HomeMy WebLinkAbout; Stagecoach Park Summary Slope Stability Analysis; Stagecoach Park Summary of Slope Stability Analysis; 1986-05-01SUMMARY OF SLOPE STABILITY ANALYSES
FOR .
STAGECOACH PARK
CARLSBAD, CALIFORNIA
For
CITY OF CARLSBAD
Carlsbad, California
By
GEOCON, INCORPORATED
San Diego, California
May, 1986
INC O R P O R A T E D ^N^'N^^'*^ ^'^^ ^^°^°^'^TS • CONSULTA
File No. D-3480-JO2
May 27, 1986
City of Carlsbad . ,
Engineering Department
1200 Elm Avenue
Carlsbad, California 92008
Attention: Mr. Richard Allen
Subject: . STAGECOACH PARK
CARLSBAD, CALIFORNIA ' _
SUMMARY OF SLOPE STABILITY ANALYSES
Gentlemen:
In response to your request, we are providing the analyses of the stability
of the approximately 30-foot-high combination cut-fill slope at the
northeastern end of the site adjacent to Mision, Estancia. . .
As discussed in our May 15, 1986 "Stability Analysis" letter, several
studies have been performed which indicate the presence of siltstones and
claystones of the Tertiary age Delmar Formation within the slope and the
area easterly of the slope. The materials exhibit zones of shearing,
however, the later studies did not indicate the presence of continuous
shear zones which would suggest presence of deep-seated landslides. The
shears and fractures were generally oriented toward the east and northeast
(into the slope) which is considered a favorable orientation in regard to
stability of the cut slope.
/ - " ' . •
Shear Strength Parameters
The shear strength parameters utilized in the analysis are based on
laboratory tests on samples of Delmar Formation materials both from the
subject site and from projects in the general site area. Residual shear
tests were performed on samples of claystone and yielded shear strength
parameters of (j) ' = 5 to 10 degrees and C = 220 psf. In addition, direct
shear tests and "slow" direct shear tests of the undisturbed claystone
materials yielded shear strength parameters of (j)' = 18 to 34 degrees and
cohesion of C = 150 to in excess of 500 psf. Direct shear tests were
also performed on samples of the material in the slope compacted to
approximately 90 percent of maximum laboratory density at near optimum
moisture content.
9530 DOV^DY DRIVE • SAN DIEGO, CALIFORNIA 92126 • PHONE (619) 695-2880
File No. D-3480-Jd2
May 27, 1986.
The values chosen for use in the analysis are:
. • " Material i\>' (degrees) C (psf)
Formational siltstones ,^ •
: and. claystones .18 150
Compacted claystone and
siltstones- .25 250
Since no landslides or zones of continuous shearing were encountered, the
residual shear values were not used.
Although a water table was not encountered, several seepage zones were
noted in the borings. In addition, it is anticipated that irrigation of
the adjoining subdivision may result in a future relatively shallow water
table developing on the site. For the analysis, it was assumed that a
water table would be present within the profile. The water table was
assumed to extend from the toe of the cut slope in Stagecoach Park to
within approximately 10 feet of finish grade , at the eastern end of the
profile. .
Stability Analyses
The slope stability analyses were performed utilizing a computer program
entitled STABL (Version 4.0) developed at Purdue University. The program
performs limiting equilibrium analyses by the method of slices for
stability of slopes and utilizes a searching technique within the bounds or
boundaries set by the operator. STABL uses any of three general failure
shapes: random; circular; or block failure shapes. Since planar shear
surfaces were encountered within the Delmar Formation materials, a block
failure mode was deemed to be the most appropriate pattern for analysis.
The sliding block surface option allows the operator to choose two or more
boxes within the mass to be analyzed. The program then randomly selects
points within each box. The points are connected and this line segment
becomes the base of the failure plane. For this analyses, two separate
cases were chosen:
Case I - Stability of the overall area with the analyzed area extending
east of Mision Estancia. For this case, three "boxes" were chosen of.
sufficient size to allow a wide variety of failure surfaces. The.analyses
indicated calculated factors of safety in excess of 1.5 for this case.
