODE 116.20 TO NODE 116.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE{CFS) AT CONFLUENCE = 5.77 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.1 (INCH/HOUR} (ACRE) 1 402.31 14.31 3.743 117.55 2 2.80 6.00 6.559 0.45 3 5.77 6.00 6.559 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 238.19 6.00 6.559 2 238.19 6.00 6.559 3 407.20 14.31 3.743 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 407.20 Tc(MIN.) = 14.31 TOTAL AREA(ACRES) = 119.60 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 116.00 = 62210.00 FEET, FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 272.00 DOWNSTREAM(FEET) = 258.00 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 31.87 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 407.20 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.} = 14.43 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 117.00 = 62440.00 FEET, FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 14.43 RAINFALL INTENSITY(INCH/HR) = 3.72 TOTAL STREAM AREA(ACRES) = 119.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 407.20 FLOW PROCESS FROM NODE 117.10 TO NODE 117.10 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 17.03 RAIN INTENSITY(INCH/HOUR) = 3.35 TOTAL AREA(ACRES) = 25.44 TOTAL RUNOFF(CFS) = 55.00 FLOW PROCESS FROM NODE 117.10 TO NODE 117.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.03 RAINFALL INTENSITY(INCH/HR) = 3.35 TOTAL STREAM AREA(ACRES) = 25.44 PEAK FLOW RATE(CFS) AT CONFLUENCE = 55.00 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 407.20 14.43 3.723 119.60 2 55.00 17.03 3.347 25.44 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 456.64 14.43 3.723 2 421.01 17.03 3.347 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 456.64 Tc(MIN.) = 14.43 TOTAL AREA(ACRES) = 145.04 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 117.00 = 62440.00 FEET. FLOW PROCESS FROM NODE 117.00 TO NODE 120.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 258.00 DOWNSTREAM(FEET) = 242.00 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 34.23 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 456.64 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 14.55 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 120.00 = 62670.00 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.55 RAINFALL INTENSITY(INCH/HR) = 3.70 TOTAL STREAM AREA(ACRES) = 145.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 456.64 FLOW PROCESS FROM NODE 120.20 TO NODE 120.20 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.80 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 1.80 FLOW PROCESS FROM NODE 120.20 TO NODE 120.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE{CFS} AT CONFLUENCE = 1.80 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 456.64 14.55 3.705 145.04 2 1.80 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 259.73 6.00 6.559 2 457.66 14.55 3.705 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS} = 457.66 Tc(MIN.) = 14.55 TOTAL AREA(ACRES) = 145.54 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 120.00 = 62670.00 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<:« >»»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 242.00 DOWNSTREAM(FEET) = 240.00 FLOW LENGTH(FEET) = 20.00 MANNING'S N= 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 39.41 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 457.66 PIPE TRAVEL TIME(MIN.) = 0-01 Tc(MIN.) = 14.56 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 122.00 = 62690.00 FEET, FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.56 RAINFALL INTENSITY{INCH/HR) = 3.70 TOTAL STREAM AREA(ACRES) = 145.54 PEAK FLOW RATE(CFS) AT CONFLUENCE = 457.66 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.87 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 1.87 FLOW PROCESS FROM NODE 122.00 TO NODE 122,00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY*INCH/HR) = 6,56 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE{CFS) AT CONFLUENCE = 1.87 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER {CFS) (MIN.) (INCH/HOUR) (ACRE) 1 457.66 14.56 3.703 145.54 2 1.87 6.00 6.559 0.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 260.28 6.00 6.559 2 458.71 14.56 3.703 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 458.71 Tc(MIN.) = 14.56 TOTAL AREA(ACRES) = 145-84 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 122.00 = 62690.00 FEET, FLOW PROCESS FROM NODE 122.00 TO NODE 125.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 240.00 DOWNSTREAM(FEET) = 190.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 34.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 54.95 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 458.71 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN-) = 14.62 LONGEST FLOWPATH FROM NODE 105.50 TO NODE 125.00 = 62890.00 FEET, FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.693 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 2.99 TOTAL AREA(ACRES) = 147.64 TOTAL RUNOFF(CFS) = 461.71 TC(MIN) = 14.62 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 147.64 TC(MIN.) = 14.62 PEAK FLOW RATE(CFS) = 461.71 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.2 SYSTEM 122 ('D' STREET) c c RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 f************************* DESCRIPTION OF STUDY BRESSI RANCH - MASS GRADED CONDITIONS GRADING BASED ON TM 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325103i.dat" TIME/DATE OF STUDY: 09:50 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE{INCH} = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 25.0 20.0 0.020/0.020/ --- 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 108.10 TO NODE 108.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 345.00 DOWNSTREAM ELEVATION - 344.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 FLOW PROCESS FROM NODE 108.20 TO NODE 108.21 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 344.00 DOWNSTREAM(FEET) = 335.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN.) = 3.47 Tc{MIN.) = 9.47 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.21 = 700.00 FEET, FLOW PROCESS FROM NODE 108.21 TO NODE 108.21 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.888 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 2.95 SUBAREA RUNOFF(CFS) = 13.70 TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 14.01 TC(MIN) = 9.47 FLOW PROCESS FROM NODE 108.21 TO NODE 108.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 335.00 DOWNSTREAM(FEET) = 328.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.41 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.01 PIPE TRAVEL TIME(MIN.} = 1.35 Tc(MIN-) = 10.81 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.30 = 1300.00 FEET, FLOW PROCESS FROM NODE 108.30 TO NODE 108.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.485 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF{CFS) - 25.57 TOTAL AREA(ACRES) = 9.00 TOTAL RUNOFF{CFS) = 39.58 TC(MIN) = 10.81 FLOW PROCESS FROM NODE 108.30 TO NODE 108.40 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 328.00 DOWNSTREAM(FEET) = 316.00 FLOW.LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.82 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 39.58 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN-) = 11.30 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.40 = 1700.00 FEET. FLOW PROCESS FROM NODE 108.40 TO NODE 108.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.361 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 24.86 TOTAL AREA(ACRES) = 15.00 TOTAL RUNOFF(CFS) = 64.43 TC(MIN) = 11.30 FLOW PROCESS FROM NODE 108.40 TO NODE 108.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} ««< ELEVATION DATA: UPSTREAM(FEET) = 316.00 DOWNSTREAM(FEET) = 315.80 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.3 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 13.19 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 64.43 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 11.31 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.50 = 1710.00 FEET. FLOW PROCESS FROM NODE 108.50 TO NODE 108.50 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.31 RAINFALL INTENSITY(INCH/HR) = 4.36 TOTAL STREAM AREA(ACRES) = 15.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 64.43 FLOW PROCESS FROM NODE 108.51 TO NODE 108.51 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER {AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.05 TOTAL AREA(ACRES) = 0.65 TOTAL RUNOFF(CFS) = 4.05 FLOW PROCESS FROM NODE 108.51 TO NODE 108.50 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.05 FLOW PROCESS FROM NODE 108.52 TO NODE 108.52 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«:«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.74 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) = 3.74 FLOW PROCESS FROM NODE 108.52 TO NODE 108.50 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 64.43 11.31 4.358 15.00 2 4.05 6.00 6.559 0.65 3 3.74 6.00 6.559 0.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 50.60 6.00 6.559 2 50.60 6.00 6.559 3 69.61 11.31 4.358 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 69.61 Tc(MIN-) = 11.31 TOTAL AREA(ACRES) = 16.25 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.50 = 1710.00 FEET FLOW PROCESS FROM NODE 108.50 TO NODE 108.60 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 315.80 DOWNSTREAM(FEET) = 314.55 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.06 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.61 PIPE TRAVEL TIME(MIN-) = 0.52 Tc{MIN.} = 11.83 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.60 = 1960.00 FEET. FLOW PROCESS FROM NODE 108.60 TO NODE 108.70 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 314.55 DOWNSTREAM(FEET) = 314.05 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.8 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 8.06 ESTIMATED PIPE DIAMETER{INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.61 PIPE TRAVEL TIME(MIN-) = 0.21 Tc(MIN.) = 12.03 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.70 = 2060.00 FEET. FLOW PROCESS FROM NODE 108.70 TO NODE 108.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 314.05 DOWNSTREAM(FEET) = 313.55 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.8 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 8.06 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.61 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN-) = 12.24 LONGEST FLOWPATH FROM NODE 108.10 TO NODE 108.00 = 2160.00 FEET, END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 16.25 TC(MIN-) = 12.24 69.61 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.3 SYSTEM 130 ('E' STREET) \^^j- RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY ' BRESSI RANCH - MASS GRADED CONDITIONS ' PA-4 & OFFSITE ROADWAY DRAINAGE ' 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325106i.dat TIME/DATE OF STUDY: 09:36 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS{DECIMAL} TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 45.0 40.0 0.020/0.020/ --- 0.50 1.50 0.0312 0.125 0.0170 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 106.10 TO NODE 106.11 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 45.00 UPSTREAM ELEVATION = 450.00 DOWNSTREAM ELEVATION = 449.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.388 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 FLOW PROCESS FROM NODE 106.11 TO NODE 106.12 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 2 USED)<«« UPSTREAM ELEVATION(FEET) = 449.00 DOWNSTREAM ELEVATIONfFEET) = 436.00 STREET LENGTH(FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 45.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 40.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0170 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.79 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.78 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.83 STREET FLOW TRAVEL TIME(MIN.) = 4.82 TcfMIN.) = 10.82 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.484 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 4.26 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 4.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.42 FLOW VELOCITY(FEET/SEC.) = 2.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1.10 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.12 = 795.00 FEET. FLOW PROCESS FROM NODE 106.12 TO NODE 106.13 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 2 USED)<«« UPSTREAM ELEVATION(FEET) = 436.00 DOWNSTREAM ELEVATION(FEET) = 396.00 STREET LENGTH(FEET) = 850.00 CURB HEIGHT(INCHES} = 6.0 STREET HALFWIDTH(FEET) = 45.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 40.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0170 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.48 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.66 STREET FLOW TRAVEL TIME(MIN.) = 3.04 Tc{MIN.) = 13.86 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.822 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF{CFS) = 3.63 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 8.51 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.67 FLOW VELOCITY(FEET/SEC.) = 4.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1-88 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.13 = 1645.00 FEET, FLOW PROCESS FROM NODE 106.13 TO NODE 106.14 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) = 385.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.17 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.51 PIPE TRAVEL TIME(MIN.) = 0.51 TcfMIN.) = 14.37 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.14 = 1895.00 FEET, FLOW PROCESS FROM NODE 106.14 TO NODE 106.14 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.734 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF{CFS) = 7.80 TOTAL AREA(ACRES) = 4.30 TOTAL RUNOFF(CFS) = 16.32 TC(MIN) = 14.37 FLOW PROCESS FROM NODE 106.14 TO NODE 106.30 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE {EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 385.00 DOWNSTREAM(FEET) = 380.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.81 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.32 PIPE TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 15.84 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.30 = 2495.00 FEET. FLOW PROCESS FROM NODE 106.30 TO NODE 106.60 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 382.00 DOWNSTREAM(FEET) = 372.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.32 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN-) - 16.49 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.60 = 2895.00 FEET. FLOW PROCESS FROM NODE 106.60 TO NODE 106.60 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.49 RAINFALL INTENSITY(INCH/HR) = 3.42 TOTAL STREAM AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.32 FLOW PROCESS FROM NODE 106.40 TO NODE 106.40 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.98 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 4.98 FLOW PROCESS FROM NODE 106.40 TO NODE 106.60 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR} = 6.56 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.98 FLOW PROCESS FROM NODE 106.50 TO NODE 106.50 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<:«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.} = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 5.30 TOTAL AREA(ACRES) = 0.85 TOTAL RUNOFF(CFS) = 5.30 FLOW PROCESS FROM NODE 106.50 TO NODE 106.60 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER {CFS} (MIN.) {INCH/HOUR} (ACRE) 1 16.32 16.49 3.417 4.30 2 4.98 6.00 6.559 0.80 3 5.30 6.00 6.559 0.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 18.78 6.00 6.559 2 18.78 6.00 6.559 3 21.67 16.49 3.417 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS} = 21.67 Tc{MIN.) = 16.49 TOTAL AREA(ACRES) = 5.95 LONGEST FLOWPATH FROM NODE 106.50 TO NODE 106.60 = 40000.00 FEET, FLOW PROCESS FROM NODE 106.60 TO NODE 106.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 372.00 DOWNSTREAM(FEET) = 370.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.26 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.67 PIPE TRAVEL TIME(MIN-) = 0.16 TcfMIN.) = 16.65 LONGEST FLOWPATH FROM NODE 106.50 TO NODE 106.00 = 40100.00 FEET, END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.95 TC(MIN.) = 16.65 PEAK FLOW RATE(CFS) = 21.67 END OF RATIONAL METHOD ANALYSIS C APPENDIX 3.4 SYSTEM 200 ('A' STREET) c C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL {c} Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 r************************* DESCRIPTION OF STUDY BRESSI RANCH - ULTIMATE CONDITIONS SYSTEM 200 - RESIDENTIAL BASED ON TM GRADING 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325w2.dat TIME/DATE OF STUDY: 11:04 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 25.0 20.0 0.020/0.020/ — 0.50 3 12.0 7.0 0.020/0.020/ — 0.50 2.00 0.0312 0.167 0.0150 1.50 0.0312 0.125 0.0150 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as {Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SI2E PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 200.00 TO NODE 200.10 IS CODE »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 416.20 DOWNSTREAM ELEVATION = 415.00 = 21 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.887 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.498 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.38 FLOW PROCESS FROM NODE 200.10 TO NODE 200.20 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 415.00 DOWNSTREAM{FEET) = 375.00 FLOW LENGTH(FEET) = 850.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.58 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.38 PIPE TRAVEL TIME(MIN.) = 3.10 Tc(MIN.) = 10.98 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 200.20 = 970.00 FEET, FLOW PROCESS FROM NODE 200.20 TO NODE 200.20 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.441 USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 23.00 TOTAL AREA(ACRES) = 7.50 TOTAL RUNOFF(CFS) = 23.39 TC(MIN) = 10.98 FLOW PROCESS FROM NODE 200.20 TO NODE 200.20 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION{MIN.) = 10.98 RAINFALL INTENSITY(INCH/HR) = 4.44 TOTAL STREAM AREA(ACRES) = 7.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.39 FLOW PROCESS FROM NODE 200.20 TO NODE 200.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 416.00 DOWNSTREAM ELEVATION = 415.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 FLOW PROCESS FROM NODE 200.22 TO NODE 200.20 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>{ STREET TABLE SECTION # 3 USED) <«« UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 375.00 STREET LENGTH(FEET) = 950.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.67 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.60 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.28 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.28 STREET FLOW TRAVEL TIME(MIN.) = 3.70 Tc(MIN.) = 9.70 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.812 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.45 SUBAREA RUNOFF(CFS) = 6.63 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 6.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.38 FLOW VELOCITY(FEET/SEC.) = 4.91 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 200.20 = 1050.00 FEET. FLOW PROCESS FROM NODE 200.20 TO NODE 200.20 IS CODE = ! >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.70 RAINFALL INTENSITY(INCH/HR) = 4.81 TOTAL STREAM AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 23.39 10.98 4.441 7.50 2 6.94 9.70 4.812 1.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.52 9.70 4.812 2 29.79 10.98 4.441 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS) = 29.79 Tc(MIN.) = 10.98 TOTAL AREA(ACRES) = 9.00 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 200.20 = 1050.00 FEET, FLOW PROCESS FROM NODE 200.20 TO NODE 202.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« . >»»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM(FEET) = 374.50 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.32 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 29.79 PIPE TRAVEL TIME(MIN-) = 0.05 Tc(MIN.) = 11.03 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 202.00 = 1080.00 FEET, FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.03 RAINFALL INTENSITY(INCH/HR) = 4.43 TOTAL STREAM AREA(ACRES) = 9.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.79 FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 389.20 DOWNSTREAM ELEVATION = 388.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 201.10 TO NODE 201.20 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 388.00 DOWNSTREAM ELEVATION(FEET) = 375.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.45 AVERAGE FLOW VELOCITY(FEET/SEC.} = 3.28 PRODUCT OF DEPTH5cVELOCITY(FT*FT/SEC. ) = 0.90 STREET FLOW TRAVEL TIME (MIN.) = 2.28 Tc(MIN.) = 13.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.958 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 3.92 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 4.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.91 FLOW VELOCITY(FEET/SEC.) = 3.79 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 201.20 = 570.00 FEET. FLOW PROCESS FROM NODE 201.20 TO NODE 202.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM{FEET) = 374.50 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.16 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN-) = 13.17 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 590.00 FEET, FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 13.17 RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.16 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) {MIN.) (INCH/HOUR) (ACRE) 1 29.79 11.03 4.428 9.00 2 4.16 13.17 3.949 1.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.} (INCH/HOUR) 1 33.51 11.03 . 4.428 2 30.74 13.17 3.949 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS) = 33.51 Tc(MIN.) = 11.03 TOTAL AREA(ACRES) = 10.90 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 202.00 = 1080.00 FEET, FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 374.50 DOWNSTREAM(FEET) = 372.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.55 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.51 PIPE TRAVEL TIME{MIN.) = 0.35 Tc(MIN.) = 11.38 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 203.00 = 1280.00 FEET, FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.340 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 11.10 TOTAL RUNOFF(CFS) = 34.33 TC(MIN) = 11.38 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 372.00 DOWNSTREAM(FEET) = 366.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.09 ESTIMATED PIPE DIAMETER{INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.33 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 11.64 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 204.00 = 1480.00 FEET. FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.64 RAINFALL INTENSITY(INCH/HR) = 4.28 TOTAL STREAM AREA(ACRES) = 11.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 34.33 FLOW PROCESS FROM NODE 204.10 TO NODE 204.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 388.20 DOWNSTREAM ELEVATION = 387.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 204.20 TO NODE 204.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION{FEET} = 387.00 DOWNSTREAM ELEVATION(FEET) = 368.00 STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 *'TRAVEL TIME COMPUTED USING ESTIMATED FLOW{CFS) = 4.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 6.96 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.93 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN-) = 13.46 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.895 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER {AMC II) = 88 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 7.93 TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 8.17 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.42 FLOW VELOCITY(FEET/SEC.) = 4.07 DEPTH*VELOCITY(FT*FT/SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 204.10 TO NODE 204.30 = 670.00 FEET. FLOW PROCESS FROM NODE 204.30 TO NODE 204.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 368.00 DOWNSTREAM(FEET) = 366.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.09 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.17 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 13.67 LONGEST FLOWPATH FROM NODE 204.10 TO NODE 204.00 = 770.00 FEET, FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 13.67 RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE{CFS) AT CONFLUENCE = 8.17 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 34.33 11.64 4.279 11.10 2 8.17 13.67 3.857 3.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 41.70 11.64 4.279 2 39.12 13.67 3.857 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.70 Tc(MIN.) = 11.64 TOTAL AREA(ACRES) = 14.90 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 204.00 = 1480.00 FEET, FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 366.00 DOWNSTREAM(FEET) = 360.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.65 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 41.70 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 11.96 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 205.00 = 1730.00 FEET. FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.96 RAINFALL INTENSITY(INCH/HR) = 4.20 TOTAL STREAM AREA(ACRES) = 14.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.70 FLOW PROCESS FROM NODE 205.11 TO NODE 205.12 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 375.00 DOWNSTREAM ELEVATION = 373.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW{MINUTES) = 14.001 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.797 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.21 FLOW PROCESS FROM NODE 205.12 TO NODE 205.10 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 3 USED)«<« UPSTREAM ELEVATION(FEET) = 370.00 DOWNSTREAM ELEVATION(FEET) = 360.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.44 ' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.22 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc{MIN.) = 16.34 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.438 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.46 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 2.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.35 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 0.96 LONGEST FLOWPATH FROM NODE 205.11 TO NODE 205.10 = 600.00 FEET, FLOW PROCESS FROM NODE 205.10 TO NODE 205.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.34 RAINFALL INTENSITY(INCH/HR) = 3.44 TOTAL STREAM AREA(ACRES) = 1-40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.67 FLOW PROCESS FROM NODE 205.20 TO NODE 205.20 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.49 FLOW PROCESS FROM NODE 205.20 TO NODE 205.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA{ACRES} = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 41.70 11.96 4.202 14.90 2 2.67 16.34 3.438 1.40 3 2.49 6.00 6.559 0.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 30.61 6.00 6.559 2 45.48 11.96 4.202 3 38.08 16.34 3.438 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.48 Tc(MIN.) = 11.96 TOTAL AREA(ACRES) = 16.70 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 205.00 = 1730.00 FEET, FLOW PROCESS FROM NODE 205.00 TO NODE 205.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 358.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.23 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =45.48 PIPE TRAVEL TIME(MIN-) = 0.14 Tc(MIN.) = 12.10 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 205.50 = 1830.00 FEET. FLOW PROCESS FROM NODE 205.50 TO NODE 205.50 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.10 RAINFALL INTENSITY(INCH/HR) = 4.17 TOTAL STREAM AREA(ACRES) = 16.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 45.48 FLOW PROCESS FROM NODE 205.51 TO NODE 205.52 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 363.50 DOWNSTREAM ELEVATION = 362.00 ELEVATION DIFFERENCE = 1.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.125 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.166 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.23 FLOW PROCESS FROM NODE 205.52 TO NODE 205.53 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »>»( STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 362.00 DOWNSTREAM ELEVATION(FEET) = 358.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.63 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DSPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.24 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.26 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75 STREET FLOW TRAVEL TIME(MIN.) = 2.96 Tc{MIN.) = 15.08 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.620 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 4.78 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 5.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.00 FLOW VELOCITY(FEET/SEC.) = 2.48 DEPTH*VELOCITY(FT*FT/SEC.) = 0.91 LONGEST FLOWPATH FROM NODE 205.51 TO NODE 205.53 = 550.00 FEET. FLOW PROCESS FROM NODE 205.53 TO NODE 205.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 358.00 DOWNSTREAM(FEET) = 355.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.29 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.01 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 15.28 LONGEST FLOWPATH FROM NODE 205.51 TO NODE 205.00 = 650.00 FEET. FLOW PROCESS FROM NODE 205.53 TO NODE 205.50 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 15.28 RAINFALL INTENSITY(INCH/HR) = 3.59 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.01 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 45.48 12.10 4.172 16.70 2 5.01 15.28 3.589 2.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 49.78 12.10 4.172 2 44.13 15.28 3.589 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 49.78 Tc{MIN.) = 12.10 TOTAL AREA(ACRES) = 19.20 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 205.50 = 1830.00 FEET. FLOW PROCESS FROM NODE 205.50 TO NODE 206'. 00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 355.00 DOWNSTREAM(FEET) = 335.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.39 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 49.78 PIPE TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 206.00 = 2530.00 FEET. FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 12.91 RAINFALL INTENSITY(INCH/HR) = 4.00 TOTAL STREAM AREA(ACRES) = 19.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 49.78 FLOW PROCESS FROM NODE 206.10 TO NODE 206.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 363.00 DOWNSTREAM ELEVATION = 361.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.001 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.797 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.21 FLOW PROCESS FROM NODE 206.20 TO NODE 206.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 361.00 DOWNSTREAM ELEVATION(FEET) = 332.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.75 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.66 AVERAGE FLOW VELOCITY{FEET/SEC.) = 4.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.33 STREET FLOW TRAVEL TIME(MIN.) = 3.21 Tc(MIN.) = 17.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.324 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 9.30 SUBAREA RUNOFF(CFS) = 17.00 TOTAL AREA(ACRES) = 9.40 PEAK FLOW RATE{CFS) = 17.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.00 FLOW VELOCITY(FEET/SEC.) = 5.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.91 LONGEST FLOWPATH FROM NODE 206.10 TO NODE 206.30 = 1000.00 FEET. FLOW PROCESS FROM NODE 206.30 TO NODE 206.40 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««:< ELEVATION DATA: UPSTREAM(FEET) = 332.00 DOWNSTREAM{FEET) = 331.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.70 ESTIMATED PIPE DIAMETER{INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.21 PIPE TRAVEL TIME{MIN.) = 0.58 Tc(MIN.) = 17.79 LONGEST FLOWPATH FROM NODE 206.10 TO NODE 206.40 = 1200.00 FEET. FLOW PROCESS FROM NODE 206.40 TO NODE 206.40 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.254 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) = 5.37 TOTAL AREA(ACRES) = 12.40 TOTAL RUNOFF(CFS) = 22.58 TC(MIN) = 17.79 FLOW PROCESS FROM NODE 206.40 TO NODE 206.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 330.50 DOWNSTREAM(FEET) = 330.00 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 10.95 ESTIMATED PIPE DIAMETER{INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.58 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 17.82 LONGEST FLOWPATH FROM NODE 206.10 TO NODE 206.00 = 1220.00 FEET FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.82 RAINFALL INTENSITY(INCH/HR) = 3.25 TOTAL STREAM AREA(ACRES) = 12.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 49.78 12.91 4.001 19.20 2 22.58 17.82 3.250 12.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.} (INCH/HOUR) 1 68.13 12.91 4.001 2 63.02 17.82 3.250 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 68.13 Tc(MIN.) = 12.91 TOTAL AREA(ACRES) = 31.60 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 206.00 = 2530.00 FEET, FLOW PROCESS FROM NODE 206.00 TO NODE 210.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «:<« ELEVATION DATA: UPSTREAM(FEET) = 328.00 DOWNSTREAM(FEET) = 325.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.82 ESTIMATED PIPE DIAMETER{INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 68.13 PIPE TRAVEL TIME(MIN.} = 0.11 Tc(MIN.) = 13.02 LONGEST FLOWPATH FROM NODE 200.20 TO NODE 210-00 = 2630.00 FEET, FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.02 RAINFALL INTENSITY(INCH/HR) = 3.98 TOTAL STREAM AREA(ACRES) = 31.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 68.13 FLOW PROCESS FROM NODE 210.10 TO NODE 210.10 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS^«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.36 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 4.36 FLOW PROCESS FROM NODE 210.10 TO NODE 210.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 325.50 DOWNSTREAM(FEET) = 325.00 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.47 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.36 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 6.04 LONGEST FLOWPATH FROM NODE 210.10 TO NODE 210.00 = 120.00 FEET. FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.04 RAINFALL INTENSITY(INCH/HR) = 6.53 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 FLOW PROCESS FROM NODE 210.21 TO NODE 210.22 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 354.20 DOWNSTREAM ELEVATION = 353.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 210.22 TO NODE 210.20 IS CODE = 62 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL !c) Copyright 1982-2001 Advanced Engineering Software (aesl Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 *************************** DESCRIPTION OF STUDY BRESSI RANCH - ULTIMATE CONDITIONS ' SYSTEM 300 - RESIDENTIAL AREA PER TM GRADING 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325w3.dat' TIME/DATE OF STUDY: 14:08 05/23/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 12.0 7.0 0.020/0.020/ 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 300.00 TO NODE 300.10 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 377.20 DOWNSTREAM ELEVATION = 376.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS} = 0.25 FLOW PROCESS FROM NODE 300.10 TO NODE 300.20 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 2 USED) <«« UPSTREAM ELEVATION(FEET) = 376.00 DOWNSTREAM ELEVATION(FEET) = 349.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL} = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 3.18 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.05 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.28 PRODUCT OF DEPTH5=VELOCITY(FT*FT/SEC. ) = 0.81 STREET FLOW TRAVEL TIME(MIN-) = 4.07 Tc(MIN.) = 14.91 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.646 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 5.81 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 6.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.27 FLOW VELOCITY(FEET/SEC.) = 3.78 DEPTH*VELOCITY(FT*FT/SEC.) = 1.10 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 300.20 = 920.00 FEET. FLOW PROCESS FROM NODE 300.20 TO NODE 300.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 349.00 DOWNSTREAM(FEET) = 320.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.06 PIPE TRAVEL TIME(MIN.) = 1.19 TcfMIN.) = 16.10 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 300.30 = 1620.00 FEET. FLOW PROCESS FROM NODE 300.30 TO NODE 300.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR} = 3.470 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 11.45 TOTAL AREA(ACRES) = 9.00 TOTAL RUNOFF(CFS) = 17.51 TC(MIN) = 16.10 FLOW PROCESS FROM NODE 300.30 TO NODE 300.40 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 305.