Loading...
HomeMy WebLinkAbout; Stagecoach Park Summary Slope Stability Analysis; Stagecoach Park Summary of Slope Stability Analysis; 1986-05-01SUMMARY OF SLOPE STABILITY ANALYSES FOR . STAGECOACH PARK CARLSBAD, CALIFORNIA For CITY OF CARLSBAD Carlsbad, California By GEOCON, INCORPORATED San Diego, California May, 1986 INC O R P O R A T E D ^N^'N^^'*^ ^'^^ ^^°^°^'^TS • CONSULTA File No. D-3480-JO2 May 27, 1986 City of Carlsbad . , Engineering Department 1200 Elm Avenue Carlsbad, California 92008 Attention: Mr. Richard Allen Subject: . STAGECOACH PARK CARLSBAD, CALIFORNIA ' _ SUMMARY OF SLOPE STABILITY ANALYSES Gentlemen: In response to your request, we are providing the analyses of the stability of the approximately 30-foot-high combination cut-fill slope at the northeastern end of the site adjacent to Mision, Estancia. . . As discussed in our May 15, 1986 "Stability Analysis" letter, several studies have been performed which indicate the presence of siltstones and claystones of the Tertiary age Delmar Formation within the slope and the area easterly of the slope. The materials exhibit zones of shearing, however, the later studies did not indicate the presence of continuous shear zones which would suggest presence of deep-seated landslides. The shears and fractures were generally oriented toward the east and northeast (into the slope) which is considered a favorable orientation in regard to stability of the cut slope. / - " ' . • Shear Strength Parameters The shear strength parameters utilized in the analysis are based on laboratory tests on samples of Delmar Formation materials both from the subject site and from projects in the general site area. Residual shear tests were performed on samples of claystone and yielded shear strength parameters of (j) ' = 5 to 10 degrees and C = 220 psf. In addition, direct shear tests and "slow" direct shear tests of the undisturbed claystone materials yielded shear strength parameters of (j)' = 18 to 34 degrees and cohesion of C = 150 to in excess of 500 psf. Direct shear tests were also performed on samples of the material in the slope compacted to approximately 90 percent of maximum laboratory density at near optimum moisture content. 9530 DOV^DY DRIVE • SAN DIEGO, CALIFORNIA 92126 • PHONE (619) 695-2880 File No. D-3480-Jd2 May 27, 1986. The values chosen for use in the analysis are: . • " Material i\>' (degrees) C (psf) Formational siltstones ,^ • : and. claystones .18 150 Compacted claystone and siltstones- .25 250 Since no landslides or zones of continuous shearing were encountered, the residual shear values were not used. Although a water table was not encountered, several seepage zones were noted in the borings. In addition, it is anticipated that irrigation of the adjoining