HomeMy WebLinkAbout; San Marcos Landfill Closure & Maint Plan Part 2; San Marcos Landfill Closure & Maint Plan Part 2; 2002-04-01Ex+Rte5- PM
p
P
P
P
Wed Dec 12, 2001 18:23:22
SAN MARCOS LANDFILL
Scenario Report
Page 1-1
Scenario: Ex+Rte5• -PM
Command: Default Command
Volxime; Ex+Rte5 • •PM
Geometry: Ex-AM
Impact Fee; Default Impact Fee
Trip Generation: Default Trip Generation
Trip Distribution: Default Trip Distribution
Paths; Default Paths
Routes: Default Routes
Configuration: Default Configuration
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
p
P
P
Ex+Rte5-WM Wed Dec 12, 2001 18:23:23
SAN MARCOS LANDFILL
Page 3-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Altemative)
*********************************************************** ****^^,^^,^^^^^^^^^^^^^^^
Intersection #3 Olivenhain Road/El Ccunino Real
********************************************************* ***********^^.t^^^^,.^.^.^^.^^_^^
Cycle (sec): 135 Critical Vol./Cap. (X): 1,150
Loss Time (sec); 12 (Y+R = 4 sec) Average Delay (sec/veh); 72.9
Optimal Cycle: 180 Level Of Service; E
********************************** ********************************^,^.^^^^,^^.^^^^^^.^^
Approach: North Bound South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
Min. Green:
Lanes:
Protected
Ovl
0 0 0
2 0 3 0 1
II Protected
Include
0 0 0
2 0 3 1 0
1 I
Volxime Module:
Base Vol:
Growth Adj :
Initial Bse:
User Adj:
PHF Adj:
PHF Volume:
Reduct Vol:
Reduced Vol:
PCE Adj:
MLF Adj:
Final Vol.:
I
II
Protected
Include
0 0 0
2 0 3 0 1
I I Protected
Include
0 0 0
2 0 2 1 0
I I I I
196 1151 1056 155 1024 326 451 826 250 713 702 114 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00
198 1151 1056 155 1024 325 451 826 250 713 702 114
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90
220 1279 1173 172 1138 362 501 918 278 792 780 127
0 0 0 0 0 0 0 0 0 0 0 0
220 1279 1173 172 1138 362 501 918 278 792 760 127
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1,00 1.00 1,00 1.00 1.00 1.00 1-00 1.00
220 1279 1173 172 1136 362 501 918 278 792 780 127
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900
Adjustment; 0.84 0.83 0.77 0-84 0.80
Lanes: 2.00 3.00 1.00 2.00 3.03
Final Sat.: 3163 4715 1468 3183 4598
II--• Capacity Analysis Module;
II
1900 1900 1900
0.60 0.84 0.83
0.97 2.00 3.00
1453 3183 4715 II
II-
1900 1900 1900 1900
0.77 0,84 0.81 0.81
1.00 2.00 2.58 0.42
1468 3183 3970 646
Vol/Sat; 0. 07 0. 27 0. 80 0. 05 0. 25 0. 25 0. 16 0 .19 0. 19 0. 25 0. 20 0. 20
Crit Moves; * * ** ** * * * *** ** **
20 20
Green/Cycle: 0. 11 0. 48 0. 69 0. 05 0-41 0. 41 0-17 0 .17 0. 17 0. 22 0. 21 0. 21 Volume/Cap; 0. 60 0. 57 1. 15 1. 15 0. 60 0. 60 0. 92 1 .15 1. 12 1. 15 0-92 0. 92 Delay/Veh; 59 .7 25 ..5 99 .6 183 .9 31 .6 31 .6 75 .5 138 148 .7 136 .6 64 .9 64 .9
User DelAdj; 0. 92 0. 92 0. 92 0. 92 0. 92 0. 92 0. 92 0 .92 0. 92 0. 92 0. 92 0. 92 P
AdjDel/Veh: 54 .8 23 .4 91 .5 168 .8 29 .0 29 .0 69 .3 127 136 .5 125 .4 59 .6 59 .6 DesignQueue: 15 53 32 12 53 17 32 50 16 49
59
48
59
8 Ml
************ *** ***** *** * ** *** *** ***** *** ** * ****** **** ******* ****** ***** * * * ** * ***
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
p
p
p
p
PI
p
p
p
Ex+Rte5-m Wed Dec 12, 2001 18:23:23
SAN MARCOS LANDFILL
Page 4-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative)
********************************************************************************
Intersection #5 Encinitas Blvd/I-5 NB Ramps
********************************************************************************
Cycle (sec): 80 Critical Vol./Cap. (X): 1.035
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 42.2
Optimal Cycle; 180 Level Of Service: D
********************************************************************************
Approach; North Boxmd South Bound East Bound west Boxmd
Movement; L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
II Split Phase
Include
Split Phase
Include
1 t I I Protected
Include
Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Ml Lanes: 0 10 0 1 0 c 1 0 0 0 10 2 0 0 0 0 2 0 1
gg 1
Volxime Module:
II 1 1 1
Base Vol: 191 1 523 0 0 0 222 906 0 0 1100 574
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1,00 1.00
PI Initial Bse: 191 1 523 0 0 0 222 906 0 0 1100 574
User Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1.00 1.00 1.00 1.00
P PHF Adj; 0.90 0.90 0.90 0.90 0.90 0 .90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volume; 212 1 581 0 0 0 247 1007 0 0 1222 638
HI Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 212 1 581 0 0 0 247 1007 0 0 1222 638
P PCE Adj: 1.00 1.00 1.00 1.00 1.00 1 ,00 1.00 1.00 1.00 1-00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00
wm Final Vol.: 212 1 581 0 0 0 247 1007 0 0 1222 638
1
Saturation Flow Module;
1 I 1 ! ! 1 1
Ml Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 0.85 0.85 0.85 1.00 1.00 1 .00 0.90 0.90 1.00 1-00 0.90 0.81
mm Lanes: 0.99 0.01 1.00 0.00 0.00 0 .00 1.00 2.00 0.00 0.00 2.00 1.00
Final Sat,: 1607 8 1615 0 0 0 1718 3437 0 0 3437 1537
Capacity Analysis Module;
Vol/Sat: 0.13 0.13 0.36 0.00 0.00 0 .00 0.14 0.29 0.00 0.00 0.36 0.41
Crit Moves; **** * * ** ****
Green/Cycle: 0.35 0.35 0.35 0.00 0.00 0 .00 0.14 0,54 0.00 0.00 0.40 0.40
Volxime/Cap: 0.38 0.38 1.03 0.00 0.00 0 .00 1.03 0.54 0.00 0.00 0.89 1.03
Delay/Veh: 20.0 20.0 73.4 0.0 0,0 0.0 102.1 12.3 0.0 0.0 29.6 69.5
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1.00 1,00 1.00 1.00
AdjDel/Veh; 20.0 20.0 73,4 0.0 0,0 0.0 102 .1 12.3 0.0 0.0 29.6 69.5
Hw DesignQueue; 6 0 18 0 0 0 10 22 0 0 36 19
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex+Rte5-PM Wed Dec 12, 2001 18:23:23
SAN MARCOS LANDFILL
Page 5-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Altemative)
***********************************************************************^^^,^,f,t,^.^^.^
Intersection #5 Encinitas Blvd/I-5 SB Ramps
******************************** *******************************^^^^i^^^^.^^^^^.^.^^.^^^^^
Cycle (sec): 110 Critical Vol./Cap. (X): 0.887
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 37.9
Optimal Cycle; 100 Level Of Service: D
*********************************************************************^^*.f^.f^.^,^^^..^.f^.^..^
Approach: North Boxmd South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
Min. Green:
Lanes:
Split Phase
Include
0 0 0
0 0 0 0 0
II Split Phase
Include
0 0 0
0 10 0 1
11
Protected
Include
0 0 0
0 0 110
II Protected
Include
0 0 0
1 0 2 0 0
Volxime Module:
Base Vol;
Growth Adj:
Initial Bse:
User Adj:
PHF Adj:
PHF Volume:
Reduct Vol:
Reduced Vol:
PCE Adj:
MLF Adj:
Final Vol.:
I
It
0 0 0 327 1 168 0 715 136 457 604 0
1 .00 1 .00 1 .00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00
0 0 0 327 1 188 0 715 136 457 604 0
1 .00 1 .00 1 .00 1,00 1 .00 1.00 1 .00 1.00 1,00 1.00 1.00 1 .00
0 .90 0 ,90 0 .90 0.90 0 .90 0.90 0 .90 0.90 0.90 0,90 0.90 0 .90
0 0 0 363 1 209 0 794 151 506 671 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 363 1 209 0 794 151 508 671 0
1 .00 1 .00 1 ,00 1.00 1 ,00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00
1 .00 1 .00 1 .00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1 .00
0 0 0 363 1 209 0 794 151 508 671 0
Saturation Flow Module: II
Sat/Lane;
Adjustment:
Lanes:
Final Sat.:
1900 1900
1.00 1.00
0.00 0,00
0 0
1900
1,00
0.00
0
1900 1900
0.81 0.81
0.99 0.01
1533 4
II
1900 1900 1900
0.81 1.00 0.88
1.00 0.00 1.68
1537 0 2818
II
Capacity Analysis Module;
1900 1900 1900 1900
0.88 0.90 0.90 1.00
0.32 1.00 2.00 0.00
536 1718 3437 0
It---I
Vol/Sat: 0. 00 0. 00 0. 00 0. 24 0. 24 0. 14 0. 00 0. 28 0. 28 0. 30 0. 20 0. 00
Crit Moves: ** ** ** ** ** **
Green/Cycle; 0, 00 0. 00 0. 00 0. 27 0, 27 0. 27 0. 00 0. 32 0. 32 0. 33 0-55 0. 00 Volume/Cap: 0, 00 0. 00 0. 00 0. 89 0. 89 0. 51 0. 00 0. 89 0. 89 0. 89 0, 30 0. 00 Delay/Veh: 0 .0 0 .0 0 .0 58 .8 58 .8 35 .3 0 .0 44 .8 44 .8 50 .1 8 .4 0 .0
User DelAdj: 1. 00 1. 00 1. 00 1, 00 1. 00 1. 00 1. 00 1. 00 1. 00 1-00 1. 00 1, 00
AdjDel/Veh: 0 .0 0 ,0 0 .0 58 .8 58 .8 35 .3 0 .0 44 .8 44 .8 50 .1 8 .4 0 .0 DesignQueue; 0 0 0 17 0 10 0 35 7 22 15 0
************ *** ***** *** *** ****** ***** * * * ** * ****** ** *** * * * * * * **-. ** * * ***** *** * * *
**•
p
p
p
m
p
P
P
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
p
^M
Ex+Rte5-PM
P
Wed Dec 12, 2001 16:23:23
SAN MARCOS LANDFILL
Page 6-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative) ********************************************************************************
Intersection #7 El Camino Real & Garden View Road
********************************************************************************
Cycle (sec): 100 Critical Vol./Cap. (X): 0.989
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 46.4
Optimal Cycle: 176 Level Of Service: D ********************************************************************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
p Control: Protected Protected Protected Protected
p Rights: Include Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
wm Lanes; 1 1 0 3 0 1 1 1 0 3 0 1 10 1 1 0 1 1 D 1 1 0
P Volxime Module; P Base Vol: 206 1790 83 238 1366 131 105 190 282 179 200 261
Growth Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00
wm Initial Bse: 206 1790 83 238 1368 131 105 190 282 179 200 261
User Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ml PHF Adj; 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volume: 229 1989 92 264 1520 146 117 211 313 199 222 290
•p-Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol; 229 1989 92 264 1520 146 117 211 313 199 222 290
tm PCE Adj: 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00
MLF Adj: 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00
mm Final Vol.: 229 1989 92 264 1520 146 117 211 313 199 222 290
um Saturation Flow Module:
^m Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 0.90 0.87 0,81 0.90 0.87 0.81 0.95 0.95 0.81 0,95 0,95 0.81
Lanes: 1.00 3.00 1,00 1.00 3.00 1.00 1.00 1.00 1,00 1.00 1.00 1,00
Ml
Final Sat.: 1718 4938 1537 1718 4938 1537 1805 1805 1534 1805 1805 1534
Capacity Analysis Module;
IP" Vol/Sat; 0.13 0.40 0.06 0.15 0.31 0.09 0.05 0.12 0.20 0.11 0.12 0.19
Crit Moves: * * * * **** * * * * * * * *
Green/Cycle; 0.17 0.41 0.41 0.16 0.39 0.39 0.08 0.21 0.21 0.11 0.24 0.24
Volxime/Cap: 0-78 0.99 0.15 0.99 0.78 0.24 0.80 0.57 0.99 0.99 0.52 0.80
Delay/Veh: 52.8 47.0 18.8 94.2 28.8 20.6 71.0 36.5 75.8 104.6 33.7 43.0
User DelAdj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MM AdjDel/veh: 52.8 47.0 18.8 94.2 28.8 20.6 71.0 36.5 75.8 104.6 33.7 43.0
DesignQueue: 11 72 3 13 55 5 6 10 14 10 10 13
********************************************************************************
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex+Rte5- PM Wed Dec 12, 2001 18:23:23
SAN MARCOS LANDFILL
Page 7 -1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative) ********************************************************************************
Intersection #8 Encinitas Blvd & Balour Drive
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X): 0.974
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh); 29.3
Optimal Cycle: 108 Level Of Service: C ********************************************************************************
Approach:
Movement;
North Bound
L-T-R
South Bound
L-T-R
East Boxmd
L-T-R
West Bound
L-T-R
Control:
Rights:
Protected
Include
I I Protected
Include
Protected
Include
Protected
Include
Min. Green;
Lanes:
0
1 0
0
0
0
0 1
0
0 0
0
0 0
0
0
0 0
0 0 1 1
0
0
0 0
2 0 2 0
0
0
Volxime Modul e;
Base vol: 80 0 354 0 0 0 0 1372 43 374 1438 0
Growth Adj: 1, .00 1, .00 1.00 1, .00 1 .00 1, .00 1, .00 1.00 1. .00 1.00 1.00 1, .00
Initial Bse: 80 0 354 0 0 0 0 1372 43 374 1438 0
User Adj: 1, .00 1, .00 1.00 1, .00 1 .00 1, .00 1. .00 1.00 1. .00 1.00 1.00 1, .00
PHF Adj; 0, .90 0, .90 0.90 0. .90 0 .90 0. .90 0. .90 0.90 0 .90 0.90 0.90 0, .90
PHF Volxime; 89 0 393 0 0 0 0 1524 48 415 1598 0
Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 89 0 393 0 0 0 0 1524 48 416 1598 0
PCE Adj; 1, .00 1, .00 1.00 1. .00 1 .00 1. .00 1, .00 1.00 1. .00 1.00 1.00 1. .00
MLF Adj; 1, .00 1, .00 1.00 1. .00 1 .00 1. .00 1, .00 1.00 1, .00 1.00 1.00 1. .00
Final Vol.: 69 0 393 0 0 0 0 1524 48 416 1598 0
-I It--
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900
Adjustment: 0.95 1.00 0.85 1-00 1.00
Lanes: 1.00 0.00 1.00 0-00 0.00
Final Sat.: 1805 0 1615 0 0 II
--••It----
1900 1900 1900 1900
1.00 1.00 0.90 0.90
0.00 0.00 1.94 0.06
0 0 3315 104
II
1900 1900 1900
0.88 0.90 1.00
2.00 2.00 0.00
3334 3437 0
Capacity Analysis Module;
Vol/Sat: 0.05 0.00 0.24
Crit Moves; ****
Green/Cycle: 0.25 0-00 0.25
Volxime/Cap: 0.20 0.00 0.97
Delay/Veh: 18.0 0.0 60.1
User DelAdj: 1.00 1.00 1.00
AdjDel/Veh: 18.0 0.0 60.1
DesignQueue: 2 0 10
*****************************
0.00 0.00 0-00 0.00 0.46 0.46 0.12 0.46 0.00
0.00 0.00
0.00 0.00
0.0 0.0
1.00 1.00
0.0 0.0
0 0
0.00
0.00
0.0
1.00
0.0
0
****
0.00 0.47
0.00 0.97
0.0 32-0
1.00 1.00
0,0 32.0
0 30
0.47
0.97
32.0
1.00
32.0
1
0.13 0.60
0.97 0.77
62.7 10.9
1.00 1.00
62.7 10-9
12 24
0.00
0.00
0.0
1.00
0.0
0
m
p
m.
m
p
***************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex+Rte5-PM Wed Dec 12, 2001 18:23:23
SAN MARCOS LANDFILL
Page 8-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative) ****************************************************** ************^,./,^,^^^^^,^^,^^^^.^^^
Intersection #15 Encinitas Blvd/E.C.R.
********************************************************************************
Cycle (sec): 130 Critical Vol./Cap. (X); 1.079
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 76.2
Optimal Cycle: 180 Level Of Service; E
****************************************************** **********.i,^,.^^,.^.^.^^.^.^.f,^,^^^,^^
Approach: North Bound South Boxmd East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
Protected
Include
I I Protected
Include
I I Protected
Include
tl Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes; 1 1 D 2 1 0 2 1 0 2 1 0 2 0 1 1 0 1 1 D 1 1 0
Ml Volxime Module;
Base Vol: 199 984 171 185 1131 334 364 661 146 151 794 353
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00
•M Initial Bse: 199 984 171 185 1131 334 364 661 145 151 794 353
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P PHF Adj; 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volume: 221 1093 190 206 1257 371 404 734 162 168 882 392
Mi Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 221 1093 190 206 1257 371 404 734 162 168 882 392
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mm Final Vol.: 221 1093 190 206 1257 371 404 734 162 168 882 392
Saturation Flow Module:
wm Sat/Lane; 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 0.90 0.85 0-85 0.68 0.84 0.84 0.88 0.88 0.88 0.90 0.86 0.86 mm Lanes: 1.00 2.56 0-44 2.00 2.32 0-68 2.00 1.64 0.36 1.00 1.38 0.62
•H Final Sat.: 1718 4114 715 3334 3683 1087 3334 2739 605 1718 2270 1009
Capacity Analysis Module;
mi Vol/Sat: 0.13 0.27 0.27 0.06 0.34 0.34 0.12 0.27 0.27 0.10 0.39 0.39
Crit Moves: **** * * * * **** ****
mm Green/Cycle: 0.12 0.35 0.35 0.08 0.32 0.32 0.11 0.35 0.35 0.13 0.36 0.36
Volume/Cap; 1.08 0.75 0.75 0.75 1.08 1-08 1.08 0.77 0,77 0.77 1.08 1.08
Delay/Veh; 142.8 39.0 39.0 69.5 92.3 92.3 127.1 41.3 41.3 70.9 92.0 92.0
User DelAdj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00
AdjDel/Veh: 142.8 39.0 39.0 69.5 92.3 92-3 127-1 41.3 41.3 70.9 92-0 92.0
MM DesignQueue: 15 54 9 14 67 20 27 37 8 11 45 20
***«****************************************************************^^^^^^^^^^^^
Traffix 7-5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex-AM Wed Dec 12, 2001 18:28:03 Page 1-1
SAN MARCOS LANDFILL Ml
Scenario Report wm
Scenario: Ex-AM
Command: Default Command mw
Volxime: Ex-AM
Geometry: Ex-AM
Impact Fee; Default Impact Fee
Trip Generation: Default Trip Generation wm
Trip Distribution; Default Trip Distribution
Paths: Default Paths MM
Routes; Default Routes
Configuration: Default Conf igura t ion •M
m
p
P
k
m
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc- Licensed to LLG, SAN DIEGO, CA
P
P
P
Ex-AM Wed Dec 12, 2001 18:28:04
SAN MARCOS LANDFILL
Page 3-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Alternative)
********************************************************************** *****.^^,^^^,^,
Intersection #5 9th Ave/I-15 NB Ramps
********* **********************************************i,****************^.^^^^i,^,i.
Cycle (sec): 60 Critical Vol./Cap, (X): 0.688
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 15.8
Optimal Cycle: 45 Level Of Service: B
******************************* ********************************************.f,.^.^^^^
Approach: North Bound South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Permitted
Include
Permitted
Include
II Protected
Include
I I Protected
Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Ml Lanes; 110 0 1 0 ' 0 0 0 0 1 ' 0 2 0 0 0 1 0 2 0 1
Volume Module:
Base Vol; 752 27 183 0 0 0 87 672 0 0 854 182
Growth Adj: 1,00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IH Initial Bse: 752 27 183 0 0 0 87 672 0 0 854 182
p User Adj: 1.00 1.00 1,00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1.00
PHF Adj; 0.90 0.90 0.90 0,90 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0,90
PHF Volume: 835 30 203 0 0 0 97 747 0 0 949 202
Hi Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol; 836 30 203 0 0 0 97 747 0 0 949 202
HI PCE Adj: 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1,00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00
MM Final Vol.: 836 30 203 0 0 0 97 747 0 0 949 202
Saturation Flow Module: '
Sat/Lcme: 1900 1900 1900 1900 1900 1900 19 00 1900 1900 1900 1900 1900
Adjustment: 0.85 0,85 0.85 1.00 1.00 1,00 0.95 0.95 1.00 1.00 0.95 0,85 M" Lanes; 1.93 0.07 1.00 0,00 0.00 0.00 1.00 2.00 0.00 0.00 2.00 1.00
Ml Final Sat.: 3118 112 1615 0 0 0 1805 3610 0 0 3510 1615
Capacity Analysis Module:
MM Vol/Sat: 0,27 0.27 0.13 0.00 0.00 0.00 0.05 0.21 0.00 0.00 0.26 0.13
Crit Moves: **** **** ****
0.13
P Green/Cycle: 0.39 0.39 0.39 0.00 0.00 0.00 0,08 0.46 0.00 0.00 0.38 0.38
Volume/Cap: 0.69 0.69 0.32 0.00 0.00 0.00 0.69 0.45 0.00 0.00 0.69 0.33
Delay/Veh: 15.9 16.9 13.1 0.0 0.0 0,0 40.3 11.2 0.0 0.0 17.0 13.4
m User DelAdj: 1.00 1,00 1.00 1.00 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 16,9 16.9 13.1 0.0 0,0 0.0 40.3 11.2 0,0 0.0 17.0 13.4
DesignQueue: 18 1 4 0 0 0 3 14 0 0 21 4
**************************************** **********************************^,^^^,^^^,^
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
Ex-AM Wed Dec 12, 2001 16:28:04
SAN MARCOS LANDFILL
Page 4-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Altemative)
********************************************************************************
Intersection #6 9th Ave/I-15 SB Ramps
********************************************************************************
Cycle (sec); 60 Critical Vol./Cap. (X): 0.566
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 7.0
Optimal Cycle: 37 Level Of Service; A
********************************************************************************
Approach; North Bound South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Permitted
Include
Permitted
Include
Protected
Include
Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 0 0 0 0 0 110 0 1
I 1
0 0 2 0 1 2 0 2 0 0
. 1
MM
1
Volxime Module:
I 1 1 1 1 1 1
b4 Base Vol: 0 0 0 95 47 30 0 736 550 182 1459 0
Growth Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Initial Bse; 0 0 0 95 47 30 0 738 550 182 1459 0 Ml
User Adj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Adj; 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Ml
PHF Volxime: 0 0 0 106 52 33 0 820 611 202 1621 0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
•
Reduced vol: 0 0 0 106 52 33 0 820 611 202 1621 0
PCE Adj; 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1,00 1,00 1.00 Ml
MLF Adj; 1.00 1,00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00
Final Vol.: 0 0 0 106 52 33 0 820 611 202 1621 0 p
1
Saturation Flow Module;
1 1 1 1
Sat/Lane: 1900 1900 1900 19 00 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 1.00 1.00 1.00 0.85 0.85 0.85 1.00 0.95 0-85 0,92 0,95 1.00
Lanes: 0.00 0.00 0.00 1,34 0-66 1.00 0.00 2.00 1-00 2,00 2,00 0.00 p
Final Sat.: 0 0 0 2167 1063 1615 0 3610 1615 3502 3610 0 IH 1
Capacity Analysis Module; 1 1 - - - -1 1 1 1 • 1
Vol/Sat: 0.00 0.00 0.00 0.05 0-05 0.02 0.00 0-23 0.38 0.06 0.45 0-00 HI Crit Moves; **** **** **** Green/Cycle; 0.00 0.00 0.00 0.08 0.08 0.08 0.00 0.67 0.67 0.10 0.77 0.00
Volxime/Cap; 0.00 0.00 0.00 0.59 0.59 0.24 0.00 0.34 0.57 0.57 0.59 0,00
Delay/Veh: 0.0 0.0 0.0 29.8 29 .8 26.7 0.0 4.4 6.1 27.9 3.3 0.0
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1-00 P
AdjDel/Veh; 0,0 0.0 0.0 29.8 29.8 26.7 0.0 4.4 6.1 27.9 3.3 0.0
DesignQueue: 0 0 0 3 2 1 0 10 7 6 14 0
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
P
p
p
p
p
p
p
p
Ex-AM Wed Dec 12, 2001 18:26:04
SAN MARCOS LANDFILL
Page 5-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Alternative) ************************************************** ****************^,^,.^^,.^^^^^.^.^^.^^^^
Intersection #7 Auto Prk Wy/Valley Pkwy
************************************************************ **^,^,^^^^^^^^.^^.f,^^^^.^^^^^^^
Cycle (sec): 100 Critical Vol./Cap. (X): 0.914
Loss Time (sec); 12 (Y+R = 4 sec) Average Delay (sec/veh): 38.4
Optimal Cycle: 117 Level Of Service: D
******************************************** *******************^^,^^^^.^^^,.^^.^^^^^^^^^^^
Approach: North Bound South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control;
Rights:
Protected
Include
I I Protected
Include
1 I Protected
Include
Protected
Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 2 0 1 1 0 2 1 0 1 1 0 2 ' 0 3 0 1 2 ' 0 3 0 1
Volume Module:
Base Vol: 267 623 96 176 843 569 194 371 303 154 590 48
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Initial Bse: 267 623 96 175 843 569 194 371 303 154 590 48 User Adj: 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Adj: 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90 PHF Volume; 297 692 107 196 937 632 216 412 337 171 656 53 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 297 692 107 196 937 632 216 412 337 171 656 53 PCE Adj; 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00
Final Vol.: 297 592 107 196 937 632 216 412 337 171 656 53
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 0.92 0.93 0.93 0.92 0.89 0,89 0.92 0.91 0.85 0.92 0.91 0.85
Lemes: 2.00 1.73 0.27 2.00 1.19 0.81 2.00 3.00 1.00 2.00 3.00 1.00 Final Sat.; 3502 3064 474 3502 2027 1367 3502 5187 1615 3502 5187 1615
Capacity Analysis Module:
Vol/Sat: 0.08 0.23 0.23 0,06 0.46 0.46 0.06 0.08 0.21 0.05 0.13 0.03
Crit Moves: **** **** **** ****
0.03
Green/Cycle; 0.09 0.48 0.48 0.12 0.51 0.51 0.09 0.23 0.23 0.05 0.19 0.31 Volxime/Cap: 0.91 0.47 0,47 0.47 0.91 0.91 0.67 0.35 0-91 0.91 0-67 0,11
Delay/Veh: 74.1 17.7 17.7 42.0 30,7 30.7 49.2 32.5 64.3 89.4 39.4 24.8
User DelAdj: 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 74.1 17.7 17.7 42.0 30.7 30.7 49.2 32.5 64-3 89-4 39.4 24,8
DesignQueue: 15 21 3 10 29 19 11 18 15 9 30 2
************************************* *********************************^*.^^,^^^,^^^^^
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex-AM Wed Dec 12, 2001 18:28:04
SAN MARCOS LANDFILL
Page 6-1
Level Of Service Computation Report
2000 HCM Unsignalized Method (Base Volxime Alternative)
********************************************************************************
Intersection #9 Harmony Grove/Questhaven Road
********************************************************************************
Average Delay (sec/veh): 10.2 Worst Case Level Of Service: B
********************************************************************************
Approach: North Bound South Boxmd East Boxmd West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
Lanes;
Stop Sign
Include
0 0 1! 0 0
I I Stop Sign
Include
0 1! 0 0
Uncontrolled
Include
0 10 0 0
Uncontrolled
Include
0 10 0 0
I I I I Volxime Module:
Base Vol:
Growth Adj:
Initial Bse:
User Adj:
PHF Adj:
PHF Volxime
Reduct Vol
Final Vol.
0 0 0 3 0 7 1 70 0 1 274 0
1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1,00 1 .00 1 .00 1.00 1 .00
0 0 0 3 0 7 1 70 0 1 274 0
1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00
0 .90 0 .90 0.90 0.90 0 .90 0 .90 0 .90 0.90 0 .90 0 -90 0.90 0 .90
0 0 0 3 0 8 1 78 0 1 304 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 8 1 76 0 1 304 0
II Critical Gap Module;
Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2
FollowUpTim:XXXXX xxxx xxxxx 3.5 xxxx 3.3
II I I
4.1 xxxx XXXXX
2.2 XXXX XXXXX
4.1 xxxx XXXXX
2.2 xxxx XXXXX
Capacity Module:
Cnflict Vol: xxxx xxxx xxxxx
Potent Cap.: xxxx xxxx xxxxx
Move Cap.; xxxx xxxx xxxxx
I I II I I
II
Level Of Service Module:
Stopped Del:xxxxx xxxx xxxxx
LOS by Move: * * *
Movement; LT - LTR - RT
Shared Cap.: xxxx 0 xxxxx
Shrd StpDel:xxxxx xxxx xxxxx
Shared LOS: * * *
ApproachDel: xxxxxx
ApproachLOS: *
387 xxxx 304
621 xxxx 740
620 xxxx 740 II
304 xxxx xxxxx
1268 xxxx xxxxx
1268 xxxx xxxxx
78 xxxx xxxxx
1534 xxxx xxxxx
1534 xxxx xxxxx
xxxxx xxxx xxxxx
* * *
LT - LTR - RT
xxxx 699 xxxxx
xxxxx 10.2 xxxxx
* B *
10.2
B
7.8 xxxx xxxxx
A * *
LT - LTR - RT
xxxx xxxx xxxxx
7.8 xxxx xxxxx
A * *
xxxxxx
7.3 xxxx xxxxx
A * *
LT - LTR - RT
xxxx xxxx xxxxx
7.3 xxxx xxxxx
A * *
xxxxxx
ii
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
^M
p
Ex-PM
M
Wed Dec 12, 2001 16:28:14
SAN MARCOS LANDFILL
Page 1-1
p Scenario Report
Scenario: Ex-PM
IH Command: Default Command
Ml Volxime: Ex-PM
Geometry: Ex-AM
Impact Fee: Default Impact Fee
HI Trip Generation: Default Trip Generation
Trip Distribution: Default Trip Distribution
Paths; Default Paths
Routes: Default Routes
IP Configuration: Default Configuration
p
p
p
p
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
k
p
P
p
Ex-PM Wed Dec 12, 2001 18:28:14
SAN MARCOS LANDFILL
Page 3-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Altemative) ********************************************************************************
Intersection #5 9th Ave/I-15 NB Ramps
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X): 0-693
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh); 15.9
Optimal Cycle: 45 Level Of Service: B
********************************************************************************
Approach:
Movement:
North Boxmd
L-T-R
South Bound
L-T-R
East Bound
L-T-R
West Bound
L-T-R
Control:
Rights:
Permitted
Include
I I Permitted
Include
Protected
Include
Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 110 0 1 0 0 0 0 0 10 2 0 0 0 1 D 2 0 1
Volxime Module; '
Base Vol: 548 2 218 0 0 0 229 1006 0 0 690 377
Growth Adj: 1.00 1.00 1.00 1,00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00
Initial Bse; 548 2 218 0 0 0 229 1006 0 0 690 377
User Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1,00 1. 00 1.00 1.00 1.00
PHF Adj: 0.90 0.90 0.90 0.90 0.90 0 .90 0.90 0.90 0. 90 0.90 0.90 0.90
PHF Volume: 609 2 242 0 0 0 254 1116 0 0 767 419
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 609 2 242 0 0 0 254 1116 0 0 767 419
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1,00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00
Final Vol.: 609 2 242 0 0 0 254 1118 0 0 767 419
Saturation Flow Module;
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment; 0.85 0.85 0.85 1.00 1.00 1 .00 0.95 0.95 1. 00 1.00 0.95 0.85
Lanes: 1.99 0.01 1.00 0.00 0.00 0 .00 1.00 2.00 0. 00 0.00 2.00 1.00
Final Sat.: 3219 11 1515 0 0 0 1805 3610 0 0 3610 1515
Capacity Analysis Module:
Vol/Sat; 0.19 0.19 0.15 0.00 0.00 0 .00 0.14 0.31 0. 00 0-00 0.21 0.26
Crit Moves: **** **** ****
Green/Cycle: 0.27 0.27 0.27 0.00 0.00 0 .00 0.20 0.58 0. 00 0.00 0.37 0.37
Volume/Cap; 0.69 0.69 0.55 0.00 0.00 0 .00 0.69 0.54 0. 00 0.00 0.57 0.69
Delay/Veh: 22.0 22.0 20.1 0.0 0.0 0.0 27.6 8.0 0 1.0 0.0 15.5 19.3
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1.00
AdjDel/Veh: 22.0 22.0 20.1 0.0 0.0 0.0 27.8 8.0 0 1.0 0.0 15.5 19.3
DesignQueue; 15 0 6 0 0 0 7 17 0 0 17 9
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
P
P
P
Ex-PM
PI
P
P
Wed Dec 12, 2001 18:28:14
SAN MARCOS LANDFILL
Page 4-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative)
****************************************************** ************************^,.f,
Intersection #6 9th Ave/I-15 SB Ramps
****************************************** ************************************.t^^^
Cycle (sec): 60 Critical Vol./Cap. (X): 0.661
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 15.6
Optimal Cycle: 74 Level Of Service: B
*******************************************************************************^,
Approach: North Bound South Bound East Boxmd West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Permitted
Include
Permitted
Include
I I II Protected
Include
Protected
Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
p Lanes: 0 1 Q 0 0 0 1 1 0 0 1 0 1 0 2 0 1 2 1 0 2 0 0
p Volxime Module: p Base Vol: 0 0 0 323 0 146 0 939 830 191 1078 0
Growth Adj; 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p Initial Bse: 0 0 0 323 0 146 0 939 630 191 1078 0
p User Adj; 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 p PHF Adj: 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volxime: 0 0 0 359 0 162 0 1043 922 212 1198 0
*M Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 0 0 359 0 162 0 1043 922 212 1198 0
P PCE Adj: 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MM Final Vol.: 0 0 0 359 0 162 0 1043 922 212 1196 0
Saturation Flow Module:
MB Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment: 1.00 1.00 1.00 0.81 1.00 0.85 1.00 0.95 0.85 0.92 0.95 1.00
Lanes: 0.00 0.00 0.00 2.00 0.00 1.00 0.00 2.00 1.00 2.00 2.00 0.00
Final Sat.: 0 0 0 3063 0 1615 0 3610 1615 3502 3610 0
Capacity Analysis Module:
mm Vol/Sat;
Crit Moves;
0,00 0.00 0.00 0.12
****
0.00 0.10 0-00 0.29 0-57
****
0.06
****
0.33 0.00
Wm Green/Cycle: 0.00 0.00 0.00 0.13 0.00 0.13 0.00 0.65 0.65 0.07 0.72 0.00 Volxime/Cap: 0.00 0.00 0.00 0.88 0.00 0.75 0.00 0.45 0.86 0.88 0.46 0.00
Delay/Veh: 0.0 0.0 0.0 44.9 0.0 39.1 0.0 5.4 17.5 56.7 3,7 0.0 mm User DelAdj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
^ AdjDel/Veh: 0.0 0.0 0.0 44,9 0.0 39-1 0.0 5.4 17.5 56.7 3.7 0.0 Mi DesignQueue: 0 0 0 11 0 5 0 13 12 7 12 0
********************************************************************************
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
P
Ex-PM Wed Dec 12, 2001 18:28:14
SAN MARCOS LANDFILL
Page 5-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative ****************************************************************
Intersection #7 Auto Prk Wy/Valley Pkwy
****************************************************************
Cycle (sec): 100 Critical Vol./Cap. (X):
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 70 Level Of Service:
****************************************************************
Approach: North Boxmd South Boxmd East Bound
Movement; L-T-R L-T-R L-T-R
)
****************
****************
0.767
34.5
C
****************
West Boxmd
L-T-R
II Control:
Rights:
Protected
Include
Protected
Include
Protected
Include
Protected
Ovl
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 2 0 1 1 0
- - - 1
2 0 1 1 0
. - - 1
2 0 3 0 1
1
2 0 3 0 1
J.
Volume Module:
1 1 1 I 1
Base Vol: 316 1108 62 133 788 243 497 704 203 206 339 189
Growth Adj : 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00
Initial Bse: 316 1108 62 133 788 243 497 704 203 206 339 169
User Adj: 1 .00 1 .00 1, .00 1.00 1 ,00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00
PHF Adj: 0 .90 0 .90 0, .90 0.90 0 .90 0 .90 0.90 0.90 0 .90 0.90 0 .90 0 .90
PHF Volxime; 351 1231 69 148 876 270 552 782 226 229 377 210
Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 351 1231 69 146 676 270 552 782 226 229 377 210
PCE Adj; 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00
MLF Adj: 1 .00 1 .00 1, .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1 .00
Final Vol.: 351 1231 69 148 876 270 552 782 226 229 377 210
--I II •
Saturation Flow Module:
1900 1900 1900 1900 1900 1900
0-92 0.94 0.94 0.92 0.92 0.92
2.00 1.89 0.11 2.00 1.53 0.47
3502 3391 190 3502 2663 821 II
I I I I
Sat/Lane:
Adjustment:
Lajies:
Final Sat-;
I
Capacity Analysis Module:
1900 1900 1900
0.92 0.91 0.85
2.00 3.00 1.00
3502 5187 1615 IIi I
1900 1900
0.92 0.91
2.00 3.00
3502 5187
1900
0-85
1.00
1615
Vol/Sat; 0. 10 0. 36 0. 36 0. 04 0. 33 0. 33 0. 16 0. 15 0. 14 0. 07 0. 07 0. 13
Crit Moves: * * * * ** ** ** ** * * * *
Green/Cycle: 0. 13 0. 50 0. 50 0. 06 0. 43 0. 43 0. 21 0. 22 0. 22 0. 10 0. 11 0. 17
Volxime/Cap: 0. 77 0. 72 0. 72 0. 72 0. 77 0. 77 0. 77 0. 68 0. 63 0. 68 0. 63 0-75
Delay/Veh: 49 .5 21 .0 21 -0 58 .4 26 .7 26 .7 42 .4 37 .1 38 .5 49 .0 44 .5 50 .2
User DelAdj: 1-00 1. 00 1-00 1. 00 1. 00 1. 00 1-00 1. 00 1. 00 1. 00 1. 00 1. 00
AdjDel/Veh; 49 .6 21 .0 21 .0 58 .4 26 .7 26 .7 42 .4 37 .1 38 .5 49 .0 44 .5 50 .2
DesignQueue: 17 37 2 8 30 9 25 35 10 12 19 10
p
^M
p
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
MM
p
p
p
Ex-PM
P
P
P
P
P
P
P
P
P
P
Thu Dec 13, 2001 16:13:21
SAN MARCOS LANDFILL
Page 1-1
Level Of Service Computation Report
2000 HCM Unsignalized Method (Base Volxime Alternative) ********************************************************************************
Intersection #9 Harmony Grove/Questhaven Road
********************************************************************************
Average Delay (sec/veh): 11.5 Worst Case Level Of Service: B ********************************************************************************
Approach: North Bound South Boxmd East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control;
Rights;
Lanes;
Stop Sign
Include
0 0 0 0 1
II II
I-
Volume Module;
Base Vol;
Growth Adj:
Initial Bse:
User Adj;
PHF Adj:
PHF Volume:
Reduct Vol:
Final Vol.: I
Stop sign Uncontrolled
Include Include
00 1! 00 00 1! 00 II11
II Uncontrolled
Include
0 0 1! 0 0
0 0 1 7 0 1 6 317 3 1 51 4
1 .00 1. 00 1-00 1 .00 1.00 1 .00 1-00 1.00 1 .00 1 .00 1 .00 1 .00
0 0 1 7 0 1 6 317 3 1 61 4
1 .00 1. 00 1.00 1 .00 1.00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1 .00
0 .90 0. 90 0.90 0 .90 0.90 0 .90 0.90 0.90 0 .90 0 .90 0 .90 0 .90
0 0 1 8 0 1 7 352 3 1 68 4
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 8 0 1 7 352 3 1 68 4
11 Critical Gap Module:
Critical Gp:xxxxx xxxx 6-2 7.1 xxxx 6.2
FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3 It
I I I I
4.1 xxxx xxxxx
2.2 xxxx xxxxx
4.1 xxxx xxxxx
2.2 xxxx xxxxx
Capacity Module:
Cnflict Vol: xxxx xxxx 354 440 xxxx
Potent Cap.; xxxx xxxx 694 531 xxxx
Move Cap.: xxxx xxxx 694 528 xxxx
70 72 xxxx xxxxx
998 1541 xxxx xxxxx
996 1541 xxxx xxxxx
356 xxxx xxxxx
1214 xxxx xxxxx
1214 xxxx xxxxx
II Level Of Service Module:
Stopped Del:xxxxx xxxx 10.2
LOS by Move: * * B
Movement: LT - LTR - RT
Shared Cap.: xxxx xxxx xxxxx
Shrd StpDel:xxxxx xxxx xxxxx
Shared LOS: * * *
ApproachDel: 10.2
ApproachLOS: B
II I I
xxxxx xxxx xxxxx
LT - LTR - RT
xxxx 561 xxxxx
7.3 xxxx xxxxx
A * *
LT - LTR - RT
xxxx xxxx xxxxx
xxxxx 11.5 xxxxx xxxxx xxxx xxxxx xxxxx xxxx xxxxx
*B * ** * ** *
11.5 xxxxxx xxxxxx
B * *
8.0 xxxx xxxxx
A * *
LT - LTR - RT
xxxx xxxx xxxxx
IP
p
p Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
p
k
w k
m
k
Ex+Rte6-AM Thu Dec 13, 2001 16:08:19
SAN MARCOS LANDFILL
Scenario Report
Page 1-1
Scenario: Ex+Rte6-AM
Command; Default Command MM
Volume: Ex+Rte6-AM
Geometry; Ex-AM
Impact Fee; Default Impact Fee
Trip Generation: Default Trip Generation
Trip Distribution; Default Trip Distribution
Paths; Default Paths
Routes; Default Routes
Configuration: Default Configuration mm
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex+Rte6-AM
P
P
P
P
k
p
p
Thu Dec 13, 2001 16:08:20
SAN MARCOS LANDFILL
Page 3-1
Level Of Service Ccanputation Report
2000 HCM Operations Method (Base Volxime Alternative) ********************************************************************************
Intersection #5 9th Ave/I-15 NB Ramps
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X): 0.750
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 18.1
Optimal Cycle: 53 Level Of Service: B ********************************************************************************
Approach; North Bound South Boxmd East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights:
Permitted
Include
II Permitted
Include
II Protected
Include
I I Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
p Lanes; 110 0 1 0 0 0 0 0 10 2 0 0 0 0 2 0 1 p
Volxime Module:
^Ki Base Vol: 752 27 183 0 0 0 167 672 0 0 854 182
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p Initial Bse: 752 27 183 0 0 0 187 672 0 0 854 182
User Adj; 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00
•
PHF Adj: 0.90 0.90 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volume: 836 30 203 0 0 0 208 747 0 0 949 202
fM Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 836 30 203 0 0 0 208 747 0 0 949 202
P PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
pi Final Vol.: 836 30 203 0 0 0 208 747 0 0 949 202
P Saturation Flow Module;
^m Sat/Leme: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment; 0.85 0.85 0.85 1-00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.85
Lanes: 1.93 0.07 1.00 0,00 0.00 0.00 1.00 2-00 0.00 0.00 2.00 1.00
P Final Sat.: 3118 112 1615 0 0 0 1805 3610 0 0 3610 1615
Capacity Analysis Module:
|MI Vol/Sat: 0.27 0.27 0.13 0.00 0.00 0.00 0.12 0,21 0.00 0.00 0.26 0.13
Crit Moves: **** **** ****
Green/Cycle: 0.35 0.35 0.35 0.00 0.00 0,00 0.15 0.50 0.00 0.00 0-35 0.35
Volxime/Cap: 0.76 0.76 0.36 0.00 0.00 0.00 0.76 0.42 0.00 0.00 0.76 0.36
Delay/Veh: 20.2 20.2 14-8 0.0 0.0 0.0 36.2 9-7 0.0 0.0 20.2 15.1
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AdjDel/Veh; 20-2 20.2 14.6 0.0 0.0 0.0 36-2 9.7 0.0 0.0 20.2 15.1
IM DesignQueue: 19 1 5 0 0 0 6 13 0 0 22 5
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc- Licensed to LLG, SAN DIEGO, CA
P
Ex+Rte6-AM Thu Dec 13, 2001 16:08:20
SAN MARCOS LANDFILL
Page 4 -1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Altemative)
********************************************************************************
Intersection #6 9th Ave/I-15 SB Ramps
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X): 0.633
Loss Time (sec); 9 (Y+R = 4 sec) Average Delay (sec/veh): 9.0
Optimal Cycle: 40 Level Of Service; A
********************************************************************************
Approach; North Bound South Bound East Bound West Bound
Movement; L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Permitted
Include
Permitted
Include
II Protected
Include
Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes; 0 0 0 0 0 1 1 0 0 1 0 0 1 2 0 1 2 0 1 2 0 0
Volxime Module:
Base Vol; 0 0 0 95 47 130 0 838 550 182 1459 0
Growth Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
Initial Bse: 0 0 0 95 47 130 0 838 550 182 1459 0
User Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
PHF Adj: 0.90 0 .90 0 .90 0.90 0 .90 0.90 0-90 0.90 0.90 0.90 0.90 0 .90
PHF Volume: 0 0 0 106 52 144 0 931 611 202 1621 0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol; 0 0 0 106 52 144 0 931 611 202 1621 0
PCE Adj: 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
MLF Adj; 1.00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
Final Vol.; 0 0 0 106 52 144 0 931 611 202 1621 0
I
Saturation Flow Module:
Sat/Lane; 1900 1900 1900
Adjustment: 1.00 1.00 1.00
Lanes; 0.00 0.00 0.00
Final Sat.: 0 0 0
I I
Capacity Analysis Module:
1900 1900 1900
0.85 0.85 0.85
1.34 0.66 1,00
2167 1063 1615 III
1900 1900 1900 1900 1900 1900
1,00 0.95 0.85 0.92 0.95 1.00
0.00 2.00 1.00 2.00 2.00 0.00
0 3610 1615 3502 3610 0
II
Vol/Sat: 0. 00 0. 00 0. 00 0. 05 0. 05 0, 09 0.00 0, .26 0.38 0. 06 0 .45 0. 00
Crit Moves: ** ** **** * ***
Green/Cycle: 0. 00 0. 00 0. 00 0. 14 0. 14 0, 14 0.00 0 .62 0.62 0. 09 0 .71 0. 00
Volxime/Cap: 0. 00 0. 00 0. 00 0. 35 0. 35 0. 63 0.00 0 .42 0.61 0. 61 0 .63 0. 00
Delay/Veh; 0 .0 0 .0 0 .0 23 .7 23 .7 30 .0 0.0 6.1 8.3 29 .6 5.1 0 .0
User DelAdj: 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1.00 1 .00 1.00 1. 00 1 .00 1. 00
AdjDel/Veh; 0 .0 0 .0 0 .0 23 ,7 23 .7 30 .0 0.0 6.1 8.3 29 .6 5.1 0 .0
DesignQueue: 0 0 0 3 2 4 0 13 9 6 18 0
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
^M
p
p
Ex+Rte6-AM Thu Dec 13, 2001 16:08:20
SAN MARCOS LANDFILL
Page 5-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative) ********************************************************************************
Intersection #7 Auto Prk Wy/Valley Pkwy
********************************************************************************
Cycle (sec): 100 Critical Vol./Cap. (X): 0.955
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 40.7
Optimal Cycle; 142 Level Of Service; D
********************************************************************************
Approach: North Bound South Bound East Boxmd West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control: Protected Protected I I Protected II Protected
m Rights; Include Include Include Ovl
Min. Green; 0 0 0 0 0 0 0 0 0 0 0 0
wm Lanes; 2 0 1 1 0 2 0 1 1 0 2 0 3 0 1 2 0 3 0 1
p
1
Volxime Module:
1 1 1 1 1
Base Vol: 267 723 96 175 943 569 194 371 303 154 590 48
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00
Initial Bse; 267 723 96 176 943 569 194 371 303 154 590 46
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hi PHF Adj: 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
PHF Volxime: 297 803 107 196 1048 632 216 412 337 171 656 53
wm Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0
Reduced vol; 297 803 107 196 1048 632 216 412 337 171 656 53
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
wm Final Vol.; 297 803 107
..... 1
195
1 .....
1048 532
1 1
216 412 337
..... 1
171
1 ....,
656 53
1
Saturation Flow Module:
1 1 1 1 1 1
^p Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment; 0.89 0.90 0.90 0.89 0.86 0.86 0.89 0.87 0.62 0.89 0.87 0.82
Mi Lanes: 2.00 1,76 0.24 2.00 1.25 0.75 2-00 3.00 1.00 2.00 3.00 1.00
Ml Final Sat.; 3365 3005 401 3365 2043 1232 3365 4985 1552 3365 4985 1552
1 1
Capacity Analysis Module: 1 1 1 1 1
wm Vol/Sat;
Crit Moves:
0.09 **** 0.27 0.27 0.06 0.51 **** 0.51 0-06 0.08 0.22 **** 0.05
****
0.13 0.03
P Green/Cycle: 0.09 0.52 0.52 0.11 0.54 0.54 0.09 0.23 0.23 0.05 0.19 0.30
Volxime/Cap; 0.96 0.52 0.52 0.52 0.96 0.96 0.70 0.36 0.96 0,96 0.70 0.11
P Delay/Veh: 84.2 16.2 16.2 43.0 34.5 34.5 50.9 32.7 74.3 101.3 40.2 25.4 P user DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00
P AdjDel/Veh: 84.2 16.2 16 .2 43.0 34.5 34.5 50.9 32.7 74.3 101.3 40,2 25.4 P DesignQueue: 15 23 3 10 31 18 11 18 15 9 30 2
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
k
Ex+Rte6-AM Thu Dec 13, 2001 16:08:20
SAN MARCOS LANDFILL
Page 6-1
Level Of Service Computation Report
2000 HCM Unsignalized Method (Base Volxime Alternative) *******************************************************************************,
Intersection #9 Harmony Grove/Questhaven Road
*******************************************************************************,
Average Delay (sec/veh): 11.4 Worst Case Level Of Service: ] *******************************************************************************,
Approach: North Bound South Bound East Bound West Bound
Movement; L-T-R L-T-R L-T-R L-T-R
I I
II
I I I I Control:
Rights:
Lanes:
Stop Sign
Include
0 1! 0
Stop Sign
Include
0 II 0 0
Uncontrolled
Include
0 10 0 0
Uncontrolled
Include
0 0 0 1 0
I I Volxime Module:
Base Vol:
Growth Adj;
Initial Bse:
User Adj:
PHF Adj:
PHF volume
Reduct Vol
Final Vol.
I-It
Critical Gap Module:
Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2
FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3
0 0 0 3 0 7 1 170 0 0 374 1
1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00
0 0 0 3 0 7 1 170 0 0 374 1
1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00
0 .90 0 .90 0 .90 0 .90 0 .90 0 .90 0 .90 0.90 0 .90 0 .90 0.90 0 .90
0 0 0 3 0 8 1 189 0 0 416 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 8 1 189 0 0 416 1
II -II I
4.1 xxxx xxxxx xxxxx xxxx xxxxx
2.2 xxxx xxxxx xxxxx xxxx xxxxx
II II I 11 Capacity Module;
Cnflict Vol: xxxx xxxx xxxxx
Potent Cap.: xxxx xxxx xxxxx
Move Cap.; xxxx xxxx xxxxx
607 xxxx 416
453 xxxx 641
452 xxxx 641
It
417 xxxx xxxxx xxxx xxxx xxxxx
1153 xxxx xxxxx xxxx xxxx xxxxx
1153 xxxx xxxxx xxxx xxxx xxxxx
II I Level Of Service Module:
Stopped Del;xxxxx xxxx xxxxx
LOS by Move: * * *
Movement: LT - LTR - RT
Shared Cap,; xxxx 0 xxxxx
Shrd StpDel: xxxxx xxxx xxxxx
Shared LOS; * * *
ApproachDel: xxxxxx
ApproachLOS: *
xxxxx xxxx xxxxx
* * *
LT - LTR - RT
xxxx 574 xxxxx
xxxxx 11.4 xxxxx
* B *
11.4
B
8.1 xxxx xxxxx xxxxx xxxx xxxxx A * * * * *
LT - LTR - RT LT - LTR - RT
xxxx xxxx xxxxx xxxx xxxx xxxxx
8.1 xxxx xxxxx xxxxx xxxx xxxxx
A * * * * *
xxxxxx xxxxxx
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
P
P
Ex+RteS-PM
Ml
P
P
Thu Dec 13, 2001 16:13:3i
SAN MARCOS LANDFILL
Scenario Report
Page 1-1
Scenario: Ex+Rte6 -PM
Command: Default Command
Volume: Ex+Rte6 -PM
Geometry: Ex-AM
Impact Fee: Default Impact Fee
Trip Generation: Default Trip Generation
Trip Distribution: Default Trip Distribution
Paths; Default Paths
Routes: Default Routes
Conf iguration: Default Configuration
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
P
Ex+Rte6-PM Thu Dec 13, 2001 16;13:39
SAN MARCOS LANDFILL
Page 3-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative)
********************************************************************************
Intersection #5 9th Ave/I-15 NB Ramps
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X); 0.766
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 17.8
Optimal Cycle: 53 Level Of Service: B
********************************************************************************
Approach:
Movement:
North Boxmd
L-T-R
South Bound
L-T-R
East Bound
L-T-R
West Bound
L-T-R
Control:
Rights:
Permitted
Include
Permitted
Include
1 I Protected
Include
1 I Protected
Include
Min- Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 1 1 0 0 1 0 0 0 0 0 10 2 0 0 0 c 1 2 0 1 MM
1
Volume Module;
1 1
Base Vol; 548 2 216 0 0 0 329 1006 0 0 690 377
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Initial Bse: 548 2 218 0 0 0 329 1006 0 0 690 377 P
User Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Adj: 0.90 0.90 0-90 0-90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Hi
PHF Volume: 609 2 242 0 0 0 366 1118 0 0 767 419
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 HI
Reduced Vol: 609 2 242 0 0 0 366 1118 0 0 757 419
PCE Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 m
MLF Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00
Final Vol-; 609 2 242 0 0 0 366 1118 0 0 767 419 wm
1
Saturation Flow Module; Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 IPI
Adjustment; 0.85 0.85 0.85 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.85
Lanes; 1,99 0.01 1.00 0.00 0.00 0.00 1.00 2.00 0-00 0.00 2.00 1.00 wm
Final Sat.; 3219 11 1615 0 0 0 1805 3610 0 0 3610 1615 mw 1
Capacity Analysis Module:
1 1 1 1 1 1
Vol/Sat: 0,19 0.19 0.15 0.00 0.00 0.00 0.20 0.31 0.00 0.00 0.21 0.26 P Crit Moves: * * * * **** ****
Green/Cycle: 0,25 0.25 0 .25 0.00 0 .00 0-00 0.26 0.60 0.00 0.00 0.34 0 .34 P
Volxime/Cap: 0.77 0.77 0.61 0.00 0.00 0-00 0.77 0.51 0.00 0.00 0.63 0.77
Delay/Veh; 25.5 25.5 22.7 0.0 0.0 0.0 27.7 7.1 0.0 0.0 17.7 24.2
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P AdjDel/Veh: 25.5 25.5 22.7 0.0 0.0 0.0 27.7 7.1 0.0 0.0 17.7 24.2 MU DesignQueue: 16 0 6 0 0 0 9 16 0 0 18 10 ^m
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
p
p
P
P
Ex+Rte6-E^
P
p
P
P
Thu Dec 13, 2001 16:13:39
SAN MARCOS LANDFILL
Page 4-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Altemative) ************************************************************^^^^^^^^^^^^^^^^_^^^^
Intersection #5 9th Ave/I-15 SB Ramps
********************************************************************************
Cycle (sec): 60 Critical Vol./Cap. (X): 0.942
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 19.6
Optimal Cycle; 93 Level Of Service; B
************************************************* ****************************^,^^,
Approach; North Bound South Boxmd East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Permitted
Include
i I Permitted
Include
I I Protected
Include
It Protected
Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
pp Lanes: 0 0 0 0 0 1 1 0 0 1 0 1 0 2 0 1 2 1 D 2 0 0
p Volxime Module:
Base Vol; 0 0 0 323 0 246 0 1039 830 191 1078 0
Growth Adj: 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1,00
•M Initial Bse: 0 0 0 323 0 246 0 1039 830 191 1076 0
P User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P PHF Adj: 0.90 0.90 0.90 0,90 0.90 0.90 0.90 0,90 0.90 0,90 0.90 0.90
PHF Volume: 0 0 0 359 0 273 0 1154 922 212 1198 0
MM Reduct Vol; 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol; 0 0 0 359 0 273 0 1154 922 212 1198 0
PCE Adj; 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00
wm Final Vol.: 0 0 0 359 0 273 0 1154 922 212 1198 0
P Saturation Flow Module; P Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
Adjustment; 1.00 1.00 1.00 0.74 1.00 0.85 1.00 0.95 0.85 0.92 0-95 1.00
wm Lanes; 0.00 0.00 0.00 2.00 0.00 1.00 0,00 2.00 1.00 2.00 2,00 0.00
P
Final Sat.: 0 0 0 2808 0 1515 0 3610 1615 3502 3610 0
Capacity Analysis Module:
wm Vol/Sat:
Crit Moves;
0.00 0.00 0.00 0.13 0.00 0.17
* * * * 0.00 0.32 0.57
****
0.06
****
0.33 0.00
P Green/Cycle: 0.00 0.00 0.00 0,18 0.00 0.18 0.00 0.61 0.61 0.06 0.67 0,00
Volxime/Cap: 0.00 0.00 0-00 0.71 0.00 0.94 0.00 0,53 0.94 0.94 0.49 0,00
Delay/Veh: 0.0 0.0 0.0 27.9 0.0 61.8 0.0 7,1 27.4 71,8 5.0 0.0
IP user DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P AdjDel/Veh: 0.0 0.0 0.0 27.9 0.0 61.8 0.0 7.1 27.4 71.8 5.0 0.0 P DesignQueue; 0 0 0 10 0 8 0 16 14 7 14 0
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
Ex+Rte6-PM Thu Dec 13, 2001 16:13:39
SAN MARCOS LANDFILL
Page 5-1
Level Of Service Computation Report
2000 HCM Operations Method (Base Volxime Alternative)
********************************************************************************
Intersection #7 Auto Prk Wy/Valley Pkwy
********************************************************************************
Cycle (sec): 100 Critical Vol./Cap. (X): 0.815
Loss Time (sec): 9 (Y+R = 4 sec) Average Delay (sec/veh): 35.3
Optimal Cycle: 72 Level Of Service; D
********************************************************************************
Approach; North Boxmd South Bound East Bound west Bound
Movement; L-T-R L-T-R L-T-R L-T-R
I I Control:
Rights:
Protected
Include
Protected
Include
Protected
Include
Protected
Ovl
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 2 C 1 1 1 0 2 0 1 1 0 2 C 1 3 0 1 2 0 3 0 1 Mi
1
Volxime Module;
1 1 1
Base Vol: 316 1208 62 133 888 243 497 704 203 206 339 169
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Initial Bse: 316 1208 62 133 888 243 497 704 203 206 339 169 m User Adj: 1.00 1-00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Adj: 0.90 0.90 0,90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0,90 0.90 mm PHF Volume: 351 1342 69 148 987 270 552 782 226 229 377 210
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 p Reduced Vol: 351 1342 69 148 987 270 552 782 226 229 377 210
PCE Adj: 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 Ml
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1-00 1.00 1.00 1.00
Final Vol.: 351 1342 69 148 987 270 552 782 226 229 377 210 IH
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 MM
Adjustment: 0.88 0.90 0.90 0.86 0.87 0.87 0,88 0.87 0-81 0.88 0.87 0.81
Lanes; 2.00 1,90 0.10 2.00 1.57 0.43 2.00 3.00 1.00 2.00 3.00 1.00 wm
Final Sat.: 3330 3242 167 3330 2609 714 3330 4933 1536 3330 4933 1536 mw
Capacity Analysis Module:
Vol/Sat: 0.11 0.41 0,41 0,04 0.38 0.36 0.17 0.16 0.15 0-07 0.08 0.14 Ml
Crit Moves: **** **** **** ****
Green/Cycle; 0 .13 0.54 0,54 0,06 0.46 0.46 0.20 0.22 0.22 0.10 0.11 0.17 HI
Volxime/Cap; 0.82 0.77 0,77 0.77 0.82 0.62 0.82 0.72 0.67 0.72 0.67 0.80
Delay/Veh: 53.8 20.5 20.5 63.9 26.6 26.6 45.6 38.4 40.6 51.6 45.6 55.8 P User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 P
AdjDel/Veh: 53.8 20.5 20.5 63.9 25.6 25.6 45.6 38.4 40.6 51.6 45,8 55.8
DesignQueue: 17 38 2 8 32 9 25 35 10 12 19 10 Hi
********************************************************************************
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
Ex+Rte6-PM
P
P
WW
P
Thu Dec 13, 2001 16:13:39
SAN MARCOS LANDFILL
Page 6-1
Level Of Service Computation Report
2000 HCM Unsignalized Method (Base Volume Alternative) ********************************************************************************
Intersection #9 Harmony Grove/Questhaven Road
********************************************************************************
Average Delay (sec/veh): 14.1 Worst Case Level Of Service; B ********************************************************************************
Approach: North Bound South Bound East Bound West Bound
Movement: L-T-R L-T-R L-T-R L-T-R
Control:
Rights;
Lanes;
Stop Sign
Include
0 0 0 0 1
I-
Volxime Module:
Base Vol:
Growth Adj:
Initial Bse;
User Adj;
PHF Adj :
PHF Volume:
Reduct Vol:
Final Vol.:
I
11-II-•
Stop Sign Uncontrolled
Include Include
00 1! 00 00 1! 00 ItII--
Uncontrolled
Include
0 0 1! 0 0
0 0 1 7 0 1 6 417 3 1 161 4
1 -00 1. 00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1, .00 1.00 1 .00
0 0 1 7 0 1 6 417 3 1 161 4
1 -00 1. 00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1, .00 1.00 1 .00
0 .90 0. 90 0 .90 0.90 0 .90 0 .90 0.90 0.90 0 .90 0, .90 0.90 0 .90
0 0 1 8 0 1 7 453 3 1 179 4
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 8 0 1 7 463 3 1 179 4
II
Critical Gap Module:
Critical Gp:xxxxx xxxx 6.2 7.1 xxxx 6.2
FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3
4.1 xxxx xxxxx
2.2 xxxx xxxxx
4.1 xxxx xxxxx
2.2 xxxx xxxxx
11 Capacity Module:
Cnflict Vol: xxxx xxxx 465 662 xxxx 181
Potent Cap.: xxxx xxxx 602 378 xxxx 867
Move Cap.: xxxx xxxx 602 376 xxxx 867
I I
183 xxxx xxxxx
1404 xxxx xxxxx
1404 xxxx xxxxx
467 xxxx xxxxx
1105 xxxx xxxxx
1105 xxxx xxxxx
11 Level Of Service Module;
Stopped Del:xxxxx xxxx 11.0
LOS by Move: * * B
Movement: LT - LTR - RT
shared Cap.: xxxx xxxx xxxxx
Shrd StpDel:xxxxx xxxx xxxxx
Shared LOS: * * *
ApproachDel; 11.0
ApproachLOS: B
I I 1 I
xxxxx xxxx xxxxx 7.6 xxxx xxxxx
* * * A * *
LT - LTR - RT LT - LTR - RT
xxxx 404 xxxxx xxxx xxxx xxxxx
xxxxx 14.1 xxxxx xxxxx xxxx xxxxx
* B * * * *
14.1 xxxxxx
B *
8.3 xxxx xxxxx
A * *
LT - LTR - RT
xxxx xxxx xxxxx
xxxxx xxxx xxxxx
* * *
xxxxxx
p
p
Traffix 7.5.1015 (c) 2000 Dowling Assoc. Licensed to LLG, SAN DIEGO, CA
P
APPENDIX C
STANDARD STREET SEGMENT CLASSIFICATION TABLES
BY JURISDICTION
p
P
P
p
P
p
p
p
p
p
p
p
TABLE 3
ROADWAY CAPACITY STANDARDS
j Fac. Type # Of ADT Caoacitv
i Lanes LOS C LOS D LOS E
1 Freeway 6 108,000 120,000 135,000
! 8 145,000 160,000 175,000
i 10 175,000 195,000 215,000
! Prime Arterial 6 46,000 51,200 57,000
{ Prime Arterial-Augmented 6 53,000 60,000 66,000
1 Major Roadway 4 28,200 31,600 35,200 ;
1 Major Roadway -Augmented 4 + 36,300 41,000 45,400 1
[ Collector Roadway 4 26,000 29,200 32,400 1
j Local Roadway 2 11,200 12,600 14,000 i
1 Local Roadway-Augmented 2 + 16,000 18,000 20,000 i
* Capacity means the maximum volume for the stated level of
service.
C-2 4
P
MM
Strcei
Tabic 2
CITY OF ESCONDIDO PROPOSED LEVEL OF SERVICE STANDARDS
STREET SEGMENT AVERAGE DAILY VEHICLE TRIP THRESHOLDS
• Cross
(7:.-is.sification Sections Level of Service •M
A B C D E
•M
Prime Arterial (6 lanes) 106/126(NP) 15,000 30,000 42,000 51,000 60,000
(8- lanes) (NP) 17,500 35,000 49,000 59,500 70,000
Major Road (4 lanes) 82/i02(NP) 14,800 24,700 29,600 33,400 37,000
(6 lanes) (NP) 12^00 25,000 35,000 42,500 50.000
•
Coliccior (4 lanes) 64/84(NP) 13.700 2Z800 27.400 30,800 34.200
Ml
(4 lanes) (WP) 5,000 10,000 14,000 17,000 20,000 P
Local Collector (2 lanes) 42/66(NP) 4,000 7,500 10,000 12400 15.000 HI
|ural Collector (2 lanes) (WP) 2400 5,000 7,000 8400 10.000 PK
CKP) No Parking
(WP) With Paridng
1) Levels of service are no; applied to residential streets since their primary purpose is to serve
abutting lots, not cany througfa traffic. Levels of service normally apply to roads carrying
tbrough traffic between major trip generators and anraaors.
2) This tabie is not applicable for street networks where two intersecting streets both operate ax
or below LOS C or where one street operates at or below LOS D. In tiiose cases detailed
peak hour capacity analyses arc necessary.
f ik
p
p
1 25
m
p
P
August II, 199\
TAHLi;i
•EBAILY VEHICLE'
CIRCULATION ELEMIOT
• ItOABS '' '
^nme ArtemI
M^orKoad
CoSectar
Toro CnTTestPT
lig^ Coilectca:
^^^°3i CoHecSor
. Collector
Recreatiosal.
Rnral Momuaia
. 126/146
102/122
7S/9S
64/S4
•-• 54/74
40/60
40/S4
40/60
40/400
40/100-
<3$,0OQ
. <22^00
<14,S00
<13,700
• <3,Q00
<4!00.
<1^0
<1^0
•<1^0
<1^0
NON - COiClILATION ELEMENT'"•
ROABS
CLASS
Kssidexsial
CoSector
Rssxdciitsal
Rcsad • * \
X-SECnON
.32/52
I^EVm OF SERVICE
<54,000.
<37.0QO
<24.700
.<^00
•<6.000
<4,ioe
<44G0
<4,1Q0
<4,ioa .
<4400 .
