Loading...
HomeMy WebLinkAbout3190; Rancho Santa Fe Road N Phase 1 Drainage; Rancho Santa Fe Road N Phase 1 Drainage; 2001-05-29DRAINAGE REPORT FOR Rancho Santa Fe Road North Phase I Construction in the City of Carlsbad Project No. 3190 Submitted to: City of Carlsbad, Engineering Department 2075 Las Palmas Dr. Carlsbad, CA 92009 Prepared By: DOKKEN ENGINEERING 9665 Chesapeake Drive, Suite 435 San Diego, CA 92123 Contact; Jason Hubbard, P.E. Telephone: (858) 514-8377 Revised Date: 05-29-01 TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 Purpose of Study 1.2 Scope 2. PROJECT SETTING 1-3 2.1 Topography 2.2 Soil Groups 2.3 Land Uses 2.4 Location Map 3. HYDROLOGY 4-14 3.1 Design Criteria 3.2 Rainfall Intensity Calculation 3.3 100-Year Storm Summary 3.4 Link Summary 3.5 Node Summary 3.6 Ponded Width Summary 3.7 Ditch Capacity Summary 4. DRAINAGE 15 4.1 Storm Drain System A 16-37 4.2 Storm Drain System B 38-63 4.3 Storm Drain System C 64-93 4.4 Storm Drain System D 94-103 4.5 Storm Dram System E 104-137 4.6 Storm Drain System F 138-179 4.7 Storm Drain System G 180-185 5. APPENDIX A - MAPS & CHARTS A1-A4 6. APPENDIX B - TECHNICAL REFERENCE: HYDRAULICS + SPLASH WALL REINF. CALC B1-B9 7. APPENDIX C - RIPRAP DESIGN C1-C13 8. APPENDIX D - ANALYSIS OF EXISTING SYSTEMS D1-D9 9. APPENDIX E - DETENTION BASIN DESIGN 8. EXHIBITS 8.1 Interim Hydrology Map 8.2 Ultimate Hydrology Map 9. DRAINAGE AND GRADING DETAILS 1. INTRODUCTION 1.1 PURPOSE OF STUDY This Drainage Report is the basis for the design of drainage facilities for the widening and realignment of Rancho Santa Fe Road in the City of Carlsbad. Also considered for design of drainage facilities are the tie-ins of the "Connector Road" and the "Long-Term Detour" to existing Rancho Santa Fe Road. The project's storm drain system is divided into 7 subsystems (A-G), shown on Hydrology Maps located in Section 8 for both the interim and ultimate conditions. Also included are analyzes of the 5 existing systems (Locations A-E) impacted as a result of this project as well as the detention basin necessary to mitigate impacts to Location D (See Appendix D and E). 1.2 SCOPE This study quantifies the amount of storm water runoff within the project limits for interim and ultimate conditions. The proposed storm drain system is designed to intercept and convey the 100-year design flows. Additional consideration was made for future developments outside the project limits and therefore all calculations are divided into interim and ultimate conditions. All drainage design is in accordance with the Standards for Design and Construction of Public Works Improvements in the City of Carlsbad, dated August 1997, and the City of Carlsbad Master Drainage and Storm Water Quality Management Plan, dated March 1994. 2. PROJECT SETTING 2.1 TOPOGRAPHY The site lies in an area of moderate rolling hills, approximately 5.1 miles from the coast located within the Batiquitos Lagoon watershed. The Batiquitos Lagoon watershed is divided into two major drainage basins known as the San Marcos Creek watershed and the Encinitas Creek watershed. The realigned Rancho Santa Fe Road, located to the east of its existing alignment, is located between two hills creating a condition of substantial off-site runoff. The anticipation of residential communities to the east and west of the site will likely increase the amount of runoff to the proposed storm drain systems. Consideration must be made for the Mahr Reservoir, adjacent to the new alignment of Rancho Santa Fe Road. 2.2 SOIL GROUPS The San Diego Coimty Soils Interpretation Study Map located in Appendix A, show the hydrologic soil groups for the project site. Soil types are defined as A (low runoff potential), B (moderate runoff potential), C (high runoff potential), or D (very high runoff potential). The predominant soil is Type D, however Type B extends approximately 2000 feet south of the existing San Elijo Road to the San Marcos Creek. Also Type C is found northeast of the La Costa Meadows Drive. 2.3 LAND USES Land uses for each basin is shown in the 100-Year Flow Summary of Section 3, Hydrology. Most on-site basins are small and primarily are comprised of paved roadway, unpaved or landscaped medians, and cut/fill slopes, and therefore have a high runoff coefficient. Existing off-site basins are composed of medium-density residential development, highly vegetated open space, and industrial development. It is anticipated that some off-site areas will be developed in the future for medium-density residential and commercial development, while other areas are designated as environmentally sensitive and will retain their natural hydrologic properties. Runoff coefficients were adjusted to reflect anticipated future developments where appropriate. 