Case II - The second case utilized two "boxes" within the general area
of Mision Estancia. The analyses indicated that the most critical failure
surface (FS = 1.39) was in the western portions of Mision Estancia
-2-
GEOCON
INCORPORATED
File No. .D-3480-J02
May 27, 1986 .
(southbound lanes) and extending through the slope. An additional analysis
was performed on this . same section after assuming construction of an
approximately 15-foot-wide.stability fill yielding a calculated factor of
safety of 1.48 which, in our opinion, provides a satisfactory factor of
safety against shallow and deep-seated instability.
The generalized cross-section of the profile analyzed is included as Figure
1. The "boxes" chosen for each case of the sliding block surface are also
indicated. Representative printouts of the computer analysis for each case
are also included. The printouts presented were found to be the most
critical of those analyzed.
If you have questions or if we can be of further service, please contact
the undersigned.
Very truly yours.
Michael W.
CEG 706
MRR:MVJH:lm
INCORPORATED
Hart Michael R..Rahilly
RCE 28188
(2) addressee
(2) Olivenhain Municipal Water District
-3-
GEXXON
INCORPORATED
PC-STABL 4 •«••*
by
F' Li r d Li e u n i v e r s i t y
—Slope Stability Analysis—
Simplified J an b u Met h od of Slices
or Si mp 1 i -f i ed Bi shop Method
Run Dates
Time of Run:
Run By:
Input Data Filename:
Output. Filename:
Plotted Ou'tpu't Filename:
10. 10
MRR
B: S'TGE£ 100. I MP
B: S"rGEi032. OUT
B:STGE1032.PLT
FROBLiEM DESCRIPTIOM STAGECGAC FINAL GRADING W/ UJAT'ER
" 0 R L A F; G E r A i L- U R t-
BOUNDARY COORDINATES
10 Top Boundaries
10 Total Boundaries'
Boundary X—Lef t. Y-Left X—Right Y~Ri ght Soi 1
No. (ft) (ft) (ft) (ft) Bel ow
1 . 00 50.00 84. 00 50. 00 1
84, 00 50. 00 149.00 82. 00 •1 -i.
149.00 82. 00 164.00 82. 00 1
4 164.00 82. 00 234.00 34. 00
5 234.00 S4. 00 254.00 94. 00 i
6 254.00 94, 00 280. 0(j 107.00 1
7' 28iJ. 00 107.00 .340 - 00 107.00 .1
a 340-, !JO 107 „ C'O 523. 00-113. (1)0
,9 528.00 113.00 544.00 121.00 1
10 5.44. 00 121.00 600.-00 121.00 1
ype
ISOTROPIC SOIL PARAMETERS
1 Tvpe(s) of Soi1
Soil Total Saturated Cohesion Friction Pore Pressure F'ie::.
Type U nit W t. iJ n i t W t, Intercept Angle i-' r- e s s u r e C o n;;;; t a n t S u. r f a c; e
No. (pcf ) (pcf ) (psf) (deq) Par-am. (psf) No,
•4- -44-0-^-0. .1 31.' 1 b, 0
-1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
Unit Weight of Water - 62,40
•••^i ezcmetr i c Eiurface Mo, bpeci^-i ed ay jrdinate F'aint
ro.i n'C
No.
X-Wa'ter • -wacer
(ft)
84. 00
560.00
50. 00
110,00
A Critical Failure- Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
The Active And Passive Portions Uf The Sliding Surfaces
Are Generated According To The Rankine Thsory,
25 Trial Surfaces Have- Been Generated.
•3 Boxes Specified For Generation Of Central Block Base
Length Of Line Segments For Active And Passive Portion?
Sliding Block Is 5.0
Bo!-;
No.