<70,000
<44,600
<29,600
<27,400
<9.5Q0
'<7,100
<7,l00
<7,100
<7400
<7.100
D • • -E
<S6,p00 <108,060
<0,D0O <57,000
-<33,400 . <37^
<30^' <34^G0
<i3-5oo: <i^QS0
<10^ <W00
<10^ : <16,200
<10^ <16a00
<p^ <16^
<0^ <16^
LEVEL OF SERVICE
B
<:200
•lewsls'wr .servfcs are id q?pHe3 to 3Bdi^^
-42-
MON 16:52 FAX 7605914135 COSM DEV SERVICE DEPT
a/i>ceO
1011 —
pifl
1^:
w
TABLE «-l
g.TANDARD STREET nTJ^ggrprnATrnwc
ROAD <V/C) C0.25>
A
CO.50)
_B
Prime Arterial
Major Arterial
106/126 15.000
(NP)
82/102 10.OOO
(NP)
Rural Major Arterial^ 94/154
<NP)
30.000
20.000
<0.70)
_ c
CO.85) Cl.OO)
P E
42,000
28.000
51.000
34,000
60.000
40,000
Secondary Arterial
Collectior
Indus crifll
64/84
(NP)
40/60
(NP)
64/84
46/66
Residential Collector 48/68
(WP)
4iO/60
(WP)
Reslfiential Streec^
Incerint Road^
36/56
28/40
or
28/60
10,000 20.000 28.000 34,000 40,000 mm
7,500 15,000 21,000 25,500 30.000 HI
P
4.000
_ 2.500
7,500
5,000
10,000
7,000
12,500
8.500
15,000
10,000 m
5,000
2.500
10,000
5.000
14,000
7,000
17.000
8.500
20,000
10.000
mt
mm
2,500 5.000 7.000 8.500 10,000 wm
* * 7,000 * * wm
* * 500 * *
wm
* * 2,800 * * m
c«rry through ttaffic^ "Tf '^""^"e "
ry^. throws -«^.lc .^S'^^orS^p" e^e^L'L"^^^^^^^^^^
(NP) No Parking V
(WP) With Parking
(V/C) Volume to Capacity Ratio
Source: City of Marcos Engineering Department and ffiUdan & Associates
P
P
Mt
APPENDIX D
*" FREEWAY LEVELS OF SERVICE THRESHOLDS
p
p
p
p
p
P
P
P
P
P
P
4.2.1 Freeways and Related Facilities
Non 1-5 Freewav Seamfints - Volume to n^p^citv Analysk
considered an acceptable peak period condition ^ °'
TABLE 4.3
FREEWAY SEGMENT LEVEL OF SERVICE DEFINITIONS
1 LOS ! V/C 1 Congestion/Delay Traffic Description
B 0.42-0.62
iNone
None
Free flow. ^^^^^^m
C
n
0.63-0.80 None to minimal . Free to stable now. iipht to moderate volumfi.<s
Stable Tlow, moderate volumes, freedom to
maneuver noticeably restricted U 0.81 -0.92 IWinimal to substantial Approaches unstable flow, heavy volumes, very
limited freedom to maneuver
c 0.93-1.00 Significant Extremely unstable flow, maneuverability and
psycholooical comfort eYtrAmoiw nnnr F(0) 1.01-1.25 Considerable; 0-1
hour delay Forced tlow, heavy congestion, long queues form
behind breakdown points, .^top *^nd no
P(l) 1.26-1.35 Severe; 1-2 hour
delay Vciy liaavy congestion, very long queues.
F(2)
c/o\
1.36-1.45 Very severe; 2-3 hour
delay. Extremely heavy congestion, longer queues, more "
numerous breakdown point.q, lnnn**r<iton nnrinrH« F(3) >1.46 Extremely severe; 3+
hour delay
undiock. —^
Source: Caltrans District 11,1992.
P
III
56 Central l~5 Corridor Study
RTE 76, SD Co
Miie-
post Description
12.47 Mission Road
14.70 Gird Road
R17.01 Oid Highway 15
R1730 Jet. Rte. 15
23.01 Pala Mission Road
24.13 County Road S-16
29.87 Cole Grade Road
32.87 Rincon Springs, Valley Center Road
34.41 Milepost Equation
=R34.46
Peak
Hour Pk. Mo. Annual
1,150 14,600 13,400
1,100 14,400 13,200
1,750 2U00 18,700
490 5,400 4,900
280 3,050 2,750
400 4,400 4,000
340 3,650 3,400
i5!Sf TRAFFIC VOLUMES
ADT
RTE 78, SD Co
390 4,200 3,900
R34.84 Milepost Equation
=34.88
38.25 Palomar Mountain Road
47.79 East Palomar Road
270 2,900 2,700
200 2,200 i050
220 1.650 1.600
5232 JcL Rte. 79 -"
In Oakland From Route 880 to East 14th Street ROUTE 77.
DISTRICT 4
Alameda County
0.10 Oakland, JcL Rie. 880 ....
037 Oakland. East 12th Street —
0.45 Oakland, East 14tfa Street
1,850 20.600 20,100
1,450 15.600 14,500
ROUTE 78. RfHite 5 in Oceanside to Route 10 Near BIythe
DISTRICT 11
San Diego County
0.00 Oceanside, Jet Rte. 5; Begin Fieeway
10,500 134.000 129,000
0.74 Oceanside. Jefferson Street
Mile-
post
ADT
Description
0.74 Oceanside, Jefferson Street
Peak
Hour Pk. Mo. Aimual
9,500 121,000 117,000
1 JO Oceanside, Ei Camino Real ...
3.32 Oceanside, College Boulevard
438 Vista, Emerald Drive Interchange
5.94 Vista, Broadway/Melrose Drive .
6.94 Vista, Sunset Drive
7.71 Vista, Mar Vista Drive
9.09 Sycamore Avenue
10.61 San Marcos, Randio Santa Fe ...
12.13 San Marcos, San Marcos Boulevard
12.91 San Marcos, Twin
Oaks Valley Road
11,000^ 140.000 135,000
9,300 119,000 115,000
10.000 126,000 121.000
9300 116.000 112.000
9,200 115,000 111,000
8,900 112,000 108,000
10,000 122,000 106.000
9,400 116.000 113,000
11,100 138.000 134,000
11.100 138.000 134,000
14.24 San Marcos, Richland Road
15.49 Nordabl Road
11,000 136.000 13i000
11,500 136,000 131,000
R1634 Escondido, JcL Rte. 15
R17.27 Esamdido, Centre Qty Paricway
R17.34 End Freeway
N 17.68 Escondido, Broadway/
lincohi Parkway —
6300 75,000 7^000
4.T00" 49.000 47.000
4,750 51,000 47,000
Nn.73 Milepost Equation
=T17.68 2350 24.800 23.100
T17.82 Escondido, Mission Avenue
2,250 24,100 22,400
Tl 8.07 EscoffiUdo, Wadungton Avenue
2.400 25^ 23.700
T18.41 Escondido, Hidtory Street
87
P • n m m m
p
RTE 5,SDCo
Mile-
post
Peak
Hour PL Mo. Annual
1999 TRAFFIC VOLUMES
ADT
/V/C p»?r
RTE 5, SD Co
Description
R15.41 San Wego, Pershing Drive
17,500 214,000 205.000
R16.07 San Diego, Jet. Rte. 163
16.300 200^ 191,000
R16.31 San Di^. Sixfli AVCTUC .^.(^r......!!!:.^...
Mile-
post
ADT
Description
R28.43 San Diego, La Jolla Drive ...
R29.46 San Diego, Genesee Avenue
R30.4& ...San Di^o, Son«nto
Peak
Hour PL Mo. Annual
11,900 154,000 140,000
16.300 200.000 191,000 R.30.4& Di^o, Son«nto / 11
17300 211,000 202,000 C[5 t *
^ ^^OinM n:_ i_ n._ once j.
11,700 152,000 138,000
R16J9 San Di^o. Fira Avoiue
R16.9I San Diego, Hawthorn Street
Rn.21 San Diego, Laurel Street
R30.68 San Diego, JcL Rte. 805 Soafli
13,700 167,000 160,000
16,000 195,000 187.000
,800 126,000 116.000
18,500 262,000 245,000
R32.90 San Diego. Carroel VaUey Road
R34.13 San Di^, Del Mar
Hdghts Road
16.200 198,000 189,000
R17J3 San Dii^o. Pacific Highway Viaduct...
R36.27 5an Diego. Ma De La \Wle
R37.38 Solana Beach, Lomas
Santa Fe Drive
17,600 248,000 232.000
17,200 242,000 227,000
15,800 225,000 209,000
R17.77 San Diego, Sassafras Streel
13.200 160,000 149,000
12.800 156,000 145,000
16,000 227,000 211,000
R38.62 Encinitas, Mandiester Avenue ....
R18.28 San Diego, Washington Street R39.83 Encinitas. Birmingham Drive
16,500 200,000 186.000
R19.03 San Di^. Old Town Avenue „ „
16,900 196,000 190,000
R40.60 Encinitas, Santa Fe Drive
14,200 203,000 188.000
14.100 202.000 187.000
206.000 187,000
R20.06 San Di^, JcL Rtes. 8 and 209
R20.82 San Diego, Mission Bay/ 17,500 220,000 205.000
Sea WorM Drives
R41J1 Encinitas, Enctoitas Boulevard
R42.71 Encinitas. Loicadia Boulevard
R22.26 San Die^, aairemmt Drive
R22.87 San Di^o. De Anza Road
R23.48 San Die^. JcL Rte. 274
18,900 230.000 217,000
17,600 214,000 202,000
13.800 167,000 158,000
14,500 206,000 187,000
14,100 200.000 182,000
R44.07 Carisbad, La CosU Avenue .
12300 149,000 141.000
R4557 Cailsbad, Poinsettia Lane '.
R47.03 Carisbad. Palomar Aiiport Road
14,100 200,000 182,000
13,900 197,000 179,000
R23.93 San Diego, NBssirai Bay Drive
R2S.9S San Dteso. JcL 52 East
l^ilooo ^
16,600 215,000 195.000
15.400 199,000 181,000
199,000 181,000
R47.98 Carisbad, Cannon Road .^fl
15.000 209.000 192.000
R49.28 Carisbad, Tamuack Avaine
R26.79 San Diego, Gihnan Drive
R28.16 San Di^, Nobel Drive .
14,600 203,000 187,000
R50.il Carisbad. Ehn Avenue .
13,700 177.000 161,000
12,000 155,000 141,000
R28.43 San Di^, La JoDa Drive _
14,600 203,000 187,000
R50.68 Carlsbad, Las Flores Drive
15.000 209.000 192,000 R51.20 Oceanside. JcL Rte. 78
East. Vista Way •5
14
APPENDIX C
Air Quality Study
AIR QUALITY IMPACT ANALYSIS
SAM MARCOS IiANDFILL
FINAL CLOSURE: PLAN
SAN DIEGO COUNTY, CALIB^RNIA
Prep£u:ed for:
P&D Environmental
Attn: Sophia Habl
401 W. "A" Street, Suite 2500
San Diego, CA 92101
Dated:
January 31, 2002
Prepared by:
Hans D. Giroux
Senior Analyst;
Giroox & Associates
p
il
p
m
p
m
TABLE OF CONTENTS
Page No
1. REGULATORY FRAMEWORK 1
l.A Ambient Air Quality Stsmdards (AAQS) 1
1. B Air Quality Management Planning 2
2. EXISTING CONDITIONS 3
2. A Meteorology/Climate 3
2. B Baseline Air Quality 4
3. THRESHOLDS OF SIGNIFICANCE 7
4. AIR QUALITY IMPACTS 11
MITIGATION 16
CUMULATIVE IMPACTS 16
PROJECT ALTERNATIVES 18
REFERENCES 20
Tables and Figures
p
T2ible 1.1 AnOsient Air Quality Standaxds
wm
^ Table 2.1 Air Quality Monitoring Summary
pi Table 3-1 Screening-Level Criteria for Air Quality Impacts
Table 4-1 Regional Mobile Source Exhaust Emissions
Table 4-2 Daily PM-10 Emissions
Figure 2-1 San Diego Air Basin Monitoring Stations
1. REGULATORY FRAMEWORK
l.A Ambient Air Quality Standards (AAQS)
In order to gauge the significance of the air quality impacts
of the implementation of the San Marcos Landfill Final
Closure Plan, those impacts, together with existing
backgroiind air guality levels, must be compared to the
applicable ambient air quality standards. Califomia
standards supplement the national AAQS in adding other
pollutants or exposure periods. For those pollutants where
State and federal standards apply to the identical pollutant
and exposure times. State standards must be at least equally
restrictive, and, in most cases, are more consearvative than
their federal counterparts. State and national standards are
the levels of air quality considered safe, with an adequate
margin of safety, to protect the public health and welfare.
They are designed to protect those people most susceptible tc
further respiratory distress such as asthmatics, the elderly,
very young children, people already weakened by other disease
or i1Iness, and persons engaged in s trenuous work or
exercise, who are called "sensitive receptors." Recent
research has shown, however that chronic exposure to ozone at
levels that marginally meet standards may nevertheless have
adverse health effects. Just meeting standards may therefore
not be sufficient to protect public health unless an
additional margin of safety is created.
National AAQS were established in 1971 for six pollution
species. States have the option to add other pollutants,
require more stringent compliance, or to include different
exposure periods. Because California had established state
AAQS before the federal action and because of iinique air
quality problems introduced by the restrictive dispersion
meteorology, there is considerable difference between State
and national clean air standards. Those standards currently
in effect in California are shown in Table 1.1.
The entries in Table 1.1 include the federal standards for
chronic (8-hour) ozone exposure or for ultra-small diameter
particulate matter of 2.5 microns or less in diameter {called
"PM-2.5"). Implementation of these standards had been put on
hold through an order issued by the U.S. Circuit Court of
Appeals. This order was appealed to the U.S. Supreme Court
which heard the case in late 2000. In late February, 2001,
the Supreme Court ruled unanimously that EPA did not require
specific congressional approval to adopt national clean air
standards, and that a cost:benefit analysis is not required
il for health-based standards. The Court also aruled, however,
that there was an implementation schedule inconsistency
m 1
p
between "new" and "old" standards. This schedule issue must
be resolved before implementation actions can begin. Until
this attainment schedule conflict is resolved, data
collection for these two standards is ongoing, but no
attainment planning or enforcement is occurring at this time.
l.B Air Quality Management Planning
The San Diego Air Basin (SDAB) is presently in attainment of
all national and State AAQS except ozone and particulate
matter less than or equal to 10 microns (PM-10) . Due to
violations of the State AAQS for ozone in the (SDAB) , State
law requires that a plan be developed to outline the
pollution controls that will be undertaken to improve air
quali ty. In San Diego County, thi s attainment planning
process is embodied in a regional air quality management plan
developed by the San Diego Air Pollution Control District
(SDAPCD) . Several plans had been adopted in the late 1970s
and early 1980s under the title Regi ona1 Ai r Qua1i ty
Strategies (RAQS). More recent planning efforts have been
modifications, improvements and updates of the earlier RAQS
efforts.
All progress towards attainment, including offsetting the
P
p
H
Specifically a plan to attain the State standard for ozone as
quickly as possible was developed in 1994 through an update
of the 1991 RAQS. A Triennial Revision updating the RAQS was
adopted by the SDAPCD governing board on August 8, 2001.
Federally-enforceable local rules are combined with those
from all other Califomia ozone non-attainment areas to p
create the Califomia State Implementation Plan (SIP) , which ^
is actually the federal attainment plan. The SIP is adopted
by the Air Resources Board (ARB) after public hearings , and
forwarded to the U. S. Environmental Protection Agency (EPA) P
for its approval. The SIP includes all control measures k
needed for the California air basins to attain the national
AAQS for ozone by respective attainment deadlines. m
During the planning process and smog formation modeling, it
was anticipated that the SDAB could meet the federal ozone
standard by the year 1999 without the creation of any new
control programs not already in progress. Airsheds
demonstrating an ability to meet standards by the end of 1999
(in the absence of transport from one basin to another) may
be classified as having a "serious" ozone problem instead of
being classified as "severe". The SDAPCD requested that EPA
reclassify the air basin from "severe" to "serious". This
request was siibsequently approved.
P
PR
ii
effects of growth, is expected to be derived from existing
local, state and federal mles and regulations. With the
continuation of year-to-year vehicular exhaust pollution
reduction and with continued implementation of stationary
source rules, small additional future emissions reductions
are anticipated despite forecast increased basinwide
population growth. Controversial rules previously evaluated
that were judged by some people as overly intrusive into
personal lifestyles (mandatory trip reduction programs or
minimum average vehicle occupancy goals) are not needed to
predict attainment. Any violations of federal ozone
standards in the year 2000 or beyond are forecast to occur
only on days when transport from the Los Angeles Basin
creates substantially elevated baseline levels upon which any
local basin impacts would be superimposed. Transport of smog
precursor emissions from Mexico into San Diego County has
been expressed as a concern, but wind conditions on days with
high smog potential usually do not lead to substantial cross-
border transport into San Diego County.
With continued emissions reduction, and with moderately
favorable meteorology, the San Diego Air Basin met the
federal ozone standard for the first time in history in 1999
at every air monitoring station. A continued history of
attainment is necessary for redesignation as an "attainment
area" (no more than three violations in a three-year data
record). San Diego has received two one-year extensions of
its ozone attainment deadlines from the U.S. EPA, and is on
track for attainment of the federal ozone standard by the end
of 2001. However, the SDAB will still be in non-attainment
for the State AAQS for ozone. However, it is clear that air
quality in San Diego County has improved dramatically in the
last two to three decades, and both the severity and
frequency of unhealthful air quality has declined
significantly.
2. EXISTING CONDITIONS
2 .A Meteorology/Climate
The climate of the project area is characterized by a
repetitive pattem of frequent early moming cloudiness, hazy
afternoon sunshine, and clean daytime onshore breezes.
Because of the distance to the ocean and intervening terrain,
San Marcos has slightly greater fluctuations of temperature
than locations closer to the ocean. Limited rainfall occurs
in winter while summers are often completely dry. An average
of 10 inches of rain falls each year from November to early
April. Atmospheric conditions create a desirable living
climate, but limit the ability of the atmosphere to disperse
air pollution. Many air quality standards have reached
attainment status only in the last decade.
Mt
The onshore winds across the coastline diminish quickly when
they reach the foothill communities east of San Diego, and "
the s inking air wi thin the of fshore high pres sure sys tem ^
forms a massive temperature inversion that traps all air
pollutants near the ground. The resulting horizontal and |p
vertical stagnation, in conjunction with ample sunshine,
cause a number of reactive pollutants to undergo
photochemical reactions and form smog that degrades
visibility and irritates tear ducts and nasal membranes.
High smog levels in coastal communities occasionally occur mt
when polluted air from the South Coast (Los Angeles) Air
Basin drifts seaward and southward at night, and then blows wm
onshore the next day. Such weather patterns are particularly
frustrating because no matter what San Diego County does to
achi eve clean air, such interbasin transport wi 11 cause
occasionally unhealthy air over much of the County. "
mw
2.B Baseline Air Quality
Pro3ect area air quality can be best characterized from
ambient measurements made by the San Diego County Air "*
Pollution Control District (APCD), the agency responsible for
air quality planning, monitoring and enforcement in the San *
Diego Air Basin (SDAB). As shown in Figure 2-1, the APCD air p
quality monitoring station located in Escondido is the
closest station to the project area that monitors the full p
spectrum of air quality. Table 2.1 summarizes the last five
years of monitoring data from the Escondido station.
Healthful air quality is seen in almost every pollution
category. The one-hour national ozone standard has been *
exceeded only once within the last five years (one exceedance P
per year is permissible under federal attainment guidelines).
The nationa 1 8-hour ozone standard was met for the first
time in 1999. The more stringent State standards for ozone
and the State standard for respirable particulates (PM-10)
were
p i • li m m k k m
FIGURE 2-1 SAN DIEGO AIR BASIN
MONITORING STATIONS
TABLE 2.1
AIR QUALITY MONITORING SUMMARY
(Number of Days St£Uidards Were Exceeded and Maxima
For Periods Indicated)
(Entries shown as ratios = samples exceeding
standard/samples taken)
Pollutant / Standeurd 1997 1998 1999 2000 2001
Ozone (O3)
wm 1-Hr. >0.09 ppm (S) 5 9 1 6 4
1-Hr. >0.12 ppm (F) 0 0 0 0 1
wm. 8-Hr. >0.08 ppm (F) 2 5 0 3 1
Max. 1-Hr. Cone, (ppm) 0.11 0.12 0.10 0.12 0.14
mm
Carbon Monoxide (CO)
mm 1-Hr. >20 ppm (S) 0 0 0 0 0
8-Hr. > 9 ppm (S,F) 0 0 0 0 0
Max. 1-Hr. Cone. (ppm) 9. 10. 10. 9. 9.
mm Max. 8-Hr. Cone, (ppm) 5.0 4.6 5.3 4.9 5.1
Nitrogen Dioxide (NO2)
lam 1-Hr. > 0.25 ppm (S) 0 0 0 0 0
Max. 1-Hr. Cone. (ppm) 0.12 0.09 0.10 0.08 0.07
Respirable Particulates (PM-•10)
24-Hr. > 50 ug/m^ (S) 3/58 1/61 1/60 2/60 1/60
24-Hr. >150 ug/m^ (F) 0/58 0/61 0/60 0/60 0/60
mm Max. 24-Hour Cone. {]ig/m^) 63. 51. 52. 65. 74.
Source: San Diego Air Pollution Control District, Escondido
Monitoring Station, CARB Voyager CD, 2000, "arb.ca.gov" (2001 data)
Key: (S) = state standard, (F) = federal standard
IM
exceeded on a limited number of days. Ozone, and to some
extent particulates, are pollutants whose precursors are
generated elsewhere and then carried into the local area by
* prevailing wind patterns. Levels of carbon monoxide or
nitrogen oxides, which are more indicative of local
source/receptor relationships, are seen in Table 2.1 to be
^ very low in the proposed project area.
^ Basinwide attainment of the federal one-hour ozone standard
(no more than three violations in the last three years)
appears to qualify the basin for redesignation as an
"attainment" area as opposed to its present non-attainment
status. The redesignation request is under consideration by
^ the EPA, and may be granted later this year.
IP. 3. THRESHOLDS OF SIGNIFICANCE
Although the County of San Diego does not have any adopted
thresholds of significance for CEQA, Appendix G of the CEQA
**• Guidelines contains guidance as to what would be considered a
^ significant impact on air quality. The following are the
five (5) questions relating to impacts of a project on air
... quality from Appendix G of the State CEQA Guidelines,
modified to reflect specific conditions in San Diego County.
The indicators are to be used to assess possible impact
significance of the proposed project:
^ A. Would the proposed project conflict or obstmct the
implementation of the San Diego Regional Air Quality
— Strategy (RAQS) or applicable portions of the State
Implementation Plan (SIP)?
B. Would the proposed proj ect result in emissions that
would violate any air quality standard or contribute
^ s\ibstantially to an existing or projected air quality
violation?
C. Since San Diego County is presently in non-attainment
for the federal and/or State Ambient Air Quality
^ Standards for ozone (O3) and particulate matter less than
10 microns (PM-10), would the proposed project result in
^ a cumulatively considerable net increase of PM-10 or
exceed quantitative thresholds for ozone precursors,
— oxides of nitrogen (NOx) and volatile organic compounds
(VOCs)?
D. Would the proposed project expose sensitive receptors
*" (including, but not limited to schools, hospitals,
M resident care facilities, or day-care centers) to
siibstantial pollutant concentrations?
E. Would the proposed project create objectionable odors a*
affecting a substantial number of people?
For projects that create mainly combustion exhaust whose
emissions require complex photochemical reactions to reach ^
their most harmful state, there is no way to measure the
impact to establish a "substantial contribution" under wm
Threshold B because individual impacts will be dispersed to
immeasurably dilute levels. It is the cumulative impact,
however, of thousands of such small individual sources that
leads to regionally degraded air quality. Various air "
pollution control/management agencies have therefore MM
developed guidelines using total project emissions instead of
ambient air quality as a surrogate for determining regional m
impact potential.
m
"Per Section 40002 of the California Health & Safety Code,
jurisdiction for regulation of air emissions from non-mobile *
sources within San Diego County has been delegated to the San P
Diego Air Pollution Control District (APCD). As part of
their air quality permitting process, the APCD has H
established thresholds for the preparation of Air Quality
Impact Assessments (AQIA). APCD Rule 20.2, which outlines
these thresholds, states that any project "which results in
an emissions increase equal to or greater than any of these
thresholds, must
"demonstrate through an AQIA... that the project will not (A)
cause a violation of a State or national ambient air quality
standard anywhere that does not already exceed such standard,
nor (B) cause additional violations of a national ambient air
quality standard anywhere the standard is already being W
exceeded, nor (C) cause additional violations of a state tfl
ambient air quality standard anywhere the standard is already
being exceeded. . . nor (D) prevent or interfere with the
attainment or maintenance of any State or national ambient
air quality standard."
P
"For projects whose stationary-source emissions fall below P
these thresholds, no AQIA is typically required, and H
emissions are presiomed to be de minimis. "
"In the absence of formally adopted CEQA significance S
thresholds, County staff has recommended that these screening
criteria be used as numeric methods to demonstrate that a
proj ect's total emi ssions (e.g., stationary and fugitive P
emissions, as well as emissions from non-road mobile sources) •
would not result in a significant impact to air quality. In
P
il
8 P
IIH
P
p
m
the event that emissions exceed these thresholds, additional
modeling would be required to demonstrate that the project's
air quality impacts are less than significant. Since APCD
does not have AQIA thresholds for emissions of volatile
organic corripounds (VOC) , County staff recommends the use of
the threshold for reactive organic compounds (ROC) from the
CEQA Air Quality Handbook for the former Southeast Desert Air
Basin (SEDAB) which has ozone levels similar to the SDAB.
The screening thresholds are included in Table 3.1 below."
Air quality impacts may also derive from "non-criteria"
(pollutants with clean air standards) . Such irtipacts could
derive from emissions that have no known safe exposure level,
or those that may cause nuisance while not exceeding any
relevant niimerical emissions standard.
For toxic air contaminants (TAC), the SCAQMD, in its CEQA Air
Quality Handbook, identifies an excess individual cancer risk
of one in one million to be a de minimus risk. Risk levels of
up to ten in one million are considered acceptable if toxic
best available control technology (T-BACT) is used. Any
individual cancer risk from project-related TACS of less than
one million would be considered a less than significant risk.
Emissions of dusts, fumes, mists or odors that annoy any
considerable number of reasonable people are considered a
nuisance iinder the California Health & Safety Code. Project-
related emissions that create a nuisance would be considered to
have a significant air quality impact.
m
TABLE 3.1
Screening-Level Criteria for Air Quality Inpacts
Pollutant
Respirable Particulate
Matter (PM-10)
Oxides of Nitrogen
(NOx)
Oxides of Sulfur
(SOx)
Carbon Monoxide (CO)
Lead and Lead Components
Volatile Organic
Compounds (VOCs)*
< TOTAL EMISSIONS >
Lbs/Hour Lbs/Day Tons/Year
25
25
100
100
250
250
550
3.2
75
15
40
40
100
0.6
10'
* Threshold for VOCs based on the threshold of significance for
reactive organic gases from Chapter 6 of the CEQA Air Quality
Handbook of the South Coast Air Quality Management District
for the Southeastem Desert Air Basin.
** 10 tons per year threshold based on 55 lbs/day times 365
days/year divided by 2000 lbs/ton.
P
k
m
m
m
m
m
m
m
p
4. AIR QUALITY IMPACTS
(a) Would the project conflict with or obstruct implementation of
the applicable air quality plan?
The San Diego Air Basin air quality plan does not explicitly
include any provisions for construction activities such as
those associated with the proposed project. Statewide
emissions controls programs for heavy-duty, off-road
equipment are being phased in over the next decade. These
programs are built into the air quality plan in terms of
forecasting future emissions from off-road, diesel powered
equipment. The air quality plan does include all mles and
regulations of the SDAPCD. The project is anticipated to
comply with any applicable mles on dust control and use of
low-sulfur fuels. The on-site power generation plant using
landfill gas is an APCD-permitted source. Project inpacts
relative to air quality plan consistency are therefore less
than significant.
(b) Would the project violate any air quality standard or
contribute substantially to an existing or projected air
quality violation?
Most project-related air quality impacts will derive from the
mobile sources operating on the landfill and on public roads.
Equipment movement on unpaved soils and earth handling
activities will create fugitive dust. Small dust particles
will be carried off-site, and large particles will be
redeposited near their source. The emissions will be widely
dispersed in space and time by the nature of the source
itself. Any associated photochemical smog generated by these
activities will occur hours later and many miles away.
Emissions data from constmction activities are often
imprecise as to both location and magnitude of emissions. It
is therefore not possible to reliably calculate to off-site
exposure without a better knowledge of the exact location and
character of any project-related emissions. These source
characteristics change hour by hour and day by day. Project-
related impact significance was therefore determined from the
emissions-based thresholds identified above, assiiming that a
violation of those thresholds represents an incremental, but
significant impediment to existing regional non-attainment of
air quality standards for ozone and particulate matter.
"* Project-related construction activity emissions were
M calculated for a fleet of 18 pieces of constmction
equipment, for the inport of 400 tmck-loads of earth, for
11
on-site extraction of an approximately equivalent amount of
cover material, and for work crew commuting. Project-related ^
exhaust emissions are summarized in Table 4.1. The
corresponding PM-10 emissions burden is shown in Table 4.2. —
NOx exhaust emissions from on-site equipment and on-road haul
tmcks will exceed the adopted significance threshold by "*
approximately 50 percent. The PM-10 standard will be ^
exceeded by 550 percent.
[c) Would the project result in a cumulatively considerable net
increase of any criteria pollutant for which the project
region is non-attainment under an applicable federal or State
ambient air quality standard (including releasing emissions "
that exceed quantitative thresholds for ozone precursors)? ^
Air quality impacts that exceed the thresholds for an m
individually significant impact are considered to have a
cumulatively significant impact as well. Because the
project-related temporary air quality impact is individually
significant, it is, by definition, also cumulatively •
significant. ^
;d) Would the project expose sensitive receptors to substantial
pollutant concentrations? ^
Toxic air contaminants would have a " substantial" exposure
risk if they were generated by site activities, and if there P
was a sensitive population in the project vicinity. Exposure m
risk is expressed as a theoretical worst-case outdoor
exposure of 24 hours/day, 365 days/year, 7 0 years o f
exposure. This cradle-to-grave analysis procedure where a
receptor is confined to the front porch for a lifetime, is
not a realistic assumption.
m
k
However, even with this assuirption, carcinogenic diesel M
exhaust impacts adjacent to construction activities have been
demonstrated to be less than significant (Lake San Marcos M
EIR, 2000) for residents adjacent to the project property
line with comparable diesel exhaust particulate levels. With
greater source/receptor separation at the project site,
diesel exhaus t expo sure wi 11 be a de minimis publi c hea1th P
risk. p
(e) Would the project create objectionable odors affecting a ^
substantial number of people? *•
The proposed project is designed to minimize local *
odor risk by insuring long-term landfill cover integrity. No M
substantial quantities of buried refuse will be disturbed by the
P
m
12 P
P
m
wm
m
p
proposed project. Enhancement of cover integrity as part of long-
teim closure could encourage lateral gas migration to weaker cover
area. San Diego County i s required to conduct periodic gas
migration surveys to detect any lateral gas escape routes. If
such pathways are detected, remediation through increased
extraction vacuum pressure or through local cover addition must be
iitplemented according to the terms of the final closure plan.
Odor impact potential is believed to be reduced by the execution
of this closure plan.
Impact Summary:
Based upon the air quality analysis, the emissions associated with
the project would cause the following impacts:
Project-related construction emissions (off-road
equipment mobile source emissions originating from
diesel-powered construction equipment) will exceed NOx
thresholds.
Project-related constmction activity emissions
(predominantly fugitive dust from earth moving
activities) will exceed PM-10 thresholds.
13
TABLE 4.1
REGIONAL MOBILE SOURCE EXHAUST EMISSIONS (lbs/day)
Source: ROG NOx CO PM-10
On-Road
Truck Exhaust (a) 20
Commuter Vehicles
(Crews & Management.) (b)
On-site Diesel Equipment (c)
Off-Road Trucks (d) 6
TOTAL 32
Significance
Threshold
185
2
4
131
381
55
(a) =
(bl
= 400 trips X 20 mi./round trip = 8000 mi./day
- 20 trins X 50 mi . /rnn-nH hr-in = 1 finn mi /r\;^\r
160
3
62
57
253
250
18
22
14
14
27
550
<1
2
100
P
P
pp
P
(c) = 18 pieces X 100 ea. X 8 hours X 0.5 load = 7,200 HP-HR P (d) = 630 trips X 0.5 mi./trip / 10 mi./hr = 31 .5 hours/day SIP
m
Emission Factors ROG NOx CO PH-10 Source •
p On-Road Trucks (lb/1000 mi) 2.5 23.1 20.0 2.2 EMFAC7G p
On-Road Commuting (lb/1000 mi) 1.9 2.6 21.8 0.2 EMFAC7G p
On-site Diesel (lb/1000 HP-HR) 0.6 8.6 1.9 0.3 SCAQMD, n 1993
SCAQMD,
m
Off-Road Trucks (lb/hour) 0.2 4.1 1.8 0.5 AP-42,
Vol. 5
AP-42,
m
Emissions = Activity level (a, b, c or d) X Emission Factor
14 P
MM
m
p
TABLE 4.2
DAILY FH-10 EMISSIONS (Ibs/day)
Activity:
Dirt Pushing
Truck Filling
Truck Dumping
Unpaved Roads
On-Road Dust
Emissions Basis:
21.8 Ib/hr x 8 hr/day
10,000 ton/day X 0.02205 lb/ton
10,000 ton/day X 0.09075 lb/ton
31.5 mi X 2.3 lb/mi (90% control)
8000 mi/day X 0.012 lb/mi
TOTAL
Threshold
Daily;
174
220
91
72
96
653
100
On-Road = 10,000 ton/day (400 trips X 25 ton/trip)
Off-Road = 6,300 ton X 0.5 mi/100 ton
Emissions Factor: SCAQMD CEQA Air Quality Handbook, 1993
Emissions = Emission Factor X Activity Level
Assumptions: On-road haul distance = 20 miles/round trip
Off-road haul distance = 0.5 miles/load
Haul road watering = 90% dust control
15
5. MITIGATION ^
A reduced project intensity of 33 percent could reduce NOx
emi ss i ons to the insigni f i cance threshold. However, a very ^
massive reduction in project intensity would be needed to reduce ^
PM-10 emissions. The PM-10 emissions estimate includes the use of
reasonably available dust control measures such as use of adequate m
watering on unpaved surfaces and haul roads. Dust emissions
during spreading of final cover result from "fresh" earth being
continually exposed as the load is dumped and overturned. No
additional dust control is feasible other than substantially
slowing the daily rate of dirt handling. ^
However, the construction schedule would need to be extended more ^
than six-fold to reduce daily dirt handling and impaved surface
travel to a less-than-significant level. Such a completion delay
would not meet project objectives. Air emissions from project
irrplementation are considered to have a significant individual P
intact that is not mitigable to a less than significant level. p
CONCLUSIONS:
Existing Conditions
In accordance with State CEQA Guidelines (Appendix G), the
Proposed Project would have a significant cumulative air quality
impact if the incremental effects of a project were considerable
when viewed in connection with the effects of past projects, other
current projects, and probable future projects.
Additionally, a significant impact would occur if the Proposed
16
Because it is infeasible to reduce the irrpacts of PM-10 and NOx to
below a level of significance, the impacts are significant and P
unmitigable. p
CUMULATIVE IMPACTS HI
P
The regional meteorological and air quality parameters are P
presented in Sections 2 .A and 2 .B. The San Diego Air Basin P
("SDAB") is currently in non-attainment for the Federal and State
Standards for ozone and PMIO. As noted in Section 2.B, the SDAB m
is anticipated to be reclassified by the EPA as in attainment for S
federal ozone standards in early 2002.
P
Thresholds of Significance p
p
p
P
P
P
p
p
Project, in combination with the cumulative projects considered,
would result in the following: A cumulatively considerable net
increase of any criteria pollutant for which the project region
status is nonattainment under an applicable federal or state
ambient air quality standard (including release of emissions which
exceed quantitative thresholds for ozone precursors).
Analysis of Project Effects and Determination as to Significance
As discussed in Section 4, the Proposed Project would result in
significant NOx and PMIO impacts. Table 3-2 of the DEIR
identifies the air quality impacts associated with the cumulative
projects. Air quality impacts for these projects are primarily
short-term construction-related impacts, and impacts related to
vehicle emissions.
Of the 16 potential cumulative projects, at least 10 have been
determined to likely be under constmction or occupied at the time
that the construction activities are occurring. Others may be
under constmction if they complete the entitlement process or
litigation.
The Proposed Project has been analyzed, and it was determined to
result in significant project-level impacts to PMIO and NOx.
Several of the other projects have been evaluated (during the
preparation of previous environmental review) and significant
project impacts (either during constmction or operation) have
also been identified.
San Elijo Hills will be under construction and partially occupied.
Short-term construction impacts were identified, including PMIO
emissions, CO-related vehicular emissions, and inconsistency with
the Regional Air Quality Standards.
Short-term construction impacts from PMIO were reported for
University Commons. These impacts would occur during the same
time as the constmction activities on the Landfill.
If Villages of La Costa proceeds, subject to the litigation,
and/or Bressi Ranch completes the entitlement process, air quality
impacts would be contributed. These impacts would include
fugitive dust and NOx.
Since Rancho Santa Fe Road is expected to be \inder constmction at
the same time as the Landfill, PMIO emissions would be likely.
Contributions of NOx would also occur.
Cumulative mobile source emissions were identified for Carlsbad
Research Center, the Fox/Miller Property, and Encinitas Ranch.
17
Although no significant impacts were reported for the Emergency ^
Storage Project, PMIO and NOx emissions from the constmction
activities would be added to the airshed concurrent with the
construction activities of the Landfill.
The project-level significant impacts, when combined with the ^
other projects located in proximity to the Landfill, will result
in significant cumulative impacts to air quality. These projects mm
will be contributing to the regional NOx and PMIO levels with
construction activities, vehicular emissions, and industrial
emissions.
wm
Mitigation Measures
mw
The Proposed Project incorporates measures to partially reduce air
quality impacts during constmction. A summary of those measures
is presented in Section 5. However, as discussed in Section 4 of
this technical report, it is infeasible to reduce the project- ^
specific inpacts, as well as the cumulative impacts, to below a p
level of significance.
p
p
P
P
Conclusions
Project-specific and cumulative impacts to air quality are
significant and unmitigable.
PROJECT ALTERNATIVES
No-Project Altemative
The No-Project Alternative would eliminate the short-term air
quality impacts (fugitive dust and vehicle emissions) generated by
tmck traffic and equipment used in inserting and placing the
permanent cover soil. It would also eliminate the potential
short-term impact of possible temporary methane emissions from the
refuse during the placement of soil and reconfiguration of the
Landfill Gas Collection system. However, a potential longer-term
effect of not placing the final closure cover system is the P
generation of greater airborne dust particles (fugitive dust), p
because the limited vegetation cover would not be fully landscaped
as proposed by this project, and thus would be subject to the
effects of wind. There would be greater risk of erosion and
washout that would provide direct pathways for the escape of
odorous landfill gas without capture by the on-site gas control
system. These impacts are considered significant and unmitigable. P
P
li
18 ••
m
p
p
P
Alternative A
Because the amount of fill and associated tmck trips are only six
percent less than for the Proposed Project, Alternative A would
have air quality impacts similar to the Proposed Project. The
Proposed Project would result in significant air quality impacts
associated with PM-10 and NOx, as would Altemative A. Although
there would be an overall reduction in the number of trips, this
altemative would result in similar impacts to air quality.
Although the emissions would be reduced by six percent, this would
not reduce the impacts to below a level of significance.
Alternative B
Although the amount of fill and associated truck trips are 35
percent less than for the Proposed Project, Altemative B would
still have the same daily emissions, because the number of trips
per day would stay the same. The time frame for the constmction
would be reduced from eight to five months (or on an expedited
schedule, four to two-and-a-half months) . Thus, the daily
emissions would still exceed thresholds for NOx and PM-10;
however, for fewer days. Although the daily impacts are the same
(significant and immitigated), because of the substantial
reduction in the timeframe that the inpacts would have when
contrasted against the Proposed Project, this altemative is
considered the environmentally preferred one.
Altemative C
Altemative C would increase the amount of soil cover by 57
percent that would be inported and placed over the Landfill
surfaces. Vehicular emissions and fugitive dust inpacts
associated with the transportation and placement of soil cover
would be proportionally greater than for the Proposed Project.
Significant and unmitigated irrpacts would occur for NOx and PM-10
levels.
Altemative D
Alternative D would increase, by 30 percent, the amount of soil
cover that would be imported and placed over the Landfill
surfaces. Fugitive dust (PM-10) and NOx inpacts associated with
the transportation and placement of soil cover would be greater
than for the Proposed Project. Dust suppression techniques,
similar to those required for the Proposed Project, would also be
required for Alternative D.
19
REFERENCES:
•HI
California Air Resouces Board, 2000: California Ambient Air "
Quality Data (1980-1999), CD No. PTSD-00-013-CD. ^
•*
San Diego APCD Web Site (www.sdapcd.co.san-diego.ca.us)
Mt
Giroux & Associates, 2000: Lake San Marcos Estates Air Quality *
Impact Analysis (GPA 99-02/R98-003/TM5131/MUP P98-012). M
Ml
U.S. Environmental Protection Agency, 1995: Conpilation of Air
Pollutant Emission Factors, AP-42, OAQPS, Research Triangle Park.
•I South Coast Air Quality Management District, 1993: CEQA Air m Quality Handbook, Diamond Bar, CA P California Air Resources Board, 2000: MVEI7G, Ver l.OC computer model (EMFAC7G).
P
P
P
P
p
p
20 P
P
APPENDIX
TABLE 3-1 FROM DRAFT EIR
FOR CUMULATIVE ANALYSIS
ri ri ri ri ri ri t \ r i ri ii ri KI II II II RI II ti ii
Screencheck 2 - January 2002 Cumulative Impacts
Table 3-1
Cumulative Projects
1 Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*'* Status
City of San Marcos
1 San Elijo Hills
Planned
Community
San Elijo
Road/Elfin Forest
Road
3,398 residential units,
40 acres of community
services, 13 acres of
commercial, golf
course, and 1,050 acres
of open space
Air Quality, Biological Resources,
Cultural Resources, Geology/Soils,
Hydrology, Land Use, Noise, Public
Services, Traffic, and Visual Quality/
Landform Alteration.
EIR/SEIR Project under construction.
Some occupied units.
2 University
Commons
Rancho Santa Fe
Road/San Elijo
Road
471 single-family
residential units,
705 multifamily
residential units
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
HydrologyAVater Quality, Land Use,
Noise, Public Services, and Traffic/
Circulation. All impacts mitigated to
below a level of significance except
aesthetics, noise, and traffic.
EIR/ SEIR Approved 09/01, City
finalizing Development
Agreement. Project likely to
be under construction.
Limited, if any, occupied units.
3 San Elijo Ridge Questhaven Road 260 single-family
residential units
Preparing Initial Study. TBD Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Project.
4 Rancho Santa Fe
Roadway
Expansion
Rancho Santa Fe
Road between
Island and Melrose
Lane additions All impacts mitigated to below a level
of significance.
MND Construction planned for 04/02
through 04/04. May be under |
construction during Proposed |
Project. 1
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR 3-18
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*'* Status
Citv of Carlsbad
5A
5B
5C
Villages of La
Costa Master
Plan
The Ridge: Rancho
Santa Fe Road/
Melrose Avenue
The Oaks: Rancho
Santa Fe Road/San
Elijo Road
The Greens: El
Camino Real/Alga
Road
The Ridge: 493 acres/
320 residential units
TVieOa/b: 712 acres/
1,032 residential units
The Greens: 660 acres/
1,038 residential units
Air Quality, Archaeological Resources,
Biological Resources, Geology/Soils,
Health/Safety, Hydrology/Water
Quality, Landform Alteration, Noise,
Paleontological, Public Services,
Transportation, and Visual Quality.
EIR Approved 10/01, litigation
pending. Unlikely to be
through entitlement process.
Limited potential for
construction activities to be
concurrent with Proposed
Project.
6 Manzanita
Apartments
El Camino Real
north of Poinsettia
Lane
157 apartments Air Quality and Traffic/Circulation. MND Approved 9/99, litigation
pending with Coastal
Commission. Project may be
under construction
concurrently with Proposed
Project. Limited, if any,
occupied units.
7 Cantarini Ranch Future intersection
of College and
Cannon
150 single-family
residential units,
80 multifamily
residential units, and
open space lot
Preparing Initial Study. TBD Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Project.
8 Holly Springs Future intersection
of College and
Cannon
44 single-family
residential units and
open space lot
Preparing Initial Study. TBD Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Project.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-19
ft.ii m mm mm mm m iiiitiiiri
il I] II il il f! 11 ri ri ii ii ii ii m t •§ tt ii ii ii
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Descriptfon Impacts Identified Document
Prepared*'* Status
9 Bressi Ranch South of Palomar,
east of El Camino
Real, and west of
Melrose
595-acre Master Plan
including 6 industrial
areas, 9 residential
areas (maximum of
632 residential units),
and 6 open space lots
Biological Resources/Wetlands and
Traffic/Circulation.
EIR Public review of Draft EIR
began 01/02. Unlikely to be
through entitlement process.
Limited potential for
construction activities to be
concurrent with Proposed
Project.
10 Shelley Carlsbad Northeast corner of
Rancho Santa Fe
and Calle Acervo
intersection
251 single-family
residential units and
8 open space lots
Aesthetics, Air Quality, Archaeology,
Biological Resources, Flooding,
Geology, Land Use, Noise, Public
Services (Schools), Traffic/Circulation,
and Water Quality.
EIR Approved 10/98, project
grading completed. Assume
project is occupied.
11 Colina Roble Rancho Santa Fe
between
Olivenhain and
Calle Acerno
28 single-family
residential units
Air Quality, Biological Resources, and
Cultural Resources.
MND Approved 09/98, completed.
Assume project is occupied.
12 Carlsbad
Research Center
El Camino Real
between Faraday
and Palomar
Airport Road
102,000 square feet
planned industrial
Air Quality and Traffic/Circulation. MND Completed. Assume project is
occupied.
13 Fox/Miller
Property
El Camino Real
between Faraday
and College
390,300 square feet
light industrial
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
Geological Issues, Noise,
Transportation/Circulation, and Water
Resources.
MND Pending Planning Commission
and City Council Hearing.
Project may be under
construction concurrent with
Proposed Project. Limited, if
any, occupied units.
Gty of Encinitas
14A*^' Encinitas Ranch/
South Mesa
TM (00-94)
South of Encinitas
Ranch Golf Course
31 acres/103
residential lots
Aesthetics, Agricultural Resources, Air
Quality, Biological Resources, Cultural
Resources, Geologic Hazards, Land
Use and Planning, Population and
Housing, Public Services,
Transportation/Circulation, Utilities
MND Under construction. Assume
project is occupied.
143*^' Encinitas Ranch/
South Mesa
TM (00-93)
South of Encinitas
Ranch Golf Course
84 residential lots
Aesthetics, Agricultural Resources, Air
Quality, Biological Resources, Cultural
Resources, Geologic Hazards, Land
Use and Planning, Population and
Housing, Public Services,
Transportation/Circulation, Utilities
MND Map recorded, under
construction. Assume project
is occupied. {
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-20
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*'* Status
14C* Encinitas Ranch/
South Mesa
TM (00-128)
South of Encinitas
Ranch Golf Course
72 residential lots and Service Systems, and Water
Resources.
MND Map to be recorded. Assume
project is occupied.
County of San Diego
15 Quail Ridge
Specific Plan and
Subdivision
Elfin Forest Road
(1.5 miles west of
San Elijo Road)
69 residential lots,
126 acres of biological
open space, and 3-mile
trail system
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
Geological Issues, Land Use and
Planning, Noise, Traffic/Circulation,
and Water Resources.
EIR Preparing Draft EIR. Unlikely
to be through entitlement
process. Limited potential for
construction activities to be
concurrent with Proposed
Project.
Other Jurisdictions
16 Emergency
Storage Project
(SDCWA/
Olivenhain
MWD)
Mt. Israel/Elfin
Forest
Storage reservoir Air Quality, Biological Resources,
Cultural Resources, Energy, Geology/
Seismicity, Land Use, Noise,
Paleontology, Public Safety,
Recreation, Socioeconomic, Traffic,
Visual Quality, and Water Resources.
EIR Under construction.
*'* EIR = Environmental Impact Report.
MND = Mitigated Negative Declaration.
SEIR = Supplemental Environmental Impact Report.
TBD = The jurisdiction is completing the Initial Study for these projects. Final environmental documentation requirements are to be determined.
*^* These three projects were processed under one MND, and impacts identified in the MND are presented.
Note: Information researched at the cities of San Marcos, Carlsbad, and Encinitas and the County of San Diego. Detailed project information on the cumulative
projects is available at the Planning Department of each jurisdiction.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-21
11 11 m I 1 mm m m il il II II I I I
APPENDIX D
Noise Study
NOISE IMPACT ANALYSIS
SAN MARCOS LANDFILL
FINAL CLOSURE PLAN
SAN DIEGO COUNTY, CALIFORNIA
Prepared for:
P&D Environmental
Attn: Spphia Habl
401 W. "A" Street, Suite 2500
San Diego, CA 92101
Dated:
January 31, 2002
Prepared by:
Hans D. Giroux
IP Senior Analyst
Giroux & Associa-tes
p
P
TABLE OF CONTENTS
mm
Page
wm
NOISE STANDARDS 1
BASELINE NOISE LEVELS 2
* SENSITIVE RECEPTORS 4
P
Z«OISE IMPACTS 6
Thresholds o£ Significance 6
On-site Craistruction Equipment Noise Generation 8
HI On-Road Noise Unpacts 9
Post-Closure Maintenance 10
™ MITIGATION 13
^ Conclusions 13
CDHOLATIVE IMPACTS 14
m Existing Conditions 14
Thresholds of Significance 14
Analysis of Project Effects and Determination
as to Significance 14
mw Mitigation Measures 15
Conclusions 16
P
ALTERNATIVES 1£
Mi No-Project Alternative 15
Altemative A 16
p Altemative B 17
Altemative C 17
^ Altemative D 17
^ REFERENCES 19
APPENDIX
P
P
P
P
Tables and Figures
Figure 1 - Noise Monitoring Locations
Figure 2a - Sensitive Receptors - San Elijo Road
Figure 2b - Sensitive Receptors - Elfin Forest/Harmony Grove
Table 1 - Haul Traffic Noise Tmpwct Assessment
NOISE STANDARDS
IMI
Most community noise problems typically derive from transportation
sources under the regulatory control of other agencies such as the
Califomia Highway Patrol (CHP) which enforces statewide vehicle
noise regulations, or the Federal Aviation Administration (FAA)
^ which regulates aircraft noise. Vehicular traffic, rail, or
aircraft noise control is thus preempted by other agencies. Local
w control is effected by land use decisions that define acceptable
noise exposure as a function of land use sensitivity.
^ Acceptability is stated in the Noise Element of the San Diego
County General Plan.
wm
m Noise is often called unwanted sound. Soiind is generally
described in terms of the sound pressure level created by
m vibrating air molecules. The most common descriptor is the ratio
of the ambient sound pressure level to the level detectable by a
young person with good auditory acuity. Because this ratio can
vairy by over one mi 11 ion wi thin the range o f hiaman hearing, a
* logarithmic ratio is used to keep values at an easily manageable
p level. This logarithmic ratio is called a "decibel" (dB) .
Decibels are also typically weighted to most closely approximate
wm the response of the hi:mian ear, in a process called "A-weighting, "
referred to as dB(A). Any further reference to decibels (dB) in
this report are understood to be A-weighted. Soxind levels vary
rapidly in an ambient environment. The most common descriptor of
^ time-varying sound is the "equivalent level," or "Leq." Leq is a
p steady-state sound level that has the same acoustic energy as the
average of all the instantaneous variable levels. One-hour is the
most common averaging period.
^ Noise Elements of General Plans, by State law, use a noise
parameter called the Community Noise Equivalent Level (CNEL).
CNEL is a weighted 24-hour exposure where noise events during the
p evening, and especially at night, are assigned an artificial
penalty during times of greater noise sensitivity. Each noise
m event from 7 p.m. to 10 p.m. is assigned a +5 decibel "penalty" in
^ the CNEL calculation. Each noise event from 10 p.m. to 7 a.m. is
assigned a -i-lO decibel penalty. Each car, truck, etc. in the
evening is the "noise equivalent" of approximately three vehicles
^ in the CNEL descriptor. Each vehicle at night carries the same
P weight as ten daytime vehicles in determining CNEL.
p The State of California has developed model noise exposure levels
^ that are proposed for local adoption. These model standards
contain multiple categories of acceptability and category-
overlaps. They also do not address interior standards required
imder Titles 24/25 of the Califomia Code of Regulations. San
Diego County, in the Noise Element of the General Plan, therefore
condensed this matrix of noise exposure goals into a much sinpler
p format.
P
p
Policy 4b establishes a standard of 60 dB CNEL for exterior uses
at any "noise sensitive area" (NSA) with an interior standard of
45 dB CNEL. For NSAs occupied less than 24 hours (schools,
libraries, etc.), the interior standard is 50 dB Leq during the
noisiest hour of the day. Policy 4b requires that habitable areas
achieve 60 dB CNEL (with mitigation, as necessary) , or that
residential interior levels at least achieve 45 dB CNEL even if
exterior levels can not be fully mitigated to 60 dB CNEL. If
attainment of the 60 dB CNEL exterior standard is not technically
feasible, a statement of overriding social or economic
considerations must be made. County staff has generally
interpreted this to mean that an EIR is required that identifies a
significant noise impact to provide a vehicle for making the
finding of overriding considerations.
On a state-wide basis, interior noise standards for residential
uses apply only to multi-occupant residences (four or more units)
and/or to hotels or motels. San Diego County, however, in Policy
4b of the General Plan, requires attainment of 45 dB CNEL in all
residential interior uses regardless of type of occupancy. The
project noise compliance standard therefore is 60 dB(A) CNEL in
usable exterior space, and 45 dB(A) in habitable interior rooms.
On-site noise generation occurring on one land use that may affect
an adjacent use is governed by the San Diego County Code of
Regulatory Ordinances (Section 36.401 et seq.). For the proposed
landfill closure project, ordinance limits would apply for
constmction activities, and for any on-site chronic sources such
as the landfill gas-fueled generating station. Off-site haul
truck noise on public streets would thus be evaluated through the
General Plan (CNEL-based) guidelines, but on-site noise is
regulated by ordinance.
BASELINE NOISE LEVELS
Existing noise levels near the proj ect site are dominated by
traffic sources on Elfin Forest Road. Traffic is dominated by
autos and other light-duty vehicles. Travel speeds are 45-50 mph
depending upon the amount of roadway curvature and sight lines.
Most of the project interior is well shielded by terrain.
Noise measurements were made at three locations on/around the
landfill on October 1, 2001 at locations shown in Figure 1. The
data near the landfill entrance were affected by construction
activities associated with the current San Elijo Hills
constmction project. The other two sites were more
representative of "normal" background levels. The results of this
measurement was as follows (dBA):
IW..
No Scale Noise Monitoring Locations
Figure 1
M Site* Location: LEQ Lmin LSO L90
1 Landfill Entrance 62 68 54 60 57
-2 Generating Plant 59 60 58 59 58
3 County-owned Homes 44 53 40 43 40
= see Figure 1
As a mle of thumb, mid-morning hour Leqs monitored above can be
converted to CNEL by adding 2-3 dB. CNEL levels near the roadway,
as measured near the landfill gate, thus currently exceed the 60
dB County standard. Within a short distance, however, terrain
obstmction and distance spreading creates a very mral noise
environment.
SENSITIVE RECEPTORS
Homes, schools, health care facilities, passive parks, libraries
and similar uses are considered maximally noise-sensitive. Their
sensitivity depends somewhat upon the context in which they occur.
If such uses are located along already busy major roadways, they
are less noise-sensitive than for the same use in a rural
environment. On busy maj or roadways, background noise levels
would mask project-related increments when the baseline is
elevated. Noise sensitivity is thus more related to differences
in noise levels created by a project than by the magnitude of the
project increment itself.
Sensitive receptors are located near all the candidate haul
routes. However, backgroimd noise levels are high from non-
project traffic sources except in close proximity to the landfill.
This limits the potentially project-impacted, noise-sensitive
land uses to those along San Elijo Road for Routes 1, 2, 4, 5 and
6, and to those along Harmony Grove and Elfin Forest Roads for
Route 3. Figure 2 shows the locations of residences in areas of
existing low noise levels that may be affected by the proposed
project, and are thus considered sensitive receptors for this
analysis. The tmck haul noise "footprint" is approximately 500
feet from the roadway centerline. Along San Elijo Hills Road,
approximately 30 residences have a clear exposure to roadway
traffic noise. East of the landfill along Route 3, approximately
P 50 semi-mral residences would be potentially irrpacted by truck
traffic noise. No other sensitive receptors (schools, parks,
p etc.) are present.
P
p
4 ^ No Scale
Serisitive Receptors - San Elijo Road
Figure 2a
BB
Sensitive Receptors
Elfin Forest/Harmony Grove
Figure 2b
NOISE IMPACTS
Thresholds of Significance:
Noise inpacts are considered significant if:
1. they cause a violation of standards or guidelines contained in
applicable ordinances or general plans,
2. they substantially increase an already existing excessive
noise level,
3. they create a nuisance by virtue of character, frequency, time
of day, etc., regardless of the numerical decibel value
created by the noise.
San Diego County and the City of San Marcos use very similar noise
compliance criteria as a basis for determining noise inpact
significance. Both jurisdictions have established a noise
exposure goal of 60 dBA CNEL for residences and other
noise-sensitive land uses. The CNEL metric and the associated
noise goal apply to those sources that are pre-enpted from local
control such as on-road vehicles, trains, or aircraft. Because
local control of the source is preempted from local control, the
city or county regulate the noise exposure of the types of land
p uses exposed to such noise. If site-related traffic were to cause
the traffic noise to exceed 60 dB CNEL (65 dB CNEL in other
•i jurisdictions such as Oceanside, Carlsbad, or Escondido) at
locations where this standard is not exceeded, the noise impact
would be potentially significant.
At many developed locations in San Diego County, noise levels
m already exceed the 60 dB CNEL threshold. Impact significance
would require a substantial increase. No local jurisdictions
mm define "substantial increase" in terms of specific decibel limits.
The consensus definition in most environmental dociiments is +3 dB.
However, a -i-3 dB increase typically requires a doubling of traffic
volumes because of the logarithmic relationship between noise
levels and traffic volumes. Few projects individually create a
P doiibling of volximes. Most typically, significant off-site traffic
noise increases are cumulative in nature.
^ Noise generation from equipment operating off-road is a
specifically regulated activity in both the City and County noise
ordinances. The allowable noise level on an industrial property
such as the landfill is 75 dBA (one-hour Leq) . The allowable
Hi noise level on a residential receiving property is 45 dBA at
night, and 50 dBA by day. At the boundary between two zoning
<Pi districts, the noise standard is equal to the mathematical average
between the two different districts.
Much of the proposed closure activity is in the form of temporary
construction noise. Such noise is regulated slightly differently
in each applicable noise regulation. The County of San Diego, in
Section 36.410 of the County Code, establishes a performance
standard not to exceed 75 dBA at the boundary of any construction
site averaged over eight (8) hours. The ordinance also requires
that construction activities be restricted to only the hours from
7 a.m. to 7 p.m. on Monday through Saturday. The City of San
Marcos ordinance has no numerical performance standard. Its
allowable construction hours are slightly more stringent. Work
must cease by 6 p.m., and Saturday activities can not start before
8 a.m. Both City and County codes prohibit operation of
construction equipment or machinery on Sundays or nnajor holidays.
Project-related noise impacts would be considered significant if:
1. Traffic noise exceeded 60 dB CNEL in County or City of San
Marcos limits (65 dB CNEL in other jurisdictions) if such
levels are currently not being exceeded.
2. Traffic noise at any sensitive receptor is increased by +3 dB
or more.
3. On-site operations occur during noise-sensitive periods, or
the County performance standard of 75 dB (8-hour average) is
exceeded at the landfill perimeter.
In 1998, a "Final Post-Closure Plan" noise impact study was
prepared by Dr. Alexander Segal working jointly for the County
Department of Public Works (DPW) and the Department of Planning
and Land Use (DPLU). This study contained a detailed analysis of
the equipment operations and their associated noise to be used to
inplement the landfill closure plan. The draft noise study
considered the impact of concurrent off-site soil hauling, soil
placement and geotextile placement as part of the final closure
activities. The analysis utilized a wide variety of data
resources (EPA, field tests, the landfill extension FEIR,
manufacturer information) to establish the noise "footprint" for
final closure plan inplementation. The draft report also
concluded that post-closure maintenance would entail less
intensive activities and smaller (quieter) equipment. The final
closure plan equipment noise inpact thus represents a worst-case
condition. These data, which concluded that set-backs were
adequate to prevent a potentially significant noise inpact, are
summarized in the following analysis of on-site constmction
equipment noise inpact.
P
Currently proposed closure activities are identical to those
analyzed. The results of the 1998 study, and the traffic
projections for various haul route alternatives, were used to
evaluate project impacts relative to the above thresholds.
On-site Construction Equipment Noise Generation
The on-site noise level for the types of equipment operating in
closest proximity to the eastern landfill property line near
existing Elfin Forest community residences is 87 dB(A) at a
50-foot reference level. This level was determined from an
extensive literature review (EPA, 1971, and Harris, 1979) and from
field measurements (San Marcos Landfill Extension FEIR; MBA,
1990). For an 87 dB(A) reference noise level at 50 feet from the
source, and with noise propagation across an irregular and
vegetated surface, the 7 5 dB (8-hour average) is met wi thin 150
feet of the activity under direct line-of-sight conditions. With
the topographical screening presented by the residual ridgeline
along the eastern landfill boundary, the noise conpliance distance
is even shorter.
As a worst-case assunption, two remediation crews were assumed to
be working simultaneously in closest proximity to existing homes.
The combined reference noise level from two crews is 90 dB(A) at
50 feet. Under direct line of sight conditions and an
acoustically "soft" surface, the theoretical 75 dB (8-hour
P average) contour distance is 200 feet. The nearest Elfin Forest
residences are at least 250 feet from any proposed activity, and
m these are residences owned by San Diego County which had been
^ acquired as a noise buffer for previous landfill expansion
activities. The nearest non-County residences are 600 feet from
^ any activity. On-site equipment operations (haul truck, loader,
dozer, conpactor, grader and water truck) from two simultaneously
P operating remediation crews will not cause the significance
threshold to be exceeded even under assumed worst-case line of
m sight conditions. With the additional substantial noise reduction
from existing topographical screening, the margin of safety will
be strongly enhanced.
p
m
As during historical landfill operations, access to available
on-site landfill cover materials will likely require drilling and
blasting because of the hardness of the subsurface rock material.
The blast itself is designed to fracture the rock, but not eject
it from the ground. The reported reference noise level from a
single blast is 94 dB(A) at 50 feet from the blast site (John
Bennett, Dept. of Planning and Land Use). Over an 8-hour
work-day, this translates into a 49 dB(A) level at 50 feet. With
P considerable spreading losses, and with the blast site shielded
from the closest homes by intervening terrain, the blast
p contribution to the 8-hour average constmction noise exposure is
il
P
negligible.
Longer-term blasting activity noise will result from the drill
used to place the charges. The reference noise level from a drill
is 89 dB(A) at 50 feet averaged over an hour. The San Di ego
County 8-hour standard of 75 dB(A) may be exceeded to a distance
of 260 feet from the drill site. The nearest residences are well
beyond 260 feet from any drilling activity, and screened by
intervening terrain. The is no potential for exceeded the
applicable significance threshold from drilling to place blasting
charges.
On-Road Noise Inpacts
The proposed project will require 800 daily truck trips (400
loads) of soil material delivery. Tmcks are much noisier than
cars. The California vehicle noise (Calveno) curves in the Federal
Highway Traffic Noise Prediction Model (FHWA-RD-77-108) show the
following noise equivalence between trucks and cars as a function
of travel speed:
at 25 mph, 1 truck = 85 cars
at 35 mph, 1 truck = 31 cars
at 45 mph, 1 truck = 19 cars
at 55 mph, 1 tmck = 13 cars
At 45 nph, the on-road noise impact from 800 project-related
trucks is therefore the noise-equivalent of over 15,000 cars per
day. Any tmcks on the road before 7 a.m. further counts as 10
"noise- equivalent" trucks in the CNEL calculation. Any single
truck before 7 a.m. is the noise-equivalent of 190 cars traveling
after 7 a.m.
If the landfill access route already carries a high traffic
volume, the haul truck noise will be masked by the baseline. The
project will create a short-term incremental impact, but not at
levels that exceed the +3 dB significance threshold for individual
impact significance. If, however, baseline volumes are less than
15,000 vehicles per day, the tmck noise increment will create a
tenporary doubling or more of noise generators. Such inpacts are
significant.
Traffic volumes used to perform the comparison of baseline noise
levels contrasted to the "with project" scenario are included in
the appendix. The reference noise level for baseline traffic was
calculated using the FHWA Model for an average San Diego County
P
1^1
arterial traffic mix. - The reference noise level at 50 feet from
^ the centerline from the FHWA Model is calculated as follows (dBA):
CNEL = 67.84 + 10 log (ADT/10000)
" Project-related truck noise was calculated using the same model,
p assimiing 10 percent of travel was before 7 a.m. , and 90 percent
from 7 a.m. to 7 p.m. The resulting project-only noise is shown
PI by the model to be 68.2 dBA CNEL. Combined noise levels are
^ calculated by:
CNEL (total) = 10 X LOG ( 10 ^^^^^^^ + 10 ^"^^ )
P
p Where BASE = non-project baseline
PI Table 1 summarizes the no-project and with-project traffic noise
for six haul route alternatives calculated using the federal
highway traffic noise prediction model (FHWA-RD-77-108).
Significant traffic noise inpacts will result for all west
^ approach altematives (Routes 1, 2, 4, 5 & 6) on the link between
the San Elijo Road/Rancho Santa Fe Road intersection and the
landfill entrance gate. A significant noise increase would occur
mm for the entire length of the alignment for Route 3 .
mm
o - Roadway segment from Rancho Santa Fe/San Elijo Road
intersection to the landfill will experience a 4.4-dBA
mm increase (Truck Routes 1, 2, 4, 5, 6).
— o - Roadway segments along the entire Tmck Route 3 will
experience a noise increase greater than 3 dBA.
tM
Post-Closure Maintenance
The proposed project includes a landfill maintenance program.
These activities include monitoring, inspection, and maintaining
the groundwater monitoring wells, surface water collection areas,
*• landfill gas monitoring system, soil cover, and vegetation. These
activities will occur on a limited basis for a short duration.
These activities will be site specific to small portions of the
iM landfill, as activities are required. The noise associated with
post-closure activities will be less than those from final closure
— activities (which were fo\ind to be less than significant) . Post-
closure maintenance will therefore similarly have a less than
significant equipment operations noise impact.
10
mw TABLE 1
m
Haul Traffic Noise Iiogpact Assessment
mw
P
(Noise in dB CNEL at 50' to centerline)
Mi
P With
^m Exist Proj Delta Signif
wm Route 1:
p
Descanso Blvd.-Grand Ave. 73.8 74.9 + 1.1 No
wm La Mirada Dr.-Linda Vista Dr. 73.1 74.2 + 1.2 No
Security Pl.-San Marcos Blvd. 71.9 73.4 + 1.5 No
wm San Marcos Blvd-Lake San Marcos 72.7 74.0 +1.3 No
Lake San Marcos Dr.-Melrose Dr. 72.2 73.7 +1.5 No
Melrose Dr.-San Elijo Road 72.4 73.8 +1.4 No
Wm San Elijo Road-Landfill 65.8 70.2 +4.4 Yes
-Route 2:
••a Plaza Drive-Marron Road 73.2 74.4 + 1.2 No
Faraday Ave.-Palomar Apt. Rd. 73.0 74.2 + 1.2 No
El Camino Real-Alga Road 72.3 73.7 + 1.4 No
iHi Alga Road-La Costa Ave. 73.5 74.7 + 1.2 No
La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No
Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No
C. Barcelona - La Costa Ave. 72.0 73.5 +1.5 No
Truck Bypass- San Elijo Rd. 72.0 73.5 +1.5 No
m. San Elijo Rd. - Landfill 65.8 70.2 +4.4 Yes
mm Route 3:
m^ Auto Park Way 67.5 70.9 +3.4 Yes
Harmony Grove Road 61.3 69.0 + 7 . 7 Yes
Elfin Forest Road 61.3 69.0 +7.7 Yes
mm Route 4:
mm Paseo del Norte-Armada Dr. 75.2 76.0 + 0.8 No
Yarrow Dr,-El Camino Real 72.8 74.1 + 1.5 No
Palomar Apt. Rd.-Alga Road 72.3 73 .7 + 1.4 No
mw Alga Road-La Costa Ave. 73.5 74.7 + 1.2 No
La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No
IH Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No
C. Barcelona - La Costa Ave. 72.0 73.5 + 1.5 No
PM Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No
P San Elijo Rd.-Landfill 65.8 70.2 + 4.4 Yes
Table 1 - Cont'd.)
