Loading...
HomeMy WebLinkAbout; San Marcos Landfill Closure & Maint Plan Part 2; San Marcos Landfill Closure & Maint Plan Part 2; 2002-04-01Ex+Rte5- PM p P P P Wed Dec 12, 2001 18:23:22 SAN MARCOS LANDFILL Scenario Report Page 1-1 Scenario: Ex+Rte5• -PM Command: Default Command Volxime; Ex+Rte5 • •PM Geometry: Ex-AM Impact Fee; Default Impact Fee Trip Generation: Default Trip Generation Trip Distribution: Default Trip Distribution Paths; Default Paths Routes: Default Routes Configuration: Default Configuration p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA p P P Ex+Rte5-WM Wed Dec 12, 2001 18:23:23 SAN MARCOS LANDFILL Page 3-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Altemative) *********************************************************** ****^^,^^,^^^^^^^^^^^^^^^ Intersection #3 Olivenhain Road/El Ccunino Real ********************************************************* ***********^^.t^^^^,.^.^.^^.^^_^^ Cycle (sec): 135 Critical Vol./Cap. (X): 1,150 Loss Time (sec); 12 (Y+R = 4 sec) Average Delay (sec/veh); 72.9 Optimal Cycle: 180 Level Of Service; E ********************************** ********************************^,^.^^^^,^^.^^^^^^.^^ Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights: Min. Green: Lanes: Protected Ovl 0 0 0 2 0 3 0 1 II Protected Include 0 0 0 2 0 3 1 0 1 I Volxime Module: Base Vol: Growth Adj : Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: I II Protected Include 0 0 0 2 0 3 0 1 I I Protected Include 0 0 0 2 0 2 1 0 I I I I 196 1151 1056 155 1024 326 451 826 250 713 702 114 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 198 1151 1056 155 1024 325 451 826 250 713 702 114 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90 220 1279 1173 172 1138 362 501 918 278 792 780 127 0 0 0 0 0 0 0 0 0 0 0 0 220 1279 1173 172 1138 362 501 918 278 792 760 127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1,00 1.00 1.00 1.00 1-00 1.00 220 1279 1173 172 1136 362 501 918 278 792 780 127 Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 Adjustment; 0.84 0.83 0.77 0-84 0.80 Lanes: 2.00 3.00 1.00 2.00 3.03 Final Sat.: 3163 4715 1468 3183 4598 II--• Capacity Analysis Module; II 1900 1900 1900 0.60 0.84 0.83 0.97 2.00 3.00 1453 3183 4715 II II- 1900 1900 1900 1900 0.77 0,84 0.81 0.81 1.00 2.00 2.58 0.42 1468 3183 3970 646 Vol/Sat; 0. 07 0. 27 0. 80 0. 05 0. 25 0. 25 0. 16 0 .19 0. 19 0. 25 0. 20 0. 20 Crit Moves; * * ** ** * * * *** ** ** 20 20 Green/Cycle: 0. 11 0. 48 0. 69 0. 05 0-41 0. 41 0-17 0 .17 0. 17 0. 22 0. 21 0. 21 Volume/Cap; 0. 60 0. 57 1. 15 1. 15 0. 60 0. 60 0. 92 1 .15 1. 12 1. 15 0-92 0. 92 Delay/Veh; 59 .7 25 ..5 99 .6 183 .9 31 .6 31 .6 75 .5 138 148 .7 136 .6 64 .9 64 .9 User DelAdj; 0. 92 0. 92 0. 92 0. 92 0. 92 0. 92 0. 92 0 .92 0. 92 0. 92 0. 92 0. 92 P AdjDel/Veh: 54 .8 23 .4 91 .5 168 .8 29 .0 29 .0 69 .3 127 136 .5 125 .4 59 .6 59 .6 DesignQueue: 15 53 32 12 53 17 32 50 16 49 59 48 59 8 Ml ************ *** ***** *** * ** *** *** ***** *** ** * ****** **** ******* ****** ***** * * * ** * *** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P p p p p PI p p p Ex+Rte5-m Wed Dec 12, 2001 18:23:23 SAN MARCOS LANDFILL Page 4-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #5 Encinitas Blvd/I-5 NB Ramps ******************************************************************************** Cycle (sec): 80 Critical Vol./Cap. (X): 1.035 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 42.2 Optimal Cycle; 180 Level Of Service: D ******************************************************************************** Approach; North Boxmd South Bound East Bound west Boxmd Movement; L-T-R L-T-R L-T-R L-T-R Control: Rights: II Split Phase Include Split Phase Include 1 t I I Protected Include Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Ml Lanes: 0 10 0 1 0 c 1 0 0 0 10 2 0 0 0 0 2 0 1 gg 1 Volxime Module: II 1 1 1 Base Vol: 191 1 523 0 0 0 222 906 0 0 1100 574 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1,00 1.00 PI Initial Bse: 191 1 523 0 0 0 222 906 0 0 1100 574 User Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1.00 1.00 1.00 1.00 P PHF Adj; 0.90 0.90 0.90 0.90 0.90 0 .90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volume; 212 1 581 0 0 0 247 1007 0 0 1222 638 HI Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 212 1 581 0 0 0 247 1007 0 0 1222 638 P PCE Adj: 1.00 1.00 1.00 1.00 1.00 1 ,00 1.00 1.00 1.00 1-00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 wm Final Vol.: 212 1 581 0 0 0 247 1007 0 0 1222 638 1 Saturation Flow Module; 1 I 1 ! ! 1 1 Ml Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 0.85 0.85 0.85 1.00 1.00 1 .00 0.90 0.90 1.00 1-00 0.90 0.81 mm Lanes: 0.99 0.01 1.00 0.00 0.00 0 .00 1.00 2.00 0.00 0.00 2.00 1.00 Final Sat,: 1607 8 1615 0 0 0 1718 3437 0 0 3437 1537 Capacity Analysis Module; Vol/Sat: 0.13 0.13 0.36 0.00 0.00 0 .00 0.14 0.29 0.00 0.00 0.36 0.41 Crit Moves; **** * * ** **** Green/Cycle: 0.35 0.35 0.35 0.00 0.00 0 .00 0.14 0,54 0.00 0.00 0.40 0.40 Volxime/Cap: 0.38 0.38 1.03 0.00 0.00 0 .00 1.03 0.54 0.00 0.00 0.89 1.03 Delay/Veh: 20.0 20.0 73.4 0.0 0,0 0.0 102.1 12.3 0.0 0.0 29.6 69.5 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1.00 1,00 1.00 1.00 AdjDel/Veh; 20.0 20.0 73,4 0.0 0,0 0.0 102 .1 12.3 0.0 0.0 29.6 69.5 Hw DesignQueue; 6 0 18 0 0 0 10 22 0 0 36 19 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex+Rte5-PM Wed Dec 12, 2001 18:23:23 SAN MARCOS LANDFILL Page 5-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Altemative) ***********************************************************************^^^,^,f,t,^.^^.^ Intersection #5 Encinitas Blvd/I-5 SB Ramps ******************************** *******************************^^^^i^^^^.^^^^^.^.^^.^^^^^ Cycle (sec): 110 Critical Vol./Cap. (X): 0.887 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 37.9 Optimal Cycle; 100 Level Of Service: D *********************************************************************^^*.f^.f^.^,^^^..^.f^.^..^ Approach: North Boxmd South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights: Min. Green: Lanes: Split Phase Include 0 0 0 0 0 0 0 0 II Split Phase Include 0 0 0 0 10 0 1 11 Protected Include 0 0 0 0 0 110 II Protected Include 0 0 0 1 0 2 0 0 Volxime Module: Base Vol; Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: I It 0 0 0 327 1 168 0 715 136 457 604 0 1 .00 1 .00 1 .00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00 0 0 0 327 1 188 0 715 136 457 604 0 1 .00 1 .00 1 .00 1,00 1 .00 1.00 1 .00 1.00 1,00 1.00 1.00 1 .00 0 .90 0 ,90 0 .90 0.90 0 .90 0.90 0 .90 0.90 0.90 0,90 0.90 0 .90 0 0 0 363 1 209 0 794 151 506 671 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363 1 209 0 794 151 508 671 0 1 .00 1 .00 1 ,00 1.00 1 ,00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00 0 0 0 363 1 209 0 794 151 508 671 0 Saturation Flow Module: II Sat/Lane; Adjustment: Lanes: Final Sat.: 1900 1900 1.00 1.00 0.00 0,00 0 0 1900 1,00 0.00 0 1900 1900 0.81 0.81 0.99 0.01 1533 4 II 1900 1900 1900 0.81 1.00 0.88 1.00 0.00 1.68 1537 0 2818 II Capacity Analysis Module; 1900 1900 1900 1900 0.88 0.90 0.90 1.00 0.32 1.00 2.00 0.00 536 1718 3437 0 It---I Vol/Sat: 0. 00 0. 00 0. 00 0. 24 0. 24 0. 14 0. 00 0. 28 0. 28 0. 30 0. 20 0. 00 Crit Moves: ** ** ** ** ** ** Green/Cycle; 0, 00 0. 00 0. 00 0. 27 0, 27 0. 27 0. 00 0. 32 0. 32 0. 33 0-55 0. 00 Volume/Cap: 0, 00 0. 00 0. 00 0. 89 0. 89 0. 51 0. 00 0. 89 0. 89 0. 89 0, 30 0. 00 Delay/Veh: 0 .0 0 .0 0 .0 58 .8 58 .8 35 .3 0 .0 44 .8 44 .8 50 .1 8 .4 0 .0 User DelAdj: 1. 00 1. 00 1. 00 1, 00 1. 00 1. 00 1. 00 1. 00 1. 00 1-00 1. 00 1, 00 AdjDel/Veh: 0 .0 0 ,0 0 .0 58 .8 58 .8 35 .3 0 .0 44 .8 44 .8 50 .1 8 .4 0 .0 DesignQueue; 0 0 0 17 0 10 0 35 7 22 15 0 ************ *** ***** *** *** ****** ***** * * * ** * ****** ** *** * * * * * * **-. ** * * ***** *** * * * **• p p p m p P P p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA p ^M Ex+Rte5-PM P Wed Dec 12, 2001 16:23:23 SAN MARCOS LANDFILL Page 6-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #7 El Camino Real & Garden View Road ******************************************************************************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.989 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 46.4 Optimal Cycle: 176 Level Of Service: D ******************************************************************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R p Control: Protected Protected Protected Protected p Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 wm Lanes; 1 1 0 3 0 1 1 1 0 3 0 1 10 1 1 0 1 1 D 1 1 0 P Volxime Module; P Base Vol: 206 1790 83 238 1366 131 105 190 282 179 200 261 Growth Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 wm Initial Bse: 206 1790 83 238 1368 131 105 190 282 179 200 261 User Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ml PHF Adj; 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volume: 229 1989 92 264 1520 146 117 211 313 199 222 290 •p-Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol; 229 1989 92 264 1520 146 117 211 313 199 222 290 tm PCE Adj: 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00 MLF Adj: 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 mm Final Vol.: 229 1989 92 264 1520 146 117 211 313 199 222 290 um Saturation Flow Module: ^m Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 0.90 0.87 0,81 0.90 0.87 0.81 0.95 0.95 0.81 0,95 0,95 0.81 Lanes: 1.00 3.00 1,00 1.00 3.00 1.00 1.00 1.00 1,00 1.00 1.00 1,00 Ml Final Sat.: 1718 4938 1537 1718 4938 1537 1805 1805 1534 1805 1805 1534 Capacity Analysis Module; IP" Vol/Sat; 0.13 0.40 0.06 0.15 0.31 0.09 0.05 0.12 0.20 0.11 0.12 0.19 Crit Moves: * * * * **** * * * * * * * * Green/Cycle; 0.17 0.41 0.41 0.16 0.39 0.39 0.08 0.21 0.21 0.11 0.24 0.24 Volxime/Cap: 0-78 0.99 0.15 0.99 0.78 0.24 0.80 0.57 0.99 0.99 0.52 0.80 Delay/Veh: 52.8 47.0 18.8 94.2 28.8 20.6 71.0 36.5 75.8 104.6 33.7 43.0 User DelAdj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MM AdjDel/veh: 52.8 47.0 18.8 94.2 28.8 20.6 71.0 36.5 75.8 104.6 33.7 43.0 DesignQueue: 11 72 3 13 55 5 6 10 14 10 10 13 ******************************************************************************** p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex+Rte5- PM Wed Dec 12, 2001 18:23:23 SAN MARCOS LANDFILL Page 7 -1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #8 Encinitas Blvd & Balour Drive ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.974 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh); 29.3 Optimal Cycle: 108 Level Of Service: C ******************************************************************************** Approach: Movement; North Bound L-T-R South Bound L-T-R East Boxmd L-T-R West Bound L-T-R Control: Rights: Protected Include I I Protected Include Protected Include Protected Include Min. Green; Lanes: 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0 2 0 0 0 Volxime Modul e; Base vol: 80 0 354 0 0 0 0 1372 43 374 1438 0 Growth Adj: 1, .00 1, .00 1.00 1, .00 1 .00 1, .00 1, .00 1.00 1. .00 1.00 1.00 1, .00 Initial Bse: 80 0 354 0 0 0 0 1372 43 374 1438 0 User Adj: 1, .00 1, .00 1.00 1, .00 1 .00 1, .00 1. .00 1.00 1. .00 1.00 1.00 1, .00 PHF Adj; 0, .90 0, .90 0.90 0. .90 0 .90 0. .90 0. .90 0.90 0 .90 0.90 0.90 0, .90 PHF Volxime; 89 0 393 0 0 0 0 1524 48 415 1598 0 Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 89 0 393 0 0 0 0 1524 48 416 1598 0 PCE Adj; 1, .00 1, .00 1.00 1. .00 1 .00 1. .00 1, .00 1.00 1. .00 1.00 1.00 1. .00 MLF Adj; 1, .00 1, .00 1.00 1. .00 1 .00 1. .00 1, .00 1.00 1, .00 1.00 1.00 1. .00 Final Vol.: 69 0 393 0 0 0 0 1524 48 416 1598 0 -I It-- Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 Adjustment: 0.95 1.00 0.85 1-00 1.00 Lanes: 1.00 0.00 1.00 0-00 0.00 Final Sat.: 1805 0 1615 0 0 II --••It---- 1900 1900 1900 1900 1.00 1.00 0.90 0.90 0.00 0.00 1.94 0.06 0 0 3315 104 II 1900 1900 1900 0.88 0.90 1.00 2.00 2.00 0.00 3334 3437 0 Capacity Analysis Module; Vol/Sat: 0.05 0.00 0.24 Crit Moves; **** Green/Cycle: 0.25 0-00 0.25 Volxime/Cap: 0.20 0.00 0.97 Delay/Veh: 18.0 0.0 60.1 User DelAdj: 1.00 1.00 1.00 AdjDel/Veh: 18.0 0.0 60.1 DesignQueue: 2 0 10 ***************************** 0.00 0.00 0-00 0.00 0.46 0.46 0.12 0.46 0.00 0.00 0.00 0.00 0.00 0.0 0.0 1.00 1.00 0.0 0.0 0 0 0.00 0.00 0.0 1.00 0.0 0 **** 0.00 0.47 0.00 0.97 0.0 32-0 1.00 1.00 0,0 32.0 0 30 0.47 0.97 32.0 1.00 32.0 1 0.13 0.60 0.97 0.77 62.7 10.9 1.00 1.00 62.7 10-9 12 24 0.00 0.00 0.0 1.00 0.0 0 m p m. m p *************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex+Rte5-PM Wed Dec 12, 2001 18:23:23 SAN MARCOS LANDFILL Page 8-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ****************************************************** ************^,./,^,^^^^^,^^,^^^^.^^^ Intersection #15 Encinitas Blvd/E.C.R. ******************************************************************************** Cycle (sec): 130 Critical Vol./Cap. (X); 1.079 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 76.2 Optimal Cycle: 180 Level Of Service; E ****************************************************** **********.i,^,.^^,.^.^.^^.^.^.f,^,^^^,^^ Approach: North Bound South Boxmd East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights: Protected Include I I Protected Include I I Protected Include tl Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes; 1 1 D 2 1 0 2 1 0 2 1 0 2 0 1 1 0 1 1 D 1 1 0 Ml Volxime Module; Base Vol: 199 984 171 185 1131 334 364 661 146 151 794 353 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 •M Initial Bse: 199 984 171 185 1131 334 364 661 145 151 794 353 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P PHF Adj; 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volume: 221 1093 190 206 1257 371 404 734 162 168 882 392 Mi Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 221 1093 190 206 1257 371 404 734 162 168 882 392 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 mm Final Vol.: 221 1093 190 206 1257 371 404 734 162 168 882 392 Saturation Flow Module: wm Sat/Lane; 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 0.90 0.85 0-85 0.68 0.84 0.84 0.88 0.88 0.88 0.90 0.86 0.86 mm Lanes: 1.00 2.56 0-44 2.00 2.32 0-68 2.00 1.64 0.36 1.00 1.38 0.62 •H Final Sat.: 1718 4114 715 3334 3683 1087 3334 2739 605 1718 2270 1009 Capacity Analysis Module; mi Vol/Sat: 0.13 0.27 0.27 0.06 0.34 0.34 0.12 0.27 0.27 0.10 0.39 0.39 Crit Moves: **** * * * * **** **** mm Green/Cycle: 0.12 0.35 0.35 0.08 0.32 0.32 0.11 0.35 0.35 0.13 0.36 0.36 Volume/Cap; 1.08 0.75 0.75 0.75 1.08 1-08 1.08 0.77 0,77 0.77 1.08 1.08 Delay/Veh; 142.8 39.0 39.0 69.5 92.3 92.3 127.1 41.3 41.3 70.9 92.0 92.0 User DelAdj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 AdjDel/Veh: 142.8 39.0 39.0 69.5 92.3 92-3 127-1 41.3 41.3 70.9 92-0 92.0 MM DesignQueue: 15 54 9 14 67 20 27 37 8 11 45 20 ***«****************************************************************^^^^^^^^^^^^ Traffix 7-5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex-AM Wed Dec 12, 2001 18:28:03 Page 1-1 SAN MARCOS LANDFILL Ml Scenario Report wm Scenario: Ex-AM Command: Default Command mw Volxime: Ex-AM Geometry: Ex-AM Impact Fee; Default Impact Fee Trip Generation: Default Trip Generation wm Trip Distribution; Default Trip Distribution Paths: Default Paths MM Routes; Default Routes Configuration: Default Conf igura t ion •M m p P k m p p Traffix 7.5.1015 (c) 2000 Dowling Assoc- Licensed to LLG, SAN DIEGO, CA P P P Ex-AM Wed Dec 12, 2001 18:28:04 SAN MARCOS LANDFILL Page 3-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ********************************************************************** *****.^^,^^^,^, Intersection #5 9th Ave/I-15 NB Ramps ********* **********************************************i,****************^.^^^^i,^,i. Cycle (sec): 60 Critical Vol./Cap, (X): 0.688 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 15.8 Optimal Cycle: 45 Level Of Service: B ******************************* ********************************************.f,.^.^^^^ Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights; Permitted Include Permitted Include II Protected Include I I Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Ml Lanes; 110 0 1 0 ' 0 0 0 0 1 ' 0 2 0 0 0 1 0 2 0 1 Volume Module: Base Vol; 752 27 183 0 0 0 87 672 0 0 854 182 Growth Adj: 1,00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IH Initial Bse: 752 27 183 0 0 0 87 672 0 0 854 182 p User Adj: 1.00 1.00 1,00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 PHF Adj; 0.90 0.90 0.90 0,90 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0,90 PHF Volume: 835 30 203 0 0 0 97 747 0 0 949 202 Hi Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol; 836 30 203 0 0 0 97 747 0 0 949 202 HI PCE Adj: 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1,00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 MM Final Vol.: 836 30 203 0 0 0 97 747 0 0 949 202 Saturation Flow Module: ' Sat/Lcme: 1900 1900 1900 1900 1900 1900 19 00 1900 1900 1900 1900 1900 Adjustment: 0.85 0,85 0.85 1.00 1.00 1,00 0.95 0.95 1.00 1.00 0.95 0,85 M" Lanes; 1.93 0.07 1.00 0,00 0.00 0.00 1.00 2.00 0.00 0.00 2.00 1.00 Ml Final Sat.: 3118 112 1615 0 0 0 1805 3610 0 0 3510 1615 Capacity Analysis Module: MM Vol/Sat: 0,27 0.27 0.13 0.00 0.00 0.00 0.05 0.21 0.00 0.00 0.26 0.13 Crit Moves: **** **** **** 0.13 P Green/Cycle: 0.39 0.39 0.39 0.00 0.00 0.00 0,08 0.46 0.00 0.00 0.38 0.38 Volume/Cap: 0.69 0.69 0.32 0.00 0.00 0.00 0.69 0.45 0.00 0.00 0.69 0.33 Delay/Veh: 15.9 16.9 13.1 0.0 0.0 0,0 40.3 11.2 0.0 0.0 17.0 13.4 m User DelAdj: 1.00 1,00 1.00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 16,9 16.9 13.1 0.0 0,0 0.0 40.3 11.2 0,0 0.0 17.0 13.4 DesignQueue: 18 1 4 0 0 0 3 14 0 0 21 4 **************************************** **********************************^,^^^,^^^,^ p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P Ex-AM Wed Dec 12, 2001 16:28:04 SAN MARCOS LANDFILL Page 4-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Altemative) ******************************************************************************** Intersection #6 9th Ave/I-15 SB Ramps ******************************************************************************** Cycle (sec); 60 Critical Vol./Cap. (X): 0.566 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 7.0 Optimal Cycle: 37 Level Of Service; A ******************************************************************************** Approach; North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights; Permitted Include Permitted Include Protected Include Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 0 0 110 0 1 I 1 0 0 2 0 1 2 0 2 0 0 . 1 MM 1 Volxime Module: I 1 1 1 1 1 1 b4 Base Vol: 0 0 0 95 47 30 0 736 550 182 1459 0 Growth Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse; 0 0 0 95 47 30 0 738 550 182 1459 0 Ml User Adj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj; 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Ml PHF Volxime: 0 0 0 106 52 33 0 820 611 202 1621 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 • Reduced vol: 0 0 0 106 52 33 0 820 611 202 1621 0 PCE Adj; 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00 Ml MLF Adj; 1.00 1,00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 Final Vol.: 0 0 0 106 52 33 0 820 611 202 1621 0 p 1 Saturation Flow Module; 1 1 1 1 Sat/Lane: 1900 1900 1900 19 00 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 1.00 1.00 1.00 0.85 0.85 0.85 1.00 0.95 0-85 0,92 0,95 1.00 Lanes: 0.00 0.00 0.00 1,34 0-66 1.00 0.00 2.00 1-00 2,00 2,00 0.00 p Final Sat.: 0 0 0 2167 1063 1615 0 3610 1615 3502 3610 0 IH 1 Capacity Analysis Module; 1 1 - - - -1 1 1 1 • 1 Vol/Sat: 0.00 0.00 0.00 0.05 0-05 0.02 0.00 0-23 0.38 0.06 0.45 0-00 HI Crit Moves; **** **** **** Green/Cycle; 0.00 0.00 0.00 0.08 0.08 0.08 0.00 0.67 0.67 0.10 0.77 0.00 Volxime/Cap; 0.00 0.00 0.00 0.59 0.59 0.24 0.00 0.34 0.57 0.57 0.59 0,00 Delay/Veh: 0.0 0.0 0.0 29.8 29 .8 26.7 0.0 4.4 6.1 27.9 3.3 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1-00 P AdjDel/Veh; 0,0 0.0 0.0 29.8 29.8 26.7 0.0 4.4 6.1 27.9 3.3 0.0 DesignQueue: 0 0 0 3 2 1 0 10 7 6 14 0 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P P p p p p p p p Ex-AM Wed Dec 12, 2001 18:26:04 SAN MARCOS LANDFILL Page 5-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************************************** ****************^,^,.^^,.^^^^^.^.^^.^^^^ Intersection #7 Auto Prk Wy/Valley Pkwy ************************************************************ **^,^,^^^^^^^^.^^.f,^^^^.^^^^^^^ Cycle (sec): 100 Critical Vol./Cap. (X): 0.914 Loss Time (sec); 12 (Y+R = 4 sec) Average Delay (sec/veh): 38.4 Optimal Cycle: 117 Level Of Service: D ******************************************** *******************^^,^^^^.^^^,.^^.^^^^^^^^^^^ Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control; Rights: Protected Include I I Protected Include 1 I Protected Include Protected Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 0 1 1 0 2 1 0 1 1 0 2 ' 0 3 0 1 2 ' 0 3 0 1 Volume Module: Base Vol: 267 623 96 176 843 569 194 371 303 154 590 48 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 267 623 96 175 843 569 194 371 303 154 590 48 User Adj: 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90 PHF Volume; 297 692 107 196 937 632 216 412 337 171 656 53 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 297 692 107 196 937 632 216 412 337 171 656 53 PCE Adj; 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 Final Vol.: 297 592 107 196 937 632 216 412 337 171 656 53 Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 0.92 0.93 0.93 0.92 0.89 0,89 0.92 0.91 0.85 0.92 0.91 0.85 Lemes: 2.00 1.73 0.27 2.00 1.19 0.81 2.00 3.00 1.00 2.00 3.00 1.00 Final Sat.; 3502 3064 474 3502 2027 1367 3502 5187 1615 3502 5187 1615 Capacity Analysis Module: Vol/Sat: 0.08 0.23 0.23 0,06 0.46 0.46 0.06 0.08 0.21 0.05 0.13 0.03 Crit Moves: **** **** **** **** 0.03 Green/Cycle; 0.09 0.48 0.48 0.12 0.51 0.51 0.09 0.23 0.23 0.05 0.19 0.31 Volxime/Cap: 0.91 0.47 0,47 0.47 0.91 0.91 0.67 0.35 0-91 0.91 0-67 0,11 Delay/Veh: 74.1 17.7 17.7 42.0 30,7 30.7 49.2 32.5 64.3 89.4 39.4 24.8 User DelAdj: 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 74.1 17.7 17.7 42.0 30.7 30.7 49.2 32.5 64-3 89-4 39.4 24,8 DesignQueue: 15 21 3 10 29 19 11 18 15 9 30 2 ************************************* *********************************^*.^^,^^^,^^^^^ Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex-AM Wed Dec 12, 2001 18:28:04 SAN MARCOS LANDFILL Page 6-1 Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volxime Alternative) ******************************************************************************** Intersection #9 Harmony Grove/Questhaven Road ******************************************************************************** Average Delay (sec/veh): 10.2 Worst Case Level Of Service: B ******************************************************************************** Approach: North Bound South Boxmd East Boxmd West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights: Lanes; Stop Sign Include 0 0 1! 0 0 I I Stop Sign Include 0 1! 0 0 Uncontrolled Include 0 10 0 0 Uncontrolled Include 0 10 0 0 I I I I Volxime Module: Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volxime Reduct Vol Final Vol. 0 0 0 3 0 7 1 70 0 1 274 0 1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1,00 1 .00 1 .00 1.00 1 .00 0 0 0 3 0 7 1 70 0 1 274 0 1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00 0 .90 0 .90 0.90 0.90 0 .90 0 .90 0 .90 0.90 0 .90 0 -90 0.90 0 .90 0 0 0 3 0 8 1 78 0 1 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 8 1 76 0 1 304 0 II Critical Gap Module; Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:XXXXX xxxx xxxxx 3.5 xxxx 3.3 II I I 4.1 xxxx XXXXX 2.2 XXXX XXXXX 4.1 xxxx XXXXX 2.2 xxxx XXXXX Capacity Module: Cnflict Vol: xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx Move Cap.; xxxx xxxx xxxxx I I II I I II Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx LOS by Move: * * * Movement; LT - LTR - RT Shared Cap.: xxxx 0 xxxxx Shrd StpDel:xxxxx xxxx xxxxx Shared LOS: * * * ApproachDel: xxxxxx ApproachLOS: * 387 xxxx 304 621 xxxx 740 620 xxxx 740 II 304 xxxx xxxxx 1268 xxxx xxxxx 1268 xxxx xxxxx 78 xxxx xxxxx 1534 xxxx xxxxx 1534 xxxx xxxxx xxxxx xxxx xxxxx * * * LT - LTR - RT xxxx 699 xxxxx xxxxx 10.2 xxxxx * B * 10.2 B 7.8 xxxx xxxxx A * * LT - LTR - RT xxxx xxxx xxxxx 7.8 xxxx xxxxx A * * xxxxxx 7.3 xxxx xxxxx A * * LT - LTR - RT xxxx xxxx xxxxx 7.3 xxxx xxxxx A * * xxxxxx ii p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA ^M p Ex-PM M Wed Dec 12, 2001 16:28:14 SAN MARCOS LANDFILL Page 1-1 p Scenario Report Scenario: Ex-PM IH Command: Default Command Ml Volxime: Ex-PM Geometry: Ex-AM Impact Fee: Default Impact Fee HI Trip Generation: Default Trip Generation Trip Distribution: Default Trip Distribution Paths; Default Paths Routes: Default Routes IP Configuration: Default Configuration p p p p p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P k p P p Ex-PM Wed Dec 12, 2001 18:28:14 SAN MARCOS LANDFILL Page 3-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Altemative) ******************************************************************************** Intersection #5 9th Ave/I-15 NB Ramps ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0-693 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh); 15.9 Optimal Cycle: 45 Level Of Service: B ******************************************************************************** Approach: Movement: North Boxmd L-T-R South Bound L-T-R East Bound L-T-R West Bound L-T-R Control: Rights: Permitted Include I I Permitted Include Protected Include Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 110 0 1 0 0 0 0 0 10 2 0 0 0 1 D 2 0 1 Volxime Module; ' Base Vol: 548 2 218 0 0 0 229 1006 0 0 690 377 Growth Adj: 1.00 1.00 1.00 1,00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00 Initial Bse; 548 2 218 0 0 0 229 1006 0 0 690 377 User Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1. 00 1.00 1.00 1.00 PHF Adj: 0.90 0.90 0.90 0.90 0.90 0 .90 0.90 0.90 0. 90 0.90 0.90 0.90 PHF Volume: 609 2 242 0 0 0 254 1116 0 0 767 419 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 609 2 242 0 0 0 254 1116 0 0 767 419 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1,00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00 Final Vol.: 609 2 242 0 0 0 254 1118 0 0 767 419 Saturation Flow Module; Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment; 0.85 0.85 0.85 1.00 1.00 1 .00 0.95 0.95 1. 00 1.00 0.95 0.85 Lanes: 1.99 0.01 1.00 0.00 0.00 0 .00 1.00 2.00 0. 00 0.00 2.00 1.00 Final Sat.: 3219 11 1515 0 0 0 1805 3610 0 0 3610 1515 Capacity Analysis Module: Vol/Sat; 0.19 0.19 0.15 0.00 0.00 0 .00 0.14 0.31 0. 00 0-00 0.21 0.26 Crit Moves: **** **** **** Green/Cycle: 0.27 0.27 0.27 0.00 0.00 0 .00 0.20 0.58 0. 00 0.00 0.37 0.37 Volume/Cap; 0.69 0.69 0.55 0.00 0.00 0 .00 0.69 0.54 0. 00 0.00 0.57 0.69 Delay/Veh: 22.0 22.0 20.1 0.0 0.0 0.0 27.6 8.0 0 1.0 0.0 15.5 19.3 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00 AdjDel/Veh: 22.0 22.0 20.1 0.0 0.0 0.0 27.8 8.0 0 1.0 0.0 15.5 19.3 DesignQueue; 15 0 6 0 0 0 7 17 0 0 17 9 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P P P P Ex-PM PI P P Wed Dec 12, 2001 18:28:14 SAN MARCOS LANDFILL Page 4-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ****************************************************** ************************^,.f, Intersection #6 9th Ave/I-15 SB Ramps ****************************************** ************************************.t^^^ Cycle (sec): 60 Critical Vol./Cap. (X): 0.661 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 15.6 Optimal Cycle: 74 Level Of Service: B *******************************************************************************^, Approach: North Bound South Bound East Boxmd West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights; Permitted Include Permitted Include I I II Protected Include Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 p Lanes: 0 1 Q 0 0 0 1 1 0 0 1 0 1 0 2 0 1 2 1 0 2 0 0 p Volxime Module: p Base Vol: 0 0 0 323 0 146 0 939 830 191 1078 0 Growth Adj; 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 p Initial Bse: 0 0 0 323 0 146 0 939 630 191 1078 0 p User Adj; 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 p PHF Adj: 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volxime: 0 0 0 359 0 162 0 1043 922 212 1198 0 *M Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 0 0 359 0 162 0 1043 922 212 1198 0 P PCE Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MM Final Vol.: 0 0 0 359 0 162 0 1043 922 212 1196 0 Saturation Flow Module: MB Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment: 1.00 1.00 1.00 0.81 1.00 0.85 1.00 0.95 0.85 0.92 0.95 1.00 Lanes: 0.00 0.00 0.00 2.00 0.00 1.00 0.00 2.00 1.00 2.00 2.00 0.00 Final Sat.: 0 0 0 3063 0 1615 0 3610 1615 3502 3610 0 Capacity Analysis Module: mm Vol/Sat; Crit Moves; 0,00 0.00 0.00 0.12 **** 0.00 0.10 0-00 0.29 0-57 **** 0.06 **** 0.33 0.00 Wm Green/Cycle: 0.00 0.00 0.00 0.13 0.00 0.13 0.00 0.65 0.65 0.07 0.72 0.00 Volxime/Cap: 0.00 0.00 0.00 0.88 0.00 0.75 0.00 0.45 0.86 0.88 0.46 0.00 Delay/Veh: 0.0 0.0 0.0 44.9 0.0 39.1 0.0 5.4 17.5 56.7 3,7 0.0 mm User DelAdj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ^ AdjDel/Veh: 0.0 0.0 0.0 44,9 0.0 39-1 0.0 5.4 17.5 56.7 3.7 0.0 Mi DesignQueue: 0 0 0 11 0 5 0 13 12 7 12 0 ******************************************************************************** p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P P Ex-PM Wed Dec 12, 2001 18:28:14 SAN MARCOS LANDFILL Page 5-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative **************************************************************** Intersection #7 Auto Prk Wy/Valley Pkwy **************************************************************** Cycle (sec): 100 Critical Vol./Cap. (X): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: **************************************************************** Approach: North Boxmd South Boxmd East Bound Movement; L-T-R L-T-R L-T-R ) **************** **************** 0.767 34.5 C **************** West Boxmd L-T-R II Control: Rights: Protected Include Protected Include Protected Include Protected Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 0 1 1 0 - - - 1 2 0 1 1 0 . - - 1 2 0 3 0 1 1 2 0 3 0 1 J. Volume Module: 1 1 1 I 1 Base Vol: 316 1108 62 133 788 243 497 704 203 206 339 189 Growth Adj : 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00 Initial Bse: 316 1108 62 133 788 243 497 704 203 206 339 169 User Adj: 1 .00 1 .00 1, .00 1.00 1 ,00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00 PHF Adj: 0 .90 0 .90 0, .90 0.90 0 .90 0 .90 0.90 0.90 0 .90 0.90 0 .90 0 .90 PHF Volxime; 351 1231 69 148 876 270 552 782 226 229 377 210 Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 351 1231 69 146 676 270 552 782 226 229 377 210 PCE Adj; 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00 MLF Adj: 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00 Final Vol.: 351 1231 69 148 876 270 552 782 226 229 377 210 --I II • Saturation Flow Module: 1900 1900 1900 1900 1900 1900 0-92 0.94 0.94 0.92 0.92 0.92 2.00 1.89 0.11 2.00 1.53 0.47 3502 3391 190 3502 2663 821 II I I I I Sat/Lane: Adjustment: Lajies: Final Sat-; I Capacity Analysis Module: 1900 1900 1900 0.92 0.91 0.85 2.00 3.00 1.00 3502 5187 1615 IIi I 1900 1900 0.92 0.91 2.00 3.00 3502 5187 1900 0-85 1.00 1615 Vol/Sat; 0. 10 0. 36 0. 36 0. 04 0. 33 0. 33 0. 16 0. 15 0. 14 0. 07 0. 07 0. 13 Crit Moves: * * * * ** ** ** ** * * * * Green/Cycle: 0. 13 0. 50 0. 50 0. 06 0. 43 0. 43 0. 21 0. 22 0. 22 0. 10 0. 11 0. 17 Volxime/Cap: 0. 77 0. 72 0. 72 0. 72 0. 77 0. 77 0. 77 0. 68 0. 63 0. 68 0. 63 0-75 Delay/Veh: 49 .5 21 .0 21 -0 58 .4 26 .7 26 .7 42 .4 37 .1 38 .5 49 .0 44 .5 50 .2 User DelAdj: 1-00 1. 00 1-00 1. 00 1. 00 1. 00 1-00 1. 00 1. 00 1. 00 1. 00 1. 00 AdjDel/Veh; 49 .6 21 .0 21 .0 58 .4 26 .7 26 .7 42 .4 37 .1 38 .5 49 .0 44 .5 50 .2 DesignQueue: 17 37 2 8 30 9 25 35 10 12 19 10 p ^M p ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P MM p p p Ex-PM P P P P P P P P P P Thu Dec 13, 2001 16:13:21 SAN MARCOS LANDFILL Page 1-1 Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volxime Alternative) ******************************************************************************** Intersection #9 Harmony Grove/Questhaven Road ******************************************************************************** Average Delay (sec/veh): 11.5 Worst Case Level Of Service: B ******************************************************************************** Approach: North Bound South Boxmd East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control; Rights; Lanes; Stop Sign Include 0 0 0 0 1 II II I- Volume Module; Base Vol; Growth Adj: Initial Bse: User Adj; PHF Adj: PHF Volume: Reduct Vol: Final Vol.: I Stop sign Uncontrolled Include Include 00 1! 00 00 1! 00 II11 II Uncontrolled Include 0 0 1! 0 0 0 0 1 7 0 1 6 317 3 1 51 4 1 .00 1. 00 1-00 1 .00 1.00 1 .00 1-00 1.00 1 .00 1 .00 1 .00 1 .00 0 0 1 7 0 1 6 317 3 1 61 4 1 .00 1. 00 1.00 1 .00 1.00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 0 .90 0. 90 0.90 0 .90 0.90 0 .90 0.90 0.90 0 .90 0 .90 0 .90 0 .90 0 0 1 8 0 1 7 352 3 1 68 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 1 7 352 3 1 68 4 11 Critical Gap Module: Critical Gp:xxxxx xxxx 6-2 7.1 xxxx 6.2 FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3 It I I I I 4.1 xxxx xxxxx 2.2 xxxx xxxxx 4.1 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx 354 440 xxxx Potent Cap.; xxxx xxxx 694 531 xxxx Move Cap.: xxxx xxxx 694 528 xxxx 70 72 xxxx xxxxx 998 1541 xxxx xxxxx 996 1541 xxxx xxxxx 356 xxxx xxxxx 1214 xxxx xxxxx 1214 xxxx xxxxx II Level Of Service Module: Stopped Del:xxxxx xxxx 10.2 LOS by Move: * * B Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx Shrd StpDel:xxxxx xxxx xxxxx Shared LOS: * * * ApproachDel: 10.2 ApproachLOS: B II I I xxxxx xxxx xxxxx LT - LTR - RT xxxx 561 xxxxx 7.3 xxxx xxxxx A * * LT - LTR - RT xxxx xxxx xxxxx xxxxx 11.5 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx *B * ** * ** * 11.5 xxxxxx xxxxxx B * * 8.0 xxxx xxxxx A * * LT - LTR - RT xxxx xxxx xxxxx IP p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA p k w k m k Ex+Rte6-AM Thu Dec 13, 2001 16:08:19 SAN MARCOS LANDFILL Scenario Report Page 1-1 Scenario: Ex+Rte6-AM Command; Default Command MM Volume: Ex+Rte6-AM Geometry; Ex-AM Impact Fee; Default Impact Fee Trip Generation: Default Trip Generation Trip Distribution; Default Trip Distribution Paths; Default Paths Routes; Default Routes Configuration: Default Configuration mm Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex+Rte6-AM P P P P k p p Thu Dec 13, 2001 16:08:20 SAN MARCOS LANDFILL Page 3-1 Level Of Service Ccanputation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #5 9th Ave/I-15 NB Ramps ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.750 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 18.1 Optimal Cycle: 53 Level Of Service: B ******************************************************************************** Approach; North Bound South Boxmd East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights: Permitted Include II Permitted Include II Protected Include I I Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 p Lanes; 110 0 1 0 0 0 0 0 10 2 0 0 0 0 2 0 1 p Volxime Module: ^Ki Base Vol: 752 27 183 0 0 0 167 672 0 0 854 182 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 p Initial Bse: 752 27 183 0 0 0 187 672 0 0 854 182 User Adj; 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 • PHF Adj: 0.90 0.90 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volume: 836 30 203 0 0 0 208 747 0 0 949 202 fM Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 836 30 203 0 0 0 208 747 0 0 949 202 P PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 pi Final Vol.: 836 30 203 0 0 0 208 747 0 0 949 202 P Saturation Flow Module; ^m Sat/Leme: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment; 0.85 0.85 0.85 1-00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.85 Lanes: 1.93 0.07 1.00 0,00 0.00 0.00 1.00 2-00 0.00 0.00 2.00 1.00 P Final Sat.: 3118 112 1615 0 0 0 1805 3610 0 0 3610 1615 Capacity Analysis Module: |MI Vol/Sat: 0.27 0.27 0.13 0.00 0.00 0.00 0.12 0,21 0.00 0.00 0.26 0.13 Crit Moves: **** **** **** Green/Cycle: 0.35 0.35 0.35 0.00 0.00 0,00 0.15 0.50 0.00 0.00 0-35 0.35 Volxime/Cap: 0.76 0.76 0.36 0.00 0.00 0.00 0.76 0.42 0.00 0.00 0.76 0.36 Delay/Veh: 20.2 20.2 14-8 0.0 0.0 0.0 36.2 9-7 0.0 0.0 20.2 15.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh; 20-2 20.2 14.6 0.0 0.0 0.0 36-2 9.7 0.0 0.0 20.2 15.1 IM DesignQueue: 19 1 5 0 0 0 6 13 0 0 22 5 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc- Licensed to LLG, SAN DIEGO, CA P Ex+Rte6-AM Thu Dec 13, 2001 16:08:20 SAN MARCOS LANDFILL Page 4 -1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Altemative) ******************************************************************************** Intersection #6 9th Ave/I-15 SB Ramps ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.633 Loss Time (sec); 9 (Y+R = 4 sec) Average Delay (sec/veh): 9.0 Optimal Cycle: 40 Level Of Service; A ******************************************************************************** Approach; North Bound South Bound East Bound West Bound Movement; L-T-R L-T-R L-T-R L-T-R Control: Rights; Permitted Include Permitted Include II Protected Include Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes; 0 0 0 0 0 1 1 0 0 1 0 0 1 2 0 1 2 0 1 2 0 0 Volxime Module: Base Vol; 0 0 0 95 47 130 0 838 550 182 1459 0 Growth Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 Initial Bse: 0 0 0 95 47 130 0 838 550 182 1459 0 User Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 PHF Adj: 0.90 0 .90 0 .90 0.90 0 .90 0.90 0-90 0.90 0.90 0.90 0.90 0 .90 PHF Volume: 0 0 0 106 52 144 0 931 611 202 1621 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol; 0 0 0 106 52 144 0 931 611 202 1621 0 PCE Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 MLF Adj; 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 Final Vol.; 0 0 0 106 52 144 0 931 611 202 1621 0 I Saturation Flow Module: Sat/Lane; 1900 1900 1900 Adjustment: 1.00 1.00 1.00 Lanes; 0.00 0.00 0.00 Final Sat.: 0 0 0 I I Capacity Analysis Module: 1900 1900 1900 0.85 0.85 0.85 1.34 0.66 1,00 2167 1063 1615 III 1900 1900 1900 1900 1900 1900 1,00 0.95 0.85 0.92 0.95 1.00 0.00 2.00 1.00 2.00 2.00 0.00 0 3610 1615 3502 3610 0 II Vol/Sat: 0. 00 0. 00 0. 00 0. 05 0. 05 0, 09 0.00 0, .26 0.38 0. 06 0 .45 0. 00 Crit Moves: ** ** **** * *** Green/Cycle: 0. 00 0. 00 0. 00 0. 14 0. 14 0, 14 0.00 0 .62 0.62 0. 09 0 .71 0. 00 Volxime/Cap: 0. 00 0. 00 0. 00 0. 35 0. 35 0. 63 0.00 0 .42 0.61 0. 61 0 .63 0. 00 Delay/Veh; 0 .0 0 .0 0 .0 23 .7 23 .7 30 .0 0.0 6.1 8.3 29 .6 5.1 0 .0 User DelAdj: 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1.00 1 .00 1.00 1. 00 1 .00 1. 00 AdjDel/Veh; 0 .0 0 .0 0 .0 23 ,7 23 .7 30 .0 0.0 6.1 8.3 29 .6 5.1 0 .0 DesignQueue: 0 0 0 3 2 4 0 13 9 6 18 0 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA ^M p p Ex+Rte6-AM Thu Dec 13, 2001 16:08:20 SAN MARCOS LANDFILL Page 5-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #7 Auto Prk Wy/Valley Pkwy ******************************************************************************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.955 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 40.7 Optimal Cycle; 142 Level Of Service; D ******************************************************************************** Approach: North Bound South Bound East Boxmd West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Protected Protected I I Protected II Protected m Rights; Include Include Include Ovl Min. Green; 0 0 0 0 0 0 0 0 0 0 0 0 wm Lanes; 2 0 1 1 0 2 0 1 1 0 2 0 3 0 1 2 0 3 0 1 p 1 Volxime Module: 1 1 1 1 1 Base Vol: 267 723 96 175 943 569 194 371 303 154 590 48 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 Initial Bse; 267 723 96 176 943 569 194 371 303 154 590 46 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Hi PHF Adj: 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 PHF Volxime: 297 803 107 196 1048 632 216 412 337 171 656 53 wm Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0 Reduced vol; 297 803 107 196 1048 632 216 412 337 171 656 53 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 wm Final Vol.; 297 803 107 ..... 1 195 1 ..... 1048 532 1 1 216 412 337 ..... 1 171 1 ...., 656 53 1 Saturation Flow Module: 1 1 1 1 1 1 ^p Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment; 0.89 0.90 0.90 0.89 0.86 0.86 0.89 0.87 0.62 0.89 0.87 0.82 Mi Lanes: 2.00 1,76 0.24 2.00 1.25 0.75 2-00 3.00 1.00 2.00 3.00 1.00 Ml Final Sat.; 3365 3005 401 3365 2043 1232 3365 4985 1552 3365 4985 1552 1 1 Capacity Analysis Module: 1 1 1 1 1 wm Vol/Sat; Crit Moves: 0.09 **** 0.27 0.27 0.06 0.51 **** 0.51 0-06 0.08 0.22 **** 0.05 **** 0.13 0.03 P Green/Cycle: 0.09 0.52 0.52 0.11 0.54 0.54 0.09 0.23 0.23 0.05 0.19 0.30 Volxime/Cap; 0.96 0.52 0.52 0.52 0.96 0.96 0.70 0.36 0.96 0,96 0.70 0.11 P Delay/Veh: 84.2 16.2 16.2 43.0 34.5 34.5 50.9 32.7 74.3 101.3 40.2 25.4 P user DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 P AdjDel/Veh: 84.2 16.2 16 .2 43.0 34.5 34.5 50.9 32.7 74.3 101.3 40,2 25.4 P DesignQueue: 15 23 3 10 31 18 11 18 15 9 30 2 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P k Ex+Rte6-AM Thu Dec 13, 2001 16:08:20 SAN MARCOS LANDFILL Page 6-1 Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volxime Alternative) *******************************************************************************, Intersection #9 Harmony Grove/Questhaven Road *******************************************************************************, Average Delay (sec/veh): 11.4 Worst Case Level Of Service: ] *******************************************************************************, Approach: North Bound South Bound East Bound West Bound Movement; L-T-R L-T-R L-T-R L-T-R I I II I I I I Control: Rights: Lanes: Stop Sign Include 0 1! 0 Stop Sign Include 0 II 0 0 Uncontrolled Include 0 10 0 0 Uncontrolled Include 0 0 0 1 0 I I Volxime Module: Base Vol: Growth Adj; Initial Bse: User Adj: PHF Adj: PHF volume Reduct Vol Final Vol. I-It Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 0 0 0 3 0 7 1 170 0 0 374 1 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00 0 0 0 3 0 7 1 170 0 0 374 1 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00 0 .90 0 .90 0 .90 0 .90 0 .90 0 .90 0 .90 0.90 0 .90 0 .90 0.90 0 .90 0 0 0 3 0 8 1 189 0 0 416 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 8 1 189 0 0 416 1 II -II I 4.1 xxxx xxxxx xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxxx II II I 11 Capacity Module; Cnflict Vol: xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx Move Cap.; xxxx xxxx xxxxx 607 xxxx 416 453 xxxx 641 452 xxxx 641 It 417 xxxx xxxxx xxxx xxxx xxxxx 1153 xxxx xxxxx xxxx xxxx xxxxx 1153 xxxx xxxxx xxxx xxxx xxxxx II I Level Of Service Module: Stopped Del;xxxxx xxxx xxxxx LOS by Move: * * * Movement: LT - LTR - RT Shared Cap,; xxxx 0 xxxxx Shrd StpDel: xxxxx xxxx xxxxx Shared LOS; * * * ApproachDel: xxxxxx ApproachLOS: * xxxxx xxxx xxxxx * * * LT - LTR - RT xxxx 574 xxxxx xxxxx 11.4 xxxxx * B * 11.4 B 8.1 xxxx xxxxx xxxxx xxxx xxxxx A * * * * * LT - LTR - RT LT - LTR - RT xxxx xxxx xxxxx xxxx xxxx xxxxx 8.1 xxxx xxxxx xxxxx xxxx xxxxx A * * * * * xxxxxx xxxxxx Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P P P Ex+RteS-PM Ml P P Thu Dec 13, 2001 16:13:3i SAN MARCOS LANDFILL Scenario Report Page 1-1 Scenario: Ex+Rte6 -PM Command: Default Command Volume: Ex+Rte6 -PM Geometry: Ex-AM Impact Fee: Default Impact Fee Trip Generation: Default Trip Generation Trip Distribution: Default Trip Distribution Paths; Default Paths Routes: Default Routes Conf iguration: Default Configuration p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P P Ex+Rte6-PM Thu Dec 13, 2001 16;13:39 SAN MARCOS LANDFILL Page 3-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #5 9th Ave/I-15 NB Ramps ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X); 0.766 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 17.8 Optimal Cycle: 53 Level Of Service: B ******************************************************************************** Approach: Movement: North Boxmd L-T-R South Bound L-T-R East Bound L-T-R West Bound L-T-R Control: Rights: Permitted Include Permitted Include 1 I Protected Include 1 I Protected Include Min- Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 1 0 0 1 0 0 0 0 0 10 2 0 0 0 c 1 2 0 1 MM 1 Volume Module; 1 1 Base Vol; 548 2 216 0 0 0 329 1006 0 0 690 377 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 548 2 218 0 0 0 329 1006 0 0 690 377 P User Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 0.90 0.90 0-90 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Hi PHF Volume: 609 2 242 0 0 0 366 1118 0 0 767 419 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 HI Reduced Vol: 609 2 242 0 0 0 366 1118 0 0 757 419 PCE Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 m MLF Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 Final Vol-; 609 2 242 0 0 0 366 1118 0 0 767 419 wm 1 Saturation Flow Module; Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 IPI Adjustment; 0.85 0.85 0.85 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.85 Lanes; 1,99 0.01 1.00 0.00 0.00 0.00 1.00 2.00 0-00 0.00 2.00 1.00 wm Final Sat.; 3219 11 1615 0 0 0 1805 3610 0 0 3610 1615 mw 1 Capacity Analysis Module: 1 1 1 1 1 1 Vol/Sat: 0,19 0.19 0.15 0.00 0.00 0.00 0.20 0.31 0.00 0.00 0.21 0.26 P Crit Moves: * * * * **** **** Green/Cycle: 0,25 0.25 0 .25 0.00 0 .00 0-00 0.26 0.60 0.00 0.00 0.34 0 .34 P Volxime/Cap: 0.77 0.77 0.61 0.00 0.00 0-00 0.77 0.51 0.00 0.00 0.63 0.77 Delay/Veh; 25.5 25.5 22.7 0.0 0.0 0.0 27.7 7.1 0.0 0.0 17.7 24.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P AdjDel/Veh: 25.5 25.5 22.7 0.0 0.0 0.0 27.7 7.1 0.0 0.0 17.7 24.2 MU DesignQueue: 16 0 6 0 0 0 9 16 0 0 18 10 ^m ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA p p P P Ex+Rte6-E^ P p P P Thu Dec 13, 2001 16:13:39 SAN MARCOS LANDFILL Page 4-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Altemative) ************************************************************^^^^^^^^^^^^^^^^_^^^^ Intersection #5 9th Ave/I-15 SB Ramps ******************************************************************************** Cycle (sec): 60 Critical Vol./Cap. (X): 0.942 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 19.6 Optimal Cycle; 93 Level Of Service; B ************************************************* ****************************^,^^, Approach; North Bound South Boxmd East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights; Permitted Include i I Permitted Include I I Protected Include It Protected Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 pp Lanes: 0 0 0 0 0 1 1 0 0 1 0 1 0 2 0 1 2 1 D 2 0 0 p Volxime Module: Base Vol; 0 0 0 323 0 246 0 1039 830 191 1078 0 Growth Adj: 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1,00 •M Initial Bse: 0 0 0 323 0 246 0 1039 830 191 1076 0 P User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P PHF Adj: 0.90 0.90 0.90 0,90 0.90 0.90 0.90 0,90 0.90 0,90 0.90 0.90 PHF Volume: 0 0 0 359 0 273 0 1154 922 212 1198 0 MM Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol; 0 0 0 359 0 273 0 1154 922 212 1198 0 PCE Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 wm Final Vol.: 0 0 0 359 0 273 0 1154 922 212 1198 0 P Saturation Flow Module; P Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Adjustment; 1.00 1.00 1.00 0.74 1.00 0.85 1.00 0.95 0.85 0.92 0-95 1.00 wm Lanes; 0.00 0.00 0.00 2.00 0.00 1.00 0,00 2.00 1.00 2.00 2,00 0.00 P Final Sat.: 0 0 0 2808 0 1515 0 3610 1615 3502 3610 0 Capacity Analysis Module: wm Vol/Sat: Crit Moves; 0.00 0.00 0.00 0.13 0.00 0.17 * * * * 0.00 0.32 0.57 **** 0.06 **** 0.33 0.00 P Green/Cycle: 0.00 0.00 0.00 0,18 0.00 0.18 0.00 0.61 0.61 0.06 0.67 0,00 Volxime/Cap: 0.00 0.00 0-00 0.71 0.00 0.94 0.00 0,53 0.94 0.94 0.49 0,00 Delay/Veh: 0.0 0.0 0.0 27.9 0.0 61.8 0.0 7,1 27.4 71,8 5.0 0.0 IP user DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P AdjDel/Veh: 0.0 0.0 0.0 27.9 0.0 61.8 0.0 7.1 27.4 71.8 5.0 0.0 P DesignQueue; 0 0 0 10 0 8 0 16 14 7 14 0 ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P Ex+Rte6-PM Thu Dec 13, 2001 16:13:39 SAN MARCOS LANDFILL Page 5-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volxime Alternative) ******************************************************************************** Intersection #7 Auto Prk Wy/Valley Pkwy ******************************************************************************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.815 Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 35.3 Optimal Cycle: 72 Level Of Service; D ******************************************************************************** Approach; North Boxmd South Bound East Bound west Bound Movement; L-T-R L-T-R L-T-R L-T-R I I Control: Rights: Protected Include Protected Include Protected Include Protected Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 C 1 1 1 0 2 0 1 1 0 2 C 1 3 0 1 2 0 3 0 1 Mi 1 Volxime Module; 1 1 1 Base Vol: 316 1208 62 133 888 243 497 704 203 206 339 169 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 316 1208 62 133 888 243 497 704 203 206 339 169 m User Adj: 1.00 1-00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90 mm PHF Volume: 351 1342 69 148 987 270 552 782 226 229 377 210 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 p Reduced Vol: 351 1342 69 148 987 270 552 782 226 229 377 210 PCE Adj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 Ml MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 Final Vol.: 351 1342 69 148 987 270 552 782 226 229 377 210 IH Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 MM Adjustment: 0.88 0.90 0.90 0.86 0.87 0.87 0,88 0.87 0-81 0.88 0.87 0.81 Lanes; 2.00 1,90 0.10 2.00 1.57 0.43 2.00 3.00 1.00 2.00 3.00 1.00 wm Final Sat.: 3330 3242 167 3330 2609 714 3330 4933 1536 3330 4933 1536 mw Capacity Analysis Module: Vol/Sat: 0.11 0.41 0,41 0,04 0.38 0.36 0.17 0.16 0.15 0-07 0.08 0.14 Ml Crit Moves: **** **** **** **** Green/Cycle; 0 .13 0.54 0,54 0,06 0.46 0.46 0.20 0.22 0.22 0.10 0.11 0.17 HI Volxime/Cap; 0.82 0.77 0,77 0.77 0.82 0.62 0.82 0.72 0.67 0.72 0.67 0.80 Delay/Veh: 53.8 20.5 20.5 63.9 26.6 26.6 45.6 38.4 40.6 51.6 45.6 55.8 P User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P AdjDel/Veh: 53.8 20.5 20.5 63.9 25.6 25.6 45.6 38.4 40.6 51.6 45,8 55.8 DesignQueue: 17 38 2 8 32 9 25 35 10 12 19 10 Hi ******************************************************************************** Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA Ex+Rte6-PM P P WW P Thu Dec 13, 2001 16:13:39 SAN MARCOS LANDFILL Page 6-1 Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ******************************************************************************** Intersection #9 Harmony Grove/Questhaven Road ******************************************************************************** Average Delay (sec/veh): 14.1 Worst Case Level Of Service; B ******************************************************************************** Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L-T-R Control: Rights; Lanes; Stop Sign Include 0 0 0 0 1 I- Volxime Module: Base Vol: Growth Adj: Initial Bse; User Adj; PHF Adj : PHF Volume: Reduct Vol: Final Vol.: I 11-II-• Stop Sign Uncontrolled Include Include 00 1! 00 00 1! 00 ItII-- Uncontrolled Include 0 0 1! 0 0 0 0 1 7 0 1 6 417 3 1 161 4 1 -00 1. 00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1, .00 1.00 1 .00 0 0 1 7 0 1 6 417 3 1 161 4 1 -00 1. 00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1, .00 1.00 1 .00 0 .90 0. 90 0 .90 0.90 0 .90 0 .90 0.90 0.90 0 .90 0, .90 0.90 0 .90 0 0 1 8 0 1 7 453 3 1 179 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 1 7 463 3 1 179 4 II Critical Gap Module: Critical Gp:xxxxx xxxx 6.2 7.1 xxxx 6.2 FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3 4.1 xxxx xxxxx 2.2 xxxx xxxxx 4.1 xxxx xxxxx 2.2 xxxx xxxxx 11 Capacity Module: Cnflict Vol: xxxx xxxx 465 662 xxxx 181 Potent Cap.: xxxx xxxx 602 378 xxxx 867 Move Cap.: xxxx xxxx 602 376 xxxx 867 I I 183 xxxx xxxxx 1404 xxxx xxxxx 1404 xxxx xxxxx 467 xxxx xxxxx 1105 xxxx xxxxx 1105 xxxx xxxxx 11 Level Of Service Module; Stopped Del:xxxxx xxxx 11.0 LOS by Move: * * B Movement: LT - LTR - RT shared Cap.: xxxx xxxx xxxxx Shrd StpDel:xxxxx xxxx xxxxx Shared LOS: * * * ApproachDel; 11.0 ApproachLOS: B I I 1 I xxxxx xxxx xxxxx 7.6 xxxx xxxxx * * * A * * LT - LTR - RT LT - LTR - RT xxxx 404 xxxxx xxxx xxxx xxxxx xxxxx 14.1 xxxxx xxxxx xxxx xxxxx * B * * * * 14.1 xxxxxx B * 8.3 xxxx xxxxx A * * LT - LTR - RT xxxx xxxx xxxxx xxxxx xxxx xxxxx * * * xxxxxx p p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA P APPENDIX C STANDARD STREET SEGMENT CLASSIFICATION TABLES BY JURISDICTION p P P p P p p p p p p p TABLE 3 ROADWAY CAPACITY STANDARDS j Fac. Type # Of ADT Caoacitv i Lanes LOS C LOS D LOS E 1 Freeway 6 108,000 120,000 135,000 ! 8 145,000 160,000 175,000 i 10 175,000 195,000 215,000 ! Prime Arterial 6 46,000 51,200 57,000 { Prime Arterial-Augmented 6 53,000 60,000 66,000 1 Major Roadway 4 28,200 31,600 35,200 ; 1 Major Roadway -Augmented 4 + 36,300 41,000 45,400 1 [ Collector Roadway 4 26,000 29,200 32,400 1 j Local Roadway 2 11,200 12,600 14,000 i 1 Local Roadway-Augmented 2 + 16,000 18,000 20,000 i * Capacity means the maximum volume for the stated level of service. C-2 4 P MM Strcei Tabic 2 CITY OF ESCONDIDO PROPOSED LEVEL OF SERVICE STANDARDS STREET SEGMENT AVERAGE DAILY VEHICLE TRIP THRESHOLDS • Cross (7:.-is.sification Sections Level of Service •M A B C D E •M Prime Arterial (6 lanes) 106/126(NP) 15,000 30,000 42,000 51,000 60,000 (8- lanes) (NP) 17,500 35,000 49,000 59,500 70,000 Major Road (4 lanes) 82/i02(NP) 14,800 24,700 29,600 33,400 37,000 (6 lanes) (NP) 12^00 25,000 35,000 42,500 50.000 • Coliccior (4 lanes) 64/84(NP) 13.700 2Z800 27.400 30,800 34.200 Ml (4 lanes) (WP) 5,000 10,000 14,000 17,000 20,000 P Local Collector (2 lanes) 42/66(NP) 4,000 7,500 10,000 12400 15.000 HI |ural Collector (2 lanes) (WP) 2400 5,000 7,000 8400 10.000 PK CKP) No Parking (WP) With Paridng 1) Levels of service are no; applied to residential streets since their primary purpose is to serve abutting lots, not cany througfa traffic. Levels of service normally apply to roads carrying tbrough traffic between major trip generators and anraaors. 2) This tabie is not applicable for street networks where two intersecting streets both operate ax or below LOS C or where one street operates at or below LOS D. In tiiose cases detailed peak hour capacity analyses arc necessary. f ik p p 1 25 m p P August II, 199\ TAHLi;i •EBAILY VEHICLE' CIRCULATION ELEMIOT • ItOABS '' ' ^nme ArtemI M^orKoad CoSectar Toro CnTTestPT lig^ Coilectca: ^^^°3i CoHecSor . Collector Recreatiosal. Rnral Momuaia . 126/146 102/122 7S/9S 64/S4 •-• 54/74 40/60 40/S4 40/60 40/400 40/100- <3$,0OQ . <22^00 <14,S00 <13,700 • <3,Q00 <4!00. <1^0 <1^0 •<1^0 <1^0 NON - COiClILATION ELEMENT'"• ROABS CLASS Kssidexsial CoSector Rssxdciitsal Rcsad • * \ X-SECnON .32/52 I^EVm OF SERVICE <54,000. <37.0QO <24.700 .