HomeMy WebLinkAbout; Carlsbad Boulevard Storm Drain Interceptor; Carlsbad Boulevard Storm Drain Interceptor; 1986-06-12WILSON ENGINEERING
DEXTER S. WILSON. P.E.
KEVIN E. SCHMIDT. P.E.
D
D
HYDROLOGY STUDY AND
PRELIMINARY HYDRAULICS
FOR
CARLSBAD BOULEVARD
STORM DRAIN INTERCEPTOR
3138 ROOSEVELT STREET, SUITE "M" CARLSBAD, CALIFORNIA 92OO8 (619) 434-7OI9
WILSON ENGINEERING
DEXTER S.WILSON. RE.
KEVIN E. SCHMIDT. P.E.
June 12, 1986 101-006
City of Carlsbad
1200 Elm Avenue
Carlsbad, CA 92008
Attention: Jeffrey L. Bunnell, P.E.
Subject: Hydrology Study and Preliminary Hydraulics
for Carlsbad Boulevard Storm Drain Interceptor
This report summarizes our hydrology and hydraulics work to
date on the Carlsbad Boulevard Storm Drain Interceptor. The
purpose of this information is to provided final hydrology
and preliminary pipe sizing and grades for the storm drain
in Carlsbad Boulevard.
At this point in our work, we have decided to split the
interceptor into two separate interceptors. If all the
water was conveyed to the south in one drain, the depth of
the interceptor would exceed 30 feet in places and the grade
would have to be less than one-half percent. For these
reasons, we have split the area into two drains, one flowing
south from Walnut and one flowing into the ocean near the
intersection of Ocean and Carlsbad Boulevard.
If you have any question or need additional information
please call.
Wilson Engineering
Dexter S. Wilson
Enclosures
3138 ROOSEVELT STREET, SUITE "M1 CARLSBAD, CALIFORNIA 92OO8 (619) 434-7019
HYDROLOGY
CARLSBAD BOULEVARD STORM DRAIN
D
1. BASED ON RATIONAL METHOD
Q = CIA
2. SOIL TYPE B FROM SOILS REPORT
WILSON ENGINEERING ^ _
-r -ri rr* -fi_,j~.~MBi- ™^— j.. — _j —
-oi
VS
~jpij-~CfDr
' ': ',
"f—t-—I -i oH LOJ -;
1 "I' >|"N
.££!_-\ i—r -eft
> •
3 <tfr:|M:~«J-i ' i Jvft ^1 ^1 (3l ri\
^
rt-J-
£-T~ ....... ">i%Tl. I "I 1 IP^ ^, ^., r ..
' •ri* rf\' ! ' J~\
._- -^-r - -•";'-' i-—-~^5 -|-»i^— | •."—"---j ^_^( j
•3-^' ] r
^ ^H r
--H- I—[-*
'•&.L._,.__!_,.<_E
rt ^y.i _ L.
t/)
4ill . i,.^_- .-.^....,^,. j, |
i_j.
I
...p/»—1_
n H
-^ » -ir"!
-1 1 H *
1 T-J!._
i"i ~T~~
~~a. ~ r •#
- o!
' i>
A
WILSON ENGINEERINGoy)-y
\J.
_<j.
ft
*
•-tr •s- .....
^t/Ti/ir-07 o:r-gpv-gjr_«—S_! i
po
'
n /! /•- • .^.^->—-«..-,-.— •-
J3l
> -U»!-Lo!-Lo
_ .......
"T T
I !i—r [
ri T!'
^_\ q.