With
Exist Proj Delta Signif (?)
mm
Route 5: mm
Piraeus St.- Saxony Road 72.5 73 .9 + 1.4 No mm
La Costa Ave.- C. Barcelona 72.7 74.0 + 1.3 No
C. Barcelona - La Costa Ave. 72.0 73 .5 + 1.5 No
Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No Mi
San Elijo Road-Landfill 65.8 70.2 +4.4 Yes
Route 6: mw
mt
1-5 - Saxony Road 73.3 74.5 + 1.2 No
Balour Dr.-El Camino Real 72.0 73.5 + 1.5 No m
Encinitas Blvd.- Mountain Vista 73.8 74.9 + 1.1 No wm
Garden View Rd.-Olivenhain Rd. 73.7 74.8 + 1.1 No
Olivenhain Rd.- La Posta 69.8 72.1 +2.3 No m
C. Barcelona - La Costa Ave. 72.0 73.5 + 1.5 No
Truck Bypass- San Elijo Rd. 72.0 73.5 + 1.5 No tm
San Elijo Road - Landfill 65.8 70.2 + 4.4 Yes
Source: FHWA-RD-77-108 (Calveno mod.)
k
p
p
P
^ MITIGATION
^ Mitigation to a less-than-significant level could be achieved for
P Routes 1, 2, 4, 5, and 6 by avoiding more lightly traveled San
Elijo Road until after 7:00 AM. By not allowing tmck traffic
p between Rancho Santa Fe Road and the landfill entrance gate before
7:00 AM, the traffic noise levels [CNEL in dB(A) at 50 feet to
centerline] would be as follows: P
P
p
Existing Background Level = 65.8 dB
With Project Trucks = 68.6 dB
Net Increase = +2.8 dB
By restricting the roadway use to after 7 a.m., the noise impact
would not exceed the +3 dB significance threshold. Adequate
provisions would need to be made to provide queuing space for any
pre-7 a.m. arrivals.
Baseline noise 1eve1s along Rou t e 3 (Harmony Grove and Elfin
Forest Roads) are too low to adequately mask truck noise even with
a post 7 a.m. limitation. Selection of Route 3 as the haul route
would have significant and unmitigable noise impacts.
Conclusions
No significant inpacts related to on-site closure and post-closure
maintenance were identified for the proposed project. The
proposed project will have potentially significant traffic noise
impacts related to the hauling of soil cover material to the
landfill site. These inpacts are mitigable to less than
significant levels if Tmck Routes 1, 2, 4, 5, or 6 are selected
as the preferred alternative, and truck traffic is prohibited on
San Elijo Road before 7 a.m.
13
CUMULATIVE IMPACTS ^
Existing Conditions
MI
The noise environs for the Landfill vicinity and adjacent to the ^
Tmck Routes are presented in the foregoing discussion.
Thresholds of Significance
The Proposed Project would have a significant cumulative noise
impact if the incremental effects of a project when viewed in ^
connection with the effects of past projects, other current
proj ects, and probable future proj ects, exceeds thresholds
identified in the project impact analysis above.
wm
In addition, under State CEQA Guidelines, when evaluating the
cumulative noise-related issues of a proposed project in "
combination with other development, a significant cumulative m
effect would normally occur if the project were to result in:
wm
* Exposure of persons to or generation of noise levels in
excess of standards established in the local general plan
or noise ordinance, or applicable standards of other
agencies. "
mk
* Exposure of persons to or generation of excessive
groundbome vibration or groundbome noise levels. MI
* A substantial permanent increase in ambient noise levels in
the project vicinity above levels existing without the
project. " •n
* A substantial temporary or periodic increase in ambient
noise levels in the project vicinity above levels existing p
without the project. ^
Analysis of Project Effects and Determination of Significance P
m
Significant project-level impacts were identified for noise
resulting from hauling the soil to the site. Significant noise
inpacts were identified on the San Elijo Road segment of Tmck
Routes 1, 2, 4, 5, and 6 and along all of Truck Route 3. On-site
activities (during the constmction of the cover and post-closure
maintenance) were not significant, with the exception of *
nuisance-level disturbance associated with blasting. Table 3-4 of m
the DEIR identifies the noise impacts for the cumulative projects.
Noise impacts for these projects include short-term construction p
P
14 P
P
k
noise and also vehicle noise.
Cumulative projects are generally located adjacent to the major
circulation network; however, the San Elij o Hills, University
Commons, and Emergency Storage Projects are located in proximity
^ or conveying additional traffic to San Elijo Road (Questhaven) and
p Elfin Forest Road. Albeit small, the contribution of additional
noise with the project-level significant inpacts associated with
Hi the transport of soil will result in significant ciimulative
inpacts. None of the other projects are likely to contribute
additional traffic on the San Elijo Road, Elfin Forest Road, or
Harmony Grove Road circulation element.
P
p Based upon the project-level analysis in Table 1 above, other
segments will generally be subject to noise increases of between 1
and 2 dB. A 3-dB increase is considered to be significant. The
addition of the truck route traffic to traffic generated by the
cumulative projects (DEIR Section 3.2) will not likely increase
noise levels by an additional 1 to 2 dB (which would result in a
cumulative 3-dB increase) . However, the Olivenhain Road - La
Costa Avenue segment would have a 2.3-dB increase in noise levels
strictly associated with the Proposed Project. There is a
potential that traffic from San Elijo Hills, University Commons,
Shelley Carlsbad, and Colina Roble could contribute sufficient
traffic to result in a cumulative increase in noise levels to 3
dB, resulting in a significant noise impact above and beyond those
reported at the project level.
Noise impacts generated at the project site were evaluated above.
Noise levels were found to be reduced at the nearest sensitive
receptor. Additional noise from construction activities on San
Elijo Hills and University Commons (nearest projects in the
vicinity of the Landfill) would not result in a significant
increase in noise levels, because noise from two sources is not
strictly "additive" (i.e., a 50-dB noise source plus a 50-dB
second noise source do not result in 100 dB) . On-site
constmction noise would be sufficiently attenuated before it
reaches sensitive receptors (nearby residents) that the two
constmction proj ects would not cause an additive (or cumulative)
exceedance of thresholds.
Mitigation Measures
The Proposed Project incorporates measures to partially reduce
noise inpacts during constmction. A summary of those measures is
presented above. By prohibiting truck traffic on San Elijo Hills
Road before 7 a.m., and by selection of Truck Routes 1, 2, 4, 5,
or 6 as the preferred alternative, project-specific hauling noise
inpacts can be reduced to a less than significant level.
15
The assumption of ten (10) percent pre-7 a.m. truck traffic on
area roadways produces a noise impact that is twice as high as a
condition where all truck traffic is restricted to freeway-only
travel before 7 a.m. Potential cumulative truck noise impacts can
be maintained at less than significant levels on all area roadways
if project traffic is restricted to freeway-only travel before 7
a.m.
Conclusions
Project-specific and cumulative impacts to noise are significant,
but mitigable.
ALTERNATIVES
No-Project Altemative
The No-Project Alternative would reduce the short-term inpact of
noise from trucks and equipment used in inporting and placing the
final closure cover system at the landfill. Some noise will still
occur under this alternative, from the occasional inportation and
placement of replacement soil to maintain the minimum of two feet
of intermediate cover soil on the landfill. If the proposed
project is conpleted, the vegetative cover will reduce the rate of
soil erosion and, therefore, reduce the frequency of the impacts
of importing replacement soil. Some continuing post-closure
maintenance of the final closure cover system will be required,
but it is anticipated to decrease from current continuing
maintenance requirements. The noise impacts are not significant,
because of the limited number of truck trips associated with the
placement of cover.
Alternative A
m
m
P
P The amount of fill material and associated truck trips are only
six percent less than the proposed project. Occasional blasting
would still be required for this alternative. Therefore, the
noise inpacts associated with this alternative are the same as for P
the proposed project, except for the slight decrease in magnitude P
attributable to the six percent reduction in truck trips. As
discussed previously, significant noise impacts would occur on San •
Elijo Road from Rancho Santa Fe Road to the landfill (Tmck Routes g
1, 2, 4, 5 & 6) and along the entire Tmck Route from Valley
Parkway to the landfill. Noise levels on the freeway segments
(1-5, 1-15, and SR-78) are not significant, because of the ambient k
noise levels existing. P
As with the preferred alternative, hauling noise impacts can be p
16 k
P
p
maintained at an individually and cumulatively less than
significant level by restricting project traffic to freeway-only
travel before 7 a.m.
P
Altemative B
Mil
p The amount of fill material and associated truck trips are 35
percent less than for the proposed project. Occasional blasting
would still be required for this alternative. As discussed
previously, significant noise impacts would occur on San Elijo
• Road from Rancho Santa Fe Road to the landfill (Truck Routes 1, 2,
4, 5 & 6) and along the entire Truck Route from Valley Parkway to
• the landfill. Noise levels on the freeway segments (1-5, 1-15,
m and SR-78) are not significant, because of the ambient noise
levels existing.
As with the preferred altemative, hauling noise impacts can be
maintained at an individually and cumulatively less than
significant level by restricting project traffic to freeway-only
^ travel before 7 a.m.
P
wm Alternative C
The amount of fill material and associated truck trips are 57
percent greater than for the proposed project. Occasional
blasting would still be required for this alternative. Therefore,
p the noise inpacts associated with this are greater than for the
proposed project. As discussed previously, significant noise
mm inpacts would occur on San Elijo Road from Rancho Santa Fe Road to
the landfill (Truck Routes 1, 2, 4, 5 & 6) and along the entire
Tmck Route from Valley Parkway to the landfill. Noise levels on
the freeway segments (1-5, 1-15, and SR-78) are not significant,
because of the ambient noise levels existing.
MM
As with the preferred alternative, hauling noise impacts can be
maintained at an individually and cumulatively less than
significant level by restricting project traffic to freeway-only
travel before 7 a.m.
Altemative D
MB
The amount of fill material and associated tmck trips are 30
— percent greater than for the proposed project. Occasional
blasting could still be required for this altemative. Therefore,
the noise impacts associated with this altemative are greater
than for the proposed project. As discussed previously,
significant noise inpacts would occur on San Elijo Road from
m Rancho Santa Fe Road to the landfill (Tmck Routes 1, 2, 4, 5, &
6) and along the entire Truck Route from Valley Parkway to the
mm landfill. Noise levels on the freeway segments (1-5, 1-15, and
17
SR-78) are not significant, because of the ambient noise levels
existing.
As with the preferred alternative, hauling noise impacts can be
maintained at an individually and cumulatively less than
significant level by restricting project traffic to freeway-only
travel before 7 a.m.
P
iH
P
P
18 P
P
REFERENCES
m
P Bennett, John, 2002: San Diego County Dept. of Planning and Land
Use, private communication.
p
p City of San Marcos, Municipal Code, Article II, Section 17-18 et_
seq., Ordinance no. 71-95.
m
m County of San Diego, County Code Section 36-401 et seq.
Harris, C. M. (ed.), 1979: "Handbook of Noise Control," (Second
Edition), McGraw-Hill, Inc.
Linscott, Law & Greenspan, 2002: San Marcos Landfill Closure Plan
Traffic Study, January.
MBA, 1990: DEIR/FEIR, San Marcos Landfill Expansion/Permit
Extension.
U.S. Environmental Protection Agency, 1971: "Noise from
Constmction Equipment and Operations, Building Ecguipment, and
Home Appliances," NTID 300.1, Washington, D.C.
U. S. Federal Highway Administration, 1978: "FHWA Highway Traffic
Noise Prediction Model," FWWA-RD-77-108.
19
m
p
APPENDIX
BASELINE TRAFFIC VOLUMES
USED FOR HAULING ACTIVITY
NOISE IMPACT ANALYSIS
tm
p
m
12/C4/2001 13:39 FAX 161S2997D4] LLG SAN DIEGO igloos
TABLE 1
MP
ROUTE 1 - EXISTING DAILY TRAFFIC VOLUMES
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT)
RANCHO SANTE FE HOAD
Descanso Boulevard to Grand Avenue 2000 39.400
La Mirada Drive to Linda Vista Drive 2000 33,600
iSecurity Place to San l^arcos Boulevanj 2000 25,300
San Marcos Boulevard to l_ake San Marcos Drive 2000 30,900
Lake San Marcos Drive to Melrose Drive 2000 27,500
Melrose Drive to San Elijo Road 2000 28,800
Tabt.1124
12/4/2001
TABLE 1a
ROUTE 2 - EXISTING DAILY TRAFFIC VOLUMES
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT) IM.
El Camino Real I
mm Plaza Drive to Marron Road 2000 34,566
Faraday Avenue to Palormar Airport Road 2000 32.590 mm'
Ei Camino Reai to Alga Road 2000 27,645 mm
Alga Road to La Costa Avenue 2000 37,201
La Costa Avenue to Calle Barcelona 2000 30.373
Rancho Sante Fe Road IM
Olivenhain Road to Avd La Posta/Calle Acervo 2000 15,600 IP
Calle Barcelona to La Costa Avenue 2000 25,800
Truck By-Pass to San Elijo Road 2000 26.214 wm
p
p
p
p
Tebl.1122
1^4-2001
12/04/2001 13:43 F.\X 16192997041 LLG SAN DIEGO [g!008
P
TABLEle
p
P
P
P
P
p
P
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT)
Auto Park Way
9th Avenue to Valley Pkwy 1995 9,300
Auto Park Way N (1 -Way) Andreasen Dr to Howard Avenue 1998 12.300
Harmony Grove Road
Eifin Forest Road to Kauana Loa Drive 1995 2.200
Elfin Forest Road
Questhaven Road to Elfin Forest Road 1998 2,200
Tib1,1122
i:i/U4/2!)Ul 13:40 KAA 16132897041 LLG SA-\ DIEGO i^OO;
TABLE 1b
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT)
tMH
mm
Palomar Airport Road
*""'• Paseo Dei Norte to Armada Drive 2000 54,941
Yarrow Drive to El Camino Real 2000 31,070 «^
Palomar Airport Road to Alga Road 2000 27,645 mm
Alga Road to La Costa Avenue 2000 37,201 am
La Costa Avenue to Catle Barcelona 2000 30,373
Rancho Sante Fe Road mm
Olivenhain Roaa to Avd La Posta/Gaile Acervo 2000 15.600 wm
Caile Barcelona to La Costa Avenue 2000 25,800
Truck By-Pass to San Elijo Road 2000 26,214 wm
p
p
m
Tabl.1122
12/*2001
li
p
12/04/2001 13:41 FAA H)192S97041 LLG SAN DIEGO 1^006
P
P
P
P P
MM
p
p
TABLEic
ROUTE5*- EXISTING DAILY TRAFFIC VOLUMES
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT)
La Costa Avenue
Piraeus Street to Saxony Road 2000 28,388
La Costa Avenue to Calle Barcelona 2000 30,373
Rancho Sante Fe Road
Olivenhain Road to Avd La Posta'Calle Acervo 2000 15.600
Calle Barcelona to 1-a Costa Avenue 2000 25,600
Truck By-Pass to San Eiijo Road 2000 26.214
p
Tabl.1122
12/4/20C1
P
12/04/2001 13:42 FAX 16192997041 LLG SAN DIEGO i2]007
TABLE Id
ROUTE^- EXISTING DAILY TRAFFIC VOLUMES
STREET SEGMENT YEAR 24-HOUR
VOLUME (ADT)
Mn
mm
Encinitas Boulevard
i-5 to Saxony Road 2000 35,100
Balour Drive to El Camino Real 2000 26,200
El Camino Real ma
Encinitas Boulevard to Mountain Vista Drive 2000 39,600
Garden View Road to Olivenhain Road 2000 38,300 wm
Rancho Sante Fe Road
wm
Olivenhain Road to Avd La Posta/Calle Acervo 2000 15,600 m
Calle Barcelona to La Costa Avenue 2000 25,800 -
Truck By-Pass to San Elijo Road 2000 26,214 MM
p
•i
Ta3l.ll22
12/4/2C01
P
il
P
P
ffl 11 It il ri 11 f] ri II ffl tl Pl m M vi KI mm si KI ti
Screencheck 2 - January 2002 Cumulative Impacts
Table 3-1
Cumulative Projects
Map
Label Project Name Project Location Description Impacts Identifled Document
Prepared'" Status
Crrv of San Marcos
1 San Elijo Hills
Planned
Community
San Elijo
Road/Elfm Forest
Road
3,398 residential units,
40 acres of community
services, 13 acres of
commercial, golf
course, and 1,050 acres
of open space
Air Quality, Biological Resources,
Cultural Resources, Geology/Soils,
Hydrology, Land Use, Noise, Public
Services, Traffic, and Visual Quality/
Landform Alteration.
EIR/SEIR Project under construction.
Some occupied units.
2 University
Commons
Rancho Santa Fe
Road/San Elijo
Road
471 single-family
residential units,
705 multifamily
residential units
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
Hydrology/Water Quality, Land Use,
Noise, Public Services, and Traffic/
Circulation. All impacts mitigated to
below a level of significance except
aesthetics, noise, and traffic.
EIR/ SEIR Approved 09/01, City
finalizing Development
Agreement. Project likely to
be under construction.
Limited, if any, occupied units.
3 San Elijo Ridge Questhaven Road 260 single-family
residential units
Preparing Initial Study. TBD Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Proiect.
4 Rancho Santa Fe
Roadway
Expansion
Rancho Santa Fe
Road between
Island and Melrose
Lane additions All impacts mitigated to below a level
of significance.
MND Construction planned for 04/02
through 04/04. May be under
construction during Proposed
Project.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-18
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*" Status
Cityof Carlsbad
5A
5B
5C
Villages of La
Costa Master
Plan
The Ridge: Rancho
Santa Fe Road/
Melrose Avenue
The Oaks: Rancho
Santa Fe Road/San
Elijo Road
The Greens: El
Camino Real/Alga
Road
The Ridge: 493 acres/
320 residential units
The Oaks: 712 acres/
1,032 residential units
The Greens: 660 acres/
1,038 residential units
Air Quality, Archaeological Resources,
Biological Resources, Geology/Soils,
Health/Safety, Hydrology/Water
Quality, Landform Alteration, Noise,
Paleontological, Public Services,
Transportation, and Visual Quality.
EIR Approved 10/01, Utigation
pending. Unlikely to be
through entitlement process.
Limited potential for
construction activities to be
concurrent with Proposed
Project.
6 Manzanita
Apartments
El Camino Real
north of Poinsettia
Lane
157 apartments Air Quality and Traffic/Circulation. MND Approved 9/99. litigation
pending with Coastal
Commission. Project may be
under construction
concurrently with Proposed
Project. Limited, if any,
occupied units.
7 Cantarini Ranch Future intersection
of College and
Cannon
150 single-family
residential units,
80 multifamily
residential units, and
open space lot
Preparing Initial Study. TBD Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Proiect.
8 Holly Springs Future intersection
of College and
Cannon
44 single-family
residential units and
open space lot
Preparing Initial Study. TBD ~ 1 ,„„mmlL-m -- •
Preparing Initial Study.
Unlikely to be through
entitlement process. Limited
potential for construction
activities to be concurrent with
Proposed Project.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-19
il II LJ il li ii I 1 I I i 1 i I ^ I I E I E 1 [ 1
ffl V i i I i iiiiitiiiiiiiiiirii^i Kl Pl Bi il il
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*'* Status
9 Bressi Ranch South of Palomar,
east of El Camino
Real, and west of
Melrose
595-acre Master Plan
including 6 industrial
areas, 9 residential
areas (maximum of
632 residential units),
and 6 open space lots
Biological Resources/Wetlands and
Traffic/Circ ulation.
EIR Public review of Draft EIR
began 01/02. Unlikely to be
through entitlement process.
Limited potential for
construction activities to be
concurrent with Proposed
Project.
10 Shelley Carlsbad Northeast corner of
Rancho Santa Fe
and Calle Acervo
intersection
251 single-family
residential units and
8 open space lots
Aesthetics, Air Quality, Archaeology,
Biological Resources, Flooding,
Geology, Land Use, Noise, Public
Services (Schools), Traffic/Circulation,
and Water Quality.
EIR Approved 10/98, project
grading completed. Assume
project is occupied.
11 Colina Roble Rancho Santa Fe
between
Olivenhain and
Calle Acerno
28 single-family
residential units
Air Quality, Biological Resources, and
Cultural Resources.
MND Approved 09/98, completed.
Assume project is occupied.
12 Carlsbad
Research Center
El Camino Real
between Faraday
and Palomar
Airport Road
102,000 square feet
planned industrial
Air Quality and Traffic/Circulation. MND Completed. Assume project is
occupied.
13 Fox/Miller
Property
El Camino Real
between Faraday
and College
390,300 square feet
light industrial
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
Geological Issues, Noise,
Transportation/Circulation, and Water
Resources.
MND Pending Planning Commission
and City Council Hearing.
Project may be under
construction concurrent with
Proposed Project. Limited, if
any, occupied units.
City of Encinitas
14A'^' Encinitas Ranch/
South Mesa
TM (00-94)
South of Encinitas
Ranch Golf Course
31 acres/103
residential lots
Aesthetics, Agricultural Resources, Air
Quality, Biological Resources, Cultural
Resources, Geologic Hazards, Land
Use and Planning, Population and
Housing, Public Services,
Transportation/Circulation, Utilities
MND Under construction. Assume
project is occupied.
14B*^' Encinitas Ranch/
South Mesa
TM (00-93)
South of Encinitas
Ranch Golf Course
84 residential lots
Aesthetics, Agricultural Resources, Air
Quality, Biological Resources, Cultural
Resources, Geologic Hazards, Land
Use and Planning, Population and
Housing, Public Services,
Transportation/Circulation, Utilities
MND Map recorded, under
construction. Assume project
is occupied.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-20
Screencheck 1 - December 2001 Cumulative Impacts
Table 3-1 (Continued)
Map
Label Project Name Project Location Description Impacts Identified Document
Prepared*'* Status
i4d^' Encinitas Ranch/
South Mesa
TM (00-128)
South of Encinitas
Ranch Golf Course
72 residential lots and Service Systems, and Water
Resources.
MND Map to be recorded. Assume
project is occupied.
County of San Diego
15 Quail Ridge
Specific Plan and
Subdivision
Elfin Forest Road
(1.5 miles west of
San Elijo Road)
69 residential lots,
126 acres of biological
open space, and 3-mile
trail system
Aesthetics, Air Quality, Biological
Resources, Cultural Resources,
Geological Issues, Land Use and
Planning, Noise, Traffic/Circulation,
and Water Resources.
EIR Preparing Draft EIR. Unlikely
to be through entitlement
process. Limited potential for
construction activities to be
concurrent with Proposed
Project.
Other Jurisdictions
16 Emergency
Storage Project
(SDCWA/
Olivenhain
MWD)
Mt. Israel/Elfin
Forest
Storage reservoir Air Quality, Biological Resources,
Cultural Resources, Energy, Geology/
Seismicity, Land Use, Noise,
Paleontology, Public Safety,
Recreation, Socioeconomic, Traffic,
Visual Quality, and Water Resources.
EIR Under construction.
EIR = Environmental Impact Report.
MND - Mitigated Negative Declaration.
SEIR = Supplemental Environmental Impact Report.
TBD = The jurisdiction is completing the Initial Study for these projects. Final environmentai documentation requirements are to be determined.
(2) These three projects were processed under one MND, and impacts identified in the MND are presented.
Note: Information researched at the cities of San Marcos, Carisbad, and Encinitas and the County of San Diego. Detailed project information on the cumulative
projects is available at the Planning Department of each jurisdiction.
San Marcos Landfill Closure and
Post-Closure Maintenance Plans EIR
3-21
1 M i I I I I 1 i I i illllilililili IIIII I I
APPENDIX E
Alternative Cover Evaluation
Technical Study
ALTERNATIVE COVER EVALUATION
AND DESIGN
San Marcos Landfill
San Diego County, Califomia
February 2002
Prepared For:
Brown 8L Caldwell
9665 Chesapeake Drive, Suite 210
San Diego, Califomia 92123
Prepared By:
GEOLOGIC ASSOCIATES
16885 West Bemardo Drive, Suite 305
San Diego, Califomia 92127
(858)451-1136
GeoLogic Associates
Geologists, Hydrogeologists and Engineers
P
P
March 1,2002
Job No. 2001-083
Brown and Caldwell
9665 Chesapeake Drive, Suite 210
San Diego, CA 92123
Attention: Mr. Ervin Nesheim
ALTERNATIVE COVER EVALUATION AND DESIGN
SAN MARCOS LANDFILL FINAL CLOSURE
SAN DIEGO COUNTY, CALIFORNIA
INTRODUCTION
This report is presented as an evaluation of the performance of prescriptive final cover
systems and an altemative final cover system proposed for the final closure of San
Marcos Landfill (Landfill) in San Diego County, Califomia. The proposed final cover
system is an evapotranspiration (ET) cover system, commonly referred to as a monolithic
cover. The analyses presented herein are submitted as a basis for agency approval of this
system. The analyses included have been completed using local climatological data, soil
data specific to the existing interim cover and potential offsite borrow sources, and
vegetative conditions proposed for the Landfill.
REGULATORY REQUIREMENTS
Califomia Code of Regulations (CCR) Titles 23 and 14 (now revised as Title 27) require
that landfill final covers be constmcted according to identified minimum standards. For
Class III landfills, the minimum regulatory requirements have historically been detailed
in Title 23, Chapter 15, and include a two-foot thick foundation layer, a one-foot thick
low-permeability layer, and a one-foot thick vegetative layer, or a cover with a barrier
layer as impermeable as the landfill liner. As prescribed, the low-permeabihty layer of
the prescriptive cover is to consist of soils with a permeability of 1 x 10 cm/sec or less.
CCR Title 27, Section 20080(b) allows for approval of final cover altematives to the
prescriptive system in cases where the discharger demonstrates that:
"(1) The constmction or prescriptive standard is not feasible as provided in
subsection (c) of this section, and
(2) There is a specific engineered altemative that
(A) is consistent with the performance goal addressed by the particular
constmction or prescriptive standard, and
(B) affords equivalent protection against water quality impairment."
16885 W. Bernardo Dr., Suite 305, San Diego, CA 92127 Phone: (858) 451-1136 Fax: (858) 451-1087
As stipulated in subsection (c) therein, to establish that the prescriptive standard is not
feasible, the discharger must demonstrate that the prescriptive standard:
"(1) is unreasonably and unnecessarily burdensome and will cost
substantially more than altematives which meet the criteria in subsection
(b);or
(2) Is impractical and will not promote attainment of applicable
performance standards."
hi addition, 27 CCR Section 21090(a) stipulates that ".. .The RWQCB can allow any
altemative final cover design that it finds will continue to isolate the waste in the Unit
fi'om precipitation and irrigation waters at least as well as would a final cover built in
accordance with applicable prescriptive standards imder *jj (a)(l-3)."
PROPOSED FINAL COVER SYSTEM
For the Landfill, a somewhat more complex final cover system might be inferred because
of a 2-foot thick clay liner that was installed under the vertical expansion portion ofthe
Landfill. This system (Altemative A) is assumed to represent the current prescriptive
cover requirements for the Landfill. This altemative and other potential prescriptive
cover system altematives that could be inferred based on expansion design and permitting
are summarized in Table 1 and include:
A. Altemative A (CCR Title 27 and Federal 40 CFR 258 Prescriptive Cover Svstem with
Order 92-02 FML on Top DeckV A 1-foot vegetative layer supporting grasses and
forbs over a Flexible Membrane Liner (FML) over a 2-foot low-permeability barrier
soil in turn overlying 2 feet of existing foundation soil on the top deck; a 1-foot
vegetative layer over 2 feet of low-permeability barrier soil over 2 feet of existing
foundation soil on side slopes within the vertical expansion area; and a 1-foot
vegetative layer over 1 foot of low permeability barrier soil on 2 feet of existing
foundation soil on side slopes below (outside of) the vertical expansion area.
M
B. Altemative B (FML without Clav on the Top Deck). A 1-foot vegetative layer
supporting grasses and forbs, over an flexible membrane Hner (FML) geomembrane ||
placed over the 2 feet of existing foundation soil on the top deck; a 1-foot vegetative P
layer over 2 feet of low-permeabihty barrier soil over 2 feet of existing foundation
soil on side slopes within the vertical expansion area; and a 1-foot vegetative layer p
over 1 foot of low permeability barrier soil over 2 feet of existing foundation soil on ll
the side slopes below (outside of) the vertical expansion area.
P
C. Altemative C (Modified CCR Title 27 and Federal 40 CFR 258 Prescriptive Cover m
Svstem with Order 92-02 FML on Top Deck') with the LSA Vegetative Soil. This
altemative is the same as Altemative A, but includes a minimum 3-foot vegetative W
layer to support coastal sage scmb habitat in accordance with the court-ordered g|
revegetation plan developed by LSA Associates.
P
P
-2- P
C:\2001.0S3\SMALTCVR2.OOC ^
GeoLogic Associates
P
P
m
P
P
D. Altemative D (FML without Clav on the Top Deckl with the LSA Vegetative Soil.
This altemative is the same as Altemative B, but includes a minimum 3-foot
vegetative layer to support coastal sage scmb habitat in accordance with the court-
ordered revegetation plan developed by LSA Associates.
E. Altemative E (Monolithic Altemative Coverl. The alternative final cover system
includes the existing interim cover soils to be used as foundation soil (two feet on the
top deck and side slopes) and a nunimiim of three feet of vegetative soil (Altemative
El and E2 on Table 3). On the north and northeasterly facing side slopes of the
Landfill the vegetative layer is proposed to consist of six feet of soil (Ahemative E3
on Table 3). Except for benches and roads, areas with three feet of vegetative soil
will be planted with native coastal sage scmb and areas with six feet of vegetative soil
will be planted with native chaparral. Specifications for the vegetative soil (excluding
permeability requirements) and the vegetative community are included in the court-
ordered revegetation plan prepared by LSA Associates.
PURPOSE
The purpose of this report is to evaluate the feasibility of constmcting a monolithic cover
system for final closure of the Landfill in conformance with 27 CCR Sections 20080(b)
and 21090(a) and to estimate the maximum allowable pemieabihty ofthe proposed
vegetative soils that would meet the required performance standards. As such, this report
presents an evaluation of whether the performance ofthe altemative final cover is
consistent with the performance goals addressed by prescriptive final cover standards
outiined in 27 CCR Sections 20080(b) and 21090(a), and would be expected to yield
equivalent protection against water quality impairment.
SCOPE OF WORK
Work completed for this study included:
1. Review of historical geotechnical investigation data;
2. Evaluation of soil test results and determination of the relevant characteristics of soils
derived from the existing interim cover soils and potential offsite borrow sources for
the final cover system;
3. Selection of computer programs to simulate unsaturated flow through a soil profile;
4. Obtaining local climatological data for the area of the Landfill;
5. Computer modeling of prescriptive final cover systems and the proposed altemative
fmal cover systems using the laboratory determined soil characteristics and historic
local climatic data;
6. Preparation of this report.
-3-
C:\100! .083\SMALTCVR2.DOC
GeoLogic Associates
MATERIALS EVALUATION
Limited field investigations were performed for tiie Landfill closure project by CCA
Southland (CCA) to identify and characterize both the existing interim cover and
potential offsite borrow soils. Both bulk samples and undisturbed ring samples were
collected during the field investigations. Visual observation and initial laboratory testing
indicated that these materials would likely require an admixture of finer-grained soils to
meet the requirements for an altemative cover. As a result, the materials evaluation also
included admixtures of different import materials to establish the mixing ratios that
would likely be required to generate materials that would satisfy the material
requirements of an altemative final cover.
LABORATORY TESTING
Laboratory testing was perfomied on bulk and undisturbed ring samples to detemiine the
physical characteristics of existing interim cover soils and the import soils anticipated for
use in the proposed altemative final cover. As stated above, because most potential
borrow soils are granular and could not consistently meet the requirements for an
altemative cover, the permeability/matric potential testing program also included
evaluation of several admixed soils with various percentages ofthe finer grained
materials. Table 2 presents a summary ofthe pertinent test results obtained in the borrow P
materials evaluation.
The methods of analyses and tests that were completed as a part of the borrow materials P
evaluation were as follows: P
• Complete grain size analyses were determined for eighteen (18) representative bulk P
samples in general accordance with ASTM test method 422. The complete grain size P
distribution curves are presented in Attachment A.
• Permeabihty tests were performed on three (3) undisturbed ring samples and fifteen li
(15) remolded soil samples using a triaxial constant head testing methodology in
general accordance to ASTM test method 5084. Remolded soil samples were p
remolded to 90 percent ofthe maximum dry density at optimum moisture. These test P
results are included with the complete grain-size distribution curves in Attachment A.
P
• The maximum dry density and optimum moisture content of fifteen (15) bulk samples Hi
was determined in general accordance to ASTM test method 1557.
• The capillary-moisture relationship for soils were determined for fifteen (15) m
remolded soil samples in general accordance to ASTM test method D-3152. All tests
were remolded to 90 percent of the maximum dry density at optimum moisture. The W
complete matric potential relationships are provided in Attachment A. m
P
-4-
C:\2001.083\SMALTCVR1.DOC
GeoLogic Associates
m
P
pi
m
MODELING
After review of several infiltration models, the program LEACHM (Leaching Estimation
and Chemistry Model) was selected for the prescriptive cover systems that do not
incorporate an FML and for the monolithic altemative final cover system analyses. Since
LEACHM does not have the capability of modeling the performance of geosynthetic
materials, the United States Army Corps of Engineers HELP3 (Hydrologic Evaluation of
Landfill Performance) model was also used to evaluate prescriptive covers that included
an FML. A discussion of each of the models is presented below.
LEACHM MODEL
LEACHM is a one-dimensional finite difference computer model developed at Cornell
University. The model simulates water and solute transport in unsaturated or partially
saturated soils. Estimates of plant growth and absorption of water by plant roots are
included in the model as are climatic factors such as precipitation and evaporation.
LEACHM is able to predict net flux through a final cover configuration by allowing the
* user to stipulate laboratory detennined matric potential/soil moisture content
!• relationships, bulk density/porosity relationships, and saturated hydraulic conductivity
values. These values are transformed in a curve fitting routine to produce the air entry
^ value (a) and exponent (b) used in Campbell's retentivity equation. Unsaturated hydraulic
<• conductivity is then estimated for a given soil moisture content using Campbell's
conductivity relationship. After calculation of soil retentivity and unsaturated hydraulic
^ conductivity, LEACHM simulates unsaturated flow through the modeled profile using
•• Richards* equation.
As a one-dimensional finite difference model based on Richards' Equation, LEACHM is
believed to yield a reasonable evaluation of imsaturated fluid flow (percolation), and was
used for detailed evaluation of the non-FML prescriptive and altemative final cover
systems (i.e., each top deck and side slope configuration excluding those requiring a
mm geomembrane).
" CRITICAL INPUT PARAMETERS
IM
The following sections describe the critical assumptions, variables, and input
requirements incorporated into the LEACHM computer analysis. Variables specified in
ii the model include the iteratively calculated transient soil water status factors, plant
growth, plant maturity, plant harvest variables, soil matric potential and saturated
^ hydraulic conductivity. Sample input/output files for the LEACHM program are
m provided in Attachment B.
" Soil Profile
The first step in using the LEACHM model involves definition ofthe soil profile. This is
IP accomplished by defining the total thickness of the profile and a nodal or profile segment
M thickness. For the Landfill final cover system altematives, total profile thickness varied
-5-
C:\JOOI-083\SMALTCVR2.DOC
GeoLogic Associates
from 4.0 feet (1220 mm) to 8.0 feet (2440 mm) with a nodal frequency of 6 inches (152.5
mm) (Table 1). The analyses assessed water flux at each of these nodes ten times a day
throughout the modeling period.
Bottom Boundary Condition
One of the most critical parameters included in the analysis is definition ofthe bottom
boundary condition of tiie final cover section. For the purposes of this study, this
boundary condition was varied between a free draining condition (generally yielding one
directional flow under an applied suction gradient at the bottom ofthe profile), a
"lysimeter" condition (also yielding one directional flow but under conditions of zero
suction at the boundary), and a constant potential condition (allowing for two directional
flow and assuming a source of liquids exists within the landfill).
Soil Properties
For each node or interval in the defined profile, LEACHM requires input of specific soil
properties including: remolded dry bulk density; initial matric potential and soil moisture
content; Campbell's "a" and "b" coefficients; and saturated hydraulic conductivity.
Porosity is then calculated as a flmction of the stipulated specific gravity of the soils and
their remolded dry bulk density.
Precipitation
Another critical element in modeling cover performance using LEACHM involves
identification of total daily precipitation and irrigation, as well as the time and rate of
water application. For each rain or irrigation event, LEACHM calculates the maximum
time period allowed for infiltration as the specified quantity of water to be applied
divided by the application rate. Water that has not entered the soil profile at the end of
the apphcation period is assigned to an excess nmoff term and included in the mass
balance calculations. Infiltration into the profile is thus limited by the matric potential of
the soil and the imsaturated hydraulic conductivity of the soil at the time of water
application. In other words, infiltration is limited by the ability ofthe soil to take water.
Since positive drainage must always be maintained on the landfill surface, no ponding of
rain or irrigation waters was included in the analyses.
Evapotranspiration
LEACHM requires mean weekly pan evaporation data from which daily potential
evapotranspiration (DPET) is calculated as one-seventh ofthe weekly total pan
evaporation. Daily potential transpiration is calculated by multiplying the DPET by a
crop cover fraction. Daily potential evaporation is then calculated as the difference
between DPET and potential transpiration. Given a stipulated crop cover fraction of 1.0,
LEACHM will calculate that all of the evapotranspiration that occurs is associated with
IN
m
m
m
P
P
P
m
m
P
-6-
C:a001-083\SMALTCVR2.DOC
GeoLogic Associates
P
P
HH
transpiration. However, if a value of 0.0 is entered, all soil moisture losses will be
calculated to result solely from evaporation.
For modeling purposes, LEACHM assumes that evapotranspiration starts at 0.3 days
(7:12 a.m.) and ends 12 hours later at 0.8 days (7:12 p.m.). During this period, potential
evapotranspiration is varied sinusoidally with actual evapotranspiration calculated as a
function of the potential evapotranspiration, the profile's soil water status, and specified
plant properties.
Vegetation
Rather than applying a coefficient to approximate the transpiration effects of plants,
LEACHM uses the equation of Nunah and Hanks (1973) to simulate the uptake of water
by plant roots. Variables included in the equation and requiring user specification
include: root water potential (the root potential below which plants are unable to extract
water from the soil); root resistance (the depth dependent resistance to upward flow of
water within the roots); and the root distribution (expressed as a nodal percentage of all
roots).
ACTUAL MODEL INPUT
Fixed Parameters
Bottom Boundarv Conditions - In estimating the nature of flow through the bottom
boundary of both prescriptive and altemative final cover sections at the Landfill, the
P following boundary conditions were utilized.
* First, a free draining condition was used to calculate the "worst case" performance
M characteristics ofthe modeled final cover section. Worst case conditions are presumed
under this scenario since moisture is drawn dovmward through the base ofthe profile
^ under a suction head applied by the underlying soil/waste, but significant moisture is not
il "pulled back" from the waste if shallow drying conditions develop.
^ A slightly more realistic (but still conservative) condition is represented by definition of
M the lower boundary as a "lysimeter". In this scenario, moisture is allowed to migrate in
only one direction (vertically downward) though it passes into the waste prism only after
the base of the section becomes saturated and local soil suction is essentially zero. It
m should be recognized that this definition does not allow for moisture to be extracted
upward from the waste if surface drying induces a negative suction gradient in the
m overlying cover.
ii
The most realistic characterization is beheved to be represented by the constant potential
IP bottom boundary condition. In this case, it is assumed that there is a source of moisture
1^ (e.g., saturated landfill gas) available within the landfill that would represent a continuous
source of moisture (and therefore constant potential) within the waste and at the base of
^ the cover section. This bottom boundary condition allows for characterization of two
^ directional moisture movement and allows for the extraction of moisture through the final
PH
P
-7-
C;\1001.083\SM ALTCVR2.DOC
GeoLogic Associates
cover if drying conditions predominate (i.e., downward migration is calculated when the
final cover moisture content is high and allows for extraction of water from the landfill
[i.e., drying of the waste] when the moisture in the final cover is low).
Cover Soil Characteristics - Prior to initiation of modeling, a materials evaluation was
performed to better characterize the potential materials available for use in the final
covers. Existing on-site foundation layer soils and soils available from offsite borrow
areas were evaluated. As discussed above, testing of these materials included
determination of dry density, optimum moisture content, grain size distribution, saturated
hydraulic conductivity, and soil matric potential/soil moisture content relationships and
the results of this testing are presented in Table 2.
The modeling completed herein used conservative values believed to best represent
existing interim cover soils and potential prescriptive and altemative cover soils. The
following soils were used in the LEACHM modeling:
• The WSl composite was selected for existing interim (foundation) cover soil on the
top deck and side slopes
• Mix #2 (80% Maddock and 20% Ocean Ranch) was selected for vegetative cover soil,
and
• TD-2 was selected for the low permeability barrier soil.
For sample TD-2, the saturated hydraulic conductivity ofthe low-permeability barrier soil
was modified to 1.0 X 10"^ cm/sec in an effort to model the minimum prescriptive
standard. Of note, sensitivity analyses and long term modeling utitized the most
representative of the covers soil profiles proposed and incorporated relatively
conservative soil engineering properties based on the soil testing performed to date. For
the monoHthic cover, Altemative El was selected.
Climatic Conditions - The enclosed analyses ofthe perfonnance of both prescriptive and
altemative final covers at the Landfill were performed utilizing daily precipitation and
mean weekly pan evaporation data recorded at the nearest available weather stations to m
the site. The analysis included precipitation and pan evaporation for the years 1987
through 1996 as reported by the San Diego County's Lake Hodges Station and San Diego *
County's Miramar Lake Station, respectively. The data for 1986-1997 was used because wm
it represents the most severe 10-year precipitation period from historical data, averaging
over 15.3 inches of rain per year. ^
Variable Parameters Subject to Sensitivity Analysis
The following discussion addresses the variable input parameters used in the LEACHM ^
model and the sensitivity of the modeled altemative cover results to reasonable changes
in these variables. Table 3 lists all of the variables included in the sensitivity analysis *
along with their stipulated values and conesponding cumulative flux. M
m
-8- p
C:\200) J)83\SMALTCVR2.DOC ^
GeoLogic Associates
P
m
P
m
m
P
pi
P
Saturated Hvdraulic Conductivitv and Soil Suction - The modeled profile showed critical
changes in the calculated net flux within the range of saturated hydraulic conductivities
and soil suctions identified (Table 3). In fact, constmction water draining tiirough the
profile (i.e., initial water content) contributed to most of the water assigned as total flux,
therefore net flux was calculated for years 4 tiirough 10 when equilibrium was reached.
Since the actual offsite soils to be used for final closure of the Landfill have yet to be
identified, the sensitivity analyses was expanded to use a relatively low matric potential
soil (mix #2) with a variety of hydraulic conductivities (sensitivity model runs
SMSNSOl, SMSNS31, and SMSNS32 [Table 3]) in an effort to estabhsh a minimum
saturated hydraulic conductivity that should be specified in tiie future evaluation of
potential offsite bonow sources.
As shown herein, when the altemative final cover was modeled using coarse grained silty
sands with gravel or gravelly sands with relatively low matric potentials and saturated
hydraulic conductivities greater than 1.0 x 10"^ cm/sec (8.64 mm/day), the calculated net
flux was greater than the prescriptive standard (i.e., a prescriptive flux of 1.06 mm per
year). As a resuh, tiiese materials would generally be considered unacceptable for use in
the final cover without amendment. In analyzing the sensitivity of other variables and in
tiie long-term modeling of the perfoimance of the altemative final cover system, a
saturated hydrauhc conductivity of 7.4 x 10"* cm/sec (6.39 mm/day) was used. This value
represents the most conservative soil encountered in tiie materials evaluation that meets
the requirement for a monolithic altemative final cover at the Landfill.
Water Application Rate - The magnitude and duration ofthe rainfall events for modeling
purposes were estimated in a fashion believed to conservatively represent typical
anticipated appUcation. Calculated net flux through several modeled profiles showed
minor variability when using application rates between 30 and 200 rran/day (Table 3).
Again, a conservative value of 30 mm/day was selected as the typical case for long-term
modeling of final cover performance.
Maximum Actual Transpiration/Evaporation - Sensitivity analyses for this parameter
included stipulation of a range of maximum actual transpiration/evaporation values from
1.0 to 1.5 and these analyses resulted in relatively minor changes to the calculated net
flux through the modeled soil profile (Table 3). This suggests that for the soils available
in this environment, maximum actual transpiration/evaporation is not a critical parameter
and a value of 1.0 was selected for evaluation of the sensitivity of other variables as well
as for the typical case analysis completed as part of this study.
Root Potentials - Calculated net flux through several modeled profiles showed only a
slight variation when comparing minimum and maximum root potential values between 0
and -3000 Kpa (Table 3). Though not considered a sensitive parameter, a conservative
value of-2000 Kpa for minimum root potential (relatively low for arid region plant types)
P and 0 for maximum root potential was selected for subsequent analyses of the water
extraction capabilities of the typical grass and shmb vegetative cover.
IP
m
m -9-
C:\2001J)83\SMALTCVR2.DOC
GeoLogic Associates
Wilting Point - Analysis using wilting point values between -1000 and -2000 Kpa
suggest only slight sensitivity to this parameter (Table 3). Given the fact that shallow and
deeper rooting vegetation is proposed for the monolithic cover system and is thriving on
adjacent properties, a moderate wilting point of-1500 Kpa was selected for the analyses.
Vegetation Conditions - Selection of crop cover fraction coefficients ranging from 5 to 60
percent resulted in relatively small changes in the calculated net flux (Table 3). However,
calculated net flux for no plants (e.g. 0 percent coverage) is significantly higher,
indicating tiiat even a small percentage of plants (e.g. 5 percent) can be very effective at
extracting water out of the final cover. A crop cover fraction of 5 percent was selected
for subsequent analyses completed in this evaluation and is considered conservative since
undisturbed areas adjacent to the landfill are estimated to support a vegetative cover of
about 60 percent.
Root Distribution - Calculated net flux varied only slightly when completing analysis
using deep rooting plant communities. However, calculated net flux through shallow and
moderate rooting distributions (e.g. 99 percent of the roots in the upper six to 18 inches)
is significantly higher (Table 3), and it is concluded that this is a sensitive parameter for
performance of the cover system as a whole. Subsequent analyses incorporated rooting
depths for three different plant communities proposed for the Landfill. These plant
communities include grasses and forbs, coastal sage scmb, and chaparral plant
communities. For a grass and forbs plant community (Altematives A and B), roots were
lunited to the upper 12 inches (305 mm) ofthe profile. For a coastal sage scmb plant
community (Altematives C, D, and E), roots were limited to the upper 36 inches (915
mm) of the profile, with 30 percent ofthe roots assigned to the upper one-foot (305 mm)
interval, followed by 43 percent in the one- to two-foot (305 - 610 mm) interval, and 27
percent in the two- to three-foot (610-915 mm) interval. For a chaparral plant
community (Ahemative E3), roots were limited to the upper six feet (1830 mm) ofthe P
profile, with 31 percent ofthe roots assigned to the upper one-foot (305 mm) interval,
followed by 42 percent in the one- to two-foot (305 - 610 mm) interval, 18 percent in the
two- to three-foot (610 - 915 mm) interval, 2 percent in the three- to four-foot (915 - 1220
mm) interval, 6 percent in the four- to five-foot (1220 - 1525 mm) interval, 2 percent in P
the five- to six-foot (1525 - 1830 mm) interval.
-10-
C:\HKH J)83\SMALTCVR2.DOC
P
P
Root Flow Resistance - Selection of root flow resistances from 0.1 to 2.0 resulted in only
a slight change to the calculated net fluxes (Table 3). A reasonably conservative value of
1.05 was selected, since the developers of LEACHM program generally recommend this P
value. P
HELP MODEL P
wi
Modeling of unsaturated fluid flow through the prescriptive covers incorporating an FML
was performed using the United States Army Corps of Engineers HELP3 computer ^
program. Sample output files for the HELP3 program are provided in Attachment C. mi
m
k
GeoLogic Associates
pi
p
p
k
m
P
CRITICAL INPUT PARAMETERS
Climate
The initiai climate properties (excluding precipitation) were selected from a table of
default values included in the HELP3 model. These default values were selected for the
City of San Diego and were corrected for the latitude of the Landfill. The precipitation
database used in the LEACHM analyses was converted to ASCII format and uploaded
into the HELP3 model. As described above, rainfall totals were obtained from the
County of San Diego's Lake Hodges Station for the years 1987 through 1996. Yearly
rainfall totals varied from 6.4 to 26.7 inches with an average armual rainfall of 15.3
inches.
Material Properties
The engineering properties of soils included in the analyses were determmed from
HELP3 default values of similar type soils and corrected for the hydraulic conductivity
determined in the laboratory. The engineering properties of the FML were selected from
tiie table of HELP3 defauh values.
In calculating leakage through the FML, a pinhole defect density of one per acre and an
installation/post-closure defect density of 10 per acre were assumed. A pmhole is defined
by HELP3 as a hole 1 milhmeter m diameter and is the result of flaws in the
manufacturing of the FML, while an installation/post closure defect is defined as a hole 1
centimeter in diameter and is the result of punctures or seaming holes created during the
deployment ofthe FML or during the post-closure period. The placement quality was
defined as fair to poor based on the installation/post-closure defect density and is
considered representative of cover FML conditions at the Landfill since the FML would
be placed over a deep refuse profile, which would be expected to experience uneven
settlement over time.
Model Configuration and Vegetation
The lined prescriptive covers proposed for the Landfill consists of the following
configurations:
• Altemative A - A 2-foot foundation soil overlain by a 2-foot low permeability (1.0 x
10'^ cm/sec) barrier soil, an 80-mil FML, and a 1-foot vegetative soil.
• Ahemative B - A 2-foot foundation soil overiain by an 80-mil FML and a 1-foot
vegetative soil.
• Altemative C- A 2-foot foundation soil overlain by a 2-foot low permeability (1.0 x
10"^ cm/sec) barrier soil, an 80-mil FML, and a 3-foot to 6-foot vegetative soil.
• Altemative D- A 2-foot foundation soil overlain by an 80-mil FML and a 3-foot to
6-foot vegetative soil.
m .11.
^ C:\200|.083\SMALTCVR2.DOC P
GeoLogic Associates
All configurations are summarized in Table 1. Altematives A and B were modeled with a
poor stand of grass and an evaporative depth of 1 foot to simulate a grass and forb plant
community, while Altematives C and D were modeled with an excellent stand of grass
and an evaporative depth of 3-feet to simulate a coastal sage scmb plant community.
MODELING RESULTS
As summarized in Table 1, several final cover altematives for landfill closure have been
evaluated. In modehng the various altematives, input variables were generally
conservative but within the range of values identified for the soil and vegetative
conditions anticipated for the Landfill. The results ofthe modeling performed for this
study are therefore considered conservative. Table 1 simimarizes the cumulative flux
calculated for the different altematives considered.
MOISTURE FLUX / SOIL MOISTURE RESULTS
PRESCRIPTIVE FINAL COVER
Figure 1 depicts the modeled moisture content ofthe best performing prescriptive final
cover section (Altemative A2 on Table 1) in volumetric percent (theta) for four distinct
depth intervals over a period of approximately ten years. As can be seen, the moisture
content of the shallow soil layer (76 mm) mimics seasonal precipitation pattems
throughout the modeling period, while fhe intermediate (381 mm) reflects only the most
severe seasonal impacts. Finally, the impact of individual seasons shows no evidence in
the deepest soil layers (838 mm and 1448 mm) and remain at a relatively constant
moisture content, reflecting only the drainage of initial constmction water.
Figure 2 depicts the cumulative flux through the layers of this best performing
prescriptive final cover profile and includes the most conservative (i.e., free draining)
bottom boundary condition. As shown therein, the best infiltration performance for a
prescriptive fmal cover system is estimated to be about 1.06 mm/year after equilibrium
was reached. P
Inegardless of this calculated performance, it should be realized that the performance of a
prescriptive low hydraulic conductivity barrier layer constmcted in a semi-arid climate is
particularly difficult to maintain because environmental stresses (desiccation and
settlement cracking) are likely to degrade the barrier layer over the long term. In fact,
EPA design guidelines recognize that using a barrier layer composed of clay, such as
included in this prescriptive cover system, is not very effective in arid regions (such as
San Diego and the San Marcos Landfill). Water balance data collected over time on this
type of cover system found that while this type of cover system functioned well initially,
performance decreased severely within only a few years and the percolation of water
increased with time as a function ofthe development of desiccation cracking and root
penetration (Dwyer, 2001; Dwyer, 1988; and Melchior, 1997). In fact, at the conclusion
ofthe Melchior study (carried out over a period of eight years), about 50 percent ofthe
water that reached the surface of the system infiltrated through it to the underlying refuse.
P
P
p
P
-12-
C:\2001-083\SMALTCVR2.DOC
GeoLogic Associates
P
P
p
IP
!P
P
PI
iW
p
Figure 3 depicts the cumulative flux calculated through tiie best performing prescriptive
final cover profile that incorporates an FML (Altemative Cl). As shown therein, best
case infiltration for the FML prescriptive final cover is estimated to be 0.0436 mm/year
(or 0.436 mm for the 10 year modeled period).
PROPOSED MONOLITHIC COVER SYSTFM
Figures 4A through 4C depict tiie modeled moisture content of the proposed monolitiiic
final cover soils (Altemative E2 on Table 1) in volumetric percent (theta) for four distinct
depth intervals over a period of approximately ten years. Figure 4A represents the **worst
case" result (definition of a free draining bottom boundary), 4B represents a conservative
but more intermediate condition (a "lysimeter" bottom boundary), and 4C represents the
more likely condition (a constant potential bottom boundary). Figure 4D depicts the
rainfall history recorded at the Lake Hodges Station. As can be seen, in all cases the
shallow layers (76 mm) mimic seasonal precipitation pattems tiiroughout tiie modeling
period, while the deeper soil layers reflect only significant seasonal impacts. Perhaps the
most significant performance effect indicated is the substantial upward drying gradient
that will develop if moisture is available witiiin the waste prism. In fact, it is the
extraction of moisture from the landfill that allows the deep soil profile in Figures 4B and
4C to retain a relatively high moisture content tiiroughout the modeling period. This
influence clearly indicates that if moisture is present within tiie landfill (eitiier as a result
ofthe high humidity enviromnent created by landfill gas generation or a severe seasonal
infiltration) it will be effectively extracted over the long term.
Figures 5A through 5C depict the cumulative flux through the layers ofthe modeled final
cover profile and represent the tiiree independently modeled bottom boundary conditions.
As shown, "worst case" free draining net infiltration (flux) for tiie altemative final cover
is calculated to be about 0.03 mm/year after equilibrium has been reached, and includes
the 1992 and 1994 years when the site is modeled to have received over 24 and 26 inches
of precipitation. Performance that is more realistic is believed to be represented by the
lysimeter and constant potential conditions (Figure 5B and 5C), which indicates an
overall negative net flux through tiie system. That is, if moisture is available within tiie
landfill itself, a net drying of the combined final cover and refuse system will occur over
time.
FISCAL FEASIBILITY
In addition to the substantial loss of prescriptive final cover performance expected over
time, it is also recognized that sufficient low permeability soils are not readily available at
or near the site and therefore may pose a significant fiscal impact on the project. The
fiscal feasibility costs will be included in the Joint Technical Document for the San
Marcos Landfill.
-13-
C:\2001-083\SMALTCVR2.IJOC
GeoLogic Associates
DISCUSSION/RECOMMENDATIONS
GENERAL
Based on the modeling completed to date, it is concluded that a monolithic altemative
final cover section constmcted as described above will satisfy perfomiance standards for
an altemative final cover as defined in 27 CCR Sections 20080(b) and 21090(a). More
specifically, an alternative final cover that includes at least three (3) feet of newly placed
altemative final cover soils over two (2) feet of recompacted interim cover is calculated
to yield superior performance to the prescriptive altematives. In addition, it is considered
sufficient to host the root systems ofthe proposed plant community, includes a two-foot
thick buffer below the anticipated depth of these root systems and it is of a sufficient
thickness to maximize the moisture limiting characteristics ofthe cover system as a
whole.
It should be noted that in order for the altemative cover to fimction as modeled, the site
must maintain a minimum 5 percent crop cover fraction consisting of a coastal sage scmb
plant community over the final cover area and that the plant community must establish a
rooting depth of about 3 feet.
MATERIAL CHARACTERISTICS
In addition to the minimum five-foot thickness of the final cover system, it is
recommended that once a suitable offsite bonow source has been identified a detailed
materials evaluation be performed to verify that the minimum soil properties included
herein are satisfied, or additional modeling is performed to demonstrate satisfactory
perfonnance with the proposed soil mix. That is, soils generated from the offsite bonow
source should have a maximum particle size of three (3) inches, a minimum fines content
(defined by No. 200 sieve) of no less than 24 percent for the mean of 10 consecutive tests
and a minimum of five (5) percent finer than 5 microns for the mean of 10 consecutive
tests. The soils proposed from import should, when mixed with the on-site silty/clayey
soils, exhibit a maximum saturated hydraulic conductivity no greater than 7.4 x 10"*
cm/sec.
It should be noted that these are general guidelines for initial evaluation of potential
bonow materials. The suitability of the soils ultimately selected for incorporation into the
altemative final cover should be verified by additional testing and analysis once the final
source is identified.
INSTRUMENTATION AND MONITORING
lip
Pip
In order to evaluate soil moisture variability and thereby flux through the proposed cover
system, GeoLogic Associates recommends that the final cover soil moisture content be
monitored for a period of at least three years using time-domain reflectometry (TDR)
probes or an equivalent means of measuring soil moisture. The soil moisture probes
-14-
C:\I001-083\SMALTCVRJ.DOC
GeoLogic Associates
P
p
p
p
Ml
P
m
P
installed at the Landfill site should penetrate the fiill depth of the cover profile at a
minimum of three locations within the closure footprint. In addition to the soil moisture
probe, it is recommended that at least one complete automated weather station be
installed at the site so that local climatic data can be used in interpreting the soil moisture
monitoring results.
The soil moisture monitoring probes and weather station should be cormected to an
automated datalogger that is equipped with software to facilitate download and
interpretation ofthe data. The data recording equipment will measure and convert analog
sensor values into a digital data record. The data once dovmloaded and recorded should
be organized and converted to graphs and figures for ultimate presentation. It is
recommended that this datalogger be housed in an underground concrete vault to
minimize the potential for vandalism
Routme periodic downloadmg of information from the dataloggers and otiier instruments
as well as routine visual inspections to detect and correct stmctural failures, equipment
malfunctions, vegetation distress, and other potential problems should be anticipated over
the first 2 to 3 years ofthe post-closure period.
CLOSURE
This report is based on the project as described and tiie geotechnical data summarized
herein. Our fum should be notified of any pertinent change in the project plans or if
conditions are found that differ from those described in this report, since this may require
a re-evaluation. This report has not been prepared for use by parties or projects other than
those named or described above. It may not contain sufficient information for other
parties or other purposes.
This report has been prepared in accordance with generally accepted geotechnical
practices and makes no other wananties, either express or imphed, as to tiie professional
advise or data included in it.
eoLogic Associates
William B. Lope
Project Geologis
G, EG, HG .ass, RG, EG, HG
President
Attachments: Attachment A - Laboratory Soil Testing Results
Attachment B - LEACHM Input/Output Data
Attachment C - HELP3 Output Data
-17-
C:C:\WINDOWS\TEMP\siiiillevr2.doe
GeoLogic Associates
REFERENCES
Dwyer, S.F., 2001, Finding a Better Cover. Civil Engineering, January 2001, pages 58-
63.
Dwyer, S.F., 1998, Altemative Landfill Covers Pass the Test. Civil Engineering,
September 1998, pages 50-52.
Melchoir, S., 1997, In situ studies on tiie perfomiance of landfill caps. Proceedings from
the Intemational Containment Technology Conference, St. Petersburg, Florida, pages
365-373.
P
P
P
P
-16-
C:\IOOI-083\SMALTCVR2.DOC
GeoLogic Associates
il
Ml
_ TABLES
m
k
Pi
m
GeoLogic Associates
fl tl il fl ri il ri if ri KI KI m § m § BI »I m M II II II
TABLE 1
SAN MARCOS LANDFILL
COMPARISON OF THE PERFORMANCE (AVERAGE ANNUAL FLUX) OF
PRESCRIPTIVE ALTERNATIVES AND MONOLITHIC COVER SYSTEM
Prescriptive Altemalives Monolithic Cover
Alternative A
Title 27 & 40 CFR 2S8
Prescriptive Cover System with
Older 92-02 FML on the Top Deck
Altemative B
Alternative A without
Clay on dte Top Deck
Alternative C
Title 27 & 40 CFR 258
I*rescriptive Cover System with
Order 92-02 FML on the Top Deck
and LSA Plan Veg. Soil
Altemative D
Alternative C without
Clay on the Top Deck
Altemative E
Monolithic Soil Cover
Top Deck Alternative Al
1 fl Vcg. Soil w/Grasscs and Forbs
SO mil HDPE
2 fl Low Perm Soil
2 ft Foundation Soil
Altemative Bl
1 ft Veg. Soil w/Grasses and Forbs
SO mil HDPE
2 ft Foundation Soil
Altemative Cl
3 ft Veg. Soil w/Coastal Sage Scrub
80 mil HDPE
2 ft Low Pwm Soil
2 ft Foundation Soil
Altemative Dl
3 ft Veg. Soil w/Coastal Sage Scmb
SO mil HDPE
2 ft Foundation Soil
Alternative El
3 ft Veg. Soil w/Coastal Sage Scrab
2 ft Foundation Soil
Top Deck Top Deck
AveriRe Annual Flux 0.05 mm Averaite Annual Flux 1.02 mm Average Aimual Flux 0.04 mm AveraKC Annual Flux 1.64 nmi Average Annual Flux 0.03 nmi
Top Deck
Side Slopes
Above Ihe
Vertical
Expansion
Altemative A2
1 ft Veg. Soil w/Grasses and Forbs
2 ft Low Perm Soil
2 ft Foundation Soil
Ahemative B2
1 fl Veg. Soil w/Grasses and Forbs
2 ft Low Perm Soil
2II Foundation Soil
Altemative C2
3 ft Veg. Soil w/Coastal Sage Scrub
2 ft Low Pemi Soil
2 ft Foundation Soil
Alternative D2
3 fl Veg. Soil w/Coastal Sage Scrab
2 fl Low Perm Soil
2 ft Foundation Soil
Alternative G2
3 ft Veg. Soil w/Coastal Sage Scrub
2 ft Foundation Soil
Side Slopes
3 Foot Veg. Soil
Side Slopes
Above Ihe
Vertical
Expansion
AveriKe Annual Flux 1.06 mm Average Annual Flux 1.06 mm Average Annual Flux 1.06 nun Average Annual Flux 1.06 mm Average Annual Flux 0.03 nun
Side Slopes
3 Foot Veg. Soil
Side S\opes
Below Ihe
Vertical
Expansion
AlleiiMlive A3
1 ft Veg. Soil w/Graises and Forbs
1 ft Low Penn Soil
2 It Foundation Soil
Alternative B3
1 ft Veg. Soil w/Grasses and Forbs
1 ft Low Perm Soil
2 ft Foundation Soil
Alternative C3
3 ft Veg. Soil w/CoasUl Sage Scrub
1 fl Low Perm Soil
2 ft Foundation Soil
Alternative 03
3 ft Veg. Soil w/Coastal Sage Scrub
1 ft Low Penn Soil
2 ft Foundation Soil
Alternative E3
6 ft Veg. Soil w/Native Chaparral
2 ft Foundation Soil
Side Slopes
6 Foot Veg. Soil
Side S\opes
Below Ihe
Vertical
Expansion
AvMaf^ Annual Flux 2.36 trun Average Annual Flux 2.36 mm Average Armual Flux 1.20 mnr Average Annual Flux 1.20 mnr Average Annual Flux 0.14 mm
Side Slopes
6 Foot Veg. Soil
TABLE 2
SAN MARCOS LANDFILL
MATERIALS EVALUATION TEST RESULTS
Sample No.