3. HYDROLOGY 3.1 DESIGN CRITERIA The County of San Diego Hydrology Manual formula was used to determine the time of concentration, Tc. Time of concentration was determined by the formula: Tc = (11.9 xLVH)°"^^ where Tc = time of concentration, in hours (5 minute minimum). L = horizontally projected length of the watershed, in miles. H = difference in elevation along effective slope, in feet. The rational method was used to estimate the peak discharge, Q. Peak discharge was detennined by the formula: Q= 1.008 CIA, where Q = discharge, in cubic feet per second. C = coefficient of runoff, where C = 1.0 for pavement & 0.90 for fill / cut slopes (composite C values were calculated for most off-site or composite watersheds). I ~ average rainfall intensity, in inches per hour, for a given frequency and for the duration equal to the time of concentration. A = drainage area, in acres. 3.2 RAINFALL INTENSITY CALCULATION The County of San Diego Hydrology Manual method was used to determine rainfall intensities for a given duration and frequency. Rainfall intensity was determined by the formula: 1 = 7.44 P(, D"^^ where I = average rainfall intensity, in inches per hour, for a given frequency and for the duration. Pf, = precipitation for the 6-hour 100-year storm, in inches, determined from isopluvial charts located in Appendix A. D = duration, in minutes, equal to the time of concentration. 3.3 p6=2.9 in 100-YEAR INTERIM STORM SUMMARY Drainage Watershed Soil Land Runoff Area Time of Rainfall 100 Year System No. Area No. Group Use Coefficient Concentration Intensity Flow ac min in/hr cfs A N Al D Rdwy 0.90 0.21 5.00 7.64 1.44 N A2 D Rdwy 1.00 0.22 5.00 7,64 1.70 N A4 D Rdwy 1.00 0.35 5.00 7.64 2.67 D Rdwy 0.90 0.34 6.82 6,25 1.93 N A6 D Rdwy 0.90 1.81 9.27 5.13 8.36 N A8 D Rdwy 1.00 1.12 6.30 6,59 7.60 N A10 D Rdwy 0.95 0.77 5.00 7,64 5.60 N A10.5 D Rdwy 0.95 0.03 5,00 7,64 0.20 N A12 D Rdwy 0.95 0.45 5.00 7.64 3.28 N A14 D UOS 0.45 7.30 15.22 3.73 12.24 N A15 D UOS 0.45 1.11 6.83 6,25 3.12 B N BBB1 D UOS 0.45 7.20 8.20 5,55 19.99 N BBBO D Rdwy 0.90 0.40 5.00 7.64 2.75 N B4 D Rdwy 0.95 0.78 5.00 7.64 5.64 N 85 D Rdwy 0.95 1.09 5.00 7.64 7.91 N B7 D UOS 0.55 1.58 7.77 5.75 5.01 N B11 D Rdwy 1.00 0.36 5.00 7.64 2.71 D Rdwy 0.90 0.84 5.00 7.64 5.75 N B12 D Rdwy 1.00 0.29 5.00 7.64 2.21 D Rdwy 0.90 0.28 5.00 7.64 1.95 N B12.5 D Rdwy 1.00 0.20 5.00 7,64 1.53 D Rdwy 0.90 0.34 5.00 7,64 2.33 N B15 D Rdwy 1.00 0.45 5.00 7.64 3.46 D Rdwy 0.90 0.42 5.00 7,64 2,85 N B16 D Rdwy 1,00 0.31 5.00 7.64 2.40 N B17 D Rdwy 0.95 0.42 5.00 7.64 3.02 C NCI D Rdwy 1.00 0.72 5.86 6,90 4.97 D Rdwy 0.90 1.12 5.49 7.20 7.23 NCI .5 D Rdwy 0.90 0.40 5.48 7.20 2.60 N C3 D Rdwy 1.00 0.70 5.64 7.07 4,95 D Rdwy 0.90 0.70 5.36 7.31 4.57 NC7 D Rdwy 1.00 0.46 5.00 7.64 3.50 D Rdwy 0.90 0.65 5.00 7.64 4.46 N C8 D Rdwy 1.00 0.45 5.00 7,64 3.44 D Rdwy 0.90 1.00 5.00 7.64 11.93' N C10 D Rdwy 1.00 0.22 5.00 7.64 1.71 D Rdwy 0.90 0.50 5.00 7.64 3.45 N C11 D UOS 0.60 3.61 9.46 5.07 10.96 NC13 D Rdwy 0.90 0.39 5.34 7,32 2.57 N 014 D Rdwy 1.00 0.28 5.00 7.64 2.12 D Rdwy 0.90 0.40 5.00 7,64 2.72 D N 01 D Res+ESH 0.55 57.11 23.33 2.83 98.55* E N El D Rdwy+ESH 0.55 10.63 9.42 5.08 41.89 N E5 D Rdwy 1-00 0.58 7.03 6,13 3.56 D Rdwy 0.90 0.76 6.34 6.56 3.94 N E5.5 D Rdwy 0.90 0.33 6.57 6.40 1.92 N E6 D Rdwy 1.00 0.57 7.03 6.13 3.52 D Rdwy 0.90 0.96 6,34 6.56 9.54" N E9 D Rdwy 1.00 0.43 5-00 7.64 3,32 Com = commercial ESH = environmentally sensitive habitat Rdwy = roadway, medians, cut/fill slopes Res = reseidential UOS = undeveloped open space UE-OS = utility easement-open space SC-see calc.'s for more info Drainage Watershed Soil Land Runoff Area Time of Rainfall 100 Year System No. Area No, Group Use Coefficient Concentration Intensity Flow ac min in/hr cfs D Rdwy 0.90 0,60 5,00 7,64 4,10 N Ell D Rdwy 1.00 0.44 5,00 7.64 3.36 D Rdwy 0.90 1,04 5,00 7.64 10.20* N E11.5 D Rdwy 0.90 0.30 5-00 7.64 2.04 N E14 D Rdwy 1.00 0.46 5.00 7.64 3.51 D Rdwy 0.90 0,52 5,00 7.64 3.58 N E14.5 D Rdwy 0.90 0.51 6.27 6.60 3.02 N E15 D Rdwy 1.00 0,47 5.00 7.64 3.58 D Rdwy 0.90 0,68 5,00 7.64 4.65 F N Fl D Rdwy 1.00 0,77 7,76 5.75 4.45 D Rdwy 0.90 1.17 7,69 5,79 6.10 N F2,5 D Rdwy 0.90 0.44 7,79 5,74 2.25 N F3 D Rdwy 1.00 0.76 7,76 5,75 4.36 D Rdwy 0.90 1.40 7.69 5.79 9.69* N F9.5 D Rdwy 1.00 0.11 5.00 7.64 0.82 D Rdwy 0.90 0.09 5,00 7.64 0.63 N F10.5 D Rdwy 1.00 0.30 5.00 7.64 2.26 N F10.75 D Rdwy 