X-Left
• (ft)
Y-Left
(ft)
X-Right
(ft) '
Y-Ri ght
(ft)
Hei ght
(ft)
100.00
150.00
440.00
DU . UU
52. 00
90. 00
130.00
200.00
450.00
50. 00
52. 00
90. 00
10, 00
16. 00
40. 00
Following Are Displayed The Ten Most Critical Of The Trial
F" a i 1 u re S u i" f a c e s E ;•; a mined, T h e y A r e G r d e red -- M o s t C i'" i c i c a 1
F-irst-
-s- * Safetv Factors Are Calculated By The Modified Janbu Method *
•ai 1 ure Surf ace Spec i f i ed By 7 Coord i n.ate Poi nts
Pci nt
No,
-bur t Y -sur-t-
(ft)
7 / . / /
100.79
104,
108, 'da
189,19
443,15
444.69
D6 , 78
54, 53
'51, 64
43-. 71
47, 14
1OS,22
110,34
2. 178
Failure Surface Specified By 10 Coordinate F'oints
Poi nt X-Surf "Y'—Surf
No. (ft ! (-f t)
1 100. 28 53. 01
101, 24 57, 31
i 05. 29 54, 37
4 1.09. 51, 43
cr
wJ 113. 38 48. 49
6 117, 42 45. 56
/ 199. 47. 04
8 444, 04 104.06
9 446. 98 103.11
10 440. 70 110.47
2. i 83
Failure Surface Specified B\ 7 Coordinate F'oints
o i n t X-3urf Y-Surf
No, (ft) (f t)
1 96, 33 56, 31
.2 100.47 •33, 67
3 104,52 50, 73
4 44. 75
5 443.41 105.68
6 446,35 109.73
/ 446. £35 110. 41
^ . ^ ItZ'
lure Surf ace Speci fied By 12
oi nt X-Surf Y-Surf
No, (ft) (ft)
1 92. 34 54, 1 1
95. 28 51. 97
99. 33 49.03
4 103.37 46. 09
5 150.33 47. 45
6 441.94 90. 25
7 444.37 94. 30
a 447.81 93. 34
-9-450.75 102.-39
10 453.69 106.43
11 456.63 110.48
12 456.81 110.73
TOT'
Coor d i nate Poi n ti
-•k
Failure Surface Specified By 11 Coordinate Points
Point X—Surf Y—burr
No. (ft) (ft)
1 93.93 54.89
2 95,02 54.09
3 99,06 51,16
4 103,11 48.22
5 107,15 45,28
6 180.45 53,28
7 -443, 35 95, 13
8 451.29 99.18
9 454,23 103,22
10 457,17 107,27
11 459.75 110.32
'allure Surface Specified By 13 Coordinate Points
Point X-Surf Y-Surf
No, (ft) (ft)
1 98. 51 57, 15
99. 43 56. 48
3 103,47 53, 54
4 107.52 50. 60
5 111.56 47. 67
6 173.93 49.41
~r 440.34 87. 50
3 443.73 91 . 54
9 446.71 95. 59
10 449.65 99.63
11 452,59 103.63
12 455.53 107.72
13 457.74 110.76
2. 404
a i 1 ur e Surf ac e Sp ec i f i ed Eiy 10 Coor d i n a t e F'o i n t s
Poi nt
No,
X-burf
(ft) .
Y-Surf
(-f t)
4
..J
P
i I..!..;; , '7?:3
105,81
109.86
113,90
117,95
179,11
-447, 03
449.97
452,91
453,32
39,
57, 28
54, 34
51 .41
43. 47
51. 94
101,95
1 '06. 00
110,04
110.62
2. 443
Fai1ure Surface Specifi ed By 9
Point X—Surf Y—Surf
No. (ft) (f t)
1 101,96 58, 84
102,64 58.35
106.68 55. 41
4 110.73 52, 47
114,77 49, 54
6 188,46 56, 59
441,52 104,67
8 444,45 108.71
o •445. 66 110.37
F-allure Surface Specified By 13 Coordinate Poi
F'oi nt
No.
X-Surf Y -bur-1
•1
.L
Q -7 c:i -•71 56. BO
99.20^
103.24 52. 36
4 192.88 50, 23
5 443,69 0 r-i "7 0
6 446.63 84, 32
"7 449.57 88. 87
8 " w n J. 92.91
9 455.44 96. 96
10 ••4-30. 0 101.00
1 .1 461.32 105,05
12 464. 2-6 109„09
•I T; 465,65 111.01
2.514
lure Surf ace Speci f ied By 16
oi n-t • X-SBur f • • • Y—Surf
No, (f t) (f c)
1 106.32 61,24
•-ll 107,54 60. '71
"T 111.59 5 / . / /
4. 115.63 54. 83
5 119.68 51 . 89
6 187.85 45, SO
/ 441.82 75, 04
3 444.76 79, 08
9 447.70 83. 13
10 450.64 87, 17
11 453,58 91. 22
12 456.52 95. 26
13 459,46 99, 31
14 462,40 103.35
15 465.33 107.40
16 468.01 ill.09
0 5 •jv
16 Coordinat Poi nts
(JCJ -L 3 L' . '-..I I..J >L"...' , 1...'!..'