subdivision may result in a future relatively shallow water table developing on the site. For the analysis, it was assumed that a water table would be present within the profile. The water table was assumed to extend from the toe of the cut slope in Stagecoach Park to within approximately 10 feet of finish grade , at the eastern end of the profile. . Stability Analyses The slope stability analyses were performed utilizing a computer program entitled STABL (Version 4.0) developed at Purdue University. The program performs limiting equilibrium analyses by the method of slices for stability of slopes and utilizes a searching technique within the bounds or boundaries set by the operator. STABL uses any of three general failure shapes: random; circular; or block failure shapes. Since planar shear surfaces were encountered within the Delmar Formation materials, a block failure mode was deemed to be the most appropriate pattern for analysis. The sliding block surface option allows the operator to choose two or more boxes within the mass to be analyzed. The program then randomly selects points within each box. The points are connected and this line segment becomes the base of the failure plane. For this analyses, two separate cases were chosen: Case I - Stability of the overall area with the analyzed area extending east of Mision Estancia. For this case, three "boxes" were chosen of. sufficient size to allow a wide variety of failure surfaces. The.analyses indicated calculated factors of safety in excess of 1.5 for this case. Case II - The second case utilized two "boxes" within the general area of Mision Estancia. The analyses indicated that the most critical failure surface (FS = 1.39) was in the western portions of Mision Estancia -2- GEOCON INCORPORATED File No. .D-3480-J02 May 27, 1986 . (southbound lanes) and extending through the slope. An additional analysis was performed on this . same section after assuming construction of an approximately 15-foot-wide.stability fill yielding a calculated factor of safety of 1.48 which, in our opinion, provides a satisfactory factor of safety against shallow and deep-seated instability. The generalized cross-section of the profile analyzed is included as Figure 1. The "boxes" chosen for each case of the sliding block surface are also indicated. Representative printouts of the computer analysis for each case are also included. The printouts presented were found to be the most critical of those analyzed. If you have questions or if we can be of further service, please contact the undersigned. Very truly yours. Michael W. CEG 706 MRR:MVJH:lm INCORPORATED Hart Michael R..Rahilly RCE 28188 (2) addressee (2) Olivenhain Municipal Water District -3- GEXXON INCORPORATED PC-STABL 4 •«••* by F' Li r d Li e u n i v e r s i t y —Slope Stability Analysis— Simplified J an b u Met h od of Slices or Si mp 1 i -f i ed Bi shop Method Run Dates Time of Run: Run By: Input Data Filename: Output. Filename: Plotted Ou'tpu't Filename: 10. 