0.90 0.24 5.00 7.64 1.62 N F12 B Rdwy 1.00 0,86 5.00 7.64 5.68 B Rdwy 0.90 0.43 5,00 7.64 2.54 N F13 B UOS 0.55 8,79 10,52 4.73 22.87 N F16.5 B Rdwy 0.90 0,47 5-00 7.64 3.23 N F20 B Rdwy 1.00 0.57 5.00 7.64 4.36 N F21 B Rdwy 0.80 1.05 5.00 7.64 6,44* G N Gl D UOS 0.45 28,32 18.17 3.32 42.36 NGacl D Rdwy 0.95 0.12 5.00 7,64 0,85 NGac2 D Rdwy 0.95 0.55 5.00 7.64 3.96 N G2 D Rdwy 0,95 0.10 5.00 7.64 0.68 N G3 D Rdwy 1.00 0.20 5,00 7.64 1.49 NG3a D UE-OS 0.50 1.74 5.00 7.64 6.64 N G3b D Res 0.80 5.63 #REF! #REF! #REF! NG3c D Res 0.60 10-75 5,00 7.64 49.28 NOTE: Flows designated with an asterik "*" are increased due to smaller adjacent areas which contribute to the total (See individual calculations for more details). Com = commercial ESH = environmentally sensitive habitat Rdwy = roadway, medians, cut/fill slopes Res = reseidential UOS = undeveloped open space UE-OS = utility easement-open space SC=see calc's for more info P6= 2.9 in 100-YEAR ULTIMATE STORM SUMMARY Drainage Watershed Soil Land Runoff Area Time of Rainfall 100 Year System No. Area No, Group Use Coefficient Concentration Intensity Flow ac min in/hr cfs A N A2 D Rdwy 1.00 0.38 5.00 7,64 2,91 N A4 D Rdwy 1.00 0.37 5.00 7.64 2.80 N A6 D Rdwy 0.90 1.81 9.27 5.13 8.36 N A8 D Rdwy 1.00 1.51 6.17 6.67 10.07 N A10 D Rdwy 0.95 0.77 5.00 7.64 5,60 N A10,5 D Rdwy 0.95 0,03 5.00 7,64 0.20 N A12 D Rdwy 0,95 0,45 5.00 7,64 3.28 B N B4 D Rdwy 0.95 0.78 5.00 7.64 5.64 N B5 D Rdwy 0.95 1.10 5.00 7.64 8,01 N B11 D Rdwy 0.95 1.20 5.00 7.64 8,67 N B12 D Rdwy 0.95 0.56 5.00 7.64 4.09 N B12.5 D Rdwy 0.95 0.51 5.00 7.64 3.71 N B15 D Rdwy 0.95 0,90 5.00 7.64 6-52 N B16 D Rdwy 1,00 0,49 5,00 7.64 3.74 N B17 D Rdwy 0.95 0.47 5.00 7.64 3.44 C N CI D Rdwy 0.95 1.25 5.03 7.61 9.04 N C3 D Rdwy 0.95 1,58 6.06 6,75 10.15 N C7 D Rdwy 0.95 1.23 5.00 7.64 8.91 N C8 D Rdwy 0.95 1.58 5.00 7,64 14.63' NCIO D Rdwy 0.95 0.78 5.00 7,64 5.65 NC14 D Rdwy 0.95 0.72 5.00 7.64 5.22 E N E5 D Rdwy 0.95 1.47 6.93 6.19 8.66 N E6 D Rdwy 0.95 1.66 6.93 6.19 9.76 N E9 D Rdwy 0.95 1.13 5.00 7.64 8,22 N Ell D Rdwy 0.95 1.58 5.00 7.64 11.45' N El 1,5 D Rdwy 0.67 2.48 9.04 5,21 8.66 N E14 D Rdwy 0.95 1,13 5,00 7.64 8.22 N E15 D Rdwy 0.95 1.30 5.00 7.64 9.41 F N Fl D Rdwy 0.95 2.11 7.70 5.79 11.59 N F3 D Rdwy 0.95 2.31 6.70 6.33 16.29* N F9,5 D Rdwy 0.95 0.26 5.00 7.64 1.89 N F10,5 D Rdwy 1.00 0.41 5.00 7,64 3.13 N F11.5 D Rdwy 1.00 0,30 5.00 7.64 2.28 N F12 B Rdwy 1.00 1.30 5.00 7.64 9,47 NOTE: Flows designated with an asterik "*" are increased due to smaller adjacent areas which contribute to the total area as a who (See individual calculations for more details). ESH = environmentally sensitive habitat Rdwy = roadway, medians, cut/fill slopes SC=see calc's for more info 3.4 LINK SUMMARY INTERIM ULTIMATE Link - ID Description Link - ID Description Link - ID Description Link-ID Description SDA1 18" RCP SDE1E101 18" RCP SDA2 18" RCP SDE13 18" RCP SDA2 18" RCP SDE1E104 18" RCP SDA3 18" RCP SDE14 18" RCP SDA3 18" RCP SDE1E106 18" RCP SDA4 18" RCP SDE15 30" RCP SDA4 18" RCP SDE1 30" RCP SDA5 18" RCP SDE16 36" RCP SDA5 18" RCP SDE1E107 18" RCP SDA6 18" RCP SDE17 48" RCP SDA6 18" RCP SDE1.5 30" RCP SDA8 18" RCP SDF1 18" RCP SDA8 18" RCP SDE4 18" RCP SDA9 24" RCP SDF2 18" RCP SDA9 24" RCP SDE5 18" RCP SDA9.5 12" PCV-PP SDF3 24" RCP SDA9,5 12" PCV-PP SDE5,5 18" RCP SDAIO 18" RCP SDF4 18" RCP SDAIO 18" RCP SDE6 24" RCP SDA11 30" RCP SDF5 24" RCP SDA11 30" RCP SDE7 24" RCP SDA11.5 18" RCP SDF6 30" RCP SDA11.5 18" RCP SDE8 18" RCP SDA12 30" RCP SDF8 18" RCP SDA12 30" RCP SDE9 24" RCP SDA13 Ex, channel SDF8.5 18" RCP SDA13 Ex- channel SDE10 18" RCP SDA14 Ex. channel SDF9 30" RCP SDA14 Ex. channel SDE11 30" RCP SDB1 24" RCP SDF9.5 18" RCP SDB1 24" RCP SDE12 30" RCP SDB2 24" RCP SDF10 30" RCP SDB2 24" RCP SDE13 18" RCP SDB3 18" RCP SDF11 24" RCP SDB3 18" RCP SDE14 18" RCP SDB4 18" RCP SDF11.5 18" RCP SDB4 18" RCP SDE14.5 18" RCP SDB8 30" RCP SDF13 36" RCP SDB6 18" POP SDE15 30" RCP SDB9 24" RCP SDB8 30" RCP SDE16 36" RCP SDBIO 18" RCP SDB9 24" RCP SDE17 48" RCP SDB11 18" RCP SDB10 18" RCP SDE17,5 48" RCP SDB12 30" RCP SDB11 18" RCP SDE18 48" RCP SDB12.5 18" RCP SDB12 30" RCP SDE19 48" RCP SDB13 18" RCP SDB12,5 18" RCP SDE20 48" RCP SDB14 18" RCP SDB13 18" RCP SDF1 18" RCP SDB15 36" RCP SDB14 18" RCP SDF2 18" RCP SDB16 18" RCP SDB15 36" RCP SDF2.5 18" RCP SDB17 36" RCP SDB16 18" RCP SDF3 24" RCP SDB17.5 18" RCP SDB17 36" RCP SDF4 18" RCP SDB18 36" RCP SDB17-5 18" RCP SDF5 24" RCP SDB19 36" RCP SDB18 36" RCP SDF6 30" RCP SDCl 18" RCP SDB19 36" RCP SDF8 18" RCP SDC2 18" RCP SDCl 18" RCP SDF8-5 18" RCP SDC3 24" RCP