• 3 , l.'U
A 15 C'. 0! j
:^5, 00 •+•
;75,00 -+•
411
120,
3 ,
198
094, 1
,96421
, . 954
6(JO . UO -i-
o
m
STAGECOACH PARK
-P
CO
o o
• o a m
o a
ui
^ CD
< o in
a o
in
0 75.00 150.00 225. 00 300. 00 375. 00
X - AXIS (ft)
450. 00 525. 00
-I
600.00
PCE)TABL4
by
F-' u r• d Ll e U n i v e r s i t y
—Slope Stability Analysis—
Simplified Janbu Method of Slices
or Simplified Bishop Method
Run Date:
Ti me. of F';un :
F;un By:
Input Data F'ilename;
Output F i1sname:
F' 1 D1.1 e d 0 u t o u t F i 1 e ri a m e:
10 ° 0 OI
MRR
B:STGEIOO,INP
B:SrGE1030.OUT
B:STGE1030,PLT
F-'RGBLEN DtSCrxIF'TION STAGECOACH 1030 •-- F-INAL GF^ADING W/ WATER
„ BLOCK F-'OR SMALL FAILUFvE
B 0 U N D A R Y C 0 0 f N DIN A T E S
.0 T 3p
"otal
Boundar i es
Boundar i es
Boundary
No.
X-Lef t
(ft)
'Y-Lef t
(ft)
x-!--;! gnr
(ft)
Y-Ri qht Soi1 Type
Below Bnd
1
4
B
9
10
. 00
84, 00
149,00
164.00
2-34, 00
254.00
280.00
340.00
528.00
544.00
50. 00
5 0. 0 0
82. 00
32. 00
84, 00
94. 00
107.00
1 (:)7, 00
113.00
121.00
34.
149.
1 64,
234.
254.
280.
340.00
528,00
544.00
6CiO. 'OC)
OO
00
00
0 0
00
00
50, 00
82, 00
82, 00
84, 00
94. OC)
10 7,00
10'7, 00
113.00
121,00
121,00
ISOTROPIC SOIL PARAMETEKS
1 •Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure _ Piez.
Type Unit Wt. Unit Wt, Intercept Angle Pressure Constant Surface
No, (pcf) (pcf) (psf) (deg) Param, (psf)
13'..*, '-! .1 a.
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFlEI
Unit Weiq-ht of Water 62. 40
"iesometric Surface No. 1 Specified b ;oordinate F'oint
Poi nt
No,
X-warer
(ft)
Y-Water
(ft)
84. 00
560,00 110, C'O
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Sliding Block Surfaces, Has Been
Specified.
The Active And Passive Portions Of The Sliding Surface-;
Are Generated According To The Rankine Theory,
25 Trial Surfaces F-iave Been Generated,
2 Bo;-;es Specified For Generation Of Central Block Base
Length Of Line Segments For Active And F'.assive F'ortions Of
SI idinq Block Is 5. C)
Bo;-
No.
X-Left
(ft)
Y-Left
(ft)
X — R i q FT t
(ft)
Y-Ri ght
(ft)
Fiei ght
(ft)
100.00
15(1). 00
50. 00
52. 00
130, !J0
200,00
50. 00
52. 00
10. 00
16. 00
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Examined. They Are Ordered - Most Critical
F-'i rst,
•Jt- * Safety Factors Are Calculated By Th-e Modified Janbu F'lethod * •*
allure Surf-acte Specified By 1-4 Coordinate F'oii
o i n t X—Surf Y—Surf
F^Fo. (f t) "(ft)
1 92. 34 54,11
95. '79. 51. 97
99. 33 49. 03
4 103,37 46. 09
3 150,33 47-, 45
6 15-3, 2 / 51, 50
"7 156,20 55. 54
159. 14 59, 59
9 162,08 63, 63
10 1 V.J 3 H .i-6 , it; 3
11 167.96 71, 72
12 170,90 75. 77
13 173.84 79. SI
14 175, 6'7 32. 33
1, 377
Failure Surf-ace Specified By 1'.^:; Coordinate Points
Poi nt
No.