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES 13.64 18.00 NUMBER OF PIPES = 1 PIPE-FLOW VELOCITY(FEET/SEC.} = ESTIMATED PIPE DIAMETER(INCH) = PIPE-FLOW(CFS) = 17.51 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 16.47 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 300.40 = 1920.00 FEET, FLOW PROCESS FROM NODE 300.40 TO NODE 300.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.420 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF{CFS) = 6.58 TOTAL AREA(ACRES) = 12.50 TOTAL RUNOFF(CFS) = 24.09 TC(MIN) = 16.47 FLOW PROCESS FROM NODE 300.40 TO NODE 300.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 298.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.59 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.09 PIPE TRAVEL TIME(MIN-) - 0.36 Tc(MIN.) = 16.83 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 300.50 = 2170.00 FEET, FLOW PROCESS FROM NODE 300.50 TO NODE 300.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.372 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA{ACRES) = 12.00 SUBAREA RUNOFF(CFS) = 22.26 TOTAL AREA(ACRES) = 24.50 TOTAL RUNOFF(CFS) = 46.35 TC{MIN) = 16.83 FLOW PROCESS FROM NODE 300.50 TO NODE 117.10 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« = — — ;;^^———— — —— — — —— — —— — — —— — — — ——i=i— — ———:^^:^^=±:i=^^^^^^^^~^^™^^^^^~:i^ = = =;ii = :z = ^i ELEVATION DATA: UPSTREAM(FEET) = 298.00 DOWNSTREAM(FEET) = 296.00 FLOW LENGTH(FEET) - 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.27 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 46.35 PIPE TRAVEL TIME(MIN-) = 0.14 Tc(MIN.} = 16.96 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 117.10 = 2270.00 FEET, FLOW PROCESS FROM NODE 117,10 TO NODE 117.10 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.355 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.44 SUBAREA RUNOFF(CFS) = 0.81 TOTAL AREA(ACRES) = 24.94 TOTAL RUNOFF(CFS) = 47.17 TC(MIN) = 16.96 FLOW PROCESS FROM NODE 117.10 TO NODE 117.20 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 280.00 DOWNSTREAM(FEET) = 258.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 39.72 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.17 PIPE TRAVEL TIME(MIN-) = 0.02 Tc(MIN.) = 16.98 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 117.20 = 2320.00 FEET, FLOW PROCESS FROM NODE 117.20 TO NODE 117.20 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.98 RAINFALL INTENSITY(INCH/HR) = 3.35 TOTAL STREAM AREA(ACRES) = 24.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.17 FLOW PROCESS FROM NODE 117.20 TO NODE 117.20 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 USER SPECIFIED Tc(MTN-) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.48 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 1.48 FLOW PROCESS FROM NODE 117.20 TO NODE 117.20 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE{CFS) AT CONFLUENCE = 1.48 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS} (MIN.) (INCH/HOUR) (ACRE) 1 47.17 16.98 3.352 24.94 2 1.48 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 25.58 6.00 6.559 2 47.92 16.98 3.352 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.92 Tc(MIN.) = 16.98 TOTAL AREA(ACRES) = 25.44 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 117.20 = 2320.00 FEET, FLOW PROCESS FROM NODE 117.20 TO NODE 117.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 258.00 DOWNSTREAM(FEET} = 257.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 13.54 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.92 PIPE TRAVEL TIME(MIN.) = 0.05 TclMIN.) = 17.03 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 117.00 = 2360.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 25.44 TC(MIN.) = 17.03 PEAK FLOW RATE(CFS) = 47.92 END OF RATIONAL METHOD ANALYSIS c c c APPENDIX 3.5 SYSTEM 400 ('A' STREET) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY BRESSI RANCH - INTERIM CONDITIONS SYSTEM 400 - MASS GRADE 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325400i.dat TIME/DATE OF STUDY: 13:00 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 26.0 21.0 0.020/0.020/ 0.50 2.00 0.0312 0.167 0.0150 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 400.00 TO NODE 400.10 IS CODE >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« = 21 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 309.00 DOWNSTREAM ELEVATION = 308.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF{CFS) = 0.62 FLOW PROCESS FROM NODE 400.10 TO NODE 400.20 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME T.HRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 303.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.62 PIPE TRAVEL TIME(MIN.) = 4.27 Tc(MIN.) = 10.27 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 400.20 = 800.00 FEET. FLOW PROCESS FROM NODE 400.20 TO NODE 400.20 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.639 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF{CFS) = 34.81 TOTAL AREA(ACRES) = 8.00 TOTAL RUNOFF(CFS} = 35.44 TC(MIN) = 10.27 FLOW PROCESS FROM NODE 400.20 TO NODE 400.30 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 303.00 DOWNSTREAM(FEET) = 280.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.39 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.44 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 10.41 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 400.30 = 1000.00 FEET. FLOW PROCESS FROM NODE 400.30 TO NODE 400.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.596 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 2.18 TOTAL AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) = 37.62 TC(MIN) = 10.41 FLOW PROCESS FROM NODE 400.30 TO NODE 405.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 282.00 DOWNSTREAM(FEET} = 281.50 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.78 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 37.62 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 10.51 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 = 1050.00 FEET. FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.51 RAINFALL INTENSITY(INCH/HR) = 4.57 TOTAL STREAM AREA(ACRES) = 8.50 PEAK FLOW RATE{CFS) AT CONFLUENCE = 37.62 FLOW PROCESS FROM NODE 405.10 TO NODE 405.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 405.10 TO NODE 405.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0-50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 FLOW PROCESS FROM NODE 405.20 TO NODE 405.20 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 405.20 TO NODE 405.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION{MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 37.62 10.51 4.569 8.50 2 3.12 6.00 6.559 0.50 3 3.12 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 32.44 6.00 6.559 2 32.44 6.00 6.559 3 41.96 10.51 4.569 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.96 Tc(MIN.) = 10.51 TOTAL AREA(ACRES) = 9.50 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 405.00 = 5000.00 FEET, FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 282.00 DOWNSTREAM(FEET) = 275.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.36 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 41.96 PIPE TRAVEL TIME(MIN.) = 0.80 Tc{MIN.) = 11.31 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 406.00 = 5500.00 FEET. FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.31 RAINFALL INTENSITY(INCH/HR) = 4.36 TOTAL STREAM AREA(ACRES) = 9.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.96 FLOW PROCESS FROM NODE 408.00 TO NODE 408.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 300.00 DOWNSTREAM ELEVATION = 299.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 FLOW PROCESS FROM NODE 408.10 TO NODE 408.30 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 299.00 DOWNSTREAM(FEET) = 276.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.45 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.62 PIPE TRAVEL TIME(MIN.) = 3.00 Tc(MIN.) = 9.00 LONGEST FLOWPATH FROM NODE 408.00 TO NODE 408.30 = 900.00 FEET. FLOW PROCESS FROM NODE 408.30 TO NODE 408.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 5.051 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 8.50 SUBAREA RUNOFF(CFS) = 40.79 TOTAL AREA(ACRES) = 8.60 TOTAL RUNOFF(CFS) = 41.41 TC(MIN) = 9.00 FLOW PROCESS FROM NODE 408.30 TO NODE 408.10 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 275.00 DOWNSTREAM(FEET) = 274.50 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.03 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 41.41 PIPE TRAVEL TIME(MIN-) = 0.03 Tc(MIN.) = 9.03 LONGEST FLOWPATH FROM NODE 408.00 TO NODE 408.10 = 925.00 FEET, FLOW PROCESS FROM NODE 408.30 TO NODE 410.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 9.03 RAINFALL INTENSITY(INCH/HR) = 5.04 TOTAL STREAM AREA(ACRES) = 8.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.41 FLOW PROCESS FROM NODE 410.10 TO NODE 410.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.98 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 4.98 FLOW PROCESS FROM NODE 410.10 TO NODE 410.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.98 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER {CFS} (MIN.) (INCH/HOUR) (ACRE) 1 41.96 11.31 4.357 9.50 2 41.41 9.03 5.039 8.60 3 4.98 6.00 6.559 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 64.67 6.00 6.559 2 81.52 9.03 5.039 3 81.08 11.31 4.357 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 81.52 Tc(MIN.) = 9.03 TOTAL AREA(ACRES) = 18.90 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 410.00 = 5500.00 FEET, FLOW PROCESS FROM NODE 410.00 TO NODE 415.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM(FEET) = 374.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.98 ESTIMATED PIPE DIAMETER{INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 81.52 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.09 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 415.00 = 5550.00 FEET, FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.09 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES) = 18.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 81.52 FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 298.00 DOWNSTREAM ELEVATION = 297.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF{CFS} = 0.62 FLOW PROCESS FROM NODE 411.20 TO NODE 411.30 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 297.00 DOWNSTREAM(FEET) = 278.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.92 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.62 PIPE TRAVEL TIME(MIN.) = 1.69 Tc(MIN-) = 7.69 LONGEST FLOWPATH FROM NODE 415.00 TO NODE 411.30 = 600.00 FEET. FLOW PROCESS FROM NODE 411.30 TO NODE 415.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.587 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 11.15 TOTAL AREA(ACRES) = 2.20 TOTAL RUNOFF(CFS) = 11.77 TC(MIN) = 7.69 FLOW PROCESS FROM NODE 411.30 TO NODE 415.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION tt 2 USED)<«« UPSTREAM ELEVATION(FEET) = 278.00 DOWNSTREAM ELEVATION(FEET) = 275.00 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.20 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.88 STREET FLOW TRAVEL TIME(MIN-) = 1.14 Tc(MIN.) = 8.84 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.109 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 4.85 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 16.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 20.69 FLOW VELOCITY(FEET/SEC.) = 3.78 DEPTH*VELOCITY(FT*FT/SEC.) = 2.04 LONGEST FLOWPATH FROM NODE 415.00 TO NODE 415.00 = 850.00 FEET. FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AHD COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.84 RAINFALL INTENSITY(INCH/HR) = 5.11 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.62 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) {INCH/HOUR} (ACRE) 1 81.52 9.09 5.017 18.90 2 16.62 8.84 5.109 3.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 96.68 8.84 5.109 2 97.85 9.09 5.017 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 97.85 Tc(MIN.) = 9.09 TOTAL AREA(ACRES) = 22.10 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 415.00 = 5550.00 FEET. FLOW PROCESS FROM NODE 415.00 TO NODE 420.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 275.00 DOWNSTREAM{FEET) = 195.00 FLOW LENGTH(FEET) = 180.00 MANNING'S N= 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 47.94 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 97.85 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.15 LONGEST FLOWPATH FROM NODE 405.20 TO NODE 420.00 = 5730.00 FEET, END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 22.10 TC(MIN.) = 9.15 PEAK FLOW RATE(CFS) = 97.85 END OF RATIONAL METHOD ANALYSIS c c c APPENDIX 3.6 SYSTEM 800 (EL CAMINO REAL) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software {aes; Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ,************************* DESCRIPTION OF STUDY BRESSI RANCH - MASS GRADED CONDITION SYSTEM 800 - MASS GRADING 100-YEAR STORM EVENT FILE NAME: C:\aes20Ql\hydrosft\ratscx\1325800i.dat TIME/DATE OF STUDY: 13:13 05/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 26.0 21.0 0.020/0.020/ --- 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 805.00 TO NODE 805.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) - 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 805.10 TO NODE 805.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 FLOW PROCESS FROM NODE 805.20 TO NODE 805.20 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 805.20 TO NODE 805.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.12 6.00 6.559 0.50 2 3.12 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 6.23 6.00 6.559 2 6.23 6.00 6.559 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.23 TcfMIN.) = 6.00 TOTAL AREA(ACRES) = 1.00 LONGEST FLOWPATH FROM NODE 805.20 TO NODE 805.00 = 50000.00 FEET. FLOW PROCESS FROM NODE 805.00 TO NODE 806.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 298.00 DOWNSTREAM(FEET} = 297.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC . ) = 7.57 ESTIMATED PIPE DIAMETER(INCH} = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.23 PIPE TRAVEL TIME{MIN.) = 0.11 Tc(MIN.) = 6.11 LONGEST FLOWPATH FROM NODE 805.20 TO NODE 806.00 = 50050.00 FEET. FLOW PROCESS FROM NODE 806.00 TO NODE 806.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED .FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.11 RAINFALL INTENSITY(INCH/HR) = 6.48 TOTAL STREAM AREA(ACRES) = 1-00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.23 FLOW PROCESS FROM NODE 808.10 TO NODE 808.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 320.00 DOWNSTREAM ELEVATION = 319.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF{CFS} = 0.31 FLOW PROCESS FROM NODE 806.20 TO NODE 806.30 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 319.00 DOWNSTREAM(FEET) = 309.00 FLOW LENGTH(FEET) = 1000.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.50 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN-) = 6.66 TcfMIN.) = 12.66 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 806.30 = 1100.00 FEET. FLOW PROCESS FROM NODE 806.30 TO NODE 806.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.053 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.35 SUBAREA RUNOFF(CFS) = 24.45 TOTAL AREA(ACRES) = 6.40 TOTAL RUNOFF(CFS) = 24.76 TC(MIN) = 12.66 FLOW PROCESS FROM NODE 808.30 TO NODE 808.40 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 309.00 DOWNSTREAM(FEET) = 300.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.26 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.76 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 13.74 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 808.40 = 1700.00 FEET, FLOW PROCESS FROM NODE 808.40 TO NODE 808.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.844 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 24.10 TOTAL AREA(ACRES) = 13.00 TOTAL RUNOFF(CFS) = 48.86 TC(MIN) = 13.74 FLOW PROCESS FROM NODE 808.40 TO NODE 806.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 303.00 DOWNSTREAM(FEET) = 302.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.35 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 48.86 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN-) = 13.80 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 806.00 = 1750.00 FEET. FLOW PROCESS FROM NODE 806.00 TO NODE 806.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.80 RAINFALL INTENSITY(INCH/HR) = 3.83 TOTAL STREAM AREA(ACRES) = 13.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.86 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.23 6.11 6.482 1.00 2 48.86 13.80 3.832 13.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 35.12 6.11 6.482 2 52.55 13.80 3.832 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 52.55 Tc(MIN.) = 13.80 TOTAL AREA(ACRES) = 14.00 LONGEST FLOWPATH FROM NODE 805.20 TO NODE 806.00 = 50050.00 FEET. FLOW PROCESS FROM NODE 806.00 TO NODE 810.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 295.00 DOWNSTREAM(FEET) = 290.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.18 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 52.55 PIPE TRAVEL TIME(MIN.) = 1.63 Tc(MIN.) = 15.43 LONGEST FLOWPATH FROM NODE 805.20 TO NODE 810.00 = 50850.00 FEET. FLOW PROCESS FROM NODE 810.00 TO NODE 810.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.566 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 15.20 TOTAL RUNOFFfCFS) = 54.47 TC(MIN) = 15.43 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 15.20 TC(MIN.) = 15.43 PEAK FLOW RATE(CFS) = 54.47 END OF RATIONAL METHOD ANALYSIS c c c APPENDIX 3.7 SYSTEM 901.5 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 r************************* DESCRIPTION OF STUDY ************* BRESSI RANCH - MASS GRADED CONDITION SYSTEM 901.50 DESILT BASIN 100-YEAR STORM EVENT: RISER PUT! DDaiGU, C-0.55 Uu-T1 M.A-T& FILE NAME: C:\aes2001\hydrosft\ratscx\Sys9015u.dat-'•'*--*••• TIME/DATE OF STUDY: 17:29 05/29/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 901.00 TO NODE 901.10 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 355.00 DOWNSTREAM ELEVATION = 354.00 ELEVATION DIFFERENCE = 1-00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.748 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 FLOW PROCESS FROM NODE 901.10 TO NODE 901.20 IS CODE = 61 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»> (STANDARD CURB SECTION USED)<«« UPSTREAM ELEVATION(FEET) = 354.00 DOWNSTREAM ELEVATION(FEET) = 325.00 STREET LENGTH(FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET} = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 7.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.01 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.02 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.95 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN-) = 3.16 Tc(MIN.) = 13.06 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.971 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 5.46 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 5.72 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.65 FLOW VELOCITY(FEET/SEC.) = 4.57 DEPTH*VELOCITY(FT*FT/SEC.) = 1.55 LONGEST FLOWPATH FROM NODE 901.00 TO NODE 901.20 = 850.00 FEET. FLOW PROCESS FROM NODE 901.20 TO NODE 901.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 325.00 DOWNSTREAM(FEET) = 260.00 FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.12 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.72 PIPE TRAVEL TIMEfMIN.) = 0.95 Tc(MIN.) = 14.02 LONGEST FLOWPATH FROM NODE 901.00 TO NODE 901.50 = 1600.00 FEET. FLOW PROCESS FROM NODE 901.50 TO NODE 901.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«x« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.794 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 9.40 SUBAREA RUNOFP(CFS) = 19.62 TOTAL AREA(ACRES) = 12.00 TOTAL RUNOFF(CFS) = 25.34 TC(MIN) = 14.02 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 12.00 TC(MIN.) = 14.02 PEAK FLOW RATE(CFS) = 25.34 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.8 SYSTEM 902.5 C C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL {c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ,************************* DESCRIPTION OF STUDY ***' BRESSI RANCH - ULTIMATE CONDITION SYSTEM 902.50 - ASSUMED SINGLE FAMILY C=0.55 100-YEAR STORM EVENT FILE NAME: SYS9025U.DAT TIME/DATE OF STUDY: 17:37 05/29/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •"USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 902.10 TO NODE 902.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 310.00 DOWNSTREAM ELEVATION = 308.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.001 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.797 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS} =1.04 FLOW PROCESS FROM NODE 902.20 TO NODE 902.50 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 300.00 FLOW LSNGTH(FEET) = 400.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES 4.58 18.00 NUMBER OF PIPES = 1 PIPE-FLOW VELOCITY(FEET/SEC.} = ESTIMATED PIPE DIAMETER(INCH) = PIPE-FLOW(CFS) = 1.04 PIPE TRAVEL TIME(MIN-) = 1.45 TC(MIN.) = LONGEST FLOWPATH FROM NODE 902.10 TO NODE 15.46 902.50 =600.00 FEET. FLOW PROCESS FROM NODE 902.50 TO NODE 902.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.563 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 7.84 TOTAL AREA(ACRES) = 4.50 TOTAL RUNOFF(CFS) = 8.88 TC(MIN) = 15.46 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.50 TC{MIN.) = 15.46 PEAK FLOW RATE(CFS) = 8.88 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL |c) Copyright 1982-2001 Advanced Engineering Software {aes} Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************* DESCRIPTION OF STUDY ********^ BRESSI RANCH - ULTIMATE CONDITION SYSTEM 903.5: ASSUMED SINGLE FAMILY DEVELOPMENT C=0.55 100-YEAR STORM EVENT: FILE NAME: SYS9035.DAT TIME/DATE OF STUDY: 17:41 05/29/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 903.10 TO NODE 903.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 300.00 DOWNSTREAM ELEVATION = 298.50 ELEVATION DIFFERENCE = 1.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.125 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.166 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.23 FLOW PROCESS FROM NODE 903.20 TO NODE 903.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 298.50 DOWNSTREAM(FEET) = 240.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.23 PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 903.10 TO NODE 903.50 = 450.00 FEET. FLOW PROCESS FROM NODE 903.50 TO NODE 903.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.001 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 9.68 TOTAL AREA(ACRES) = 4.50 TOTAL RUNOFF(CFS) = 9.91 TC(MIN) = 12.91 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.50 TC(MIN.) = 12.91 PEAK FLOW RATE(CFS) = 9.91 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.9 SYSTEM 1200 (PA-12) c c RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ******.«*.**..*.***»***.** DESCRIPTION OF STUDY BRESSI RANCH - PA 12 ULTIMATE CONDITION Q100 HYDROLOGY BASED ON TM LAYOUT FILE NAME: 1325PA12.DAT TIME/DATE OF STUDY: 16:09 04/17/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS[DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 'USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 30.0 20.0 20.0 15.0 0.018/0.018/0.020 0.020/0.020/ --- 0.67 0.50 2.00 0.0312 0.167 0.0150 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT'FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 1201.00 TO NODE 1202.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 224.30 DOWNSTREAM ELEVATION = 223.30 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.748 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 FLOW PROCESS FROM NODE 1202.00 TO NODE 1203.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»»( STREET TABLE SECTION ft 2 USED) <«« UPSTREAM ELEVATION(FEET) = 222.50 DOWNSTREAM ELEVATION(FEET) = 206.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.45 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.90 STREET FLOW TRAVEL TIME(MIN.) = 2.13 Tc(MIN.) = 12.03 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.187 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.22 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 3.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.69 FLOW VELOCITY(FEET/SEC.) = 3.99 DEPTH*VELOCITY(FT'FT/SEC.) = 1.20 LONGEST FLOWPATH FROM NODE 1201.00 TO NODE 1203.00 = 550.00 FEET. FLOW PROCESS FROM NODE 1203.00 TO NODE 1204.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»{ STREET TABLE SECTION # 2 USED)<«« UPSTREAM ELEVATION(FEET) = 206.00 DOWNSTREAM ELEVATION(FEET) = 174.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb| = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.99 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.77 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.21 STREET FLOW TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 12.90 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.004 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) - 88 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 8.15 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 11.63 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.94 FLOW VELOCITY(FEET/SEC.) = 7.53 DEPTH'VELOCITY(FT*FT/SEC.) = 2.75 LONGEST FLOWPATH PROM NODE 1201.00 TO NODE 1204.00 = 900.00 FEET. FLOW PROCESS FROM NODE 1204.00 TO NODE 1205.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW] <«« ELEVATION DATA: UPSTREAM(FEET) = 174.00 DOWNSTREAM[FEET) = 170.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.42 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.63 PIPE TRAVEL TIME(MIN.) = 1.17 Tc(MIN-) = 14.06 LONGEST FLOWPATH PROM NODE 1201.00 TO NODE 1205.00 = 1350.00 FEET. FLOW PROCESS FROM NODE 1205.00 TO MODE 1205.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.736 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 14.58 TOTAL AREAfACRES) = 12.20 TOTAL RUNOFF(CFS) = 26.21 TC(MIN) = 14.06 FLOW PROCESS FROM NODE 1205.00 TO NODE 1206.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 170.00 DOWNSTREAM(FEET) = 150.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.47 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.21 PIPE TRAVEL TIMEIKIN.) = 0.17 Tc(MIN.) = 14.23 LONGEST FLOWPATH FROM NODE 1201.00 TO NODE 1206.00 = 1550.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 12.20 TCIMIN.) = 14.23 PEAK FLOW RATE(CFS) = 26.21 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.10 SYSTEM 2000 ('F' STREET, PA-5) C C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY ***' f BRESSI RANCH - EL FUERTE ROADWAY f SYSTEM 2000: MASS GRADED PAD CONDITION r 100-YEAR STORMA**************************************************- FILE NAME: C:\aes2001\hydrosft\ratscx\1325-2i.dat TIME/DATE OF STUDY: 10:02 05/24/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT} (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ — 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAW OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 2001.00 TO NODE 2002.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 445.00 DOWNSTREAM ELEVATION = 440.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.944 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 6.559 SUBAREA RUNOFF{CFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 2002.00 TO NODE 2003.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 440.00 DOWNSTREAM(FEET) = 430.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.0143 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 3.12 FLOW VELOCITY(FEET/SEC) = 4.02 FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 2.90 Tc(MIN.) = 8.90 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2003.00 = 1000.00 FEET. FLOW PROCESS FROM NODE 2003.00 TO NODE 2005.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELF.VATION DATA: UPSTREAM (FEET) = 430.00 DOWNSTREAM (FEET) = 425.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC,) = 4.31 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.12 PIPE TRAVEL TIME(MIN.) = 2.70 Tc{MIN.) = 11.61 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2005.00 = 1700.00 FEET. FLOW PROCESS FROM NODE 2005.00 TO NODE 2005.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.285 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 41.11 TOTAL AREA(ACRES) = 10.60 TOTAL RUNOFF(CFS) = 44.23 TC(MIN) = 11.61 FLOW PROCESS FROM NODE 2005.00 TO NODE 2006.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 425.00 DOWNSTREAM(FEET) = 423.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.6 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 9.30 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.23 PIPE TRAVEL TIME(MIN.) = 0.36 Tc{MIN.) = 11.97 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2006.00 = 1900.00 FEET, FLOW PROCESS FROM NODE 2006.00 TO NODE 2007.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 423.00 DOWNSTREAM(FEET) = 417.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.17 ESTIMATED PIPE DIAMETER{INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.23 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 12.38 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2007.00 = 2200.00 FEET. FLOW PROCESS FROM NODE 2007.00 TO NODE 2007.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN-) = 12.38 RAINFALL INTENSITY(INCH/HR) = 4.11 TOTAL STREAM AREA(ACRES) = 10.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 44.23 FLOW PROCESS FROM NODE 2007.10 TO NODE 2007.10 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.49 FLOW PROCESS FROM NODE 2007.10 TO NODE 2007.1.0 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 FLOW PROCESS FROM NODE 2007.20 TO NODE 2007.20 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc{MIN.) = 6.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) =2.49 FLOW PROCESS FROM NODE 2007.20 TO NODE 2007.20 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 3 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF {CFS} 44.23 2.49 2.49 Tc (MIN.) 12.38 6.00 6.00 INTENSITY (INCH/HOUR) 4.111 6.559 6.559 AREA (ACRE) 10.60 0.40 0.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 32.71 32.71 47.35 Tc {MIN.} 6.00 6.00 12.38 INTENSITY (INCH/HOUR) 6.559 6.559 4.111 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.35 Tc(MIN.) = 12.38 TOTAL AREA(ACRES) = 11.40 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2007.20 =2200.00 FEET. FLOW PROCESS FROM NODE 2007.00 TO NODE 2008.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ELEVATION DATA: UPSTREAM(FEET) = 417.00 DOWNSTREAM(FEET) = 410.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.59 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.35 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 12.95 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2008.00 = 2600.00 FEET, FLOW PROCESS FROM NODE 2008.00 TO NODE 2015.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 410.00 DOWNSTREAM(FEET) = 408.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.35 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.35 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 13.31 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2015.00 = 2800.00 FEET, FLOW PROCESS FROM NODE 2015.00 TO NODE 2015.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION{MIN.) = 13.31 RAINFALL INTENSITY(INCH/HR) = 3.92 TOTAL STREAM AREA(ACRES) = 11.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.35 FLOW PROCESS FROM NODE 2009.00 TO NODE 2009.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN-) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.49 FLOW PROCESS FROM NODE 2009.00 TO NODE 2009.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY{INCH/HR) = 6.56 TOTAL STREAM AREA{ACRES} = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 FLOW PROCESS FROM NODE 2009.10 TO NODE 2009.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 5.61 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 5.61 FLOW PROCESS FROM NODE 2009.10 TO NODE 2009.10 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.61 FLOW PROCESS FROM NODE 2011.00 TO NODE 2011.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.49 FLOW PROCESS FROM NODE 2011.00 TO NODE 2011.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 FLOW PROCESS FROM NODE 2011.10 TO NODE 2011.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 430.00 DOWNSTREAM ELEVATION = 429.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 FLOW PROCESS FROM NODE 2011.20 TO NODE 2011.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 429.00 DOWNSTREAM(FEET) = 415.00 FLOW LENGTH(FEET) = 1200.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.64 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN.) = 7.58 Tc(MIN.) = 13.58 LONGEST FLOWPATH FROM NODE 2011.10 TO NODE 2011.30 = 1300.00 FEET, FLOW PROCESS FROM NODE 2011.30 TO NODE 2011.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.872 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.95 SUBAREA RUNOFF(CFS) = 25.57 TOTAL AREA(ACRES) = 7.00 TOTAL RUNOFF{CFS) = 25.88 TC(MIN) = 13.58 FLOW PROCESS FROM NODE 2011.30 TO NODE 2011.40 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 415.00 DOWNSTREAM(FEET) = 406.00 FLOW LENGTH(FEET) = 700.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04 ESTIMATED PIPE DIAMETER{INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.88 PIPE TRAVEL TIME(MIN.} = 1.29 Tc(MIN.) = 14.87 LONGEST FLOWPATH FROM NODE 2011.10 TO NODE 2011.40 = 2000.00 FEET. FLOW PROCESS FROM NODE 2011.40 TO NODE 2011.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.652 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 8.50 SUBAREA RUNOFF(CFS} = 29.49 TOTAL AREA(ACRES) = 15.50 TOTAL RUNOFF(CFS) = 55.37 TC(MIN) = 14.87 FLOW PROCESS FROM NODE 2011.40 TO NODE 2011.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 404.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.91 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 55.37 PIPE TRAVEL TIME(MIN.) = 0-06 Tc(MIN-) = 14.94 LONGEST FLOWPATH FROM NODE 2011.10 TO NODE 2011.00 = 2050.00 FEET. FLOW PROCESS FROM NODE 2011.00 TO NODE 2015.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 5 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 5 ARE: TIME OF CONCENTRATION(MIN.) = 14.94 RAINFALL INTENSITY(INCH/HR) = 3.64 TOTAL STREAM AREA(ACRES) = 15.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 55.37 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) {INCH/HOUR} (ACRE) 1 47.35 13.31 3.923 11.40 2 2.49 6.00 6.559 0.40 3 5.61 6.00 6.559 0.90 4 2.49 6.00 6.559 0.40 5 55.37 14.94 3.642 15.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 5 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 69.67 6.00 6.559 2 69.67 6.00 6.559 3 69.67 6.00 6.559 4 105.09 13.31 3.923 5 105.22 14.94 3.642 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 105.22 Tc(MIN.) = 14.94 TOTAL AREA(ACRES) = 28.60 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2015.00 = 2800.00 FEET. FLOW PROCESS FROM NODE 2015.00 TO NODE 2020.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 409.00 DOWNSTREAM(FEET) = 408.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.48 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 105.22 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 15.08 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2020.00 = 2900.00 FEET. ** *• FLOW PROCESS FROM NODE 2020.00 TO NODE 1005.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET} = 403.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.2 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 14.79 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 105.22 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN-) = 15.19 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 1005.00 = 3000.00 FEET, END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 28.60 TC(MIN-) = 15.19 105.22 END OF RATIONAL METHOD ANALYSIS c APPENDIX3.il SYSTEM 3000 ('D' STREET AT EL FUERTE) c RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY 1 BRESSI RANCH - EL FUERTE STREET SYSTEM 3000 ' 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325-3u.dat' TIME/DATE OF STUDY: 10:19 05/17/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 1006.00 TO NODE 1006.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 f**************-************-***************************************1********* FLOW PROCESS FROM NODE 1006.10 TO NODE 1006.20 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» {STREET TABLE SECTION # 1 USED) <«« UPSTREAM ELEVATION(FEET) = 409.00 DOWNSTREAM ELEVATION(FEET) = 406.