<^00 •<6.000 <4,ioe <44G0 <4,1Q0 <4,ioa . <4400 . <70,000 <44,600 <29,600 <27,400 <9.5Q0 '<7,100 <7,l00 <7,100 <7400 <7.100 D • • -E <S6,p00 <108,060 <0,D0O <57,000 -<33,400 . <37^ <30^' <34^G0 <i3-5oo: <i^QS0 <10^ <W00 <10^ : <16,200 <10^ <16a00 <p^ <16^ <0^ <16^ LEVEL OF SERVICE B <:200 •lewsls'wr .servfcs are id q?pHe3 to 3Bdi^^ -42- MON 16:52 FAX 7605914135 COSM DEV SERVICE DEPT a/i>ceO 1011 — pifl 1^: w TABLE «-l g.TANDARD STREET nTJ^ggrprnATrnwc ROAD <V/C) C0.25> A CO.50) _B Prime Arterial Major Arterial 106/126 15.000 (NP) 82/102 10.OOO (NP) Rural Major Arterial^ 94/154 <NP) 30.000 20.000 <0.70) _ c CO.85) Cl.OO) P E 42,000 28.000 51.000 34,000 60.000 40,000 Secondary Arterial Collectior Indus crifll 64/84 (NP) 40/60 (NP) 64/84 46/66 Residential Collector 48/68 (WP) 4iO/60 (WP) Reslfiential Streec^ Incerint Road^ 36/56 28/40 or 28/60 10,000 20.000 28.000 34,000 40,000 mm 7,500 15,000 21,000 25,500 30.000 HI P 4.000 _ 2.500 7,500 5,000 10,000 7,000 12,500 8.500 15,000 10,000 m 5,000 2.500 10,000 5.000 14,000 7,000 17.000 8.500 20,000 10.000 mt mm 2,500 5.000 7.000 8.500 10,000 wm * * 7,000 * * wm * * 500 * * wm * * 2,800 * * m c«rry through ttaffic^ "Tf '^""^"e " ry^. throws -«^.lc .^S'^^orS^p" e^e^L'L"^^^^^^^^^^ (NP) No Parking V (WP) With Parking (V/C) Volume to Capacity Ratio Source: City of Marcos Engineering Department and ffiUdan & Associates P P Mt APPENDIX D *" FREEWAY LEVELS OF SERVICE THRESHOLDS p p p p p P P P P P P 4.2.1 Freeways and Related Facilities Non 1-5 Freewav Seamfints - Volume to n^p^citv Analysk considered an acceptable peak period condition ^ °' TABLE 4.3 FREEWAY SEGMENT LEVEL OF SERVICE DEFINITIONS 1 LOS ! V/C 1 Congestion/Delay Traffic Description B 0.42-0.62 iNone None Free flow. ^^^^^^m C n 0.63-0.80 None to minimal . Free to stable now. iipht to moderate volumfi.<s Stable Tlow, moderate volumes, freedom to maneuver noticeably restricted U 0.81 -0.92 IWinimal to substantial Approaches unstable flow, heavy volumes, very limited freedom to maneuver c 0.93-1.00 Significant Extremely unstable flow, maneuverability and psycholooical comfort eYtrAmoiw nnnr F(0) 1.01-1.25 Considerable; 0-1 hour delay Forced tlow, heavy congestion, long queues form behind breakdown points, .^top *^nd no P(l) 1.26-1.35 Severe; 1-2 hour delay Vciy liaavy congestion, very long queues. F(2) c/o\ 1.36-1.45 Very severe; 2-3 hour delay. Extremely heavy congestion, longer queues, more " numerous breakdown point.q, lnnn**r<iton nnrinrH« F(3) >1.46 Extremely severe; 3+ hour delay undiock. —^ Source: Caltrans District 11,1992. P III 56 Central l~5 Corridor Study RTE 76, SD Co Miie- post Description 12.47 Mission Road 14.70 Gird Road R17.01 Oid Highway 15 R1730 Jet. Rte. 15 23.01 Pala Mission Road 24.13 County Road S-16 29.87 Cole Grade Road 32.87 Rincon Springs, Valley Center Road 34.41 Milepost Equation =R34.46 Peak Hour Pk. Mo. Annual 1,150 14,600 13,400 1,100 14,400 13,200 1,750 2U00 18,700 490 5,400 4,900 280 3,050 2,750 400 4,400 4,000 340 3,650 3,400 i5!Sf TRAFFIC VOLUMES ADT RTE 78, SD Co 390 4,200 3,900 R34.84 Milepost Equation =34.88 38.25 Palomar Mountain Road 47.79 East Palomar Road 270 2,900 2,700 200 2,200 i050 220 1.650 1.600 5232 JcL Rte. 79 -" In Oakland From Route 880 to East 14th Street ROUTE 77. DISTRICT 4 Alameda County 0.10 Oakland, JcL Rie. 880 .... 037 Oakland. East 12th Street — 0.45 Oakland, East 14tfa Street 1,850 20.600 20,100 1,450 15.600 14,500 ROUTE 78. RfHite 5 in Oceanside to Route 10 Near BIythe DISTRICT 11 San Diego County 0.00 Oceanside, Jet Rte. 5; Begin Fieeway 10,500 134.000 129,000 0.74 Oceanside. Jefferson Street Mile- post ADT Description 0.74 Oceanside, Jefferson Street Peak Hour Pk. Mo. Aimual 9,500 121,000 117,000 1 JO Oceanside, Ei Camino Real ... 3.32 Oceanside, College Boulevard 438 Vista, Emerald Drive Interchange 5.94 Vista, Broadway/Melrose Drive . 6.94 Vista, Sunset Drive 7.71 Vista, Mar Vista Drive 9.09 Sycamore Avenue 10.61 San Marcos, Randio Santa Fe ... 12.13 San Marcos, San Marcos Boulevard 12.91 San Marcos, Twin Oaks Valley Road 11,000^ 140.000 135,000 9,300 119,000 115,000 10.000 126,000 121.000 9300 116.000 112.000 9,200 115,000 111,000 8,900 112,000 108,000 10,000 122,000 106.000 9,400 116.000 113,000 11,100 138.000 134,000 11.100 138.000 134,000 14.24 San Marcos, Richland Road 15.49 Nordabl Road 11,000 136.000 13i000 11,500 136,000 131,000 R1634 Escondido, JcL Rte. 15 R17.27 Esamdido, Centre Qty Paricway R17.34 End Freeway N 17.68 Escondido, Broadway/ lincohi Parkway — 6300 75,000 7^000 4.T00" 49.000 47.000 4,750 51,000 47,000 Nn.73 Milepost Equation =T17.68 2350 24.800 23.100 T17.82 Escondido, Mission Avenue 2,250 24,100 22,400 Tl 8.07 EscoffiUdo, Wadungton Avenue 2.400 25^ 23.700 T18.41 Escondido, Hidtory Street 87 P • n m m m p RTE 5,SDCo Mile- post Peak Hour PL Mo. Annual 1999 TRAFFIC VOLUMES ADT /V/C p»?r RTE 5, SD Co Description R15.41 San Wego, Pershing Drive 17,500 214,000 205.000 R16.07 San Diego, Jet. Rte. 163 16.300 200^ 191,000 R16.31 San Di^. Sixfli AVCTUC .^.(^r......!!!:.^... Mile- post ADT Description R28.43 San Diego, La Jolla Drive ... R29.46 San Diego, Genesee Avenue R30.4& ...San Di^o, Son«nto Peak Hour PL Mo. Annual 11,900 154,000 140,000 16.300 200.000 191,000 R.30.4& Di^o, Son«nto / 11 17300 211,000 202,000 C[5 t * ^ ^^OinM n:_ i_ n._ once j. 11,700 152,000 138,000 R16J9 San Di^o. Fira Avoiue R16.9I San Diego, Hawthorn Street Rn.21 San Diego, Laurel Street R30.68 San Diego, JcL Rte. 805 Soafli 13,700 167,000 160,000 16,000 195,000 187.000 ,800 126,000 116.000 18,500 262,000 245,000 R32.90 San Diego. Carroel VaUey Road R34.13 San Di^, Del Mar Hdghts Road 16.200 198,000 189,000 R17J3 San Dii^o. Pacific Highway Viaduct... R36.27 5an Diego. Ma De La \Wle R37.38 Solana Beach, Lomas Santa Fe Drive 17,600 248,000 232.000 17,200 242,000 227,000 15,800 225,000 209,000 R17.77 San Diego, Sassafras Streel 13.200 160,000 149,000 12.800 156,000 145,000 16,000 227,000 211,000 R38.62 Encinitas, Mandiester Avenue .... R18.28 San Diego, Washington Street R39.83 Encinitas. Birmingham Drive 16,500 200,000 186.000 R19.03 San Di^. Old Town Avenue „ „ 16,900 196,000 190,000 R40.60 Encinitas, Santa Fe Drive 14,200 203,000 188.000 14.100 202.000 187.000 206.000 187,000 R20.06 San Di^, JcL Rtes. 8 and 209 R20.82 San Diego, Mission Bay/ 17,500 220,000 205.000 Sea WorM Drives R41J1 Encinitas, Enctoitas Boulevard R42.71 Encinitas. Loicadia Boulevard R22.26 San Die^, aairemmt Drive R22.87 San Di^o. De Anza Road R23.48 San Die^. JcL Rte. 274 18,900 230.000 217,000 17,600 214,000 202,000 13.800 167,000 158,000 14,500 206,000 187,000 14,100 200.000 182,000 R44.07 Carisbad, La CosU Avenue . 12300 149,000 141.000 R4557 Cailsbad, Poinsettia Lane '. R47.03 Carisbad. Palomar Aiiport Road 14,100 200,000 182,000 13,900 197,000 179,000 R23.93 San Diego, NBssirai Bay Drive R2S.9S San Dteso. JcL 52 East l^ilooo ^ 16,600 215,000 195.000 15.400 199,000 181,000 199,000 181,000 R47.98 Carisbad, Cannon Road .^fl 15.000 209.000 192.000 R49.28 Carisbad, Tamuack Avaine R26.79 San Diego, Gihnan Drive R28.16 San Di^, Nobel Drive . 14,600 203,000 187,000 R50.il Carisbad. Ehn Avenue . 13,700 177.000 161,000 12,000 155,000 141,000 R28.43 San Di^, La JoDa Drive _ 14,600 203,000 187,000 R50.68 Carlsbad, Las Flores Drive 15.000 209.000 192,000 R51.20 Oceanside. JcL Rte. 78 East. Vista Way •5 14 APPENDIX C Air Quality Study AIR QUALITY IMPACT ANALYSIS SAM MARCOS IiANDFILL FINAL CLOSURE: PLAN SAN DIEGO COUNTY, CALIB^RNIA Prep£u:ed for: P&D Environmental Attn: Sophia Habl 401 W. "A" Street, Suite 2500 San Diego, CA 92101 Dated: January 31, 2002 Prepared by: Hans D. Giroux Senior Analyst; Giroox & Associates p il p m p m TABLE OF CONTENTS Page No 1. REGULATORY FRAMEWORK 1 l.A Ambient Air Quality Stsmdards (AAQS) 1 1. B Air Quality Management Planning 2 2. EXISTING CONDITIONS 3 2. A Meteorology/Climate 3 2. B Baseline Air Quality 4 3. THRESHOLDS OF SIGNIFICANCE 7 4. AIR QUALITY IMPACTS 11 MITIGATION 16 CUMULATIVE IMPACTS 16 PROJECT ALTERNATIVES 18 REFERENCES 20 Tables and Figures p T2ible 1.1 AnOsient Air Quality Standaxds wm ^ Table 2.1 Air Quality Monitoring Summary pi Table 3-1 Screening-Level Criteria for Air Quality Impacts Table 4-1 Regional Mobile Source Exhaust Emissions Table 4-2 Daily PM-10 Emissions Figure 2-1 San Diego Air Basin Monitoring Stations 1. REGULATORY FRAMEWORK l.A Ambient Air Quality Standards (AAQS) In order to gauge the significance of the air quality impacts of the implementation of the San Marcos Landfill Final Closure Plan, those impacts, together with existing backgroiind air guality levels, must be compared to the applicable ambient air quality standards. Califomia standards supplement the national AAQS in adding other pollutants or exposure periods. For those pollutants where State and federal standards apply to the identical pollutant and exposure times. State standards must be at least equally restrictive, and, in most cases, are more consearvative than their federal counterparts. State and national standards are the levels of air quality considered safe, with an adequate margin of safety, to protect the public health and welfare. They are designed to protect those people most susceptible tc further respiratory distress such as asthmatics, the elderly, very young children, people already weakened by other disease or i1Iness, and persons engaged in s trenuous work or exercise, who are called "sensitive receptors." Recent research has shown, however that chronic exposure to ozone at levels that marginally meet standards may nevertheless have adverse health effects. Just meeting standards may therefore not be sufficient to protect public health unless an additional margin of safety is created. National AAQS were established in 1971 for six pollution species. States have the option to add other pollutants, require more stringent compliance, or to include different exposure periods. Because California had established state AAQS before the federal action and because of iinique air quality problems introduced by the restrictive dispersion meteorology, there is considerable difference between State and national clean air standards. Those standards currently in effect in California are shown in Table 1.1. The entries in Table 1.1 include the federal standards for chronic (8-hour) ozone exposure or for ultra-small diameter particulate matter of 2.5 microns or less in diameter {called "PM-2.5"). Implementation of these standards had been put on hold through an order issued by the U.S. Circuit Court of Appeals. This order was appealed to the U.S. Supreme Court which heard the case in late 2000. In late February, 2001, the Supreme Court ruled unanimously that EPA did not require specific congressional approval to adopt national clean air standards, and that a cost:benefit analysis is not required il for health-based standards. The Court also aruled, however, that there was an implementation schedule inconsistency m 1 p between "new" and "old" standards. This schedule issue must be resolved before implementation actions can begin. Until this attainment schedule conflict is resolved, data collection for these two standards is ongoing, but no attainment planning or enforcement is occurring at this time. l.B Air Quality Management Planning The San Diego Air Basin (SDAB) is presently in attainment of all national and State AAQS except ozone and particulate matter less than or equal to 10 microns (PM-10) . Due to violations of the State AAQS for ozone in the (SDAB) , State law requires that a plan be developed to outline the pollution controls that will be undertaken to improve air quali ty. In San Diego County, thi s attainment planning process is embodied in a regional air quality management plan developed by the San Diego Air Pollution Control District (SDAPCD) . Several plans had been adopted in the late 1970s and early 1980s under the title Regi ona1 Ai r Qua1i ty Strategies (RAQS). More recent planning efforts have been modifications, improvements and updates of the earlier RAQS efforts. All progress towards attainment, including offsetting the P p H Specifically a plan to attain the State standard for ozone as quickly as possible was developed in 1994 through an update of the 1991 RAQS. A Triennial Revision updating the RAQS was adopted by the SDAPCD governing board on August 8, 2001. Federally-enforceable local rules are combined with those from all other Califomia ozone non-attainment areas to p create the Califomia State Implementation Plan (SIP) , which ^ is actually the federal attainment plan. The SIP is adopted by the Air Resources Board (ARB) after public hearings , and forwarded to the U. S. Environmental Protection Agency (EPA) P for its approval. The SIP includes all control measures k needed for the California air basins to attain the national AAQS for ozone by respective attainment deadlines. m During the planning process and smog formation modeling, it was anticipated that the SDAB could meet the federal ozone standard by the year 1999 without the creation of any new control programs not already in progress. Airsheds demonstrating an ability to meet standards by the end of 1999 (in the absence of transport from one basin to another) may be classified as having a "serious" ozone problem instead of being classified as "severe". The SDAPCD requested that EPA reclassify the air basin from "severe" to "serious". This request was siibsequently approved. P PR ii effects of growth, is expected to be derived from existing local, state and federal mles and regulations. With the continuation of year-to-year vehicular exhaust pollution reduction and with continued implementation of stationary source rules, small additional future emissions reductions are anticipated despite forecast increased basinwide population growth. Controversial rules previously evaluated that were judged by some people as overly intrusive into personal lifestyles (mandatory trip reduction programs or minimum average vehicle occupancy goals) are not needed to predict attainment. Any violations of federal ozone standards in the year 2000 or beyond are forecast to occur only on days when transport from the Los Angeles Basin creates substantially elevated baseline levels upon which any local basin impacts would be superimposed. Transport of smog precursor emissions from Mexico into San Diego County has been expressed as a concern, but wind conditions on days with high smog potential usually do not lead to substantial cross- border transport into San Diego County. With continued emissions reduction, and with moderately favorable meteorology, the San Diego Air Basin met the federal ozone standard for the first time in history in 1999 at every air monitoring station. A continued history of attainment is necessary for redesignation as an "attainment area" (no more than three violations in a three-year data record). San Diego has received two one-year extensions of its ozone attainment deadlines from the U.S. EPA, and is on track for attainment of the federal ozone standard by the end of 2001. However, the SDAB will still be in non-attainment for the State AAQS for ozone. However, it is clear that air quality in San Diego County has improved dramatically in the last two to three decades, and both the severity and frequency of unhealthful air quality has declined significantly. 2. EXISTING CONDITIONS 2 .A Meteorology/Climate The climate of the project area is characterized by a repetitive pattem of frequent early moming cloudiness, hazy afternoon sunshine, and clean daytime onshore breezes. Because of the distance to the ocean and intervening terrain, San Marcos has slightly greater fluctuations of temperature than locations closer to the ocean. Limited rainfall occurs in winter while summers are often completely dry. An average of 10 inches of rain falls each year from November to early April. Atmospheric conditions create a desirable living climate, but limit the ability of the atmosphere to disperse air pollution. Many air quality standards have reached attainment status only in the last decade. Mt The onshore winds across the coastline diminish quickly when they reach the foothill communities east of San Diego, and " the s inking air wi thin the of fshore high pres sure sys tem ^ forms a massive temperature inversion that traps all air pollutants near the ground. The resulting horizontal and |p vertical stagnation, in conjunction with ample sunshine, cause a number of reactive pollutants to undergo photochemical reactions and form smog that degrades visibility and irritates tear ducts and nasal membranes. High smog levels in coastal communities occasionally occur mt when polluted air from the South Coast (Los Angeles) Air Basin drifts seaward and southward at night, and then blows wm onshore the next day. Such weather patterns are particularly frustrating because no matter what San Diego County does to achi eve clean air, such interbasin transport wi 11 cause occasionally unhealthy air over much of the County. " mw 2.B Baseline Air Quality Pro3ect area air quality can be best characterized from ambient measurements made by the San Diego County Air "* Pollution Control District (APCD), the agency responsible for air quality planning, monitoring and enforcement in the San * Diego Air Basin (SDAB). As shown in Figure 2-1, the APCD air p quality monitoring station located in Escondido is the closest station to the project area that monitors the full p spectrum of air quality. Table 2.1 summarizes the last five years of monitoring data from the Escondido station. Healthful air quality is seen in almost every pollution category. The one-hour national ozone standard has been * exceeded only once within the last five years (one exceedance P per year is permissible under federal attainment guidelines). The nationa 1 8-hour ozone standard was met for the first time in 1999. The more stringent State standards for ozone and the State standard for respirable particulates (PM-10) were p i • li m m k k m FIGURE 2-1 SAN DIEGO AIR BASIN MONITORING STATIONS TABLE 2.1 AIR QUALITY MONITORING SUMMARY (Number of Days St£Uidards Were Exceeded and Maxima For Periods Indicated) (Entries shown as ratios = samples exceeding standard/samples taken) Pollutant / Standeurd 1997 1998 1999 2000 2001 Ozone (O3) wm 1-Hr. >0.09 ppm (S) 5 9 1 6 4 1-Hr. >0.12 ppm (F) 0 0 0 0 1 wm. 8-Hr. >0.08 ppm (F) 2 5 0 3 1 Max. 1-Hr. Cone, (ppm) 0.11 0.12 0.10 0.12 0.14 mm Carbon Monoxide (CO) mm 1-Hr. >20 ppm (S) 0 0 0 0 0 8-Hr. > 9 ppm (S,F) 0 0 0 0 0 Max. 1-Hr. Cone. (ppm) 9. 10. 10. 9. 9. mm Max. 8-Hr. Cone, (ppm) 5.0 4.6 5.3 4.9 5.1 Nitrogen Dioxide (NO2) lam 1-Hr. > 0.25 ppm (S) 0 0 0 0 0 Max. 1-Hr. Cone. (ppm) 0.12 0.09 0.10 0.08 0.07 Respirable Particulates (PM-•10) 24-Hr. > 50 ug/m^ (S) 3/58 1/61 1/60 2/60 1/60 24-Hr. >150 ug/m^ (F) 0/58 0/61 0/60 0/60 0/60 mm Max. 24-Hour Cone. {]ig/m^) 63. 51. 52. 65. 74. Source: San Diego Air Pollution Control District, Escondido Monitoring Station, CARB Voyager CD, 2000, "arb.ca.gov" (2001 data) Key: (S) = state standard, (F) = federal standard IM exceeded on a limited number of days. Ozone, and to some extent particulates, are pollutants whose precursors are generated elsewhere and then carried into the local area by * prevailing wind patterns. Levels of carbon monoxide or nitrogen oxides, which are more indicative of local source/receptor relationships, are seen in Table 2.1 to be ^ very low in the proposed project area. ^ Basinwide attainment of the federal one-hour ozone standard (no more than three violations in the last three years) appears to qualify the basin for redesignation as an "attainment" area as opposed to its present non-attainment status. The redesignation request is under consideration by ^ the EPA, and may be granted later this year. IP. 3. THRESHOLDS OF SIGNIFICANCE Although the County of San Diego does not have any adopted thresholds of significance for CEQA, Appendix G of the CEQA **• Guidelines contains guidance as to what would be considered a ^ significant impact on air quality. The following are the five (5) questions relating to impacts of a project on air ... quality from Appendix G of the State CEQA Guidelines, modified to reflect specific conditions in San Diego County. The indicators are to be used to assess possible impact significance of the proposed project: ^ A. Would the proposed project conflict or obstmct the implementation of the San Diego Regional Air Quality — Strategy (RAQS) or applicable portions of the State Implementation Plan (SIP)? B. Would the proposed proj ect result in emissions that would violate any air quality standard or contribute ^ s\ibstantially to an existing or projected air quality violation? C. Since San Diego County is presently in non-attainment for the federal and/or State Ambient Air Quality ^ Standards for ozone (O3) and particulate matter less than 10 microns (PM-10), would the proposed project result in ^ a cumulatively considerable net increase of PM-10 or exceed quantitative thresholds for ozone precursors, — oxides of nitrogen (NOx) and volatile organic compounds (VOCs)? D. Would the proposed project expose sensitive receptors *" (including, but not limited to schools, hospitals, M resident care facilities, or day-care centers) to siibstantial pollutant concentrations? E. Would the proposed project create objectionable odors a* affecting a substantial number of people? For projects that create mainly combustion exhaust whose emissions require complex photochemical reactions to reach ^ their most harmful state, there is no way to measure the impact to establish a "substantial contribution" under wm Threshold B because individual impacts will be dispersed to immeasurably dilute levels. It is the cumulative impact, however, of thousands of such small individual sources that leads to regionally degraded air quality. Various air " pollution control/management agencies have therefore MM developed guidelines using total project emissions instead of ambient air quality as a surrogate for determining regional m impact potential. m "Per Section 40002 of the California Health & Safety Code, jurisdiction for regulation of air emissions from non-mobile * sources within San Diego County has been delegated to the San P Diego Air Pollution Control District (APCD). As part of their air quality permitting process, the APCD has H established thresholds for the preparation of Air Quality Impact Assessments (AQIA). APCD Rule 20.2, which outlines these thresholds, states that any project "which results in an emissions increase equal to or greater than any of these thresholds, must "demonstrate through an AQIA... that the project will not (A) cause a violation of a State or national ambient air quality standard anywhere that does not already exceed such standard, nor (B) cause additional violations of a national ambient air quality standard anywhere the standard is already being W exceeded, nor (C) cause additional violations of a state tfl ambient air quality standard anywhere the standard is already being exceeded. . . nor (D) prevent or interfere with the attainment or maintenance of any State or national ambient air quality standard." P "For projects whose stationary-source emissions fall below P these thresholds, no AQIA is typically required, and H emissions are presiomed to be de minimis. " "In the absence of formally adopted CEQA significance S thresholds, County staff has recommended that these screening criteria be used as numeric methods to demonstrate that a proj ect's total emi ssions (e.g., stationary and fugitive P emissions, as well as emissions from non-road mobile sources) • would not result in a significant impact to air quality. In P il 8 P IIH P p m the event that emissions exceed these thresholds, additional modeling would be required to demonstrate that the project's air quality impacts are less than significant. Since APCD does not have AQIA thresholds for emissions of volatile organic corripounds (VOC) , County staff recommends the use of the threshold for reactive organic compounds (ROC) from the CEQA Air Quality Handbook for the former Southeast Desert Air Basin (SEDAB) which has ozone levels similar to the SDAB. The screening thresholds are included in Table 3.1 below." Air quality impacts may also derive from "non-criteria" (pollutants with clean air standards) . Such irtipacts could derive from emissions that have no known safe exposure level, or those that may cause nuisance while not exceeding any relevant niimerical emissions standard. For toxic air contaminants (TAC), the SCAQMD, in its CEQA Air Quality Handbook, identifies an excess individual cancer risk of one in one million to be a de minimus risk. Risk levels of up to ten in one million are considered acceptable if toxic best available control technology (T-BACT) is used. Any individual cancer risk from project-related TACS of less than one million would be considered a less than significant risk. Emissions of dusts, fumes, mists or odors that annoy any considerable number of reasonable people are considered a nuisance iinder the California Health & Safety Code. Project- related emissions that create a nuisance would be considered to have a significant air quality impact. m TABLE 3.1 Screening-Level Criteria for Air Quality Inpacts Pollutant Respirable Particulate Matter (PM-10) Oxides of Nitrogen (NOx) Oxides of Sulfur (SOx) Carbon Monoxide (CO) Lead and Lead Components Volatile Organic Compounds (VOCs)* < TOTAL EMISSIONS > Lbs/Hour Lbs/Day Tons/Year 25 25 100 100 250 250 550 3.2 75 15 40 40 100 0.6 10' * Threshold for VOCs based on the threshold of significance for reactive organic gases from Chapter 6 of the CEQA Air Quality Handbook of the South Coast Air Quality Management District for the Southeastem Desert Air Basin. ** 10 tons per year threshold based on 55 lbs/day times 365 days/year divided by 2000 lbs/ton. P k m m m m m m m p 4. AIR QUALITY IMPACTS (a) Would the project conflict with or obstruct implementation of the applicable air quality plan? The San Diego Air Basin air quality plan does not explicitly include any provisions for construction activities such as those associated with the proposed project. Statewide emissions controls programs for heavy-duty, off-road equipment are being phased in over the next decade. These programs are built into the air quality plan in terms of forecasting future emissions from off-road, diesel powered equipment. The air quality plan does include all mles and regulations of the SDAPCD. The project is anticipated to comply with any applicable mles on dust control and use of low-sulfur fuels. The on-site power generation plant using landfill gas is an APCD-permitted source. Project inpacts relative to air quality plan consistency are therefore less than significant. (b) Would the project violate any air quality standard or contribute substantially to an existing or projected air quality violation? Most project-related air quality impacts will derive from the mobile sources operating on the landfill and on public roads. Equipment movement on unpaved soils and earth handling activities will create fugitive dust. Small dust particles will be carried off-site, and large particles will be redeposited near their source. The emissions will be widely dispersed in space and time by the nature of the source itself. Any associated photochemical smog generated by these activities will occur hours later and many miles away. Emissions data from constmction activities are often imprecise as to both location and magnitude of emissions. It is therefore not possible to reliably calculate to off-site exposure without a better knowledge of the exact location and character of any project-related emissions. These source characteristics change hour by hour and day by day. Project- related impact significance was therefore determined from the emissions-based thresholds identified above, assiiming that a violation of those thresholds represents an incremental, but significant impediment to existing regional non-attainment of air quality standards for ozone and particulate matter. "* Project-related construction activity emissions were M calculated for a fleet of 18 pieces of constmction equipment, for the inport of 400 tmck-loads of earth, for 11 on-site extraction of an approximately equivalent amount of cover material, and for work crew commuting. Project-related ^ exhaust emissions are summarized in Table 4.1. The corresponding PM-10 emissions burden is shown in Table 4.2. — NOx exhaust emissions from on-site equipment and on-road haul tmcks will exceed the adopted significance threshold by "* approximately 50 percent. The PM-10 standard will be ^ exceeded by 550 percent. [c) Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or State ambient air quality standard (including releasing emissions " that exceed quantitative thresholds for ozone precursors)? ^ Air quality impacts that exceed the thresholds for an m individually significant impact are considered to have a cumulatively significant impact as well. Because the project-related temporary air quality impact is individually significant, it is, by definition, also cumulatively • significant. ^ ;d) Would the project expose sensitive receptors to substantial pollutant concentrations? ^ Toxic air contaminants would have a " substantial" exposure risk if they were generated by site activities, and if there P was a sensitive population in the project vicinity. Exposure m risk is expressed as a theoretical worst-case outdoor exposure of 24 hours/day, 365 days/year, 7 0 years o f exposure. This cradle-to-grave analysis procedure where a receptor is confined to the front porch for a lifetime, is not a realistic assumption. m k However, even with this assuirption, carcinogenic diesel M exhaust impacts adjacent to construction activities have been demonstrated to be less than significant (Lake San Marcos M EIR, 2000) for residents adjacent to the project property line with comparable diesel exhaust particulate levels. With greater source/receptor separation at the project site, diesel exhaus t expo sure wi 11 be a de minimis publi c hea1th P risk. p (e) Would the project create objectionable odors affecting a ^ substantial number of people? *• The proposed project is designed to minimize local * odor risk by insuring long-term landfill cover integrity. No M substantial quantities of buried refuse will be disturbed by the P m 12 P P m wm m p proposed project. Enhancement of cover integrity as part of long- teim closure could encourage lateral gas migration to weaker cover area. San Diego County i s required to conduct periodic gas migration surveys to detect any lateral gas escape routes. If such pathways are detected, remediation through increased extraction vacuum pressure or through local cover addition must be iitplemented according to the terms of the final closure plan. Odor impact potential is believed to be reduced by the execution of this closure plan. Impact Summary: Based upon the air quality analysis, the emissions associated with the project would cause the following impacts: Project-related construction emissions (off-road equipment mobile source emissions originating from diesel-powered construction equipment) will exceed NOx thresholds. Project-related constmction activity emissions (predominantly fugitive dust from earth moving activities) will exceed PM-10 thresholds. 13 TABLE 4.1 REGIONAL MOBILE SOURCE EXHAUST EMISSIONS (lbs/day) Source: ROG NOx CO PM-10 On-Road Truck Exhaust (a) 20 Commuter Vehicles (Crews & Management.) (b) On-site Diesel Equipment (c) Off-Road Trucks (d) 6 TOTAL 32 Significance Threshold 185 2 4 131 381 55 (a) = (bl = 400 trips X 20 mi./round trip = 8000 mi./day - 20 trins X 50 mi . /rnn-nH hr-in = 1 finn mi /r\;^\r 160 3 62 57 253 250 18 22 14 14 27 550 <1 2 100 P P pp P (c) = 18 pieces X 100 ea. X 8 hours X 0.5 load = 7,200 HP-HR P (d) = 630 trips X 0.5 mi./trip / 10 mi./hr = 31 .5 hours/day SIP m Emission Factors ROG NOx CO PH-10 Source • p On-Road Trucks (lb/1000 mi) 2.5 23.1 20.0 2.2 EMFAC7G p On-Road Commuting (lb/1000 mi) 1.9 2.6 21.8 0.2 EMFAC7G p On-site Diesel (lb/1000 HP-HR) 0.6 8.6 1.9 0.3 SCAQMD, n 1993 SCAQMD, m Off-Road Trucks (lb/hour) 0.2 4.1 1.8 0.5 AP-42, Vol. 5 AP-42, m Emissions = Activity level (a, b, c or d) X Emission Factor 14 P MM m p TABLE 4.2 DAILY FH-10 EMISSIONS (Ibs/day) Activity: Dirt Pushing Truck Filling Truck Dumping Unpaved Roads On-Road Dust Emissions Basis: 21.8 Ib/hr x 8 hr/day 10,000 ton/day X 0.02205 lb/ton 10,000 ton/day X 0.09075 lb/ton 31.5 mi X 2.3 lb/mi (90% control) 8000 mi/day X 0.012 lb/mi TOTAL Threshold Daily; 174 220 91 72 96 653 100 On-Road = 10,000 ton/day (400 trips X 25 ton/trip) Off-Road = 6,300 ton X 0.5 mi/100 ton Emissions Factor: SCAQMD CEQA Air Quality Handbook, 1993 Emissions = Emission Factor X Activity Level Assumptions: On-road haul distance = 20 miles/round trip Off-road haul distance = 0.5 miles/load Haul road watering = 90% dust control 15 5. MITIGATION ^ A reduced project intensity of 33 percent could reduce NOx emi ss i ons to the insigni f i cance threshold. However, a very ^ massive reduction in project intensity would be needed to reduce ^ PM-10 emissions. The PM-10 emissions estimate includes the use of reasonably available dust control measures such as use of adequate m watering on unpaved surfaces and haul roads. Dust emissions during spreading of final cover result from "fresh" earth being continually exposed as the load is dumped and overturned. No additional dust control is feasible other than substantially slowing the daily rate of dirt handling. ^ However, the construction schedule would need to be extended more ^ than six-fold to reduce daily dirt handling and impaved surface travel to a less-than-significant level. Such a completion delay would not meet project objectives. Air emissions from project irrplementation are considered to have a significant individual P intact that is not mitigable to a less than significant level. p CONCLUSIONS: Existing Conditions In accordance with State CEQA Guidelines (Appendix G), the Proposed Project would have a significant cumulative air quality impact if the incremental effects of a project were considerable when viewed in connection with the effects of past projects, other current projects, and probable future projects. Additionally, a significant impact would occur if the Proposed 16 Because it is infeasible to reduce the irrpacts of PM-10 and NOx to below a level of significance, the impacts are significant and P unmitigable. p CUMULATIVE IMPACTS HI P The regional meteorological and air quality parameters are P presented in Sections 2 .A and 2 .B. The San Diego Air Basin P ("SDAB") is currently in non-attainment for the Federal and State Standards for ozone and PMIO. As noted in Section 2.B, the SDAB m is anticipated to be reclassified by the EPA as in attainment for S federal ozone standards in early 2002. P Thresholds of Significance p p p P P P p p Project, in combination with the cumulative projects considered, would result in the following: A cumulatively considerable net increase of any criteria pollutant for which the project region status is nonattainment under an applicable federal or state ambient air quality standard (including release of emissions which exceed quantitative thresholds for ozone precursors). Analysis of Project Effects and Determination as to Significance As discussed in Section 4, the Proposed Project would result in significant NOx and PMIO impacts. Table 3-2 of the DEIR identifies the air quality impacts associated with the cumulative projects. Air quality impacts for these projects are primarily short-term construction-related impacts, and impacts related to vehicle emissions. Of the 16 potential cumulative projects, at least 10 have been determined to likely be under constmction or occupied at the time that the construction activities are occurring. Others may be under constmction if they complete the entitlement process or litigation. The Proposed Project has been analyzed, and it was determined to result in significant project-level impacts to PMIO and NOx. Several of the other projects have been evaluated (during the preparation of previous environmental review) and significant project impacts (either during constmction or operation) have also been identified. San Elijo Hills will be under construction and partially occupied. Short-term construction impacts were identified, including PMIO emissions, CO-related vehicular emissions, and inconsistency with the Regional Air Quality Standards. Short-term construction impacts from PMIO were reported for University Commons. These impacts would occur during the same time as the constmction activities on the Landfill. If Villages of La Costa proceeds, subject to the litigation, and/or Bressi Ranch completes the entitlement process, air quality impacts would be contributed. These impacts would include fugitive dust and NOx. Since Rancho Santa Fe Road is expected to be \inder constmction at the same time as the Landfill, PMIO emissions would be likely. Contributions of NOx would also occur. Cumulative mobile source emissions were identified for Carlsbad Research Center, the Fox/Miller Property, and Encinitas Ranch. 17 Although no significant impacts were reported for the Emergency ^ Storage Project, PMIO and NOx emissions from the constmction activities would be added to the airshed concurrent with the construction activities of the Landfill. The project-level significant impacts, when combined with the ^ other projects located in proximity to the Landfill, will result in significant cumulative impacts to air quality. These projects mm will be contributing to the regional NOx and PMIO levels with construction activities, vehicular emissions, and industrial emissions. wm Mitigation Measures mw The Proposed Project incorporates measures to partially reduce air quality impacts during constmction. A summary of those measures is presented in Section 5. However, as discussed in Section 4 of this technical report, it is infeasible to reduce the project- ^ specific inpacts, as well as the cumulative impacts, to below a p level of significance. p p P P Conclusions Project-specific and cumulative impacts to air quality are significant and unmitigable. PROJECT ALTERNATIVES No-Project Altemative The No-Project Alternative would eliminate the short-term air quality impacts (fugitive dust and vehicle emissions) generated by tmck traffic and equipment used in inserting and placing the permanent cover soil. It would also eliminate the potential short-term impact of possible temporary methane emissions from the refuse during the placement of soil and reconfiguration of the Landfill Gas Collection system. However, a potential longer-term effect of not placing the final closure cover system is the P generation of greater airborne dust particles (fugitive dust), p because the limited vegetation cover would not be fully landscaped as proposed by this project, and thus would be subject to the effects of wind. There would be greater risk of erosion and washout that would provide direct pathways for the escape of odorous landfill gas without capture by the on-site gas control system. These impacts are considered significant and unmitigable. P P li 18 •• m p p P Alternative A Because the amount of fill and associated tmck trips are only six percent less than for the Proposed Project, Alternative A would have air quality impacts similar to the Proposed Project. The Proposed Project would result in significant air quality impacts associated with PM-10 and NOx, as would Altemative A. Although there would be an overall reduction in the number of trips, this altemative would result in similar impacts to air quality. Although the emissions would be reduced by six percent, this would not reduce the impacts to below a level of significance. Alternative B Although the amount of fill and associated truck trips are 35 percent less than for the Proposed Project, Altemative B would still have the same daily emissions, because the number of trips per day would stay the same. The time frame for the constmction would be reduced from eight to five months (or on an expedited schedule, four to two-and-a-half months) . Thus, the daily emissions would still exceed thresholds for NOx and PM-10; however, for fewer days. Although the daily impacts are the same (significant and immitigated), because of the substantial reduction in the timeframe that the inpacts would have when contrasted against the Proposed Project, this altemative is considered the environmentally preferred one. Altemative C Altemative C would increase the amount of soil cover by 57 percent that would be inported and placed over the Landfill surfaces. Vehicular emissions and fugitive dust inpacts associated with the transportation and placement of soil cover would be proportionally greater than for the Proposed Project. Significant and unmitigated irrpacts would occur for NOx and PM-10 levels. Altemative D Alternative D would increase, by 30 percent, the amount of soil cover that would be imported and placed over the Landfill surfaces. Fugitive dust (PM-10) and NOx inpacts associated with the transportation and placement of soil cover would be greater than for the Proposed Project. Dust suppression techniques, similar to those required for the Proposed Project, would also be required for Alternative D. 19 REFERENCES: •HI California Air Resouces Board, 2000: California Ambient Air " Quality Data (1980-1999), CD No. PTSD-00-013-CD. ^ •* San Diego APCD Web Site (www.sdapcd.co.san-diego.ca.us) Mt Giroux & Associates, 2000: Lake San Marcos Estates Air Quality * Impact Analysis (GPA 99-02/R98-003/TM5131/MUP P98-012). M Ml U.S. Environmental Protection Agency, 1995: Conpilation of Air Pollutant Emission Factors, AP-42, OAQPS, Research Triangle Park. •I South Coast Air Quality Management District, 1993: CEQA Air m Quality Handbook, Diamond Bar, CA P California Air Resources Board, 2000: MVEI7G, Ver l.OC computer model (EMFAC7G). P P P P p p 20 P P APPENDIX TABLE 3-1 FROM DRAFT EIR FOR CUMULATIVE ANALYSIS ri ri ri ri ri ri t \ r i ri ii ri KI II II II RI II ti ii Screencheck 2 - January 2002 Cumulative Impacts Table 3-1 Cumulative Projects 1 Map Label Project Name Project Location Description Impacts Identified Document Prepared*'* Status City of San Marcos 1 San Elijo Hills Planned Community San Elijo Road/Elfin Forest Road 3,398 residential units, 40 acres of community services, 13 acres of commercial, golf course, and 1,050 acres of open space Air Quality, Biological Resources, Cultural Resources, Geology/Soils, Hydrology, Land Use, Noise, Public Services, Traffic, and Visual Quality/ Landform Alteration. EIR/SEIR Project under construction. Some occupied units. 2 University Commons Rancho Santa Fe Road/San Elijo Road 471 single-family residential units, 705 multifamily residential units Aesthetics, Air Quality, Biological Resources, Cultural Resources, HydrologyAVater Quality, Land Use, Noise, Public Services, and Traffic/ Circulation. All impacts mitigated to below a level of significance except aesthetics, noise, and traffic. EIR/ SEIR Approved 09/01, City finalizing Development Agreement. Project likely to be under construction. Limited, if any, occupied units. 3 San Elijo Ridge Questhaven Road 260 single-family residential units Preparing Initial Study. TBD Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 4 Rancho Santa Fe Roadway Expansion Rancho Santa Fe Road between Island and Melrose Lane additions All impacts mitigated to below a level of significance. MND Construction planned for 04/02 through 04/04. May be under | construction during Proposed | Project. 1 San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-18 Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Description Impacts Identified Document Prepared*'* Status Citv of Carlsbad 5A 5B 5C Villages of La Costa Master Plan The Ridge: Rancho Santa Fe Road/ Melrose Avenue The Oaks: Rancho Santa Fe Road/San Elijo Road The Greens: El Camino Real/Alga Road The Ridge: 493 acres/ 320 residential units TVieOa/b: 712 acres/ 1,032 residential units The Greens: 660 acres/ 1,038 residential units Air Quality, Archaeological Resources, Biological Resources, Geology/Soils, Health/Safety, Hydrology/Water Quality, Landform Alteration, Noise, Paleontological, Public Services, Transportation, and Visual Quality. EIR Approved 10/01, litigation pending. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 6 Manzanita Apartments El Camino Real north of Poinsettia Lane 157 apartments Air Quality and Traffic/Circulation. MND Approved 9/99, litigation pending with Coastal Commission. Project may be under construction concurrently with Proposed Project. Limited, if any, occupied units. 7 Cantarini Ranch Future intersection of College and Cannon 150 single-family residential units, 80 multifamily residential units, and open space lot Preparing Initial Study. TBD Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 8 Holly Springs Future intersection of College and Cannon 44 single-family residential units and open space lot Preparing Initial Study. TBD Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-19 ft.ii m mm mm mm m iiiitiiiri il I] II il il f! 11 ri ri ii ii ii ii m t •§ tt ii ii ii Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Descriptfon Impacts Identified Document Prepared*'* Status 9 Bressi Ranch South of Palomar, east of El Camino Real, and west of Melrose 595-acre Master Plan including 6 industrial areas, 9 residential areas (maximum of 632 residential units), and 6 open space lots Biological Resources/Wetlands and Traffic/Circulation. EIR Public review of Draft EIR began 01/02. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 10 Shelley Carlsbad Northeast corner of Rancho Santa Fe and Calle Acervo intersection 251 single-family residential units and 8 open space lots Aesthetics, Air Quality, Archaeology, Biological Resources, Flooding, Geology, Land Use, Noise, Public Services (Schools), Traffic/Circulation, and Water Quality. EIR Approved 10/98, project grading completed. Assume project is occupied. 11 Colina Roble Rancho Santa Fe between Olivenhain and Calle Acerno 28 single-family residential units Air Quality, Biological Resources, and Cultural Resources. MND Approved 09/98, completed. Assume project is occupied. 12 Carlsbad Research Center El Camino Real between Faraday and Palomar Airport Road 102,000 square feet planned industrial Air Quality and Traffic/Circulation. MND Completed. Assume project is occupied. 13 Fox/Miller Property El Camino Real between Faraday and College 390,300 square feet light industrial Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geological Issues, Noise, Transportation/Circulation, and Water Resources. MND Pending Planning Commission and City Council Hearing. Project may be under construction concurrent with Proposed Project. Limited, if any, occupied units. Gty of Encinitas 14A*^' Encinitas Ranch/ South Mesa TM (00-94) South of Encinitas Ranch Golf Course 31 acres/103 residential lots Aesthetics, Agricultural Resources, Air Quality, Biological Resources, Cultural Resources, Geologic Hazards, Land Use and Planning, Population and Housing, Public Services, Transportation/Circulation, Utilities MND Under construction. Assume project is occupied. 143*^' Encinitas Ranch/ South Mesa TM (00-93) South of Encinitas Ranch Golf Course 84 residential lots Aesthetics, Agricultural Resources, Air Quality, Biological Resources, Cultural Resources, Geologic Hazards, Land Use and Planning, Population and Housing, Public Services, Transportation/Circulation, Utilities MND Map recorded, under construction. Assume project is occupied. { San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-20 Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Description Impacts Identified Document Prepared*'* Status 14C* Encinitas Ranch/ South Mesa TM (00-128) South of Encinitas Ranch Golf Course 72 residential lots and Service Systems, and Water Resources. MND Map to be recorded. Assume project is occupied. County of San Diego 15 Quail Ridge Specific Plan and Subdivision Elfin Forest Road (1.5 miles west of San Elijo Road) 69 residential lots, 126 acres of biological open space, and 3-mile trail system Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geological Issues, Land Use and Planning, Noise, Traffic/Circulation, and Water Resources. EIR Preparing Draft EIR. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. Other Jurisdictions 16 Emergency Storage Project (SDCWA/ Olivenhain MWD) Mt. Israel/Elfin Forest Storage reservoir Air Quality, Biological Resources, Cultural Resources, Energy, Geology/ Seismicity, Land Use, Noise, Paleontology, Public Safety, Recreation, Socioeconomic, Traffic, Visual Quality, and Water Resources. EIR Under construction. *'* EIR = Environmental Impact Report. MND = Mitigated Negative Declaration. SEIR = Supplemental Environmental Impact Report. TBD = The jurisdiction is completing the Initial Study for these projects. Final environmental documentation requirements are to be determined. *^* These three projects were processed under one MND, and impacts identified in the MND are presented. Note: Information researched at the cities of San Marcos, Carlsbad, and Encinitas and the County of San Diego. Detailed project information on the cumulative projects is available at the Planning Department of each jurisdiction. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-21 11 11 m I 1 mm m m il il II II I I I APPENDIX D Noise Study NOISE IMPACT ANALYSIS SAN MARCOS LANDFILL FINAL CLOSURE PLAN SAN DIEGO COUNTY, CALIFORNIA Prepared for: P&D Environmental Attn: Spphia Habl 401 W. "A" Street, Suite 2500 San Diego, CA 92101 Dated: January 31, 2002 Prepared by: Hans D. Giroux IP Senior Analyst Giroux & Associa-tes p P TABLE OF CONTENTS mm Page wm NOISE STANDARDS 1 BASELINE NOISE LEVELS 2 * SENSITIVE RECEPTORS 4 P Z«OISE IMPACTS 6 Thresholds o£ Significance 6 On-site Craistruction Equipment Noise Generation 8 HI On-Road Noise Unpacts 9 Post-Closure Maintenance 10 ™ MITIGATION 13 ^ Conclusions 13 CDHOLATIVE IMPACTS 14 m Existing Conditions 14 Thresholds of Significance 14 Analysis of Project Effects and Determination as to Significance 14 mw Mitigation Measures 15 Conclusions 16 P ALTERNATIVES 1£ Mi No-Project Alternative 15 Altemative A 16 p Altemative B 17 Altemative C 17 ^ Altemative D 17 ^ REFERENCES 19 APPENDIX P P P P Tables and Figures Figure 1 - Noise Monitoring Locations Figure 2a - Sensitive Receptors - San Elijo Road Figure 2b - Sensitive Receptors - Elfin Forest/Harmony Grove Table 1 - Haul Traffic Noise Tmpwct Assessment NOISE STANDARDS IMI Most community noise problems typically derive from transportation sources under the regulatory control of other agencies such as the Califomia Highway Patrol (CHP) which enforces statewide vehicle noise regulations, or the Federal Aviation Administration (FAA) ^ which regulates aircraft noise. Vehicular traffic, rail, or aircraft noise control is thus preempted by other agencies. Local w control is effected by land use decisions that define acceptable noise exposure as a function of land use sensitivity. ^ Acceptability is stated in the Noise Element of the San Diego County General Plan. wm m Noise is often called unwanted sound. Soiind is generally described in terms of the sound pressure level created by m vibrating air molecules. The most common descriptor is the ratio of the ambient sound pressure level to the level detectable by a young person with good auditory acuity. Because this ratio can vairy by over one mi 11 ion wi thin the range o f hiaman hearing, a * logarithmic ratio is used to keep values at an easily manageable p level. This logarithmic ratio is called a "decibel" (dB) . Decibels are also typically weighted to most closely approximate wm the response of the hi:mian ear, in a process called "A-weighting, " referred to as dB(A). Any further reference to decibels (dB) in this report are understood to be A-weighted. Soxind levels vary rapidly in an ambient environment. The most common descriptor of ^ time-varying sound is the "equivalent level," or "Leq." Leq is a p steady-state sound level that has the same acoustic energy as the average of all the instantaneous variable levels. One-hour is the most common averaging period. ^ Noise Elements of General Plans, by State law, use a noise parameter called the Community Noise Equivalent Level (CNEL). CNEL is a weighted 24-hour exposure where noise events during the p evening, and especially at night, are assigned an artificial penalty during times of greater noise sensitivity. Each noise m event from 7 p.m. to 10 p.m. is assigned a +5 decibel "penalty" in ^ the CNEL calculation. Each noise event from 10 p.m. to 7 a.m. is assigned a -i-lO decibel penalty. Each car, truck, etc. in the evening is the "noise equivalent" of approximately three vehicles ^ in the CNEL descriptor. Each vehicle at night carries the same P weight as ten daytime vehicles in determining CNEL. p The State of California has developed model noise exposure levels ^ that are proposed for local adoption. These model standards contain multiple categories of acceptability and category- overlaps. They also do not address interior standards required imder Titles 24/25 of the Califomia Code of Regulations. San Diego County, in the Noise Element of the General Plan, therefore condensed this matrix of noise exposure goals into a much sinpler p format. P p Policy 4b establishes a standard of 60 dB CNEL for exterior uses at any "noise sensitive area" (NSA) with an interior standard of 45 dB CNEL. For NSAs occupied less than 24 hours (schools, libraries, etc.), the interior standard is 50 dB Leq during the noisiest hour of the day. Policy 4b requires that habitable areas achieve 60 dB CNEL (with mitigation, as necessary) , or that residential interior levels at least achieve 45 dB CNEL even if exterior levels can not be fully mitigated to 60 dB CNEL. If attainment of the 60 dB CNEL exterior standard is not technically feasible, a statement of overriding social or economic considerations must be made. County staff has generally interpreted this to mean that an EIR is required that identifies a significant noise impact to provide a vehicle for making the finding of overriding considerations. On a state-wide basis, interior noise standards for residential uses apply only to multi-occupant residences (four or more units) and/or to hotels or motels. San Diego County, however, in Policy 4b of the General Plan, requires attainment of 45 dB CNEL in all residential interior uses regardless of type of occupancy. The project noise compliance standard therefore is 60 dB(A) CNEL in usable exterior space, and 45 dB(A) in habitable interior rooms. On-site noise generation occurring on one land use that may affect an adjacent use is governed by the San Diego County Code of Regulatory Ordinances (Section 36.401 et seq.). For the proposed landfill closure project, ordinance limits would apply for constmction activities, and for any on-site chronic sources such as the landfill gas-fueled generating station. Off-site haul truck noise on public streets would thus be evaluated through the General Plan (CNEL-based) guidelines, but on-site noise is regulated by ordinance. BASELINE NOISE LEVELS Existing noise levels near the proj ect site are dominated by traffic sources on Elfin Forest Road. Traffic is dominated by autos and other light-duty vehicles. Travel speeds are 45-50 mph depending upon the amount of roadway curvature and sight lines. Most of the project interior is well shielded by terrain. Noise measurements were made at three locations on/around the landfill on October 1, 2001 at locations shown in Figure 1. The data near the landfill entrance were affected by construction activities associated with the current San Elijo Hills constmction project. The other two sites were more representative of "normal" background levels. The results of this measurement was as follows (dBA): IW.. No Scale Noise Monitoring Locations Figure 1 M Site* Location: LEQ Lmin LSO L90 1 Landfill Entrance 62 68 54 60 57 -2 Generating Plant 59 60 58 59 58 3 County-owned Homes 44 53 40 43 40 = see Figure 1 As a mle of thumb, mid-morning hour Leqs monitored above can be converted to CNEL by adding 2-3 dB. CNEL levels near the roadway, as measured near the landfill gate, thus currently exceed the 60 dB County standard. Within a short distance, however, terrain obstmction and distance spreading creates a very mral noise environment. SENSITIVE RECEPTORS Homes, schools, health care facilities, passive parks, libraries and similar uses are considered maximally noise-sensitive. Their sensitivity depends somewhat upon the context in which they occur. If such uses are located along already busy major roadways, they are less noise-sensitive than for the same use in a rural environment. On busy maj or roadways, background noise levels would mask project-related increments when the baseline is elevated. Noise sensitivity is thus more related to differences in noise levels created by a project than by the magnitude of the project increment itself. Sensitive receptors are located near all the candidate haul routes. However, backgroimd noise levels are high from non- project traffic sources except in close proximity to the landfill. This limits the potentially project-impacted, noise-sensitive land uses to those along San Elijo Road for Routes 1, 2, 4, 5 and 6, and to those along Harmony Grove and Elfin Forest Roads for Route 3. Figure 2 shows the locations of residences in areas of existing low noise levels that may be affected by the proposed project, and are thus considered sensitive receptors for this analysis. The tmck haul noise "footprint" is approximately 500 feet from the roadway centerline. Along San Elijo Hills Road, approximately 30 residences have a clear exposure to roadway traffic noise. East of the landfill along Route 3, approximately P 50 semi-mral residences would be potentially irrpacted by truck traffic noise. No other sensitive receptors (schools, parks, p etc.) are present. P p 4 ^ No Scale Serisitive Receptors - San Elijo Road Figure 2a BB Sensitive Receptors Elfin Forest/Harmony Grove Figure 2b NOISE IMPACTS Thresholds of Significance: Noise inpacts are considered significant if: 1. they cause a violation of standards or guidelines contained in applicable ordinances or general plans, 2. they substantially increase an already existing excessive noise level, 3. they create a nuisance by virtue of character, frequency, time of day, etc., regardless of the numerical decibel value created by the noise. San Diego County and the City of San Marcos use very similar noise compliance criteria as a basis for determining noise inpact significance. Both jurisdictions have established a noise exposure goal of 60 dBA CNEL for residences and other noise-sensitive land uses. The CNEL metric and the associated noise goal apply to those sources that are pre-enpted from local control such as on-road vehicles, trains, or aircraft. Because local control of the source is preempted from local control, the city or county regulate the noise exposure of the types of land p uses exposed to such noise. If site-related traffic were to cause the traffic noise to exceed 60 dB CNEL (65 dB CNEL in other •i jurisdictions such as Oceanside, Carlsbad, or Escondido) at locations where this standard is not exceeded, the noise impact would be potentially significant. At many developed locations in San Diego County, noise levels m already exceed the 60 dB CNEL threshold. Impact significance would require a substantial increase. No local jurisdictions mm define "substantial increase" in terms of specific decibel limits. The consensus definition in most environmental dociiments is +3 dB. However, a -i-3 dB increase typically requires a doubling of traffic volumes because of the logarithmic relationship between noise levels and traffic volumes. Few projects individually create a P doiibling of volximes. Most typically, significant off-site traffic noise increases are cumulative in nature. ^ Noise generation from equipment operating off-road is a specifically regulated activity in both the City and County noise ordinances. The allowable noise level on an industrial property such as the landfill is 75 dBA (one-hour Leq) . The allowable Hi noise level on a residential receiving property is 45 dBA at night, and 50 dBA by day. At the boundary between two zoning <Pi districts, the noise standard is equal to the mathematical average between the two different districts. Much of the proposed closure activity is in the form of temporary construction noise. Such noise is regulated slightly differently in each applicable noise regulation. The County of San Diego, in Section 36.410 of the County Code, establishes a performance standard not to exceed 75 dBA at the boundary of any construction site averaged over eight (8) hours. The ordinance also requires that construction activities be restricted to only the hours from 7 a.m. to 7 p.m. on Monday through Saturday. The City of San Marcos ordinance has no numerical performance standard. Its allowable construction hours are slightly more stringent. Work must cease by 6 p.m., and Saturday activities can not start before 8 a.m. Both City and County codes prohibit operation of construction equipment or machinery on Sundays or nnajor holidays. Project-related noise impacts would be considered significant if: 1. Traffic noise exceeded 60 dB CNEL in County or City of San Marcos limits (65 dB CNEL in other jurisdictions) if such levels are currently not being exceeded. 