X-Surf
(f t)
4
5
6
7
a
9
' lO
" ' '"11
100.
103,
107,
111.
115.
154.
157.
160.
163.
166.
169.
.171.
99
51
56
60
65
77
71
65
59
53
46
.32
Y-Surf
(ft)
58. 37
56. 54
53. 60
50. 66
47. 72
59. 44
63. 48
67. 53
71.57
75.62
79.66
- 82.21
•»*« * ^
: 1.467
1 u!-- e Surface Specified By 14
o i n t X-Surf \ '—Surf
No, (ft) (ft)
i. 100.77 58, 26
102.23 57. 20
106. '2 7 54, 26
4 110,32 51 , 32
114,36 48, 38
15 4, IS 5 1 , CiO
"7 lb/, 12 55. 04
CD 160,06 59, 09
9 163,00 63, 13
10 165,94 67. 18
11 163.38 71, 22
12 171.82 75. 27
13 174,76 79. 31
14 176.98 82, 37
* 1.535
1 ure Surface Specified By 11
'oi nt X—Surf c'-Sur f
No. (ft) (ft)
1 96. 68 56. 24
98. SO 54, 70
3 102.35 5 1 . 76
106.89 48. 82
165,56 58. S3
168,50 62. 87
7 171.44
e 174.38 70. 96
9 177,32 75. 01
10 180.26 79, 05
11 132,79 32. 54
a- •¥. 1,61-i •¥:•?!:-a-
"dinate F-'oints
1 1 Coor d i n a-'-'oi n t i
Failure Surface Specific ed By 11 Coordinate F'oi
Poi n t
iNo.
—bun
(ft)
Y "* Ll f" T
(ft)
I 99, 26 3 / , 3 i
100,50 56. 61
104,55 53, 67
4 155.40 56. 53
153.34 60. 62
64. 6'7
164.22 63. 71
3 167. 16 72. 76
170.10 '76, 80
10 173.04 80. 85
11 174.03 32, 29
1, 652
1 ure Surface Speci f i ed By 14
oi nt X-Surf Y'—Sur f
No. (ft) (ft)
1 93. 93 54. 39
95. 02 54. 0'9
99.06 51.16
4 103.11 48.22
5 107.15 45, 28
6 130.45 53. 28
7 183.39 57, 3-3
8 186.33 61. 37
9 189,27 65. 42
10 192.21 69. 46
11 195. 15 73, 51
12 193.09 77, 55
13 201.03 31 . 60
14 202.11 33. 09
Coordinate F'^'oints
I
'1
Failure Surface Specified By 13 Coordinate Poin
o i n t X-Surf 'Y —Surf
No. (ft) (f t)
1 97,97 3 3.