SDC1.5 18" RCP SDF9 30" RCP SDC4 24" RCP SDC2 18" RCP SDF9.5 18" RCP SDC5 18" RCP SDG3 24" RCP SDF9.75 18" CSP SDC7 18" RCP SDC4 24" RCP SDFIO 30" RCP SDC8 30" RCP SDC5 18" RCP SDF11 24" RCP SDC9 24" RCP SDC7 18" RCP SDFll.S 18" RCP SOCIO 18" POP SDC8 30" RCP SDF12 24" RCP SDCl 3 36" RCP SDC9 24" RCP SDF13 36" RCP SDC14.5 18" RCP SOCIO 18" POP SDF14 36" RCP SDCl 4 36" RCP SDCl 2 36" RCP SDF14,5 36" RCP SDE4 18" RCP SDCl 3 36" RCP SDF21 18" RCP SDE5 18" RCP SDC14,5 18" RCP SDF3302A 18" RCP SDE6 24" RCP SDCl 4 36" RCP SDF3302B 18" RCP SDE7 24" RCP SDD1 36" RCP SDG1 30" RCP SDE8 18" RCP SDD2 36" RCP SDG2 Ex. 30" RCP SDE9 24" RCP SDD3 36" RCP SDBBB1 Ex. 18" RCP SDE10 18" RCP SDD4D403A 18" RCP SDBBB2 Ex, 24" RCP SDE11 30" RCP SDD4D403B 18" RCP SDE12 30" RCP 4. DRAINAGE All drainage design is in accordance with the Standards for Design and Construction of Public Works Improvements in the City of Carlsbad, dated August 1997, and the City of Carlsbad Master Drainage and Storm Water Quality Management Plan, dated March 1994. The inlets were analyzed using methods described in the Standards for Design and Construction of Public Works Improvements in the City of Carlsbad (additional reference to Drainage of Highway Pavements Hydraulic Engineering Circular No. 12). The hydraulic analyses were performed using Geopak Software (see technical reference located in Appendix B). Channel capacity analyses were preformed using DAR Software. All calculations are in english units. The information for all 7 subsystems are located herein and are divided into systems A-G. The data format for each system is: 1. Location Map - copies of the contract plans showing a plan view of the systems plus a schematic of the system showing node and link identifications. See Hydrology maps for a macro-view of node assignment of the system in both interim and ultimate conditions. 2. Inlet Analvsis - interim and ultimate conditions are shown for both the 50-year and 100-year conditions, including channel capacity calculations. Existing basins are analyzed as existing vs. proposed where appropriate. Inlets are nodes designated by the prefix "N (letter of system)" in numerical order. 3. Hvdraulic Profiles - copies of the profiles from the contract plans. Refer to the schematic for node and link identifications. 4. Hvdraulic Computations - summary of interim and ultimate conditions are shown for the 100-year storm. Existing systems are analyzed where appropriate to obtain a 100-Year HGL level at a system's inlet pipe. Pipes are links between nodes designated by the prefix "SD(Ietter of system)" in numerical order. 15 3.5 NODE SUMMARY 1 INTERIM ULTIMATE 1 Node-ID Description Node - ID Description Node - ID Description 1 Node-ID Description N Al CSP Type 8 N E1E104 18" inlet apron N A2 4' Type B Inlet N E17 future CO 8-5 N A2 4' Type B Inlet N El El 05 18" outlet apron N A3 CO B-5 (Y=4') N El 7.5 CO 8-5 {X=5') N A3 CO 8-5 (Y=4') N E1E106 18" inlet apron N A4 4' Type 8 Inlet N Fl 24' Type B-1 Inlet N A4 4' Type B Inlet N E1E107 18" inlet apron N A5 CO B-5 (Y=4') N F2 CO B-5 (Y=4') N A5 CO B-5 (Y=4') N El 30" Wing HDW N A6 CSP Type B (mod) N F3 30' Type B-1 Inlet N A6 CSP Type B (mod) N El .5 JS No. 1 N A8 21'Type B-1 Inlet N F3F300 Curb outlet N A8 21' Type B-1 Inlet N E2 30" Wing HDW N A9 CO B-5 (Y=4') N F4 CO 8-5 (Y=4') N A9 CO B-5 (Y=4') N E4 CO B-5 (Y=4') N AlO 4' Type J Inlet N F5 future CO 8-5 N A10 4' Type J Inlet N E5 CB Inter, (mod) N A10,5 Type F CB N F6 future CO 8-5 N A10.5 Type F C8 N E5.5 CSP Type B N All CO B-5 (Y=4') N F7 CO B-5 (Y=4') N All CO B-5 {Y=4') N E6 CB Inter, (mod) N A12 16' Type B-1 Inlet N F9 4' Type B inlet N A12 16' Type B-1 Inlet N E7 CO 8-5 {Y=4') N A12.5 JS No. 1 N F9,5 6' Type 8 Inlet N A12.5 JS No, 1 N E8 CO 8-5 {Y=4') N A13 30" outlet apron N FIO CO 8-5 {Y=4') N A13 30" outlet apron N E9 CB Inter, (mod) N A14 grade break N F10-5 4' Type B Inlet N A14 grade break N Ell CB Inter, (mod) N A15 end channel N F11 CO B-5 (Y=4') N A15 end channel N El 1.5 Type FOB N Bl CO 8-5 (Y=4') N F11,5 4' Type B Inlet N 81 pipe plug N E12 CO B-5 (Y=4') N B2 CO 8-5 (Y=4') N F12 22' Type B-1 Inlet N B2 CO B-5 (Y=4') N E13 CO B-5 (Y=4') N B3 CO B-5 (Y-4') N F14 future connection N B3 CO B-5 (Y=4') N E14 CB Inter, (mod) N 84 12' Type B-2 Inlet N Gl 30" Wing HDWL N B4 12' Type B-2 Inlet N E14.5 CSP Type B N 85 18'Type B-2 Inlet N G2 Type F CB (mod) N B5 18' Type B-2 Inlet N E15 CB Inter, (mod) N 89 CO B-5 (Y=4') N G3 Ex. outlet N B7 CSP Type B (mod) N E16 CO B-5 (X=5') N BIO CO B-5 (Y=4') N BBB1 Ex. HDWL N 89 CO B-5 (Y=4') N E17 pipe plug N