10 MRR B: S'TGE£ 100. I MP B: S"rGEi032. OUT B:STGE1032.PLT FROBLiEM DESCRIPTIOM STAGECGAC FINAL GRADING W/ UJAT'ER " 0 R L A F; G E r A i L- U R t- BOUNDARY COORDINATES 10 Top Boundaries 10 Total Boundaries' Boundary X—Lef t. Y-Left X—Right Y~Ri ght Soi 1 No. (ft) (ft) (ft) (ft) Bel ow 1 . 00 50.00 84. 00 50. 00 1 84, 00 50. 00 149.00 82. 00 •1 -i. 149.00 82. 00 164.00 82. 00 1 4 164.00 82. 00 234.00 34. 00 5 234.00 S4. 00 254.00 94. 00 i 6 254.00 94, 00 280. 0(j 107.00 1 7' 28iJ. 00 107.00 .340 - 00 107.00 .1 a 340-, !JO 107 „ C'O 523. 00-113. (1)0 ,9 528.00 113.00 544.00 121.00 1 10 5.44. 00 121.00 600.-00 121.00 1 ype ISOTROPIC SOIL PARAMETERS 1 Tvpe(s) of Soi1 Soil Total Saturated Cohesion Friction Pore Pressure F'ie::. Type U nit W t. iJ n i t W t, Intercept Angle i-' r- e s s u r e C o n;;;; t a n t S u. r f a c; e No. (pcf ) (pcf ) (psf) (deq) Par-am. (psf) No, •4- -44-0-^-0. .1 31.' 1 b, 0 -1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water - 62,40 •••^i ezcmetr i c Eiurface Mo, bpeci^-i ed ay jrdinate F'aint ro.i n'C No. X-Wa'ter • -wacer (ft) 84. 00 560.00 50. 00 110,00 A Critical Failure- Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. The Active And Passive Portions Uf The Sliding Surfaces Are Generated According To The Rankine Thsory, 25 Trial Surfaces Have- Been Generated. •3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portion? Sliding Block Is 5.0 Bo!-; No. X-Left • (ft) Y-Left (ft) X-Right (ft) ' Y-Ri ght (ft) Hei ght (ft) 100.00 150.00 440.00 DU . UU 52. 00 90. 00 130.00 200.00 450.00 50. 00 52. 00 90. 00 10, 00 16. 00 40. 00 Following Are Displayed The Ten Most Critical Of The Trial F" a i 1 u re S u i" f a c e s E ;•; a mined, T h e y A r e G r d e red -- M o s t C i'" i c i c a 1 F-irst- -s- * Safetv Factors Are Calculated By The Modified Janbu Method * •ai 1 ure Surf ace Spec i f i ed By 7 Coord i n.ate Poi nts Pci nt No, -bur t Y -sur-t- (ft) 7 / . / / 100.79 104, 108, 'da 189,19 443,15 444.69 D6 , 78 54, 53 '51, 64 43-. 71 47, 14 1OS,22 110,34 2. 178 Failure Surface Specified By 10 Coordinate F'oints Poi nt X-Surf "Y'—Surf No. (ft ! (-f t) 1 100. 28 53. 01 101, 24 57, 31 i 05. 29 54, 37 4 1.09. 51, 43 cr wJ 113. 38 48. 49 6 117, 42 45. 56 / 199. 47. 04 8 444, 04 104.06 9 446. 98 103.11 10 440. 70 110.47 2. i 83 Failure Surface Specified B\ 7 Coordinate F'oints o i n t X-3urf Y-Surf No, (ft) (f t) 1 96, 33 56, 31 .2 100.47 •33, 67 3 104,52 50, 73 4 44. 75 5 443.41 105.68 6 446,35 109.73 / 446. £35 110. 