Loading...
HomeMy WebLinkAbout; Carlsbad Boulevard Storm Drain Interceptor; Carlsbad Boulevard Storm Drain Interceptor; 1986-06-12WILSON ENGINEERING DEXTER S. WILSON. P.E. KEVIN E. SCHMIDT. P.E. D D HYDROLOGY STUDY AND PRELIMINARY HYDRAULICS FOR CARLSBAD BOULEVARD STORM DRAIN INTERCEPTOR 3138 ROOSEVELT STREET, SUITE "M" CARLSBAD, CALIFORNIA 92OO8 (619) 434-7OI9 WILSON ENGINEERING DEXTER S.WILSON. RE. KEVIN E. SCHMIDT. P.E. June 12, 1986 101-006 City of Carlsbad 1200 Elm Avenue Carlsbad, CA 92008 Attention: Jeffrey L. Bunnell, P.E. Subject: Hydrology Study and Preliminary Hydraulics for Carlsbad Boulevard Storm Drain Interceptor This report summarizes our hydrology and hydraulics work to date on the Carlsbad Boulevard Storm Drain Interceptor. The purpose of this information is to provided final hydrology and preliminary pipe sizing and grades for the storm drain in Carlsbad Boulevard. At this point in our work, we have decided to split the interceptor into two separate interceptors. If all the water was conveyed to the south in one drain, the depth of the interceptor would exceed 30 feet in places and the grade would have to be less than one-half percent. For these reasons, we have split the area into two drains, one flowing south from Walnut and one flowing into the ocean near the intersection of Ocean and Carlsbad Boulevard. If you have any question or need additional information please call. Wilson Engineering Dexter S. Wilson Enclosures 3138 ROOSEVELT STREET, SUITE "M1 CARLSBAD, CALIFORNIA 92OO8 (619) 434-7019 HYDROLOGY CARLSBAD BOULEVARD STORM DRAIN D 1. BASED ON RATIONAL METHOD Q = CIA 2. SOIL TYPE B FROM SOILS REPORT WILSON ENGINEERING ^ _ -r -ri rr* -fi_,j~.~MBi- ™^— j.. — _j — -oi VS ~jpij-~CfDr ' ': ', "f—t-—I -i oH LOJ -; 1 "I' >|"N .££!_-\ i—r -eft > • 3 <tfr:|M:~«J-i ' i Jvft ^1 ^1 (3l ri\ ^ rt-J- £-T~ ....... ">i%Tl. I "I 1 IP^ ^, ^., r .. ' •ri* rf\' ! ' J~\ ._- -^-r - -•";'-' i-—-~^5 -|-»i^— | •."—"---j ^_^( j •3-^' ] r ^ ^H r --H- I—[-* '•&.L._,.__!_,.<_E rt ^y.i _ L. t/) 4ill . i,.^_- .-.^....,^,. j, | i_j. I ...p/»—1_ n H -^ » -ir"! -1 1 H * 1 T-J!._ i"i ~T~~ ~~a. ~ r •# - o! ' i> A WILSON ENGINEERINGoy)-y \J. _<j. ft * •-tr •s- ..... ^t/Ti/ir-07 o:r-gpv-gjr_«—S_! i po ' n /! /•- • .^.^->—-«..-,-.— •- J3l > -U»!-Lo!-Lo _ ....... "T T I !i—r [ ri T!' ^_\ q. -Si ^'~r 3JTT7-^-•"7 ~r -i" i,._U|L<r- i ..... lo - rv_r ?! /I 1 31' ._]_ o: C3 •—•co "- • Ol. . •'•• • • .....