B11 19'Type 8-1 Inlet N 8882 Ex. CO N BIO CO B-5 (Y=4') N E17,5 CO 8-5 (X=5') N B12 11'Type 8-1 Inlet N 8883 Ex. CO N 811 CB Inter- (mod) N E18 CO 8-5 (X=5') N 812,5 10'Type B-1 Inlet N 812 CB Inter, (mod) N E19 CO 8-5 (X=5') N B13 CO B-5 (Y=4') N B12.5 CB Inter, (mod) N E19.5 CO 8-5 (mod) N 814 4' Type B Inlet N 813 CO B-5 (Y=4') N E20 48" Wing HDWL N 815 15'Type B-1 Inlet N 814 4' Type 8 Inlet N Fl CB Inter, (mod) N 816 4' Type B Inlet N 815 15' Type B-1 Inlet N F2 CO 8-5 (Y=4') N B16.5 CO B-5 (Y^4') N 816 4' Type B Inlet N F2.5 CSP Type B N B17 11' Type B-1 Inlet N B16.5 CO 8-5 (Y^4') N F3 CB Inter, (mod) N 817.5 JS No. 1 N 817 11" Type 8-1 Inlet N F4 CO B-5 (Y=4') N B18 CO 8-5 (Y=4') N 817,5 JS No. 1 N F5 pipe plug N B19 36" Wing HDWL N 818 CO 8-5 (Y-4') N F6 pipe plug NCI 20' Type 8-1 Inlet N 819 36" Wing HDWL N F7 CO B-5 (Y=4') NC2 CO 8-5 (Y=4') N CI CB Inter, (mod) N F9 4' Type 8 Inlet N C3 22' Type B-1 Inlet NC1,5 CSP Type B N F9.5 C8 Inter, (mod) N C4 CO B-5 (Y=4') NC2 CO B-5 (Y=4') N FIO CO 8-5 (Y=4') N C5 CO B-5 (Y-4') NC3 CB Inter- (mod) N F10.5 4' Type B Inlet N C7 20' Type B-1 Iniet NC4 CO 8-5 (Y=4') N F10.75 CSP Type B N 08 27' Type B-1 Inlet N C5 CO B-5 (Y=4') N F11 CO B-5 (Y=4') N C9 CO B-5 NC7 CB Inter, (mod) N F11,5 Type B Inlet (mod) NCIO 20' Type B-1 Inlet N C8 CB Inter, (mod) N F12 CB Inter, (mod) NC11 CSP Type 8 (mod) N C9 CO B-5 N F13 CSP Type 8 (mod) NC14 18' Type 8-1 Inlet N CIO CB Inter, (mod) N F14 CO B-5 N 014,5 JS No, 1 N C11 CSP Type B (mod) N F14.5 CO B-5 N C15 36" Straight HDWL NC13 CSP Type 8 N F15 36" Wing HDWL N E4 CO B-5 (Y=4') N 014 CB Inter, (mod) N F16.5 AC Spillway N E5 19' Type 8-1 Inlet N C14.5 JS No. 1 N F20 AC Spillway N E6 21' Type B-1 Inlet NC15 36" Straight HDWL N F20.5 AC Spillway N E7 CO B-5 (Y=4') N Dl 36" Wing HDWL N F21 CSP Type B (mod) N E8 CO 8-5 (Y=4') N D2 DS-5 collar (mod) N F22 18" outlet apron N E9 19' Type B-1 Inlet N D3 DS-5 collar (mod) NGl 30" Wing HDWL N Ell 29' Type 8-1 Inlet N D4 36" Wing HDWL N G2 Type F CB (mod) N El 1.5 Type F CB N D4D402 18" outlet apron N G3 Ex. outlet N E12 CO B-5 {Y=4') N D4D403 18" inlet apron N BBB1 Ex, HDWL N E13 CO B-5 {Y=4') N E1E100 18" outlet apron N BBB2 Ex. CO N E14 25' Type B-1 Inlet N E1E101 18" inlet apron N BBB3 Ex. CO N E15 28'Type 8-1 Inlet N El El 03 IB" outlet apron N E16 CO B-5 (X=5') 3.6 PONDED WIDTH SUMMARY TABLE 50-YEAR STORM: INTERIM CONDITION NODE STATION OFFSET DESCRIPTION S gutter Sx y T Lane Width Comments ft/ft ft/ft ft ft ft N A2 176+37.51 6,75' LT 4' BC.I.* 0.042 0.0200 n/a n/a 12 Median inlet with slotted drain N A4 173+34,38 6.75' LT 4' BC.I.* 0.020 0,0200 n/a n/a 12 Median inlet with slotted drain N A8 170+38.00 55.5 RT 21' B-1 C.I. 0.083 0.0200 0.32 11.25 8(12) 27% of #3 lane flooded N A10 167+08.05 11.92' RT 4'JC.I.* 0.003 0.003 n/a n/a 9(12) Median inlet with slotted drain N A12 167+36.06 55.5' RT 16' 8-1 C I. 0.083 0.0042 0.24 28,91 8 (12) [12] 94% of #2 lane flooded N 84 11+18.22 29,5' LT 12' B-2 C.I. 0.083 0.0200 0.30 10.25 18.5 55% of lane flooded N 85 11+18.22 29.5' RT 18' 8-2 C.I. 0.083 0.0200 0.26 8.25 8(10.5) 21% of lane flooded N 811 186+55.27 41' LT A.C. Spillway n/a 0.0200 0.25 12.5 8(12) 38% of #2 lane flooded N B12 187+00,00 41' RT A.C. Spillway n/a 0,0200 0,23 11.5 8(12) 29% of #2 lane flooded N 812.5 183+25.00 41' LT A.C. Spillway n/a 0.0200 0,16 8.0 8 100% of bike lane flooded* N B15 182+43.64 55,5' RT 15' 8-1 C.I. 0.083 0.0200 0,28 9.25 20 46% of shoulder flooded N 816 179+40.44 6.75' LT 4'BC,I.* 0.020 0.0200 n/a n/a 12 Median inlet with slotted drain N 817 179+69,42 55.5' RT 11' B-1 C.I. 0,083 0,0200 0.28 9.25 8(15.5) 8% of #2 lane flooded N CI 199+66.69 41' RT A.C. Spillway n/a 0.0200 0.29 14.5 8(12) 54% of #2 lane flooded N 03 199+66.69 41' LT A.C. Spillway n/a 0.0200 0.29 14.5 8(12) 54% of #2 lane flooded NC7 193+48.61 41' RT A.C. Spillway n/a 0.0200 0.27 13.5 8(12) 46% of #2 lane flooded NC8 193+48.61 41'LT A.C. Spillway n/a 0.0200 0,28 14,0 8(12) 50% of #2 lane flooded N CIO 190+39.06 41' LT A.C, Spillway n/a 0.0200 0.22 11.0 8(12) 25% of #2 lane flooded N C14 189+76.22 41' RT A.C. Spillway n/a 0.0200 0.23 11.5 8(12) 29% of #2 lane flooded N E5 221+64.58 41' LT A.C. Spillway n/a 0.0200 0.28 14.0 8(12) 50% of #2 lane flooded N E6 221+64.58 41' RT A.C. Spillway n/a 0.0200 0.28 14,0 8(12) 50% of #2 lane flooded N E9 215+51,64 41' LT A.C, Spillway n/a 0.0200 0,25 12.5 8(12) 38% of #2 lane flooded N Ell 215+51.64 41' RT A.C. Spillway n/a 0.0200 0.25 12.5 8(12) 38% of #2 lane flooded N E14 209+33.80 41' LT A.C. Spillway n/a 0,0200 0.27 13,5 8(12) 46% of #2 lane flooded N E15 209+33,80 41' RT A.C. Spillway n/a 0.0200 0,27 13.5 8(12) 46% of #2 lane flooded N Fl 240+32.50 41' LT A.C. Spillway n/a 0.0200 0.21 10.5 8(12) 46% of #2 lane flooded N F3 240+32.50 41' RT A.C. Spillway n/a 0,0200 0.29 14,5 8(12) 46% of #2 lane flooded N F9.5 242+13,97 41' RT A.C. Spillway n/a 0.0200 0,20 10.0 8(12) 17% of #2 lane flooded* N F10.5 245+95.52 6.75' RT 4' BC.I.