% Passing
No. 200 Sieve
Mix ^1 (85% Carrol Cyn. & 15% Ocean Ranch (OR))
Mix U2 (80% Carrol Cyn. & 20% OR)
TD-2
TD-3
TD-ll
WSl Composite (25% interim Cover & 75% Mix #2)
WS25 Composite (25% interim Cover & 75% Mix tt2)
SS9 Composite (25% interim Cover & 75% Mix ff2)
ES13 Composite (25% interim Cover & 75% Mix 1)
NS21 Composite (25% interim Cover & 75% Mix #1)
WS5 Composite (25% interim Cover & 75% Mix tf 1)
Ramona Mix tf I (10%TD-2, 20% OR, 70% Ramona)
Ramona Mix tf2 (30% OR. 70% Ramona)
Ramona Mix #3 (30% TD-2. 70% Ramona)
Ramona Mix #4 (25% SS9. 75% Ramona Mix tf 1)
Ramona Mix #5 (25% SS9, 75% Ramona Mix #2)
Ramona Mix #6 (25% SS9. 75% Ramona Mix #3)
Ramona Mix #7 (80% Ramona, 20% OR)
25
24
58
55
61
30
25
30
30
31
29
37
34
40
40
38
38
33
% Passing
5 Micron
11
10
Maximum Dry Density
(lbs/ft)
11
12
11
14
14
15
17
18
16
121.0
129.5
130.0
130.0
131.0
129.0
129.0
131.0
132.5
135.0
133.0
129.0
129.0
129.0
137.0
Optimum
Moisture
13.0
9.5
10.0
8.5
9.5
10.0
10.0
9.5
8.5
8.5
9.5
10.0
10.0
10.5
8.0
Permeability
(cm/sec)
1.90E-04
7.40E-06
4.60E-07
7.40E-06
2.60E-08
2.10E-04
1.60E-05
2.50E-04
2.70E-04
1.60E-04
2.50E-04
1.90E-06
2.70E-06
l.lOE-06
l.IOB-06
I.30E-06
2.60E-06
9.80E-06
Campbell's
"a" coefficient
Campbell's
"b" coefficient
-0.228 4.630
-0.166 12.000
-0.102
-2.300
12.000
8.315
-1.410 8.570
mm w m i i i i mm i i i i i i i i i i I I I I I i I ! i i I
iiviiiifiiiiiiiiririff] wm m M m § si ii fi ii ii
TABLE 3
SAN MARCOS LANDFILL
LEACHM SENSITIVITY ANALYSIS
Saluialed Pcnncabilily (nrn'day) Applkalian Rate (mniAlay)
SMSNSOl SMSNS02
3«
SMSN503 SMSNS31 ISMSNSJI SMSNSOl SMSNSO) SMSNS04 SMSNS06 SMSNSOT
Sjtyrawi PtimobHilv (mm'tfay)
SMSNS02
3«
6.39 639 6,19 6.» 6,39
ADDlicilian Rale (mm'dav) 30
SMSNS02
3« 30 JB 311
MnnmiTn Acniil Tnnipiiiiion'Eviporalian (Kpa) 1 1 t 1 1 1 1 > 1
Minimum Root Potenlul {Kpa) -1000 .2000 -2000 -2000 -2000 -loot -2000 -2000 -2000 •2000
Maiimum Root Poicniial (Kpal 0 0 0 0 1 0 0 0 0 0
WiUine Po»i (Kea) • ISOO -1300 -1500 •ISOO -ISOO -1500 -1)00 -1500 -ISOO • 1500
Croo Cover Friciion (y.l 5 s 5 5 5 5 j S 5 s
Rooi DisD-ibutioniii IS/iS/3IV|}/l£/l1 15/|}/}0/l)/l6/t t isns/ioiimsiii 15/I5/3<VI 3/16/11 15/15/30/13/16/11 l9/t)/3a/l3/1«/ll l)/15/3IVIV16/ll 15/I5/3WI3/I6/11 15/15/30/11/16/11 19/19/30/13/16/11
RDOIFLOW Resiilance(lirml lOJ LOS 1.0} 1,05 1.05 IDS 1.0) 1,0) 1,05 1,09
Cum Flui iiyn(TDIaO
Nd Fhix nun (Vraii 4-10)
Tolal Flui (mnVYcar)
]2} 121 5*2 34.3 1130 31 3 31.S III
0 2 660.8 4721 02 9*2 O.I Ot 0,1 01
0 0290 9i.768l 68.4Ti3 0.0290 l36.S2t7 0 0290 00145 0.014] 00290
31
Ol
0,0149
Maiimum Actual Ttanipiraliaii'Evipiiralion (Kpa) Mmimam Rool PoKnllll (Kpa) Mantnaun Rool FoKalial (Kpa)
SMSNSOB SMSNSOl SMSNS09 SMSNSIO SMSNSOl SMSNSII SMSNSI2 SMSNSI4 SMSNSOl
SiMfalcd Penncal>ililv (nun/dav) 6i9 «,39 S,3» 6,39 6.39 6.39 639 6.39 6.19
ApDlicalion RaK (nim'itiv) 10 30 3g 30 30 30 30 10 30
Maximum Acluat Traaioiiaiian'EvaDDialiDn (Kpal 1 1 t 1 1 1
Minimum ROD) Polenlial (Kpa) -2000 -2om •WK •2DDI -3OO0 -200C
Maiimum Row Polenlial (Knal 0 0 0 Q 0 C
Willing Pomt (Kpa) -ISOt -ISOC -ISOO •ISOO -tHM -19O0 •im .1900 • 1900
Cmo Covci Fnclion (Kl i 5 5 5 5 5 5 S ) ROM tXitnlHiiiandi ISflS/30/t 3/16/11 tS/IS/30/l3/l6/tt tS/15/30/tVI</n ll/IJ/WtVlC/lt 19/15/30/11/16/11 l9/tS/3a/tVI6/lt t)/i)/3(VI3/t«/tl IS/l)/3IVI3/l6/tl
Rod Flow Rsulance (Lcnn) IDS 1,05 lOi LO) 1.05 1.05 1.0) ID) 1,05
Cum Fluii(nim)
Ncl FluimmlVean 4-10)
Toial Fhii (imWcat)
30 4 32.3 291 32.6 32.3 32.3 1.42 1.16
02 0.2 0.1 0.4 02 0.2 012 OtJ
0 0290 0.0290 O0I45 OOSSO 0.0290 O0290 OOI74 00174
32 3
02
0 029O
Willing Pont (Kpa) Oop Cover Fracdon (H)
SMSNS13 SMSNSOl SMSNS16 SMSNSI9 SMSNSOl SMSNS21 SMSNS22 SMSNS2Q
Sanitalcd Ptnnobiliiv (mnVdav) 639 6 39 6,39 6,39 6.39 6.39 6,19 6,39
ADpIicalion Rale (mm'dav) 30 30 30 30 30 30 30 30
Muinwm Acniat Tianluiralion/Evapoialion f Kpal t 1 1 1 1 t 1 1
Minimum Itoot Polcniiil (Kpa) -200C -2000 -2000 -2000 -2000 -2000 -2000 -2000
Mmimum Root Polenlial (Kpa) 0
5 S
0 0 0 0 0
Wiliine Poini (Kpa)
5 S
-1500 -tsoo -1)00 -1500 • 1500
CiDP COvci Fiaclion 1^*) 5 5 S
Root Diitribulionli) i;/IS/30/l 3/16/11 l5fl5f3W13/l6/ll 15/15/30/13/16/11 |];iS/J«13/l«/tl IS/IJ/KV11/16/11
Rooi Fkiu' Ruiiiancc (Kim) lOi 1,05 1,05 1,05 LOS LOS 1,05 105
Cum. Flui (mm)
Ncl Flu<iinm(Veai] 4-10)
Toul Fhix (mnVYtai)
17.4 32 ) 32,2 6B.4 32 3
0 3 0 2 0,1 29,2 0,2
0.043S 0,0290 0.0145 4 2319 0,0290
19,6 204 14 1
Ol 0,2 0,1
O014S O.D290 O014S
Root Disuibuiian Rool Flow Rablance (lenn)
SMSNSOl SMSNS23 SMSNS24 SMSNS25 SMSNS26 SMSNS27 SMSNS2I SMSNSOl SMSNS29 SMSNSIO
SaniiaKd Pcnncibililv (mnVdar) 6,39 6,39 6,39 6,39 6.39 6,39 6 39 6,39 6.19 6)9 Applicalion Rate (nun'dav) 30 30 30 30 30 30 30 30 30 10
Maiimum Actual TnumiraliaiVEvapolalion (Kpa) 1 1 1 1 1 1 1 1 1
Minimuni Root Pniential (Kpa) -2000 •2000 •2000 -1000 •2000 •2000 -2000 •2000 -2000 •2000
Mai imum Root Polenlial (Kpa) 0 0 0 0 D 0 0 C 0
WillinK Point (Kpa) -ISOO -1500 -ISOO -1900 -1900 -1900 • 1500 • 1500 -1900 -1500 Crop Cover Fraction (Kl i S 5 5 S ) ) S 5 5 Root Dhniliuiioniti t)/l)/10/t3/l6/tl 15/15/3 Wl 3/16/11 ii/i5/iart}/i6/i t tS/lI/3ltft1/tC/lt
Root Flow Itetiitance (terni) 1.03 LOS LOS 1,05 LOS
Cum Flui (mm)
Nei Fluinim(VMis4,IO)
Total Flui (mn^CiU)
323
02
00290
63,0
13.6
I 9910
307
02
0,0290
32 0
01
0.0290
324
0,2
0,0290
3J6
02
00290
- Indicile! Variable dianged
!)>• Root t^ninaa^ PercenlaECS in Sin Inch Inleivali, Slaning Fiom Gioiind Surl^e
FIGURES
pi
m
m
k
PI
m
GeoLogic Associates
il il il il II il il il il n VI mm Bl m.m mm m M KI ti ii
FIGURE 1
PROFILE WATER CONTENT
PRESCRIPTIVE FINAL COVER
ALTERNATIVE A2
FREE DRAINING CONDITION
•76 mm
•381 mm
838 mm
1448 mm
0.05
196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528
TIME (days)
FIGURE 2
CUMMULATIVE FLUX
PRESCRIPTIVE COVER
ALTERNATIVE A2
FREE DRAINING CONDITION
•305 mm
•610 mm
• 1525 mm
500 1000 1500 2000
TIME (days)
2500 3000 3500 4000
mm il 11 mm mm ii ii ii ii ii ii IIIII I I i
r 1 m M m § 11 i i il il il 11 il il il il ii ii il 11
FIGURE 3
CUMMULATIVE FLUX
PRESCRIPTIVE COVER
ALTERNATIVE Cl
HELP3 ANALYSIS
0.50
0.00
1525 mm
500 1000 1500 2000
TIME (days)
2500 3000 3500 4000
FIGURE 4A
PROFILE WATER CONTENT
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
FREE DRAINING CONDITION
0.25
0.2 1
i
g O u
06
0.15
0,05
76 mm
381 mm
838 mm
1448 mm
0.1 -
1 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528
TIME (days)
19 11 IIII II llli 11 II 11 iliill ill! II 11 II
II il 11 11 11 11 ii il il li ii ii il 11 11 11 li ii ii
0.3
FIGURE 4B
PROFILE WATER CONTENT
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
LYSIMETER CONDITION
76 mm
381 mm
838 mm
1448 mm
1 196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528
TIME (days)
0.25
FIGURE 4C
PROFILE WATER CONTENT
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
CONSTANT POTENTIAL CONDITION
76 mm
•381 mm
838 mm
• 1448 mm
196 392 588 784 980 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3332 3528
TIME (days)
in mm ii II II ii ii il il il if ii I i i { I } i
I I i I 1 mi Ki Kl li il II il 11 ii il II ii li li ii il
FIGURE 4D
HISTORICAL PRECIPITATION
LAKE HODGES STATION
1987-1996
4.5
10 year average precipitation 15.3 Inciies/year
3.5
•S 2.5 a
.e 2
1.5
0.5
0 -I I I i 1^ I
oo VI CN 0\ m O (N tN m •-I <S ro V) VO r-ooa>o«-i<Nm^vor-ooo\0'-H(stri'^m\or--ooo\»-'<s ,-i.-.^r-i.-H^.-i^^fS<N(N<N<Nr-irN(N(Sr^fom
00 Vl (N 0\ ^ fN o m cn ^ f*^ m rn m
Time (days)
FIGURE 5A
CUMMULATIVE FLUX
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
FREE DRAINING CONDITION
•305 mm
•610 mm
•1525 mm
10 15 20 25
TIME (days)
30 35 40 45
KVflillilllllillllii II iliill llllilll ri
ri Kl li 11 II 11 il li il il 11 Ki Kl 11 II II 11 ii
FIGURE SB
CUMMULATIVE FLUX
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
LYSIMETER CONDITION
•305 mm
610 mm
1525 mm
-8000
500 1000 1500 2000
TIME (days)
2500 3000 3500 4000
FIGURE 5C
CUMMULATIVE FLUX
ALTERNATIVE FINAL COVER
ALTERNATIVE E2
CONSTANT POTENTIAL CONDITION
• 305 mm
•610 mm
• 1525 mm
10 15 20 25
TIME (days)
45
mm li li II mm mm mm ii ii ii ii ii i i I I i f i
ATTACHMENT A
LABORATORY SOIL TESTING RESULTS
m
m
GeoLogic Associates
m
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND i SILT AND CLAY FRACTION
Coarse 1 Fine Coarse Medium Fine
100-
: Clear Sieve Openings U^S. Standard Sieve Numbers Miaons
3" 2" I 1" , .5" . #4 #8 #16 #30 #50 #100 #200 20 10 5 ? i ; 0
-'10
80 r20
70 :
>.
CD
O) c 'io
CO CO Q.
60
i 50-
V
a.
40
30
-4 30
J40
150
i60
-^70
'so
>• CQ
O
OH c a
0) Q.
20 - -. 80
10 90
100 10 1 0.1
Particle Size (mm)
Sample No. .
Mix 1: 85% Carroll Cnyn & 15% Ocean Ranch
0.01
•• -100
0.001
USCS: 75% Sand, 25% Fines
CCA * Southland
^Ov/soflo/SOUTHLAND GEOTECHNICAL. INC^
Project No: DJ01029
Grain Size
Distribution
Figure
A1
m
m
m m
m
P
Hi
Mi • k
SIEVE ANALYSIS
GRAVEL SAND
I Coarse Fine Coarse Medium Fine
HYDROMETER ANALYSIS
SILT AND CLAY FRACTION
Microns
100
90:-
Clear Sieve Openings U.S. Standard Sieve Numbers
3" 2" I t" I -S" • ^ ^4 #16 I #30 I #50 #100 #200 2p 10 5 2 ^
10
80 i--!20
il
IH
Ol
ta
CO (0
Q.
70!
60
^ 50
40
30
20r
10 -
30
40
50
60
70
—jao
i
90
CO
i
m o c
o
ID
o
Q.
100 10 0^1
Particle Size (mm)
Sample No,
TD2
0,01
—100
0.001
Soil Description: Sandy Clay or Sandy Silt
CCA'Southland
^o;v*o«o/SajTHLAI^ GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
SIEVE ANALYSIS HYDROMETER ANALYSIS i
t GRAVEL SAND SILT AND CLAY FRACTION !
Coarse 1 Fine Coarse Medium j Fine
i '1 i i
^ \ * '
Clear Sieve Openings U.S^ Standard Sieve Numbers Microns
ioa~f
j^2" , 1" : .5"^ #4 #a #-|6 I #?0 I #50 #1.00 #2pO 2^ ID 5
90 i-— 10
80 i — : 20
701
60 i
CQ
S 50
(0 I
0- j
ID
a.
401
30!
-30
^40
50
60
-i 70
ra
>.
CD TJ V C
•ffl "5 CC
Z
V
CL
20, -80
101 - - 90
100 10 1 0.1
Particle Size (mm)
Sample No.
TD3
0.01
100
0.001 m
m m
Soil Description: Sandy Clay or Sandy Silt
CC4'Southland
,,i>«««rf SOUTHLAND GEOTECHNICAL INC.
Project No: DJ01029
Grain Size
Distribution
Figure
AS m
m
ki
m
m
m
pa
m
m
m
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND
Coarse
SILT AND CLAY FRACTION
Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
3- 2" , r 1 -5" , #4 #8, #16 #30 #50 #100 #200 20 Ip ^ ?
100-H— f-!-- H : r—I—1 \ ' ' • ^
80
70 H
i 60 p
ra ^ ra i sop
CO I
ffl
Q.
« 40;
30!
20
10
100 10 1 0.1
Particle Size (mm)
Sample No.
TD11
0.01
Soil Description: Sandy Clay or Sandy Silt
10
20
30
40
50
60
70
-i80
90
- • 100
0^001
•C
i
ffl
"S
c 'a
I i
o.
CCA • Southland
^&vwo« of SOUTHLAND GEOTECHNICAL, INC. Grain Size Figure
Project No: DJ01029 Distribution A17
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Miaons
100
90
80
70
60
K 50
40
30
20
10
ra
I
>• OQ ra c '«
CO to a.
c
<D CL
100
1 I r
10
TTi YI -lj T *Pi TiTiT *TT T T f—I—
0,1 0.01
Particle Size (mm)
SampieiJfi^
WSl
10
20
30
40
50
60
70
80
90
—100
0.001
ra
I
ffl •g c
"OJ
i
i
0-
USCS:
USDA:
70% Sand, 19% Silt, 11% Clay
78% Sand, 15% Silt, 7% Clay
CCA • Southland
AOMucn</ SO\JmU<ND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A40
m
ra
I
ra c
M CO ffl
Q.
O
CL
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
60
^ 50
40
30
20
10
100 10
• ! • i
1 0.1
Particle Size (mm)
Sample No
WS25
0.01
10
20
30
40
60
60
70
80
90
•^00
0.001
ro
I
>. ffl •D V c n
I
c o
it
<D CL
USCS:
USDA:
76% Sand, 13% Silt, 11% Clay
78% Sand, 15% Silt, 7% Clay
CCA • Southland
,ioft«««<,/SOUTHLAND GEOTECHNICAL, INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A48
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarsd Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
TTi Tl ii. y *Pi TiTiTTT T ? f—I
60
ra 1
ra
•i 50
CO
CL
o
v
Q.
40
30
20
10
100 10 0.1
Particle Size (mm)
Sample Na
SS9
0.01
10
20
30
40
50
60
70
80
90
HOO
0.001
TO
i
«} c
I
ffl
CL
USCS:
USDA:
70% Sand, 19% Silt, 11% Clay
76% Sand, 16% Silt, 8% Clay
OC4'Southland
-4 Dft*ton of SOUTHLAND GEOTECHNICAL, INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A36
pi
li
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100 TTI TI -Tk ? *Pi TiTiT*rT f T !—I
I >* ffl ra c
CO CO
ffi
Q.
c
Cl
ffl
CL
90
80
70
60
50
40
30
20
10
100 10 1 0.1
Particle Size (mm)
Sample No,
ES13
0.01
10
20
30
40
50
60
70
80
90
iOO
0.001
ra
ffl
TS ffl C
^ ffl
ffl 2 o Q.
USCS:
USDA:
70% Sand. 19% Silt, 11% Clay
81% Sand, 11% Silt, 8% Clay
OCA-Southland
A DWsionc/SOUTHLAND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A24
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coanse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
10G
90
80
70
ra "S 5 60
ra c
CO CO
a
a. c ffl 2 ffl
CL
^ 50
40
30
20
10
100 10
-U-
1 0.1
Particle Size (mm)
0.01
10
20
30
40
50
60
70
80
90
—100
0.001
ra
I
ffl C
ffi "S cc
o
ffl
Q.
NS21
USCS:
USDA:
69% Sand, 20% Silt, 11% Clay
79% Sand, 14% Silt, 7% Clay
CCA • Southland
AOM^^ SOUTHLAND GEOTECHNICAL, INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A32
m
m
m
TO
I
>* ffl ra c
CO
10
I
ffl
ffl
CL
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarsel Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
60
^ 50
40
30
20
10
100
USCS:
USDA:
10 1 0.1
Particle Size (mm)
Sample No
WS5
0.01
71% Sand, 20% Silt, 9% Clay
79% Sand, 15% Silt, 6% Clay
TTi Tl i\ *Pi TiTiT'^T^ f—
10
20
30
40
50
60
70
80
90
100
0.001
Sl ra
ffl 5 >* m
TJ ffl C ra % QC
"E ffl
ffl
Q.
mm
m fDj CCA • Southland
m N^H AOM^cf SOUTHLAND GEOTECHNICAL. INC. Grain Size Figure
m
wm
Project No: DJ01029 Distribution A44
ra
ffl
ffl
ra
CO CO n CL
c
i
ffl CL
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine : Coarse Medium Fine
Clear Sieve Openings : U.S. Standard Sieve Numbers Microns
100
90
80
70
60
•s 50
40
30
20
y 2" I y I .^"^ ^4 ^1 #|6 I #:^o | #^o #ipo #2po 2p ip ^
10
10
20
30
40
50
60
70
80
90
-100
ra
•ffl
ffl
IS
c 'ra
CC
c
0 B ffl
CL
100 10 0.1 0.01 0.001
Particle Size (mm)
Sapiple No.
Mix #1: Top Deck 10%, Ocean Ranch 20%. Ramona 70%
USCS:
USDA:
63% Sand, 23% Silt,14% Clay
72% Sand, 19% Silt, 9% Clay
OCA • Southland
AOiviM^ot SOUTHLAND GEOTECHNICAL, INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A13
m
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
ro
ffl 5 60
ro
_c
CO CO ffi a.
•i 50
g 40
ffl
CL
30
20
10
TTi Tl Ii ^ *Pi TiTiT *r*r ^ T f—l-^o
10
20
30
40
50
60
70
80
90
ro
i
>* ffl
"S
ffl
cc
o
CL
J LJ--4 00
100 10 1 0,1
Particle Size (mm)
Sample No,
Mix #2: Ocean Ranch 30%, Ramona 70%
0.01 0.001
USCS:
USDA:
66% Sand, 20% Silt, 14% Clay
75% Sand, 16% Silt, 9% Clay
i OCA • Southland
xttvMion of SOUTHLAND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A14
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
ra
I 60
>. ffl ro
•i 50
CO ffi
I 40
ffl CL
30
20
10
100
USCS:
USDA:
10 0.1 0.01
Particle Size (mm)
2amc
Mix #3: Top Deck 30%, Ramona 70%
60% Sand, 25% Silt, 15% Clay
73% Sand, 16% Silt, 11% Clay
TTi Tl -^1 *i6i#fO|TTT T T !—I
10
20
30
40
50
60
70
80
90
-J100
0.001
Sl
ra
'ffl
>* ffl
"D ffl _C
ffi
%
CC
c
i
V CL
OCA * Southland
A £3«™««of SOUTHLAND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A15
m
li
I*
n
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
Sl
a
I 60
ro
•i 50
(0 ffi QL
30
20
10
100 10 1 0.1
Partide Size (mm)
0.01
y ^" I Y I .^"^ #j6| #|6 I #^ I #y) #1p0 #2p0 2p Ip ^ ^
10
20
30
40
50
60
70
80
-'100
0.001
ro
I
>. ffl •o ffl c
ffi
cc
c
i
ffl
CL
Mix #4: SS9 25%. TD10/OR20/RAM70 75%
m
m
m
USCS:
USDA:
60% Sand, 23% Silt, 17% Clay
70% Sand, 17% Silt, 13% Clay
OCA* Southland
/*aw(ion of SOUTHLAND GEOTECHNICAL, INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A16
m
H
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
10Q
90
80
70
ra
I 60
>.
ffl ra
•5 50
CO
ffi CL
ffl CL
30
20
10
T T I T i "f • y #16 I #^ I #|0 #1pO #2p0 2p 1p ^ ^
100 10 1 0.1
Particle Size (mm)
0.01
10
20
30
40
50
60
70
80
^0
^00
0.001
ra
I
•o ffl c
"ffi
%
DC
ffl
ffl
Q.
Mix #5: SS9 25%, OR30/RAM70 75%
USCS:
USDA:
62% Sand, 20% Silt, 18% Clay
68% Sand, 19% Silt, 13% Clay
CCA •Southland
.^Orvijioo of SOUTHLAND GEOTECHNICAL. INC^
Project No: DJ01029
Grain Size
Distribution
Figure
A17
m
m
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
100
90
80
70
60
i 50
ra
1
£•
ra c 'co
CO ra CL
ffl CL
40
30
20
10
100 10 0.1 0.01
Particle Size (mm)
Sample
TTi Tl f* ^*Pi TiTiT*r*r—f T f—?-^o
10
20
30
40
50
60
70
80
90
0.001
ra
i
IS
c
1
oc •E ffl ffl a
Mix #6: SS9 25%, TD30/RAM70 75%
USCS:
USDA:
62% Sand, 22% Silt, 16% Clay
71% Sand, 16% Silt, 13% Clay
pi
OCA-Southland
AOrWBonof SOUTHLAND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A18
SIEVE ANALYSIS HYDROMETER ANALYSIS
GRAVEL SAND SILT AND CUY FRACTION
Coarse Fine Coarse Medium Fine
Clear Sieve Openings U.S. Standard Sieve Numbers Microns
IOQTTI TI fi t. *Pi TiTiT^rT f T f—I
90
80
70
ra *5) g 60
>>
ffl ro
•1 50
(0 ra CL c ffl
ffl
a.
40
30
20
10
0 L_i L
10
20
30
40
50
60
70
80
90
100 10 0^1 0.01
—loo
0.001
ro
ffl
ffl
T3 ffl C
ffi
ffl
CC c ffl
B ffl a
Particle Size (mm)
Sample No
Mix #7: 80% Ramona Borrow Composite, 20% Ocean Ranch Topsoil
Soil Description: 67% Sand, 33% Fines
OCA - Southland
A osmton of SOUTHLAND GEOTECHNICAL. INC.
Project No: DJ01029
Grain Size
Distribution
Figure
A19
il
"•••'1 WUl •WWW"*
^,^f--KlANIAN_
SAN-a-' .H REMOLDING
PROJECTNUJ^Hl <:: ^^^'ACTED BY: DATE
BORING NUMBER: """" CF ECKEDBY: I>ATE:_
SAMPLE NUMBER; ^ JZT —
SAMPLE TYPE: , DESCRIPTI-
REMOLDING TECHNIQUE; _. 19^1*0 % 4 ?0
\) pg^TRgD CONPrnONS;
DRYWnGHr(Yd) = /Qg.^ per/ 62.« = 1-7^'/ gm' c
WATER CONTENT (w i = d 'O %
(2) 'SAMPLE VOLUME:
SAMPLE HHGHr<,H) = 5
SAMPLE DIAMETER [ D) -• 3« ^
or D = cmcbV/iF-::-..: .•• K = . in./ 3,i4i6 =
V, = (n HI ^ • 3^H^5^ , ^ i
4
CC
H (3) wnoKT OF son- AhJD VV'AT^:
TIUAXIAL PER't/IE/XBILrrY TEST
AST.^ IP50S4
PSOJEtrrNAME;,
PROJECT NO.:
TESTED BY:
TYreOFTEST:_
BOIUNG NUMBER,:.
SAMFl£ NUMBER:.
C.^LCULA•I^)BY:.
CHECKED BY:
HEMARKS;
DATE:.
•ATE:
DEPTH;
Conqncted Sample Prepared at
E3Ctruded from
PREPARAT^ "^r? CONDtnON
% Rel den / compacti- r. ^.fax. Dry Density.
to
_pcf, opt. N^ustute.
INITIAL CONPITTOM OF SPECIMEN
Diameter 1.. 2. 2^ittr
1? WTT
3. •2. ^^5^ Average Diameter ^^H'^'S'
Height L.
Sample Area (A).
Total Weight
2. :2 I. 3 AveiT'--: Height _2 in. x2.54 = on
JH-W? n.'x64S. ^-7?
Ring/Tube Weight.
Sample Weight
gm
SpedSc Gravity (G,)
Total Volume (A x L) - VT = _
Volmne SoU = (Ws / Gs) = Vs =
Pore Volmne (VT • VS) = VV = _
Volume Water (Ww)» V* =
cm
Mcnstme Contaizier No.
WL Wet Soil + Container (gm)
Wt Diy Soil + Container (gm)
Wt. Comainer (gm)
Moismre (%)
BEPOSIE
73-y-<?
11^
Volmne Gas ( VT • Vs • Vw) - Vo =
HSatntation(Vw/Vv)-,
Void Ratio (Vy / VT) = e =
Porosity (Vv / VT) n =
an
%
Tota! WT -
Wcidit ooil I'WT / (1+W)), Ws =
Wcigb; '-V.it-.r CWT • Ws) - Ww
Wet r - y^ity (WT / VT ) =
Dry D-. r.\^-/ (Wj / VT ) =
_Bni
.gm
.gm
g/cn^x62.S= Ptf
j/cm^ X 62.5 - fOf./ pcf
n^ALcoNDH" )r; OFSPECIMEN
CocmlioQ F«Xor Rrfcr Viwoiity of Wato Jl Various Ten^cnrtures
Teapammc'C
19
20
31
22
23
24
23
26
Full WiUr Taiqxnnn •-
I •025
1.000
0.976
0.?53
0.931
0.910
0.SS9
0.869
Moisture Container No.
Wt. Wet Soil + Comainer (gm)
Wt Dry Soil + Container (gm)
Wt. Container (gm)
Moisture (%)
AFTER
Mil
111
cm / sec
PROJECT NUMBER: _
PROJECT NAME:.
BORING NUMBER:
SAMPLE NUMBER: ^ HL*
bdlbl Sample Hdshi _
foilul StmpUt Vohane.
bittal Sample Am
3untteAfe>-
DEPTH (ft):
in. .X 16.4 =
_m.'
an*
SAMPLE SAT- ?IL'\TION DATA
RECORDED BY:
COMPUTED BY:.
CHECKED BY: _
EjTcaive Presaure
Final Ssmpte Kd^.
Fi:ir;l Sample Vohime:
Fin.ii Single Arei;
DATE:
DATE:
DATE:
^Kfcracnt
NtBober Tiow
Elapsed
Tone
nun.
Chamber
Pressure
ps
dAppIied M-nstired
Back, \ Fore
Pressure Ticssure
psi ; psi
Bortfte
Reading
oc
Volome
Oiaaec
(AV)
ce
Votnl
a-
/ y \
ie>oo o /o
5 IfOO Xo
f f>oO ?>
(t> TO IS--0
7 Un
If fhOO 73 70
^> \3-l
!
t
i
PROJECT NUMBER: 0T6 I 0/^^
NAME: Afr^ ^tKSjl^^ L'P-
TRIAXIAL PERMEABIUTY TEST
ASTMDS0K4
PROJECT
BORtNO NUMBER:
S.AMPUe NUMBER:
DEPTH (FT):
TESTED BY:
COMPUTED BY;
CHECKED BY:
DATE:.
DATE:.
DATE:
CELL PRESSURE:
BOTTOM PLATEN: ^S^' H
TOPPLATEN: _
AVERAGE EFFECnVR STRESS:
DATE TIME
ELAPSED
TTME
(MINUTES)
nWow
(ML)
CHANOEIN
INFLOW
(NU.)
CUMULATIVE
INFLOW
(ML)
ouffum
(ML)
CHANOEIN
OUFFLOW
(ML)
aiMULATlVE
OUTFLOW
(ML)
k
(CM/SEC)
REMARKS
9/\7/ol
7-/
. .5^.77 i-?)f /O'^
1
1
i i
• '9 mm mm m mm mm mm ii ii ii ii ii ii ii ii ii ii
B-VALUE C IMPUTATION
PROJECTNUMBER; _
BORINO NUMBER; " *
8 AMK£ NUMBER:.
DEPTH INTERVAL:.
REMARKS:
DA-m «^ /gyp ^
DA1Z:
CCMPIHEDBY:.
CHECKED BY: __
TRLAL NUMBER:
pr
BACK
PRESSURE
(psr>
cm.
PRESSURE
(PSI)
AXLU
LOAD
(LB)
BACK
PRESSUKI'
(PSI)
DVMREAONG
B-VALUE PFTT
PRESSURE
(PSI)
Ef-lrECnVE
PRESSURE
(PSI)
B-VALUE
HYDRAULIC CONDUCTIVITY - ASTM D5084
Job Name: CCA Southland
DJ01-029 Task 20
Job No.: 2001-081 Sample: 80% Maddock + 20% OC Ranch By:LD
Sample Ty
Soil Type:
.e: 1 1 Undisturbed Remolded
Sand w. trace Clay
Saturation Sample Ty
Soil Type: Gray, M.C.
Undisturbed Remolded
Sand w. trace Clay Cell Pressure Back P. Pore P. B Cell Burette Sample Burette
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
10 7 -0.4 7.3 Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
20 17 -0.1 5.4
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
30 27 -0.7 2.7
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
40 37 37 -0.1 1.3
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
50 46.5 9.5
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6 Conso//c/at/on
Ini. Height (in.): 2 Final
Ini. DIam. (in.): 2.41 Height (in.): 2.008
Wet + Tare (grams): 303.9 Diam. (in.): 2.419
Tare (grams): 0 Wet Weight (gr.): 322.2
Water Content (%): 9.5 Water Content {%): 16.1
Dry Density (pcf): 116.9 Dry Density (pcf): 114.6
50 42 1.3 -0.1
6e\\
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(cc)
Bottom
Burette
(cc)
Date&Time
Start/Stop
h (cm)
ho/hi
Q(cc)
Top/Bott.
Test Time,
t (sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
50 42.5 41.5 1 0 24 27.48 12
3300
7.5E-06 5.10032
29.63526579
50 42.5 41.5 1
12 12 0 12 3300
7.5E-06 5.10032
29.63526579
50 42.5 41.5 1 0 24 27.48 10
2700
7.4E-06 50 42.5 41.5 1
10 14 4.58 10 2700
7.4E-06
50 42.5 41^5 1 0 24 27.48 10
2700
7.4E-06 50 42.5 41^5 1
10 14 4.58 10 2700
7.4E-06
50 42.5 41.5 1 0 24 27.48 10
2700
7.4E-06 50 42.5 41.5 1
10 14 4.58 10 2700
7.4E-06
7.4E-06
(Average)
aL , ho k — iTt 7.4E-06
(Average)
rv tit.
2 At hi
m m m i i i i i i i a VI llllllllllllll
GeoLogic Associates
llllll
II II fl 11 II I] 11 II f! II II VI VI VI VI II 11 I I
OJ
HYDRAULIC CONDUCTIVmr - ASTM D5084
Job Name; CCA Southland Job No.: 2001-081 Sample: TD-2/1B By:LD
ID
CO
00
i
U)
(D
U)
r-t
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
Saturation Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
Cell Pressure Back P. Pore P. B Celt Burette Sample Burette
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
10 7 -0.3 4.4
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
20 17 -0.6 2.5
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
30 27 -0.3 1.3
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
40 37 37 -0.1 0.8
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
50 46.5 9.5
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4 Conso//rf0/iof}
Sample Type: HB Undisturbed (CD Remolded
Soil Type; L. Brown Mottled. Clayey Silt w. P.M. Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 2.043
Wet + Tare (grams): 303.3 Diam. (in.): 2.441
Tare (grams): 0 Wei Weight (gr.): 323.1
Water Content (%): 10.5 Water Content (%): 17.7
Dry Density (pcf); 115.6 Dry Density (pcf): 109.4
50 42 2 -1
(5ell
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(cc)
Bottom
Burette
(cc)
Date&Time
Start/Stop
h (cm)
ho/h.
Q(cc)
Top/Bott.
Test Time,
t (sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
50 42.5 41,5 1 0 24 27.48 1 5,0E-07 5.18922
oU.'i 7676276 i
50 42.5 41,5 1
1
1
; 2o.-t9 1
5,0E-07 5.18922
oU.'i 7676276 i
50 42.5 41.5 1 1 23 25.19 1.2
4980
4.4E-07 50 42.5 41.5 1
2.2 21.8 22.442 1.2 4980
4.4E-07
50 42.5 41.5 1 2.2 21.8 22.442 1.6
6420
4.7E-07 50 42.5 41.5 1
3.8 20.2 18.778 1.6 6420
4.7E-07
50 42.5 41.5 1 3.8 20.2 18.778 2.2
9540
4.6E-07 50 42.5 41.5 1
6 18 13.74 2.2 9540
4.6E-07
50 42.5 41.5 1 0 24 27.48 6
24480
4.6E.07
(Average)
, aL , ho
k = tft — 50 42.5 41.5 1
6 18 13.74 6 24480
4.6E.07
(Average) 2Ai hi
c
IQ
a
e
(9
10 (D O •*
o
00
o
0
o
GeoLogk; Associates
HYDRAULIC CONDUCTIVITY - ASTM D5084
Q.
CO
I
to
(fi
(fi
c
a
E
ID
_1
IQ
CD
O
o
00
o
0
D
Job Name: CCA Southland Job No.: 2001-081
DJ 01-029 Task 22
Sample Type: HI Undisturbed ClD Refolded
Soil Type: Orange Brown Mottled, Silty Sandstone w. Siltstone chip
Inl. Height (in.):
Ini. Diam. (in.]
Wet + Tare (grams):
Tare (grams):
Water Content (%):
Dry Density (pcf):
Sample: TD-3/1A By:LD
Cell Pressure
2 Final
2.41 Height (In.): 2.031
306.4 Diam. (in.): 2.429
0 Wet Weight (gr.): 321.2
12.4 Water Content (%): 17.8
114.8 Dry Density (pcf): 110.4
GeoLogic Associates
m-m mm mm V 9 V V m.m VI II 9 vfl I I I I 1 I r I I I I 1 I I
II il il 11 II II 11 11 II 11 VI VI VI VI Vi il Vi il il
tL
HYDRAULIC CONDUCTIVITY - ASTM D5084
in
00
I
(D
tfi
(fi
c
IQ a
e n
r-o
o
CD
O
*>
0
O
Job Name: CCA Southland Job No.: 2001-081 Sample: TD-11/1B By:LD
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
Saturation
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
Cell Pressure Back P. Pore P. B Cell Burette Sample Burette
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
10 7 -1.9 1.1
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
20 17 -0.4 1.4
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
30 27 0.3 0.9
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
40 37 37 0.3 0.9
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
50 46.5 9.5
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1 Consolidation
DJ 01-029 Task 22
Sample Type: Undisturbed ([[3) Remolded
Soil Type: Brown Gray Mottled. F M. Sandy Clay w. trace SHtstone
Ini. Height (in.): 2 Final
tni. Diam. (in.): 2.41 Height (in.): 2.045
Wet + Tare (grams): 312.1 Diam. (in.): 2.423
Tare (grams): 0 Wet Weight (gr,): 318.8
Water Content (%): 15.6 Water Content (%): 18.1
Dty Density (pcf): 113.7 Dry Density (pcf): 109.1
50 42 2 -0.9
-"Cell
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(CC)
Bottom
Burette
(CC)
Date&Time
Start/Stop
h (cm)
ho/hi
Q (cc)
Top/Bott.
Test Time,
t (sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
50 42.5 ^;1.5 '1 0 27.48 0.4
24 060
3.0E-03 5.1943 50 42.5 ^;1.5 '1
23.0
23.6
26.564 24 060
3.0E-03 5.1943
50 42.5 41.5 1 0.4
23.0
23.6 26.564 3.3
230850
26E-08 50 42.5 41.5 1
3.7 20.5 19.236 3.1 230850
26E-08
50 42.5 41.5 1 0 24 27.48 3.7 2.6E-08
(Average)
aL . ho k = In — 50 42.5 41.5 1
3.7 20.5 19.236 3.5 254910
2.6E-08
(Average) 2 At ht
GeoLogic Associates
0.
in
00
I
(fi
(fi
(fi
c
IQ
Q
E ro
_j
(0 r-o
0)
o
to
OJ
0
o
Job Name: CCA Southland
DJ 01-029
Undisturbed
HYDRAULIC CONDUCTIVITY - ASTM D5084
Job No.: 2001-081
Sample Type:
Soli Type: Gray Brown, F C. Silty Sand
I Remolded
Inl. Height (in);
Ini. Diam. (In.):
Wet + Tare (grams):
Tare (grams):
Water Content (%):
Dry Density (pcf):
2 Final
2.41 Height (in.):
305.9 Diam. (in.):
0 Wet Weight (gr.):
10 Water Content {%)
117.1 Dry Density (pcf):
1.992
2.405
323.8
16.4
117.1
-TelT" Back Back Pressure lop
Pressure Pressure Pressure Difference Burette
(psi) (Top) (Bottom) (psi) (cc)
1 -
Bottom
Burette
(cc)
Sample: WS-1 Composite By:LD
Saturation
Cell Pressure Back P. Pore P. B Cell Burette Sample Burette
10 7 2.1 8.3
20 17 1.1 6.2
30 27 06 3.6
40 37 37 0.3 1
45 41.8 0.96
Consolidation
45 37 1.4 -1.1
Date&Time
Start/Stop
h (cm)
ho/h,
Q(cc)
Top/Bott.
Test Time,
t(sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
i
i 27.^ £i I 1V2
1
1 'i.EE-0^.
i
5.05968
GeoLogic Associates
mm mm i i i i ii 19 ii il il il li II II II tl II 11
fl ri VI VI il 11 ri ri ri ri vi vi vi vi vi vi vi ii ii
ID
00
(fi
(fi
(fi
Job Name: CCA Southland
HYDRAULIC CONDUCTIVITY - ASTM D5084
Job No.: 2001-081 Sample; WS-25 Composite By:LD
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
Saturation
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
Cell Pressure Back P. Pore P. B Celt Burette Sample Burette
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
10 7 3.2 10.3
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
20 17 1.5 6.6
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
30 27 0.8 4.9
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
40 37 37 0.2 1.1
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
45 41.8 0.96
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9 Consolidation
DJ 01-029
Sample Type: | I Undisturbed Remolded
Soil Type: Gray Brown. F C. Silty Sand
Inl. Height (in.): 2 Final
Ini. Diam. (in.): 2.41 Height (in.): 1.988
Wet + Tare (grams); 301.8 Diam. (in): 2.41
Tare (grams): 0 Wet Weight (gr): 323.7
Water Content (%): 8.5 Water Content (%): 16 4
Dry Density (pcf): 117.2 Dry Density (pcO: 116.9
45 37 1.6 -1.3
Cell '
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(cc)
Bottom
Burette
(cc)
Date&Time
Start/Stop
h (cm)
ho/hi
Q(cc)
Top/Bott
Test Time,
t (sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
Cell '
Pressure
(psi)
J
Pressure
Difference
(psi)
27.4£ 5.5 •|,5E:-0D
1.4E-05
S.04&52 j
I !
•|,5E:-0D
1.4E-05 45 37.5 36,5 1 0 24 27.48 3.8
420
•|,5E:-0D
1.4E-05 45 37.5 36,5 1
3.8 21.2 19.923 2.8 420
•|,5E:-0D
1.4E-05
45 37.5 36.5 1 0 24 27.48 5.6
690
1.5E-05 45 37.5 36.5 1
5.6 18.4 14.656 5.6 690
1.5E-05
45 37.5 36.5 1 0 24 27.48 7.9
900
1.7E-05 45 37.5 36.5 1
7.9 16.1 9.389 7.9 900
1.7E-05
45 37.5 36.5 1 0 24 27.48 3.8
420
1.7E-05 45 37.5 36.5 1
3.8 20.2 18.778 3.8 420
1.7E-05
1.6E-05
(Average)
, aL , ho
k = In — 1.6E-05
(Average) 2 At hi
c
IQ a
E 10
10
(0
o
m o
(fi
(M
t>
0
o
GeoLogic Associates
Q.
in
00
I
(fi
CO
(fi
r^
Job Name: CCA Southland
DJ 01-029
Sample Type: I I Undisturbed
Soli Type: Gray Brown, F.C. Silty Sand
InL Height (in): 2
tni. Diam. (in.): 2.41
Wet + Tare (grams): 307
Tare (grams): 0
Water Content (%): 9.5
Dry Density (pcf): 118.1
HYDRAULIC CONDUCTIVITY - ASTM D5084
Job No.: 2001-081 Sample: SS-9 Composite By:LD
I Remolded
Final
Height (in.): 2.013
Diam. (in.): 2.417
Wet Weight (gr.): 324
Water Content (%): 15,6
Dry Density (pcf): 115.7
Saturation
Cell pressure
10
20
30
40
45
Back P.
17
27
37
Pore P.
37
41.8
B
0.96
Oil Burette
-0.3
0.7
-0.2
0.4
Sample Burette
7.3
5.8
3.2
1.2
Consolidation
45 37 1.1
Coefficient of
Permeability, k
(cm/sec)
c
fO
n
e
10
10 m a *• cn o
(fi
0
o
(^ell ' Back
Pressure Pressure
(psi) (Top)
45
Back Pressure Top Bottom
Pressure Difference Burette Burette
(Bottom) (psi) (cc) (cc)
Date&Time
Start/Stop
h (cm)
ho/h,
Q(cc)
Top/Bott.
Test Time,
t (sec) Remarks (L/A)
GeoLogic Associates
mm mm v i i a i a mm Miiiiiiiiiii I I 1 I i I I I I I
flilililllllllllllilllliVIViilVIVIViil
CL
HYDRAULIC CONDUCTIVITY - ASTM D5084
in m t
00
I
(fi
(0
(0
Job Name: CCA Southland Job No.: 2001-081 Sample: ES-13 Composite By:LD
1 1 1 Ini^ioliirhAH ^Ib Remolded Saturation
Soil Type: Gray Brown, F.C. Silty Sand
Remolded
Celt Pressure Back P. Pore P. B Cell Burette Sample Burette Soil Type: Gray Brown, F.C. Silty Sand
Final 10 7 -1 7.8
Mil. neiyiii \»'-/ •
Int. Diam. (in.):
Wet + Tare (grams):
2.41
303 7
Height (in.;
Diam. (in.)
Final
2.026 20 17 -0.8 6.1 Mil. neiyiii \»'-/ •
Int. Diam. (in.):
Wet + Tare (grams):
2.41
303 7
Height (in.;
Diam. (in.) 2.412 30 27 -0.8 3.2
Mil. neiyiii \»'-/ •
Int. Diam. (in.):
Wet + Tare (grams):
2.41
303 7
Height (in.;
Diam. (in.) 2.412
0.2 1 Tare (grams): 0 Wet Weight (gr.): 321.7 40 37 37 0.2 1 Tare (grams): 0 Wet Weight (gr.): 321.7
10 Water Content (%):
Dry Density (pcO:
16.5 45 41.8 0.96
vvdiei Vrfvmciii \ /»/ •
Dry Density (pcO: 116.3
Water Content (%):
Dry Density (pcO: 113.7 Cor>so//cfatfon vvdiei Vrfvmciii \ /»/ •
Dry Density (pcO: 116.3
Water Content (%):
Dry Density (pcO: 113.7
45 37 1.1 -0.4 •
6e\\
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(cc)
Bottom
Burette
(cc)
Date&Time
Slarl/Stop
h (cm)
ho/hi
Q(cc)
Top/Bott.
Test Time,
t(sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
C!> (- O 0 '1 27.4£ 11.6 2.7E-0-'. 5.14604
C!> (- O ! 'i '1 1 '1-.-, U.blfc .,.J1^..-.J
45 37.5 36.5 1 0 24 27.48 11.8 2.7E-04 45 37.5 36.5
11.8 12.3 0.5725 11.7 90
45 37.5 36.5 1 0 24 27.48 11.8 2.7E-04 45 37.5 36.5
11.8 12.2 0.458 11.8 90
45 37.5 36.5 1 0 24 27.48 11.5 2.7E-04 45 37.5 36.5
11.5 12.5 1.145 11.5 90
45 37.5 36.5 1 0.5 24.5 27.48 11.4 2.6E-04 45 37.5 36.5
11.9 13.1 1.374 11.4 90
2.7E-04 aL , ho k In —
(Average) 2 At ht
c
IQ a
E
ID _l
Q
CU
0}
O
(fi
(U
•>
0
o
GeoLogic Associates
PJ
Q.
in n
00
I (0 U)
(fi
t^
c
10 (=)
E
<0
10
(fi o
**
tn
D
to
•> o o
Job Name: CCA Southland
DJ 01-029
Sample Type: L I Undisturbed
Soil Type: Gray Brown, F.C. Silty Sand
Ini. Height (in.): 2
tni. Diam. (in.): 2.41
Wet + Tare (grams): 303.4
Tare (grants): 0
Water Content (%): 10
Dry Density (pcO: 116.2
HYDRAULIC CONDUCTIVITY - ASTM D5084
Job No.; 2001-081 Sample: NS-21 Composite By:LD
Remolded
Final
Height (in.): 2.01
Diam! (in.): 2.405
Wei Weight (gr.): 321.5
Water Content (%): 16.6
Dry Density (pcf): 115.1
Cell""
Pressure
(psi)
Back
Pressure
(Top)
Back Pressure Top Bottom
Pressure Difference Burette Burette
(Bottom) (psi) (cc) (cc)
Saturation
Cell Pressure Back P. Pore P. B Celt Burette Sample Burette
10 7 1.9 12,3
20 17 1,2 5.6
30 27 0.5 3.8
40 37 37 0 2.2
45 41.8 0.96
Consolidation
45 37 4.9 -5.4
Date&Time
Start/Slop
h (cm)
ho/hi
i 27.-^6
Q (cc)
Top/Bott.
] 12.3
Test Time,
t(sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
1 L"', 1L/;." -,
V9 II II II li i I I I i i I i I I
GeoLogic Associates
IIIIIII
II ii ii il II II fl II ri VI n 1 V i 9 i I 91 VI ii 11
(fi
0.
in
CO
I
(fi
(D
(fi
c
10 Q
B
IQ
IQ
O
0}
o
(fi
(U
u o
Job Name: CCA Southland
HYDRAULIC CONDUCTIVITY - ASTM DS084
Job No.: 2001-081 Sample; WS-5 Composite By:LD
DJ 01-029
4^ Remolded Saturation
Sample Type: | l unaiswruBu 4^ Remolded
CeW Pressure Back P. Pore P. 6 Cell Burette Sample Burette
Soil Type: uray orown, r.u. omy oemu
Pinal 10 7 -0.4 7.9
Ini. Height (in.):
Ini. Diam. (in.):
Wet + Tare (grams):
c
Uainhf fin \
If f CTI
? 01 20 17 1.1 5.9 Ini. Height (in.):
Ini. Diam. (in.):
Wet + Tare (grams):
d.41
306.8
9.5
wt A O /\
neigni ^iii-^
Diam. (in.)
Wet Weigh
Water Cont
30 27 -0.5 3.6
Ini. Height (in.):
Ini. Diam. (in.):
Wet + Tare (grams):
d.41
306.8
9.5
wt A O /\
neigni ^iii-^
Diam. (in.)
Wet Weigh
Water Cont
t(9r.):
ent (%):
325.1
16.0
114 6
40 37 37 0.6 0.8
Tare (grams):
Water Content (%):
Dry Density (pcf):
d.41
306.8
9.5
wt A O /\
neigni ^iii-^
Diam. (in.)
Wet Weigh
Water Cont
t(9r.):
ent (%):
325.1
16.0
114 6
45 41.8 0.96 Tare (grams):
Water Content (%):
Dry Density (pcf):
d.41
306.8
9.5
wt A O /\
neigni ^iii-^
Diam. (in.)
Wet Weigh
Water Cont
t(9r.):
ent (%):
325.1
16.0
114 6 Conso//da(/on
Tare (grams):
Water Content (%):
Dry Density (pcf): 118.0 jry uensiiy
45 37 1.5 -0.8
'Cell
Pressure
(psi)
Back
Pressure
(Top)
Back
Pressure
(Bottom)
Pressure
Difference
(psi)
Top
Burette
(cc)
Bottom
Burette
(cc)
Date&Time
Start/Stop
h(cm)
ho/hi
Q(cc)
Top/Bott.
Test Time,
t (sec)
Coefficient of
Permeability, k
(cm/sec) Remarks (L/A)
•iL> i
•—"•"•—
"6 5 '• '--•—^
'l ;
27.48 Tl 5.105-4
. . V 1
1 -. ; 1^
—
.... 2.2& 1 > 22.Z0C-.0\-'.:
45
1
37.5 36.5 1 0 24 27.48 11.2 2.5E-04
45
1
37.5 36.5
11.2 12.9 1.9465 11.1 90
45 37.5 36.5 1 0 24 27.48 11.3 2.5E-04
45 37.5 36.5 1
11.3 12.8 1.7175 11.2 90
45 37.5 36.5 1 0 24 27.48 11.3 2.5E-04
45 37.5 36.5 1
11.3 12.8 1.7176 11.2 90
45 37,5 36.5 1 0.5 24.6 27.5945 11,3 2.BE-04
45 37,5 36.5 1
11.8 13.3 1.7176 11.3 90
2.5E-04 , aL . ho
k In ~—
(Average) 2 At hi
GeoLogic Associates
CONSTANT-HEAD PRESSURE PERMEABILITY TESTS
Modified USBR 5600
PROJECT CCA Southland Date 1/2/02
Job No
# DJ 01-029 -
2001-081
Task 24-2
By LD •4*
Sample #1 Composite Start Sto p mm
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k -«
93.5 Tare ' • ^ 452.8 18:48 484.2 7:35 31.4 1.7E-06 MM
400.5 Init. Wet vrt 484.2 7:35 496.8 12:18 12.6 1.8E-06
Sat. Wt. 419.4 496.8 12:18 503.1 15:38 6.3 1.3E-06
Trimmed Wt. 416.3 503.1 15:38 555.2 7:10 52.1 2.3E-06
8.5 % water 15.2
UK
119.2 Dry Density 118.1 -
PSI 1 Total (Ave.) 102.4 1.9E-06 MM
Sample #2 Composite Start Sto p wm
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
Tare B 452.7 18:48 502 7:35 49.3 2.6E-06 wm
Init Wetwt 1 502 7:35 518.2 12:18 16.2 2.3E-06 -
Sat. Wt 420.4 518.2 12:18 530.2 15:38 12 2.5E-06 M
Trimmed Wt. 420.4 530.2 15:38 598 7:10 67.8 3.0E-06 m
% water 13.2
Dry Density 121.7 wm
PSI 1 Total (Ave.) 145.3 2.7E-06 wm
m
Sample #3 Composite Start Sto p m
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k mm
93 Tare 452.7 18:48 472.2 7:35 19.5 1 .OE-06 m
404.2 init. Wet wt 472.2 7:35 478.8 12:18 6.6 9.5E-07 ^m
, ' , , Sat. Wt. 419.5 478.8 12:18 483.2 15:38 4.4 9.0E-07
Trimmed Wt. 417.5 483.2 15:38 513 7:10 29.8 1.3E-06 il
% water 14.9 m
Dry Density 119.0
PSI 1 Total (Ave.) 60.3 1.1E-06
K = coefficient of permeability (cm/sec)
L = sample height = 5.080 cm
A = area of sample = 29.41516 cm^
H = Hydrostatic head (cm of H2O)
K = QL/Aht
1 psi = 70.43 cm
GeoLogic Associates
IP
m
CONSTANT-HEAD PRESSURE PERMEABILITY TESTS
Modified USBR 5600
PROJECT CCA Southland Date 1/2/02
mw
m Job No
# DJ 01-029 -
2001-081
Task 24-2
By LD
Sample #4 Composite Start Sto p
•i As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
m 92.6 Tare 453.2 18:48 483.8 7:35 30.6 1.6E-06
m 39^^ Init. Wet wt • 483.8 7:35 490.9 12:18 7.1 1.OE-06
Sat. Wt. 412.9 490.9 12:18 495 15:38 4.1 8.4E-07
H Trimmed Wt. 409.2 495 15:38 512.4 7:10 17.4 7.6E-07 H
10 % water 16.1
m 116.2 Dry Density 114.9
IH PSI 1 Total (Ave.) 59.2 1.1E-06
Sample #5 Composite Start Sto p
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
93.4 Tare 453 18:48 485.6 7:35 32.6 1.7E-06
39^^ Init. Wet wt
• , •
485.6 7:35 492.8 12:18 7.2 1.OE-06
Sat. Wt 414.7 492.8 12:18 498.1 15:38 5.3 1.1E-06
Trimmed Wt 409.6 498.1 15:38 521.6 7:10 23.5 1.OE-06
10 % water 16.5
116.2 Dry Density 114.3
PSI 1 Total (Ave.) 68.6 1.3E-06
mt Sample #6 Composite Start Sto p
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
iM 94.1 Tare 452.8 18:48 519.5 7:35 66.7 3.5E-06
39^^ Init. Wet wt 519.5 7:35 536.9 12:18 17.4 2.5E-06
Sat. Wt 415.3 536.9 12:18 547.8 15:38 10.9 2.2E-06
Trimmed Wt 412.5 547.8 15:38 593 7:10 45.2 2.0E-06
wm 10.5 % water 16.8
Ml 115.9 Dry Density 114.9
PSI 1 Total (Ave.) 140.2 2.6E-06
K = coefficient of permeability (cm/sec)
L = sample height = 5.080 cm
A = area of sample = 29.4116 cm^
H = Hydrostatic head (cm of H2O) 1 psi = 70.43 cm
K = QL / Aht
GeoLogic Associates
CONSTANT-HEAD PRESSURE PERMEABILITY TESTS
Modified USBR 5600
PROJECT CCA Southland
#DJ 01-029'Task 24-2
Job No 2001-081
Date
By
1/4/02
LD
Sample #7 Composite-OR 20/RAM 80 Start Sto p
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
Tare 520.3 9:33 545.2 11:29 24.9 8.8E-06
Init Wet wt 545.2 11:29 566.3 13:05 21.1 9.0E-06
Sat. Wt. 432 566.3 13:05 582.1 14:22 15.8 8.4E-06
Trimmed Wt. 430.6 582.1 14:22 589.9 15:00 7.8 8.4E-06
% water 17.2 589.9 15:00 834.4 7:07 244.5 1.0E-05
1 121.5 Dry Density 121.0 834.4 8:27 846.3 9:26 11.9 8.2E-06
PSI 1 Total (Ave.) 326 9.8E-06
Sample Start Sto p
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
Tare
Init Wet wt K- 1
Sat. Wt.
Trimmed Wt
% water
Dry Density
PSI Total (Ave.)
Sample Start Sto p
As Rec'd As Tested Wt. Time/Day Wt. Time/Day cc k
Tare
init. Wet wt
• n'SfflVtiXiSH Sat Wt.
Trimmed Wt.
% water
Dry Density
PSI Total (Ave.)
K = coefficient of permeability (cm/sec)
L = sample height = 5.080 cm
A = area of sample = 29.4116 cm^
H = Hydrostatic head (cm of H2O)
K = QL/Aht
HI
li
1 psi = 70.43 cm
GeoLogic Associates
m
mi
KEANTAN
LABORATORIES www.keantanlabs.com
email: keantanlab@acJ.com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJE<rr NO.: DJOl-029
DATE: IO-y-01
MOISTURE CONTENT: 13.0 PERCENT (BY WT.)
DRY DENSITY: 108.9 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: #1 85% Carroll Canyon
DEPTH(FT): N/A 15% Ocean Ranch
OK
ca C2
tn C
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
,0.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
Moisaire Content By Volume (percent)
IM
HGURENO. ^4
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
KEANTAN
LABORATORIES www.keantanlabs.com
emaih keantanlab@aol.com
C^illary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.:DJ0I-029
DATE: 10-9-01
MOISTURE CONTENT: 9.5 PERCENT (BY WT.)
DRV DENSITY: 116.6 PCF (REMOLDED)
14.00
12.00
iO.OO
8.00
6.00
4.00
2.00
O.OO
KTL NO.: 01-088-003
CLIENT; CCA SOUTHLAND
SAMPLE I.D.: #2 80% Madaoc^
DEPTH(FT); N/A 20% Ocean Ranch
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
Moisiui-e Content By Volume (percent)
FIGURE NO. A 5
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
IH
P
It
li
•I
k
KEANTAN
LABORATORIES www.keantanlabs.com
email: keantanlab@aol.asm
C^illary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 15.8 PERCENT (BY WT.)
DRY DENSITY: 114.1 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: TD2
DEPTH(FT): N/A
C3
CC
9
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
I
,0.0 15.0 20.0 25.0 30.0 35.0 40.0
Moisture Content Bv Volume (percent)
45.0 50.0
il
FIGURE NO. A21
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714} 535-7616 • Fax: (714) 535-7568
KEANTAN
LABORATORIES www. keantanhbs. com
email: keantan{ab@aot.<x>m
Capillary-Moisture Relations
ASTMD3152
PROJECT-NAME: S.-\N MARCOS LANDFILL
PROJECT NO,: DJOl-029
DATE: HI-I'M) I
MOISTURE CONTENT: 18.5 PERCENT (BY WT.)
DRY DENSITY: 11S.7 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE T.D.: TD3-
DEPTH(FT): N/A
ea C2
O
14.00 -
12.00
10.00
8.00
6.00
4.00
2.00
0.00
lO.O 5.0 :!),() 25.0 30.0 35.0 40.0 45.0 50.0
\ loibiiij-e Content By Volume (percent)
kl
m
m
m
m
n
Mi
FIGURE NO.
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
Hi
KEANTAN
LABORATORIES www.keanianlabs.com
anail: keantanhb@aol.cx>m
C^illaiy-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 14.0 PERCENT (BY WT.)
DRY DENSITY: 108.1 PCF (REMOLDED)
CJ
C3
m C
f—
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: TDll
DEPTH(FT): N/A
lO.O 15.0 20.0 25.0 30.0 35.0 40.0
Moismre Content By Volume (percent)
FIGURE NO. A23
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
KEANTAN
LABORATORIES www. keantanlabs.com
email: keantanlab@aol.com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 10.0 PERCENT (BY WT.)
DRY DENSITY; 117.0 PCF (REMOLDED)
KTL NO.: 01-088-003 ^
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: WSl COMPOyjE
DEPTH(FT): N/A 25% WSl
75% Maddock/
Ocean Raij^
80%/20% Blen(
ra
ffl
C
O
'i
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
10.0 15^0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Moisture Content By Volume (percent)
m
m
P
ii
ii
IM
IM
FIGURE NO. A52
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568 W
k
KEANTAN
LABORATORIES www.keantanlabs.com
email: keantanlab@aol.com
Capillary-Moisture Relations
ASTMD3152
PROJECT "NAME; SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 8.5 PERCENT (BY WT.)
DRY DENSITY: 117.0 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: WS25 COMPOSITE
DEPTH(FT); N/A 25% WS25
75% Maddock/
Ocean Ranch
80%/20% Blend
ra
ffl
i
14.00 -
12.00 -
10.00
8.00
6.00
4.00
2.00
0.00
;o.o 5.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
N toisture Content By Volume (percent)
HGURENO. A54
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
KEANTAN
LABORATORIES www.keantanfabs. com
email: keantanlab@aol.com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME; SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 9.5 PERCENT (BY WT.)
DRY DENSITY: 117.9 PCF (REMOLDED)
KTL NO.: 01-088-003 t-ji.
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: SS9 COMPOSITE
DEPTH(FT): N/A 25% SS9 *m
75% Maddock/
Ocean RancJw
80%/20% Blend
C3 ffl
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0(1
lO.O 5.0 20.0 25.0 30.0 35.0
Moisture Content By Volume (percent)
40.0
m
m
m
HGURENO, A51
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
P
li
KEANTAN
LABORATORIES www. keanianlabs.com
email: keantanlab@aol.com
m
IM
Capillary-Moisture Relations
ASTMD3152
PROJECT'NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 10.0 PERCENT (BY WT.)
DRY DENSITY: 116.1 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: ES13 COMPOSITE
DEPTH(FT): N/A 25% ESI 3
75% Maddock/
Ocean Ranch
85%/15% Blend
ec ffl
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
10.0 5.0 20.U 25.0 30.0
Moisture Content By Volume (percent)
;5.0 40.0
FIGURE NO. A4 9
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax; (714) 535-7568
KEANTAN
LABORATORIES www. keantanlabs.com
email: keantanlab@aol.com
Capillary-Moisture Relations
ASIMD3152
PROJECT'NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: i 0-19-01
MOISTURE CONTENT: 10.0 PERCENT (BY WT.)
DRY DENSITY: 116.1 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: NS21 COMPOSITE
DEPTH(FT): N/A 25% NS21 ^
75% Maddock/
Ocean Ranqifai
85%/15% Blend
ffl
.2
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
10.0 15.0 20.0 25.0 30.0 35.0 40.0
Moisture Content By Volume (percent)
P
FIGURE NO. ASO
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.; (714) 535-7616 • Fax: (714) 535-7568
IM
P
P
m
KEANTAN
LABORATORIES www. keantanlabs.com
email: keanlanlab@aot.com
Capillary-Moisture Relations
ASTMD3152
PROJECT-NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 10-19-01
MOISTURE CONTENT: 9.5 PERCENT (BY WT.)
DRY DENSITY: 117.9 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: WS5 COMPOSITE
DEPTH(FT): N/A 25% WS5
75% Maddock/
Ocean Ranch
85%/15% Blend
MM
c
c
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
,0.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Moisture Content By Volume (percent)
FIGURE NO. A53
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
fC|ANMN__ „
LABORAiORiES wMw.iceantanfab$.oom
email: laeanfcinJobOaoi.com
Capillar>'-Moisture Relations
AS'IMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 1-3-02
MOISTURE CONTENT: 8.5 PERCENT (BY WT.)
DRY DENSITY: 119.3 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: . Mix #1
DEPTH(FT): N/A
KOO
jloo
laoo
aoo
doo
4.00
2.00
0.00
10.0 15.0 20.0 25.0 30.0 35.0
Moisture Content By Volume (percent)
40.0
P
P
P
ii
p
p
m
HGURENO. Cl
720 hiorth Volley Street, Suite B, Anaheim, CA 92801 • Tel.: {714) 535-7616 • Fax: (714] 535-7568
P
P
P
m
KEANTAN
lABORATORIES www.keanlanlabi.com
wmall: JUanlOnlofafiao/.oom
C^illary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 1-3-02
MOISTURE CONTENT: S.5 PERCENT (BY WT.)
DRY DENSITY: 121.5 PCF (REMOLDED)
14.00
1^00
laoo
&00
I 6.00
4.00
2.00
0.00
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: Mix #2
DEPTH(FT): N/A
lO.O 15.0 2 0 0 25.0 30.0 35.0 40.0
Moisture Cont&nl By Volume (percent)
HGURENO. C2
720 r^rth Valley Street, Suite Anaheim, CA 92801 • Tel.: (714] 535-76U • Fax: (714) 535-7568
im KEANTAN
'^^-LABORATORIES www.fc9antor^obs.oom
email: inonlankS@aoi.com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO:: DJOl-029
DATE: i-3-02
MOISTURE CONTENT: 9.5 PERCENT (BY WT.)
DRY DENSITY: H 9.7 PCF (REMOLDED)
14:00
0.00
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE LD.: Mix #3
DEPTH(FT): N/A
lO.O 15.0 20.0 25.0 30.0 35.0 40.0
Moisture Content By Volume (percent)
P
P
P
HGURENO. C3
720 Njorlh Valley Street, Suite &, Anaheim, CA 92801 • Tel.: (714] 535-7616 • Fox: (714) 535-7568
m
P
P
P
P
P
KEANTAN^
IMbflATORIES www.keaiUoiJdbs.com
email: keat^kinhb@aoi.oom
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
OATE: 1-3-02
MOISTURE CONTENT: 10.0 PERCENT (BY WT.)
ORY DENSITY: 116.1 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE LD.: Mix #4
DEPTH{FT>: N/A
P
m
c o
1
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.(X)
10.0 15.0 20.0 25.0 30.0 35.0
MoistLu^ Content By Volume (percent)
40.0
HCJURENO. C4
720 Nbrth Volley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
KEANTMi
LABORAtORiES www.keantanki3s.o0m
email: keantar^h@ooi. com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 1-3-02
MOISTURE CONTENT: (0.0 PERCENT (BY WT.)
DRY DENSITY: 116.1 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT: CCA SOUTHLAND
SAMPLE 1X>.: Mix #5
DEPTH(FT): N/A
ffl
v. C
I4j00
12i00
lOiOO
8iOO
6i00
4:00
2,00
0.00
10.0 15.0 20.0 25.0 30.0 35.0
Moistui-e Content By Volume (percent)
40.0
P
P
P
HGURENO. C5
720 Ntrth Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
P
P
P
HI
P
P
P
P
m
KEANTAN
iABORATORIES email: kBan^anhb@at^.com
C^illary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.: DJOl-029
DATE: 1-3-02
MOISTURE 6ONTENT; 10.5 PERCENT (BY WT.)
DRY DENSITY: U 6.1 PCF (REMOLDED)
14.00
12.00
10.00
8.00
6.00
4.00 .
2.00
0.00
KTL NO.:01-088rO03
CLIENT: CCA SOUTHLAND
SAMPLE I.D.: • Mix #6
DEPTH(FT): N/A
10.0 15.0 20.0 25.0 30.0 35.0 40.0
Moisture Content By Volume (percent)
HGURENO. C6
720 Nortl. Valley Street. Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax: (714) 535-7568
KEANTAN
LABORATORIES www.keanlanlabs.com
email: keantanlab@aol.com
Capillary-Moisture Relations
ASTMD3152
PROJECT NAME: SAN MARCOS LANDFILL
PROJECT NO.; DJOl-029
DATE: 12-11-01
MOISTURE CONTENT: 8.0 PERCENT (BY WT.)
DRY DENSITY: 123.3 PCF (REMOLDED)
KTL NO.: 01-088-003
CLIENT; CCA SOUTHLAND
Mix #7
SAMPLE I.D.: RAMONA/OCEAN(80/20)i
DEPTH(FT); N/A
14.00
12.00
10.00
s 8.00
ffl
6.00
4.00
2.00
0.00
!().0 15.0 20.0 25.0 30.0 35.0
Moisture Content By Volume (percent)
40.0
•i
Ml
Mi •«
FIGURE NO. CB
720 North Valley Street, Suite B, Anaheim, CA 92801 • Tel.: (714) 535-7616 • Fax; (714) 535-7568 P
P
ATTACHMENT B
LEACHM INPUT/OUTPUT DATA
GeoLogic Associates
alta2
altaa SOIL-UATER-PLANT-INTERACTION SIHULATION
"SinULATION PERIOBS (Data must be present for each iten-i even if it not used)'
Sate type (US = 1 UK'-Si
Starting date
Read theta<l) or pot'KS)
No- of water applications
Years or cycles
K-Th-h from PSD:yes(1)no<0)
1
Dioi<]a
1
1
0
Ending (date or day no-) BtSS
No^ of crops
Trace Kon)-. O(off)
PROFILE DETAILS
Profile depth (••)
Segaent thickness <••)
-ISESE+O^ Bottoa boundary condition E
• 1SE5E+D3 or Siwatsr table depth -OaODE+OO
FOR UNIFORM PROFILE: (Any non-zero value here will override those in the
table of hydrological characteristics below unless K-Th-h calc- froa PSS)-
Soil bulk density dg/cu-oi -DOOOE+DD Air -entry value' kPa -.O00DE+O^
Exponent in Ca«pbell's eq -DODOE+Oa Sat'd K values (••/day) -DOOaE+ai
CROP SATA
Plants present: i yesi 0 no 1 Uilting point (soil) kPa --ISDaE+Ot
nax(actual tran/potl tran) -lOOOE+Dl Oin-root water pot'l (kpa)--a0DOE+a'(
Roots: Const(l);growing(2) 1 Rax-root water pot'l tkPa) .DDDDE+OO
If 1: root length (•) -SODE+OS Root flow resistance tern •lOSOE-'-ai
NUHBER OF OUTPUT FILES
— -OUT file —
Node print frequency
Print options: li E or 3
1: TiMC intervals/print
2- days/print
3: No. of prints (even)
Tables printed: 1,3 or 3
.sun file
Summary print interval (d) ^0
1 Three depth segnents for the suHsary
S file (D's default to thirds of the
m profile) <••) :
m.Q Surface to Cdepth If] 3DS
m Septh 1 to Cdepth Sfl blO
3 Depth E to [depth 3f] 1S2S
TinES AT WHICH x-OUT FILE IS SESIRED (if print option " 3)
Sate or
Say no-
TiBe of day Sate or
(to nearest tenth) Say no-
TiKe of day
(to nearest tenth)
10
SHD
730
2111
2112
3k5S
-a
-2 • a
.2
-2
-2
-2
lAO
101S
lA2b
2557
3aa7
3Li52
-a
-2
-a
.2
-a
-2
-a
sxx«»*xxxsxxxxx««xxxx«*««»«xs«xx«««*xx«x»x«xxx«x«»x««sx»»««xs«xxxx««x«*
xxx«x«xx«s»sxxsxxxxxx««x«*xx«x««x«»x««*xxxxxx«x«xx*s«s«»«*wx«xx«x«xx««
Soil Particle size distribution
Layer Clay Silt Rho Organic
no- carbon
7. y. kg/dni3 '£
natch K<hy at:
K natric
pot' 1
*in/d kPa
Retentivity
regression
model no-
1
a
3
t(
5
t>
7 a
1
10
7
7 ao
2D
20
20
7
7
7
7
a^
SB
sa se sa
30
30
30
30
i-a?