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT{INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.89 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.22 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.98 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65 STREET FLOW TRAVEL TIME(MIN-) = 2.95 Tc{MIN.) = 8.95 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 5.069 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUE-AREA AREA (ACRES) = 0.70 SUBAREA RUNOFF (CFS) = 2.48 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.68 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 1006.00 TO NODE 1006.20 = 350.00 FEET. FLOW PROCESS FROM NODE 1006.20 TO NODE 1006.50 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION{MIN.) = 8.95 RAINFALL INTENSITY(INCH/HR) = 5.07 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.11 FLOW PROCESS FROM NODE 1006.30 TO NODE 1006.30 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 FLOW PROCESS FROM NODE 1006.31 TO NODE 1006.33 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»» (STREET TABLE SECTION # 1 USED)<«« UPSTREAM ELEVATION(FEET) = 409.00 DOWNSTREAM ELEVATION(FEET) = 406.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.47 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90 PRODUCT OF DEPTH5cVELOCITY(FT*FT/SEC. } = 0.60 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 9.07 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.024 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.91 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.53 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.66 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 1006.30 TO NODE 1006.33 = 700.00 FEET. FLOW PROCESS FROM NODE 1006.33 TO NODE 1006.50 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.07 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES) = 0-50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.53 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.11 8.95 5.069 0.80 2 2.53 9.07 5.024 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.} (INCH/HOUR) 1 5.62 8.95 5.069 2 5.61 9.07 5.024 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.62 Tc(MIN.) = 8.95 TOTAL AREA(ACRES) = 1-30 LONGEST FLOWPATH FROM NODE 1006.30 TO NODE 1006.50 = 700.00 FEET. FLOW PROCESS FROM NODE 1006.50 TO NODE 1005.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 392.00 DOWNSTREAM(FEET) = 390.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.62 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 9.17 LONGEST FLOWPATH FROM NODE 1006.30 TO NODE 1005.00 = 800.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1-30 TC(MIN.) = 9.17 PEAK FLOW RATE(CFS) = 5.62 END OF RATIONAL METHOD ANALYSIS c c c APPENDIX 3.12 SYSTEM 4000 ('C' STREET AT EL FUERTE) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 r************************* DESCRIPTION OF STUDY ******************* BRESSI RANCH - EL FUERTE ROADWAY SYSTEM 4000 - PA 15 MASS GRADED CONTOURS WITH ULTIMATE 'C' VALUES 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\1325-4i.dat TIME/DATE OF STUDY: 13:15 05/29/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 30.0 37.0 20.0 32.0 0.018/0.018/0.020 0.020/0.020/ --- 0.67 2.00 0.0312 0.167 0.0150 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 4001.00 TO NODE 4002.00 IS CODE >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« = 21 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 413.00 DOWNSTREAM ELEVATION = 412.00 .7000 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.200 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 5.831 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.41 ***************************************************************************' FLOW PROCESS FROM NODE 4002.00 TO NODE 4003.00 IS CODE = 61 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»»{ STANDARD CURB SECTION USED) <«« UPSTREAM ELEVATION(FEET) = 412.00 DOWNSTREAM ELEVATION(FEET) = 408.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.26 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.99 PRODUCT OF DEPTHS=VELOCITY(FT*FT/SEC. ) = 0.74 STREET FLOW TRAVEL TIMEfMIN.) = 6.71 Tc(MIN.) = 13.91 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.813 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 11.21 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 11.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.54 DEPTH*VELOCITY(FT*FT/SEC.) = 1.13 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4003.00 = 900.00 FEET. FLOW PROCESS FROM NODE 4003.00 TO NODE 4006.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 400.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.74 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.62 PIPE TRAVEL TIMEfMIN.) = 1.24 Tc(MIN.) = 15.15 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4006.50 = 1400.00 FEET. FLOW PROCESS FROM NODE 4006.50 TO NODE 4006.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.609 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER {AMC II) = 90 SUBAREA AREA(ACRES) = 5.80 SUBAREA RUNOFF(CFS) = 14.65 TOTAL AREA(ACRES) = 10.10 TOTAL RUNOFF(CFS) = 26.27 TC(MIN) = 15.15 FLOW PROCESS FROM NODE 4006.50 TO NODE 4005.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 360.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 34.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.27 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 15.19 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4005.00 = 1500.00 FEET. FLOW PROCESS FROM NODE 4005.00 TO NODE 4010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 350.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.10 ESTIMATED PIPE DIAMETER{INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.27 PIPE TRAVEL TIME{MIN.) = 0.22 Tc(MIN.) = 15.42 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4010.00 = 1700.00 FEET, FLOW PROCESS FROM NODE 4010.00 TO NODE 4010.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.42 RAINFALL INTENSITY(INCH/HR) = 3.57 TOTAL STREAM AREA(ACRES) = 10.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.27 (***********************************************************************•*** FLOW PROCESS FROM NODE 4008.00 TO NODE 4008.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc{MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.98 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) =4.98 FLOW PROCESS FROM NODE 4008.00 TO NODE 4008.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.98 FLOW PROCESS FROM NODE 4008.10 TO NODE 4008.10 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~~~ = = = = = = = = = «« — — ±? = = = ^i~?;^^ = =7 —~ = =±£=:^d™ = = = = = = = = —'" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.72 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 4.72 FLOW PROCESS FROM NODE 4008.10 TO NODE 4008.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.72 **************************************************************************** FLOW PROCESS FROM NODE 4009.00 TO NODE 4009.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "Dn S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc{MIN.) = 6.000 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.98 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF{CFS) = 4.98 FLOW PROCESS FROM NODE 4009.00 TO NODE 4009.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.} = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.98 4 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 4 RUNOFF (CFS) 26.27 4.98 4.72 4.98 Tc (MIN.) 15.42 6.00 6.00 6.00 INTENSITY (INCH/HOUR) 3.569 6.559 6.559 6.559 AREA (ACRE) 10.10 0.80 1.60 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 4 RUNOFF (CFS) 28.99 28.99 28.99 34.27 Tc (MIN.) 6.00 6.00 6.00 15.42 INTENSITY (INCH/HOUR) 6.559 6.559 6.559 3.569 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.27 Tc(MIN.) = 15.42 TOTAL AREA(ACRES) = 13.30 LONGEST FLOWPATH FROM NODE 4009.00 TO NODE 4009.00 — ********FEET. ************:*********** FLOW PROCESS FROM NODE 4010.00 TO NODE 1015.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 352.00 DOWNSTREAM(FEET) = 350.24 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.79 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.27 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 15.57 LONGEST FLOWPATH FROM NODE 4009.00 TO NODE 1015.00 = ******** FEET, END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE {CFS) 13.30 TC(MIN.) = 34.27 15.57 END OF RATIONAL METHOD ANALYSIS c c c APPENDIX 3.13 SYSTEM 5000 ('B', 'P', 'Q' STREETS) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - EL FUERTE ROADWAY * .WBS'i'&Ki: r ULTIMATE CONDIITONS TM DRAINAGE * 100-YEAR STORM EVENT ****************** FILE NAME: C:\aes2001\hydrosft\ratscx\1325-5.dat' TIME/DATE OF STUDY: 08:07 05/30/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 50.0 35.0 0.020/0.020/0.020 0.67 3 10.0 5.0 0.001/0.001/ — 0.50 2.00 0.0312 0.167 0.0150 2.00 0.0312 0.167 0.0150 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 5001.00 TO NODE 5002.00 IS CODE >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) - 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 401.20 DOWNSTREAM ELEVATION = 400.00 = 21 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA{ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5002.00 TO NODE 5005.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»> {STREET TABLE SECTION # 3 USED) ««< UPSTREAM ELEVATION(FEET) = 400.00 DOWNSTREAM ELEVATION(FEET) = 390.00 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.55 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.} = 2.85 PRODUCT OF DEPTH5cVELOCITY(FT*FT/SEC. ) = 0.74 STREET FLOW TRAVEL TIMEfMIN.) = 3.80 Tc(MIN-) = 14.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.689 USSR-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 4.90 SUBAREA RUNOFF(CFS) = 12.65 TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 12.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY{FEET/SEC.) = 3.72 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5005.00 = 770.00 FEET. IT**********-********************-******************************************** FLOW PROCESS FROM NODE 5005.00 TO NODE 5005.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION{MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 3.69 TOTAL STREAM AREA(ACRES) = 5.00 PEAK FLOW RATE{CFS) AT CONFLUENCE = 12.90 ******************************************************************* FLOW PROCESS FROM NODE 5003.00 TO NODE 5004.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 408.20 DOWNSTREAM ELEVATION = 407.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS} = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5004.00 TO NODE 5005.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»» {STREET TABLE SECTION # 3 USED}«<« UPSTREAM ELEVATION(FEET} = 407.00 DOWNSTREAM ELEVATION(FEET) = 390.00 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.82 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.39 STREET FLOW TRAVEL TIME(MIN-) = 4.83 Tc(MIN.) = 15.68 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.530 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1-60 SUBAREA RUNOFF(CFS) = 3.11 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 3.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.64 DEPTH*VELOCITY(FT*FT/SEC.) = 0.55 LONGEST FLOWPATH FROM NODE 5003.00 TO NODE 5005.00 = 720.00 FEET. FLOW PROCESS FROM NODE 5005.00 TO NODE 5005.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE TIME OF CONCENTRATION(MIN.} = 15.68 RAINFALL INTENSITY(INCH/HR) = 3.53 TOTAL STREAM AREA(ACRES) = 1-70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.35 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.90 14.64 3.689 5.00 2 3.35 15.68 3.530 1.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 16.11 14.64 3.689 2 15.70 15.68 3.530 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.11 Tc(MIN.) = 14.64 TOTAL AREA(ACRES) = 6.70 LONGEST FLOWPATH FROM NODE 5001,00 TO NODE 5005.00 = 770.00 FEET. FLOW PROCESS FROM NODE 5005.00 TO NODE 5008.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} <«« ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) = 376.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.45 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.11 PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 15.44 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5008.00 = 1270.00 FEET, FLOW PROCESS PROM NODE 5008.00 TO NODE 5008.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.44 RAINFALL INTENSITY(INCH/HR) = 3.57 TOTAL STREAM AREA(ACRES) = 6.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.11 FLOW PROCESS FROM NODE 5006.00 TO NODE 5006.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 391.20 DOWNSTREAM ELEVATION = 390.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.887 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.498 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.38 FLOW PROCESS FROM NODE 5006.10 TO NODE 5006.20 IS CODE = 62 _— — .. . . — *_ —- — -,. — __ _ -^ — . >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 3 USED) <«« UPSTREAM ELEVATION(FEET) = 389.00 DOWNSTREAM ELEVATION(FEET) = 376.00 STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIQTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.43 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.01 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN-) = 3.05 Tc(MIN-) = 10.94 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.453 USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 9.98 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 10.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 3.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09 LONGEST FLOWPATH FROM NODE 5006.00 TO NODE 5006.20 = 670.00 FEET. •*•****************•#****•*•«*************************************************** FLOW PROCESS FROM NODE 5006.20 TO NODE 5008.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) =10.94 RAINFALL INTENSITY{INCH/HR) = 4.45 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.36 FLOW PROCESS FROM NODE 5007.00 TO NODE 5007.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 393.00 DOWNSTREAM ELEVATION = 391.80 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS} = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5007.10 TO NODE 5007.20 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»> (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 390.00 DOWNSTREAM ELEVATION(FEET) = 376.00 STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) =0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for SCreetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.26 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.15 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.43 STREET FLOW TRAVEL TIME(MIN-) = 4.26 Tc(MIN.) = 15.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.616 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 3.98 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 4.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.79 DEPTH*VELOCITY(FT*FT/SEC.) = 0.62 LONGEST FLOWPATH FROM NODE 5007.00 TO NODE 5007.20 = 670.00 FEET. FLOW PROCESS FROM NODE 5007.20 TO NODE 5008.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 15.11 RAINFALL INTENSITY(INCH/HR) = 3.62 TOTAL STREAM AREA(ACRES) - 2.10 PEAK FLOW RATE(CFS} AT CONFLUENCE = 4.22 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 16.11 15.44 3.565 6.70 2 10.36 10.94 4.453 3.30 3 4.22 15.11 3.616 2.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 26.69 10.94 4.453 2 28.52 15.11 3.616 3 28.57 15.44 3.565 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS} = 28.57 Tc{MIN.) = 15.44 TOTAL AREA(ACRES) = 12.10 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5008.00 = 1270.00 FEET, FLOW PROCESS FROM NODE 5008.00 TO NODE 5010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 376.00 DOWNSTREAM(FEET) = 374.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.47 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.57 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 15.83 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5010.00 = 1470.00 FEET. FLOW PROCESS FROM NODE 5010.00 TO NODE 5015.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 376.00 DOWNSTREAM(FEET) = 372.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.70 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.57 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 16.14 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5015.00 = 1670.00 FEET. FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.14 RAINFALL INTENSITY{INCH/HR) = 3.46 TOTAL STREAM AREA(ACRES) = 12.10 . PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.57 ******************************************************************* FLOW PROCESS FROM NODE 5012.10 TO NODE 5012.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 381.00 DOWNSTREAM ELEVATION = 380.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.748 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 FLOW PROCESS FROM NODE 5012.20 TO NODE 5012.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 380.00 DOWNSTREAM ELEVATION(FEET) = 372.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.66 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.79 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.34 STREET FLOW TRAVEL TIME(MIN-) = 3.73 Tc(MIN-) = 13.63 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.863 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.02 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.21 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH*VELOCITY(FT*FT/SEC.) = 0.48 LONGEST FLOWPATH FROM NODE 5012.10 TO NODE 5012.30 = 500.00 FEET. FLOW PROCESS FROM NODE 5012.30 TO NODE 5015.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 13.63 RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.02 **************************************************************************** FLOW PROCESS FROM NODE 5013.10 TO NODE 5013.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 378.00 DOWNSTREAM ELEVATION = 377.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.748 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 FLOW PROCESS FROM NODE 5013.20 TO NODE 5013.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»{ STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 377.00 DOWNSTREAM ELEVATION(FEET) = 372.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.07 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.29 PRODUCT OF DEPTHScVELOCITY(FT*FT/SEC. ) = 0.24 STREET FLOW TRAVEL TIME(MIN.) = 5.16 Tc(MIN.) = 15.06 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.622 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 1.59 TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 1.86 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 1-62 DEPTH*VELOCITY(FT*FT/SEC.) = 0.33 LONGEST FLOWPATH FROM NODE 5013.10 TO NODE 5013.30 = 500.00 FEET. FLOW PROCESS FROM NODE 5013.20 TO NODE 5015.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 15.06 RAINFALL INTENSITY(INCH/HR) = 3.62 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.86 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.} (INCH/HOUR) (ACRE) 1 28.57 16.14 3.464 12.10 2 3.02 13.63 3.863 1.40 3 1.86 15.06 3.622 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 30.38 13.63 3.863 2 32.01 15.06 3.622 3 33.05 16.14 3.464 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.05 Tc(MIN.) = 16.14 TOTAL AREA{ACRES} = 14.40 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5015.00 = 1670.00 FEET. r************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5025.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 372.00 DOWNSTREAM(FEET) = 368.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.85 ESTIMATED PIPE DIAMETER{INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.05 PIPE TRAVEL TIME(MIN.) = 1.06 Tc(MIN.) = 17.20 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5025.00 = 2170.00 FEET, FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 17.20 RAINFALL INTENSITY(INCH/HR) = 3.32 TOTAL STREAM AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.05 FLOW PROCESS FROM NODE 5022.30 TO NODE 5022.40 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 130.00 UPSTREAM ELEVATION * 408.40 DOWNSTREAM ELEVATION = 407.20 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.593 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.289 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.24 FLOW PROCESS FROM NODE 5022.40 TO NODE 5022.50 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »>» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 407.00 DOWNSTREAM ELEVATION(FEET) = 394.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.59 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.30 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.46 STREET FLOW TRAVEL TIME(MIN.) = 3.62 Tc(MIN.) = 15.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.599 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.35 SUBAREA RUNOFF(CFS) = 4.65 TOTAL AREA(ACRES) = 2.45 PEAK FLOW RATE(CFS) = 4.89 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.99 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 5022.30 TO NODE 5022.50 = 630.00 FEET. FLOW PROCESS FROM NODE 5022.50 TO NODE 5023.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.599 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.45 SUBAREA RUNOFF(CFS) = 4.85 TOTAL AREA(ACRES) = 4.90 TOTAL RUNOFF(CFS) = 9.74 TC(MIN) = 15.21 FLOW PROCESS FROM NODE 5023.00 TO NODE 5025.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 393.00 DOWNSTREAM(FEET) = 370.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.80 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.74 PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 16.14 LONGEST FLOWPATH FROM NODE 5022.30 TO NODE 5025.00 = 1230.00 FEET. FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.14 RAINFALL INTENSITY(INCH/HR) = 3.46 TOTAL STREAM AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER {CFS) (MIN.) (INCH/HOUR) (ACRE) 1 33.05 17.20 3.325 14.40 2 9.74 16.14 3.464 4.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 41.46 16.14 3.464 2 42.40 17.20 3.325 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.40 Tc(MIN.) = 17.20 TOTAL AREA(ACRES) = 19.30 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5025.00 = 2170.00 FEET, FLOW PROCESS FROM NODE 5025.00 TO NODE 5030.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 370.00 DOWNSTREAM(FEET) = 363.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.50 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 42.40 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 17.60 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5030.00 = 2470.00 FEET. FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.60 RAINFALL INTENSITY(INCH/HR) = 3.28 TOTAL STREAM AREA(ACRES) = 19.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 42.40 ************************•****•*•********************** + ******•****************** FLOW PROCESS FROM NODE 5028.00 TO NODE 5028.10 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 393.20 DOWNSTREAM ELEVATION = 392.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5028.10 TO NODE 5028.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 3 USED) <«« UPSTREAM ELEVATION(FEET) = 391.00 DOWNSTREAM ELEVATION(FEET) = 364.00 STREET LENGTH(FEET) = 900.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.09 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72 STREET FLOW TRAVEL TIME(MIN.) = 4.75 Tc(MIN.) = 15.59 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.543 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 4.90 SUBAREA RUNOFF(CFS) = 9.55 TOTAL AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) = 9.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 4.09 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09 LONGEST FLOWPATH FROM NODE 5028.00 TO NODE 5028.30 = 1020.00 FEET. FLOW PROCESS FROM NODE 5028.30 TO NODE 5030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.59 RAINFALL INTENSITY(INCH/HR) = 3.54 TOTAL STREAM AREA(ACRES) = 5.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.79 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR} (ACRE) 1 42.40 17.60 3.276 19.30 2 9.79 15.59 3.543 5.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 48.99 15.59 3.543 2 51.45 17.60 3.276 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 51.45 Tc(MIN.} = 17.60 TOTAL AREA(ACRES) = 24.30 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5030.00 = 2470.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5030.00 TO NODE 5037.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 364.00 DOWNSTREAM(FEET) = 350.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 14.36 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 51.45 PIPE TRAVEL TIME{MIN.) = 0.58 Tc(MIN.) = 18.18 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5037.00 = 2970.00 FEET, FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.18 RAINFALL INTENSITY(INCH/HR} = 3.21 TOTAL STREAM AREA(ACRES) = 24.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.45 FLOW PROCESS FROM NODE 5036.00 TO NODE 5036.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER {AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 220.00 UPSTREAM ELEVATION = 408.00 DOWNSTREAM ELEVATION = 405.80 ELEVATION DIFFERENCE = 2.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.684 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.682 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.41 FLOW PROCESS FROM NODE 5036.10 TO NODE 5036.20 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 406.00 DOWNSTREAM ELEVATION(FEET) = 391.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.76 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:. STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.52 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN-) = 1.89 Tc(MIN-) = 16.58 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.405 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER {AMC II) = 88 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 10.67 TOTAL AREA(ACRES) = 5.90 PEAK FLOW RATE(CFS) = '11.08 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY (FEET/SEC. } = 4.58 DEPTH*VELOCITY {FT* FT/SEC . ) = 1.22 LONGEST FLOWPATH FROM NODE 5036.00 TO NODE 5036.20 = 620.00 FEET. FLOW PROCESS FROM NODE 5036.20 TO NODE 5036.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 391.00 DOWNSTREAM(FEET) = 366.00 FLOW LENGTH(FEET} = 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.50 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.08 PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 17.45 LONGEST FLOWPATH FROM NODE 5036.00 TO NODE 5036.30 = 1220.00 FEET. FLOW PROCESS FROM NODE 5036.30 TO NODE 5036.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.295 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 10.33 TOTAL AREA(ACRES) = 11.60 TOTAL RUNOFF(CFS) = 21.41 TC(MIN) = 17.45 FLOW PROCESS FROM NODE 5036.30 TO NODE 5037.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 395.00 DOWNSTREAM(FEET) = 351.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.41 PIPE TRAVEL TIME{MIN.) = 0.47 Tc(MIN-) = 17.92 LONGEST FLOWPATH FROM NODE 5036.00 TO NODE 5037.00 = 1720.00 FEET, FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 17.92 RAINFALL INTENSITY(INCH/HR) = 3.24 TOTAL STREAM AREA(ACRES) = 11.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.41 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 51.45 18.18 3.208 24.30 2 21.41 17.92 3.239 11.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 72.37 17.92 3.239 2 72.66 18.18 3.208 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 72.66 Tc(MIN-) - 18.18 TOTAL AREA(ACRES) = 35.90 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5037.00 = 2970.00 FEET. FLOW PROCESS FROM NODE 5037.00 TO NODE 5040.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM (FEET) = 350.00 DOWNSTREAM (FEET) = 340.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC. ) = 16.71 ESTIMATED PIPE DIAMETER ( INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 72.66 PIPE TRAVEL TIME(MIN. ) = 0.30 Tc (MIN. ) = 18.48 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5040.00 = 3270.00 FEET FLOW PROCESS FROM NODE 5040.00 TO NODE 5040.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.48 RAINFALL INTENSITY(INCH/HR) = 3.17 TOTAL STREAM AREA(ACRES) = 35.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 72.66 **************************************************************************** FLOW PROCESS FROM NODE 5038.10 TO NODE 5038.20 IS CODE = 21 •r_M_-.-.___.-_r*r**,.^.w.w,.., . — , _^ — ___-_,-_»._^__ , „ — ^ — — >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 363.20 DOWNSTREAM ELEVATION = 362.00 ELEVATION DIFFERENCE = 1-20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 **************************************************************************** FLOW PROCESS FROM NODE 5038.20 TO NODE 5038.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 361.00 DOWNSTREAM ELEVATION(FEET) = 340.00 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.57 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58 STREET FLOW TRAVEL TIMEtMIN.) = 4.23 TcfMIN.) = 15.08 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.620 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 6.57 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 6.82 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 3.53 DEPTH*VELOCITY(FT*FT/SEC.) = 0.86 LONGEST FLOWPATH FROM NODE 5038.10 TO NODE 5038.30 = 820.00 FEET, FLOW PROCESS FROM NODE 5038,30 TO NODE 5040.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 15.08 RAINFALL INTENSITY(INCH/HR) = 3.62 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.82 FLOW PROCESS FROM NODE 5039.00 TO NODE 5039.10 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 334.20 DOWNSTREAM ELEVATION = 333.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0-10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5039.10 TO NODE 5039.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 353.00 DOWNSTREAM ELEVATION(FEET) = 340.00 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-Co-curb} =0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.77 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.} = 3.91 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 11.27 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.367 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 5.04 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 5.29 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.20 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 4.92 DEPTH*VELOCITY(FT*FT/SEC.} = 0.98 LONGEST FLOWPATH FROM NODE 5039.00 TO NODE 5039.30 = 220.00 FEET. FLOW PROCESS FROM NODE 5039.30 TO NODE 5040.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 11.27 RAINFALL INTENSITY(INCH/HR) = 4.37 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.29 3 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 72.66 6.82 5.29 Tc (MIN.) 18.48 15.08 11.27 INTENSITY (INCH/HOUR) 3.174 3.620 4.367 AREA (ACRE) 35.90 3.40 2.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 63.75 74.91 82.48 Tc (MIN.) 11.27 15.08 18.48 INTENSITY (INCH/HOUR) 4.367 3.620 3.174 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS PEAK FLOW RATE(CFS) = 82.48 Tc(MIN.) = TOTAL AREA(ACRES) = 41.50 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 18.48 5040.00 = 3270.00 FEET, FLOW PROCESS FROM NODE 5040.00 TO NODE 5060.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 326.00 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 46.36 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 82.48 PIPE TRAVEL TIME(MIN.) = 0-01 Tc(MIN.) = 18.49 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5060.00 = 3300.00 FEET. FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.49 RAINFALL INTENSITY(INCH/HR) = 3.17 TOTAL STREAM AREA(ACRES) = 41.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 82.48 FLOW PROCESS FROM NODE 5050.00 TO NODE 5051.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 406.20 DOWNSTREAM ELEVATION = 405.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 FLOW PROCESS FROM NODE 5051.00 TO NODE 5052.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 406.00 DOWNSTREAM ELEVATION(FEET) = 400.00 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.75 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY{FEET/SEC.) = 2.26 PRODUCT OF DEPTH&VELOCITY{FT*FT/SEC.) = 0.52 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 13.80 100 YEAR RAINFALL INTENSITY{INCH/HOUR} = 3.833 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 6.96 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 7.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) ~ 0.79 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5052.00 = 520.00 FEET. FLOW PROCESS FROM NODE 5052.00 TO NODE 5055.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM(FEET) = 360.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.07 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.20 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN-) = 14.43 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5055.00 = 1020.00 FEET, ******************* FLOW PROCESS FROM NODE 5055.00 TO NODE 5055.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.723 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 6.35 TOTAL AREA(ACRES) = 6.50 TOTAL RUNOFF(CFS) = 13.55 TC(MIN) = 14.43 FLOW PROCESS FROM NODE 5055.00 TO NODE 5056.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 328.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.46 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.55 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN-) = 14.87 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5056.00 = 1420.00 FEET. •********: FLOW PROCESS FROM NODE 5056.00 TO NODE 5056.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.653 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER -(AMC II) = 88 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 5.43 TOTAL AREA(ACRES) = 9-20 TOTAL RUNOFF(CPS) = 18.98 TC(MIN) - 14.87 FLOW PROCESS FROM NODE 5056.00 TO NODE 5057.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 328.00 DOWNSTREAM(FEET) = 327.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.52 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.98 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN-) - 15.09 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5057.00 = 1520.00 FEET. ***************************************************************************** FLOW PROCESS FROM NODE 5057.00 TO NODE 5057.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.619 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 9.95 TOTAL AREA(ACRES) = 14.20 TOTAL RUNOFF(CFS) = 28.93 TC(MIN) = 15.09 FLOW PROCESS FROM NODE 5057.00 TO NODE 5060.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 327.00 DOWNSTREAM(FEET) = 325.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.74 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.93 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN-) - 15.63 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5060.00 = 1770.00 FEET. FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.63 RAINFALL INTENSITY(INCH/HR) = 3.54 TOTAL STREAM AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.93 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.} (INCH/HOUR) (ACRE) 1 82.48 18.49 3.173 41.50 2 28.93 15.63 3.538 14.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 102.91 15.63 3.538 2 108.42 18.49 3.173 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 108.42 Tc(MIN.) = 18.49 TOTAL AREA(ACRES) = 55.70 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5060.00 = 3300.00 FEET. FLOW PROCESS FROM NODE 5060.00 TO NODE 5065.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 325.00 DOWNSTREAM(FEET) = 305.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 23.84 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 108.42 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 18.70 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5065.00 = 3600.00 FEET, FLOW PROCESS FROM NODE 5065.00 TO NODE 5065.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.70 RAINFALL INTENSITY(INCH/HR) = 3.15 TOTAL STREAM AREA (ACRES) = 55.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 108.42 FLOW PROCESS FROM NODE 5061.10 TO NODE 5061.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 337.20 DOWNSTREAM ELEVATION = 336.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 t************************************************************************** FLOW PROCESS FROM NODE 5061.20 TO NODE 5061.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »>» (STREET TABLE SECTION # 3 USED) <«« UPSTREAM ELEVATION(FEET) = 336.00 DOWNSTREAM ELEVATION(FEET) = 305.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.49 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.44 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.43 STREET FLOW TRAVEL TIME(MIN-) = 3.42 Tc(MIN.) = 14.26 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.752 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) = 1-30 PEAK FLOW RATE(CFS) = 2.72 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 3.10 DEPTH*VELOCITY{FT*FT/SEC.) = 0.59 LONGEST FLOWPATH EROM NODE 5061.10 TO NODE 5061.30 = 620.00 FEET. FLOW PROCESS FROM NODE 5061.30 TO NODE 5065.