41 ^ . ^ ItZ' lure Surf ace Speci fied By 12 oi nt X-Surf Y-Surf No, (ft) (ft) 1 92. 34 54, 1 1 95. 28 51. 97 99. 33 49.03 4 103.37 46. 09 5 150.33 47. 45 6 441.94 90. 25 7 444.37 94. 30 a 447.81 93. 34 -9-450.75 102.-39 10 453.69 106.43 11 456.63 110.48 12 456.81 110.73 TOT' Coor d i nate Poi n ti -•k Failure Surface Specified By 11 Coordinate Points Point X—Surf Y—burr No. (ft) (ft) 1 93.93 54.89 2 95,02 54.09 3 99,06 51,16 4 103,11 48.22 5 107,15 45,28 6 180.45 53,28 7 -443, 35 95, 13 8 451.29 99.18 9 454,23 103,22 10 457,17 107,27 11 459.75 110.32 'allure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf No, (ft) (ft) 1 98. 51 57, 15 99. 43 56. 48 3 103,47 53, 54 4 107.52 50. 60 5 111.56 47. 67 6 173.93 49.41 ~r 440.34 87. 50 3 443.73 91 . 54 9 446.71 95. 59 10 449.65 99.63 11 452,59 103.63 12 455.53 107.72 13 457.74 110.76 2. 404 a i 1 ur e Surf ac e Sp ec i f i ed Eiy 10 Coor d i n a t e F'o i n t s Poi nt No, X-burf (ft) . Y-Surf (-f t) 4 ..J P i I..!..;; , '7?:3 105,81 109.86 113,90 117,95 179,11 -447, 03 449.97 452,91 453,32 39, 57, 28 54, 34 51 .41 43. 47 51. 94 101,95 1 '06. 00 110,04 110.62 2. 443 Fai1ure Surface Specifi ed By 9 Point X—Surf Y—Surf No. (ft) (f t) 1 101,96 58, 84 102,64 58.35 106.68 55. 41 4 110.73 52, 47 114,77 49, 54 6 188,46 56, 59 441,52 104,67 8 444,45 108.71 o •445. 66 110.37 F-allure Surface Specified By 13 Coordinate Poi F'oi nt No. X-Surf Y -bur-1 •1 .L Q -7 c:i -•71 56. BO 99.20^ 103.24 52. 36 4 192.88 50, 23 5 443,69 0 r-i "7 0 6 446.63 84, 32 "7 449.57 88. 87 8 " w n J. 92.91 9 455.44 96. 96 10 ••4-30. 0 101.00 1 .1 461.32 105,05 12 464. 2-6 109„09 •I T; 465,65 111.01 2.514 lure Surf ace Speci f ied By 16 oi n-t • X-SBur f • • • Y—Surf No, (f t) (f c) 1 106.32 61,24 •-ll 107,54 60. '71 "T 111.59 5 / . / / 4. 115.63 54. 83 5 119.68 51 . 89 6 187.85 45, SO / 441.82 75, 04 3 444.76 79, 08 9 447.70 83. 13 10 450.64 87, 17 11 453,58 91. 22 12 456.52 95. 26 13 459,46 99, 31 14 462,40 103.35 15 465.33 107.40 16 468.01 ill.09 0 5 •jv 16 Coordinat Poi nts (JCJ -L 3 L' . '-..I I..J >L"...' , 1...'!..' • 3 , l.'U A 15 C'. 0! j :^5, 00 •+• ;75,00 -+• 411 120, 3 , 198 094, 1 ,96421 , . 954 6(JO . UO -i- o m STAGECOACH PARK -P CO o o • o a m o a ui ^ CD < o in a o in 0 75.00 150.00 225. 00 300. 00 375. 00 X - AXIS (ft) 450. 00 525. 00 -I 600.00 PCE)TABL4 by F-' u r• d Ll e U n i v e r s i t y —Slope Stability Analysis— Simplified Janbu Method of Slices or Simplified Bishop Method Run Date: Ti me. of F';un : F;un By: Input Data F'ilename; Output F i1sname: F' 1 D1.1 e d 0 u t o u t F i 1 e ri a m e: 10 ° 0 OI MRR B:STGEIOO,INP B:SrGE1030.OUT B:STGE1030,PLT F-'RGBLEN DtSCrxIF'TION STAGECOACH 1030 •-- F-INAL GF^ADING W/ WATER „ BLOCK F-'OR SMALL FAILUFvE B 0 U N D A R Y C 0 0 f N DIN A T E S .0 T 3p "otal Boundar i es Boundar i es Boundary No. X-Lef t (ft) 'Y-Lef t (ft) x-!