•• .. • • ,"c:-*J Ol V-. - O O «*- JC OT3 • r— C to O +•» *»-C • O -r- Ol Olro >. i- : • — •« r— -O O Ol0 T3 T3 >,tn JQ •«- 4-> >• C >> Ol S- i£> ra 01 S-t-OIOCTJ ro 0 r— 3JC 3 3 COO-i— ** Ol OC" >»r— CO •(-» r— -H r—IO 01 4-> O OIC_ Cl r— Ci- C C 0 « C. -r- ' rB 0Ol <«- 3 T- Ol CO r£ S- V- -r-c o c «a- n» -M•r~ "O CJ* CO ^-> Ol r^ rQEOIC. '•-''-^ -*= . *-ai o JC e*^ — ' -Ci c T3 •4J 01 4-> r— Ol C T-IT3air— • ra c cr. o o >i<u-ocucs-3 oc- o. 4-»N••Mt r3 ••-> i. O O O «/> r—CCLttlTJOZ fO-r- T- JC CrOOrOJZOlO 4J Ol •«-> -M 4-» <D C•»-» *" c *~" »- "Q.-M 4-» 4-> js c«JooTc-a"oeSL *£ 3 _c r— 4J " «J J- JC 0 O I. JCOI Q. ra «/> Ol O O C.-M Ol Cl JC • •»•» J3 <-r-Cro C. • 2 O. Q.4J Ol «/I CO.3~ I- J-OICt-O t- -r-OcoOTa JC«/> «*— » • ra C •»— *r- O 0 £ CXr— C -«^i-*J' J-JC f-r— OJ+J <f- Ol ra ra^— ' ra CO JZ J- JCUt— C rav- e ' •*-> 01 -o T- oCt Q. - r— C 4-> -r- «3- CO U3 Ol ra <U r— Oc $- O) ro cn co <\J a» JC •»-»•— O EJ=W3-«- 3*J Q -P4J S+J </>••— O Ol C CO -r-> ro O O rfl O ' T- Ol4-> t_ <- J= ra QJ -OJ=JCO r— «*- J-r— J= -C 0 U. C\J r— Z: Q <C+J4J4J Q. O CJ £2. H- -^ OlJ_ Or— c\: en «s- to •..- .' .• i-^"!C*"^**B*C^:**'^Oc ***l1fXJ\^4iI^Tj" ^««r cCO CVJ •»"•Q. 0-*- «AjOc\ v. /'^ !• '•-/-1. 1 /t 'v.v u _/' "'^«CMa.Ol •3 •.. or c u£ ais- i. 0 U.u.T3 f CJ•+-> ai ra r-u ai•r— COr-™ Otcx *^«t o "^ o. \ n ^ ; -a 0<^ "t/l II $3 1O T3a. <c ^•^ ' •' ^"^r— CM "Co•f"enJTJoc^ a<"^OJ«/>ulao4»>.ll r—C JC J=>E co•r™ ^r^ cx CL ' ... <i: **O II uu 4-> r— i ^'•% ^"^ en «s- LO1-H °pX -^r"H^^•sQr-1 ^^ L •£tu ^a, i g*£, ^^ «. - 6-Hour Precipitation (inches) Omomoino in o to 10 tr.in ^r-sr co co cJ cvi i-^ APPENDIX XI IV-A-14 2 U. -J < O O»/> e: t- H-U-O LU O f- cc2 < O =J 0. OO LU —Io u. II-A-13 1. II-A-7 r • RUNOFF COEFFICIENTS (RATIONAL METHOD) LAND USE ' ' Coefficient, C Soil Group (1) A 1 £ £ Undeveloped .30 .35 .40 .45 Residential: Rural • ' .30 .35 . .40 .45 Single Family .40 .45 .50 .55 Multi-Units .45 ^SjJ .60 .70 Mobile Homes (2) .45 .50 .55 .65 Commercial (2) .70 } -80 .85 80% Impervious Industrial (2) .80 .85 .90 .95 90% Impervious , NOTES: (1) Obtain soil group from maps on file with the Department of Sanitation and Flood Control. • (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = J2. X 0.85 = 0.5380 _ A PP.EM n_T_y__T_Y_ .J8S 3000 .to of ff • &//fere/rce /'/t f/fvat/'arr a/o/jy e/fecftre s/ooe ///te (See /fopcndfr X-3) j- nU D • •i — i D •o • • •nu D •flU n ' ••u •. • 'DLJ D D D. «• Jwr//£3 2000 ^m /O — ~ — /00O . - J» 9OO _ - BOO _ "700 _ - too \ S00 \ ~ JQQ >^?!