-Si ^'~r
3JTT7-^-•"7 ~r -i"
i,._U|L<r-
i ..... lo -
rv_r
?! /I 1 31'
._]_
o:
C3
•—•co
"- • Ol. . •'•• • • .....•• .. • • ,"c:-*J Ol V-. - O O «*- JC OT3 • r— C to O +•» *»-C • O -r- Ol Olro >. i- : • — •« r— -O O Ol0 T3 T3 >,tn JQ •«- 4-> >• C >> Ol S- i£> ra 01 S-t-OIOCTJ ro 0 r— 3JC 3 3 COO-i— ** Ol OC" >»r— CO •(-» r— -H r—IO 01 4-> O OIC_ Cl r— Ci- C C 0 « C. -r- ' rB 0Ol <«- 3 T- Ol CO r£ S- V- -r-c o c «a- n» -M•r~ "O CJ* CO ^-> Ol r^ rQEOIC. '•-''-^ -*= . *-ai o JC e*^ — ' -Ci c T3 •4J 01 4-> r— Ol C T-IT3air— • ra c cr. o o >i<u-ocucs-3 oc- o. 4-»N••Mt r3 ••-> i. O O O «/> r—CCLttlTJOZ fO-r- T- JC CrOOrOJZOlO 4J Ol •«-> -M 4-» <D C•»-» *" c *~" »- "Q.-M 4-» 4-> js c«JooTc-a"oeSL *£ 3 _c
r— 4J " «J J- JC 0 O I. JCOI
Q. ra «/> Ol O O C.-M Ol Cl JC • •»•» J3
<-r-Cro C. • 2 O. Q.4J Ol «/I CO.3~ I- J-OICt-O
t- -r-OcoOTa JC«/> «*— » • ra C •»— *r-
O 0 £ CXr— C -«^i-*J' J-JC f-r— OJ+J
<f- Ol ra ra^— ' ra CO JZ J- JCUt— C rav- e ' •*-> 01 -o T- oCt Q. - r— C 4-> -r- «3- CO U3 Ol ra <U r— Oc $- O) ro cn co <\J a» JC •»-»•—
O EJ=W3-«- 3*J Q -P4J S+J </>••— O Ol C CO -r-> ro O O rfl O ' T- Ol4-> t_ <- J= ra QJ -OJ=JCO r— «*- J-r— J= -C
0 U. C\J r— Z: Q <C+J4J4J Q. O CJ £2. H- -^
OlJ_
Or— c\: en «s- to
•..- .' .• i-^"!C*"^**B*C^:**'^Oc ***l1fXJ\^4iI^Tj" ^««r cCO CVJ •»"•Q. 0-*- «AjOc\ v. /'^ !• '•-/-1. 1 /t 'v.v u _/' "'^«CMa.Ol •3 •.. or c u£ ais- i.
0 U.u.T3
f CJ•+-> ai
ra r-u ai•r— COr-™
Otcx *^«t o
"^ o.
\ n ^
; -a
0<^ "t/l
II $3
1O T3a. <c
^•^ ' •' ^"^r— CM
"Co•f"enJTJoc^ a<"^OJ«/>ulao4»>.ll r—C JC J=>E co•r™ ^r^
cx
CL
' ... <i:
**O
II uu
4-> r— i
^'•% ^"^
en «s-
LO1-H °pX -^r"H^^•sQr-1 ^^ L •£tu ^a, i g*£, ^^
«.
-
6-Hour Precipitation (inches)
Omomoino in o to
10 tr.in ^r-sr co co cJ cvi i-^
APPENDIX XI IV-A-14
2 U. -J
< O O»/> e:
t- H-U-O LU O
f- cc2 < O
=J 0. OO LU —Io u.
II-A-13
1.
II-A-7
r
• RUNOFF COEFFICIENTS (RATIONAL METHOD)
LAND USE ' ' Coefficient, C
Soil Group (1)
A 1 £ £
Undeveloped .30 .35 .40 .45
Residential:
Rural • ' .30 .35 . .40 .45
Single Family .40 .45 .50 .55
Multi-Units .45 ^SjJ .60 .70
Mobile Homes (2) .45 .50 .55 .65
Commercial (2) .70 } -80 .85
80% Impervious
Industrial (2) .80 .85 .90 .95
90% Impervious ,
NOTES:
(1) Obtain soil group from maps on file with the Department of Sanitation
and Flood Control. •
(2) Where actual conditions deviate significantly from the tabulated
imperviousness values of 80% or 90%, the values given for coefficient
C, may be revised by multiplying 80% or 90% by the ratio of actual
imperviousness to the tabulated imperviousness. However, in no case
shall the final coefficient be less than 0.50. For example: Consider
commercial property on D soil group.
Actual imperviousness = 50%
Tabulated imperviousness = 80%
Revised C = J2. X 0.85 = 0.5380
_ A PP.EM n_T_y__T_Y_
.J8S
3000
.to of
ff • &//fere/rce /'/t f/fvat/'arr a/o/jy
e/fecftre s/ooe ///te (See /fopcndfr X-3) j-
nU
D • •i — i
D
•o
•
•
•nu
D
•flU
n ' ••u •. •
'DLJ
D
D
D.