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.72 FLOW PROCESS FROM NODE 5062.10 TO NODE 5062.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER {AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 338.20 DOWNSTREAM ELEVATION = 337.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.316 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.938 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.27 **************************************************************************** FLOW PROCESS FROM NODE 5062.20 TO NODE 5062.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»»( STREET TABLE SECTION # 3 USED)«<« UPSTREAM ELEVATION(FEET) = 336.00 DOWNSTREAM ELEVATION(FEET) = 305.00 STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.25 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.17 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.22 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.39 STREET FLOW TRAVEL TIME(MIN-) = 4.13 Tc(MIN-) = 13.45 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.897 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE{CFS) = 2.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.73 DEPTH*VELOCITY(FT*FT/SEC.) = 0.51 LONGEST FLOWPATH FROM NODE 5062.10 TO NODE 5062.30 = 650.00 FEET. ********************************* ******************************************* FLOW PROCESS FROM NODE 5062.30 TO NODE 5065.00 IS CODE = 1 . _ . — — ^. — —'-.* . - , — .*- _ . , • 1- ' __ — — — — _*____ — ^- —, _ _ _ _ r, — >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) - 13.45 RAINFALL INTENSITY(INCH/HR) = 3.90 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE{CFS) AT CONFLUENCE = 2.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 108.42 2.72 2.20 18.70 14.26 13.45 3.150 3.752 3.897 55.70 1.30 1.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 92.46 95.86 112.49 Tc (MIN.) 13.45 14.26 18.70 INTENSITY (INCH/HOUR) 3.897 3.752 3.150 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 112.49 Tc(MIN.} = 18.70 TOTAL AREA(ACRES) = 58.00 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5065.00 = 3600.00 FEET. FLOW PROCESS FROM NODE 5065.00 TO NODE 5070.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 280.00 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.70 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 112.49 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 19.09 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5070.00 = 4100.00 FEET. FLOW PROCESS FROM NODE 5070.00 TO NODE 5070.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.109 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 4.10 TOTAL AREA(ACRES) = 60.40 TOTAL RUNOFF(CFS) = 116.59 TC(MIN) = 19.09 FLOW PROCESS FROM NODE 5070.00 TO NODE 5075.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 280.00 DOWNSTREAM(FEET) = 270.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 27.76 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 116.59 PIPE TRAVEL TIMEfMIN.) = 0.06 Tc(MIN.) = 19.15 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5075.00 = 4200.00 FEET, FLOW PROCESS FROM NODE 5075.00 TO NODE 5075.00 IS CODE - >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.15 RAINFALL INTENSITY(INCH/HR) = 3.10 TOTAL STREAM AREA(ACRES) = 60.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 116.59 FLOW PROCESS FROM NODE 5074.00 TO NODE 5074.10 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 326.20 DOWNSTREAM ELEVATION = 325.00 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) * 10.845 100 YEAR RAINFALL INTENSITY{INCH/HOUR} = 4.477 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.25 r************************************************************************** FLOW PROCESS FROM NODE 5074.10 TO NODE 5074.20 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»» (STREET TABLE SECTION # 3 USED)<«« UPSTREAM ELEVATION(FEET) = 324.00 DOWNSTREAM ELEVATION(FEET) = 275.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} = 7.92 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.} = 4.63 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.07 STREET FLOW TRAVEL TIME{MIN.) = 2.88 TcfMIN.) = 13.72 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.847 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS} = 15.23 TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 15.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 6.09 DEPTH*VELOCITY(FT*FT/SEC.} = 1.66 LONGEST FLOWPATH FROM NODE 5074.00 TO NODE 5074.20 = 920.00 FEET. A***************************************-****************-******************** FLOW PROCESS FROM NODE 5074.20 TO NODE 5075.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 13.72 RAINFALL INTENSITY{INCH/HR) = 3.85 TOTAL STREAM AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.48 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 116.59 19.15 3.103 60.40 2 15.48 13.72 3.847 7.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 109.53 13.72 3.847 2 129.08 19.15 3.103 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 129.08 Tc(MIN.) = 19.15 TOTAL AREA(ACRES) = 67.70 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5075.00 = 4200.00 FEET, FLOW PROCESS FROM NODE 5075.00 TO NODE 5080.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = 257.00 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.34 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 129.08 PIPE TRAVEL TIME(MIN.) = 0.10 Tc{MIN.) = 19.25 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5080.00 = 4350.00 FEET, FLOW PROCESS FROM NODE 5080.00 TO NODE 5080.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.25 RAINFALL INTENSITY{INCH/HR) = 3.09 TOTAL STREAM AREA(ACRES) = 67.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 129.08 r************************************************************************** FLOW PROCESS FROM NODE 5078.00 TO NODE 5078.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.36 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF{CFS) = 4.36 FLOW PROCESS FROM NODE 5078.00 TO NODE 5080.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 FLOW PROCESS FROM NODE 5079.00 TO NODE 5079.00 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN-) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) *= 0.40 TOTAL RUNOFF(CFS) = 2.49 FLOW PROCESS FROM NODE 5079.00 TO NODE 5080.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY{INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 129.08 19.25 3.093 67.70 2 4.36 6.00 6.559 0.70 3 2.49 6.00 6.559 0.40 RAINFALL INTENSITY AND. TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 67.72 6.00 6.559 2 67.72 6.00 6.559 3 132.31 19.25 3.093 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS} = 132.31 Tc{MIN.) = 19.25 TOTAL AREA(ACRES) = 68.80 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5080.00 = 15000.00 FEET, FLOW PROCESS FROM NODE 5080.00 TO NODE 5085.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 257.00 DOWNSTREAM(FEET) = 202.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.46 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 132.31 PIPE TRAVEL TIME(MIN.) = 0.52 Tc{MIN.) = 19.77 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5085.00 = 15800.00 FEET. FLOW PROCESS FROM NODE 5085.00 TO NODE 5085.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 19.77 RAINFALL INTENSITY(INCH/HR) = 3.04 TOTAL STREAM AREA(ACRES) = 68.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 132.31 FLOW PROCESS FROM NODE 5083.00 TO NODE 5083.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN-) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF{CFS} = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 FLOW PROCESS FROM NODE 5083.00 TO NODE 5085.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 FLOW PROCESS FROM NODE 5084.00 TO NODE 5085.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 132.31 19.77 3.039 68.80 2 3.12 6.00 6.559 0.50 3 3.12 6.00 6.559 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 67.55 6.00 6.559 2 67.55 6.00 6.559 3 135.20 19.77 3.039 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 135.20 Tc(MIN.) = 19.77 TOTAL AREA(ACRES) = 69.80 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5085.00 = 15800.00 FEET. FLOW PROCESS FROM NODE 5085.00 TO NODE 5090.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 203.00 DOWNSTREAM(FEET) = 199.00 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.09 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 135.20 PIPE TRAVEL TIME(MIN. ) = 0.10 Tc(MIN-) = 19.88 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5090.00 = 15920.00 FEET. ****************#*********************************************************** FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.88 RAINFALL INTENSITY(INCH/HR) = 3.03 TOTAL STREAM AREA(ACRES) = 69.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 135.20 FLOW PROCESS FROM NODE 5086.10 TO NODE 5086.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10 -MINUTES ADDED = 11 . 08 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 370.00 UPSTREAM ELEVATION = 410.00 DOWNSTREAM ELEVATION = 270.00 ELEVATION DIFFERENCE = 140.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.416 SUBAREA RUNOFF (CFS) = 1.99 TOTAL AREA (ACRES) = 1-00 TOTAL RUNOFF (CFS) = 1.99 FLOW PROCESS FROM NODE 5086.20 TO NODE 5086.30 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM (FEET) = 270.00 DOWNSTREAM (FEET) = 240.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 300.00 CHANNEL SLOPE = 0.1000 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH (FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.99 FLOW VELOCITY(FEET/SEC) = 3.11 FLOW DEPTH (FEET) = 0.12 TRAVEL TIME (MIN. ) = 1.61 Tc(MIN.) = 12.69 LONGEST FLOWPATH FROM NODE 5086.10 TO NODE 5086.30 = 670.00 FEET. FLOW PROCESS FROM NODE 5086.30 TO NODE 5086.30 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.047 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 8.19 TOTAL AREA(ACRES) = 5.50 TOTAL RUNOFF{CFS} = 10.18 TC(MIN) = 12.69 FLOW PROCESS FROM NODE 5086.30 TO NODE 5086.40 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 240.00 DOWNSTREAM(FEET) = 220.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.36 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.18 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 13.65 LONGEST FLOWPATH FROM NODE 5086.10 TO NODE 5086.40 = 1270.00 FEET. FLOW PROCESS FROM NODE 5086.40 TO NODE 5086.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.860 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 11.00 SUBAREA RUNOFF(CFS) = 19.11 TOTAL AREA(ACRES) = 16.50 TOTAL RUNOFF(CFS) = 29.29 TC(MIN) = 13.65 ******* FLOW PROCESS FROM NODE 5086.40 TO NODE 5086.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 205.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.36 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 29.29 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 13.98 LONGEST FLOWPATH FROM NODE 5086.10 TO NODE 5086.50 = 1570.00 FEET. r************************************************************************** FLOW PROCESS FROM NODE 5086.50 TO NODE 5086.50 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.802 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 14.64 TOTAL AREA(ACRES) = 23.50 TOTAL RUNOFF(CFS) = 43.92 TC(MIN) = 13.98 FLOW PROCESS FROM NODE 5086.50 TO NODE 5086.60 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 205.00 DOWNSTREAM(FEET) = 200.00 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.70 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.92 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 14.15 LONGEST FLOWPATH FROM NODE 5086.10 TO NODE 5086.60 = 1720.00 FEET. FLOW PROCESS FROM NODE 5086.60 TO NODE 5086.60 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.772 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 8.09 TOTAL AREA(ACRES) = 27.40 TOTAL RUNOFF(CFS) = 52.01 TC(MIN) = 14.15 FLOW PROCESS FROM NODE 5086.60 TO NODE 5090.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 200.00 DOWNSTREAM(FEET) = 198.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 16.28 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 52.01 PIPE TRAVEL TIME(MIN.} = 0.05 Tc(MIN.) = 14.20 LONGEST FLOWPATH FROM NODE 5086.10 TO NODE 5090.00 = 1770.00 FEET. FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.20 RAINFALL INTENSITY(INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) =27.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 52.01 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS} (MIN.) (INCH/HOUR) (ACRE) 1 135.20 19.88 3.029 69.80 2 52.01 14.20 3.763 27.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 160.84 14.20 3.763 2 177.07 19.88 3.029 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 177.07 Tc(MIN.) = 19.88 TOTAL AREA(ACRES) = 97.20 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5090.00 = 15920.00 FEET. r************************************************************************** FLOW PROCESS PROM NODE 5090.00 TO NODE 5095.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW} «<« ELEVATION DATA: UPSTREAM(FEET) = 198.00 DOWNSTREAM(FEET) = 190.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.40 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 177.07 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN-) = 20.08 LONGEST FLOWPATH FROM NODE 5079.00 TO NODE 5095.00 = 16170.00 FEET. FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.08 RAINFALL INTENSITY(INCH/HR) = 3.01 TOTAL STREAM AREA(ACRES) = 97.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 177.07 FLOW PROCESS FROM NODE 5091.00 TO NODE 5091.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1-87 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 1.87 FLOW PROCESS FROM NODE 5091.00 TO NODE 5095.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STRF.AM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.87 FLOW PROCESS FROM NODE 5092.00 TO NODE 5092.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc{MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1-87 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 1.87 FLOW PROCESS FROM NODE 5092.00 TO NODE 5095.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION{MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.87 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 177.07 20.08 3.009 97.20 2 1.87 6.00 6.559 0.30 3 1.87 6.00 6.559 0.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 84.98 6.00 6.559 2 84.98 6.00 6.559 3 178.78 20.08 3.009 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 178.78 Tc(MIN-) = 20.08 TOTAL AREA(ACRES) = 97.80 LONGEST FLOWPATH FROM NODE 5092^00 TO NODE 5095.00 = 25000.00 FEET. ****************************************************************************** FLOW PROCESS FROM NODE 5095.00 TO NODE 1080.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 195.00 DOWNSTREAM(FEET) = 194.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 16.96 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 178.78 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN-) = 20.13 LONGEST FLOWPATH FROM NODS 5092.00 TO NODE 1080.00 = 25050.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 97.80 TC(MIN.) = 20.13 PEAK FLOW RATE(CFS) = 178.78 END OF RATIONAL METHOD ANALYSIS c APPENDIX 3.14 SYSTEM 6000 (PA-13) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 t************************* DESCRIPTION OF STUDY ***********' BRESSI RANCH - EL FUERTE ROADWAY SYSTEM 6000: OS-3 AND PA-13 ULTIMATE CONDITIONS HYDROLOGY 100-YEAR STORM EVENT ****************************** FILE NAME: C:\aes2001\hydrosft\ratscx\1325-6u.dat TIME/DATE OF STUDY: 18:38 03/27/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 37.0 32.0 0.020/0.020/ --- 0.67 2.00 0.0312 0.167 0.0150 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 6001.00 TO NODE 6002.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 10.88(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 220.00 UPSTREAM ELEVATION = 400.00 DOWNSTREAM ELEVATION = 350.00 ELEVATION DIFFERENCE = 50.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.468 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.40 *************************************************************************** FLOW PROCESS FROM NODE 6002,00 TO NODE 6003.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.1143 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.40 FLOW VELOCITYfFEET/SEC) = 2.81 FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 4.15 Tc(MIN.) = 15.03 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6003.00 = 920.00 FEET. FLOW PROCESS FROM NODE 6003.00 TO NODE 6003.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.628 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 12.08 TOTAL AREA(ACRES) = 7.60 TOTAL RUNOFF(CFS) = 12.48 TC(MIN) = 15.03 FLOW PROCESS FROM NODE 6003.00 TO NODE 6005.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = 265.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0125 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.48 FLOW VELOCITY(FEET/SEC) = 6.20 FLOW DEPTH(FEET) = 0.62 TRAVEL TIME(MIN.} = 1.07 Tc(MIN.) = 16.10 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6005.00 = 1320.00 FEET. FLOW PROCESS FROM NODE 6005.00 TO NODE 6005.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.470 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 9.37 TOTAL AREA(ACRES) = 13.60 TOTAL RUNOFF(CFS) = 21.85 TC(MIN) = 16.10 FLOW PROCESS FROM NODE 6005.00 TO NODE 6010.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «^« ELEVATION DATA: UPSTREAM(FEET) = 265.00 DOWNSTREAM(FEET) = 260.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 ==»WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) = 21.85 FLOW VELOCITY(FEET/SEC) = 7.28 FLOW DEPTH(FEET) = 1.00 TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 17.24 ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6010.00 = 1820.00 FEET. FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.320 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 12.78 TOTAL AREA(ACRES) = 19.10 TOTAL RUNOFF(CFS} = 34.63 TC(MIN) = 17.24 FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 6011.00 TO NODE 6012.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 10.95(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 400.00 DOWNSTREAM ELEVATION = 340.00 ELEVATION DIFFERENCE = 60.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.449 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS} = 0.40 **************************************************************************** FLOW PROCESS FROM NODE 6012.00 TO NODE 6013.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.2333 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.40 FLOW VELOCITY(FEET/SEC) = 3.83 FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 12.25 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6013.00 = 550.00 FEET. FLOW PROCESS FROM NODE 6013.00 TO NODE 6013.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.138 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 12.66 TOTAL AREA(ACRES) = 7.00 TOTAL RUNOFF(CFS) = 13.06 TC(MIN) = 12.25 **************************************************************************** FLOW PROCESS FROM NODE 6013.00 TO NODE 6010.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = 260.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0250 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 13.06 FLOW VELOCITY(FEET/SEC) = 8.36 FLOW DEPTH(FEET) = 0.67 TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 13.05 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6010.00 = 950.00 FEET. FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.06 13.05 3.973 7.00 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6010.00 = 950.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 34.63 17.24 3.320 19.10 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6010.00 = 1820.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH/HOUR) 1 42.00 13.05 3.973 2 45.55 17.24 3.320 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 45.55 Tc(MIN.) = TOTAL AREA(ACRES) = 26.10 17.24 FLOW PROCESS FROM NODE 6010.00 TO NODE 6020.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) = 255.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 45.55 FLOW VELOCITY(FEET/SEC) = 8.18 FLOW DEPTH(FEET) = 1.44 TRAVEL TIME{MIN.) = 1.02 Tc(MIN.) = 18.26 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6020.00 = 2320.00 FEET. it*******************************-********* FLOW PROCESS PROM NODE 6020.00 TO NODE 6020.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.199 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS} = 12.32 TOTAL AREA(ACRES) = 31.60 TOTAL RUNOFF(CFS) = 57.86 TC(MIN) = 18.26 FLOW PROCESS FROM NODE 6020.00 TO NODE 6021.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ELEVATION DATA: UPSTREAM(FEET) = 250.00 DOWNSTREAM(FEET) = 210.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 30.67 ESTIMATED PIPE DIAMETER{INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 57.86 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 18.37 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6021.00 = 2520.00 FEET, END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 31.60 57.86 TC(MIN.18.37 c APPENDIX 4 AES PIPEFLOW COMPUTER OUTPUT C C c APPENDIX 4.1 ULTIMATE CONDITION c c c APPENDIX 4.1.1 C SYSTEM 100 (ALINCANTE RD, 'D' ST) PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes; Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTiON OF STUDY *******-**********• * BRESSI RANCH - ULTIMATE CONDITIONS * SYSTEM 100: UPSIZED PIPES * 100-YEAR STORM EVENT FILE NAME: C:\aes2001\hydrosft\ratscx\plOOc2.DAT TIME/DATE OF STUDY: 08:59 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 100.00- } 101.00- } 101.10- } 101.50- } 102.00- } 102.90- } 105.00- } 105.90- 1 110.00-} 110.90- 1 111.00-} 112.00- } 112.90- } 114.00- } 120.00- } 120.90- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 8.00 FRICTION 4.93 DC JUNCTION 5.07 FRICTION+BEND 4.93 DC FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION FRICTION JUNCTION FRICTION FRICTION JUNCTION 4.93 DC 7.69 4.89 DC 5.09 4.89*Dc 9.58* 9 .47* 9.21* 9.93* 9.29* 7.27* 7.46 DOWNSTREAM RUN FLOW PRESSURE* DEPTH(FT) MOMENTUM(POUNDS) 27777.40 2.25* 48795.09 24075.04 3.36* 30722.41 23731.03 3.29* 30683.73 23611.61 3.37* 30006.14 23611.61 3.59* 28254.70 22723.43 2.94* 27673.10 19384.04 3.60* 22722.00 19148.60 3.51* 22737.08 18990.40 4.89*Dc 18990.40 18527.37 4.01 13388.88 18391.21 4.07 13288.90 18080.84 4.34 12968.57 17592.04 3.58 12573.04 16806.95 3.60 12513.79 14336.71 3.60 12529.77 13890.49 2.22* 16030.43 } FRICTION 125.00- 3.48*Dc 11507.70 3.48*Dc 11507.70 } JUNCTION 125.90- 10.10* 11327.84 2.11 10397.33 } FRICTION } HYDRAULIC JUMP 126.00- 3.44 DC 7356.12 2.47* 8859.10 } MANHOLE 126.90- 3.44 DC 7356.12 2.45* 8920.05 ) FRICTION 130.00- 3.44 DC 7356.12 2.72* 8196.97 } JUNCTION 130.90- 5.23 7157.24 2.20* 8020.93 } FRICTION 140.00- 3.41*Dc 6098.69 3.41*Dc 6098.69 } JUNCTION 140.90- 7.24* 4194.17 1.79 2879.43 } FRICTION } HYDRAULIC JUMP 150.00- 2.75 DC 2285.77 1.95* 2678.26 } MANHOLE 150.90- 2.75 DC 2285.77 1.99* 2636.97 } FRICTION 160.00- 2.75 DC 2285.77 1.86* 2792.85 } JUNCTION 160.90- 2.98 2091.55 1.66* 2714.23 } FRICTION 170.00- 2.69*Dc 2047.96 2.69*Dc 2047.96 } JUNCTION 170.90- 5.28* 1769.88 2.05 DC 861.10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 190.00 PIPE FLOW = 461.70 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 198.000 FEET NODE 100.00 : HGL = < 192.247>;EGL= < 237.480>;FLOWLINE= < 190.000> FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 1 UPSTREAM NODE 101.00 ELEVATION = 235.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES{LACFCD}: PIPE FLOW = 461.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 150.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.95 CRITICAL DEPTH(FT) = 4.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.361 32.883 20.162 30722.41 2.375 3.305 33.518 20.761 31241.91 4.954 3.248 34.184 21.404 31789.65 7. 10. 14. 17, 21. 26. 31, 36. 42, 49. 56 65 74 86 99 114 132 150. ,759 ,815 ,151 ,801 .805 ,211 .074 ,461 .455 .155 .687 .210 .928 .113 .132 .502 .982 .000 3. 3. 3. 3. 2. 2, 2. 2. 2, 2. 2, 2 2. 2. 2 2 2 2 ,192 ,135 ,079 ,023 .966 ,910 .853 ,797 .740 ,684 .628 .571 .515 .458 .402 .346 .289 .247 34. 35. 36. 37. 38. 38. 39. 40. 41. 42. 44, 45. 46, 48, 49, 51. 52, 53. ,882 ,614 .382 .189 .036 ,927 .864 .851 .891 ,988 .145 .368 .662 .032 .484 .025 .663 ,955 22. 22. 23. 24. 25, 26. 27, 28, 30, 31, 32. 34, 36. 38. 40. 42. 45 47, ,097 .842 .645 .511 ,445 .454 .545 .726 .007 .396 .907 .552 .345 .304 .448 .798 .381 .480 32367. 32976. 33618, 34296, 35011, 35766. 36564. 37407. 38298, 39241. 40240. 41298. 42421. 43613. 44879. 46226 47661 48795, ,19 .23 .62 .34 .59 .75 .39 .35 .73 .91 .64 .99 .49 .12 .39 .43 .02 .09 NODE 101.00 : HGL = < 238 . 861> ; EGL= < 255 . 662> ,- FLOWLINE= < 235.500> FLOW PROCESS FROM NODE UPSTREAM NODE 101.10 101.00 TO NODE ELEVATION = 101.10 IS CODE = 5 235.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 456.60 461.70 5.10 0.00 DIAMETER { INCHES ) 60.00 60.00 18.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 235.90 235.50 240.00 0.00 CRITICAL DEPTH (FT. } 4.93 4.93 0.87 0.00 VELOCITY (FT/ SEC) 33.283 32.893 4.804 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS{DELTAl)-Q3 *V3 *COS{DELTA3}- Q4*V4*COS(DELTA4)}/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05172 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04998 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05085 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.203 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.733}+( 0.000) = 0.733 NODE 101.10 : HGL = < 239.194>;EGL= < 256.395>;FLOWLINE= < 235.900> FLOW PROCESS FROM NODE 101.10 TO NODE 101.50 IS CODE = 3 UPSTREAM NODE 101.50 ELEVATION = 240.70 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 456.60 CFS CENTRAL ANGLE = 90.000 DEGREES PIPE LENGTH = 80.00 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.13 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - 3.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.93 DISTANCE FROM CONTROL (FT} 0.000 8.509 17.430 26.798 36.657 47.053 58.043 69.691 80.000 FLOW DEPTH {FT} 3, 3, 3, 3. 3 3 3 3 3 ,369 .359 .350 .340 .331 .321 .311 .302 .294 VELOCITY (FT/ SEC) 32 32 32 32 32 32 33 33 33 .433 .537 .643 .748 .855 .963 .071 .181 .272 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 19, 19. 19, 20. 20. 20. 20, 20 20 .713 .809 .906 .004 .103 .203 .305 .408 .495 30006. 30089. 30174, 30260. 30346. 30433. 30520, 30609. 30683. .14 .99 .62 .01 .17 .12 ,86 .40 .73 NODE 101.50 : HGL = < 244.069>;EGL= < 260.413>;FLOWLINE= < 240.700> FLOW PROCESS FROM NODE UP STREAM NODE 102.00 101.50 TO NODE 102.00 IS CODE = 1 ELEVATION = 247.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 456.60 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 100.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.06 CRITICAL DEPTH(FT} = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.93 DISTANCE FROM CONTROL ( FT ) 0. 7. 14 22. 30, 39, 49, 59. 69, 81. 94, 100. .000 .042 .482 ,356 .704 .574 ,020 .106 .906 .506 .013 .000 FLOW DEPTH {FT} 3, 3, 3, 3. 3, 3. 3. 3, 3. 3. 3. 3, .593 .571 .550 .529 ,507 .486 .464 ,443 ,421 .400 .379 .369 VELOCITY (FT/ SEC) 30. 30. 30, 30. 31. 31, 31. 31. 31, 32. 32. 32, .224 .419 .617 .818 .023 .232 .444 .660 .880 .104 .331 .433 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 17 17 18 18 18 18 18 19 19 19 19 19 .787 .948 .115 .286 .461 .641 .827 .017 .213 .414 .620 .713 28254, 28406, 28561. 28720. 28882. 29047. 29215. 29387. 29562. 29741. 29924. 30006, .70 .75 .96 .38 .07 ,08 .47 .31 .67 ,61 .21 .14 NODE 102.00 HGL = < 250.723>;EGL= < 264.917>;FLOWLINE= < 247.130> FLOW PROCESS FROM NODE UPSTREAM NODE 102.90 102.00 TO NODE ELEVATION = 102.90 IS CODE = 5 247.46 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 407.20 456.60 49.40 0.00 DIAMETER (INCHES) 60.00 60.00 30.00 0.00 ANGLE (DEGREES) 0.00 - 45.00 0.00 FLOWLINE ELEVATION 247.46 247.13 249.46 0.00 CRITICAL DEPTH (FT. ) 4.89 4.93 2.29 0.00 VELOCITY (FT/ SEC) 33.862 30.234 10.481 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05740 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04100 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04920 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.295 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2}+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.292)+( 0.000) = 3.292 NODE 102.90 : HGL - < 250.404>;EGL= < 268.208>;FLOWLINE= < 247.460> •********: FLOW PROCESS FROM NODE UPSTREAM NODE 105.00 102.90 TO NODE 105.00 IS CODE = 1 ELEVATION = 266.05 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 407.20 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 269.34 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.78 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.89 DISTANCE FROM CONTROL (FT) 0 5 10 16 23 30 37 45 54 63 73 84 96 110 125 141 160. 181 '. 206. 235. 269. .000 .255 .861 .851 .263 .139 .530 .492 .094 .415 .552 .620 .761 .150 .009 .625 .372 .760 ,505 .652 .340 FLOW DEPTH (FT) 3, 3 3. 3, 3. 3, 3 3. 3. 3 3. 3. 3. 3. 3 3. 3, 3. 3. 2. 2. .604 .570 .537 .504 .471 .438 .405 .372 .339 .306 .273 .240 .207 .174 .141 .108 ,075 .042 ,009 .976 .944 VELOCITY (FT/ SEC) 26, 27. 27, 27, 27, 28, 28. 28. 29, 29. 29, 30. 30, 30. 31. 31. 32, 32. 32, 33. 33. .869 .136 .409 .691 .979 .276 .581 .895 .217 .548 .888 .237 .597 .966 .347 .738 ,140 .554 ,980 .419 .851 SPECIFIC PRESSURE* ENERGY ( FT ) MOMENTUM ( POUNDS } 14 15 15 15 15 15 16 16 16 16 17 17 17 18 18 18 19, 19, 19, 20, 20, .821 .011 .210 .418 .635 .861 .098 .344 .602 .871 .152 .446 .753 .073 .408 .759 .125 .508 .909 .328 .748 22722. 22901. 23086, 23278. 23476, 23680, 23891, 24109, 24335. 24567, 24807, 25056, 25312. 25576. 25849 26131 26423, 26724. 27034, 27355, 27673. ,00 ,30 .62 .14 .04 .48 .67 .79 .07 .71 .95 .02 .19 .71 .85 .92 .22 .06 .78 .75 ,10 NODE 105.00 : HGL = < 269.654>;EGL= < 280.871>;FLOWLINE= < 266.050> FLOW PROCESS FROM NODE UPSTREAM NODE 105.90 105.00 TO NODE ELEVATION = 105.90 IS CODE = 5 266.38 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 FLOW (CFS) 402.30 407.20 2.50 DIAMETER (INCHES) 60.00 60.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 FLOWLINE ELEVATION 266.38 266.05 269.38 CRITICAL DEPTH (FT. ) 4.89 4.89 0.60 VELOCITY (FT/ SEC) 27.339 26.877 3.798 LATERAL #2 2.40 18.00 90.00 269.38 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0.59 3.751 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03385 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03237 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03311 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.199 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.622)+( 0.000) = 0.622 NODE 105.90 : HGL = < 269.888>;EGL= < 281.493>;FLOWLINE= < 266.380> FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 105.90 TO NODE ELEVATION = 110.00 IS CODE = 1 283.85 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 402.30 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 478.06 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.41 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.89 DISTANCE FROM CONTROL (FT) 0. 0. 1 3. 6. 10. 14. 19. 25. 32 40, 48. 59, 70, 84, 99. 117. 137. 162. 191. 228. 274. 336. 427. 478. .000 .484 .827 .933 .765 .317 .604 .664 .550 .333 .107 .991 .135 .728 .015 .311 .037 ,766 ,304 ,832 .188 ,455 .414 ,065 ,060 FLOW DEPTH (FT) 4. 4. 4, 4. 4. 4. 4. 4 4 4 4 4 4 4 4 4 3 3, 3, 3, 3, 3, 3. 3, 3, .888 .829 .769 .710 .651 .592 .533 .473 .414 .355 .296 .237 .177 .118 .059 .000 .941 .881 .822 .763 ,704 .645 ,586 .526 .508 VELOCITY (FT/SEC) 20. 20. 20, 20. 21. 21. 21. 21. 21 22 22 22 22 23 23 23 24 24, 24. 25. 25. 26, 26. 27. 27. .599 .703 .828 .970 .130 .305 .496 .701 .921 .156 .406 .670 .950 .245 .556 .884 .228 .590 .970 .369 .788 .227 .688 ,172 ,330 SPECIFIC PRESSURE-t- ENERGY ( FT ) MOMENTUM ( POUNDS ) 11 11. 11. 11 11 11 11 11 11 11 12 12 12 12 12 12 13 13. 13, 13. 14, 14. 14. 14. 15. .481 .488 .510 .543 .588 .645 .712 .791 .881 .982 .096 .222 .361 .514 .681 .863 .061 ,277 ,510 ,763 .037 .333 .653 .998 .113 18990, 18999. 19025. 19065, 19119. 19185, 19264, 19356. 19459, 19575. 19703. 19843. 19996. 20162 20341 20534 20741. 20962. 21199. 21451. 21719. 22005. 22308. 22631. 22737. ,40 .55 .12 ,30 .04 .67 .79 .17 .72 .43 .40 .78 .78 .70 .85 .63 .46 .85 .32 .48 .99 .56 ,96 .05 .08 NODE 110.00 : HGL = < 288.738>;EGL= < 295.331>;FLOWLINE= < 283.850> FLOW PROCESS FROM NODE UPSTREAM NODE 110.90 110.00 TO NODE ELEVATION = 110.90 IS CODE = 5 284.35 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 316.00 402.30 86.30 0.00 DIAMETER ( INCHES ) 60.00 60.00 36.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 284.35 283.85 286.00 0.00 CRITICAL DEPTH ( FT . ) 4.72 4.89 2.82 0.00 VELOCITY (FT/ SEC) 16.094 20.606 12.209 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/({A1+A2)*16.1}+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01472 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02126 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01799 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.108 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.619)+( 0.000} = 2.619 NODE 110.90 : HGL = < 293.928>;EGL= < 297.950>;FLOWLINE= < 284.350> FLOW PROCESS FROM NODE UPSTREAM NODE 111.00 110.90 TO NODE ELEVATION = 111.00 IS CODE = 1 285.05 {FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 316.00 CFS PIPE DIAMETER = 60.00 INCHES 40.00 FEET MANNING'S N = 0.01300 ; 316.00)/( 2604.472))**2 = 0.01472 40.00)*(0.01472) = 0.589 NODE 111.00 : HGL = < 294.517>;EGL= < 298.539>;FLOWLINE= < 285.050> FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 111.00 TO NODE ELEVATION = 112.00 IS CODE = 1 286.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES{LACFCD}: PIPE FLOW = 316.00 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 81.29 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = ({ 316.00)/( 2604.414)}**2 = 0.01472 HF=L*SF = { 81.29)*(0.01472) = 1.197 NODE 112.00 : HGL = < 295.713>;EGL= < 299.735>;FLOWLINE^ < 286.500> FLOW PROCESS FROM NODE UPSTREAM NODE 112.90 112.00 TO NODE ELEVATION = 112.90 IS CODE = 5 286.85 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 293.30 316.00 21.60 1.10 DIAMETER ( INCHES ) 60.00 60.00 24.00 18.00 ANGLE (DEGREES) 0.00 - 60.00 90.00 FLOWLINE ELEVATION 286.85 286.50 289.35 289.35 CRITICAL- DEPTH (FT. ) 4.64 4.72 1.66 0.39 VELOCITY {FT/ SEC) 14.938 16.094 6.875 0.622 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS{DELTA4)}/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01268 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01472 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01370 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.069 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.508}+( 0.000) = 0.508 NODE 112.90 : HGL = < 296.779>;EGL= < 300.243>;FLOWLINE= < 286.850> FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 112.90 TO NODE ELEVATION = 114.00 IS CODE = 1 289.21 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 293.30 CFS PIPE DIAMETER = 60.00 INCHES 135.56 FEET MANNING'S N = 0.01300 ( 293.30)/( 2604.436))**2 = 0.01268 135.56)*(0.01268) = 1.719 NODE 114.00 : HGL = < 298.498>;EGL= < 301.963>;FLOWLINE= < 289.210> FLOW PROCESS FROM NODE UPSTREAM NODE 120.00 114.90 TO NODE ELEVATION = 120.00 IS CODE = 1 297.48 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 293.30 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 493.12 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {( 293.30}/( 2604 .436))**2 = 0.01268 HF=L*SF = ( 493.12)*(0.01268} = 6.254 NODE 120.00 : HGL = < 304.752>;EGL= < 308.217>;FLOWLINE= < 297.480> FLOW PROCESS FROM NODE 120.00 TO NODE 120.90 IS CODE = 5 UPSTREAM NODE 120.90 ELEVATION = 297.98 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 227.90 293.30 65.40 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 42.00 60.00 42.00 0.00 Q.OO===Q5 EQUALS 45.00 - 45.00 0.00 FLOWLINE ELEVATION 297.98 297.48 298.48 0.00 CRITICAL DEPTH ( FT . ) 3.48 4.64 2.53 0.00 VELOCITY (FT/ SEC) 35.419 14.938 6.798 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09630 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01268 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05449 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.272 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = (11.463)+( 0.000) = 11.463 NODE 120.90 : HGL = < 300.200>;EGL= < 319.679>;FLOWLINE= < 297.980> ****************** FLOW PROCESS FROM NODE UPSTREAM NODE 125.00 120.90 TO NODE ELEVATION = 125.00 IS CODE = 1 322.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 227.90 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 200.59 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.06 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.48 DISTANCE FROM CONTROL (FT) 0 0 1 2 4 6, 9. 11. 15, 19, 23, 28, 33, 40. 47. 56, 66, 77. 91. 108. 128. 155. 