- ^~" ^ J- \ ^J IT" \- \ . ~\ - — /oo / __ __ um ~S° — 30 NOTE jFoT NATURAL WATERSHED?! — 20 \ ADD TEN MINUTES TO \ \ COMPUTED TIME OF CON- i JjCDfTRATION. _J — 5 Xtftf-/ J/0C//-34— J — 2 — /__ 7vr — Ji7^\ \ — 2OOO \ — /200 ~9OO — BOO — 7OO — 60O — S"OO — 300 " ~- — 2OO M,»u/cs — 240 ••^ '—/BO ••^ •• M^ — /?^ — 90 — 00 "—70 ^ ••MM* OO mm fi? •^ — 40 ^ -JO ^ A 4 — <?^ w ,Qi =: |f -* Irl -^ X? ^ •— * -y ^^--- ' A*\ \\*™«J • H i TC SAN DIEGO COUNTY f| DEPARTMENT OF SPECIAL DISTRICT SERVICES U DESIGN MANUAL NOMOGRAPH FOR DETERMINATTON OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS n*TC /2///a9 1 ADPPMniY Y-A HYDRAULICS U CARLSBAD BOULEVARD STORM DRAIN D WILSON ENGINEERING J£ —.4.,. - n. "! -—H- _ v .3,o _4_ i>JH4 T• ! ' i L ________ 3.0G3 id .»J AH'! A3L __) i.. I ! l •!1 4_ iii f- r _4_ —t- JOB NO. BV WILSON ENGINEERING S-ULMMAterL J~. '! ii—•- -i—f—h- ' - -1 +—f 4ES.I 3UZ- Ri.p4 ^ ^ i i •!—4- fli ~r a - -t— M!:3_""" ' ' ~irA I:.?• --i~!-»» _j_ T h _—j_ ^_i_.j_ _4-__ ri JOB NO. BV DATE SHEET NO. D n D D n LJ WILSON ENGINEERING _ j j »_„ I V \.A_ SeU^ JL=. ..4 f- *r\\ ._L_J— _f__ -'I ~ ^. ___L .J_.T _| /~l~r~ .—-]—. i1 * ,X>.a 1 T T~T T j_ N,.. -,., --------------------J[Js_ A WILSON ENGINEERING «- 1.1 U —i— __43. -Wt_ "T t !^..rT ,^\M.._l J \^ L —I (~_u. r~i" .4 r I ! DATE SHEET NO. n- U D n 0 C D WILSON ENGINEERING ~t- 1 ! -,„. ^ J - •>-..-->**•--> -h r <*\c\L AJs. 3 i J JQ 4.w Ai.T - — -L A AHft —r ~4». ™j—„,...„ (^M\x i -I— ooSlJ ,N1 ,-^-v rr ~T —u i i d.\ . i.^124^. — ..... - Tr "T 4- DATE SHEET NO. WILSON ENGINEERING D G n D WILSON ENGINEERING Q D a D D WILSON ENGINEERING •—1- ~ -] ' : ^_ L 1 si I A2..D, -- L 1h I ,— . „„ ... J _.._, .U -t ! ...[ tTt ... L t- ^i--=•..._. 11 '_ -t" DATE SHEET NO 1 Iu U WILSON ENGINEERING L 4. lr \—4~ ^.t_t , 1. -i H ^ \ I "1— \va..T i.^..x •t-H- i i VSx -L™._ I ! ^ ~t t i J_ ^_ i ].._ _j__ -4--- ~1- ~_i _. L WILSON ENGINEERING 4 -4- 1_ f t ~T "T" _). <*A_}.. — _l—r !„ „.._„„„. \ u : -T —r- 4c*IV-L. DATE SHEET NO. i—i WILSON ENGINEERING 1 .... ,- _ — T" —_i ,..,.,, —» Jl___(W[i. "1—T"' IS -I. p__ _L_|- 1__ _l_i __4... — i rt.|._. .. j__-.-^_ ri: l.j_Li I ! t7".^->' _i.—,4.. r: _)-_-LI DATE SHEET NO. D nL WILSON ENGINEERING •«j—pv - JL ^..LJGj/vI i "V1- A<( d^lP TIES -i h ^L-~- X £ ,..H. ,„,,..; .v.,.^..,™. (-- •_• I " -f-1 ,._!.. _] H- ^U!.•..Jfei-jL!