«•
Jwr//£3
2000
^m
/O —
~ — /00O . -
J» 9OO _
- BOO _
"700 _
- too \
S00 \
~ JQQ >^?!- ^~"
^ J-
\ ^J
IT" \- \ . ~\ -
— /oo / __ __
um
~S°
— 30 NOTE
jFoT NATURAL WATERSHED?!
— 20 \ ADD TEN MINUTES TO \
\ COMPUTED TIME OF CON- i
JjCDfTRATION. _J
— 5
Xtftf-/ J/0C//-34—
J —
2 —
/__
7vr
— Ji7^\
\
— 2OOO \
— /200
~9OO
— BOO
— 7OO
— 60O
— S"OO
— 300 " ~-
— 2OO
M,»u/cs
— 240
••^
'—/BO
••^
••
M^
— /?^
— 90
— 00
"—70
^
••MM* OO
mm
fi?
•^
— 40
^
-JO ^ A 4
— <?^ w ,Qi
=: |f
-* Irl
-^ X? ^
•— *
-y ^^--- ' A*\ \\*™«J
• H i TC
SAN DIEGO COUNTY
f| DEPARTMENT OF SPECIAL DISTRICT SERVICES
U DESIGN MANUAL
NOMOGRAPH FOR DETERMINATTON
OF TIME OF CONCENTRATION (Tc)
FOR NATURAL WATERSHEDS
n*TC /2///a9 1 ADPPMniY Y-A
HYDRAULICS
U CARLSBAD BOULEVARD STORM DRAIN
D
WILSON ENGINEERING
J£
—.4.,.
-
n.
"! -—H-
_
v
.3,o
_4_
i>JH4
T• ! ' i
L ________
3.0G3
id
.»J
AH'!
A3L
__) i..
I !
l •!1
4_
iii
f- r
_4_
—t-
JOB NO. BV
WILSON ENGINEERING
S-ULMMAterL
J~.
'! ii—•- -i—f—h-
' -
-1 +—f
4ES.I
3UZ-
Ri.p4
^ ^
i i
•!—4-
fli
~r
a
- -t—
M!:3_""" ' ' ~irA
I:.?•
--i~!-»»
_j_
T
h
_—j_
^_i_.j_
_4-__
ri
JOB NO. BV DATE SHEET NO.
D
n
D
D
n
LJ
WILSON ENGINEERING
_ j j »_„
I V
\.A_
SeU^
JL=.
..4 f-
*r\\
._L_J—
_f__
-'I ~ ^.
___L
.J_.T
_|
/~l~r~
.—-]—.
i1 *
,X>.a
1 T
T~T
T
j_
N,.. -,., --------------------J[Js_
A
WILSON ENGINEERING
«-
1.1 U
—i—
__43.
-Wt_
"T
t !^..rT
,^\M.._l
J
\^
L
—I (~_u.
r~i"
.4
r I !
DATE SHEET NO.
n-
U
D
n
0
C
D
WILSON ENGINEERING
~t-
1 ! -,„. ^ J - •>-..-->**•-->
-h r
<*\c\L
AJs.
3
i J
JQ
4.w
Ai.T -
— -L A
AHft
—r
~4». ™j—„,...„
(^M\x
i
-I—
ooSlJ
,N1
,-^-v
rr
~T
—u
i i
d.\ .
i.^124^.
— ..... -
Tr
"T
4-
DATE SHEET NO.
WILSON ENGINEERING
D
G
n
D
WILSON ENGINEERING
Q
D
a
D
D
WILSON ENGINEERING
•—1-
~
-]
' :
^_
L 1 si
I
A2..D,
-- L
1h
I
,— . „„ ... J _.._,
.U
-t
!
...[
tTt ... L t-
^i--=•..._.
11 '_
-t"
DATE SHEET NO
1 Iu
U
WILSON ENGINEERING
L
4. lr \—4~
^.t_t , 1.
-i H
^ \ I
"1—
\va..T
i.^..x •t-H-
i i
VSx
-L™._
I !
^
~t
t i
J_ ^_ i ].._
_j__
-4---
~1-
~_i _. L
WILSON ENGINEERING
4 -4-
1_
f t
~T "T"
_).