* 0.020 0.020 n/a n/a 12 Median inlet with slotted drain N F12 248+98.45 41' LT A.C. Spillway n/a 0.0200 0.30 15.0 8(12) 50% of #2 lane flooded N F20 251+52.34 41' LT A.C. Spillway n/a 0.0200 0.27 13.5 8(12) 46% of #2 lane flooded N F20.5 11+99,51 28' LT A.C. Spillway n/a 0,0200 0,20 10,0 4(12) 50% of #2 lane flooded South AC 17+27,03 20' LT A.C, Spillway n/a 0.0200 0.15 7,5 18.5 41% of lane flooded North AC 17+27.03 12' RT A.C. Spillway n/a 0.0200 0.05 2.5 10,5 24% of lane flooded NOTES: y - depth of flow in approach gutter (See Inlet Analysis: 50 Year Storm for node) T: Gutter Section. T = gutter width + (y-gutter heigth)/Sx Non-Gutter Section, T = y/Sx * = See calculations for more information 10 PONDED WIDTH SUMMARY TABLE 50-YEAR STORM: ULTIMATE CONDITION NODE STATION OFFSET DESCRIPTION S gutter Sx y T Lane Width Comments ft/ft ft/ft ft ft ft N A2 176+37.51 6.75' LT 4' BC.I,-0.042 0.0200 n/a n/a 12 Median inlet with slotted drain N A4 173+34.38 6,75' LT 4' BC.I,' 0.042 0.0200 n/a n/a 12 Median inlet with slotted drain N A8 170+38.00 55.5' RT 21' B-1 C.I, 0.083 0.0200 0.35 12.75 8(12) 40% of #3 lane flooded N AlO 167+08.05 11.92' RT 4'JC.I,-0.003 0.003 n/a n/a 9 (12) Median inlet with slotted drain N A12 167+36.06 55.5' RT 16' B-1 C.I. 0.083 0.0042 0.24 28.91 8 (12) [12] 14%of #1 lane flooded N 84 11+18,22 29.5' LT 12' B-2 CI, 0,083 0.0200 0.30 10.25 18.5 55% of lane flooded N 85 11+18,22 29.5' RT 18' B-2C,I, 0.083 0.0200 0.26 8.25 8(10.5) 26% of lane flooded N 811 186+55.27 55.5' LT 18' B-1 C.I. 0.083 0.0200 0.35 12.75 8(12) 35% of #3 lane flooded N B12 187+00.00 55.5' RT 11' 8-1 C.I, 0.083 0,0200 0.28 9.25 8(12) 10% of #3 lane flooded N B12.5 183+25.00 55.5' LT 9' B-1 C.I. 0,083 0.0085 0.28 19.65 8(12) 97% of #3 lane flooded N 815 182-t43.64 55.5' RT 15' B-1 C.I. 0.083 0.0200 0.34 12.25 8(12) 35% of #3 lane flooded N 816 179+40.44 6.75' LT 4' BC.I,* 0.020 0.0200 n/a n/a 12 Median inlet with slotted drain N B17 179+69.42 55.5' RT 11' 8-1 C.I. 0,083 0.0200 0.30 10.25 8(12) 15% of #3 lane flooded N CI 199+66.69 55.5' RT 20' B-1 C.I. 0.083 0.0200 0.35 12.75 8(12) 40% of #3 lane flooded N C3 199+66.69 55.5' LT 22'B-1 C.I. 0.083 0.0200 0.36 13.25 8(12) 44% of #3 lane flooded N C7 193+48.61 55.5' RT 20' 8-1 C.I. 0.083 0.0200 0.35 12.75 8(12) 40% of #3 lane flooded NC8 193+48.61 55.5' LT 27' 8-1 C.I. 0,083 0.0200 0.43 16.75 8(12) 73% of #3 lane flooded N CIO 190+39.06 55.5' LT 20' B-1 C I, 0.083 0.0200 0.35 12.75 8(12) 40% of #3 lane flooded N C14 189+76,22 55.5' RT 18' B-1 C.I. 0.083 0.0200 0.30 10.25 8(12) 19% of #3 lane flooded N E5 221+64.58 55,5' LT 18' 8-1 C.I. 0,083 0.0200 0.36 13.25 8(12) 40% of #3 lane flooded N E6 221+64.58 55.5' RT 21' 8-1 CI, 0,083 0.0200 0.37 13.75 8(12) 44% of #3 lane flooded N E9 215+51.64 55.5' LT 19' B-1 CI, 0.083 0.0200 0.32 11.25 8 02) 27% of #3 lane flooded N E11 215+51.64 55.5' RT 29' B-1 C.I. 0.083 0.0200 0,38 14.25 8(12) 52% of #3 lane flooded N E14 209+33.80 55.5' LT 24' B-1 C.I. 0.083 0.0200 0.34 12.25 8(12) 27% of #3 lane flooded N E15 209+33.80 55.5' RT 25' 8-1 CI. 0.083 0.0200 0.35 12.75 8(12) 40% of #3 lane flooded N Fl 240+32.50 55.5' LT 24' B-1 CI. 0.083 0.0200 0.38 14.25 8(12) 48% of #3 lane flooded N F3 240+32.50 55.5' RT 30' B-1 CI. 0.083 0.0200 0.42 16.25 8(12) 56% of #3 lane flooded N F9.5 242+13.97 55.5' RT 4' BC.I. 0,083 0.0068 0.20 29.4 8(12) [12] 78% of #2 lane flooded N F10.5 245+95.52 6.75' RT 4'BC.I." 0,020 0.020 n/a n/a 12 Median inlet with slotted drain N F11.5 248+98.45 6.75' RT 4' BCL* 0.020 0.020 n/a n/a 12 Median inlet with slotted drain N F12 248+98.45 55.5' LT 22' B-1 CI. 0.083 0.0200 0,34 12.25 8(12) 27% of #3 lane flooded NOTES: y = depth of flow in approach gutter (See Inlet Analysis: 50 Year Storm for node) T: Gutter Section, T = gutter width + (y-gutter heigth)/Sx Non-Gutter Section, T ^ y/Sx * = See calculations for more information 11 INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N Al INTERIM: Pe- 2.5 in. Minimum Tc = 5 min. Location FL El, Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs -.176+37.51 :55.62'IJ 351.00 CSP Type 8 in sump 0.21 0,90 415 8.5 5.00 6.59 1,24 EQUATIONS: Tc = [( 11.9xL^)/H]^^^ l = 7.44xPsxTc Q = C X