1.B7
1-73
1-73
1-73
1-73
Lit
Lit
Lii
Lii
1-D
l-D
1-D
1-0
1-D
1-0
1-0
1-0
1-0
1-0
b-310
li-31D
D-Ab^
D•ab^ o•at>^ o.at.)i
lai-H
iai^>i
lai^M
161. ^
Particle density kg/di«3: Clay Sand Organic matter
a-bS 2-bS 1-10
«»»xxxxxxx««««««»«x««««x«««»«»«x««"««»*x«x«*x»««x««x««*««««*»««x«»x«*«««»
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx«***»XXXXX*X«»XXX*XX«XXXXXXXXXXX«*»*»X*(«*XX
Soil [Starting values I Hydrological Characteristics! Root
layer
no. I Pot'l or Theta I AEV BCAIl KS
fraction
(for const
1 kPa 1
1
kPa mm/d 1 root disi
1 D.O 0-1778 -o-aaaE+oo i4-b3a b-31D 0. ,1SD
a D-0 0' 177! -0. .22aE+00 H-bSQ b-31D D. .DSO
3 0-0 • . .2077 -0. .IbbE+OD 12-00 Q-abM D. .000
u D-D 0. .2077 -0. .lbL>E*DO 12-00 D-abM 0. .ODD
5 0-0 0' .2077 -Q, .IbbE-^OO la-DD D.flbH 0. .ODD
L> O-D 0. .2077 -D. .lt.bE+00 12-00 o-ab«t 0. .000
7 0-0 0. • ia75 -0. .a30E+ai a-315 lam 0. .ODD
a D-0 D .ia7s -0. .230E+01 A-315 lam s. .ODD
1 0.0 D .ia75 -0. .a30E+Dl 6-31S lai-M D. .ODD
10 O-D 0. .ia7s -0. .230E+01 a-315 lam 0 .000
Page 1
alta2
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
CROP SATA
Crop Planting Emergence Maturity Harvest Rel- Crop Plants Pan
no Root Plant root cover per factor
Sate or Say no depth frac sq- n
1 oloiia oioaia oioaia oioaia 3bS3 i-oo o-os 2-DDO I.DD
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx»xxx»*x«x>xxx»xxxxx
RAIN/IRRICATION ANB WATER COnPOSITION
START AHOUNT RATE
Sate or Tike of mm mm/day
Say no- Say
xxxxxxxxxxxxxxxXBXxxsxxxixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
b 0-4 14-0 30
17 0. 4 S-1 30
la 0-4 44-5 30
33 0. 4 ia-7 3D
3<< Q. 4 ao-3 3D
bO 0-4 n.i 3D
bl 0. .4 10-2 3D
lOS 0. 4 SO-A 3D
10b 0. 4 2-5 30
107 0. 4 a-5 30
loa D-4 2-5 3D
110 D-.4 25-4 3D
111 0. .4 17. S 3D
112 0. .4 2D-3 3D
im 0. 4 3.a 30
141 • . •4 5-1 30
315 D. 4 3-a 3D
31b 0. .4 a-s 30
3ia • . 4 lE-7 30
311 0-.4 a-s 30
32a 0. .4 E-S 30
321 D. .4 ia-7 30
350 D. .4 15-2 30
351 0. .4 10-2 30
35a D. .4 a.s 30
353 D. .4 ie.7 30
355 D. .4 17. a 30
357 0. .4 5-1 30
351 0. .4 a7-i 30
3ba D. .4 E-5 30
3b1 0. .4 3.a 30
371 0. .4 10-2 3D
373 D. .4 5-1 3D
3ia 0. .4 3-a 3D
311 D. .4 5-1 3D
400 0. .4 10-2 3D
MDl 0. .4 lE-7 3D
4DS 0. .4 2-S 30
40b 0. .4 b-4 3D
427 D. .4 ia-7 3D
441 0. .4 as 30
t5D 0 .4 3D-S 30
MU7 • . .4 a.s 30
mb • .4 5-1 30
411 .4 S.l 30
500 0. .4 2-5 3D
sab 0. .4 a-s 30
b24 0. .4 7-b 30
b25 0. .4 ?-b 3D
b2b 0. .4 5-1 3D
ba7 0 .4 5-1 3D
bbD 0 .4 7-b 3D
bli3 • • 4 1-3 30
bis 0 .4 2-5 30
bib D -4 2-5 3D
732 D -4 ia.7 30
743 D -4 o-a 30
744 • .4 2b. 2 30
747 0 .4 33.0 30
7bl 0 .4 14-0 30
7bb D .4 10. a 3D
77a 0 .4 3.S 3D
771 D • 4 as-4 30
7flD D .4 5-1 3D
aoo 0 -4 5-1 30
aia D -4 7-b 30
£24 • -4 5-1 30
aas Q .4 2-5 3D
a37 0 -4 6-1 30
a3a D .4 1-3 3D
a44 0 .4 e-s 30
a7a • .4 12-7 3D
p
p
p
p
Page 2
m
m
alta2
a7i 0-4 ID-2 30
ail 0-4 20-3 3D
IBS 0.4 a-s 3D
isa 0-4 a.s 30
1054 0-4 24-1 30
loss D-4 s.l 30
lObD 0-4 5-1 3D
1060 0.4 a-s 3D
iaa4 D.4 7.b 3D
1011 D-4 7.b 30
HDD 0-4 3.a 3D
1154 D-4 56-4 3D
llSS 0-4 Ib.S 3D
115b 0-4 5.1 30
llbS 0.4 5-1 30
iifaa 0-4 S-1 30
iibi D-4 a.5 30
1170 0.4 5-1 3D
1173 0.4 as-4 30
1174 0.4 a7-i 3D
117S 0.4 20-3 30
iiao 0.4 17.A 3D
iiai 0-4 43.7 30
iiab D-4 a-5 30
130b 0-4 5-1 3D
1307 D-4 a-5 30
1437 0.4 2-5 3D
1436 0.4 1.3 3D
m47 D-4 7.b 30
ItlbE 0.4 5-1 3D
14b3 G.4 S-1 30
14b4 D-4 lO-S 30
14bS 0-4 3a-i 3D
14bfa D-4 7.b 3D
IMb? D-4 ia-7 3D
IMIb D-4 a.a 30
im? 0-4 45-7 30
15D0 D.4 ID.S 30
ISDS 0-4 1-3 3D
1503 0-4 4D-b 3D
ISOb 0.4 36-1 3D
1SS3 0.4 37.1 30
isas 0-4 12-7 30
152b 0-4 ia.7 3D
1540 D-4 as.4 30
1541 D.4 a-5 30
154E D.4 12.7 30
154b 0.4 12-7 30
1547 a.4 2.5 3D
1550 0-4 a-s 30
155E 0.4 7-b 3D
ISBb 0-4 5.1 30
lbS3 D-4 1.3 30
IbSM D-4 1-3 30
IbAb D-4 7.b 30
17Sb D-4 b-4 30
17b4 0-4 5-1 3D
1711 0.4 1-3 30
1601 D-4 17-a 30
laoa 0.4 2D-3 3D
160b 0-4 S-1 30
lasE 0.4 17.6 3D
iaa3 0.4 a-s 30
ias4 D.4 20.3 30
ia27 0.4 5-1 30
ia2a • -4 5-1 30
ia3i 0-4 25.4 3D
ia32 0.4 b3-5 3D
ia33 0.4 2D-3 3D
ia34 D-4 3-a 30
ia3S D-4 a-s 30
laab 0.4 5-1 3D
1636 0-4 14-0 3D
1631 0.4 35-b 3D
ia4i 0-4 73-7 3D
1642 0-4 36-1 30
ia43 D-4 5-1 30
ia44 D-4 45-7 3D
lass 0-4 10.2 3D
iab4 0-4 bl-0 3D
labS 0-4 10-a 3D
i&bb D-4 4-1 30
1675 D-4 30-5 3D
ia7b 0-4 44.5 3D
ia77 D-M 1-3 30
laao D-4 12-7 3D
1110 0-4 1-a 30
Page 3
al ta2
1111 0 .4 7-b 30
ma 0 .4 lD-2 30
iiaa 0 .4 15-2 30
a035 0 .4 D.3 30
SllO 0 .4 1-3 30
2115 0 .4 2-5 30
amo D .4 7-b 3D
ai4a D .4 3-a 3D
Em3 0 .4 3-a 3D
ai5i 0. .4 10.a 3D
2171 0. .4 15-2 3D
ai74 0 .4 12-7 30
ai7a 0. .4 a-5 30
aais 0. .4 22.1 30
aaib 0. .4 12-7 30
aaas D. .4 2D-3 30
2Eab Q. .4 10-2 3D
222a D. .4 6-1 30
2221 D. .4 aa.1 30
aasa 0. .4 1-3 3D
2231 D. .4 a7-i 3D
a240 0. .4 7-b 30
2242 0. .4 a.s 30
aass 0. .4 E-5 3D
225b D. .4 25-4 3D
a2bB 0. .4 aa.3 30
aabi 0. .4 14 -D 3D
2274 D .4 22-1 3D
2275 0. .4 b-4 30
2261 0-.4 1-3 3D
2E1D D. .4 11.4 3D
2304 0. .4 3-6 30
230b D. .4 ia.7 30
3307 D. .4 7.b 30
a3aa 0. .4 b-4 3D
a3ia 0. .4 1-3 30
23aa 0. .4 2-5 3D
2373 0 .4 0-3 3D
24b1 a .4 a-s 30
2417 a. .4 1.3 30
250S 0. .4 12-7 3D
2510 0. .4 5-1 3D
asia D .4 5.1 30
asao 0. .4 5-1 30
2521 D .4 a-s 3D
2537 0. .4 2-5 3D
2547 D. .4 3-6 3D
2S4a D .4 3-6 30
aS41 0. .4 12-7 30
255a 0. .4 5-1 30
2551 0. .4 iD-a 3D
25bD 0. .4 71-1 3D
25bl 0. .4 5-1 3D
asb3 0. .4 4D-b 30
25bb 0. .4 25-4 3D
25b7 0. .4 20-3 3D
25ba 0. .4 lb-5 3D
aS70 0. ,4 b-4 3D
2571 0. .4 a-1 3D
2572 0, .4 a-1 3D
a57b 0. .4 b-4 3D
257a 0. .4 1-3 3D
2571 D. .4 7.b 30
25BD D, ,4 14-0 3D
2S61 0. .4 35-b 3D
2562 0. .4 3-6 3D
2511 D. .4 3-6 3D
abDO 0. .4 43-a 3D
aboi 0. .4 ia-7 30
2bia 0, ,4 7-b 3D
2bl1 0. .4 3b-a 30
2b2D D, .4 101-b 3D
abas D. .4 SS-1 30
abab 0. .4 3-6 30
2b35 D. ,4 1.3 30
ab3b D. .4 n-l 3D
2b3a D. . 4 17-a 30
abbi 0. ,4 14-D 3D
2bb2 D. • H 2-5 3D
abb3 0 .4 b-4 3D
2bb4 D. .4 lS-2 30
ab6i 0. .4 a-s 3D
ataa D .4 2-5 3D
2ba6 0 .4 3-a 3D
2bai 0 -4 3-a 3D
2b10 0 , 4 2-5 3D
2722 0 .4 S-1 3D
m
P
p
P
P
m
m
m
p
p
p
HI
P
P P
Page 4
P
P
alta2
2723 D-4 a-1 3D
2751 0-4 a.s 30
aabo 0-4 2-5 30
aabi 0-4 3.5 3D
2102 0-4 E-S 30
2103 0-4 2-5 3D
21DS 0-4 a.s 30
aii3 0-4 5-1 3D
ai4b 0-4 2-5 3D
aisi 0-4 b.4 30
aiss 0-4 1-3 3D
aiba 0-4 2-5 3D
ai73 D-4 12.7 3D
217b 0-4 2.S 30
2177 0-4 IS-a 30
2176 0.4 2-5 30
ai7i 0-4 10.3 3D
aias 0.4 ia-7 30
aii3 D-4 20-3 30
aii4 0-4 5-1 30
3013 0-4 1.3 30
3aaa 0-4 2-5 3D
SDEl 0.4 13-7 30
30b7 D-4 5-1 30
32Eb 0.4 3D-3 30
3a47 D.4 a7-b 3D
3246 0-4 3.S 30
3Sbl 0-4 14.0 30
3ab5 0-4 17.6 30
3abb 0-4 13.7 30
32b7 0-4 17-6 30
327a D.4 5-1 3D
3263 0-4 10.a 3D
3Ea4 0.4 3.5 30
3aa6 D.4 2-5 30
3361 D-4 17-6 3D
3211 0-4 3.5 30
3211 0.4 7b.2 3D
3300 0-4 7.b 30
3302 0.4 7.b 30
3301 D-4 10.2 3D
3310 0-4 3.6 30
3312 0.4 34.3 3D
3313 D.4 a-1 3D
3326 D.M 5-1 30
3344 D-4 2-5 3D
3345 D-4 15.3 30
3360 D-4 3-S 30
3431 0-4 1.3 30
3510 0-4 17.D 30
3511 G-4 1-0 3D
3bl2 D-4 43-1 30
3bl3 0.4 21-0 3D
3b2b D-4 1-0 3D
3ba? 0-4 10-1 30
3b30 0-4 13-0 3D
3b31 D.4 1-D 30
3b3a 0-4 22-1 30
3b43 0-4 5-1 30
3b4a 0-4 3-0 30
3b41 0-4 2-0 3D
3b5a D-4 1.0 3D
xxxxxxx**«x*«xxxxxxxxx*xxxxxxxxxxx«xx*xxxxxxxxxx«xxxxxxxxxxxxxx«*xxxxxxxxx
POTENTIAL ET CtlEEKLY TOTALS-, mm) AND SEPTH TO WATER TABLE (mm)"
WEEK NO- ET WATER TABLE
1 11. .14 D
a 11. .14 0
3 11. .14 D
4 ll-.14 D
S li. .14 0
b 11. .61 0
7 11. .61 0
a 11. .61 D
1 11. • ai D
ID 11. • ai D
11 15. .b2 0
12 IS. .ta D
13 IS .b2 0
14 15 .b2 0
15 IS -ba D
lb 34 -07 0
17 24 -07 0
Ifl 24 .07 0
11 34 -D7 0
Page 5
al ta2
2D 24. .07 D
21 ab. 13 D
22 2b. 13 D
23 2b. .13 D
24 2b. .13 D
as 2b. 13 0
3b 3D. .bl 0
37 30. .bl D
aa 30. bl 0
21 3D. bl D
30 3D. 13 0
31 3D. 13 0
33 3D' 13 0
33 3D. 13 D
34 32. 77 0
35 32. 77 D
3b 32. 77 0
3? 32. 77 0
3a 27. 16 0
31 37. 16 0
40 27. .16 0
Ml 27. .16 0
M2 30. DO D
43 3D. .DD 0
44 20. .OD 0
4S 20. .00 0
Mb 14. .35 0
47 14. .35 0
MB 14. .35 D
41 14. .35 D
SD 11. .75 D
Sl 11. .75 0
52 11. .75 D
S3 11. .75 D
S4 14. • b? 0
55 IM • b? D
Sb IM .b7 0
S7 IM .b7 0
sa 11 .14 0
51 11 .14 0
bO n .14 0
bl 11. .14 0
b3 24. .70 0
b3 24. .70 0
b4 34. .70 0
b5 3M. .70 D
bb 31 .51 0
b7 31 .51 D
ba 21 .51 0
bl 21. .SI 0
7D 31 .Sb 0
71 31. -Sb 0
73 31 .Sb 0
73 31 .5b D
74 32 .51 0
75 32 -51 D
7b 33 -51 0
77 33 -51 D
76 32 -51 0
71 3S -aa D
ao 35 -66 0
ai 35 -66 0
aa 35 -aa D
a3 35 -66 0
aM 34 -31 D
as 34 -21 D
ab 34 -31 D
67 34 -21 0
as 3M -21 0
ai 21 -76 0
ID 21 -76 0
11 31 -7a D
ie 31 -7a D
13 21 .76 D
14 31 .b5 D
15 21 -bS D
lb 31 -bS D
17 31 -bS D
16 21 -bS 0
11 13 -4b 0
IDD 13 -Mb 0
101 13 -Mb D
102 13 -4b D
103 17 -SI D
104 17 .51 D
IDS 17 -51 D
10b 17 -51 D
m
ki
HI
P
p
p
m
P
P
P
k
Page 6
P
alta2
107 14-6D 0
loa 14-60 0
101 14-60 D
110 14-60 D
111 iM-ao 0
112 11-75 0
113 11-?S 0
HM 11-75 0
115 11-75 0
lib 11-75 D
117 11-ai 0
116 11.61 0
111 11-61 0
120 11-61 D
131 11-61 0
123 26-33 D
133 aa-32 0
IE 4 2a-32 0
125 26-32 0
12b 30-b7 0
137 30. b7 0
126 30. b7 0
121 30-b? 0
130 31-66 0
131 31-aa 0
132 31-86 'D
133 31-aa 0
134 31-31 0
135 31.31 D
13b 31-31 0
137 31.31 0
136 3b-32 0
131 3b.32 0
140 3b.33 D
141 3b-32 D
142 2a-2b Q
1M3 2a-2b 0
1M4 2a.3b D
IMS 36-Bb D
1Mb EE-21 0
1M7 a2.31 0
IMB 33.31 0
141 33.31 0
ISO El-65 0
151 21-65 0
153 3i-a5 0
153 21-65 0
154 21-65 D
155 17-11 0
ISb 17-11 D
1S7 17-11 0
15B 17-11 D
151 17-11 0
IbD 15.34 0
lbl lS-24 0
IbS 15-24 0
lb3 15-34 0
IbM 11-41 D
IbS 11.41 D
Ibb 11-41 0
lb7 11-M1 D
IbB lb-lb D
lbl lb-lb D
17D lb-lb D
171 lb-lb D
172 20-77 D
173 20-77 0
174 30-77 D
175 20-77 D
17b 20.77 D
177 31-bl 0
176 31-b1 0
171 31-b1 0
160 31. bl 0
161 31-bl 0
162 3S-b3 D
163 35-b2 D
164 35-bE 0
165 35-b2 D
IBb 35-b2 0
la? 4b-M6 D
IBB Mb-M6 0
Ifll Mb-4a 0
no 4b-4a D
111 4b-4a 0
112 3b-13 D
113 3b-13 0
Page 7
alta2
114 3b-13 0
lis 3b. 13 0
lib 3b. 13 0
117 33-as 0
iia 33-65 0
111 33-65 0
aoo 33-A5 D
201 2b. 60 0
aoa 2b-BD 0
203 2b-60 0
204 2b-ao D
305 23-50 0
20b 23-SO 0
207 23-SO 0
3oa 33-SD D
301 17-b5 0
21D 17-b5 0
211 17-b5 D
ElB 17-bS 0
213 17-17 0
314 17-17 0
315 17-17 D
Bib 17-17 0
317 17-17 0
216 22-4B D
211 32-Ma D
BED 32. MB 0
321 22. .46 0
323 31-76 0
223 31-.76 0
324 21. .76 0
335 31. .76 0
aab 31-IS 0
aB7 21. 15 0
2B6 21. .15 0
2E1 Bl. .15 0
E3D 34. .21 D
B31 34. .21 0
232 34. -31 0
E33 34. .21 0
23M 3a. .77 0
235 3B .77 0
23b 32 .77 0
237 3B. .77 0
236 32 .07 0
331 3B .07 D
340 3E .07 D
241 32 .07 0
242 31 66 0
aM3 31 .66 D
2M4 31 .66 0
345 31 -aa 0
aMb 26 -13 0
aM7 BB -13 0
246 BB -13 D
2M1 2a -13 0
aso 26 -13 D
251 3D -DM D
352 30 -DM D
253 30 .04 0
2SM 30 -04 0
355 3D -D4 0
3Sb BS -as D
as7 as • as Q
256 25 -65 D
251 25 -as D
BbD as -AS D
2bl la -3S D
2b3 IB -35 0
2b3 la -3S D
3b4 la -35 0
2b5 16 -35 a abb 37 -Bl 0
2b7 37 -Bl D
2ba 37 .61 0
2b1 27 -ai D
B7D 25 -15 D
271 as -IS D
372 35 -15 0
273 as -IS 0
274 B5 -15 0
275 aa -43 D
37b aa -43 D
277 22 -43 0
276 aa -4B D
271 22 -42 0
260 36 -45 D
p
p
p
m
m
p
i
p
P
p
Page 8 "
alta2
Bai
BBB
363
264
265
26b
367
aaa
261
310
211
212
213
314
315
21b
217
216
211
3DD
301
3D2
303
3DM
30S
3Db
307
306
301
310
311
312
313
314
315
31b
317
316
311
330
3S1
333
3E3
334
335
33b
327
3aa
321
330
331
332
333
334
335
33b
337
33a
331
340
341
3M2
3M3
344
3M5
3Mb
3M7
34a
341
350
351
352
3S3
354
355
35b
3S7
35a
351
3bQ
3bl
3ba
3b3
3b4
3bS
3bb
3b7
36-45
36- 4S
26- 45
26.MS
27- 50
37.50
27-50
37- 50
27-50
3M-n
3M.11
34 .11
34- 11
3M-11
43-33
M3-S3
M2-S3
Ma.a3
43-5b
43.5b
43. Sb 43. Sb
37. M7
37-M7
37-4?
37-47
33.BA
33-66 23-AA
23-A6
22. b7
23. b7
Sa-b7
22-b7
32.46
32.4a
22- M6
23- M6
23-61
23-Al
33.61
33-Al
22-33
33.23
32-23
22-23
32- MS
33- MS
33.M5
3B-M5
31-37
31.37
31.37
31-37
35- 50
35.5D
3S.5D
35.50
MB.bl
43.bl
4E-bl
43. bl
34- 10
34- 10
3M.1D
3M-1D
3M-1D
41-34
41-34
41-34
41-34
41-34
35- 50
35-50 35-50
35-50
35-50
BA-lb
26-1b
3B-1b 26-1b
2fl-1b
11-66
11-66
11-66
11-6a
ll-BA
0
0
0
D
D
0
0
0
0
0
D
D
0
0
0
D
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
a
0
0
0
D
0
D
D
0
D
0
0
0
0
0
0
0
D
0
0
0
0
0
D
D
D
0
0
D
0
D
0
D
0
D
D
D
D
0
D
D
0
0
0
D
D
0
D
0
D
D
0
0
0
0
Page 9
alta2
3ba 17. • 21 D
3b1 17. .31 0
370 1?. .31 D
371 17. • 21 D
372 IS. • fll 0
373 15. • ai 0
37M 15. • Bl 0
375 15. • ai 0
37b 15. .Bl 0
377 IM. 33 0
37a IM. .33 0
371 14. .23 0
3B0 14. 33 0
3ai 14. .23 0
363 15. .11 0
363 IS. .11 0
36M 15. .11 0
365 IS. .11 D
36b 15. .11 0
367 24. 77 0
366 2M. 7? 0
361 2M. 77 D
310 aM. .77 0
311 34. .77 0
312 33. .10 0
313 33. .10 0
314 22. .10 D
31S 22. .ID D
31b 37. .11 0
31? 37. .11 0
316 37. 11 0
311 37. .11 0
4DD 31. 3? 0
401 31. .3? D
4D3 31. .37 0
403 31. 37 0
40M 41. .Dl 0
405 41. .01 0
40b 41. .01 0
407 41. • Dl 0
4oa 3b. • Dl 0
401 3b. .01 0
410 3b. .Dl 0
Mil 3b. .Dl 0
Mia 21. .02 0
M13 31. .02 D
M14 31. .03 0
MIS 21. • 02 D
Mlb 33 .75 0
M17 23. .7S D
M16 a3. .75 D
Mil 23 .75 D
Mao lb. .13 0
M3I lb. .13 0
422 lb. • 13 0
423 lb. • 13 0
424 lb. • 13 0
435 b-22 D
42b b-22 0
427 b-22 D
426 b.22 0
421 lb. .?D D
430 lb. -7D 0
431 lb. .70 D
432 lb. .70 0
433 21. .7B 0
434 21. .7B 0
435 21. .7a 0
M3b 21. -76 0
437 ab -73 D
43a 2b -73 D
431 2b .73 D
M4D Bb -73 D
441 aa -2b D
442 2B .2b D
M43 aa. -2b 0
M44 2a .2b D
44S 2B .2b D
4i(b 34 -lb 0
447 34 -lb D
44a 34 -lb 0
441 34 -lb a 450 34 -lb 0
MSI 4D -31 0
M52 40 .31 D
MS3 40 -31 D
M5M 40 .31 D
wm
k
m
P
P
k
k
Page 10
P
P
ih
p
alta2
455 40-31 0
45b 41-76 D
45? 41-76 0
456 41.76 D
451 41-76 0
4b0 41.76 0
Mbl 33-21 0
Mb2 33.21 D
4b3 33-21 0
4b4 33-21 0
4b5 33-31 0
4bb 23-33 0
Mb? 22-23 0
Mb6 33-33 D
Mbl 22-23 D
470 14-35 0
471 14.3S D
M?3 14-35 0
M?3 14-35 0
M?4 11-5b 0
47S 11-Sb 0
M7b 11.Sb 0
M77 11.Sb 0
M76 13.17 0
M71 13-17 0
M6D 13-17 0
461 13.17 0
462 13-17 0
463 1-Mb 0
464 I.Mb 0
465 1-Mb 0
4eb 1-Mb 0
487 I.Mb D
468 11-31 0
481 11-31 0
410 11.31 0
Mil 11-31 a M1B 3D-L? 0
M13 30-b? 0
M14 30-b? D
MIS 3D.b7 0
Mlb 36-bl a M17 38-bl D
M16 38. bl D
411 3a-bl 0
500 MO-63 D
501 4D-a3 0
502 40-83 0
S03 40-83 0
5D4 40-77 0
SOS 40-77 0
SDb 40-77 0
S07 40-77 0
SG8 31. OS 0
SOI 31-05 0
510 31-05 0
511 31-05 0
512 36-Sl 0
513 36.51 D
514 S6-51 0
515 36-51 D
51b 22-12 0
517 32.12 D
516 33-13 0
511 22-12 D
52D 22-12 0
521 15-30 0
522 IS. 3D D
533 15-3D D
524 15-30 D
525 15.30 D
S2b 11.16 D
537 11.16 D
526 11. IB D
531 11. IB 0
530 11.16 D
Page 11
alta2 SUM
TIME GRAIN CEVAPA CTRANA WETDEP WETLOW
90 43,4 48.9 7.8 9999 9999
180 70,6 75.7 22,2 9999 9999
270 79.5 75 9 268 9999 9999
360 1273 98.5 31.5 9999 9999
450 1748 138 4 43 9999 9999
540 193,1 154.3 58.3 9999 9999
630 209,1 161 7 62.9 9999 9999
720 2224 168 5 74 6 9999 9999
810 279 212.2 82 7 9999 9999
900 321.1 240 1 96.9 9999 9999
990 326.1 241 107 9999 9990
10B0 347.6 252,3 112.4 9999 9999
1170 391.6 279.4 120.9 9999 9999
1260 421.7 308.6 132 9999 9999
1350 429.3 309.9 140.4 9999 9999
1440 433.1 310 143.4 9999 9999
1530 5129 365.5 153.4 9999 9999
1620 543,1 392.2 168.3 9999 9999
1710 553 394.4 177.7 9999 9999
1BD0 5653 397.9 187.1 9999 9999
1890 687.2 487 9 198.7 9999 9999
1980 697.6 4982 2146 9999 9999
2070 708,7 503.8 228 0999 9999
2160 731-1 510.9 236 9999 9999
2250 794,5 558 7 248,1 9999 9999
2340 853.5 6024 265,3 9999 9999
2430 8538 602,7 270.6 9999 9999
2520 8769 611.7 2767 9999 9999
2610 959.7 6753 286,5 9999 9999
2700 1031,7 733.5 294.9 9999 9999
2790 1043 742.4 313 1 9999 9999
28B0 1046 7429 325,5 9999 9999
2970 1071.3 752,4 3349 9999 9909
3060 1112 781 6 345 9999 9999
3150 1117 7828 352 9999 9999
3240 1130.5 7885 357.1 9999 9999
3330 1217.2 855,6 366.3 9999 9999
3420 1229.1 866,7 374,3 9999 9999
3510 1230.4 867 379,4 9999 9999
3600 1243.4 872 1 383 3 9999 9999
CFVW)
-5.48E+Q0
3 74Et0O
3.59E*0O
2 88Et01
3.65E*01
3 88E«^01
4 74E+01
5.36Et01
668E4^01
811E+01
8,51Et01
9 53E+01
l,12e*02
l,13E+02
1,19E*02
1,23E*02
1.47E*02
1.51E*02
1.59E*02
1.67Et02
1.99E+02
1,09E*02
205E+02
2 20E+02
236E*02
2,51 Et02
2,51 E*02
2.65E*02
284E+02
2,08E*02
301E+02
305E+02
3,10E*02
330E*02
334E*02
3.42E<02
362E+02
3,62Et.02
3.63E*02
3.71E*02
CFVtfl
3,68E+00
3,e7E+00
3,85E*0O
3,82E+O0
3.84e-t(>0
3,85E+O0
3,62E+l)0
3,80E*00
3.78E+00
378E+O0
3,76E+00
3,74E-t00
3,72E*00
4,07E*00
4,0eE+D0
4,03E*00
423E+00
4.51Et00
4.49E*00
4.45E*00
9.88E+00
978E+00
8,30E*00
6,8OE+0O
6,60E.»00
eseE+oo
6.5SE«00
6.505*00
7 40E+00
141E+01
1,35E+01
9,97E+00
9.I1E+00
9-04E+00
8.99Et^00
8.90E+0D
8.e8E*00
8.90Et00
888E*00
884E+00
CFW2
29eE-04
7,71 E-04
145E-03
2,34E-03
3.42E-03
4,69E-03
6,15E-03
7,78E-03
9.59E-03
1 16E-02
1,37E-02
1,60E-02
1.e4E-02
2,10E-02
2.38E-02
2.68E-02
2.99E-02
3,33E-02
3,69E-0Z
4.07E-02
4,5eE-02
S,gOE-02
8,02E-02
104E-01
i,zeE-oi
1,51E-01
1.75E-01
1,98E-01
222E-01
2.70E-01
3.03E-01
S35E-01
6.58E-01
7,67E-01
8,64E-01
9,50E-01
103E*00
I.10E+00
1.17E+00
1,23E»00
CFW3
6.49E+00
9,70E+00
1,16Et01
134E«01
1 47E*01
1,57E*01
1 66E+01
1,74E*01
i.eiE*oi
1 88E*01
1.03E*01
1.98E+01
2.03E*01
2.08E+01
2 12E*01
2.16E*01
2.19Et01
223E»01
2 26E*01
2,29E*01
2,32Et01
2,35E+01
2,37Et01
2,40E+01
2.43E*01
2,45E*01
2,47E*01
2,49Et01
2.52E+01
2,54E*01
2,56E*01
2.58E+01
2,59Et01
2,61 E*01
2,63E*01
2 65E>01
2,66E*01
268E»01
2.70E*01
2.71E*01
CFW4
3,6eE+00
3.87E+00
3,85EtOO
3,82Et00
3.84E»00
3,85E+00
3,82E+00
3,80E*00
3.78E+00
3.78E*00
3,76E*00
3,74E*00
372E*00
407E*00
4,06E*00
4-03E*0O
4,23E*00
4,51E+00
4,49E*00
4.46E-tOO
988E400
9,7BE+00
6,30E+00
6,80EtOO
6,60E*00
6.56E+00
6.55E*00
6.50E+00
7.40E*0O
1,41E*01
135E*01
9,97E«00
911E*00
9,04E*00
8.g9E*00
8.OOE«0O 8.aeE*oo
8 00E»Oa
8e8E*00
8,84E*00
37,25
31.77
27,01
47.54
43.57
30 52
34,47
29,15
34,01
33 87
27 82
32,53
40,86
30,32
2819
2889
42.92
31,2
29,44
28.84
43.82
27,08
21-34
30,24
33.74
31.76
26,6
34,51
42,91
41,55
26,44
21,97
27,23
2B,4B
25,39
2813
38,31
31,06
27,03
31,05
87,02
87.22
87,2
67.17
67.19
67 19
67.17
67.14
67,12
67.11
67.1
67.07
67.06
67.4
67.30
67.35
67.65
67.83
6781
67.77
73,18
73.07
71.57
70.04
60-82
69,78
69,73
69,65
70,52
77,23
76,43
72,78
71.8
71,62
71,47
71,3
71 19
71.14
71,06
70.95
TWS
171,24
168,03
165.9
164,3
163,04
181,96
161,08
160,3
1S0.61
158,98
158,42
157,9
157,42
156,98
166 67
156,19
155 83
155 40
155,18
154.86
154.57
154,3
154,06
153,62
153,6
153,39
153,18
162.D9
152,8
152.84
152.56
162.51
152.45
162,37
152 20
162,21
162.12
152.02
151.93
151,84
37,25
31,77
27,01
47,64
43,57
30,62
34,47
20,15
34,01
33 87
27.82
32 63
40.86
30.32
28 10
28.86
42.92
31-2
29.44
28.64
43.62
27.96
21.34
30,24
33,74
31,76
26,6
34,51
42.01
41.55
26-44
21.07
27.23
28.48
26.30
28.13
38,31
31,06
27.03
31.05
PW1
-5.40E+00
-1.20e*01
-2,60E+01
-1.20E+01
-1,20e*01
-1.80E+01
-2.80Et01
-3.30E*01
-1.60E*01
-I.OOE+OI
-2.80E*01
-3.20E+01
-1.20E+01
-1.40E*01
-2.5OEt01
-3.eOE*01
-4.50E+00
-1.30E*01
-2,40E*01
-3,50E+01
-2.40E»00
-3.10Et01
-3.10E+02
-2.30Et02
-2.10E+01
-1.60E*01
-3.10E+01
-4.40E'»01
-3.2OE«00
-3.30E*00
-6.30Et01
-4.60E*02
-2.10E*02
-3,20E*01
-4.00E*01
-6,70E*01
-1,00E*01
-1.40E»01
-2,70E*01
-4,00E*O1
PW2
-4,50E*01
-4,«E*01
-4,30E+01
-4,20E*01
-4,10E+01
-4,OOE*01
.4,00E*01
-3.90E«01
-3.00E*01
-3,eOE*01
-3,80E*O1
-3,70Et01
-3-70E*01
-3.60E*01
-3-60E*01
-3.60E+O1
-3.60E*01
-3,50E*01
-3,40E+01
-3.40E+01
-2.70E+01
-2.00E+01
-1.eOE+01
-l.BOE+01
-1.80E+01
-1 80E*01
-1.60E*01
-1.60E*01
-1,eOE»01
-1.00E*01
-8.50E«00
-8.eOE*00
-e.ooE«oo
-9.30E+00
-0.70E*00
-0,OOE*00
-1,00E*01
-1 OOE*01
-1 10E*01
-1,10E*01
PW3
-7.70E*01
-9.60E*01
-1-10E+02
-1.20E*02
-1-30E*02
-1.40E*02
-1,50E+02
-1.60E*02
-1.70E-t02
-1.70E+02
-1 80E+02
-1.00E+02
-1.00E*02
-2.00E+02
-2.I0E+02
-2.10E+02
-2.20E*02
-2.2OE*02
-2,30E*02
-2.30E*02
-2.40E*02
-2,40E*02
-2,60E*02
-2,5OE*02
-2,60E*02
-2 60E+02
-2.60Et02
-2,70E*02
-2.70E+02
-2.80EtO2
-2.80E«02
-2.80E«02
-2.00E*02
-2.00E+02
-2.90E+02
-3.00E+02
-3,0OEt02
-300E+02
-3,00E+02
-3,10E-t02
PW4
-5.40E+00
-1 20E*01
-2 60E+01
-1,20Et01
-1,20Et01
-1,80E+01
-2,80E+01
-3,30E+01
-1.60Et01
-1,80E+01
-2 80E+01
-3 20E+01
-1,20E+01
-1-40E+01
-2 50E*01
-3,80E*01
-4,50E*00
-1.30E+01
-2,40E*01
-3 50E*01
-2,40E*00
-3,10E*01
-310E*02
-2.30E*02
-2.10E+01
-l.BOE+01
-3.10E+01
-4 40E*01
-3.20E*00
-3.30E+00
-6.30E+01
-4.50E*02
-2.10E»O2
-3 20E*01
-4.00E«01
-6.70E+01
-1.00E+01
-1.40E*01
-2,70E»01
-4 00E*01
0.14
0.118
0.1
0.117
0 117
0.108
0,006
0095
0,111
0109
0,099
0,095
0,117
0,114
0 1
0,092
0,146
0,116
0101
0,094
0.167
0.096
0.059
0.062
0.104
0.111
0,096
0,089
0.157
0.166
0,082
0,064
0,063
0,095
0,087
0,081
0,122
0,114
0,009
0.091
TH2
. 0.208
0,208
0.209
0209
0,200
0,21
0.21
0.21
0.211
0.211
0.211
0 211
0.211
0.212
0212
0.212
0.212
0212
0,213
0,213
0,217
0.222
0,224
0-224
0,224
0,224
0.224
0,224
0,224
0235
0.239
0.230
0238
0.237
0236
0.236
0.235
0.235
0,234
0,234
0.179
0.175
0.172
0.17
0 166
0,167
0 165
0.164
0,163
0,163
0.162
0.161
0.16
0 16
0.159
0.159
0.158
0.158
0.157
0 157
0,157
0,156
0,156
0,156
0.155
0,155
0.155
0.154
0,154
0.154
0.154
0.153
0.153
0.153
0.153
0,153
0,152
0,152
0,152
0 152
0,14
0,118
0 1
0,117
0.117
0,108
0,096
0.095
0,111
0109
0,099
0,095
0.117
0 114
0,1
0,092
0,146
0,116
0,101
0,004
0,167
0,006
0.059
0,062
0.104
0.111
0,096
0.089
0.157
0,166
0,082
0,054
0.063
0,095
0.087
0.081
0-122
0.114
0-099
0 091
mm wm mm ii m m w B m iSllllllllllilfl
altel
altel SOIL-WATER-PLANT-INTERACTION SlrtULATION
"SinULATION PERIODS (Sata must be present for each itei»i even if it not used)'
Sate type (US:1 UK:B) 1
Starting date 01D11B
Read theta(l) or pot'KB) 1
No- of water applications 308
Years or cycles 1
K-Th-h from PSD:yes(1)no(D) 0
Ending (date or day no.) 3b5B
No- of crops
Trace Kon).. D(off)
PROFILE SETAILS
Profile depth (mm)
Segeent thickness (mm)
-1535E+04 Bottom boundary condition 3
-1525E+03 :1 or 5.>uater table depth -DOODE+DO
FOR UNIFORn PROFILE: (Any non-zero value here will override those in the
table of hydrological characteristics below unless K-Th-h calc- from PSD)-
Soil bulk density Hg/cu.m -OOOOE+DD Air -entry value' kPa --DDDDE*D4
Exponent in Campbell's eq -DDDDE+a3 Sat'd K values (mm/day) -OOOOE+04
CROP DATA
Plants present: i yes., D no 1 Uilting point (soil) kPa --15DaE+04
naxCactual tran/potl tran) -IDDDE+Dl Hin.root water pot'l (kpa)--30D0E+04
Roots: Const<l);growingt3) 1 Hax-root water pot'l (kPa) -OODDE+DD
If 1: root length (•) -500E+D3 Root flow resistance tere -1D5DE+D1
NUHBER OF OUTPUT FILES
— -OUT file
Node print frequency
Print options: l^i 3 or 3
1: TiBe intervals/print
3: days/print
3- No- of prints (even)
Tables printed: 1>B or 3
.sun fiia
Summary print interval (d) ID
1 Three depth segments for the summary
2 file (D's default to thirds of the
14 profile) (mm) :
14-D Surface to [depth 1?3 305
14 Depth 1 to [depth 3?] blO
3 Septh 3 to Cdepth 3f3 1535
x«xx*xxxxxxxxxxxxxxxxxxxxxxx»*x«xxxxxxx»*xxxxxxxxxxxxxxxxxxx«x«xxxxxxxxxxx
xxxx«xxxx*«xxxxxxxxxxxx««xxxxxxxxxx«xxxxxxxxxxx«x«xxxxxxxxxxxxxxxxxxxxxxxx
TIHES AT WHICH x-OUT FILE IS SESIRED (if print option = 3)
Date or
Say no-
Time of day Sate or
(to nearest tenth) Say no-
Time of day
(to nearest tenth)
10
340
730
14bl
2111
2113
3b52
-3
-2
.2
-2
-2
-3
-2
160
3b5
1015
163b
3557
3267
3b5B
-2
-a
-2
.3
-3 -a -a xxxxxxx«x»xxxxxxxxxxx«xxxxxxxxxxxx»xxxxxxx«xxxxxxxxxxxx«xxxxxxxxxxxxxxx
»xx«««xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx«xxxxxxxxxxx«xxxxxxxxxxxx«xxxxxxx
Soil Particle size distribution
Layer Clay Silt Rho Organic
no- carbon
2 •/. kg/dm3
natch KCh) at:
K natric
pot' 1
mm/d kPa
Retentivi ty
regression
model no-
1 7 24 1. 87 1. .0 b.31D 0-5
2 7 24 1. a? 1. .0 b-310 0-5
3 • 7 24 1. 87 1. .0 b-310 0-S
4 7 34 1. 87 1. .0 b-310 0-S
5 7 24 1. 87 1. .0 b-31D 0-5
b 7 BM 1. a? 1. .0 b-31D 0-S
7 7 30 1. 66 1. .0 iai.4 D -5
6 7 30 1. 66 1. 0 iai-4 0-5
1 7 3D 1. .66 1 .D 181-4 D-5
ID 7 30 1. .66 1. .0 iai-4 D. 5
Particle density kg/dm3: Clay a-bS
Sand Organic matter
2-b5 1-10
Soil
layer
(Starting values
! —
1 Pot'l or Theta
Hydrological Characteristics!
AEV BCAH KS
Root
fraction
(for const
1 kPa 1 kPa mm/d 1 root di s^
I D-D 0. .1778 I
-0. .aaaE+oD 4 . .b3D b.31D 0. .ISO
2 D-D 0. .1778 -D. aaaE+DO 4. .b3D b-31D 0. ISO
3 O.D Q. .1776 -D. .228E+D0 4. .b30 b-31D D. .300
4 D-D D. .1776 -0. .BBBE^DO 4 . .b3D b-31D 0. .130
5 D-D 0. .1776 -0. .BB6E+0D 4 . .b3D b-31D D. .IbD
b O-D D. .1776 -D. .B26E+0D 4 . .b30 b-310 D. .HD
7 O-D 0. .1875 -D. .230E+01 8. .315 181-4 D. .000
6 D-O 0. .1675 -D. .a3DE+Dl 6 .315 181-4 0. .ODD
1 0-0 .1675 -D. .230E+01 6 .315 181.4 0. .ODD
ID D-D • .1875 -0 .230E-«-Dl 6 .315 161-4 0 .000
Page 1
altel
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
CROP DATA
Crop Planting Emergence Haturity Harvest Rel- Crop Plants Pan
no Root Plant root cover per factor
• Date or Day no depth frac sq.
1 010116 OlOBia Oloaia 010318 3bS3 1-DD D-D5 3-DOD l-OD
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
RAIN/IRRIGATION ANS WATER COHPOSITION
START AnOUNT RATE
Sate or Time of mm mm/day
Say no- Day
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
b 0-4 14.0 30
17 0-4 5-1 3D
18 0-4 MM-S 30
33 0-4 lB-7 3D
34 0-4 30-3 3D
bO 0-4 11-1 3D
bl 0-4 10-2 30
105 0.4 50-6 30
10b 0-4 3.S 30
107 0-4 2-5 30
1D8 D.M 2-5 30
110 D-M 2S.4 3D
111 D-M 17-6 30
113 D-M 20-3 3D
HM D-M 3-8 3D
141 D-M 5-1 30
315 D-M 3-8 30
31b 0-M 2-5 3D
316 0-4 IB-7 30
311 0.4 2-5 3D
336 D-4 3-5 3D
331 D-4 IB-? 30
350 0-4 15.2 30
3S1 0-4 10-2 3D
3S3 0-4 3-5 3D
353 D-M 13-7 30
355 D-M 17-B 30
3S7 0-M 5-1 3D
351 D-M a?.i 30
3bB D-M a-s 30
3b1 D-M 3-B 3D
371 0-M 10-2 30
373 D-M 5-1 3D
318 D-M 3-8 3D
311 0-4 5-1 3D
MOD 0-4 ID-B 30
MQI 0-4 12-7 3D
MD5 0-4 a-s 30
MDb 0.4 b.4 30
MB? 0.4 13-7 30
M41 Q.4 2-5 3D
MSO 0-4 3D-5 3D
Mb? D-M B-5 3D
Mlb 0-4 5-1 3D
Mil 0-4 5-1 3D
500 0.4 E-5 3D
sab 0-4 B-S 3D
baM 0-4 7-b 3D
b25 0-4 7.b 30
bBb 0-4 S-1 3D
b27 • -4 S-1 3D
bbO • -4 7-b 3D
bb3 0-4 1-3 3D
bis D-4 2-S 3D
bib 0-4 2-S 3D
73B D-4 12-7 3D
743 0-4 0.8 3D
744 • -4 Bb-B 3D
747 0.4 33-0 3D
7bl G-4 14-0 3D
7bb D-M ID-B 30
778 0-4 3-6 3D
771 0-4 25. 4 30
780 D-4 5-1 30
600 0-4 5.1 3D
616 G-4 7.b 3D
6B4 D.4 5-1 3D
825 D-4 2-5 3D
837 0-4 8-1 3D
836 0-4 1.3 3D
644 0-4 2-5 30
678 D-4 ia-7 30
m
m
m
P
P
k
P
p
m
m
Page 2
P
k
altel
m
P
671 D-4 ID-2 30
611 0-4 aD.3 30
125 0. 4 2-5 30
isa D-4 2-5 30
1DS4 D-4 B4-1 30
1055 0-4 5-1 3D
IDbD 0-4 5-1 30
1060 0-4 a-s 30
1064 0-M 7-b 30
1011 0. M 7-b 30
HDD 0-M 3-6 3D
115M D-4 58-M 30
1155 0-4 Ib.S 3D
HSb 0. 4 5-1 30
HbS D-4 5-1 3D
Hb6 0-4 5-1 3D
llbl G-4 a-s 3D
1170 G-4 s-1 30
H?3 G-4 B5-M 3G
H?M D. 4 27-1 30
1175 0. 4 20.3 3D
118G 0. M 17-6 3D
1161 0. M M3.7 3D
116b 0. M 2-5 30
130b D-M 5-1 30
130? 0. M 3-5 3D
1M37 0. 4 3-5 3D
1M36 0-.4 1-3 30
1M47 0. .4 7.b 30
lMb2 G. .4 5-1 30
14b3 D. .4 5-1 30
14b4 0. .4 10-3 3D
14bS 0. .4 36-1 30
14bb D. .M 7-b 30
1Mb? 0. M 12-7 3D
IMIb 0. .M 3.8 3D
IMI? 0. • M M5-7 30
1500 0. • M lD-2 3G
1502 0. .4 1-3 3D
1SG3 0. .4 MD.b 30
ISGb 0. .4 3B-1 3G
1533 D. .4 27-1 3D
1S2S G. .M 12-7 3D
153b G. .4 12-7 3D
15MD D. .4 25-4 3D
ISMl G. .4 3-5 30
15M2 D. .4 12-7 3D
15Mb 0. .4 lB-7 30
1SM7 D. .4 2-5 3D
155D 0. .4 3-S 3D
1552 0. .4 7.b 30
ISAb D. .4 5-1 30
lb53 0. .4 1-3 3D
IbSM 0. .4 1-3 30
lb6b 0. .4 7.b 30
17Sb 0. .4 b-4 30
l?b4 0 .4 5-1 30
1711 D .4 1-3 30
16D1 0 .M 17-8 3D
1602 0 .M 20-3 30
16Db 0 .4 S-1 30
laaB D • M 17.8 30
1633 0 .4 B-5 30
163M 0 . 4 30-3 3D
1627 0. .4 5.1 30
1828 0. .4 5.1 30
1831 D. .4 BS-M 30
1832 0. .4 b3-S 3D
1833 D. . 4 20-3 3D
1834 0. .4 3.8 3D
1835 D. .4 B.5 3D
ia3b 0 .4 S-1 3D
1838 D. -M 14 .D 3D
1831 0. .4 35-b 3D
1841 0. .4 73.7 3D
1842 0. .4 38.1 30
1843 0 . 4 S-1 3D
IBMM D . 4 45-7 3D
1B5S 0 .4 ID. 3 30
lBb4 0 .4 bl-D 3D
IBbS D .4 lD-3 3D
IBbb D . 4 4.1 3D
1B75 0 .4 30-5 3D
ia7b 0 -4 44-5 3D
187? 0 -M 1-3 30
1680 0 -4 lB-7 30
HID D -4 1-8 30
Page 3
altel
nil D-4 7-b 3D
1112 0-4 10-a 3D
naa 0-4 15-2 3D
3035 0-4 0-3 3D
2110 0-4 1-3 3D
3HS 0.4 a-s 3D
B14D 0-M 7-b 30
3143 O-M 3.a 30
3143 D-M 3-a 30
B151 D-4 10-2 30
2171 D-4 15-2 30
3174 O.M 13.7 30
3i?a D-M 3-5 3D
2215 D-M 32-1 30
221b D-M 12-7 30
2225 0-M 30-3 3D
BBBb 0-M 10-3 3D
22Ba D-4 a-1 3D
2331 D-4 33.1 30
3338 D-4 1-3 3D
aa3i D-4 37.1 3D
BB40 D.4 7-b 3D
aa4a 0-4 3.S 30
33SS 0.4 2.5 3D
225b 0-4 35-M 30
33b6 0-4 30-3 30
22b1 0-M IM-D 3D
2274 0-M 33-1 30
3375 D.M b-M 3D
2281 D-M 1-3 30
221D D-M 11-4 30
2304 D.4 3-8 30
a30b D.4 13-7 3D
B3D7 D-4 7-b 3D
a308 0-4 b-4 3D
3316 0.4 1.3 3D
2336 D-M 2-5 3D
3373 O.M 0-3 30
24b1 D-M 2-5 30
3417 0-M 1.3 30
25D5 D-M 12-7 30
3510 D-M 5-1 30
asia 0.4 5-1 3D
2520 D.4 5-1 3D
3531 0-4 3-S 3D
353? D-4 2-5 3D
aS47 0-4 3.6 30
aS46 0-M 3-a 3D
3541 O.M 13-7 3D
3SS8 D-M 5-1 30
3551 Q-M 10-2 30
25bD 0-4 71-1 30
35bl 0-4 5.1 3D
asb3 D-4 40-b 3D
25bb 0.4 2S-4 30
asb? D.4 2D-3 3D
25ba 0.4 lb-5 30
aS7D 0-4 b-4 3D
2571 0-4 6-1 30
BS7a D-4 6-1 30
B57b D.4 b-4 30
3578 0-4 1-3 30
2571 0-4 7.b 3D
2580 0-4 14-0 3D
2581 D-M 3S-b 3D
3582 D-4 3-A 3D
2511 0-4 3-6 3D
BbDD 0-4 M3-a 3D
BbDl D.4 ia-7 3D
Bbia D-4 7-b 3D
2bl1 0.4 3b-S 30
BbBD D-4 IDl-b 30
2b25 0.4 SS-1 30
2b2b D-M 3-8 3D
2b35 0-4 1-3 3D
ab3b 0-4 11-1 3D
ab3a D-4 17-a 30
2bbl 0-4 14-0 30
2bb2 0-4 a-s 3D
2bb3 D-M b-4 3D
abb4 D-4 IS. a 3D
BbBl 0-4 B-5 3D
BbBB 0-4 3-5 30
ab66 0-4 3-6 30
2b61 D-M 3-8 30
abID D-M 3.5 30
3733 D-M S-1 3D
p
i
P
P k
Page 4
altel
M
2723 0.4 a-1 3D
2751 D.4 3-5 30
aabo 0-4 2-5 30
a6bi 0.4 2-5 30
2102 0-4 2-5 3D
B1D3 0-4 2.5 30
21G5 0-4 3-S 3D
3113 0.4 5-1 3G
31Mb D-4 2-5 3G
3151 D-M b-4 3D
E15S D-M 1-3 3D
21b2 0-M 3-5 3D
2173 D-4 12-7 3D
217b 0-4 2-S 3D
2177 D-4 15-2 3D
2178 0.4 3-5 3D
2171 D-M 10-3 30
2185 0-4 13-7 3D
3113 D-4 20-3 30
2114 0-4 S.l 30
3013 D-4 1-3 30
303B D-4 a-s 3D
3031 0.4 13-7 30
30b7 0-4 5-1 3D
3S2b 0-4 30-3 30
3347 0-4 87.b 30
3248 0-4 3-S 30
33bl 0-4 14-D 30
33bS 0-4 17.6 30
33bb D-M 12-7 3G
33b? D-M 17-8 3D
3376 0-M S.l 3D
3383 O.M lD-2 30
3284 D-M 2-5 3D
3286 0-4 3.S 30
3281 0.4 17-8 30
3311 D-4 2-5 3D
3311 0-4 ?b-3 30
33DD 0-4 7-b 30
3302 0-4 7-b 30
33D1 D-4 10-3 3D
3310 0-4 3-8 30
3312 0.4 3M-3 30
3313 0-4 6-1 30
3326 D-4 5-1 30
3344 D-4 3-5 30
3345 0-4 15-2 30
3360 0-4 2-5 30
3M31 0-4 1-3 3D
3S10 0-4 17-D 3G
3511 0-4 1.0 3D
3bl2 0-M 43.1 30
3bl3 D-M 21.0 3D
3b2b D-M 1-0 3D
3b37 D.4 10-1 30
3b30 0-4 13-0 30
3b31 0-4 1.0 30
3b32 0.4 22.1 30
3b43 D-4 5.1 30
3b46 0-4 3.D 3D
3b41 0.4 3-D 30
3bS2 0-4 l-D 3D
xxxsxxxxsxxxxxxxxxxxxxxxxxx«xxxxxxxxxxxxxxx*x«xxxxxxxxxxxxxxxxxxxxxxxxxxxx
POTENTIAL ET (UEEKLY TOTALS^ mm) AMD DEPTH TO tIATER TABLE (mm)"
IdEEK NO- ET yATER TABLE
1 11. 14 0
2 11. .14 D
3 H. .14 Q
4 11. .14 0
5 11. .14 0
b 11. .81 D
7 11. .61 0
a 11. .61 D
1 11. .61 D
ID H. .61 0
11 15. .bB D
12 15. • bB D
13 15. .b2 0
14 15. .b2 0
15 IS. .bB 0
lb 24 .07 D
17 24 .0? D
16 24 -D? D
11 BM -D? 0
Page 5
altel
20 24. 07 G
21 2b. .13 0
22 2b. .13 0
33 2b. .13 0
BM 3b. .13 0
B5 3b. .13 0
2b 30. .bl 0
a? 30. bl 0
26 30. .bl 0
Bl 30. .bl D
30 3D. 13 0
31 30. .13 D
32 3D. .13 0
33 3D. .13 0
3M 32. .77 0
35 32. 77 0
3b 32. 77 0
3? 33. 77 0
36 a?. 16 0
31 27-.16 0
MO B7. .16 0
Ml 27-,16 0
M3 20. DD 0
M3 20. .DD 0
MM BO. .00 0
MS 20. .DD D
Mb 14. .35 D
M? IM. 35 0
M6 IM. 35 0
Ml IM. 35 0
SO 11. 75 0
51 11. .7S 0
SB 11. 75 0
S3 11. .75 D
54 IM. b? 0
55 14. .b? 0
5b 14. • b? 0
57 14. .fc? 0
58 n. .IM 0
51 11. • IM 0
bO 11. • IM 0
bl 11. .IM 0
ba 34. .70 D
b3 34. 70 0
b4 24. 70 0
bS 34. .70 0
bb 31. • SI D
b? 21. 51 0
bB 31. .SI D
bl 21. .51 D
7D 31. Sb D
71 31. .Sb D
72 31. .5b D
73 31. .5b D
74 32 .51 D
7S 33. • 51 D
7b 3B • Sl D
77 32. -51 D
78 33 .51 D
71 35 .66 D
BD 35. .88 D
81 35. .88 D
82 35. .aa D
83 3S. 88 D
84 34. .21 D
85 34. .ai •
8b 34. .31 D
87 34. .31 0
66 34. .31 •
61 31, .76 D
10 21. .76 0
11 31. • 78 0
12 21. .78 D
13 21 .78 D
14 31 .bS D
IS 21 -bS 0
lb 21 -bS D
17 31 • bS D
18 31 .bS D
11 13 -4b D
IDO 13 -4b 0
101 13 -Mb 0
IDa 13 -Mb 0
1D3 1? -51 0
IDM 1? -El 0
IDS 1? -SI 0
10b 17 -51 0
IP'
P
p
p
Ml
P
P
P
Page 6
P
P
P
k
altel
ID? IM-AD D
106 IM-.AD D
101 IM-.AO D
HD IM. .AO D
111 14. 60 D
113 ll-.75 0
113 li. .75 D
HM 11. 75 0
115 11. 75 0
lib 11. .?s 0
117 ll-.81 0
118 ll-81 0
HI ll-81 0
130 11. .81 0
131 11. .81 0
133 36. 33 0
1E3 EB-33 0
12M 3B. .32 0
135 38. .33 0
13b 3D. b? 0
137 30. • b? D
126 30. • b? D
131 30. .b? D
130 31. • BA D
131 31. • 86 0
133 31 • 66 D
133 31 • 86 0
134 31 .31 0
135 31 • 31 0
13b 31 .31 0
13? 31 • 31 0
136 3b • 33 0
131 3b .33 0
140 3b • 33 0
IMl 3b • 33 0
143 26 • Sb 0
143 26 -Sb 0
144 26 • 3b 0
IMS 36 • Sb 0
1Mb SS • SI 0
147 22 -21 0
1M6 SS -31 0
IMI 23 .31 0
15D 21 -65 0
ISl 31 .65 0
153 21 .65 0
1S3 31 • 65 0
154 21 .65 0
155 17. -11 0
ISb 17. • 11 0
157 17 .11 0
156 17. -11 0
151 17. • 11 0
IbO 15. .3M 0
lbl 15 -2M 0
lb3 15. .2M 0
lb3 15 .2M 0
lb4 11. • 41 D
lb5 11 -41 0
Ibb 11 .41 D
lb7 11 -41 D
IbB lb -lb D
lbl lb -lb D
170 lb -lb D
171 lb .lb 0
172 20 .77 D
173 20 .77 0
174 20 .77 •
17 S 20. .77 a 17b ao. .77 Q
177 31 .bl 0
178 31 .bl 0
171 31 • bl D
IBO 31 .bl D
161 31. .bl D
162 35 .b2 D
ia3 35 .b2 D
184 35 .ba D
IBS 35 .ba 0
IBb 35 .b2 D
16? Mb -46 D
168 Mb -48 D
161 Mb -M6 0
110 Mb -M6 0
111 Mb -M6 0
112 3b -13 0
113 3b .13 0
Page 7
altel
IIM 3b-13 0
115 3b-13 D
lib 3b-13 0
117 33-65 D
116 33-65 0
m 33-65 D
3D0 33-as D
2D1 2b-80 D
202 2b-8D 0
3D3 3b-80 0
BDM Bb-80 D
205 23-50 D
30b 33. SO D
3D? 33-50 D
206 a3-50 0
301 17. bS D
BID 17-bS D
Ell 17-b5 D
312 17. bS D
313 17-1? D
314 17. 17 0
315 17-17 0
21b 17-17 0
317 17. 17 0
218 22-48 D
an 22-48 D
330 33-48 D
321 22-46 D
222 21. 78 D
333 31-78 D
BE4 21. 76 D
22S 21. 76 0
32b 21. IS 0
337 31. 15 0
228 31-15 D
221 21. 15 0
330 34-31 0
331 34. .31 0
332 34 . .31 D
233 34. ai 0
234 32. .7? D
235 32. .77 0
33b 32. .77 0
237 32 .77 D
338 32. .D7 0
331 33 .07 0
240 32. • D? 0
341 32 .07 D
343 31. • 88 D
343 31. • 88 D
EMM 31. .88 D
245 31. • 88 D
BMb 28 • 13 D
3M7 36. .13 D
BMB 26 .13 0
241 26 .13 0
35D 36. -13 0
251 3D -DM 0
353 3D • DM 0
2S3 3D -OM 0
254 3D .DM D
35S 3D • DM D
2Sb 25 .65 0
257 25 .85 D
258 35 -as D
351 25 -as •
2bD 25 -85 D
2bl IB -35 0
BbB 18 -35 0
2b3 16 -35 0
2bM 16 .35 D
2b5 IB -3S D
2bb 27 .81 D
2b7 27 .81 D
2b6 27 -81 D
2b1 27 -61 0
27D BS -IS 0
271 35 .15 D
272 25 .15 D
273 35 -IS D
274 25 -IS 0
375 33 -M3 0
27b 22 .42 0
277 22 .42 0
278 22 .42 D
371 33 • 43 D
BBD 38 -45 D
p
p
p
p
IH
P
HI
Page 8
k W.