<*A_}..
—
_l—r
!„ „.._„„„. \
u :
-T
—r-
4c*IV-L.
DATE SHEET NO.
i—i WILSON ENGINEERING
1 ....
,-
_ —
T"
—_i ,..,.,,
—»
Jl___(W[i.
"1—T"'
IS -I. p__
_L_|-
1__
_l_i
__4...
—
i
rt.|._.
.. j__-.-^_
ri:
l.j_Li I !
t7".^->'
_i.—,4..
r:
_)-_-LI
DATE SHEET NO.
D
nL
WILSON ENGINEERING
•«j—pv -
JL
^..LJGj/vI i "V1-
A<(
d^lP
TIES
-i h
^L-~-
X
£
,..H.
,„,,..; .v.,.^..,™.
(--
•_•
I "
-f-1
,._!..
_]
H-
^U!.•..Jfei-jL!™
-t—i -f ::i
_JOB__Np. BY
598 GRADUALLY VARIED CHANNEL FLOW IClIAP. IX
TABLE 3
UNIFORM FLOW m CIRCULAR SECTIONS FLOWING PARTLY FULL [4]
ya = depth of flow
D = diameter of pipe
A = area of flow
R =• hydraulic radius
Q = discharge in cfs by Manning formula
n — Manning coefficient
.So = slope of the channel bottom and of
the water surface ,, -,<p.
«
D
0.01
0.020.030.04
O.OS0.060.070.080.09
o.ia0.110.120.130.14
0.15
0.160.17a. is.0.19
0.200.210.220.230.24
0.250.260.27
0.2JI-
0.29
0.300.310.320.330.34
/| 0.35
T "0:36~"1 0.37
0.380.39
0.400.41
0.420.43-5 0.44
^n a0.46
0.47
0.48
0.49
0.50
A
&
0.0013
0.00370.00690.0105
0.01470.01920.02420.02940.0350
0.04090.0470
0.05340.06000.0668
0.0739
0.08110.08850.0961
0.1039
0.1118
0.11990.1281
0.1365
0.1449
0.15350.1623
0.1711
0.1800
0.1890
0.1982
0.20740.2167
0.22600.2355
0.2450'0.'2546"
0.2642
0.2739
0.2836
0.29340.30320.31300.3229
0.3328
n 1,19^
0.3527
0.3627
0.3727
0.3827
0.3927
R
D
0.0066
0.01320.01970.0262
0.0325
0.03890.04510.05130.0575
0.06350.0695
0.07550.08130.0871
,0.0929
0;09850.10420.10970.1152
0.1206
0.12590.13120.13640.1416
0.1466
0.1516
0.1566
0.1614
0. 1662
0.17090.17560.18020.18470.1891
0.19350.197H
0.2020
0.20620.2102
0.21420.21820.22200.2258
0.2295
n ?.^t
0,2366
0.2401-
0.243S
0.2468
0.2500
On
D"'3^"2
0.000070.000310.000740.00138
0.002220.003280.00455
0.006040.00775
0.00967
0.011810.014170.01674
0.01952
0.0225
0.02570.02910.0.127O.t>365
0.0406
0.0448
0.04920.0537
0.0585
0.0634
0.06860.0739
0.0793
0.0849
0.0907fl.09660.1027
0.1089
0.1153
0.12180.1284
0.1351
0.1420
0.1495
0.15610.16330.17050.17790.1854
-9-W?9L8?ioT
0.208
0.2160.224
0.232
On
yfl'Sjl*
15.0410.578.567.38
6.555.955.475.094.76
4.494.254.043.863.69
3.543.413.283.173.06
2.962.872.792.712.63
2.562.492.422.36
2.30
2.252.202.14
2.092.05
2.00
.958.915
.875.835
.797.760.724
.689
.655
if!?2
.590.559
.530
.500
1.471
•Vyo
D
.0.51
0.520.530.54
0.550.560.570.580.59
0.600.610.620.63~T).6T'_;;
0.65
-"5766"'0.67
O.S80.69
0.700.710.720.730.74
0.750.760.770.78^
0.79^
0.80O.HI0.820.830.84
0.850.860.87
0.88
0.89
0.900.910.920.930.94
0.950.960.97
0.980.99
1.00
^D"
0.4027
0.41270.42270.4327
0.4426
0.45260.46250.4724
0.4822
0.4920P.MMH
O.SilS0.5212IQCS'JOS"
0.5404
0.5499
0.5594
0.56870.5780
0.5872
0.59640.0054
0.61430.6231
0.6319
0.6405
0.6489
0.6573
0.6655
0.6736
0.6815
0.68930.69690.7043
0.7115
0.71860.7254
0.7320
0.7384
0.74450.75040.75600.7612
0.7662
0.77070.77490.77850.78170.7841
Y>.78Sf>
R
D
0.2531
0.2562
0.25920.2621
0.26490.2676
0.27030.2728
0.2753
0.2776(1.2799
0,28210.2842'0.2X62
0.2882
0.2900
0.29170729330.2948
0.29620.29750.2987
0.2998
0.3008
0.30170.3024
0.30310.3036
0.3039
0.30420.30430.30430.30410.303V
0.3033
0.30260.3018
0.3007
0.2995
0.29800.29630.29440.29210.2895
0.28650.28290.2787
0.27350.2666
0.2500
Q»
O»'350l/2
0.239
0.2470.2550.263
0.2710.279
0.2870.295
0.303
0.3110.3190.327
0.335"0.343..