2. Traffic noise at any sensitive receptor is increased by +3 dB or more. 3. On-site operations occur during noise-sensitive periods, or the County performance standard of 75 dB (8-hour average) is exceeded at the landfill perimeter. In 1998, a "Final Post-Closure Plan" noise impact study was prepared by Dr. Alexander Segal working jointly for the County Department of Public Works (DPW) and the Department of Planning and Land Use (DPLU). This study contained a detailed analysis of the equipment operations and their associated noise to be used to inplement the landfill closure plan. The draft noise study considered the impact of concurrent off-site soil hauling, soil placement and geotextile placement as part of the final closure activities. The analysis utilized a wide variety of data resources (EPA, field tests, the landfill extension FEIR, manufacturer information) to establish the noise "footprint" for final closure plan inplementation. The draft report also concluded that post-closure maintenance would entail less intensive activities and smaller (quieter) equipment. The final closure plan equipment noise inpact thus represents a worst-case condition. These data, which concluded that set-backs were adequate to prevent a potentially significant noise inpact, are summarized in the following analysis of on-site constmction equipment noise inpact. P Currently proposed closure activities are identical to those analyzed. The results of the 1998 study, and the traffic projections for various haul route alternatives, were used to evaluate project impacts relative to the above thresholds. On-site Construction Equipment Noise Generation The on-site noise level for the types of equipment operating in closest proximity to the eastern landfill property line near existing Elfin Forest community residences is 87 dB(A) at a 50-foot reference level. This level was determined from an extensive literature review (EPA, 1971, and Harris, 1979) and from field measurements (San Marcos Landfill Extension FEIR; MBA, 1990). For an 87 dB(A) reference noise level at 50 feet from the source, and with noise propagation across an irregular and vegetated surface, the 7 5 dB (8-hour average) is met wi thin 150 feet of the activity under direct line-of-sight conditions. With the topographical screening presented by the residual ridgeline along the eastern landfill boundary, the noise conpliance distance is even shorter. As a worst-case assunption, two remediation crews were assumed to be working simultaneously in closest proximity to existing homes. The combined reference noise level from two crews is 90 dB(A) at 50 feet. Under direct line of sight conditions and an acoustically "soft" surface, the theoretical 75 dB (8-hour P average) contour distance is 200 feet. The nearest Elfin Forest residences are at least 250 feet from any proposed activity, and m these are residences owned by San Diego County which had been ^ acquired as a noise buffer for previous landfill expansion activities. The nearest non-County residences are 600 feet from ^ any activity. On-site equipment operations (haul truck, loader, dozer, conpactor, grader and water truck) from two simultaneously P operating remediation crews will not cause the significance threshold to be exceeded even under assumed worst-case line of m sight conditions. With the additional substantial noise reduction from existing topographical screening, the margin of safety will be strongly enhanced. p m As during historical landfill operations, access to available on-site landfill cover materials will likely require drilling and blasting because of the hardness of the subsurface rock material. The blast itself is designed to fracture the rock, but not eject it from the ground. The reported reference noise level from a single blast is 94 dB(A) at 50 feet from the blast site (John Bennett, Dept. of Planning and Land Use). Over an 8-hour work-day, this translates into a 49 dB(A) level at 50 feet. With P considerable spreading losses, and with the blast site shielded from the closest homes by intervening terrain, the blast p contribution to the 8-hour average constmction noise exposure is il P negligible. Longer-term blasting activity noise will result from the drill used to place the charges. The reference noise level from a drill is 89 dB(A) at 50 feet averaged over an hour. The San Di ego County 8-hour standard of 75 dB(A) may be exceeded to a distance of 260 feet from the drill site. The nearest residences are well beyond 260 feet from any drilling activity, and screened by intervening terrain. The is no potential for exceeded the applicable significance threshold from drilling to place blasting charges. On-Road Noise Inpacts The proposed project will require 800 daily truck trips (400 loads) of soil material delivery. Tmcks are much noisier than cars. The California vehicle noise (Calveno) curves in the Federal Highway Traffic Noise Prediction Model (FHWA-RD-77-108) show the following noise equivalence between trucks and cars as a function of travel speed: at 25 mph, 1 truck = 85 cars at 35 mph, 1 truck = 31 cars at 45 mph, 1 truck = 19 cars at 55 mph, 1 tmck = 13 cars At 45 nph, the on-road noise impact from 800 project-related trucks is therefore the noise-equivalent of over 15,000 cars per day. Any tmcks on the road before 7 a.m. further counts as 10 "noise- equivalent" trucks in the CNEL calculation. Any single truck before 7 a.m. is the noise-equivalent of 190 cars traveling after 7 a.m. If the landfill access route already carries a high traffic volume, the haul truck noise will be masked by the baseline. The project will create a short-term incremental impact, but not at levels that exceed the +3 dB significance threshold for individual impact significance. If, however, baseline volumes are less than 15,000 vehicles per day, the tmck noise increment will create a tenporary doubling or more of noise generators. Such inpacts are significant. Traffic volumes used to perform the comparison of baseline noise levels contrasted to the "with project" scenario are included in the appendix. The reference noise level for baseline traffic was calculated using the FHWA Model for an average San Diego County P 1^1 arterial traffic mix. - The reference noise level at 50 feet from ^ the centerline from the FHWA Model is calculated as follows (dBA): CNEL = 67.84 + 10 log (ADT/10000) " Project-related truck noise was calculated using the same model, p assimiing 10 percent of travel was before 7 a.m. , and 90 percent from 7 a.m. to 7 p.m. The resulting project-only noise is shown PI by the model to be 68.2 dBA CNEL. Combined noise levels are ^ calculated by: CNEL (total) = 10 X LOG ( 10 ^^^^^^^ + 10 ^"^^ ) P p Where BASE = non-project baseline PI Table 1 summarizes the no-project and with-project traffic noise for six haul route alternatives calculated using the federal highway traffic noise prediction model (FHWA-RD-77-108). Significant traffic noise inpacts will result for all west ^ approach altematives (Routes 1, 2, 4, 5 & 6) on the link between the San Elijo Road/Rancho Santa Fe Road intersection and the landfill entrance gate. A significant noise increase would occur mm for the entire length of the alignment for Route 3 . mm o - Roadway segment from Rancho Santa Fe/San Elijo Road intersection to the landfill will experience a 4.4-dBA mm increase (Truck Routes 1, 2, 4, 5, 6). — o - Roadway segments along the entire Tmck Route 3 will experience a noise increase greater than 3 dBA. tM Post-Closure Maintenance The proposed project includes a landfill maintenance program. These activities include monitoring, inspection, and maintaining the groundwater monitoring wells, surface water collection areas, *• landfill gas monitoring system, soil cover, and vegetation. These activities will occur on a limited basis for a short duration. These activities will be site specific to small portions of the iM landfill, as activities are required. The noise associated with post-closure activities will be less than those from final closure — activities (which were fo\ind to be less than significant) . Post- closure maintenance will therefore similarly have a less than significant equipment operations noise impact. 10 mw TABLE 1 m Haul Traffic Noise Iiogpact Assessment mw P (Noise in dB CNEL at 50' to centerline) Mi P With ^m Exist Proj Delta Signif wm Route 1: p Descanso Blvd.-Grand Ave. 73.8 74.9 + 1.1 No wm La Mirada Dr.-Linda Vista Dr. 73.1 74.2 + 1.2 No Security Pl.-San Marcos Blvd. 71.9 73.4 + 1.5 No wm San Marcos Blvd-Lake San Marcos 72.7 74.0 +1.3 No Lake San Marcos Dr.-Melrose Dr. 72.2 73.7 +1.5 No Melrose Dr.-San Elijo Road 72.4 73.8 +1.4 No Wm San Elijo Road-Landfill 65.8 70.2 +4.4 Yes -Route 2: ••a Plaza Drive-Marron Road 73.2 74.4 + 1.2 No Faraday Ave.-Palomar Apt. Rd. 73.0 74.2 + 1.2 No El Camino Real-Alga Road 72.3 73.7 + 1.4 No iHi Alga Road-La Costa Ave. 73.5 74.7 + 1.2 No La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No C. Barcelona - La Costa Ave. 72.0 73.5 +1.5 No Truck Bypass- San Elijo Rd. 72.0 73.5 +1.5 No m. San Elijo Rd. - Landfill 65.8 70.2 +4.4 Yes mm Route 3: m^ Auto Park Way 67.5 70.9 +3.4 Yes Harmony Grove Road 61.3 69.0 + 7 . 7 Yes Elfin Forest Road 61.3 69.0 +7.7 Yes mm Route 4: mm Paseo del Norte-Armada Dr. 75.2 76.0 + 0.8 No Yarrow Dr,-El Camino Real 72.8 74.1 + 1.5 No Palomar Apt. Rd.-Alga Road 72.3 73 .7 + 1.4 No mw Alga Road-La Costa Ave. 73.5 74.7 + 1.2 No La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No IH Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No C. Barcelona - La Costa Ave. 72.0 73.5 + 1.5 No PM Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No P San Elijo Rd.-Landfill 65.8 70.2 + 4.4 Yes Table 1 - Cont'd.) With Exist Proj Delta Signif (?) mm Route 5: mm Piraeus St.- Saxony Road 72.5 73 .9 + 1.4 No mm La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No C. Barcelona - La Costa Ave. 72.0 73 .5 + 1.5 No Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No Mi San Elijo Road-Landfill 65.8 70.2 +4.4 Yes Route 6: mw mt 1-5 - Saxony Road 73.3 74.5 + 1.2 No Balour Dr.-El Camino Real 72.0 73.5 + 1.5 No m Encinitas Blvd.- Mountain Vista 73.8 74.9 + 1.1 No wm Garden View Rd.-Olivenhain Rd. 73.7 74.8 + 1.1 No Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No m C. Barcelona - La Costa Ave. 72.0 73.5 + 1.5 No Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No tm San Elijo Road - Landfill 65.8 70.2 + 4.4 Yes Source: FHWA-RD-77-108 (Calveno mod.) k p p P ^ MITIGATION ^ Mitigation to a less-than-significant level could be achieved for P Routes 1, 2, 4, 5, and 6 by avoiding more lightly traveled San Elijo Road until after 7:00 AM. By not allowing tmck traffic p between Rancho Santa Fe Road and the landfill entrance gate before 7:00 AM, the traffic noise levels [CNEL in dB(A) at 50 feet to centerline] would be as follows: P P p Existing Background Level = 65.8 dB With Project Trucks = 68.6 dB Net Increase = +2.8 dB By restricting the roadway use to after 7 a.m., the noise impact would not exceed the +3 dB significance threshold. Adequate provisions would need to be made to provide queuing space for any pre-7 a.m. arrivals. Baseline noise 1eve1s along Rou t e 3 (Harmony Grove and Elfin Forest Roads) are too low to adequately mask truck noise even with a post 7 a.m. limitation. Selection of Route 3 as the haul route would have significant and unmitigable noise impacts. Conclusions No significant inpacts related to on-site closure and post-closure maintenance were identified for the proposed project. The proposed project will have potentially significant traffic noise impacts related to the hauling of soil cover material to the landfill site. These inpacts are mitigable to less than significant levels if Tmck Routes 1, 2, 4, 5, or 6 are selected as the preferred alternative, and truck traffic is prohibited on San Elijo Road before 7 a.m. 13 CUMULATIVE IMPACTS ^ Existing Conditions MI The noise environs for the Landfill vicinity and adjacent to the ^ Tmck Routes are presented in the foregoing discussion. Thresholds of Significance The Proposed Project would have a significant cumulative noise impact if the incremental effects of a project when viewed in ^ connection with the effects of past projects, other current proj ects, and probable future proj ects, exceeds thresholds identified in the project impact analysis above. wm In addition, under State CEQA Guidelines, when evaluating the cumulative noise-related issues of a proposed project in " combination with other development, a significant cumulative m effect would normally occur if the project were to result in: wm * Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. " mk * Exposure of persons to or generation of excessive groundbome vibration or groundbome noise levels. MI * A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project. " •n * A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing p without the project. ^ Analysis of Project Effects and Determination of Significance P m Significant project-level impacts were identified for noise resulting from hauling the soil to the site. Significant noise inpacts were identified on the San Elijo Road segment of Tmck Routes 1, 2, 4, 5, and 6 and along all of Truck Route 3. On-site activities (during the constmction of the cover and post-closure maintenance) were not significant, with the exception of * nuisance-level disturbance associated with blasting. Table 3-4 of m the DEIR identifies the noise impacts for the cumulative projects. Noise impacts for these projects include short-term construction p P 14 P P k noise and also vehicle noise. Cumulative projects are generally located adjacent to the major circulation network; however, the San Elij o Hills, University Commons, and Emergency Storage Projects are located in proximity ^ or conveying additional traffic to San Elijo Road (Questhaven) and p Elfin Forest Road. Albeit small, the contribution of additional noise with the project-level significant inpacts associated with Hi the transport of soil will result in significant ciimulative inpacts. None of the other projects are likely to contribute additional traffic on the San Elijo Road, Elfin Forest Road, or Harmony Grove Road circulation element. P p Based upon the project-level analysis in Table 1 above, other segments will generally be subject to noise increases of between 1 and 2 dB. A 3-dB increase is considered to be significant. The addition of the truck route traffic to traffic generated by the cumulative projects (DEIR Section 3.2) will not likely increase noise levels by an additional 1 to 2 dB (which would result in a cumulative 3-dB increase) . However, the Olivenhain Road - La Costa Avenue segment would have a 2.3-dB increase in noise levels strictly associated with the Proposed Project. There is a potential that traffic from San Elijo Hills, University Commons, Shelley Carlsbad, and Colina Roble could contribute sufficient traffic to result in a cumulative increase in noise levels to 3 dB, resulting in a significant noise impact above and beyond those reported at the project level. Noise impacts generated at the project site were evaluated above. Noise levels were found to be reduced at the nearest sensitive receptor. Additional noise from construction activities on San Elijo Hills and University Commons (nearest projects in the vicinity of the Landfill) would not result in a significant increase in noise levels, because noise from two sources is not strictly "additive" (i.e., a 50-dB noise source plus a 50-dB second noise source do not result in 100 dB) . On-site constmction noise would be sufficiently attenuated before it reaches sensitive receptors (nearby residents) that the two constmction proj ects would not cause an additive (or cumulative) exceedance of thresholds. Mitigation Measures The Proposed Project incorporates measures to partially reduce noise inpacts during constmction. A summary of those measures is presented above. By prohibiting truck traffic on San Elijo Hills Road before 7 a.m., and by selection of Truck Routes 1, 2, 4, 5, or 6 as the preferred alternative, project-specific hauling noise inpacts can be reduced to a less than significant level. 15 The assumption of ten (10) percent pre-7 a.m. truck traffic on area roadways produces a noise impact that is twice as high as a condition where all truck traffic is restricted to freeway-only travel before 7 a.m. Potential cumulative truck noise impacts can be maintained at less than significant levels on all area roadways if project traffic is restricted to freeway-only travel before 7 a.m. Conclusions Project-specific and cumulative impacts to noise are significant, but mitigable. ALTERNATIVES No-Project Altemative The No-Project Alternative would reduce the short-term inpact of noise from trucks and equipment used in inporting and placing the final closure cover system at the landfill. Some noise will still occur under this alternative, from the occasional inportation and placement of replacement soil to maintain the minimum of two feet of intermediate cover soil on the landfill. If the proposed project is conpleted, the vegetative cover will reduce the rate of soil erosion and, therefore, reduce the frequency of the impacts of importing replacement soil. Some continuing post-closure maintenance of the final closure cover system will be required, but it is anticipated to decrease from current continuing maintenance requirements. The noise impacts are not significant, because of the limited number of truck trips associated with the placement of cover. Alternative A m m P P The amount of fill material and associated truck trips are only six percent less than the proposed project. Occasional blasting would still be required for this alternative. Therefore, the noise inpacts associated with this alternative are the same as for P the proposed project, except for the slight decrease in magnitude P attributable to the six percent reduction in truck trips. As discussed previously, significant noise impacts would occur on San • Elijo Road from Rancho Santa Fe Road to the landfill (Tmck Routes g 1, 2, 4, 5 & 6) and along the entire Tmck Route from Valley Parkway to the landfill. Noise levels on the freeway segments (1-5, 1-15, and SR-78) are not significant, because of the ambient k noise levels existing. P As with the preferred alternative, hauling noise impacts can be p 16 k P p maintained at an individually and cumulatively less than significant level by restricting project traffic to freeway-only travel before 7 a.m. P Altemative B Mil p The amount of fill material and associated truck trips are 35 percent less than for the proposed project. Occasional blasting would still be required for this alternative. As discussed previously, significant noise impacts would occur on San Elijo • Road from Rancho Santa Fe Road to the landfill (Truck Routes 1, 2, 4, 5 & 6) and along the entire Truck Route from Valley Parkway to • the landfill. Noise levels on the freeway segments (1-5, 1-15, m and SR-78) are not significant, because of the ambient noise levels existing. As with the preferred altemative, hauling noise impacts can be maintained at an individually and cumulatively less than significant level by restricting project traffic to freeway-only ^ travel before 7 a.m. P wm Alternative C The amount of fill material and associated truck trips are 57 percent greater than for the proposed project. Occasional blasting would still be required for this alternative. Therefore, p the noise inpacts associated with this are greater than for the proposed project. As discussed previously, significant noise mm inpacts would occur on San Elijo Road from Rancho Santa Fe Road to the landfill (Truck Routes 1, 2, 4, 5 & 6) and along the entire Tmck Route from Valley Parkway to the landfill. Noise levels on the freeway segments (1-5, 1-15, and SR-78) are not significant, because of the ambient noise levels existing. MM As with the preferred alternative, hauling noise impacts can be maintained at an individually and cumulatively less than significant level by restricting project traffic to freeway-only travel before 7 a.m. Altemative D MB The amount of fill material and associated tmck trips are 30 — percent greater than for the proposed project. Occasional blasting could still be required for this altemative. Therefore, the noise impacts associated with this altemative are greater than for the proposed project. As discussed previously, significant noise inpacts would occur on San Elijo Road from m Rancho Santa Fe Road to the landfill (Tmck Routes 1, 2, 4, 5, & 6) and along the entire Truck Route from Valley Parkway to the mm landfill. Noise levels on the freeway segments (1-5, 1-15, and 17 SR-78) are not significant, because of the ambient noise levels existing. As with the preferred alternative, hauling noise impacts can be maintained at an individually and cumulatively less than significant level by restricting project traffic to freeway-only travel before 7 a.m. P iH P P 18 P P REFERENCES m P Bennett, John, 2002: San Diego County Dept. of Planning and Land Use, private communication. p p City of San Marcos, Municipal Code, Article II, Section 17-18 et_ seq., Ordinance no. 71-95. m m County of San Diego, County Code Section 36-401 et seq. Harris, C. M. (ed.), 1979: "Handbook of Noise Control," (Second Edition), McGraw-Hill, Inc. Linscott, Law & Greenspan, 2002: San Marcos Landfill Closure Plan Traffic Study, January. MBA, 1990: DEIR/FEIR, San Marcos Landfill Expansion/Permit Extension. U.S. Environmental Protection Agency, 1971: "Noise from Constmction Equipment and Operations, Building Ecguipment, and Home Appliances," NTID 300.1, Washington, D.C. U. S. Federal Highway Administration, 1978: "FHWA Highway Traffic Noise Prediction Model," FWWA-RD-77-108. 19 m p APPENDIX BASELINE TRAFFIC VOLUMES USED FOR HAULING ACTIVITY NOISE IMPACT ANALYSIS tm p m 12/C4/2001 13:39 FAX 161S2997D4] LLG SAN DIEGO igloos TABLE 1 MP ROUTE 1 - EXISTING DAILY TRAFFIC VOLUMES STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) RANCHO SANTE FE HOAD Descanso Boulevard to Grand Avenue 2000 39.400 La Mirada Drive to Linda Vista Drive 2000 33,600 iSecurity Place to San l^arcos Boulevanj 2000 25,300 San Marcos Boulevard to l_ake San Marcos Drive 2000 30,900 Lake San Marcos Drive to Melrose Drive 2000 27,500 Melrose Drive to San Elijo Road 2000 28,800 Tabt.1124 12/4/2001 TABLE 1a ROUTE 2 - EXISTING DAILY TRAFFIC VOLUMES STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) IM. El Camino Real I mm Plaza Drive to Marron Road 2000 34,566 Faraday Avenue to Palormar Airport Road 2000 32.590 mm' Ei Camino Reai to Alga Road 2000 27,645 mm Alga Road to La Costa Avenue 2000 37,201 La Costa Avenue to Calle Barcelona 2000 30.373 Rancho Sante Fe Road IM Olivenhain Road to Avd La Posta/Calle Acervo 2000 15,600 IP Calle Barcelona to La Costa Avenue 2000 25,800 Truck By-Pass to San Elijo Road 2000 26.214 wm p p p p Tebl.1122 1^4-2001 12/04/2001 13:43 F.\X 16192997041 LLG SAN DIEGO [g!008 P TABLEle p P P P P p P STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) Auto Park Way 9th Avenue to Valley Pkwy 1995 9,300 Auto Park Way N (1 -Way) Andreasen Dr to Howard Avenue 1998 12.300 Harmony Grove Road Eifin Forest Road to Kauana Loa Drive 1995 2.200 Elfin Forest Road Questhaven Road to Elfin Forest Road 1998 2,200 Tib1,1122 i:i/U4/2!)Ul 13:40 KAA 16132897041 LLG SA-\ DIEGO i^OO; TABLE 1b STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) tMH mm Palomar Airport Road *""'• Paseo Dei Norte to Armada Drive 2000 54,941 Yarrow Drive to El Camino Real 2000 31,070 «^ Palomar Airport Road to Alga Road 2000 27,645 mm Alga Road to La Costa Avenue 2000 37,201 am La Costa Avenue to Catle Barcelona 2000 30,373 Rancho Sante Fe Road mm Olivenhain Roaa to Avd La Posta/Gaile Acervo 2000 15.600 wm Caile Barcelona to La Costa Avenue 2000 25,800 Truck By-Pass to San Elijo Road 2000 26,214 wm p p m Tabl.1122 12/*2001 li p 12/04/2001 13:41 FAA H)192S97041 LLG SAN DIEGO 1^006 P P P P P MM p p TABLEic ROUTE5*- EXISTING DAILY TRAFFIC VOLUMES STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) La Costa Avenue Piraeus Street to Saxony Road 2000 28,388 La Costa Avenue to Calle Barcelona 2000 30,373 Rancho Sante Fe Road Olivenhain Road to Avd La Posta'Calle Acervo 2000 15.600 Calle Barcelona to 1-a Costa Avenue 2000 25,600 Truck By-Pass to San Eiijo Road 2000 26.214 p Tabl.1122 12/4/20C1 P 12/04/2001 13:42 FAX 16192997041 LLG SAN DIEGO i2]007 TABLE Id ROUTE^- EXISTING DAILY TRAFFIC VOLUMES STREET SEGMENT YEAR 24-HOUR VOLUME (ADT) Mn mm Encinitas Boulevard i-5 to Saxony Road 2000 35,100 Balour Drive to El Camino Real 2000 26,200 El Camino Real ma Encinitas Boulevard to Mountain Vista Drive 2000 39,600 Garden View Road to Olivenhain Road 2000 38,300 wm Rancho Sante Fe Road wm Olivenhain Road to Avd La Posta/Calle Acervo 2000 15,600 m Calle Barcelona to La Costa Avenue 2000 25,800 - Truck By-Pass to San Elijo Road 2000 26,214 MM p •i Ta3l.ll22 12/4/2C01 P il P P ffl 11 It il ri 11 f] ri II ffl tl Pl m M vi KI mm si KI ti Screencheck 2 - January 2002 Cumulative Impacts Table 3-1 Cumulative Projects Map Label Project Name Project Location Description Impacts Identifled Document Prepared'" Status Crrv of San Marcos 1 San Elijo Hills Planned Community San Elijo Road/Elfm Forest Road 3,398 residential units, 40 acres of community services, 13 acres of commercial, golf course, and 1,050 acres of open space Air Quality, Biological Resources, Cultural Resources, Geology/Soils, Hydrology, Land Use, Noise, Public Services, Traffic, and Visual Quality/ Landform Alteration. EIR/SEIR Project under construction. Some occupied units. 2 University Commons Rancho Santa Fe Road/San Elijo Road 471 single-family residential units, 705 multifamily residential units Aesthetics, Air Quality, Biological Resources, Cultural Resources, Hydrology/Water Quality, Land Use, Noise, Public Services, and Traffic/ Circulation. All impacts mitigated to below a level of significance except aesthetics, noise, and traffic. EIR/ SEIR Approved 09/01, City finalizing Development Agreement. Project likely to be under construction. Limited, if any, occupied units. 3 San Elijo Ridge Questhaven Road 260 single-family residential units Preparing Initial Study. TBD Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Proiect. 4 Rancho Santa Fe Roadway Expansion Rancho Santa Fe Road between Island and Melrose Lane additions All impacts mitigated to below a level of significance. MND Construction planned for 04/02 through 04/04. May be under construction during Proposed Project. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-18 Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Description Impacts Identified Document Prepared*" Status Cityof Carlsbad 5A 5B 5C Villages of La Costa Master Plan The Ridge: Rancho Santa Fe Road/ Melrose Avenue The Oaks: Rancho Santa Fe Road/San Elijo Road The Greens: El Camino Real/Alga Road The Ridge: 493 acres/ 320 residential units The Oaks: 712 acres/ 1,032 residential units The Greens: 660 acres/ 1,038 residential units Air Quality, Archaeological Resources, Biological Resources, Geology/Soils, Health/Safety, Hydrology/Water Quality, Landform Alteration, Noise, Paleontological, Public Services, Transportation, and Visual Quality. EIR Approved 10/01, Utigation pending. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 6 Manzanita Apartments El Camino Real north of Poinsettia Lane 157 apartments Air Quality and Traffic/Circulation. MND Approved 9/99. litigation pending with Coastal Commission. Project may be under construction concurrently with Proposed Project. Limited, if any, occupied units. 7 Cantarini Ranch Future intersection of College and Cannon 150 single-family residential units, 80 multifamily residential units, and open space lot Preparing Initial Study. TBD Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Proiect. 8 Holly Springs Future intersection of College and Cannon 44 single-family residential units and open space lot Preparing Initial Study. TBD ~ 1 ,„„mmlL-m -- • Preparing Initial Study. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-19 il II LJ il li ii I 1 I I i 1 i I ^ I I E I E 1 [ 1 ffl V i i I i iiiiitiiiiiiiiiirii^i Kl Pl Bi il il Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Description Impacts Identified Document Prepared*'* Status 9 Bressi Ranch South of Palomar, east of El Camino Real, and west of Melrose 595-acre Master Plan including 6 industrial areas, 9 residential areas (maximum of 632 residential units), and 6 open space lots Biological Resources/Wetlands and Traffic/Circ ulation. EIR Public review of Draft EIR began 01/02. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. 10 Shelley Carlsbad Northeast corner of Rancho Santa Fe and Calle Acervo intersection 251 single-family residential units and 8 open space lots Aesthetics, Air Quality, Archaeology, Biological Resources, Flooding, Geology, Land Use, Noise, Public Services (Schools), Traffic/Circulation, and Water Quality. EIR Approved 10/98, project grading completed. Assume project is occupied. 11 Colina Roble Rancho Santa Fe between Olivenhain and Calle Acerno 28 single-family residential units Air Quality, Biological Resources, and Cultural Resources. MND Approved 09/98, completed. Assume project is occupied. 12 Carlsbad Research Center El Camino Real between Faraday and Palomar Airport Road 102,000 square feet planned industrial Air Quality and Traffic/Circulation. MND Completed. Assume project is occupied. 13 Fox/Miller Property El Camino Real between Faraday and College 390,300 square feet light industrial Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geological Issues, Noise, Transportation/Circulation, and Water Resources. MND Pending Planning Commission and City Council Hearing. Project may be under construction concurrent with Proposed Project. Limited, if any, occupied units. City of Encinitas 14A'^' Encinitas Ranch/ South Mesa TM (00-94) South of Encinitas Ranch Golf Course 31 acres/103 residential lots Aesthetics, Agricultural Resources, Air Quality, Biological Resources, Cultural Resources, Geologic Hazards, Land Use and Planning, Population and Housing, Public Services, Transportation/Circulation, Utilities MND Under construction. Assume project is occupied. 14B*^' Encinitas Ranch/ South Mesa TM (00-93) South of Encinitas Ranch Golf Course 84 residential lots Aesthetics, Agricultural Resources, Air Quality, Biological Resources, Cultural Resources, Geologic Hazards, Land Use and Planning, Population and Housing, Public Services, Transportation/Circulation, Utilities MND Map recorded, under construction. Assume project is occupied. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-20 Screencheck 1 - December 2001 Cumulative Impacts Table 3-1 (Continued) Map Label Project Name Project Location Description Impacts Identified Document Prepared*'* Status i4d^' Encinitas Ranch/ South Mesa TM (00-128) South of Encinitas Ranch Golf Course 72 residential lots and Service Systems, and Water Resources. MND Map to be recorded. Assume project is occupied. County of San Diego 15 Quail Ridge Specific Plan and Subdivision Elfin Forest Road (1.5 miles west of San Elijo Road) 69 residential lots, 126 acres of biological open space, and 3-mile trail system Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geological Issues, Land Use and Planning, Noise, Traffic/Circulation, and Water Resources. EIR Preparing Draft EIR. Unlikely to be through entitlement process. Limited potential for construction activities to be concurrent with Proposed Project. Other Jurisdictions 16 Emergency Storage Project (SDCWA/ Olivenhain MWD) Mt. Israel/Elfin Forest Storage reservoir Air Quality, Biological Resources, Cultural Resources, Energy, Geology/ Seismicity, Land Use, Noise, Paleontology, Public Safety, Recreation, Socioeconomic, Traffic, Visual Quality, and Water Resources. EIR Under construction. EIR = Environmental Impact Report. MND - Mitigated Negative Declaration. SEIR = Supplemental Environmental Impact Report. TBD = The jurisdiction is completing the Initial Study for these projects. Final environmentai documentation requirements are to be determined. (2) These three projects were processed under one MND, and impacts identified in the MND are presented. Note: Information researched at the cities of San Marcos, Carisbad, and Encinitas and the County of San Diego. Detailed project information on the cumulative projects is available at the Planning Department of each jurisdiction. San Marcos Landfill Closure and Post-Closure Maintenance Plans EIR 3-21 1 M i I I I I 1 i I i illllilililili IIIII I I APPENDIX E Alternative Cover Evaluation Technical Study ALTERNATIVE COVER EVALUATION AND DESIGN San Marcos Landfill San Diego County, Califomia February 2002 Prepared For: Brown 8L Caldwell 9665 Chesapeake Drive, Suite 210 San Diego, Califomia 92123 Prepared By: GEOLOGIC ASSOCIATES 16885 West Bemardo Drive, Suite 305 San Diego, Califomia 92127 (858)451-1136 GeoLogic Associates Geologists, Hydrogeologists and Engineers P P March 1,2002 Job No. 2001-083 Brown and Caldwell 9665 Chesapeake Drive, Suite 210 San Diego, CA 92123 Attention: Mr. Ervin Nesheim ALTERNATIVE COVER EVALUATION AND DESIGN SAN MARCOS LANDFILL FINAL CLOSURE SAN DIEGO COUNTY, CALIFORNIA INTRODUCTION This report is presented as an evaluation of the performance of prescriptive final cover systems and an altemative final cover system proposed for the final closure of San Marcos Landfill (Landfill) in San Diego County, Califomia. The proposed final cover system is an evapotranspiration (ET) cover system, commonly referred to as a monolithic cover. The analyses presented herein are submitted as a basis for agency approval of this system. The analyses included have been completed using local climatological data, soil data specific to the existing interim cover and potential offsite borrow sources, and vegetative conditions proposed for the Landfill. REGULATORY REQUIREMENTS Califomia Code of Regulations (CCR) Titles 23 and 14 (now revised as Title 27) require that landfill final covers be constmcted according to identified minimum standards. For Class III landfills, the minimum regulatory requirements have historically been detailed in Title 23, Chapter 15, and include a two-foot thick foundation layer, a one-foot thick low-permeability layer, and a one-foot thick vegetative layer, or a cover with a barrier layer as impermeable as the landfill liner. As prescribed, the low-permeabihty layer of the prescriptive cover is to consist of soils with a permeability of 1 x 10 cm/sec or less. CCR Title 27, Section 20080(b) allows for approval of final cover altematives to the prescriptive system in cases where the discharger demonstrates that: "(1) The constmction or prescriptive standard is not feasible as provided in subsection (c) of this section, and (2) There is a specific engineered altemative that (A) is consistent with the performance goal addressed by the particular constmction or prescriptive standard, and (B) affords equivalent protection against water quality impairment." 16885 W. Bernardo Dr., Suite 305, San Diego, CA 92127 Phone: (858) 451-1136 Fax: (858) 451-1087 As stipulated in subsection (c) therein, to establish that the prescriptive standard is not feasible, the discharger must demonstrate that the prescriptive standard: "(1) is unreasonably and unnecessarily burdensome and will cost substantially more than altematives which meet the criteria in subsection (b);or (2) Is impractical and will not promote attainment of applicable performance standards." hi addition, 27 CCR Section 21090(a) stipulates that ".. .The RWQCB can allow any altemative final cover design that it finds will continue to isolate the waste in the Unit fi'om precipitation and irrigation waters at least as well as would a final cover built in accordance with applicable prescriptive standards imder *jj (a)(l-3)." PROPOSED FINAL COVER SYSTEM For the Landfill, a somewhat more complex final cover system might be inferred because of a 2-foot thick clay liner that was installed under the vertical expansion portion ofthe Landfill. This system (Altemative A) is assumed to represent the current prescriptive cover requirements for the Landfill. This altemative and other potential prescriptive cover system altematives that could be inferred based on expansion design and permitting are summarized in Table 1 and include: A. Altemative A (CCR Title 27 and Federal 40 CFR 258 Prescriptive Cover Svstem with Order 92-02 FML on Top DeckV A 1-foot vegetative layer supporting grasses and forbs over a Flexible Membrane Liner (FML) over a 2-foot low-permeability barrier soil in turn overlying 2 feet of existing foundation soil on the top deck; a 1-foot vegetative layer over 2 feet of low-permeability barrier soil over 2 feet of existing foundation soil on side slopes within the vertical expansion area; and a 1-foot vegetative layer over 1 foot of low permeability barrier soil on 2 feet of existing foundation soil on side slopes below (outside of) the vertical expansion area. M B. Altemative B (FML without Clav on the Top Deck). A 1-foot vegetative layer supporting grasses and forbs, over an flexible membrane Hner (FML) geomembrane || placed over the 2 feet of existing foundation soil on the top deck; a 1-foot vegetative P layer over 2 feet of low-permeabihty barrier soil over 2 feet of existing foundation soil on side slopes within the vertical expansion area; and a 1-foot vegetative layer p over 1 foot of low permeability barrier soil over 2 feet of existing foundation soil on ll the side slopes below (outside of) the vertical expansion area. P C. Altemative C (Modified CCR Title 27 and Federal 40 CFR 258 Prescriptive Cover m Svstem with Order 92-02 FML on Top Deck') with the LSA Vegetative Soil. This altemative is the same as Altemative A, but includes a minimum 3-foot vegetative W layer to support coastal sage scmb habitat in accordance with the court-ordered g| revegetation plan developed by LSA Associates. P P -2- P C:\2001.0S3\SMALTCVR2.OOC ^ GeoLogic Associates P P m P P D. Altemative D (FML without Clav on the Top Deckl with the LSA Vegetative Soil. This altemative is the same as Altemative B, but includes a minimum 3-foot vegetative layer to support coastal sage scmb habitat in accordance with the court- ordered revegetation plan developed by LSA Associates. E. Altemative E (Monolithic Altemative Coverl. The alternative final cover system includes the existing interim cover soils to be used as foundation soil (two feet on the top deck and side slopes) and a nunimiim of three feet of vegetative soil (Altemative El and E2 on Table 3). On the north and northeasterly facing side slopes of the Landfill the vegetative layer is proposed to consist of six feet of soil (Ahemative E3 on Table 3). Except for benches and roads, areas with three feet of vegetative soil will be planted with native coastal sage scmb and areas with six feet of vegetative soil will be planted with native chaparral. Specifications for the vegetative soil (excluding permeability requirements) and the vegetative community are included in the court- ordered revegetation plan prepared by LSA Associates. PURPOSE The purpose of this report is to evaluate the feasibility of constmcting a monolithic cover system for final closure of the Landfill in conformance with 27 CCR Sections 20080(b) and 21090(a) and to estimate the maximum allowable pemieabihty ofthe proposed vegetative soils that would meet the required performance standards. As such, this report presents an evaluation of whether the performance ofthe altemative final cover is consistent with the performance goals addressed by prescriptive final cover standards outiined in 27 CCR Sections 20080(b) and 21090(a), and would be expected to yield equivalent protection against water quality impairment. SCOPE OF WORK Work completed for this study included: 1. Review of historical geotechnical investigation data; 2. Evaluation of soil test results and determination of the relevant characteristics of soils derived from the existing interim cover soils and potential offsite borrow sources for the final cover system; 3. Selection of computer programs to simulate unsaturated flow through a soil profile; 4. Obtaining local climatological data for the area of the Landfill; 5. Computer modeling of prescriptive final cover systems and the proposed altemative fmal cover systems using the laboratory determined soil characteristics and historic local climatic data; 6. Preparation of this report. -3- C:\100! .083\SMALTCVR2.DOC GeoLogic Associates MATERIALS EVALUATION Limited field investigations were performed for tiie Landfill closure project by CCA Southland (CCA) to identify and characterize both the existing interim cover and potential offsite borrow soils. Both bulk samples and undisturbed ring samples were collected during the field investigations. Visual observation and initial laboratory testing indicated that these materials would likely require an admixture of finer-grained soils to meet the requirements for an altemative cover. As a result, the materials evaluation also included admixtures of different import materials to establish the mixing ratios that would likely be required to generate materials that would satisfy the material requirements of an altemative final cover. LABORATORY TESTING Laboratory testing was perfomied on bulk and undisturbed ring samples to detemiine the physical characteristics of existing interim cover soils and the import soils anticipated for use in the proposed altemative final cover. As stated above, because most potential borrow soils are granular and could not consistently meet the requirements for an altemative cover, the permeability/matric potential testing program also included evaluation of several admixed soils with various percentages ofthe finer grained materials. Table 2 presents a summary ofthe pertinent test results obtained in the borrow P materials evaluation. The methods of analyses and tests that were completed as a part of the borrow materials P evaluation were as follows: P • Complete grain size analyses were determined for eighteen (18) representative bulk P samples in general accordance with ASTM test method 422. The complete grain size P distribution curves are presented in Attachment A. • Permeabihty tests were performed on three (3) undisturbed ring samples and fifteen li (15) remolded soil samples using a triaxial constant head testing methodology in general accordance to ASTM test method 5084. Remolded soil samples were p remolded to 90 percent ofthe maximum dry density at optimum moisture. These test P results are included with the complete grain-size distribution curves in Attachment A. P • The maximum dry density and optimum moisture content of fifteen (15) bulk samples Hi was determined in general accordance to ASTM test method 1557. • The capillary-moisture relationship for soils were determined for fifteen (15) m remolded soil samples in general accordance to ASTM test method D-3152. All tests were remolded to 90 percent of the maximum dry density at optimum moisture. The W complete matric potential relationships are provided in Attachment A. m P -4- C:\2001.083\SMALTCVR1.DOC GeoLogic Associates m P pi m MODELING After review of several infiltration models, the program LEACHM (Leaching Estimation and Chemistry Model) was selected for the prescriptive cover systems that do not incorporate an FML and for the monolithic altemative final cover system analyses. Since LEACHM does not have the capability of modeling the performance of geosynthetic materials, the United States Army Corps of Engineers HELP3 (Hydrologic Evaluation of Landfill Performance) model was also used to evaluate prescriptive covers that included an FML. A discussion of each of the models is presented below. LEACHM MODEL LEACHM is a one-dimensional finite difference computer model developed at Cornell University. The model simulates water and solute transport in unsaturated or partially saturated soils. Estimates of plant growth and absorption of water by plant roots are included in the model as are climatic factors such as precipitation and evaporation. LEACHM is able to predict net flux through a final cover configuration by allowing the * user to stipulate laboratory detennined matric potential/soil moisture content !