altel
IM
381 28-MS 0
282 36-MS 0
283 26-MS 0
284 26-MS 0
285 37-SO D
2ab 37-SD 0
28? 27-SG 0
286 37. SO D
381 37-5D 0
210 34-11 G
311 34-11 D
212 34-11 G
313 34. 11 D
21M 3M. 11 D
215 43. 23 0
aib 43. 33 D
ai7 43-23 D
316 MS. 23 0
311 M3. 5b 0
300 43. .5b D
301 43. Sb D
302 43. .5b 0
303 37. .M7 0
30M 37. .M7 D
305 37. .47 0
3Db 37 .47 0
307 33. 66 D
308 33. AB 0
3D1 33. AB 0
310 33. .A6 0
311 33. .b? 0
313 33. • b? 0
313 SB .b? 0
31M 3E • b? D
315 23. .48 G
31b SB • 46 D
317 23 • 48 G
318 E3 • M6 D
311 S3 .81 0
320 33 • 81 D
331 33 • 61 0
332 33 .61 0
323 33 • 33 0
33M 33 • 33 0
335 22 .33 0
32b 22 • 33 0
33? 3S • MS 0
338 3S • MS 0
321 32 • MS 0
330 33 • MS 0
331 31 -37 0
333 31 • 37 0
333 31 .37 0
33M 31 -37 0
33S 3S -SO D
33b 35 -50 0
337 35 -50 D
336 3S -50 D
331 M2 -bl 0
340 M2 -bl 0
341 MB -bl 0
342 M2 -bl 0
343 34 -10 0
344 34 -ID D
345 34 -ID 0
34b 34 -ID D
3M7 34 -10 D
3Ma Ml -3M D
3M1 Ml -3M D
35D Ml -3M D
351 Ml -34 D
352 Ml -34 D
353 35 -50 0
35 M 35 -5D 0
3SS 3S -SD 0
35b 35 -SD D
357 35 .50 D
3SB 28 .lb D
3S1 28 .lb D
3bD 38 -lb D
3bl 28 -lb 0
3b2 26 -lb 0
3b3 11 -66 0
3bM 11-66 0
3b5 n -68 D
3bb 11 -68 D
3b7 11 -aa D
Page 9
altel
3ba 17. .31 D
3b1 17. 21 0
370 17. .31 0
371 17-31 0
372 15-81 0
373 IS-81 0
374 IS-81 0
375 15. 81 0
37b 15. 81 D
377 14. 33 0
378 IM. 23 0
371 IM. 23 0
380 IM-23 0
381 IM-23 0
382 15-11 0
383 15-.11 0
384 15-11 0
385 15. .11 0
38b IS. 11 D
38? 2M. 77 D
388 2M. 77 D
381 24. ?? D
310 34-?? 0
311 34-77 0
312 22-10 D
313 22-10 D
314 33. .10 D
31S 22. .10 D
31b 37. 11 0
317 37-11 D
31B 37. 11 0
311 37. 11 D
MOO 31. .37 D
4D1 31. 37 0
402 31. 37 0
403 31. .37 0
40M 41. .01 0
M05 41. 01 D
MOb 41. .01 D
MD? 41. 01 D
MOa 3b. .01 0
MOI 3b. .01 0
MIO 3b 01 D
Mil 3b. • 01 D
M12 31. 02 D
M13 21. .02 D
414 21. 02 D
415 21. .03 D
41b 23 .75 D
417 33. • 7S D
418 23 • 75 0
411 33 .75 0
420 lb. • 13 0
M21 lb • 13 0
M22 lb -13 0
Ma3 lb -13 0
42M lb. .13 D
425 b-aa D
42b b-22 0
427 b-a3 D
M26 b-i ;E D
M21 lb -7D 0
M3D lb -70 0
431 lb -70 0
M32 lb -7D 0
M33 31 -?a Q
M34 31 -78 0
M3i 31 -78 D
43b 31 -78 •
437 Bb -73 D
438 ab -73 D
431 2b -73 D
440 Bb .73 D
441 28 .Bb D
4M2 38 -3b 0
4M3 38 -3b D
444 38 -3b 0
4MS aa -Bb D
M4b 34 -lb D
MM7 3M -lb D
MM8 3M -lb D
441 3M -lb D
450 34 .lb D
451 MD -31 D
4S2 MD -31 D
MS3 40 .31 0
MS4 40 -31 D
p
p
p
p
k
P
m
p
P
p
P
Page 10 •
P
altel
P
I"
P
455 MO -31 0
45b Ml. -78 D
457 Ml. .?B D
45a Ml. .?a 0
MSI Ml. .76 0
MbD Ml. .76 0
Mbl 33 -31 D
MbE 33 -31 0
Mb3 33 -Sl 0
MbM 33 • 31 0
MbS 33 -Bl D
Mbb 33 • 33 0
Mb7 33 • 33 D
Mb6 23 -23 D
Mbl 23 -33 0
470 IM • 35 0
471 IM. • 35 D
473 IM. -35 0
473 IM -35 0
47M H. • Sb 0
475 11. • Sb D
4?b 11 -Sb 0
477 11 • Sb 0
476 13 -1? 0
471 13 • 1? 0
480 13 -17 0
481 13 -1? 0
483 13 -1? D
463 I.Mb 0
464 1-1 4b 0
465 1-Mb 0
M6b I.Mb D
M6? I.Mb 0
M6a 11 .31 0
461 11 -31 D
41G 11 -31 0
411 n -31 0
4ia 30 .b7 0
413 30 -b? D
414 30 • b7 0
415 3D -b? D
Mlb 36 -bl G
417 36 -bl D
416 36 • bl G
411 36 -bl D
500 MO • 83 D
501 MD .63 G
503 MO .A3 D
503 MD • 83 G
504 40 .77 0
SOS 40 • ?? 0
SDb 40 -?? 0
SD? 40 • 77 G
506 31 • 05 0
501 31 .OS D
SIG 31 .05 0
511 31 • OS 0
512 28 • 51 0
513 38 • 51 0
S14 28 • 51 0
515 38 • 51 0
51b 22 • 13 0
517 23 • 12 0
516 33 12 D
511 33 IE 0
530 32. .ia D
531 IS. .3D D
saa 15. .3D D
523 15. .30 D
534 15. 30 D
535 15. .3D D
S3b 11. .16 D
53? 11. .18 D
538 11. 18 0
S21 11. 18 0
530 11. 18 0
Page 11
aiiel .SUM
TIME GRAIN
90 42 6
180
270
360
450
540
630
720
810
900
990
1080
1170
1260
1350
1440
1530
1620
1710
1800
1890
1980
2070
2160
2250
2340
2430
2520
2610
2700
2790
2880
2970
3060
3150
3240
3330
3420
3510
3600
75 9
759
121
165.6
1831
197.8
210.4
2658
306.1
311,1
331 3
374
4042
411.4
415 2
493.4
S23.4
532 8
544 2
665.1
675 2
685 5
706.7
768
826
626 3
848.2
930.3
1002.2
10132
10182
1040.1
1079
1084
1096,4
1181.4
1193
1194,3
1206,3
CEVAPA
52 5
84 6
86 4
111.1
1544
174 9
183 3
192 6
236,6
265 8
268.6
2806
308.4
338 4
341.2
341 8
398 8
426 9
431
436,3
526.8
538 2
544 9
554.1
604.9
650.5
651 4
661 5
725,7
7839
794 3
795.9
808.4
8398
842 6
848.9
917 1
9292
930,1
935.9
CTRANA
7 7
23.1
42.8
52.8
642
82.5
94.5
105.4
113.5
127
135 5
141 2
148 7
158.4
1649
167.6
177,3
189.4
196 2
202.9
2144
2262
2356
241.6
252.3
267.7
271.8
276.9
286.3
2948
309.4
3156
323 7
332 3
337 9
342 1
350 7
357.9
361.5
364 9
WETDEP
9999
9999
9990
9999
9990
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
WETLOW
9999
9999
9999
9999
9999
9999
9999
9099
9999
9999
9999
9999
9999
9999
9999
9999
9999
CFWO
-9.90E»00
-6,64E*00
-1,04E*01
9.87E*00
1 12E*01
8,15E»00
1 45E*01
1.78E*01
2 92E*01
403E*01
425E*01
5.07E*01
656E+01
6,58E+01
7.02E+01
7.34E*01
9.46E*01
9 64E*01
1.02E*02
1 D8E+02
1 38E*02
1.37E+02
1.41E*02
1.53E+02
1 63E»02
1.76E*02
1,75E»02
1.87E+02
2 05E»02
218E+02
219E+02
2,22E*02
2 32E+02
2,39E»02
2.41E+02
2.47Et02
2.64E*02
264Et02
2.64E*02
2.70E+02
CFWl
1.05E»00
147E'00
1 72E»00
1,89E*00
2 35E»00
2.50E*00
256E*00
2,61 E*00
280E*00
2.96E*00
3.04E+00
309Et00
3.26EtO0
5.O6E»O0
5,10E»00
5,13E*00
614E*00
6 GiE*0O
6.67E+00
668E+00
1 4BE+01
1,46E*01
146Et01
1.46E»01
1.47E*01
1 4eEt01
l,48E*01
1,48E*01
1,74E*01
2 48Et01
2,49E*01
2,40E+01
249E+01
2.49E+0I
2.49E*01
2.50E+01
2 52e+01
2.54E*01
2.54E*01
2.55E*01
CFW2
2,26E»00
297E»0O
3,04E*OO
3.06E*00
3.07E*00
3.07EtO0
307EtO0
307E+00
3.07E-t00
3,07E+00
30BE«'00
308E*00
3,08E*0O
3,08E*00
3,08E*00
3.08E+00
3.0eE*00
SOBEtOO
308E+00
308E+00
308E«^00
308E*00
308E*00
3.08E*00
3.09EtOO
3.00E*00
3.0gE+00
309E«00
309Ef00
300E«00
310E*00
3,11EtO0
311E*00
3,12Et00
312E+00
313E+00
3,13E+00
314E+00
3.14E+00
3.14E+00
CFW3
2.15E*01
2.84E*01
308E*01
3.14E+01
3.17E»01
319E+01
3.20E+01
320E+01
3,2OEt01
3,21E+01
3.21E*01
3.21E*01
3,21E*01
3.21E*01
3-21E»01
3,21E*01
3,21E+01
3,21Et01
3 21Et01
321Et01
3,2IE+01
3 22E*01
3,22E*01
3,22E*01
322E*01
3.22E+01
3.22E*01
3,22E+01
3,22Et01
322E+01
3,22E+01
3.22E+01
322E*01
322E*01
3 22E«01
322E*01
3.23E*01
3.23E*01
3,Z3E*01
3,23E+01
CFW4
213E*01
2.39E*01
1.73E*01
1,40E*01
1.22E*01
737E*00
2.94E*00
1 23E*00
561E-01
-2.14E-01
-1 31E+00
-2,13E'0O
-2,59E*00
-2,90E-tOO
-3,40Et00
-3,76E+00
-3 05E+00
-4 09E+00
-4,34E*00
-4,62E*0Q
-4,62E*00
-4,67e»00
-4,81E*O0
-4,92E-*O0
-5,OOE+00
-5 05E*00
-5.12E*00
-5,18E*00
-5.22E*00
-5 22E*00
-5,23E*00
•5.28E*00
-5,31 EtOO
-5.33Et00
-5.36EtOO
-5.38E*00
-5 39E»00
-5.39E+00
-5.41E+00
-5.43E+00
TW2
40.14
37.08
32.77
49.67
4381
32.03
34.5
29,9
33,68
32,65
28.85
3257
40,63
20,97
28 95
30.3
40.95
30.66
20.91
29.92
41.2
30
27,96
34,7
34 82
32,04
27,96
34,92
41
39,69
30,26
29.41
31,42
30,65
27.99
30.33
38-26
30.67
27,04
31.15
48,41
38,22
31,91
29,75
28,89
26.88
24,34
23.48
23.44
23.15
22 57
22,17
22,11
23,66
23,28
22,94
23.88
24,1
23.73
23.42
30,05
27,26
26,73
24,98
24,73
24.57
24,1
23,76
26,32
32.76
28.18
26 20
25.64
25.31
24.67
24.16
24.29
24.3
23,87
2352
TWS
149.37
141.6
128,3
123,17
110.39
111.82
105.97
1037
103,22
101,8
100,06
99.07
98,62
97,06
07,26
08,75
96.62
06.26
05.91
95.63
05.50
95.39
95.18
95
94.91
0477
94.63
04.63
94.49
04.49
044
94,3
94,24
94,18
94,11
94.05
94,03
03 09
03-03
03,88
TW4
123 7
107,04
02,11
105,55
97,27
80,7
79,48
73,5
77.44
75.7
70 48
73.65
81 46
72.22
70.62
71.49
83.14
72,87
71.65
71.27
00.13
75,1
71.45
77,38
77 24
7423
69,61
76,19
84,84
89,09
7587
73,1
74.44
73,31
69,96
71.76
79.82
72.10
80
71.82
PWI
-3.70E*00
-6.30E+00
-1 10E»01
-8.40E*00
-1.30E+01
-2.10E*01
-3.00Et01
-3.50E*01
-1.00E+01
-2.40E+01
-3.50Et01
-3.60Et01
-1,40E+01
-2 20E+01
-3.S0E*01
-4,10E*01
-660E*00
-2,20EtO1
-3,30E+01
-4.00E+01
.3.90E»O0
-2.30Et01
-3,70E«01
-4.30E+01
-1.60E*01
-2,10E*01
-3.40E*01
-3.eOE*01
-4.80Et00
-5.00E*00
-2.40E*01
-3,90E*01
-4,20E*01
-2,50EtO1
-3,50E+01
-4.10E+0I
-1,OOE*01
-2 20E+01
-3,40E*01
-4.00E*01
PW2
-2 50E*00
-6.80E*00
-1.20E*01
-1.70E+01
-2,00E*01
-2.80E+01
-4,00E*01
-4,70E*01
-4,O0E*01
-5,40E*01
.6,00E*01
-6,50Et01
-6,80E*01
-7,10E+OI
-7.50E-H)1
-7,90E+01
-8,10E*01
-8 30E*01
-8 60E*01
-B.O0E«01
-7-80E*01
-7 20E*01
-7,60E*01
-7,80E*01
-7,00E+01
-8.00E+01
-8,30E+01
-8.60E+01
-8,60E+01
-5.30E-»01
-510E*01
-5 60E+01
-5.60Et01
-6,00E*01
-6,S0E*01
-6,60E*01
-6,70E*01
-6,00Et01
-7,20E+01
-7,40E*01
PW3
-5,30E+01
-7,30E*01
-1.40Et02
-2 10E*02
-2.40E*02
-3.50E*02
-5.20E*02
-6.60E'02
-7,40E*02
-7,90E*02
-8,60E*02
-9.&0E*02
-1 00E*03
-1 10E+03
-l,10E-t03
-1.20E+03
-1.20E+03
-1.20E+03
-1.30Et03
-1.30E*03
-1 30E*OS
-1.3OE*0S
-1.30E*03
-1.40E»OS
-1,40E*03
-1.40E*03
-1 40E+03
-1,40E*03
-1 40E+03
-1,40et03
-1,40Et03
-1,40Et03
.1.40E*03
-1.40E+03
-1 50E*03
-1.50E+03
-1.50E+03
-ISOEtOS
-1 50E*0S
-1,50E*03
PW4
-5 50E+01
.8,00E*01
-2,00E*02
-2.10E+02
-340E*02
-8.70E+02
-1.10E*03
-1.10Et03
-8.70Et02
-1 10Et03
-1.40E+03
-1.40E+03
-I.SOEtOS
-1.40E*0S
-I.BOE'OS
-1.60E»03
-1.30E*03
-1 60E'O3
-1.50E*03
-1.50Et03
-1.40E+03
-1.50E+03
-1.50Et03
-1.50E*03
-1.50Et03
-1.50Et03
.1,50E*03
-1,50Et03
-1.50E*03
-1.40E*03
-1.50Et03
-1,50E*03
-1,50E*03
-1,50E»0S
-l,50E*O3
-150E*03
-1 60Et03
-1,50E+03
-1,50E+03
-1.50E+03
TH3
0,152 0.166 0.187 0.085
0,136 0.138 0.181 0.078
0119 0.118 0 166 0-064
0.127 0,11 0,159 0,063
0.116 0.105 0.157 0,057
0,105 0.008 0.15 0.047
0,097 0.091 0142 0.045
0.093 0.088 0 139 0044
0,107 0.087 0.137 0,047
0,101 0.085 0.136 0.044
0.094 0,083 0 134 0.042
0094 0,082 0,133 0.042
0,115 O.OBl 0,132 0.043
0,103 O.OB 0,131 0.O42
0-094 0.079 0,13 0.042
0.09 0078 0,129 0,042
0,134 0,078 0.129 0,043
0,103 0.078 0126 0042
0,095 0.077 0,128 0.042
0,091 0.076 0.128 0.042
0.15 0.070 0 128 0,042
0.102 0.08 0.127 0,042
0.092 0079 0.127 0,042
0.089 0,079 0.127 0,042
0.11 0,078 0.127 0,042
0.104 0,078 0.127 0,042
0094 0 078 0.127 0,042
0092 0,077 0.126 0.042
0144 0.077 0,126 0,042
0.143 0,085 0.126 0,042
0101 0.086 0,126 0,042
0.001 0.085 0.126 0,042
0.09 0,084 0.126 0,042
0,101 0.083 0.126 0,042
0.093 0062 0.126 0,042
0,091 0.081 0.126 0,042
0,122 0.081 0.126 0 042
0.104 0.081 0.126 0,042
0.094 0,08 0.126 0,042
0.091 0,070 0,126 0.042
mm mm ii mm mm it ii ii llllllllllllll
ATTACHMENT C
HELP3 OUTPUT DATA
GeoLogic Associates
IP"
p
*************************************************************
******************************************************************************
** **
** * *
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.06 (17 AUGUST 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** * *
* * **
******************************************************************************
******************************************************************************
PRECIPITATION DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D4
TEMPERATURE DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D7
SOLAR RADIATION DATA FILE: C: XACTIVEXOLDDOS-IXHELPSAXSMARCO.D13
EVAPOTRANSPIRATION DATA: C: \ACTIVE\0LDD0S~1\HELP3A\SMARC02 .Dll
SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC1.D10
OUTPUT DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMPRSC1.0UT
TIME: 10:50 DATE: 3/ 5/2002
************* *****************************************************************
TITLE: San Marcos Landfill
******************************************************************************
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.
LAYER 1
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
12.00 INCHES
0.473 0 VOL/VOL
0.222 0 VOL/VOL
0.1040 VOL/VOL
0.3 0 60 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.739999996000E-05 CM/SEC
LAYER
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERI.AL TEXTURE NUMBER 3 5
0.08 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND.
FML PINHOLE DENSITY
FML INSTALLATION DEFECTS
FML PLACEMENT QUALITY
0.0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
0.199999996000E-12 CM/SEC
1.00 HOLES/ACRE
10.00 HOLES/ACRE
4 - POOR
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
24.00 INCHES
0.4730 VOL/VOL
0.222 0 VOL/VOL
0 . 1040 VOL/VOL
0.2412 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0 .430000000000E-04 CM/SEC
P
P
P
P
P
Hi
GENERAL DESIGN AND EVAPORATIVE ZONE DATA
P
P
P
P
P
P
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 3.%
AND A SLOPE LENGTH OF 500. FEET.
SCS RUNOFF CURVE NUMBER
FRACTION OF AREA ALLOWING RUNOFF
AREA PROJECTED ON HORIZONTAL PLANE
EVAPORATIVE ZONE DEPTH
INITIAL WATER IN EVAPORATIVE ZONE
UPPER LIMIT OF EVAPORATIVE STORAGE
LOWER LIMIT OF EVAPORATIVE STORAGE
INITIAL SNOW WATER
INITIAL WATER IN LAYER MATERIALS
TOTAL INITIAL WATER
TOTAL SUBSURFACE INFLOW
82 . 70
100 . 0
1. 000
12.0
3 .671
5.676
1.248
0.000
9.459
9.459
0.00
PERCENT
ACRES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES/YEAR
EVAPOTRANSPIRATION AND WEATHER DATA
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
SAN DIEGO CALIFORNIA
STATION LATITUDE = 33 .10 DEGREES
MAXIMUM LEAF AREA INDEX = 1 .00
START OF GROWING SEASON (JULI.AN DATE) = 0
END OF GROWING SEASON (JULIAN DATE) = 367
EVAPORATIVE ZONE DEPTH = 12 . 0 INCHES
AVERAGE ANNUAL WIND SPEED = 6 . 80 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 65 .00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY 69 . 00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73 .00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66 .00 %
NOTE: PRECIPITATION DATA FOR LAKE HODGES
WAS ENTERED FROM AN ASCII DATA FILE.
CA
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
NORMAL MEAN MONTHLY TEMPERATURE {DEGREES FAHRENHEIT!
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
56 . 80
70 .30
58 .40
72 .20
59.00
71.30
61.20
67 . 50
63 .40
61.60
66 .30
57 .40
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
AND STATION LATITUDE = 33.10 DEGREES
m
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
DAILY OUTPUT FOR YEAR 1989
DAY A
I
R
S
O
I
L
RAIN RUNOFF
IN. IN.
ET E. ZONE HEAD DRAIN LEAK
WATER #1 #1 #1
IN. IN./IN. IN. IN. IN.
HEAD
#2
IN.
P
P
P
1 0 . 55 0 .000 0 . 062 0 .3464 1 . 7612 .OOOOE+00 . 3110E-02 0. 0000 •1
2 0 . 00 0 - 000 0 . 088 0 .3388 1 . 7934 .OOOOE+00 .3137E-02 0 . 0000
3 0 . 00 0 - 000 0 .093 0 .3307 1 . 8133 . OOOOE-HOO .3154E-02 0 . 0000
4 0 . 00 0 .000 0 . 073 0 .3244 1 . 8073 . OOOOE-i-00 .3149E-02 0 . 0000
5 0 . 00 0 .000 0 .084 0 .3171 1 .7950 .OOOOE+00 .3139E-02 0. 0000 p
6 0 . 00 0 . 000 0 .094 0 .3089 1 . 7870 .OOOOE+00 .3132E-02 0 . 0000 k
7 0 . 00 0 . 000 0 . 092 0 .3010 1 . 7701 .OOOOE+00 .3117E-02 0 . 0000 k
8 0 . 00 0 .000 0 .091 0 .2931 1 . 7880 .OOOOE+00 .3133E-02 0 . 0000 m
9 0 . 00 0 . 000 0 .097 0 .2848 1 . 8055 .OOOOE+00 .3148E-02 0 . 0000 p
10 0 . 00 0 . 000 0 .052 0 .2802 1 .8112 .OOOOE+00 .3152E-02 0. 0000
11 0 . 00 0 .000 0 .087 0 .2727 1 . 8119 .OOOOE+00 .3153E-02 0 . 0000
12 0 . 20 0 .000 0 .058 0 .2843 1 .8116 .OOOOE+00 . 3153E-02 0. 0000 p
13 1. 75 0 .148 0 .065 0 .4121 1 . 7974 .OOOOE+00 . 3141E-02 0. 0000
p 14 0. 00 0 .000 0 .086 0 .4047 1 .8006 .OOOOE+00 .3143E-02 0. 0000 p
15 0 . 00 0 .000 0 .080 0 .3977 1 .8089 .OOOOE+00 .3150E-02 0, 0000 il
p
k
352 0 .20 0 . 000 0 .065 0 .3047 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000
wm 353 0 . 00 0 . 000 0 . 079 0 .2981 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
tm 354 1 . 10 0 . 199 0 . 058 0 .3683 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
355 0 .00 0 . 000 0 . 075 0 .3620 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000
m^ 356 0 . 00 0 .000 0 . 086 0 .3549 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
m 357 0 .10 0 .000 0 . 071 0 .3572 0 .0000 . OOOOE+OO .OOOOE+00 0 .0000
mm 358 0 .00 0 .000 0 .104 0 .3486 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000
359 0 .00 0 . 000 0 . 105 0 .3397 0 .1108 . OOOOE+00 .1736E-02 0 .0000
wm 360 0 .00 0 .000 0 , 105 0 .3308 0 .3146 . OOOOE+OO .1902E-02 0 .0000
««•
361 0 .00 0 .000 0 .100 0 .3223 0 .4673 . OOOOE+OO .2027E-02 0 . 0000
362 0 .00 0 .000 0 . 117 0 .3124 0 . 5849 .OOOOE+OO .2123E-02 0 . 0000
363 0 .00 0 .000 0 .110 0 .3030 0 .7133 .OOOOE+00 .2229E-02 0 . 0000
364 0 .00 0 .000 0 . 109 0 .2937 0 .8121 .OOOOE+OO .2310E-02 0 .0000
•i 365 0 .00 0 .000 0 .091 0 .2859 0 . 8828 . OOOOE+OO .2369E-02 0 .0000
*^****^************************************************************************
***************************************** ********************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1989
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
3.80
0 . 00
0 .151
0 .000
2 . 847
0 . 000
1.15
0.00
0 . 000
0.000
2 .292
0 . 000
0.00
0.00
0.000
0.000
1.767
0 . 000
4.95
0 . 00
0 , 790
0.000
2 . 869
0 . 000
0.20
1.45
0.000
0.000
1.469
0 . 622
0.00
3 .70
0 . 000
0.227
0 . 000
2 .103
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.1241 0.1328 0.0603 0.00 04 0.0218 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0147
0.0366 0.0288 0.0136 0,0000 0.0124 0.0053
0.02 32 0.03 39 0.03 75 0.0403 0.0388 0.0436
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OP LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
2,763 3.600 1.046 0.000 0.151 0.000
0.000 0.000 0.000 0.000 0.000 0,12 5
1.065 0.476 0.899 0.000 0.265 0.000
0,000 0.000 0.000 0.000 0.000 0.267
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1989
IP
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
15.25
1.168
13.969
0 .354116
0,6405
0 .313905
-0.200
9. 903
9. 703
0 .000
0,000
0. 0000
CU. FEET PERCENT
55357.504 100.00
4238.502 7.66
50707.234
1285.443
1139.475
-727.713
35949.508
35221.797
0 .000
0 .000
0. 005
91.60
2 .32
2 . 06
-1.31
0 . 00
0 . 00
P
P
p
0.00 n
***************** ************************************************************** n
HI
P
P
P
P
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
********************************************************************************
DAILY OUTPUT FOR YEAR 1990
DAY A O
I I
R L
RAIN RUNOFF ET
IN. IN. IN.
E. ZONE HEAD
WATER #1
IN./IN. IN.
DRAIN
#1
IN.
LEAK
#1
IN.
HEAD
#2
IN.
1 0. 15 0 .000 0. 062 0 .2931 0. 9432 .OOOOE+00 .2419E-02 0. 0000
wm 2 0. 00 0 .000 0. 084 0 .2859 0. 9834 .OOOOE+OO .2453E-02 0. 0000
3 0. 40 0 .000 0 . 069 0 .3133 0. 9970 .OOOOE+00 .2464E-02 0, 0000
4 0. 00 0 .000 0. 094 0 .3052 1. 0075 .OOOOE+OO .2473E-02 0. 0000
mm 5 0. 20 0 .000 0 . 071 0 .3158 1. 0137 .OOOOE+OO ,2478E-02 0, 0000
w 6 0. 00 0 .000 0. 086 0 .3084 1. 0088 .OOOOE+00 .2474E-02 0 . 0000
7 0. 00 0 .000 0. 094 0 .3004 1. 0136 . OOOOE+OO .2478E-02 0, 0000
mm 8 0. 00 0 .000 0. 084 0 ,2932 1. 0158 . OOOOE+OO .2480E-02 0. 0000
t&m 9 0. 00 0 .000 0. 083 0 .2860 1. 0150 .OOOOE+00 .2479E-02 0 . 0000
IM 10 0 . 00 0 .000 0. 088 0 .2785 1. 0150 .OOOOE+OO .2479E-02 0. 0000
11 0 . 00 0 .000 0. 077 0 .2719 1. 0146 .OOOOE+OO .2479E-02 0. 0000
12 0. 00 0 .000 0. 082 0 .2649 1. 0011 .OOOOE+OO .2467E-02 0. 0000
mw 13 0. 00 0 .000 0 . 077 0 .2583 0. 9829 .OOOOE+OO .2452E-02 0. 0000
14 0 . 00 0 .000 0 . 072 0 .2521 0. 9761 .OOOOE+00 ,2447E-02 0. 0000
15 0 . 00 0 .000 0 . 057 0 .2472 0 . 9795 .OOOOE+OO .2449E-02 0. 0000
mm 16 0 . 00 0 .000 0. 051 0 .2427 0 . 9892 ,OOOOE+00 .2457E-02 0 . 0000
17 0. 00 0 .000 0 . 092 0 .2348 0. 9962 .OOOOE+OO .2463E-02 0. 0000
18 0. 00 0 .000 0 . 096 0 .2266 0. 9972 .OOOOE+OO .2464E-02 0. 0000
UM 19 0. 00 0 . 000 0 . 104 0 .2178 0. 9963 .OOOOE+OO .2463E-02 0 . 0000
20 0. 00 0 .000 0 . 097 0 .2095 0 . 9949 .OOOOE+00 .2462E-02 0 . 0000
21 0. 00 0 .000 0 . 104 0 .2006 0. 9930 .OOOOE+OO .2461E-02 0. 0000
IM 22 0 . 00 0 .000 0 . 097 0 . 1923 1. 0392 . OOOOE+00 .2499E-02 0 . 0000
23 0 . 00 0 .000 0 . 098 0 . 1840 1. 1018 . OOOOE + OO .2552E-02 0 . 0000
24 0 . 00 0 . 000 0 . 097 0 . 1756 1. 2196 .OOOOE+00 .2650E-02 0 . 0000
25 0 . 00 0 .000 0 , 079 0 . 1688 1. 4049 .OOOOE+00 .2806E-02 0 -0000
26 0 . 00 0 .000 0 . 087 0 .1613 1. 3917 .OOOOE+OO .2795E-02 0. 0000
wm 27 0 . 00 0 .000 0 . 111 0 .1518 1. 3057 ,OOOOE+OO .2723E-02 0 . 0000
28 0. 00 0 .000 0 . 094 0 . 1438 1. 1198 .OOOOE+00 .2567E-02 0. 0000
wm 29 0. 00 0 .000 0. 107 0 .1347 0. 7981 .OOOOE+00 .2299E-02 0 0000
wm 30 0. 15 0 .000 0 068 0 .1413 0. 4549 .OOOOE+OO .2016E-02 0 0000
31 0. 20 0 .000 0 058 0 .1530 0. 3009 .OOOOE+OO .1891E-02 0 0000
32 0 . 40 0 .000 0 060 0 .1812 0. 2155 .OOOOE+OO .1821E-02 0 0000
mm 33 0 . 50 0 .000 0 070 0 .2169 0 1645 .OOOOE+00 .1780E--02 0 0000
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1990
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
1,10
0.00
0 .000
0.000
2.619
0.000
1,75
0.00
0.000
0 .000
1.880
0.000
1.30
1.00
0.004
0.000
1.494
0.207
0,10
0 . 35
0 .000
0.000
0.354
0.264
0 .50
0.20
0.000
0. 000
0.500
0.647
0.10 .
0.00
•I
0.000 m
0.000 ^
0.100 m
0.432 HI
0.0765 0.0053 0.0000 0.0000 0.0000 0.0000 HI
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0518 0.0165 0.02 07 0.0239 0.0269 0.0270
0.02 81 0.0278 0.0263 0.0264 0.024 6 0.0245
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
1.002
0 .000
0 . 017
0 .000
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
p
0.000 P
0 . 000
0.210 0.053 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
******************************************************************************* "
p
p
p
ANNUAL TOTALS FOR YEAR 1990
Pl
INCHES CU. FEET PERCENT p
6.40 23231.996 100.00 P PRECIPITATION
P
il
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 . 004
8,497
0 . 081867
0.0850
0,324727
•2,426
9,703
7.277
0.000
0.000
0 . 0000
14.572 0.06
30843.766 132.76
297 .179 1.28
1178.757 5,07
-8805.096 -37.90
35221.797
26416.701
0.000 0.00
0,000 0.00
-0.002 0.00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
DAILY OUTPUT FOR YEAR 1991
DAY A
S
0 RAIN RUNOFF ET E. ZONE HE.AD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
IM R L IN. IN. IN. IN./IN. IN. IN. IN, IN,
1 0.50 0.000 0.044 0.1420 0.0000 .OOOOE+OO . OOOOE+OO 0.0000
2 0 . 00 0 , 000 0.041 0 .1385 0 . 0000 .OOOOE+OO ,OOOOE+00 0.0000
— 3 0 . 00 0.000 0 . 061 0.1335 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
340 0 ,00 0 . 000 0 . 016 0 . 1817 0 .0000 .OOOOE+OO . OOOOE+OO 0 , 0000
341 0 .00 0. 000 0 .019 0 . 1801 0 . 0000 . OOOOE+00 .OOOOE+OO 0, 0000 wm
342 0 . 00 0. 000 0 .019 0 . 1786 0 .0000 .OOOOE+OO .OOOOE+OO 0, 0000 wm
343 0 , 00 0 . 000 0 ,019 0 . 1770 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
344 0 . 00 0. 000 0 .021 0 . 1752 0 . 0000 . OOOOE+OO . OOOOE+00 0 . 0000 wm
345 0 .00 0 . 000 0 .022 0 .1733 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm
346 0 . 00 0. 000 0 . 024 0 .1714 0 .0000 , OOOOE+OO .OOOOE+00 0 . 0000
347 0 .00 0 . 000 0 .022 0 .1695 0 . 0000 .OOOOE+00 , OOOOE+OO 0. 0000 HI
348 0 . 00 0. 000 0 . 023 0 .1676 0 .0000 . OOOOE+00 .OOOOE+OO 0. 0000 wm
349 0 .10 0. 000 0 .055 0 ,1714 0 . 0000 .OOOOE+OO .OOOOE+OO 0, 0000 wm
350 0 .00 0, 000 0 .021 0 .1696 0 ,0000 . OOOOE+00 .OOOOE+00 0, 0000
351 0 .00 0 , 000 0 .019 0 .1680 0 , 0000 .OOOOE+OO . OOOOE+OO 0. 0000 NM
352 0 .00 0 . 000 0 .021 0 .1663 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 m
353 0 .30 0. 000 0 . 058 0 .1864 0 , 0000 . OOOOE+OO ,OOOOE+OO 0. 0000 wm
354 0 .00 0 . 000 0 , 022 0 .1846 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
355 0 .00 0 . 000 0 .023 0 , 1827 0 . 0000 .OOOOE+00 .OOOOE+OO 0, 0000 wm
356 0 .00 0. 000 0 .025 0 .1806 0 .0000 .OOOOE+OO .OOOOE+OO 0. 0000 m
357 0 ,00 0 . 000 0 . 027 0 .1783 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000
358 0 .00 0. 000 0 .031 0 .1758 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 P
359 0 .00 0. 000 0 .031 0 .1732 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 P
360 0 .00 0 , 000 0 .033 0 ,1704 0 .0000 .OOOOE+00 .OOOOE+OO 0. 0000
361 0 ,00 0. 000 0 .028 0 .1681 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000
362 0 .00 0. 000 0 .029 0 .1656 0 .0000 . OOOOE+OO .OOOOE+00 0. 0000
363 0 .00 0 . 000 0 .028 0 .1632 0 .0000 . OOOOE+OO . OOOOE+OO 0. 0000 • 364 0 ,00 0. 000 0 ,030 0 .1607 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 BP
P 365 0 .00 0. 000 0 .031 0 .1581 0 .0000 .OOOOE+00 , OOOOE+00 0, 0000
BP
P
*******************************************************************************
p
p
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1991
P
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC *
P
3.41 1.75 0.50 0.80 0.90 0.80
0.10 0.10 0.00 0.00 1.35 0.40 m
m
0.079 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0,000 0,000 0.002 0.000 ii
p
2.127 2.720 0.589 0.945 0.336 1.364
0,100 0.100 0.000 0.000 0.301 0.797 P
ih
p
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0,0000 0.0000
0.0255 0.0294 0,0287 0,0248 0.0230 0.0202
0 .0191 0.0176 0.0158 0.0152 0.013 8 0.0134
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES;
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0,000
0.000 0.000 0.000 0.000 0,000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1991
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
INCHES
10 . 11
0 . 081
9.380
0 . 000000
0.0000
0.246602
0 .402
7 . 277
7.680
CU. FEET
295.173
34048.238
0 . 000
895.166
1460.726
26416.701
27877.426
PERCENT
36699.301 100.00
0.80
92 .78
0 .00
2 .44
3 .98
SNOW WATER AT START OF YEAR 0 . 000 0 . 000 0 .00
SNOW WATER AT END OF YEAR 0 .000 0 . 000 0 . 00
ANNUAL WATER BUDGET BALANCE 0,0000 0 .001 0 . 00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************^
DAILY OUTPUT FOR YEAR 1992
S P
DAY A 0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD il
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN./IN, IN. IN, IN, IN. P
P
1 0 .30 0 . 000 0 .067 0 . 1775 0, 0000 . OOOOE+00 ,OOOOE+00 0, 0000
2 0 .15 0 . 000 0 . 065 0 . 1845 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
3 0 .00 0 .000 0 .035 0 .1816 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 m
4 0 . 00 0 . 000 0 . 053 0 . 1772 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 mw
5 0 .00 0 . 000 0 . 056 0 . 1725 0 , 0000 . OOOOE+00 .OOOOE+00 0 . 0000
6 0 .00 0 . 000 0 . 066 0 .1671 0 . 0000 . OOOOE + OO .OOOOE+OO 0. 0000 m
7 0 . 00 0 . 000 0 .064 0 . 1617 0. 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 m
8 0 . 00 0 . 000 0 . 025 0 . 1597 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
9 0 .00 0 . 000 0 . 022 0 . 1578 0 . 0000 ,OOOOE+00 .OOOOE+OO 0 . 0000 m
10 0 . 00 0 . 000 0 . 024 0 . 1558 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 m
11 0 . 00 0 . 000 0 .017 0 .1544 0 . 0000 .OOOOE+00 , OOOOE + 00 0 . 0000 ^m
12 0 .00 0 . 000 0 . 057 0 , 1496 0 . 0000 .OOOOE+OO ,OOOOE+00 0. 0000
13 0 .00 0 .000 0 . 066 0 . 1442 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 wm
14 0 . 00 0 ,000 0 .023 0 .1423 0 , 0000 .OOOOE+OO .OOOOE+OO 0. 0000 m
15 0 .00 0 . 000 0 .059 0 . 1374 0 . 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000
16 0 .00 0 .000 0 . 059 0 . 1325 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ^m
17 0 . 00 0 -000 0 . 058 0 . 1277 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm
18 0 .00 0 . 000 0 .054 0 .1232 0 . 0000 .OOOOE+OO .OOOOE+OO 0, 0000 m
19 0 . 00 0 .000 0 .056 0 .1185 0 . 0000 .OOOOE+00 .OOOOE+OO 0 0000
20 0 . 00 0 ,000 0 . 057 0 .1138 0 . 0000 .OOOOE+OO .OOOOE+00 0 0000 p
21 0 .00 0 . 000 0 . 063 0 .1085 0. 0000 . OOOOE + 00 .OOOOE+00 0 0000 m
358 0 . 00 0 . 000 0 . 033 0 . 1109 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000
•me 359 0 . 00 0 . 000 0 .034 0 . 1081 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000
HI 360 0 . 00 0 . 000 0 .033 0 . 1054 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000
361 0. 00 0 . 000 0 .015 0. 1041 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000
emr 362 0 . 00 0 . 000 0 . 001 0 . 1040 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
Mi 363 0. 00 0. 000 0 , 000 0. 1040 0 . 0000 . OOOOE+00 .OOOOE+OO 0 .0000
364 0 . 00 0 . 000 0 .000 0 . 1040 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000
wm 365 0. 00 0. 000 0 .000 0. 1040 0. 0000 . OOOOE+OO . OOOOE+OO 0 .0000
m 366 0. 00 0 . 000 0 .000 0 . 1040 0, 0000 .OOOOE+OO .OOOOE+00 0 .0000
*******************************************************************************'
**************************************** ***********************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1992
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 0.45
0.30
6.30
0.00
6 .12
0. 00
0.00
0 . 00
0 . 00
0 .00
0 .00
0.45
RUNOFF 0. 000
0 . 000
2 .627
0 . 000
2 .121
0 . 000
0 . 000
0 . 000
0.000
0 . 000
0. 000
0 . 000
EVAPOTRANS PI RAT I ON 1, 099
0 .273
0.430
0.027
3 .638
0 . 000
2.481
0.000
0 .722
0 . 000
0 . 000
0 .450
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0023 0.1985 0.1879 0.0131 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0107 0.0000 0.0000 0.0000 0.0004 0.0000
0.0000 0.0000 0.0004 0.0057 0.0108 0.0150
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD, DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 , 000
0.000
0. 000
0 . 000
0 .009
0 .000
0,048
0 . 000
5.071
0 . 000
3.987
0 , 000
5.141
0 .000
2 .009
0 . 000
0 .175
0 , 000
0 ,454
0 . 000
0 .000
0 . 000
0 . 000
0 . 000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1992
INCHES CU. FEET PERCENT
PRECIPITATION 13 .62 49440 . 602 100.00
RUNOFF
EVAPOTRANS PI RAT I ON
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
4 , 748
9.119
0,401826
0.8663
0.042940
•0,290
7.680
7 .390
0 .000
0 , 000
0.0000
17234.174
33103.684
1458.629
155.873
-1053.136
27877.426
26824.291
0 . 000
0 . 000
0 .010
34.86
66.96
2.95
0.32
-2 .13
0.00
0 .00
0 .00
p
*******************************************************************************
p
p
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
P
327 0 . 00 0 . 000 0 . 015 0 . 1159 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000
mm 328 0 . 00 0. 000 0 . 016 0 , 1145 0. 0000 .OOOOE+OO ,OOOOE+OO 0 . 0000
aw 329 0 . 00 0 . 000 0 . 017 0 . 1131 0 . 0000 . OOOOE+OO ,OOOOE+OO 0. 0000
330 0 . 00 0. 000 0 . 017 0 . 1117 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000
331 0 . 00 0 . 000 0 . 017 0 .1102 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000
332 0 . 00 0 . 000 0 . 016 0 .1089 0 . 0000 . OOOOE+00 . OOOOE+OO 0. 0000
333 0. 00 0, 000 0. 017 0 .1075 0. 0000 ,OOOOE+00 .OOOOE+00 0 . 0000
wm 334 0 . 00 0. 000 0. 018 0 ,1060 0, 0000 ,OOOOE+00 . OOOOE+OO 0, 0000
M 335 0 . 00 0. 000 0. 014 0 . 1048 0. 0000 .OOOOE+OO .OOOOE+OO 0. 0000
336 0 . 00 0 . 000 0. 009 0 .1040 0 . 0000 .OOOOE+00 ,OOOOE+OO 0, 0000
WW 337 0 . 00 0 . 000 0. 000 0 ,1040 0. 0000 ,OOOOE+00 .OOOOE+00 0 . 0000
m 338 0 . 05 0. 000 0. 026 0 .1060 0. 0000 .OOOOE+OO ,OOOOE+OO 0, 0000
im 339 0. 00 0 . 000 0. 002 0 . 1058 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000
340 0 . 70 0. 000 0. 044 0 .1605 0. 0000 .OOOOE+00 ,OOOOE+OO 0. 0000
^m 341 0. 80 0. 001 0. 047 0 .2232 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
wm 342 0. 00 0. 000 0. 038 0 .2200 0. 0000 .OOOOE+OO ,OOOOE+OO 0. 0000
P 343 0. 00 0. 000 0 . 059 0 .2151 0. 0000 . OOOOE+OO .OOOOE+00 0. 0000
344 0. 00 0. 000 0. 061 0 .2100 0, 0000 .OOOOE+OO .OOOOE+OO 0, 0000
mm 345 0. 20 0 . 000 0 . 070 0 .2208 0. 0000 .OOOOE+00 .OOOOE+OO 0. 0000
m 346 0 . 00 0. 000 0. 046 0 .2170 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
347 0. 00 0. 000 0. 065 0 .2116 0, 0000 ,OOOOE+OO . OOOOE+00 0, 0000
mw 348 0 . 00 0. 000 0. 079 0 .2050 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000
m 349 0. 00 0. 000 0. 072 0 .1989 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000
350 0 . 00 0. 000 0. 068 0 .1933 0 . 0000 .OOOOE+00 ,OOOOE+OO 0. 0000
351 0. 00 0, 000 0. 061 0 .1882 0. 0000 .OOOOE+00 . OOOOE+OO 0. 0000
352 0. 00 0. 000 0. 068 0 .1825 0. 0000 .OOOOE+00 . OOOOE+00 0 . 0000
353 0. 00 0 . 000 0. 036 0 .1795 0, 0000 .OOOOE+OO . OOOOE+00 0. 0000
354 0 . 00 0. 000 0. 032 0 .1768 0. 0000 .OOOOE+00 . OOOOE+00 0 . 0000
355 0. 00 0, 000 0, 028 0 .1745 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 . 0000
m 356 0 . 00 0 . 000 0 . 024 0 . 1725 0. 0000 .OOOOE+OO .OOOOE+OO 0, 0000
mm 357 0 . 00 0 . 000 0. 024 0 .1705 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000
358 0 . 00 0. 000 0. 050 0 .1663 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000
•m 359 0 . 00 0 . 000 0 . 050 0 .1622 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000
•M 360 0 . .00 0 . 000 0 . .050 0 .1580 0 . 0000 . OOOOE + 00 .OOOOE+00 0 . 0000
361 0 . . 70 0 . 000 0 . . 064 0 .2109 0 . .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
362 0 . . 10 0 . .000 0. ,066 0 .2137 0 . ,0000 .OOOOE+OO .OOOOE+00 0 . 0000
mm 363 0 . , 80 0 . . 016 0 . , 071 0 .2731 0 . . 0000 . OOOOE + OO .OOOOE+00 0 . 0000
364 0 . , 00 0 . ,000 0 . .059 0 .2682 0-, 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
365 0 . . 00 0 . .000 0 -, 072 0 .2622 0 -, 0000 .OOOOE+OO .OOOOE+00 0. 0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1993
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 3.10
0.10
5.50
0.30
4.40
0. 00
0.30
0.45
0.20
0 . 00
0. 00
3,35
RUNOFF 0,174
0.000
0.987
0 . 000
0,041
0 . 000
0.000
0.000
0. 000
0 .000
0 .000
0. 017
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
2 . 530
0.100
2 .486
0 .300
3 .593
0.000
2 . 835
0.087
0 .467
0 .340
0 .000
1.458
0,0000 0.0743 0.1879 0.1231 0.0004 0.0000
0.0000 0.0000 0.0000 0.0000 0,0000 0,0000
0.0178 0.0253 0.0331 0.0259 0.0000 0.0000
0.0065 0,0213 0.0289 0.0342 0.0348 0.0361
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 . 000
0.000
2 . 099
0.000
4. 997
0.000
2 . 877
0 . 000
0,001
0 . 000
0.000
0 . 000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 2.3 97 0.549 1.044 0.007 0.000
0.000 0,000 0.000 0.000 0.000 0.000 P
*******************************************************************************
P
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1993 P P
k
m
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
INCHES
17 . 70
1.219
14.197
0 .385779
CU. FEET
64251.008
4424 . 849
51536.328
1400.377
PERCENT
100.00
6 .89
80.21
2 .18
1.49
11.41
ii
AVG. HEAD ON TOP OF LAYER 2 0.8312
PERC./LEAKAGE THROUGH LAYER 3 0.263834
CHANGE IN WATER STORAGE 2.020
SOIL WATER AT START OF YEAR 7.390
SOIL WATER AT END OF YEAR 9.409
SNOW WATER AT START OF YEAR 0.000
SNOW WATER AT END OF YEAR 0.000
ANNUAL WATER BUDGET BALANCE 0.0000
*******************************************************************************
957.716
7332.108
26824.291
34156.398
0 . 000
0.000
0.009
0. 00
0.00
0 . 00
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
I—" DAILY OUTPUT FOR YEAR 1994
IM
imm
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
MM I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN./IN. IN. IN. IN. IN.
imm 1 0 .20 0 .000 0 .071 0 .2729 0 .0000 . OOOOE+00 . OOOOE+00 0 .0000
2 0 .20 0 .000 0 . 066 0 .2841 0 . 0000 . OOOOE + 00 . OOOOE+00 0 . 0000
mm 3 0 .00 0 .000 0 . 073 0 .2780 0 . 0000 . OOOOE+00 . OOOOE+OO 0 , 0000
mm 4 0 , 00 0 .000 0 .087 0 .2707 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000
mm 5 1 .00 0 . 105 0 . 059 0 .3403 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000
6 2 .50 1 .816 0 .065 0 .3920 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000
7 0 .80 0 .400 0 , 059 0 .4204 0 . 0000 . OOOOE+OO . OOOOE+00 0 .0000
IM 8 0 .15 0 .009 0 .079 0 .4254 0 ,5356 , OOOOE+OO .2084E-02 0 .oooc
345 0. 60 0 . 029 0 . 050 0 . 1748 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000
346 0 . 00 0 . 000 0 . 039 0 . 1715 0 . 0000 .OOOOE+00 ,OOOOE+00 0 . 0000 M>
347 0 . 00 0 .000 0 . 039 0 . 1682 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000
348 0. 50 0 . 000 0 . 060 0 .2049 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
349 0. 00 0 .000 0 . 046 0 .2010 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 m
350 0 . 00 0 . 000 0 . 066 0 . 1955 0. 0000 .OOOOE+00 .OOOOE+OO 0 .0000 m
351 0 . 00 0 . 000 0 . 053 0 . 1911 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000
352 0. 10 0 ,000 0 .055 0 . 1948 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wet
353 0 . 00 0 .000 0 .064 0 .1895 0. 0000 .OOOOE+OO .OOOOE+OO 0 .0000 wm
354 0. 00 0 ,000 0 . 056 0 . 1849 0 . 0000 .OOOOE+OO . OOOOE+00 0 .0000 wm
355 0. 00 0 .000 0 .068 0 .1792 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000
356 0 . 00 0 . 000 0 ,061 0 .1741 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 mW
357 0, 00 0 , 000 0 , 065 0 . 1687 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 mw
358 0 . 00 0 . 000 0 . 054 0 .1642 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 mm
359 0. 00 0 . 000 0 . 062 0 . 1590 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000
360 0 . 00 0 .000 0 .070 0 .1532 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 mw
361 0.. 00 0 .000 0 . 072 0 . 1472 0 . 0000 .OOOOE+OO .OOOOE+OO 0 , 0000 M
362 0. 00 0 .000 0 .066 0 . 1417 0 . 0000 .OOOOE+OO .OOOOE+OO 0 ,0000
363 0, 00 0 .000 0 . 057 0 .1369 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000 M
364 0. 00 0 . 000 0 . 067 0 .1313 0. 0000 ,OOOOE+00 .OOOOE+00 0 .0000 wm
365 0 . 00 0 . 000 0 .078 0 .1248 0. 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1994
PRECIPITATION
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
13 .90
0 . 01
6,46
0.00
0 . 77
0.00
0 . 00
0 .15
0 .00
1,00
0 . 60
1 .20
P
RUNOFF 9. 602
0 . 000
2.896
0 . 000
0.000
0.000
0 .000
0 .000
0. 000
0 .000
0. 000
0 . 029
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
2 . 517
0 .010
3 . 124
0 . 000
2 .440
0 . 000
1.639
0 .110
0 .000
0 .508
0 .600
1.452 P
0.2385 0.2954 0,2119 0,0650 0.0000 0,0000 p
0.0000 0.0000 0.0000 0.0000 0.000 0 o.oooop
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0492 0.04 05 0.0137 0.0000 0.0210 0.0876
0.1035 0.0956 0.0817 0.0741 0,0634 0.0583
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
6.647 9.258 5.745 1.319 0.000 0.000
0.000 0.000 0.000 0,000 0,000 0,000
4,633 1.641 1.639 1.214 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1994
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
24 . 09
12.527
12 .400
0 . 810866
1.9141
0 . 688673
-1. 526
9.409
7 .884
0 .000
0.000
0 . 0000
CU. FEET PERCENT
87446.687 100.00
45473.246
45012.449
2943.442
2499.882
-5538.855
34156.398
28617.543
0 . 000
0.000
-0.035
52 . 00
51.47
3 .37
2 . 86
-6.33
0 . 00
0. 00
0.00
******************************************************* *********************
363
364
365
0.00 0.000 0.041 0 .1406
0.00 0,000 0,041 0 ,1373
0,00 0.000 0,047 0,1333
0 . 0000 ,OOOOE+00 .OOOOE+00 0.000 0
0 . 0000 .OOOOE+OO .OOOOE+00 0.000 0
0 . 0000 .OOOOE+OO .OOOOE+OO 0.0000
************************* ********************************************^
******************************************************************************* Ml
MONTHLY TOTALS (IN INCHES) FOR YEAR 1995
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 5 .40
0.00
2.45
0 . 00
1.80
0 .10
1.20
0, 95
0 . 00
0.70
0.01
0 .50
RUNOFF 0,270
0.000
0.008
0.000
0.021
0. 000
0 .000
0 .000
0.000
0,000
0. 000
0.000
EVAPOTRANS PIRATION 2 .618
0.000
2.630
0.000
2 .916
0.067
2 .427
0 .192
0.000
0.598
0.010
1.041
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0616 0.0 912 0.0574 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0523 0.0590 0.0522 0.0258 0.003 9 0.0173
0.0270 0.0321 0.0332 0.0348 0.0332 0.03 3 3
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
P
P
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000
0 .000
0 .679
0 .000
1.561
0 . 000
1. 093
0 . 000
0.000
0. 000
0 . 000
0. 000
STD. DEVIATION OF DAILY
HE.AD ON TOP OF LAYER 2
0 . 000
0 . 000
0 .204
0 . 000
0 . 537
0 .000
1.012
0.000
0 .000
0.000
0 . 000
0 . 000
*******************************************************************************
******************************************************************************* ^
p
p
ANNUAL TOTALS FOR YEAR 1995
Hi
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC,/LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
13 .11
0.299
12 .499
0.210269
0.2777
0.404206
-0.092
7.884
7.792
0 . 000
0.000
0.0000
cu. FEET PERCENT
47589.301 100.00
1084.637
45371.312
763.276
2.28
95,34
1.60
1467.269
-333.917
28617,543
28283,627
0.000
0 . 000
0.000
3 . 08
-0 . 70
0.00
0 . 00
0. 00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION!
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
************************************************* ******************************
DAILY OUTPUT FOR YEAR 1996
DAY A O RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
333 0 . 00 0. 000 0 . 000 0 ,1040 0 ,0000 , OOOOE+00 .OOOOE+OO 0 . 0000
334 0 . 00 0 . 000 0 . 000 0 .1040 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 •i
335 0 . 00 0 . 000 0. 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
336 0 . 00 0 . 000 0, 000 0 . 1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000
337 0 . 00 0 . 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 HI
338 0 ,00 0. 000 0. 000 0 . 1040 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000 HI
339 0 .00 0. 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
340 0 . 00 0 . 000 0 . 000 0 .1040 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 m
341 0 . 00 0 . 000 0 . 000 0 .1040 0 , 0000 ,OOOOE+00 . OOOOE+OO 0. 0000 wm
342 0 .00 0. 000 0 . 000 0 .1040 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000
343 0 .00 0 . 000 0 . 000 0 .1040 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000
344 0 .00 0, 000 0. 000 0 . 1040 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 mm
345 0 .10 0. 000 0, 030 0 .1099 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 wm
346 0 .10 0 . 000 0 , 030 0 .1157 0 .0000 ,OOOOE+00 .OOOOE+OO 0 . 0000
347 0 .00 0 . 000 0 . 014 0 . 1145 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000
348 0 .10 0. 000 0. 039 0 .1196 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000 Ml
349 0 . 00 0 . 000 0 . 017 0 .1182 0 , 0000 . OOOOE+00 .OOOOE+00 0 . 0000 Mi
350 0 . 00 0 . 000 0 . 014 0 .1170 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
351 0 . 00 0 . 000 0 . 017 0 . 1156 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000 mw
352 0 .00 0, 000 0. 019 0 .1140 0 .0000 . OOOOE+00 .OOOOE+OO 0. 0000 M
353 0 .00 0 . 000 0 . 020 0 . 1124 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000
354 0 .00 0 . 000 0. 019 0 .1108 0 .0000 . OOOOE+OO . OOOOE+OO 0. 0000 HI
355 0 .00 0, 000 0, 020 0 .1091 0 .0000 .OOOOE+00 -OOOOE+OO 0 . 0000 —
356 0 .20 0 . 000 0. 050 0 .1216 0 .0000 .OOOOE+OO . OOOOE+OO 0. 0000
357 0 . 00 0 . 000 0 . 018 0 .1201 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000
358 0 . 00 0 . 000 0. 016 0 .1188 0 .0000 .OOOOE+00 .OOOOE+OO 0. 0000
359 0 . 00 0 . 000 0 . 023 0 .1169 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 m
360 0 .00 0 . 000 0 . 025 0 .1148 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
361 0 ,00 0. 000 0. 027 0 .1125 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
362 0 ,00 0 . 000 0. 030 0 .1100 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 wm
363 0 .00 0 . 000 0 , 031 0 . 1075 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 wm
364 0 .00 0 . 000 0 . 017 0 .1060 0 .0000 . OOOOE + OO .OOOOE+OO 0. 0000
365 0 . 00 0 . 000 0 . 013 0 .1050 0 .0000 . OOOOE+OO .OOOOE+00 0. 0000 P
366 0 . 00 0 . 000 0 . 008 0 ,1043 0 .0000 -OOOOE+OO -OOOOE+OO 0 . 0000 IH
*******************************************************************************
*******************************************************************************
m
HI
MONTHLY TOTALS (IN INCHES) FOR YEAR 1996
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 11.30 2.35 9.60 1.50 0 .60 0.55
P
0 .10 0 . 00 0.00 0 .20 0,00 0 . 50
RUNOFF 5. 006
0 . 000
0 .438
0 . 000
5,367
0 . 000
0 .000
0 . 000
0. 000
0 .000
0 . 000
0 .000
EVAPOTRANS PIRATION 2 . 710
0 .100
2 .648
0.000
3 .852
0 . 000
3 .270
0.067
1.381
0.133
0.550
0.496
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.2779 0.2704 0.3000 0.1615 0.0197 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0443 0.0377 0.0170 0.0000 0.0087 0.1086
0.134 9 0.1188 0.0974 0.0858 0.0717 0.0650
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
7.794 8.170 8.473 4.262 0.270 0.000
0.000 0.000 0.000 0.000 0.000 0.000
4.795 1.12 9 1.549 1.265 0.547 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
******************************************* ************************************
ANNUAL TOTALS FOR YEAR 1996
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
INCHES
26 . 70
10.812
15.207
1. 029506
CU. FEET PERCENT
96921.023 100.00
39246.500 40.49
55201.539 56.96
3737 .106 3.86
AVG. HEAD ON TOP OF LAYER 2 2 .4141
PERC./LEAKAGE THROUGH LAYER 3 0 .789988 2867.656 2.96
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
•0 .109
7.792
7.683
0.000
0 . 000
0 .0000
-394.710
28283.627
27888.916
0. 000
0 . 000
0 .039
-0.41
0. 00
0 . 00
0 .00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
DAILY OUTPUT FOR YEAR 1997
S wm
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN./IN. IN. IN. IN. IN. m
1 0 . 10 0 . 000 0 . 036 0 . 1097 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000
2 0 . 00 0 . 000 0 . 005 0 . 1093 0 .0000 . OOOOE+00 -OOOOE+OO 0 . 0000
3 0 . 00 0 . 000 0 .011 0 . 1084 0 . 0000 , OOOOE+OO .OOOOE+00 0 .0000
^m 4 0 .00 0 . 000 0 . 010 0 . 1076 0 . 0000 .OOOOE+OO .OOOOE+OO 0 mm
.0000 5 0 .00 0 . 000 0 .010 0 . 1067 0 . 0000 . OOOOE + OO .OOOOE+00 0 .0000 "
6 0 .25 0 . 000 0 .051 0 . 1233 0 .0000 .OOOOE+OO .OOOOE+OO 0 • HI
7 0 . 00 0. 000 0 . 025 0 . 1212 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 ^
8 0 .00 0. 000 0 . 031 0. 1186 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000
9 0 .00 0. 000 0 . 040 0. 1152 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 m
10 0 . 05 0 . 000 0 .061 0. 1143 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 ^
11 0 . 00 0 . 000 0 .043 0 . 1108 0 , 0000 .OOOOE+00 .OOOOE+00 0 .0000
12 0 . 00 0 . 000 0 ,029 0, 1083 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 p
13 0 . 00 0 . 000 0 . 012 0 . 1073 0 , 0000 .OOOOE+00 .OOOOE+OO 0 .0000 P
350 0. 00 0 . 000 0 . 043 0 .3119 5 .3234 .OOOOE+OO .6375E-02 0 .0000
351 0. 00 0 . 000 0 . 075 0 .3051 5 .2592 .OOOOE+00 .6312E-02 0 .0000
m 352 0. 00 0 . 000 0 .065 0 .2992 5 .1837 .OOOOE+OO .6238E-02 0 . 0000
353 0 . 00 0 .000 0 . 064 0 .2933 5 .1133 .OOOOE+00 .6170E-02 0 .0000
wm 354 0 . 00 0 . 000 0 .064 0 .2875 5 .0434 . OOOOE+OO .6102E-02 0 . 0000
HI 355 0 . 00 0 . 000 0 . 068 0 .2813 4 . 9726 .OOOOE+OO .6033E-02 0 . 0000
356 0 . 00 0 .000 0 . 061 0 .2757 4 .9025 .OOOOE+00 ,5966E-02 0 . 0000
mm 357 0. 00 0 .000 0 .061 0 .2702 4 .8359 .OOOOE+OO .5902E-02 0 .0000
m 358 0, 00 0 .000 0 ,059 0 .2648 4 .5795 ,OOOOE+00 .5658E-02 0 . 0000
359 0 . 00 0 .000 0 .052 0 .2600 4 .5128 .OOOOE+00 .5595E-02 0 . 0000
360 0. 00 0 . 000 0 . 054 0 .2551 4 .5492 . OOOOE+OO .5628E-02 0 . 0000
•M 361 0. 00 0 .000 0 , 049 0 .2505 4 .3200 .OOOOE+00 .5411E-02 0 . 0000
MN 362 0. 00 0 ,000 0 .048 0 .2461 4 .1049 .OOOOE+OO .5208E-02 0 . 0000
HI 363 0. 00 0 .000 0 ,045 0 .2420 3 .9773 .OOOOE+00 .5089E-02 0 . 0000
HI
364 0 . 00 0 . 000 0 .051 0 .2373 3 . 9407 . OOOOE+OO .5055E-02 0 . 0000
wm 365 0. 00 0 .000 0 .056 0 .2322 3 .9023 .OOOOE+OO .5020E-02 0 , 0000
********************** *********************************************************
******* ********************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1997
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
1.10
0.00
0 . 000
0 . 000
0 .712
0.000
2 .60
0.00
0.051
0 . 000
2 .475
0 . 000
0.65
0 . 00
0. 000
0 . 000
0 . 914
0 . 000
0 . 00
4.35
0 .000
1.106
0 .202
0 . 334
0. 20
2 .65
0 .000
0 .322
0 ,200
1. 950
0 . 00
0 .50
0 . 000
0 . 000
0 . 000
1 . 961
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0-0000 0.0000 0.0000 0.0000 0.0968 0.1922
0.0575 0.0468 0.0470 0.0415 0.03 94 0.0352
0.0338 0.0315 0.0285 0.0277 0.0337 0.0324
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 .000
0 . 000
0.000
0 . 000
0.000
0. 000
0. 000
0. 000
0.000
0.000
0. 000
0,000
0, 000
0, 000
0 . 000
0.000
0 . 000
2 .165
0 . 000
2 .625
0 . 000
5 . 138
0 , 000
0 .623
m
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1997
INCHES CU. FEET PERCENT
PRECIPITATION 12 .05 43741.500 100.00
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
1.479
8.747
0 .288981
0.6086
0. 455136
1. 369
7 . 683
9 . 052
0 . 000
0 . 000
0,0000
5369.127
31751.400
1049.001
1652.145
4968 . 826
27888.916
32857 . 742
0 , 000
0 . 000
0 . 001
12 .27
72 .59
2.40
3 ,71
11 .36
0 . 00
0 .00
0 . 00
P
P
P
P
*******************************************************************************
•i
P
P
P
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
6.75
0.00
1.443
0.000
2 .878
0 . 000
0.90
0.00
0 .000
0. 000
1. 987
0.000
0,00
0. 00
0.000
0 . 000
2 .241
0 . 000
0.10
0 , 71
0 . 000
0.000
0 .204
0.066
0.05
2.87
0.000
0 .378
0. 050
1.127
0.00
2 .33
0.000
0 . 048
0.000
2.275
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.1932 0.2226 0.1193 0.0000 0.0000 0,0000
0.0000 0.0000 0.0000 0.0000 0.000 0 0, 0444
0.0284 0.0211 0.0000 0.0000 0.0072 0.0457
0.0657 0.0686 0.0634 0.0606 0.053 7 0.063 6
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
5 . 032
0 . 000
2 . 800
0 .000
6.868
0 . 000
1.154
0 . 000
2 . 706
0 . 000
1,484
0 . 000
0.000
0 . 000
0 . 000
0 . 000
0 .000
0 .000
0 . 000
0 . 000
0.000
0 . 548
0 . 000
0 . 514
***************** ***************************************** *********************
**************************************************************************
ANNUAL TOTALS FOR YEAR 1998
INCHES CU. FEET PERCENT
PRECIPITATION 13 .71 49767.301 100.00
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YE.AR
ANNUAL WATER BLTDGET BALANCE
1.870
10.828
0 .579518
1.2628
0 .478025
0,534
9 . 052
9.586
0 .000
0 . 000
0.0000
6787.015
39307.223
2103 .652
1735.232
1937.829
32857 . 742
34795.570
0 . 000
0 .000
0 . 002
13 . 64
78.98
4,23
3 .49
3 ,89
0 . 00
0 . 00
0, 00
p
m
*******************************************************************************
p
HI
P
P
P
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
TOTALS
STD. DEVIATIONS
5 .03
0 . 06
4 .48
0 .10
3 .12
0.04
2.13
0.10
2 .51
0. 11
3.20
0.31
0 . 90
0 . 72
1.53
1.32
0. 27
1. 02
0. 31
1. 07
0.21
1.29
0. 31
1. 34
P
RUNOFF
Hi
p
p
TOTALS 1. 673
0 .000
0 . 701
0 . 000
0.755
0 .000
0 . 079
0 . Ill
0 . 000
0 . 070
0 . 000
0 .032
STD. DEVIATIONS 3 .188
0 .000
1.133
0 . 000
1.751
0 . 000
0,250
0 .350
0,000
0.148
0.000
0 . 070
EVAPOTRANS PIRATION
TOTALS 2 .266
0,058
2,267
0 . 043
2.344
0 .027
1.723
0 .112
0 .512
0 .623
0 .262
1.247
STD. DEVIATIONS 0.752
0 . 089
0.739
0.096
1.156
0.067
1.207
0.116
0.536
0.562
0.453
0 . 707
PERCOLATION/LEAKAGE THROUGH LAYER 2
TOTALS 0.0910
0.0000
0.1065
0.0000
0.1169
0.0000
0.0595
0.0000
0.0055
0.0097
0.0000
0.0251
STD. DEVIATIONS 0.1105
0.0000
0.1172
0 . 0000
0 .1049
0 . 0000
0 . 0735
0.0000
0 . 0090
0.0306
0.0000
0.0604
PERCOLATION/LEAKAGE THROUGH LAYER 3
TOTALS 0.0374
0,0442
0.0305
0.0447
0 . 0226
0.0413
0.0142
0.0405
0.0143
0.0378
0.0347
0.0385
STD. DEVIATIONS 0 . 0161
0.0439
0.0166
0.0375
0.0178
0.0302
0,0158
0.0255
0 . 0129
0.0200
0.0369
0.0189
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
HI
P
DAILY AVERAGE HEAD ON TOP OF LAYER 2
AVERAGES
STD. DEVIATIONS
2.3237 3,0701 2.9600
0.0000 0.0000 0.0000
1.4692 0.0597 0.0000
0.0000 0.2165 0.5812
3.0710 3,6999 2. 9575 1.94 99 0.1003 0.0000
0.0000 0.0000 0.0000 0,0000 0.6845 1.6105
******************************************* ************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998
INCHES CU. FEET PERCENT
PRECIPITATION 15.27 ( 6,145) 55444,6 100.00
RUNOFF 3.421 ( 4 .5703) 12416,78 22.3 95
EVAPOTRANSPIRATION 11.484 ( 2.4973) 41688.32 75.189
PERCOLATION/LEAKAGE THROUGH 0.41427 ( 0.31748) 1503.810 2.71227 ^m.
LAYER 2 ^
AVERAGE HEAD ON TOP 0.890 ( 0.780) l*
OF LAYER 2 m
PERCOLATION/LEAKAGE THROUGH 0.40080 ( 0 .21787) 1454.917 2.62409 ^
LAYER 3 •
CHANGE IN WATER STORAGE -0.032 ( 1.2801) -115.39 -0.208 *
P
*******************************************************************************
P
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998
(INCHES) (CU. FT.)
PRECIPITATION 4.00 14520.000
RUNOFF 3 .551 128 90.9453
PERCOLATION/LEAKAGE THROUGH LAYER 2 0.013675 49.64151
AVERAGE HEAD ON TOP OF LAYER 2 11.983
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.004445 16.13534
PI
SNOW WATER 0.00 0.0000 p
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730 P
P
P
P
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040
*************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 1998
LAYER (INCHES) (VOL/VOL)
1 3.2189 0.2682
2 0.0000 0.0000
3 5.9227 0.2468
SNOW WATER 0.000
******************************************************************************
******************************************************************************
******************************************************************************
******************************************************************************
* * * *
* * * *
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.06 (17 AUGUST 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
** * *
** * *
******************************************************************************
******************************************************************************
PRECIPITATION DATA FILE: C:\ACTIVE\0LDD0S~1\HELP3A\SMARC0.D4
TEMPERATURE DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0,D7 P
SOLAR RADIATION DATA FILE: C:\ACTIVE\0LDD0S~1\HELP3A\SMARC0,D13 P
EVAPOTRANSPIRATION DATA: C:\ACTIVE\OLDDOS-l\HELP3A\SMARC02.Dll
SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMPRSC2,DIO
OUTPUT DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMPRSC2.0UT
TIME: 11: 0 DATE: 3/ 5/2002
******************************************************************************
TITLE: San Marcos Landfill
******************************************************************************
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.
P
P
P
P
P
P
LAYER 1
P
TYPE 1 - VERTICAL PERCOLATION LAYER P
P
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT. HYD. COND.
36.00 INCHES
0.4730 VOL/VOL
0.2220 VOL/VOL
0.1040 VOL/VOL
0.1801 VOL/VOL
0.739999996000E-05 CM/SEC
LAYER
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERI.AL TEXTURE NUMBER 35
0.08 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND.
FML PINHOLE DENSITY
FML INSTALLATION DEFECTS
FML PLACEMENT QUALITY
0,000 0 VOL/VOL
0.0000 VOL/VOL
0.00 00 VOL/VOL
0.0000 VOL/VOL
0.199999996000E-12 CM/SEC
1.00 HOLES/ACRE
10.00 HOLES/ACRE
4 - POOR
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND.
24.00 INCHES
0.473 0 VOL/VOL
0.2220 VOL/VOL
0.1040 VOL/VOL
0.2236 VOL/VOL
0.430000000000E-04 CM/SEC
GENERAL DESIGN AND EVAPORATIVE ZONE DATA
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH AN
EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 3.%
AND A SLOPE LENGTH OF 50 0. FEET.
SCS RUNOFF CURVE NUMBER
FRACTION OF AREA ALLOWING RUNOFF
AREA PROJECTED ON HORIZONTAL PLANE
EVAPORATIVE ZONE DEPTH
INITIAL WATER IN EVAPORATIVE ZONE
UPPER LIMIT OF EVAPORATIVE STORAGE
LOWER LIMIT OF EVAPORATIVE STORAGE
INITIAL SNOW WATER
INITIAL WATER IN LAYER MATERIALS
TOTAL INITIAL WATER
TOT;^ SUBSURFACE INFLOW
62.40
100 . 0
1.000
36 . 0
6 .482
17.028
3 .744
0.000
11.849
11.849
0.00
PERCENT
ACRES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES/YEAR
NOTE:
EVAPOTRANSPIRATION AND WEATHER DATA
EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
SAN DIEGO CALIFORNIA
STATION LATITUDE
MAXIMUM LEAF AREA INDEX
START OF GROWING SEASON (JULIAN DATE)
END OF GROWING SEASON (JULIAN DATE)
EVAPORATIVE ZONE DEPTH
AVERAGE ANNUAL WIND SPEED
AVERAGE 1ST QUARTER RELATIVE HUMIDITY
AVERAGE 2ND QUARTER RELATIVE HUMIDITY
AVERAGE 3RD QUARTER RELATIVE HUMIDITY
AVERAGE 4TH QUARTER RELATIVE HUMIDITY
p
p
33.10 DEGREES
1.00
0
367
3 6.0 INCHES
6.80 MPH
65.00 %
69.00 %
73.00 %
66 . 00 %
NOTE: PRECIPITATION DATA FOR LAKE HODGES
WAS ENTERED FROM AN ASCII DATA FILE.
CA
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
W
P
P
P
1^
JAN/JUL FEB/AUG APR/OCT MAY/NOV JUN/DEC
56 . 80
70 .30
58 .40
72 .20
59 .00
71.30
61.20
67. 50
63 ,40
61. 60
66,30
57.40
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
AND STATION LATITUDE = 33.10 DEGREES
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
DAILY OUTPUT FOR YEAR 198 9
mm
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN ./IN. IN. IN. IN. IN.