0.350
0.358
0.366.0.3730.380
0.3880.3950.4020.4090.416'
fl.422^07429
0.435
0.441 .
0.447<-
0.4530.4580.4630.4680.473
0.4770.481
0.4850.488
0.491
0.4940.4960.4970.4980.498,
0.4980.4960.4940.4890.483
0.463
On
wW
1.4421.4151.388
1.362
1.3361.3111.286
1.2621.238
1.2151.1921.170
1.148
...1. U6-
1.105.1.084
1.0641.044
1.024
1.004
0.9850.965
0.9470.928
0.910
0.891
0.873
0.856
0.838
0.821
0.804
0.7870.770
0.753
0.7360.720
0.703
0.6870.670
0.654
0.6370.6210.6040.588
0.571
0.5530.535
0.5170.496
0.463
SiiC. A]
order to eliminat
geometrical shap
and the hydrauli
where FI and f
terms of one or n
formula
it is seen that
Now values of 1
convenient dimi
from reference [<
of these functic
channels of unif
times the depth
equal to the dep
Example 1. H
ft wide for unifor
The area is fou
draulic radius is
Table 1 and subs
from which
If n = 0.013, Q
598 GRADUALLY VARIED CHANNEL FLOW [CHAP. IX
TABLE 3
UNIFORM FLOW IN CIRCULAR SECTIONS FLOWING PARTLY FULL [4]
yo = depth of flow Q = discharge in cfs by Manning formula
D = diameter of pipe n = Manning coefficient
A =• area of flow Sit = slope of the channel bottom and of
R = hydraulic radius the water surface ,, -^
yo
D
0.010.020.03
0.04
0.05
0.06
0.070.080.09
0.10-0.110.120.130.14
0.150.16
0.17
Q.1H,0.19
0.20
0.210.220.230.24
0.250.260.27
0.2>-
0.29
0.300.310.320.33
0.34
0.35
0.360.370.380.39
0.400.41
0.42
0.43
0.44
0.450.460.470.480.49
0.5Q
A
&
0.00130.0037
0.0069
0.0105
0.01470.01920.02420.02940.0350
0.04090.0470
0.0534
0.0600
0.0668
0.07390.0811
0.0885
0.0961
0. 1039
0.1118
0.11990.12810.13650.1449
0.15350.1623
0.1711
0.1800
0.1890
0.19820.20740.2167
0.2260
0.2355
0.2450
0.25460.26420.27390.2836
0.29340.30320.3130
0.3229
0.3328
O.3428
0.35270.36270.37270.3827
0.3927
R
D
0.00660.0132
0.0197
0.0262
0.03250.03890.04510.05130.0575
0.06350.0695
0.0755
0.0813
0.0871
0.0929
0.0985
0.1042
0.1097
0.1152
0.1206
0.12590.13120.13640.1416
0.14660.15160.15660.1614
0.1662
0.17090.1756
0.18020.1847
0.1891
0.19350.1978
0.20200.20620.2102
0.21420.21820.22200.2258
0.2295
0.2331
0.2366
0.2401-
O.2435
0.2468
0.2500
Qn
DV'SJl*
0.00007
0.00031
0.000740.00138
0.002220.003280.004550.00604
0.00775
0.00967
0.01181
0.01417
0.016740.01952
0.0225
0.0257
0.0291
0.0327O.XI305
0.0406
0.04480.04920.0537 '0.0585
0.06340.06860.07390.0793
0.0849
0.0907•0.0966
0.1027
0. 1089
0.1153
0.1218