™ -t—i -f ::i _JOB__Np. BY 598 GRADUALLY VARIED CHANNEL FLOW IClIAP. IX TABLE 3 UNIFORM FLOW m CIRCULAR SECTIONS FLOWING PARTLY FULL [4] ya = depth of flow D = diameter of pipe A = area of flow R =• hydraulic radius Q = discharge in cfs by Manning formula n — Manning coefficient .So = slope of the channel bottom and of the water surface ,, -,<p. « D 0.01 0.020.030.04 O.OS0.060.070.080.09 o.ia0.110.120.130.14 0.15 0.160.17a. is.0.19 0.200.210.220.230.24 0.250.260.27 0.2JI- 0.29 0.300.310.320.330.34 /| 0.35 T "0:36~"1 0.37 0.380.39 0.400.41 0.420.43-5 0.44 ^n a0.46 0.47 0.48 0.49 0.50 A & 0.0013 0.00370.00690.0105 0.01470.01920.02420.02940.0350 0.04090.0470 0.05340.06000.0668 0.0739 0.08110.08850.0961 0.1039 0.1118 0.11990.1281 0.1365 0.1449 0.15350.1623 0.1711 0.1800 0.1890 0.1982 0.20740.2167 0.22600.2355 0.2450'0.'2546" 0.2642 0.2739 0.2836 0.29340.30320.31300.3229 0.3328 n 1,19^ 0.3527 0.3627 0.3727 0.3827 0.3927 R D 0.0066 0.01320.01970.0262 0.0325 0.03890.04510.05130.0575 0.06350.0695 0.07550.08130.0871 ,0.0929 0;09850.10420.10970.1152 0.1206 0.12590.13120.13640.1416 0.1466 0.1516 0.1566 0.1614 0. 1662 0.17090.17560.18020.18470.1891 0.19350.197H 0.2020 0.20620.2102 0.21420.21820.22200.2258 0.2295 n ?.^t 0,2366 0.2401- 0.243S 0.2468 0.2500 On D"'3^"2 0.000070.000310.000740.00138 0.002220.003280.00455 0.006040.00775 0.00967 0.011810.014170.01674 0.01952 0.0225 0.02570.02910.0.127O.t>365 0.0406 0.0448 0.04920.0537 0.0585 0.0634 0.06860.0739 0.0793 0.0849 0.0907fl.09660.1027 0.1089 0.1153 0.12180.1284 0.1351 0.1420 0.1495 0.15610.16330.17050.17790.1854 -9-W?9L8?ioT 0.208 0.2160.224 0.232 On yfl'Sjl* 15.0410.578.567.38 6.555.955.475.094.76 4.494.254.043.863.69 3.543.413.283.173.06 2.962.872.792.712.63 2.562.492.422.36 2.30 2.252.202.14 2.092.05 2.00 .958.915 .875.835 .797.760.724 .689 .655 if!?2 .590.559 .530 .500 1.471 •Vyo D .0.51 0.520.530.54 0.550.560.570.580.59 0.600.610.620.63~T).6T'_;; 0.65 -"5766"'0.67 O.S80.69 0.700.710.720.730.74 0.750.760.770.78^ 0.79^ 0.80O.HI0.820.830.84 0.850.860.87 0.88 0.89 0.900.910.920.930.94 0.950.960.97 0.980.99 1.00 ^D" 0.4027 0.41270.42270.4327 0.4426 0.45260.46250.4724 0.4822 0.4920P.MMH O.SilS0.5212IQCS'JOS" 0.5404 0.5499 0.5594 0.56870.5780 0.5872 0.59640.0054 0.61430.6231 0.6319 0.6405 0.6489 0.6573 0.6655 0.6736 0.6815 0.68930.69690.7043 0.7115 0.71860.7254 0.7320 0.7384 0.74450.75040.75600.7612 0.7662 0.77070.77490.77850.78170.7841 Y>.78Sf> R D 0.2531 0.2562 0.25920.2621 0.26490.2676 0.27030.2728 0.2753 0.2776(1.2799 0,28210.2842'0.2X62 0.2882 0.2900 0.29170729330.2948 0.29620.29750.2987 0.2998 0.3008 0.30170.3024 0.30310.3036 0.3039 0.30420.30430.30430.30410.303V 0.3033 0.30260.3018 0.3007 0.2995 0.29800.29630.29440.29210.2895 0.28650.28290.2787 0.27350.2666 0.2500 Q» O»'350l/2 0.239 0.2470.2550.263 0.2710.279 0.2870.295 0.303 0.3110.3190.327 0.335"0.343.. 