• relationships, bulk density/porosity relationships, and saturated hydraulic conductivity values. These values are transformed in a curve fitting routine to produce the air entry ^ value (a) and exponent (b) used in Campbell's retentivity equation. Unsaturated hydraulic <• conductivity is then estimated for a given soil moisture content using Campbell's conductivity relationship. After calculation of soil retentivity and unsaturated hydraulic ^ conductivity, LEACHM simulates unsaturated flow through the modeled profile using •• Richards* equation. As a one-dimensional finite difference model based on Richards' Equation, LEACHM is believed to yield a reasonable evaluation of imsaturated fluid flow (percolation), and was used for detailed evaluation of the non-FML prescriptive and altemative final cover systems (i.e., each top deck and side slope configuration excluding those requiring a mm geomembrane). " CRITICAL INPUT PARAMETERS IM The following sections describe the critical assumptions, variables, and input requirements incorporated into the LEACHM computer analysis. Variables specified in ii the model include the iteratively calculated transient soil water status factors, plant growth, plant maturity, plant harvest variables, soil matric potential and saturated ^ hydraulic conductivity. Sample input/output files for the LEACHM program are m provided in Attachment B. " Soil Profile The first step in using the LEACHM model involves definition ofthe soil profile. This is IP accomplished by defining the total thickness of the profile and a nodal or profile segment M thickness. For the Landfill final cover system altematives, total profile thickness varied -5- C:\JOOI-083\SMALTCVR2.DOC GeoLogic Associates from 4.0 feet (1220 mm) to 8.0 feet (2440 mm) with a nodal frequency of 6 inches (152.5 mm) (Table 1). The analyses assessed water flux at each of these nodes ten times a day throughout the modeling period. Bottom Boundary Condition One of the most critical parameters included in the analysis is definition ofthe bottom boundary condition of tiie final cover section. For the purposes of this study, this boundary condition was varied between a free draining condition (generally yielding one directional flow under an applied suction gradient at the bottom ofthe profile), a "lysimeter" condition (also yielding one directional flow but under conditions of zero suction at the boundary), and a constant potential condition (allowing for two directional flow and assuming a source of liquids exists within the landfill). Soil Properties For each node or interval in the defined profile, LEACHM requires input of specific soil properties including: remolded dry bulk density; initial matric potential and soil moisture content; Campbell's "a" and "b" coefficients; and saturated hydraulic conductivity. Porosity is then calculated as a flmction of the stipulated specific gravity of the soils and their remolded dry bulk density. Precipitation Another critical element in modeling cover performance using LEACHM involves identification of total daily precipitation and irrigation, as well as the time and rate of water application. For each rain or irrigation event, LEACHM calculates the maximum time period allowed for infiltration as the specified quantity of water to be applied divided by the application rate. Water that has not entered the soil profile at the end of the apphcation period is assigned to an excess nmoff term and included in the mass balance calculations. Infiltration into the profile is thus limited by the matric potential of the soil and the imsaturated hydraulic conductivity of the soil at the time of water application. In other words, infiltration is limited by the ability ofthe soil to take water. Since positive drainage must always be maintained on the landfill surface, no ponding of rain or irrigation waters was included in the analyses. Evapotranspiration LEACHM requires mean weekly pan evaporation data from which daily potential evapotranspiration (DPET) is calculated as one-seventh ofthe weekly total pan evaporation. Daily potential transpiration is calculated by multiplying the DPET by a crop cover fraction. Daily potential evaporation is then calculated as the difference between DPET and potential transpiration. Given a stipulated crop cover fraction of 1.0, LEACHM will calculate that all of the evapotranspiration that occurs is associated with IN m m m P P P m m P -6- C:a001-083\SMALTCVR2.DOC GeoLogic Associates P P HH transpiration. However, if a value of 0.0 is entered, all soil moisture losses will be calculated to result solely from evaporation. For modeling purposes, LEACHM assumes that evapotranspiration starts at 0.3 days (7:12 a.m.) and ends 12 hours later at 0.8 days (7:12 p.m.). During this period, potential evapotranspiration is varied sinusoidally with actual evapotranspiration calculated as a function of the potential evapotranspiration, the profile's soil water status, and specified plant properties. Vegetation Rather than applying a coefficient to approximate the transpiration effects of plants, LEACHM uses the equation of Nunah and Hanks (1973) to simulate the uptake of water by plant roots. Variables included in the equation and requiring user specification include: root water potential (the root potential below which plants are unable to extract water from the soil); root resistance (the depth dependent resistance to upward flow of water within the roots); and the root distribution (expressed as a nodal percentage of all roots). ACTUAL MODEL INPUT Fixed Parameters Bottom Boundarv Conditions - In estimating the nature of flow through the bottom boundary of both prescriptive and altemative final cover sections at the Landfill, the P following boundary conditions were utilized. * First, a free draining condition was used to calculate the "worst case" performance M characteristics ofthe modeled final cover section. Worst case conditions are presumed under this scenario since moisture is drawn dovmward through the base ofthe profile ^ under a suction head applied by the underlying soil/waste, but significant moisture is not il "pulled back" from the waste if shallow drying conditions develop. ^ A slightly more realistic (but still conservative) condition is represented by definition of M the lower boundary as a "lysimeter". In this scenario, moisture is allowed to migrate in only one direction (vertically downward) though it passes into the waste prism only after the base of the section becomes saturated and local soil suction is essentially zero. It m should be recognized that this definition does not allow for moisture to be extracted upward from the waste if surface drying induces a negative suction gradient in the m overlying cover. ii The most realistic characterization is beheved to be represented by the constant potential IP bottom boundary condition. In this case, it is assumed that there is a source of moisture 1^ (e.g., saturated landfill gas) available within the landfill that would represent a continuous source of moisture (and therefore constant potential) within the waste and at the base of ^ the cover section. This bottom boundary condition allows for characterization of two ^ directional moisture movement and allows for the extraction of moisture through the final PH P -7- C;\1001.083\SM ALTCVR2.DOC GeoLogic Associates cover if drying conditions predominate (i.e., downward migration is calculated when the final cover moisture content is high and allows for extraction of water from the landfill [i.e., drying of the waste] when the moisture in the final cover is low). Cover Soil Characteristics - Prior to initiation of modeling, a materials evaluation was performed to better characterize the potential materials available for use in the final covers. Existing on-site foundation layer soils and soils available from offsite borrow areas were evaluated. As discussed above, testing of these materials included determination of dry density, optimum moisture content, grain size distribution, saturated hydraulic conductivity, and soil matric potential/soil moisture content relationships and the results of this testing are presented in Table 2. The modeling completed herein used conservative values believed to best represent existing interim cover soils and potential prescriptive and altemative cover soils. The following soils were used in the LEACHM modeling: • The WSl composite was selected for existing interim (foundation) cover soil on the top deck and side slopes • Mix #2 (80% Maddock and 20% Ocean Ranch) was selected for vegetative cover soil, and • TD-2 was selected for the low permeability barrier soil. For sample TD-2, the saturated hydraulic conductivity ofthe low-permeability barrier soil was modified to 1.0 X 10"^ cm/sec in an effort to model the minimum prescriptive standard. Of note, sensitivity analyses and long term modeling utitized the most representative of the covers soil profiles proposed and incorporated relatively conservative soil engineering properties based on the soil testing performed to date. For the monoHthic cover, Altemative El was selected. Climatic Conditions - The enclosed analyses ofthe perfonnance of both prescriptive and altemative final covers at the Landfill were performed utilizing daily precipitation and mean weekly pan evaporation data recorded at the nearest available weather stations to m the site. The analysis included precipitation and pan evaporation for the years 1987 through 1996 as reported by the San Diego County's Lake Hodges Station and San Diego * County's Miramar Lake Station, respectively. The data for 1986-1997 was used because wm it represents the most severe 10-year precipitation period from historical data, averaging over 15.3 inches of rain per year. ^ Variable Parameters Subject to Sensitivity Analysis The following discussion addresses the variable input parameters used in the LEACHM ^ model and the sensitivity of the modeled altemative cover results to reasonable changes in these variables. Table 3 lists all of the variables included in the sensitivity analysis * along with their stipulated values and conesponding cumulative flux. M m -8- p C:\200) J)83\SMALTCVR2.DOC ^ GeoLogic Associates P m P m m P pi P Saturated Hvdraulic Conductivitv and Soil Suction - The modeled profile showed critical changes in the calculated net flux within the range of saturated hydraulic conductivities and soil suctions identified (Table 3). In fact, constmction water draining tiirough the profile (i.e., initial water content) contributed to most of the water assigned as total flux, therefore net flux was calculated for years 4 tiirough 10 when equilibrium was reached. Since the actual offsite soils to be used for final closure of the Landfill have yet to be identified, the sensitivity analyses was expanded to use a relatively low matric potential soil (mix #2) with a variety of hydraulic conductivities (sensitivity model runs SMSNSOl, SMSNS31, and SMSNS32 [Table 3]) in an effort to estabhsh a minimum saturated hydraulic conductivity that should be specified in tiie future evaluation of potential offsite bonow sources. As shown herein, when the altemative final cover was modeled using coarse grained silty sands with gravel or gravelly sands with relatively low matric potentials and saturated hydraulic conductivities greater than 1.0 x 10"^ cm/sec (8.64 mm/day), the calculated net flux was greater than the prescriptive standard (i.e., a prescriptive flux of 1.06 mm per year). As a resuh, tiiese materials would generally be considered unacceptable for use in the final cover without amendment. In analyzing the sensitivity of other variables and in tiie long-term modeling of the perfoimance of the altemative final cover system, a saturated hydrauhc conductivity of 7.4 x 10"* cm/sec (6.39 mm/day) was used. This value represents the most conservative soil encountered in tiie materials evaluation that meets the requirement for a monolithic altemative final cover at the Landfill. Water Application Rate - The magnitude and duration ofthe rainfall events for modeling purposes were estimated in a fashion believed to conservatively represent typical anticipated appUcation. Calculated net flux through several modeled profiles showed minor variability when using application rates between 30 and 200 rran/day (Table 3). Again, a conservative value of 30 mm/day was selected as the typical case for long-term modeling of final cover performance. Maximum Actual Transpiration/Evaporation - Sensitivity analyses for this parameter included stipulation of a range of maximum actual transpiration/evaporation values from 1.0 to 1.5 and these analyses resulted in relatively minor changes to the calculated net flux through the modeled soil profile (Table 3). This suggests that for the soils available in this environment, maximum actual transpiration/evaporation is not a critical parameter and a value of 1.0 was selected for evaluation of the sensitivity of other variables as well as for the typical case analysis completed as part of this study. Root Potentials - Calculated net flux through several modeled profiles showed only a slight variation when comparing minimum and maximum root potential values between 0 and -3000 Kpa (Table 3). Though not considered a sensitive parameter, a conservative value of-2000 Kpa for minimum root potential (relatively low for arid region plant types) P and 0 for maximum root potential was selected for subsequent analyses of the water extraction capabilities of the typical grass and shmb vegetative cover. IP m m -9- C:\2001J)83\SMALTCVR2.DOC GeoLogic Associates Wilting Point - Analysis using wilting point values between -1000 and -2000 Kpa suggest only slight sensitivity to this parameter (Table 3). Given the fact that shallow and deeper rooting vegetation is proposed for the monolithic cover system and is thriving on adjacent properties, a moderate wilting point of-1500 Kpa was selected for the analyses. Vegetation Conditions - Selection of crop cover fraction coefficients ranging from 5 to 60 percent resulted in relatively small changes in the calculated net flux (Table 3). However, calculated net flux for no plants (e.g. 0 percent coverage) is significantly higher, indicating tiiat even a small percentage of plants (e.g. 5 percent) can be very effective at extracting water out of the final cover. A crop cover fraction of 5 percent was selected for subsequent analyses completed in this evaluation and is considered conservative since undisturbed areas adjacent to the landfill are estimated to support a vegetative cover of about 60 percent. Root Distribution - Calculated net flux varied only slightly when completing analysis using deep rooting plant communities. However, calculated net flux through shallow and moderate rooting distributions (e.g. 99 percent of the roots in the upper six to 18 inches) is significantly higher (Table 3), and it is concluded that this is a sensitive parameter for performance of the cover system as a whole. Subsequent analyses incorporated rooting depths for three different plant communities proposed for the Landfill. These plant communities include grasses and forbs, coastal sage scmb, and chaparral plant communities. For a grass and forbs plant community (Altematives A and B), roots were lunited to the upper 12 inches (305 mm) ofthe profile. For a coastal sage scmb plant community (Altematives C, D, and E), roots were limited to the upper 36 inches (915 mm) of the profile, with 30 percent ofthe roots assigned to the upper one-foot (305 mm) interval, followed by 43 percent in the one- to two-foot (305 - 610 mm) interval, and 27 percent in the two- to three-foot (610-915 mm) interval. For a chaparral plant community (Ahemative E3), roots were limited to the upper six feet (1830 mm) ofthe P profile, with 31 percent ofthe roots assigned to the upper one-foot (305 mm) interval, followed by 42 percent in the one- to two-foot (305 - 610 mm) interval, 18 percent in the two- to three-foot (610 - 915 mm) interval, 2 percent in the three- to four-foot (915 - 1220 mm) interval, 6 percent in the four- to five-foot (1220 - 1525 mm) interval, 2 percent in P the five- to six-foot (1525 - 1830 mm) interval. -10- C:\HKH J)83\SMALTCVR2.DOC P P Root Flow Resistance - Selection of root flow resistances from 0.1 to 2.0 resulted in only a slight change to the calculated net fluxes (Table 3). A reasonably conservative value of 1.05 was selected, since the developers of LEACHM program generally recommend this P value. P HELP MODEL P wi Modeling of unsaturated fluid flow through the prescriptive covers incorporating an FML was performed using the United States Army Corps of Engineers HELP3 computer ^ program. Sample output files for the HELP3 program are provided in Attachment C. mi m k GeoLogic Associates pi p p k m P CRITICAL INPUT PARAMETERS Climate The initiai climate properties (excluding precipitation) were selected from a table of default values included in the HELP3 model. These default values were selected for the City of San Diego and were corrected for the latitude of the Landfill. The precipitation database used in the LEACHM analyses was converted to ASCII format and uploaded into the HELP3 model. As described above, rainfall totals were obtained from the County of San Diego's Lake Hodges Station for the years 1987 through 1996. Yearly rainfall totals varied from 6.4 to 26.7 inches with an average armual rainfall of 15.3 inches. Material Properties The engineering properties of soils included in the analyses were determmed from HELP3 default values of similar type soils and corrected for the hydraulic conductivity determined in the laboratory. The engineering properties of the FML were selected from tiie table of HELP3 defauh values. In calculating leakage through the FML, a pinhole defect density of one per acre and an installation/post-closure defect density of 10 per acre were assumed. A pmhole is defined by HELP3 as a hole 1 milhmeter m diameter and is the result of flaws in the manufacturing of the FML, while an installation/post closure defect is defined as a hole 1 centimeter in diameter and is the result of punctures or seaming holes created during the deployment ofthe FML or during the post-closure period. The placement quality was defined as fair to poor based on the installation/post-closure defect density and is considered representative of cover FML conditions at the Landfill since the FML would be placed over a deep refuse profile, which would be expected to experience uneven settlement over time. Model Configuration and Vegetation The lined prescriptive covers proposed for the Landfill consists of the following configurations: • Altemative A - A 2-foot foundation soil overlain by a 2-foot low permeability (1.0 x 10'^ cm/sec) barrier soil, an 80-mil FML, and a 1-foot vegetative soil. • Ahemative B - A 2-foot foundation soil overiain by an 80-mil FML and a 1-foot vegetative soil. • Altemative C- A 2-foot foundation soil overlain by a 2-foot low permeability (1.0 x 10"^ cm/sec) barrier soil, an 80-mil FML, and a 3-foot to 6-foot vegetative soil. • Altemative D- A 2-foot foundation soil overlain by an 80-mil FML and a 3-foot to 6-foot vegetative soil. m .11. ^ C:\200|.083\SMALTCVR2.DOC P GeoLogic Associates All configurations are summarized in Table 1. Altematives A and B were modeled with a poor stand of grass and an evaporative depth of 1 foot to simulate a grass and forb plant community, while Altematives C and D were modeled with an excellent stand of grass and an evaporative depth of 3-feet to simulate a coastal sage scmb plant community. MODELING RESULTS As summarized in Table 1, several final cover altematives for landfill closure have been evaluated. In modehng the various altematives, input variables were generally conservative but within the range of values identified for the soil and vegetative conditions anticipated for the Landfill. The results ofthe modeling performed for this study are therefore considered conservative. Table 1 simimarizes the cumulative flux calculated for the different altematives considered. MOISTURE FLUX / SOIL MOISTURE RESULTS PRESCRIPTIVE FINAL COVER Figure 1 depicts the modeled moisture content ofthe best performing prescriptive final cover section (Altemative A2 on Table 1) in volumetric percent (theta) for four distinct depth intervals over a period of approximately ten years. As can be seen, the moisture content of the shallow soil layer (76 mm) mimics seasonal precipitation pattems throughout the modeling period, while fhe intermediate (381 mm) reflects only the most severe seasonal impacts. Finally, the impact of individual seasons shows no evidence in the deepest soil layers (838 mm and 1448 mm) and remain at a relatively constant moisture content, reflecting only the drainage of initial constmction water. Figure 2 depicts the cumulative flux through the layers of this best performing prescriptive final cover profile and includes the most conservative (i.e., free draining) bottom boundary condition. As shown therein, the best infiltration performance for a prescriptive fmal cover system is estimated to be about 1.06 mm/year after equilibrium was reached. P Inegardless of this calculated performance, it should be realized that the performance of a prescriptive low hydraulic conductivity barrier layer constmcted in a semi-arid climate is particularly difficult to maintain because environmental stresses (desiccation and settlement cracking) are likely to degrade the barrier layer over the long term. In fact, EPA design guidelines recognize that using a barrier layer composed of clay, such as included in this prescriptive cover system, is not very effective in arid regions (such as San Diego and the San Marcos Landfill). Water balance data collected over time on this type of cover system found that while this type of cover system functioned well initially, performance decreased severely within only a few years and the percolation of water increased with time as a function ofthe development of desiccation cracking and root penetration (Dwyer, 2001; Dwyer, 1988; and Melchior, 1997). In fact, at the conclusion ofthe Melchior study (carried out over a period of eight years), about 50 percent ofthe water that reached the surface of the system infiltrated through it to the underlying refuse. P P p P -12- C:\2001-083\SMALTCVR2.DOC GeoLogic Associates P P p IP !P P PI iW p Figure 3 depicts the cumulative flux calculated through tiie best performing prescriptive final cover profile that incorporates an FML (Altemative Cl). As shown therein, best case infiltration for the FML prescriptive final cover is estimated to be 0.0436 mm/year (or 0.436 mm for the 10 year modeled period). PROPOSED MONOLITHIC COVER SYSTFM Figures 4A through 4C depict tiie modeled moisture content of the proposed monolitiiic final cover soils (Altemative E2 on Table 1) in volumetric percent (theta) for four distinct depth intervals over a period of approximately ten years. Figure 4A represents the **worst case" result (definition of a free draining bottom boundary), 4B represents a conservative but more intermediate condition (a "lysimeter" bottom boundary), and 4C represents the more likely condition (a constant potential bottom boundary). Figure 4D depicts the rainfall history recorded at the Lake Hodges Station. As can be seen, in all cases the shallow layers (76 mm) mimic seasonal precipitation pattems tiiroughout tiie modeling period, while the deeper soil layers reflect only significant seasonal impacts. Perhaps the most significant performance effect indicated is the substantial upward drying gradient that will develop if moisture is available witiiin the waste prism. In fact, it is the extraction of moisture from the landfill that allows the deep soil profile in Figures 4B and 4C to retain a relatively high moisture content tiiroughout the modeling period. This influence clearly indicates that if moisture is present within tiie landfill (eitiier as a result ofthe high humidity enviromnent created by landfill gas generation or a severe seasonal infiltration) it will be effectively extracted over the long term. Figures 5A through 5C depict the cumulative flux through the layers ofthe modeled final cover profile and represent the tiiree independently modeled bottom boundary conditions. As shown, "worst case" free draining net infiltration (flux) for tiie altemative final cover is calculated to be about 0.03 mm/year after equilibrium has been reached, and includes the 1992 and 1994 years when the site is modeled to have received over 24 and 26 inches of precipitation. Performance that is more realistic is believed to be represented by the lysimeter and constant potential conditions (Figure 5B and 5C), which indicates an overall negative net flux through tiie system. That is, if moisture is available within tiie landfill itself, a net drying of the combined final cover and refuse system will occur over time. FISCAL FEASIBILITY In addition to the substantial loss of prescriptive final cover performance expected over time, it is also recognized that sufficient low permeability soils are not readily available at or near the site and therefore may pose a significant fiscal impact on the project. The fiscal feasibility costs will be included in the Joint Technical Document for the San Marcos Landfill. -13- C:\2001-083\SMALTCVR2.IJOC GeoLogic Associates DISCUSSION/RECOMMENDATIONS GENERAL Based on the modeling completed to date, it is concluded that a monolithic altemative final cover section constmcted as described above will satisfy perfomiance standards for an altemative final cover as defined in 27 CCR Sections 20080(b) and 21090(a). More specifically, an alternative final cover that includes at least three (3) feet of newly placed altemative final cover soils over two (2) feet of recompacted interim cover is calculated to yield superior performance to the prescriptive altematives. In addition, it is considered sufficient to host the root systems ofthe proposed plant community, includes a two-foot thick buffer below the anticipated depth of these root systems and it is of a sufficient thickness to maximize the moisture limiting characteristics ofthe cover system as a whole. It should be noted that in order for the altemative cover to fimction as modeled, the site must maintain a minimum 5 percent crop cover fraction consisting of a coastal sage scmb plant community over the final cover area and that the plant community must establish a rooting depth of about 3 feet. MATERIAL CHARACTERISTICS In addition to the minimum five-foot thickness of the final cover system, it is recommended that once a suitable offsite bonow source has been identified a detailed materials evaluation be performed to verify that the minimum soil properties included herein are satisfied, or additional modeling is performed to demonstrate satisfactory perfonnance with the proposed soil mix. That is, soils generated from the offsite bonow source should have a maximum particle size of three (3) inches, a minimum fines content (defined by No. 200 sieve) of no less than 24 percent for the mean of 10 consecutive tests and a minimum of five (5) percent finer than 5 microns for the mean of 10 consecutive tests. The soils proposed from import should, when mixed with the on-site silty/clayey soils, exhibit a maximum saturated hydraulic conductivity no greater than 7.4 x 10"* cm/sec. It should be noted that these are general guidelines for initial evaluation of potential bonow materials. The suitability of the soils ultimately selected for incorporation into the altemative final cover should be verified by additional testing and analysis once the final source is identified. INSTRUMENTATION AND MONITORING lip Pip In order to evaluate soil moisture variability and thereby flux through the proposed cover system, GeoLogic Associates recommends that the final cover soil moisture content be monitored for a period of at least three years using time-domain reflectometry (TDR) probes or an equivalent means of measuring soil moisture. The soil moisture probes -14- C:\I001-083\SMALTCVRJ.DOC GeoLogic Associates P p p p Ml P m P installed at the Landfill site should penetrate the fiill depth of the cover profile at a minimum of three locations within the closure footprint. In addition to the soil moisture probe, it is recommended that at least one complete automated weather station be installed at the site so that local climatic data can be used in interpreting the soil moisture monitoring results. The soil moisture monitoring probes and weather station should be cormected to an automated datalogger that is equipped with software to facilitate download and interpretation ofthe data. The data recording equipment will measure and convert analog sensor values into a digital data record. The data once dovmloaded and recorded should be organized and converted to graphs and figures for ultimate presentation. It is recommended that this datalogger be housed in an underground concrete vault to minimize the potential for vandalism Routme periodic downloadmg of information from the dataloggers and otiier instruments as well as routine visual inspections to detect and correct stmctural failures, equipment malfunctions, vegetation distress, and other potential problems should be anticipated over the first 2 to 3 years ofthe post-closure period. CLOSURE This report is based on the project as described and tiie geotechnical data summarized herein. Our fum should be notified of any pertinent change in the project plans or if conditions are found that differ from those described in this report, since this may require a re-evaluation. This report has not been prepared for use by parties or projects other than those named or described above. It may not contain sufficient information for other parties or other purposes. This report has been prepared in accordance with generally accepted geotechnical practices and makes no other wananties, either express or imphed, as to tiie professional advise or data included in it. eoLogic Associates William B. Lope Project Geologis G, EG, HG .ass, RG, EG, HG President Attachments: Attachment A - Laboratory Soil Testing Results Attachment B - LEACHM Input/Output Data Attachment C - HELP3 Output Data -17- C:C:\WINDOWS\TEMP\siiiillevr2.doe GeoLogic Associates REFERENCES Dwyer, S.F., 2001, Finding a Better Cover. Civil Engineering, January 2001, pages 58- 63. Dwyer, S.F., 1998, Altemative Landfill Covers Pass the Test. Civil Engineering, September 1998, pages 50-52. Melchoir, S., 1997, In situ studies on tiie perfomiance of landfill caps. Proceedings from the Intemational Containment Technology Conference, St. Petersburg, Florida, pages 365-373. P P P P -16- C:\IOOI-083\SMALTCVR2.DOC GeoLogic Associates il Ml _ TABLES m k Pi m GeoLogic Associates fl tl il fl ri il ri if ri KI KI m § m § BI »I m M II II II TABLE 1 SAN MARCOS LANDFILL COMPARISON OF THE PERFORMANCE (AVERAGE ANNUAL FLUX) OF PRESCRIPTIVE ALTERNATIVES AND MONOLITHIC COVER SYSTEM Prescriptive Altemalives Monolithic Cover Alternative A Title 27 & 40 CFR 2S8 Prescriptive Cover System with Older 92-02 FML on the Top Deck Altemative B Alternative A without Clay on dte Top Deck Alternative C Title 27 & 40 CFR 258 I*rescriptive Cover System with Order 92-02 FML on the Top Deck and LSA Plan Veg. Soil Altemative D Alternative C without Clay on the Top Deck Altemative E Monolithic Soil Cover Top Deck Alternative Al 1 fl Vcg. Soil w/Grasscs and Forbs SO mil HDPE 2 fl Low Perm Soil 2 ft Foundation Soil Altemative Bl 1 ft Veg. Soil w/Grasses and Forbs SO mil HDPE 2 ft Foundation Soil Altemative Cl 3 ft Veg. Soil w/Coastal Sage Scrub 80 mil HDPE 2 ft Low Pwm Soil 2 ft Foundation Soil Altemative Dl 3 ft Veg. Soil w/Coastal Sage Scmb SO mil HDPE 2 ft Foundation Soil Alternative El 3 ft Veg. Soil w/Coastal Sage Scrab 2 ft Foundation Soil Top Deck Top Deck AveriRe Annual Flux 0.05 mm Averaite Annual Flux 1.02 mm Average Aimual Flux 0.04 mm AveraKC Annual Flux 1.64 nmi Average Annual Flux 0.03 nmi Top Deck Side Slopes Above Ihe Vertical Expansion Altemative A2 1 ft Veg. Soil w/Grasses and Forbs 2 ft Low Perm Soil 2 ft Foundation Soil Ahemative B2 1 fl Veg. Soil w/Grasses and Forbs 2 ft Low Perm Soil 2II Foundation Soil Altemative C2 3 ft Veg. Soil w/Coastal Sage Scrub 2 ft Low Pemi Soil 2 ft Foundation Soil Alternative D2 3 fl Veg. Soil w/Coastal Sage Scrab 2 fl Low Perm Soil 2 ft Foundation Soil Alternative G2 3 ft Veg. Soil w/Coastal Sage Scrub 2 ft Foundation Soil Side Slopes 3 Foot Veg. Soil Side Slopes Above Ihe Vertical Expansion AveriKe Annual Flux 1.06 mm Average Annual Flux 1.06 mm Average Annual Flux 1.06 nun Average Annual Flux 1.06 mm Average Annual Flux 0.03 nun Side Slopes 3 Foot Veg. Soil Side S\opes Below Ihe Vertical Expansion AlleiiMlive A3 1 ft Veg. Soil w/Graises and Forbs 1 ft Low Penn Soil 2 It Foundation Soil Alternative B3 1 ft Veg. Soil w/Grasses and Forbs 1 ft Low Perm Soil 2 ft Foundation Soil Alternative C3 3 ft Veg. Soil w/CoasUl Sage Scrub 1 fl Low Perm Soil 2 ft Foundation Soil Alternative 03 3 ft Veg. Soil w/Coastal Sage Scrub 1 ft Low Penn Soil 2 ft Foundation Soil Alternative E3 6 ft Veg. Soil w/Native Chaparral 2 ft Foundation Soil Side Slopes 6 Foot Veg. Soil Side S\opes Below Ihe Vertical Expansion AvMaf^ Annual Flux 2.36 trun Average Annual Flux 2.36 mm Average Armual Flux 1.20 mnr Average Annual Flux 1.20 mnr Average Annual Flux 0.14 mm Side Slopes 6 Foot Veg. Soil TABLE 2 SAN MARCOS LANDFILL MATERIALS EVALUATION TEST RESULTS Sample No. % Passing No. 200 Sieve Mix ^1 (85% Carrol Cyn. & 15% Ocean Ranch (OR)) Mix U2 (80% Carrol Cyn. & 20% OR) TD-2 TD-3 TD-ll WSl Composite (25% interim Cover & 75% Mix #2) WS25 Composite (25% interim Cover & 75% Mix tt2) SS9 Composite (25% interim Cover & 75% Mix ff2) ES13 Composite (25% interim Cover & 75% Mix 1) NS21 Composite (25% interim Cover & 75% Mix #1) WS5 Composite (25% interim Cover & 75% Mix tf 1) Ramona Mix tf I (10%TD-2, 20% OR, 70% Ramona) Ramona Mix tf2 (30% OR. 70% Ramona) Ramona Mix #3 (30% TD-2. 70% Ramona) Ramona Mix #4 (25% SS9. 75% Ramona Mix tf 1) Ramona Mix #5 (25% SS9, 75% Ramona Mix #2) Ramona Mix #6 (25% SS9. 75% Ramona Mix #3) Ramona Mix #7 (80% Ramona, 20% OR) 25 24 58 55 61 30 25 30 30 31 29 37 34 40 40 38 38 33 % Passing 5 Micron 11 10 Maximum Dry Density (lbs/ft) 11 12 11 14 14 15 17 18 16 121.0 129.5 130.0 130.0 131.0 129.0 129.0 131.0 132.5 135.0 133.0 129.0 129.0 129.0 137.0 Optimum Moisture 13.0 9.5 10.0 8.5 9.5 10.0 10.0 9.5 8.5 8.5 9.5 10.0 10.0 10.5 8.0 Permeability (cm/sec) 1.90E-04 7.40E-06 4.60E-07 7.40E-06 2.60E-08 2.10E-04 1.60E-05 2.50E-04 2.70E-04 1.60E-04 2.50E-04 1.90E-06 2.70E-06 l.lOE-06 l.IOB-06 I.30E-06 2.60E-06 9.80E-06 Campbell's "a" coefficient Campbell's "b" coefficient -0.228 4.630 -0.166 12.000 -0.102 -2.300 12.000 8.315 -1.410 8.570 mm w m i i i i mm i i i i i i i i i i I I I I I i I ! i i I iiviiiifiiiiiiiiririff] wm m M m § si ii fi ii ii TABLE 3 SAN MARCOS LANDFILL LEACHM SENSITIVITY ANALYSIS Saluialed Pcnncabilily (nrn'day) Applkalian Rate (mniAlay) SMSNSOl SMSNS02 3« SMSN503 SMSNS31 ISMSNSJI SMSNSOl SMSNSO) SMSNS04 SMSNS06 SMSNSOT Sjtyrawi PtimobHilv (mm'tfay) SMSNS02 3« 6.39 639 6,19 6.» 6,39 ADDlicilian Rale (mm'dav) 30 SMSNS02 3« 30 JB 311 MnnmiTn Acniil Tnnipiiiiion'Eviporalian (Kpa) 1 1 t 1 1 1 1 > 1 Minimum Root Potenlul {Kpa) -1000 .2000 -2000 -2000 -2000 -loot -2000 -2000 -2000 •2000 Maiimum Root Poicniial (Kpal 0 0 0 0 1 0 0 0 0 0 WiUine Po»i (Kea) • ISOO -1300 -1500 •ISOO -ISOO -1500 -1)00 -1500 -ISOO • 1500 Croo Cover Friciion (y.l 5 s 5 5 5 5 j S 5 s Rooi DisD-ibutioniii IS/iS/3IV|}/l£/l1 15/|}/}0/l)/l6/t t isns/ioiimsiii 15/I5/3<VI 3/16/11 15/15/30/13/16/11 l9/t)/3a/l3/1«/ll l)/15/3IVIV16/ll 15/I5/3WI3/I6/11 15/15/30/11/16/11 19/19/30/13/16/11 RDOIFLOW Resiilance(lirml lOJ LOS 1.0} 1,05 1.05 IDS 1.0) 1,0) 1,05 1,09 Cum Flui iiyn(TDIaO Nd Fhix nun (Vraii 4-10) Tolal Flui (mnVYcar) ]2} 121 5*2 34.3 1130 31 3 31.S III 0 2 660.8 4721 02 9*2 O.I Ot 0,1 01 0 0290 9i.768l 68.4Ti3 0.0290 l36.S2t7 0 0290 00145 0.014] 00290 31 Ol 0,0149 Maiimum Actual Ttanipiraliaii'Evipiiralion (Kpa) Mmimam Rool PoKnllll (Kpa) Mantnaun Rool FoKalial (Kpa) SMSNSOB SMSNSOl SMSNS09 SMSNSIO SMSNSOl SMSNSII SMSNSI2 SMSNSI4 SMSNSOl SiMfalcd Penncal>ililv (nun/dav) 6i9 «,39 S,3» 6,39 6.39 6.39 639 6.39 6.19 ApDlicalion RaK (nim'itiv) 10 30 3g 30 30 30 30 10 30 Maximum Acluat Traaioiiaiian'EvaDDialiDn (Kpal 1 1 t 1 1 1 Minimum ROD) Polenlial (Kpa) -2000 -2om •WK •2DDI -3OO0 -200C Maiimum Row Polenlial (Knal 0 0 0 Q 0 C Willing Pomt (Kpa) -ISOt -ISOC -ISOO •ISOO -tHM -19O0 •im .1900 • 1900 Cmo Covci Fnclion (Kl i 5 5 5 5 5 5 S ) ROM tXitnlHiiiandi ISflS/30/t 3/16/11 tS/IS/30/l3/l6/tt tS/15/30/tVI</n ll/IJ/WtVlC/lt 19/15/30/11/16/11 l9/tS/3a/tVI6/lt t)/i)/3(VI3/t«/tl IS/l)/3IVI3/l6/tl Rod Flow Rsulance (Lcnn) IDS 1,05 lOi LO) 1.05 1.05 1.0) ID) 1,05 Cum Fluii(nim) Ncl FluimmlVean 4-10) Toial Fhii (imWcat) 30 4 32.3 291 32.6 32.3 32.3 1.42 1.16 02 0.2 0.1 0.4 02 0.2 012 OtJ 0 0290 0.0290 O0I45 OOSSO 0.0290 O0290 OOI74 00174 32 3 02 0 029O Willing Pont (Kpa) Oop Cover Fracdon (H) SMSNS13 SMSNSOl SMSNS16 SMSNSI9 SMSNSOl SMSNS21 SMSNS22 SMSNS2Q Sanitalcd Ptnnobiliiv (mnVdav) 639 6 39 6,39 6,39 6.39 6.39 6,19 6,39 ADpIicalion Rale (mm'dav) 30 30 30 30 30 30 30 30 Muinwm Acniat Tianluiralion/Evapoialion f Kpal t 1 1 1 1 t 1 1 Minimum Itoot Polcniiil (Kpa) -200C -2000 -2000 -2000 -2000 -2000 -2000 -2000 Mmimum Root Polenlial (Kpa) 0 5 S 0 0 0 0 0 Wiliine Poini (Kpa) 5 S -1500 -tsoo -1)00 -1500 • 1500 CiDP COvci Fiaclion 1^*) 5 5 S Root Diitribulionli) i;/IS/30/l 3/16/11 l5fl5f3W13/l6/ll 15/15/30/13/16/11 |];iS/J«13/l«/tl IS/IJ/KV11/16/11 Rooi Fkiu' Ruiiiancc (Kim) lOi 1,05 1,05 1,05 LOS LOS 1,05 105 Cum. Flui (mm) Ncl Flu<iinm(Veai] 4-10) Toul Fhix (mnVYtai) 17.4 32 ) 32,2 6B.4 32 3 0 3 0 2 0,1 29,2 0,2 0.043S 0,0290 0.0145 4 2319 0,0290 19,6 204 14 1 Ol 0,2 0,1 O014S O.D290 O014S Root Disuibuiian Rool Flow Rablance (lenn) SMSNSOl SMSNS23 SMSNS24 SMSNS25 SMSNS26 SMSNS27 SMSNS2I SMSNSOl SMSNS29 SMSNSIO SaniiaKd Pcnncibililv (mnVdar) 6,39 6,39 6,39 6,39 6.39 6,39 6 39 6,39 6.19 6)9 Applicalion Rate (nun'dav) 30 30 30 30 30 30 30 30 30 10 Maiimum Actual TnumiraliaiVEvapolalion (Kpa) 1 1 1 1 1 1 1 1 1 Minimuni Root Pniential (Kpa) -2000 •2000 •2000 -1000 •2000 •2000 -2000 •2000 -2000 •2000 Mai imum Root Polenlial (Kpa) 0 0 0 0 D 0 0 C 0 WillinK Point (Kpa) -ISOO -1500 -ISOO -1900 -1900 -1900 • 1500 • 1500 -1900 -1500 Crop Cover Fraction (Kl i S 5 5 S ) ) S 5 5 Root Dhniliuiioniti t)/l)/10/t3/l6/tl 15/15/3 Wl 3/16/11 ii/i5/iart}/i6/i t tS/lI/3ltft1/tC/lt Root Flow Itetiitance (terni) 1.03 LOS LOS 1,05 LOS Cum Flui (mm) Nei Fluinim(VMis4,IO) Total Flui (mn^CiU) 323 02 00290 63,0 13.6 I 9910 307 02 0,0290 32 0 01 0.0290 324 0,2 0,0290 3J6 02 00290 - Indicile! Variable dianged !)>• Root t^ninaa^ PercenlaECS in Sin Inch Inleivali, Slaning Fiom Gioiind Surl^e FIGURES pi m m k PI m GeoLogic Associates il il il il II il il il il n VI mm Bl m.m mm m M KI ti ii FIGURE 1 PROFILE WATER CONTENT PRESCRIPTIVE FINAL COVER ALTERNATIVE A2 FREE DRAINING CONDITION •76 mm •381 mm 838 mm 1448 mm 0.05 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528 TIME (days) FIGURE 2 CUMMULATIVE FLUX PRESCRIPTIVE COVER ALTERNATIVE A2 FREE DRAINING CONDITION •305 mm •610 mm • 1525 mm 500 1000 1500 2000 TIME (days) 2500 3000 3500 4000 mm il 11 mm mm ii ii ii ii ii ii IIIII I I i r 1 m M m § 11 i i il il il 11 il il il il ii ii il 11 FIGURE 3 CUMMULATIVE FLUX PRESCRIPTIVE COVER ALTERNATIVE Cl HELP3 ANALYSIS 0.50 0.00 1525 mm 500 1000 1500 2000 TIME (days) 2500 3000 3500 4000 FIGURE 4A PROFILE WATER CONTENT ALTERNATIVE FINAL COVER ALTERNATIVE E2 FREE DRAINING CONDITION 0.25 0.2 1 i g O u 06 0.15 0,05 76 mm 381 mm 838 mm 1448 mm 0.1 - 1 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528 TIME (days) 19 11 IIII II llli 11 II 11 iliill ill! II 11 II II il 11 11 11 11 ii il il li ii ii il 11 11 11 li ii ii 0.3 FIGURE 4B PROFILE WATER CONTENT ALTERNATIVE FINAL COVER ALTERNATIVE E2 LYSIMETER CONDITION 76 mm 381 mm 838 mm 1448 mm 1 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528 TIME (days) 0.25 FIGURE 4C PROFILE WATER CONTENT ALTERNATIVE FINAL COVER ALTERNATIVE E2 CONSTANT POTENTIAL CONDITION 76 mm •381 mm 838 mm • 1448 mm 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528 TIME (days) in mm ii II II ii ii il il il if ii I i i { I } i I I i I 1 mi Ki Kl li il II il 11 ii il II ii li li ii il FIGURE 4D HISTORICAL PRECIPITATION LAKE HODGES STATION 1987-1996 4.5 10 year average precipitation 15.3 Inciies/year 3.5 •S 2.5 a .e 2 1.5 0.5 0 -I I I i 1^ I oo VI CN 0\ m O (N tN m •-I <S ro V) VO r-ooa>o«-i<Nm^vor-ooo\0'-H(stri'^m\or--ooo\»-'<s ,-i.-.^r-i.-H^.-i^^fS<N(N<N<Nr-irN(N(Sr^fom 00 Vl (N 0\ ^ fN o m cn ^ f*^ m rn m Time (days) FIGURE 5A CUMMULATIVE FLUX ALTERNATIVE FINAL COVER ALTERNATIVE E2 FREE DRAINING CONDITION •305 mm •610 mm •1525 mm 10 15 20 25 TIME (days) 30 35 40 45 KVflillilllllillllii II iliill llllilll ri ri Kl li 11 II 11 il li il il 11 Ki Kl 11 II II 11 ii FIGURE SB CUMMULATIVE FLUX ALTERNATIVE FINAL COVER ALTERNATIVE E2 LYSIMETER CONDITION •305 mm 610 mm 1525 mm -8000 500 1000 1500 2000 TIME (days) 2500 3000 3500 4000 FIGURE 5C CUMMULATIVE FLUX ALTERNATIVE FINAL COVER ALTERNATIVE E2 CONSTANT POTENTIAL CONDITION • 305 mm •610 mm • 1525 mm 10 15 20 25 TIME (days) 45 mm li li II mm mm mm ii ii ii ii ii i i I I i f i ATTACHMENT A LABORATORY SOIL TESTING RESULTS m m GeoLogic Associates m SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND i SILT AND CLAY FRACTION Coarse 1 Fine Coarse Medium Fine 100- : Clear Sieve Openings U^S. Standard Sieve Numbers Miaons 3" 2" I 1" , .5" . #4 #8 #16 #30 #50 #100 #200 20 10 5 ? i ; 0 -'10 80 r20 70 : >. CD O) c 'io CO CO Q. 60 i 50- V a. 40 30 -4 30 J40 150 i60 -^70 'so >• CQ O OH c a 0) Q. 20 - -. 80 10 90 100 10 1 0.1 Particle Size (mm) Sample No. . Mix 1: 85% Carroll Cnyn & 15% Ocean Ranch 0.01 •• -100 0.001 USCS: 75% Sand, 25% Fines CCA * Southland ^Ov/soflo/SOUTHLAND GEOTECHNICAL. INC^ Project No: DJ01029 Grain Size Distribution Figure A1 m m m m m P Hi Mi • k SIEVE ANALYSIS GRAVEL SAND I Coarse Fine Coarse Medium Fine HYDROMETER ANALYSIS SILT AND CLAY FRACTION Microns 100 90:- Clear Sieve Openings U.S. Standard Sieve Numbers 3" 2" I t" I -S" • ^ ^4 #16 I #30 I #50 #100 #200 2p 10 5 2 ^ 10 80 i--!20 il IH Ol ta CO (0 Q. 70! 60 ^ 50 40 30 20r 10 - 30 40 50 60 70 —jao i 90 CO i m o c o ID o Q. 100 10 0^1 Particle Size (mm) Sample No, TD2 0,01 —100 0.001 Soil Description: Sandy Clay or Sandy Silt CCA'Southland ^o;v*o«o/SajTHLAI^ GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution SIEVE ANALYSIS HYDROMETER ANALYSIS i t GRAVEL SAND SILT AND CLAY FRACTION ! Coarse 1 Fine Coarse Medium j Fine i '1 i i ^ \ * ' Clear Sieve Openings U.S^ Standard Sieve Numbers Microns ioa~f j^2" , 1" : .5"^ #4 #a #-|6 I #?0 I #50 #1.00 #2pO 2^ ID 5 90 i-— 10 80 i — : 20 701 60 i CQ S 50 (0 I 0- j ID a. 401 30! -30 ^40 50 60 -i 70 ra >. CD TJ V C •ffl "5 CC Z V CL 20, -80 101 - - 90 100 10 1 0.1 Particle Size (mm) Sample No. TD3 0.01 100 0.001 m m m Soil Description: Sandy Clay or Sandy Silt CC4'Southland ,,i>«««rf SOUTHLAND GEOTECHNICAL INC. Project No: DJ01029 Grain Size Distribution Figure AS m m ki m m m pa m m m SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND Coarse SILT AND CLAY FRACTION Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 3- 2" , r 1 -5" , #4 #8, #16 #30 #50 #100 #200 20 Ip ^ ? 100-H— f-!-- H : r—I—1 \ ' ' • ^ 80 70 H i 60 p ra ^ ra i sop CO I ffl Q. « 40; 30! 20 10 100 10 1 0.1 Particle Size (mm) Sample No. TD11 0.01 Soil Description: Sandy Clay or Sandy Silt 10 20 30 40 50 60 70 -i80 90 - • 100 0^001 •C i ffl "S c 'a I i o. CCA • Southland ^&vwo« of SOUTHLAND GEOTECHNICAL, INC. Grain Size Figure Project No: DJ01029 Distribution A17 SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Miaons 100 90 80 70 60 K 50 40 30 20 10 ra I >• OQ ra c '« CO to a. c <D CL 100 1 I r 10 TTi YI -lj T *Pi TiTiT *TT T T f—I— 0,1 0.01 Particle Size (mm) SampieiJfi^ WSl 10 20 30 40 50 60 70 80 90 —100 0.001 ra I ffl •g c "OJ i i 0- USCS: USDA: 70% Sand, 19% Silt, 11% Clay 78% Sand, 15% Silt, 7% Clay CCA • Southland AOMucn</ SO\JmU<ND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A40 m ra I ra c M CO ffl Q. O CL SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 60 ^ 50 40 30 20 10 100 10 • ! • i 1 0.1 Particle Size (mm) Sample No WS25 0.01 10 20 30 40 60 60 70 80 90 •^00 0.001 ro I >. ffl •D V c n I c o it <D CL USCS: USDA: 76% Sand, 13% Silt, 11% Clay 78% Sand, 15% Silt, 7% Clay CCA • Southland ,ioft«««<,/SOUTHLAND GEOTECHNICAL, INC. Project No: DJ01029 Grain Size Distribution Figure A48 SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarsd Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 TTi Tl ii. y *Pi TiTiTTT T ? f—I 60 ra 1 ra •i 50 CO CL o v Q. 40 30 20 10 100 10 0.1 Particle Size (mm) Sample Na SS9 0.01 10 20 30 40 50 60 70 80 90 HOO 0.001 TO i «} c I ffl CL USCS: USDA: 70% Sand, 19% Silt, 11% Clay 76% Sand, 16% Silt, 8% Clay OC4'Southland -4 Dft*ton of SOUTHLAND GEOTECHNICAL, INC. Project No: DJ01029 Grain Size Distribution Figure A36 pi li SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 TTI TI -Tk ? *Pi TiTiT*rT f T !—I I >* ffl ra c CO CO ffi Q. c Cl ffl CL 90 80 70 60 50 40 30 20 10 100 10 1 0.1 Particle Size (mm) Sample No, ES13 0.01 10 20 30 40 50 60 70 80 90 iOO 0.001 ra ffl TS ffl C ^ ffl ffl 2 o Q. USCS: USDA: 70% Sand. 19% Silt, 11% Clay 81% Sand, 11% Silt, 8% Clay OCA-Southland A DWsionc/SOUTHLAND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A24 SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coanse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 10G 90 80 70 ra "S 5 60 ra c CO CO a a. c ffl 2 ffl CL ^ 50 40 30 20 10 100 10 -U- 1 0.1 Particle Size (mm) 0.01 10 20 30 40 50 60 70 80 90 —100 0.001 ra I ffl C ffi "S cc o ffl Q. NS21 USCS: USDA: 69% Sand, 20% Silt, 11% Clay 79% Sand, 14% Silt, 7% Clay CCA • Southland AOM^^ SOUTHLAND GEOTECHNICAL, INC. Project No: DJ01029 Grain Size Distribution Figure A32 m m m TO I >* ffl ra c CO 10 I ffl ffl CL SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarsel Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 60 ^ 50 40 30 20 10 100 USCS: USDA: 10 1 0.1 Particle Size (mm) Sample No WS5 0.01 71% Sand, 20% Silt, 9% Clay 79% Sand, 15% Silt, 6% Clay TTi Tl i\ *Pi TiTiT'^T^ f— 10 20 30 40 50 60 70 80 90 100 0.001 Sl ra ffl 5 >* m TJ ffl C ra % QC "E ffl ffl Q. mm m fDj CCA • Southland m N^H AOM^cf SOUTHLAND GEOTECHNICAL. INC. Grain Size Figure m wm Project No: DJ01029 Distribution A44 ra ffl ffl ra CO CO n CL c i ffl CL SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine : Coarse Medium Fine Clear Sieve Openings : U.S. Standard Sieve Numbers Microns 100 90 80 70 60 •s 50 40 30 20 y 2" I y I .^"^ ^4 ^1 #|6 I #:^o | #^o #ipo #2po 2p ip ^ 10 10 20 30 40 50 60 70 80 90 -100 ra •ffl ffl IS c 'ra CC c 0 B ffl CL 100 10 0.1 0.01 0.001 Particle Size (mm) Sapiple No. Mix #1: Top Deck 10%, Ocean Ranch 20%. Ramona 70% USCS: USDA: 63% Sand, 23% Silt,14% Clay 72% Sand, 19% Silt, 9% Clay OCA • Southland AOiviM^ot SOUTHLAND GEOTECHNICAL, INC. Project No: DJ01029 Grain Size Distribution Figure A13 m SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 ro ffl 5 60 ro _c CO CO ffi a. •i 50 g 40 ffl CL 30 20 10 TTi Tl Ii ^ *Pi TiTiT *r*r ^ T f—l-^o 10 20 30 40 50 60 70 80 90 ro i >* ffl "S ffl cc o CL J LJ--4 00 100 10 1 0,1 Particle Size (mm) Sample No, Mix #2: Ocean Ranch 30%, Ramona 70% 0.01 0.001 USCS: USDA: 66% Sand, 20% Silt, 14% Clay 75% Sand, 16% Silt, 9% Clay i OCA • Southland xttvMion of SOUTHLAND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A14 SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 ra I 60 >. ffl ro •i 50 CO ffi I 40 ffl CL 30 20 10 100 USCS: USDA: 10 0.1 0.01 Particle Size (mm) 2amc Mix #3: Top Deck 30%, Ramona 70% 60% Sand, 25% Silt, 15% Clay 73% Sand, 16% Silt, 11% Clay TTi Tl -^1 *i6i#fO|TTT T T !—I 10 20 30 40 50 60 70 80 90 -J100 0.001 Sl ra 'ffl >* ffl "D ffl _C ffi % CC c i V CL OCA * Southland A £3«™««of SOUTHLAND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A15 m li I* n SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 Sl a I 60 ro •i 50 (0 ffi QL 30 20 10 100 10 1 0.1 Partide Size (mm) 0.01 y ^" I Y I .^"^ #j6| #|6 I #^ I #y) #1p0 #2p0 2p Ip ^ ^ 10 20 30 40 50 60 70 80 -'100 0.001 ro I >. ffl •o ffl c ffi cc c i ffl CL Mix #4: SS9 25%. TD10/OR20/RAM70 75% m m m USCS: USDA: 60% Sand, 23% Silt, 17% Clay 70% Sand, 17% Silt, 13% Clay OCA* Southland /*aw(ion of SOUTHLAND GEOTECHNICAL, INC. Project No: DJ01029 Grain Size Distribution Figure A16 m H SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 10Q 90 80 70 ra I 60 >. ffl ra •5 50 CO ffi CL ffl CL 30 20 10 T T I T i "f • y #16 I #^ I #|0 #1pO #2p0 2p 1p ^ ^ 100 10 1 0.1 Particle Size (mm) 0.01 10 20 30 40 50 60 70 80 ^0 ^00 0.001 ra I •o ffl c "ffi % DC ffl ffl Q. Mix #5: SS9 25%, OR30/RAM70 75% USCS: USDA: 62% Sand, 20% Silt, 18% Clay 68% Sand, 19% Silt, 13% Clay CCA •Southland .^Orvijioo of SOUTHLAND GEOTECHNICAL. INC^ Project No: DJ01029 Grain Size Distribution Figure A17 m m SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns 100 90 80 70 60 i 50 ra 1 £• ra c 'co CO ra CL ffl CL 40 30 20 10 100 10 0.1 0.01 Particle Size (mm) Sample TTi Tl f* ^*Pi TiTiT*r*r—f T f—?-^o 10 20 30 40 50 60 70 80 90 0.001 ra i IS c 1 oc •E ffl ffl a Mix #6: SS9 25%, TD30/RAM70 75% USCS: USDA: 62% Sand, 22% Silt, 16% Clay 71% Sand, 16% Silt, 13% Clay pi OCA-Southland AOrWBonof SOUTHLAND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A18 SIEVE ANALYSIS HYDROMETER ANALYSIS GRAVEL SAND SILT AND CUY FRACTION Coarse Fine Coarse Medium Fine Clear Sieve Openings U.S. Standard Sieve Numbers Microns IOQTTI TI fi t. *Pi TiTiT^rT f T f—I 90 80 70 ra *5) g 60 >> ffl ro •1 50 (0 ra CL c ffl ffl a. 40 30 20 10 0 L_i L 10 20 30 40 50 60 70 80 90 100 10 0^1 0.01 —loo 0.001 ro ffl ffl T3 ffl C ffi ffl CC c ffl B ffl a Particle Size (mm) Sample No Mix #7: 80% Ramona Borrow Composite, 20% Ocean Ranch Topsoil Soil Description: 67% Sand, 33% Fines OCA - Southland A osmton of SOUTHLAND GEOTECHNICAL. INC. Project No: DJ01029 Grain Size Distribution Figure A19 il "•••'1 WUl •WWW"* ^,^f--KlANIAN_ SAN-a-' .H REMOLDING PROJECTNUJ^Hl <:: ^^^'ACTED BY: DATE BORING NUMBER: """" CF ECKEDBY: I>ATE:_ SAMPLE NUMBER; ^ JZT — SAMPLE TYPE: , DESCRIPTI- REMOLDING TECHNIQUE; _. 19^1*0 % 4 ?0 \) pg^TRgD CONPrnONS; DRYWnGHr(Yd) = /Qg.^ per/ 62.« = 1-7^'/ gm' c WATER CONTENT (w i = d 'O % (2) 'SAMPLE VOLUME: SAMPLE HHGHr<,H) = 5 SAMPLE DIAMETER [ D) -• 3« ^ or D = cmcbV/iF-::-..: .•• K = . in./ 3,i4i6 = V, = (n HI ^ • 3^H^5^ , ^ i 4 CC H (3) wnoKT OF son- AhJD VV'AT^: TIUAXIAL PER't/IE/XBILrrY TEST AST.^ IP50S4 PSOJEtrrNAME;, PROJECT NO.: TESTED BY: TYreOFTEST:_ BOIUNG NUMBER,:. SAMFl£ NUMBER:. C.^LCULA•I^)BY:. CHECKED BY: HEMARKS; DATE:. •ATE: DEPTH; Conqncted Sample Prepared at E3Ctruded from PREPARAT^ "^r? CONDtnON % Rel den / compacti- r. ^.fax. Dry Density. to _pcf, opt. N^ustute. INITIAL CONPITTOM OF SPECIMEN Diameter 1.. 2. 2^ittr 1? WTT 3. •2. ^^5^ Average Diameter ^^H'^'S' Height L. Sample Area (A). Total Weight 2. :2 I. 3 AveiT'--: Height _2 in. x2.54 = on JH-W? n.'x64S. ^-7? Ring/Tube Weight. Sample Weight gm SpedSc Gravity (G,) Total Volume (A x L) - VT = _ Volmne SoU = (Ws / Gs) = Vs = Pore Volmne (VT • VS) = VV = _ Volume Water (Ww)» V* = cm Mcnstme Contaizier No. WL Wet Soil + Container (gm) Wt Diy Soil + Container (gm) Wt. Comainer (gm) Moismre (%) BEPOSIE 73-y-<? 11^ Volmne Gas ( VT • Vs • Vw) - Vo = HSatntation(Vw/Vv)-, Void Ratio (Vy / VT) = e = Porosity (Vv / VT) n = an % Tota! WT - Wcidit ooil I'WT / (1+W)), Ws = Wcigb; '-V.it-.r CWT • Ws) - Ww Wet r - y^ity (WT / VT ) = Dry D-. r.\^-/ (Wj / VT ) = _Bni .gm .gm g/cn^x62.S= Ptf j/cm^ X 62.5 - fOf./ pcf n^ALcoNDH" )r; OFSPECIMEN CocmlioQ F«Xor Rrfcr Viwoiity of Wato Jl Various Ten^cnrtures Teapammc'C 19 20 31 22 23 24 23 26 Full WiUr Taiqxnnn •- I •025 1.000 0.976 0.?53 0.931 0.910 0.SS9 0.869 Moisture Container No. Wt. Wet Soil + Comainer (gm) Wt Dry Soil + Container (gm) Wt. Container (gm) Moisture (%) AFTER Mil 111 cm / sec PROJECT NUMBER: _ PROJECT NAME:. BORING NUMBER: SAMPLE NUMBER: ^ HL* bdlbl Sample Hdshi _ foilul StmpUt Vohane. bittal Sample Am 3untteAfe>- DEPTH (ft): in. .X 16.4 = _m.' an* SAMPLE SAT- ?IL'\TION DATA RECORDED BY: COMPUTED BY:. CHECKED BY: _ EjTcaive Presaure Final Ssmpte Kd^. Fi:ir;l Sample Vohime: Fin.ii Single Arei; DATE: DATE: DATE: ^Kfcracnt NtBober Tiow Elapsed Tone nun. Chamber Pressure ps dAppIied M-nstired Back, \ Fore Pressure Ticssure psi ; psi Bortfte Reading oc Volome Oiaaec (AV) ce Votnl a- / y \ ie>oo o /o 5 IfOO Xo f f>oO ?> (t> TO IS--0 7 Un If fhOO 73 70 ^> \3-l ! t i PROJECT NUMBER: 0T6 I 0/^^ NAME: Afr^ ^tKSjl^^ L'P- TRIAXIAL PERMEABIUTY TEST ASTMDS0K4 PROJECT BORtNO NUMBER: S.AMPUe NUMBER: DEPTH (FT): TESTED BY: COMPUTED BY; CHECKED BY: DATE:. DATE:. DATE: CELL PRESSURE: BOTTOM PLATEN: ^S^' H TOPPLATEN: _ AVERAGE EFFECnVR STRESS: DATE TIME ELAPSED TTME (MINUTES) nWow (ML) CHANOEIN INFLOW (NU.) CUMULATIVE INFLOW (ML) ouffum (ML) CHANOEIN OUFFLOW (ML) aiMULATlVE OUTFLOW (ML) k (CM/SEC) REMARKS 9/\7/ol 7-/ . .5^.77 i-?)f /O'^ 1 1 i i • '9 mm mm m mm mm mm ii ii ii ii ii ii ii ii ii ii B-VALUE C IMPUTATION PROJECTNUMBER; _ BORINO NUMBER; " * 8 AMK£ NUMBER:. DEPTH INTERVAL:. REMARKS: DA-m «^ /gyp ^ DA1Z: CCMPIHEDBY:. CHECKED BY: __ TRLAL NUMBER: pr BACK PRESSURE (psr> cm. PRESSURE (PSI) AXLU LOAD (LB) BACK PRESSUKI' (PSI) DVMREAONG B-VALUE PFTT PRESSURE (PSI) Ef-lrECnVE PRESSURE (PSI) B-VALUE HYDRAULIC CONDUCTIVITY - ASTM D5084 Job Name: CCA Southland DJ01-029 Task 20 Job No.: 2001-081 Sample: 80% Maddock + 20% OC Ranch By:LD Sample Ty Soil Type: .e: 1 1 Undisturbed Remolded Sand w. trace Clay Saturation Sample Ty Soil Type: Gray, M.C. Undisturbed Remolded Sand w. trace Clay Cell Pressure Back P. Pore P. B Cell Burette Sample Burette Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 10 7 -0.4 7.3 Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 20 17 -0.1 5.4 Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 30 27 -0.7 2.7 Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 40 37 37 -0.1 1.3 Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 50 46.5 9.5 Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 Conso//c/at/on Ini. Height (in.): 2 Final Ini. DIam. (in.): 2.41 Height (in.): 2.008 Wet + Tare (grams): 303.9 Diam. (in.): 2.419 Tare (grams): 0 Wet Weight (gr.): 322.2 Water Content (%): 9.5 Water Content {%): 16.1 Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 50 42 1.3 -0.1 6e\\ Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (cc) Bottom Burette (cc) Date&Time Start/Stop h (cm) ho/hi Q(cc) Top/Bott. Test Time, t (sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) 50 42.5 41.5 1 0 24 27.48 12 3300 7.5E-06 5.10032 29.63526579 50 42.5 41.5 1 12 12 0 12 3300 7.5E-06 5.10032 29.63526579 50 42.5 41.5 1 0 24 27.48 10 2700 7.4E-06 50 42.5 41.5 1 10 14 4.58 10 2700 7.4E-06 50 42.5 41^5 1 0 24 27.48 10 2700 7.4E-06 50 42.5 41^5 1 10 14 4.58 10 2700 7.4E-06 50 42.5 41.5 1 0 24 27.48 10 2700 7.4E-06 50 42.5 41.5 1 10 14 4.58 10 2700 7.4E-06 7.4E-06 (Average) aL , ho k — iTt 7.4E-06 (Average) rv tit. 2 At hi m m m i i i i i i i a VI llllllllllllll GeoLogic Associates llllll II II fl 11 II I] 11 II f! II II VI VI VI VI II 11 I I OJ HYDRAULIC CONDUCTIVmr - ASTM D5084 Job Name; CCA Southland Job No.: 2001-081 Sample: TD-2/1B By:LD ID CO 00 i U) (D U) r-t Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 Saturation Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 Cell Pressure Back P. Pore P. B Celt Burette Sample Burette Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 10 7 -0.3 4.4 Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 20 17 -0.6 2.5 Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 30 27 -0.3 1.3 Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 40 37 37 -0.1 0.8 Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 50 46.5 9.5 Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 Conso//rf0/iof} Sample Type: HB Undisturbed (CD Remolded Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 2.043 Wet + Tare (grams): 303.3 Diam. (in.): 2.441 Tare (grams): 0 Wei Weight (gr.): 323.1 Water Content (%): 10.5 Water Content (%): 17.7 Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 50 42 2 -1 (5ell Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (cc) Bottom Burette (cc) Date&Time Start/Stop h (cm) ho/h. Q(cc) Top/Bott. Test Time, t (sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) 50 42.5 41,5 1 0 24 27.48 1 5,0E-07 5.18922 oU.'i 7676276 i 50 42.5 41,5 1 1 1 ; 2o.-t9 1 5,0E-07 5.18922 oU.'i 7676276 i 50 42.5 41.5 1 1 23 25.19 1.2 4980 4.4E-07 50 42.5 41.5 1 2.2 21.8 22.442 1.2 4980 4.4E-07 50 42.5 41.5 1 2.2 21.8 22.442 1.6 6420 4.7E-07 50 42.5 41.5 1 3.8 20.2 18.778 1.6 6420 4.7E-07 50 42.5 41.5 1 3.8 20.2 18.778 2.2 9540 4.6E-07 50 42.5 41.5 1 6 18 13.74 2.2 9540 4.6E-07 50 42.5 41.5 1 0 24 27.48 6 24480 4.6E.07 (Average) , aL , ho k = tft — 50 42.5 41.5 1 6 18 13.74 6 24480 4.6E.07 (Average) 2Ai hi c IQ a e (9 10 (D O •* o 00 o 0 o GeoLogk; Associates HYDRAULIC CONDUCTIVITY - ASTM D5084 Q. CO I to (fi (fi c a E ID _1 IQ CD O o 00 o 0 D Job Name: CCA Southland Job No.: 2001-081 DJ 01-029 Task 22 Sample Type: HI Undisturbed ClD Refolded Soil Type: Orange Brown Mottled, Silty Sandstone w. Siltstone chip Inl. Height (in.): Ini. Diam. (in.] Wet + Tare (grams): Tare (grams): Water Content (%): Dry Density (pcf): Sample: TD-3/1A By:LD Cell Pressure 2 Final 2.41 Height (In.): 2.031 306.4 Diam. (in.): 2.429 0 Wet Weight (gr.): 321.2 12.4 Water Content (%): 17.8 114.8 Dry Density (pcf): 110.4 GeoLogic Associates m-m mm mm V 9 V V m.m VI II 9 vfl I I I I 1 I r I I I I 1 I I II il il 11 II II 11 11 II 11 VI VI VI VI Vi il Vi il il tL HYDRAULIC CONDUCTIVITY - ASTM D5084 in 00 I (D tfi (fi c IQ a e n r-o o CD O *> 0 O Job Name: CCA Southland Job No.: 2001-081 Sample: TD-11/1B By:LD DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 Saturation DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 Cell Pressure Back P. Pore P. B Cell Burette Sample Burette DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 10 7 -1.9 1.1 DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 20 17 -0.4 1.4 DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 30 27 0.3 0.9 DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 40 37 37 0.3 0.9 DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 50 46.5 9.5 DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 Consolidation DJ 01-029 Task 22 Sample Type: Undisturbed ([[3) Remolded Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone Ini. Height (in.): 2 Final tni. Diam. (in.): 2.41 Height (in.): 2.045 Wet + Tare (grams): 312.1 Diam. (in.): 2.423 Tare (grams): 0 Wet Weight (gr,): 318.8 Water Content (%): 15.6 Water Content (%): 18.1 Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 50 42 2 -0.9 -"Cell Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (CC) Bottom Burette (CC) Date&Time Start/Stop h (cm) ho/hi Q (cc) Top/Bott. Test Time, t (sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) 50 42.5 ^;1.5 '1 0 27.48 0.4 24 060 3.0E-03 5.1943 50 42.5 ^;1.5 '1 23.0 23.6 26.564 24 060 3.0E-03 5.1943 50 42.5 41.5 1 0.4 23.0 23.6 26.564 3.3 230850 26E-08 50 42.5 41.5 1 3.7 20.5 19.236 3.1 230850 26E-08 50 42.5 41.5 1 0 24 27.48 3.7 2.6E-08 (Average) aL . ho k = In — 50 42.5 41.5 1 3.7 20.5 19.236 3.5 254910 2.6E-08 (Average) 2 At ht GeoLogic Associates 0. in 00 I (fi (fi (fi c IQ Q E ro _j (0 r-o 0) o to OJ 0 o Job Name: CCA Southland DJ 01-029 Undisturbed HYDRAULIC CONDUCTIVITY - ASTM D5084 Job No.: 2001-081 Sample Type: Soli Type: Gray Brown, F C. Silty Sand I Remolded Inl. Height (in); Ini. Diam. (In.): Wet + Tare (grams): Tare (grams): Water Content (%): Dry Density (pcf): 2 Final 2.41 Height (in.): 305.9 Diam. (in.): 0 Wet Weight (gr.): 10 Water Content {%) 117.1 Dry Density (pcf): 1.992 2.405 323.8 16.4 117.1 -TelT" Back Back Pressure lop Pressure Pressure Pressure Difference Burette (psi) (Top) (Bottom) (psi) (cc) 1 - Bottom Burette (cc) Sample: WS-1 Composite By:LD Saturation Cell Pressure Back P. Pore P. B Cell Burette Sample Burette 10 7 2.1 8.3 20 17 1.1 6.2 30 27 06 3.6 40 37 37 0.3 1 45 41.8 0.96 Consolidation 45 37 1.4 -1.1 Date&Time Start/Stop h (cm) ho/h, Q(cc) Top/Bott. Test Time, t(sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) i i 27.