0.12840.13510.1420
0.149$
0.1561
0.16330.17050.1779
0.1854
0.1929
0.201
0.208
0.216
0.224
0.232
Qn
yf/W
15.04
10.57
, 8.567.38
6.555.955.475.094.76
4.49
4.25
4.04
3.86
3.69
3.54
3.413.28
3.173.06
2.962.872.792.712.63
2.562.49
2.42
2.36
2.30
2.25
2.202.14
2.09
2.05
2.001.958
.915.875.835
.797.760.724.689
.655
1.622
1.5901.5591.5301.500
1.471
Vyo
D
0.51
0.52
0.53
0.54
0.550.56
0.570.58
0.59
0.60n M
0.62
0.630.64
0.650.660.670.58
0.69
0.70
9-Z1inJ0.730.74
0.750.760.7V0.78^0.795
0.800.81
0.82
0.830.84
0.850.86
0.870.880.89
0.900.910.920.93
0.94
0.950.96
0.970.98
0.99
1.00
Vs
A
D>
0.4027
0.4127
0.4227
0.4327
0.44260.4526
0.4M5
0.4724
0.4822
0.4920n <mx
0.51150.52120.5308
0.5404
0.54990.55940.5687
0.5780
0.5872
IJ-MM8! 60540.6143
0.6231
0.63190.64050.64890.6573O 6655
0.6736
0.6815
0.68930.6969
0.7043
0.7115
0.7186
0.72540.73200.7384
0.74450.75040.7560
0.7612
0.7662
0.7707
0.7749
0.7785
0.78170.7841
£™^
R
D
0.2531
0.2562
0.2592
0.2621
0.26490.2676
0.2703
0.27280.2753
0.27760 5700
0.2821
0.2842
0.2862
0.2882
0.2900
(L29I707293T
0.2948
0.2962
8-2V7.5o.KSI
0,29980.3008
0.30170.30240.30310.30360.3039
0.30420.3043
0.3043
0.3041
0.3038
0.3033
0.3026
0.30180.30070.2995
0.29800.29630.29440.2921
0.2895
0.2865
0.2829
0.2787
0.2735
0.2666
0.2500
Qn
D"'»So1/J
0.239
0.247
0.255
0.263
0.271n 570
ft 2K7
0.2950.303
0.311
0.3190.327
0.335
0.343
0.350
0.3580.366
0.373
0.380
0.388
0-3950, 4020.409!A&0.435
0.441.0.447<-
0.453
0.458
0.4630.468
, 0.473
0.4770.481
0.4850.488
; 0.491
0.4940.4960.4970.4980.498^
0.498
0.496
0.494
0.489
0.483
0.463
Qn '
yi?iw ;
1.442 I
1.415 i
1.388
1.362
1.336 o..1.311 rnI.2HIS C»
1 . 262 11.238 «— 1
\i1.215 "
1 192 :1.170 —1.148 N :1.126
1 . 105 *1.084 '1 .0641.044
1.024 •
1.004 . ,
0 - 9H-S ' f\ :0.965 *f*
0.947 36.928 -'
0.910 .0.8910.873 *0.8560.838 /• i .
0.821 :0.804 .
0.787 !
0.770
0.753 ;
0.736 i0.7200.703
0.687
0.670
0.654
0.637 '0.6210.604 :0.588
0.571 ,0.553 !
0.5350.517 I
0.496 '
0.463 '
SEC. A] P
order to eliminate
geometrical shapes
and the hydraulic i
where F\ and F2
terms of one or mot
formula
it is seen that
Now values of 1.4?
convenient dimens
from reference [4],
of these functions
channels of uniforr
times the depth, tl
equal to the depth
Example 1. Dete
ft wide for uniform
The area is found
draulic radius is 52.;
Table 1 and substiti
from which
If n = 0.01.3, Q