•MI 1 0 . 55 0 , 000 0 . 071 0 . 1933 0 . 0000 . OOOOE + OO .OOOOE+OO 0 . 0000
2 0 . 00 0 , 000 0. 088 0 . 1909 0.0000 . OOOOE + 00 .OOOOE+00 0 . 0000
3 0 . 00 0 . 000 0 .093 0 . 1883 0.0000 . OOOOE + OO .OOOOE+OO 0.0000
IM 4 0 . 00 0 . 000 0.073 0 . 1863 0.0000 .OOOOE+00 .OOOOE+OO 0 . 0000
5 0 . 00 0 .000 0.085 0 .1839 0.0000 .OOOOE+00 .OOOOE+00 0.0000
6 0 . 00 0 . 000 0 . 094 0 . 1813 0.0000 .OOOOE+00 .OOOOE+00 0.0000
•M 7 0 . 00 0 . 000 0 .092 0 . 1788 0 . 0000 .OOOOE+OO .OOOOE+00 0.0000
mm 8 0.00 0 .000 0 .091 0 . 1762 0 . 0000 .OOOOE+00 .OOOOE+OO 0.0000
9 0 . 00 0.000 0.097 0 .1735 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000
10 0 .00 0 . 000 0.075 0 . 1714 0.0000 . OOOOE+00 .OOOOE+OO 0 .0000
mm 11 0.00 0 . 000 0 . 065 0 . 1696 0,0000 . OOOOE+00 .OOOOE+00 0.0000
HI 12 0.20 0.000 0.058 0 .1736 0.0000 .OOOOE+OO .OOOOE+OO 0.0000
13 1.75 0 . 000 0 , 065 0 .2204 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000
— 14 0 . 00 0 . 000 0.075 0 .2183 0.0000 .OOOOE+OO .OOOOE+OO 0.0000
15 0 . 00 0 . 000 0 . 080 0 .2161 0 . 0000 .OOOOE+OO .OOOOE+OO 0.0000
352 0 .20 0 . 000 0 . 065 0 .1795 0 . 0000 .OOOOE+OO .OOOOE+OO 0 .0000
353 0 . 00 0 . 000 0 , 061 0 . 1778 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 M*
354 1 .10 0 .000 0 ,058 0 ,2068 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 Mt
355 0 .00 0 . 000 0 .061 0 .2051 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000
356 0 . 00 0 .000 0 .068 0 .2032 0. 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 m
357 0 .10 0 .000 0 . 071 0 .2040 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 iH
358 0 . 00 0 .000 0 . 088 0 .2015 0. 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
359 0 .00 0 .000 0 . 091 0 .1990 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 HI
360 0 .00 0 .000 0 . 093 0 .1964 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 Ml
361 0 .00 0 . 000 0 . 089 0 .1940 0. 0000 .OOOOE+OO .OOOOE+00 0 .0000 HI 362 0 .00 0 .000 0 . 109 0 .1909 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
363 0 .00 0 . 000 0 . 104 0 . 1880 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000 Ml
364 0 .00 0 .000 0 .104 0 .1851 0 . 0000 . OOOOE+00 . OOOOE+OO 0 .0000 HI
365 0 .00 0 .000 0 . 086 0 .1827 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000 HI
*******************************************************************************t
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1989 P
P
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
3 .80
0.00
0 . 000
0 . 000
2 . 821
0 . 000
1.15
0 . 00
0 . 000
0 . 000
2 . 325
0 . 000
0.00
0 . 00
0 . 000
0 . 000
2 .290
0 . 000
4 . 95
0 .00
0 .000
0 .000
3 . 097
0 . 000
0.20
1.45
0 .000
0 . 000
2 .245
0 . 533
0. 00
3 .70
0 .000
0 ,000
0 . 059
1. 783
P
P
P
IP
P
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0143 0.0121 0.0126 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
p
p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0,000 0.000 0,000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
****** *************************************************************************
wm
m
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1989
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
INCHES
15.25
0.000
15.153
0.000000
0 . 0000
0.038997
0 . 058
13.181
13 .239
0 . 000
0 . 000
CU. FEET
55006.582
0.000
141.559
209.372
47847.258
48056.629
0 , 000
0 . 000
PERCENT
55357.504 100.00
0,000 0,00
99.37
0 . 00
0.26
0.38
0 . 00
0.00
ANNUAL WATER BUDGET BALANCE 0.0000 -0.008 0.00
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1990
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 1.10
0.00
1.75
0 .00
1.30
1.00
0.10
0.35
0.50
0.20
0.10
0 . 00
RUNOFF 0.000
0.000
0.000
0.000
0.000
0,000
0.000
0 . 000
0.000
0.000
0. 000
0, 000
EVAPOTRANS PIRATION 2 .349
0.000
1. 810
0.000
2 . 080
0 .274
0 . 846
0 .189
0,500
0 .470
0.100
0 . 618
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ^
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
0 . 000
0 .000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 .000
0 . 000
0 .000
0 . 000
0 . 000
0 . 000
0 .000
0 . 000
0 .000
0 . 000
0. 000
0 . 000
*******************************************************************************
Ml
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1990
PRECIPITATION
INCHES
6.40
CU. FEET
23231.996
PERCENT
100.00 P
HI
P
P
RUNOFF
EVAPOTRANS PI RAT I ON
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 .000
9 .235
0. 000000
0 . 0000
0.000000
-2.835
13 .239
10.404
0 .000
0.000
0.0000
0.000 0.00
33522.105 144.29
0 .000 0 . 00
0.000 0.00
-10290.108 -44.29
48056.629
37766.520
0.000 0.00
0.000 0.00
0.002 0,00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
*******************************************************************************
DAILY OUTPUT FOR YEAR 1991
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN./IN, IN. IN. IN. IN.
1 0.50 0 .000 0,053 0.1164 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000
2 0 .00 0 . 000 0.023 0.1158 0 .0000 .OOOOE+OO .OOOOE+OO 0 ,0000
3 0 .00 0. 000 0 . 023 0.1151 0 . 0000 .OOOOE+00 .OOOOE+00 0. oooc
340 0 .00 0 . 000 0 . 012 0 . 1331 0 . 0000 . OOOOE+OO . OOOOE+00 0 .0000
341 0 . 00 0 . 000 0 .012 0 .1327 0 .0000 . OOOOE+OO . OOOOE+OO 0 . 0000 m
342 0 .00 0 . 000 0 .012 0 .1324 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 wm
343 0 .00 0 . 000 0 .013 0 . 1320 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
344 0 .00 0 . 000 0 . 014 0 . 1317 0 .0000 .OOOOE+OO . OOOOE+00 0 . 0000 m
345 0 .00 0 . 000 0 .015 0 .1312 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000 m
346 0 .00 0 . 000 0 .016 0 . 1308 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000
347 0 .00 0 . 000 0 .015 0 .1304 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
348 0 .00 0. 000 0 . 015 0 .1299 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000 WW
349 0 .10 0 . 000 0 .057 0 .1311 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000
350 0 .00 0. 000 0 .018 0 .1306 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 HI
351 0 .00 0 . 000 0 .014 0 .1302 0 .0000 .OOOOE+00 .OOOOE+00 0 , 0000 HI
352 0 . 00 0. 000 0 .015 0 .1298 0 .0000 .OOOOE+00 .OOOOE+00 0 , 0000
353 0 .30 0 . 000 0 .060 0 .1365 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
-354 0 .00 0 . 000 0 . 014 0 .1361 0 . 0000 .OOOOE+OO .OOOOE+OO 0 .0000 -
355 0 .00 0 . 000 0 .011 0 .1358 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000 Hi
356 0 . 00 0 . 000 0 .011 0 .1355 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000
357 0 .00 0 . 000 0 .012 0 .1352 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000
358 0 .00 0 . 000 0 .016 0 .1347 0 .0000 .OOOOE+OO -OOOOE+OO 0 .0000 p
359 0 ,00 0 . 000 0 .019 0 .1342 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 .0000 p
360 0 .00 0. 000 0 .021 0 .1336 0 .0000 .OOOOE+00 ,OOOOE+00 0 .0000
361 0 .00 0 . 000 0 .020 0 .1331 0 .0000 . OOOOE+00 .OOOOE+00 0 .0000 ^w 362 0 .00 0 . 000 0 .019 0 .1325 0 .0000 .OOOOE+OO ,OOOOE+00 0 . 0000 k
363 0 .00 0. 000 0 .020 0 .1320 0 .0000 .OOOOE+OO , OOOOE+00 0 . 0000
364 0 . 00 0. 000 0 .020 0 ,1314 0 .0000 ,OOOOE + 00 ,OOOOE+00 0 . 0000 M
ri 365 0 .00 0 . 000 0 . 021 0 .1308 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000
M
ri
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1991
IH
P
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAP OTRANS PIRATION
3 .41
0 .10
0 . 057
0.000
1-574
0.100
1 . 75
0 . 10
0. 000
0 . 000
1 .683
0 . 100
0 .50
0 .00
0 . 000
0 .000
1.709
0 .000
0 .80
0 . 00
0 . 000
0 .000
1.362
0. 000
0 . 90
1.35
0, 000
0 .000
0.399
0 . 236
0 .80
0.40
0 .000
0 , 000
1.375
0 . 548
P
P
k
358 0 . 00 0 . 000 0 . 010 0 .1086 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
*•••
359 0 .00 0. 000 0 . 009 0 . 1084 0 . 0000 .OOOOE+00 .OOOOE+00 0 , 0000
mm 360 0 . 00 0. 000 0 . 009 0 . 1081 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
361 0 . 00 0. 000 0 .008 0 . 1079 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
mm 362 0 .00 0 . 000 0 . 008 0 .1077 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
mm 363 0 .00 0. 000 0 . 008 0 . 1075 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
364 0 . 00 0 . 000 0 . 008 0 .1072 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
— 365 0 .00 0. 000 0 . 008 0 . 1070 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
Mi 366 0 .00 0. 000 0 . 008 0 .1068 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1992
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 0.45
0.30
6.30
0.00
6.12
0,00
0.00
0.00
0.00
0.00
0 . 00
0.45
RUNOFF 0. 000
0 . 000
0.251
0 . 000
0.219
0 .000
0.000
0.000
0.000
0 .000
0 . 000
0.000
EVAPO TRAN SPIRATION 1. 048
0, 156
0 . 731
0 .144
3 .150
0. 000
2.592
0. 000
2 . 753
0 . 000
2. 607
0 .349
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0778 0.1363 0.1440 0.1259
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0,0000 0,0047 0.0128
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 .000
0 .000
0.000
0 . 000
0.192
0 , 000
0.214
0,000
0.357
0 . 000
1.357
0 .000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000
0 . 000
0 . 000
0 . 000
0 .230
0.000
0,111
0.000
0.274
0. 000
1.021
0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1992
INCHES CU. FEET PERCENT
PRECIPITATION 13 .62 49440.602 100.00
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0.470
13 .531
0 .484047
0.1767
0.017550
-0.399
11.370
10.971
0.000
0 .000
0.0000
1706,217
49117.590
1757.092
63 .706
-1446.913
41273.020
39826.105
0 ,000
0 . 000
0 . 004
3 .45
99.35
3.55
0.13
2 .93
0 .00
0 .00
0, 00
IH
P
P
P
HI
Mi
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
if
k
^m
2
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
3 . 10
0 .10
0 . 000
0 , 000
2 .267
0 ,100
5 . 50
0.30
0 . 000
0 .000
2 .130
0.256
4 .40
0 . 00
0 .000
0 . 000
3 .267
0 , 044
0.30
0.45
0.000
0 .000
2 .923
0.112
0.20
0 . 00
0 .000
0 . 000
2.475
0-228
0 . 00
3-35
0 . 000
0.000
0 .452
1.190
0.0000 0.0000 0.0312 0,0000 0.0555 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0,0184 0,0197 0,0288 0.0199 0.0292 0.0162
0.0200 0.0221 0.0225 0.0238 0.0230 0.0236
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 . 000
0.000
0 . 000
0 , 000
0 .000
0.000
0 .000
0. 000
0 . 022
0 . 000
0 , 045
0 . 000
0 . 000
0 .000
0 .000
0 . 000
0.275
0 .000
0 .444
0.000
0 . 000
0 , 000
0 . 000
0 . 000
***************************************************** **************************
******************** ***********************************************************
ANNUAL TOTALS FOR YEAR 1993
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
PERC./LEAKAGE THROUGH LAYER 2
INCHES
17 .70
0 .000
15 .443
0 . 086709
CU. FEET
0 . 000
56059.277
314.752
PERCENT
64251.008 100.00
0 . 00
17 .25
0.49
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 . 0247
0 .267121
1.990
10.971
12.961
0 . 000
0.000
0.0000
969.648
7222.093
39826.105
47048.199
0 .000
0 . 000
-0,008
***********************************************************^^^
1 . 51
m
11.24 im
P
mt
P
IH
0 . 00
ii
0.00 ^
0.00 III
p *****************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
P
P
k
m
**************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
DAILY OUTPUT FOR YEAR 1994
DAY A O RAIN RUNOFF ET
I I
R L IN. IN. IN.
E. ZONE HEAD
WATER #1
IN./IN. IN.
DRAIN
#1
IN.
LEAK
#1
IN.
HEAD
#2
IN.
1 0 .20 0 . 000 0 . 063 0 . 1709 0 . 0000 . OOOOE+OO . OOOOE+OO 0 . 0000
.0000 2
. 0000
2 0 .20 0 . 000 0 .061 0 . 1747 0 .0000 .OOOOE+OO . OOOOE + 00 0
. 0000
.0000 2
. 0000 3 0 . 00 0 . 000 0 . 054 0 . 1732 0 . 0000 .OOOOE+OO . OOOOE+OO 0
. 0000
.0000 2
. 0000
4 0 .00 0 . 000 0 . 054 0 . 1717 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000 n
5 1 .00 0 . 000 0 .058 0. 1979 0 . 0000 .OOOOE+00 - OOOOE + 00 0 . 0000
6 2 .50 0. 091 0 .063 0. 2631 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000
7 0 .80 0. 000 0 - 058 0 . 2837 0 .0000 , OOOOE + 00 . OOOOE+00 0 .0000 p
8 0 .15 0 . 000 0 . 072 0 . 2858 0 . 0000 . OOOOE + 00 .OOOOE+00 0 ,0000 m
Mi
345 0. 60 0 . 000 0 . ,056 0 . 1283 0 . ,0000 .OOOOE+OO . OOOOE+00 0 , • 0000
346 0. 00 0 . 000 0 . , 022 0 . 1277 0 • , 0000 . OOOOE+OO .OOOOE+OO 0, . 0000
347 0 . 00 0. 000 0. ,022 0 . 1271 0 . ,0000 .OOOOE+OO . OOOOE+00 0, . 0000
348 0. ,50 0 . 000 0 -. 047 0, ,1397 0-, 0000 ,OOOOE+00 .OOOOE+00 0 , .0000
— 349 0 . , 00 0 . 000 0 . • 028 0 . ,1389 0 , .0000 .OOOOE+00 .OOOOE+00 0. . 0000
mm 350 0 -,00 0. 000 0, • 028 0. ,1381 0, .0000 . OOOOE+OO .OOOOE+00 0 . 0000
351 0 . • 00 0 . 000 0 , . 031 0 . ,1373 0, . 0000 . OOOOE+00 ,OOOOE+OO 0 .0000
352 0, .10 0. 000 0 , .055 0 , ,1385 0 , .0000 -OOOOE+00 ,OOOOE+OO 0 . 0000
mm 353 0, .00 0 . 000 0. . 042 0 , • 1373 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000
354 0, .00 0. 000 0 .028 0, .1366 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
355 0 , .00 0. 000 0 .041 0 , .1354 0 .0000 .OOOOE+OO ,OOOOE+OO 0 . 0000
wm 356 0 .00 0. 000 0 , 045 0 .1342 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000
357 0 .00 0, 000 0 .044 0, .1330 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
358 0 .00 0. .000 0 .041 0 .1318 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
mm 359 0 .00 0 . , 000 0 . 044 0 .1306 0 .0000 .OOOOE+OO .OOOOE+OO 0 , 0000
360 0 .00 0. ,000 0 . 051 0 .1292 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000
361 0 .00 0. ,000 0 .055 0 .1276 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
362 0 .00 0. , 000 0 .053 0 .1262 0 .0000 . OOOOE+OO .OOOOE+OO 0 ,0000
— 363 0 .00 0, .000 0 .051 0 . 1248 0 . 0000 -OOOOE+00 .OOOOE+00 0 .0000
364 0 .00 0, .000 0 .055 0 .1232 0 ,0000 .OOOOE+00 .OOOOE+OO 0 . 0000
365 0 .00 0, .000 0 .058 0 .1216 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
********* **************** ***************************************
****** ************************************* ************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1994
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
13 .90
0 . 01
2 .598
0.000
2 .398
1.643
6.46
0 . 00
1.431
0 . 000
2 . 951
0.000
0-77
0 .00
0 .000
0 . 000
2 . 524
0 .000
0 . 00
0. 15
0 .000
0 . 000
2 .255
0 . 087
0 . 00
1. 00
0 . 000
0 . 000
2 .654
0 .569
0 . 60
1.20
0 .000
0 . 000
2 .533
1.059
0.1774 0.7270 0,7658 0.5498 0-46 04 0.2818
0.0614 0.0000 0.0000 0.0000 0.0000 0.0000
0.0289 0.0293 0.0066 0.0912 0-5204 0.4880
0.4051 0.3233 0.2057 0.1544 0.1162 0.0978
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
4.963 25.933 24.788 17.738 13.622 6.777 "
0.686 0.000 0.000 0.000 0.000 0.000
7.294 6.629 2.587 1.477 2.155 1.379 *
1.187 0.000 0.000 0.000 0.000 0.000 "*
******************************************************************^^^^^^^^^^^^^
************************************************************************^^^^^^^
ANNUAL TOTALS FOR YEAR 1994
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
24. 09
4 . 029
18.673
3.023648
7 . 8756
2 .466844
-1 . 079
12 . 961
11.882
0 . 000
0.000
0.0000
CU. FEET PERCENT
87446.687 100.00
14626 - 755
67782.687
10975.843
8954.645
-3917 .353
47048 -199
43130.848
0 .000
0 . 000
-0.046
16.73
77.51
12 . 55
10 .24
-4.48
0 . 00
0 .00
0 . 00
****************************************** **************.^***^*
p
p
m
m
mi
***************** III
P
k
363
364
365
0.00 0.000 0.032 0.1248 0.0000 .OOOOE+00 .OOOOE+OO 0.0000
0.00 0.000 0.031 0.1239 0.0000 .OOOOE+00 .OOOOE+00 0.0000
0.00 0.000 0.035 0.1229 0.0000 .OOOOE+00 .OOOOE+00 0.0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1995
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 5 .40
0 - 00
2 .45
0.00
1.80
0.10
1.20
0.95
0.00
0.70
0.01
0.50
RUNOFF 0.000 0.000 0.024 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
EVAPOTRANS PIRATION 2.448 2.567 2.976 2.964 0.506 0.010
0.000 0.000 0.061 0.191 0.438 0.878
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0,0000 0.0000 0.0000
0.0820 0.0640 0.0624 0.0536 0.0498 0.0437
0.0412 0.0379 0.0340 0,0326 0.0295 0.0286
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
0 .000
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
0 .000
0 . 000
0 .000
0.000
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
********************************************* ********************************
******************************************** ***********************************
ANNUAL TOTALS FOR YEAR 1995
INCHES CU. FEET PERCENT
13.11 47589.301 100.00 PRECIPITATION
RUNOFF
EVAPOTRANS PI RAT I ON
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 .024
13.039
0.000000
0 . 0000
0.559270
-0.512
11.882
11.370
0 . 000
0.000
0.0000
87.002
47331.227
0 . 000
2030.149
-1859.069
43130.848
41271.777
0. 000
0.000
-0.005
0 .18
99 .46
0.00
4.27
-3 .91
0.00
0.00
0 . 00
HI
IP
P
P
P
P
M
P
P
P
P
P
P
************************************************************** ***************** il
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION!
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 3
P
P
**********************************************************************^^^^^^^^^
DAILY OUTPUT FOR YEAR 1996
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD m
m
Mi
333 0 , 00 0 . 000 0 . 004 0 . , 1049 0 . 0000 . OOOOE+OO . OOOOE+00 0 , • 0000
334 0 . 00 0 . 000 0 . 004 0 . , 1048 0 . 0000 .OOOOE+OO . OOOOE+00 0 , • 0000
335 0 . 00 0. 000 0 . 005 0 -,1047 0 . 0000 .OOOOE+00 .OOOOE+00 0 , .0000
336 0 , 00 0 . 000 0. 005 0 , ,1045 0 . 0000 . OOOOE+OO . OOOOE+OO 0 . 0000
337 0 . 00 0 . 000 0 . 004 0 . .1044 0 . 0000 .OOOOE+OO . OOOOE+OO 0 . .0000
338 0 . 00 0. 000 0. 005 0 , .1043 0 . 0000 .OOOOE+00 . OOOOE+OO 0 .0000
339 0 . 00 0. 000 0. 005 0 , .1041 0. 0000 . OOOOE+OO ,OOOOE+00 0 .0000
— 340 0 . 00 0 . 000 0. 003 0. .1040 0. 0000 .OOOOE+OO . OOOOE+OO 0 ,0000
M> 341 0. 00 0. 000 0. 001 0 .1040 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
342 0. 00 0. 000 0 . 000 0 . 1040 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000
— 343 0 . 00 0. 000 0. 000 0 .1040 0. 0000 .OOOOE+OO . OOOOE+OO 0 . 0000
•M 344 0. 00 0, 000 0. 000 0 .1040 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000
IMI 345 0. 10 0 . 000 0. 035 0 -1058 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000
346 0. 10 0. 000 0. 035 0 -1076 0. 0000 .OOOOE+00 . OOOOE+OO 0 . 0000
IM 347 0. 00 0. 000 0. 003 0 .1075 0. 0000 .OOOOE+OO .OOOOE+OO 0 , 0000
Ml 348 0. 10 0-000 0 . 038 0 .1092 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000
349 0 . 00 0. 000 0. 003 0 .1092 0. 0000 -OOOOE+OO . OOOOE+00 0 . 0000
350 0. 00 0 . 000 0. 007 0 . 1089 0 . 0000 .OOOOE+00 . OOOOE+OO 0 .0000
MI 351 0. 00 0. 000 0-007 0 .1088 0. 0000 .OOOOE+OO . OOOOE+OO 0 . 0000
IM 352 0. 00 0 . 000 0 . 006 0 .1086 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000
353 0. 00 0 . 000 0. 006 0 . 1084 0. 0000 .OOOOE+OO . OOOOE+00 0 .0000
Ml 354 0. 00 0. 000 0. 006 0 .1083 0. 0000 .OOOOE+OO .OOOOE+OO 0 , 0000
Ml 355 0. 00 0. ,000 0. 005 0 .1081 0. 0000 ,OOOOE+00 .OOOOE+OO 0 ,0000
356 0. ,20 0. , 000 0. ,041 0 .1125 0. 0000 .OOOOE+OO .OOOOE+00 0 , 0000
•••>
357 0. ,00 0. , 000 0. ,003 0 . 1125 0-0000 . OOOOE+OO . OOOOE+OO 0 .0000
mm 358 0. , 00 0 . ,000 0. , 037 0 . 1114 0. .0000 . OOOOE+OO .OOOOE+OO 0 . 0000
359 0 . ,00 0-, 000 0 -,039 0 .1104 0. , 0000 .OOOOE+00 .OOOOE+00 0 .0000
360 0 -,00 0 . , 000 0 , , 015 0 . 1099 0. .0000 ,OOOOE+OO . OOOOE+OO 0 .0000
361 0 , • 00 0, . 000 0 , • 012 0 . 1096 0-, 0000 .OOOOE+00 .OOOOE+00 0 . 0000
362 0. . 00 0 , • 000 0 , . oil 0 .1093 0 -, 0000 .OOOOE+OO . OOOOE+00 0 .0000
363 0 , • 00 0 , . 000 0. . 010 0 .1090 0 , ,0000 .OOOOE+00 .OOOOE+OO 0 .0000
MM
364 0 , . 00 0, .000 0, . 009 0 . 1088 0 , • 0000 .OOOOE+00 . OOOOE+00 0 .0000
365 0 . .00 0 , . 000 0. . 009 0 . 1085 0, . 0000 .OOOOE+00 . OOOOE+OO 0 .0000
MM 366 0 . .00 0 . 000 0 . 009 0 . 1083 0 , . 0000 .OOOOE+OO . OOOOE+00 0 .0000
********************************************** ******************************
************ **************************************** ***************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1996
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 11.30 2.35 9.60 1.50 0.60 0.55
0 .10 0 .00 0 . 00 0 .20 0 . 00 0 . 50
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.154 0,162 2.285 0.000 0.000 0.000 M
0.000 0.000 0.000 0.000 0.000 0.000
HR
2. 62 6 2. 63 8 3. 951 3,286 2.702 2. 675
2.697 0.803 0.000 0.068 0.109 0.370
P
0.0461 0.1641 0.7162 0.6290 0.4877 0.4086
0.2498 0.0034 0.0000 0.0000 0.0000 0.0000 ^
0.0307 0,0325 0.0303 0.0052 0.0303 0,3789
0.452 9 0.4022 0.2745 0.1919 0.1379 0.1126 »
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.199
4 .995
0 .318
2 .217
P
ii
1.762 22.513 20.707 14.679 12.133
0.008 0.000 0.000 0.000 0.000 k
0.806
0 . 043
10.686
0. 000
2 .579
0 . 000
2 . 094
0 . 000
1,701
0. 000
*******************************************************************************
^i
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1996
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
INCHES
26 . 70
2 . 600
21.923
2 . 705009
6 .4163
2 .079909
CU. FEET
96921.023
9438.867
79580.164
9819.184
PERCENT
100.00
9 . 74
82 .11
10 .13
7550.071 7 .79
P
P
P
P
P
CHANGE IN WATER STORAGE 0. 097 351.927 0.36
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
11.370
11.467
0 .000
0.000
0.0000
41271.777
41623.703
0.000
0.000
-0.007
0.00
0.00
0 .00
********* ****** **************************************************
HEAD #1: AVERAGE HEAD ON TOP OF LAYER 2
DRAIN #1: LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
LEAK #1: PERCOLATION OR LEAKAGE THROUGH LAYER 2
LEAK #2: PERCOLATION OR LEAKAGE THROUGH LAYER 3
********************************************************!
DAILY OUTPUT FOR YEAR 1997
S
Htm DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
mm
R L IN. IN-IN. IN./IN. IN. IN. IN. IN.
1 0 10 0 .000 0 . 042 0 .1099 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
IH 2 0 . 00 0 . 000 0 -005 0 . 1097 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
RM 3 0 . 00 0 . 000 0 . 013 0 . 1094 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
4 0 . 00 0 . 000 0 . 012 0 . 1091 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000-
Hi 5 0 . 00 0 . 000 0 . 012 0 . 1087 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
mm 6 0 .25 0 .000 0 . 044 0 . 1145 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
7 0 . 00 0 .000 0 .035 0 -1135 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000
^m 8 0 .00 0 .000 0 .065 0 .1117 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
wm 9 0 .00 0 .000 0 .052 0 .1102 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
10 0 .05 0 - 000 0 .044 0 .1104 0 . 0000 . OOOOE+OO .OOOOE+00 0 0000
11 0 . 00 0 .000 0 .005 0 .1103 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000
12 0 .00 0 .000 0 . 017 0 . 1098 0 .0000 .OOOOE+OO . OOOOE+OO 0 0000
mm 13 0 . 00 0 .000 0 .014 0 . 1094 0 .0000 .OOOOE+00 .OOOOE+OO 0 0000
350 0 . 00 0 . 000 0 . 041 0 .2211 0 . 0000 . OOOOE+OO . OOOOE+OO 0. 0000
351 0 . 00 0 . 000 0 . 052 0 .2197 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 HI
352 0 . 00 0 .000 0 .071 0 .2177 0 .0000 ,OOOOE+OO .OOOOE+00 0. 0000 HI
353 0 .00 0 . 000 0 .068 0 .2158 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000
354 0 . 00 0 . 000 0 . 067 0 .2140 0 .0000 .OOOOE+OO .OOOOE+OO 0. 0000
355 0 .00 0 . 000 0 .070 0 .2120 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 ill
356 0 .00 0 .000 0 .062 0 .2103 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
357 0 .00 0 . 000 0 .062 0 .2086 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 •i
358 0 .00 0 . 000 0 .061 0 .2069 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 •I
359 0 . 00 0 . 000 0 .053 0 .2054 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000
360 0 .00 0 . 000 0 .055 0 .2039 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 Hi
361 0 .00 0 . 000 0 .050 0 .2025 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 HI
362 0 .00 0 .000 0 . 048 0 .2012 0 . 0000 .OOOOE+00 . OOOOE+OO 0. 0000 HI
363 0 .00 0 . 000 0 .045 0 . 1999 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000
IM
364 0 .00 0 .000 0 . 051 0 .1985 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 ^m
365 0 . 00 0 .000 0 . 057 0 .1969 0 . 0000 . OOOOE+0.0 .OOOOE+OO 0. 0000
*******************************************************************************''
PI
p
******************************************************************************* p
p
p
MONTHLY TOTALS (IN INCHES) FOR YEAR 1997
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 1. 10
0 . 00
2 . 60
0 . 00
0 . 65
0 . 00
0.00
4 .35
0.20
2 . 65
0.00
0 .50
RUNOFF 0 . 000
0 . 000
0.000
0 .000
0. 000
0.000
0 . 000
0 . 012
0 . 000
0.000
0 . 000
0 .000
EVAPOTRANS PIRATION 0 . 785
0 .000
2 . 061
0 . 000
1.409
0 . 000
0 .249
0.292
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0924
0 . 0439
0.0710
0 . 0402
0 .0684
0 . 0358
0.0582
0 . 0343
0 .200
1. 859
0 . 0000
0 . 0228
0.0536
0.0329
0.000 "
1.970 iH
0.0000
0.0000
0.0467
0.0278
P
P
P
m
p
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES) p
i
i
Ml
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.009 0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.025 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1997
INCHES CU. FEET PERCENT
PRECIPITATION 12.05 43741.500 100.00
RUNOFF 0.012 43 .497 0.10
EVAPOTRANS PIRATION 8.825 32033.932 73.23
PERC./LEAKAGE THROUGH LAYER 2 0 .022827 82.861 0.19
AVG. HEAD ON TOP OF LAYER 2 0 .0007
PERC./LEAKAGE THROUGH LAYER 3 0.605243 2197.033 5.02
CHANGE IN WATER STORAGE 2 . 608 9467.046 21. 64
SOIL WATER AT START OF YEAR 11.467 41623.703
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
14 . 075
0 . 000
0 . 000
0 . 0000
51090.750
0 . 000
0 . 000
-0 . 007
0 .00
0 . 00
0 . 00
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 6.75
0.00
0.90
0.00
0.00
0 . 00
0 .10
0.71
0. 05
2 . 87
0.00
2.33
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
0.389
0.000
2.881
0.000
0. 000
0 . 000
1. 991
0.000
0 . 000
0 .000
2 .233
0.000
0 . 000
0 .000
2 . Ill
0.064
0 . 000
0.000
0 . 818
0.838
0.000
0.000
0. 000
2 .102
0.0606 0.2241 0.2320 0.2023 0.0034 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0,0315 0,0327 0,0315 0,0194 0.0000 0.0001
0.0272 0.0544 0,0605 0.0623 0-0571 0.0547
P
m
P
P
P
P
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.550 4.951 4.253 3.246 0.004 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATION OF DAILY,
HEAD ON TOP OF LAYER 2
1. 024
0 . 000
0 .277
0 . 000
0 .394
0 .000
1.179
0 . 000
0 . 023
0 . 000
0 . 000
0 .000
******* ************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1998
INCHES CU. FEET PERCENT
HI
HI
ii
P
k
PRECIPITATION 13 .71 49767.301 100.00
RUNOFF
EVAPOTRANS PIRATI ON
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 3
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0.389
13.037
0.722446
1.0837
0 .431453
-0.148
14 .075
13.927
0.000
0.000
0.0000
1410.805
47325.879
2622.480
1566.176
-535.564
51090.750
50555.187
0.000
0.000
0.002
2.83
95 . 09
5.27
3 .15
-1.08
0.00
0.00
0.00
*******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
TOTALS
STD. DEVIATIONS
5.03
0 . 06
4.48
0 . 10
3 . 12
0 . 04
2 . 13
0.10
2 .51
0 .11
3 .20
0.31
0.90
0 . 72
1.53
1.32
0.27
1.02
0.31
1.07
0.21
1.29
0. 31
1. 34
RUNOFF
TOTALS 0.320 0.184 0.253 0.000 0.000 0.000
0.000 0.000 0.000 0.001 0.000 0.000 p
P
STD. DEVIATIONS 0.810 0.447 0.717 0.000 0.000 0.000
0.000 0.000 0.000 0.0 04 0.000 0.000 P
P
EVAPOTRANS PIRATION
P
TOTALS 2.120 2.089 2.559 2.168 1.525 0.981 ^
0.470 0.130 0.038 0.100 0.528 1,087
P
STD. DEVIATIONS 0.731 0.617 0.776 1.032 1.116 1.195
0 .932 0.252 0.086 0.097 0.528 0.660 p
li
PERCOLATION/LEAKAGE THROUGH LAYER 2
H
TOTALS 0.0284 0.1115 0.1823 0.1517 0.1151 0.0816 ^
0.0311 0.0003 0.0000 0.0000 0,0023 0.000 0
m
STD. DEVIATIONS 0.0569 0.2312 0.3033 0.2420 0.1947 0.1474 IH
0.0792 0.0011 0.0000 0.0000 0.0072 0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 3 •*
TOTALS 0.02 98 0.0261 0.0241 0.024 7 0.0683 0.0974 "
0.0990 0.0880 0.0633 0.0499 0.0401 0.0358
STD. DEVIATIONS 0.0328 0.0255 0.0252 0.0321 0.1603 0.1799
0.1751 0.1473 0.0967 0.0687 0.04 96 0.0405
il
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) P
P
P
DAILY AVERAGE HEAD ON TOP OF LAYER 2 P
AVERAGES 0.5712 3.2645 5.1769 4.1905 2.8937 2.0268 W
P
0.5681 0.0008 0.0000 0.0000 0.0009 0.0000 "
P
STD. DEVIATIONS 1.5532 8.1210 9.8401 8.0167 5,9395 4,1353 ^
1.5705 0.0025 0.0000 0,0000 0.0028 0.0000
P
******************************************************************************* ^
P
*******************************************************************************
AVERAGE ANNUAL TOTALS & (STD, DEVIATIONS) FOR YEARS 1989 THROUGH 1998
INCHES CU. FEET PERCENT
PRECIPITATION 15.27 ( 6.145) 55444.6 100.00
RUNOFF 0.758 ( 1.3995) 2751.84 4.963
EVAPOTRANSPIRATION 13.795 ( 4.2596) 50074.69 90.315
PERCOLATION/LEAKAGE THROUGH 0 . 70447 ( 1.16719) 2557.221 4 . 61221
LAYER 2
AVERAGE HEAD ON TOP 1.558 ( 2.984)
OF LAYER 2
PERCOLATION/LEAKAGE THROUGH 0.64664 ( 0.89246) 2347.299 4.23359
LAYER 3
CHANGE IN WATER STORAGE 0.075 ( 1.5382) 270.79 0.488
*******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998
(INCHES) (CU. FT.)
PRECIPITATION 4 .00 14520.000
RUNOFF 1.673 6072.9868
PERCOLATION/LEAKAGE THROUGH LAYER 2 0.035758 129.80089
AVERAGE HEAD ON TOP OF LAYER 2 3 5.98 6
PERCOLATION/LEAKAGE THROUGH LAYER 3 0.018515 67.20901
SNOW WATER 0.00 0.0000
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 1998
P
li
ii
LAYER (INCHES)
6.6498
0.0000
(VOL/VOL)
0.1847
0.0000
HI
ii
P
5.9453 0.2477
SNOW WATER 0.000
******************************************************************************
******************************************************************************
Ml
Hi
IH
m
p
P
P
i
******************************************************************************
******************************************************************************
** **
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **
** HELP MODEL VERSION 3.06 (17 AUGUST 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **
**
**
**
* *
******************************************************************************
******************************************************************************
PRECIPITATION DATA FILE: C:\ACTIVE\OLDDOS-l\HELP3A\SMARCO.D4
TEMPERATURE DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0.D7
SOLAR RADIATION DATA FILE: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC0.D13
EVAPOTRANSPIRATION DATA: C:\ACTIVE\OLDDOS-I\HELP3A\SMARC02.Dl1
SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC3.D10
OUTPUT DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC3.0UT
TIME: 10:47 DATE: 3/ 5/2002
**************************************************************************
TITLE: San Marcos Landfill
******** **********************************************************************
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.
LAYER 1
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT. HYD. COND.
3 6.00 INCHES
0.4730 VOL/VOL
0.222 0 VOL/VOL
0.104 0 VOL/VOL
0.1836 VOL/VOL
0.739999996000E-05 CM/SEC
m
mi
m
p
HIW
p
LAYER
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 3 5
0.08 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND.
FML PINHOLE DENSITY
FML INSTALLATION DEFECTS
FML PLACEMENT QUALITY
0 . 0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
0.199999996000E-12 CM/SEC
1.00 HOLES/ACRE
10.00 HOLES/ACRE
4 - POOR
P
P
P
m
p
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
24.00 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT- HYD- COND-
0.464 0 VOL/VOL
0.3100 VOL/VOL
0 . 1870 VOL/VOL
0.3100 VOL/VOL
0.999999997000E-06 CM/SEC
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
il
p
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT. HYD. COND.
24.00 INCHES
0-473 0 VOL/VOL
0.222 0 VOL/VOL
0.1040 VOL/VOL
0.222 0 VOL/VOL
0,430000000000E-04 CM/SEC
GENERAL DESIGN AND EVAPORATIVE ZONE DATA
NOTE: SCS RUNOFF CXmVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH AN
EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 3.%
AND A SLOPE LENGTH OF 500. FEET.
SCS RUNOFF CURVE NUMBER
FRACTION OF AREA ALLOWING RUNOFF
AREA PROJECTED ON HORIZONTAL PLANE
EVAPORATIVE ZONE DEPTH
INITIAL WATER IN EVAPORATIVE ZONE
UPPER LIMIT OF EVAPORATIVE STORAGE
LOWER LIMIT OF EVAPORATIVE STORAGE
INITIAL SNOW WATER
INITIAL WATER IN LAYER MATERIALS
TOTAL INITIAL WATER
TOTAL SUBSURFACE INFLOW
62.40
100.0
1.000
36.0
6.608
17.028
3 .744
0.000
19.374
19.374
0. 00
PERCENT
ACRES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES/YEAR
EVAPOTRANSPIRATION AND WEATHER DATA
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
SAN DIEGO CALIFORNIA
STATION LATITUDE
MAXIMUM LEAF AREA INDEX
START OF GROWING SEASON (JULI.AN DATE)
END OF GROWING SEASON (JULIAN DATE)
EVAPORATIVE ZONE DEPTH
AVERAGE ANNUAL WIND SPEED
AVERAGE 1ST QUARTER RELATIVE HUMIDITY
3 3.10 DEGREES
1. 00
0
367
36.0 INCHES
6.80 MPH
65.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66.00 %
NOTE: PRECIPITATION DATA FOR LAKE HODGES
WAS ENTERED FROM AN ASCII DATA FILE.
CA
P
P
P
P
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
P
k
p
JAN/JUL
56.80
70 .30
FEB/AUG
58.40
72.20
MAR/SEP
59.00
71,30
APR/OCT
61.20
67,50
MAY/NOV
63 .40
61.60
JUN/DEC
66.30
57.40
li
HI
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
AND STATION LATITUDE = 33.10 DEGREES
P
P
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION!
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
iH
IH
*******************************************************************************
DAILY OUTPUT FOR YEAR 198 9
S
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD HI
I I WATER #1 #1 #1 #2 ii
R L IN. IN. IN. IN./IN. IN. IN. IN. IN. - •
337 0 . 00 0 , .000 0 . 021 0 , .1264 0 , . 0000 .OOOOE+OO . OOOOE+OO 0, .0000
338 0. 00 0, . 000 0 . 023 0 .1258 0, .0000 . OOOOE+00 . OOOOE+00 0, .0000
339 0. 00 0 . 000 0 . 024 0 . 1251 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
340 0 . 00 0 . 000 0. 024 0 . 1244 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
Ml 341 0, 00 0 , 000 0. 024 0 .1238 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000
Ml 342 0. 00 0 .000 0. 026 0 .1231 0 .0000 . OOOOE+OO . OOOOE+00 0 .0000
343 0 . 00 0 .000 0 . 029 0 .1222 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000
344 0 . 00 0 .000 0 . 028 0 . 1215 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000
mm 345 0. 60 0 .000 0. 065 0 .1363 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000
346 0 . 40 0 , 000 0 . 060 0 . 1458 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000
347 0 . 10 0 .000 0. 048 0 . 1472 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000
IMI 348 0, 50 0 .000 0. 052 0 .1596 0 ,0000 ,OOOOE+00 . OOOOE+00 0 .0000
— 349 0. 00 0 .000 0 . 019 0 ,1591 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
Ml 350 0. 70 0 .000 0. 071 0 .1766 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000
351 0. 00 0 .000 0 . 041 0 .1755 0 , 0000 ,OOOOE+00 .OOOOE+00 0 .0000
352 0. 20 0 .000 0. 060 0 .1793 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000
Ma 353 0. 00 0 .000 0. 036 0 .1783 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000
354 1. 10 0 .000 0-058 0 .2073 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000
355 0. 00 0 .000 0 . 035 0 .2063 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000
*•
356 0. ,00 0 .000 0. 038 0 .2052 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000
357 0. ,10 0 .000 0. 071 0 .2060 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000
358 0, .00 0 .000 0 . 074 0 .2040 0 .0000 .OOOOE+OO , OOOOE+OO 0 .0000
MM 359 0-,00 0 .000 0. , 076 0 .2019 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
•M 360 0-,00 0 .000 0 . ,079 0 .1997 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000
MM 361 0. .00 0 .000 0. .075 0 .1976 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
^M 362 0 , . 00 0 .000 0 -, 093 0 .1950 0 , 0000 .OOOOE+OO .OOOOE+00 0 . 0000
Wn 363 0 , • 00 0 . 000 0-.089 0 .1926 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000
Ml 364 0 , . 00 0 .000 0 , • 089 0 ,1901 0 .0000 . OOOOE+00 .OOOOE+00 0 , 0000
365 0. .00 0 .000 0 , .073 0 .1881 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1989
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 3 . 80
0.00
1. 15
0 . 00
0 .00
0 .00
4 .95
0 . 00
0,20
1.45
0 . 00
3 .70
RUNOFF 0 . 000
0.000
0.000
0.000
0 . 000
0.000
0 . 000
0.000
0.000
0.000
0 .000
0.000
EVAPOTRANS PIRATION
ii
2.866 1.998 2.194 3.121 2.409 0.375
0.000 0.000 0.000 0.000 0.579 1.544 P
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 *
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p
p
p MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000 il
0.000 0.000 0.000 0.000 0.000 0.000 m
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000 P
0.000 0.000 0,000 0.000 0.000 0.000 P
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1989
INCHES CU. FEET PERCENT
PRECIPITATION 15 .25 55357.504 100.00
RUNOFF 0 . 000 0 . 000 0 . 00
EVAPOTRANS PIRATION 15 . 087 54766.348 98 . 93
PERC./LEAKAGE THROUGH LAYER 2 0.000000 0 . 000 0.00
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
0.0000
0.000000 0 . 000 0 . 00
CHANGE IN WATER STORAGE 0 .163 591.157 1.07
SOIL WATER AT START OF YEAR 23.094 83830.914
SOIL WATER AT END OF YEAR 23 .257 84422.070
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE 0.0000 0,000 0.00
*******************************************************************************
0 .000
0 .000
0 . 0000
0.000
0 . 000
0.00
0 . 00
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
******************************************* '*********5
DAILY OUTPUT FOR YEAR 1990
m^
ma
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
M. I I WATER #1 #1 #1 #2
-R L IN, IN-IN. IN./IN. IN. IN. IN. IN.
mm
MM 1 0.15 0 - 000 0 . 074 0.1902 0.0000 .OOOOE+OO . OOOOE+00 0 . 0000
2 0 . 00 0 . 000 0 .066 0.1884 0 .0000 . OOOOE+00 .OOOOE+00 0.0000
3 0.40 0 .000 0.069 0.1976 0 . 0000 . 00O"0E+00 . OOOOE+OO 0.0000
Hi 4 0.00 0 .000 0 . 082 0.1953 0.0000 .OOOOE+OO . OOOOE+00 0.0000
5 0.20 0 .000 0 . 071 0.1989 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000
6 0 .00 0 . 000 0 . 070 0.1969 0 . 0000 .OOOOE+00 .OOOOE+00 0.0000
HI 7 0 . 00 0 . 000 0.081 0.1947 0 .0000 .OOOOE+OO .OOOOE+00 0.0000
wm 8 0 . 00 0 .000 0. 074 0.1926 0.0000 .OOOOE+OO .OOOOE+OO 0.0000
mm 9 0 . 00 0 . 000 0 . 078 0.1905 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000
mw 10 0 .00 0 .000 0 . 085 0.1881 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
wm 11 0 .00 0 . 000 0 . 075 0.1860 0.0000 .OOOOE+00 .OOOOE+OO 0 . 0000
Mi 12 0 ,00 0 .000 0.079 0,1838 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000
13 0 . 00 0 . 000 0 . 077 0.1817 0.0000 .OOOOE+OO .OOOOE+00 0.0000
mm 14 0-00 0 .000 0.071 0.1797 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000
Mi 15 0 . 00 0 . 000 0.085 0.1773 0.0000 .OOOOE+OO .OOOOE+OO 0 . 0000
16 0.00 0.000 0.080 0-1751 0.0000 .OOOOE+OO . OOOOE+OO 0.0000
M» 17 0.00 0 . 000 0 . 092 0.1726 0.0000 .OOOOE+00 . OOOOE+OO 0.0000
mm 18 0 . 00 0.000 0.096 0.1699 0.0000 . OOOOE + 00 ,OOOOE+OO 0.0000
355 0 . 00 0 . 000 0 -026 0 . 1086 0 . 0000 -OOOOE+OO .OOOOE+OO 0 .0000
356 0 . 00 0 . 000 0 . 027 0 . 1079 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 ii
357 0. 00 0 .000 0. 029 0. 1071 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 il
358 0. 00 0 .000 0. 042 0. 1059 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
359 0 . 00 0 . 000 0. 042 0 . 1047 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000 p
360 0 . 00 0 . 000 0. 007 0 . 1045 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000 p
361 0. 00 0 . 000 0. 007 0, 1043 0 ,0000 . OOOOE+00 .OOOOE+OO 0 . 0000
362 0. 00 0 . 000 0-006 0 , 1042 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 ^w 363 0. 00 0 .000 0, 004 0. 1041 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000 p
364 0 . 00 0 . 000 0 . 002 0 . 1040 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 PW 365 0. 00 0 .000 0. 000 0. 1040 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000 PW
*******************************************************************************Tl
P
IHI
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1990
P
P
HH
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC P
PRECIPITATION 1.10
0 .00
1.75
0-00
1.30
1.00
0 .10
0.35
0 .50
0.20
0 . 10
0 . 00
RUNOFF 0.000
0 . 000
0 . 000
0 . 000
0 .000
0 . 000
0 . 000
0.000
0 . 000
0.000
0 . 000
0. 000
EVAPOTRANS PIRATION 2-459
0 . 000
1 .713
0 . 000
2 . 090
0 .274
1. 015
0 .189
0 . 500
0 .470
0 . 100
0 - 617
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000
0 . 0000
0 - 0000
0 . 0000
0.0000
0 .0000
0.0000
0.0000
0.0000
0.0000
0 . 0000
0 .0000
0.0000
0 . 0000
0.0000
0.0000
0.0000
0 .0000
0.0000
0,0000
0.0000
0.0000
0.0000
0.0000
ii
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 . 000
0-000
0.000
0-000
0.000
0,000
0,000
0 . 000
0.000
0 - 000
0 - 000
0.000
p
p
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1990
INCHES CU. FEET PERCENT
PRECIPITATION 6.40 23231.996 100.00
RUNOFF 0.000 0 . 000 0 . 00
EVAPOTRANS PIRATION 9-427 34220.047 147.30
PERC./LEAKAGE THROUGH LAYER 2 0.000000 0.000 0.00
AVG. HEAD ON TOP OF LAYER 2 0.0000
PERC./LEAKAGE THROUGH LAYER 4 0.000000 0 .000 0 . 00
CHANGE IN WATER STORAGE -3.027 -10988.046 -47.30
SOIL WATER AT START OF YEAR 23.257 84422.070
SOIL WATER AT END OF YEAR 20.230 73434 . 023
SNOW WATER AT START OF YEAR 0 .000 0 . 000 0. 00
SNOW WATER AT END OF YEAR 0 . 000 0 . 000 0 . 00
ANNUAL WATER BUDGET BALANCE 0 . 0000 -0 . 005 0 . 00
****************** *************************************************************
HEAD #1
DRAIN #1
LEAK #1
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
MONTHLY TOTALS (IN INCHES) FOR YEAR 1991
PRECIPITATION
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
3.41
0.10
1.75
0 . 10
0.50
0.00
0.80
0.00
0.90
1.35
0.80
0.40
P
P
P
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0. 058
0. 000
1.565
0.100
0. 000
0. 000
1. 640
0.100
0.000
0.000
1.679
0,000
0.000
0.000
1,450
0.000
0. 000
0 .000
0 .391
0.236
0 . 000
0 . 000
1.377
0 .548
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 M
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 p
0.0000 0.0000 0.0000 0.0000 0.0000 o.ooooP
p
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD, DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0. 000
0.000
0 . 000
0.000
0.000
0.000
0 . 000
0 . 000
0. 000
0 .000
0 .000
0.000
0. 000
0 . 000
0 . 000
0 . 000
0 .000
0 .000
0 . 000
0 . 000
0 .000
0. 000
0 . 000
0. 000
p
*******************************************************************************
p
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1991
PRECIPITATION
RUNOFF
EVAPOTRANS PI RAT I ON
INCHES
10 .11
0.058
9.086
CU. FEET
36699.301
211.735
32981.051
PERCENT
100.00
0 .58
89.87
P
HI
P
P
P
k
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 .000000
0.0000
0 .000000
0 . 966
20.230
21.196
0.000
0.000
0.0000
0 . 000 0.00
0.000
3506.495
73434.023
76940.523
0 . 000
0.000
0-022
0. 00
9.55
0.00
0 . 00
0.00
********* **********************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************•=
DAILY OUTPUT FOR YEAR 1992
DAY A
S
0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN./IN. IN. IN. IN. IN.
1 0.30 0. 000 0-069 0.1372 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
2 0.15 0 . 000 0 . 064 0.1396 0.0000 .OOOOE+OO .OOOOE+00 0.0000
3 0 . 00 0 . 000 0 . 014 0.1392 0.0000 .OOOOE+OO .OOOOE+00 0.0000
4 0 . 00 0-000 0 . 020 0.1387 0.0000 .OOOOE+OO . OOOOE+OO 0.0000
5 0.00 0 . 000 0.021 0.1381 0.0000 .OOOOE+OO .OOOOE+00 0.0000
6 0 . 00 0 . 000 0.031 0.1372 0.0000 ,OOOOE+00 .OOOOE+00 0.0000
343 0. 00 0 .000 0, 005 0 .1056 0 . 0000 .OOOOE+OO . OOOOE+OO 0 .0000
344 0 . 00 0 . 000 0 . 005 0 .1055 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 ii
345 0. 00 0 .000 0. 005 0 .1053 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000 li
346 0 . 00 0 . 000 0 . 006 0 .1052 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
347 0. 00 0 . 000 0 . 006 0 . 1050 0 .0000 .OOOOE+OO . OOOOE+00 0 .0000 p
348 0 . 00 0 . 000 0. 006 0 .1048 0 .0000 .OOOOE+00 .OOOOE+OO 0 , 0000 p
349 0 . 30 0 . 000 0. 054 0 .1117 0 . 0000 .OOOOE+OO .OOOOE+00 0 .0000
p 350 0. 00 0 . 000 0. 003 0 . 1116 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p
351 0. 00 0 .000 0. 032 0 .1107 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 p
352 0 . 00 0 .000 0. 017 0 -1102 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000
p 353 0. 00 0 . 000 0. 012 0 -1099 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p 354 0 . 00 0 . 000 0. 010 0 .1096 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 p
355 0. 00 0 .000 0-009 0 . 1094 0 .0000 .OOOOE+00 ,OOOOE+00 0 .0000 mm 356 0. 00 0 .000 0 -008 0 .1091 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 mm 357 0. 00 0 .000 0-009 0 .1089 0 .0000 .OOOOE+OO ,OOOOE+OO 0 .0000 mm 358 0. 00 0 .000 0. 010 0 .1086 0 .0000 .OOOOE+0.0 .OOOOE+00 0 .0000
359 0. 00 0 .000 0. 009 0 .1084 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 p
360 0. 00 0 .000 0-009 0 .1081 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000
361 0. 00 0 .000 0. 008 0 . 1079 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p
362 0 . 00 0 .000 0. 008 0 .1077 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p
363 0. 00 0 .000 0. 008 0 .1075 0 .0000 .OOOOE+00 . OOOOE+00 0 .0000
p 364 0. 00 • 0 .000 0. 008 0 .1072 0 .0000 .OOOOE+OO . OOOOE+OO 0 .0000 p
365 0 . 00 0 .000 0. 008 0 . 1070 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 p
366 0. 00 0 . 000 0. 008 0 .1068 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
********************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1992
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
0 .45
0 .30
0.000
0.000
6.30
0 . 00
0 .251
0 . 000
6.12
0 . 00
0 .222
0.000
0.00
0 . 00
0 . 000
0 . 000
0 .00
0 .00
0 . 000
0 . 000
0 . 00
0.45
0 . 000
0 . 000
mt
mt
EVAPOTRANS PIRATION 1. 014
0 . 577
0.765
0 . 142
3 .126
0. 000
2 .580
0 . 000
2 .753
0 . 000
2.629
0.349 HI
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0038 0.0276 0.0274 0.0172 P
0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 p
P
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0000 0.0001 0.0000 0.0000 0,0000
0,0000 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0,705 5.761 5.511 3.516
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 1.270 0.323 0.124 2.073
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1992
INCHES CU. FEET PERCENT
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
13 .62
0 .473
13.936
0.075930
1.2910
0.000102
-0.790
21.196
20 .406
0 . 000
0 . 000
49440.602 100.00
1716.847
275.624
0 .372
-2865 . 903
76940.523
74074.617
0 .000
0.000
3 .47
50589.277 102.32
0.56
0 . 00
-5 . 80
0.00
0 . 00
-ANNUAL WATER BUDGET BALANCE 0 . 0000 0 .009 0 . 00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
ii
ii
P
P
P
P
P
P
*******************************************************************************
DAILY OUTPUT FOR YEAR 1993
DAY A 0 RAIN RUNOFF ET
I I
R L IN. IN. IN.
E, ZONE HEAD DRAIN LEAK HEAD
WATER #1 #1 #1 #2 "
IN./IN. IN. IN. IN. IN. •
1 0 .20 0 .000 0. 055 0 . 1108 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 Ml
2 0 ,20 0 . 000 0 . 051 0 . 1150 0 . 0000 .OOOOE+00 . OOOOE+00 0 .0000 Hi
3 0 ,40 0 . 000 0 . 071 0 . 1241 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 Ml
4 1 .50 0 .000 0. 063 0. 1640 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
5 0 .30 0 .000 0. 060 0. 1707 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 p
6 0 . 50 0 . 000 0 . 070 0 . 1826 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000 p
7 0 . 00 0 .000 0. 091 0. 1801 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000
8 0 . 00 0 . 000 0 . 098 0 . 1774 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 p
9 0 .00 0 . 000 0 . 095 0 . 1747 0 . 0000 .OOOOE+00 . OOOOE+00 0 . 0000 p
10 0 . 00 0 . 000 0 . 072 0 . 1727 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000
11 0 .00 0 . 000 0 . 080 0 . 1705 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 p
12 0 . 00 0 . 000 0 . 073 0 . 1685 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p
13 0 . 00 0 . 000 0 . 080 0. 1662 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000
p 14 0 .00 0 .000 0. 055 0, 1647 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000 p
15 0 . 00 0 . 000 0 . 059 0 . 1631 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 p
16 0 . 00 0 .000 0 . 051 0 . 1617 0 .0000 . OOOOE+00 . OOOOE + OO 0 . 0000 • 17 0 .00 0 .000 0. 052 0. 1602 0 . 0000 . OOOOE+00 . OOOOE+OO 0 . 0000 MP
18 0 .00 0 .000 0, 058 0. 1586 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 p
19 0 . 00 0 .000 0 , 054 0 . 1571 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
20 0 .00 0 .000 0. 043 0. 1559 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p
21 0 .00 0 .000 0, 050 0. 1545 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
22 0 .00 0 ,000 0. 066 0. 1527 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 p
23 0 .00 0 .000 0. 077 0. 1505 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
p
p
360 0 . 00 0 .000 0 .039 0 .1306 0 .0000 ,OOOOE+OO .OOOOE+00 0 .0000
— 361 0 .70 0 . 000 0 . 057 0 . 1484 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
mm 362 0 . 10 0 . 000 0 .066 0 .1493 0 . 0000 . OOOOE+00 . OOOOE+00 0 .0000
363 0 . 80 0 . 000 0 . 069 0 . 1697 0 . 0000 , OOOOE+00 .OOOOE+00 0 . 0000
364 0 . 00 0 . 000 0 .035 0 . 1687 0 . 0000 . OOOOE+OO ,OOOOE+00 0 . 0000
wm 365 0 . 00 0 . 000 0 . 045 0 . 1674 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000
********************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1993
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 3.10
0.10
5.50
0.30
4.40
0.00
0.30
0.45
0 .20
0.00
0.00
3 .35
RUNOFF 0.000
0. 000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
EVAPOTRANS PIRATION 2 .193
0 .100
2 .052
0.256
3.242
0.044
2 .901
0.114
2 .490
0.226
0 .713
1.177
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0020 0.0023 0.0046 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0000 0.0022 0.0025 0.0025 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 .000
0. 000
0 . 000
0.000
0 .343
0.000
0 .384
0.000
0 .818
0.000
0 . 000
0 . 000
STD. DEVIATION OF DAILY
HEAD ON TOP OF" LAYER 2
0.000 0.000 0.352 0.198 0.800 0.001
0.000 0.000 0.000 0.000 0.000 0.000
*********** ********************************************************************
IP
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1993 P
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
INCHES
17.70
0 .000
15.508
0.008904
0.1288
0.007128
2 .185
20 .406
CU. FEET PERCENT
64251. 008 100.00
0 . 000
56293.305
32.320
25.873
7931.811
74074.617
0.00
17.61
0.05
0 . 04
12 .35
P
m
m
p
p
p
p
p
p
p
p
p
SOIL WATER AT END OF YEAR 22,591 82006.430
SNOW WATER AT START OF YEAR 0. 000 0 . 000 0 . 00
SNOW WATER AT END OF YEAR 0,000 0.000 0 .00
ANNUAL WATER BUDGET BALANCE 0.0000 0 . 021 0 . 00
*******************************************************************************
P
HI
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION!
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
DAILY OUTPUT FOR YEAR 1994
P
P
P
P
330 0 . 00 0 . 000 0, . 024 0. 1095 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
mm. 331 0 . 00 0 . 000 0 . 026 0, 1088 0. 0000 . OOOOE+00 . OOOOE+00 0, 0000
M. 332 0. 00 0 . 000 0 . 022 0. 1082 0. 0000 . OOOOE+00 .OOOOE+OO 0, 0000
333 0. 40 0 . 000 0 . 044 0. 1181 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
M" 334 0. 00 0 . 000 0 .029 0 . 1173 0 . 0000 .OOOOE+OO .OOOOE+OO 0 , 0000
IM 335 0. 00 0. 000 0 .030 0. 1165 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
336 0. 00 0. 000 0 . 032 0. 1156 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000
337 0 . 00 0 . 000 0 .033 0. 1147 0 . 0000 ,OOOOE+00 . OOOOE+00 0. 0000
MM 338 0. 00 0. 000 0 . 019 0. 1141 0 . 0000 .OOOOE+00 , OOOOE+00 0. 0000
Ml 339 0. 00 0. 000 0 .017 0 . 1137 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000
340 0 . 00 0. 000 0 .018 0. 1132 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
•u 341 0. 00 0. 000 0 . 017 0. 1127 0 . 0000 .OOOOE+OO . OOOOE+00 0. 0000
fm 342 0. 00 0. 000 0 .017 0 . 1122 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000
Ht 343 0. 00 0. 000 0 .017 0, 1118 0. 0000 .OOOOE+OO ,OOOOE+OO 0. 0000
344 0. 00 0. 000 0 .020 0 . 1112 0. 0000 . OOOOE+OO . OOOOE+OO 0, 0000
mm 345 0 . 60 0. 000 0 .055 0, 1263 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
m» 346 0. 00 0 . 000 0 . 022 0. 1257 0. 0000 .OOOOE+OO . OOOOE+OO 0. 0000
347 0 . 00 0 . 000 0 .023 0. 1251 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000
348 0. 50 0. 000 0 .046 0. 1377 0. 0000 .OOOOE+00 .OOOOE+OO 0. 0000
349 0. 00 0. 000 0 .029 0. 1369 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
MM 350 0. 00 0. 000 0 .029 0. 1361 0. 0000 . OOOOE+00 . OOOOE+OO 0. 0000
351 0. 00 0. 000 0 .031 0. 1352 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000
Ml 352 0 . 10 0-000 0 .054 0. 1365 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
•M 353 0. 00 0-000 0 . 042 0. 1353 0 . 0000 .OOOOE+00 . OOOOE+OO 0. 0000
354 0. 00 0. 000 0 .028 0 . 1345 0, 0000 . OOOOE+OO . OOOOE+00 0. 0000
MB 355 0. 00 0. 000 0 .041 0. 1334 0 . 0000 .OOOOE+00 .OOOOE+OO 0. ,0000
M. 356 0 . 00 0. 000 0 . 045 0. 1321 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000
357 0 . ,00 0. 000 0 . 044 0 . 1309 0 , 0000 .OOOOE+00 .OOOOE+00 0. , 0000
358 0. ,00 0 . 000 0 .042 0 . 1298 0 . 0000 .OOOOE+OO .OOOOE+00 0. , 0000
— 359 0. ,00 0 . . 000 0 . 045 0 . 1285 0 . 0000 .OOOOE+00 .OOOOE+OO 0. ,0000
mm 360 0. ,00 0 . .000 0 . 052 0. 1271 0 . 0000 .OOOOE+00 .OOOOE+OO 0. , 0000
361 0. ,00 0 . , 000 0 . 056 0 . , 1255 0 . .0000 .OOOOE+OO .OOOOE+00 0 -,0000
362 0 -,00 0 . .000 0 . 054 0. , 1240 0. . 0000 . OOOOE + 00 .OOOOE+00 0. .0000
•BUI 363 0 , ,00 0 -,000 0 . 053 0 . , 1225 0 . , 0000 .OOOOE+OO .OOOOE+OO 0 , , 0000
364 0 , , 00 0 , .000 0 . 056 0 -, 1210 0 . .0000 .OOOOE+00 .OOOOE+00 0 , • 0000
365 0 , , 00 0 , , 000 0 . 058 0 -, 1194 0-, 0000 . OOOOE + 00 .OOOOE+00 0 , • 0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1994
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
13 . 90
0.01
6 .46
0.00
0 . 77
0.00
0 . 00
0.15
0 - 00
1.00
0-60 M
1.20
2.515 1.965 0.000 0.000 0.000 0.000 P
0.000 0.000 0.000 0.000 0.000 0.000 m
2.419 3.041 2.529 2.241 2.652 2.514 "
2.608 0.980 0-000 0-085 0.586 1.125 ^
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.02 93 0.12 92 0.132 9 0.1041 0 .0847 0.054 0
0.0256 0.0003 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0017 0.0046 0.0047 0.0040 0.0045 0.0039
0.0023 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
6.118 29.722 27.767 22.614 17.848 11.675 P
5-139 0.058 0.000 0.000 0.000 0.000
Mi
9.002 5.537 2.013 0.549 2.032 1.059 "*
1.995 0.203 0.000 0.000 0.000 0.000
******************************************************************************* HI
P
P
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1994
P
P INCHES CU. FEET PERCENT
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
24 . 09
4 .479
20.781
0.560022
10.0785
87446.687 100.00
16260.451
75434.641
2032.878
18 . 59
86 .26
2 .32
P
Ml
P
P
P
k
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0. 025797
-1.196
22.591
21.395
0.000
0 . 000
0.0000
93.643
-4342 .038
82006.430
77664 .391
0.000
0.000
-0.012
0.11
-4 . 97
0.00
0.00
0 . 00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
********************************************************************************
DAILY OUTPUT FOR YEAR 1995
MM
p" DAY A
S
0 RAIN RUNOFF ET E, ZONE HEAD DRAIN LEAK HEAD
Mi I I WATER #1 #1 #1 #2
-R L IN. IN. IN. IN . /IN. IN. IN. IN. IN.
HI
wm 1 0 . 90 0.000 0. 074 0 .1423 0.0000 . OOOOE+00 . OOOOE+OO 0 . 0000
2 0 . 50 0 . 000 0 . 070 0 . 1543 0 . 0000 . OOOOE+00 . OOOOE+00 0 . 0000
Mi 3 0 . 00 0 . 000 0 . 050 0 .1529 0 . 0000 . OOOOE + 00 .OOOOE+00 0 .0000
wm 4 0 . 00 0.000 0 . 085 0 . 1505 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000
HI 5 0.00 0 . 000 0.098 0 .1478 0.0000 .OOOOE+OO . OOOOE+OO 0.0000
6 0. 00 0 . 000 0 . 105 0 ,1449 0.0000 .OOOOE+00 .OOOOE+00 0 . 0000
mm 7 0.00 0.000 0 .092 0 .1423 0.0000 .OOOOE+00 , OOOOE+00 0.0000
m 8 0.00 0.000 0. 073 0 .1403 0 . 0000 . OOOOE+OO .OOOOE+OO 0.0000
9 0.00 0.000 0. 067 0 .1385 0.0000 .OOOOE+00 , OOOOE+OO 0.0000
mm 10 0.00 0.000 0.069 0 .1366 0.0000 .OOOOE+OO , OOOOE+00 0 . 0000
MM 11 0 . 80 0.000 0 . 071 0 .1568 0.0000 .OOOOE+OO .OOOOE+OO 0 .0000
p
•i 348 0. 00 0 . 000 0 .024 0 . 1368 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
349 0 . 00 0 .000 0 . 024 0 . 1361 0 .0000 .OOOOE+00 , OOOOE+00 0. 0000 p
350 0. 00 0 .000 0 . 026 0 . 1354 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p
351 0 . 00 0 .000 0 . 026 0 . 1347 0 . 0000 .OOOOE+OO ,OOOOE+00 0 . 0000
352 0. 00 0 . 000 0 .026 0 . 1340 0 .0000 .OOOOE+OO .OOOOE+00 0. 0000 p
353 0, 00 0 . 000 0 .028 0. 1332 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p
354 0 , 00 0 . 000 0 .030 0 . 1324 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
p 355 0 . 00 0 . 000 0 . 033 0 . 1315 0 .0000 . OOOOE+00 . OOOOE+OO 0. 0000 p
356 0 . 00 0 . 000 0 .031 0. 1306 0 . 0000 .OOOOE+OO ,OOOOE+OO 0 . 0000 p
357 0 . 00 0 . 000 0 . 029 0 . 1298 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
358 0 . 00 0 .000 0 .029 0. 1290 0 .0000 . OOOOE+OO .OOOOE+00 0 . 0000 p
p 359 0 . 00 0 .000 0 .030 0 . 1281 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
p
p
360 0. 00 0 .000 0 . 033 0. 1272 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 p
361 0. 00 0 .000 0 .036 0. 1262 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
362 0 . 00 0 .000 0 .035 0 . 1253 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000
363 0 . 00 0 .000 0 .032 0 . 1244 0 . 0000 .OOOOE+OO -OOOOE+OO 0 . 0000 HI
364 0 . 00 0 .000 0 .031 0 . 1235 0 .0000 .OOOOE+00 .OOOOE+00 0. 0000 Ni
365 0 . 00 0 .000 0 .035 0 . 1225 0 . 0000 ,OOOOE+OO .OOOOE+OO 0 . 0000
********************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1995
iH
P
P
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 5.40
0 . 00
2 .45
0 - 00
1. 80
0,10
1.20
0 .95
0.00
0 .70
0.01
0 . 50
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0 . 000
0 . 000
2 . 669
0.000
0.0000
0 . 0000
0 .000
0 . 000
2 .466
0. 000
0 .0000
0-0000
0 . 037
0 . 000
3 .136
0 . 065
0.0000
0.0000
0 ,000
0 .000
2 . 702
0 .202
0 . 0000
0.0000
0 . 000
0.000
0 .393
0 .457
0.0000
0.0000
0 .000
0 . 000
0 . 010
0 . 860
0 .0000
0.0000
p
HI
P
P
HI
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 M
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ^
k
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000
0.000 0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0,000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1995
INCHES CU, FEET PERCENT
PRECIPITATION 13 .11 47589.301 100.00
RUNOFF 0.037 132.866 0.28
EVAPOTRANS PIRATION 12.960 47046,348 98.86
PERC./LEAKAGE THROUGH LAYER 2 0.000000 0. 000 0.00
AVG. HEAD ON TOP OF LAYER 2 0 .0000
PERC./LEAKAGE THROUGH LAYER 4 0.000000 0 .000 0.00
CHANGE IN WATER STORAGE 0 .113 410.069 0.86
SOIL WATER AT START OF YEAR 21.395 77664.391
SOIL WATER AT END OF YEAR 21.508 78074.461
SNOW WATER AT START OF YEAR 0.000 0 .000 0 .00
SNOW WATER AT END OF YEAR 0 . 000 0 . 000 0.00
ANNUAL WATER BUDGET BALANCE 0-0000 0 . 020 0.00
*****************************************************************************
366 0.00 0.000 0.009 0.1083 0.0000 .OOOOE+00 .OOOOE+OO 0.0000
*******************************************************************************!
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1996
P
HI
P
P
P
HI
P
HI
P
Hi
p
p
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
11.30
0.10
0.154
0.000
2.598
2.708
2.35
0.00
0.166
0 .000
2 .709
1.951
9.60
0.00
2 .537
0.000
3 .971
0.425
1,50
0 .20
0. 000
0.000
3 .317
0 .264
0.60
0 . 00
0 . 000
0.000
2.676
0.143
0.55
0.50
0, 000
0, 000
2 .712
0,400
0.0014 0.0112 0.1207 0.1165 0,0943 0.0745
0.0467 0.0155 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0017 0.0077 0.0081 0.0071 0,0066 0.0059
0.0024 0.0000 0.0000 0.0000 0.0000 0.0000
P
P
2 MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.235 2.259 25.079 25.232 19.852 16.215
9.684 3.045 0.000 0.000 0.000 0.000
0.376 0.972 10.661 2.643 1.73 6 1.643
2.243 2.097 0.000 0.000 0.000 0.000 •
******************************************************************************* ^P
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1996
P
P
P
k
INCHES CU. FEET PERCENT
PRECIPITATION 26.70 96921.023 100.00
RUNOFF 2 .857 10371.078 10.70
EVAPOTRANS PIRATION 23.874 86662.406 89.42
PERC./LEAKAGE THROUGH LAYER 2 0.480688 1744.898 1.80
AVG. HEAD ON TOP OF LAYER 2 8.4669
PERC./LEAKAGE THROUGH LAYER 4 0.039418 143.087 0.15
CHANGE IN WATER STORAGE -0.070 -255.601 -0 .26
SOIL WATER AT START OF YEAR 21.508 78074.461
SOIL WATER AT END OF YEAR 21.438 77818.859
SNOW WATER AT START OF YEAR 0.000 0 . 000 0.00
SNOW WATER AT END OF YEAR 0.000 0.000 0 . 00
ANNUAL WATER BUDGET BALANCE 0.0000 0 . 052 0.00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
DAILY OUTPUT FOR YEAR 1997
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD
I I WATER #1
R L IN. IN. IN- IN-/IN. IN.