101.67 54. IS
4
105.72
160,48
51. 24
163.42 3.3, 7 3
6 166. -36 b / , 7 V
3
169,30
172.24
61 . 84
63, 08
9 175,18 69, 93
10 178,12 73. '97
11 181,06 '78, 0'2
12 133,99 82. 06
13 184.37 32. 58
1, 758
1 ure
)
Surface Speci f i ed By 11
'oi nt X-Surf '—Surf
No. (-f t) (f t)
1 102.21 53. 96
'"> 102.73 58. 59
106.77 55. 65
4 110.82 52. 71
5
6
7
165.07
168.01
170.95
59, 30
63, 84
67. 89
8 173.39 71. 93
9 176.83 75. 93
10 179.77 80. 02
11 181.57
1. 902
82.50
Failure Surface Specified By 17 Coordinate Points
1 F'oi n't X-Surf —Surf
• No. (ft) (ft)
1 1 1 3 , ' p ()
106.53
i10,58
59, SO
54 „ 94
•
4 114,62 52. 01 • 6
118.67
1 .-n o -7 -| 46, 13
-/ 159,12 46, 01 • 8 162.05 50. 06
o 164. '99 54. 10
10 167.93 b6, lb • 11 1'70. t3 '7 62, 19 • 12 173.31 66, 24
13 176.75 •70, '29
14 179,69 74, 33 • 15 132,63 -•7 a T a
16 185,57 .82. 42
17 185,71
-
-fr 1. B3&
Fai 1 ure £iur face Specified i,' -y .1-
Poi nt X-Surf Y'-Surf
1 No. (ft) (ft)
1 112.67 64. 12
116,02 61. 68
1 120.07 58. 74 1 4 124. 11 55. 30
5 128, 16 cr . 0 3ji . a /
6 150,23 54, 05
|i • "7 153,17 53. 09
8 156. 1 1 62. 14
f • 9 159,05 66. 18
1 10 161.98 '70. 23
11 164.92 74. 27
12 167,36 78. 32
1 13 170.68 32. 19
Coordinate F'oints
1. 857
5. 00 150.00 225.00 :.00. UU / b „ u u
. i.)0
•5.00 +
112
2290
H i50,00 112
93111*
.67311
,.6694
. . . 66
. UU -I-
JOO . 00 +
; / 5. 00 -1-
450.00 +
F 525. 00 •+-
W
T 600, OC' -+
•s-
-*• -^V -ft- -ft- -^t- -T^- -s- -i^
-i^ -S- -S- -i^ -iV •i'^- -S- -S- -i!*"
-ft- -)^- -f^- "fi- -i^ -ih •¥: "i^ ")^- 'f*" -i'i- -ft-
•it- "i^ -fl* "S" -?r -^^ -i'i' -i^ •i^^' "i-t- -i^ -S" •i't- •i'^- -i^- 'i-^-
) e s i g n F^' r o f e s -s i o n a 1 -s F'1 a n a q e fn e n t S y s t e m s -s-
F< i r F:: 1 a n d , W a s h i n g t o n * *
3TABL4 81 ooe btab i i i t'
IBM PC & b086/t3088 MB-DuS Version * -s-
Revision 4.0 - 07/04/85 * *
•*• "^t* '^f •S* "S" •i'^" "j^" "j^" "j^ 'l-^" "i^ "S"!^ "S" "i^t" "r^
4^. -Jt- -|a;-
—SLOPE STABILITY ANALYSIS—
SIMPLIFIED JANBU METHOD OF SLICES
OR SIMPLIFIED BISHOP METHOD
PROBLEM DESCRIPTI ON STAGECOACH 1031 ~ FINAL GRADING W/ WATER
, BLOCF< FOR SMALL FAILURE, W/ STAB FILL
BOUNDARY COORDINATES
10 TOP BOUNDARIES
11 TOTAL BOUNDARIES
BOUFMDARY X-LEFT • Y-LEFT X.-F-nSHT Y—'RI GHT SOIL
NO. (FT) (FT) (FT) (FT) BELOW
1 0. 00 50. 00 34. 00 50, 00 1
84. C-' i-Ii 5C). 00-149.00 82. '• J 0 '"7
149.00 32, 00 164.00 32. 00 'T'
4 164.00 82. 00 234.00 34, 00 1
3 234,00 8 4.. 00 254.00 94,00 • 1
6 254.00 94. 00 '280, 00 1 Ci 7 , 0 C! i_
•7 280,00 107.00 .3 4 C'. C) C-' 1 C)'7, OC) 1
-3 4 Ci, OI OI 10 7. 00 528.00 113.00 1
9 528,00 113.00 544.00 1
10 544,00 121.00 6 OI 0, C-' 0 121, C)Ci 1
11 100.00 50, 00 164.00 82, 00 1
ISOTROPIC SOIL PARAMETERS
2 ••i'YF'E(S) OF SBOIL
SOIL TOTAL SATURATED C'OHES IOF--I FFlICTION PORE PRESSURE PIEZ
METRIC
TYPE UNIT WT, UNIT WT. INTERCEPT ANGLE PRESSURE CONSTANT SU
FACE
NO, (F~'CF) (F'CF) (F'SF) (DEG) F'ARAMETEF< (PSF)
I--i3 .