190. 200. .000 .381 .310 .662 .399 .511 .005 .902 .232 .039 .376 .313 .938 .362 .729 .224 .094 .676 .445 .097 .717 .123 .731 .590 FLOW DEPTH (FT) 3, 3, 3, 3. 3. 3. 3. 3. 3, 2, 2, 2, 2, 2, 2. 2. 2, 2 2. 2. 2 2. 2 2 .478 .421 .365 .308 .251 ,195 .138 ,081 ,024 .968 .911 ,854 .798 .741 .684 .627 .571 .514 .457 .400 .344 .287 .230 .220 VELOCITY (FT/ SEC) 23. 23 23 24. 24 24. 25, 25. 25, 26. 26, 27, 27. 28, 28, 29. 30. 30. 31, 32. 33. 34. 35. 35 .700 .815 .986 .199 .449 ,734 .051 .400 .781 ,194 .640 .120 .634 .186 .776 .407 .081 .801 .570 .391 .269 .207 .211 .408 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 12 12 12 12 12 12 12 13 13 13 13 14 14 15 15 16 16 17 17 18 19 20 21 21 .205 .234 .304 .407 .539 .700 .888 .105 .351 .628 .938 .282 .663 .085 .551 .064 .630 .255 .943 .702 .541 .468 .495 .699 11507. 11524, 11566, 11627. 11704, 11797. 11904. 12027. 12163. 12315, 12481, 12663, 12861. 13076. 13309, 13560. 13830. 14122 14436 14773 15136 15527 15947 16030 ,70 .65 ,33 ,06 ,46 .30 .96 ,18 ,94 ,40 ,89 .87 .93 .76 .20 .19 .84 .36 .13 .72 .88 .55 .95 .43 NODE 125.00 : HGL = < 325.648>;EGL= < 334.375>;FLOWLINE= < 322.170> FLOW PROCESS FROM NODE UPSTREAM NODE 125.90 125.00 TO NODE ELEVATION = 125.90 IS CODE - 5 322.67 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 177.10 227.90 50.80 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 42.00 42.00 30.00 0.00 0.00===Q5 EQUALS 0.00 - 90.00 0.00 FLOWLINE ELEVATION 322.67 322.17 324.00 0.00 CRITICAL DEPTH (FT. ) 3.44 3.48 2.31 0.00 VELOCITY (FT/SEC) 18.407 23.707 10.349 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3*V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03098 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04803 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03951 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.198 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.652)+( 0.000} = 3.652 NODE 125.90 : HGL = < 332.766>;EGL= < 338.027>;FLOWLINE= < 322.670> FLOW PROCESS FROM NODE UPSTREAM NODE 126.00 125.90 TO NODE ELEVATION = 126.00 IS CODE = 1 342.75 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 177.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 276.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.06 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.44 DISTANCE FROM CONTROL (FT) 0 4 8 12 17, 22, 28, 34. 40. 47. 54. 62. 71. 80. 91. 102. 115, 130, 147, 167. 191. 220. 259. 276. .000 .059 .355 .909 .747 .896 .389 .265 .567 .348 .671 .612 .263 .741 .189 .794 .804 .550 .501 .341 .131 .650 .231 ,000 FLOW DEPTH (FT) 2. 2 2 2 2. 2, 2, 2, 2, 2. 2, 2, 2. 2. 2. 2 2 2. 2. 2. 2 2 2. 2. .473 .457 .440 .424 .407 ,391 .374 .358 .341 .325 .308 .292 .275 .259 .242 .226 .209 .193 .176 .160 .143 .127 .110 .105 VELOCITY (FT/ SEC) 24. 24 24 24 25, 25. 25, 25, 25, 26, 26, 26, 26. 26. 27. 27 27. 27. 28. 28. 28. 28, 29. 29. .359 .537 .719 .904 .092 .284 .480 .680 .884 .091 .303 .519 .740 .964 .193 .427 .666 .909 .157 .411 .669 .933 .203 .286 SPECIFIC PRESSURE+ ENERGY { FT } MOMENTUM { POUNDS ) 11 11 11 12 12, 12, 12, 12. 12. 12. 13. 13. 13. 13. 13. 13 14 14 14. 14. 14 15 15. 15. .693 .812 .934 .060 .190 .324 .462 .604 .751 .902 .058 .219 .385 .556 .732 .914 .102 .295 .495 .701 .914 .134 ,361 .431 8859. 8912. 8967. 9023. 9081. 9139. 9200. 9261. 9324. 9388. 9454. 9521. 9590. 9660. 9732. 9806. 9881. 9958. 10037. 10117. 10200. 10284. 10370. 10397. 10 74 61 75 17 92 00 46 32 61 37 62 40 75 69 28 55 53 27 82 21 49 72 33 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 10.10 DISTANCE FROM CONTROL (FT) 0.000 157.912 PRESSURE HEAD (FT) 10.096 3.500 VELOCITY (FT/ SEC) 18.407 18.407 SPECIFIC ENERGY (FT) 15.357 8.761 PRESSURE+ MOMENTUM ( POUNDS ) 11327.84 7368.05 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 157 157 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 276 .912 .961 .003 .041 .076 .107 .137 .163 .188 .211 .232 .251 .269 .285 .299 .312 .323 .334 .342 .350 .356 .361 .365 .368 .370 .370 .000 FLOW DEPTH (FT) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 T?M .500 .498 .495 .493 .490 .488 .486 .483 .481 .479 .476 .474 .471 .469 .467 .464 .462 .460 .457 .455 .452 .450 .448 .445 .443 .441 .441 n ntr H^ VELOCITY (FT/SEC) 18. 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18. 18. 18. 18. 18. 18. 18, 18. 18. 18 18 18 .TlRAm .402 .402 .403 .405 .406 .408 .410 .412 .414 .417 .419 .422 .425 .428 .431 .434 .437 .440 .444 .447 .451 .455 .459 .463 .467 .471 .471 '.TP .TTIMP SPECIFIC PRESS URE-F ENERGY ( FT ) MOMENTUM ( POUNDS ) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8awar.vQ .761 .759 .758 .756 .754 .753 .752 . .751 .750 .749 .748 .747 .746 .745 .745 .744 .744 .743 .743 .742 .742 .742 .742 .742 .742 .741 .741 TQ 7368. 7366. 7365. 7364. 7363. 7363, 7362, 7361, 7360. 7360. 7359, 7359, 7358. 7358. 7358, 7357, 7357. 7357. 7356. 7356. 7356 7356. 7356 7356 7356. 7356. 7356. .05 .81 .73 ,76 .86 .04 .28 .58 .93 .33 .78 .28 .82 .40 .02 ,67 .37 ,10 .86 .66 .49 .36 .25 .18 .14 .12 .12 PRESSURE+MOMENTUM BALANCE OCCURS AT 40.26 FEET UPSTREAM OF NODE 125.90 DOWNSTREAM DEPTH = 8.414 FEET, UPSTREAM CONJUGATE DEPTH = 2.120 FEET NODE 126.00 : HGL = < 345 . 223> ; EGL= < 354 . 443>; FLOWLINE= < 342.750> FLOW PROCESS FROM NODE UPSTREAM NODE 126.90 126.00 TO NODE 126.90'IS CODE = 2 ELEVATION = 343.08 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 177.10 CFS PIPE DIAMETER = 42.00 INCHES AVERAGED VELOCITY HEAD = 9.297 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = . 05* ( 9.297) = 0.465 NODE 126.90 : HGL = < 345 . 535> ; EGL= < 354 . 908> ; FLOWLINE= < 343.080> FLOW PROCESS FROM NODE UPSTREAM NODE 130.00 126.90 TO NODE ELEVATION = 130.00 IS CODE = 1 355.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 177.10 CFS PIPE DIAMETER =42.00 INCHES PIPE LENGTH = 264.17 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.41 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.72 = ^ = = = ^S — = «^ = = = = = = = = = = = = = = ^ = i: — = = = = = = = = = T^ii = = = =; = = = ^ — — — — = = = —= ^ —— = = —: GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.44 DISTANCE FROM CONTROL (FT) 0, 4, 10, 15, 21. 27, 33. 40, 48. 56, 64, 73, 83. 94 106 120, 134, 151. 170, 193. 220, 253, 264. .000 .874 .017 .451 .204 .307 .796 .714 .110 .041 .577 .802 .818 .754 .768 ,068 ,925 ,708 .933 .357 .152 .282 .170 FLOW DEPTH (FT) 2. 2. 2. 2 2 2 2 2 2 2 2 2 2 2 2 2, 2 2 2, 2, 2. 2 2 .717 .705 .692 .680 .668 .655 .643 .631 .618 .606 .594 .581 .569 .556 .544 .532 .519 .507 .495 .482 .470 .458 .455 VELOCITY {FT/ SEC) 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23. 23. 24. 24. 24 24. 24 24 .092 .192 .293 .396 .501 .607 .715 .824 .934 .047 .161 .276 .393 .512 .633 .755 .879 .005 .133 .263 .394 .528 .562 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 .300 .357 .414 .474 . 534 .596 .660 .724 .791 .859 .928 .999 .072 .146 .222 .300 .379 .461 .544 .629 .716 .805 .828 8196. 8225, 8253. 8283. 8312 8343. 8374. 8405. 8437. 8470. 8503. 8537. 8571. 8606. 8642. 8678. 8715. 8753. 8791 8830. 8869. 8909. 8920. ,97 ,15 ,86 ,11 .91 ,25 ,16 ,63 .67 .29 ,49 ,29 ,69 .70 ,33 59 48 02 .21 .06 .59 ,80 ,05 NODE 130.00 : HGL = < 358.017>;EGL= < 365.600>;FLOWLINE= < 355.300> FLOW PROCESS FROM NODE UPSTREAM NODE 130.90 130.00 TO NODE ELEVATION = 130.90 IS CODE = 5 355.63 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 158.60 177.10 18.50 0.00 DIAMETER ( INCHES ) 42.00 42.00 36.00 0.00 ANGLE (DEGREES) 0.00 - 45.00 0.00 FLOWLINE ELEVATION 355.63 355.30 357.00 0.00 CRITICAL DEPTH (FT. ) 3.41 3.44 1.38 0.00 VELOCITY (FT/ SEC) 24.856 22.099 5.841 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTA1)-Q3*V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04763 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03450 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04106 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.164 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.827)+( 0.000) = 1.827 NODE 130.90 : HGL = < 357 . 834>;EGL= < 367.427>;FLOWLINE= < 355.630> FLOW PROCESS FROM NODE UPSTREAM NODE 140.00 130.90 TO NODE ELEVATION = 140.00 IS CODE = 1 367.72 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 158.60 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 214.61 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.08 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.41 DISTANCE FROM CONTROL (FT) 0.000 0 0 1 3 4 6 9 11 15 19 23 28 34 41 49 58 69 82 97 117 142 176 214 .215 .819 .776 .078 .728 .743 .145 .968 .256 .062 .455 .521 .369 .137 .006 .216 .092 .094 .897 .548 .808 .977 .610 FLOW DEPTH (FT) 3.409 3, 3 3. 3 3. 3 3 2. 2, 2, 2. 2, 2, 2, 2, 2 2. 2 2. 2. 2 2 2 .356 .303 .250 .197 .144 .091 .038 ,985 .932 .879 .826 .773 .720 .667 .614 .561 .508 .455 .402 . .349 .296 .243 .204 VELOCITY (FT/SEC) 16.597 16 16 17 17 17 17 17 18. 18. 18, 19. 19, 19. 20, 20, 21. 21. 21. . 22. 23. 23. 24. 24. .714 .856 .020 .205 .409 .633 .876 .139 .422 .725 .049 .394 .763 .155 .572 .016 .488 .990 .524 .092 .697 .341 .848 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS } 7.689 6098.69 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 10 10 11 11 11 .696 .717 .751 .796 .853 .922 .003 .097 .205 .327 .464 .617 .788 .979 .190 .424 .683 .969 .285 .635 .021 .449 .797 6103. 6115. 6134. 6161. 6193. 6232. 6277. 6329. 6387. 6452, 6524. 6603, 6690. 6784. 6887. 6998. 7118. 7248. 7389. 7541. 7704. 7880. 8020 .12 .48 .97 .13 .73 .68 .97 .66 .87 ,78 .61 .61 .11 .44 .02 .28 .74 .94 .52 .16 .64 .82 .93 NODE 140.00 : HGL = < 371.129>;EGL= < 375.409>;FLOWLINE= < 367.720> FLOW PROCESS FROM NODE UPSTREAM NODE 140.90 140.00 TO NODE ELEVATION = 140.90 IS CODE = 5 368.22 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW {CFS) 77.90 158.60 79.70 1.00 DIAMETER ANGLE (INCHES) (DEGREES) 36.00 42.00 36.00 18.00 0.00===Q5 EQUALS 0.00 - 45.00 90.00 FLOWLINE ELEVATION 368.22 367.72 368.22 369.00 CRITICAL DEPTH ( FT . ) 2.75 3.41 2.77 0.37 VELOCITY (FT/ SEC) 11.021 16.602 11.275 0.566 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS{DELTAl)-Q3*V3 *COS(DELTA3)- Q4*V4*COS(DELTA4)}/( (A1+A2 }*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01364 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02200 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01782 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.071 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.934}+( 0.000) = 1.934 NODE 140.90 HGL = < 375.457>;EGL= < 377 . 343>;FLOWLINE= < 368.220> FLOW PROCESS FROM NODE UPSTREAM NODE 150.00 140.90 TO NODE ELEVATION = 150.00 IS CODE = 1 377.36 (HYDRAULIC JUMP OCCURS} CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.05 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.79 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.75 DISTANCE FROM CONTROL (FT) 0 3 7 11 15 19 24 28 34 39 45 51 58 66 74 83 94 105 118 134 152 174 204 245 295 .000 .492 .164 .032 .115 .434 .013 .880 .069 .618 .575 .995 .948 .520 .818 .982 .193 .701 .852 .155 .398 .904 .149 .702 .050 FLOW DEPTH (FT) 1. 1. 1. 1. 1. 1. 1, 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1, 1, 1. .948 ,942 .935 .929 .922 .916 .909 .903 .896 ,890 .883 .877 .870 ,864 .857 ,851 .844 ,838 ,831 .825 .818 .812 ,805 ,799 ,794 VELOCITY (FT/ SEC) 16. 16 16. 16 16 16 16 16, 16, 16, 16. 16. 16. 16. 16. 17. 17. 17 17 17 17 17 17 17 17 .028 .090 .152 .215 .278 .342 .407 .472 .538 .604 .671 .739 .807 .876 .946 .016 .087 .159 .231 .304 .378 .452 .527 .603 .655 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 5. 5. 5, 6, 6. 6, 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. .940 .964 ,989 ,014 .039 .065 .092 ,119 .146 .173 .202 .230 .259 .289 .319 .350 ,381 .412 .444 .477 .510 .544 .578 .613 .637 2678. 2685. 2693, 2700. 2708. 2715. 2723. 2731. 2739. 2747. 2756. 2764, 2772, 2781, 2790. 2798, 2807. 2816. 2825. 2834. 2844. 2853. 2863 2872 2879. .26 .61 ,06 .60 .24 .97 .80 .72 .75 .87 .10 ,43 .86 .39 .03 .78 .64 .60 .67 .85 .15 .56 .09 .73 .43 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD I FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7.24 DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY {FT/SEC) SPECIFIC ENERGY(FT) PRESSURE* MOMENTUM(POUNDS) 0.000 244.393 7.237 3.000 11.021 11.021 9.123 4.886 4194.17 2325.30 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 244.393 244.891 245.319 245.705 246.059 246.386 246.688 246.968 247.228 247.469 247.691 247.897 248.087 248.261 248.419 248.563 248.692 248.807 248.908 248.996 249.069 249.129 249.176 249.210 249.230 249.236 295.050 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT} (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS} 3.000 11.017 4.886 2325.30 2.990 11.021 4.877 2321.44 2.980 11.027 4.869 2318.02 2.970 11.036 4.862 2314.90 2.960 11.046 4.856 2312.01 2.950 11.057 4.850 2309.34 2.940 11.070 4.844 2306.86 2.930 11.084 4.839 2304.55 2.920 11.099 4.834 2302.40 2.910 11.114 4.829 2300.41 2.900 11.131 4.825 2298.56 2.890 11.149 4.821 2296.85 2.880 11.167 4.818 2295.27 2.870 11.186 4.814 2293.83 2.860 11.206 4.811 2292.51 2.850 11.227 4.808 2291.32 2.840 11.249 4.806 2290.25 2.830 11.271 4.804 2289.30 2.820 11.294 4.802 2288.46 2.810 11.318 4.800 2287.74 2.800 11.342 4.799 2287.13 2.790 11.367 4.798 2286.64 2.780 11.393 4.797 2286.26 2.770 11.420 4.796 2285.98 2.760 11.447 4.796 2285.82 2.750 11.47-4 4.796 2285.77 2.750 11.474 4.796 2285.77 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 179.23 FEET UPSTREAM OF NODE 140.90 DOWNSTREAM DEPTH = 4.130 FEET, UPSTREAM CONJUGATE DEPTH = 1.833 FEET NODE 150.00 : HGL = < 379.308>;EGL= < 383.300>;FLOWLINE= < 377.360> FLOW PROCESS FROM NODE 150.00 TO NODE 150.90 IS CODE = 2 UPSTREAM NODE 150.90 ELEVATION = 377.69 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 3.905 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*{ 3.905) = 0.195 NODE 150.90 : HGL = < 379.676>;EGL= < 383.495>;FLOWLINE= < 377.690> FLOW PROCESS FROM NODE 150.90 TO NODE 160.00 IS CODE = 1 UPSTREAM NODE 160.00 ELEVATION = 384.26 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 294.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.86 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.75 DISTANCE FROM CONTROL (FT) 0 5 10 15 21 27 33 40 47 54 61 69 78 87 97 108 120 133 148 165 185 209 240 284 294 .000 .107 .395 .882 .586 .528 .733 .230 .051 .236 .832 .897 .500 .727 .688 .521 .412 .611 .468 .496 .491 .785 .877 .382 .710 FLOW DEPTH (FT) 1. 1. 1. 1, 1. 1, 1. 1. 1. 1. 1. 1. 1, 1, 1. 1, 1. 1. 1, 1, 1. 1, 1. 1. 1. ,855 ,861 .866 .872 .878 ,883 .889 .895 ,900 ,906 ,912 ,917 ,923 ,929 .935 ,940 .946 .952 ,957 ,963 .969 .974 .980 .986 .986 VELOCITY (FT/ SEC) 16. 16. 16 16 16 16 16 16 16. 16, 16. 16. 16. 16. 16. 16 16 15 15 15 15 15 15 15 15 .969 .908 .847 .787 .728 .669 .610 .552 .495 .438 .381 .325 .269 .214 .159 .104 .050 .997 .944 .891 .839 .787 .735 .684 .677 SPECIFIC PRESSURE+ ENERGY ( FT } MOMENTUM ( POUNDS ) 6, 6. 6. 6, 6. 6. 6, 6, 6. 6. 6, 6. 6. 6. 5, 5. 5. 5. 5. 5, 5, 5, 5. 5, 5, ,329 .302 .276 ,251 .225 .201 ,176 .152 ,128 .104 ,081 .058 .036 .013 ,992 .970 .949 ,928 .907 .886 ,866 .847 .827 .808 .805 2792 2785 2777 2770 2763 2755 2748 2741 2734 2727 2720 2713 2707 2700 2693 2687 2680 2674 2668 2662 2655 2649 2643 2637 2636 .85 .28 .79 .37 .04 .78 .61 .51 .48 .53 .66 .86 .13 .48 .90 .38 .95 .58 .28 .05 .88 .79 .76 .80 .97 NODE 160.00 HGL = < 386.115>;EGL= < 390.589>;FLOWLINE= < 384.260> FLOW PROCESS FROM NODE UPSTREAM NODE 160.90 160.00 TO NODE ELEVATION = 160.90 IS CODE = 5 384.76 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL ttl LATERAL #2 Q5 FLOW (CFS) 72.40 77.90 2.75 2.75 DIAMETER ( INCHES ) 36.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 384.76 384.26 385.26 385.26 CRITICAL DEPTH (FT. ) 2.69 2.75 0.63 0.63 VELOCITY (FT/ SEC) 18.082 16.974 2.183 2.183 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS{DELTA1}-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03074 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.123 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.905)+( 0.000) = 0.905 03389 02759 0.000 FEET NODE 160.90 : HGL = < 386 . 417>;EGL= < 391.494>;FLOWLINE= < 384.760> FLOW PROCESS FROM NODE UPSTREAM NODE 170.00 160.90 TO NODE ELEVATION = 170.00 IS CODE = 1 393.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 226.72 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.61 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.69 DISTANCE FROM CONTROL {FT} 0.000 0.079 0.321 0.736 1.337 2.138 3.159 4.424 5.960 7.801 9.988 12.572 15.615 19.194 23.410 28.389 34.302 41.380 49.946 60.476 73.711 90.889 114.340 149.296 212.552 226.720 FLOW DEPTH (FT) 2, 2, 2, 2, 2, 2. 2. 2. 2. 2. 2. 2. 2. 2, 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. .688 .645 .602 .559 .516 .473 .430 .387 .344 .302 ,259 .216 .173 .130 .087 ,044 .001 ,958 .915 .872 .829 .786 .743 .700 .657 .657 VELOCITY (FT/ SEC) 10. 10. 11. 11. 11. 11. 11. 11. 12. 12. 12, 12. 13. 13, 13. 14. 14. 14. 15. 15. 16. 16. 16. 17, 18, 18. .836 .969 .113 .267 .433 .610 .798 .999 .212 .438 ,678 ,933 .202 ,488 ,791 .112 .453 .814 .198 .606 .039 ,501 ,992 .517 .077 ,076 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 4, 4 4. 4. 4 4 4 4 4, 4. 4, 4, 4, 4, 5, 5, 5. 5, 5. 5. 5. 6, 6. 6. 6. 6, .513 .515 .521 .532 .547 .568 .593 .624 .662 .705 .756 .814 .881 .956 .042 .138 .246 .368 .503 .656 .826 .016 .229 .467 .734 .734 2047. 2048. 2051, 2055. 2061. 2069, 2079. 2091. 2105. 2121. 2139. 2160. 2183. 2208. 2237. 2268, 2302. 2339, 2380, 2425, 2474, 2526. 2584. 2646 2714 2714. .96 .83 ,42 ,78 ,92 .91 .78 .62 .50 ,49 ,71 ,25 ,24 .80 ,08 ,23 .44 .90 .82 .43 .01 .84 .25 .60 .29 .23 NODE 170.00 : HGL = < 395 . 818>;EGL= < 397.643>;FLOWLINE= < 393.130> FLOW PROCESS FROM NODE UPSTREAM NODE 170.90 170.00 TO NODE ELEVATION = 170.90 IS CODE = 5 393.30 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 36.80 72.40 35.60 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 36.00 30.00 0.00 0.00===Q5 EQUALS 0.00 - 90.00 0.00 FLOWLINE ELEVATION 393.30 393.13 393.30 0.00 CRITICAL DEPTH ( FT . ) 2.05 2.69 2.02 0.00 VELOCITY {FT/ SEC) 7.497 10.839 7.252 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3*V3 *COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1}+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00805 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01041 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00923 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.037 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.813)+( 0.000) = 1.813 NODE 170.90 : HGL = < 398.583>;EGL= < 399.455>;FLOWLINE= < 393.300> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 170.90 FLOWLINE ELEVATION = 393.30 ASSUMED UPSTREAM CONTROL HGL = 395.35 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS •* ** c APPENDIX 4.1.2 SYSTEM 122 ('D' STREET) c C PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIpTION QF STUDY * BRESSI RANCH - MASS GRADED CONDITIONS * SYSTEM 122: 36" PIPE @ 1% * 100-YEAR STORM EVENT FILE NAME: P122A.DAT TIME/DATE OF STUDY: 10:15 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-t- FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 122 122, 122, 122. 122. 122. .00 .20 .30 .40 .50 .60 MAXIMUM - } FRICTION - } MANHOLE - } FRICTION - } JUNCTION - } FRICTION - NUMBER OF 6. 6. 6. 6, 6, 6. .27 ,50 .24 .06 .54 .50 ENERGY * * * * * * BALANCES 3432. 3533. 3420. 3339. 3357. 3342. USED IN .00 .19 .84 .58 .89 .95 EACH 2. 2. 2. 2. 2. 2. PROFILE 58 17 37 65 DC 41 58 DC = 25 1934. 2045, 1969. 1932, 1736. 1725. .48 .70 ,44 .04 .98 ,52 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 122.00 FLOWLINE ELEVATION = 298.48 PIPE FLOW = 69.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 304.750 FEET NODE 122.00 : HGL = < 304.75Q>;EGL= < 306.255>;FLOWLINE= < 298.480> FLOW PROCESS FROM NODE 122.00 TO NODE 122.20 IS CODE = 1 UPSTREAM NODE 122.20 ELEVATION = 301.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 261.68 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = ({ 69.60)/( 666.988)}**2 = 0.01089 HF=L*SF = { 261.68}*(0.01089} = 2.849 NODE 122.20 : HGL = < 307.599>;EGL= < 309.105>;FLOWLINE= < 301.100> FLOW PROCESS FROM NODE 122.20 TO NODE 122.30 IS CODE = 2 UPSTREAM NODE 122.30 ELEVATION = 301.43 (FLOW IS UNDER PRESSURE} CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 69.60 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 9.85 FEET/SEC. VELOCITY HEAD = 1.505 FEET HMN = .05*(VELOCITY HEAD} = .05*( 1.505} = 0.075 NODE 122.30 : HGL = < 307.675>;EGL= < 309.180>;FLOWLINE= < 301.430> FLOW PROCESS FROM NODE 122.30 TO NODE 122.40 IS CODE = 1 UPSTREAM NODE 122.40 ELEVATION = 303.70 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 191.55 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 69.60)/( 666.984)}**2 = 0.01089 HF=L*SF = ( 191.55)*(0.01089) = 2.086 NODE 122.40 ; HGL = < 309.760>;EGL= < 311.266>;FLOWLINE= < 303.700> FLOW PROCESS FROM NODE 122.40 TO NODE 122.50 IS CODE = 5 UPSTREAM NODE 122.50 ELEVATION = 304.00 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.} (FT/SEC) UPSTREAM 64.40 36.00 0.00 304.00 2.58 9.111 DOWNSTREAM 69.60 36.00 - 303.70 2.65 9.846 LATERAL #1 2.60 18.00 90.00 305.20 0.61 1.471 LATERAL #2 2.55 18.00 90.00 305.20 0.60 1.443 Q5 Q.05===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTAS}- Q4*V4*COS(DELTA4))/{(A1+A2)*16.1}+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00932 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01089 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01011 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.040 FEET ENTRANCE LOSSES = 0.301 FEET (DY+HV1-HV2}+(ENTRANCE LOSSES) ( 0.257)+( 0.301) = 0.558 JUNCTION LOSSES = JUNCTION LOSSES = NODE 122.50 : HGL = < 310.535>;EGL= < 311.824>;FLOWLINE= < 304.000> FLOW PROCESS FROM NODE UPSTREAM NODE 122.60 122 .50 TO NODE ELEVATION = 122.60 IS CODE = 1 304.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 64.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 50.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 64.40)/( 666.990)}**2 = 0.00932 HF=L*SF = ( 50.00)*(0.00932) = 0.466 NODE 122.60 : HGL = < 311.001>;EGL= < 312.290>;FLOWLINE= < 304.500> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 122.60 FLOWLINE ELEVATION = 304.50 ASSUMED UPSTREAM CONTROL HGL = 307.08 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.3 SYSTEM 130 ('E' STREET) C c PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY ******************* * BRESSI RANCH - ULTIMATE CONDITIONS * 36" /30" Mainline with NO Flow from PA-4 * SYSTEM 130: 100-YEAR Q FILENAME: P130.DAT TIME/DATE OF STUDY: 13:34 06/08/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 131.00- } 132.00- } 132.90- } 133.00- } 133.90- } 135.00- } 135.90- } 136.00- } 136.90- } 138.00- 5.46*1876.17 5.29* 1744.97 } HYDRAULIC JUMP 1.29 DC UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 6.87* 2497.69 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.37 DC 1.36 DC 1.37 DC 1.36 DC 1.37 DC 1.36*Dc 275.36 287.70 287.70 287.70 287.70 287.70 287.70 DOWNSTREAM RUN FLOW PRESSURE* DEPTH(FT) MOMENTUM(POUNDS) 1.03 481.89 1.50 DC 398.59 0.82 359.87 0.82* 359.63 0.98* 334.61 0.92* 352.20 1.00* 329.74 0.88* 369.55 0.92* 351.71 1.36*Dc 287.70 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.00 FLOWLINE ELEVATION = 358.13 PIPE FLOW = 21.70 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 365.000 FEET MODE 131.00 : HGL = < 365.000>;EGL= < 365.146>;FLOWLINE= < 358.130> FLOW PROCESS FROM NODE UPSTREAM NODE 132.00 131.00 TO NODE 132.00 IS CODE = 1 ELEVATION = 359.62 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K}**2 = HF=L*SF = ( 21.70 CFS PIPE DIAMETER = 36.00 INCHES 76.41 FEET MANNING'S N = 0.01300 ; 21.70)/( 666.891))**2 = 0.00106 76.41)*(0.00106) = 0.081 NODE 132.00 : HGL = < 365.081>;EGL= < 365.227>;FLOWLINE= < 359.620> FLOW PROCESS FROM NODE UPSTREAM NODE 132.90 132.00 TO NODE ELEVATION = 132.90 IS CODE = 5 359.95 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 16.30 21.70 3.00 2.30 DIAMETER ANGLE (INCHES) (DEGREES) 36.00 36.00 24.00 24.00 0.10===Q5 EQUALS 0.00 - 90.00 90.00 FLOWLINE ELEVATION 359.95 359.62 361.00 361.00 CRITICAL DEPTH ( FT . ) 1.29 1.50 0.60 0.53 VELOCITY (FT/ SEC) 2.306 3.070 0.955 0.732 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS{DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00060 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00106 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00083 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = 0.029 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.067)+{ 0.029 0.096 NODE 132.90 : HGL = < 365.241>;EGL= < 365.324>;FLOWLINE= < 359 . 950> FLOW PROCESS FROM NODE UPSTREAM NODE 133.00 132.90 TO NODE ELEVATION = 133.00 IS CODE = 1 366.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 298.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.82 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.82 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 1.807 3.691 FLOW DEPTH (FT) 0.824 0.824 0.824 VELOCITY (FT/ SEC) 10.325 10.326 10.326 SPECIFIC ENERGY ( FT ) 2.481 2.481 2.481 PRESSURE+ MOMENTUM ( POUNDS ) 359.63 359.64 359.65 5.660 7.719 9.880 12.151 14.546 17.077 19.762 22.621 25.677 28.960 32.506 36.361 40.584 45.250 50.470 56.388 63.217 71.299 81.187 93.932 111.922 142.690 298.000 0.824 10.326 0.824 10.327 0.824 10.327 0.824 10.327 0.824 10.328 0.824 10.328 0.824 10.329 0.824 10.329 0.824 10.329 0.824 10.330 0.824 10.330 0.824 10.330 0.824 10.331 0.824 10.331 0.824 10.332 0.824 10.332 0.824 10.332 0.824 10.333 0.824 10.333 0.824 10.333 0.824 10.334 0.824 10.334 0.824 10.334 2.481 2.481 2.481 2.481 2.482 2.482 2.482 2.482 2.482 2.482 2.482 2.482 2.482 2.482 2.483 2.483 2.483 2.483 2.483 2.483 2.483 2.483 2.483 359.66 359.67 359.68 359.69 359.70 359.71 359.72 359.73 359.74 359.75 359.76 359.77 359.78 359.79 359.80 359.81 359.82 359.83 359.84 359.85 359.86 359.87 359.87 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT)5.29 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 107.143 ASSUMED DOWNSTREAM PRESSURE VELOCITY HEAD(FT) (FT/SEC) 5.291 2.306 3.000 2.306 PRESSURE HEAD(FT) = 3 SPECIFIC ENERGY ( FT ) 5.374 3.083 .00 PRESSURE+ MOMENTUM ( POUNDS ) 1744.97 734.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 107.143 110.293 113.398 116.475 119.528 122.557 125.562 128.544 131.499 134.427 137.323 140.183 143.004 145.778 148.499 151.157 153.742 156.239 158.629 160.891 FLOW DEPTH VELOCITY (FT) (FT/SEC) 3.000 2.305 2.932 2.319 2.863 2.343 2.795 2.376 2.726 2.415 2.658 2.460 2.589 2.512 2.521 2.570 2.453 2.634 2.384 2.705 2.316 2.783 2.247 2.869 2.179 2.963 2.111 3.066 2.042 3.180 1.974 3.304 1.905 3.441 1.837 3.592 1.768 3.759 1.700 3.943 SPECIFIC ENERGY (FT) 3.083 3.015 2.948 2.882 2.817 2.752 2.688 2.624 2.560 2.498 2.436 2.375 2.315 2.257 2.199 2.143 2.089 2.037 1.988 1.942 PRESSURE* MOMENTUM ( POUNDS ) 734.46 704.78 675.70 647.24 619.43 592.32 565.96 540.39 515.68 491.85 468.96 447.04 426.15 406.33 387.63 370.10 353.79 338.76 325.09 312.84 162.995 164.901 166.557 167.893 168.807 169.156 298.000 1.632 1.563 1.495 1.426 1.358 1.289 1.289 4.148 4.376 4.631 4.918 5.242 5.610 5.610 1.899 1.861 1.828 1.802 1.785 1.778 1.778 302.10 292.97 285.57 280.05 276.58 275.36 275.36 EHD OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 152.78 FEET UPSTREAM OF NODE 132.90 DOWNSTREAM DEPTH = 1.931 FEET, UPSTREAM CONJUGATE DEPTH = 0.824 FEET NODE 133.00 : HGL = < 367.324>;EGL= < 368.981>;FLOWLINE= < 366.500> FLOW PROCESS FROM NODE UPSTREAM NODE 133.90 133.00 TO NODE ELEVATION = 133.90 IS CODE = 5 366.84 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 16.30 16.30 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 36.00 0.00 0.00 0.00===Q5 EQUALS 0.00 - 0.00 0.00 FLOWLINE ELEVATION 366.84 366.50 366.83 0.00 CRITICAL DEPTH ( FT . ) 1.36 1.29 0.00 0.00 VELOCITY (FT/SEC) 9.157 10.328 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3*V3 *COS(DELTA3)- Q4*V4*COS(DELTA4)}/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01509 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02193 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01851 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.074 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.139}+( 0.000) = 0.139 NODE 133.90 : HGL = < 367.818>;EGL= < 369.120>;FLOWLINE= < 366.840> FLOW PROCESS FROM NODE UPSTREAM NODE 135.00 133.90 TO NODE 135.00 IS CODE = 1 ELEVATION = 371.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 296.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.98 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.36 DISTANCE FROM CONTROL (FT) 0.000 2.159 4.397 6.721 9.137 11.656 FLOW DEPTH (FT) 0.923 0.925 0.928 0.930 0.932 0.934 VELOCITY (FT/ SEC) 9.898 9.865 9.832 9.799 9.767 9.734 SPECIFIC ENERGY { FT ) 2.445 2.437 2.429 2.422 2.414 2.407 PRESSURE+ MOMENTUM ( POUNDS ) 352.20 351.39 350.59 349.80 349.01 348.23 14. 17. 19. 22. 26, 29. 33. 37. 41. 46, 51. 56, 63. 70, 79. 89, 102. 121. 153. 296. .288 .046 .943 ,997 ,227 .660 .323 .255 .502 .124 .201 .840 .192 .476 .036 .444 .773 .436 .177 .000 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0, 0. 0, 0, 0. 0, 0, ,937 ,939 ,941 .944 .946 .948 .950 .953 ,955 .957 ,960 .962 .964 .966 .969 .971 .973 .976 .978 .978 9, 9. 9. 9, 9, 9, 9, 9. 9, 9. 9, 9. 9. 9. 9 9. 9. 9. 9. 9. .702 .670 .639 ,607 .576 ,545 .514 .483 .453 .422 .392 .362 .332 .303 .273 .244 .215 .186 .157 .155 2. 2. 2. 2, 2. 2. 2. 2. 2. 2. 2, 2. 2, 2, 2, 2. 2, 2, 2, 2. .399 .392 .385 ,378 .371 ,364 ,357 .350 .343 .337 .330 ,324 .317 .311 .305 .299 .293 .287 .281 .280 347. 346, 345, 345. 344, 343. 342. 342, 341. 340, 340, 339, 338. 338. 337. 336, 335, 335, 334, 334. .45 .69 .93 .17 .43 .69 .96 .23 .51 .80 ,09 .39 .70 .01 .33 .65 .99 .32 .67 .61 NODE 135.00 HGL = < 372.193>;EGL= < 373.715>;FLOWLINE= < 371.270> FLOW PROCESS FROM NODE UPSTREAM NODE 135.90 135.00 TO NODE ELEVATION = 135.90 IS CODE = 5 371.60 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 16.30 16.30 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 30.00 0.00 0.00 0.00===Q5 EQUALS 0.00 - 0.00 0.00 FLOWLINE ELEVATION 371.60 371.27 0.00 0.00 CRITICAL DEPTH ( FT . ) 1.36 1.36 0.00 0.00 VELOCITY (FT/ SEC) 8.940 9.901 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS{DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01641 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.066 FEET 0.01412 0.01870 ENTRANCE LOSSES = 0.00.0 FEET JUNCTION LOSSES = {DY+HV1-HV2}-t-(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.122)+( 0.000) = 0.122 NODE 135.90 : HGL = < 372.596>;EGL= < 373.837>;FLOWLINE= < 371.600> FLOW PROCESS FROM NODE 135.90 TO NODE 136.00 IS CODE = 1 UPSTREAM NODE 136.00 ELEVATION = 375.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 259.24 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.00 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0, 2, 5. 7, 10. 13. 16. 19 22 26 29 33 37 41 46 51 56 62 69 76 85 96 110 128 160 259 .000 .527 .130 .817 .595 .474 .464 .577 .828 .232 .811 .588 .593 .863 .443 .395 .795 .751 .410 .993 .835 .505 .065 .902 .676 .240 FLOW DEPTH (FT) 0, 0. 0. 0. 0, 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .878 ,883 ,888 ,893 .898 .903 .908 ,913 .917 .922 .927 .932 .937 .942 .947 .952 .956 .961 .966 .971 ,976 .981 .986 .991 .996 .996 VELOCITY (FT/SEC) 10, 10, 10, 10, 10, 10, 10, 10, 9. 9. 9, 9. 9. 9, 9. 9. 9. 9, 9. 9. 9, 9, 9, 9. 8, 8. .587 .507 .429 .352 .275 .200 .125 .052 .980 .908 .838 .768 .700 .632 .565 .499 .434 .369 .306 .243 .181 .120 .059 .000 .941 .937 SPECIFIC PRESSURE* ENERGY ( FT } MOMENTUM ( POUNDS ) 2, 2. 2, 2, 2, 2, 2, 2. 2, 2, 2 2, 2, 2 2, 2, 2, 2, 2 2, 2, 2, 2. 2, 2, 2, ,620 ,599 .578 ,558 .538 .519 .501 .483 .465 .448 .431 .415 .399 .383 .368 .354 .339 .325 .312 .299 .286 .273 .261 .249 .238 .237 369, 367, 365. 363. 361. 359, 357. 356. 354. 352, 350, 349, 347, 345, 344. 342, 341, 339, 338. 336. 335, 333, 332 331. 329, 329. .55 .50 .50 .53 ,60 .70 ,84 .01 .22 .47 .74 ,05 .39 .76 .17 .60 .06 .56 ,08 .63 .21 .82 .46 .12 .81 .74 NODE 136.00 : HGL = < 376.078>;EGL= < 377.820>;FLOWLINE= < 375.200> ********************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 136.90 136.00 TO NODE ELEVATION = 136.90 IS CODE = 5 375.53 {FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 16.30 16.30 0.00 0.00 DIAMETER (INCHES) 30.00 30.00 0.00 0.00 ANGLE (DEGREES) 0.00 - 0.00 0.00 FLOWLINE ELEVATION 375.53 375.20 0.00 0.00 CRITICAL DEPTH ( FT . ) 1.36 1.36 0.00 0.00 VELOCITY (FT/SEC) 9.880 10.590 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01859 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02252 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02055 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.082 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES} JUNCTION LOSSES = ( 0.150)+( 0.000) = 0.150 NODE 136.90 : HGL = < 376.454>;EGL= < 377.970>;FLOWLINE= < 375.530> FLOW PROCESS FROM NODE 136.90 TO NODE 138.00 IS CODE = 1 UPSTREAM NODE 138.00 ELEVATION = 378.10 (FLOW IS SUPERCRITICAL} CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 128.43 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.36 DISTANCE FROM CONTROL (FT) 0 0 0 0 0 0 1 1 2 3 4 5 7 8 10 13 15 19 23 28 34 42 53 69 99. 128. .000 .032 .131 .304 .559 .906 .354 .915 .605 .439 .438 .626 .034 .699 .667 .001 .778 .108 .144 .107 .343 .433 .463 .874 .502 .430 FLOW DEPTH (FT) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0, 0, 0. 0. 0. 0. .364 ,346 .327 .309 ,291 .272 .254 ,236 .217 .199 .181 .163 .144 .126 .108 ,089 .071 .053 ,034 ,016 ,998 ,980 .961 .943 .925 .924 VELOCITY {FT/ SEC) 5. 6. 6. 6. 6 6. 6. 6, 6. 7. 7. 7, 7. 7. 7. 7. 8, 8. 8, 8. 8, 9. 9. 9, 9. 9, .950 .051 .155 .263 .375 .491 .612 .737 .867 .001 .142 .288 .439 .597 .762 .934 .113 .300 .495 .699 .912 .136 .370 .616 .874 .877 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 1. 1. 1. 1. 1. 1. 1 1. 1. 1. 1, 1. 2, 2. 2. 2, 2 2, 2, 2, 2, 2. 2 2, 2, 2, .914 .914 .916 .918 .922 .927 .933 .941 .950 .961 .973 .988 .004 .023 .044 .067 .094 .123 .156 .192 .232 .276 .325 .380 .439 .440 287. 287. 288, 288. 289. 289. 290. 291. 293. 294. 296. 298, 300, 303. 306, 309, 312. 316 320. 324. 329. 334. 339. 345 351 351. .70 .79 ,03 ,45 ,04 ,82 .79 .95 .32 .90 .70 ,72 .99 ,51 .29 .34 .68 .32 .27 .55 .19 .19 .58 .38 .62 .71 NODE 138.00 : HGL = < 379.464>;EGL= < 380.014>;FLOWLINE= < 378.100> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 378.10 379.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.4 SYSTEM 200 ('A' STREET) c c :*************************************! PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE {Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 DESCRIPTION OF STUDY * Bressi Ranch - 2244.00 * Hydraulic Analysis System 200 FILE NAME: C:\2244\L200.dat TIME/DATE OF STUDY: 16:06 06/03/2002 r*********** *•*******•********************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 200 205 205. 210, 210, 215, 215. 220. 220. 222. 222. 225. 225. 230. .00- } .10- } .90- } .00- } .90- } .00- } .90- } ,00- } .90- } .00- } .90- } .00- } .90- } 00- MODEL PRESSURE PRESSURE* PROCESS HEAD FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION MANHOLE FRICTION MANHOLE FRICTION JUNCTION FRICTION 11 2 3 . 2, 3 , 2 , 2. 2. 2. 2. 2. 2. 3. 2 . ( FT } MOMENTUM ( POUNDS ) .11* } HYDRAULIC .75 DC .50 .63 DC .26 .30 DC .30 DC .30 DC .30 DC ,30 DC .30 DC .30 DC 12 16 DC 5889 JUMP 2272 2153 1871 1596 1339 1339 1339 1339 1339 1339 1339 1258 1029 .67 .44 .94 .31 .16 .74 .74 .74 .74 .74 .74 .74 .35 .64 FLOW PRESSURE* DEPTH ( FT } MOMENTUM ( POUNDS 1. 1. 1. 2. 1. 1. I. 1. 1. 1. 1. 1. 1. 1. 23 71* 36* 01* 29* 41* 43* 34* 35* 54* 57* 90* 32* 28* 4347 2996 2988, 2064, 1972. 1787, 1769. 1885. 1874. 1643 , 1614, 1413. 1376. 1415. .73 .40 .16 .31 .43 .20 .63 .47 .58 .74 .82 .05 .37 20 } MANHOLE 230.90- 2.16 DC } FRICTION 235.00- 2.16*Dc } CATCH BASIN 235.00- 3.42* 1029.64 1029.64 665.71 1.30* 2.16*Dc 2.16 DC 1395.50 1029.64 283.37 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.00 FLOWLINE ELEVATION = 284.35 PIPE FLOW = 77.