^ £i I 1V2 1 1 'i.EE-0^. i 5.05968 GeoLogic Associates mm mm i i i i ii 19 ii il il il li II II II tl II 11 fl ri VI VI il 11 ri ri ri ri vi vi vi vi vi vi vi ii ii ID 00 (fi (fi (fi Job Name: CCA Southland HYDRAULIC CONDUCTIVITY - ASTM D5084 Job No.: 2001-081 Sample; WS-25 Composite By:LD DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 Saturation DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 Cell Pressure Back P. Pore P. B Celt Burette Sample Burette DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 10 7 3.2 10.3 DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 20 17 1.5 6.6 DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 30 27 0.8 4.9 DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 40 37 37 0.2 1.1 DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 45 41.8 0.96 DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 Consolidation DJ 01-029 Sample Type: | I Undisturbed Remolded Soil Type: Gray Brown. F C. Silty Sand Inl. Height (in.): 2 Final Ini. Diam. (in.): 2.41 Height (in.): 1.988 Wet + Tare (grams); 301.8 Diam. (in): 2.41 Tare (grams): 0 Wet Weight (gr): 323.7 Water Content (%): 8.5 Water Content (%): 16 4 Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 45 37 1.6 -1.3 Cell ' Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (cc) Bottom Burette (cc) Date&Time Start/Stop h (cm) ho/hi Q(cc) Top/Bott Test Time, t (sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) Cell ' Pressure (psi) J Pressure Difference (psi) 27.4£ 5.5 •|,5E:-0D 1.4E-05 S.04&52 j I ! •|,5E:-0D 1.4E-05 45 37.5 36,5 1 0 24 27.48 3.8 420 •|,5E:-0D 1.4E-05 45 37.5 36,5 1 3.8 21.2 19.923 2.8 420 •|,5E:-0D 1.4E-05 45 37.5 36.5 1 0 24 27.48 5.6 690 1.5E-05 45 37.5 36.5 1 5.6 18.4 14.656 5.6 690 1.5E-05 45 37.5 36.5 1 0 24 27.48 7.9 900 1.7E-05 45 37.5 36.5 1 7.9 16.1 9.389 7.9 900 1.7E-05 45 37.5 36.5 1 0 24 27.48 3.8 420 1.7E-05 45 37.5 36.5 1 3.8 20.2 18.778 3.8 420 1.7E-05 1.6E-05 (Average) , aL , ho k = In — 1.6E-05 (Average) 2 At hi c IQ a E 10 10 (0 o m o (fi (M t> 0 o GeoLogic Associates Q. in 00 I (fi CO (fi r^ Job Name: CCA Southland DJ 01-029 Sample Type: I I Undisturbed Soli Type: Gray Brown, F.C. Silty Sand InL Height (in): 2 tni. Diam. (in.): 2.41 Wet + Tare (grams): 307 Tare (grams): 0 Water Content (%): 9.5 Dry Density (pcf): 118.1 HYDRAULIC CONDUCTIVITY - ASTM D5084 Job No.: 2001-081 Sample: SS-9 Composite By:LD I Remolded Final Height (in.): 2.013 Diam. (in.): 2.417 Wet Weight (gr.): 324 Water Content (%): 15,6 Dry Density (pcf): 115.7 Saturation Cell pressure 10 20 30 40 45 Back P. 17 27 37 Pore P. 37 41.8 B 0.96 Oil Burette -0.3 0.7 -0.2 0.4 Sample Burette 7.3 5.8 3.2 1.2 Consolidation 45 37 1.1 Coefficient of Permeability, k (cm/sec) c fO n e 10 10 m a *• cn o (fi 0 o (^ell ' Back Pressure Pressure (psi) (Top) 45 Back Pressure Top Bottom Pressure Difference Burette Burette (Bottom) (psi) (cc) (cc) Date&Time Start/Stop h (cm) ho/h, Q(cc) Top/Bott. Test Time, t (sec) Remarks (L/A) GeoLogic Associates mm mm v i i a i a mm Miiiiiiiiiii I I 1 I i I I I I I flilililllllllllllilllliVIViilVIVIViil CL HYDRAULIC CONDUCTIVITY - ASTM D5084 in m t 00 I (fi (0 (0 Job Name: CCA Southland Job No.: 2001-081 Sample: ES-13 Composite By:LD 1 1 1 Ini^ioliirhAH ^Ib Remolded Saturation Soil Type: Gray Brown, F.C. Silty Sand Remolded Celt Pressure Back P. Pore P. B Cell Burette Sample Burette Soil Type: Gray Brown, F.C. Silty Sand Final 10 7 -1 7.8 Mil. neiyiii \»'-/ • Int. Diam. (in.): Wet + Tare (grams): 2.41 303 7 Height (in.; Diam. (in.) Final 2.026 20 17 -0.8 6.1 Mil. neiyiii \»'-/ • Int. Diam. (in.): Wet + Tare (grams): 2.41 303 7 Height (in.; Diam. (in.) 2.412 30 27 -0.8 3.2 Mil. neiyiii \»'-/ • Int. Diam. (in.): Wet + Tare (grams): 2.41 303 7 Height (in.; Diam. (in.) 2.412 0.2 1 Tare (grams): 0 Wet Weight (gr.): 321.7 40 37 37 0.2 1 Tare (grams): 0 Wet Weight (gr.): 321.7 10 Water Content (%): Dry Density (pcO: 16.5 45 41.8 0.96 vvdiei Vrfvmciii \ /»/ • Dry Density (pcO: 116.3 Water Content (%): Dry Density (pcO: 113.7 Cor>so//cfatfon vvdiei Vrfvmciii \ /»/ • Dry Density (pcO: 116.3 Water Content (%): Dry Density (pcO: 113.7 45 37 1.1 -0.4 • 6e\\ Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (cc) Bottom Burette (cc) Date&Time Slarl/Stop h (cm) ho/hi Q(cc) Top/Bott. Test Time, t(sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) C!> (- O 0 '1 27.4£ 11.6 2.7E-0-'. 5.14604 C!> (- O ! 'i '1 1 '1-.-, U.blfc .,.J1^..-.J 45 37.5 36.5 1 0 24 27.48 11.8 2.7E-04 45 37.5 36.5 11.8 12.3 0.5725 11.7 90 45 37.5 36.5 1 0 24 27.48 11.8 2.7E-04 45 37.5 36.5 11.8 12.2 0.458 11.8 90 45 37.5 36.5 1 0 24 27.48 11.5 2.7E-04 45 37.5 36.5 11.5 12.5 1.145 11.5 90 45 37.5 36.5 1 0.5 24.5 27.48 11.4 2.6E-04 45 37.5 36.5 11.9 13.1 1.374 11.4 90 2.7E-04 aL , ho k In — (Average) 2 At ht c IQ a E ID _l Q CU 0} O (fi (U •> 0 o GeoLogic Associates PJ Q. in n 00 I (0 U) (fi t^ c 10 (=) E <0 10 (fi o ** tn D to •> o o Job Name: CCA Southland DJ 01-029 Sample Type: L I Undisturbed Soil Type: Gray Brown, F.C. Silty Sand Ini. Height (in.): 2 tni. Diam. (in.): 2.41 Wet + Tare (grams): 303.4 Tare (grants): 0 Water Content (%): 10 Dry Density (pcO: 116.2 HYDRAULIC CONDUCTIVITY - ASTM D5084 Job No.; 2001-081 Sample: NS-21 Composite By:LD Remolded Final Height (in.): 2.01 Diam! (in.): 2.405 Wei Weight (gr.): 321.5 Water Content (%): 16.6 Dry Density (pcf): 115.1 Cell"" Pressure (psi) Back Pressure (Top) Back Pressure Top Bottom Pressure Difference Burette Burette (Bottom) (psi) (cc) (cc) Saturation Cell Pressure Back P. Pore P. B Celt Burette Sample Burette 10 7 1.9 12,3 20 17 1,2 5.6 30 27 0.5 3.8 40 37 37 0 2.2 45 41.8 0.96 Consolidation 45 37 4.9 -5.4 Date&Time Start/Slop h (cm) ho/hi i 27.-^6 Q (cc) Top/Bott. ] 12.3 Test Time, t(sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) 1 L"', 1L/;." -, V9 II II II li i I I I i i I i I I GeoLogic Associates IIIIIII II ii ii il II II fl II ri VI n 1 V i 9 i I 91 VI ii 11 (fi 0. in CO I (fi (D (fi c 10 Q B IQ IQ O 0} o (fi (U u o Job Name: CCA Southland HYDRAULIC CONDUCTIVITY - ASTM DS084 Job No.: 2001-081 Sample; WS-5 Composite By:LD DJ 01-029 4^ Remolded Saturation Sample Type: | l unaiswruBu 4^ Remolded CeW Pressure Back P. Pore P. 6 Cell Burette Sample Burette Soil Type: uray orown, r.u. omy oemu Pinal 10 7 -0.4 7.9 Ini. Height (in.): Ini. Diam. (in.): Wet + Tare (grams): c Uainhf fin \ If f CTI ? 01 20 17 1.1 5.9 Ini. Height (in.): Ini. Diam. (in.): Wet + Tare (grams): d.41 306.8 9.5 wt A O /\ neigni ^iii-^ Diam. (in.) Wet Weigh Water Cont 30 27 -0.5 3.6 Ini. Height (in.): Ini. Diam. (in.): Wet + Tare (grams): d.41 306.8 9.5 wt A O /\ neigni ^iii-^ Diam. (in.) Wet Weigh Water Cont t(9r.): ent (%): 325.1 16.0 114 6 40 37 37 0.6 0.8 Tare (grams): Water Content (%): Dry Density (pcf): d.41 306.8 9.5 wt A O /\ neigni ^iii-^ Diam. (in.) Wet Weigh Water Cont t(9r.): ent (%): 325.1 16.0 114 6 45 41.8 0.96 Tare (grams): Water Content (%): Dry Density (pcf): d.41 306.8 9.5 wt A O /\ neigni ^iii-^ Diam. (in.) Wet Weigh Water Cont t(9r.): ent (%): 325.1 16.0 114 6 Conso//da(/on Tare (grams): Water Content (%): Dry Density (pcf): 118.0 jry uensiiy 45 37 1.5 -0.8 'Cell Pressure (psi) Back Pressure (Top) Back Pressure (Bottom) Pressure Difference (psi) Top Burette (cc) Bottom Burette (cc) Date&Time Start/Stop h(cm) ho/hi Q(cc) Top/Bott. Test Time, t (sec) Coefficient of Permeability, k (cm/sec) Remarks (L/A) •iL> i •—"•"•— "6 5 '• '--•—^ 'l ; 27.48 Tl 5.105-4 . . V 1 1 -. ; 1^ — .... 2.2& 1 > 22.Z0C-.0\-'.: 45 1 37.5 36.5 1 0 24 27.48 11.2 2.5E-04 45 1 37.5 36.5 11.2 12.9 1.9465 11.1 90 45 37.5 36.5 1 0 24 27.48 11.3 2.5E-04 45 37.5 36.5 1 11.3 12.8 1.7175 11.2 90 45 37.5 36.5 1 0 24 27.48 11.3 2.5E-04 45 37.5 36.5 1 11.3 12.8 1.7176 11.2 90 45 37,5 36.5 1 0.5 24.6 27.5945 11,3 2.BE-04 45 37,5 36.5 1 11.8 13.3 1.7176 11.3 90 2.5E-04 , aL . ho k In ~— (Average) 2 At hi GeoLogic Associates CONSTANT-HEAD PRESSURE PERMEABILITY TESTS Modified USBR 5600 PROJECT CCA Southland Date 1/2/02 Job No # DJ 01-029 - 2001-081 Task 24-2 By LD •4* Sample #1 Composite Start Sto p mm As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k -« 93.5 Tare ' • ^ 452.8 18:48 484.2 7:35 31.4 1.7E-06 MM 400.5 Init. Wet vrt 484.2 7:35 496.8 12:18 12.6 1.8E-06 Sat. Wt. 419.4 496.8 12:18 503.1 15:38 6.3 1.3E-06 Trimmed Wt. 416.3 503.1 15:38 555.2 7:10 52.1 2.3E-06 8.5 % water 15.2 UK 119.2 Dry Density 118.1 - PSI 1 Total (Ave.) 102.4 1.9E-06 MM Sample #2 Composite Start Sto p wm As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k Tare B 452.7 18:48 502 7:35 49.3 2.6E-06 wm Init Wetwt 1 502 7:35 518.2 12:18 16.2 2.3E-06 - Sat. Wt 420.4 518.2 12:18 530.2 15:38 12 2.5E-06 M Trimmed Wt. 420.4 530.2 15:38 598 7:10 67.8 3.0E-06 m % water 13.2 Dry Density 121.7 wm PSI 1 Total (Ave.) 145.3 2.7E-06 wm m Sample #3 Composite Start Sto p m As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k mm 93 Tare 452.7 18:48 472.2 7:35 19.5 1 .OE-06 m 404.2 init. Wet wt 472.2 7:35 478.8 12:18 6.6 9.5E-07 ^m , ' , , Sat. Wt. 419.5 478.8 12:18 483.2 15:38 4.4 9.0E-07 Trimmed Wt. 417.5 483.2 15:38 513 7:10 29.8 1.3E-06 il % water 14.9 m Dry Density 119.0 PSI 1 Total (Ave.) 60.3 1.1E-06 K = coefficient of permeability (cm/sec) L = sample height = 5.080 cm A = area of sample = 29.41516 cm^ H = Hydrostatic head (cm of H2O) K = QL/Aht 1 psi = 70.43 cm GeoLogic Associates IP m CONSTANT-HEAD PRESSURE PERMEABILITY TESTS Modified USBR 5600 PROJECT CCA Southland Date 1/2/02 mw m Job No # DJ 01-029 - 2001-081 Task 24-2 By LD Sample #4 Composite Start Sto p •i As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k m 92.6 Tare 453.2 18:48 483.8 7:35 30.6 1.6E-06 m 39^^ Init. Wet wt • 483.8 7:35 490.9 12:18 7.1 1.OE-06 Sat. Wt. 412.9 490.9 12:18 495 15:38 4.1 8.4E-07 H Trimmed Wt. 409.2 495 15:38 512.4 7:10 17.4 7.6E-07 H 10 % water 16.1 m 116.2 Dry Density 114.9 IH PSI 1 Total (Ave.) 59.2 1.1E-06 Sample #5 Composite Start Sto p As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k 93.4 Tare 453 18:48 485.6 7:35 32.6 1.7E-06 39^^ Init. Wet wt • , • 485.6 7:35 492.8 12:18 7.2 1.OE-06 Sat. Wt 414.7 492.8 12:18 498.1 15:38 5.3 1.1E-06 Trimmed Wt 409.6 498.1 15:38 521.6 7:10 23.5 1.OE-06 10 % water 16.5 116.2 Dry Density 114.3 PSI 1 Total (Ave.) 68.6 1.3E-06 mt Sample #6 Composite Start Sto p As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k iM 94.1 Tare 452.8 18:48 519.5 7:35 66.7 3.5E-06 39^^ Init. Wet wt 519.5 7:35 536.9 12:18 17.4 2.5E-06 Sat. Wt 415.3 536.9 12:18 547.8 15:38 10.9 2.2E-06 Trimmed Wt 412.5 547.8 15:38 593 7:10 45.2 2.0E-06 wm 10.5 % water 16.8 Ml 115.9 Dry Density 114.9 PSI 1 Total (Ave.) 140.2 2.6E-06 K = coefficient of permeability (cm/sec) L = sample height = 5.080 cm A = area of sample = 29.4116 cm^ H = Hydrostatic head (cm of H2O) 1 psi = 70.43 cm K = QL / Aht GeoLogic Associates CONSTANT-HEAD PRESSURE PERMEABILITY TESTS Modified USBR 5600 PROJECT CCA Southland #DJ 01-029'Task 24-2 Job No 2001-081 Date By 1/4/02 LD Sample #7 Composite-OR 20/RAM 80 Start Sto p As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k Tare 520.3 9:33 545.2 11:29 24.9 8.8E-06 Init Wet wt 545.2 11:29 566.3 13:05 21.1 9.0E-06 Sat. Wt. 432 566.3 13:05 582.1 14:22 15.8 8.4E-06 Trimmed Wt. 430.6 582.1 14:22 589.9 15:00 7.8 8.4E-06 % water 17.2 589.9 15:00 834.4 7:07 244.5 1.0E-05 1 121.5 Dry Density 121.0 834.4 8:27 846.3 9:26 11.9 8.2E-06 PSI 1 Total (Ave.) 326 9.8E-06 Sample Start Sto p As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k Tare Init Wet wt K- 1 Sat. Wt. Trimmed Wt % water Dry Density PSI Total (Ave.) Sample Start Sto p As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k Tare init. Wet wt • n'SfflVtiXiSH Sat Wt. Trimmed Wt. % water Dry Density PSI Total (Ave.) K = coefficient of permeability (cm/sec) L = sample height = 5.080 cm A = area of sample = 29.4116 cm^ H = Hydrostatic head (cm of H2O) K = QL/Aht HI li 1 psi = 70.43 cm GeoLogic Associates m mi KEANTAN LABORATORIES www.keantanlabs.com email: keantanlab@acJ.com Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJE<rr NO.: DJOl-029 DATE: IO-y-01 MOISTURE CONTENT: 13.0 PERCENT (BY WT.) DRY DENSITY: 108.9 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: #1 85% Carroll Canyon DEPTH(FT): N/A 15% Ocean Ranch OK ca C2 tn C 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 ,0.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Moisaire Content By Volume (percent) IM HGURENO. ^4 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 KEANTAN LABORATORIES www.keantanlabs.com emaih keantanlab@aol.com C^illary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.:DJ0I-029 DATE: 10-9-01 MOISTURE CONTENT: 9.5 PERCENT (BY WT.) DRV DENSITY: 116.6 PCF (REMOLDED) 14.00 12.00 iO.OO 8.00 6.00 4.00 2.00 O.OO KTL NO.: 01-088-003 CLIENT; CCA SOUTHLAND SAMPLE I.D.: #2 80% Madaoc^ DEPTH(FT); N/A 20% Ocean Ranch 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Moisiui-e Content By Volume (percent) FIGURE NO. A 5 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 IH P It li •I k KEANTAN LABORATORIES www.keantanlabs.com email: keantanlab@aol.asm C^illary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 15.8 PERCENT (BY WT.) DRY DENSITY: 114.1 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: TD2 DEPTH(FT): N/A C3 CC 9 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 I ,0.0 15.0 20.0 25.0 30.0 35.0 40.0 Moisture Content Bv Volume (percent) 45.0 50.0 il FIGURE NO. A21 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714} 535-7616 • Fax: (714) 535-7568 KEANTAN LABORATORIES www. keantanhbs. com email: keantan{ab@aot.<x>m Capillary-Moisture Relations ASTMD3152 PROJECT-NAME: S.-\N MARCOS LANDFILL PROJECT NO,: DJOl-029 DATE: HI-I'M) I MOISTURE CONTENT: 18.5 PERCENT (BY WT.) DRY DENSITY: 11S.7 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE T.D.: TD3- DEPTH(FT): N/A ea C2 O 14.00 - 12.00 10.00 8.00 6.00 4.00 2.00 0.00 lO.O 5.0 :!),() 25.0 30.0 35.0 40.0 45.0 50.0 \ loibiiij-e Content By Volume (percent) kl m m m m n Mi FIGURE NO. 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 Hi KEANTAN LABORATORIES www.keanianlabs.com anail: keantanhb@aol.cx>m C^illaiy-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 14.0 PERCENT (BY WT.) DRY DENSITY: 108.1 PCF (REMOLDED) CJ C3 m C f— 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: TDll DEPTH(FT): N/A lO.O 15.0 20.0 25.0 30.0 35.0 40.0 Moismre Content By Volume (percent) FIGURE NO. A23 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 KEANTAN LABORATORIES www. keantanlabs.com email: keantanlab@aol.com Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 10.0 PERCENT (BY WT.) DRY DENSITY; 117.0 PCF (REMOLDED) KTL NO.: 01-088-003 ^ CLIENT: CCA SOUTHLAND SAMPLE I.D.: WSl COMPOyjE DEPTH(FT): N/A 25% WSl 75% Maddock/ Ocean Raij^ 80%/20% Blen( ra ffl C O 'i 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 10.0 15^0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 Moisture Content By Volume (percent) m m P ii ii IM IM FIGURE NO. A52 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 W k KEANTAN LABORATORIES www.keantanlabs.com email: keantanlab@aol.com Capillary-Moisture Relations ASTMD3152 PROJECT "NAME; SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 8.5 PERCENT (BY WT.) DRY DENSITY: 117.0 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: WS25 COMPOSITE DEPTH(FT); N/A 25% WS25 75% Maddock/ Ocean Ranch 80%/20% Blend ra ffl i 14.00 - 12.00 - 10.00 8.00 6.00 4.00 2.00 0.00 ;o.o 5.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 N toisture Content By Volume (percent) HGURENO. A54 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 KEANTAN LABORATORIES www.keantanfabs. com email: keantanlab@aol.com Capillary-Moisture Relations ASTMD3152 PROJECT NAME; SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 9.5 PERCENT (BY WT.) DRY DENSITY: 117.9 PCF (REMOLDED) KTL NO.: 01-088-003 t-ji. CLIENT: CCA SOUTHLAND SAMPLE I.D.: SS9 COMPOSITE DEPTH(FT): N/A 25% SS9 *m 75% Maddock/ Ocean RancJw 80%/20% Blend C3 ffl 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.0(1 lO.O 5.0 20.0 25.0 30.0 35.0 Moisture Content By Volume (percent) 40.0 m m m HGURENO, A51 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 P li KEANTAN LABORATORIES www. keanianlabs.com email: keantanlab@aol.com m IM Capillary-Moisture Relations ASTMD3152 PROJECT'NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 10.0 PERCENT (BY WT.) DRY DENSITY: 116.1 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: ES13 COMPOSITE DEPTH(FT): N/A 25% ESI 3 75% Maddock/ Ocean Ranch 85%/15% Blend ec ffl 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 10.0 5.0 20.U 25.0 30.0 Moisture Content By Volume (percent) ;5.0 40.0 FIGURE NO. A4 9 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax; (714) 535-7568 KEANTAN LABORATORIES www. keantanlabs.com email: keantanlab@aol.com Capillary-Moisture Relations ASIMD3152 PROJECT'NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: i 0-19-01 MOISTURE CONTENT: 10.0 PERCENT (BY WT.) DRY DENSITY: 116.1 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: NS21 COMPOSITE DEPTH(FT): N/A 25% NS21 ^ 75% Maddock/ Ocean Ranqifai 85%/15% Blend ffl .2 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Moisture Content By Volume (percent) P FIGURE NO. ASO 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.; (714) 535-7616 • Fax: (714) 535-7568 IM P P m KEANTAN LABORATORIES www. keantanlabs.com email: keanlanlab@aot.com Capillary-Moisture Relations ASTMD3152 PROJECT-NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 10-19-01 MOISTURE CONTENT: 9.5 PERCENT (BY WT.) DRY DENSITY: 117.9 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: WS5 COMPOSITE DEPTH(FT): N/A 25% WS5 75% Maddock/ Ocean Ranch 85%/15% Blend MM c c 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 ,0.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 Moisture Content By Volume (percent) FIGURE NO. A53 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 fC|ANMN__ „ LABORAiORiES wMw.iceantanfab$.oom email: laeanfcinJobOaoi.com Capillar>'-Moisture Relations AS'IMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 1-3-02 MOISTURE CONTENT: 8.5 PERCENT (BY WT.) DRY DENSITY: 119.3 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: . Mix #1 DEPTH(FT): N/A KOO jloo laoo aoo doo 4.00 2.00 0.00 10.0 15.0 20.0 25.0 30.0 35.0 Moisture Content By Volume (percent) 40.0 P P P ii p p m HGURENO. Cl 720 hiorth Volley Street, Suite B, Anaheim, CA 92801 • Tel.: {714) 535-7616 • Fax: (714] 535-7568 P P P m KEANTAN lABORATORIES www.keanlanlabi.com wmall: JUanlOnlofafiao/.oom C^illary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 1-3-02 MOISTURE CONTENT: S.5 PERCENT (BY WT.) DRY DENSITY: 121.5 PCF (REMOLDED) 14.00 1^00 laoo &00 I 6.00 4.00 2.00 0.00 KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE I.D.: Mix #2 DEPTH(FT): N/A lO.O 15.0 2 0 0 25.0 30.0 35.0 40.0 Moisture Cont&nl By Volume (percent) HGURENO. C2 720 r^rth Valley Street, Suite Anaheim, CA 92801 • Tel.: (714] 535-76U • Fax: (714) 535-7568 im KEANTAN '^^-LABORATORIES www.fc9antor^obs.oom email: inonlankS@aoi.com Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO:: DJOl-029 DATE: i-3-02 MOISTURE CONTENT: 9.5 PERCENT (BY WT.) DRY DENSITY: H 9.7 PCF (REMOLDED) 14:00 0.00 KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE LD.: Mix #3 DEPTH(FT): N/A lO.O 15.0 20.0 25.0 30.0 35.0 40.0 Moisture Content By Volume (percent) P P P HGURENO. C3 720 Njorlh Valley Street, Suite &, Anaheim, CA 92801 • Tel.: (714] 535-7616 • Fox: (714) 535-7568 m P P P P P KEANTAN^ IMbflATORIES www.keaiUoiJdbs.com email: keat^kinhb@aoi.oom Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 OATE: 1-3-02 MOISTURE CONTENT: 10.0 PERCENT (BY WT.) ORY DENSITY: 116.1 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE LD.: Mix #4 DEPTH{FT>: N/A P m c o 1 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.(X) 10.0 15.0 20.0 25.0 30.0 35.0 MoistLu^ Content By Volume (percent) 40.0 HCJURENO. C4 720 Nbrth Volley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 KEANTMi LABORAtORiES www.keantanki3s.o0m email: keantar^h@ooi. com Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 1-3-02 MOISTURE CONTENT: (0.0 PERCENT (BY WT.) DRY DENSITY: 116.1 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT: CCA SOUTHLAND SAMPLE 1X>.: Mix #5 DEPTH(FT): N/A ffl v. C I4j00 12i00 lOiOO 8iOO 6i00 4:00 2,00 0.00 10.0 15.0 20.0 25.0 30.0 35.0 Moistui-e Content By Volume (percent) 40.0 P P P HGURENO. C5 720 Ntrth Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 P P P HI P P P P m KEANTAN iABORATORIES email: kBan^anhb@at^.com C^illary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.: DJOl-029 DATE: 1-3-02 MOISTURE 6ONTENT; 10.5 PERCENT (BY WT.) DRY DENSITY: U 6.1 PCF (REMOLDED) 14.00 12.00 10.00 8.00 6.00 4.00 . 2.00 0.00 KTL NO.:01-088rO03 CLIENT: CCA SOUTHLAND SAMPLE I.D.: • Mix #6 DEPTH(FT): N/A 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Moisture Content By Volume (percent) HGURENO. C6 720 Nortl. Valley Street. Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 KEANTAN LABORATORIES www.keanlanlabs.com email: keantanlab@aol.com Capillary-Moisture Relations ASTMD3152 PROJECT NAME: SAN MARCOS LANDFILL PROJECT NO.; DJOl-029 DATE: 12-11-01 MOISTURE CONTENT: 8.0 PERCENT (BY WT.) DRY DENSITY: 123.3 PCF (REMOLDED) KTL NO.: 01-088-003 CLIENT; CCA SOUTHLAND Mix #7 SAMPLE I.D.: RAMONA/OCEAN(80/20)i DEPTH(FT); N/A 14.00 12.00 10.00 s 8.00 ffl 6.00 4.00 2.00 0.00 !().0 15.0 20.0 25.0 30.0 35.0 Moisture Content By Volume (percent) 40.0 •i Ml Mi •« FIGURE NO. CB 720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax; (714) 535-7568 P P ATTACHMENT B LEACHM INPUT/OUTPUT DATA GeoLogic Associates alta2 altaa SOIL-UATER-PLANT-INTERACTION SIHULATION "SinULATION PERIOBS (Data must be present for each iten-i even if it not used)' Sate type (US = 1 UK'-Si Starting date Read theta<l) or pot'KS) No- of water applications Years or cycles K-Th-h from PSD:yes(1)no<0) 1 Dioi<]a 1 1 0 Ending (date or day no-) BtSS No^ of crops Trace Kon)-. O(off) PROFILE DETAILS Profile depth (••) Segaent thickness <••) -ISESE+O^ Bottoa boundary condition E • 1SE5E+D3 or Siwatsr table depth -OaODE+OO FOR UNIFORM PROFILE: (Any non-zero value here will override those in the table of hydrological characteristics below unless K-Th-h calc- froa PSS)- Soil bulk density dg/cu-oi -DOOOE+DD Air -entry value' kPa -.O00DE+O^ Exponent in Ca«pbell's eq -DODOE+Oa Sat'd K values (••/day) -DOOaE+ai CROP SATA Plants present: i yesi 0 no 1 Uilting point (soil) kPa --ISDaE+Ot nax(actual tran/potl tran) -lOOOE+Dl Oin-root water pot'l (kpa)--a0DOE+a'( Roots: Const(l);growing(2) 1 Rax-root water pot'l tkPa) .DDDDE+OO If 1: root length (•) -SODE+OS Root flow resistance tern •lOSOE-'-ai NUHBER OF OUTPUT FILES — -OUT file — Node print frequency Print options: li E or 3 1: TiMC intervals/print 2- days/print 3: No. of prints (even) Tables printed: 1,3 or 3 .sun file Summary print interval (d) ^0 1 Three depth segnents for the suHsary S file (D's default to thirds of the m profile) <••) : m.Q Surface to Cdepth If] 3DS m Septh 1 to Cdepth Sfl blO 3 Depth E to [depth 3f] 1S2S TinES AT WHICH x-OUT FILE IS SESIRED (if print option " 3) Sate or Say no- TiBe of day Sate or (to nearest tenth) Say no- TiKe of day (to nearest tenth) 10 SHD 730 2111 2112 3k5S -a -2 • a .2 -2 -2 -2 lAO 101S lA2b 2557 3aa7 3Li52 -a -2 -a .2 -a -2 -a sxx«»*xxxsxxxxx««xxxx«*««»«xs«xx«««*xx«x»x«xxx«x«»x««sx»»««xs«xxxx««x«* xxx«x«xx«s»sxxsxxxxxx««x«*xx«x««x«»x««*xxxxxx«x«xx*s«s«»«*wx«xx«x«xx«« Soil Particle size distribution Layer Clay Silt Rho Organic no- carbon 7. y. kg/dni3 '£ natch K<hy at: K natric pot' 1 *in/d kPa Retentivity regression model no- 1 a 3 t( 5 t> 7 a 1 10 7 7 ao 2D 20 20 7 7 7 7 a^ SB sa se sa 30 30 30 30 i-a? 1.B7 1-73 1-73 1-73 1-73 Lit Lit Lii Lii 1-D l-D 1-D 1-0 1-D 1-0 1-0 1-0 1-0 1-0 b-310 li-31D D-Ab^ D•ab^ o•at>^ o.at.)i lai-H iai^>i lai^M 161. ^ Particle density kg/di«3: Clay Sand Organic matter a-bS 2-bS 1-10 «»»xxxxxxx««««««»«x««««x«««»«»«x««"««»*x«x«*x»««x««x««*««««*»««x«»x«*«««» xxxxxxxxxxxxxxxxxxxxxxxxxxxxx«***»XXXXX*X«»XXX*XX«XXXXXXXXXXX«*»*»X*(«*XX Soil [Starting values I Hydrological Characteristics! Root layer no. I Pot'l or Theta I AEV BCAIl KS fraction (for const 1 kPa 1 1 kPa mm/d 1 root disi 1 D.O 0-1778 -o-aaaE+oo i4-b3a b-31D 0. ,1SD a D-0 0' 177! -0. .22aE+00 H-bSQ b-31D D. .DSO 3 0-0 • . .2077 -0. .IbbE+OD 12-00 Q-abM D. .000 u D-D 0. .2077 -0. .lbL>E*DO 12-00 D-abM 0. .ODD 5 0-0 0' .2077 -Q, .IbbE-^OO la-DD D.flbH 0. .ODD L> O-D 0. .2077 -D. .lt.bE+00 12-00 o-ab«t 0. .000 7 0-0 0. • ia75 -0. .a30E+ai a-315 lam 0. .ODD a D-0 D .ia7s -0. .230E+01 A-315 lam s. .ODD 1 0.0 D .ia75 -0. .a30E+Dl 6-31S lai-M D. .ODD 10 O-D 0. .ia7s -0. .230E+01 a-315 lam 0 .000 Page 1 alta2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx CROP SATA Crop Planting Emergence Maturity Harvest Rel- Crop Plants Pan no Root Plant root cover per factor Sate or Say no depth frac sq- n 1 oloiia oioaia oioaia oioaia 3bS3 i-oo o-os 2-DDO I.DD xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx»xxx»*x«x>xxx»xxxxx RAIN/IRRICATION ANB WATER COnPOSITION START AHOUNT RATE Sate or Tike of mm mm/day Say no- Say xxxxxxxxxxxxxxxXBXxxsxxxixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx b 0-4 14-0 30 17 0. 4 S-1 30 la 0-4 44-5 30 33 0. 4 ia-7 3D 3<< Q. 4 ao-3 3D bO 0-4 n.i 3D bl 0. .4 10-2 3D lOS 0. 4 SO-A 3D 10b 0. 4 2-5 30 107 0. 4 a-5 30 loa D-4 2-5 3D 110 D-.4 25-4 3D 111 0. .4 17. S 3D 112 0. .4 2D-3 3D im 0. 4 3.a 30 141 • . •4 5-1 30 315 D. 4 3-a 3D 31b 0. .4 a-s 30 3ia • . 4 lE-7 30 311 0-.4 a-s 30 32a 0. .4 E-S 30 321 D. .4 ia-7 30 350 D. .4 15-2 30 351 0. .4 10-2 30 35a D. .4 a.s 30 353 D. .4 ie.7 30 355 D. .4 17. a 30 357 0. .4 5-1 30 351 0. .4 a7-i 30 3ba D. .4 E-5 30 3b1 0. .4 3.a 30 371 0. .4 10-2 3D 373 D. .4 5-1 3D 3ia 0. .4 3-a 3D 311 D. .4 5-1 3D 400 0. .4 10-2 3D MDl 0. .4 lE-7 3D 4DS 0. .4 2-S 30 40b 0. .4 b-4 3D 427 D. .4 ia-7 3D 441 0. .4 as 30 t5D 0 .4 3D-S 30 MU7 • . .4 a.s 30 mb • .4 5-1 30 411 .4 S.l 30 500 0. .4 2-5 3D sab 0. .4 a-s 30 b24 0. .4 7-b 30 b25 0. .4 ?-b 3D b2b 0. .4 5-1 3D ba7 0 .4 5-1 3D bbD 0 .4 7-b 3D bli3 • • 4 1-3 30 bis 0 .4 2-5 30 bib D -4 2-5 3D 732 D -4 ia.7 30 743 D -4 o-a 30 744 • .4 2b. 2 30 747 0 .4 33.0 30 7bl 0 .4 14-0 30 7bb D .4 10. a 3D 77a 0 .4 3.S 3D 771 D • 4 as-4 30 7flD D .4 5-1 3D aoo 0 -4 5-1 30 aia D -4 7-b 30 £24 • -4 5-1 30 aas Q .4 2-5 3D a37 0 -4 6-1 30 a3a D .4 1-3 3D a44 0 .4 e-s 30 a7a • .4 12-7 3D p p p p Page 2 m m alta2 a7i 0-4 ID-2 30 ail 0-4 20-3 3D IBS 0.4 a-s 3D isa 0-4 a.s 30 1054 0-4 24-1 30 loss D-4 s.l 30 lObD 0-4 5-1 3D 1060 0.4 a-s 3D iaa4 D.4 7.b 3D 1011 D-4 7.b 30 HDD 0-4 3.a 3D 1154 D-4 56-4 3D llSS 0-4 Ib.S 3D 115b 0-4 5.1 30 llbS 0.4 5-1 30 iifaa 0-4 S-1 30 iibi D-4 a.5 30 1170 0.4 5-1 3D 1173 0.4 as-4 30 1174 0.4 a7-i 3D 117S 0.4 20-3 30 iiao 0.4 17.A 3D iiai 0-4 43.7 30 iiab D-4 a-5 30 130b 0-4 5-1 3D 1307 D-4 a-5 30 1437 0.4 2-5 3D 1436 0.4 1.3 3D m47 D-4 7.b 30 ItlbE 0.4 5-1 3D 14b3 G.4 S-1 30 14b4 D-4 lO-S 30 14bS 0-4 3a-i 3D 14bfa D-4 7.b 3D IMb? D-4 ia-7 3D IMIb D-4 a.a 30 im? 0-4 45-7 30 15D0 D.4 ID.S 30 ISDS 0-4 1-3 3D 1503 0-4 4D-b 3D ISOb 0.4 36-1 3D 1SS3 0.4 37.1 30 isas 0-4 12-7 30 152b 0-4 ia.7 3D 1540 D-4 as.4 30 1541 D.4 a-5 30 154E D.4 12.7 30 154b 0.4 12-7 30 1547 a.4 2.5 3D 1550 0-4 a-s 30 155E 0.4 7-b 3D ISBb 0-4 5.1 30 lbS3 D-4 1.3 30 IbSM D-4 1-3 30 IbAb D-4 7.b 30 17Sb D-4 b-4 30 17b4 0-4 5-1 3D 1711 0.4 1-3 30 1601 D-4 17-a 30 laoa 0.4 2D-3 3D 160b 0-4 S-1 30 lasE 0.4 17.6 3D iaa3 0.4 a-s 30 ias4 D.4 20.3 30 ia27 0.4 5-1 30 ia2a • -4 5-1 30 ia3i 0-4 25.4 3D ia32 0.4 b3-5 3D ia33 0.4 2D-3 3D ia34 D-4 3-a 30 ia3S D-4 a-s 30 laab 0.4 5-1 3D 1636 0-4 14-0 3D 1631 0.4 35-b 3D ia4i 0-4 73-7 3D 1642 0-4 36-1 30 ia43 D-4 5-1 30 ia44 D-4 45-7 3D lass 0-4 10.2 3D iab4 0-4 bl-0 3D labS 0-4 10-a 3D i&bb D-4 4-1 30 1675 D-4 30-5 3D ia7b 0-4 44.5 3D ia77 D-M 1-3 30 laao D-4 12-7 3D 1110 0-4 1-a 30 Page 3 al ta2 1111 0 .4 7-b 30 ma 0 .4 lD-2 30 iiaa 0 .4 15-2 30 a035 0 .4 D.3 30 SllO 0 .4 1-3 30 2115 0 .4 2-5 30 amo D .4 7-b 3D ai4a D .4 3-a 3D Em3 0 .4 3-a 3D ai5i 0. .4 10.a 3D 2171 0. .4 15-2 3D ai74 0 .4 12-7 30 ai7a 0. .4 a-5 30 aais 0. .4 22.1 30 aaib 0. .4 12-7 30 aaas D. .4 2D-3 30 2Eab Q. .4 10-2 3D 222a D. .4 6-1 30 2221 D. .4 aa.1 30 aasa 0. .4 1-3 3D 2231 D. .4 a7-i 3D a240 0. .4 7-b 30 2242 0. .4 a.s 30 aass 0. .4 E-5 3D 225b D. .4 25-4 3D a2bB 0. .4 aa.3 30 aabi 0. .4 14 -D 3D 2274 D .4 22-1 3D 2275 0. .4 b-4 30 2261 0-.4 1-3 3D 2E1D D. .4 11.4 3D 2304 0. .4 3-6 30 230b D. .4 ia.7 30 3307 D. .4 7.b 30 a3aa 0. .4 b-4 3D a3ia 0. .4 1-3 30 23aa 0. .4 2-5 3D 2373 0 .4 0-3 3D 24b1 a .4 a-s 30 2417 a. .4 1.3 30 250S 0. .4 12-7 3D 2510 0. .4 5-1 3D asia D .4 5.1 30 asao 0. .4 5-1 30 2521 D .4 a-s 3D 2537 0. .4 2-5 3D 2547 D. .4 3-6 3D 2S4a D .4 3-6 30 aS41 0. .4 12-7 30 255a 0. .4 5-1 30 2551 0. .4 iD-a 3D 25bD 0. .4 71-1 3D 25bl 0. .4 5-1 3D asb3 0. .4 4D-b 30 25bb 0. .4 25-4 3D 25b7 0. .4 20-3 3D 25ba 0. .4 lb-5 3D aS70 0. ,4 b-4 3D 2571 0. .4 a-1 3D 2572 0, .4 a-1 3D a57b 0. .4 b-4 3D 257a 0. .4 1-3 3D 2571 D. .4 7.b 30 25BD D, ,4 14-0 3D 2S61 0. .4 35-b 3D 2562 0. .4 3-6 3D 2511 D. .4 3-6 3D abDO 0. .4 43-a 3D aboi 0. .4 ia-7 30 2bia 0, ,4 7-b 3D 2bl1 0. .4 3b-a 30 2b2D D, .4 101-b 3D abas D. .4 SS-1 30 abab 0. .4 3-6 30 2b35 D. ,4 1.3 30 ab3b D. .4 n-l 3D 2b3a D. . 4 17-a 30 abbi 0. ,4 14-D 3D 2bb2 D. • H 2-5 3D abb3 0 .4 b-4 3D 2bb4 D. .4 lS-2 30 ab6i 0. .4 a-s 3D ataa D .4 2-5 3D 2ba6 0 .4 3-a 3D 2bai 0 -4 3-a 3D 2b10 0 , 4 2-5 3D 2722 0 .4 S-1 3D m P p P P m m m p p p HI P P P Page 4 P P alta2 2723 D-4 a-1 3D 2751 0-4 a.s 30 aabo 0-4 2-5 30 aabi 0-4 3.5 3D 2102 0-4 E-S 30 2103 0-4 2-5 3D 21DS 0-4 a.s 30 aii3 0-4 5-1 3D ai4b 0-4 2-5 3D aisi 0-4 b.4 30 aiss 0-4 1-3 3D aiba 0-4 2-5 3D ai73 D-4 12.7 3D 217b 0-4 2.S 30 2177 0-4 IS-a 30 2176 0.4 2-5 30 ai7i 0-4 10.3 3D aias 0.4 ia-7 30 aii3 D-4 20-3 30 aii4 0-4 5-1 30 3013 0-4 1.3 30 3aaa 0-4 2-5 3D SDEl 0.4 13-7 30 30b7 D-4 5-1 30 32Eb 0.4 3D-3 30 3a47 D.4 a7-b 3D 3246 0-4 3.S 30 3Sbl 0-4 14.0 30 3ab5 0-4 17.6 30 3abb 0-4 13.7 30 32b7 0-4 17-6 30 327a D.4 5-1 3D 3263 0-4 10.a 3D 3Ea4 0.4 3.5 30 3aa6 D.4 2-5 30 3361 D-4 17-6 3D 3211 0-4 3.5 30 3211 0.4 7b.2 3D 3300 0-4 7.b 30 3302 0.4 7.b 30 3301 D-4 10.2 3D 3310 0-4 3.6 30 3312 0.4 34.3 3D 3313 D.4 a-1 3D 3326 D.M 5-1 30 3344 D-4 2-5 3D 3345 D-4 15.3 30 3360 D-4 3-S 30 3431 0-4 1.3 30 3510 0-4 17.D 30 3511 G-4 1-0 3D 3bl2 D-4 43-1 30 3bl3 0.4 21-0 3D 3b2b D-4 1-0 3D 3ba? 0-4 10-1 30 3b30 0-4 13-0 3D 3b31 D.4 1-D 30 3b3a 0-4 22-1 30 3b43 0-4 5-1 30 3b4a 0-4 3-0 30 3b41 0-4 2-0 3D 3b5a D-4 1.0 3D xxxxxxx**«x*«xxxxxxxxx*xxxxxxxxxxx«xx*xxxxxxxxxx«xxxxxxxxxxxxxx«*xxxxxxxxx POTENTIAL ET CtlEEKLY TOTALS-, mm) AND SEPTH TO WATER TABLE (mm)" WEEK NO- ET WATER TABLE 1 11. .14 D a 11. .14 0 3 11. .14 D 4 ll-.14 D S li. .14 0 b 11. .61 0 7 11. .61 0 a 11. .61 D 1 11. • ai D ID 11. • ai D 11 15. .b2 0 12 IS. .ta D 13 IS .b2 0 14 15 .b2 0 15 IS -ba D lb 34 -07 0 17 24 -07 0 Ifl 24 .07 0 11 34 -D7 0 Page 5 al ta2 2D 24. .07 D 21 ab. 13 D 22 2b. 13 D 23 2b. .13 D 24 2b. .13 D as 2b. 13 0 3b 3D. .bl 0 37 30. .bl D aa 30. bl 0 21 3D. bl D 30 3D. 13 0 31 3D. 13 0 33 3D' 13 0 33 3D. 13 D 34 32. 77 0 35 32. 77 D 3b 32. 77 0 3? 32. 77 0 3a 27. 16 0 31 37. 16 0 40 27. .16 0 Ml 27. .16 0 M2 30. DO D 43 3D. .DD 0 44 20. .OD 0 4S 20. .00 0 Mb 14. .35 0 47 14. .35 0 MB 14. .35 D 41 14. .35 D SD 11. .75 D Sl 11. .75 0 52 11. .75 D S3 11. .75 D S4 14. • b? 0 55 IM • b? D Sb IM .b7 0 S7 IM .b7 0 sa 11 .14 0 51 11 .14 0 bO n .14 0 bl 11. .14 0 b3 24. .70 0 b3 24. .70 0 b4 34. .70 0 b5 3M. .70 D bb 31 .51 0 b7 31 .51 D ba 21 .51 0 bl 21. .SI 0 7D 31 .Sb 0 71 31. -Sb 0 73 31 .Sb 0 73 31 .5b D 74 32 .51 0 75 32 -51 D 7b 33 -51 0 77 33 -51 D 76 32 -51 0 71 3S -aa D ao 35 -66 0 ai 35 -66 0 aa 35 -aa D a3 35 -66 0 aM 34 -31 D as 34 -21 D ab 34 -31 D 67 34 -21 0 as 3M -21 0 ai 21 -76 0 ID 21 -76 0 11 31 -7a D ie 31 -7a D 13 21 .76 D 14 31 .b5 D 15 21 -bS D lb 31 -bS D 17 31 -bS D 16 21 -bS 0 11 13 -4b 0 IDD 13 -Mb 0 101 13 -Mb D 102 13 -4b D 103 17 -SI D 104 17 .51 D IDS 17 -51 D 10b 17 -51 D m ki HI P p p m P P P k Page 6 P alta2 107 14-6D 0 loa 14-60 0 101 14-60 D 110 14-60 D 111 iM-ao 0 112 11-75 0 113 11-?S 0 HM 11-75 0 115 11-75 0 lib 11-75 D 117 11-ai 0 116 11.61 0 111 11-61 0 120 11-61 D 131 11-61 0 123 26-33 D 133 aa-32 0 IE 4 2a-32 0 125 26-32 0 12b 30-b7 0 137 30. b7 0 126 30. b7 0 121 30-b? 0 130 31-66 0 131 31-aa 0 132 31-86 'D 133 31-aa 0 134 31-31 0 135 31.31 D 13b 31-31 0 137 31.31 0 136 3b-32 0 131 3b.32 0 140 3b.33 D 141 3b-32 D 142 2a-2b Q 1M3 2a-2b 0 1M4 2a.3b D IMS 36-Bb D 1Mb EE-21 0 1M7 a2.31 0 IMB 33.31 0 141 33.31 0 ISO El-65 0 151 21-65 0 153 3i-a5 0 153 21-65 0 154 21-65 D 155 17-11 0 ISb 17-11 D 1S7 17-11 0 15B 17-11 D 151 17-11 0 IbD 15.34 0 lbl lS-24 0 IbS 15-24 0 lb3 15-34 0 IbM 11-41 D IbS 11.41 D Ibb 11-41 0 lb7 11-M1 D IbB lb-lb D lbl lb-lb D 17D lb-lb D 171 lb-lb D 172 20-77 D 173 20-77 0 174 30-77 D 175 20-77 D 17b 20.77 D 177 31-bl 0 176 31-b1 0 171 31-b1 0 160 31. bl 0 161 31-bl 0 162 3S-b3 D 163 35-b2 D 164 35-bE 0 165 35-b2 D IBb 35-b2 0 la? 4b-M6 D IBB Mb-M6 0 Ifll Mb-4a 0 no 4b-4a D 111 4b-4a 0 112 3b-13 D 113 3b-13 0 Page 7 alta2 114 3b-13 0 lis 3b. 13 0 lib 3b. 13 0 117 33-as 0 iia 33-65 0 111 33-65 0 aoo 33-A5 D 201 2b. 60 0 aoa 2b-BD 0 203 2b-60 0 204 2b-ao D 305 23-50 0 20b 23-SO 0 207 23-SO 0 3oa 33-SD D 301 17-b5 0 21D 17-b5 0 211 17-b5 D ElB 17-bS 0 213 17-17 0 314 17-17 0 315 17-17 D Bib 17-17 0 317 17-17 0 216 22-4B D 211 32-Ma D BED 32. MB 0 321 22. .46 0 323 31-76 0 223 31-.76 0 324 21. .76 0 335 31. .76 0 aab 31-IS 0 aB7 21. 15 0 2B6 21. .15 0 2E1 Bl. .15 0 E3D 34. .21 D B31 34. .21 0 232 34. -31 0 E33 34. .21 0 23M 3a. .77 0 235 3B .77 0 23b 32 .77 0 237 3B. .77 0 236 32 .07 0 331 3B .07 D 340 3E .07 D 241 32 .07 0 242 31 66 0 aM3 31 .66 D 2M4 31 .66 0 345 31 -aa 0 aMb 26 -13 0 aM7 BB -13 0 246 BB -13 D 2M1 2a -13 0 aso 26 -13 D 251 3D -DM D 352 30 -DM D 253 30 .04 0 2SM 30 -04 0 355 3D -D4 0 3Sb BS -as D as7 as • as Q 256 25 -65 D 251 25 -as D BbD as -AS D 2bl la -3S D 2b3 IB -35 0 2b3 la -3S D 3b4 la -35 0 2b5 16 -35 a abb 37 -Bl 0 2b7 37 -Bl D 2ba 37 .61 0 2b1 27 -ai D B7D 25 -15 D 271 as -IS D 372 35 -15 0 273 as -IS 0 274 B5 -15 0 275 aa -43 D 37b aa -43 D 277 22 -43 0 276 aa -4B D 271 22 -42 0 260 36 -45 D p p p m m p i p P p Page 8 " alta2 Bai BBB 363 264 265 26b 367 aaa 261 310 211 212 213 314 315 21b 217 216 211 3DD 301 3D2 303 3DM 30S 3Db 307 306 301 310 311 312 313 314 315 31b 317 316 311 330 3S1 333 3E3 334 335 33b 327 3aa 321 330 331 332 333 334 335 33b 337 33a 331 340 341 3M2 3M3 344 3M5 3Mb 3M7 34a 341 350 351 352 3S3 354 355 35b 3S7 35a 351 3bQ 3bl 3ba 3b3 3b4 3bS 3bb 3b7 36-45 36- 4S 26- 45 26.MS 27- 50 37.50 27-50 37- 50 27-50 3M-n 3M.11 34 .11 34- 11 3M-11 43-33 M3-S3 M2-S3 Ma.a3 43-5b 43.5b 43. Sb 43. Sb 37. M7 37-M7 37-4? 37-47 33.BA 33-66 23-AA 23-A6 22. b7 23. b7 Sa-b7 22-b7 32.46 32.4a 22- M6 23- M6 23-61 23-Al 33.61 33-Al 22-33 33.23 32-23 22-23 32- MS 33- MS 33.M5 3B-M5 31-37 31.37 31.37 31-37 35- 50 35.5D 3S.5D 35.50 MB.bl 43.bl 4E-bl 43. bl 34- 10 34- 10 3M.1D 3M-1D 3M-1D 41-34 41-34 41-34 41-34 41-34 35- 50 35-50 35-50 35-50 35-50 BA-lb 26-1b 3B-1b 26-1b 2fl-1b 11-66 11-66 11-66 11-6a ll-BA 0 0 0 D D 0 0 0 0 0 D D 0 0 0 D 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 a 0 0 0 D 0 D D 0 D 0 0 0 0 0 0 0 D 0 0 0 0 0 D D D 0 0 D 0 D 0 D 0 D D D D 0 D D 0 0 0 D D 0 D 0 D D 0 0 0 0 Page 9 alta2 3ba 17. • 21 D 3b1 17. .31 0 370 1?. .31 D 371 17. • 21 D 372 IS. • fll 0 373 15. • ai 0 37M 15. • Bl 0 375 15. • ai 0 37b 15. .Bl 0 377 IM. 33 0 37a IM. .33 0 371 14. .23 0 3B0 14. 33 0 3ai 14. .23 0 363 15. .11 0 363 IS. .11 0 36M 15. .11 0 365 IS. .11 D 36b 15. .11 0 367 24. 77 0 366 2M. 7? 0 361 2M. 77 D 310 aM. .77 0 311 34. .77 0 312 33. .10 0 313 33. .10 0 314 22. .10 D 31S 22. .ID D 31b 37. .11 0 31? 37. .11 0 316 37. 11 0 311 37. .11 0 4DD 31. 3? 0 401 31. .3? D 4D3 31. .37 0 403 31. 37 0 40M 41. .Dl 0 405 41. .01 0 40b 41. .01 0 407 41. • Dl 0 4oa 3b. • Dl 0 401 3b. .01 0 410 3b. .Dl 0 Mil 3b. .Dl 0 Mia 21. .02 0 M13 31. .02 D M14 31. .03 0 MIS 21. • 02 D Mlb 33 .75 0 M17 23. .7S D M16 a3. .75 D Mil 23 .75 D Mao lb. .13 0 M3I lb. .13 0 422 lb. • 13 0 423 lb. • 13 0 424 lb. • 13 0 435 b-22 D 42b b-22 0 427 b-22 D 426 b.22 0 421 lb. .?D D 430 lb. -7D 0 431 lb. .70 D 432 lb. .70 0 433 21. .7B 0 434 21. .7B 0 435 21. .7a 0 M3b 21. -76 0 437 ab -73 D 43a 2b -73 D 431 2b .73 D M4D Bb -73 D 441 aa -2b D 442 2B .2b D M43 aa. -2b 0 M44 2a .2b D 44S 2B .2b D 4i(b 34 -lb 0 447 34 -lb D 44a 34 -lb 0 441 34 -lb a 450 34 -lb 0 MSI 4D -31 0 M52 40 .31 D MS3 40 -31 D M5M 40 .31 D wm k m P P k k Page 10 P P ih p alta2 455 40-31 0 45b 41-76 D 45? 41-76 0 456 41.76 D 451 41-76 0 4b0 41.76 0 Mbl 33-21 0 Mb2 33.21 D 4b3 33-21 0 4b4 33-21 0 4b5 33-31 0 4bb 23-33 0 Mb? 22-23 0 Mb6 33-33 D Mbl 22-23 D 470 14-35 0 471 14.3S D M?3 14-35 0 M?3 14-35 0 M?4 11-5b 0 47S 11-Sb 0 M7b 11.Sb 0 M77 11.Sb 0 M76 13.17 0 M71 13-17 0 M6D 13-17 0 461 13.17 0 462 13-17 0 463 1-Mb 0 464 I.Mb 0 465 1-Mb 0 4eb 1-Mb 0 487 I.Mb D 468 11-31 0 481 11-31 0 410 11.31 0 Mil 11-31 a M1B 3D-L? 0 M13 30-b? 0 M14 30-b? D MIS 3D.b7 0 Mlb 36-bl a M17 38-bl D M16 38. bl D 411 3a-bl 0 500 MO-63 D 501 4D-a3 0 502 40-83 0 S03 40-83 0 5D4 40-77 0 SOS 40-77 0 SDb 40-77 0 S07 40-77 0 SG8 31. OS 0 SOI 31-05 0 510 31-05 0 511 31-05 0 512 36-Sl 0 513 36.51 D 514 S6-51 0 515 36-51 D 51b 22-12 0 517 32.12 D 516 33-13 0 511 22-12 D 52D 22-12 0 521 15-30 0 522 IS. 3D D 533 15-3D D 524 15-30 D 525 15.30 D S2b 11.16 D 537 11.16 D 526 11. IB D 531 11. IB 0 530 11.16 D Page 11 alta2 SUM TIME GRAIN CEVAPA CTRANA WETDEP WETLOW 90 43,4 48.9 7.8 9999 9999 180 70,6 75.7 22,2 9999 9999 270 79.5 75 9 268 9999 9999 360 1273 98.5 31.5 9999 9999 450 1748 138 4 43 9999 9999 540 193,1 154.3 58.3 9999 9999 630 209,1 161 7 62.9 9999 9999 720 2224 168 5 74 6 9999 9999 810 279 212.2 82 7 9999 9999 900 321.1 240 1 96.9 9999 9999 990 326.1 241 107 9999 9990 10B0 347.6 252,3 112.4 9999 9999 1170 391.6 279.4 120.9 9999 9999 1260 421.7 308.6 132 9999 9999 1350 429.3 309.9 140.4 9999 9999 1440 433.1 310 143.4 9999 9999 1530 5129 365.5 153.4 9999 9999 1620 543,1 392.2 168.3 9999 9999 1710 553 394.4 177.7 9999 9999 1BD0 5653 397.9 187.1 9999 9999 1890 687.2 487 9 198.7 9999 9999 1980 697.6 4982 2146 9999 9999 2070 708,7 503.8 228 0999 9999 2160 731-1 510.9 236 9999 9999 2250 794,5 558 7 248,1 9999 9999 2340 853.5 6024 265,3 9999 9999 2430 8538 602,7 270.6 9999 9999 2520 8769 611.7 2767 9999 9999 2610 959.7 6753 286,5 9999 9999 2700 1031,7 733.5 294.9 9999 9999 2790 1043 742.4 313 1 9999 9999 28B0 1046 7429 325,5 9999 9999 2970 1071.3 752,4 3349 9999 9909 3060 1112 781 6 345 9999 9999 3150 1117 7828 352 9999 9999 3240 1130.5 7885 357.1 9999 9999 3330 1217.2 855,6 366.3 9999 9999 3420 1229.1 866,7 374,3 9999 9999 3510 1230.4 867 379,4 9999 9999 3600 1243.4 872 1 383 3 9999 9999 CFVW) -5.48E+Q0 3 74Et0O 3.59E*0O 2 88Et01 3.65E*01 3 88E«^01 4 74E+01 5.36Et01 668E4^01 811E+01 8,51Et01 9 53E+01 l,12e*02 l,13E+02 1,19E*02 1,23E*02 1.47E*02 1.51E*02 1.59E*02 1.67Et02 1.99E+02 1,09E*02 205E+02 2 20E+02 236E*02 2,51 Et02 2,51 E*02 2.65E*02 284E+02 2,08E*02 301E+02 305E+02 3,10E*02 330E*02 334E*02 3.42E<02 362E+02 3,62Et.02 3.63E*02 3.71E*02 CFVtfl 3,68E+00 3,e7E+00 3,85E*0O 3,82E+O0 3.84e-t(>0 3,85E+O0 3,62E+l)0 3,80E*00 3.78E+00 378E+O0 3,76E+00 3,74E-t00 3,72E*00 4,07E*00 4,0eE+D0 4,03E*00 423E+00 4.51Et00 4.49E*00 4.45E*00 9.88E+00 978E+00 8,30E*00 6,8OE+0O 6,60E.»00 eseE+oo 6.5SE«00 6.505*00 7 40E+00 141E+01 1,35E+01 9,97E+00 9.I1E+00 9-04E+00 8.99Et^00 8.90E+0D 8.e8E*00 8.90Et00 888E*00 884E+00 CFW2 29eE-04 7,71 E-04 145E-03 2,34E-03 3.42E-03 4,69E-03 6,15E-03 7,78E-03 9.59E-03 1 16E-02 1,37E-02 1,60E-02 1.e4E-02 2,10E-02 2.38E-02 2.68E-02 2.99E-02 3,33E-02 3,69E-0Z 4.07E-02 4,5eE-02 S,gOE-02 8,02E-02 104E-01 i,zeE-oi 1,51E-01 1.75E-01 1,98E-01 222E-01 2.70E-01 3.03E-01 S35E-01 6.58E-01 7,67E-01 8,64E-01 9,50E-01 103E*00 I.10E+00 1.17E+00 1,23E»00 CFW3 6.49E+00 9,70E+00 1,16Et01 134E«01 1 47E*01 1,57E*01 1 66E+01 1,74E*01 i.eiE*oi 1 88E*01 1.03E*01 1.98E+01 2.03E*01 2.08E+01 2 12E*01 2.16E*01 2.19Et01 223E»01 2 26E*01 2,29E*01 2,32Et01 2,35E+01 2,37Et01 2,40E+01 2.43E*01 2,45E*01 2,47E*01 2,49Et01 2.52E+01 2,54E*01 2,56E*01 2.58E+01 2,59Et01 2,61 E*01 2,63E*01 2 65E>01 2,66E*01 268E»01 2.70E*01 2.71E*01 CFW4 3,6eE+00 3.87E+00 3,85EtOO 3,82Et00 3.84E»00 3,85E+00 3,82E+00 3,80E*00 3.78E+00 3.78E*00 3,76E*00 3,74E*00 372E*00 407E*00 4,06E*00 4-03E*0O 4,23E*00 4,51E+00 4,49E*00 4.46E-tOO 988E400 9,7BE+00 6,30E+00 6,80EtOO 6,60E*00 6.56E+00 6.55E*00 6.50E+00 7.40E*0O 1,41E*01 135E*01 9,97E«00 911E*00 9,04E*00 8.g9E*00 8.OOE«0O 8.aeE*oo 8 00E»Oa 8e8E*00 8,84E*00 37,25 31.77 27,01 47.54 43.57 30 52 34,47 29,15 34,01 33 87 27 82 32,53 40,86 30,32 2819 2889 42.92 31,2 29,44 28.84 43.82 27,08 21-34 30,24 33.74 31.76 26,6 34,51 42,91 41,55 26,44 21,97 27,23 2B,4B 25,39 2813 38,31 31,06 27,03 31,05 87,02 87.22 87,2 67.17 67.19 67 19 67.17 67.14 67,12 67.11 67.1 67.07 67.06 67.4 67.30 67.35 67.65 67.83 6781 67.77 73,18 73.07 71.57 70.04 60-82 69,78 69,73 69,65 70,52 77,23 76,43 72,78 71.8 71,62 71,47 71,3 71 19 71.14 71,06 70.95 TWS 171,24 168,03 165.9 164,3 163,04 181,96 161,08 160,3 1S0.61 158,98 158,42 157,9 157,42 156,98 166 67 156,19 155 83 155 40 155,18 154.86 154.57 154,3 154,06 153,62 153,6 153,39 153,18 162.D9 152,8 152.84 152.56 162.51 152.45 162,37 152 20 162,21 162.12 152.02 151.93 151,84 37,25 31,77 27,01 47,64 43,57 30,62 34,47 20,15 34,01 33 87 27.82 32 63 40.86 30.32 28 10 28.86 42.92 31-2 29.44 28.64 43.62 27.96 21.34 30,24 33,74 31,76 26,6 34,51 42.01 41.55 26-44 21.07 27.23 28.48 26.30 28.13 38,31 31,06 27.03 31.05 PW1 -5.40E+00 -1.20e*01 -2,60E+01 -1.20E+01 -1,20e*01 -1.80E+01 -2.80Et01 -3.30E*01 -1.60E*01 -I.OOE+OI -2.80E*01 -3.20E+01 -1.20E+01 -1.40E*01 -2.5OEt01 -3.eOE*01 -4.50E+00 -1.30E*01 -2,40E*01 -3,50E+01 -2.40E»00 -3.10Et01 -3.10E+02 -2.30Et02 -2.10E+01 -1.60E*01 -3.10E+01 -4.40E'»01 -3.2OE«00 -3.30E*00 -6.30Et01 -4.60E*02 -2.10E*02 -3,20E*01 -4.00E*01 -6,70E*01 -1,00E*01 -1.40E»01 -2,70E*01 -4,00E*O1 PW2 -4,50E*01 -4,«E*01 -4,30E+01 -4,20E*01 -4,10E+01 -4,OOE*01 .4,00E*01 -3.90E«01 -3.00E*01 -3,eOE*01 -3,80E*O1 -3,70Et01 -3-70E*01 -3.60E*01 -3-60E*01 -3.60E+O1 -3.60E*01 -3,50E*01 -3,40E+01 -3.40E+01 -2.70E+01 -2.00E+01 -1.eOE+01 -l.BOE+01 -1.80E+01 -1 80E*01 -1.60E*01 -1.60E*01 -1,eOE»01 -1.00E*01 -8.50E«00 -8.eOE*00 -e.ooE«oo -9.30E+00 -0.70E*00 -0,OOE*00 -1,00E*01 -1 OOE*01 -1 10E*01 -1,10E*01 PW3 -7.70E*01 -9.60E*01 -1-10E+02 -1.20E*02 -1-30E*02 -1.40E*02 -1,50E+02 -1.60E*02 -1.70E-t02 -1.70E+02 -1 80E+02 -1.00E+02 -1.00E*02 -2.00E+02 -2.I0E+02 -2.10E+02 -2.20E*02 -2.2OE*02 -2,30E*02 -2.30E*02 -2.40E*02 -2,40E*02 -2,60E*02 -2,5OE*02 -2,60E*02 -2 60E+02 -2.60Et02 -2,70E*02 -2.70E+02 -2.80EtO2 -2.80E«02 -2.80E«02 -2.00E*02 -2.00E+02 -2.90E+02 -3.00E+02 -3,0OEt02 -300E+02 -3,00E+02 -3,10E-t02 PW4 -5.40E+00 -1 20E*01 -2 60E+01 -1,20Et01 -1,20Et01 -1,80E+01 -2,80E+01 -3,30E+01 -1.60Et01 -1,80E+01 -2 80E+01 -3 20E+01 -1,20E+01 -1-40E+01 -2 50E*01 -3,80E*01 -4,50E*00 -1.30E+01 -2,40E*01 -3 50E*01 -2,40E*00 -3,10E*01 -310E*02 -2.30E*02 -2.10E+01 -l.BOE+01 -3.10E+01 -4 40E*01 -3.20E*00 -3.30E+00 -6.30E+01 -4.50E*02 -2.10E»O2 -3 20E*01 -4.00E«01 -6.70E+01 -1.00E+01 -1.40E*01 -2,70E»01 -4 00E*01 0.14 0.118 0.1 0.117 0 117 0.108 0,006 0095 0,111 0109 0,099 0,095 0,117 0,114 0 1 0,092 0,146 0,116 0101 0,094 0.167 0.096 0.059 0.062 0.104 0.111 0,096 0,089 0.157 0.166 0,082 0,064 0,063 0,095 0,087 0,081 0,122 0,114 0,009 0.091 TH2 . 0.208 0,208 0.209 0209 0,200 0,21 0.21 0.21 0.211 0.211 0.211 0 211 0.211 0.212 0212 0.212 0.212 0212 0,213 0,213 0,217 0.222 0,224 0-224 0,224 0,224 0.224 0,224 0,224 0235 0.239 0.230 0238 0.237 0236 0.236 0.235 0.235 0,234 0,234 0.179 0.175 0.172 0.17 0 166 0,167 0 165 0.164 0,163 0,163 0.162 0.161 0.16 0 16 0.159 0.159 0.158 0.158 0.157 0 157 0,157 0,156 0,156 0,156 0.155 0,155 0.155 0.154 0,154 0.154 0.154 0.153 0.153 0.153 0.153 0,153 0,152 0,152 0,152 0 152 0,14 0,118 0 1 0,117 0.117 0,108 0,096 0.095 0,111 0109 0,099 0,095 0.117 0 114 0,1 0,092 0,146 0,116 0,101 0,004 0,167 0,006 0.059 0,062 0.104 0.111 0,096 0.089 0.157 0,166 0,082 0,054 0.063 0,095 0.087 0.081 0-122 0.114 0-099 0 091 mm wm mm ii m m w B m iSllllllllllilfl altel altel SOIL-WATER-PLANT-INTERACTION SlrtULATION "SinULATION PERIODS (Sata must be present for each itei»i even if it not used)' Sate type (US:1 UK:B) 1 Starting date 01D11B Read theta(l) or pot'KB) 1 No- of water applications 308 Years or cycles 1 K-Th-h from PSD:yes(1)no(D) 0 Ending (date or day no.) 3b5B No- of crops Trace Kon).. D(off) PROFILE SETAILS Profile depth (mm) Segeent thickness (mm) -1535E+04 Bottom boundary condition 3 -1525E+03 :1 or 5.>uater table depth -DOODE+DO FOR UNIFORn PROFILE: (Any non-zero value here will override those in the table of hydrological characteristics below unless K-Th-h calc- from PSD)- Soil bulk density Hg/cu.m -OOOOE+DD Air -entry value' kPa --DDDDE*D4 Exponent in Campbell's eq -DDDDE+a3 Sat'd K values (mm/day) -OOOOE+04 CROP DATA Plants present: i yes., D no 1 Uilting point (soil) kPa --15DaE+04 naxCactual tran/potl tran) -IDDDE+Dl Hin.root water pot'l (kpa)--30D0E+04 Roots: Const<l);growingt3) 1 Hax-root water pot'l (kPa) -OODDE+DD If 1: root length (•) -500E+D3 Root flow resistance tere -1D5DE+D1 NUHBER OF OUTPUT FILES — -OUT file Node print frequency Print options: l^i 3 or 3 1: TiBe intervals/print 3: days/print 3- No- of prints (even) Tables printed: 1>B or 3 .sun fiia Summary print interval (d) ID 1 Three depth segments for the summary 2 file (D's default to thirds of the 14 profile) (mm) : 14-D Surface to [depth 1?3 305 14 Depth 1 to [depth 3?] blO 3 Septh 3 to Cdepth 3f3 1535 x«xx*xxxxxxxxxxxxxxxxxxxxxxx»*x«xxxxxxx»*xxxxxxxxxxxxxxxxxxx«x«xxxxxxxxxxx xxxx«xxxx*«xxxxxxxxxxxx««xxxxxxxxxx«xxxxxxxxxxx«x«xxxxxxxxxxxxxxxxxxxxxxxx TIHES AT WHICH x-OUT FILE IS SESIRED (if print option = 3) Date or Say no- Time of day Sate or (to nearest tenth) Say no- Time of day (to nearest tenth) 10 340 730 14bl 2111 2113 3b52 -3 -2 .2 -2 -2 -3 -2 160 3b5 1015 163b 3557 3267 3b5B -2 -a -2 .3 -3 -a -a xxxxxxx«x»xxxxxxxxxxx«xxxxxxxxxxxx»xxxxxxx«xxxxxxxxxxxx«xxxxxxxxxxxxxxx »xx«««xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx«xxxxxxxxxxx«xxxxxxxxxxxx«xxxxxxx Soil Particle size distribution Layer Clay Silt Rho Organic no- carbon 2 •/. kg/dm3 natch KCh) at: K natric pot' 1 mm/d kPa Retentivi ty regression model no- 1 7 24 1. 87 1. .0 b.31D 0-5 2 7 24 1. a? 1. .0 b-310 0-5 3 • 7 24 1. 87 1. .0 b-310 0-S 4 7 34 1. 87 1. .0 b-310 0-S 5 7 24 1. 87 1. .0 b-31D 0-5 b 7 BM 1. a? 1. .0 b-31D 0-S 7 7 30 1. 66 1. .0 iai.4 D -5 6 7 30 1. 66 1. 0 iai-4 0-5 1 7 3D 1. .66 1 .D 181-4 D-5 ID 7 30 1. .66 1. .0 iai-4 D. 5 Particle density kg/dm3: Clay a-bS Sand Organic matter 2-b5 1-10 Soil layer (Starting values ! — 1 Pot'l or Theta Hydrological Characteristics! AEV BCAH KS Root fraction (for const 1 kPa 1 kPa mm/d 1 root di s^ I D-D 0. .1778 I -0. .aaaE+oD 4 . .b3D b.31D 0. .ISO 2 D-D 0. .1778 -D. aaaE+DO 4. .b3D b-31D 0. ISO 3 O.D Q. .1776 -D. .228E+D0 4. .b30 b-31D D. .300 4 D-D D. .1776 -0. .BBBE^DO 4 . .b3D b-31D 0. .130 5 D-D 0. .1776 -0. .BB6E+0D 4 . .b3D b-31D D. .IbD b O-D D. .1776 -D. .B26E+0D 4 . .b30 b-310 D. .HD 7 O-D 0. .1875 -D. .230E+01 8. .315 181-4 D. .000 6 D-O 0. .1675 -D. .a3DE+Dl 6 .315 181-4 0. .ODD 1 0-0 .1675 -D. .230E+01 6 .315 181.4 0. .ODD ID D-D • .1875 -0 .230E-«-Dl 6 .315 161-4 0 .000 Page 1 altel xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx CROP DATA Crop Planting Emergence Haturity Harvest Rel- Crop Plants Pan no Root Plant root cover per factor • Date or Day no depth frac sq. 1 010116 OlOBia Oloaia 010318 3bS3 1-DD D-D5 3-DOD l-OD xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx RAIN/IRRIGATION ANS WATER COHPOSITION START AnOUNT RATE Sate or Time of mm mm/day Say no- Day xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx b 0-4 14.0 30 17 0-4 5-1 3D 18 0-4 MM-S 30 33 0-4 lB-7 3D 34 0-4 30-3 3D bO 0-4 11-1 3D bl 0-4 10-2 30 105 0.4 50-6 30 10b 0-4 3.S 30 107 0-4 2-5 30 1D8 D.M 2-5 30 110 D-M 2S.4 3D 111 D-M 17-6 30 113 D-M 20-3 3D HM D-M 3-8 3D 141 D-M 5-1 30 315 D-M 3-8 30 31b 0-M 2-5 3D 316 0-4 IB-7 30 311 0.4 2-5 3D 336 D-4 3-5 3D 331 D-4 IB-? 30 350 0-4 15.2 30 3S1 0-4 10-2 3D 3S3 0-4 3-5 3D 353 D-M 13-7 30 355 D-M 17-B 30 3S7 0-M 5-1 3D 351 D-M a?.i 30 3bB D-M a-s 30 3b1 D-M 3-B 3D 371 0-M 10-2 30 373 D-M 5-1 3D 318 D-M 3-8 3D 311 0-4 5-1 3D MOD 0-4 ID-B 30 MQI 0-4 12-7 3D MD5 0-4 a-s 30 MDb 0.4 b.4 30 MB? 0.4 13-7 30 M41 Q.4 2-5 3D MSO 0-4 3D-5 3D Mb? D-M B-5 3D Mlb 0-4 5-1 3D Mil 0-4 5-1 3D 500 0.4 E-5 3D sab 0-4 B-S 3D baM 0-4 7-b 3D b25 0-4 7.b 30 bBb 0-4 S-1 3D b27 • -4 S-1 3D bbO • -4 7-b 3D bb3 0-4 1-3 3D bis D-4 2-S 3D bib 0-4 2-S 3D 73B D-4 12-7 3D 743 0-4 0.8 3D 744 • -4 Bb-B 3D 747 0.4 33-0 3D 7bl G-4 14-0 3D 7bb D-M ID-B 30 778 0-4 3-6 3D 771 0-4 25. 4 30 780 D-4 5-1 30 600 0-4 5.1 3D 616 G-4 7.b 3D 6B4 D.4 5-1 3D 825 D-4 2-5 3D 837 0-4 8-1 3D 836 0-4 1.3 3D 644 0-4 2-5 30 678 D-4 ia-7 30 m m m P P k P p m m Page 2 P k altel m P 671 D-4 ID-2 30 611 0-4 aD.3 30 125 0. 4 2-5 30 isa D-4 2-5 30 1DS4 D-4 B4-1 30 1055 0-4 5-1 3D IDbD 0-4 5-1 30 1060 0-4 a-s 30 1064 0-M 7-b 30 1011 0. M 7-b 30 HDD 0-M 3-6 3D 115M D-4 58-M 30 1155 0-4 Ib.S 3D HSb 0. 4 5-1 30 HbS D-4 5-1 3D Hb6 0-4 5-1 3D llbl G-4 a-s 3D 1170 G-4 s-1 30 H?3 G-4 B5-M 3G H?M D. 4 27-1 30 1175 0. 4 20.3 3D 118G 0. M 17-6 3D 1161 0. M M3.7 3D 116b 0. M 2-5 30 130b D-M 5-1 30 130? 0. M 3-5 3D 1M37 0. 4 3-5 3D 1M36 0-.4 1-3 30 1M47 0. .4 7.b 30 lMb2 G. .4 5-1 30 14b3 D. .4 5-1 30 14b4 0. .4 10-3 3D 14bS 0. .4 36-1 30 14bb D. .M 7-b 30 1Mb? 0. M 12-7 3D IMIb 0. .M 3.8 3D IMI? 0. • M M5-7 30 1500 0. • M lD-2 3G 1502 0. .4 1-3 3D 1SG3 0. .4 MD.b 30 ISGb 0. .4 3B-1 3G 1533 D. .4 27-1 3D 1S2S G. .M 12-7 3D 153b G. .4 12-7 3D 15MD D. .4 25-4 3D ISMl G. .4 3-5 30 15M2 D. .4 12-7 3D 15Mb 0. .4 lB-7 30 1SM7 D. .4 2-5 3D 155D 0. .4 3-S 3D 1552 0. .4 7.b 30 ISAb D. .4 5-1 30 lb53 0. .4 1-3 3D IbSM 0. .4 1-3 30 lb6b 0. .4 7.b 30 17Sb 0. .4 b-4 30 l?b4 0 .4 5-1 30 1711 D .4 1-3 30 16D1 0 .M 17-8 3D 1602 0 .M 20-3 30 16Db 0 .4 S-1 30 laaB D • M 17.8 30 1633 0 .4 B-5 30 163M 0 . 4 30-3 3D 1627 0. .4 5.1 30 1828 0. .4 5.1 30 1831 D. .4 BS-M 30 1832 0. .4 b3-S 3D 1833 D. . 4 20-3 3D 1834 0. .4 3.8 3D 1835 D. .4 B.5 3D ia3b 0 .4 S-1 3D 1838 D. -M 14 .D 3D 1831 0. .4 35-b 3D 1841 0. .4 73.7 3D 1842 0. .4 38.1 30 1843 0 . 4 S-1 3D IBMM D . 4 45-7 3D 1B5S 0 .4 ID. 3 30 lBb4 0 .4 bl-D 3D IBbS D .4 lD-3 3D IBbb D . 4 4.1 3D 1B75 0 .4 30-5 3D ia7b 0 -4 44-5 3D 187? 0 -M 1-3 30 1680 0 -4 lB-7 30 HID D -4 1-8 30 Page 3 altel nil D-4 7-b 3D 1112 0-4 10-a 3D naa 0-4 15-2 3D 3035 0-4 0-3 3D 2110 0-4 1-3 3D 3HS 0.4 a-s 3D B14D 0-M 7-b 30 3143 O-M 3.a 30 3143 D-M 3-a 30 B151 D-4 10-2 30 2171 D-4 15-2 30 3174 O.M 13.7 30 3i?a D-M 3-5 3D 2215 D-M 32-1 30 221b D-M 12-7 30 2225 0-M 30-3 3D BBBb 0-M 10-3 3D 22Ba D-4 a-1 3D 2331 D-4 33.1 30 3338 D-4 1-3 3D aa3i D-4 37.1 3D BB40 D.4 7-b 3D aa4a 0-4 3.S 30 33SS 0.4 2.5 3D 225b 0-4 35-M 30 33b6 0-4 30-3 30 22b1 0-M IM-D 3D 2274 0-M 33-1 30 3375 D.M b-M 3D 2281 D-M 1-3 30 221D D-M 11-4 30 2304 D.4 3-8 30 a30b D.4 13-7 3D B3D7 D-4 7-b 3D a308 0-4 b-4 3D 3316 0.4 1.3 3D 2336 D-M 2-5 3D 3373 O.M 0-3 30 24b1 D-M 2-5 30 3417 0-M 1.3 30 25D5 D-M 12-7 30 3510 D-M 5-1 30 asia 0.4 5-1 3D 2520 D.4 5-1 3D 3531 0-4 3-S 3D 353? D-4 2-5 3D aS47 0-4 3.6 30 aS46 0-M 3-a 3D 3541 O.M 13-7 3D 3SS8 D-M 5-1 30 3551 Q-M 10-2 30 25bD 0-4 71-1 30 35bl 0-4 5.1 3D asb3 D-4 40-b 3D 25bb 0.4 2S-4 30 asb? D.4 2D-3 3D 25ba 0.4 lb-5 30 aS7D 0-4 b-4 3D 2571 0-4 6-1 30 BS7a D-4 6-1 30 B57b D.4 b-4 30 3578 0-4 1-3 30 2571 0-4 7.b 3D 2580 0-4 14-0 3D 2581 D-M 3S-b 3D 3582 D-4 3-A 3D 2511 0-4 3-6 3D BbDD 0-4 M3-a 3D BbDl D.4 ia-7 3D Bbia D-4 7-b 3D 2bl1 0.4 3b-S 30 BbBD D-4 IDl-b 30 2b25 0.4 SS-1 30 2b2b D-M 3-8 3D 2b35 0-4 1-3 3D ab3b 0-4 11-1 3D ab3a D-4 17-a 30 2bbl 0-4 14-0 30 2bb2 0-4 a-s 3D 2bb3 D-M b-4 3D abb4 D-4 IS. a 3D BbBl 0-4 B-5 3D BbBB 0-4 3-5 30 ab66 0-4 3-6 30 2b61 D-M 3-8 30 abID D-M 3.5 30 3733 D-M S-1 3D p i P P k Page 4 altel M 2723 0.4 a-1 3D 2751 D.4 3-5 30 aabo 0-4 2-5 30 a6bi 0.4 2-5 30 2102 0-4 2-5 3D B1D3 0-4 2.5 30 21G5 0-4 3-S 3D 3113 0.4 5-1 3G 31Mb D-4 2-5 3G 3151 D-M b-4 3D E15S D-M 1-3 3D 21b2 0-M 3-5 3D 2173 D-4 12-7 3D 217b 0-4 2-S 3D 2177 D-4 15-2 3D 2178 0.4 3-5 3D 2171 D-M 10-3 30 2185 0-4 13-7 3D 3113 D-4 20-3 30 2114 0-4 S.l 30 3013 D-4 1-3 30 303B D-4 a-s 3D 3031 0.4 13-7 30 30b7 0-4 5-1 3D 3S2b 0-4 30-3 30 3347 0-4 87.b 30 3248 0-4 3-S 30 33bl 0-4 14-D 30 33bS 0-4 17.6 30 33bb D-M 12-7 3G 33b? D-M 17-8 3D 3376 0-M S.l 3D 3383 O.M lD-2 30 3284 D-M 2-5 3D 3286 0-4 3.S 30 3281 0.4 17-8 30 3311 D-4 2-5 3D 3311 0-4 ?b-3 30 33DD 0-4 7-b 30 3302 0-4 7-b 30 33D1 D-4 10-3 3D 3310 0-4 3-8 30 3312 0.4 3M-3 30 3313 0-4 6-1 30 3326 D-4 5-1 30 3344 D-4 3-5 30 3345 0-4 15-2 30 3360 0-4 2-5 30 3M31 0-4 1-3 3D 3S10 0-4 17-D 3G 3511 0-4 1.0 3D 3bl2 0-M 43.1 30 3bl3 D-M 21.0 3D 3b2b D-M 1-0 3D 3b37 D.4 10-1 30 3b30 0-4 13-0 30 3b31 0-4 1.0 30 3b32 0.4 22.1 30 3b43 D-4 5.1 30 3b46 0-4 3.D 3D 3b41 0.4 3-D 30 3bS2 0-4 l-D 3D xxxsxxxxsxxxxxxxxxxxxxxxxxx«xxxxxxxxxxxxxxx*x«xxxxxxxxxxxxxxxxxxxxxxxxxxxx POTENTIAL ET (UEEKLY TOTALS^ mm) AMD DEPTH TO tIATER TABLE (mm)" IdEEK NO- ET yATER TABLE 1 11. 14 0 2 11. .14 D 3 H. .14 Q 4 11. .14 0 5 11. .14 0 b 11. .81 D 7 11. .61 0 a 11. .61 D 1 11. .61 D ID H. .61 0 11 15. .bB D 12 15. • bB D 13 15. .b2 0 14 15. .b2 0 15 IS. .bB 0 lb 24 .07 D 17 24 .0? D 16 24 -D? D 11 BM -D? 0 Page 5 altel 20 24. 07 G 21 2b. .13 0 22 2b. .13 0 33 2b. .13 0 BM 3b. .13 0 B5 3b. .13 0 2b 30. .bl 0 a? 30. bl 0 26 30. .bl 0 Bl 30. .bl D 30 3D. 13 0 31 30. .13 D 32 3D. .13 0 33 3D. .13 0 3M 32. .77 0 35 32. 77 0 3b 32. 77 0 3? 33. 77 0 36 a?. 16 0 31 27-.16 0 MO B7. .16 0 Ml 27-,16 0 M3 20. DD 0 M3 20. .DD 0 MM BO. .00 0 MS 20. .DD D Mb 14. .35 D M? IM. 35 0 M6 IM. 35 0 Ml IM. 35 0 SO 11. 75 0 51 11. .7S 0 SB 11. 75 0 S3 11. .75 D 54 IM. b? 0 55 14. .b? 0 5b 14. • b? 0 57 14. .fc? 0 58 n. .IM 0 51 11. • IM 0 bO 11. • IM 0 bl 11. .IM 0 ba 34. .70 D b3 34. 70 0 b4 24. 70 0 bS 34. .70 0 bb 31. • SI D b? 21. 51 0 bB 31. .SI D bl 21. .51 D 7D 31. Sb D 71 31. .Sb D 72 31. .5b D 73 31. .5b D 74 32 .51 D 7S 33. • 51 D 7b 3B • Sl D 77 32. -51 D 78 33 .51 D 71 35 .66 D BD 35. .88 D 81 35. .88 D 82 35. .aa D 83 3S. 88 D 84 34. .21 D 85 34. .ai • 8b 34. .31 D 87 34. .31 0 66 34. .31 • 61 31, .76 D 10 21. .76 0 11 31. • 78 0 12 21. .78 D 13 21 .78 D 14 31 .bS D IS 21 -bS 0 lb 21 -bS D 17 31 • bS D 18 31 .bS D 11 13 -4b D IDO 13 -4b 0 101 13 -Mb 0 IDa 13 -Mb 0 1D3 1? -51 0 IDM 1? -El 0 IDS 1? -SI 0 10b 17 -51 0 IP' P p p Ml P P P Page 6 P P P k altel ID? IM-AD D 106 IM-.AD D 101 IM-.AO D HD IM. .AO D 111 14. 60 D 113 ll-.75 0 113 li. .75 D HM 11. 75 0 115 11. 75 0 lib 11. .?s 0 117 ll-.81 0 118 ll-81 0 HI ll-81 0 130 11. .81 0 131 11. .81 0 133 36. 33 0 1E3 EB-33 0 12M 3B. .32 0 135 38. .33 0 13b 3D. b? 0 137 30. • b? D 126 30. • b? D 131 30. .b? D 130 31. • BA D 131 31. • 86 0 133 31 • 66 D 133 31 • 86 0 134 31 .31 0 135 31 • 31 0 13b 31 .31 0 13? 31 • 31 0 136 3b • 33 0 131 3b .33 0 140 3b • 33 0 IMl 3b • 33 0 143 26 • Sb 0 143 26 -Sb 0 144 26 • 3b 0 IMS 36 • Sb 0 1Mb SS • SI 0 147 22 -21 0 1M6 SS -31 0 IMI 23 .31 0 15D 21 -65 0 ISl 31 .65 0 153 21 .65 0 1S3 31 • 65 0 154 21 .65 0 155 17. -11 0 ISb 17. • 11 0 157 17 .11 0 156 17. -11 0 151 17. • 11 0 IbO 15. .3M 0 lbl 15 -2M 0 lb3 15. .2M 0 lb3 15 .2M 0 lb4 11. • 41 D lb5 11 -41 0 Ibb 11 .41 D lb7 11 -41 D IbB lb -lb D lbl lb -lb D 170 lb -lb D 171 lb .lb 0 172 20 .77 D 173 20 .77 0 174 20 .77 • 17 S 20. .77 a 17b ao. .77 Q 177 31 .bl 0 178 31 .bl 0 171 31 • bl D IBO 31 .bl D 161 31. .bl D 162 35 .b2 D ia3 35 .b2 D 184 35 .ba D IBS 35 .ba 0 IBb 35 .b2 D 16? Mb -46 D 168 Mb -48 D 161 Mb -M6 0 110 Mb -M6 0 111 Mb -M6 0 112 3b -13 0 113 3b .13 0 Page 7 altel IIM 3b-13 0 115 3b-13 D lib 3b-13 0 117 33-65 D 116 33-65 0 m 33-65 D 3D0 33-as D 2D1 2b-80 D 202 2b-8D 0 3D3 3b-80 0 BDM Bb-80 D 205 23-50 D 30b 33. SO D 3D? 33-50 D 206 a3-50 0 301 17. bS D BID 17-bS D Ell 17-b5 D 312 17. bS D 313 17-1? D 314 17. 