1 1 10. 0 120, 0 150, C) 18, 0 0, 00 C). 0
1
2 1 1C), 0 120. 0 250. 0 25, Ci C). OC; 0, Ci
1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED
UNIT WEIGHT OF WATER = 62,40
PIEZOMETRIC SURFACE NO, 1 SPECIFIED BY 2 COORDINATE POINTS
POINT X~WATER Y-WATER
f'--IO, (F'T) (F--'T)
1 34.00 50,00
2 560. CiC) 110, OCi
A C F-^; ITIC A L F AIL U R E S U R F ACE SEA R CHI N G .i-i E T H 0 D , U 31 F^F G A R A H D 0 F-'
TECHNIQUE FOR GENERATING SLIDING BLOCF: SURFACES, HAS BEEN
SPECIFIED,
THE ACTIVE AND PASSIVE PORTIONS OF THE SLIDING SURFACES
ARE GENERATED ACCORDING TO THE RANFaNE THEORY.
25 TRIAL SURFACES HAVE BEEN GENERATED-
2 BOXES SPECIFIED FOR GENERATION OF CENTRAL BLOCH: BASE
LENGTH OF LINE SEGMENTS FOR ACTIVE AND PASSIVE PORTIONS OF
SLIDING BLOCh:: IS 5.0 '
BOX X-LEFT Y-LEFT X-RIGHT Y-RI6HT WIDTH
NO. • (FT) (FT) (FT) (FT) (FT)
1 1 OC). 00 50. 00 130. 00 50. C")C) 10, 00
2 15C'„C'0 5.2.00 200. OC) 52, OC) 16.00
I
FOLLOWING ARE DISPLAYED THE TEN MOST CRITICAL OF THE TRIAL
FAILURE SURFACES EXAMINED. THEY ARE ORDERED - MOST CRITICAL
FIRST,
* * * SAFETY FACTORS ARE CALCULATED BY THE MODIFIED JANBU METHOD * •*
FAILURE SURFACE SPECIFIED BY 13 COORDINATE POINTS
POINT X-SURF" "Y 3UF;F
NO. (FT) (FT)
1 93, 07 54. 46
95, 32 52. 71
1 (") (") C) 4
4 100.71 49,, 53
151.31 50, 71
C> 154.25 54. 7'6
/ 157,19 53, 80
160. 13 62, 85
9 163.07 66; 3 '9
1 if) 166,00 7C), 94
11 168.94 74. 98
12 171,88 79. 03
1 -3 174.25 82. 29
1 . 483
FAILURE SURFACE SPECIFIED BY 16
POINT X-SURF /-SURF
NO. (FT) (FT)
1 99.55 57. 66
102.26 55.93
106.48 53.24
4 108.09 52.07
5 112.13 49. 13
6 116. 13 46. 19
7 155.36 48, 48
. 8 158.30 52. 53
9 161.23 56. 57
10 164,17 60. 62
11 167.11 64, 66
12 17C), C)5 68. 71
13 172.99 72. 75
14 175.93 76. SC)
15 178.87 80. 84
16 130.04 82. 46
• 1. 639 -ft--*-*
FAILURE SURFACE SPECIFIED BY 12 COORDINATE POINTS
OINT X-SURF Y-SURF
NO. (FT) (FT)
1 93. 06 54, 46
96, 08 52. 26
100.13 49. 32
4 104,17 -46. 39
163.79 54, 43
171,73 53. 48
'7 1 '74, 6 "7 62. 52
3 17'7, 61 66.3
Q 130.55 70. 61
1 0 183.49 74. 66
1 1 186.42 78. 70
12 189,35 32. 72
1 , 644
LURE SURFACE SPEC IFIED BY 14
OINT X-SURF. Y-SURF
NO. (FT) (FT)