--;! gnr (ft) Y-Ri qht Soi1 Type Below Bnd 1 4 B 9 10 . 00 84, 00 149,00 164.00 2-34, 00 254.00 280.00 340.00 528.00 544.00 50. 00 5 0. 0 0 82. 00 32. 00 84, 00 94. 00 107.00 1 (:)7, 00 113.00 121.00 34. 149. 1 64, 234. 254. 280. 340.00 528,00 544.00 6CiO. 'OC) OO 00 00 0 0 00 00 50, 00 82, 00 82, 00 84, 00 94. OC) 10 7,00 10'7, 00 113.00 121,00 121,00 ISOTROPIC SOIL PARAMETEKS 1 •Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure _ Piez. Type Unit Wt. Unit Wt, Intercept Angle Pressure Constant Surface No, (pcf) (pcf) (psf) (deg) Param, (psf) 13'..*, '-! .1 a. 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFlEI Unit Weiq-ht of Water 62. 40 "iesometric Surface No. 1 Specified b ;oordinate F'oint Poi nt No, X-warer (ft) Y-Water (ft) 84. 00 560,00 110, C'O A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. The Active And Passive Portions Of The Sliding Surface-; Are Generated According To The Rankine Theory, 25 Trial Surfaces F-iave Been Generated, 2 Bo;-;es Specified For Generation Of Central Block Base Length Of Line Segments For Active And F'.assive F'ortions Of SI idinq Block Is 5. C) Bo;- No. X-Left (ft) Y-Left (ft) X — R i q FT t (ft) Y-Ri ght (ft) Fiei ght (ft) 100.00 15(1). 00 50. 00 52. 00 130, !J0 200,00 50. 00 52. 00 10. 00 16. 00 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical F-'i rst, •Jt- * Safety Factors Are Calculated By Th-e Modified Janbu F'lethod * •* allure Surf-acte Specified By 1-4 Coordinate F'oii o i n t X—Surf Y—Surf F^Fo. (f t) "(ft) 1 92. 34 54,11 95. '79. 51. 97 99. 33 49. 03 4 103,37 46. 09 3 150,33 47-, 45 6 15-3, 2 / 51, 50 "7 156,20 55. 54 159. 14 59, 59 9 162,08 63, 63 10 1 V.J 3 H .i-6 , it; 3 11 167.96 71, 72 12 170,90 75. 77 13 173.84 79. SI 14 175, 6'7 32. 33 1, 377 Failure Surf-ace Specified By 1'.^:; Coordinate Points Poi nt No. X-Surf (f t) 4 5 6 7 a 9 ' lO " ' '"11 100. 103, 107, 111. 115. 154. 157. 160. 163. 166. 169. .171. 99 51 56 60 65 77 71 65 59 53 46 .32 Y-Surf (ft) 58. 37 56. 54 53. 60 50. 66 47. 72 59. 44 63. 48 67. 53 71.57 75.62 79.66 - 82.21 •»*« * ^ : 1.467 1 u!-- e Surface Specified By 14 o i n t X-Surf \ '—Surf No, (ft) (ft) i. 100.77 58, 26 102.23 57. 20 106. '2 7 54, 26 4 110,32 51 , 32 114,36 48, 38 15 4, IS 5 1 , CiO "7 lb/, 12 55. 04 CD 160,06 59, 09 9 163,00 63, 13 10 165,94 67. 18 11 163.38 71, 22 12 171.82 75. 27 13 174,76 79. 31 14 176.98 82, 37 * 1.535 1 ure Surface Specified By 11 'oi nt X—Surf c'-Sur f No. (ft) (ft) 1 96. 68 56. 24 98. SO 54, 70 3 102.35 5 1 . 76 106.89 48. 82 165,56 58. S3 168,50 62. 87 7 171.44 e 174.38 70. 96 9 177,32 75. 01 10 180.26 79, 05 11 132,79 32. 54 a- •¥. 