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 295.460 FEET NODE 200.00 : HGL = < 295.460>;EGL= < 297.331>;FLOWLINE= < 284.350> FLOW PROCESS FROM NODE 200.00 TO NODE 205.10 IS CODE = 1 UPSTREAM NODE 205.10 ELEVATION = 306.09 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 183.42 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.20 CRITICAL DEPTH(FT) = 2.75 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.695 3.512 5.463 7.563 9.825 12 .270 14.918 17.793 20.926 24.352 28.114 32.263 36.865 42 .001 47 .777 54.333 61.856 70.610 FLOW DEPTH (FT) 709 689 1.668 1.648 1.628 1.607 1.587 1.567 1.547 1.526 1.506 1.486 1.466 1.445 1.425 1.405 1.384 1.364 1.344 VELOCITY (FT/SEC) 18.653 18.927 19.210 19.502 19.804 20.116 20.437 20.770 21.114 21.469 21.837 22.217 22.611 23.019 23.442 23.881 24.335 24.807 25.297 SPECIFIC ENERGY(FT) 7.115 7.255 7.402 7.558 7.722 7.895 8.077 8.270 8.473 8.688 8.915 9.155 9.409 9.678 9.963 10.265 10.586 10.926 11.287 PRESSURE* MOMENTUM{POUNDS) 2996.40 3032.46 3069.91 3108.79 3149.18 3191.11 3234.68 3279.93 3326.94 3375.80 3426.57 3479.36 3534.24 3591.32 3650.70 3712.50 3776.82 3843.80 3913.57 80.984 93.576 109.395 130.326 160.611 183.420 1.324 1.303 1.283 1.263 1.242 1.234 25.806 26.335 26.885 27.457 28.053 28.316 11.671 12.079 12.513 12.976 13.470 13 .691 3986.28 4062 .07 4141.12 4223.59 4309.69 4347.73 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 11.11 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 77.246 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 11.110 10.978 3 .000 10.978 SPECIFIC ENERGY(FT) 12.981 4.871 PRESSURE+ MOMENTUM(POUNDS) 5889.67 2312.52 GRADUALLY DISTANCE VARIED FLOW PROFILE COMPUTED INFORMATION: FROM CONTROL (FT) 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 78 78 183 .246 .330 .405 .472 .535 .593 .647 .697 .743 .787 .827 .864 .899 .930 .959 .985 .009 .030 .048 .064 .077 .088 .097 .103 .107 .108 .420 FLOW DEPTH (FT) 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 TTJl .000 .990 .980 .970 .959 .949 .939 .929 .919 .909 .899 .889 .878 .868 .858 .848 .838 .828 .818 .808 .797 .787 .777 .767 .757 .747 .747 n r\w m VELOCITY (FT/SEC) 10 10 10 10 11 11 11 11 11. 11. 11 11, 11. 11, 11. 11, 11 11, 11, 11. 11. 11. 11. 11. 11. 11. 11. TIT? am .975 .978 .985 .994 .004 .016 .028 .042 .057 .073 .090 .108 .127 .146 .167 .188 .210 .232 .256 .280 .305 ,330 ,356 .383 ,411 .439 .439 ,Tf .TTTMD SPECIFIC PRESSURE* ENERGY ( FT ) MOMENTUM { POUNDS ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 awaT.vQ .871 .863 .855 .848 .841 .835 .829 .824 .819 .814 .810 .806 .802 .799 .796 .793 .790 .788 .786 .784 .783 .782 .781 .780 .780 .780 .780 TC 2312 2308 2305 2301 2299 2296 2293 2291 2289 2287 2285 2283 2282 2280 2279 2278 2276 2276 2275 2274 2273 2273 2272 2272 2272 2272 2272 .52 .60 .14 .98 .06 .35 .83 .49 .31 .29 .42 .68 .09 .62 .29 .08 .99 .02 .18 .45 .83 .33 .94 .66 .50 .44 .44 PRESSURE+MOMENTUM BALANCE OCCURS AT 34.86 FEET UPSTREAM OF NODE 200.00 DOWNSTREAM DEPTH = 7.450 FEET, UPSTREAM CONJUGATE DEPTH = 1.250 FEET NODE 205.10 : HGL = < 307.799>;EGL= < 313.205>;FLOWLINE= < 306.090> **********************************************:******* FLOW PROCESS FROM NODE UPSTREAM NODE 205.90 205.10 TO NODE ELEVATION = 205.90 IS CODE = 5 306.42 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 68.10 77.60 4.75 4.75 0.00 = DIAMETER (INCHES) 36.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 306.42 306.09 307.59 307.59 CRITICAL DEPTH ( FT . ) 2.63 2.75 0.84 0.84 VELOCITY (FT/SEC) 21.794 18.658 4.682 4.682 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4})/((A1+A2)*16.1}+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05805 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03526 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04665 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.187 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.954)+( 0.000} = 1.954 NODE 205.90 : HGL = < 307.783>;EGL= < 315.159>;FLOWLINE= < 306.420> **********************************:******************** FLOW PROCESS FROM NODE UPSTREAM NODE 210.00 205.90 TO NODE 210.00 IS CODE = 1 ELEVATION = 313.86 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 68.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 88.13 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.23 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - 2.01 2.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0, 1. 2. 3 . 4. 6 8, 10, 12 . 14. 17. 20, 23. 27, 31. .000 .067 .245 .544 .979 .564 .317 .259 ,414 ,812 .487 ,482 ,849 ,652 .973 FLOW DEPTH (FT) 2 , 1, 1, 1, 'l. 1. 1. 1. 1, 1. 1, 1. 1. 1, 1. .007 .976 .945 ,913 ,882 ,851 .820 .789 ,758 .726 ,695 .664 .633 ,602 ,571 VELOCITY (FT/SEC) 13 13 14 14. 14. 14. 15 15. 15. 16, 16, 16, 17, 17. 18, .547 .789 .042 .306 .583 .871 .173 .489 .820 .167 .530 .911 .311 ,731 .173 SPECIFIC PRESSURE+ ENERGY { FT ) MOMENTUM ( POUNDS ) 4 4 5 5 5 5 5 5. 5. 5, 5. 6, 6, 6, 6. .858 .930 .008 .094 .186 .287 .397 .517 .646 .787 .941 .108 .289 ,487 .702 2064 2086 2110 2136 2163 2192 2223 2256 2291 2329 2369 2411 2456 2504 2555 .31 .62 .51 .06 .36 .49 .54 .62 .84 .32 .18 .57 .63 .55 .48 36. 42. 49, 57, 66, 78. 38, ,918 ,627 .288 .168 .655 .356 .130 1 1 1 1 1 1 1 .539 .508 .477 .446 .415 .384 .363 18. 19. 19, 20. 20. 21. 21. .638 .127 ,643 .187 .762 ,370 .787 6 7. 7. 7, 8. 8. 8, .937 .193 .472 .778 .113 .479 .739 2609. 2667. 2728. 2793 , 2863 . 2937. 2988. .64 .24 .52 ,73 ,15 ,11 ,16 NODE 210.00 : HGL = < 315.867>;EGL= < 318.718>;FLOWLINE= < 313.860> •*************:************* FLOW PROCESS FROM NODE UPSTREAM NODE 210.90 210.00 TO NODE ELEVATION = 210.90 IS CODE = 5 314.36 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 49.80 68.10 18.30 0.00 DIAMETER (INCHES) 30.00 36.00 24.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 314.36 313.86 314.86 0.00 CRITICAL DEPTH (FT.) 2.30 2.63 1.54 0.00 VELOCITY (FT/SEC) 19.535 13.551 7.048 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05330 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01680 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03505 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.140 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.855)+{ 0.000) = 2.855 NODE 210.90 : HGL = < 315.648>;EGL= < 321.574>;FLOWLINE= < 314.360> *******************************************•******: FLOW PROCESS FROM NODE UPSTREAM NODE 215.00 210.90 TO NODE 215.00 IS CODE = 1 ELEVATION = 328.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 261.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.28 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.30 DISTANCE FROM CONTROL (FT) 0.000 2.600 5.332 8.207 11.238 FLOW DEPTH (FT) 1.414 1.409 1.403 1.398 1.393 VELOCITY {FT/ SEC) 17.390 17.469 17.549 17.630 17.712 SPECIFIC ENERGY (FT) 6.113 6.150 6.189 6.228 6.267 PRESSURE+ MOMENTUM ( POUNDS } 1787.20 1793.93 1800.73 1807.61 1814.57 14 17 21 25 29 33 38 43 49 55 62 69 78 87 98 112 128 150 180 233 261 .442 .835 .440 .279 .381 .781 .520 .649 .229 .341 .085 .595 .053 .712 .945 .329 .829 .259 .690 .187 .880 1.388 1.382 1.377 1.372 1.367 1.361 1.356 1.351 1.346 1.340 1.335 1.330 1.325 1.319 1.314 1.309 1.304 1.298 1.293 1.288 1.288 17.794 17.878 17.962 18.047 18.132 18.219 18.307 18.395 18.484 18.574 18.665 18.757 18.850 18.944 19.039 19.135 19.232 19.330 19.428 19.528 19.529 6.307 6.348 6.390 6.432 6.475 6.519 6.563 6.608 6.654 6.701 6.748 6.797 6.846 6.896 6.946 6.998 7.050 7.104 7.158 7.213 7.214 1821.62 1828.74 1835.95 1843.25 1850.63 1858.10 1865.65 1873 .29 1881.03 1888.85 1896.77 1904.78 1912.89 1921.09 1929.39 1937.78 1946.28 1954.88 1963.58 1972.38 1972.43 NODE 215.00 : HGL = < 329.924>;EGL= < 334.623>;FLOWLINE= < 328.510> ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.90 IS CODE = 2 UPSTREAM NODE 215.90 ELEVATION = 328.84 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES{LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 4.643 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05*( 4.643) = 0.232 NODE 215.90 : HGL = < 330.268>;EGL= < 334.855>;FLOWLINE= < 328.840> FLOW PROCESS FROM NODE 215.90 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 338.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 246.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.43 CRITICAL DEPTH(FT) = 2.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.34 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3.730 7.601 11.624 15.815 20.189 FLOW DEPTH VELOCITY (FT) 1.343 1.346 1.350 1.354 1.357 1.361 (FT/SEC) 18.535 18.473 18.412 18.351 18.290 18.230 SPECIFIC ENERGY(FT) 6.681 6.649 6.617 6.586 6.555 6.524 PRESSURE-i- MOMENTUM{POUNDS) 1885.47 1880.09 1874.76 1869.47 1864.22 1859.02 24 29 34 39 45 51 58 64 72 80 89 99 110 123 138 157, 180, 214, 246, 765 565 615 946 593 601 023 925 391 530 482 441 676 581 770 266 995 275 000 1.364 1.368 1.372 1.375 1.379 1.382 1.386 1.390 1.393 1.397 1.401 1.404 1.408 1.411 1.415 1.419 1.422 1.426 1.428 18.170 18.110 18.051 17.993 17.934 17.877 17.819 17.762 17.705 17.649 17.593 17.537 17.482 17.427 17.373 17.319 17.265 17.212 17.182 6.494 6.464 6.435 6.405 6.376 6.348 6.320 6.292 6.264 6.237 6.210 6.183 6.156 6.130 6.105 6.079 6.054 6.029 6.015 1853.85 1848.73 1843.65 1838.61 1833.61 1828.65 1823 .73 1818.85 1814 .01 1809.21 1804.44 1799.72 1795.03 1790.38 1785.76 1781.19 1776.64 1772.14 1769.63 NODE 220.00 : HGL = < 339.443>;EGL= < 344.781>;FLOWLINE= < 338.100> FLOW PROCESS FROM NODE 220.00 TO NODE 220.90 IS CODE = 2 UPSTREAM NODE 220.90 ELEVATION = 338.43 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 5.302 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = -05*( 5.302) = 0.265 NODE 220.90 : HGL = < 339.780>;EGL= < 345.046>;FLOWLINE= < 338.430> ****************************************************************************** FLOW PROCESS FROM NODE 220.90 TO NODE 222.00 IS CODE = 1 UPSTREAM NODE 222.00 ELEVATION = 347.85 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 200.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.34 CRITICAL DEPTH(FT) = 2.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.383 4.900 7.562 10.383 13.379 16.568 19.972 FLOW DEPTH VELOCITY (FT) 1.543 1.535 1.527 1.519 1.510 1.502 1.494 1.486 (FT/SEC) 15.651 15.750 15.851 15.954 16.057 16.163 16.270 16.378 SPECIFIC ENERGY(FT) 5.349 5.390 5.431 5.473 5.517 5.561 5.607 5.653 PRESSURE* MOMENTUM(POUNDS) 1643.74 1651.71 1659.82 1668.09 1676.51 1685.09 1693.83 1702.73 23 27 31 36 41 46 52 59 66 75 84 95 109 125 147 178 200 .615 .527 .742 .304 .262 .683 .647 .257 .652 .017 .612 .819 .230 .835 .494 .380 .000 1.477 1.469 1.461 1.452 1.444 1.436 1.428 1.419 1.411 1.403 1.395 1.386 1.378 1.370 1.362 1.353 1.350 16.488 16.600 16.713 16.828 16.945 17.064 17.184 17.306 17.430 17.556 17.684 17.814 17.945 18.079 18.215 18.353 18.410 5.701 5.750 5.801 5.853 5.906 5.960 6.016 6.073 6.132 6.192 6.254 6.317 6.382 6.449 6.517 6.587 6.616 1711.79 1721.02 1730.42 1740.00 1749.75 1759.68 1769.80 1780.10 1790.60 1801.29 1812.17 1823.26 1834.55 1846.05 1857.77 1869.70 1874.58 NODE 222.00 : HGL = < 349.393>;EGL= < 353.199>;FLOWLINE= < 347.850> FLOW PROCESS FROM NODE 222.00 TO NODE 222.90 IS CODE = 2 UPSTREAM NODE 222.90 ELEVATION = 348.18 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.80 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 3.718 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 3.718) = 0.186 NODE 222.90 : HGL = < 349.755>;EGL= < 353.385>;FLOWLINE= < 348.180> **if**1ciri<1'***************itit*ititieie**it* FLOW PROCESS FROM NODE 222.90 TO NODE 225.00 IS CODE = 1 UPSTREAM NODE 225.00 ELEVATION = 350.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD}: PIPE FLOW = 49.80 CFS PIPE DIAMETER « 30.00 INCHES PIPE LENGTH = 60.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.42 CRITICAL DEPTH(FT) = 2.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1-90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.458 3.048 4.782 6.673 8.738 10.995 13.465 16.175 19.153 FLOW DEPTH (FT) 902 882 863 1.844 825 806 1.737 768 748 1.729 VELOCITY (FT/SEC) 12.427 12.556 12.689 12.826 12 .967 13.113 13.263 13.418 13.578 13.743 SPECIFIC ENERGY(FT) 4.301 4.332 4.365 4.400 4.437 4.477 4.520 4.565 4.613 4.664 PRESSURE+ MOMENTUM (POUNDS) 1413.05 1420.71 1428.82 1437.38 1446.41 1455.93 1465.94 1476.45 1487.50 1499.09 22 26. 30. 34. 39. 45 51 59. 60, .437 .068 .101 .601 .652 .360 .868 .365 ,000 1. 1. 1. 1, 1, 1, 1, 1. 1. .710 .691 .672 .653 .634 .614 .595 .576 .575 13 14 14 14 14 14 15 15, 15, .914 .090 .271 .458 .652 .851 .057 .270 .286 4 4 4 4 4 5 5 5, 5, .718 .775 .836 .901 .969 .041 .118 .199 .205 1511. 1523. 1537, 1551. 1565, 1581. 1596. 1613. 1614. .23 .96 .28 .22 .79 ,03 .96 ,59 ,82 NODE 225.00 : HGL = < 352.392>;EGL= < 354.791>;FLOWLINE= < 350.490> r*********************:r************* FLOW PROCESS FROM NODE UPSTREAM NODE 225.90 225.00 TO NODE ELEVATION = 225.90 IS CODE = 5 350.82 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 41.70 49.80 4 .00 4.10 DIAMETER ( INCHES ) 30.00 30.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 350.82 350.49 351.49 351.49 CRITICAL DEPTH {FT. ) 2 .16 2 .30 0.77 0.78 VELOCITY (FT/SEC) 15.894 12.431 4.345 4.449 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03463 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01717 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02590 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.104 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 1.269)+( 0.000) = 1.269 NODE 225.90 : HGL = < 352.138>;EGL= < 356.060>;FLOWLINE= < 350.820> r**********************************************i ******** FLOW PROCESS FROM NODE UPSTREAM NODE 230.00 225.90 TO NODS 230.00 IS CODE = 1 ELEVATION = 358.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 227.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.32 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.16 DISTANCE FROM CONTROL (FT) 0.000 3.203 6.534 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.283 16.439 1.284 16.415 1.286 16.391 SPECIFIC ENERGY (FT) 5.482 5.471 5.460 PRESSURE+ MOMENTUM ( POUNDS ) 1415.20 1413.50 1411.80 10 13 17 21 25 30 34 39 44 50 56 63 70 78 87 97 109 122 139 161. 191. 227, 006 632 426 406 592 008 681 644 938 613 728 360 609 604 522 610 230 942 687 227 523 760 1.287 1.289 1.290 1.291 1.293 1.294 1.296 1.297 299 300 1.302 1.303 1.305 1.306 1.308 1.309 1.311 1.312 1.314 1.315 1.317 1.318 16.368 16.344 16.320 16.296 16.273 16.249 16.226 16.203 16.179 16.156 16.133 16.110 16.087 16.064 16.041 16.018 15.995 15.972 15.950 15.927 15.905 15.889 5.450 5.439 5.428 5.418 5.407 5.397 5.387 5.376 5.366 5.356 5.346 5.336 5.326 5.316 5.306 5.296 5.286 5.276 5.266 5.257 5.247 5.240 1410.10 1408.42 1406.73 1405.06 1403.39 1401.73 1400.07 1398.42 1396.77 1395.13 1393.50 1391.87 1390.25 1388.63 1387.02 1385.41 1383 .81 1382.22 1380.63 1379.05 1377.47 1376.37 NODE 230.00 : HGL = < 359.953>;EGL= < 364.152>;FLOWLINE= < 358.670> **************************************************************************? FLOW PROCESS FROM NODE 230.00 TO NODE 230.90 IS CODE = 2 UPSTREAM NODE 230.90 ELEVATION = 359.00 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 41.70 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 4.129 FEET HMN = .05*{AVERAGED VELOCITY HEAD) = .05*( 4.129} = 0.206 NODE 230.90 : HGL = < 360.300>;EGL= < 364.358>;FLOWLINE= < 359.000> **************************************************************************, FLOW PROCESS FROM NODE 230.90 TO NODE 235.00 IS CODE = 1 UPSTREAM NODE 235.00 ELEVATION = 366.35 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 184.76 FEET MANNING'S H = 0.01300 NORMAL DEPTH(FT) = 1.26 CRITICAL DEPTH(FT) = 2.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.16 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.052 0.214 0.493 0.900 FLOW DEPTH VELOCITY (FT) 2 .164 2.128 2.092 2.056 2.020 (FT/SEC) 9.232 9.362 9.501 9.650 9.809 SPECIFIC ENERGY(FT) 3.488 3.490 3.495 3.503 3.515 PRESSURE* MOMENTUM(POUNDS) 1029.64 1030.08 1031.41 1033.66 1036.85 1 2 3, 4. 5. 6. 8, 10. 13, 16. 20. 24. 29. 35. 43, 52. 65. 82, 108. 155. 184, 448 151 027 097 386 925 752 912 465 482 060 323 444 662 330 997 582 812 568 307 760 984 948 1.912 1.876 1.840 1.804 1.768 1.732 1.696 1.660 1.624 1.588 1.552 1.516 1.480 1.444 1.408 1.372 1.336 1.300 1.300 9.977 10.157 10.347 10.549 10.763 10.990 11.231 11.486 11.757 12.044 12.349 12.672 13.017 13.383 13.773 14.188 14.632 15.106 15.614 16.157 16.161 3.531 3.551 3.576 3.605 3 .640 3.681 3.728 3.782 3.844 3.914 3.994 4.083 4.185 4.299 4.428 4.572 4.735 4.918 5.124 5.357 5.358 1041.02 1046.21 1052.46 1059.82 1068.34 1078.08 1089.11 1101.49 1115.31 1130.65 1147.61 1166.30 1186.83 1209.34 1233.96 1260.87 1290.23 1322.26 1357.18 1395.24 1395.50 NODE 235.00 : HGL = < 368.514>;EGL= < 369 . 839>;FLOWLINE = < 366.350> FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 8 UPSTREAM NODE 235.00 ELEVATION = 366.68 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 41.70 CFS PIPE DIAMETER = 30.00 INCHES FLOW VELOCITY = 9.24 FEET/SEC. VELOCITY HEAD = 1.324 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.324) = 0.265 NODE 235.00 : HGL = < 370.103>;EGL= < 370.103>;FLOWLINE= < 366.680> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 235.00 FLOWLINE ELEVATION = 366.68 ASSUMED UPSTREAM CONTROL HGL = 368.84 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.5 SYSTEM 400 ('A' STREET) C C PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY ******************* * Bressi Ranch - 2244.00 ULTIMATE CONDITIONS * Hydraulic Analysis - Line 400 * 100-Year Storm FILE NAME: C:\aes2001\hydrosft\ratscx\L400b.dat TIME/DATE OF STUDY: 13:52 06/08/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 400.00- } 405.00- } 405.10- } 410.00- ) 410.10- 1 415.00- } 415.10- 1 420.00- } 420.90- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 3.05 DC 2880.35 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION 3.05 DC 3.69 2.78*Dc 2880.35 2786.54 2448.94 5.85* 2401.36 } HYDRAULIC JUMP 2.11 DC 952.74 2.17 DC 2 .17*Dc 2.73* 1040.40 1040.40 1011.73 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT} MOMENTUM(POUNDS) 1.01* 8161.44 2.35* 3151.20 1.64* 3428.08 2.78*Dc 2448.94 1.22 1348.76 1.35* 1220.08 1.69* 1131.73 2.17*Dc 1040.40 2.07 DC 887 .70 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 400.00 FLOWLINE ELEVATION = 194.50 PIPE FLOW = 98.00 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.500 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 3.05 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 400.00 : HGL = < 195.509>;EGL= < 223.769>;FLOWLINE= < 194.500> FLOW PROCESS FROM NODE UPSTREAM NODE 405.00 400.00 TO NODE ELEVATION = 405.00 IS CODE = 1 255.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 98.00 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 170.16 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.95 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.05 DISTANCE FROM CONTROL (FT) 0. 0. 0. 1. 1. 2. 3. 3, 4, 5, 7, 8, 10. 11. 14, 16. 20, 23, 28, 34, 42, 52 66. 87, 127. 170. .000 .352 ,757 .221 .752 .360 .055 ,852 .766 ,818 .031 .435 .066 .973 .216 .874 .054 .902 .626 .533 .106 .157 .218 .742 ,827 ,160 FLOW DEPTH (FT) 2. 2. 2. 2. 2. 2. 2. 1. 1. 1, 1, 1. 1, 1, 1, 1, 1, 1. 1, 1, 1. 1. 1. 1. 1. 1. .350 .295 .239 .183 .127 .071 .015 .959 .904 .848 .792 .736 .680 .624 ,568 .513 .457 .401 .345 .289 .233 .177 .122 .066 .010 .009 VELOCITY (FT/SEC) 14. 14, 15, 15, 16, 16, 17, 17. 18, 19. 19, 20, 21. 22, 23 24. 25. 27. 28 30 32 34 36 39. 42. 42, .260 .654 .075 .526 .008 .526 .081 .678 .321 .014 .763 .575 .455 .413 .458 .602 .856 .238 .764 .458 .346 .460 .839 .533 .603 .648 SPECIFIC PRESSURE + ENERGY ( FT ) MOMENTUM { POUNDS } 5, 5, 5, 5, 6, 6, 6, 6. 7. 7, 7. 8, 8, 9. 10, 10. 11. 12. 14. 15. 17. 19, 22. 25. 29, 29. .510 .631 .770 .928 .109 .314 .549 .815 .119 .465 .861 .313 .833 .430 .119 .917 .844 .928 .201 .703 .490 .628 .208 .348 ,210 .269 3151. 3202. 3259. 3322. 3392. 3470. 3555. 3648. 3752. 3865. 3990. 4127. 4278. 4444. 4628, 4831, 5056, 5305, 5583, 5893 6241. 6632. 7075 7578, 8152, 8161, 20 .43 ,46 .73 .73 .00 .16 ,92 ,05 ,46 ,17 ,37 .40 .83 ,48 .46 .26 .82 .64 .89 .60 .91 .33 .13 .98 .44 NODE 405.00 : HGL = < 258.020>;EGL= < 261.180>;FLOWLINE= < 255.670> FLOW PROCESS FROM NODE UPSTREAM NODE 405.10 405 .00 TO NODE ELEVATION = 405.10 IS CODE = 5 256.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 81.50 98.00 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 36.00 42.00 0.00 0.00 16.50===Q5 EQUALS 0.00 - 0.00 0.00 FLOWLINE ELEVATION 256.00 255.67 0.00 0.00 CRITICAL DEPTH (FT. ) 2.78 3.05 0.00 0.00 VELOCITY (FT/SEC) 20.609 14.265 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4)}/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04436 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01513 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02975 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.119 FEET ENTRANCE LOSSES = 0.632 FEET JUNCTION LOSSES = (DY+HV1-HV2 )-i-(ENTRANCE LOSSES} JUNCTION LOSSES = { 2.423}+( 0.632) = 3.055 NODE 405.10 : HGL = < 257.640>;EGL= < 264.235>;FLOWLINE= < 256.000> FLOW PROCESS FROM NODE UPSTREAM NODE 410.00 405.10 TO NODE 410.00 IS CODE = 1 ELEVATION = 260.52 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 81.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 42.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.78 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.78 DISTANCE FROM CONTROL (FT) 0 0 0. 0. 0 1 2 2 3 5. 6, 8, 10. 12. 15. 19. 23. 28. 35. 42. .000 .055 .219 .497 .897 .428 .104 .943 .965 .196 .668 .422 ,506 .983 .935 ,466 .717 .881 .228 .250 FLOW DEPTH (FT) 2 2, 2, 2, 2 2 2 2 2 2 2. 2. 2, 1. 1. 1, 1. 1. 1. 1. .784 .723 .663 .602 .541 .481 .420 .360 .299 .239 .178 .118 .057 .997 ,936 .876 .815 .754 .694 .640 VELOCITY (FT/ SEC) 11. 12, 12, 12, 12 13 13. 13. 14. 14, 14, 15, 15. 16. 16. 17, 18. 18. 19. 20. .909 .085 .286 .511 .760 .033 .333 .660 .015 .401 .821 .276 .770 .307 .890 ,525 .218 .974 .802 ,602 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS } 4. 4, 5, 5, 5 5 5 5 5, 5, 5, 5, 5. 6. 6. 6. 6. 7, 7 .a, .987 .992 .008 .034 .071 .120 .182 • .259 .351 .461 .591 .743 .921 .128 .369 .648 ,972 ,348 .787 .235 2448. 2451, 2457, 2468, 2483 2502 2526 2555 2589, 2628. 2673 2725. 2783. 2849. 2922. 3005, 3097, 3200, 3315. 3428. .94 .11 .53 .20 .16 .53 .51 .32 .24 .59 .77 .21 .44 .03 .66 .12 .30 .26 .21 .08 NODE 410.00 : HGL = < 263.304>;EGL= < 265.5Q7>;FLOWLINE= < 260.520> FLOW PROCESS FROM NODE UPSTREAM NODE 410.10 410.00 TO NODE ELEVATION = 410.10 IS CODE - 5 260.85 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 42.00 36.00 90.00 260.85 2.11 5.942 DOWNSTREAM 81.50 36.00 - 260.52 2.78 LATERAL #1 39.45 30.00 0.00 261.85 2.12 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.05===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00396 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01292 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00844 JUNCTION LENGTH = FRICTION LOSSES = 4.00 FEET 0.034 FEET 11.913 8.037 0.000 ENTRANCE LOSSES = 0.441 FEET JUNCTION LOSSES = (DY+HV1-HV2)+{ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.298)+( 0.441) = 1.739 NODE 410.10 : HGL = < 266.698>;EGL= < 267.246>;FLOWLINE= < 260.850> FLOW PROCESS FROM NODE UPSTREAM NODE 415.00 410.90 TO NODE 415.00 IS CODE = 1 ELEVATION = 270.66 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 42.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 296.64 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.22 CRITICAL DEPTH(FT) = 2.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 2 4 7 10 13, 16. 20. 23, 27. 31, 36, 41, 46. 52, 58. 65. 73. 83. 93. 106, 122. 142. 172. 222. .000 .434 .993 .691 .539 .552 .748 .146 .770 .647 ,809 .298 ,161 .458 .265 .680 ,832 .894 .111 ,840 ,636 .427 ,955 .134 .519 FLOW DEPTH (FT) 1 1 1 1 1 1 1. 1. 1, 1. 1. 1. 1. 1. 1. 1, 1. 1, 1. 1. 1. 1. 1. 1. 1. .347 .342 .337 .332 .326 .321 .316 .311 .306 .301 .295 .290 ,285 .280 .275 .270 .264 .259 ,254 .249 ,244 ,239 ,233 ,228 ,223 VELOCITY (FT/ SEC) 13 13 13 13 13 13. 14. 14. 14, 14. 14, 14, 14. 14. 14, 14. 14, 14, 14. 15. 15. 15. 15. 15. 15. .649 .717 .787 .857 .927 .999 .071 .144 .217 ,292 .367 .443 ,519 .596 .675 .754 .833 .914 .995 ,078 .161 ,245 ,330 .415 .502 SPECIFIC PRESSURE+ ENERGY ( FT } MOMENTUM ( POUNDS } 4 4 4 4. 4. 4, 4. 4, 4, 4. 4. 4. 4. 4, 4, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. .241 .266 .290 .315 .340 .366 .392 .419 .446 ,474 .502 .531 .561 .590 .621 ,652 ,683 .715 ,748 .781 ,815 .850 .885 921 957 1220. 1224. 1229. 1234 1238 1243 1248. 1253. 1258. 1263, 1268. 1274. 1279. 1284 1290 1295. 1301, 1306. 1312. 1318. 1324, 1330. 1336. 1342. 1348. .08 .68 .35 .07 .85 .70 .61 .58 .62 .72 ,89 ,12 .42 .79 .23 .74 .32 ,97 .69 ,49 ,36 .31 ,33 .43 62 296.640 1.223 15.504 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 4.958 1348.76 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 5.85 DISTANCE FROM CONTROL (FT) 0.000 97.847 PRESSURE HEAD (FT) 5.848 3.000 VELOCITY (FT/ SEC) 5.942 5.942 SPECIFIC ENERGY ( FT ) 6.396 3.548 PRESSURE+ MOMENTUM ( POUNDS ) 2401.36 1145.23 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 97 98 100 101 102 102 103 104 105 106 107 107 108 109 109 110 111 111 112 112 112 113 113 113 113 113 296 847 982 038 046 015 948 848 716 553 359 135 878 588 263 903 506 068 589 064 490 865 184 442 634 755 796 640 PRESSURE+MOMENTUM DOWNSTREAM FLOW DEPTH VELOCITY SPECIFIC PRESSURE* (FT) (FT /SEC) ENERGY (FT) MOMENTUM (POUNDS) 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. tnvmCjiN JJ BALANCE DEPTH = 000 964 929 893 858 822 787 751 715 680 644 609 573 538 502 466 431 395 360 324 289 253 217 182 146 111 111 PiC1 LJVnL 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7. 7. 7. 7 . 7 . 7. 7. 7 . 7. 3 7\TTT 940 953 977 008 044 086 133 185 240 301 365 434 507 584 666 752 843 939 040 145 257 373 496 624 759 900 900 Tf TTTlum 71\Jc rl I J_Jl\^-nj J_J J_ ^ u WLMC n. OCCURS AT 82.08 3.459 FEET,UPSTREAM 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Mar vc.Nrilj I O FEET .548 .515 .484 .454 .425 .398 .371 .345 .321 .297 .274 .252 .231 .211 .192 .175 .159 .143 .130 .117 .107 .098 .090 .085 .082 .081 .081 T C-LO UPSTREAM OF CONJUGATE DEPTH 1145. 1130. 1116. 1103. 1091. 1079. 1068. 1057. 1046. 1036. 1027. 1018. 1009. 1001. 994. 987. 981. 975. 970. 965. 961. 958. 956. 954. 953. 952. 952. 23 61 92 88 41 47 03 08 62 66 19 22 76 82 41 54 24 51 37 85 95 71 14 27 12 74 74 NODE 410.90 = 1.224 FEET NODE 415.00 : HGL - < 272 . 007>;EGL = < 274 . 901>;FLOWLINE = < 270.660> FLOW PROCESS FROM NODE UPSTREAM NODE 415.10 415.00 TO NODE ELEVATION = 415.10 IS CODE = 5 271.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE UPSTREAM DOWNSTREAM (CFS) 42.00 42.00 ; INCHES) 30.00 36.00 (DEGREES) ELEVATION 0.00 271.16 270.66 CRITICAL DEPTH(FT. ; 2.17 2.11 VELOCITY (FT/SEC) 11.896 13.653 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS{DELTA1}-Q3 *V3 *COS(DELTA3}- Q4*V4*COS(DELTA4)}/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01643 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02303 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01973 JUNCTION LENGTH = FRICTION LOSSES = 4.00 FEET 0.079 FEET 0.000 0.000 ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.146>+( 0.000) = 0.146 NODE 415.10 : HGL = < 272.850>;EGL= < 275.047>;FLOWLINE= < 271.160> FLOW PROCESS FROM NODE UPSTREAM NODE 420.00 415.10 TO NODE ELEVATION = 420.00 IS CODE = 1 273.88 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 42.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 159.51 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.67 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.17 DISTANCE FROM CONTROL (FT) 0.000 0.067 0.272 0.625 1.138 1.824 2.698 3.778 5.087 6.651 8.502 10.678 13.226 16.205 19.690 23.778 28.594 34.311 41.170 49.527 59.930 73.300 91.366 118.009 159.510 FLOW DEPTH (FT) 2, 2, 2. 2 2, 2, 2, 2 2, 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. .170 .150 .130 .110 .090 .070 ,049 .029 .009 .989 .969 .949 ,929 .909 .888 .868 .848 .828 ,808 ,788 .768 ,748 ,727 ,707 ,690 VELOCITY {FT/ SEC) 9 9 9 9 9 9 9 9 9 10 10. 10. 10. 10, 10. 10. 10. 10. 11. 11. 11, 11. 11, 11, 11, .278 .349 .423 .500 .580 .663 .749 .838 .930 .026 .125 .227 .332 .442 .555 .671 ,792 ,916 .045 ,178 .316 .457 .604 .756 .892 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM { POUNDS ) 3 3, 3 3. 3, 3 3. 3 3. 3 3. 3. 3, 3. 3. 3. 3, 3, 3. 3, 3. 3. 3. 3. 3. .508 .508 .510 .512 .516 .520 .526 .533 .541 .551 .562 .574 ,587 .603 .619 .638 ,658 ,680 ,703 .729 ,757 .787 .820 ,855 ,887 1040. 1040. 1040. 1041. 1042. 1043, 1045 1047 1049 1052 1054, 1057. 1061. 1065. 1069, 1073, 1078. 1084. 1089. 1095. 1102. 1109. 1116. 1124. 1131. .40 .54 .96 .65 .64 .91 .48 .35 .53 .02 .83 .97 .45 .26 .43 .96 ,86 .15 .82 .91 .40 .33 .70 .53 .73 NODE 420.00 HGL - < 276.050>;EGL= < 277.388>;FLOWLINE= < 273.880> FLOW PROCESS FROM NODE UPSTREAM NODE 420.90 420.00 TO NODE ELEVATION = 420.90 IS CODE = 5 274.88 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 37.60 42.00 2.20 2.15 DIAMETER ( INCHES } 30.00 30.00 18.00 18.00 ANGLE (DEGREES) 45.00 - 90.00 90.00 FLOWLINE ELEVATION 274.88 273.88 274.88 274.88 CRITICAL DEPTH (FT. } 2.07 2.17 0.56 0.55 VELOCITY (FT/ SEC) 7.660 9.280 1.245 1.217 0.05===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3}- Q4*V4*COS(DELTA4))/((A1+A2}*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00840 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00959 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00900 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.267 FEET JUNCTION LOSSES = (DY+HV1-HV2}+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.867)+( 0.267} = 1.134 NODE 420.90 HGL = < 277.611>;EGL= < 278.522>;FLOWLINE= < 274.880> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 420.90 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 274.88 276.95 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.6 SYSTEM 800 (EL CAMINO REAL) C C **************:r********************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street, Suite 800 San Diego CA, 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ****• * Bressi Ranch - 2244.00 * Hydraulic Analysis - System 800a •********;r*****************: FILE NAME: C:\2244\L800A.DAT TIME/DATE OF STUDY: 13:49 06/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE* NUMBER 800 801 802 802 803 805. 810. 810. 815, 815. 820. 820. 825. 825. .00- } .00- } .00- } .90- } .00- } .90- } .00- } .90- } .00- } ,90- } .00- } 90- } 00- } 90- PROCESS HEAD(FT) MOMENTUM { POUNDS ) FRICTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION MANHOLE FRICTION JUNCTION FRICTION CATCH BASIN 2 2 2 2 2 4 4 4 4. 4 . 4. 6. 6, 5. .36 DC .36 DC .36 DC .36 DC . 36*Dc .10* .39* .10* .46* .18* ,54* ,36* ,22* ,96* 1296 1296 1296 1296 1296. 1904. 2031, 1905. 2065, 1938. 2098. 1074. 1046. 971. .18 .18 .18 .18 .18 .11 .97 .37 ,27 ,67 .58 22 09 92 DEPTH ( FT ) MOMENTUM ( POUNDS ) 0 1 1. 1. 2, 2 , 1. 2. 1. 2. 2. 0. 0. 0. .39* .66* .62* .68* . 35*DC .36 DC .91 .36 DC .91 ,36 DC .36 DC 87 DC 88 DC 88 DC 9875 1514 1547 1498 1296 1296 1376 1296 1376 1296 1296 86 86 30 .96 .59 .52 .24 .18 .18 .79 .18 .79 .18 .18 .70 .69 .82 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *********************************#************************: DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 800.00 FLOWLINE ELEVATION = 78.67 PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 78.670 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH{ 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 2.36 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 800.00 : HGL = < 79.062>;EGL= < 224.665>;FLOWLINE= < 78.670> ******************:•************! FLOW PROCESS FROM NODS UPSTREAM NODE 801.00 800.00 TO NODE 801.00 IS CODE = 1 ELEVATION = 278.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.66 2.36 GRADUALLY DISTANCE VARIED FLOW PROFILE COMPUTED INFORMATION: FROM CONTROL (FT) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 3 4 6 8 .000 .020 .043 .071 .103 .141 .186 .240 .303 .379 .471 .582 .718 .885 .094 .357 .694 .133 .718 .514 .636 .283 .853 FLOW DEPTH (FT) 1 1 1. 1, 1. 1. 1. 1. 1. 1, 1. 1, 1. 0. 0. 0, 0, 0. 0. 0. 0. 0. 0. .659 .606 .554 .501 .448 .395 .342 .289 .237 ,184 .131 ,078 ,025 ,972 .920 .867 ,814 ,761 ,708 .656 .603 550 497 VELOCITY (FT/SEC) 13 13 14 14 15 16 17 18 19 20 21 23 24 26 28 31 33 37 41 46 51 59 68 .109 .646 .231 .869 .566 .331 .173 .103 ,13'4 .281 .564 .006 .637 .490 .613 .063 .915 .266 .251 .049 .915 .214 .491 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 4 4 4 4 5 5 5 6 6 7 8 9 10 11 13 15 18 22 27 33 42 55 73 .329 .500 .700 .936 .213 .539 .924 .381 .925 .575 .356 .302 .456 .876 .641 .859 .685 .340 .148 .604 .479 .029 .383 1514 1556 1603 1656 1716. 1783. 1858. 1943. 2039. 2147. 2270, 2409. 2568. 2750. 2961, 3205. 3490. 3827. 4229. 4714 . 5309. 6050. 6993. .59 .39 .54 .63 .34 .48 .98 .95 .74 .93 .48 .76 ,69 .93 .08 ,05 .45 .35 .21 .48 .03 .12 28 13 .274 22 .606 23 .300 0.444 0.391 0.392 80.588 96.878 96.804 101.353 146.218 145.995 8224.49 9883.51 9875.96 NODE 801.00 : HGL = < 280 .559>;EGL= < 283.229>;FLOWLINE= < 278.900> **********************; FLOW PROCESS FROM NODE UPSTREAM NODE 802.00 801.00 TO NODE 802.00 IS CODE = 1 ELEVATION = 279.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD}: PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 34.20 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.77 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.36 DISTANCE FROM CONTROL (FT) 0 4 8 13 18 23. 28. 33, 34, .000 .311 .765 .374 .154 .121 .295 .697 .200 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 1 .617 .623 .629 .635 .641 .647 .653 .659 .659 VELOCITY (FT/SEC) 13 13 13 13 13 13 13 13 13 .534 .473 .411 .351 .291 .232 .173 .115 .109 SPECIFIC PRESSURE+ ENERGY { FT ) MOMENTUM { POUNDS ) 4, 4 4. 4 4, 4, 4. 4. 4. .463 .443 .424 .405 .386 .367 .349 .331 .329 1547 1542 1537 1533 1528 1523 1519 1514 1514 .52 .68 .90 .19 .54 .96 .44 .98 .59 NODE 802.00 HGL = < 281.017>;EGL= < 283.863>;FLOWLINE= < 279.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 802.90 802.00 TO NODE 802.90 IS CODE = 5 ELEVATION = 279.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 52.60 52.60 0.00 0,00 DIAMETER (INCHES) 36.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 279.73 279.40 279.73 279-73 CRITICAL DEPTH { FT . ) 2.36 2 .36 0.00 0.00 VELOCITY (FT/SEC) 12.897 13.538 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTA1)-Q3*V3 *COS(DELTAS)- Q4*V4*COS(DELTA4) )/ ( (A1+A2) *16 . 1) -f FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01820 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.073 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES .= ( 0.132)+( 0.000) = 0.132 01705 01936 0.000 FEET NODE 802.90 : HGL = < 281.412>;EGL= < 283.995>;FLOWLINE= < 279.730> **********************r*******************. FLOW PROCESS FROM NODE 802.90 TO NODE 803.00 IS CODE = 1 UPSTREAM NODE 803.00 ELEVATION = 281.41 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 73.04 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.54 CRITICAL DEPTH(FT) = 2.36 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0. 0. 0. 0. 1. 1. 2. 3 . 5. 6. 8. 10. 13. 16. 20. 24. 30. 36. 43. 53. 65. 73. 000 075 280 629 135 814 686 773 100 701 611 877 555 715 444 857 103 387 994 344 086 040 FLOW DEPTH (FT) 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 .354 .321 .288 .255 .223 .190 .157 .125 .092 .059 .026 .994 .961 .928 .895 .863 .830 .797 .764 .732 .699 .682 VELOCITY (FT/SEC) a 8 9 9 9 9. 9, 9, 9, 10. 10. 10, 10. 10, 11. 11. 11. 11. 12 , 12. 12. 12. .838 .961 .089 .224 .364 .511 .664 .825 .992 ,167 .351 ,542 .743 .953 .173 ,403 ,644 .897 ,163 ,441 ,734 .893 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 .567 .569 .572 .577 .585 .595 .608 .624 .643 .665 .691 .720 .754 .792 .835 .883 .937 .996 .063 .137 .219 .265 1296 1296. 1297. 1299, 1302 , 1306, 1310, 1315. 1322, 1329. 1337, 1346. 1357. 1368. 1381. 1395. 1410, 1427. 1445. 1465. 1486. 1498. .18 .63 .81 .77 .53 .11 .54 ,86 .11 .32 .54 .79 ,15 .65 ,35 .30 ,59 .26 .40 .09 .41 ,24 NODE 803.00 : HGL = < 283.764>;EGL= < 284.977>;FLOWLINE= < 281.410> •it********************! FLOW PROCESS FROM NODE UPSTREAM NODE 805.90 803.00 TO NODE ELEVATION = 805.90 IS CODE = 5 281.91 {FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) 36.00 36.00 0.00 0.00 90.0052.60 52.60 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 0.00 0.00 281.91 281.41 0.00 0.00 2 .36 2.36 0.00 0.00 7.441 8.828 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1) -Q_3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00622 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00675 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00648 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.890)+( 0.000} = 1.890 NODE 805.90 : HGL = < 286.007>;EGL= < 286.867>;FLOWLINE= < 281.910> ****************************************************************************** FLOW PROCESS FROM NODE 805.90 TO NODE 810.00 IS CODE = 1 UPSTREAM NODE 810.00 ELEVATION = 283.09 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 236.34 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 52.60)/( 666.988)}**2 = 0.00622 HF=L*SF = ( 236.34)*(0.00622} = 1.470 NODE 810.00 : HGL = < 287.477>;EGL= < 288.337>;FLOWLINE= < 283.090> FLOW PROCESS FROM NODE 810.00 TO NODE 810.90 IS CODE = 2 UPSTREAM NODE 810.90 ELEVATION = 283.42 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 7.44 FEET/SEC. VELOCITY HEAD = 0.860 FEET HMN = .05*{VELOCITY HEAD) = .05*{ 0.860) = 0.043 NODE 810.90 : HGL = < 287.520>;EGL= < 288.380>;FLOWLINE= < 283.420> ****************************************************************************** FLOW PROCESS FROM NODE 810.90 TO NODE 815.00 IS CODE = 1 UPSTREAM NODE 815.00 ELEVATION = 284.