0.350 0.358 0.366.0.3730.380 0.3880.3950.4020.4090.416' fl.422^07429 0.435 0.441 . 0.447<- 0.4530.4580.4630.4680.473 0.4770.481 0.4850.488 0.491 0.4940.4960.4970.4980.498, 0.4980.4960.4940.4890.483 0.463 On wW 1.4421.4151.388 1.362 1.3361.3111.286 1.2621.238 1.2151.1921.170 1.148 ...1. U6- 1.105.1.084 1.0641.044 1.024 1.004 0.9850.965 0.9470.928 0.910 0.891 0.873 0.856 0.838 0.821 0.804 0.7870.770 0.753 0.7360.720 0.703 0.6870.670 0.654 0.6370.6210.6040.588 0.571 0.5530.535 0.5170.496 0.463 SiiC. A] order to eliminat geometrical shap and the hydrauli where FI and f terms of one or n formula it is seen that Now values of 1 convenient dimi from reference [< of these functic channels of unif times the depth equal to the dep Example 1. H ft wide for unifor The area is fou draulic radius is Table 1 and subs from which If n = 0.013, Q 598 GRADUALLY VARIED CHANNEL FLOW [CHAP. IX TABLE 3 UNIFORM FLOW IN CIRCULAR SECTIONS FLOWING PARTLY FULL [4] yo = depth of flow Q = discharge in cfs by Manning formula D = diameter of pipe n = Manning coefficient A =• area of flow Sit = slope of the channel bottom and of R = hydraulic radius the water surface ,, -^ yo D 0.010.020.03 0.04 0.05 0.06 0.070.080.09 0.10-0.110.120.130.14 0.150.16 0.17 Q.1H,0.19 0.20 0.210.220.230.24 0.250.260.27 0.2>- 0.29 0.300.310.320.33 0.34 0.35 0.360.370.380.39 0.400.41 0.42 0.43 0.44 0.450.460.470.480.49 0.5Q A & 0.00130.0037 0.0069 0.0105 0.01470.01920.02420.02940.0350 0.04090.0470 0.0534 0.0600 0.0668 0.07390.0811 0.0885 0.0961 0. 1039 0.1118 0.11990.12810.13650.1449 0.15350.1623 0.1711 0.1800 0.1890 0.19820.20740.2167 0.2260 0.2355 0.2450 0.25460.26420.27390.2836 0.29340.30320.3130 0.3229 0.3328 O.3428 0.35270.36270.37270.3827 0.3927 R D 0.00660.0132 0.0197 0.0262 0.03250.03890.04510.05130.0575 0.06350.0695 0.0755 0.0813 0.0871 0.0929 0.0985 0.1042 0.1097 0.1152 0.1206 0.12590.13120.13640.1416 0.14660.15160.15660.1614 0.1662 0.17090.1756 0.18020.1847 0.1891 0.19350.1978 0.20200.20620.2102 0.21420.21820.22200.2258 0.2295 0.2331 0.2366 0.2401- O.2435 0.2468 0.2500 Qn DV'SJl* 0.00007 0.00031 0.000740.00138 0.002220.003280.004550.00604 0.00775 0.00967 0.01181 0.01417 0.016740.01952 0.0225 0.0257 0.0291 0.0327O.XI305 0.0406 0.04480.04920.0537 '0.0585 0.06340.06860.07390.0793 0.0849 0.0907•0.0966 0.1027 0. 