1,61-i •¥:•?!:-a- "dinate F-'oints 1 1 Coor d i n a-'-'oi n t i Failure Surface Specific ed By 11 Coordinate F'oi Poi n t iNo. —bun (ft) Y "* Ll f" T (ft) I 99, 26 3 / , 3 i 100,50 56. 61 104,55 53, 67 4 155.40 56. 53 153.34 60. 62 64. 6'7 164.22 63. 71 3 167. 16 72. 76 170.10 '76, 80 10 173.04 80. 85 11 174.03 32, 29 1, 652 1 ure Surface Speci f i ed By 14 oi nt X-Surf Y'—Sur f No. (ft) (ft) 1 93. 93 54. 39 95. 02 54. 0'9 99.06 51.16 4 103.11 48.22 5 107.15 45, 28 6 130.45 53. 28 7 183.39 57, 3-3 8 186.33 61. 37 9 189,27 65. 42 10 192.21 69. 46 11 195. 15 73, 51 12 193.09 77, 55 13 201.03 31 . 60 14 202.11 33. 09 Coordinate F'^'oints I '1 Failure Surface Specified By 13 Coordinate Poin o i n t X-Surf 'Y —Surf No. (ft) (f t) 1 97,97 3 3. 101.67 54. IS 4 105.72 160,48 51. 24 163.42 3.3, 7 3 6 166. -36 b / , 7 V 3 169,30 172.24 61 . 84 63, 08 9 175,18 69, 93 10 178,12 73. '97 11 181,06 '78, 0'2 12 133,99 82. 06 13 184.37 32. 58 1, 758 1 ure ) Surface Speci f i ed By 11 'oi nt X-Surf '—Surf No. (-f t) (f t) 1 102.21 53. 96 '"> 102.73 58. 59 106.77 55. 65 4 110.82 52. 71 5 6 7 165.07 168.01 170.95 59, 30 63, 84 67. 89 8 173.39 71. 93 9 176.83 75. 93 10 179.77 80. 02 11 181.57 1. 902 82.50 Failure Surface Specified By 17 Coordinate Points 1 F'oi n't X-Surf —Surf • No. (ft) (ft) 1 1 1 3 , ' p () 106.53 i10,58 59, SO 54 „ 94 • 4 114,62 52. 01 • 6 118.67 1 .-n o -7 -| 46, 13 -/ 159,12 46, 01 • 8 162.05 50. 06 o 164. '99 54. 10 10 167.93 b6, lb • 11 1'70. t3 '7 62, 19 • 12 173.31 66, 24 13 176.75 •70, '29 14 179,69 74, 33 • 15 132,63 -•7 a T a 16 185,57 .82. 42 17 185,71 - -fr 1. B3& Fai 1 ure £iur face Specified i,' -y .1- Poi nt X-Surf Y'-Surf 1 No. (ft) (ft) 1 112.67 64. 12 116,02 61. 68 1 120.07 58. 74 1 4 124. 11 55. 30 5 128, 16 cr . 0 3ji . a / 6 150,23 54, 05 |i • "7 153,17 53. 09 8 156. 1 1 62. 14 f • 9 159,05 66. 18 1 10 161.98 '70. 23 11 164.92 74. 27 12 167,36 78. 32 1 13 170.68 32. 19 Coordinate F'oints 1. 857 5. 00 150.00 225.00 :.00. UU / b „ u u . i.)0 •5.00 + 112 2290 H i50,00 112 93111* .67311 ,.6694 . . . 66 . UU -I- JOO . 00 + ; / 5. 00 -1- 450.00 + F 525. 00 •+- W T 600, OC' -+ •s- -*• -^V -ft- -ft- -^t- -T^- -s- -i^ -i^ -S- -S- -i^ -iV •i'^- -S- -S- -i!*" -ft- -)^- -f^- "fi- -i^ -ih •¥: "i^ ")^- 'f*" -i'i- -ft- •it- "i^ -fl* "S" -?r -^^ -i'i' -i^ •i^^' "i-t- -i^ -S" •i't- •i'^- -i^- 'i-^- ) e s i g n F^' r o f e s -s i o n a 1 -s F'1 a n a q e fn e n t S y s t e m s -s- F< i r F:: 1 a n d , W a s h i n g t o n * * 3TABL4 81 ooe btab i i i t' IBM PC & b086/t3088 MB-DuS Version * -s- Revision 4.0 - 07/04/85 * * •*• "^t* '^f •S* "S" •i'^" "j^" "j^" "j^ 'l-^" "i^ "S"!^ "S" "i^t" "r^ 4^. -Jt- -|a;- —SLOPE STABILITY ANALYSIS— SIMPLIFIED JANBU METHOD OF SLICES OR SIMPLIFIED BISHOP METHOD PROBLEM DESCRIPTI ON STAGECOACH 1031 ~ FINAL GRADING W/ WATER , BLOCF< FOR SMALL FAILURE, W/ STAB FILL BOUNDARY COORDINATES 10 TOP BOUNDARIES 11 TOTAL BOUNDARIES BOUFMDARY X-LEFT • Y-LEFT X.