I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N Al INTERIM: EQUATIONS: P6= 2.9 in. Minimum Tc = 5 min. Tc = [ ( 11.9X L^)/H]^^ l = 7,44xPexTc"^^ Q = C X I x A Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 176-K37.51 55.62'LT 351.00 CSP Type B in sump 0.21 0.90 415 8.5 5.00 7,64 1.44 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 1.44 1.5 0,1 0.0229 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0.3 0.11 3 12 0.58 Side Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0,42 4.67 1.36 CSP Inlet: Opening Height Wtr Surf, El. in in 8.0 5.0 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Side Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf, Elev, in the Ditch < Opening Height of the CSP Inlet Type 8, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head - ( Normal Velocity)^ / 2 x g Freeboard Needed ^ 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Side Ditch from 176+39.01 to 177-I-25 (15:24:05 on 04/26/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 1-44 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.022900 Manning coefficient 0.0160 RESULTS critical depth 0.53 ft normal depth 0.42 ft -> flow is supercritical (Yc > Yn) critical velocity 3.01 ft/sec critical top width 1.70 ft critical area 0.48 sq. ft critical slope 7.174203E-03 normal velocity 4.67 ft/sec normal top width 1.36 ft normal area 0.31 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N A2 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 176437.51 6.75' LT* 351.64 Type B on grade 0,38 1.0 370 6.4 5.00 6.59 2.51 2.3 0,27 3.3 0 26 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 50-year Q, INTERIM: Location FL El. Description Area c L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % tl fps ft ft 176+37.51'. "6.5'"lf'' 351.64 Type B on grade 0.22 1.0 340 6.6 5.00 6.59 1.47 2.3 0.23 2.9 0 19 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' ot slotted CSP drain to intercept 100% of the 50-year 0. EQUATIONS: Tc = [ ( 11.9 x L^) / H ] l = 7.44xP6xTc^^ Q = C x I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure N/lanual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = 0 / { 0,7 x ( a -n y )' ^) = 30' maximum for Type B-1 inlet SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A2 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location Fl El, Description Area C Tc 1 Q Qbvo Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 176-^37.51 .6.75'LT 351.64 Type B on grade 0.38 1 5,00 7.64 2,91 0.00 2.91 2,3 0.28 3.3 0 28 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: Qi ^bvoass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: cfs cfs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: 2.91 0.00 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: Location FLEI. Description Area C Tc 1 0 Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 176437.51, 6.5'LT 351.64 Type B on grade 0,22 1 5.00 7,64 1,70 0.00 1.70 2.3 0.24 3.1 0 21 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year 0. Qi Qbvoass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.75' of slotted CSP drain to intercept 100% of the 100-year 0. cfs cfs EQUATIONS: Tc = f ( 11.9 x L' ) / H f^^ 1.70 0,00 |=7.44xP6XTc""^ Q = Cxl xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V ^ velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = Q / ( 0.7 x ( a + y )' ^) = 30' maximum for Type B-1 inlet CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN: Link SDA2,5 DAR Open Channel Flow Analysis & Design {See attached sheet for original output) Flow Rate = Pipe Diameter - Slope = 2.91 1,5 2,3 cfs ft % Normal Depth = 0.6 ft Normal Velocity = 4.4 fps Normal Top Width = 1,47 ft Velocity Head = 0.30 ft Freeboard Needed = 0.15 ft Freeboard Provided = 0.90 ft NOTE: Ultimate condition analyzed only since it is the larger of the 2 flows. Project: Slotted CSP Drain from 176+41.56 to 179+35.74 Link: SDA2.5 (19:14:34 on 04/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.91 cfs pipe diameter 1.50 ft slope of invert or channel bottom 0.022900 Manning coefficient 0.0240 RESULTS critical depth 0.65 ft normal depth 0.60 ft -> flow is supercritical {Yc > Yn) critical velocity 3.98 ft/sec critical top width 1.49 ft critical area 0.73 sq. ft critical slope 1.741345E-02 normal velocity 4.40 ft/sec normal top width 1.47 ft normal area 0.66 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N A4 p6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 173+34:3a ; 6.75' LT 343.12 Type B on grade 0.37 1.0 385 10.9 5.00 6.59 2.41 3.3 0.26 3,9 0 26 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 50-year 0, INTERIM: Location FL El, Description Area c L H Tc 1 0 S y V a Req'd L ft ac ft ft min ifVhr cfs % ft fps ft ft .173+34^38 6.75' LT 343,12 Type B on grade 0.35 1.0 345 9.9 5.00 6.59 2.30 3.3 0,25 3,6 0 26 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296,0' of slotted CSP drain to intercept 100% of the 50-year Q. EQUATIONS: Tc = [ ( 11,9 x L' ) / H ] !