1089 0.1153 0.1218 0.12840.13510.1420 0.149$ 0.1561 0.16330.17050.1779 0.1854 0.1929 0.201 0.208 0.216 0.224 0.232 Qn yf/W 15.04 10.57 , 8.567.38 6.555.955.475.094.76 4.49 4.25 4.04 3.86 3.69 3.54 3.413.28 3.173.06 2.962.872.792.712.63 2.562.49 2.42 2.36 2.30 2.25 2.202.14 2.09 2.05 2.001.958 .915.875.835 .797.760.724.689 .655 1.622 1.5901.5591.5301.500 1.471 Vyo D 0.51 0.52 0.53 0.54 0.550.56 0.570.58 0.59 0.60n M 0.62 0.630.64 0.650.660.670.58 0.69 0.70 9-Z1inJ0.730.74 0.750.760.7V0.78^0.795 0.800.81 0.82 0.830.84 0.850.86 0.870.880.89 0.900.910.920.93 0.94 0.950.96 0.970.98 0.99 1.00 Vs A D> 0.4027 0.4127 0.4227 0.4327 0.44260.4526 0.4M5 0.4724 0.4822 0.4920n <mx 0.51150.52120.5308 0.5404 0.54990.55940.5687 0.5780 0.5872 IJ-MM8! 60540.6143 0.6231 0.63190.64050.64890.6573O 6655 0.6736 0.6815 0.68930.6969 0.7043 0.7115 0.7186 0.72540.73200.7384 0.74450.75040.7560 0.7612 0.7662 0.7707 0.7749 0.7785 0.78170.7841 £™^ R D 0.2531 0.2562 0.2592 0.2621 0.26490.2676 0.2703 0.27280.2753 0.27760 5700 0.2821 0.2842 0.2862 0.2882 0.2900 (L29I707293T 0.2948 0.2962 8-2V7.5o.KSI 0,29980.3008 0.30170.30240.30310.30360.3039 0.30420.3043 0.3043 0.3041 0.3038 0.3033 0.3026 0.30180.30070.2995 0.29800.29630.29440.2921 0.2895 0.2865 0.2829 0.2787 0.2735 0.2666 0.2500 Qn D"'»So1/J 0.239 0.247 0.255 0.263 0.271n 570 ft 2K7 0.2950.303 0.311 0.3190.327 0.335 0.343 0.350 0.3580.366 0.373 0.380 0.388 0-3950, 4020.409!A&0.435 0.441.0.447<- 0.453 0.458 0.4630.468 , 0.473 0.4770.481 0.4850.488 ; 0.491 0.4940.4960.4970.4980.498^ 0.498 0.496 0.494 0.489 0.483 0.463 Qn ' yi?iw ; 1.442 I 1.415 i 1.388 1.362 1.336 o..1.311 rnI.2HIS C» 1 . 262 11.238 «— 1 \i1.215 " 1 192 :1.170 —1.148 N :1.126 1 . 105 *1.084 '1 .0641.044 1.024 • 1.004 . , 0 - 9H-S ' f\ :0.965 *f* 0.947 36.928 -' 0.910 .0.8910.873 *0.8560.838 /• i . 0.821 :0.804 . 0.787 ! 0.770 0.753 ; 0.736 i0.7200.703 0.687 0.670 0.654 0.637 '0.6210.604 :0.588 0.571 ,0.553 ! 0.5350.517 I 0.496 ' 0.463 ' SEC. A] P order to eliminate geometrical shapes and the hydraulic i where F\ and F2 terms of one or mot formula it is seen that Now values of 1.4? convenient dimens from reference [4], of these functions channels of uniforr times the depth, tl equal to the depth Example 1. Dete ft wide for uniform The area is found draulic radius is 52.; Table 1 and substiti from which If n = 0.01.3, Q