-F-nSHT Y—'RI GHT SOIL NO. (FT) (FT) (FT) (FT) BELOW 1 0. 00 50. 00 34. 00 50, 00 1 84. C-' i-Ii 5C). 00-149.00 82. '• J 0 '"7 149.00 32, 00 164.00 32. 00 'T' 4 164.00 82. 00 234.00 34, 00 1 3 234,00 8 4.. 00 254.00 94,00 • 1 6 254.00 94. 00 '280, 00 1 Ci 7 , 0 C! i_ •7 280,00 107.00 .3 4 C'. C) C-' 1 C)'7, OC) 1 -3 4 Ci, OI OI 10 7. 00 528.00 113.00 1 9 528,00 113.00 544.00 1 10 544,00 121.00 6 OI 0, C-' 0 121, C)Ci 1 11 100.00 50, 00 164.00 82, 00 1 ISOTROPIC SOIL PARAMETERS 2 ••i'YF'E(S) OF SBOIL SOIL TOTAL SATURATED C'OHES IOF--I FFlICTION PORE PRESSURE PIEZ METRIC TYPE UNIT WT, UNIT WT. INTERCEPT ANGLE PRESSURE CONSTANT SU FACE NO, (F~'CF) (F'CF) (F'SF) (DEG) F'ARAMETEF< (PSF) I--i3 . 1 1 10. 0 120, 0 150, C) 18, 0 0, 00 C). 0 1 2 1 1C), 0 120. 0 250. 0 25, Ci C). OC; 0, Ci 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED UNIT WEIGHT OF WATER = 62,40 PIEZOMETRIC SURFACE NO, 1 SPECIFIED BY 2 COORDINATE POINTS POINT X~WATER Y-WATER f'--IO, (F'T) (F--'T) 1 34.00 50,00 2 560. CiC) 110, OCi A C F-^; ITIC A L F AIL U R E S U R F ACE SEA R CHI N G .i-i E T H 0 D , U 31 F^F G A R A H D 0 F-' TECHNIQUE FOR GENERATING SLIDING BLOCF: SURFACES, HAS BEEN SPECIFIED, THE ACTIVE AND PASSIVE PORTIONS OF THE SLIDING SURFACES ARE GENERATED ACCORDING TO THE RANFaNE THEORY. 25 TRIAL SURFACES HAVE BEEN GENERATED- 2 BOXES SPECIFIED FOR GENERATION OF CENTRAL BLOCH: BASE LENGTH OF LINE SEGMENTS FOR ACTIVE AND PASSIVE PORTIONS OF SLIDING BLOCh:: IS 5.0 ' BOX X-LEFT Y-LEFT X-RIGHT Y-RI6HT WIDTH NO. • (FT) (FT) (FT) (FT) (FT) 1 1 OC). 00 50. 00 130. 00 50. C")C) 10, 00 2 15C'„C'0 5.2.00 200. OC) 52, OC) 16.00 I FOLLOWING ARE DISPLAYED THE TEN MOST CRITICAL OF THE TRIAL FAILURE SURFACES EXAMINED. THEY ARE ORDERED - MOST CRITICAL FIRST, * * * SAFETY FACTORS ARE CALCULATED BY THE MODIFIED JANBU METHOD * •* FAILURE SURFACE SPECIFIED BY 13 COORDINATE POINTS POINT X-SURF" "Y 3UF;F NO. (FT) (FT) 1 93, 07 54. 46 95, 32 52. 71 1 (") (") C) 4 4 100.71 49,, 53 151.31 50, 71 C> 154.25 54. 7'6 / 157,19 53, 80 160. 13 62, 85 9 163.07 66; 3 '9 1 if) 166,00 7C), 94 11 168.94 74. 98 12 171,88 79. 03 1 -3 174.25 82. 29 1 . 483 FAILURE SURFACE SPECIFIED BY 16 POINT X-SURF /-SURF NO. (FT) (FT) 1 99.55 57. 66 102.26 55.93 106.48 53.24 4 108.09 52.07 5 112.13 49. 13 6 116. 13 46. 19 7 155.36 48, 48 . 8 158.30 52. 53 9 161.23 56. 57 10 164,17 60. 62 11 167.11 64, 66 12 17C), C)5 68. 71 13 172.99 72. 75 14 175.93 76. SC) 15 178.87 80. 84 16 130.04 82. 46 • 1. 639 -ft--*-* FAILURE SURFACE SPECIFIED BY 12 COORDINATE POINTS OINT X-SURF Y-SURF NO. (FT) (FT) 1 93. 06 54, 46 96, 08 52. 26 100.13 49. 32 4 104,17 -46. 39 163.79 54, 43 171,73 53. 48 '7 1 '74, 6 "7 62. 