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 296.26 FEET MANNING'S N = 0.01300 SF=(Q/K}**2 - ({ 52.60)/( 666.989)}**2 = 0.00622 HF=L*SF = ( 296.26)* (0.00622) = 1.842 NODE 815.00 : HGL = < 289.363>;EGL= < 290.222>;FLOWLINE= < 284.900> ***************************************************************************** FLOW PROCESS FROM NODE 815.00 TO NODE 815.90 IS CODE = 2 UPSTREAM NODE 815.90 ELEVATION = 285.23 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 7.44 FEET/SEC. VELOCITY HEAD = 0.860 FEET HMN = .05*(VELOCITY HEAD) = .05*{ 0.860) = 0.043 NODE 815.90 : HGL = < 289.406>;EGL= < 290.265>;FLOWLINE= < 285.230> ***********************!•A-************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 820.00 815.90 TO NODE ELEVATION = 820.00 IS CODE = 1 286.71 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 52.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = '296.26 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {( 52.60)/{ 666.983))**2 = 0.00622 HF=L*SF = ( 296.26)*(0.00622) = 1.843 NODE 820.00 : HGL = < 291.248>;EGL= < 292.108>;FLOWLINE= < 286.710> **********************: FLOW PROCESS FROM NODE UPSTREAM NODE 820.90 :*********************! 820.00 TO NODE ELEVATION = 820.90 IS CODE = 5 287.21 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 6.20 52.60 46.40 0.00 DIAMETER ( INCHES ) 24.00 36.00 30.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 287.21 286.71 287.21 0.00 CRITICAL DEPTH (FT.) 0.88 2.36 2.25 0.00 VELOCITY (FT/SEC) 1.973 7.441 9.453 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16-1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00075 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00622 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00348 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.521)+( 0.000) = 1.521 NODE 820.90 : HGL = < 293 . 569> ;EGL= < 293 . 629> ; FLOWLINE=287.210> FLOW PROCESS FROM NODE UPSTREAM NODE 825.00 820.90 TO NODE ELEVATION = •sir***************************** 825.00 IS CODE = 1 287.38 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.36 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {{ 6.20)/( 226.133)}**2 = 0.00075 HF=L*SF = ( 35.36)* (0.00075) = 0.027 NODE 825.00 : HGL = < 293.595>;EGL= < 293.656>;FLOWLINE= < 287.380> r************- FLOW PROCESS FROM NODE UPSTREAM NODE 825.90 825.00 TO NODE ELEVATION = •******:************ 825.90 IS CODE = 8 287.71 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES{LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 1.97 FEET/SEC. VELOCITY HEAD = 0.060 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.060) = 0.012 NODE 825.90 : HGL = < 293.668>;EGL= < 293.668>;FLOWLINE= < 287.710> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 825.90 FLOWLINE ELEVATION = 287.71 ASSUMED UPSTREAM CONTROL HGL = 288.59 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.7 SYSTEM 2000 ('F' STREET, PA-5) C PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * SYSTEM 2000: WITH NO FUTURE LATERAL CONNECTIONS * 100-YEAR Q FILE NAME: P2000.DAT TIME/DATE OF STUDY: 11:04 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 2000 2000 2001. 2001 2003 2003 2005 2005. 2010. 2010. 2015. .00 .50 .00 .90 .00 .90 .00 .90 .00 .90 .00 MAXIMUM MODEL PROCESS - } FRICTION - } FRICTION - } JUNCTION - } FRICTION - } JUNCTION - } FRICTION - } JUNCTION - } FRICTION - } JUNCTION - } FRICTION - NUMBER OF PRESSURE PRESSURE* HEAD ( FT ) MOMENTUM ( POUNDS ) 7. 5. 4. 8. .25* ,73* .04* .04* 5570. 4901. 4153. 3500. ,29 .29 .80 ,56 FLOW PRESSURE+ DEPTH ( FT } MOMENTUM ( POUNDS ) 2. 2. 2. 1. 05 17 91 DC 28 4462. 4240. 3682, 1606. .88 .96 .88 .68 } HYDRAULIC JUMP 2 2 2. 2. 2. 2. 2. .24 DC .24 DC .24*Dc .74 .17 DC .17 DC . 17*Dc ENERGY BALANCES 1122, 1122. 1122. 1107, 1020. 1020, 1020. USED IN ,95 .95 ,95 ,93 .92 .92 ,92 EACH 1. 1. 2. 1. 1. 1. 2. PROFILE 58* 66* 24*Dc 57* 51* 60* 17*Dc = 25 1312 1260 1122 1167 1203 1153 1020. .97 .51 .95 .22 .02 .35 .92 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2000.00 FLOWLINE ELEVATION = 384.75 PIPE FLOW = 105.20 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 392.000 FEET NODE 2000.00 : HGL = < 392.000>;EGL= < 395.439>;FLOWLINE= < 384.750> FLOW PROCESS FROM NODE 2000.00 TO NODE 2000.50 IS CODE = 1 UPSTREAM NODE 2000.50 ELEVATION = 388.24 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 105.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 79.32 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = ({ 105.20}/{ 666.982))**2 = 0.02488 HF=L*SF = { 79.32)*(0.02488) = 1.973 NODE 2000.50 : HGL = < 393.973>;EGL= < 397.413>;FLOWLINE= < 388.240> FLOW PROCESS FROM NODE 2000.50 TO NODE 2001.00 IS CODE = 1 UPSTREAM NODE 2001.00 ELEVATION = 392.14 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 105.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 88.65 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {( 105.20)/( 666.990))**2 = 0.02488 HF=L*SF = ( 88.65}*(0.02488) = 2.205 NODE 2001.00 : HGL = < 396.179>;EGL= < 399.618>;FLOWLINE= < 392.140> FLOW PROCESS FROM NODE 2001.00 TO NODE 2001.90 IS CODE = 5 UPSTREAM NODE 2001.90 ELEVATION = 392.47 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 47.40 36.00 0.00 392.47 2.24 6.706 DOWNSTREAM 105.20 36.00 - 392.14 2.91 14.883 LATERAL tfl 50.30 36.00 45.00 392.50 2.31 7.116 LATERAL #2 7.50 18.00 45.00 394.00 1.06 4.244 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS{DELTA4) ) / ( (Al-t-A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00505 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02488 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01496 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.060 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = {DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 1.590)+( 0.000) = 1.590 NODE 2001.90 : HGL - < 400.510>;EGL= < 401.208>;FLOWLINE= < 392.470> FLOW PROCESS FROM NODE UPSTREAM NODE 2003.00 2001.90 TO NODE ELEVATION = 2003.00 IS CODE = 1 402.66 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 47.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 281.70 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH (FT) = 1.27 CRITICAL DEPTH (FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 0.000 1.579 12.566 4.032 1.928 1.567 12.690 4.069 3.984 1.554 12.817 4.107 6.180 1.542 12.947 4.146 8.531 1.530 13.079 4.187 11.052 1.517 13.214 4.230 13.760 1.505 13.352 4.275 16.676 1.493 13.493 4.321 19.826 1.480 13.637 4.370 23.239 1.468 13.784 4.420 26.948 1.455 13.934 4.472 30.995 1.443 14.087 4.527 35.433 1.431 14.244 4.583 40.325 1.418 14.404 4.642 45.749 1.406 14.568 4.704 51.811 1.394 14.735 4.767 58.645 1.381 14.907 4.834 66.436 1.369 15.082 4.903 75.442 1.357 15.261 4.975 86.039 1.344 15.444 5.050 98.815 1.332 15.632 5.129 114.751 1.320 15.824 5.210 135.688 1.307 16.021 5.295 165.760 1.295 16.222 5.384 218.237 1.283 16.428 5.476 281.700 1.282 16.432 5.478 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 8.04 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT} 0.000 8.040 6.706 8.738 161.934 3.000 6.706 3.698 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 161.934 3.000 6.704 3.698 162.827 2.970 6.715 3.670 163.647 2.939 6.736 3.644 164.422 2.909 6.764 3.620 165.161 2.879 6.796 3.596 165.867 2.848 6.833 3.574 2.24 PRESSURE+ MOMENTUM ( POUNDS ) 1312.97 1321.52 1330.33 1339.41 1348.77 1358.40 1368.33 1378.55 1389.07 1399.91 1411.07 1422.55 1434.38 1446.55 1459.07 1471.97 1485.24 1498.89 1512.95 1527.42 1542.31 1557.64 1573.41 1589.65 1606.36 1606.68 PRESSURE* MOMENTUM ( POUNDS } 3500.56 1277.58 PRESSURE* MOMENTUM ( POUNDS ) 1277.58 1265.28 1253.89 1243.13 1232.90 1223.15 166, 167. 167. 168. 168. 169. 170. 170 170 171. 171. 172. 172 172 173 173 173. 173. 173, 173 281 ,544 ,192 ,813 .407 .974 .515 .028 .512 .968 .394 .790 .152 .481 .774 .029 .244 .416 .544 .623 .650 .700 | PRESSURE+MOMENTUM 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. PMT)— — — — E*iN U BALANCE j DOWNSTREAM DEPTH = 818 788 757 727 697 667 636 606 576 545 515 485 454 424 394 363 333 303 272 242 242 W U\ 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. /•no ATTT 875 920 969 022 078 137 201 267 338 411 489 570 655 744 836 933 034 139 249 363 363 .Tf .TTTMD An i j_v I\JT.W j-j j- v- u "j-L'-tt ^-i OCCURS AT 140.15 3.678 FEET,UPSTREAM 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 war VQiN/tUI O FEET .552 .532 .512 .493 .475 .458 .442 .427 .412 .399 .386 .375 .365 .356 .348 .341 .336 .332 .330 .329 .329 TQ.LD UPSTREAM OF CONJUGATE DEPTH 1213. 1205. 1196. 1188. 1181. 1173. 1167. 1161. 1155. 1149. 1144. 1140. 1136. 1132. 1129. 1127. 1125. 1124. 1123. 1122. 1122. 87 03 62 64 09 96 27 01 18 81 89 44 46 97 97 49 53 11 25 95 95 NODE 2001.90 | = 1.305 FEET j NODE 2003.00 : HGL = < 404.239>;EGL= < 406 .692>;FLOWLINE= < 402.660> FLOW PROCESS FROM NODE UPSTREAM NODE 2003.90 2003.00 TO NODE 'ELEVATION = 2003.90 IS CODE = 5 402.99 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 47.40 47.40 0.00 0.00 DIAMETER ( INCHES ) 36.00 36.00 0.00 0.00 ANGLE (DEGREES) 0.00 - 0.00 0.00 FLOWLINE ELEVATION 402.99 402.66 0.00 0.00 CRITICAL DEPTH ( FT . ) 2.24 2.24 0.00 0.00 VELOCITY (FT/SEC) 11.772 12.569 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1}+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01566 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = 4.00 FEET 0.063 FEET ENTRANCE LOS.SES = (DY+HV1-HV2)+(ENTRANCE LOSSES) 01431 01701 0.000 FEET JUNCTION LOSSES = { 0.114)+{ 0.000) = 0.114 NODE 2003.90 : HGL = < 404.654>;EGL= < 406.806>;FLOWLINE= < 402.990> FLOW PROCESS FROM NODE UPSTREAM NODE 2005.00 2003 .90 TO NODE ELEVATION = 2005.00 IS CODE = 1 407.21 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 47.40 CFS PIPE DIAMETER - 36.00 INCHES PIPE LENGTH = 281.70 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.64 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.24 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.24 DISTANCE FROM CONTROL (FT) 0. 0. 0, 0 1. 1. 2. 3. 4 6 8. 10. 13 16 19 23. 28, 34 42 51 62. 76, 95 124. 176, 281, .000 ,061 .251 .582 .067 .723 .566 .619 .906 .457 .307 .499 .084 .129 .714 .945 .963 .954 .184 .042 .127 .449 .896 .718 .543 .700 FLOW DEPTH (FT) 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .242 .218 .194 .170 .146 .122 .098 .074 .050 .026 .002 .978 .954 .930 .906 .882 .858 .833 .809 .785 .761 .737 .713 .689 .665 .664 VELOCITY (FT/SEC) 8. 8. 8. 8 8 8. 8. 9. 9 9 9 9. 9 9 10 10 10, 10 10 10 10. 11, 11 11 11. 11. .363 .457 .554 .654 .758 .865 .976 .090 .208 .330 .456 .587 .722 .861 .005 .154 .309 .469 .634 .806 .983 .167 .358 .556 .761 .768 SPECIFIC PRESSURE + ENERGY ( FT ) MOMENTUM ( POUNDS ) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 .329 .329 .331 .334 .333 .343 .350 .358 .367 .378 .391 .406 .422 .440 .461 .484 .509 .536 .567 .600 .636 .675 .718 .764 .815 .816 1122. 1123. 1123. 1124, 1126. 1127. 1130, 1132. 1135, 1139, 1143. 1147. 1152. 1158, 1164, 1171, 1178. 1186. 1194, 1203, 1213, 1224, 1235 1247. 1260 1260. .95 .14 .71 .67 ,03 .80 ,00 ,63 .72 .26 .29 .80 .83 .38 .48 .13 .37 .22 .69 .80 .60 .09 .32 .30 .07 .51 NODE 2005.00 : HGL = < 409.452>;EGL= < 410.539>;FLOWLINE= < 407.210> FLOW PROCESS FROM NODE 2005.00 TO NODE 2005.90 IS CODE = 5 UPSTREAM NODE 2005.90 ELEVATION = 407.54 (FLOW IS AT CRITICAL DEPTH) {NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 44.20 47.40 1.60 1.55 DIAMETER ANGLE (INCHES) {DEGREES} 36.00 36.00 18.00 18.00 0.05===Q5 EQUALS 0.00 - 90.00 90.00 FLOWLINE ELEVATION 407.54 407.21 409.04 409.04 CRITICAL DEPTH ( FT . ) 2.17 2.24 0.48 0.47 VELOCITY (FT/ SEC) 11.801 8.365 3.330 3.300 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2 *V2-Ql*V1*COS{DELTA1)-Q3*V3 *COS{DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16-1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01059 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES} JUNCTION LOSSES = ( 0.517)+( 0.217) = 0.734 0.01506 0.00612 0.217 FEET NODE 2005-90 : HGL = < 409.110>;EGL= < 411.273>;FLOWLINE= < 407.540> FLOW PROCESS FROM NODE 2005.90 TO NODE 2010.00 IS CODE = 1 UPSTREAM NODE 2010.00 ELEVATION = 411.97 (FLOW IS SUPERCRITICAL} CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 44.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.69 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.57 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.51 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.17 DISTANCE FROM CONTROL (FT) 0. 3, 7, 10. 14 18, 23, 27, 32. 37. 42. 48, 54, 61. 68. 75. 84. 93. 104, 116. 131, 148. 171. 202, 256. 295. .000 .504 .143 .926 .870 .988 .299 .823 .586 .616 .948 .623 .693 .220 .284 .988 ,467 .904 .555 ,797 ,211 ,773 ,314 ,945 ,854 .690 FLOW DEPTH (FT) 1, 1. 1, 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1, 1, 1. 1, 1. 1. 1. 1, 1, 1. 1. 1, ,513 ,515 .517 ,520 .522 .525 .527 ,529 ,532 ,534 .537 ,539 .542 .544 ,546 ,549 ,551 .554 .556 ,558 ,561 .563 .566 ,568 ,570 ,570 VELOCITY (FT/SEC) 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 .369 .344 .320 .295 .270 .246 .221 .197 .173 .149 .125 .101 .077 .053 .029 .006 .982 .959 .936 .912 .889 .866 .843 .821 .798 .798 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 .890 .883 .876 .869 .862 .855 .848 .841 .834 .827 .821 .814 .808 .801 .795 .788 .782 .776 .769 .763 .757 .751 .745 .739 .733 .733 1203 1201 1199 1198 1196 1195 1193 1192 1190 1188 1187 1185 1184 1182 1181 1180 1178 1177 1175 1174 1172 1171 1170 1168 1167 1167 .02 .42 .83 .25 .68 .12 .57 .03 .50 .98 .46 .96 .46 .98 .50 .04 .58 .13 .69 .26 .84 .42 .02 .62 .23 .22 NODE 2010.00 : HGL = < 413.483>;EGL= < 415.860>;FLOWLINE= < 411.970> FLOW PROCESS FROM NODE UPSTREAM NODE 2010.90 2010.00 TO NODE ELEVATION =s 2010.90 IS CODE = 5 412.30 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS} 44.20 44.20 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 36.00 36.00 0.00 0.00 0.00===Q5 EQUALS 0.00 - 0.00 0.00 FLOWLINE ELEVATION 412.30 411.97 0.00 0.00 CRITICAL DEPTH (FT. ) 2.17 2.17 0.00 0.00 VELOCITY (FT/SEC) 11.571 12.373 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01429 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01707 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01568 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.114)+( 0.000) = 0.114 NODE 2010.90 : HGL = < 413.895>;EGL= < 415.974>;FLOWLINE= < 412.300> FLOW PROCESS FROM NODE UPSTREAM NODE 2015.00 2010.90 TO NODE ELEVATION = 2015.00 IS CODE = 1 414.89 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 44.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 172.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.57 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2,17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.17 DISTANCE FROM CONTROL (FT) 0. 0. 0. 0. 1. 1. 2. 3. 4. 6. 7. 10. 12. 15. 18. 23. 27. 33. 40. 49. 59. 73. 92. 120. 170. 172. 000 058 239 555 019 645 453 461 695 182 958 063 548 475 925 000 834 610 585 133 838 675 475 351 501 390 FLOW DEPTH (FT) 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .166 .142 .118 .094 .071 .047 .023 .999 .976 .952 .928 .904 .880 .857 .833 .809 .785 .762 .738 .714 .690 .667 .643 .619 .595 .595 VELOCITY (FT/ SEC) 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 .087 .183 .283 .385 .491 .600 .713 .830 .951 .075 .204 .338 .475 .618 .765 .918 .076 .240 .410 .585 .768 .957 .153 .357 .568 .567 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM { POUNDS ) 3 3 3. 3 3, 3 3 3 3 3 3 3 3. 3, 3, 3 3. 3. 3, 3. 3. 3, 3, 3. 3. 3. .182 .182 .184 .187 .191 .196 .203 .211 .220 .231 .244 .259 .275 .294 .315 .338 .363 .391 .421 .455 .492 .532 ,575 .623 ,674 .674 1020 1021 1021 1022 1023 1025 1027 1030 1033 1036 1040 1044 1049 1054 1060 1067 1074 1081 1090 1098 1108 1118 1129 1141 1153 1153 .92 .10 .64 .56 .86 .57 .68 .21 .17 .58 .45 .80 .64 .99 .87 .29 .28 .85 .04 .86 .34 .50 .38 .00 .41 .35 NODE 2015.00 : HGL = < 417.056>;EGL= < 418.072>;FLOWLINE= < 414.890> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 2015.00 FLOWLINE ELEVATION - 414.89 c APPENDIX 4.1.8 SYSTEM 3000 ('D' STREET AT EL FUERTE) C c PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE {Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes} Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - ULTIMATE CONDITIONS * SYSTEM 3000 * 100-YEAR STORM FILE NAME: P3000.DAT TIME/DATE OF STUDY: 09:15 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD{FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1006.00- 8.65* 905.52 0.76 85.91 } FRICTION 1006.30- 8.14* 849.34 0.91 DC 81.74 } JUNCTION 1006.40- 8.13* 824.31 0.34 65,08 } FRICTION 1006.50- 6.82* 680.36 0.67 DC 37.82 } CATCH BASIN 1006.50- 6.88* 676.14 0.67 DC 13.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1006.00 FLOWLINE ELEVATION = 386.25 PIPE FLOW = 5.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 394.900 FEET NODE 1006.00 : HGL = < 394.900>;EGL= < 395.056>;FLOWLINE= < 386.250> FLOW PROCESS FROM NODE 1006.00 TO NODE 1006.30 IS CODE = 1 UPSTREAM NODE 1006.30 ELEVATION = 386.93 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD}: PIPE FLOW = 5.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH - 60.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.60)/( 105.051))**2 = 0.00284 HF=L*SF = ( 60.00)*(0.00284) = 0.171 NODE 1006.30 : HGL = < 395.071>;EGL= < 395.226>;FLOWLIN£= < 386.930> FLOW PROCESS FROM NODE UPSTREAM NODE 1006.40 1006.30 TO NODE ELEVATION = 1006.40 IS CODE = 5 387.26 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY 3.10 5.60 2.50 0.00 0.00== (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 90.00 387.26 0.67 1.754 18.00 - 386.93 0.91 3.169 18.00 90.00 387.26 0.60 1.415 0.00 0.00 0.00 0.00 0.000 <-Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4)}/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00087 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00284 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00186 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.007 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2}+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.211)+( 0.000) = 0.211 NODE 1006.40 : HGL = < 395.390>;EGL= < 395.438>;FLOWLINE= < 387.260> FLOW PROCESS FROM NODE 1006.40 TO NODE 1006.50 IS CODE = 1 UPSTREAM NODE 1006.50 ELEVATION = 388.57 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = ({ 3.10}/( 104.983))**2 = 0.00087 HF=L*SF = ( 5.25)*(0.00087) = 0.005 NODE 1006.50 : HGL = < 395.394>;EGL= < 395.442>;FLOWLINE= < 388.570> FLOW PROCESS FROM NODE 1006.50 TO NODE 1006.50 IS CODE = 8 UPSTREAM NODE 1006.50 ' ELEVATION = 388.57 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.75 FEET/SEC. VELOCITY HEAD = 0.048 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.048) = 0.010 NODE 1006.50 : HGL = < 395.452>;EGL= < 395.452>;FLOWLINE= < 388.570> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1006.50 FLOWLINE ELEVATION = 388.57 ASSUMED UPSTREAM CONTROL HGL = 389.24 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes] Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - ULTIMATE CONDITIONS * SYSTEM 3000 - LATERAL * 100-YEAR STORM FILE NAME: P3000L.DAT TIME/DATE OF STUDY: 09:14 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE {Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-t- FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1006.80- 8.47* 858.14 0.35 40.90 } FRICTION 1006.90- 6.65* 657.94 0.60 DC 28.68 } CATCH BASIN 1006.90- 6.69* 655.20 0.60 DC 10.28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1006.80 FLOWLINE ELEVATION = 386.93 PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.400 FEET NODE 1006.80 : HGL = < 395.400>;EGL= < 395.431>;FLOWLINE= < 386.930> FLOW PROCESS FROM NODE 1006.80 TO NODE 1006.90 IS CODE = 1 UPSTREAM NODE 1006.90 ELEVATION = 388.77 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 43.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.50)/( 105.027))**2 = 0.00057 HF=L*SF = ( 43.25)*(0.00057) = 0.025 NODE 1006.90 : HGL = < 395.424>;EGL= < 395.456>;FLOWLINE= < 388.770> FLOW PROCESS FROM NODE 1006.90 TO NODE 1006.90 IS CODE = 8 UPSTREAM NODE 1006.90 ELEVATION = 388.77 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.42 FEET/SEC. VELOCITY HEAD = 0.031 FEET CATCH BASIN ENERGY LOSS = .2*{VELOCITY HEAD) = .2*( 0.031} = 0.006 NODE 1006.90 : HGL = < 395.462>;EGL= < 395.462>;FLOWLINE= < 388.770> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1006.90 FLOWLINE ELEVATION = 388.77 ASSUMED UPSTREAM CONTROL HGL = 389.37 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes\ Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - ULTIMATE CONDITION * SYSTEM 4000 * 100-YEAR STORM FILE NAME: P4000.DAT TIME/DATE OF STUDY: 09:28 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 4000.00- 4.91* 1655.71 1.77 887.53 } FRICTION 4001.00- 4.56* 1547.03 2.05 DC 861.10 } JUNCTION 4001.90- 4.37* 1127.55 1.44 700.82 } FRICTION 4002.00- 3.18* 893.52 1.82 DC 649.64 } CATCH BASIN 4002.90- 4.28* 642.23 1.82 DC 161.08 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4000.00 FLOWLINE ELEVATION = 340.09 PIPE FLOW = 36.80 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 345.000 FEET NODE 4000.00 : HGL = < 345.000>;EGL= < 345.873>;FLOWLINE= < 340.090> FLOW PROCESS FROM NODE 4000.00 TO NODE 4001.00 IS CODE = 1 UPSTREAM NODE 4001.00 ELEVATION = 341.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 105.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 36.80)/( 410.173))**2 = 0.00805 HF=L*SF = ( 105.00)*(0.00805) = 0.845 NODE 4001.00 : HGL = < 345.845>;EGL= < 346.718>;FLOWLINE= < 341.290> FLOW PROCESS FROM NODE 4001.00 TO NODE 4001.90 IS CODE = 5 UPSTREAM NODE 4001.90 ELEVATION = 341.79 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 27.50 36.80 6.10 DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY INCHES) (DEGREES) ELEVATION DEPTH(FT-) (FT/SEC) 24.00 0.00 341.79 1.82 30.00 - 341.29 2.05 18.00 90.00 342.29 0.95 3.20 18.00 90.00 342.29 0.68 0.00===Q5 EQUALS BASIN INPUT=== 8.753 7.497 3.452 1.811 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1}-Q3*V3 *COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01478 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00805 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01141 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2>+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.634)+( 0.000) = 0.634 NODE 4001.90 : HGL = < 346.162>;EGL= < 347.352>;FLOWLINE= < 341.790> FLOW PROCESS FROM NODE 4001.90 TO NODE 4002.00 IS CODE = 1 UPSTREAM NODE 4002.00 ELEVATION = 346.35 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.50 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 227.80 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = ({ 27.50)/( 226.224))**2 = 0.01478 HF=L*SF = ( 227.80)*(0.01478) = 3.366 NODE 4002.00 : HGL = < 349.528>;EGL= < 350.718>;FLOWLINE= < 346.350> FLOW PROCESS FROM NODE 4002.00 TO NODE 4002.90 IS CODE = 8 UPSTREAM NODE 4002.90 ELEVATION = 346.68 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = .27.50 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 8.75 FEET/SEC. VELOCITY HEAD = 1.190 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.190) = 0.238 NODE 4002.90 : HGL = < 350.956>;EGL= < 350.956>;FLOWLINE= < 346.680> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4002.90 FLOWLINE ELEVATION = 346.68 ASSUMED UPSTREAM CONTROL HGL = 348.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.9 SYSTEM 4000 ('C' STREET AT EL FUERTE) C c PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - ULTIMATE CONDITIONS * SYSTEM 4000 - LATERAL 1 * 100-YEAR STORM EVENT FILE NAME: P4000Ll.DAT TIME/DATE OF STUDY: 09:52 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 4001.50- 3.91* 451.63 1.13 172.68 } FRICTION 4001.60- 3.89* 449.95 1.20 DC 171.85 } CATCH BASIN 4001.60- 4.46* 408.68 1.20 DC 51.73 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4001.50 FLOWLINE ELEVATION = 342.29 PIPE FLOW = 9.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 346.200 FEET NODE 4001.50 : HGL = < 346.200>;EGL= < 346.668>;FLOWLINE= < 342.290> FLOW PROCESS FROM NODE 4001.50 TO NODE 4001.60 IS CODE = 1 UPSTREAM NODE 4001.60 ELEVATION = 342.35 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.70)/( 105.042)}**2 = 0.00853 HF=L*SF = ( 5.25}*(0.00853) = 0.045 NODE 4001.60 : HGL = < 346 . 245>;EGL= < 346.713>;FLOWLINE= < 342.350> FLOW PROCESS FROM NODE 4001.60 TO NODE 4001.60 IS CODE = 8 UPSTREAM NODE 4001.60 ELEVATION = 342.35 {FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.49 FEET/SEC. VELOCITY HEAD = 0.468 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.468) = 0.094 NODE 4001.60 : HGL = < 346.806>;EGL= < 346.806>;FLOWLINE= < 342.350> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4001.60 FLOWLINE ELEVATION = 342.35 ASSUMED UPSTREAM CONTROL HGL = 343.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes! Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 ************************** DESCRIPTION OF STUDY * BRESSI RANCH - ULTIMATE CONDIITONS * SYSTEM 4000 - LATERAL 2 * 100-YEAR STORM FILE NAME: P4000L2.DAT TIME/DATE OF STUDY: 09:54 06/11/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 4001.10- 3.91* 375.87 0.71 74.01 } FRICTION 4001.20- 3.53* 333.75 0.86 DC 70.41 } CATCH BASIN 4001.20- 3.68* 322.78 0.86 DC 24.19 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4001.10 FLOWLINE ELEVATION = 342.29 PIPE FLOW = 5.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 346.200 FEET NODE 4001.10 : HGL = < 346.200>;EGL= < 346.324>;FLOWLINE= < 342.290> FLOW PROCESS FROM NODE 4001.10 TO NODE 4001.20 IS CODE = 1 UPSTREAM NODE 4001.20 ELEVATION = 342.77 (FLOW IS UNDER PRESSURE} CALCULATE FRICTION LOSSES(LACFCD}: PIPE FLOW = 5.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 43.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.00)/( 105.043))**2 = 0.00227 HF=L*SF = ( 43.25)*(0.00227) = 0.098 NODE 4001.20 : HGL = < 346 . 298>;EGL = < 346.422>;FLOWLINE= < 342.770> FLOW PROCESS FROM NODE 4001.20 TO NODE 4001.20 IS CODE = 8 UPSTREAM NODE 4001.20 ELEVATION = 342.77 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.00 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.83 FEET/SEC. VELOCITY HEAD = 0.124 FEET CATCH BASIN ENERGY LOSS = .2*{VELOCITY HEAD) = .2* { 0.124) = 0.025 NODE 4001.20 : HGL = < 346.447>;EGL= < 346.447>;FLOWLINE= < 342.770> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4001.20 FLOWLINE ELEVATION = 342.77 ASSUMED UPSTREAM CONTROL HGL = 343.63 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.10 SYSTEM 5000 ('B', 'P', 'Q' STREETS) C C *********************r*****************************::***************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) Ic) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY * Bressi Ranch - 2244.00 * Hydraulic Analysis System 5000 ***************** r**************************i :*******• FILENAME: C:\2244\L5000.dat TIME/DATE OF STUDY: 15:30 06/03/2002 ;***********************!:***************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 5000 5001 5001 5002, 5002. 5003 , 5003, 5004, 5004. 5005. 5005. 5006. 5006. 5007. .00- } .00- } .90- } .00- } .90- } .00- } ,90- } ,00- } .90- } 00- } .90- } .00- } ,90- } 00- MODEL PRESSURE PROCESS HEAD FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION 8 6 6 3 . 4 . 3 , 2 . 2, 2. 2. 2. 2. 3. 2. PRESSURE*FLOW ( FT } MOMENTUM ( POUNDS } .66* .52* .37 .76 DC .19 .33 DC ,96 DC ,96 DC .96 DC ,96 DC .96 DC ,96 DC .33 96 DC 10152 8477 8266 6340. 5147. 4698. 5455. 5455. 5455. 5455. 5455, 5455, 5374. 5225. .45 .30 .67 .17 .68 .18 .06 .06 .06 ,06 ,06 ,06 .57 21 PRESSURE* DEPTH (FT) MOMENTUM (POUNDS 2 2 2 3 2 2 2. 1. 1. 1. 1, 2, 1, 2. .25 .38 .34* .04* .15* . 06* .29* .96* . 94* .86* ,85* ,00* .90* ,30* 8938 8460 8422 6809 6068 6330 6219 7199 7273 7583 , 7648. 7054. 7095. 5929. .46 .63 .42 .44 .88 .32 .69 .10 .56 ,44 .28 .91 .86 35 JUNCTION 5007.90- } FRICTION 5008.00- } MANHOLE 5008.90- } FRICTION 5009.00- } JUNCTION 5009.90- } FRICTION 5010.00- } JUNCTION 5010.90- } FRICTION 5011.00- } JUNCTION 5011.90- } FRICTION 5012.00- } JUNCTION 5012.90- } FRICTION 5013.00- } JUNCTION 5013.90- } FRICTION 5014.00- } FRICTION 5015.00- } JUNCTION 5015.90- } FRICTION 5020.00- } JUNCTION 5020.90- } FRICTION 5030.00- } JUNCTION 5030.90- } FRICTION 5031.00- } JUNCTION 5031.90- } FRICTION 5032.00- 5.28 2.93 DC 2.93 DC 2.93 DC 3.32 2.92 DC 5.38 2 ,79 DC 2.45 DC 2,45*Dc 5.64* 3.28* 6.43* 6.51* 5.53* 6.36* } HYDRAULIC 2.18*Dc 3.23* 2.44* 3.56* 3.24* 2.50* 5.22* 5136.24 4121.55 4121.55 4121.55 4022.34 3871.70 3579.47 2495.35 2464.15 2464.14 2392 .52 1669.78 2635.07 2658.49 2358.45 2273.56 JUMP 1054.84 1038.14 799.47 1139.82 1041.21 797.70 1331.21 1.75* 2 .00* 1.99* 2.00* 1.86* 2.56* 1.53* 2.23* 2.10* 2.45*DC 1.71 2 .32 DC 1.96 1.75 1.98 1.31 2.18*DC 1.71 1.96 DC 1.67 1.56 1.84 DC 1.84 DC 5936.21 5177.77 5197.97 5165.93 5168.25 4017.42 3783.18 2689.67 2590.50 2464.14 1606.72 1410.22 1473 .14 1578.79 1466.11 1428.67 1054.84 761.28 742.46 769.23 794.55 689.35 689.35 } CATCH BASIN 5032.00- MAXIMUM NUMBER OF NOTE: STEADY FLOW 6.41*1060.78 1.84 DC 165.00 ENERGY BALANCES USED IN EACH PROFILE = 25 HYDRAULIC HEAD-LOSS COMPUTATIONS CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD DESIGN MANUALS. r********************************* BASED ON THE , AND OCEMA ************j MOST ************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5000.00 FLOWLINE ELEVATION = 174.74 PIPE FLOW = 178.80 CFS ASSUMED DOWNSTREAM CONTROL HGL = PIPE DIAMETER = 183.400 FEET 48.00 INCHES NODE 5000.00 : HGL = < 183.400>;EGL= < 186.544>;FLOWLINE= < 174.740> ****************************************************************************** FLOW PROCESS FROM NODE 5000.00 TO NODE 5001.00 IS CODE = 1 UPSTREAM NODE 5001.00 ELEVATION = 177.62 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 178.80 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 48.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 17B.BO)/( 1436.433}}**2 = 0.01549 HF=L*SF = { 48.00)* (0.01549) = 0.744 NODE 5001.00 : HGL = < 184.144>;EGL= < 187.287>;FLOWLINE= < 177.620> ****************************************************************************** FLOW PROCESS FROM NODE 5001.00 TO NODE 5001.90 IS CODE = 5 UPSTREAM NODE 5001.90 ELEVATION = 177.95 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 48.00 48.00 24.00 0.00 0.00177.10 178.80 1.70 0.00 0.00===Q5 EQUALS BASIN INPUT=== 90.00 0.00 177.95 177.62 179.95 0.00 3.76 3 .77 0.45 0.00 23 .134 14.228 0.541 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02584 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.103 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.318)+( 0.000) = 1.318 03619 01549 0.000 FEET NODE 5001.90 : HGL = < 180.295>;EGL= < 188.605>;FLOWLINE= < 177.950> FLOW PROCESS FROM NODE 5001.90 TO NODE 5002.00 IS CODE = 1 UPSTREAM NODE 5002.00 ELEVATION = 187.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 177.10 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 221.63 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.23 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.04 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.76 DISTANCE FROM CONTROL (FT) 0 2 5 9 13 17 21 26 31 37 43 50 58 66 76 87 99 113 130 150 174 204 221 .000 .876 .999 .391 .078 .091 .465 .241 .466 .197 .503 .465 .183 .784 .424 .307 .700 .965 .613 .388 .446 .724 .630 FLOW DEPTH (FT) 3. 3 2 2 2 , 2 , 2 2. 2 2 2 2 2 2 2 2 , 2 . 2 , 2 2, 2. 2, 2. .036 .004 .971 .939 .907 .875 .842 .810 .778 .745 .713 .681 .649 .616 .584 .552 .520 .487 .455 .423 .391 .358 .345 VELOCITY (FT/SEC) 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22 22 23 .301 .491 .687 .890 .099 .316 .539 .770 .009 .256 .510 .774 .047 .328 .620 .921 .233 .556 .890 .236 .595 .966 .127 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 7. 7. 7. 7. 7. 8. 8. 8. 8. a. 8. 8. 8. 9. 9. 9. 9. 9. 9. 10. 10. 10. 10. 687 757 832 912 997 087 183 284 392 506 628 756 893 037 190 353 525 707 900 106 323 554 655 6809 6854. 6901. 6950, 7002. 7057, 7114. 7175. 7238. 7304, 7373. 7445. 7521. 7600. 7683. 7769. 7859. 7953. 8052. 8154 . 8261, 8373. 8422. .44 .09 .15 .67 .74 .44 .84 .03 .11 ,16 .31 .65 .29 .37 ,01 ,35 ,53 ,71 ,05 ,73 ,92 .82 .42 NODE 5002.00 : HGL = < 190.396>;EGL= < 195.047>;FLOWLINE= < 187.360> ******:r*******************************':******************* FLOW PROCESS FROM NODE UPSTREAM NODE 5002.90 5002.00 TO NODE ELEVATION = 5002.90 IS CODE = 5 188.86 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 135.20 177.10 41.90 0.00 DIAMETER ( INCHES } 42.00 48.00 30.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 188.86 187.36 188.86 0.00 CRITICAL DEPTH (FT.) 3.33 3.76 2.17 0.00 VELOCITY (FT/SEC) 21.784 17.307 9.265 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) }/ { (A1+A2) *16.1) -(-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03713 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01779 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02746 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.110 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.334)+( 0.000) = 3.334 NODE 5002.90 : HGL = < 191.012>;EGL= < 198.381>;FLOWLINE= < 188.860> *******: ****** FLOW PROCESS FROM NODE 5002.90 TO NODE 5003.00 IS CODE = UPSTREAM NODE 5003.00 ELEVATION = 192.68 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 135.20 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 114.77 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.23 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.06 3.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 6.581 13.402 20.484 27.851 35.532 43.560 51.971 60.809 70.128 79.988 90.466 101.652 113.660 114.770 FLOW DEPTH (FT) 2. 2 2 , 2 , 2 , 2 , 2 , 2, 2 . 2. 2 , 2 . 2. 2 2. .063 .070 .077 .084 .091 .097 .104 .111 .118 .125 .131 .138 .145 .152 .152 VELOCITY (FT/SEC) 22 22 22 22 22 22 22 22 22 22 22 21 21 21 21 .903 .813 .723 .634 .546 .458 .372 .286 .200 .116 .032 .949 .866 .785 .778 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 10. 10. 10. 10, 9. 9. 9. 9, 9. 9. 9. 9. 9. 9, 9. .214 .156 .100 ,044 .989 .934 .881 ,828 .775 .724 ,673 .623 .574 ,525 ,521 6330, 6309, 6288, 6267. 6246. 6226. 6206. 6186. 6166, 6146, 6127. 6108, 6089, 6070. 6068. .32 .09 .08 .28 .69 .31 .13 .16 .39 .82 .44 .26 .28 .48 .88 NODE 5003.00 : HGL = < 194.743>;EGL= < 202.894>;FLOWLINE= < 192.680> :**************************•r****************** FLOW PROCESS FROM NODE UPSTREAM NODE 5003.90 5003.00 TO NODE ELEVATION = 5003.90 IS CODE = 5 193.18 {FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 132.30 135.20 1.45 1.45 DIAMETER (INCHES) 36.00 42.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 193.18 192.68 194.68 194.68 CRITICAL DEPTH (FT. ) 2 .96 3 .33 0.45 0.45 VELOCITY (FT/SEC) 22.803 22.911 3.237 3.237 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04374 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.175 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+{ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.655)+( 0.000) = 0.655 04524 04224 0.000 FEET NODE 5003.90 : HGL = < 195.475>;EGL= < 203.549>;FLOWLINE= < 193.180> **************•***********: FLOW PROCESS FROM NODE UPSTREAM NODE 5004.00 5003.90 TO NODE ELEVATION = 5004.00 IS CODE = 1 202.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 132.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 222.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.44 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.96 2.96 GRADUALLY DISTANCE VARIED FLOW PROFILE COMPUTED INFORMATION: FROM CONTROL (FT) 0 8 17 26 35 45 55 65 76 88 100 112 125 140 155 171 189 209 222 .000 .538 .321 .372 .717 .386 .414 .840 .711 .083 .022 .607 .937 .130 .340 .763 .654 .364 .000 FLOW DEPTH (FT) 1, 1, 1. 2. 2 . 2, 2 , 2, 2. 2. 2. 2, 2. 2. 2. 2. 2. 2. 2. .959 ,978 .997 .016 .035 ,054 ,074 ,093 ,112 .131 .150 ,169 ,188 .207 .226 ,246 ,265 ,284 ,295 VELOCITY (FT/SEC) 27 26, 26, 26, 25, 25, 25, 25, 24 , 24, 24, 24, 23 . 23 . 23 , 23 , 23. 22, 22, .053 .754 .464 .181 .906 .637 .376 .121 .873 .631 .396 .166 ,942 .724 .512 ,305 .103 ,907 ,796 SPECIFIC PRESSURE + ENERGY ( FT) MOMENTUM ( POUNDS ) 13 13. 12. 12. 12. 12 12 11, 11. 11 11. 11. 11, 10. 10. 10. 10, 10. 10. .330 .100 .879 .667 .463 .267 .079 .898 .724 .558 .397 .243 .095 .953 .816 ,684 .558 .437 ,369 7199. 7128. 7059. 6993. 6928. 6866. 6805. 6746. 6688. 6633. 6579. 6526. 6476. 6426. 6378. 6332. 6287. 6244. 6219. 10 50 96 43 84 14 28 21 88 24 24 85 03 73 92 56 62 07 69 NODE 5004.00 : HGL = < 204.019>;EGL= < 215.390>;FLOWLINE= < 202.060> ************:***************:**************** FLOW PROCESS FROM NODE 5004.00 TO NODE 5004.90 IS CODE = 2 UPSTREAM NODE 5004.90 ELEVATION = 202.39 {FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 132.30 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 11.504 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* (11.504) » 0.575 NODE 5004.90 : HGL = < 204.329>;EGL= < 215.965>;FLOWLINE= < 202.390> *******!!****************!****************** FLOW PROCESS FROM NODE 5004.90 TO NODE 5005.00 IS CODE = 1 UPSTREAM NODE 5005.00 ELEVATION = 222.74 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 132.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 294.98 FEET MANNING'S N = 0.01300 NORMAL DEPTH{FT) = 1.95 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.86 2 .96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0. 5. 11. 17, 23 , 29, 36, 43 , 50, 58, 67, 76, 85. 96, 107. 119, 133, 148. 164. 184. 207. 