1 93, 12 54.49
93, 57 54. 16
97,62 51. 22
4 101.66 43. 28
5 105.71 45. 34
6 169.35 51 . 93
"7 172.29 55.97
8 175.22 60. 02
9 178.16 64, C)6
10 131.10 68. 11
1 1 134.04 72. 15
12 186.93 76. '20
13 189.92 80. 25
14 191.77 82. 79
1. 654
14 COORDINATE POIN"!
FAILURE SURFACE SPECIFIED BY 14 COORDINATE POINTS
F'O IF-J T X-SURF Y-SURF
NO. (FT) (FT)
1 102.IS 58. 95
104.87 57. 23
y 109,09 54. 55
4 113,05 51 , 67
3 150,52 46, 37
6 153,46 50, 92
•7 156-40 54, '9'7
0
w 159.34 59, 01
9 162,2S 6-_'', ''..)6
10 165,22 6 '7. 10
1 1 168.16 •7 1.15
•i 0 171.10 75. 19
13 174.0.3 79. 24
14 17'6. 30 32. 35
•^^•-ft--)^-1, 734 •Ji-
FAILURE SURFACE SPEC IFIED BY 15
POINT X-SURF Y-SURF
NO. (FT) (FT)
1 101.62 58. 67
104.31 56. 95
3 108,53 54. 27
4 110.72 - -52.67
5 , 114.77 49. '73
6 156.28 49. 26
7 159.22 53. 30
a 162.16 57. 35
9 165.10 61 . 39
10 168.03 65. 44
1 1 170.97 69, 48
12 173.91 73. 53
13 176.85 77. 57
14 179.79 31. 62
15 180.41 82.47
1. 762
15 C 0 0 R D' IN A T E F=' 01H T S
FAILURE SURFACE SPECIFIED BY 14 COORDINATE POINTS
POI N T X - S U R F Y ~ S U R F-
NO. (FT) (FT)
2 98,46 54.03
3 102.68 51,34
4 102.34 51.22
5 106.88 48.29
6 1 7'7. 4 1 52 . 53
7 18C!,-33 56, 3a
3 133,29 60,62
9 136.23 64.67
10 189.16 68,71
11 192.10 • 72.76
12 195, 04 76. SC)
13 197.98 80,85
14 199,56 83,02
1, 9C) 1
FAILURE SURFACE: SPECIFIED BY 13
POINT X-SURF Y-SURF
NO. (FT) (FT)
1 105.13 6C). 40
••-
107,31 58, 70
112.02 56, 01
4 114.47 54. 24
5 158.56 52. 54
6 161.49 56, 58
7 164,43 6C), 63
8 167, -37 64. 67
9 170,31 63, 72
10 173.25 72, 76
11 176.19 76. 31
12 179. 1 3 80. 85
13 180.30 82. 47
,-»•»»••* - 1.96/
FAILURE SURFACE SPECIFIED BY 15 COORDINATE POINT
POINT X-SURF ''—3U\RF
NO. (FT) (FT)
1 101.14 58. 44
103.35 56. 72
y 103.06 54, 03
4 109- 35 53. 10
rr 113.39 50. 16
6 117.44 47. 22
~7 179,OS 53, 62
a 132.02 57', 66
184.96 61 , '71
10 187, '90 i. tz- nr
I-P3 . / 3
1 1 190,84 69 . 8C)
•I '~
.1. 193.78 73. 34
13 . 196.71 77. EB9
14 199.65 31. 93
15 200.46 S3. C)4
1 . 988 -S--M--*
FAILURE SURFACE SPECIFIED BY 13
POINT X-SURF f'-SURF
NO. (FT) (FT)
1 • 93,44 54., 65
52. 40
y 100.56 49. 47
4 178.94 48. 09
5 131.88 52. 14
6 184.82 56, 18
7 13'7. 76 60. 23
3 190.70 64. 2"7
9 193.64 68. 32
10 196.57 72. 36
11 199.51 '76. 41
12 202.45 80. 45
1.3 204.41 83. 15
2. C' 12
U , UU -t-
75. OU -f-
H i bU.
s ;75.00 +
450.00 -H-
525, 00 -+•
6C)Ci, C>C) +
F T
'75. 00 1 bO. 00
-«•
228
\L 1 •'*•
.211 *
033211
. C)7'733
W
Execution complete, time - 49.11 second?
:^:00. UU ' -i *! )()
X
>
Ul
o
in o
o
o I
rj
Ln
• o o
CJO
o
D
X a
1—1
CO
• a a
•
ft o
a
Y - AXIS (ft)
75, GO 150.DO 225. 00 300.00 375.00
r 1
\
o 1
o r
Ul
cn
a
cn a a • o o