17 0 315 17-17 0 21b 17-17 0 317 17. 17 0 218 22-48 D an 22-48 D 330 33-48 D 321 22-46 D 222 21. 78 D 333 31-78 D BE4 21. 76 D 22S 21. 76 0 32b 21. IS 0 337 31. 15 0 228 31-15 D 221 21. 15 0 330 34-31 0 331 34. .31 0 332 34 . .31 D 233 34. ai 0 234 32. .7? D 235 32. .77 0 33b 32. .77 0 237 32 .77 D 338 32. .D7 0 331 33 .07 0 240 32. • D? 0 341 32 .07 D 343 31. • 88 D 343 31. • 88 D EMM 31. .88 D 245 31. • 88 D BMb 28 • 13 D 3M7 36. .13 D BMB 26 .13 0 241 26 .13 0 35D 36. -13 0 251 3D -DM 0 353 3D • DM 0 2S3 3D -OM 0 254 3D .DM D 35S 3D • DM D 2Sb 25 .65 0 257 25 .85 D 258 35 -as D 351 25 -as • 2bD 25 -85 D 2bl IB -35 0 BbB 18 -35 0 2b3 16 -35 0 2bM 16 .35 D 2b5 IB -3S D 2bb 27 .81 D 2b7 27 .81 D 2b6 27 -81 D 2b1 27 -61 0 27D BS -IS 0 271 35 .15 D 272 25 .15 D 273 35 -IS D 274 25 -IS 0 375 33 -M3 0 27b 22 .42 0 277 22 .42 0 278 22 .42 D 371 33 • 43 D BBD 38 -45 D p p p p IH P HI Page 8 k W. altel IM 381 28-MS 0 282 36-MS 0 283 26-MS 0 284 26-MS 0 285 37-SO D 2ab 37-SD 0 28? 27-SG 0 286 37. SO D 381 37-5D 0 210 34-11 G 311 34-11 D 212 34-11 G 313 34. 11 D 21M 3M. 11 D 215 43. 23 0 aib 43. 33 D ai7 43-23 D 316 MS. 23 0 311 M3. 5b 0 300 43. .5b D 301 43. Sb D 302 43. .5b 0 303 37. .M7 0 30M 37. .M7 D 305 37. .47 0 3Db 37 .47 0 307 33. 66 D 308 33. AB 0 3D1 33. AB 0 310 33. .A6 0 311 33. .b? 0 313 33. • b? 0 313 SB .b? 0 31M 3E • b? D 315 23. .48 G 31b SB • 46 D 317 23 • 48 G 318 E3 • M6 D 311 S3 .81 0 320 33 • 81 D 331 33 • 61 0 332 33 .61 0 323 33 • 33 0 33M 33 • 33 0 335 22 .33 0 32b 22 • 33 0 33? 3S • MS 0 338 3S • MS 0 321 32 • MS 0 330 33 • MS 0 331 31 -37 0 333 31 • 37 0 333 31 .37 0 33M 31 -37 0 33S 3S -SO D 33b 35 -50 0 337 35 -50 D 336 3S -50 D 331 M2 -bl 0 340 M2 -bl 0 341 MB -bl 0 342 M2 -bl 0 343 34 -10 0 344 34 -ID D 345 34 -ID 0 34b 34 -ID D 3M7 34 -10 D 3Ma Ml -3M D 3M1 Ml -3M D 35D Ml -3M D 351 Ml -34 D 352 Ml -34 D 353 35 -50 0 35 M 35 -5D 0 3SS 3S -SD 0 35b 35 -SD D 357 35 .50 D 3SB 28 .lb D 3S1 28 .lb D 3bD 38 -lb D 3bl 28 -lb 0 3b2 26 -lb 0 3b3 11 -66 0 3bM 11-66 0 3b5 n -68 D 3bb 11 -68 D 3b7 11 -aa D Page 9 altel 3ba 17. .31 D 3b1 17. 21 0 370 17. .31 0 371 17-31 0 372 15-81 0 373 IS-81 0 374 IS-81 0 375 15. 81 0 37b 15. 81 D 377 14. 33 0 378 IM. 23 0 371 IM. 23 0 380 IM-23 0 381 IM-23 0 382 15-11 0 383 15-.11 0 384 15-11 0 385 15. .11 0 38b IS. 11 D 38? 2M. 77 D 388 2M. 77 D 381 24. ?? D 310 34-?? 0 311 34-77 0 312 22-10 D 313 22-10 D 314 33. .10 D 31S 22. .10 D 31b 37. 11 0 317 37-11 D 31B 37. 11 0 311 37. 11 D MOO 31. .37 D 4D1 31. 37 0 402 31. 37 0 403 31. .37 0 40M 41. .01 0 M05 41. 01 D MOb 41. .01 D MD? 41. 01 D MOa 3b. .01 0 MOI 3b. .01 0 MIO 3b 01 D Mil 3b. • 01 D M12 31. 02 D M13 21. .02 D 414 21. 02 D 415 21. .03 D 41b 23 .75 D 417 33. • 7S D 418 23 • 75 0 411 33 .75 0 420 lb. • 13 0 M21 lb • 13 0 M22 lb -13 0 Ma3 lb -13 0 42M lb. .13 D 425 b-aa D 42b b-22 0 427 b-a3 D M26 b-i ;E D M21 lb -7D 0 M3D lb -70 0 431 lb -70 0 M32 lb -7D 0 M33 31 -?a Q M34 31 -78 0 M3i 31 -78 D 43b 31 -78 • 437 Bb -73 D 438 ab -73 D 431 2b -73 D 440 Bb .73 D 441 28 .Bb D 4M2 38 -3b 0 4M3 38 -3b D 444 38 -3b 0 4MS aa -Bb D M4b 34 -lb D MM7 3M -lb D MM8 3M -lb D 441 3M -lb D 450 34 .lb D 451 MD -31 D 4S2 MD -31 D MS3 40 .31 0 MS4 40 -31 D p p p p k P m p P p P Page 10 • P altel P I" P 455 MO -31 0 45b Ml. -78 D 457 Ml. .?B D 45a Ml. .?a 0 MSI Ml. .76 0 MbD Ml. .76 0 Mbl 33 -31 D MbE 33 -31 0 Mb3 33 -Sl 0 MbM 33 • 31 0 MbS 33 -Bl D Mbb 33 • 33 0 Mb7 33 • 33 D Mb6 23 -23 D Mbl 23 -33 0 470 IM • 35 0 471 IM. • 35 D 473 IM. -35 0 473 IM -35 0 47M H. • Sb 0 475 11. • Sb D 4?b 11 -Sb 0 477 11 • Sb 0 476 13 -1? 0 471 13 • 1? 0 480 13 -17 0 481 13 -1? 0 483 13 -1? D 463 I.Mb 0 464 1-1 4b 0 465 1-Mb 0 M6b I.Mb D M6? I.Mb 0 M6a 11 .31 0 461 11 -31 D 41G 11 -31 0 411 n -31 0 4ia 30 .b7 0 413 30 -b? D 414 30 • b7 0 415 3D -b? D Mlb 36 -bl G 417 36 -bl D 416 36 • bl G 411 36 -bl D 500 MO • 83 D 501 MD .63 G 503 MO .A3 D 503 MD • 83 G 504 40 .77 0 SOS 40 • ?? 0 SDb 40 -?? 0 SD? 40 • 77 G 506 31 • 05 0 501 31 .OS D SIG 31 .05 0 511 31 • OS 0 512 28 • 51 0 513 38 • 51 0 S14 28 • 51 0 515 38 • 51 0 51b 22 • 13 0 517 23 • 12 0 516 33 12 D 511 33 IE 0 530 32. .ia D 531 IS. .3D D saa 15. .3D D 523 15. .30 D 534 15. 30 D 535 15. .3D D S3b 11. .16 D 53? 11. .18 D 538 11. 18 0 S21 11. 18 0 530 11. 18 0 Page 11 aiiel .SUM TIME GRAIN 90 42 6 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440 1530 1620 1710 1800 1890 1980 2070 2160 2250 2340 2430 2520 2610 2700 2790 2880 2970 3060 3150 3240 3330 3420 3510 3600 75 9 759 121 165.6 1831 197.8 210.4 2658 306.1 311,1 331 3 374 4042 411.4 415 2 493.4 S23.4 532 8 544 2 665.1 675 2 685 5 706.7 768 826 626 3 848.2 930.3 1002.2 10132 10182 1040.1 1079 1084 1096,4 1181.4 1193 1194,3 1206,3 CEVAPA 52 5 84 6 86 4 111.1 1544 174 9 183 3 192 6 236,6 265 8 268.6 2806 308.4 338 4 341.2 341 8 398 8 426 9 431 436,3 526.8 538 2 544 9 554.1 604.9 650.5 651 4 661 5 725,7 7839 794 3 795.9 808.4 8398 842 6 848.9 917 1 9292 930,1 935.9 CTRANA 7 7 23.1 42.8 52.8 642 82.5 94.5 105.4 113.5 127 135 5 141 2 148 7 158.4 1649 167.6 177,3 189.4 196 2 202.9 2144 2262 2356 241.6 252.3 267.7 271.8 276.9 286.3 2948 309.4 3156 323 7 332 3 337 9 342 1 350 7 357.9 361.5 364 9 WETDEP 9999 9999 9990 9999 9990 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 WETLOW 9999 9999 9999 9999 9999 9999 9999 9099 9999 9999 9999 9999 9999 9999 9999 9999 9999 CFWO -9.90E»00 -6,64E*00 -1,04E*01 9.87E*00 1 12E*01 8,15E»00 1 45E*01 1.78E*01 2 92E*01 403E*01 425E*01 5.07E*01 656E+01 6,58E+01 7.02E+01 7.34E*01 9.46E*01 9 64E*01 1.02E*02 1 D8E+02 1 38E*02 1.37E+02 1.41E*02 1.53E+02 1 63E»02 1.76E*02 1,75E»02 1.87E+02 2 05E»02 218E+02 219E+02 2,22E*02 2 32E+02 2,39E»02 2.41E+02 2.47Et02 2.64E*02 264Et02 2.64E*02 2.70E+02 CFWl 1.05E»00 147E'00 1 72E»00 1,89E*00 2 35E»00 2.50E*00 256E*00 2,61 E*00 280E*00 2.96E*00 3.04E+00 309Et00 3.26EtO0 5.O6E»O0 5,10E»00 5,13E*00 614E*00 6 GiE*0O 6.67E+00 668E+00 1 4BE+01 1,46E*01 146Et01 1.46E»01 1.47E*01 1 4eEt01 l,48E*01 1,48E*01 1,74E*01 2 48Et01 2,49E*01 2,40E+01 249E+01 2.49E+0I 2.49E*01 2.50E+01 2 52e+01 2.54E*01 2.54E*01 2.55E*01 CFW2 2,26E»00 297E»0O 3,04E*OO 3.06E*00 3.07E*00 3.07EtO0 307EtO0 307E+00 3.07E-t00 3,07E+00 30BE«'00 308E*00 3,08E*0O 3,08E*00 3,08E*00 3.08E+00 3.0eE*00 SOBEtOO 308E+00 308E+00 308E«^00 308E*00 308E*00 3.08E*00 3.09EtOO 3.00E*00 3.0gE+00 309E«00 309Ef00 300E«00 310E*00 3,11EtO0 311E*00 3,12Et00 312E+00 313E+00 3,13E+00 314E+00 3.14E+00 3.14E+00 CFW3 2.15E*01 2.84E*01 308E*01 3.14E+01 3.17E»01 319E+01 3.20E+01 320E+01 3,2OEt01 3,21E+01 3.21E*01 3.21E*01 3,21E*01 3.21E*01 3-21E»01 3,21E*01 3,21E+01 3,21Et01 3 21Et01 321Et01 3,2IE+01 3 22E*01 3,22E*01 3,22E*01 322E*01 3.22E+01 3.22E*01 3,22E+01 3,22Et01 322E+01 3,22E+01 3.22E+01 322E*01 322E*01 3 22E«01 322E*01 3.23E*01 3.23E*01 3,Z3E*01 3,23E+01 CFW4 213E*01 2.39E*01 1.73E*01 1,40E*01 1.22E*01 737E*00 2.94E*00 1 23E*00 561E-01 -2.14E-01 -1 31E+00 -2,13E'0O -2,59E*00 -2,90E-tOO -3,40Et00 -3,76E+00 -3 05E+00 -4 09E+00 -4,34E*00 -4,62E*0Q -4,62E*00 -4,67e»00 -4,81E*O0 -4,92E-*O0 -5,OOE+00 -5 05E*00 -5.12E*00 -5,18E*00 -5.22E*00 -5 22E*00 -5,23E*00 •5.28E*00 -5,31 EtOO -5.33Et00 -5.36EtOO -5.38E*00 -5 39E»00 -5.39E+00 -5.41E+00 -5.43E+00 TW2 40.14 37.08 32.77 49.67 4381 32.03 34.5 29,9 33,68 32,65 28.85 3257 40,63 20,97 28 95 30.3 40.95 30.66 20.91 29.92 41.2 30 27,96 34,7 34 82 32,04 27,96 34,92 41 39,69 30,26 29.41 31,42 30,65 27.99 30.33 38-26 30.67 27,04 31.15 48,41 38,22 31,91 29,75 28,89 26.88 24,34 23.48 23.44 23.15 22 57 22,17 22,11 23,66 23,28 22,94 23.88 24,1 23.73 23.42 30,05 27,26 26,73 24,98 24,73 24.57 24,1 23,76 26,32 32.76 28.18 26 20 25.64 25.31 24.67 24.16 24.29 24.3 23,87 2352 TWS 149.37 141.6 128,3 123,17 110.39 111.82 105.97 1037 103,22 101,8 100,06 99.07 98,62 97,06 07,26 08,75 96.62 06.26 05.91 95.63 05.50 95.39 95.18 95 94.91 0477 94.63 04.63 94.49 04.49 044 94,3 94,24 94,18 94,11 94.05 94,03 03 09 03-03 03,88 TW4 123 7 107,04 02,11 105,55 97,27 80,7 79,48 73,5 77.44 75.7 70 48 73.65 81 46 72.22 70.62 71.49 83.14 72,87 71.65 71.27 00.13 75,1 71.45 77,38 77 24 7423 69,61 76,19 84,84 89,09 7587 73,1 74.44 73,31 69,96 71.76 79.82 72.10 80 71.82 PWI -3.70E*00 -6.30E+00 -1 10E»01 -8.40E*00 -1.30E+01 -2.10E*01 -3.00Et01 -3.50E*01 -1.00E+01 -2.40E+01 -3.50Et01 -3.60Et01 -1,40E+01 -2 20E+01 -3.S0E*01 -4,10E*01 -660E*00 -2,20EtO1 -3,30E+01 -4.00E+01 .3.90E»O0 -2.30Et01 -3,70E«01 -4.30E+01 -1.60E*01 -2,10E*01 -3.40E*01 -3.eOE*01 -4.80Et00 -5.00E*00 -2.40E*01 -3,90E*01 -4,20E*01 -2,50EtO1 -3,50E+01 -4.10E+0I -1,OOE*01 -2 20E+01 -3,40E*01 -4.00E*01 PW2 -2 50E*00 -6.80E*00 -1.20E*01 -1.70E+01 -2,00E*01 -2.80E+01 -4,00E*01 -4,70E*01 -4,O0E*01 -5,40E*01 .6,00E*01 -6,50Et01 -6,80E*01 -7,10E+OI -7.50E-H)1 -7,90E+01 -8,10E*01 -8 30E*01 -8 60E*01 -B.O0E«01 -7-80E*01 -7 20E*01 -7,60E*01 -7,80E*01 -7,00E+01 -8.00E+01 -8,30E+01 -8.60E+01 -8,60E+01 -5.30E-»01 -510E*01 -5 60E+01 -5.60Et01 -6,00E*01 -6,S0E*01 -6,60E*01 -6,70E*01 -6,00Et01 -7,20E+01 -7,40E*01 PW3 -5,30E+01 -7,30E*01 -1.40Et02 -2 10E*02 -2.40E*02 -3.50E*02 -5.20E*02 -6.60E'02 -7,40E*02 -7,90E*02 -8,60E*02 -9.&0E*02 -1 00E*03 -1 10E+03 -l,10E-t03 -1.20E+03 -1.20E+03 -1.20E+03 -1.30Et03 -1.30E*03 -1 30E*OS -1.3OE*0S -1.30E*03 -1.40E»OS -1,40E*03 -1.40E*03 -1 40E+03 -1,40E*03 -1 40E+03 -1,40et03 -1,40Et03 -1,40Et03 .1.40E*03 -1.40E+03 -1 50E*03 -1.50E+03 -1.50E+03 -ISOEtOS -1 50E*0S -1,50E*03 PW4 -5 50E+01 .8,00E*01 -2,00E*02 -2.10E+02 -340E*02 -8.70E+02 -1.10E*03 -1.10Et03 -8.70Et02 -1 10Et03 -1.40E+03 -1.40E+03 -I.SOEtOS -1.40E*0S -I.BOE'OS -1.60E»03 -1.30E*03 -1 60E'O3 -1.50E*03 -1.50Et03 -1.40E+03 -1.50E+03 -1.50Et03 -1.50E*03 -1.50Et03 -1.50Et03 .1,50E*03 -1,50Et03 -1.50E*03 -1.40E*03 -1.50Et03 -1,50E*03 -1,50E*03 -1,50E»0S -l,50E*O3 -150E*03 -1 60Et03 -1,50E+03 -1,50E+03 -1.50E+03 TH3 0,152 0.166 0.187 0.085 0,136 0.138 0.181 0.078 0119 0.118 0 166 0-064 0.127 0,11 0,159 0,063 0.116 0.105 0.157 0,057 0,105 0.008 0.15 0.047 0,097 0.091 0142 0.045 0.093 0.088 0 139 0044 0,107 0.087 0.137 0,047 0,101 0.085 0.136 0.044 0.094 0,083 0 134 0.042 0094 0,082 0,133 0.042 0,115 O.OBl 0,132 0.043 0,103 O.OB 0,131 0.O42 0-094 0.079 0,13 0.042 0.09 0078 0,129 0,042 0,134 0,078 0.129 0,043 0,103 0.078 0126 0042 0,095 0.077 0,128 0.042 0,091 0.076 0.128 0.042 0.15 0.070 0 128 0,042 0.102 0.08 0.127 0,042 0.092 0079 0.127 0,042 0.089 0,079 0.127 0,042 0.11 0,078 0.127 0,042 0.104 0,078 0.127 0,042 0094 0 078 0.127 0,042 0092 0,077 0.126 0.042 0144 0.077 0,126 0,042 0.143 0,085 0.126 0,042 0101 0.086 0,126 0,042 0.001 0.085 0.126 0,042 0.09 0,084 0.126 0,042 0,101 0.083 0.126 0,042 0.093 0062 0.126 0,042 0,091 0.081 0.126 0,042 0,122 0.081 0.126 0 042 0.104 0.081 0.126 0,042 0.094 0,08 0.126 0,042 0.091 0,070 0,126 0.042 mm mm ii mm mm it ii ii llllllllllllll ATTACHMENT C HELP3 OUTPUT DATA GeoLogic Associates IP" p ************************************************************* ****************************************************************************** ** ** ** * * ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.06 (17 AUGUST 1996) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** * * * * ** ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D4 TEMPERATURE DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D7 SOLAR RADIATION DATA FILE: C: XACTIVEXOLDDOS-IXHELPSAXSMARCO.D13 EVAPOTRANSPIRATION DATA: C: \ACTIVE\0LDD0S~1\HELP3A\SMARC02 .Dll SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC1.D10 OUTPUT DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMPRSC1.0UT TIME: 10:50 DATE: 3/ 5/2002 ************* ***************************************************************** TITLE: San Marcos Landfill ****************************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = 12.00 INCHES 0.473 0 VOL/VOL 0.222 0 VOL/VOL 0.1040 VOL/VOL 0.3 0 60 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.739999996000E-05 CM/SEC LAYER TYPE 4 - FLEXIBLE MEMBRANE LINER MATERI.AL TEXTURE NUMBER 3 5 0.08 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. FML PINHOLE DENSITY FML INSTALLATION DEFECTS FML PLACEMENT QUALITY 0.0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 0.199999996000E-12 CM/SEC 1.00 HOLES/ACRE 10.00 HOLES/ACRE 4 - POOR LAYER TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = 24.00 INCHES 0.4730 VOL/VOL 0.222 0 VOL/VOL 0 . 1040 VOL/VOL 0.2412 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0 .430000000000E-04 CM/SEC P P P P P Hi GENERAL DESIGN AND EVAPORATIVE ZONE DATA P P P P P P NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 500. FEET. SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF AREA PROJECTED ON HORIZONTAL PLANE EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE UPPER LIMIT OF EVAPORATIVE STORAGE LOWER LIMIT OF EVAPORATIVE STORAGE INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW 82 . 70 100 . 0 1. 000 12.0 3 .671 5.676 1.248 0.000 9.459 9.459 0.00 PERCENT ACRES INCHES INCHES INCHES INCHES INCHES INCHES INCHES INCHES/YEAR EVAPOTRANSPIRATION AND WEATHER DATA NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM SAN DIEGO CALIFORNIA STATION LATITUDE = 33 .10 DEGREES MAXIMUM LEAF AREA INDEX = 1 .00 START OF GROWING SEASON (JULI.AN DATE) = 0 END OF GROWING SEASON (JULIAN DATE) = 367 EVAPORATIVE ZONE DEPTH = 12 . 0 INCHES AVERAGE ANNUAL WIND SPEED = 6 . 80 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 65 .00 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY 69 . 00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73 .00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66 .00 % NOTE: PRECIPITATION DATA FOR LAKE HODGES WAS ENTERED FROM AN ASCII DATA FILE. CA NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA NORMAL MEAN MONTHLY TEMPERATURE {DEGREES FAHRENHEIT! JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC 56 . 80 70 .30 58 .40 72 .20 59.00 71.30 61.20 67 . 50 63 .40 61.60 66 .30 57 .40 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA AND STATION LATITUDE = 33.10 DEGREES m HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* DAILY OUTPUT FOR YEAR 1989 DAY A I R S O I L RAIN RUNOFF IN. IN. ET E. ZONE HEAD DRAIN LEAK WATER #1 #1 #1 IN. IN./IN. IN. IN. IN. HEAD #2 IN. P P P 1 0 . 55 0 .000 0 . 062 0 .3464 1 . 7612 .OOOOE+00 . 3110E-02 0. 0000 •1 2 0 . 00 0 - 000 0 . 088 0 .3388 1 . 7934 .OOOOE+00 .3137E-02 0 . 0000 3 0 . 00 0 - 000 0 .093 0 .3307 1 . 8133 . OOOOE-HOO .3154E-02 0 . 0000 4 0 . 00 0 .000 0 . 073 0 .3244 1 . 8073 . OOOOE-i-00 .3149E-02 0 . 0000 5 0 . 00 0 .000 0 .084 0 .3171 1 .7950 .OOOOE+00 .3139E-02 0. 0000 p 6 0 . 00 0 . 000 0 .094 0 .3089 1 . 7870 .OOOOE+00 .3132E-02 0 . 0000 k 7 0 . 00 0 . 000 0 . 092 0 .3010 1 . 7701 .OOOOE+00 .3117E-02 0 . 0000 k 8 0 . 00 0 .000 0 .091 0 .2931 1 . 7880 .OOOOE+00 .3133E-02 0 . 0000 m 9 0 . 00 0 . 000 0 .097 0 .2848 1 . 8055 .OOOOE+00 .3148E-02 0 . 0000 p 10 0 . 00 0 . 000 0 .052 0 .2802 1 .8112 .OOOOE+00 .3152E-02 0. 0000 11 0 . 00 0 .000 0 .087 0 .2727 1 . 8119 .OOOOE+00 .3153E-02 0 . 0000 12 0 . 20 0 .000 0 .058 0 .2843 1 .8116 .OOOOE+00 . 3153E-02 0. 0000 p 13 1. 75 0 .148 0 .065 0 .4121 1 . 7974 .OOOOE+00 . 3141E-02 0. 0000 p 14 0. 00 0 .000 0 .086 0 .4047 1 .8006 .OOOOE+00 .3143E-02 0. 0000 p 15 0 . 00 0 .000 0 .080 0 .3977 1 .8089 .OOOOE+00 .3150E-02 0, 0000 il p k 352 0 .20 0 . 000 0 .065 0 .3047 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 wm 353 0 . 00 0 . 000 0 . 079 0 .2981 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 tm 354 1 . 10 0 . 199 0 . 058 0 .3683 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 355 0 .00 0 . 000 0 . 075 0 .3620 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 m^ 356 0 . 00 0 .000 0 . 086 0 .3549 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 m 357 0 .10 0 .000 0 . 071 0 .3572 0 .0000 . OOOOE+OO .OOOOE+00 0 .0000 mm 358 0 .00 0 .000 0 .104 0 .3486 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000 359 0 .00 0 . 000 0 . 105 0 .3397 0 .1108 . OOOOE+00 .1736E-02 0 .0000 wm 360 0 .00 0 .000 0 , 105 0 .3308 0 .3146 . OOOOE+OO .1902E-02 0 .0000 ««• 361 0 .00 0 .000 0 .100 0 .3223 0 .4673 . OOOOE+OO .2027E-02 0 . 0000 362 0 .00 0 .000 0 . 117 0 .3124 0 . 5849 .OOOOE+OO .2123E-02 0 . 0000 363 0 .00 0 .000 0 .110 0 .3030 0 .7133 .OOOOE+00 .2229E-02 0 . 0000 364 0 .00 0 .000 0 . 109 0 .2937 0 .8121 .OOOOE+OO .2310E-02 0 .0000 •i 365 0 .00 0 .000 0 .091 0 .2859 0 . 8828 . OOOOE+OO .2369E-02 0 .0000 *^****^************************************************************************ ***************************************** ******************** MONTHLY TOTALS (IN INCHES) FOR YEAR 1989 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION 3.80 0 . 00 0 .151 0 .000 2 . 847 0 . 000 1.15 0.00 0 . 000 0.000 2 .292 0 . 000 0.00 0.00 0.000 0.000 1.767 0 . 000 4.95 0 . 00 0 , 790 0.000 2 . 869 0 . 000 0.20 1.45 0.000 0.000 1.469 0 . 622 0.00 3 .70 0 . 000 0.227 0 . 000 2 .103 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.1241 0.1328 0.0603 0.00 04 0.0218 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0147 0.0366 0.0288 0.0136 0,0000 0.0124 0.0053 0.02 32 0.03 39 0.03 75 0.0403 0.0388 0.0436 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OP LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 2,763 3.600 1.046 0.000 0.151 0.000 0.000 0.000 0.000 0.000 0.000 0,12 5 1.065 0.476 0.899 0.000 0.265 0.000 0,000 0.000 0.000 0.000 0.000 0.267 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1989 IP PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 15.25 1.168 13.969 0 .354116 0,6405 0 .313905 -0.200 9. 903 9. 703 0 .000 0,000 0. 0000 CU. FEET PERCENT 55357.504 100.00 4238.502 7.66 50707.234 1285.443 1139.475 -727.713 35949.508 35221.797 0 .000 0 .000 0. 005 91.60 2 .32 2 . 06 -1.31 0 . 00 0 . 00 P P p 0.00 n ***************** ************************************************************** n HI P P P P HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************** DAILY OUTPUT FOR YEAR 1990 DAY A O I I R L RAIN RUNOFF ET IN. IN. IN. E. ZONE HEAD WATER #1 IN./IN. IN. DRAIN #1 IN. LEAK #1 IN. HEAD #2 IN. 1 0. 15 0 .000 0. 062 0 .2931 0. 9432 .OOOOE+00 .2419E-02 0. 0000 wm 2 0. 00 0 .000 0. 084 0 .2859 0. 9834 .OOOOE+OO .2453E-02 0. 0000 3 0. 40 0 .000 0 . 069 0 .3133 0. 9970 .OOOOE+00 .2464E-02 0, 0000 4 0. 00 0 .000 0. 094 0 .3052 1. 0075 .OOOOE+OO .2473E-02 0. 0000 mm 5 0. 20 0 .000 0 . 071 0 .3158 1. 0137 .OOOOE+OO ,2478E-02 0, 0000 w 6 0. 00 0 .000 0. 086 0 .3084 1. 0088 .OOOOE+00 .2474E-02 0 . 0000 7 0. 00 0 .000 0. 094 0 .3004 1. 0136 . OOOOE+OO .2478E-02 0, 0000 mm 8 0. 00 0 .000 0. 084 0 ,2932 1. 0158 . OOOOE+OO .2480E-02 0. 0000 t&m 9 0. 00 0 .000 0. 083 0 .2860 1. 0150 .OOOOE+00 .2479E-02 0 . 0000 IM 10 0 . 00 0 .000 0. 088 0 .2785 1. 0150 .OOOOE+OO .2479E-02 0. 0000 11 0 . 00 0 .000 0. 077 0 .2719 1. 0146 .OOOOE+OO .2479E-02 0. 0000 12 0. 00 0 .000 0. 082 0 .2649 1. 0011 .OOOOE+OO .2467E-02 0. 0000 mw 13 0. 00 0 .000 0 . 077 0 .2583 0. 9829 .OOOOE+OO .2452E-02 0. 0000 14 0 . 00 0 .000 0 . 072 0 .2521 0. 9761 .OOOOE+00 ,2447E-02 0. 0000 15 0 . 00 0 .000 0 . 057 0 .2472 0 . 9795 .OOOOE+OO .2449E-02 0. 0000 mm 16 0 . 00 0 .000 0. 051 0 .2427 0 . 9892 ,OOOOE+00 .2457E-02 0 . 0000 17 0. 00 0 .000 0 . 092 0 .2348 0. 9962 .OOOOE+OO .2463E-02 0. 0000 18 0. 00 0 .000 0 . 096 0 .2266 0. 9972 .OOOOE+OO .2464E-02 0. 0000 UM 19 0. 00 0 . 000 0 . 104 0 .2178 0. 9963 .OOOOE+OO .2463E-02 0 . 0000 20 0. 00 0 .000 0 . 097 0 .2095 0 . 9949 .OOOOE+00 .2462E-02 0 . 0000 21 0. 00 0 .000 0 . 104 0 .2006 0. 9930 .OOOOE+OO .2461E-02 0. 0000 IM 22 0 . 00 0 .000 0 . 097 0 . 1923 1. 0392 . OOOOE+00 .2499E-02 0 . 0000 23 0 . 00 0 .000 0 . 098 0 . 1840 1. 1018 . OOOOE + OO .2552E-02 0 . 0000 24 0 . 00 0 . 000 0 . 097 0 . 1756 1. 2196 .OOOOE+00 .2650E-02 0 . 0000 25 0 . 00 0 .000 0 , 079 0 . 1688 1. 4049 .OOOOE+00 .2806E-02 0 -0000 26 0 . 00 0 .000 0 . 087 0 .1613 1. 3917 .OOOOE+OO .2795E-02 0. 0000 wm 27 0 . 00 0 .000 0 . 111 0 .1518 1. 3057 ,OOOOE+OO .2723E-02 0 . 0000 28 0. 00 0 .000 0 . 094 0 . 1438 1. 1198 .OOOOE+00 .2567E-02 0. 0000 wm 29 0. 00 0 .000 0. 107 0 .1347 0. 7981 .OOOOE+00 .2299E-02 0 0000 wm 30 0. 15 0 .000 0 068 0 .1413 0. 4549 .OOOOE+OO .2016E-02 0 0000 31 0. 20 0 .000 0 058 0 .1530 0. 3009 .OOOOE+OO .1891E-02 0 0000 32 0 . 40 0 .000 0 060 0 .1812 0. 2155 .OOOOE+OO .1821E-02 0 0000 mm 33 0 . 50 0 .000 0 070 0 .2169 0 1645 .OOOOE+00 .1780E--02 0 0000 ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1990 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 1,10 0.00 0 .000 0.000 2.619 0.000 1,75 0.00 0.000 0 .000 1.880 0.000 1.30 1.00 0.004 0.000 1.494 0.207 0,10 0 . 35 0 .000 0.000 0.354 0.264 0 .50 0.20 0.000 0. 000 0.500 0.647 0.10 . 0.00 •I 0.000 m 0.000 ^ 0.100 m 0.432 HI 0.0765 0.0053 0.0000 0.0000 0.0000 0.0000 HI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0518 0.0165 0.02 07 0.0239 0.0269 0.0270 0.02 81 0.0278 0.0263 0.0264 0.024 6 0.0245 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 1.002 0 .000 0 . 017 0 .000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 p 0.000 P 0 . 000 0.210 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* " p p p ANNUAL TOTALS FOR YEAR 1990 Pl INCHES CU. FEET PERCENT p 6.40 23231.996 100.00 P PRECIPITATION P il RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 . 004 8,497 0 . 081867 0.0850 0,324727 •2,426 9,703 7.277 0.000 0.000 0 . 0000 14.572 0.06 30843.766 132.76 297 .179 1.28 1178.757 5,07 -8805.096 -37.90 35221.797 26416.701 0.000 0.00 0,000 0.00 -0.002 0.00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* DAILY OUTPUT FOR YEAR 1991 DAY A S 0 RAIN RUNOFF ET E. ZONE HE.AD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 IM R L IN. IN. IN. IN./IN. IN. IN. IN, IN, 1 0.50 0.000 0.044 0.1420 0.0000 .OOOOE+OO . OOOOE+OO 0.0000 2 0 . 00 0 , 000 0.041 0 .1385 0 . 0000 .OOOOE+OO ,OOOOE+00 0.0000 — 3 0 . 00 0.000 0 . 061 0.1335 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 340 0 ,00 0 . 000 0 . 016 0 . 1817 0 .0000 .OOOOE+OO . OOOOE+OO 0 , 0000 341 0 .00 0. 000 0 .019 0 . 1801 0 . 0000 . OOOOE+00 .OOOOE+OO 0, 0000 wm 342 0 . 00 0. 000 0 .019 0 . 1786 0 .0000 .OOOOE+OO .OOOOE+OO 0, 0000 wm 343 0 , 00 0 . 000 0 ,019 0 . 1770 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 344 0 . 00 0. 000 0 .021 0 . 1752 0 . 0000 . OOOOE+OO . OOOOE+00 0 . 0000 wm 345 0 .00 0 . 000 0 .022 0 .1733 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm 346 0 . 00 0. 000 0 . 024 0 .1714 0 .0000 , OOOOE+OO .OOOOE+00 0 . 0000 347 0 .00 0 . 000 0 .022 0 .1695 0 . 0000 .OOOOE+00 , OOOOE+OO 0. 0000 HI 348 0 . 00 0. 000 0 . 023 0 .1676 0 .0000 . OOOOE+00 .OOOOE+OO 0. 0000 wm 349 0 .10 0. 000 0 .055 0 ,1714 0 . 0000 .OOOOE+OO .OOOOE+OO 0, 0000 wm 350 0 .00 0, 000 0 .021 0 .1696 0 ,0000 . OOOOE+00 .OOOOE+00 0, 0000 351 0 .00 0 , 000 0 .019 0 .1680 0 , 0000 .OOOOE+OO . OOOOE+OO 0. 0000 NM 352 0 .00 0 . 000 0 .021 0 .1663 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 m 353 0 .30 0. 000 0 . 058 0 .1864 0 , 0000 . OOOOE+OO ,OOOOE+OO 0. 0000 wm 354 0 .00 0 . 000 0 , 022 0 .1846 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 355 0 .00 0 . 000 0 .023 0 , 1827 0 . 0000 .OOOOE+00 .OOOOE+OO 0, 0000 wm 356 0 .00 0. 000 0 .025 0 .1806 0 .0000 .OOOOE+OO .OOOOE+OO 0. 0000 m 357 0 ,00 0 . 000 0 . 027 0 .1783 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 358 0 .00 0. 000 0 .031 0 .1758 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 P 359 0 .00 0. 000 0 .031 0 .1732 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 P 360 0 .00 0 , 000 0 .033 0 ,1704 0 .0000 .OOOOE+00 .OOOOE+OO 0. 0000 361 0 ,00 0. 000 0 .028 0 .1681 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 362 0 .00 0. 000 0 .029 0 .1656 0 .0000 . OOOOE+OO .OOOOE+00 0. 0000 363 0 .00 0 . 000 0 .028 0 .1632 0 .0000 . OOOOE+OO . OOOOE+OO 0. 0000 • 364 0 ,00 0. 000 0 ,030 0 .1607 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 BP P 365 0 .00 0. 000 0 .031 0 .1581 0 .0000 .OOOOE+00 , OOOOE+00 0, 0000 BP P ******************************************************************************* p p ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1991 P PRECIPITATION RUNOFF EVAPOTRANSPIRATION JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC * P 3.41 1.75 0.50 0.80 0.90 0.80 0.10 0.10 0.00 0.00 1.35 0.40 m m 0.079 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0.002 0.000 ii p 2.127 2.720 0.589 0.945 0.336 1.364 0,100 0.100 0.000 0.000 0.301 0.797 P ih p PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0255 0.0294 0,0287 0,0248 0.0230 0.0202 0 .0191 0.0176 0.0158 0.0152 0.013 8 0.0134 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES; AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0,000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1991 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR INCHES 10 . 11 0 . 081 9.380 0 . 000000 0.0000 0.246602 0 .402 7 . 277 7.680 CU. FEET 295.173 34048.238 0 . 000 895.166 1460.726 26416.701 27877.426 PERCENT 36699.301 100.00 0.80 92 .78 0 .00 2 .44 3 .98 SNOW WATER AT START OF YEAR 0 . 000 0 . 000 0 .00 SNOW WATER AT END OF YEAR 0 .000 0 . 000 0 . 00 ANNUAL WATER BUDGET BALANCE 0,0000 0 .001 0 . 00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 *******************************************************************************^ DAILY OUTPUT FOR YEAR 1992 S P DAY A 0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD il I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN./IN, IN. IN, IN, IN. P P 1 0 .30 0 . 000 0 .067 0 . 1775 0, 0000 . OOOOE+00 ,OOOOE+00 0, 0000 2 0 .15 0 . 000 0 . 065 0 . 1845 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 3 0 .00 0 .000 0 .035 0 .1816 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 m 4 0 . 00 0 . 000 0 . 053 0 . 1772 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 mw 5 0 .00 0 . 000 0 . 056 0 . 1725 0 , 0000 . OOOOE+00 .OOOOE+00 0 . 0000 6 0 .00 0 . 000 0 . 066 0 .1671 0 . 0000 . OOOOE + OO .OOOOE+OO 0. 0000 m 7 0 . 00 0 . 000 0 .064 0 . 1617 0. 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 m 8 0 . 00 0 . 000 0 . 025 0 . 1597 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 9 0 .00 0 . 000 0 . 022 0 . 1578 0 . 0000 ,OOOOE+00 .OOOOE+OO 0 . 0000 m 10 0 . 00 0 . 000 0 . 024 0 . 1558 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 m 11 0 . 00 0 . 000 0 .017 0 .1544 0 . 0000 .OOOOE+00 , OOOOE + 00 0 . 0000 ^m 12 0 .00 0 . 000 0 . 057 0 , 1496 0 . 0000 .OOOOE+OO ,OOOOE+00 0. 0000 13 0 .00 0 .000 0 . 066 0 . 1442 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 wm 14 0 . 00 0 ,000 0 .023 0 .1423 0 , 0000 .OOOOE+OO .OOOOE+OO 0. 0000 m 15 0 .00 0 . 000 0 .059 0 . 1374 0 . 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000 16 0 .00 0 .000 0 . 059 0 . 1325 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ^m 17 0 . 00 0 -000 0 . 058 0 . 1277 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm 18 0 .00 0 . 000 0 .054 0 .1232 0 . 0000 .OOOOE+OO .OOOOE+OO 0, 0000 m 19 0 . 00 0 .000 0 .056 0 .1185 0 . 0000 .OOOOE+00 .OOOOE+OO 0 0000 20 0 . 00 0 ,000 0 . 057 0 .1138 0 . 0000 .OOOOE+OO .OOOOE+00 0 0000 p 21 0 .00 0 . 000 0 . 063 0 .1085 0. 0000 . OOOOE + 00 .OOOOE+00 0 0000 m 358 0 . 00 0 . 000 0 . 033 0 . 1109 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000 •me 359 0 . 00 0 . 000 0 .034 0 . 1081 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000 HI 360 0 . 00 0 . 000 0 .033 0 . 1054 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000 361 0. 00 0 . 000 0 .015 0. 1041 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 emr 362 0 . 00 0 . 000 0 . 001 0 . 1040 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 Mi 363 0. 00 0. 000 0 , 000 0. 1040 0 . 0000 . OOOOE+00 .OOOOE+OO 0 .0000 364 0 . 00 0 . 000 0 .000 0 . 1040 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000 wm 365 0. 00 0. 000 0 .000 0. 1040 0. 0000 . OOOOE+OO . OOOOE+OO 0 .0000 m 366 0. 00 0 . 000 0 .000 0 . 1040 0, 0000 .OOOOE+OO .OOOOE+00 0 .0000 *******************************************************************************' **************************************** *********************** MONTHLY TOTALS (IN INCHES) FOR YEAR 1992 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 0.45 0.30 6.30 0.00 6 .12 0. 00 0.00 0 . 00 0 . 00 0 .00 0 .00 0.45 RUNOFF 0. 000 0 . 000 2 .627 0 . 000 2 .121 0 . 000 0 . 000 0 . 000 0.000 0 . 000 0. 000 0 . 000 EVAPOTRANS PI RAT I ON 1, 099 0 .273 0.430 0.027 3 .638 0 . 000 2.481 0.000 0 .722 0 . 000 0 . 000 0 .450 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0023 0.1985 0.1879 0.0131 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0107 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0004 0.0057 0.0108 0.0150 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD, DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 , 000 0.000 0. 000 0 . 000 0 .009 0 .000 0,048 0 . 000 5.071 0 . 000 3.987 0 , 000 5.141 0 .000 2 .009 0 . 000 0 .175 0 , 000 0 ,454 0 . 000 0 .000 0 . 000 0 . 000 0 . 000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1992 INCHES CU. FEET PERCENT PRECIPITATION 13 .62 49440 . 602 100.00 RUNOFF EVAPOTRANS PI RAT I ON PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 4 , 748 9.119 0,401826 0.8663 0.042940 •0,290 7.680 7 .390 0 .000 0 , 000 0.0000 17234.174 33103.684 1458.629 155.873 -1053.136 27877.426 26824.291 0 . 000 0 . 000 0 .010 34.86 66.96 2.95 0.32 -2 .13 0.00 0 .00 0 .00 p ******************************************************************************* p p HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 P 327 0 . 00 0 . 000 0 . 015 0 . 1159 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 mm 328 0 . 00 0. 000 0 . 016 0 , 1145 0. 0000 .OOOOE+OO ,OOOOE+OO 0 . 0000 aw 329 0 . 00 0 . 000 0 . 017 0 . 1131 0 . 0000 . OOOOE+OO ,OOOOE+OO 0. 0000 330 0 . 00 0. 000 0 . 017 0 . 1117 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000 331 0 . 00 0 . 000 0 . 017 0 .1102 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 332 0 . 00 0 . 000 0 . 016 0 .1089 0 . 0000 . OOOOE+00 . OOOOE+OO 0. 0000 333 0. 00 0, 000 0. 017 0 .1075 0. 0000 ,OOOOE+00 .OOOOE+00 0 . 0000 wm 334 0 . 00 0. 000 0. 018 0 ,1060 0, 0000 ,OOOOE+00 . OOOOE+OO 0, 0000 M 335 0 . 00 0. 000 0. 014 0 . 1048 0. 0000 .OOOOE+OO .OOOOE+OO 0. 0000 336 0 . 00 0 . 000 0. 009 0 .1040 0 . 0000 .OOOOE+00 ,OOOOE+OO 0, 0000 WW 337 0 . 00 0 . 000 0. 000 0 ,1040 0. 0000 ,OOOOE+00 .OOOOE+00 0 . 0000 m 338 0 . 05 0. 000 0. 026 0 .1060 0. 0000 .OOOOE+OO ,OOOOE+OO 0, 0000 im 339 0. 00 0 . 000 0. 002 0 . 1058 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000 340 0 . 70 0. 000 0. 044 0 .1605 0. 0000 .OOOOE+00 ,OOOOE+OO 0. 0000 ^m 341 0. 80 0. 001 0. 047 0 .2232 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 wm 342 0. 00 0. 000 0. 038 0 .2200 0. 0000 .OOOOE+OO ,OOOOE+OO 0. 0000 P 343 0. 00 0. 000 0 . 059 0 .2151 0. 0000 . OOOOE+OO .OOOOE+00 0. 0000 344 0. 00 0. 000 0. 061 0 .2100 0, 0000 .OOOOE+OO .OOOOE+OO 0, 0000 mm 345 0. 20 0 . 000 0 . 070 0 .2208 0. 0000 .OOOOE+00 .OOOOE+OO 0. 0000 m 346 0 . 00 0. 000 0. 046 0 .2170 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 347 0. 00 0. 000 0. 065 0 .2116 0, 0000 ,OOOOE+OO . OOOOE+00 0, 0000 mw 348 0 . 00 0. 000 0. 079 0 .2050 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 m 349 0. 00 0. 000 0. 072 0 .1989 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000 350 0 . 00 0. 000 0. 068 0 .1933 0 . 0000 .OOOOE+00 ,OOOOE+OO 0. 0000 351 0. 00 0, 000 0. 061 0 .1882 0. 0000 .OOOOE+00 . OOOOE+OO 0. 0000 352 0. 00 0. 000 0. 068 0 .1825 0. 0000 .OOOOE+00 . OOOOE+00 0 . 0000 353 0. 00 0 . 000 0. 036 0 .1795 0, 0000 .OOOOE+OO . OOOOE+00 0. 0000 354 0 . 00 0. 000 0. 032 0 .1768 0. 0000 .OOOOE+00 . OOOOE+00 0 . 0000 355 0. 00 0, 000 0, 028 0 .1745 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 . 0000 m 356 0 . 00 0 . 000 0 . 024 0 . 1725 0. 0000 .OOOOE+OO .OOOOE+OO 0, 0000 mm 357 0 . 00 0 . 000 0. 024 0 .1705 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 358 0 . 00 0. 000 0. 050 0 .1663 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 •m 359 0 . 00 0 . 000 0 . 050 0 .1622 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 •M 360 0 . .00 0 . 000 0 . .050 0 .1580 0 . 0000 . OOOOE + 00 .OOOOE+00 0 . 0000 361 0 . . 70 0 . 000 0 . . 064 0 .2109 0 . .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 362 0 . . 10 0 . .000 0. ,066 0 .2137 0 . ,0000 .OOOOE+OO .OOOOE+00 0 . 0000 mm 363 0 . , 80 0 . . 016 0 . , 071 0 .2731 0 . . 0000 . OOOOE + OO .OOOOE+00 0 . 0000 364 0 . , 00 0 . ,000 0 . .059 0 .2682 0-, 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 365 0 . . 00 0 . .000 0 -, 072 0 .2622 0 -, 0000 .OOOOE+OO .OOOOE+00 0. 0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1993 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 3.10 0.10 5.50 0.30 4.40 0. 00 0.30 0.45 0.20 0 . 00 0. 00 3,35 RUNOFF 0,174 0.000 0.987 0 . 000 0,041 0 . 000 0.000 0.000 0. 000 0 .000 0 .000 0. 017 EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 2 . 530 0.100 2 .486 0 .300 3 .593 0.000 2 . 835 0.087 0 .467 0 .340 0 .000 1.458 0,0000 0.0743 0.1879 0.1231 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0,0000 0.0178 0.0253 0.0331 0.0259 0.0000 0.0000 0.0065 0,0213 0.0289 0.0342 0.0348 0.0361 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 . 000 0.000 2 . 099 0.000 4. 997 0.000 2 . 877 0 . 000 0,001 0 . 000 0.000 0 . 000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 2.3 97 0.549 1.044 0.007 0.000 0.000 0,000 0.000 0.000 0.000 0.000 P ******************************************************************************* P ******************************************************************************* ANNUAL TOTALS FOR YEAR 1993 P P k m PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 INCHES 17 . 70 1.219 14.197 0 .385779 CU. FEET 64251.008 4424 . 849 51536.328 1400.377 PERCENT 100.00 6 .89 80.21 2 .18 1.49 11.41 ii AVG. HEAD ON TOP OF LAYER 2 0.8312 PERC./LEAKAGE THROUGH LAYER 3 0.263834 CHANGE IN WATER STORAGE 2.020 SOIL WATER AT START OF YEAR 7.390 SOIL WATER AT END OF YEAR 9.409 SNOW WATER AT START OF YEAR 0.000 SNOW WATER AT END OF YEAR 0.000 ANNUAL WATER BUDGET BALANCE 0.0000 ******************************************************************************* 957.716 7332.108 26824.291 34156.398 0 . 000 0.000 0.009 0. 00 0.00 0 . 00 HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* I—" DAILY OUTPUT FOR YEAR 1994 IM imm DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD MM I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN./IN. IN. IN. IN. IN. imm 1 0 .20 0 .000 0 .071 0 .2729 0 .0000 . OOOOE+00 . OOOOE+00 0 .0000 2 0 .20 0 .000 0 . 066 0 .2841 0 . 0000 . OOOOE + 00 . OOOOE+00 0 . 0000 mm 3 0 .00 0 .000 0 . 073 0 .2780 0 . 0000 . OOOOE+00 . OOOOE+OO 0 , 0000 mm 4 0 , 00 0 .000 0 .087 0 .2707 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 mm 5 1 .00 0 . 105 0 . 059 0 .3403 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000 6 2 .50 1 .816 0 .065 0 .3920 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000 7 0 .80 0 .400 0 , 059 0 .4204 0 . 0000 . OOOOE+OO . OOOOE+00 0 .0000 IM 8 0 .15 0 .009 0 .079 0 .4254 0 ,5356 , OOOOE+OO .2084E-02 0 .oooc 345 0. 60 0 . 029 0 . 050 0 . 1748 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000 346 0 . 00 0 . 000 0 . 039 0 . 1715 0 . 0000 .OOOOE+00 ,OOOOE+00 0 . 0000 M> 347 0 . 00 0 .000 0 . 039 0 . 1682 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000 348 0. 50 0 . 000 0 . 060 0 .2049 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 349 0. 00 0 .000 0 . 046 0 .2010 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 m 350 0 . 00 0 . 000 0 . 066 0 . 1955 0. 0000 .OOOOE+00 .OOOOE+OO 0 .0000 m 351 0 . 00 0 . 000 0 . 053 0 . 1911 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000 352 0. 10 0 ,000 0 .055 0 . 1948 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wet 353 0 . 00 0 .000 0 .064 0 .1895 0. 0000 .OOOOE+OO .OOOOE+OO 0 .0000 wm 354 0. 00 0 ,000 0 . 056 0 . 1849 0 . 0000 .OOOOE+OO . OOOOE+00 0 .0000 wm 355 0. 00 0 .000 0 .068 0 .1792 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 356 0 . 00 0 . 000 0 ,061 0 .1741 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 mW 357 0, 00 0 , 000 0 , 065 0 . 1687 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 mw 358 0 . 00 0 . 000 0 . 054 0 .1642 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 mm 359 0. 00 0 . 000 0 . 062 0 . 1590 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 360 0 . 00 0 .000 0 .070 0 .1532 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 mw 361 0.. 00 0 .000 0 . 072 0 . 1472 0 . 0000 .OOOOE+OO .OOOOE+OO 0 , 0000 M 362 0. 00 0 .000 0 .066 0 . 1417 0 . 0000 .OOOOE+OO .OOOOE+OO 0 ,0000 363 0, 00 0 .000 0 . 057 0 .1369 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000 M 364 0. 00 0 . 000 0 . 067 0 .1313 0. 0000 ,OOOOE+00 .OOOOE+00 0 .0000 wm 365 0 . 00 0 . 000 0 .078 0 .1248 0. 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1994 PRECIPITATION JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC 13 .90 0 . 01 6,46 0.00 0 . 77 0.00 0 . 00 0 .15 0 .00 1,00 0 . 60 1 .20 P RUNOFF 9. 602 0 . 000 2.896 0 . 000 0.000 0.000 0 .000 0 .000 0. 000 0 .000 0. 000 0 . 029 EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 2 . 517 0 .010 3 . 124 0 . 000 2 .440 0 . 000 1.639 0 .110 0 .000 0 .508 0 .600 1.452 P 0.2385 0.2954 0,2119 0,0650 0.0000 0,0000 p 0.0000 0.0000 0.0000 0.0000 0.000 0 o.oooop PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0492 0.04 05 0.0137 0.0000 0.0210 0.0876 0.1035 0.0956 0.0817 0.0741 0,0634 0.0583 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 6.647 9.258 5.745 1.319 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0,000 4,633 1.641 1.639 1.214 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1994 PRECIPITATION RUNOFF EVAPOTRANSPIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 24 . 09 12.527 12 .400 0 . 810866 1.9141 0 . 688673 -1. 526 9.409 7 .884 0 .000 0.000 0 . 0000 CU. FEET PERCENT 87446.687 100.00 45473.246 45012.449 2943.442 2499.882 -5538.855 34156.398 28617.543 0 . 000 0.000 -0.035 52 . 00 51.47 3 .37 2 . 86 -6.33 0 . 00 0. 00 0.00 ******************************************************* ********************* 363 364 365 0.00 0.000 0.041 0 .1406 0.00 0,000 0,041 0 ,1373 0,00 0.000 0,047 0,1333 0 . 0000 ,OOOOE+00 .OOOOE+00 0.000 0 0 . 0000 .OOOOE+OO .OOOOE+00 0.000 0 0 . 0000 .OOOOE+OO .OOOOE+OO 0.0000 ************************* ********************************************^ ******************************************************************************* Ml MONTHLY TOTALS (IN INCHES) FOR YEAR 1995 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 5 .40 0.00 2.45 0 . 00 1.80 0 .10 1.20 0, 95 0 . 00 0.70 0.01 0 .50 RUNOFF 0,270 0.000 0.008 0.000 0.021 0. 000 0 .000 0 .000 0.000 0,000 0. 000 0.000 EVAPOTRANS PIRATION 2 .618 0.000 2.630 0.000 2 .916 0.067 2 .427 0 .192 0.000 0.598 0.010 1.041 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0616 0.0 912 0.0574 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0523 0.0590 0.0522 0.0258 0.003 9 0.0173 0.0270 0.0321 0.0332 0.0348 0.0332 0.03 3 3 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) P P AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0 .000 0 .679 0 .000 1.561 0 . 000 1. 093 0 . 000 0.000 0. 000 0 . 000 0. 000 STD. DEVIATION OF DAILY HE.AD ON TOP OF LAYER 2 0 . 000 0 . 000 0 .204 0 . 000 0 . 537 0 .000 1.012 0.000 0 .000 0.000 0 . 000 0 . 000 ******************************************************************************* ******************************************************************************* ^ p p ANNUAL TOTALS FOR YEAR 1995 Hi PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC,/LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 13 .11 0.299 12 .499 0.210269 0.2777 0.404206 -0.092 7.884 7.792 0 . 000 0.000 0.0000 cu. FEET PERCENT 47589.301 100.00 1084.637 45371.312 763.276 2.28 95,34 1.60 1467.269 -333.917 28617,543 28283,627 0.000 0 . 000 0.000 3 . 08 -0 . 70 0.00 0 . 00 0. 00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION! PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ************************************************* ****************************** DAILY OUTPUT FOR YEAR 1996 DAY A O RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD 333 0 . 00 0. 000 0 . 000 0 ,1040 0 ,0000 , OOOOE+00 .OOOOE+OO 0 . 0000 334 0 . 00 0 . 000 0 . 000 0 .1040 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 •i 335 0 . 00 0 . 000 0. 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 336 0 . 00 0 . 000 0, 000 0 . 1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 337 0 . 00 0 . 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 HI 338 0 ,00 0. 000 0. 000 0 . 1040 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 HI 339 0 .00 0. 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 340 0 . 00 0 . 000 0 . 000 0 .1040 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 m 341 0 . 00 0 . 000 0 . 000 0 .1040 0 , 0000 ,OOOOE+00 . OOOOE+OO 0. 0000 wm 342 0 .00 0. 000 0 . 000 0 .1040 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 343 0 .00 0 . 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 344 0 .00 0, 000 0. 000 0 . 1040 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 mm 345 0 .10 0. 000 0, 030 0 .1099 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 wm 346 0 .10 0 . 000 0 , 030 0 .1157 0 .0000 ,OOOOE+00 .OOOOE+OO 0 . 0000 347 0 .00 0 . 000 0 . 014 0 . 1145 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 348 0 .10 0. 000 0. 039 0 .1196 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 Ml 349 0 . 00 0 . 000 0 . 017 0 .1182 0 , 0000 . OOOOE+00 .OOOOE+00 0 . 0000 Mi 350 0 . 00 0 . 000 0 . 014 0 .1170 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 351 0 . 00 0 . 000 0 . 017 0 . 1156 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 mw 352 0 .00 0, 000 0. 019 0 .1140 0 .0000 . OOOOE+00 .OOOOE+OO 0. 0000 M 353 0 .00 0 . 000 0 . 020 0 . 1124 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 354 0 .00 0 . 000 0. 019 0 .1108 0 .0000 . OOOOE+OO . OOOOE+OO 0. 0000 HI 355 0 .00 0, 000 0, 020 0 .1091 0 .0000 .OOOOE+00 -OOOOE+OO 0 . 0000 — 356 0 .20 0 . 000 0. 050 0 .1216 0 .0000 .OOOOE+OO . OOOOE+OO 0. 0000 357 0 . 00 0 . 000 0 . 018 0 .1201 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 358 0 . 00 0 . 000 0. 016 0 .1188 0 .0000 .OOOOE+00 .OOOOE+OO 0. 0000 359 0 . 00 0 . 000 0 . 023 0 .1169 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 m 360 0 .00 0 . 000 0 . 025 0 .1148 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 361 0 ,00 0. 000 0. 027 0 .1125 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 362 0 ,00 0 . 000 0. 030 0 .1100 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm 363 0 .00 0 . 000 0 , 031 0 . 1075 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 wm 364 0 .00 0 . 000 0 . 017 0 .1060 0 .0000 . OOOOE + OO .OOOOE+OO 0. 0000 365 0 . 00 0 . 000 0 . 013 0 .1050 0 .0000 . OOOOE+OO .OOOOE+00 0. 0000 P 366 0 . 00 0 . 000 0 . 008 0 ,1043 0 .0000 -OOOOE+OO -OOOOE+OO 0 . 0000 IH ******************************************************************************* ******************************************************************************* m HI MONTHLY TOTALS (IN INCHES) FOR YEAR 1996 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 11.30 2.35 9.60 1.50 0 .60 0.55 P 0 .10 0 . 00 0.00 0 .20 0,00 0 . 50 RUNOFF 5. 006 0 . 000 0 .438 0 . 000 5,367 0 . 000 0 .000 0 . 000 0. 000 0 .000 0 . 000 0 .000 EVAPOTRANS PIRATION 2 . 710 0 .100 2 .648 0.000 3 .852 0 . 000 3 .270 0.067 1.381 0.133 0.550 0.496 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.2779 0.2704 0.3000 0.1615 0.0197 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0443 0.0377 0.0170 0.0000 0.0087 0.1086 0.134 9 0.1188 0.0974 0.0858 0.0717 0.0650 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 7.794 8.170 8.473 4.262 0.270 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.795 1.12 9 1.549 1.265 0.547 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************* ************************************ ANNUAL TOTALS FOR YEAR 1996 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 INCHES 26 . 70 10.812 15.207 1. 029506 CU. FEET PERCENT 96921.023 100.00 39246.500 40.49 55201.539 56.96 3737 .106 3.86 AVG. HEAD ON TOP OF LAYER 2 2 .4141 PERC./LEAKAGE THROUGH LAYER 3 0 .789988 2867.656 2.96 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE •0 .109 7.792 7.683 0.000 0 . 000 0 .0000 -394.710 28283.627 27888.916 0. 000 0 . 000 0 .039 -0.41 0. 00 0 . 00 0 .00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* DAILY OUTPUT FOR YEAR 1997 S wm DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN./IN. IN. IN. IN. IN. m 1 0 . 10 0 . 000 0 . 036 0 . 1097 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000 2 0 . 00 0 . 000 0 . 005 0 . 1093 0 .0000 . OOOOE+00 -OOOOE+OO 0 . 0000 3 0 . 00 0 . 000 0 .011 0 . 1084 0 . 0000 , OOOOE+OO .OOOOE+00 0 .0000 ^m 4 0 .00 0 . 000 0 . 010 0 . 1076 0 . 0000 .OOOOE+OO .OOOOE+OO 0 mm .0000 5 0 .00 0 . 000 0 .010 0 . 1067 0 . 0000 . OOOOE + OO .OOOOE+00 0 .0000 " 6 0 .25 0 . 000 0 .051 0 . 1233 0 .0000 .OOOOE+OO .OOOOE+OO 0 • HI 7 0 . 00 0. 000 0 . 025 0 . 1212 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 ^ 8 0 .00 0. 000 0 . 031 0. 1186 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 9 0 .00 0. 000 0 . 040 0. 1152 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 m 10 0 . 05 0 . 000 0 .061 0. 1143 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 ^ 11 0 . 00 0 . 000 0 .043 0 . 1108 0 , 0000 .OOOOE+00 .OOOOE+00 0 .0000 12 0 . 00 0 . 000 0 ,029 0, 1083 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 p 13 0 . 00 0 . 000 0 . 012 0 . 1073 0 , 0000 .OOOOE+00 .OOOOE+OO 0 .0000 P 350 0. 00 0 . 000 0 . 043 0 .3119 5 .3234 .OOOOE+OO .6375E-02 0 .0000 351 0. 00 0 . 000 0 . 075 0 .3051 5 .2592 .OOOOE+00 .6312E-02 0 .0000 m 352 0. 00 0 . 000 0 .065 0 .2992 5 .1837 .OOOOE+OO .6238E-02 0 . 0000 353 0 . 00 0 .000 0 . 064 0 .2933 5 .1133 .OOOOE+00 .6170E-02 0 .0000 wm 354 0 . 00 0 . 000 0 .064 0 .2875 5 .0434 . OOOOE+OO .6102E-02 0 . 0000 HI 355 0 . 00 0 . 000 0 . 068 0 .2813 4 . 9726 .OOOOE+OO .6033E-02 0 . 0000 356 0 . 00 0 .000 0 . 061 0 .2757 4 .9025 .OOOOE+00 ,5966E-02 0 . 0000 mm 357 0. 00 0 .000 0 .061 0 .2702 4 .8359 .OOOOE+OO .5902E-02 0 .0000 m 358 0, 00 0 .000 0 ,059 0 .2648 4 .5795 ,OOOOE+00 .5658E-02 0 . 0000 359 0 . 00 0 .000 0 .052 0 .2600 4 .5128 .OOOOE+00 .5595E-02 0 . 0000 360 0. 00 0 . 000 0 . 054 0 .2551 4 .5492 . OOOOE+OO .5628E-02 0 . 0000 •M 361 0. 00 0 .000 0 , 049 0 .2505 4 .3200 .OOOOE+00 .5411E-02 0 . 0000 MN 362 0. 00 0 ,000 0 .048 0 .2461 4 .1049 .OOOOE+OO .5208E-02 0 . 0000 HI 363 0. 00 0 .000 0 ,045 0 .2420 3 .9773 .OOOOE+00 .5089E-02 0 . 0000 HI 364 0 . 00 0 . 000 0 .051 0 .2373 3 . 9407 . OOOOE+OO .5055E-02 0 . 0000 wm 365 0. 00 0 .000 0 .056 0 .2322 3 .9023 .OOOOE+OO .5020E-02 0 , 0000 ********************** ********************************************************* ******* ******************************************************** MONTHLY TOTALS (IN INCHES) FOR YEAR 1997 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION 1.10 0.00 0 . 000 0 . 000 0 .712 0.000 2 .60 0.00 0.051 0 . 000 2 .475 0 . 000 0.65 0 . 00 0. 000 0 . 000 0 . 914 0 . 000 0 . 00 4.35 0 .000 1.106 0 .202 0 . 334 0. 20 2 .65 0 .000 0 .322 0 ,200 1. 950 0 . 00 0 .50 0 . 000 0 . 000 0 . 000 1 . 961 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0-0000 0.0000 0.0000 0.0000 0.0968 0.1922 0.0575 0.0468 0.0470 0.0415 0.03 94 0.0352 0.0338 0.0315 0.0285 0.0277 0.0337 0.0324 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 .000 0 . 000 0.000 0 . 000 0.000 0. 000 0. 000 0. 000 0.000 0.000 0. 000 0,000 0, 000 0, 000 0 . 000 0.000 0 . 000 2 .165 0 . 000 2 .625 0 . 000 5 . 138 0 , 000 0 .623 m ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1997 INCHES CU. FEET PERCENT PRECIPITATION 12 .05 43741.500 100.00 RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 1.479 8.747 0 .288981 0.6086 0. 455136 1. 369 7 . 683 9 . 052 0 . 000 0 . 000 0,0000 5369.127 31751.400 1049.001 1652.145 4968 . 826 27888.916 32857 . 742 0 , 000 0 . 000 0 . 001 12 .27 72 .59 2.40 3 ,71 11 .36 0 . 00 0 .00 0 . 00 P P P P ******************************************************************************* •i P P P ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANSPIRATION 6.75 0.00 1.443 0.000 2 .878 0 . 000 0.90 0.00 0 .000 0. 000 1. 987 0.000 0,00 0. 00 0.000 0 . 000 2 .241 0 . 000 0.10 0 , 71 0 . 000 0.000 0 .204 0.066 0.05 2.87 0.000 0 .378 0. 050 1.127 0.00 2 .33 0.000 0 . 048 0.000 2.275 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.1932 0.2226 0.1193 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 0.000 0 0, 0444 0.0284 0.0211 0.0000 0.0000 0.0072 0.0457 0.0657 0.0686 0.0634 0.0606 0.053 7 0.063 6 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 5 . 032 0 . 000 2 . 800 0 .000 6.868 0 . 000 1.154 0 . 000 2 . 706 0 . 000 1,484 0 . 000 0.000 0 . 000 0 . 000 0 . 000 0 .000 0 .000 0 . 000 0 . 000 0.000 0 . 548 0 . 000 0 . 514 ***************** ***************************************** ********************* ************************************************************************** ANNUAL TOTALS FOR YEAR 1998 INCHES CU. FEET PERCENT PRECIPITATION 13 .71 49767.301 100.00 RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YE.AR ANNUAL WATER BLTDGET BALANCE 1.870 10.828 0 .579518 1.2628 0 .478025 0,534 9 . 052 9.586 0 .000 0 . 000 0.0000 6787.015 39307.223 2103 .652 1735.232 1937.829 32857 . 742 34795.570 0 . 000 0 .000 0 . 002 13 . 64 78.98 4,23 3 .49 3 ,89 0 . 00 0 . 00 0, 00 p m ******************************************************************************* p HI P P P ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS STD. DEVIATIONS 5 .03 0 . 06 4 .48 0 .10 3 .12 0.04 2.13 0.10 2 .51 0. 11 3.20 0.31 0 . 90 0 . 72 1.53 1.32 0. 27 1. 02 0. 31 1. 07 0.21 1.29 0. 31 1. 34 P RUNOFF Hi p p TOTALS 1. 673 0 .000 0 . 701 0 . 000 0.755 0 .000 0 . 079 0 . Ill 0 . 000 0 . 070 0 . 000 0 .032 STD. DEVIATIONS 3 .188 0 .000 1.133 0 . 000 1.751 0 . 000 0,250 0 .350 0,000 0.148 0.000 0 . 070 EVAPOTRANS PIRATION TOTALS 2 .266 0,058 2,267 0 . 043 2.344 0 .027 1.723 0 .112 0 .512 0 .623 0 .262 1.247 STD. DEVIATIONS 0.752 0 . 089 0.739 0.096 1.156 0.067 1.207 0.116 0.536 0.562 0.453 0 . 707 PERCOLATION/LEAKAGE THROUGH LAYER 2 TOTALS 0.0910 0.0000 0.1065 0.0000 0.1169 0.0000 0.0595 0.0000 0.0055 0.0097 0.0000 0.0251 STD. DEVIATIONS 0.1105 0.0000 0.1172 0 . 0000 0 .1049 0 . 0000 0 . 0735 0.0000 0 . 0090 0.0306 0.0000 0.0604 PERCOLATION/LEAKAGE THROUGH LAYER 3 TOTALS 0.0374 0,0442 0.0305 0.0447 0 . 0226 0.0413 0.0142 0.0405 0.0143 0.0378 0.0347 0.0385 STD. DEVIATIONS 0 . 0161 0.0439 0.0166 0.0375 0.0178 0.0302 0,0158 0.0255 0 . 0129 0.0200 0.0369 0.0189 AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) HI P DAILY AVERAGE HEAD ON TOP OF LAYER 2 AVERAGES STD. DEVIATIONS 2.3237 3,0701 2.9600 0.0000 0.0000 0.0000 1.4692 0.0597 0.0000 0.0000 0.2165 0.5812 3.0710 3,6999 2. 9575 1.94 99 0.1003 0.0000 0.0000 0.0000 0.0000 0,0000 0.6845 1.6105 ******************************************* ************************************ ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998 INCHES CU. FEET PERCENT PRECIPITATION 15.27 ( 6,145) 55444,6 100.00 RUNOFF 3.421 ( 4 .5703) 12416,78 22.3 95 EVAPOTRANSPIRATION 11.484 ( 2.4973) 41688.32 75.189 PERCOLATION/LEAKAGE THROUGH 0.41427 ( 0.31748) 1503.810 2.71227 ^m. LAYER 2 ^ AVERAGE HEAD ON TOP 0.890 ( 0.780) l* OF LAYER 2 m PERCOLATION/LEAKAGE THROUGH 0.40080 ( 0 .21787) 1454.917 2.62409 ^ LAYER 3 • CHANGE IN WATER STORAGE -0.032 ( 1.2801) -115.39 -0.208 * P ******************************************************************************* P ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998 (INCHES) (CU. FT.) PRECIPITATION 4.00 14520.000 RUNOFF 3 .551 128 90.9453 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.013675 49.64151 AVERAGE HEAD ON TOP OF LAYER 2 11.983 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.004445 16.13534 PI SNOW WATER 0.00 0.0000 p MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730 P P P P MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040 ************************************************************************* ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 1998 LAYER (INCHES) (VOL/VOL) 1 3.2189 0.2682 2 0.0000 0.0000 3 5.9227 0.2468 SNOW WATER 0.000 ****************************************************************************** ****************************************************************************** ****************************************************************************** ****************************************************************************** * * * * * * * * ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.06 (17 AUGUST 1996) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** * * ** * * ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\ACTIVE\0LDD0S~1\HELP3A\SMARC0.D4 TEMPERATURE DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0,D7 P SOLAR RADIATION DATA FILE: C:\ACTIVE\0LDD0S~1\HELP3A\SMARC0,D13 P EVAPOTRANSPIRATION DATA: C:\ACTIVE\OLDDOS-l\HELP3A\SMARC02.Dll SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMPRSC2,DIO OUTPUT DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMPRSC2.0UT TIME: 11: 0 DATE: 3/ 5/2002 ****************************************************************************** TITLE: San Marcos Landfill ****************************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. P P P P P P LAYER 1 P TYPE 1 - VERTICAL PERCOLATION LAYER P P MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. 36.00 INCHES 0.4730 VOL/VOL 0.2220 VOL/VOL 0.1040 VOL/VOL 0.1801 VOL/VOL 0.739999996000E-05 CM/SEC LAYER TYPE 4 - FLEXIBLE MEMBRANE LINER MATERI.AL TEXTURE NUMBER 35 0.08 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. FML PINHOLE DENSITY FML INSTALLATION DEFECTS FML PLACEMENT QUALITY 0,000 0 VOL/VOL 0.0000 VOL/VOL 0.00 00 VOL/VOL 0.0000 VOL/VOL 0.199999996000E-12 CM/SEC 1.00 HOLES/ACRE 10.00 HOLES/ACRE 4 - POOR LAYER TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. 24.00 INCHES 0.473 0 VOL/VOL 0.2220 VOL/VOL 0.1040 VOL/VOL 0.2236 VOL/VOL 0.430000000000E-04 CM/SEC GENERAL DESIGN AND EVAPORATIVE ZONE DATA NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 7 WITH AN EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 50 0. FEET. SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF AREA PROJECTED ON HORIZONTAL PLANE EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE UPPER LIMIT OF EVAPORATIVE STORAGE LOWER LIMIT OF EVAPORATIVE STORAGE INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS TOTAL INITIAL WATER TOT;^ SUBSURFACE INFLOW 62.40 100 . 0 1.000 36 . 0 6 .482 17.028 3 .744 0.000 11.849 11.849 0.00 PERCENT ACRES INCHES INCHES INCHES INCHES INCHES INCHES INCHES INCHES/YEAR NOTE: EVAPOTRANSPIRATION AND WEATHER DATA EVAPOTRANSPIRATION DATA WAS OBTAINED FROM SAN DIEGO CALIFORNIA STATION LATITUDE MAXIMUM LEAF AREA INDEX START OF GROWING SEASON (JULIAN DATE) END OF GROWING SEASON (JULIAN DATE) EVAPORATIVE ZONE DEPTH AVERAGE ANNUAL WIND SPEED AVERAGE 1ST QUARTER RELATIVE HUMIDITY AVERAGE 2ND QUARTER RELATIVE HUMIDITY AVERAGE 3RD QUARTER RELATIVE HUMIDITY AVERAGE 4TH QUARTER RELATIVE HUMIDITY p p 33.10 DEGREES 1.00 0 367 3 6.0 INCHES 6.80 MPH 65.00 % 69.00 % 73.00 % 66 . 00 % NOTE: PRECIPITATION DATA FOR LAKE HODGES WAS ENTERED FROM AN ASCII DATA FILE. CA NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) W P P P 1^ JAN/JUL FEB/AUG APR/OCT MAY/NOV JUN/DEC 56 . 80 70 .30 58 .40 72 .20 59 .00 71.30 61.20 67. 50 63 ,40 61. 