235. 271. 294. .000 ,456 .127 .032 .195 .638 .393 .491 .974 .886 ,284 ,235 .822 ,145 .333 ,552 .020 .030 ,996 .523 .550 .648 .765 ,980 FLOW DEPTH (FT) 1, 1, 1, 1, 1. 1, 1, 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. .864 .867 .870 .874 .877 .881 .884 .887 .891 .894 .897 .901 .904 .907 ,911 .914 .918 ,921 .924 ,928 ,931 ,934 .938 ,939 VELOCITY (FT/SEC) 28. 28, 28, 28. 28. 28, 28. 28. 28. 28, 28. 28. 27. 27, 27. 27, 27. 27. 27, 27. 27. 27. 27. 27. .661 .600 .540 .480 .420 .361 .301 .242 .184 .125 .067 .009 .952 .895 .838 .781 .724 .668 ,612 .557 .501 ,446 .391 ,366 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 14 14 14 14 14 14 14 14 14 14. 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13. 13 , 13. 13 . .627 .577 .526 .477 .427 .378 .329 .281 .233 .185 .137 .090 .044 .997 .951 .906 .860 .815 .771 .726 .682 ,639 .595 .575 7583 "7568 7554 7539 7525 7511 7497 7482 7468 7454 7440 7427 7413 7399 7385 7372 7358 7345 7332 7318 7305 7292 7279 7273 .44 .84 .33 .89 .53 .24 .03 .89 .83 .84 .93 .08 .31 .61 .99 .43 .95 .53 .19 .92 .71 .58 .51 .56 NODE 5005.00 : HGL = < 224.604>;EGL= < 237.367>;FLOWLINE= < 222.740> •A********************************************- FLOW PROCESS FROM NODE UPSTREAM NODE 5005.90 5005.00 TO NODE ELEVATION = 5005.90 IS CODE = 5 223.07 {FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 132 .30 132.30 0.00 0.00 DIAMETER ( INCHES ) 36.00 36.00 18.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 223.07 222.74 224.24 0.00 CRITICAL DEPTH (FT. ) 2 .96 2 .96 0.00 0.00 VELOCITY (FT/ SEC) 28.940 28.670 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3}- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08036 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07848 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07942 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.318 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+{ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.556)-t-( 0.000) = 0.556 NODE 5005.90 : HGL = < 224.919>;EGL= < 237.924>;FLOWLINE= < 223.070> •***************:r**************** FLOW PROCESS FROM NODE 5005.90 TO NODE 5006.00 IS CODE = 1 UPSTREAM NODE 5006.00 ELEVATION = 247.29 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 132.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.48 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) =1.84 CRITICAL DEPTH(FT) =2.96 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) =2.00 GRADUALLY DISTANCE VARIED FLOW PROFILE COMPUTED INFORMATION: FROM CONTROL (FT) 0 4 8 13 18 23 28 34 40 47 54 61 69 78 88 99 110 124 139 157 178 204 237 285 295 .000 .199 .604 .232 .106 .249 .689 .457 .593 .141 .153 .694 .844 .699 .384 .055 .923 .269 .491 .168 .201 .097 .682 .311 .480 FLOW DEPTH (FT) 1, 1. 1. 1, 1. 1. 1. 1. 1, 1, 1. 1, 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. .998 .992 .986 ,979 .973 .966 .960 .953 ,947 ,940 .934 ,927 .921 ,914 ,908 ,901 .895 ,889 .882 .876 ,869 ,863 ,856 ,850 .849 VELOCITY (FT/ SEC) 26. 26, 26. 26, 26. 26, 27. 27. 27, 27, 27. 27. 27, 27, 27, 27, 28, 28, 28. 28. 28. 28. 28, 28. 28. .443 .540 .638 .737 .837 .937 .039 .141 .245 .349 .455 .561 .668 .777 .886 .996 .107 .220 .333 .447 .563 .679 ,797 ,916 ,931 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS ) 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 .863 .936 .011 .086 .163 .240 .319 .399 .480 .562 .645 .730 .815 .902 .990 .080 .170 .262 .355 .449 .545 .642 .741 .841 .854 7054. 7077. 7100. 7124. 7147. 7171. 7195. 7220. 7244. 7269. 7294. 7319. 7345. 7371. 7397. 7423 . 7450. 7477. 7504. 7532. 7559. 7587. 7616. 7644. 7648. 91 82 95 32 93 77 86 18 76 58 65 98 56 41 51 88 52 42 60 06 80 82 12 72 28 NODE 5006.00 : HGL = < 249.288>;EGL= < 260.153>;FLOWLINE= < 247.290> **************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5006.90 5006.00 TO NODE ELEVATION = r********************* 5006.90 IS CODE = 5 247.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 129.10 36.00 0.00 247.62 2.96 27.392 DOWNSTREAM 132.30 36.00 - 247.29 2.96 LATERAL #1 2.40 18.00 90.00 248.79 0.59 LATERAL #2 0.80 18.00 90.00 248.79 0.33 Q5 0.00===Q5 EQUALS BASIN INPUT=== 26.451 3.533 1.178 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/({A1+A2}*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06751 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.270 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.016)+{ 0.000) = 1.016 07085 06417 0.000 FEET NODE 5006.90 : HGL = < 249.518>;EGL= < 261.169>;FLOWLINE= < 247.620> ****************************************************************************** FLOW PROCESS FROM NODE 5006.90 TO NODE 5007.00 IS CODE = 1 UPSTREAM NODE 5007.00 ELEVATION = 259.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 129.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 145.42 FEET MANNING'S N = 0.01300 1.79 CRITICAL DEPTH(FT) =NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.30 2.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0. 2. 5. 9, 12, 16, 20. 25, 29, 34, 40, 46. 53 . 60, 68. 77, 87. 99. 113 . 129. 145. .000 .892 .978 .275 .802 .585 .649 .025 .751 .870 .433 ,505 .160 .496 ,632 .723 ,974 ,661 ,171 ,074 ,420 FLOW DEPTH (FT) 2 , 2 , 2 , 2 , 2 . 2, 2 , 2 . 2 , 2 . 2 , 2 , 2 , 2. 2 . 1. 1, 1. 1. 1. 1. .300 .280 ,260 .239 ,219 .199 .178 .158 .138 ,118 .097 .077 .057 .037 .016 .996 ,976 .955 ,935 ,915 ,898 VELOCITY (FT/SEC) 22 22 22 22 23 23 23 23 23 24 24 24 24 25 25 25 26 26 26 27 27 .193 .392 .597 .807 .024 .246 .474 .709 .950 .199 .453 ,716 .985 .262 .547 .840 .141 .450 .769 .097 .384 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 9. 10. 10. 10. 10. 10. 10. 10. 11. 11. 11. 11. 11. 11. 12. 12. 12. 12. 13. 13. 13. 953 071 193 322 455 595 740 892 051 216 388 568 756 952 157 370 593 826 069 323 549 5929, 5971, 6015. 6061, 6108, 6156, 6207, 6258 6312. 6367. 6424. 6483. 6544, 6607. 6672. 6739. 6808, 6879. 6953. 7029, 7095. .35 ,85 .81 .27 .27 .84 .02 .86 .41 .70 .80 .74 .60 .42 ,26 .19 .27 .58 ,19 .16 ,86 NODE 5007.00 : HGL = < 262.130>;EGL= < 269.783>;FLOWLINE= < 259.830> ************* FLOW PROCESS FROM NODE UPSTREAM NODE 5007.90 :**************• 5007.00 TO NODE ELEVATION = 5007.90 IS CODE - 5 260.16 {FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 112.50 129.10 16.60 0.00 DIAMETER (INCHES) 36.00 36.00 24.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 260.16 259.83 260.83 0.00 CRITICAL DEPTH (FT.) 2.93 2.96 1.47 0.00 VELOCITY (FT/SEC) 26.307 22.200 6.713 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06895 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04286 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05590 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.224 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.872)+( 0.000) = 2.872 NODE 5007.90 : HGL = < 261.909>;EGL= < 272.655>;FLOWLINE= < 260.160> *******r******************i r*********** FLOW PROCESS FROM NODE 5007.90 TO NODE 5008.00 IS CODE = 1 UPSTREAM NODE 5008.00 ELEVATION = 280.96 (FLOW IS SUPERCRITICAL) _ — — MM__^^.__________ ______—«,. — — —._>______,- _ _ «_ _ -*___,.____-.__________._-. — CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 112.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 292.96 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.73 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.93 DISTANCE FROM CONTROL (FT) 0 3 7 11, 15, 19, 24. 29. ' 34. 40. 46. 52. 60. 68. .000 .506 .202 .106 .237 .618 .276 .239 .544 .233 ,356 .972 ,156 .000 FLOW DEPTH (FT) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1. .998 .988 .977 .966 .956 .945 ,934 .924 ,913 ,902 .892 ,881 ,871 .860 VELOCITY (FT/SEC) 22 22 22 22. 23. 23. 23. 23. 23. 23, 23. 24. 24. 24. .489 .626 .764 .905 .047 .192 .339 .488 .639 .792 .948 .107 .267 .430 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM (POUNDS) 9, 9, 10. 10, 10. 10. 10. 10. 10. 10. 10. 10. 11. 11. .857 .942 .029 .118 .209 .302 ,397 .495 ,595 ,698 ,803 ,910 ,021 ,133 5177, 5204. 5231. 5258. 5286, 5314, 5343. 5372, 5402. 5432 . 5463. 5495. 5527. 5559. .77 .19 .08 ,44 ,27 ,59 .40 ,71 .53 .88 ,75 ,15 .11 .62 76 86 96 108 122 138 158 181 212 257 292 618 161 822 869 672 776 025 835 858 053 960 849 839 828 1.817 1.807 1.796 1.785 1.775 1.764 1.754 1.749 24.596 24.764 24.935 25.109 25.285 25.464 25.645 25.830 26.018 26.208 26.299 11.249 11.367 11.489 11.613 11.740 11.871 12.004 12.141 12.282 12.426 12.495 5592.70 5626.36 5660.61 5695.46 5730.92 5767.00 5803.72 5841.08 5879.11 5917.81 5936.21 NODE 5008.00 : HGL = < 282.958>;EGL= < 290.817>;FLOWLINE= < 280.960> FLOW PROCESS FROM NODE 5008.00 TO NODE 5008.90 IS CODE = 2 UPSTREAM NODE 5008.90 ELEVATION = 281.29 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 112.50 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 7.895 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.895) = 0.395 NODE 5008.90 : HGL = < 283.280>;EGL= < 291.212>;FLOWLINE= < 281.290> ****************************************************************************** FLOW PROCESS FROM NODE 5008.90 TO NODE 5009.00 IS CODE = 1 UPSTREAM NODE 5009.00 ELEVATION = 295.21 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 112.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.96 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.99 CRITICAL DEPTH(FT) = 2.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.906 10.023 15.371 20.971 26.848 33.029 39.548 46.444 53.762 61.557 69.894 78.855 88.539 99.071 110.614 FLOW DEPTH (FT) 2.003 002 002 001 001 000 000 999 998 998 2. 2. 2 . 2 . 2 . 2 . 1. 1. 1. 1.997 1.997 1.996 1.996 1.995 1.994 VELOCITY {FT/SEC} 22.428 22.435 22.443 22.450 22.457 22.464 22.471 22 .479 22.486 22.493 22.500 22.508 22.515 22.522 22 .529 22.537 SPECIFIC ENERGY(FT) 9.819 9.823 9.828 9.832 9.837 9.841 9.846 9.850 9.855 9.859 9.864 9.868 9.873 9.877 9.882 9.886 PRESSURE+ MOMENTUM(POUNDS) 5165.93 5167.32 5168.71 5170.10 5171.50 5172.90 5174.30 5175.70 5177.10 5178.50 5179.90 5181.31 5182.71 5184.12 5185.53 5186.94 123 , 137. 153 . 172. 194. 221. 256. 295. ,382 .663 .862 .574 .717 ,834 .818 ,960 1. 1. 1, 1. 1. 1, 1. 1. .994 .993 .993 .992 ,992 .991 .990 ,990 22 22 22 22 22 22 22 22 .544 .551 .559 .566 .573 .581 .588 .594 9. 9, 9, 9. 9. 9, 9. 9. .891 ,895 ,900 .904 .909 ,913 ,918 .922 5188. 5189, 5191. 5192, 5194. 5195. 5196. 5197. ,35 .76 .18 ,59 ,01 .43 .85 97 NODE 5009.00 : HGL = < 297.213>;EGL= < 305.029>;FLOWLINE= < 295.210> FLOW PROCESS FROM NODE 5009.00 TO NODE •**************i 5009.90 IS CODE = 5 UPSTREAM NODE 5009.90 ELEVATION = 295.54 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 108.40 112.50 2.05 2.05 DIAMETER (INCHES) 36.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 295.54 295.21 296.71 296.71 CRITICAL DEPTH (FT. ) 2.92 2.93 0.54 0.54 VELOCITY (FT/ SEC) 23.494 22.435 3.118 3.118 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05271 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04611 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04941 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.198 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.946)+( 0.000) = 0.946 NODE 5009.90 : HGL = < 297.403>;EGL= < 305.975>;FLOWLINE= < 295.540> •***********************-*********************** FLOW PROCESS FROM NODE UPSTREAM NODE 5010.00 5009.90 TO NODE ELEVATION = 5010.00 IS CODE = 1 310.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 108.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 259.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.82 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.56 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.92 DISTANCE FROM CONTROL (FT) 0.000 1.867 3.926 6.194 FLOW DEPTH VELOCITY (FT) (FT/SEC) 2.562 16.856 2 .532 17.025 2.502 17.202 2.473 17.387 SPECIFIC ENERGY (FT) 6.976 7.036 7.100 7.170 PRESSURE+ MOMENTUM ( POUNDS ) 4017.42 4041.08 4066.53 4093.83 8, 11. 14. 17. 21. 25. 29. 34. 40 46 53, 61, 70, 80, 93 . 107, 125, 147, 177, 220, 259. .688 .431 .448 .768 .428 .468 .939 .901 .431 .621 .588 .484 .511 .938 .147 .697 .454 .870 .669 .971 .560 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 .443 .413 .384 .354 .324 .294 .265 .235 .205 .176 .146 .116 .086 .057 .027 .997 .968 .938 .908 .878 .863 17. 17. 17, 18. 18. 18, 18, 19. 19, 19, 20, 20. 20, 20. 21, 21. 22. 22. 22. 23. 23, .581 .783 .993 .213 .442 .681 .929 .188 .457 .738 ,030 .334 .650 .980 ,323 .680 .053 .441 .845 .267 ,487 7 7 7 7 7 7 7 7 8 8 8 8 8 3 9 9 9 9 10 10 10 .245 .327 .414 .508 .609 .717 .832 .956 .088 .229 .379 .540 .712 .896 .091 .300 .524 .762 .017 .290 .435 4122. 4154. 4187. 4222. 4259. 4298. 4340. 4384. 4430. 4478. 4530. 4584. 4640. 4700. 4762 . 4828. 4897. 4970. 5046. 5126. 5168. 99 08 13 21 37 69 22 05 26 94 18 09 78 36 96 72 78 30 44 39 25 NODE 5010.00 : HGL =312 . 812> ; EGL= < 317 . 226> ; FLOWLINE= < 310.250> :************************::**************** FLOW PROCESS FROM NODE UPSTREAM NODE 5010.90 5010.00 TO NODE ELEVATION = 5010.90 IS CODE = 5 310.58 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW {CFS) 82.50 108.40 24.40 1.50 DIAMETER ( INCHES ) 36.00 36.00 24.00 18.00 ANGLE (DEGREES) 0.00 - 60.00 60.00 FLOWLINE ELEVATION 310.58 310.25 311.25 311.75 CRITICAL DEPTH { FT . ) 2.79 2.92 1.75 0.46 VELOCITY (FT/SEC) 22.741 16.861 8.386 1.816 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTAS) - Q4*V4*COS{DELTA4) ) / ( (A1+A2) *16 . 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05709 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02471 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04090 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.164 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2 )+ (ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.915)+{ 0.000) = 2.915 NODE 5010.90 : HGL = < 312 .; EGL= < 320 . 142> ; FLOWLINE= < 310.580> it**************************************1 ?******************** FLOW PROCESS FROM NODE 5010.90 TO NODE 5011.00 IS CODE = 1 UPSTREAM NODE 5011.00 ELEVATION = 329.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 82.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 302.57 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.50 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.79 DISTANCE FROM CONTROL (FT) 0.000 1.514 3.173 4.993 6.989 9.180 11.588 14.239 17.162 20.392 23.973 27.956 32.403 37.394 43.027 49.430 56.772 65.280 75.275 87.228 101.866 120.411 145.153 181.241 245.191 302.570 FLOW DEPTH (FT) 2 2 2 2 2 2 2 2 1. 1 1. 1. 1. 1. 1 1. 1. 1. 1. 1 1. 1. 1. 1. 1. 1. .232 .203 .174 .144 .115 .086 .057 .028 .999 .969 .940 .911 .882 .853 .823 .794 .765 .736 .707 .677 .648 .619 ,590 .561 .531 .531 VELOCITY (FT/SEC) 14 14 15 15 15 15 15 16 16 16 17 17 17 17 18 18 19 19 19 20 20 21 21 22 22 22 .624 .826 .036 .255 .482 .719 .966 .222 .489 .767 .056 .357 .671 .999 .340 .697 .068 .457 .863 .287 .731 .196 .682 .193 .728 .734 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 .555 .618 .686 .760 .840 .925 .017 .116 .223 .337 .460 .592 .734 .886 .050 .226 .415 .618 .837 .072 .326 .599 .894 .213 .558 .562 2689. 2711. 2735. 2760. 2787. 2815. 2845. 2876. 2910. 2945. 2983. 3022. 3064. 3108. 3154. 3203. 3254. 3309. 3366. 3426. 3490. 3557. 3628. 3703 . 3782. 3783. 67 79 36 43 05 29 20 87 36 76 15 62 27 21 55 42 93 25 51 83 55 69 53 28 20 18 NODE 5011.00 : HGL = < 331.232>;EGL= < 334.555>;FLOWLINE= < 329.000> FLOW PROCESS FROM NODE UPSTREAM NODE 5011.90 •**************: 5011.00 TO NODE ELEVATION = :****** 5011.90 IS CODE = 5 329.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 72.70 82.50 4.90 4.90 DIAMETER (INCHES) 30.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 329.33 329.00 330.00 330.00 CRITICAL DEPTH (FT. ) 2 .45 2.79 0.85 0.85 VELOCITY (FT/SEC) 16.498 14.628 2.954 2.954 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03007 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01875 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02441 JUNCTION LENGTH =4.00 FEET FRICTION LOSSES = 0.098 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2} +{ENTRANCE LOSSES) JUNCTION LOSSES = { 1.104)+( 0.000) = 1.104 NODE 5011.90 : HGL = < 331.433>;EGL= < 335.659>;FLOWLINE= < 329.330> FLOW PROCESS FROM NODE 5011.90 TO NODE 5012.00 IS CODE = 1 UPSTREAM NODE 5012.00 ELEVATION = 337.62 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 271.74 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.08 & 2.50 CRITICAL DEPTH(FT) = NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. 2.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 0.390 1.422 2 .972 4.977 7.405 10.245 13.501 17.188 21.332 25.970 31.152 36.943 43 .425 50.706 58.927 68.275 79.006 91.481 106.228 124.071 146.389 175.772 218.040 271.740 FLOW DEPTH (FT) 2 2 2. 2 2. 2 2. 2 2. 2, 2. 2. 2 , 2 , 2. 2. 2, 2. 2. 2. 2. 2 , 2 , 2. 2 , .449 .434 .419 .405 .390 .376 .361 .347 .332 ,317 ,303 .288 ,274 .259 .244 ,230 ,215 .201 .186 .172 .157 .142 .128 .113 .103 VELOCITY (FT/SEC) 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 .880 .914 .951 .993 .037 .086 .137 .191 .248 .307 .370 .435 .503 .574 .647 .722 .801 .881 .965 .051 .139 .230 .324 .421 .493 SPECIFIC PRESSURE+ ENERGY ( FT ) MOMENTUM ( POUNDS } 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 .889 .890 .893 .897 .904 .912 .921 .932 .944 .958 .973 .990 .008 .027 .048 .071 .094 .120 .146 .174 .204 .235 .268 .303 .329 2464. 2464. 2465, 2466. 2468, 2471. 2473. 2477, 2480. 2484. 2489. 2494. 2499. 2505. 2511. 2517. 2524, 2531, 2539. 2547, 2555. 2564. 2573 . 2583 , 2590. ,14 .45 ,34 ,76 .67 .05 .89 .15 ,84 .93 ,43 ,33 .62 ,30 ,36 .81 .54 .86 ,46 .45 .82 .59 .75 .30 .50 NODE 5012.00 : HGL = < 340.069>;EGL= < 343.509>;FLOWLINE= < 337.620> **********:r*******************************'************ FLOW PROCESS FROM NODE UPSTREAM NODE 5012.90 5012.00 TO NODE ELEVATION = 5012.90 IS CODE = 5 337.95 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) {INCHES} (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 51.50 30.00 0.00 337.95 2.32 10.492 72.70 30.00 - 337.62 2.45 14.884 21.20 30.00 90.00 337.95 1,56 4.319 0.00 0.00 0.00 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS{DELTAS)- Q4*V4*COS(DELTA4))/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02193 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.088 FEET ENTRANCE LOSSES = JUNCTION LOSSES = {DY+HV1-HV2}+{ENTRANCE LOSSES) JUNCTION LOSSES ~ ( 1.793)+( 0.000} = 1.793 01576 02810 0.000 FEET NODE 5012.90 : HGL = < 343.593>;EGL= < 345.302>;FLOWLINE= < 337.950> FLOW PROCESS FROM NODE UPSTREAM NODE 5013.00 •*******************: 5012.90 TO NODE ELEVATION = r********************** 5013.00 IS CODE = 1 344.33 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 51.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 255.03 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 51.50)/( 410.173})**2 = 0.01576 HF=L*SF = ( 255.03)* (0.01576) = 4.020 NODE 5013.00 : HGL = < 347.613>;EGL= < 349.322>;FLOWLINE= < 344.330> r***************************' FLOW PROCESS FROM NODE UPSTREAM NODE 5013.90 5013.00 TO NODE ELEVATION = 5013.90 IS CODE = 5 344.66 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 51.50 51.50 0.00 0.00 0.00 DIAMETER (INCHES) 30.00 30.00 18.00 0.00 ANGLE (DEGREES) 90.00 - 90.00 0.00 FLOWLINE ELEVATION 344.66 344.33 345.33 0.00 CRITICAL DEPTH (FT.) 2 .32 2.32 0.00 0.00 VELOCITY (FT/ SEC) 10.492 10.491 0.000 0.000 ===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS{DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2}*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01576 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.481)+( 0.000) = 3.481 01576 01576 0.000 FEET NODE 5013.90 : HGL = < 351.094>;EGL= < 352.804>;FLOWLINS= < 344.660> ****************************************************************************** FLOW PROCESS FROM NODE 5013.90 TO NODE 5014.00 IS CODE = 1 UPSTREAM NODE 5014.00 ELEVATION = 346.16 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 51.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 100.00 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = (( 51.50)/( 410.173))**2 = 0.01576 HF=L*SF = ( 100.00)*(0.01576) = 1.576 NODE 5014.00 : HGL = < 352.671>;EGL= < 354.380>;FLOWLINE= < 346.160> ****************************************************************************** FLOW PROCESS FROM NODE 5014.00 TO NODE 5015.00 IS CODE = 1 UPSTREAM NODE 5015.00 ELEVATION = 348.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 51.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 111.67 FEET MANNING'S N = 0.01300 SF={Q/K}**2 = {( 51.50)/( 410.171})**2 = 0.01576 HF=L*SF = ( 111.67)* (0.01576) = 1.760 NODE 5015.00 : HGL = < 354.431>;EGL= < 356.140>;FLOWLINE= < 348.900> ****************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.90 IS CODE = 5 UPSTREAM NODE 5015.90 ELEVATION = 349.23 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT-) (FT/SEC) 30.00 30.00 24.00 0.00 0.0042.40 51.50 9.10 0.00 0.00===Q5 EQUALS BASIN INPUT=== 90.00 0.00 349.23 348.90 349.40 0.00 2.18 2.32 1.08 0.00 8.638 10.492 2.897 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01322 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.053 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.604)+{ 0.000) = 0.604 01069 01576 0.000 FEET NODE 5015.90 : HGL = < 355.586>;EGL= < 356.744>;FLOWLINE= < 349.230> ******************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5020.00 5015.90 TO NODE ELEVATION = ************************ 5020.00 IS CODE = 1 358.93 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 42.40 CFS PIPE DIAMETER = 30.00 INCHES 242.46 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) = 2.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 0 0 0 0 1 2 3 4 5 7 8 11 13 16 20 24 29 36 43. 53. 66. 83. 109. 156. 242. HYDRAULIC .000 .053 .218 .504 .919 .477 .192 .083 .170 .479 .040 .893 .082 .667 .722 .343 .656 .833 .118 .866 .630 .338 .730 .722 .876 .460 JUMP: FLOW DEPTH VELOCITY SPECIFIC (FT) 2 2 2 2 2 1 1 1 1 1 1. 1. 1. 1 1. 1 1. 1. 1. 1. 1. 1 1. 1. 1. 1. UPSTREAM .178 .142 .106 .070 .034 .997 .961 .925 .889 .853 .817 .781 .744 .708 .672 .636 .600 .564 .528 .491 .455 .419 .383 .347 .311 .310 RUN PRESSURE+ (FT/SEC) ENERGY (FT) MOMENTUM ( POUNDS ) 9 9 9 9 9 10 10 10 10 10 11. 11. 11. 11. 12. 12. 12. 13. 13. 13. 14. 14, 15. 15, 16. 16. .339 .468 .606 .755 .913 .081 .260 .450 .652 .866 .093 .334 .589 .860 .147 .452 .777 .121 .487 .878 .293 .737 .212 .719 .263 .279 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 .533 .535 .540 .548 .560 .576 .597 .622 .652 .687 .729 .777 .831 .894 .965 .045 .136 .239 .354 .484 .630 .794 .978 .186 .420 .427 1054 1055 1056 1058 1062 1066 1071 1078 1085 1094 1104 1115 1128 1142 1158 1175 1194 1215 1238 1263 1290 1320 1353 1388 1427 1428 ANALYSIS RESULTS .84 .29 .66 .96 .24 .52 .83 .23 .76 .47 .43 .69 .33 .44 .10 .40 .45 .38 .31 .40 .80 .69 .29 .81 .52 .67 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) =6.36 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 131.493 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 6.355 8.638 2.500 8.638 SPECIFIC ENERGY(FT) 7.514 3 .659 PRESSURE+ MOMENTUM(POUNDS) 2273.56 1092.61 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH {FT} VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE* MOMENTUM(POUNDS) 131 131 132 132 132 133 133 133 133 134 134 134 134 134 134 134 135 135 135 135 135 135 135 135 135 135 242 493 880 219 531 820 090 342 578 800 007 201 381 549 704 847 977 096 202 297 379 449 507 552 584 604 610 460 PRESS URE+MOMENTUM DOWNSTREAM 2 . 2 . 2. 2. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. BALANCE DEPTH = 500 487 474 461 448 436 423 410 397 384 371 358 345 333 320 307 294 281 268 255 242 230 217 204 191 178 8 . 8. 8 . 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 635 640 650 663 678 696 715 735 758 782 807 834 862 891 922 954 987 021 057 094 131 171 211 252 295 339 178 9.339 fiC1 UV"nDATTT Tr"1 TTTMD &UC tl 1 1JK-H.U Li J-1— U Ul"l.r* n. OCCURS AT 95.07 3.568 FEET,UPSTREAM 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 iTRT VQLMrUj I O FEET .659 .647 .637 .627 .619 .610 .603 .595 .589 .582 .576 .571 .566 .561 .556 .552 .549 .546 .543 .540 .538 .536 .535 .534 .533 .533 .533 T CJ.O UPSTREAM OF CONJUGATE DEPTH 1092. 1089. 1085. 1083 . 1080. 1077. 1075. 1073. 1071. 1069. 1067. 1065. 1064. 1062. 1061. 1060. 1059. 1058. 1057. 1056. 1056. 1055. 1055. 1055. 1054. 1054. 1054. 61 11 98 10 42 92 57 38 32 40 61 95 41 98 68 49 42 46 61 87 25 74 35 06 89 84 84 NODE 5015.90 = 1.318 FEET NODE 5020.00 : HGL = < 361.108>;EGL= < 362.463>;FLOWLINE= < 358.930> *******************•**********: FLOW PROCESS FROM NODE UPSTREAM NODE 5020.90 5020.00 TO NODE ELEVATION = 5020.90 IS CODE = 5 359.05 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES : PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 33.10 42.40 9.30 0.00 DIAMETER ( INCHES ) 30.00 30.00 24.00 0.00 ANGLE (DEGREES) 0.00 - 90.00 0.00 FLOWLINE ELEVATION 359.05 358.93 359.43 0.00 CRITICAL DEPTH (FT.) 1.96 2.18 1.09 0.00 VELOCITY (FT/SEC) 6.743 9.342 2.960 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00812 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.032 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.520)+( 0.000) = 0.520 00651 00973 0.000 FEET NODE 5020.90 : HGL = < 362.277>;EGL= < 362.983>;FLOWLINE= < 359.050> •************:***************** FLOW PROCESS FROM NODE 5020.90 TO NODE 5030.00 IS CODE = 1 UPSTREAM NODE 5030.00 ELEVATION = 361.26 {FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 33.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 220.69 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.23 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) {FT/SEC} ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.227 6.743 3.933 1038.14 207.638 2.500 6.743 3.206 815.41 NORMAL DEPTH(FT) = 1.70 CRITICAL DEPTH(FT) = 1.96 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 207.638 2.500 6.741 3.206 815.41 212.854 2.478 6.750 3.186 809.36 217.312 2.457 6.767 3.168 803.82 220.690 2.439 6.785 3.154 799.47 NODE 5030.00 : HGL = < 363.699>;EGL= < 364.414>;FLOWLINE= < 361.260> **************************************************************************** FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.90 IS CODE = 5 UPSTREAM NODE 5030.90 ELEVATION = 361.59 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)(CFS) 33.10 30.00 90.00 361.59 33.10 30.00 - 361.26 0.00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 1.96 1.96 0.00 0.00 6.743 6.787 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00615 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.441)+( 0.000) = 1.441 00651 00578 0.000 FEET NODE 5030.90 : HGL = < 365.149>;EGL= < 365.855>;FLOWLINE= < 361.590> ****************************************************************************** FLOW PROCESS FROM NODE 5030.90 TO NODE 5031.00 IS CODE = 1 UPSTREAM NODE 5031.00 ELEVATION = 362.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 33.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 90.30 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 33.10}/( 410.173))**2 = 0.00651 HF=L*SF = ( 90.30)* (0.00651) = 0.588 NODE 5031.00 : HGL = < 365.737>;EGL= < 366.443>;FLOWLINE= < 362.500> ****************************************************************************** FLOW PROCESS FROM NODE 5031.00 TO NODE 5031.90 IS CODE = 5 UPSTREAM NODE 5031.90 ELEVATION = 363.00 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT-) (FT/SEC) 24.00 30.00 18.00 18.00 0.0028.60 33.10 2.25 2.25 0.00===Q5 EQUALS BASIN INPUT=== 90.00 90.00 363.00 362.50 363.50 363.50 1.84 1.96 0.57 0.57 9.104 6.743 1.273 1.273 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01125 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2}+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.339)+{ 0.000) = 0.339 01598 00651 0.000 FEET NODE 5031.90 : HGL = < 365.495>;EGL= < 366.782>;FLOWLINE= < 363.000> FLOW PROCESS FROM NODE UPSTREAM NODE 5032.00 5031.90 TO NODE ELEVATION = 5032.00 IS CODE = 1 363.20 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 28.60 CFS PIPE DIAMETER = 24.00 INCHES 182.79 FEET MANNING'S N = 0.01300 (( 28.60)/( 226.224))**2 = 0.01598 182.79)* (0.01598) = 2.922 NODE 5032.00 : HGL = < 368.417>;EGL= < 369.704>;FLOWLINE= < 363.200> •*********************;*************** FLOW PROCESS FROM NODE UPSTREAM NODE 5032.00 5032.00 TO NODE ELEVATION = 5032.00 IS CODE = 8 363.55 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 28.60 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 9.10 FEET/SEC. VELOCITY HEAD = 1.287 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = -2*( 1.287) = 0.257 NODE 5032.00 : HGL = < 369.961>;EGL= < 369.961>;FLOWLINE= < 363.550> **************************************************************************: UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5032.00 FLOWLINE ELEVATION = 363.55 ASSUMED UPSTREAM CONTROL HGL = 365.39 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS c APPENDIX 4.1.11 SYSTEM 5025 ('C' STREET) c ****************************************************************************** PIPE-PLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * Bressi Ranch - 2244.00 * * Hydraulic Analysis System 5025 * * * *************************************************** FILE NAME: C:\2244\L5025.dat TIME/DATE OF STUDY: 15:40 06/03/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE* FLOW PRESSURES- NUMBER PROCESS HEAD (.FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 5025. 5025. 5025. 5025. 5025. 5025. 5025. .00 .10 ,20 .30 .40 ,50 .50 MAXIMUM - } FRICTION - } MANHOLE - } FRICTION - } MANHOLE - } FRICTION - } CATCH BASIN - 2. 1. 1. 1. 1, 1, 1. .73* ,11 .11 ,11 .11 ,11 .33 NUMBER OF ENERGY } HYDRAULIC DC DC DC DC *DC * 396 JUMP 154. 154. 154, 154, 154. 65. BALANCES USED IN .60 .98 .98 .98 .98 ,98 .15 EACH 0. 0. 0. 0. 0. 1. 1. PROFILE 63 61* 64* 65* 69* ll*Dc 11 DC = 25 228 235. 223. 221. 207, 154. 53. .84 .93 .98 .69 .78 .98 .53 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. ***************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5025.00 FLOWLINE ELEVATION = 359.55 PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 362.277 FEET NODE 5025.00 : HGL = < 362 . 277> ; EGL= < 362 . 425> ; FLOWLINE= < 359.550> ****************************************************************************** FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.10 IS CODE = 1 UPSTREAM NODE 5025.10 ELEVATION = 364.72 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 130,60 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH{FT} = 0.63 CRITICAL DEPTH(FT) = 1.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 GRADUALLY DISTANCE VARIED FLOW PROFILE COMPUTED INFORMATION: FROM CONTROL (FT) 0 1 2 4 5 7 9 11 13 15 17 19 22 24 27 30 34 38 42 47 53 61 70 83 106 130 .000 .399 .854 .371 .956 .614 .355 .185 .117 .162 .334 .652 .137 .815 .721 .898 .403 .313 .737 .834 .851 .200 .656 .959 .690 .600 FLOW DEPTH (FT) 0 0 0 0 0 0 0. 0. 0, 0. 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0. 0, 0, 0. 0, 0. .614 .614 .615 .616 .616 .617 .618 .618 .619 .620 .620 .621 .622 .622 .623 .624 .624 .625 .626 .626 .627 ,628 ,628 ,629 ,630 .630 VELOCITY (FT/SEC) 11 11 11 11 11 11 11. 11. 11. 11. 11. 11, 11. 11. 11. 11. 11. 11, 11. 11. 11. 11. 11. 11. 11. 11. .860 .842 .824 .806 .788 .770 .752 .734 .716 .699 .681 .663 .646 .628 .611 .593 .576 .558 .541 .524 .507 .489 .472 .455 .438 .438 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM (POUNDS) 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 . 2. 2. 2 . 2. 2 . 2 . 2. 2. 2. 2. 2. 2. 799 793 787 781 775 769 764 758 752 746 740 735 729 723 718 712 706 701 695 690 684 679 673 668 663 663 235 235 235 235 234 234 234, 233. 233, 233 232 232 232 232 231 231 231. 230. 230 230, 229, 229, 229, 229, 228. 228, .93 .63 .32 .02 .71 .41 .11 .81 .51 .21 .91 .62 .32 .03 .73 .44 .15 .86 .57 .28 .99 ,70 .42 .13 .85 .84 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.73 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.727 3.088 2.875 396.60 19.260 2.000 3.088 2.148 254.07 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 19.260 20.166 21.043 21.900 22.742 23.568 24.380 25.177 25.960 26.726 27.476 28.207 28.919 29.610 30.276 30.917 31.528 32.105 32.646 33.144 33.593 33.986 34.315 34.568 34.732 34.791 130.600 FLOW DEPTH (FT) VELOCITY (FT/SEC) 000 965 929 894 858 823 787 752 716 681 645 610 574 539 504 468 433 397 362 326 291 255 220 1.184 1.149 1.114 1.114 3.087 3.099 3.122 3.151 3.187 .227 .273 .324 .380 .441 .507 .578 .655 .738 .827 .923 .026 .137 4.256 4.385 4.523 4.671 4.832 005 192 395 395 SPECIFIC ENERGY(FT) 2.148 2.114 080 048 016 985 954 923 894 865 836 809 782 756 1.731 1.707 685 663 643 625 1.609 1.594 1.583 1.574 1.568 1.566 1.566 PRESSURE+ MOMENTUM(POUNDS) 254.07 247.37 240.89 234.61 228.50 222.58 216.83 211.28 205.93 200.78 195.85 191.13 186.65 182.40 178.41 174.67 171.21 168.04 165.17 162.61 160.39 158.51 157.01 155.90 155.21 154.98 154.98 EHD OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 22.69 FEET UPSTREAM OF NODE 5025.00 | DOWNSTREAM DEPTH = 1.860 FEET, UPSTREAM CONJUGATE DEPTH = 0.630 FEET j NODE 5025.10 : HGL = < 365.334>;EGL= < 367.519>;FLOWLINE= < 364.720> ****************************************************************************** FLOW PROCESS FROM NODE 5025.10 TO NODE 5025.20 IS CODE = 2 UPSTREAM NODE 5025.20 ELEVATION = 365.05 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 2.058 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 2.058) = 0.103 NODE 5025.20 : HGL = < 365.692>;EGL= < 367.622>;FLOWLINE= < 365.050> ****************************************************************************** FLOW PROCESS FROM NODE 5025.20 TO NODE 5025.30 IS CODE = 1 UPSTREAM NODE 5025.30 ELEVATION = 375.64 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 286.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) = 1.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0\65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.323 2 .704 4.147 5.658 7.245 8.913 10.674 12.536 14.513 16.619 18.871 21.293 23.910 26.758 29.879 33.332 37.194 41.576 46.639 52.631 59.970 69.438 82.794 105.676 286.000 FLOW DEPTH (FT) 0.648 0.647 0.647 0.647 0.647 0.646 0.646 0.646 0.646 0.645 0.645 0.645 0.645 0.645 0.644 0.644 0.644 0.644 0.643 0.643 0.643 0.643 0.642 0.642 0.642 0.642 VELOCITY (FT/SEC) 11.006 11.012 11.018 11.024 11.029 11.035 11.041 11.046 11.052 11.058 11.064 11.069 11.075 11.081 11.087 11.092 11.098 11.104 11.110 11.115 11.121 11.127 11.133 11.139 11.144 11.145 SPECIFIC ENERGY(FT) 2.530 2.532 2.533 2.535 2.537 2.538 2.540 2.542 2.544 2.545 2 .547 2.549 2.551 2.552 2.554 2.556 2 .558 2.559 2.561 2.563 2.565 2.566 2.568 2.570 2.572 2.572 PRESSURE* MOMENTUM (POUNDS) 221.69 221.78 221.88 221.97 222.06 222.16 222.25 222.35 222.44 222.54 222.63 222.72 222.82 222.91 223.01 223.10 223.20 223.29 223.39 223.49 223.58 223.68 223.77 223.87 223.96 223.98 NODE 5025.30 : HGL = < 376.288>;EGL= < 378.170>;FLOWLINE= < 375.640> titiciticit1titiiir*ii*ii***********iricicit1riiiiit**** FLOW PROCESS FROM NODE 5025.30 TO NODE 5025.40 IS CODE = 2 UPSTREAM NODE 5025.40 ELEVATION = 375.97 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 1.741 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = -05*( 1.741) = 0.087 NODE 5025.40 : HGL = < 376.657>;EGL= < 378.257>;FLOWLINE= < 375.970> FLOW PROCESS FROM NODE 5025.40 TO NODE 5025.50 IS CODE = 1 UPSTREAM NODE 5025.50 ELEVATION = 383.45 {FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 241.14 FEET MANNING'S W = 0.01300 NORMAL DEPTH(FT) =0.67 CRITICAL DEPTH(FT) =1.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.021 0.088 0.206 0.380 0.616 0.922 1.308 1.782 2.358 3.050 3.876 4.858 6.024 7.407 9.053 11.020 13.387 16.268 19.827 24.317 30.168 38.181 50.160 71.889 241.140 FLOW DEPTH (FT) 1.114 096 078 061 043 1.025 1.008 0.990 0.972 0.955 0.937 0.919 0.902 0.884 0.866 0.849 0.831 0.813 0.796 0.778 0.760 0.743 0.725 0.707 0.690 0.687 VELOCITY (FT/SEC) 5.395 5.503 5.615 5.732 5.854 5.981 6.114 6.254 6.399 6.552 6.712 6.879 7.056 7.241 7.435 7.640 7.856 8.083 8.323 8.577 8.846 9.131 9.434 9.755 10.097 10.146 SPECIFIC ENERGY(FT) 1.566 1.566 1.568 1.571 1.575 1.581 1.588 1.598 1.609 1.622 1.637 1.655 1.675 1.699 1.725 1.756 1.790 1.829 1.872 1.921 1.976 2.038 2.108 2.186 2.274 2.287 PRESSURE+ MOMENTUM(POUNDS) 154.98 155.04 155.22 155.54 155.99 156.58 157.32 158.21 159.26 160.48 161.87 163 .45 165.23 167.21 169.41 171.85 174.52 177.46 180.68 184.19 188.02 192.19 196.72 201.65 207.00 207.78 NODE 5025.50 : HGL = < 384.564>;EGL= < 385.016>;FLOWLINE= < 383.450> ***************************************************************************** FLOW PROCESS FROM NODE 5025.50 TO NODE 5025.50 IS CODE = 8 UPSTREAM NODE 5025.50 ELEVATION = 383.78 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY » 5.40 FEET/SEC. VELOCITY HEAD = 0.452 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.452) = 0.090 NODE 5025.50 : HGL = < 385.106>;EGL= < 385.106>;FLOWLINE= < 3S3.780> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5025.50 FLOWLINE ELEVATION = 383.78 ASSUMED UPSTREAM CONTROL HGL = 384.89 FOR DOWNSTREAM RUN ANALYSIS END OP GRADUALLY VARIED FLOW ANALYSIS