DRAIN
#1
IN.
LEAK
#1
IN.
HEAD
#2
IN.
*******************************************************************************-
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1997
ii
•i
335 0 . 00 0. 000 0. 096 0 .2246 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
336 0 . 00 0 . 000 0. 058 0 .2230 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 ii
337 0 . 00 0 . 000 0 . 078 0 .2209 0 ,0000 .OOOOE+00 . OOOOE+OO 0 . 0000
338 0 .40 0 . 000 0. 059 0 .2304 0 .0000 .OOOOE+00 . OOOOE+OO 0 .0000
339 0 .10 0 . 000 0 . 065 0 .2313 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000 p
340 0 . 00 0. 000 0 . 073 0 .2293 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000 p
341 0 . 00 0 . 000 0. 071 0 .2273 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
342 0 . 00 0 . 000 0 . 085 0 ,2250 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 w 343 0 . 00 0 . 000 0. 086 0 .2226 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p
344 0 . 00 0 . 000 0. 053 0 .2211 0 .0000 . OOOOE+00 . OOOOE+OO 0 . 0000
345 0 .00 0. 000 0. 052 0 .2197 0 .0000 .OOOOE+00 . OOOOE+OO 0 . 0000 p
346 0 .00 0 . 000 0 . 067 0 .2178 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 •1
347 0 .00 0. 000 0 . 067 0 .2159 0 .0000 .OOOOE+00 . OOOOE+00 0 . 0000 p
348 0 .00 0. 000 0. 059 0 .2143 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000 Im
349 0 .00 0. 000 0 . 057 0 .2127 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000
350 0 .00 0 . 000 0. 053 0 .2113 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 p
351 0 .00 0. 000 0. 057 0 .2097 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
352 0 .00 0-000 0. 052 0 .2082 0 .0000 .OOOOE+00 .OOOOE+OO 0 .0000
353 0 .00 0-000 0. 054 0 .2067 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
•
354 0 .00 0. 000 0. 057 0 .2051 0 .0000 . OOOOE+00 . OOOOE+OO 0 . 0000 HI
355 0 .00 0-000 0. 061 0 .2034 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000
356 0 .00 0. 000 0. 055 0 .2019 0 .0000 .OOOOE+00 .OOOOE+00 0 .0000 •n 357 0 .00 0-000 0 . 056 0 .2004 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 HI
358 0 .00 0. 000 0. 055 0 .1988 0 .0000 .OOOOE+OO .OOOOE+OO 0 .0000 WW
359 0 .00 0. 000 0. 048 0 .1975 0 .0000 . OOOOE+OO .OOOOE+OO 0 .0000
360 0 . 00 0. 000 0, 050 0 ,1961 0 .0000 . OOOOE+OO ,OOOOE+00 0 .0000 mm
361 0 , 00 0. 000 0. 046 0 .1948 0 .0000 .OOOOE+OO .OOOOE+00 0 .0000 mw
362 0 .00 0. 000 0. 045 0 .1936 0 . 0000 . OOOOE+OO .OOOOE+OO 0 .0000
363 0 .00 0 . 000 0 . 042 0 . 1924 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000
364 0 .00 0. 000 0 . 049 0 .1910 0 .0000 .OOOOE+OO ,OOOOE+00 0 .0000 Mi
365 0 .00 0 . 000 0 . 054 0 . 1895 0 .0000 . OOOOE + OO .OOOOE+OO 0 .0000 Mi
JAN/JUL FEB/AUG MJVR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
1.10 2,60 0.65 0.00 0.20 0.00 ^
0.00 0.00 0.00 4.35 2.65 0.50
P
0.000 0.000 0.000 0.000 0.000 0.000 P
1^
0.000 0.000 0 . 000 0 . 013 0 . 000 0.000
EVAPOTRANS PIRATION 0.795 2.209 1.255 0.246 0.200 0.000
0.000 0.000 0.000 0.285 2.263 1.859
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0000 0.0011 0.0060 0.0074 0.0090
0.0102 0.0104 0.0098 0.0094 0.0082 0.0074
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0 . 000
0. 000
0.000
0.000
0 . 000
0 .000
0.000
0 . 000
0.000
0.000
0.000
0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000
0.000
0 . 000
0 . 000
0.000
0. 000
0 .000
0.000
0.000
0.000
0 . 000
0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1997
INCHES CU. FEET PERCENT
PRECIPITATION 12 . 05 43741.500 100.00
RUNOFF 0 .013 46.159 0 . 11
EVAPOTRANS PIRATION 9 .112 33078.227 75 . 62
PERC./LEAKAGE THROUGH LAYER 2 0.000000 0 .000 0 . 00
AVG. HEAD ON TOP OF LAYER 2 0.0000
PERC./LEAKAGE THROUGH LAYER 4 0.078957 286.612 0 .66
CHANGE IN WATER STORAGE 2 . 846 10330.505 23 . 62
SOIL WATER AT START OF YEAR 21.438 77818.859
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
24.284
0.000
0 . 000
0.0000
88149.367
0 .000
0.000
-0.002
HI
0.00
p
0.00 Im
0 . 00
*******************************************************************************
P
P
p
P
li
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION .AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
P
ii
******************** ***********************************************************' P
DAILY OUTPUT FOR YEAR 1998
S MH
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2 IM
R L IN IN. IN. IN ./IN. IN IN. IN. IN • Mi
Mi
1 0 . 10 0 . 000 0 . 062 0 . 1906 0 . 0000 . OOOOE+OO . OOOOE+00 0. 0000
2 0. 70 0 .000 0 . 061 0 .2084 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000 mw
3 0 . 00 0 . 000 0 . 081 0 .2061 0 . 0000 .OOOOE+00 -OOOOE+OO 0 . 0000
4 0 . 10 0 . 000 0 . 068 0 .2070 0 . 0000 . OOOOE + OO .OOOOE+OO 0 . 0000
5 0 -00 0 . 000 0 . 072 0 .2050 0 . 0000 . OOOOE + OO .OOOOE+00 0 , 0000 Ml
6 0-00 0 .000 0 .086 0 .2026 0 . 0000 .OOOOE+00 .OOOOE+00 0, 0000
7 0. 00 0 . 000 0 . 094 0 .2000 0 . 0000 .OOOOE+00 . OOOOE+00 0. 0000 Ml
8 0 . 00 0 . 000 0 . 112 0 . 1969 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 HI
9 0 . 00 0 . 000 0 . 071 0 . 1949 0 . 0000 .OOOOE+00 . OOOOE + OO 0 . 0000 p
10 0 . 00 0 .000 0 . 095 0 .1923 0 . 0000 .OOOOE+OO . OOOOE+00 0. 0000
11 0, 00 0 . 000 0 . 114 0 . 1891 0 . 0000 .OOOOE+00 . OOOOE + 00 0 . 0000 HI
12 3. 00 0 .349 0 . 076 0 .2607 0 . 0000 .OOOOE+00 . OOOOE+OO 0 . 0000 n
13 0. 30 0 . 000 0 .080 0 .2668 0 . 0000 .OOOOE+OO . OOOOE+OO 0. 0000 Ml
14 0. 00 0 . 000 0 .096 0 .2641 0. 0000 .OOOOE+OO . OOOOE+OO 0. 0000
15 0 . 30 0 .000 0 .064 0 .2706 0. 0000 . OOOOE+00 .OOOOE+00 0. 0000 p
16 0. 00 0 . 000 0 . 098 0 .2679 0. 0000 .OOOOE+OO .OOOOE+00 0. 0000 p
353 0 .00 0 . 000 0 . 059 0 .1961 0 .0000 .OOOOE+OO . OOOOE+OO 0 . 0000
mm 354 0 .20 0 .000 0 . 066 0 .1999 0 . 0000 .OOOOE+OO .OOOOE+00 0. 0000
mm 355 0 . 00 0 .000 0 . 066 0 .1980 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
356 0 .00 0 , 000 0. 065 0 .1962 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
•"•1 357 0 .00 0 , 000 0 . 068 0 . 1943 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
MH 358 0 .00 0 , 000 0. 075 0 .1922 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000
359 0 .12 0 .000 0. 060 0 .1939 0 . 0000 , OOOOE+OO .OOOOE+00 0 . 0000
360 0 .08 0 .000 0 . 066 0 .1943 0 . 0000 .OOOOE+00 .OOOOE+00 0. 0000
M> 361 0 . 00 0 .000 0 . 072 0 .1923 0 .0000 . OOOOE+OO .OOOOE+OO 0 . 0000
362 0 .00 0 .000 0 . 079 0 .1901 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
363 0 . 04 0 .000 0 . 062 0 .1895 0 . 0000 . OOOOE+OO . OOOOE+00 0. 0000
HM 364 0 . 00 0 . 000 0. 079 0 .1873 0 .0000 . OOOOE+00 .OOOOE+00 0. 0000
M. 365 0 .00 0 .000 0. 082 0 .1850 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000
********************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 6.75
0.00
0 .90
0 . 00
0.00
0 . 00
0 .10
0.71
0.05
2.87
0 .00
2 .33
RUNOFF 0 .444
0.000
0 . 000
0 . 000
0.000
0 . 000
0.000
0 . 000
0.000
0 . 000
0.000
0 .000
EVAPOTRANS PIRATION 2. 868
0.000
1.896
0 . 000
2.211
0 . 000
2 .117
0 . 065
1.342
0 . 834
0 . 000
2 . 096
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0006 0.0017 0.0000
0,0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0062 0.0046 0.0040 0.0035 0.0014 0.0004
0.0001 0.0000 0.0000 0.0000 0.0000 0.0001
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON 0.000 0.000 0.000 0.113 0.310 0.000
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0,000 0,292 0.582 0.000
0.000 0.000 0.000 0.000 0,000 0,000
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1998
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YE.AR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
INCHES
13.71
0 .444
13.428
0.002373
0.0352
0.020244
-0.182
24.284
24.102
0 .000
0 . 000
CU. FEET
49767.301
1611.982
48742.516
8 . 614
PERCENT
100.00
3 .24
97. 94
0 . 02
73 .485
-660.699
;8149. 367
;7488 . 664
0 .000
0 . 000
0.15
-1,33
0 . 00
0 . 00
ANNUAL WATER BUDGET BALANCE 0,0000 0.015 0.00
*******************************************************************************
PI
HI
******************************************************************************* im
P
P
P
p
m
HI
p
p
p
ii
******************************************************************************* p
P
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
TOTALS 5.03
0.06
3.12
0. 04
2 .51
0.11
0.90
0.72
0 .27
1.02
0.21
1.29
STD. DEVIATIONS 4 .48
0.10
2 .13
0. 10
3.20
0.31
1.53
1.32
0.31
1.07
0 .31
1.34
RUNOFF
TOTALS 0.317
0.000
0.238
0,000
0.279
0.000
0.000
0.001
0,000
0,000
0.000
0. 000
STD. DEVIATIONS 0.785
0. 000
0,613
0.000
0.796
0 .000
0,000
0.004
0,000
0.000
0 . 000
0,000
EVAPOTRANS PIRATION
TOTALS 2,145
0,609
2.049
0,343
2 ,543
0,081
2 .169
0.120
1.581
0 . 579
1. 043
1.057
STD. DEVIATIONS 0 .756
1.094
0,630
0 . 640
0 .821
0 .148
0 .987
0 .109
1.115
0.641
1.167
0.615
PERCOLATION/LEAKAGE THROUGH LAYER 2
TOTALS 0 .0031
0.0072
0.0140
0,0016
0.0259
0.0000
0.0251
0.0000
0 . 0213
0. 0000
0.0146
0 . 0000
STD. DEVIATIONS 0.0092
0.0160
0.0406
0 .0049
0.0532
0.0000
0.0458
0.0000
0 . 0370
0 . 0000
0.0272
0 . 0000
PERCOLATION/LEAKAGE THROUGH LAYER 4
TOTALS 0.0010
0 . 0015
0.0017
0.0010
0 .0020
0.0010
0 . 0023
0 . 0009
0.0022
0.0008
0 . 0019
0 . 0008
STD. DEVIATIONS 0.0020
0.0032
0.0029
0.0033
0.0028
0.0031
0.0027
0.0030
0. 0029
0 . 0026
0.0032
0.0023
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
DAILY AVERAGE HEAD ON TOP OF LAYER 2
AVERAGES
STD. DEVIATIONS 1.92 79 9.3467 11.1061 9.9369 7.7974 5.8969
3.3036 0.9612 0.0000 0.0000 0.0000 0.0000
*******************************************************************************
P
Mt
0.6354 3.1982 5.3893 5.4104 4.4340 3.14 06 P
1.4824 0.3103 0.0000 0.0000 0.0000 0.0000
P
P
******************************************************************************* p
IH
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
AVERAGE HEAD ON TOP
OF LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
CHANGE IN WATER STORAGE
INCHES
15.27 ( 6.145)
0.836 ( 1.5515)
14.320 ( 4,9020)
0.11279 ( 0,21688)
2.000 ( 3.872)
0.01716 ( 0.02575)
CU. FEET
55444.6
3035.11
51981.41
409 .433
PERCENT
100.00
5 .474
93.754
0 . 73845
0 . 101 1. 6666)
62.307
365 .7;
0.11238
0 . 660
li
m
*******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1989 THROUGH 1998
: INCHES) (CU. FT.)
PRECIPITATION 4.00 14520.000
RUNOFF 1.695 6152.1890
PERCOLATION/LEAKAGE THROUGH LAYER 2 0.005629 20.43476
AVERAGE HEAD ON TOP OF LAYER 2 3 5.974
PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000337 1.22278
SNOW WATER 0.00 0.0000
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 1998
LAYER (INCHES) (VOL/VOL)
1 6.6595 0.1850
2 0.0000 0.0000
3 8.2125 0.3422
4 5.5095 0.2296
SNOW WATER 0.000
******************************************************************************
******************************************************************************
PRECIPITATION DATA FILE: C:\ACTIVE\0LDDOS~l\HELP3A\SMARCO-D4
TEMPERATURE DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMARCO-D7
SOLAR RADIATION DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMARCO-D13
EVAPOTRANSPIRATION DATA: C:\ACTIVE\0LDD0S-1\HELP3A\SMARC02 .Dll
SOIL AND DESIGN DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC4.D10
OUTPUT DATA FILE: C:\ACTIVE\OLDDOS-1\HELP3A\SMPRSC4.0UT
TIME: 10:43 DATE: 3/ 5/2002
******************************************************************************
TITLE: San Marcos Landfill
******************************************************************************
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE
COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.
P
il
****************************************************************************** p
****************************************************************************** p
* * * *
** ** P
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** P
** HELP MODEL VERSION 3.06 (17 AUGUST 1996) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY ** *
** USAE WATERWAYS EXPERIMENT STATION ** *
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ^
* * **
* * **
******************************************************************************
******************************************************************************
P
P
P
i
i
p
p
LAYER 1 p
P
TYPE 1 - VERTICAL PERCOLATION LAYER P
P
k
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT. HYD. COND.
12.00 INCHES
0.473 0 VOL/VOL
0.222 0 VOL/VOL
0.104 0 VOL/VOL
0-3071 VOL/VOL
0-739999996000E-05 CM/SEC
LAYER
TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 35
0.08 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND. = 0.
FML PINHOLE DENSITY
FML INSTALLATION DEFECTS
FML PLACEMENT QUALITY = 4
0.0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
0.0000 VOL/VOL
199999996000E-12 CM/SEC
1.00 HOLES/ACRE
10.00 HOLES/ACRE
- POOR
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
24.00 INCHES THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT =
EFFECTIVE SAT. HYD. COND.
0 .4640 VOL/VOL
0.3100 VOL/VOL
0.1870 VOL/VOL
0.3127 VOL/VOL
0.999999997000E-06 CM/SEC
LAYER
TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT. HYD. COND.
24.00 INCHES
0.4730 VOL/VOL
0.2220 VOL/VOL
0.1040 VOL/VOL
0.222 0 VOL/VOL
0.430000000000E-04 CM/SEC
il
Mi
P
HI
P
m
GENERAL DESIGN AND EVAPORATIVE ZONE DATA
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A
POOR STAND OF GRASS, A SURFACE SLOPE OF 3.%
AND A SLOPE LENGTH OF 500. FEET.
SCS RUNOFF CURVE NUMBER
FRACTION OF AREA ALLOWING RUNOFF
AREA PROJECTED ON HORIZONTAL PLANE
EVAPORATIVE ZONE DEPTH
INITIAL WATER IN EVAPORATIVE ZONE
UPPER LIMIT OF EVAPORATIVE STORAGE
LOWER LIMIT OF EVAPORATIVE STORAGE
INITIAL SNOW WATER
INITIAL WATER IN LAYER MATERIALS
TOTAL INITIAL WATER
TOTAL SUBSURFACE INFLOW
82.70
100.0
1.000
12-0
3-686
676
248
0 - 000
16.517
16.517
0.00
PERCENT
ACRES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES
INCHES/YEAR
EVAPOTRANSPIRATION AND WEATHER DATA
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
S.AN DIEGO CALIFORNIA
STATION LATITUDE
MAXIMUM LEAF AREA INDEX
START OF GROWING SEASON (JULIAN DATE)
END OF GROWING SEASON (JULIAN DATE)
EVAPORATIVE ZONE DEPTH
AVERAGE ANNUAL WIND SPEED
AVERAGE 1ST QUARTER RELATIVE HUMIDITY
33.10 DEGREES
1 . 00
0
367
12.0 INCHES
6.80 MPH
65.00 %
P
P
P P
AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73.00 %
AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 66.00 %
NOTE: PRECIPITATION DATA FOR LAKE HODGES
WAS ENTERED FROM AN ASCII DATA FILE.
CA
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
JAN/JUL
56.80
70 .30
FEB/AUG
58.40
72.20
MAR/SEP
59-00
71-30
APR/OCT
61.20
67.50
MAY/NOV
63 .40
61-60
JUN/DEC
66-30
57.40
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR SAN DIEGO CALIFORNIA
AND STATION LATITUDE = 33.10 DEGREES
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
DAILY OUTPUT FOR YEAR 198 9
IM
S
— DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
IH I I WATER #1 #1 #1 #2
M"
R L IN-IN. IN. IN./IN. IN. IN. IN. IN.
337 0 . 00 0 . 000 0 .026 0 . 1670 0 -0000 . OOOOE+OO , OOOOE+00 0 , .0000
338 0 . 00 0 . 000 0 . .030 0 . 1645 0 . 0000 .OOOOE+OO , OOOOE+00 0, . 0000 Hi
339 0 . 00 0 . 000 0 .030 0 . 1621 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000 HI
340 0. 00 0-000 0 .030 0. 1596 0 , 0000 - OOOOE+00 .OOOOE+00 0 .0000
341 0. 00 0-000 0 .028 0. 1572 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000 p
342 0 . 00 0 . 000 0 .034 0 . 1544 0. 0000 . OOOOE+00 ,OOOOE+OO 0 .0000 Ml
343 0 . 00 0 . 000 0 .037 0 . 1513 0 . 0000 .OOOOE+00 ,OOOOE+OO 0 . 0000
344 0. 00 0. 000 0 .033 0. 1486 0. 0000 . OOOOE+00 , OOOOE+OO 0 . 0000 p
345 0 . 60 0 . 000 0 .053 0 . 1941 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000 HI
346 0. 40 0. 000 0 .053 0. 2231 0 . 0000 .OOOOE+OO . OOOOE+00 0 . 0000
347 0 . 10 0 . 000 0 .054 0. 2269 0 . 0000 . OOOOE+OO .OOOOE+OO 0 . 0000
348 0 . 50 0 . 000 0 .052 0 . 2641 0. 0000 - OOOOE+00 .OOOOE+00 0 .0000 HI
349 0. 00 0. 000 0 .057 0. 2594 0 . 0000 - OOOOE+OO . OOOOE+00 0 . 0000 ii
350 0. 70 0 . 037 0 .074 0. 3084 0. 0000 . OOOOE+OO .OOOOE+OO 0 . 0000 M
351 0 . 00 0. 000 0 .080 0. 3017 0. 0000 . OOOOE+00 . OOOOE+00 0 . 0000
352 0 . 20 0. 000 0 .062 0. 3132 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000 HI
353 0. 00 0 . 000 0 .072 0. 3072 0 . 0000 .OOOOE+OO . OOOOE+00 0 . 0000 HI
354 1. 10 0 . 207 0 . 058 0 . 3768 0, 0000 . OOOOE+00 .OOOOE+00 0 . 0000
355 0. 00 0. 000 0 .070 0. 3710 0 . 0000 . OOOOE+00 .OOOOE+00 0 . 0000 HI
356 0. 00 0 -000 0 .079 0. 3644 0. 0000 , OOOOE+OO .OOOOE+00 0 .0000 Hi
357 0. 10 0 . 000 0 .071 0. 3668 0 . 0124 . OOOOE+OO .3070E-05 0 , 0000
p 358 0. ,00 0. 000 0 .102 0. 3583 0. 2837 . OOOOE+OO ,5866E-04 0 . 0000 p
359 0. ,00 0. 000 0 .105 0. 3496 0. 5463 ,OOOOE+OO ,1065E-03 0 .0000 HI
360 0. ,00 0 . 000 0 .105 0. 3409 0 . 7607 , OOOOE+00 .1438E-03 0 . 0000
361 0. , 00 0 . 000 0 .100 0 . 3325 0 . 9271 .OOOOE+OO .1721E-03 0 . 0000
362 0 -,00 0. 000 0 .117 0 . 3227 1, 0546 . OOOOE+00 . 1934E-03 0 . 0000 mm
363 0 , ,00 0. ,000 0 .110 0. ,3135 1. 1926 . OOOOE+OO .2163E-03 0 . 0000 wm
364 0, , 00 0 . , 000 0 .109 0 . ,3044 1. .3021 . OOOOE + OO .2343E-03 0 . 0000 ml
365 0 , • 00 0 -,000 0 . 091 0 . ,2968 1. ,3836 , OOOOE+OO .2476E-03 0 . 0000
******************************************* ************************************
****************************************** *************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 198 9
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
3 .80
0 . 00
1.15
0 . 00
0 .00
0.00
4 . 95
0 . 00
0.20
1.45
0 . 00
3 . 70
0.153 0.000 0.000 0.784 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.244
EVAPOTRANS PIRATION 2,843 2.295 2.051 2.885 1.480 0.000
0.000 0.000 0.000 0.000 0.613 1.978
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0178 0.0192 0.0090 0.0000 0.0009 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0014
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0038 0.0035 0.0029 0.0000 0.0009 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0008
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
3.483 4.209 1.695 0.000 0 .156 0.000
0.000 0.000 0.000 0.000 0.000 0.241
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
1.602 0.53 6 1.153 0.000 0.274 0.000
0,000 0.000 0.000 0.000 0.000 0.453
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1989
INCHES CU. FEET PERCENT
PRECIPITATION 15.25 55357.504 100.00
RUNOFF 1. 182 4289.385 7 . 75
EVAPOTRANSPIRATION 14 .144 51344.465 92 . 75
PERC./LEAKAGE THROUGH LAYER 2 0.048317 175.390 0 . 32
AVG. HEAD ON TOP OF LAYER 2 0.8153
PERC./LEAKAGE THROUGH LAYER 4 0.011924 43.284 0. 08
CHANGE IN WATER STORAGE -0.088 -319.638 -0.51
SOIL WATER AT START OF YEAR 20.237 73459,727
SOIL WATER AT END OF YEAR 20.149 73140.086
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 . 000
0.000
0.0000
0 . 000
0 .000
0. 008
0 . 00
0 .00
0 . 00
***************** **************************************************************
Ml
HEAD #1: AVERAGE HEAD ON TOP OF LAYER 2
DRAIN #1
LEAK #1
LEAK #2
*************
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
****************************************************
DAILY OUTPUT FOR YEAR 1990
Ml
m
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
Mi
•M
I I WATER #1 #1 #1 #2
R L IN IN. IN. IN ./IN. IN • IN. IN. IN • J
1 0 . 15 0 . 000 0 . 074 0 .3031 1. 4544 .OOOOE+OO .2591E-03 0 . 0000 J
2 0 . 00 0 . 000 0 . 084 0 .2961 1. 5026 .OOOOE+OO .2669E-03 0 . 0000
3 0 . 40 0 . 000 0 . 069 0 . 3237 1. 5272 .OOOOE+00 .2709E-03 0 . 0000 m
4 0 . 00 0 .000 0 . 094 0 .3158 1. 5510 . OOOOE+OO .2747E-03 0 . 0000 d
5 0 . 20 0 . 000 0 . 071 0 . 3265 1. 5673 . OOOOE+OO .2774E-03 0. 0000
6 0 . 00 0 . 000 0 . 086 0 .3193 1. 5716 . OOOOE+00 .2781E-03 0 . 0000 3 7 0 . 00 0 .000 0 . 094 0 .3115 1. 5850 .OOOOE+00 .2802E-03 0 . 0000
8 0. 00 0 . 000 0 . 084 0 .3045 1. 5950 .OOOOE+OO . 2818E-03 0 . 0000
9 0 . 00 0 . 000 0 . 083 0 .2975 1. 6017 .OOOOE+OO .2829E-03 0 . 0000 3 10 0 . 00 0 . 000 0 . 088 0 .2902 1. 6091 .OOOOE+00 .2841E-03 0 . 0000 HI
11 0 . 00 0 . 000 0 . 077 0 .2838 1. 6101 .OOOOE+OO .2843E-03 0 . 0000 PI
12 0. 00 0 . 000 0 . 082 0 .2769 1. 6199 .OOOOE+OO .2858E-03 0 . oooc li
13 0 . 00 0 .000 0 . 077 0 .2705 1. 6111 .OOOOE+00 .2844E-03 0 . oooc
14 0 . 00 0 . 000 0. 072 0 .2645 1. 6060 .OOOOE+00 .2836E-03 0 . oooc
15 0 . 00 0 . 000 0 . 085 0 .2574 1. 6097 .OOOOE+00 .2842E-03 0 . oooc
16 0. 00 0 .000 0 . 080 0 ,2507 1. 6178 .OOOOE+OO .2855E-03 0. oooc
17 0. 00 0 . 000 0 . 092 0 .2430 1. 6287 .OOOOE+OO .2872E-03 0. oooc
18 0 . 00 0 .000 0 . 049 0 .2389 1. 6428 .OOOOE+00 .2895E-03 0. oooc ^
355 0 . 00 0. 000 0 . 000 0 . 1040 0 . 0000 .OOOOE+00 , OOOOE+00 0-0000
356 0 .00 0. 000 0 .000 0 . 1040 0. 0000 .OOOOE+OO - OOOOE+OO 0-0000
M. 357 0 .00 0. 000 0 . 000 0 . 1040 0. 0000 .OOOOE+OO , OOOOE+OO 0-0000
358 0 .00 0. 000 0 . 000 0 . 1040 0 . 0000 . OOOOE+OO -OOOOE+OO 0 . 0000
359 0 .00 0 . 000 0 .000 0 .1040 0, 0000 . OOOOE+OO -OOOOE+00 0 . 0000
MM 360 0 .00 0. 000 0 .000 0 .1040 0 , 0000 .OOOOE+00 .OOOOE+00 0. 0000
361 0 .00 0 . 000 0 .000 0 . 1040 0 . 0000 -OOOOE+OO .OOOOE+00 0. 0000
362 0 . 00 0. 000 0 .000 0 . 1040 0, 0000 .OOOOE+OO .OOOOE+00 0 . 0000
363 0 . 00 0. 000 0 .000 0 .1040 0. 0000 -OOOOE+00 .OOOOE+OO 0. 0000
mm 364 0 . 00 0 . 000 0 .000 0 .1040 0 . 0000 .OOOOE+OO -OOOOE+00 0. 0000
365 0 .00 0. 000 0 .000 0 .1040 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000
*******************************************************************************.,
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1990
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 1.10
0.00
1. 75
0.00
1.30
1. 00
0.10
0.35
0 .50
0.20
0 . 10
0.00
RUNOFF 0.000
0 . 000
0 .000
0.000
0.004
0.000
0.000
0.000
0 . 000
0.000
0 .000
0 .000
EVAPOTRANS PIRATION 2 . 647
0 . 000
2 .055
0 . 000
1.500
0 .216
0 .347
0-266
0-500
0.640
0.100
0 .429
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0089 0.0012 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0043 0.0014 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0001 0.0002 0-0003
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
1.624
0.000
0.216
0 . 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0 . 000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 .208
0 . 000
0 .320
0 .000
0. 000
0. 000
0 . 000
0 . 000
0 . 000
0 . 000
0.000
0. 000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1990
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
6 .40
0.004
8 .699
0.010042
0.1533
0.006319
-2.309
20.149
17 . 839
0 . 000
0 . 000
0 . 0000
CU. FEET
23231.996
14 .495
31577.922
36-451
PERCENT
100.00
0.06
135.92
0 .16
22 .938 0.10
-8383.359 -36-09
73140 - 086
64756-730
0.000 0.00
0.000 0.00
0.002 0.00
p
Mi
P
P
ff
P
113
************* ******************************************************************
HEAD #1
DRAIN #1
LEAK #1
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
Hf
li
•f
T
p
ff
MONTHLY TOTALS (IN INCHES) FOR YEAR 1991
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 3.41
0.10
1.75
0.10
0 .50
0.00
0.80
0.00
0. 90
1.35
0.80
0.40
RUNOFF 0 . 078
0 .000
0 . 000
0 . 000
0.000
0-000
0.000
0 . 000
0.000
0 . 002
0 . 000
0 . 000
EVAPOTRANS PIRATION 2.066
0.100
2.676
0.100
0.698
0.000
0 . 942
0.000
0.397
0 .301
1.303
0.823
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0003 0.0004 0.0005 0.0006 0.0006 0.0008
0.0008 0.0009 0.0009 0.0011 0.0011 0.0011
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 19 91
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
INCHES
10.11
0. 081
9.406
CU. FEET
293.153
34142.937
PERCENT
36699.301 100.00
0.80
93 . 03
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0.000000
0.0000
0 - 009152
0.614
17.839
18.454
0.000
0 . 000
0 - 0000
0 - 000
33-222
2229.998
64756-730
66986.727
0.000
0 . 000
-0 . 007
0. 00
0.09
6 . 08
0.00
0.00
0.00
*******************************************************************************
p
mi
3
ri
]
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
********************************************************************************
DAILY OUTPUT FOR YEAR 1992
DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2
R L IN. IN. IN. IN . /IN. IN. IN. IN. IN.
1 0.30 0. 000 0.063 0 . 1757 0.0000 . OOOOE+OO .OOOOE+OO 0 .0000
2 0.15 0 . 000 0 . 060 0 . 1832 0.0000 .OOOOE+00 .OOOOE+00 0 - 0000
3 0 . 00 0 . 000 0. 039 0 . 1800 0.0000 .OOOOE+OO .OOOOE+00 0 - 0000
4 0.00 0. 000 0. 058 0 . 1751 0.0000 .OOOOE+00 . OOOOE+00 0.0000
5 0 .00 0 . 000 0.055 0 .1705 0.0000 .OOOOE+00 .OOOOE+OO 0.0000
6 0 .00 0 .000 0.059 0 .1656 0.0000 .OOOOE+00 . OOOOE+00 0.0000
p
ri
p
P
343 0. 00 0 . 000 0. 015 0 . 1089 0 . 0000 . OOOOE+OO . OOOOE+OO 0 .0000
344 0. 00 0 . 000 0, 006 0 . 1084 0. 0000 . OOOOE+OO . OOOOE+00 0 .0000
345 0. 00 0 . 000 0 . 006 0 . 1079 0. 0000 . OOOOE+OO .OOOOE+00 0 . 0000
IH
346 0. 00 0 . 000 0 . 006 0 . 1074 0-0000 .OOOOE+OO .OOOOE+OO 0 . 0000
347 0 . 00 0 . 000 0 . 006 0 . 1069 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
Mi 348 0 , 00 0. 000 0 . 006 0. 1064 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000
•P-349 0. 30 0. 000 0. 047 0. 1275 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000
350 0. 00 0, 000 0. 014 0 . 1263 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000
MM 351 0. 00 0. 000 0. 014 0 . 1251 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000
•M 352 0 . 00 0. 000 0 . 019 0. 1236 0. 0000 . OOOOE+OO .OOOOE+00 0 . 0000
353 0. 00 0. 000 0 . 021 0. 1218 0 . 0000 .OOOOE+00 .OOOOE+OO 0 .0000
354 0. 00 0. 000 0 . 021 0 . 1201 0. 0000 .OOOOE+OO . OOOOE+00 0 ,0000
— 355 0. 00 0. 000 0 . 021 0. 1183 0. 0000 .OOOOE+OO .OOOOE+00 0 - 0000
Mi 356 0. 00 0 . 000 0. 025 0 . 1163 0 . 0000 . OOOOE+OO . OOOOE+OO 0 -0000
357 0. 00 0. 000 0 . 030 0. 1138 0. 0000 . OOOOE+OO .OOOOE+00 0 -0000
358 0. 00 0. 000 0. 033 0. 1110 0 . 0000 .OOOOE+00 .OOOOE+00 0 .0000
359 0. 00 0. 000 0 . 034 0. 1082 0. 0000 .OOOOE+00 .OOOOE+00 0 .0000
360 0. 00 0 . 000 0. 033 0. 1055 0. 0000 . OOOOE+00 .OOOOE+00 0 .0000
361 0. 00 0. 000 0 -017 0. 1041 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000
IM 362 0. 00 0. 000 0-001 0 . 1040 0. 0000 . OOOOE+OO .OOOOE+OO 0 .0000
363 0. 00 0, 000 0. 000 0. 1040 0. 0000 , OOOOE+00 .OOOOE+00 0 .0000
364 0. 00 0 . 000 0 . 000 0. 1040 0. 0000 . OOOOE+OO .OOOOE+00 0 .0000
365 0. 00 0. 000 0. 000 0. 1040 0 . 0000 . OOOOE+00 .OOOOE+00 0 .0000
Ml 366 0. 00 0. 000 0 . 000 0. 1040 0. 0000 . OOOOE+00 . OOOOE+OO 0 .0000
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1992
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 0 .45
0.30
6 .30
0 . 00
6 .12
0 . 00
0 . 00
0 . 00
0.00
0 . 00
0 . 00
0.45
RUNOFF 0 .000
0.000
2 .629
0.000
2 .119
0 . 000
0 .000
0 . 000
0.000
0 . 000
0 . 000
0 . 000
EVAPOTRANS PIRATION 1.073
0 ,273
0 .441
0 . 027
3 .761
0.000
2 .481
0.000
0.934
0.000
0.000
0.450
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0001 0.0264 0.0266 0.0018 0.0000
0.0000 0.0000 0.0000 0.0000 0.000 0 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
P
0.0013 0.0012 0.0058 0.0058 0.0016 0.0005 Mj
0.0005 0.0006 0.0007 0,0009 0.0009 0.0010 p
3
3
3
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES!
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0,000 0.009 5.353 5.551 0.319 0,000
0,000 0.000 0.000 0.000 0.000 0.000
0.000 0.048 4.074 1.93 3 0,637 0.000 J
0,000 0,000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
3
1
Ml
ANNUAL TOTALS FOR YEAR 1992
INCHES CU. FEET PERCENT
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
13 . 62
4 .748
9.441
0 . 054790
0 . 9360
0 . 020743
-0.589
18.454
17.864
0 . 000
0. 000
49440.602 100.00
17234.227
34270 . 687
198.889
75 .291
-2139.630
66986.727
64847.098
0 . 000
0 . 000
34. 86
69.32
0.40
0 .15
-4.33
0.00 p
0.00 P
p
ANNUAL WATER BUDGET B.ALANCE 0.0000 0.021 0.00
*****************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*****************************************************************^^^^^^^^^^^^^^^
DAILY OUTPUT FOR YEAR 1993
DAY A
I
S
o
I
RAIN RUNOFF ET E. ZONE
WATER
HEAD
#1
DRAIN
#1
LEAK
#1
HEAD
#2
R L IN. IN. IN. IN ./IN. IN. IN. IN. IN.
-1 0 .20 0 . 000 0 .046 0 .1169 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
mm 2 0 .20 0 . 000 0 .050 0 .1294 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000
mw 3 0 .40 0 . 000 0 .051 0 .1585 0. 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
4 1 .50 0 .136 0 . 047 0 .2682 0 . 0000 .OOOOE+00 -OOOOE+OO 0. 0000
mm 5 0 .30 0 . 000 0 .055 0 .2886 0. 0000 .OOOOE+00 .OOOOE+00 0 . 0000
wm 6 0 .50 0 .039 0 .069 0 .3213 0 . 0000 -OOOOE+OO . OOOOE+00 0. 0000
7 0 . 00 0 .000 0 .099 0 .3130 0 . 0000 -OOOOE+OO . OOOOE+OO 0. 0000
8 0 . 00 0 .000 0 .112 0 .3037 0. 0000 .OOOOE+00 .OOOOE+00 0. 0000
9 0 , 00 0 .000 0 . 106 0 .2949 0 . 0000 -OOOOE+OO -OOOOE+OO 0 . 0000
10 0 . 00 0 .000 0 .082 0 .2880 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
11 0 , 00 0 -000 0 . 089 0 .2806 0 . 0000 . OOOOE+00 .OOOOE+00 0. 0000
Ml 12 0 . 00 0 .000 0 . 080 0 .2739 0 . 0000 . OOOOE+00 .OOOOE+OO 0 . 0000
Mi 13 0 . 00 0 . 000 0 . 084 0 .2669 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000
14 0 . 00 0 .000 0 . 086 0 .2597 0. 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000
15 0 . 00 0 .000 0 . 089 0 .2523 0 . 0000 . OOOOE + 00 .OOOOE+OO 0 . 0000
M* 16 0 .00 0 .000 0 . 076 0 .2459 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000
iM 17 0 .00 0 .000 0 .080 0 .2393 0. 0000 . OOOOE + 00 -OOOOE+OO 0 . 0000
18 0 .00 0 . 000 0 . 089 0 .2319 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000
MM 19 0 .00 0 .000 0 .081 0 .2252 0. 0000 . OOOOE+00 . OOOOE+OO 0. 0000
IM 20 0 .00 0 . 000 0 - 067 0 .2196 0 . 0000 .OOOOE+00 .OOOOE+OO 0 . 0000
21 0 ,00 0 .000 0 . 076 0 .2133 0. 0000 .OOOOE+OO .OOOOE+00 0 . 0000
22 0 ,00 0 .000 0 . 042 0 .2098 0. 0000 -OOOOE+00 .OOOOE+OO 0 . 0000
M. 23 0 . 00 0 . 000 0 .051 0 .2055 0. 0000 -OOOOE+OO .OOOOE+OO 0 . 0000
360 0-00 0 . 000 0 . 050 0 -1573 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000
361 0. 70 0 . 000 0 . 064 0 .2102 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 Pi
362 0 . 10 0. 000 0 . 066 0 .2130 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 il
363 0 . 80 0 . 016 0 . 071 0 .2725 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000
364 0. 00 0. 000 0 . 060 0 .2675 0 .0000 .OOOOE+00 .OOOOE+OO 0 . 0000 p
365 0 . 00 0 . 000 0 . 077 0 .2611 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000 p
*******************************************************************************^
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1993
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 3 .10
0 .10
5 . 50
0.30
4 .40
0.00
0.30
0 .45
0.20
0 . 00
0.00
3 .35
RUNOFF 0 .175
0.000
0.961
0 . 000
0 . 044
0 . 000
0 . 000
0 . 000
0 . 000
0.000
0 . 000
0 . 017
EVAPOTRANS PIRATION 2 .599
0 .100
2 .508
0 .300
3 .556
0.000
2.835
0 .085
0 . 768
0 . 340
0 . 000
1.473
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0089 0.0274 0.0172 0.0006 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0011 0.0034 0.0055 0.0059 0.0009 0.00 02
0.0004 0-0004 0-0006 0.0007 0.0008 0.0009
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0 .000
0-000
0.000
0 - 000
1 . 945
0-000
2 .265
0 .000
5 .510
0 .000
0 . 325
0 .000
3-473
0,000
0 . 906
0 . 000
0 .103
0 . 000
0.280
0 .000
0 . 000
0 .000
0 . 000
0 . 000
*******************************************************************************
p
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1993
INCHES CU. FEET PERCENT
PRECIPITATION 17 .70 64251.008 100.00
RUNOFF 1.197 4344.584 6.76
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
14.564
0.054077
0.9192
0. 020672
1. 918
52867.422
196.299
75-038
6963-971
82 .28
0.31
0.12
10 . 84
SOIL WATER AT START OF YEAR 17.864 64847.098
SOIL WATER AT END OF YEAR 19.783 71811.070
SNOW WATER AT START OF YEAR 0.000 0 . 000 0 . 00
SNOW WATER AT END OF YEAR 0.000 0 . 000 0 . 00
ANNUAL WATER BUDGET BALANCE 0.0000 -0.005 0 .00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
DAILY OUTPUT FOR YEAR 1994
PRECIPITATION
RUNOFF
13 . 90
0.01
9.667
0 . 000
6 .46
0 . 00
3 .170
0 .000
0 - 77
0.00
0 . 000
0 . 000
0 . 00
0 . 15
0 .000
0 .000
0 . 00
1. 00
0 . 000
0 . 000
0 . 60 ii
1.20 m
0.000 *
0.030 •»
EVAPOTRANS PIRATION 2.531
0. 010
3 .136
0.000
2.439
0 .000
1.956
0 .110
0.000
0 . 509
0 . 600
1.441
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0329
0.0000
0.0421
0.0000
0.0308
0.0000
0.0101
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.0052 0.0058 0.0061 0.0043 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
6.819
0.000
9. 666
0. 000
6.257
0.000
1.997
0 .000
4-723 1.505 1.640 1.494
0 . 000 0.000 0.000 0.000
0 . 000
0.000
0. 000
0. 000
0.000 0.000
0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1994
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
INCHES
24 .09
12.867
12.732
0.115865
CU. FEET
87446.687
46708.883
46216.066
420 . 591
PERCENT
100.00
53 .41
52 . 85
0.48
IM
Hi
AVG. HEAD ON TOP OF LAYER 2 2 . 0616
P
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0.021378
-1.531
19.783
18.252
0. 000
0 .000
0 . 0000
77.602
-5555.841
71811.070
66255-227
0. 000
0. 000
-0.026
0 .09
6.35
0 .00
0. 00
0.00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
mm DAILY OUTPUT FOR YEAR 1995
mm DAY A
S
0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
m I I WATER #1 #1 #1 #2
mm R L IN. IN. IN. IN ./IN. IN. IN. IN. IN.
wm
wm 1 0 . 90 0 . 049 0 . 074 0 . 1904 0.0000 . OOOOE+OO . OOOOE+OO 0.0000
2 0 . 50 0 . 000 0 . 070 0 .2262 0.0000 . OOOOE + OO .OOOOE+OO 0 . 0000
3 0 . 00 0 - 000 0 - 094 0 .2184 0 .0000 .OOOOE+OO .OOOOE+OO 0.0000
mm 4 0 . 00 0 .000 0 . 077 0 .2121 0.0000 .OOOOE+OO .OOOOE+00 0.0000
HI 5 0 . 00 0.000 0 . 081 0 .2053 0.0000 .OOOOE+00 .OOOOE+00 0.0000
6 0-00 0.000 0 -087 0 .1981 0.0000 .OOOOE+00 .OOOOE+00 0.0000
IM 7 0.00 0 . 000 0 .086 0 .1909 0 .0000 .OOOOE+OO -OOOOE+OO 0.0000
IH 8 0 . 00 0 . 000 0 . 066 0 . 1854 0.0000 .OOOOE+OO .OOOOE+OO 0.0000
9 0. 00 0.000 0 .074 0 .1792 0.0000 .OOOOE+00 -OOOOE+OO 0.0000
10 0-00 0. 000 0 . 078 0 .1727 0.0000 .OOOOE+OO . OOOOE+00 0-0000
•M 11 0 .80 0 . 033 0 . 069 0 -2309 0.0000 .OOOOE+00 .OOOOE+00 0 - 0000
348 0 . 00 0 . 000 0 . 024 0 .1836 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
349 0 . 00 0 . 000 0 . 026 0 . 1815 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 ii
350 0. 00 0 .000 0 .028 0 .1791 0 .0000 .OOOOE+OO .OOOOE+OO 0 . 0000 HI
351 0 . 00 0 .000 0 . 028 0 .1767 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000
352 0 . 00 0 .000 0 . 029 0 . 1743 0 - 0000 .OOOOE+00 .OOOOE+OO 0 . 0000 il
353 0 . 00 0 .000 0 . 033 0 . 1716 0 . 0000 .OOOOE+00 .OOOOE+00 0 . 0000 p
354 0 . 00 0 . 000 0 .036 0 .1685 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000
Ml
355 0. 00 0 . 000 0 .033 0 .1658 0 . 0000 .OOOOE+OO .OOOOE+OO 0 . 0000 Ml
356 0 . 00 0 .000 0 . 032 0 .1631 0 .0000 .OOOOE+OO .OOOOE+00 0 . 0000
357 0 . 00 0 .000 0 .029 0 . 1606 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000
p
HI 358 0 . 00 0 .000 0 . 031 0 .1580 0 .0000 .OOOOE+00 .OOOOE+00 0 . 0000 p
HI
359 0. 00 0 , 000 0 .033 0 . 1553 0 . 0000 .OOOOE+OO .OOOOE+00 0 . 0000
360 0 . 00 0 . 000 0 . 044 0 . 1516 0 . 0000 .OOOOE+00 .OOOOE+OO 0. 0000 m
361 0 . 00 0 .000 0 . 048 0 .1477 0 .0000 . OOOOE+00 .OOOOE+OO 0 . 0000 m
362 0 . 00 0 ,000 0 .044 0 . 1440 0 . 0000 . OOOOE+OO .OOOOE+OO 0. 0000
363 0 . 00 0 ,000 0 . 041 0 .1406 0 . 0000 -OOOOE+OO .OOOOE+00 0 . 0000 p
364 0 . 00 0 ,000 0 . 041 0 ,1372 0 .0000 . OOOOE+00 .OOOOE+00 0 . 0000 m
365 0 . 00 0 .000 0 . 047 0 .1332 0 . 0000 .OOOOE+OO .OOOOE+OO 0. 0000
********************************************************************************
Ml
**************************************** ***************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1995
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERCOLATION/LEAKAGE THROUGH
LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 4
5.40
0 .00
0 .274
0 . 000
2 .626
0.000
0.0000
0.0000
0.0002
0.0001
2.45
0 . 00
0 . 008
0 . 000
2 . 628
0 . 000
0 . 0041
0 . 0000
0.0050
0.0003
1.80
0 .10
0 . 022
0 . 000
2 .912
0 . 067
0 . 0122
0.0000
0 . 0062
0.0005
1 .20
0 . 95
0 .000
0 . 000
2 .617
0 .193
0 .0072
0 .0000
0 .0038
0.0007
0 . 00
0 .70
0 . 000
0 .000
0 .000
0 .599
0 . 0000
0 . 0000
0.0000
0.0009
0 . 01
0 . 50
0 . 000
0 . 000
0 . 010
1. 040
0 . 0000
0 . 0000
0 . 0000
0 . 0011
ii
HI
p
p
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.784 2.309 1.391 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
STD- DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.264 0.952 1.160 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1995
INCHES CU. FEET PERCENT
PRECIPITATION 13.11 47589.301 100.00
RUNOFF 0 .304 1102.674 2 .32
EVAPOTRANS PIRATION 12.692 46071.152 96.81
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
0 . 023475
0 .3737
0 .018618
0 . 096
18.252
18-348
0 .000
0.000
0.0000
85.215 0 .18
67.583
347.880
66255.227
66603.109
0 .000
0 .000
0 . 014
0 . 14
0 . 73
0 .00
0 . 00
0-00
*******************************************************************************
366 0-00 0.000 0-008 0.1043 0.0000 .OOOOE+OO .OOOOE+00 0.000 0
******************************************************************************* p
P
lb
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1996
P
Mi
PI
m JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
11.30
0 .10
5.168
0 . 000
2 .35
0.00
0 .613
0 .000
9.60
0 .00
5.590
0.000
1.50
0 .20
0 . 001
0 . 000
0.60
0 . 00
0 .000
0.000
0.55
0.50 P
HI
0.000
0.000 P
EVAPOTRANS PIRATION 2 .710
0 .100
2 .647
0, 000
3 ,852
0 . 000
3 .281
0 . 067
1.691
0.133
0.550
0.497
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0382 0.0391 0.0431 0.0237 0.0034 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0049 0.0055 0.0059 0.0058 0.0018 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
7.94 8 8.638 8.905 4.893 0.624 0.000
0-000 0.000 0.000 0.000 0.000 0.000
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
4.877 1.124 1.344 1.306 0.833 0.000
0.000 0.000 0-000 0.000 0.000 0-000
************ ********************************************************************
******************************************************************************^
ANNUAL TOTALS FOR YEAR 1996
P
Hi
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
INCHES
26,70
11.372
15.528
0.147479
2.5840
0.023947
-0.224
18.348
18 .124
0.000
0.000
0.0000
CU. FEET PERCENT
96921.023 100.00
41280.270
56367.285
535.347
86.927
-813.490
66603.109
65789.617
0.000
0 . 000
0.031
42 .59
58. 16
0 .55
0,09
-0,84
0, 00
0. 00
0,00
*******************************************************************************
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION!
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
*******************************************************************************
DAILY OUTPUT FOR YEAR 1997
DAY A O RAIN RUNOFF ET E. ZONE HEAD
I I WATER #1
R L IN. IN. IN. IN./IN. IN.
DRAIN
#1
IN.
LEAK
#1
IN.
HEAD
#2
IN.
335 0 . 00 0 .000 0 .085 0 .3682 7 . 0907 . OOOOE+00 .1119E-02 0 . 0000
336 0 . 00 0 .000 0 . 072 0 .3621 6 . 9874 . OOOOE+00 ,1103E-02 0 . 0000 p
337 0 . 00 0 . 000 0 . 073 0 .3559 6 .8909 . OOOOE+00 . 1089E-02 0. 0000
338 0 . 40 0 .000 0 . 057 0 .3844 6 .2027 . OOOOE+00 .9864E-03 0 . 0000
339 0 . 10 0 .000 0 . 065 0 .3873 5 . 9843 . OOOOE+OO . 9538E-03 0. 0000 p
340 0, 00 0 . 000 0 . 065 0 .3818 5 . 9757 . OOOOE+00 . 9525E-03 0 . 0000 p
341 0 . 00 0 .000 0 .063 0 .3765 5 - 9789 . OOOOE+00 . 9530E-03 0. 0000
342 0, 00 0 .000 0 . 077 0 .3700 5 - 9805 , OOOOE+OO .9533E-03 0 . 0000 p
343 0, 00 0 .000 0 .078 0 .3635 5 , 9761 . OOOOE+00 .9526E-03 0. 0000 p
344 0 . 00 0 .000 0 . 071 0 .3574 5 - 9688 , OOOOE+OO . 9515E-03 0 . 0000
345 0 . 00 0 .000 0 .069 0 .3516 5 . 9516 . OOOOE+00 . 9489E-03 0 . 0000 mf
346 0, 00 0 .000 0 . 070 0 .3457 5 . 9095 , OOOOE+00 . 9426E-03 0 . 0000 HI
347 0. 00 0 .000 0 .088 0 .3383 5 .8967 .OOOOE+OO .9407E-03 0. 0000 HI
348 0. 00 0 .000 0 . 074 0 .3321 5 .8850 ,OOOOE+OO . 9390E-03 0 . 0000 HI
349 0 . 00 0 . 000 0 .047 0 .3281 5 . 8749 .OOOOE+OO . 9375E-03 0 . 0000
350 0. 00 0 . 000 0 , 043 0 .3244 5 .8666 .OOOOE+OO ,9362E-03 0 . 0000 IH
351 0 . 00 0 ,000 0 ,075 0 .3181 5 .8375 .OOOOE+OO .9319E-03 0. 0000 HI
352 0 . 00 0 , 000 0 ,065 0 .3126 5 .7833 , OOOOE+OO .9238E-03 0. 0000
353 0 . 00 0 .000 0 . 064 0 .3072 5 .7340 .OOOOE+OO .9164E-03 0. 0000 ii
354 0. 00 0 .000 0 .064 0 .3018 5 .6849 .OOOOE+OO .9091E-03 0. 0000 lg
355 0 . 00 0 ,000 0 .068 0 .2960 5 -6347 .OOOOE+OO .9015E-03 0. 0000
356 0. 00 0 . 000 0 . 061 0 .2909 5 .5849 . OOOOE+00 ,8941E-03 0. 0000 HI
357 0. 00 0 .000 0 . 061 0 .2858 5 .5384 . OOOOE+00 ,8871E-03 0. 0000 HI
358 0. 00 0 .000 0 .059 0 .2808 5 .4923 . OOOOE+OO .8802E-03 0. 0000
359 0 . 00 0 .000 0 ,052 0 .2764 5 .4475 . OOOOE+00 ,8735E-03 0. 0000
360 0 . 00 0 .000 0 , 054 0 .2718 5 .3390 .OOOOE+00 ,8572E-03 0 . 0000 Ma
361 0 . 00 0 .000 0 . 049 0 .2677 5 . 1286 .OOOOE+00 .8256E-03 0. 0000 Ml
362 0 . 00 0 . 000 0 . 048 0 .2636 4 . 9315 .OOOOE+00 ,7960E-03 0. 0000
MP
363 0 . 00 0 .000 0 . 045 0 .2598 4 .7429 .OOOOE+00 .7677E-03 0 . 0000
364 0 . 00 0 . 000 0 . 051 0 .2555 4 . 5529 .OOOOE+00 .7390E-03 0. 0000 Hi
365 0 . 00 0 .000 0 . 056 0 .2508 4 -3394 . OOOOE+OO . 7068E-03 0 . 0000 wm
*******************************************************************************
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1997
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
RUNOFF
1.10
0.00
0.000
2 .60
0 . 00
0 . 053
0 . 65 0.00 0.20
0.00 4.35 2.65
0.000 0.000 0.000
p
0.00 ^
0.50
p
0.000 M
p
p
0.000 0.000 0.000 1.106 0.323 0.000
EVAPOTRANS PIRATION 0.712 2.481 0.897 0.210 0.200 0.000
0.000 0.000 0.000 0.334 1.968 1.966
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0121 0.0285
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.0000 0.0002 0.0005 0.0008 0.0012 0.0014
0.0019 0.0024 0.0029 0.0031 0.0056 0.0066
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON
TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 2.504 5.748
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0,000 3.070 0.611
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1997
INCHES CU, FEET PERCENT
PRECIPITATION 12 .05 43741.500 100.00
RUNOFF 1.482 5378.884 12 .30
EVAPOTRANS PIRATION 8 . 769 31832.355 72 . 77
PERC./LEAKAGE THROUGH LAYER 2 0.040606 147.398 0 . 34
AVG. HEAD ON TOP OF LAYER 2 0.6876
PERC./LEAKAGE THROUGH LAYER 4 0,026659 96 . 771 0-22
CHANGE IN WATER STORAGE 1.772 6433,479 14 . 71
SOIL WATER AT START OF YEAR 18.124 65789.617
SOIL WATER AT END OF YEAR 19.896 72223.094
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
-ANNUAL WATER BUDGET BALANCE
0 .000
0 . 000
0.0000
0 . 000
0 . 000
0. 010
0 . 00
P
0.00 ii
0 . 00
*******************************************************************************
p
ii
HEAD #1
DRAIN #1
LEAK #1
LEAK #2
AVERAGE HEAD ON TOP OF LAYER 2
LATERAL DRAINAGE FROM LAYER 1 (RECIRCULATION AND COLLECTION)
PERCOLATION OR LEAKAGE THROUGH LAYER 2
PERCOLATION OR LEAKAGE THROUGH LAYER 4
Hi
P
HI
*******************************************************************************:
DAILY OUTPUT FOR YEAR 1998'
S IM
DAY A 0 RAIN RUNOFF ET E. ZONE HEAD DRAIN LEAK HEAD
I I WATER #1 #1 #1 #2 •M
R L IN. IN. IN. IN . /IN. IN. IN. IN. IN. HI
•u
1 0 . 10 0 . 000 0 . 068 0 -2534 4.1299 . OOOOE+OO -6750E-03 0 . 0000 wm
2 0 . 70 0 . 000 0 . 067 0 .3062 3.9988 .OOOOE+OO .6552E-03 0 . 0000 mm
3 0 . 00 0 . 000 0 . 081 0 .2994 3.9745 .OOOOE+OO .6515E-03 0 .0000
4 0 .10 0 . 000 0 . 068 0 .3020 3.9478 .OOOOE+00 .6474E-03 0 . 0000 m
5 0 . 00 0 .000 0 . 072 0 .2960 3.9325 .OOOOE+OO .6451E-03 0 . 0000 m
6 0 . 00 0 .000 0 . 086 0 .2887 3.9055 .OOOOE+00 .6410E-03 0 .0000 HHH
7 0 . 00 0 . 000 0 .094 0 .2808 3.8718 .OOOOE+OO .6359E-03 0 . 0000 p
8 0 . 00 0 .000 0 . 112 0 .2715 3.8342 .OOOOE+OO .6302E-03 0.0000 ii
9 0 . 00 0 . 000 0 . 065 0 .2660 3.7988 .OOOOE+00 . 6248E-03 0.0000 HI
10 0 . 00 0 .000 0 . 095 0 .2580 3.7697 . OOOOE+OO . 6203E-03 0.0000
11 0.00 0 .000 0 . 114 0 .2485 3.7316 .OOOOE+OO . 6145E-03 0.0000 IH
12 3 . 00 0 .897 0 . 076 0 .4174 3.7012 .OOOOE+OO . 6099E-03 0.0000 PI
13 0 .30 0 . 023 0 .080 0 .4337 3.6854 .OOOOE+00 .6075E-03 0.0000 Hi
14 0.00 0 .000 0 .096 0 .4257 3.6567 .OOOOE+00 .6031E-03 0.0000
15 0,30 0 .003 0 .064 0 .4451 3 .8023 .OOOOE+OO .6253E-03 0.0000 HI
16 0.00 0 .000 0 .098 0 .4368 5.8113 .OOOOE+OO . 9280E-03 0.0000
p
p
353 0 . 00 0 . 000 0 . 069 0 .3038 0 . 9484 , OOOOE+OO .1757E-03 0 . 0000
mm 354 0 .20 0 . 000 0 .066 0 .3150 1 . 0076 . OOOOE+OO .1856E-03 0 . 0000
mm 355 0 .00 0. 000 0 . 073 0 .3089 1 . 0575 . OOOOE+00 .1939E-03 0. 0000
356 0 .00 0. 000 0 . 070 0 .3030 1 . 1124 . OOOOE+00 .2031E-03 0 . 0000
357 0 .00 0. 000 0 . 073 0 .2969 1 . 1481 . OOOOE+OO .2090E-03 0 . 0000
mm 358 0 .00 0 . 000 0 .078 0 .2904 1 . 1743 .OOOOE+OO .2133E-03 0. 0000
359 0 . 12 0. 000 0 . 055 0 .2958 1 .1906 . OOOOE+00 .2160E-03 0. 0000
360 0 .08 0. 000 0 .066 0 .2969 1 . 2227 .OOOOE+OO .2213E-03 0. 0000
mm 361 0 . 00 0. 000 0 . 072 0 .2909 1 .2703 .OOOOE+00 .2291E-03 0. 0000
_ 362 0 . 00 0. 000 0 . 079 0 .2843 1 .3103 .OOOOE+OO .2356E-03 0 . 0000
363 0 . 04 0. 000 0 .055 0 .2830 1 .3533 .OOOOE+00 .2427E-03 0. 0000
364 0 .00 0 . 000 0 .047 0 .2791 1 .3821 .OOOOE+00 .2473E-03 0. 0000
wm 365 0 .00 0. 000 0 .081 0 . 2724 1 .4096 .OOOOE+00 .2518E-03 0. 0000
*******************************************************************************^
*******************************************************************************
MONTHLY TOTALS (IN INCHES) FOR YEAR 1998
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION 6 . 75
0 .00
0 . 90
0 . 00
0.00
0. 00
0.10
0 .71
0 . 05
2 . 87
0.00
2 .33
RUNOFF 1.843
0 . 000
0 . 000
0.000
0 . 000
0. 000
0 . 000
0.000
0. 000
0 .379
0.000
0 . 048
EVAPOTRANS PIRATION 2 . 871
0 . 000
1.922
0 . 000
2.238
0 . 000
0 .555
0 . 065
0 . 050
1 . 125
0 . 000
2.269
PERCOLATION/LEAKAGE THROUGH
LAYER 2
0.0309 0.0324 0.0186 0.0003 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0034
PERCOLATION/LEAKAGE THROUGH
LAYER 4
0.00 62 0.0053 0.0055 0.0001 0.0000 0.0000
0.0000 0.0002 0.0005 0.0011 0.0016 0.0051
MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)
AVERAGE DAILY HEAD ON 6 .294 7 ,352 3 . 647 0.053 0,000 0,000
TOP OF LAYER 2 0.000 0.000 0.000 0.000 0.000 0.602
STD. DEVIATION OF DAILY
HEAD ON TOP OF LAYER 2
2.695 1.042 1.426 0.168 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.571
*******************************************************************************
*******************************************************************************
ANNUAL TOTALS FOR YEAR 1998
INCHES CU. FEET PERCENT
13.71 49767.301 100.00
P
H
PRECIPITATION
RUNOFF
EVAPOTRANS PIRATION
PERC./LEAKAGE THROUGH LAYER 2
AVG. HEAD ON TOP OF LAYER 2
PERC./LEAKAGE THROUGH LAYER 4
CHANGE IN WATER STORAGE
SOIL WATER AT START OF YEAR
SOIL WATER AT END OF YEAR
SNOW WATER AT START OF YEAR
SNOW WATER AT END OF YEAR
ANNUAL WATER BUDGET BALANCE
2 .270
11.095
0.085657
1.4956
0.025537
0 .319
19.896
20.215
0 . 000
0 . 000
0.0000
8241.064
40274.922
310.935
92.698
1158,615
72223.094
73381.711
0 . 000
0 .000
-0.001
16.56
80 . 93
0 . 62
0 .19
2 .33
0 . 00
0 . 00
0 . 00
*******************************************************************************
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1989 THROUGH 1998
PRECIPITATION
TOTALS
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
5.03
0.06
3 .12
0 . 04
2 .51
0.11
0 . 90
0 . 72
0. 27
1. 02
0 .21
1.29
STD, DEVIATIONS 4 .48
0.10
2.13
0,10
3,20
0.31
1.53
1.32
0. 31
1. 07
0.31
1.34
RUNOFF
TOTALS 1.736
0 . 000
0.743
0 . 000
0 .778
0 . 000
0 . 079
0 . Ill
0.000
0.070
0.000
0 . 034
STD. DEVIATIONS 3.224
0.000
1.190
0.000
1. 816
0 . 000
0 .248
0.350
0 . 000
0 .148
0 .000
0.076
EVAPOTRANS PIRATION
TOTALS 2 .268
0.058
2 .279
0 .043
2.390
0. 028
1 . 811
0.112
0.602
0 . 623
0.256
1.237
STD. DEVIATIONS 0 . 762
0.089
0.730
0.096
1.139
0 .069
1.180
0. 117
0 . 609
0.566
0.436
0 .689
PERCOLATION/LEAKAGE THROUGH LAYER 2
TOTALS 0,0129
0.0000
0 .0147
0.0000
0.0167
0.0000
0.0085
0 . 0000
0.0007
0.0012
0.0000
0 .0033
STD. DEVIATIONS 0 . 0158
0 - 0000
0 . 0172
0 . 0000
0.0150
0.0000
0 . 0105
0 - 0000
0.0011
0 .0038
0.0000
0.0089
PERCOLATION/LEAKAGE THROUGH LAYER 4
TOTALS 0 . 0027
0 . 0004
0 .0032
0 .0005
0 . 0039
0.0006
0 . 0027
0 - 0008
0 . 0007
0.0011
0.0003
0.0017
STD. DEVIATIONS 0.0024
0 .0006
0 . 0022
0.0008
0 . 0026
0 . 0009
0 . 0026
0.0009
0.0007
0.0017
0 .0005
0 .0023
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)
p
p
DAILY AVERAGE HEAD ON TOP OF LAYER 2
AVERAGES 2.6168 3.2820 3.3675 1.7359 0.1201 0.0000
0.0000 0.0000 0.0000 0.0000 0.2504 0.6591
STD. DEVIATIONS 3.2588 3.8951 3.0832 2.1761 0.2058 0.0000
0.0000 0.0000 0.0000 0.0000 0.7 917 1.7987
*******************************************************************************
******************************************************************************* P
li
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1989 THROUGH 1998
P
INCHES CU, FEET PERCENT HI
PRECIPITATION 15.27 ( 6.145) 55444.6 100.00
RUNOFF 3.551 ( 4.7334) 12888.76 23.246
p
EVAPOTRANSPIRATION 11.707 ( 2.5649) 42496.52 76.647
wm
PERCOLATION/LEAKAGE THROUGH 0.05803 ( 0.04643) 210.652 0.37993 ^
LAYER 2
AVERAGE HEAD ON TOP 1.003 ( 0.825) M
OF LAYER 2
HI
PERCOLATION/LEAKAGE THROUGH 0.01849 ( 0.00701) 67.136 0.12109 MI
LAYER 4 ^
CHANGE IN WATER STORAGE -0.002 ( 1.3077) -7.80 -0.014 •«
******************************************************************************* *
ii
****************************************************************************** p
IH'
PEAK DAILY VALUES FOR YEARS 198 9 THROUGH 1998
m
(INCHES) (CU. FT. ) Hi'
PRECIPITATION 4.00 14520.000
RUNOFF 3.707 13456.8555
PERCOLATION/LEAKAGE THROUGH LAYER 2 0.001850 6.71505
AVERAGE HEAD ON TOP OF LAYER 2 12.000
PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000255 0.92602
SNOWWATER 0.00 0.0000
MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4730
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 1998
LAYER (INCHES) (VOL/VOL)
1 3.2688 0.2724
2 0.0000 0.0000
3 7.9397 0.3308
4 5.2869 0.2203
SNOW WATER 0.000
******************************************************************************
******************************************************************************