52 3 17'7, 61 66.3 Q 130.55 70. 61 1 0 183.49 74. 66 1 1 186.42 78. 70 12 189,35 32. 72 1 , 644 LURE SURFACE SPEC IFIED BY 14 OINT X-SURF. Y-SURF NO. (FT) (FT) 1 93, 12 54.49 93, 57 54. 16 97,62 51. 22 4 101.66 43. 28 5 105.71 45. 34 6 169.35 51 . 93 "7 172.29 55.97 8 175.22 60. 02 9 178.16 64, C)6 10 131.10 68. 11 1 1 134.04 72. 15 12 186.93 76. '20 13 189.92 80. 25 14 191.77 82. 79 1. 654 14 COORDINATE POIN"! FAILURE SURFACE SPECIFIED BY 14 COORDINATE POINTS F'O IF-J T X-SURF Y-SURF NO. (FT) (FT) 1 102.IS 58. 95 104.87 57. 23 y 109,09 54. 55 4 113,05 51 , 67 3 150,52 46, 37 6 153,46 50, 92 •7 156-40 54, '9'7 0 w 159.34 59, 01 9 162,2S 6-_'', ''..)6 10 165,22 6 '7. 10 1 1 168.16 •7 1.15 •i 0 171.10 75. 19 13 174.0.3 79. 24 14 17'6. 30 32. 35 •^^•-ft--)^-1, 734 •Ji- FAILURE SURFACE SPEC IFIED BY 15 POINT X-SURF Y-SURF NO. (FT) (FT) 1 101.62 58. 67 104.31 56. 95 3 108,53 54. 27 4 110.72 - -52.67 5 , 114.77 49. '73 6 156.28 49. 26 7 159.22 53. 30 a 162.16 57. 35 9 165.10 61 . 39 10 168.03 65. 44 1 1 170.97 69, 48 12 173.91 73. 53 13 176.85 77. 57 14 179.79 31. 62 15 180.41 82.47 1. 762 15 C 0 0 R D' IN A T E F=' 01H T S FAILURE SURFACE SPECIFIED BY 14 COORDINATE POINTS POI N T X - S U R F Y ~ S U R F- NO. (FT) (FT) 2 98,46 54.03 3 102.68 51,34 4 102.34 51.22 5 106.88 48.29 6 1 7'7. 4 1 52 . 53 7 18C!,-33 56, 3a 3 133,29 60,62 9 136.23 64.67 10 189.16 68,71 11 192.10 • 72.76 12 195, 04 76. SC) 13 197.98 80,85 14 199,56 83,02 1, 9C) 1 FAILURE SURFACE: SPECIFIED BY 13 POINT X-SURF Y-SURF NO. (FT) (FT) 1 105.13 6C). 40 ••- 107,31 58, 70 112.02 56, 01 4 114.47 54. 24 5 158.56 52. 54 6 161.49 56, 58 7 164,43 6C), 63 8 167, -37 64. 67 9 170,31 63, 72 10 173.25 72, 76 11 176.19 76. 31 12 179. 1 3 80. 85 13 180.30 82. 47 ,-»•»»••* - 1.96/ FAILURE SURFACE SPECIFIED BY 15 COORDINATE POINT POINT X-SURF ''—3U\RF NO. (FT) (FT) 1 101.14 58. 44 103.35 56. 72 y 103.06 54, 03 4 109- 35 53. 10 rr 113.39 50. 16 6 117.44 47. 22 ~7 179,OS 53, 62 a 132.02 57', 66 184.96 61 , '71 10 187, '90 i. tz- nr I-P3 . / 3 1 1 190,84 69 . 8C) •I '~ .1. 193.78 73. 34 13 . 196.71 77. EB9 14 199.65 31. 93 15 200.46 S3. C)4 1 . 988 -S--M--* FAILURE SURFACE SPECIFIED BY 13 POINT X-SURF f'-SURF NO. (FT) (FT) 1 • 93,44 54., 65 52. 40 y 100.56 49. 47 4 178.94 48. 09 5 131.88 52. 14 6 184.82 56, 18 7 13'7. 76 60. 23 3 190.70 64. 2"7 9 193.64 68. 32 10 196.57 72. 36 11 199.51 '76. 41 12 202.45 80. 45 1.3 204.41 83. 15 2. C' 12 U , UU -t- 75. OU -f- H i bU. s ;75.00 + 450.00 -H- 525, 00 -+• 6C)Ci, C>C) + F T '75. 00 1 bO. 00 -«• 228 \L 1 •'*• .211 * 033211 . C)7'733 W Execution complete, time - 49.11 second? :^:00. UU ' -i *! )() X > Ul o in o o o I rj Ln • o o CJO o D X a 1—1 CO • a a • ft o a Y - AXIS (ft) 75, GO 150.DO 225. 00 300.00 375.00 r 1 \ o 1 o r Ul cn a cn a a • o o