60 66,30 57.40 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA AND STATION LATITUDE = 33.10 DEGREES HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* DAILY OUTPUT FOR YEAR 198 9 mm DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN ./IN. IN. IN. IN. IN. •MI 1 0 . 55 0 , 000 0 . 071 0 . 1933 0 . 0000 . OOOOE + OO .OOOOE+OO 0 . 0000 2 0 . 00 0 , 000 0. 088 0 . 1909 0.0000 . OOOOE + 00 .OOOOE+00 0 . 0000 3 0 . 00 0 . 000 0 .093 0 . 1883 0.0000 . OOOOE + OO .OOOOE+OO 0.0000 IM 4 0 . 00 0 . 000 0.073 0 . 1863 0.0000 .OOOOE+00 .OOOOE+OO 0 . 0000 5 0 . 00 0 .000 0.085 0 .1839 0.0000 .OOOOE+00 .OOOOE+00 0.0000 6 0 . 00 0 . 000 0 . 094 0 . 1813 0.0000 .OOOOE+00 .OOOOE+00 0.0000 •M 7 0 . 00 0 . 000 0 .092 0 . 1788 0 . 0000 .OOOOE+OO .OOOOE+00 0.0000 mm 8 0.00 0 .000 0 .091 0 . 1762 0 . 0000 .OOOOE+00 .OOOOE+OO 0.0000 9 0 . 00 0.000 0.097 0 .1735 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000 10 0 .00 0 . 000 0.075 0 . 1714 0.0000 . OOOOE+00 .OOOOE+OO 0 .0000 mm 11 0.00 0 . 000 0 . 065 0 . 1696 0,0000 . OOOOE+00 .OOOOE+00 0.0000 HI 12 0.20 0.000 0.058 0 .1736 0.0000 .OOOOE+OO .OOOOE+OO 0.0000 13 1.75 0 . 000 0 , 065 0 .2204 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000 — 14 0 . 00 0 . 000 0.075 0 .2183 0.0000 .OOOOE+OO .OOOOE+OO 0.0000 15 0 . 00 0 . 000 0 . 080 0 .2161 0 . 0000 .OOOOE+OO .OOOOE+OO 0.0000 352 0 .20 0 . 000 0 . 065 0 .1795 0 . 0000 .OOOOE+OO .OOOOE+OO 0 .0000 353 0 . 00 0 . 000 0 , 061 0 . 1778 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 M* 354 1 .10 0 .000 0 ,058 0 ,2068 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 Mt 355 0 .00 0 . 000 0 .061 0 .2051 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 356 0 . 00 0 .000 0 .068 0 .2032 0. 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 m 357 0 .10 0 .000 0 . 071 0 .2040 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 iH 358 0 . 00 0 .000 0 . 088 0 .2015 0. 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 359 0 .00 0 .000 0 . 091 0 .1990 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 HI 360 0 .00 0 .000 0 . 093 0 .1964 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 Ml 361 0 .00 0 . 000 0 . 089 0 .1940 0. 0000 .OOOOE+OO .OOOOE+00 0 .0000 HI 362 0 .00 0 .000 0 . 109 0 .1909 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 363 0 .00 0 . 000 0 . 104 0 . 1880 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000 Ml 364 0 .00 0 .000 0 .104 0 .1851 0 . 0000 . OOOOE+00 . OOOOE+OO 0 .0000 HI 365 0 .00 0 .000 0 . 086 0 .1827 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 HI *******************************************************************************t ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1989 P P JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION 3 .80 0.00 0 . 000 0 . 000 2 . 821 0 . 000 1.15 0 . 00 0 . 000 0 . 000 2 . 325 0 . 000 0.00 0 . 00 0 . 000 0 . 000 2 .290 0 . 000 4 . 95 0 .00 0 .000 0 .000 3 . 097 0 . 000 0.20 1.45 0 .000 0 . 000 2 .245 0 . 533 0. 00 3 .70 0 .000 0 ,000 0 . 059 1. 783 P P P IP P PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0143 0.0121 0.0126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ****** ************************************************************************* wm m ******************************************************************************* ANNUAL TOTALS FOR YEAR 1989 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR INCHES 15.25 0.000 15.153 0.000000 0 . 0000 0.038997 0 . 058 13.181 13 .239 0 . 000 0 . 000 CU. FEET 55006.582 0.000 141.559 209.372 47847.258 48056.629 0 , 000 0 . 000 PERCENT 55357.504 100.00 0,000 0,00 99.37 0 . 00 0.26 0.38 0 . 00 0.00 ANNUAL WATER BUDGET BALANCE 0.0000 -0.008 0.00 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1990 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 1.10 0.00 1.75 0 .00 1.30 1.00 0.10 0.35 0.50 0.20 0.10 0 . 00 RUNOFF 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0 . 000 0.000 0.000 0. 000 0, 000 EVAPOTRANS PIRATION 2 .349 0.000 1. 810 0.000 2 . 080 0 .274 0 . 846 0 .189 0,500 0 .470 0.100 0 . 618 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ^ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 0 . 000 0 .000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 .000 0 . 000 0 .000 0 . 000 0 . 000 0 . 000 0 .000 0 . 000 0 .000 0 . 000 0. 000 0 . 000 ******************************************************************************* Ml ******************************************************************************* ANNUAL TOTALS FOR YEAR 1990 PRECIPITATION INCHES 6.40 CU. FEET 23231.996 PERCENT 100.00 P HI P P RUNOFF EVAPOTRANS PI RAT I ON PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 .000 9 .235 0. 000000 0 . 0000 0.000000 -2.835 13 .239 10.404 0 .000 0.000 0.0000 0.000 0.00 33522.105 144.29 0 .000 0 . 00 0.000 0.00 -10290.108 -44.29 48056.629 37766.520 0.000 0.00 0.000 0.00 0.002 0,00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 ******************************************************************************* DAILY OUTPUT FOR YEAR 1991 DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN./IN, IN. IN. IN. IN. 1 0.50 0 .000 0,053 0.1164 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 2 0 .00 0 . 000 0.023 0.1158 0 .0000 .OOOOE+OO .OOOOE+OO 0 ,0000 3 0 .00 0. 000 0 . 023 0.1151 0 . 0000 .OOOOE+00 .OOOOE+00 0. oooc 340 0 .00 0 . 000 0 . 012 0 . 1331 0 . 0000 . OOOOE+OO . OOOOE+00 0 .0000 341 0 . 00 0 . 000 0 .012 0 .1327 0 .0000 . OOOOE+OO . OOOOE+OO 0 . 0000 m 342 0 .00 0 . 000 0 .012 0 .1324 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 wm 343 0 .00 0 . 000 0 .013 0 . 1320 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 344 0 .00 0 . 000 0 . 014 0 . 1317 0 .0000 .OOOOE+OO . OOOOE+00 0 . 0000 m 345 0 .00 0 . 000 0 .015 0 .1312 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000 m 346 0 .00 0 . 000 0 .016 0 . 1308 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000 347 0 .00 0 . 000 0 .015 0 .1304 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 348 0 .00 0. 000 0 . 015 0 .1299 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000 WW 349 0 .10 0 . 000 0 .057 0 .1311 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000 350 0 .00 0. 000 0 .018 0 .1306 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 HI 351 0 .00 0 . 000 0 .014 0 .1302 0 .0000 .OOOOE+00 .OOOOE+00 0 , 0000 HI 352 0 . 00 0. 000 0 .015 0 .1298 0 .0000 .OOOOE+00 .OOOOE+00 0 , 0000 353 0 .30 0 . 000 0 .060 0 .1365 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 -354 0 .00 0 . 000 0 . 014 0 .1361 0 . 0000 .OOOOE+OO .OOOOE+OO 0 .0000 - 355 0 .00 0 . 000 0 .011 0 .1358 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000 Hi 356 0 . 00 0 . 000 0 .011 0 .1355 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000 357 0 .00 0 . 000 0 .012 0 .1352 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000 358 0 .00 0 . 000 0 .016 0 .1347 0 .0000 .OOOOE+OO -OOOOE+OO 0 .0000 p 359 0 ,00 0 . 000 0 .019 0 .1342 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 .0000 p 360 0 .00 0. 000 0 .021 0 .1336 0 .0000 .OOOOE+00 ,OOOOE+00 0 .0000 361 0 .00 0 . 000 0 .020 0 .1331 0 .0000 . OOOOE+00 .OOOOE+00 0 .0000 ^w 362 0 .00 0 . 000 0 .019 0 .1325 0 .0000 .OOOOE+OO ,OOOOE+00 0 . 0000 k 363 0 .00 0. 000 0 .020 0 .1320 0 .0000 .OOOOE+OO , OOOOE+00 0 . 0000 364 0 . 00 0. 000 0 .020 0 ,1314 0 .0000 ,OOOOE + 00 ,OOOOE+00 0 . 0000 M ri 365 0 .00 0 . 000 0 . 021 0 .1308 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 M ri ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1991 IH P JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAP OTRANS PIRATION 3 .41 0 .10 0 . 057 0.000 1-574 0.100 1 . 75 0 . 10 0. 000 0 . 000 1 .683 0 . 100 0 .50 0 .00 0 . 000 0 .000 1.709 0 .000 0 .80 0 . 00 0 . 000 0 .000 1.362 0. 000 0 . 90 1.35 0, 000 0 .000 0.399 0 . 236 0 .80 0.40 0 .000 0 , 000 1.375 0 . 548 P P k 358 0 . 00 0 . 000 0 . 010 0 .1086 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 *••• 359 0 .00 0. 000 0 . 009 0 . 1084 0 . 0000 .OOOOE+00 .OOOOE+00 0 , 0000 mm 360 0 . 00 0. 000 0 . 009 0 . 1081 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 361 0 . 00 0. 000 0 .008 0 . 1079 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 mm 362 0 .00 0 . 000 0 . 008 0 .1077 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 mm 363 0 .00 0. 000 0 . 008 0 . 1075 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 364 0 . 00 0 . 000 0 . 008 0 .1072 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 — 365 0 .00 0. 000 0 . 008 0 . 1070 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 Mi 366 0 .00 0. 000 0 . 008 0 .1068 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1992 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 0.45 0.30 6.30 0.00 6.12 0,00 0.00 0.00 0.00 0.00 0 . 00 0.45 RUNOFF 0. 000 0 . 000 0.251 0 . 000 0.219 0 .000 0.000 0.000 0.000 0 .000 0 . 000 0.000 EVAPO TRAN SPIRATION 1. 048 0, 156 0 . 731 0 .144 3 .150 0. 000 2.592 0. 000 2 . 753 0 . 000 2. 607 0 .349 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0778 0.1363 0.1440 0.1259 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0,0047 0.0128 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 .000 0 .000 0.000 0 . 000 0.192 0 , 000 0.214 0,000 0.357 0 . 000 1.357 0 .000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0 . 000 0 . 000 0 . 000 0 .230 0.000 0,111 0.000 0.274 0. 000 1.021 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1992 INCHES CU. FEET PERCENT PRECIPITATION 13 .62 49440.602 100.00 RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0.470 13 .531 0 .484047 0.1767 0.017550 -0.399 11.370 10.971 0.000 0 .000 0.0000 1706,217 49117.590 1757.092 63 .706 -1446.913 41273.020 39826.105 0 ,000 0 . 000 0 . 004 3 .45 99.35 3.55 0.13 2 .93 0 .00 0 .00 0, 00 IH P P P HI Mi ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 if k ^m 2 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 3 . 10 0 .10 0 . 000 0 , 000 2 .267 0 ,100 5 . 50 0.30 0 . 000 0 .000 2 .130 0.256 4 .40 0 . 00 0 .000 0 . 000 3 .267 0 , 044 0.30 0.45 0.000 0 .000 2 .923 0.112 0.20 0 . 00 0 .000 0 . 000 2.475 0-228 0 . 00 3-35 0 . 000 0.000 0 .452 1.190 0.0000 0.0000 0.0312 0,0000 0.0555 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0184 0,0197 0,0288 0.0199 0.0292 0.0162 0.0200 0.0221 0.0225 0.0238 0.0230 0.0236 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 . 000 0.000 0 . 000 0 , 000 0 .000 0.000 0 .000 0. 000 0 . 022 0 . 000 0 , 045 0 . 000 0 . 000 0 .000 0 .000 0 . 000 0.275 0 .000 0 .444 0.000 0 . 000 0 , 000 0 . 000 0 . 000 ***************************************************** ************************** ******************** *********************************************************** ANNUAL TOTALS FOR YEAR 1993 PRECIPITATION RUNOFF EVAPOTRANSPIRATION PERC./LEAKAGE THROUGH LAYER 2 INCHES 17 .70 0 .000 15 .443 0 . 086709 CU. FEET 0 . 000 56059.277 314.752 PERCENT 64251.008 100.00 0 . 00 17 .25 0.49 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 . 0247 0 .267121 1.990 10.971 12.961 0 . 000 0.000 0.0000 969.648 7222.093 39826.105 47048.199 0 .000 0 . 000 -0,008 ***********************************************************^^^ 1 . 51 m 11.24 im P mt P IH 0 . 00 ii 0.00 ^ 0.00 III p ***************** HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 P P k m **************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DAILY OUTPUT FOR YEAR 1994 DAY A O RAIN RUNOFF ET I I R L IN. IN. IN. E. ZONE HEAD WATER #1 IN./IN. IN. DRAIN #1 IN. LEAK #1 IN. HEAD #2 IN. 1 0 .20 0 . 000 0 . 063 0 . 1709 0 . 0000 . OOOOE+OO . OOOOE+OO 0 . 0000 .0000 2 . 0000 2 0 .20 0 . 000 0 .061 0 . 1747 0 .0000 .OOOOE+OO . OOOOE + 00 0 . 0000 .0000 2 . 0000 3 0 . 00 0 . 000 0 . 054 0 . 1732 0 . 0000 .OOOOE+OO . OOOOE+OO 0 . 0000 .0000 2 . 0000 4 0 .00 0 . 000 0 . 054 0 . 1717 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000 n 5 1 .00 0 . 000 0 .058 0. 1979 0 . 0000 .OOOOE+00 - OOOOE + 00 0 . 0000 6 2 .50 0. 091 0 .063 0. 2631 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000 7 0 .80 0. 000 0 - 058 0 . 2837 0 .0000 , OOOOE + 00 . OOOOE+00 0 .0000 p 8 0 .15 0 . 000 0 . 072 0 . 2858 0 . 0000 . OOOOE + 00 .OOOOE+00 0 ,0000 m Mi 345 0. 60 0 . 000 0 . ,056 0 . 1283 0 . ,0000 .OOOOE+OO . OOOOE+00 0 , • 0000 346 0. 00 0 . 000 0 . , 022 0 . 1277 0 • , 0000 . OOOOE+OO .OOOOE+OO 0, . 0000 347 0 . 00 0. 000 0. ,022 0 . 1271 0 . ,0000 .OOOOE+OO . OOOOE+00 0, . 0000 348 0. ,50 0 . 000 0 -. 047 0, ,1397 0-, 0000 ,OOOOE+00 .OOOOE+00 0 , .0000 — 349 0 . , 00 0 . 000 0 . • 028 0 . ,1389 0 , .0000 .OOOOE+00 .OOOOE+00 0. . 0000 mm 350 0 -,00 0. 000 0, • 028 0. ,1381 0, .0000 . OOOOE+OO .OOOOE+00 0 . 0000 351 0 . • 00 0 . 000 0 , . 031 0 . ,1373 0, . 0000 . OOOOE+00 ,OOOOE+OO 0 .0000 352 0, .10 0. 000 0 , .055 0 , ,1385 0 , .0000 -OOOOE+00 ,OOOOE+OO 0 . 0000 mm 353 0, .00 0 . 000 0. . 042 0 , • 1373 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 354 0, .00 0. 000 0 .028 0, .1366 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 355 0 , .00 0. 000 0 .041 0 , .1354 0 .0000 .OOOOE+OO ,OOOOE+OO 0 . 0000 wm 356 0 .00 0. 000 0 , 045 0 .1342 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 357 0 .00 0, 000 0 .044 0, .1330 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 358 0 .00 0. .000 0 .041 0 .1318 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 mm 359 0 .00 0 . , 000 0 . 044 0 .1306 0 .0000 .OOOOE+OO .OOOOE+OO 0 , 0000 360 0 .00 0. ,000 0 . 051 0 .1292 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 361 0 .00 0. ,000 0 .055 0 .1276 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 362 0 .00 0. , 000 0 .053 0 .1262 0 .0000 . OOOOE+OO .OOOOE+OO 0 ,0000 — 363 0 .00 0, .000 0 .051 0 . 1248 0 . 0000 -OOOOE+00 .OOOOE+00 0 .0000 364 0 .00 0, .000 0 .055 0 .1232 0 ,0000 .OOOOE+00 .OOOOE+OO 0 . 0000 365 0 .00 0, .000 0 .058 0 .1216 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 ********* **************** *************************************** ****** ************************************* ************************************ MONTHLY TOTALS (IN INCHES) FOR YEAR 1994 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 13 .90 0 . 01 2 .598 0.000 2 .398 1.643 6.46 0 . 00 1.431 0 . 000 2 . 951 0.000 0-77 0 .00 0 .000 0 . 000 2 . 524 0 .000 0 . 00 0. 15 0 .000 0 . 000 2 .255 0 . 087 0 . 00 1. 00 0 . 000 0 . 000 2 .654 0 .569 0 . 60 1.20 0 .000 0 . 000 2 .533 1.059 0.1774 0.7270 0,7658 0.5498 0-46 04 0.2818 0.0614 0.0000 0.0000 0.0000 0.0000 0.0000 0.0289 0.0293 0.0066 0.0912 0-5204 0.4880 0.4051 0.3233 0.2057 0.1544 0.1162 0.0978 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 4.963 25.933 24.788 17.738 13.622 6.777 " 0.686 0.000 0.000 0.000 0.000 0.000 7.294 6.629 2.587 1.477 2.155 1.379 * 1.187 0.000 0.000 0.000 0.000 0.000 "* ******************************************************************^^^^^^^^^^^^^ ************************************************************************^^^^^^^ ANNUAL TOTALS FOR YEAR 1994 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 24. 09 4 . 029 18.673 3.023648 7 . 8756 2 .466844 -1 . 079 12 . 961 11.882 0 . 000 0.000 0.0000 CU. FEET PERCENT 87446.687 100.00 14626 - 755 67782.687 10975.843 8954.645 -3917 .353 47048 -199 43130.848 0 .000 0 . 000 -0.046 16.73 77.51 12 . 55 10 .24 -4.48 0 . 00 0 .00 0 . 00 ****************************************** **************.^***^* p p m m mi ***************** III P k 363 364 365 0.00 0.000 0.032 0.1248 0.0000 .OOOOE+00 .OOOOE+OO 0.0000 0.00 0.000 0.031 0.1239 0.0000 .OOOOE+00 .OOOOE+00 0.0000 0.00 0.000 0.035 0.1229 0.0000 .OOOOE+00 .OOOOE+00 0.0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1995 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 5 .40 0 - 00 2 .45 0.00 1.80 0.10 1.20 0.95 0.00 0.70 0.01 0.50 RUNOFF 0.000 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPOTRANS PIRATION 2.448 2.567 2.976 2.964 0.506 0.010 0.000 0.000 0.061 0.191 0.438 0.878 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0820 0.0640 0.0624 0.0536 0.0498 0.0437 0.0412 0.0379 0.0340 0,0326 0.0295 0.0286 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 0 .000 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 0 .000 0 . 000 0 .000 0.000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 ********************************************* ******************************** ******************************************** *********************************** ANNUAL TOTALS FOR YEAR 1995 INCHES CU. FEET PERCENT 13.11 47589.301 100.00 PRECIPITATION RUNOFF EVAPOTRANS PI RAT I ON PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 .024 13.039 0.000000 0 . 0000 0.559270 -0.512 11.882 11.370 0 . 000 0.000 0.0000 87.002 47331.227 0 . 000 2030.149 -1859.069 43130.848 41271.777 0. 000 0.000 -0.005 0 .18 99 .46 0.00 4.27 -3 .91 0.00 0.00 0 . 00 HI IP P P P P M P P P P P P ************************************************************** ***************** il HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION! PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 3 P P **********************************************************************^^^^^^^^^ DAILY OUTPUT FOR YEAR 1996 DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD m m Mi 333 0 , 00 0 . 000 0 . 004 0 . , 1049 0 . 0000 . OOOOE+OO . OOOOE+00 0 , • 0000 334 0 . 00 0 . 000 0 . 004 0 . , 1048 0 . 0000 .OOOOE+OO . OOOOE+00 0 , • 0000 335 0 . 00 0. 000 0 . 005 0 -,1047 0 . 0000 .OOOOE+00 .OOOOE+00 0 , .0000 336 0 , 00 0 . 000 0. 005 0 , ,1045 0 . 0000 . OOOOE+OO . OOOOE+OO 0 . 0000 337 0 . 00 0 . 000 0 . 004 0 . .1044 0 . 0000 .OOOOE+OO . OOOOE+OO 0 . .0000 338 0 . 00 0. 000 0. 005 0 , .1043 0 . 0000 .OOOOE+00 . OOOOE+OO 0 .0000 339 0 . 00 0. 000 0. 005 0 , .1041 0. 0000 . OOOOE+OO ,OOOOE+00 0 .0000 — 340 0 . 00 0 . 000 0. 003 0. .1040 0. 0000 .OOOOE+OO . OOOOE+OO 0 ,0000 M> 341 0. 00 0. 000 0. 001 0 .1040 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 342 0. 00 0. 000 0 . 000 0 . 1040 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000 — 343 0 . 00 0. 000 0. 000 0 .1040 0. 0000 .OOOOE+OO . OOOOE+OO 0 . 0000 •M 344 0. 00 0, 000 0. 000 0 .1040 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000 IMI 345 0. 10 0 . 000 0. 035 0 -1058 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000 346 0. 10 0. 000 0. 035 0 -1076 0. 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 IM 347 0. 00 0. 000 0. 003 0 .1075 0. 0000 .OOOOE+OO .OOOOE+OO 0 , 0000 Ml 348 0. 10 0-000 0 . 038 0 .1092 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000 349 0 . 00 0. 000 0. 003 0 .1092 0. 0000 -OOOOE+OO . OOOOE+00 0 . 0000 350 0. 00 0 . 000 0. 007 0 . 1089 0 . 0000 .OOOOE+00 . OOOOE+OO 0 .0000 MI 351 0. 00 0. 000 0-007 0 .1088 0. 0000 .OOOOE+OO . OOOOE+OO 0 . 0000 IM 352 0. 00 0 . 000 0 . 006 0 .1086 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000 353 0. 00 0 . 000 0. 006 0 . 1084 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000 Ml 354 0. 00 0. 000 0. 006 0 .1083 0. 0000 .OOOOE+OO .OOOOE+OO 0 , 0000 Ml 355 0. 00 0. ,000 0. 005 0 .1081 0. 0000 ,OOOOE+00 .OOOOE+OO 0 ,0000 356 0. ,20 0. , 000 0. ,041 0 .1125 0. 0000 .OOOOE+OO .OOOOE+00 0 , 0000 •••> 357 0. ,00 0. , 000 0. ,003 0 . 1125 0-0000 . OOOOE+OO . OOOOE+OO 0 .0000 mm 358 0. , 00 0 . ,000 0. , 037 0 . 1114 0. .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 359 0 . ,00 0-, 000 0 -,039 0 .1104 0. , 0000 .OOOOE+00 .OOOOE+00 0 .0000 360 0 -,00 0 . , 000 0 , , 015 0 . 1099 0. .0000 ,OOOOE+OO . OOOOE+OO 0 .0000 361 0 , • 00 0, . 000 0 , • 012 0 . 1096 0-, 0000 .OOOOE+00 .OOOOE+00 0 . 0000 362 0. . 00 0 , • 000 0 , . oil 0 .1093 0 -, 0000 .OOOOE+OO . OOOOE+00 0 .0000 363 0 , • 00 0 , . 000 0. . 010 0 .1090 0 , ,0000 .OOOOE+00 .OOOOE+OO 0 .0000 MM 364 0 , . 00 0, .000 0, . 009 0 . 1088 0 , • 0000 .OOOOE+00 . OOOOE+00 0 .0000 365 0 . .00 0 , . 000 0. . 009 0 . 1085 0, . 0000 .OOOOE+00 . OOOOE+OO 0 .0000 MM 366 0 . .00 0 . 000 0 . 009 0 . 1083 0 , . 0000 .OOOOE+OO . OOOOE+00 0 .0000 ********************************************** ****************************** ************ **************************************** *************************** MONTHLY TOTALS (IN INCHES) FOR YEAR 1996 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 11.30 2.35 9.60 1.50 0.60 0.55 0 .10 0 .00 0 . 00 0 .20 0 . 00 0 . 50 RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.154 0,162 2.285 0.000 0.000 0.000 M 0.000 0.000 0.000 0.000 0.000 0.000 HR 2. 62 6 2. 63 8 3. 951 3,286 2.702 2. 675 2.697 0.803 0.000 0.068 0.109 0.370 P 0.0461 0.1641 0.7162 0.6290 0.4877 0.4086 0.2498 0.0034 0.0000 0.0000 0.0000 0.0000 ^ 0.0307 0,0325 0.0303 0.0052 0.0303 0,3789 0.452 9 0.4022 0.2745 0.1919 0.1379 0.1126 » MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.199 4 .995 0 .318 2 .217 P ii 1.762 22.513 20.707 14.679 12.133 0.008 0.000 0.000 0.000 0.000 k 0.806 0 . 043 10.686 0. 000 2 .579 0 . 000 2 . 094 0 . 000 1,701 0. 000 ******************************************************************************* ^i ******************************************************************************* ANNUAL TOTALS FOR YEAR 1996 PRECIPITATION RUNOFF EVAPOTRANSPIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 INCHES 26 . 70 2 . 600 21.923 2 . 705009 6 .4163 2 .079909 CU. FEET 96921.023 9438.867 79580.164 9819.184 PERCENT 100.00 9 . 74 82 .11 10 .13 7550.071 7 .79 P P P P P CHANGE IN WATER STORAGE 0. 097 351.927 0.36 SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 11.370 11.467 0 .000 0.000 0.0000 41271.777 41623.703 0.000 0.000 -0.007 0.00 0.00 0 .00 ********* ****** ************************************************** HEAD #1: AVERAGE HEAD ON TOP OF LAYER 2 DRAIN #1: LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) LEAK #1: PERCOLATION OR LEAKAGE THROUGH LAYER 2 LEAK #2: PERCOLATION OR LEAKAGE THROUGH LAYER 3 ********************************************************! DAILY OUTPUT FOR YEAR 1997 S Htm DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 mm R L IN. IN-IN. IN./IN. IN. IN. IN. IN. 1 0 10 0 .000 0 . 042 0 .1099 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 IH 2 0 . 00 0 . 000 0 -005 0 . 1097 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 RM 3 0 . 00 0 . 000 0 . 013 0 . 1094 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 4 0 . 00 0 . 000 0 . 012 0 . 1091 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000- Hi 5 0 . 00 0 . 000 0 . 012 0 . 1087 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 mm 6 0 .25 0 .000 0 . 044 0 . 1145 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 7 0 . 00 0 .000 0 .035 0 -1135 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 ^m 8 0 .00 0 .000 0 .065 0 .1117 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 wm 9 0 .00 0 .000 0 .052 0 .1102 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 10 0 .05 0 - 000 0 .044 0 .1104 0 . 0000 . OOOOE+OO .OOOOE+00 0 0000 11 0 . 00 0 .000 0 .005 0 .1103 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 12 0 .00 0 .000 0 . 017 0 . 1098 0 .0000 .OOOOE+OO . OOOOE+OO 0 0000 mm 13 0 . 00 0 .000 0 .014 0 . 1094 0 .0000 .OOOOE+00 .OOOOE+OO 0 0000 350 0 . 00 0 . 000 0 . 041 0 .2211 0 . 0000 . OOOOE+OO . OOOOE+OO 0. 0000 351 0 . 00 0 . 000 0 . 052 0 .2197 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 HI 352 0 . 00 0 .000 0 .071 0 .2177 0 .0000 ,OOOOE+OO .OOOOE+00 0. 0000 HI 353 0 .00 0 . 000 0 .068 0 .2158 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 354 0 . 00 0 . 000 0 . 067 0 .2140 0 .0000 .OOOOE+OO .OOOOE+OO 0. 0000 355 0 .00 0 . 000 0 .070 0 .2120 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 ill 356 0 .00 0 .000 0 .062 0 .2103 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 357 0 .00 0 . 000 0 .062 0 .2086 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 •i 358 0 .00 0 . 000 0 .061 0 .2069 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 •I 359 0 . 00 0 . 000 0 .053 0 .2054 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 360 0 .00 0 . 000 0 .055 0 .2039 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 Hi 361 0 .00 0 . 000 0 .050 0 .2025 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 HI 362 0 .00 0 .000 0 . 048 0 .2012 0 . 0000 .OOOOE+00 . OOOOE+OO 0. 0000 HI 363 0 .00 0 . 000 0 .045 0 . 1999 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000 IM 364 0 .00 0 .000 0 . 051 0 .1985 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 ^m 365 0 . 00 0 .000 0 . 057 0 .1969 0 . 0000 . OOOOE+0.0 .OOOOE+OO 0. 0000 *******************************************************************************'' PI p ******************************************************************************* p p p MONTHLY TOTALS (IN INCHES) FOR YEAR 1997 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 1. 10 0 . 00 2 . 60 0 . 00 0 . 65 0 . 00 0.00 4 .35 0.20 2 . 65 0.00 0 .50 RUNOFF 0 . 000 0 . 000 0.000 0 .000 0. 000 0.000 0 . 000 0 . 012 0 . 000 0.000 0 . 000 0 .000 EVAPOTRANS PIRATION 0 . 785 0 .000 2 . 061 0 . 000 1.409 0 . 000 0 .249 0.292 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0924 0 . 0439 0.0710 0 . 0402 0 .0684 0 . 0358 0.0582 0 . 0343 0 .200 1. 859 0 . 0000 0 . 0228 0.0536 0.0329 0.000 " 1.970 iH 0.0000 0.0000 0.0467 0.0278 P P P m p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) p i i Ml AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1997 INCHES CU. FEET PERCENT PRECIPITATION 12.05 43741.500 100.00 RUNOFF 0.012 43 .497 0.10 EVAPOTRANS PIRATION 8.825 32033.932 73.23 PERC./LEAKAGE THROUGH LAYER 2 0 .022827 82.861 0.19 AVG. HEAD ON TOP OF LAYER 2 0 .0007 PERC./LEAKAGE THROUGH LAYER 3 0.605243 2197.033 5.02 CHANGE IN WATER STORAGE 2 . 608 9467.046 21. 64 SOIL WATER AT START OF YEAR 11.467 41623.703 SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 14 . 075 0 . 000 0 . 000 0 . 0000 51090.750 0 . 000 0 . 000 -0 . 007 0 .00 0 . 00 0 . 00 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 6.75 0.00 0.90 0.00 0.00 0 . 00 0 .10 0.71 0. 05 2 . 87 0.00 2.33 RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.389 0.000 2.881 0.000 0. 000 0 . 000 1. 991 0.000 0 . 000 0 .000 2 .233 0.000 0 . 000 0 .000 2 . Ill 0.064 0 . 000 0.000 0 . 818 0.838 0.000 0.000 0. 000 2 .102 0.0606 0.2241 0.2320 0.2023 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0315 0,0327 0,0315 0,0194 0.0000 0.0001 0.0272 0.0544 0,0605 0.0623 0-0571 0.0547 P m P P P P MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.550 4.951 4.253 3.246 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY, HEAD ON TOP OF LAYER 2 1. 024 0 . 000 0 .277 0 . 000 0 .394 0 .000 1.179 0 . 000 0 . 023 0 . 000 0 . 000 0 .000 ******* ************************************************************************ ******************************************************************************* ANNUAL TOTALS FOR YEAR 1998 INCHES CU. FEET PERCENT HI HI ii P k PRECIPITATION 13 .71 49767.301 100.00 RUNOFF EVAPOTRANS PIRATI ON PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 3 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0.389 13.037 0.722446 1.0837 0 .431453 -0.148 14 .075 13.927 0.000 0.000 0.0000 1410.805 47325.879 2622.480 1566.176 -535.564 51090.750 50555.187 0.000 0.000 0.002 2.83 95 . 09 5.27 3 .15 -1.08 0.00 0.00 0.00 ******************************************************************************* ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS STD. DEVIATIONS 5.03 0 . 06 4.48 0 . 10 3 . 12 0 . 04 2 . 13 0.10 2 .51 0 .11 3 .20 0.31 0.90 0 . 72 1.53 1.32 0.27 1.02 0.31 1.07 0.21 1.29 0. 31 1. 34 RUNOFF TOTALS 0.320 0.184 0.253 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 p P STD. DEVIATIONS 0.810 0.447 0.717 0.000 0.000 0.000 0.000 0.000 0.000 0.0 04 0.000 0.000 P P EVAPOTRANS PIRATION P TOTALS 2.120 2.089 2.559 2.168 1.525 0.981 ^ 0.470 0.130 0.038 0.100 0.528 1,087 P STD. DEVIATIONS 0.731 0.617 0.776 1.032 1.116 1.195 0 .932 0.252 0.086 0.097 0.528 0.660 p li PERCOLATION/LEAKAGE THROUGH LAYER 2 H TOTALS 0.0284 0.1115 0.1823 0.1517 0.1151 0.0816 ^ 0.0311 0.0003 0.0000 0.0000 0,0023 0.000 0 m STD. DEVIATIONS 0.0569 0.2312 0.3033 0.2420 0.1947 0.1474 IH 0.0792 0.0011 0.0000 0.0000 0.0072 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 3 •* TOTALS 0.02 98 0.0261 0.0241 0.024 7 0.0683 0.0974 " 0.0990 0.0880 0.0633 0.0499 0.0401 0.0358 STD. DEVIATIONS 0.0328 0.0255 0.0252 0.0321 0.1603 0.1799 0.1751 0.1473 0.0967 0.0687 0.04 96 0.0405 il AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) P P P DAILY AVERAGE HEAD ON TOP OF LAYER 2 P AVERAGES 0.5712 3.2645 5.1769 4.1905 2.8937 2.0268 W P 0.5681 0.0008 0.0000 0.0000 0.0009 0.0000 " P STD. DEVIATIONS 1.5532 8.1210 9.8401 8.0167 5,9395 4,1353 ^ 1.5705 0.0025 0.0000 0,0000 0.0028 0.0000 P ******************************************************************************* ^ P ******************************************************************************* AVERAGE ANNUAL TOTALS & (STD, DEVIATIONS) FOR YEARS 1989 THROUGH 1998 INCHES CU. FEET PERCENT PRECIPITATION 15.27 ( 6.145) 55444.6 100.00 RUNOFF 0.758 ( 1.3995) 2751.84 4.963 EVAPOTRANSPIRATION 13.795 ( 4.2596) 50074.69 90.315 PERCOLATION/LEAKAGE THROUGH 0 . 70447 ( 1.16719) 2557.221 4 . 61221 LAYER 2 AVERAGE HEAD ON TOP 1.558 ( 2.984) OF LAYER 2 PERCOLATION/LEAKAGE THROUGH 0.64664 ( 0.89246) 2347.299 4.23359 LAYER 3 CHANGE IN WATER STORAGE 0.075 ( 1.5382) 270.79 0.488 ******************************************************************************* ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998 (INCHES) (CU. FT.) PRECIPITATION 4 .00 14520.000 RUNOFF 1.673 6072.9868 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.035758 129.80089 AVERAGE HEAD ON TOP OF LAYER 2 3 5.98 6 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.018515 67.20901 SNOW WATER 0.00 0.0000 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040 ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 1998 P li ii LAYER (INCHES) 6.6498 0.0000 (VOL/VOL) 0.1847 0.0000 HI ii P 5.9453 0.2477 SNOW WATER 0.000 ****************************************************************************** ****************************************************************************** Ml Hi IH m p P P i ****************************************************************************** ****************************************************************************** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.06 (17 AUGUST 1996) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** * * ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D4 TEMPERATURE DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0.D7 SOLAR RADIATION DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0.D13 EVAPOTRANSPIRATION DATA: C:\ACTIVE\OLDDOS-I\HELP3A\SMARC02.Dl1 SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC3.D10 OUTPUT DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC3.0UT TIME: 10:47 DATE: 3/ 5/2002 ************************************************************************** TITLE: San Marcos Landfill ******** ********************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. 3 6.00 INCHES 0.4730 VOL/VOL 0.222 0 VOL/VOL 0.104 0 VOL/VOL 0.1836 VOL/VOL 0.739999996000E-05 CM/SEC m mi m p HIW p LAYER TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 3 5 0.08 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. FML PINHOLE DENSITY FML INSTALLATION DEFECTS FML PLACEMENT QUALITY 0 . 0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 0.199999996000E-12 CM/SEC 1.00 HOLES/ACRE 10.00 HOLES/ACRE 4 - POOR P P P m p LAYER TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 24.00 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT- HYD- COND- 0.464 0 VOL/VOL 0.3100 VOL/VOL 0 . 1870 VOL/VOL 0.3100 VOL/VOL 0.999999997000E-06 CM/SEC LAYER TYPE 1 - VERTICAL PERCOLATION LAYER il p MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. 24.00 INCHES 0-473 0 VOL/VOL 0.222 0 VOL/VOL 0.1040 VOL/VOL 0.222 0 VOL/VOL 0,430000000000E-04 CM/SEC GENERAL DESIGN AND EVAPORATIVE ZONE DATA NOTE: SCS RUNOFF CXmVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 7 WITH AN EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 500. FEET. SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF AREA PROJECTED ON HORIZONTAL PLANE EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE UPPER LIMIT OF EVAPORATIVE STORAGE LOWER LIMIT OF EVAPORATIVE STORAGE INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW 62.40 100.0 1.000 36.0 6.608 17.028 3 .744 0.000 19.374 19.374 0. 00 PERCENT ACRES INCHES INCHES INCHES INCHES INCHES INCHES INCHES INCHES/YEAR EVAPOTRANSPIRATION AND WEATHER DATA NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM SAN DIEGO CALIFORNIA STATION LATITUDE MAXIMUM LEAF AREA INDEX START OF GROWING SEASON (JULI.AN DATE) END OF GROWING SEASON (JULIAN DATE) EVAPORATIVE ZONE DEPTH AVERAGE ANNUAL WIND SPEED AVERAGE 1ST QUARTER RELATIVE HUMIDITY 3 3.10 DEGREES 1. 00 0 367 36.0 INCHES 6.80 MPH 65.00 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73.00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66.00 % NOTE: PRECIPITATION DATA FOR LAKE HODGES WAS ENTERED FROM AN ASCII DATA FILE. CA P P P P NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) P k p JAN/JUL 56.80 70 .30 FEB/AUG 58.40 72.20 MAR/SEP 59.00 71,30 APR/OCT 61.20 67,50 MAY/NOV 63 .40 61.60 JUN/DEC 66.30 57.40 li HI NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA AND STATION LATITUDE = 33.10 DEGREES P P HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION! PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 iH IH ******************************************************************************* DAILY OUTPUT FOR YEAR 198 9 S DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD HI I I WATER #1 #1 #1 #2 ii R L IN. IN. IN. IN./IN. IN. IN. IN. IN. - • 337 0 . 00 0 , .000 0 . 021 0 , .1264 0 , . 0000 .OOOOE+OO . OOOOE+OO 0, .0000 338 0. 00 0, . 000 0 . 023 0 .1258 0, .0000 . OOOOE+00 . OOOOE+00 0, .0000 339 0. 00 0 . 000 0 . 024 0 . 1251 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 340 0 . 00 0 . 000 0. 024 0 . 1244 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 Ml 341 0, 00 0 , 000 0. 024 0 .1238 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 Ml 342 0. 00 0 .000 0. 026 0 .1231 0 .0000 . OOOOE+OO . OOOOE+00 0 .0000 343 0 . 00 0 .000 0 . 029 0 .1222 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 344 0 . 00 0 .000 0 . 028 0 . 1215 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 mm 345 0. 60 0 .000 0. 065 0 .1363 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 346 0 . 40 0 , 000 0 . 060 0 . 1458 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 347 0 . 10 0 .000 0. 048 0 . 1472 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000 IMI 348 0, 50 0 .000 0. 052 0 .1596 0 ,0000 ,OOOOE+00 . OOOOE+00 0 .0000 — 349 0. 00 0 .000 0 . 019 0 ,1591 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 Ml 350 0. 70 0 .000 0. 071 0 .1766 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 351 0. 00 0 .000 0 . 041 0 .1755 0 , 0000 ,OOOOE+00 .OOOOE+00 0 .0000 352 0. 20 0 .000 0. 060 0 .1793 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 Ma 353 0. 00 0 .000 0. 036 0 .1783 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000 354 1. 10 0 .000 0-058 0 .2073 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000 355 0. 00 0 .000 0 . 035 0 .2063 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 *• 356 0. ,00 0 .000 0. 038 0 .2052 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000 357 0. ,10 0 .000 0. 071 0 .2060 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000 358 0, .00 0 .000 0 . 074 0 .2040 0 .0000 .OOOOE+OO , OOOOE+OO 0 .0000 MM 359 0-,00 0 .000 0. , 076 0 .2019 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 •M 360 0-,00 0 .000 0 . ,079 0 .1997 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 MM 361 0. .00 0 .000 0. .075 0 .1976 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 ^M 362 0 , . 00 0 .000 0 -, 093 0 .1950 0 , 0000 .OOOOE+OO .OOOOE+00 0 . 0000 Wn 363 0 , • 00 0 . 000 0-.089 0 .1926 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000 Ml 364 0 , . 00 0 .000 0 , • 089 0 ,1901 0 .0000 . OOOOE+00 .OOOOE+00 0 , 0000 365 0. .00 0 .000 0 , .073 0 .1881 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1989 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 3 . 80 0.00 1. 15 0 . 00 0 .00 0 .00 4 .95 0 . 00 0,20 1.45 0 . 00 3 .70 RUNOFF 0 . 000 0.000 0.000 0.000 0 . 000 0.000 0 . 000 0.000 0.000 0.000 0 .000 0.000 EVAPOTRANS PIRATION ii 2.866 1.998 2.194 3.121 2.409 0.375 0.000 0.000 0.000 0.000 0.579 1.544 P PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p p p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 il 0.000 0.000 0.000 0.000 0.000 0.000 m STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 P 0.000 0.000 0,000 0.000 0.000 0.000 P ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1989 INCHES CU. FEET PERCENT PRECIPITATION 15 .25 55357.504 100.00 RUNOFF 0 . 000 0 . 000 0 . 00 EVAPOTRANS PIRATION 15 . 087 54766.348 98 . 93 PERC./LEAKAGE THROUGH LAYER 2 0.000000 0 . 000 0.00 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 0.0000 0.000000 0 . 000 0 . 00 CHANGE IN WATER STORAGE 0 .163 591.157 1.07 SOIL WATER AT START OF YEAR 23.094 83830.914 SOIL WATER AT END OF YEAR 23 .257 84422.070 SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0.0000 0,000 0.00 ******************************************************************************* 0 .000 0 .000 0 . 0000 0.000 0 . 000 0.00 0 . 00 HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************* '*********5 DAILY OUTPUT FOR YEAR 1990 m^ ma DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD M. I I WATER #1 #1 #1 #2 -R L IN, IN-IN. IN./IN. IN. IN. IN. IN. mm MM 1 0.15 0 - 000 0 . 074 0.1902 0.0000 .OOOOE+OO . OOOOE+00 0 . 0000 2 0 . 00 0 . 000 0 .066 0.1884 0 .0000 . OOOOE+00 .OOOOE+00 0.0000 3 0.40 0 .000 0.069 0.1976 0 . 0000 . 00O"0E+00 . OOOOE+OO 0.0000 Hi 4 0.00 0 .000 0 . 082 0.1953 0.0000 .OOOOE+OO . OOOOE+00 0.0000 5 0.20 0 .000 0 . 071 0.1989 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000 6 0 .00 0 . 000 0 . 070 0.1969 0 . 0000 .OOOOE+00 .OOOOE+00 0.0000 HI 7 0 . 00 0 . 000 0.081 0.1947 0 .0000 .OOOOE+OO .OOOOE+00 0.0000 wm 8 0 . 00 0 .000 0. 074 0.1926 0.0000 .OOOOE+OO .OOOOE+OO 0.0000 mm 9 0 . 00 0 . 000 0 . 078 0.1905 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000 mw 10 0 .00 0 .000 0 . 085 0.1881 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm 11 0 .00 0 . 000 0 . 075 0.1860 0.0000 .OOOOE+00 .OOOOE+OO 0 . 0000 Mi 12 0 ,00 0 .000 0.079 0,1838 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000 13 0 . 00 0 . 000 0 . 077 0.1817 0.0000 .OOOOE+OO .OOOOE+00 0.0000 mm 14 0-00 0 .000 0.071 0.1797 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000 Mi 15 0 . 00 0 . 000 0.085 0.1773 0.0000 .OOOOE+OO .OOOOE+OO 0 . 0000 16 0.00 0.000 0.080 0-1751 0.0000 .OOOOE+OO . OOOOE+OO 0.0000 M» 17 0.00 0 . 000 0 . 092 0.1726 0.0000 .OOOOE+00 . OOOOE+OO 0.0000 mm 18 0 . 00 0.000 0.096 0.1699 0.0000 . OOOOE + 00 ,OOOOE+OO 0.0000 355 0 . 00 0 . 000 0 -026 0 . 1086 0 . 0000 -OOOOE+OO .OOOOE+OO 0 .0000 356 0 . 00 0 . 000 0 . 027 0 . 1079 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 ii 357 0. 00 0 .000 0. 029 0. 1071 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 il 358 0. 00 0 .000 0. 042 0. 1059 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 359 0 . 00 0 . 000 0. 042 0 . 1047 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 p 360 0 . 00 0 . 000 0. 007 0 . 1045 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 p 361 0. 00 0 . 000 0. 007 0, 1043 0 ,0000 . OOOOE+00 .OOOOE+OO 0 . 0000 362 0. 00 0 . 000 0-006 0 , 1042 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 ^w 363 0. 00 0 .000 0, 004 0. 1041 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 p 364 0 . 00 0 . 000 0 . 002 0 . 1040 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 PW 365 0. 00 0 .000 0. 000 0. 1040 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000 PW *******************************************************************************Tl P IHI ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1990 P P HH JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC P PRECIPITATION 1.10 0 .00 1.75 0-00 1.30 1.00 0 .10 0.35 0 .50 0.20 0 . 10 0 . 00 RUNOFF 0.000 0 . 000 0 . 000 0 . 000 0 .000 0 . 000 0 . 000 0.000 0 . 000 0.000 0 . 000 0. 000 EVAPOTRANS PIRATION 2-459 0 . 000 1 .713 0 . 000 2 . 090 0 .274 1. 015 0 .189 0 . 500 0 .470 0 . 100 0 - 617 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0 . 0000 0 - 0000 0 . 0000 0.0000 0 .0000 0.0000 0.0000 0.0000 0.0000 0 . 0000 0 .0000 0.0000 0 . 0000 0.0000 0.0000 0.0000 0 .0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 ii MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 . 000 0-000 0.000 0-000 0.000 0,000 0,000 0 . 000 0.000 0 - 000 0 - 000 0.000 p p STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1990 INCHES CU. FEET PERCENT PRECIPITATION 6.40 23231.996 100.00 RUNOFF 0.000 0 . 000 0 . 00 EVAPOTRANS PIRATION 9-427 34220.047 147.30 PERC./LEAKAGE THROUGH LAYER 2 0.000000 0.000 0.00 AVG. HEAD ON TOP OF LAYER 2 0.0000 PERC./LEAKAGE THROUGH LAYER 4 0.000000 0 .000 0 . 00 CHANGE IN WATER STORAGE -3.027 -10988.046 -47.30 SOIL WATER AT START OF YEAR 23.257 84422.070 SOIL WATER AT END OF YEAR 20.230 73434 . 023 SNOW WATER AT START OF YEAR 0 .000 0 . 000 0. 00 SNOW WATER AT END OF YEAR 0 . 000 0 . 000 0 . 00 ANNUAL WATER BUDGET BALANCE 0 . 0000 -0 . 005 0 . 00 ****************** ************************************************************* HEAD #1 DRAIN #1 LEAK #1 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 MONTHLY TOTALS (IN INCHES) FOR YEAR 1991 PRECIPITATION JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC 3.41 0.10 1.75 0 . 10 0.50 0.00 0.80 0.00 0.90 1.35 0.80 0.40 P P P RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 0. 058 0. 000 1.565 0.100 0. 000 0. 000 1. 640 0.100 0.000 0.000 1.679 0,000 0.000 0.000 1,450 0.000 0. 000 0 .000 0 .391 0.236 0 . 000 0 . 000 1.377 0 .548 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p 0.0000 0.0000 0.0000 0.0000 0.0000 o.ooooP p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD, DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0. 000 0.000 0 . 000 0.000 0.000 0.000 0 . 000 0 . 000 0. 000 0 .000 0 .000 0.000 0. 000 0 . 000 0 . 000 0 . 000 0 .000 0 .000 0 . 000 0 . 000 0 .000 0. 000 0 . 000 0. 000 p ******************************************************************************* p ******************************************************************************* ANNUAL TOTALS FOR YEAR 1991 PRECIPITATION RUNOFF EVAPOTRANS PI RAT I ON INCHES 10 .11 0.058 9.086 CU. FEET 36699.301 211.735 32981.051 PERCENT 100.00 0 .58 89.87 P HI P P P k PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 .000000 0.0000 0 .000000 0 . 966 20.230 21.196 0.000 0.000 0.0000 0 . 000 0.00 0.000 3506.495 73434.023 76940.523 0 . 000 0.000 0-022 0. 00 9.55 0.00 0 . 00 0.00 ********* ********************************************************************** HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 *******************************************************************************•= DAILY OUTPUT FOR YEAR 1992 DAY A S 0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN./IN. IN. IN. IN. IN. 1 0.30 0. 000 0-069 0.1372 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 2 0.15 0 . 000 0 . 064 0.1396 0.0000 .OOOOE+OO .OOOOE+00 0.0000 3 0 . 00 0 . 000 0 . 014 0.1392 0.0000 .OOOOE+OO .OOOOE+00 0.0000 4 0 . 00 0-000 0 . 020 0.1387 0.0000 .OOOOE+OO . OOOOE+OO 0.0000 5 0.00 0 . 000 0.021 0.1381 0.0000 .OOOOE+OO .OOOOE+00 0.0000 6 0 . 00 0 . 000 0.031 0.1372 0.0000 ,OOOOE+00 .OOOOE+00 0.0000 343 0. 00 0 .000 0, 005 0 .1056 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000 344 0 . 00 0 . 000 0 . 005 0 .1055 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ii 345 0. 00 0 .000 0. 005 0 .1053 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000 li 346 0 . 00 0 . 000 0 . 006 0 .1052 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 347 0. 00 0 . 000 0 . 006 0 . 1050 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000 p 348 0 . 00 0 . 000 0. 006 0 .1048 0 .0000 .OOOOE+00 .OOOOE+OO 0 , 0000 p 349 0 . 30 0 . 000 0. 054 0 .1117 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 p 350 0. 00 0 . 000 0. 003 0 . 1116 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p 351 0. 00 0 .000 0. 032 0 .1107 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 p 352 0 . 00 0 .000 0. 017 0 -1102 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 p 353 0. 00 0 . 000 0. 012 0 -1099 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p 354 0 . 00 0 . 000 0. 010 0 .1096 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 p 355 0. 00 0 .000 0-009 0 . 1094 0 .0000 .OOOOE+00 ,OOOOE+00 0 .0000 mm 356 0. 00 0 .000 0 -008 0 .1091 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 mm 357 0. 00 0 .000 0-009 0 .1089 0 .0000 .OOOOE+OO ,OOOOE+OO 0 .0000 mm 358 0. 00 0 .000 0. 010 0 .1086 0 .0000 .OOOOE+0.0 .OOOOE+00 0 .0000 359 0. 00 0 .000 0. 009 0 .1084 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 p 360 0. 00 0 .000 0-009 0 .1081 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 361 0. 00 0 .000 0. 008 0 . 1079 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p 362 0 . 00 0 .000 0. 008 0 .1077 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p 363 0. 00 0 .000 0. 008 0 .1075 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000 p 364 0. 00 • 0 .000 0. 008 0 .1072 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000 p 365 0 . 00 0 .000 0. 008 0 . 1070 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p 366 0. 00 0 . 000 0. 008 0 .1068 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 ******************************************************************************** ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1992 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF 0 .45 0 .30 0.000 0.000 6.30 0 . 00 0 .251 0 . 000 6.12 0 . 00 0 .222 0.000 0.00 0 . 00 0 . 000 0 . 000 0 .00 0 .00 0 . 000 0 . 000 0 . 00 0.45 0 . 000 0 . 000 mt mt EVAPOTRANS PIRATION 1. 014 0 . 577 0.765 0 . 142 3 .126 0. 000 2 .580 0 . 000 2 .753 0 . 000 2.629 0.349 HI PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0038 0.0276 0.0274 0.0172 P 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 p P PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0000 0.0001 0.0000 0.0000 0,0000 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0,705 5.761 5.511 3.516 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 1.270 0.323 0.124 2.073 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1992 INCHES CU. FEET PERCENT PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR 13 .62 0 .473 13.936 0.075930 1.2910 0.000102 -0.790 21.196 20 .406 0 . 000 0 . 000 49440.602 100.00 1716.847 275.624 0 .372 -2865 . 903 76940.523 74074.617 0 .000 0.000 3 .47 50589.277 102.32 0.56 0 . 00 -5 . 80 0.00 0 . 00 -ANNUAL WATER BUDGET BALANCE 0 . 0000 0 .009 0 . 00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ii ii P P P P P P ******************************************************************************* DAILY OUTPUT FOR YEAR 1993 DAY A 0 RAIN RUNOFF ET I I R L IN. IN. IN. E, ZONE HEAD DRAIN LEAK HEAD WATER #1 #1 #1 #2 " IN./IN. IN. IN. IN. IN. • 1 0 .20 0 .000 0. 055 0 . 1108 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 Ml 2 0 ,20 0 . 000 0 . 051 0 . 1150 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000 Hi 3 0 ,40 0 . 000 0 . 071 0 . 1241 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 Ml 4 1 .50 0 .000 0. 063 0. 1640 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 5 0 .30 0 .000 0. 060 0. 1707 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 p 6 0 . 50 0 . 000 0 . 070 0 . 1826 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 p 7 0 . 00 0 .000 0. 091 0. 1801 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000 8 0 . 00 0 . 000 0 . 098 0 . 1774 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 p 9 0 .00 0 . 000 0 . 095 0 . 1747 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000 p 10 0 . 00 0 . 000 0 . 072 0 . 1727 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 11 0 .00 0 . 000 0 . 080 0 . 1705 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 p 12 0 . 00 0 . 000 0 . 073 0 . 1685 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p 13 0 . 00 0 . 000 0 . 080 0. 1662 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 p 14 0 .00 0 .000 0. 055 0, 1647 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 p 15 0 . 00 0 . 000 0 . 059 0 . 1631 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 p 16 0 . 00 0 .000 0 . 051 0 . 1617 0 .0000 . OOOOE+00 . OOOOE + OO 0 . 0000 • 17 0 .00 0 .000 0. 052 0. 1602 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000 MP 18 0 .00 0 .000 0, 058 0. 1586 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 p 19 0 . 00 0 .000 0 , 054 0 . 1571 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 20 0 .00 0 .000 0. 043 0. 1559 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p 21 0 .00 0 .000 0, 050 0. 1545 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 22 0 .00 0 ,000 0. 066 0. 1527 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 p 23 0 .00 0 .000 0. 077 0. 1505 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 p p 360 0 . 00 0 .000 0 .039 0 .1306 0 .0000 ,OOOOE+OO .OOOOE+00 0 .0000 — 361 0 .70 0 . 000 0 . 057 0 . 1484 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 mm 362 0 . 10 0 . 000 0 .066 0 .1493 0 . 0000 . OOOOE+00 . OOOOE+00 0 .0000 363 0 . 80 0 . 000 0 . 069 0 . 1697 0 . 0000 , OOOOE+00 .OOOOE+00 0 . 0000 364 0 . 00 0 . 000 0 .035 0 . 1687 0 . 0000 . OOOOE+OO ,OOOOE+00 0 . 0000 wm 365 0 . 00 0 . 000 0 . 045 0 . 1674 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 ******************************************************************************** ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1993 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 3.10 0.10 5.50 0.30 4.40 0.00 0.30 0.45 0 .20 0.00 0.00 3 .35 RUNOFF 0.000 0. 000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 EVAPOTRANS PIRATION 2 .193 0 .100 2 .052 0.256 3.242 0.044 2 .901 0.114 2 .490 0.226 0 .713 1.177 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0020 0.0023 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0000 0.0022 0.0025 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 .000 0. 000 0 . 000 0.000 0 .343 0.000 0 .384 0.000 0 .818 0.000 0 . 000 0 . 000 STD. DEVIATION OF DAILY HEAD ON TOP OF" LAYER 2 0.000 0.000 0.352 0.198 0.800 0.001 0.000 0.000 0.000 0.000 0.000 0.000 *********** ******************************************************************** IP ******************************************************************************* ANNUAL TOTALS FOR YEAR 1993 P PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR INCHES 17.70 0 .000 15.508 0.008904 0.1288 0.007128 2 .185 20 .406 CU. FEET PERCENT 64251. 008 100.00 0 . 000 56293.305 32.320 25.873 7931.811 74074.617 0.00 17.61 0.05 0 . 04 12 .35 P m m p p p p p p p p p SOIL WATER AT END OF YEAR 22,591 82006.430 SNOW WATER AT START OF YEAR 0. 000 0 . 000 0 . 00 SNOW WATER AT END OF YEAR 0,000 0.000 0 .00 ANNUAL WATER BUDGET BALANCE 0.0000 0 . 021 0 . 00 ******************************************************************************* P HI HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION! PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* DAILY OUTPUT FOR YEAR 1994 P P P P 330 0 . 00 0 . 000 0, . 024 0. 1095 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 mm. 331 0 . 00 0 . 000 0 . 026 0, 1088 0. 0000 . OOOOE+00 . OOOOE+00 0, 0000 M. 332 0. 00 0 . 000 0 . 022 0. 1082 0. 0000 . OOOOE+00 .OOOOE+OO 0, 0000 333 0. 40 0 . 000 0 . 044 0. 1181 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 M" 334 0. 00 0 . 000 0 .029 0 . 1173 0 . 0000 .OOOOE+OO .OOOOE+OO 0 , 0000 IM 335 0. 00 0. 000 0 .030 0. 1165 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 336 0. 00 0. 000 0 . 032 0. 1156 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 337 0 . 00 0 . 000 0 .033 0. 1147 0 . 0000 ,OOOOE+00 . OOOOE+00 0. 0000 MM 338 0. 00 0. 000 0 . 019 0. 1141 0 . 0000 .OOOOE+00 , OOOOE+00 0. 0000 Ml 339 0. 00 0. 000 0 .017 0 . 1137 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000 340 0 . 00 0. 000 0 .018 0. 1132 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 •u 341 0. 00 0. 000 0 . 017 0. 1127 0 . 0000 .OOOOE+OO . OOOOE+00 0. 0000 fm 342 0. 00 0. 000 0 .017 0 . 1122 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000 Ht 343 0. 00 0. 000 0 .017 0, 1118 0. 0000 .OOOOE+OO ,OOOOE+OO 0. 0000 344 0. 00 0. 000 0 .020 0 . 1112 0. 0000 . OOOOE+OO . OOOOE+OO 0, 0000 mm 345 0 . 60 0. 000 0 .055 0, 1263 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 m» 346 0. 00 0 . 000 0 . 022 0. 1257 0. 0000 .OOOOE+OO . OOOOE+OO 0. 0000 347 0 . 00 0 . 000 0 .023 0. 1251 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000 348 0. 50 0. 000 0 .046 0. 1377 0. 0000 .OOOOE+00 .OOOOE+OO 0. 0000 349 0. 00 0. 000 0 .029 0. 1369 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 MM 350 0. 00 0. 000 0 .029 0. 1361 0. 0000 . OOOOE+00 . OOOOE+OO 0. 0000 351 0. 00 0. 000 0 .031 0. 1352 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000 Ml 352 0 . 10 0-000 0 .054 0. 1365 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 •M 353 0. 00 0-000 0 . 042 0. 1353 0 . 0000 .OOOOE+00 . OOOOE+OO 0. 0000 354 0. 00 0. 000 0 .028 0 . 1345 0, 0000 . OOOOE+OO . OOOOE+00 0. 0000 MB 355 0. 00 0. 000 0 .041 0. 1334 0 . 0000 .OOOOE+00 .OOOOE+OO 0. ,0000 M. 356 0 . 00 0. 000 0 . 045 0. 1321 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 357 0 . ,00 0. 000 0 . 044 0 . 1309 0 , 0000 .OOOOE+00 .OOOOE+00 0. , 0000 358 0. ,00 0 . 000 0 .042 0 . 1298 0 . 0000 .OOOOE+OO .OOOOE+00 0. , 0000 — 359 0. ,00 0 . . 000 0 . 045 0 . 1285 0 . 0000 .OOOOE+00 .OOOOE+OO 0. ,0000 mm 360 0. ,00 0 . .000 0 . 052 0. 1271 0 . 0000 .OOOOE+00 .OOOOE+OO 0. , 0000 361 0. ,00 0 . , 000 0 . 056 0 . , 1255 0 . .0000 .OOOOE+OO .OOOOE+00 0 -,0000 362 0 -,00 0 . .000 0 . 054 0. , 1240 0. . 0000 . OOOOE + 00 .OOOOE+00 0. .0000 •BUI 363 0 , ,00 0 -,000 0 . 053 0 . , 1225 0 . , 0000 .OOOOE+OO .OOOOE+OO 0 , , 0000 364 0 , , 00 0 , .000 0 . 056 0 -, 1210 0 . .0000 .OOOOE+00 .OOOOE+00 0 , • 0000 365 0 , , 00 0 , , 000 0 . 058 0 -, 1194 0-, 0000 . OOOOE + 00 .OOOOE+00 0 , • 0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1994 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION 13 . 90 0.01 6 .46 0.00 0 . 77 0.00 0 . 00 0.15 0 - 00 1.00 0-60 M 1.20 2.515 1.965 0.000 0.000 0.000 0.000 P 0.000 0.000 0.000 0.000 0.000 0.000 m 2.419 3.041 2.529 2.241 2.652 2.514 " 2.608 0.980 0-000 0-085 0.586 1.125 ^ PERCOLATION/LEAKAGE THROUGH LAYER 2 0.02 93 0.12 92 0.132 9 0.1041 0 .0847 0.054 0 0.0256 0.0003 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0017 0.0046 0.0047 0.0040 0.0045 0.0039 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 6.118 29.722 27.767 22.614 17.848 11.675 P 5-139 0.058 0.000 0.000 0.000 0.000 Mi 9.002 5.537 2.013 0.549 2.032 1.059 "* 1.995 0.203 0.000 0.000 0.000 0.000 ******************************************************************************* HI P P ******************************************************************************* ANNUAL TOTALS FOR YEAR 1994 P P INCHES CU. FEET PERCENT PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 24 . 09 4 .479 20.781 0.560022 10.0785 87446.687 100.00 16260.451 75434.641 2032.878 18 . 59 86 .26 2 .32 P Ml P P P k PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0. 025797 -1.196 22.591 21.395 0.000 0 . 000 0.0000 93.643 -4342 .038 82006.430 77664 .391 0.000 0.000 -0.012 0.11 -4 . 97 0.00 0.00 0 . 00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************** DAILY OUTPUT FOR YEAR 1995 MM p" DAY A S 0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD Mi I I WATER #1 #1 #1 #2 -R L IN. IN. IN. IN . /IN. IN. IN. IN. IN. HI wm 1 0 . 90 0.000 0. 074 0 .1423 0.0000 . OOOOE+00 . OOOOE+OO 0 . 0000 2 0 . 50 0 . 000 0 . 070 0 . 1543 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 Mi 3 0 . 00 0 . 000 0 . 050 0 .1529 0 . 0000 . OOOOE + 00 .OOOOE+00 0 .0000 wm 4 0 . 00 0.000 0 . 085 0 . 1505 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000 HI 5 0.00 0 . 000 0.098 0 .1478 0.0000 .OOOOE+OO . OOOOE+OO 0.0000 6 0. 00 0 . 000 0 . 105 0 ,1449 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000 mm 7 0.00 0.000 0 .092 0 .1423 0.0000 .OOOOE+00 , OOOOE+00 0.0000 m 8 0.00 0.000 0. 073 0 .1403 0 . 0000 . OOOOE+OO .OOOOE+OO 0.0000 9 0.00 0.000 0. 067 0 .1385 0.0000 .OOOOE+00 , OOOOE+OO 0.0000 mm 10 0.00 0.000 0.069 0 .1366 0.0000 .OOOOE+OO , OOOOE+00 0 . 0000 MM 11 0 . 80 0.000 0 . 071 0 .1568 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000 p •i 348 0. 00 0 . 000 0 .024 0 . 1368 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 349 0 . 00 0 .000 0 . 024 0 . 1361 0 .0000 .OOOOE+00 , OOOOE+00 0. 0000 p 350 0. 00 0 .000 0 . 026 0 . 1354 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p 351 0 . 00 0 .000 0 . 026 0 . 1347 0 . 0000 .OOOOE+OO ,OOOOE+00 0 . 0000 352 0. 00 0 . 000 0 .026 0 . 1340 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 p 353 0, 00 0 . 000 0 .028 0. 1332 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p 354 0 , 00 0 . 000 0 .030 0 . 1324 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 p 355 0 . 00 0 . 000 0 . 033 0 . 1315 0 .0000 . OOOOE+00 . OOOOE+OO 0. 0000 p 356 0 . 00 0 . 000 0 .031 0. 1306 0 . 0000 .OOOOE+OO ,OOOOE+OO 0 . 0000 p 357 0 . 00 0 . 000 0 . 029 0 . 1298 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 358 0 . 00 0 .000 0 .029 0. 1290 0 .0000 . OOOOE+OO .OOOOE+00 0 . 0000 p p 359 0 . 00 0 .000 0 .030 0 . 1281 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p p 360 0. 00 0 .000 0 . 033 0. 1272 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 p 361 0. 00 0 .000 0 .036 0. 1262 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 362 0 . 00 0 .000 0 .035 0 . 1253 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 363 0 . 00 0 .000 0 .032 0 . 1244 0 . 0000 .OOOOE+OO -OOOOE+OO 0 . 0000 HI 364 0 . 00 0 .000 0 .031 0 . 1235 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 Ni 365 0 . 00 0 .000 0 .035 0 . 1225 0 . 0000 ,OOOOE+OO .OOOOE+OO 0 . 0000 ******************************************************************************** ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1995 iH P P JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 5.40 0 . 00 2 .45 0 - 00 1. 80 0,10 1.20 0 .95 0.00 0 .70 0.01 0 . 50 RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 0 . 000 0 . 000 2 . 669 0.000 0.0000 0 . 0000 0 .000 0 . 000 2 .466 0. 000 0 .0000 0-0000 0 . 037 0 . 000 3 .136 0 . 065 0.0000 0.0000 0 ,000 0 .000 2 . 702 0 .202 0 . 0000 0.0000 0 . 000 0.000 0 .393 0 .457 0.0000 0.0000 0 .000 0 . 000 0 . 010 0 . 860 0 .0000 0.0000 p HI P P HI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ^ k MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1995 INCHES CU, FEET PERCENT PRECIPITATION 13 .11 47589.301 100.00 RUNOFF 0.037 132.866 0.28 EVAPOTRANS PIRATION 12.960 47046,348 98.86 PERC./LEAKAGE THROUGH LAYER 2 0.000000 0. 000 0.00 AVG. HEAD ON TOP OF LAYER 2 0 .0000 PERC./LEAKAGE THROUGH LAYER 4 0.000000 0 .000 0.00 CHANGE IN WATER STORAGE 0 .113 410.069 0.86 SOIL WATER AT START OF YEAR 21.395 77664.391 SOIL WATER AT END OF YEAR 21.508 78074.461 SNOW WATER AT START OF YEAR 0.000 0 .000 0 .00 SNOW WATER AT END OF YEAR 0 . 000 0 . 000 0.00 ANNUAL WATER BUDGET BALANCE 0-0000 0 . 020 0.00 ***************************************************************************** 366 0.00 0.000 0.009 0.1083 0.0000 .OOOOE+00 .OOOOE+OO 0.0000 *******************************************************************************! ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1996 P HI P P P HI P HI P Hi p p PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC 11.30 0.10 0.154 0.000 2.598 2.708 2.35 0.00 0.166 0 .000 2 .709 1.951 9.60 0.00 2 .537 0.000 3 .971 0.425 1,50 0 .20 0. 000 0.000 3 .317 0 .264 0.60 0 . 00 0 . 000 0.000 2.676 0.143 0.55 0.50 0, 000 0, 000 2 .712 0,400 0.0014 0.0112 0.1207 0.1165 0,0943 0.0745 0.0467 0.0155 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0017 0.0077 0.0081 0.0071 0,0066 0.0059 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 P P 2 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.235 2.259 25.079 25.232 19.852 16.215 9.684 3.045 0.000 0.000 0.000 0.000 0.376 0.972 10.661 2.643 1.73 6 1.643 2.243 2.097 0.000 0.000 0.000 0.000 • ******************************************************************************* ^P ******************************************************************************* ANNUAL TOTALS FOR YEAR 1996 P P P k INCHES CU. FEET PERCENT PRECIPITATION 26.70 96921.023 100.00 RUNOFF 2 .857 10371.078 10.70 EVAPOTRANS PIRATION 23.874 86662.406 89.42 PERC./LEAKAGE THROUGH LAYER 2 0.480688 1744.898 1.80 AVG. HEAD ON TOP OF LAYER 2 8.4669 PERC./LEAKAGE THROUGH LAYER 4 0.039418 143.087 0.15 CHANGE IN WATER STORAGE -0.070 -255.601 -0 .26 SOIL WATER AT START OF YEAR 21.508 78074.461 SOIL WATER AT END OF YEAR 21.438 77818.859 SNOW WATER AT START OF YEAR 0.000 0 . 000 0.00 SNOW WATER AT END OF YEAR 0.000 0.000 0 . 00 ANNUAL WATER BUDGET BALANCE 0.0000 0 . 052 0.00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* DAILY OUTPUT FOR YEAR 1997 DAY A 0 RAIN RUNOFF ET E. ZONE HEAD I I WATER #1 R L IN. IN. IN- IN-/IN. IN. DRAIN #1 IN. LEAK #1 IN. HEAD #2 IN. *******************************************************************************- ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1997 ii •i 335 0 . 00 0. 000 0. 096 0 .2246 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 336 0 . 00 0 . 000 0. 058 0 .2230 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 ii 337 0 . 00 0 . 000 0 . 078 0 .2209 0 ,0000 .OOOOE+00 . OOOOE+OO 0 . 0000 338 0 .40 0 . 000 0. 059 0 .2304 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000 339 0 .10 0 . 000 0 . 065 0 .2313 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 p 340 0 . 00 0. 000 0 . 073 0 .2293 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 p 341 0 . 00 0 . 000 0. 071 0 .2273 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 342 0 . 00 0 . 000 0 . 085 0 ,2250 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 w 343 0 . 00 0 . 000 0. 086 0 .2226 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p 344 0 . 00 0 . 000 0. 053 0 .2211 0 .0000 . OOOOE+00 . OOOOE+OO 0 . 0000 345 0 .00 0. 000 0. 052 0 .2197 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000 p 346 0 .00 0 . 000 0 . 067 0 .2178 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 •1 347 0 .00 0. 000 0 . 067 0 .2159 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000 p 348 0 .00 0. 000 0. 059 0 .2143 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 Im 349 0 .00 0. 000 0 . 057 0 .2127 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 350 0 .00 0 . 000 0. 053 0 .2113 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 p 351 0 .00 0. 000 0. 057 0 .2097 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 352 0 .00 0-000 0. 052 0 .2082 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 353 0 .00 0-000 0. 054 0 .2067 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 • 354 0 .00 0. 000 0. 057 0 .2051 0 .0000 . OOOOE+00 . OOOOE+OO 0 . 0000 HI 355 0 .00 0-000 0. 061 0 .2034 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 356 0 .00 0. 000 0. 055 0 .2019 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 •n 357 0 .00 0-000 0 . 056 0 .2004 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 HI 358 0 .00 0. 000 0. 055 0 .1988 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 WW 359 0 .00 0. 000 0. 048 0 .1975 0 .0000 . OOOOE+OO .OOOOE+OO 0 .0000 360 0 . 00 0. 000 0, 050 0 ,1961 0 .0000 . OOOOE+OO ,OOOOE+00 0 .0000 mm 361 0 , 00 0. 000 0. 046 0 .1948 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 mw 362 0 .00 0. 000 0. 045 0 .1936 0 . 0000 . OOOOE+OO .OOOOE+OO 0 .0000 363 0 .00 0 . 000 0 . 042 0 . 1924 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 364 0 .00 0. 000 0 . 049 0 .1910 0 .0000 .OOOOE+OO ,OOOOE+00 0 .0000 Mi 365 0 .00 0 . 000 0 . 054 0 . 1895 0 .0000 . OOOOE + OO .OOOOE+OO 0 .0000 Mi JAN/JUL FEB/AUG MJVR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF 1.10 2,60 0.65 0.00 0.20 0.00 ^ 0.00 0.00 0.00 4.35 2.65 0.50 P 0.000 0.000 0.000 0.000 0.000 0.000 P 1^ 0.000 0.000 0 . 000 0 . 013 0 . 000 0.000 EVAPOTRANS PIRATION 0.795 2.209 1.255 0.246 0.200 0.000 0.000 0.000 0.000 0.285 2.263 1.859 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0000 0.0011 0.0060 0.0074 0.0090 0.0102 0.0104 0.0098 0.0094 0.0082 0.0074 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 0 . 000 0. 000 0.000 0.000 0 . 000 0 .000 0.000 0 . 000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0 . 000 0 . 000 0.000 0. 000 0 .000 0.000 0.000 0.000 0 . 000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1997 INCHES CU. FEET PERCENT PRECIPITATION 12 . 05 43741.500 100.00 RUNOFF 0 .013 46.159 0 . 11 EVAPOTRANS PIRATION 9 .112 33078.227 75 . 62 PERC./LEAKAGE THROUGH LAYER 2 0.000000 0 .000 0 . 00 AVG. HEAD ON TOP OF LAYER 2 0.0000 PERC./LEAKAGE THROUGH LAYER 4 0.078957 286.612 0 .66 CHANGE IN WATER STORAGE 2 . 846 10330.505 23 . 62 SOIL WATER AT START OF YEAR 21.438 77818.859 SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 24.284 0.000 0 . 000 0.0000 88149.367 0 .000 0.000 -0.002 HI 0.00 p 0.00 Im 0 . 00 ******************************************************************************* P P p P li HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION .AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 P ii ******************** ***********************************************************' P DAILY OUTPUT FOR YEAR 1998 S MH DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 IM R L IN IN. IN. IN ./IN. IN IN. IN. IN • Mi Mi 1 0 . 10 0 . 000 0 . 062 0 . 1906 0 . 0000 . OOOOE+OO . OOOOE+00 0. 0000 2 0. 70 0 .000 0 . 061 0 .2084 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000 mw 3 0 . 00 0 . 000 0 . 081 0 .2061 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000 4 0 . 10 0 . 000 0 . 068 0 .2070 0 . 0000 . OOOOE + OO .OOOOE+OO 0 . 0000 5 0 -00 0 . 000 0 . 072 0 .2050 0 . 0000 . OOOOE + OO .OOOOE+00 0 , 0000 Ml 6 0-00 0 .000 0 .086 0 .2026 0 . 0000 .OOOOE+00 .OOOOE+00 0, 0000 7 0. 00 0 . 000 0 . 094 0 .2000 0 . 0000 .OOOOE+00 . OOOOE+00 0. 0000 Ml 8 0 . 00 0 . 000 0 . 112 0 . 1969 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 HI 9 0 . 00 0 . 000 0 . 071 0 . 1949 0 . 0000 .OOOOE+00 . OOOOE + OO 0 . 0000 p 10 0 . 00 0 .000 0 . 095 0 .1923 0 . 0000 .OOOOE+OO . OOOOE+00 0. 0000 11 0, 00 0 . 000 0 . 114 0 . 1891 0 . 0000 .OOOOE+00 . OOOOE + 00 0 . 0000 HI 12 3. 00 0 .349 0 . 076 0 .2607 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 n 13 0. 30 0 . 000 0 .080 0 .2668 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 Ml 14 0. 00 0 . 000 0 .096 0 .2641 0. 0000 .OOOOE+OO . OOOOE+OO 0. 0000 15 0 . 30 0 .000 0 .064 0 .2706 0. 0000 . OOOOE+00 .OOOOE+00 0. 0000 p 16 0. 00 0 . 000 0 . 098 0 .2679 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000 p 353 0 .00 0 . 000 0 . 059 0 .1961 0 .0000 .OOOOE+OO . OOOOE+OO 0 . 0000 mm 354 0 .20 0 .000 0 . 066 0 .1999 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000 mm 355 0 . 00 0 .000 0 . 066 0 .1980 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 356 0 .00 0 , 000 0. 065 0 .1962 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 •"•1 357 0 .00 0 , 000 0 . 068 0 . 1943 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 MH 358 0 .00 0 , 000 0. 075 0 .1922 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000 359 0 .12 0 .000 0. 060 0 .1939 0 . 0000 , OOOOE+OO .OOOOE+00 0 . 0000 360 0 .08 0 .000 0 . 066 0 .1943 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 M> 361 0 . 00 0 .000 0 . 072 0 .1923 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 362 0 .00 0 .000 0 . 079 0 .1901 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 363 0 . 04 0 .000 0 . 062 0 .1895 0 . 0000 . OOOOE+OO . OOOOE+00 0. 0000 HM 364 0 . 00 0 . 000 0. 079 0 .1873 0 .0000 . OOOOE+00 .OOOOE+00 0. 0000 M. 365 0 .00 0 .000 0. 082 0 .1850 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ******************************************************************************** ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 6.75 0.00 0 .90 0 . 00 0.00 0 . 00 0 .10 0.71 0.05 2.87 0 .00 2 .33 RUNOFF 0 .444 0.000 0 . 000 0 . 000 0.000 0 . 000 0.000 0 . 000 0.000 0 . 000 0.000 0 .000 EVAPOTRANS PIRATION 2. 868 0.000 1.896 0 . 000 2.211 0 . 000 2 .117 0 . 065 1.342 0 . 834 0 . 000 2 . 096 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0006 0.0017 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0062 0.0046 0.0040 0.0035 0.0014 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON 0.000 0.000 0.000 0.113 0.310 0.000 TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,292 0.582 0.000 0.000 0.000 0.000 0.000 0,000 0,000 ******************************************************************************* ANNUAL TOTALS FOR YEAR 1998 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YE.AR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR INCHES 13.71 0 .444 13.428 0.002373 0.0352 0.020244 -0.182 24.284 24.102 0 .000 0 . 000 CU. FEET 49767.301 1611.982 48742.516 8 . 614 PERCENT 100.00 3 .24 97. 94 0 . 02 73 .485 -660.699 ;8149. 367 ;7488 . 664 0 .000 0 . 000 0.15 -1,33 0 . 00 0 . 00 ANNUAL WATER BUDGET BALANCE 0,0000 0.015 0.00 ******************************************************************************* PI HI ******************************************************************************* im P P P p m HI p p p ii ******************************************************************************* p P AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS 5.03 0.06 3.12 0. 04 2 .51 0.11 0.90 0.72 0 .27 1.02 0.21 1.29 STD. DEVIATIONS 4 .48 0.10 2 .13 0. 10 3.20 0.31 1.53 1.32 0.31 1.07 0 .31 1.34 RUNOFF TOTALS 0.317 0.000 0.238 0,000 0.279 0.000 0.000 0.001 0,000 0,000 0.000 0. 000 STD. DEVIATIONS 0.785 0. 000 0,613 0.000 0.796 0 .000 0,000 0.004 0,000 0.000 0 . 000 0,000 EVAPOTRANS PIRATION TOTALS 2,145 0,609 2.049 0,343 2 ,543 0,081 2 .169 0.120 1.581 0 . 579 1. 043 1.057 STD. DEVIATIONS 0 .756 1.094 0,630 0 . 640 0 .821 0 .148 0 .987 0 .109 1.115 0.641 1.167 0.615 PERCOLATION/LEAKAGE THROUGH LAYER 2 TOTALS 0 .0031 0.0072 0.0140 0,0016 0.0259 0.0000 0.0251 0.0000 0 . 0213 0. 0000 0.0146 0 . 0000 STD. DEVIATIONS 0.0092 0.0160 0.0406 0 .0049 0.0532 0.0000 0.0458 0.0000 0 . 0370 0 . 0000 0.0272 0 . 0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 TOTALS 0.0010 0 . 0015 0.0017 0.0010 0 .0020 0.0010 0 . 0023 0 . 0009 0.0022 0.0008 0 . 0019 0 . 0008 STD. DEVIATIONS 0.0020 0.0032 0.0029 0.0033 0.0028 0.0031 0.0027 0.0030 0. 0029 0 . 0026 0.0032 0.0023 AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) DAILY AVERAGE HEAD ON TOP OF LAYER 2 AVERAGES STD. DEVIATIONS 1.92 79 9.3467 11.1061 9.9369 7.7974 5.8969 3.3036 0.9612 0.0000 0.0000 0.0000 0.0000 ******************************************************************************* P Mt 0.6354 3.1982 5.3893 5.4104 4.4340 3.14 06 P 1.4824 0.3103 0.0000 0.0000 0.0000 0.0000 P P ******************************************************************************* p IH AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 AVERAGE HEAD ON TOP OF LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE INCHES 15.27 ( 6.145) 0.836 ( 1.5515) 14.320 ( 4,9020) 0.11279 ( 0,21688) 2.000 ( 3.872) 0.01716 ( 0.02575) CU. FEET 55444.6 3035.11 51981.41 409 .433 PERCENT 100.00 5 .474 93.754 0 . 73845 0 . 101 1. 6666) 62.307 365 .7; 0.11238 0 . 660 li m ******************************************************************************* ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998 : INCHES) (CU. FT.) PRECIPITATION 4.00 14520.000 RUNOFF 1.695 6152.1890 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.005629 20.43476 AVERAGE HEAD ON TOP OF LAYER 2 3 5.974 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000337 1.22278 SNOW WATER 0.00 0.0000 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040 ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 1998 LAYER (INCHES) (VOL/VOL) 1 6.6595 0.1850 2 0.0000 0.0000 3 8.2125 0.3422 4 5.5095 0.2296 SNOW WATER 0.000 ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: C:\ACTIVE\0LDDOS~l\HELP3A\SMARCO-D4 TEMPERATURE DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMARCO-D7 SOLAR RADIATION DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMARCO-D13 EVAPOTRANSPIRATION DATA: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC02 .Dll SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC4.D10 OUTPUT DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC4.0UT TIME: 10:43 DATE: 3/ 5/2002 ****************************************************************************** TITLE: San Marcos Landfill ****************************************************************************** NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. P il ****************************************************************************** p ****************************************************************************** p * * * * ** ** P ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** P ** HELP MODEL VERSION 3.06 (17 AUGUST 1996) ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** * ** USAE WATERWAYS EXPERIMENT STATION ** * ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ^ * * ** * * ** ****************************************************************************** ****************************************************************************** P P P i i p p LAYER 1 p P TYPE 1 - VERTICAL PERCOLATION LAYER P P k MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. 12.00 INCHES 0.473 0 VOL/VOL 0.222 0 VOL/VOL 0.104 0 VOL/VOL 0-3071 VOL/VOL 0-739999996000E-05 CM/SEC LAYER TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 0.08 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 0. FML PINHOLE DENSITY FML INSTALLATION DEFECTS FML PLACEMENT QUALITY = 4 0.0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 0.0000 VOL/VOL 199999996000E-12 CM/SEC 1.00 HOLES/ACRE 10.00 HOLES/ACRE - POOR LAYER TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 24.00 INCHES THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. 0 .4640 VOL/VOL 0.3100 VOL/VOL 0.1870 VOL/VOL 0.3127 VOL/VOL 0.999999997000E-06 CM/SEC LAYER TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. 24.00 INCHES 0.4730 VOL/VOL 0.2220 VOL/VOL 0.1040 VOL/VOL 0.222 0 VOL/VOL 0.430000000000E-04 CM/SEC il Mi P HI P m GENERAL DESIGN AND EVAPORATIVE ZONE DATA NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 500. FEET. SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF AREA PROJECTED ON HORIZONTAL PLANE EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE UPPER LIMIT OF EVAPORATIVE STORAGE LOWER LIMIT OF EVAPORATIVE STORAGE INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW 82.70 100.0 1.000 12-0 3-686 676 248 0 - 000 16.517 16.517 0.00 PERCENT ACRES INCHES INCHES INCHES INCHES INCHES INCHES INCHES INCHES/YEAR EVAPOTRANSPIRATION AND WEATHER DATA NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM S.AN DIEGO CALIFORNIA STATION LATITUDE MAXIMUM LEAF AREA INDEX START OF GROWING SEASON (JULIAN DATE) END OF GROWING SEASON (JULIAN DATE) EVAPORATIVE ZONE DEPTH AVERAGE ANNUAL WIND SPEED AVERAGE 1ST QUARTER RELATIVE HUMIDITY 33.10 DEGREES 1 . 00 0 367 12.0 INCHES 6.80 MPH 65.00 % P P P P AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73.00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66.00 % NOTE: PRECIPITATION DATA FOR LAKE HODGES WAS ENTERED FROM AN ASCII DATA FILE. CA NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) JAN/JUL 56.80 70 .30 FEB/AUG 58.40 72.20 MAR/SEP 59-00 71-30 APR/OCT 61.20 67.50 MAY/NOV 63 .40 61-60 JUN/DEC 66-30 57.40 NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN DIEGO CALIFORNIA AND STATION LATITUDE = 33.10 DEGREES HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* DAILY OUTPUT FOR YEAR 198 9 IM S — DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD IH I I WATER #1 #1 #1 #2 M" R L IN-IN. IN. IN./IN. IN. IN. IN. IN. 337 0 . 00 0 . 000 0 .026 0 . 1670 0 -0000 . OOOOE+OO , OOOOE+00 0 , .0000 338 0 . 00 0 . 000 0 . .030 0 . 1645 0 . 0000 .OOOOE+OO , OOOOE+00 0, . 0000 Hi 339 0 . 00 0 . 000 0 .030 0 . 1621 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 HI 340 0. 00 0-000 0 .030 0. 1596 0 , 0000 - OOOOE+00 .OOOOE+00 0 .0000 341 0. 00 0-000 0 .028 0. 1572 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p 342 0 . 00 0 . 000 0 .034 0 . 1544 0. 0000 . OOOOE+00 ,OOOOE+OO 0 .0000 Ml 343 0 . 00 0 . 000 0 .037 0 . 1513 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 . 0000 344 0. 00 0. 000 0 .033 0. 1486 0. 0000 . OOOOE+00 , OOOOE+OO 0 . 0000 p 345 0 . 60 0 . 000 0 .053 0 . 1941 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000 HI 346 0. 40 0. 000 0 .053 0. 2231 0 . 0000 .OOOOE+OO . OOOOE+00 0 . 0000 347 0 . 10 0 . 000 0 .054 0. 2269 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 348 0 . 50 0 . 000 0 .052 0 . 2641 0. 0000 - OOOOE+00 .OOOOE+00 0 .0000 HI 349 0. 00 0. 000 0 .057 0. 2594 0 . 0000 - OOOOE+OO . OOOOE+00 0 . 0000 ii 350 0. 70 0 . 037 0 .074 0. 3084 0. 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 M 351 0 . 00 0. 000 0 .080 0. 3017 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000 352 0 . 20 0. 000 0 .062 0. 3132 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000 HI 353 0. 00 0 . 000 0 .072 0. 3072 0 . 0000 .OOOOE+OO . OOOOE+00 0 . 0000 HI 354 1. 10 0 . 207 0 . 058 0 . 3768 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000 355 0. 00 0. 000 0 .070 0. 3710 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 HI 356 0. 00 0 -000 0 .079 0. 3644 0. 0000 , OOOOE+OO .OOOOE+00 0 .0000 Hi 357 0. 10 0 . 000 0 .071 0. 3668 0 . 0124 . OOOOE+OO .3070E-05 0 , 0000 p 358 0. ,00 0. 000 0 .102 0. 3583 0. 2837 . OOOOE+OO ,5866E-04 0 . 0000 p 359 0. ,00 0. 000 0 .105 0. 3496 0. 5463 ,OOOOE+OO ,1065E-03 0 .0000 HI 360 0. ,00 0 . 000 0 .105 0. 3409 0 . 7607 , OOOOE+00 .1438E-03 0 . 0000 361 0. , 00 0 . 000 0 .100 0 . 3325 0 . 9271 .OOOOE+OO .1721E-03 0 . 0000 362 0 -,00 0. 000 0 .117 0 . 3227 1, 0546 . OOOOE+00 . 1934E-03 0 . 0000 mm 363 0 , ,00 0. ,000 0 .110 0. ,3135 1. 1926 . OOOOE+OO .2163E-03 0 . 0000 wm 364 0, , 00 0 . , 000 0 .109 0 . ,3044 1. .3021 . OOOOE + OO .2343E-03 0 . 0000 ml 365 0 , • 00 0 -,000 0 . 091 0 . ,2968 1. ,3836 , OOOOE+OO .2476E-03 0 . 0000 ******************************************* ************************************ ****************************************** ************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 198 9 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF 3 .80 0 . 00 1.15 0 . 00 0 .00 0.00 4 . 95 0 . 00 0.20 1.45 0 . 00 3 . 70 0.153 0.000 0.000 0.784 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 EVAPOTRANS PIRATION 2,843 2.295 2.051 2.885 1.480 0.000 0.000 0.000 0.000 0.000 0.613 1.978 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0178 0.0192 0.0090 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0038 0.0035 0.0029 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 3.483 4.209 1.695 0.000 0 .156 0.000 0.000 0.000 0.000 0.000 0.000 0.241 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 1.602 0.53 6 1.153 0.000 0.274 0.000 0,000 0.000 0.000 0.000 0.000 0.453 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1989 INCHES CU. FEET PERCENT PRECIPITATION 15.25 55357.504 100.00 RUNOFF 1. 182 4289.385 7 . 75 EVAPOTRANSPIRATION 14 .144 51344.465 92 . 75 PERC./LEAKAGE THROUGH LAYER 2 0.048317 175.390 0 . 32 AVG. HEAD ON TOP OF LAYER 2 0.8153 PERC./LEAKAGE THROUGH LAYER 4 0.011924 43.284 0. 08 CHANGE IN WATER STORAGE -0.088 -319.638 -0.51 SOIL WATER AT START OF YEAR 20.237 73459,727 SOIL WATER AT END OF YEAR 20.149 73140.086 SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 . 000 0.000 0.0000 0 . 000 0 .000 0. 008 0 . 00 0 .00 0 . 00 ***************** ************************************************************** Ml HEAD #1: AVERAGE HEAD ON TOP OF LAYER 2 DRAIN #1 LEAK #1 LEAK #2 ************* LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 **************************************************** DAILY OUTPUT FOR YEAR 1990 Ml m DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD Mi •M I I WATER #1 #1 #1 #2 R L IN IN. IN. IN ./IN. IN • IN. IN. IN • J 1 0 . 15 0 . 000 0 . 074 0 .3031 1. 4544 .OOOOE+OO .2591E-03 0 . 0000 J 2 0 . 00 0 . 000 0 . 084 0 .2961 1. 5026 .OOOOE+OO .2669E-03 0 . 0000 3 0 . 40 0 . 000 0 . 069 0 . 3237 1. 5272 .OOOOE+00 .2709E-03 0 . 0000 m 4 0 . 00 0 .000 0 . 094 0 .3158 1. 5510 . OOOOE+OO .2747E-03 0 . 0000 d 5 0 . 20 0 . 000 0 . 071 0 . 3265 1. 5673 . OOOOE+OO .2774E-03 0. 0000 6 0 . 00 0 . 000 0 . 086 0 .3193 1. 5716 . OOOOE+00 .2781E-03 0 . 0000 3 7 0 . 00 0 .000 0 . 094 0 .3115 1. 5850 .OOOOE+00 .2802E-03 0 . 0000 8 0. 00 0 . 000 0 . 084 0 .3045 1. 5950 .OOOOE+OO . 2818E-03 0 . 0000 9 0 . 00 0 . 000 0 . 083 0 .2975 1. 6017 .OOOOE+OO .2829E-03 0 . 0000 3 10 0 . 00 0 . 000 0 . 088 0 .2902 1. 6091 .OOOOE+00 .2841E-03 0 . 0000 HI 11 0 . 00 0 . 000 0 . 077 0 .2838 1. 6101 .OOOOE+OO .2843E-03 0 . 0000 PI 12 0. 00 0 . 000 0 . 082 0 .2769 1. 6199 .OOOOE+OO .2858E-03 0 . oooc li 13 0 . 00 0 .000 0 . 077 0 .2705 1. 6111 .OOOOE+00 .2844E-03 0 . oooc 14 0 . 00 0 . 000 0. 072 0 .2645 1. 6060 .OOOOE+00 .2836E-03 0 . oooc 15 0 . 00 0 . 000 0 . 085 0 .2574 1. 6097 .OOOOE+00 .2842E-03 0 . oooc 16 0. 00 0 .000 0 . 080 0 ,2507 1. 6178 .OOOOE+OO .2855E-03 0. oooc 17 0. 00 0 . 000 0 . 092 0 .2430 1. 6287 .OOOOE+OO .2872E-03 0. oooc 18 0 . 00 0 .000 0 . 049 0 .2389 1. 6428 .OOOOE+00 .2895E-03 0. oooc ^ 355 0 . 00 0. 000 0 . 000 0 . 1040 0 . 0000 .OOOOE+00 , OOOOE+00 0-0000 356 0 .00 0. 000 0 .000 0 . 1040 0. 0000 .OOOOE+OO - OOOOE+OO 0-0000 M. 357 0 .00 0. 000 0 . 000 0 . 1040 0. 0000 .OOOOE+OO , OOOOE+OO 0-0000 358 0 .00 0. 000 0 . 000 0 . 1040 0 . 0000 . OOOOE+OO -OOOOE+OO 0 . 0000 359 0 .00 0 . 000 0 .000 0 .1040 0, 0000 . OOOOE+OO -OOOOE+00 0 . 0000 MM 360 0 .00 0. 000 0 .000 0 .1040 0 , 0000 .OOOOE+00 .OOOOE+00 0. 0000 361 0 .00 0 . 000 0 .000 0 . 1040 0 . 0000 -OOOOE+OO .OOOOE+00 0. 0000 362 0 . 00 0. 000 0 .000 0 . 1040 0, 0000 .OOOOE+OO .OOOOE+00 0 . 0000 363 0 . 00 0. 000 0 .000 0 .1040 0. 0000 -OOOOE+00 .OOOOE+OO 0. 0000 mm 364 0 . 00 0 . 000 0 .000 0 .1040 0 . 0000 .OOOOE+OO -OOOOE+00 0. 0000 365 0 .00 0. 000 0 .000 0 .1040 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 *******************************************************************************., ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1990 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 1.10 0.00 1. 75 0.00 1.30 1. 00 0.10 0.35 0 .50 0.20 0 . 10 0.00 RUNOFF 0.000 0 . 000 0 .000 0.000 0.004 0.000 0.000 0.000 0 . 000 0.000 0 .000 0 .000 EVAPOTRANS PIRATION 2 . 647 0 . 000 2 .055 0 . 000 1.500 0 .216 0 .347 0-266 0-500 0.640 0.100 0 .429 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0089 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0043 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0-0003 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 1.624 0.000 0.216 0 . 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 . 000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 .208 0 . 000 0 .320 0 .000 0. 000 0. 000 0 . 000 0 . 000 0 . 000 0 . 000 0.000 0. 000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1990 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 6 .40 0.004 8 .699 0.010042 0.1533 0.006319 -2.309 20.149 17 . 839 0 . 000 0 . 000 0 . 0000 CU. FEET 23231.996 14 .495 31577.922 36-451 PERCENT 100.00 0.06 135.92 0 .16 22 .938 0.10 -8383.359 -36-09 73140 - 086 64756-730 0.000 0.00 0.000 0.00 0.002 0.00 p Mi P P ff P 113 ************* ****************************************************************** HEAD #1 DRAIN #1 LEAK #1 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 Hf li •f T p ff MONTHLY TOTALS (IN INCHES) FOR YEAR 1991 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 3.41 0.10 1.75 0.10 0 .50 0.00 0.80 0.00 0. 90 1.35 0.80 0.40 RUNOFF 0 . 078 0 .000 0 . 000 0 . 000 0.000 0-000 0.000 0 . 000 0.000 0 . 002 0 . 000 0 . 000 EVAPOTRANS PIRATION 2.066 0.100 2.676 0.100 0.698 0.000 0 . 942 0.000 0.397 0 .301 1.303 0.823 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0003 0.0004 0.0005 0.0006 0.0006 0.0008 0.0008 0.0009 0.0009 0.0011 0.0011 0.0011 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 19 91 PRECIPITATION RUNOFF EVAPOTRANS PIRATION INCHES 10.11 0. 081 9.406 CU. FEET 293.153 34142.937 PERCENT 36699.301 100.00 0.80 93 . 03 PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0.000000 0.0000 0 - 009152 0.614 17.839 18.454 0.000 0 . 000 0 - 0000 0 - 000 33-222 2229.998 64756-730 66986.727 0.000 0 . 000 -0 . 007 0. 00 0.09 6 . 08 0.00 0.00 0.00 ******************************************************************************* p mi 3 ri ] HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************** DAILY OUTPUT FOR YEAR 1992 DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 R L IN. IN. IN. IN . /IN. IN. IN. IN. IN. 1 0.30 0. 000 0.063 0 . 1757 0.0000 . OOOOE+OO .OOOOE+OO 0 .0000 2 0.15 0 . 000 0 . 060 0 . 1832 0.0000 .OOOOE+00 .OOOOE+00 0 - 0000 3 0 . 00 0 . 000 0. 039 0 . 1800 0.0000 .OOOOE+OO .OOOOE+00 0 - 0000 4 0.00 0. 000 0. 058 0 . 1751 0.0000 .OOOOE+00 . OOOOE+00 0.0000 5 0 .00 0 . 000 0.055 0 .1705 0.0000 .OOOOE+00 .OOOOE+OO 0.0000 6 0 .00 0 .000 0.059 0 .1656 0.0000 .OOOOE+00 . OOOOE+00 0.0000 p ri p P 343 0. 00 0 . 000 0. 015 0 . 1089 0 . 0000 . OOOOE+OO . OOOOE+OO 0 .0000 344 0. 00 0 . 000 0, 006 0 . 1084 0. 0000 . OOOOE+OO . OOOOE+00 0 .0000 345 0. 00 0 . 000 0 . 006 0 . 1079 0. 0000 . OOOOE+OO .OOOOE+00 0 . 0000 IH 346 0. 00 0 . 000 0 . 006 0 . 1074 0-0000 .OOOOE+OO .OOOOE+OO 0 . 0000 347 0 . 00 0 . 000 0 . 006 0 . 1069 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 Mi 348 0 , 00 0. 000 0 . 006 0. 1064 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 •P-349 0. 30 0. 000 0. 047 0. 1275 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 350 0. 00 0, 000 0. 014 0 . 1263 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000 MM 351 0. 00 0. 000 0. 014 0 . 1251 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 •M 352 0 . 00 0. 000 0 . 019 0. 1236 0. 0000 . OOOOE+OO .OOOOE+00 0 . 0000 353 0. 00 0. 000 0 . 021 0. 1218 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 354 0. 00 0. 000 0 . 021 0 . 1201 0. 0000 .OOOOE+OO . OOOOE+00 0 ,0000 — 355 0. 00 0. 000 0 . 021 0. 1183 0. 0000 .OOOOE+OO .OOOOE+00 0 - 0000 Mi 356 0. 00 0 . 000 0. 025 0 . 1163 0 . 0000 . OOOOE+OO . OOOOE+OO 0 -0000 357 0. 00 0. 000 0 . 030 0. 1138 0. 0000 . OOOOE+OO .OOOOE+00 0 -0000 358 0. 00 0. 000 0. 033 0. 1110 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 359 0. 00 0. 000 0 . 034 0. 1082 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000 360 0. 00 0 . 000 0. 033 0. 1055 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000 361 0. 00 0. 000 0 -017 0. 1041 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000 IM 362 0. 00 0. 000 0-001 0 . 1040 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000 363 0. 00 0, 000 0. 000 0. 1040 0. 0000 , OOOOE+00 .OOOOE+00 0 .0000 364 0. 00 0 . 000 0 . 000 0. 1040 0. 0000 . OOOOE+OO .OOOOE+00 0 .0000 365 0. 00 0. 000 0. 000 0. 1040 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 Ml 366 0. 00 0. 000 0 . 000 0. 1040 0. 0000 . OOOOE+00 . OOOOE+OO 0 .0000 ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1992 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 0 .45 0.30 6 .30 0 . 00 6 .12 0 . 00 0 . 00 0 . 00 0.00 0 . 00 0 . 00 0.45 RUNOFF 0 .000 0.000 2 .629 0.000 2 .119 0 . 000 0 .000 0 . 000 0.000 0 . 000 0 . 000 0 . 000 EVAPOTRANS PIRATION 1.073 0 ,273 0 .441 0 . 027 3 .761 0.000 2 .481 0.000 0.934 0.000 0.000 0.450 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0001 0.0264 0.0266 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 P 0.0013 0.0012 0.0058 0.0058 0.0016 0.0005 Mj 0.0005 0.0006 0.0007 0,0009 0.0009 0.0010 p 3 3 3 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES! AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0,000 0.009 5.353 5.551 0.319 0,000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.048 4.074 1.93 3 0,637 0.000 J 0,000 0,000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* 3 1 Ml ANNUAL TOTALS FOR YEAR 1992 INCHES CU. FEET PERCENT PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR 13 . 62 4 .748 9.441 0 . 054790 0 . 9360 0 . 020743 -0.589 18.454 17.864 0 . 000 0. 000 49440.602 100.00 17234.227 34270 . 687 198.889 75 .291 -2139.630 66986.727 64847.098 0 . 000 0 . 000 34. 86 69.32 0.40 0 .15 -4.33 0.00 p 0.00 P p ANNUAL WATER BUDGET B.ALANCE 0.0000 0.021 0.00 *****************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^ HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 *****************************************************************^^^^^^^^^^^^^^^ DAILY OUTPUT FOR YEAR 1993 DAY A I S o I RAIN RUNOFF ET E. ZONE WATER HEAD #1 DRAIN #1 LEAK #1 HEAD #2 R L IN. IN. IN. IN ./IN. IN. IN. IN. IN. -1 0 .20 0 . 000 0 .046 0 .1169 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 mm 2 0 .20 0 . 000 0 .050 0 .1294 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 mw 3 0 .40 0 . 000 0 .051 0 .1585 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 4 1 .50 0 .136 0 . 047 0 .2682 0 . 0000 .OOOOE+00 -OOOOE+OO 0. 0000 mm 5 0 .30 0 . 000 0 .055 0 .2886 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000 wm 6 0 .50 0 .039 0 .069 0 .3213 0 . 0000 -OOOOE+OO . OOOOE+00 0. 0000 7 0 . 00 0 .000 0 .099 0 .3130 0 . 0000 -OOOOE+OO . OOOOE+OO 0. 0000 8 0 . 00 0 .000 0 .112 0 .3037 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000 9 0 , 00 0 .000 0 . 106 0 .2949 0 . 0000 -OOOOE+OO -OOOOE+OO 0 . 0000 10 0 . 00 0 .000 0 .082 0 .2880 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 11 0 , 00 0 -000 0 . 089 0 .2806 0 . 0000 . OOOOE+00 .OOOOE+00 0. 0000 Ml 12 0 . 00 0 .000 0 . 080 0 .2739 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 Mi 13 0 . 00 0 . 000 0 . 084 0 .2669 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 14 0 . 00 0 .000 0 . 086 0 .2597 0. 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000 15 0 . 00 0 .000 0 . 089 0 .2523 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 M* 16 0 .00 0 .000 0 . 076 0 .2459 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000 iM 17 0 .00 0 .000 0 .080 0 .2393 0. 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000 18 0 .00 0 . 000 0 . 089 0 .2319 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 MM 19 0 .00 0 .000 0 .081 0 .2252 0. 0000 . OOOOE+00 . OOOOE+OO 0. 0000 IM 20 0 .00 0 . 000 0 - 067 0 .2196 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 21 0 ,00 0 .000 0 . 076 0 .2133 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 22 0 ,00 0 .000 0 . 042 0 .2098 0. 0000 -OOOOE+00 .OOOOE+OO 0 . 0000 M. 23 0 . 00 0 . 000 0 .051 0 .2055 0. 0000 -OOOOE+OO .OOOOE+OO 0 . 0000 360 0-00 0 . 000 0 . 050 0 -1573 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 361 0. 70 0 . 000 0 . 064 0 .2102 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 Pi 362 0 . 10 0. 000 0 . 066 0 .2130 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 il 363 0 . 80 0 . 016 0 . 071 0 .2725 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 364 0. 00 0. 000 0 . 060 0 .2675 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 p 365 0 . 00 0 . 000 0 . 077 0 .2611 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p *******************************************************************************^ ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1993 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 3 .10 0 .10 5 . 50 0.30 4 .40 0.00 0.30 0 .45 0.20 0 . 00 0.00 3 .35 RUNOFF 0 .175 0.000 0.961 0 . 000 0 . 044 0 . 000 0 . 000 0 . 000 0 . 000 0.000 0 . 000 0 . 017 EVAPOTRANS PIRATION 2 .599 0 .100 2 .508 0 .300 3 .556 0.000 2.835 0 .085 0 . 768 0 . 340 0 . 000 1.473 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0089 0.0274 0.0172 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0034 0.0055 0.0059 0.0009 0.00 02 0.0004 0-0004 0-0006 0.0007 0.0008 0.0009 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0 .000 0-000 0.000 0 - 000 1 . 945 0-000 2 .265 0 .000 5 .510 0 .000 0 . 325 0 .000 3-473 0,000 0 . 906 0 . 000 0 .103 0 . 000 0.280 0 .000 0 . 000 0 .000 0 . 000 0 . 000 ******************************************************************************* p ******************************************************************************* ANNUAL TOTALS FOR YEAR 1993 INCHES CU. FEET PERCENT PRECIPITATION 17 .70 64251.008 100.00 RUNOFF 1.197 4344.584 6.76 EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE 14.564 0.054077 0.9192 0. 020672 1. 918 52867.422 196.299 75-038 6963-971 82 .28 0.31 0.12 10 . 84 SOIL WATER AT START OF YEAR 17.864 64847.098 SOIL WATER AT END OF YEAR 19.783 71811.070 SNOW WATER AT START OF YEAR 0.000 0 . 000 0 . 00 SNOW WATER AT END OF YEAR 0.000 0 . 000 0 . 00 ANNUAL WATER BUDGET BALANCE 0.0000 -0.005 0 .00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* DAILY OUTPUT FOR YEAR 1994 PRECIPITATION RUNOFF 13 . 90 0.01 9.667 0 . 000 6 .46 0 . 00 3 .170 0 .000 0 - 77 0.00 0 . 000 0 . 000 0 . 00 0 . 15 0 .000 0 .000 0 . 00 1. 00 0 . 000 0 . 000 0 . 60 ii 1.20 m 0.000 * 0.030 •» EVAPOTRANS PIRATION 2.531 0. 010 3 .136 0.000 2.439 0 .000 1.956 0 .110 0.000 0 . 509 0 . 600 1.441 PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0329 0.0000 0.0421 0.0000 0.0308 0.0000 0.0101 0 . 0000 0.0000 0.0000 0.0000 0.0000 0.0052 0.0058 0.0061 0.0043 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 6.819 0.000 9. 666 0. 000 6.257 0.000 1.997 0 .000 4-723 1.505 1.640 1.494 0 . 000 0.000 0.000 0.000 0 . 000 0.000 0. 000 0. 000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1994 PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 INCHES 24 .09 12.867 12.732 0.115865 CU. FEET 87446.687 46708.883 46216.066 420 . 591 PERCENT 100.00 53 .41 52 . 85 0.48 IM Hi AVG. HEAD ON TOP OF LAYER 2 2 . 0616 P PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0.021378 -1.531 19.783 18.252 0. 000 0 .000 0 . 0000 77.602 -5555.841 71811.070 66255-227 0. 000 0. 000 -0.026 0 .09 6.35 0 .00 0. 00 0.00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* mm DAILY OUTPUT FOR YEAR 1995 mm DAY A S 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD m I I WATER #1 #1 #1 #2 mm R L IN. IN. IN. IN ./IN. IN. IN. IN. IN. wm wm 1 0 . 90 0 . 049 0 . 074 0 . 1904 0.0000 . OOOOE+OO . OOOOE+OO 0.0000 2 0 . 50 0 . 000 0 . 070 0 .2262 0.0000 . OOOOE + OO .OOOOE+OO 0 . 0000 3 0 . 00 0 - 000 0 - 094 0 .2184 0 .0000 .OOOOE+OO .OOOOE+OO 0.0000 mm 4 0 . 00 0 .000 0 . 077 0 .2121 0.0000 .OOOOE+OO .OOOOE+00 0.0000 HI 5 0 . 00 0.000 0 . 081 0 .2053 0.0000 .OOOOE+00 .OOOOE+00 0.0000 6 0-00 0.000 0 -087 0 .1981 0.0000 .OOOOE+00 .OOOOE+00 0.0000 IM 7 0.00 0 . 000 0 .086 0 .1909 0 .0000 .OOOOE+OO -OOOOE+OO 0.0000 IH 8 0 . 00 0 . 000 0 . 066 0 . 1854 0.0000 .OOOOE+OO .OOOOE+OO 0.0000 9 0. 00 0.000 0 .074 0 .1792 0.0000 .OOOOE+00 -OOOOE+OO 0.0000 10 0-00 0. 000 0 . 078 0 .1727 0.0000 .OOOOE+OO . OOOOE+00 0-0000 •M 11 0 .80 0 . 033 0 . 069 0 -2309 0.0000 .OOOOE+00 .OOOOE+00 0 - 0000 348 0 . 00 0 . 000 0 . 024 0 .1836 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 349 0 . 00 0 . 000 0 . 026 0 . 1815 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 ii 350 0. 00 0 .000 0 .028 0 .1791 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 HI 351 0 . 00 0 .000 0 . 028 0 .1767 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 352 0 . 00 0 .000 0 . 029 0 . 1743 0 - 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 il 353 0 . 00 0 .000 0 . 033 0 . 1716 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 p 354 0 . 00 0 . 000 0 .036 0 .1685 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000 Ml 355 0. 00 0 . 000 0 .033 0 .1658 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 Ml 356 0 . 00 0 .000 0 . 032 0 .1631 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 357 0 . 00 0 .000 0 .029 0 . 1606 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 p HI 358 0 . 00 0 .000 0 . 031 0 .1580 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p HI 359 0. 00 0 , 000 0 .033 0 . 1553 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 360 0 . 00 0 . 000 0 . 044 0 . 1516 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 m 361 0 . 00 0 .000 0 . 048 0 .1477 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000 m 362 0 . 00 0 ,000 0 .044 0 . 1440 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 363 0 . 00 0 ,000 0 . 041 0 .1406 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000 p 364 0 . 00 0 ,000 0 . 041 0 ,1372 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 m 365 0 . 00 0 .000 0 . 047 0 .1332 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000 ******************************************************************************** Ml **************************************** *************************************** MONTHLY TOTALS (IN INCHES) FOR YEAR 1995 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERCOLATION/LEAKAGE THROUGH LAYER 2 PERCOLATION/LEAKAGE THROUGH LAYER 4 5.40 0 .00 0 .274 0 . 000 2 .626 0.000 0.0000 0.0000 0.0002 0.0001 2.45 0 . 00 0 . 008 0 . 000 2 . 628 0 . 000 0 . 0041 0 . 0000 0.0050 0.0003 1.80 0 .10 0 . 022 0 . 000 2 .912 0 . 067 0 . 0122 0.0000 0 . 0062 0.0005 1 .20 0 . 95 0 .000 0 . 000 2 .617 0 .193 0 .0072 0 .0000 0 .0038 0.0007 0 . 00 0 .70 0 . 000 0 .000 0 .000 0 .599 0 . 0000 0 . 0000 0.0000 0.0009 0 . 01 0 . 50 0 . 000 0 . 000 0 . 010 1. 040 0 . 0000 0 . 0000 0 . 0000 0 . 0011 ii HI p p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.784 2.309 1.391 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STD- DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.264 0.952 1.160 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1995 INCHES CU. FEET PERCENT PRECIPITATION 13.11 47589.301 100.00 RUNOFF 0 .304 1102.674 2 .32 EVAPOTRANS PIRATION 12.692 46071.152 96.81 PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 0 . 023475 0 .3737 0 .018618 0 . 096 18.252 18-348 0 .000 0.000 0.0000 85.215 0 .18 67.583 347.880 66255.227 66603.109 0 .000 0 .000 0 . 014 0 . 14 0 . 73 0 .00 0 . 00 0-00 ******************************************************************************* 366 0-00 0.000 0-008 0.1043 0.0000 .OOOOE+OO .OOOOE+00 0.000 0 ******************************************************************************* p P lb ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1996 P Mi PI m JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF 11.30 0 .10 5.168 0 . 000 2 .35 0.00 0 .613 0 .000 9.60 0 .00 5.590 0.000 1.50 0 .20 0 . 001 0 . 000 0.60 0 . 00 0 .000 0.000 0.55 0.50 P HI 0.000 0.000 P EVAPOTRANS PIRATION 2 .710 0 .100 2 .647 0, 000 3 ,852 0 . 000 3 .281 0 . 067 1.691 0.133 0.550 0.497 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0382 0.0391 0.0431 0.0237 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0049 0.0055 0.0059 0.0058 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 7.94 8 8.638 8.905 4.893 0.624 0.000 0-000 0.000 0.000 0.000 0.000 0.000 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 4.877 1.124 1.344 1.306 0.833 0.000 0.000 0.000 0-000 0.000 0.000 0-000 ************ ******************************************************************** ******************************************************************************^ ANNUAL TOTALS FOR YEAR 1996 P Hi PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE INCHES 26,70 11.372 15.528 0.147479 2.5840 0.023947 -0.224 18.348 18 .124 0.000 0.000 0.0000 CU. FEET PERCENT 96921.023 100.00 41280.270 56367.285 535.347 86.927 -813.490 66603.109 65789.617 0.000 0 . 000 0.031 42 .59 58. 16 0 .55 0,09 -0,84 0, 00 0. 00 0,00 ******************************************************************************* HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION! PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 ******************************************************************************* DAILY OUTPUT FOR YEAR 1997 DAY A O RAIN RUNOFF ET E. ZONE HEAD I I WATER #1 R L IN. IN. IN. IN./IN. IN. DRAIN #1 IN. LEAK #1 IN. HEAD #2 IN. 335 0 . 00 0 .000 0 .085 0 .3682 7 . 0907 . OOOOE+00 .1119E-02 0 . 0000 336 0 . 00 0 .000 0 . 072 0 .3621 6 . 9874 . OOOOE+00 ,1103E-02 0 . 0000 p 337 0 . 00 0 . 000 0 . 073 0 .3559 6 .8909 . OOOOE+00 . 1089E-02 0. 0000 338 0 . 40 0 .000 0 . 057 0 .3844 6 .2027 . OOOOE+00 .9864E-03 0 . 0000 339 0 . 10 0 .000 0 . 065 0 .3873 5 . 9843 . OOOOE+OO . 9538E-03 0. 0000 p 340 0, 00 0 . 000 0 . 065 0 .3818 5 . 9757 . OOOOE+00 . 9525E-03 0 . 0000 p 341 0 . 00 0 .000 0 .063 0 .3765 5 - 9789 . OOOOE+00 . 9530E-03 0. 0000 342 0, 00 0 .000 0 . 077 0 .3700 5 - 9805 , OOOOE+OO .9533E-03 0 . 0000 p 343 0, 00 0 .000 0 .078 0 .3635 5 , 9761 . OOOOE+00 .9526E-03 0. 0000 p 344 0 . 00 0 .000 0 . 071 0 .3574 5 - 9688 , OOOOE+OO . 9515E-03 0 . 0000 345 0 . 00 0 .000 0 .069 0 .3516 5 . 9516 . OOOOE+00 . 9489E-03 0 . 0000 mf 346 0, 00 0 .000 0 . 070 0 .3457 5 . 9095 , OOOOE+00 . 9426E-03 0 . 0000 HI 347 0. 00 0 .000 0 .088 0 .3383 5 .8967 .OOOOE+OO .9407E-03 0. 0000 HI 348 0. 00 0 .000 0 . 074 0 .3321 5 .8850 ,OOOOE+OO . 9390E-03 0 . 0000 HI 349 0 . 00 0 . 000 0 .047 0 .3281 5 . 8749 .OOOOE+OO . 9375E-03 0 . 0000 350 0. 00 0 . 000 0 , 043 0 .3244 5 .8666 .OOOOE+OO ,9362E-03 0 . 0000 IH 351 0 . 00 0 ,000 0 ,075 0 .3181 5 .8375 .OOOOE+OO .9319E-03 0. 0000 HI 352 0 . 00 0 , 000 0 ,065 0 .3126 5 .7833 , OOOOE+OO .9238E-03 0. 0000 353 0 . 00 0 .000 0 . 064 0 .3072 5 .7340 .OOOOE+OO .9164E-03 0. 0000 ii 354 0. 00 0 .000 0 .064 0 .3018 5 .6849 .OOOOE+OO .9091E-03 0. 0000 lg 355 0 . 00 0 ,000 0 .068 0 .2960 5 -6347 .OOOOE+OO .9015E-03 0. 0000 356 0. 00 0 . 000 0 . 061 0 .2909 5 .5849 . OOOOE+00 ,8941E-03 0. 0000 HI 357 0. 00 0 .000 0 . 061 0 .2858 5 .5384 . OOOOE+00 ,8871E-03 0. 0000 HI 358 0. 00 0 .000 0 .059 0 .2808 5 .4923 . OOOOE+OO .8802E-03 0. 0000 359 0 . 00 0 .000 0 ,052 0 .2764 5 .4475 . OOOOE+00 ,8735E-03 0. 0000 360 0 . 00 0 .000 0 , 054 0 .2718 5 .3390 .OOOOE+00 ,8572E-03 0 . 0000 Ma 361 0 . 00 0 .000 0 . 049 0 .2677 5 . 1286 .OOOOE+00 .8256E-03 0. 0000 Ml 362 0 . 00 0 . 000 0 . 048 0 .2636 4 . 9315 .OOOOE+00 ,7960E-03 0. 0000 MP 363 0 . 00 0 .000 0 . 045 0 .2598 4 .7429 .OOOOE+00 .7677E-03 0 . 0000 364 0 . 00 0 . 000 0 . 051 0 .2555 4 . 5529 .OOOOE+00 .7390E-03 0. 0000 Hi 365 0 . 00 0 .000 0 . 056 0 .2508 4 -3394 . OOOOE+OO . 7068E-03 0 . 0000 wm ******************************************************************************* ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1997 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION RUNOFF 1.10 0.00 0.000 2 .60 0 . 00 0 . 053 0 . 65 0.00 0.20 0.00 4.35 2.65 0.000 0.000 0.000 p 0.00 ^ 0.50 p 0.000 M p p 0.000 0.000 0.000 1.106 0.323 0.000 EVAPOTRANS PIRATION 0.712 2.481 0.897 0.210 0.200 0.000 0.000 0.000 0.000 0.334 1.968 1.966 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0121 0.0285 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.0000 0.0002 0.0005 0.0008 0.0012 0.0014 0.0019 0.0024 0.0029 0.0031 0.0056 0.0066 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.504 5.748 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 3.070 0.611 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1997 INCHES CU, FEET PERCENT PRECIPITATION 12 .05 43741.500 100.00 RUNOFF 1.482 5378.884 12 .30 EVAPOTRANS PIRATION 8 . 769 31832.355 72 . 77 PERC./LEAKAGE THROUGH LAYER 2 0.040606 147.398 0 . 34 AVG. HEAD ON TOP OF LAYER 2 0.6876 PERC./LEAKAGE THROUGH LAYER 4 0,026659 96 . 771 0-22 CHANGE IN WATER STORAGE 1.772 6433,479 14 . 71 SOIL WATER AT START OF YEAR 18.124 65789.617 SOIL WATER AT END OF YEAR 19.896 72223.094 SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR -ANNUAL WATER BUDGET BALANCE 0 .000 0 . 000 0.0000 0 . 000 0 . 000 0. 010 0 . 00 P 0.00 ii 0 . 00 ******************************************************************************* p ii HEAD #1 DRAIN #1 LEAK #1 LEAK #2 AVERAGE HEAD ON TOP OF LAYER 2 LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION) PERCOLATION OR LEAKAGE THROUGH LAYER 2 PERCOLATION OR LEAKAGE THROUGH LAYER 4 Hi P HI *******************************************************************************: DAILY OUTPUT FOR YEAR 1998' S IM DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD I I WATER #1 #1 #1 #2 •M R L IN. IN. IN. IN . /IN. IN. IN. IN. IN. HI •u 1 0 . 10 0 . 000 0 . 068 0 -2534 4.1299 . OOOOE+OO -6750E-03 0 . 0000 wm 2 0 . 70 0 . 000 0 . 067 0 .3062 3.9988 .OOOOE+OO .6552E-03 0 . 0000 mm 3 0 . 00 0 . 000 0 . 081 0 .2994 3.9745 .OOOOE+OO .6515E-03 0 .0000 4 0 .10 0 . 000 0 . 068 0 .3020 3.9478 .OOOOE+00 .6474E-03 0 . 0000 m 5 0 . 00 0 .000 0 . 072 0 .2960 3.9325 .OOOOE+OO .6451E-03 0 . 0000 m 6 0 . 00 0 .000 0 . 086 0 .2887 3.9055 .OOOOE+00 .6410E-03 0 .0000 HHH 7 0 . 00 0 . 000 0 .094 0 .2808 3.8718 .OOOOE+OO .6359E-03 0 . 0000 p 8 0 . 00 0 .000 0 . 112 0 .2715 3.8342 .OOOOE+OO .6302E-03 0.0000 ii 9 0 . 00 0 . 000 0 . 065 0 .2660 3.7988 .OOOOE+00 . 6248E-03 0.0000 HI 10 0 . 00 0 .000 0 . 095 0 .2580 3.7697 . OOOOE+OO . 6203E-03 0.0000 11 0.00 0 .000 0 . 114 0 .2485 3.7316 .OOOOE+OO . 6145E-03 0.0000 IH 12 3 . 00 0 .897 0 . 076 0 .4174 3.7012 .OOOOE+OO . 6099E-03 0.0000 PI 13 0 .30 0 . 023 0 .080 0 .4337 3.6854 .OOOOE+00 .6075E-03 0.0000 Hi 14 0.00 0 .000 0 .096 0 .4257 3.6567 .OOOOE+00 .6031E-03 0.0000 15 0,30 0 .003 0 .064 0 .4451 3 .8023 .OOOOE+OO .6253E-03 0.0000 HI 16 0.00 0 .000 0 .098 0 .4368 5.8113 .OOOOE+OO . 9280E-03 0.0000 p p 353 0 . 00 0 . 000 0 . 069 0 .3038 0 . 9484 , OOOOE+OO .1757E-03 0 . 0000 mm 354 0 .20 0 . 000 0 .066 0 .3150 1 . 0076 . OOOOE+OO .1856E-03 0 . 0000 mm 355 0 .00 0. 000 0 . 073 0 .3089 1 . 0575 . OOOOE+00 .1939E-03 0. 0000 356 0 .00 0. 000 0 . 070 0 .3030 1 . 1124 . OOOOE+00 .2031E-03 0 . 0000 357 0 .00 0. 000 0 . 073 0 .2969 1 . 1481 . OOOOE+OO .2090E-03 0 . 0000 mm 358 0 .00 0 . 000 0 .078 0 .2904 1 . 1743 .OOOOE+OO .2133E-03 0. 0000 359 0 . 12 0. 000 0 . 055 0 .2958 1 .1906 . OOOOE+00 .2160E-03 0. 0000 360 0 .08 0. 000 0 .066 0 .2969 1 . 2227 .OOOOE+OO .2213E-03 0. 0000 mm 361 0 . 00 0. 000 0 . 072 0 .2909 1 .2703 .OOOOE+00 .2291E-03 0. 0000 _ 362 0 . 00 0. 000 0 . 079 0 .2843 1 .3103 .OOOOE+OO .2356E-03 0 . 0000 363 0 . 04 0. 000 0 .055 0 .2830 1 .3533 .OOOOE+00 .2427E-03 0. 0000 364 0 .00 0 . 000 0 .047 0 .2791 1 .3821 .OOOOE+00 .2473E-03 0. 0000 wm 365 0 .00 0. 000 0 .081 0 . 2724 1 .4096 .OOOOE+00 .2518E-03 0. 0000 *******************************************************************************^ ******************************************************************************* MONTHLY TOTALS (IN INCHES) FOR YEAR 1998 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION 6 . 75 0 .00 0 . 90 0 . 00 0.00 0. 00 0.10 0 .71 0 . 05 2 . 87 0.00 2 .33 RUNOFF 1.843 0 . 000 0 . 000 0.000 0 . 000 0. 000 0 . 000 0.000 0. 000 0 .379 0.000 0 . 048 EVAPOTRANS PIRATION 2 . 871 0 . 000 1.922 0 . 000 2.238 0 . 000 0 .555 0 . 065 0 . 050 1 . 125 0 . 000 2.269 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.0309 0.0324 0.0186 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.00 62 0.0053 0.0055 0.0001 0.0000 0.0000 0.0000 0.0002 0.0005 0.0011 0.0016 0.0051 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) AVERAGE DAILY HEAD ON 6 .294 7 ,352 3 . 647 0.053 0,000 0,000 TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.602 STD. DEVIATION OF DAILY HEAD ON TOP OF LAYER 2 2.695 1.042 1.426 0.168 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.571 ******************************************************************************* ******************************************************************************* ANNUAL TOTALS FOR YEAR 1998 INCHES CU. FEET PERCENT 13.71 49767.301 100.00 P H PRECIPITATION RUNOFF EVAPOTRANS PIRATION PERC./LEAKAGE THROUGH LAYER 2 AVG. HEAD ON TOP OF LAYER 2 PERC./LEAKAGE THROUGH LAYER 4 CHANGE IN WATER STORAGE SOIL WATER AT START OF YEAR SOIL WATER AT END OF YEAR SNOW WATER AT START OF YEAR SNOW WATER AT END OF YEAR ANNUAL WATER BUDGET BALANCE 2 .270 11.095 0.085657 1.4956 0.025537 0 .319 19.896 20.215 0 . 000 0 . 000 0.0000 8241.064 40274.922 310.935 92.698 1158,615 72223.094 73381.711 0 . 000 0 .000 -0.001 16.56 80 . 93 0 . 62 0 .19 2 .33 0 . 00 0 . 00 0 . 00 ******************************************************************************* ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998 PRECIPITATION TOTALS JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC 5.03 0.06 3 .12 0 . 04 2 .51 0.11 0 . 90 0 . 72 0. 27 1. 02 0 .21 1.29 STD, DEVIATIONS 4 .48 0.10 2.13 0,10 3,20 0.31 1.53 1.32 0. 31 1. 07 0.31 1.34 RUNOFF TOTALS 1.736 0 . 000 0.743 0 . 000 0 .778 0 . 000 0 . 079 0 . Ill 0.000 0.070 0.000 0 . 034 STD. DEVIATIONS 3.224 0.000 1.190 0.000 1. 816 0 . 000 0 .248 0.350 0 . 000 0 .148 0 .000 0.076 EVAPOTRANS PIRATION TOTALS 2 .268 0.058 2 .279 0 .043 2.390 0. 028 1 . 811 0.112 0.602 0 . 623 0.256 1.237 STD. DEVIATIONS 0 . 762 0.089 0.730 0.096 1.139 0 .069 1.180 0. 117 0 . 609 0.566 0.436 0 .689 PERCOLATION/LEAKAGE THROUGH LAYER 2 TOTALS 0,0129 0.0000 0 .0147 0.0000 0.0167 0.0000 0.0085 0 . 0000 0.0007 0.0012 0.0000 0 .0033 STD. DEVIATIONS 0 . 0158 0 - 0000 0 . 0172 0 . 0000 0.0150 0.0000 0 . 0105 0 - 0000 0.0011 0 .0038 0.0000 0.0089 PERCOLATION/LEAKAGE THROUGH LAYER 4 TOTALS 0 . 0027 0 . 0004 0 .0032 0 .0005 0 . 0039 0.0006 0 . 0027 0 - 0008 0 . 0007 0.0011 0.0003 0.0017 STD. DEVIATIONS 0.0024 0 .0006 0 . 0022 0.0008 0 . 0026 0 . 0009 0 . 0026 0.0009 0.0007 0.0017 0 .0005 0 .0023 AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) p p DAILY AVERAGE HEAD ON TOP OF LAYER 2 AVERAGES 2.6168 3.2820 3.3675 1.7359 0.1201 0.0000 0.0000 0.0000 0.0000 0.0000 0.2504 0.6591 STD. DEVIATIONS 3.2588 3.8951 3.0832 2.1761 0.2058 0.0000 0.0000 0.0000 0.0000 0.0000 0.7 917 1.7987 ******************************************************************************* ******************************************************************************* P li AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998 P INCHES CU, FEET PERCENT HI PRECIPITATION 15.27 ( 6.145) 55444.6 100.00 RUNOFF 3.551 ( 4.7334) 12888.76 23.246 p EVAPOTRANSPIRATION 11.707 ( 2.5649) 42496.52 76.647 wm PERCOLATION/LEAKAGE THROUGH 0.05803 ( 0.04643) 210.652 0.37993 ^ LAYER 2 AVERAGE HEAD ON TOP 1.003 ( 0.825) M OF LAYER 2 HI PERCOLATION/LEAKAGE THROUGH 0.01849 ( 0.00701) 67.136 0.12109 MI LAYER 4 ^ CHANGE IN WATER STORAGE -0.002 ( 1.3077) -7.80 -0.014 •« ******************************************************************************* * ii ****************************************************************************** p IH' PEAK DAILY VALUES FOR YEARS 198 9 THROUGH 1998 m (INCHES) (CU. FT. ) Hi' PRECIPITATION 4.00 14520.000 RUNOFF 3.707 13456.8555 PERCOLATION/LEAKAGE THROUGH LAYER 2 0.001850 6.71505 AVERAGE HEAD ON TOP OF LAYER 2 12.000 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000255 0.92602 SNOWWATER 0.00 0.0000 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040 ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 1998 LAYER (INCHES) (VOL/VOL) 1 3.2688 0.2724 2 0.0000 0.0000 3 7.9397 0.3308 4 5.2869 0.2203 SNOW WATER 0.000 ****************************************************************************** ******************************************************************************