=7.44xp6XTc"'' Q = Cx Ix A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L ^ Q / (0.7 x ( a + y )' ^) = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs .173+34.38 6.75' LT 341.54 V-notch in back of inlet 0,34 0.90 835 20,5 5.79 5.99 1.85 CONCLUSION: opening into the back of the B inlet is designed to handle the 100-year storm. SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM MEDIAN DITCH SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A4 Ps= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL EL Description Area C Tc 1 0 Qbvp Otot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 173+34.38 6.75' LT 343.12 Type B on grade 0.37 1.0 5.00 7,64 2.80 0,00 2.80 3.3 0,27 4.0 0 28 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year Q. Qi Qbvpass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year Q. cfs cfs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year Q. 2.80 0,00 INTERIM: Location FL El. Description Area c Tc 1 Q Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 173,+34.38 '6.75' LT 343.12 Type B on grade 0.35 1.0 5.00 7,64 2.67 0.00 2.67 3.3 0,26 3.6 0 22 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year 0. EQUATIONS: Tc = [ ( 11,9 x L^) / H 1^^ Qi CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year 0. EQUATIONS: Tc = [ ( 11,9 x L^) / H 1^^ cfs cfs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 296.0' of slotted CSP drain to intercept 100% of the 100-year 0. EQUATIONS: Tc = [ ( 11,9 x L^) / H 1^^ 2.00 0.00 I = 7.44 X PeXTc'"^^ Q = C x I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L^Q/(0,7x(a + y )'^) = 30' maximum for Type B-1 inlet Location FL El, Description Area C Tc 1 0 ft ac min in/hr cfs 173+34.38 • 6.75' LT 341,54 V-notch in back of inlet 0,34 0.90 6.82 6,25 1.93 CAPACITY CHECK OF UPSTREAM MEDIAN DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate -1,93 cfs Normal Depth = 0.36 ft Velocity Head = 0.31 ft Channel Height = 0,5 ft Normal Depth in radius-0.37 ft Freeboard Needed = 0.09 ft Channel Top Width = 3-0 ft Normal Velocity = 4.49 fps Freeboard Provided = 0.14 ft Channel Slope = 2,29 % Normal Top Width = 2,27 ft NOTE: Depth in radius based on SOS method described in Section 866 of the HDM (4th edt,) CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN: Link SDA4-5 DAR Open Channel Row Analysis & Design (See attached sheet for original output) Flow Rate = 2.80 cfs Normal Depth = 0.53 ft Velocity Head = 0 39 ft Pipe Diameter = 1,5 ft Normal Velocity = 4.99 fps Freeboard Needed = 0 13 ft Slope = 3,33 % Normal Top Width = 1.44 ft Freeboard Provided = 0 97 ft NOTE: For Slotted CSP, only the ultimate condition is analyzed since it is the larger of the 2 flows. Project: Median Ditch from 173+34.38 to 177+25 (16:01:39 on 05/23/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 1.93 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.02290 Manning coefficient 0.0160 RESULTS critical depth 0.46 ft normal depth 0.36 ft -> flow is supercritical (Yc > Yn) critical velocity 2.78 ft/sec critical top width 2.89 ft critical area 0.69 sq. ft critical slope 6.420786E-03 normal velocity 4.49 ft/sec normal top width 2.27 ft normal area 0.43 sq. ft Project: Slotted CSP Drain from 173+39.10 to 176+33.52 Link: SDA4.5 (13:57:28 on 04/26/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.80 cfs pipe diameter 1.50 ft slope of invert or channel bottom 0.033250 Manning coefficient 0.0240 RESULTS critical depth 0.64 ft normal depth 0.53 ft -> flow is supercritical (Yc > Yn) critical velocity 3.93 ft/sec critical top width 1.48 ft critical area 0.71 sq. ft critical slope 1.732866E-02 normal velocity 4.99 ft/sec normal top width 1.44 ft normal area 0.5 6 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N A6 INTERIM: P6= 2.5 Minimum Tc = 5 min. Location FL Elev. Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 170+76.72 78.72' LT 326.47 CSP Type B in sump 1.81 0.90 1870 67.5 9.27 4.42 7.20 EOUATIONS: Tc = [ ( 11.9 x L^) / H ] | = 7.44xP6xTc"^^ 0 = C X I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node; N A6 INTERIM: P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 170+76.72 ' 78.72" LT 326.47 CSP Type B in sump 1.81 0.90 1870 67,5 9.27 5.13 8.36 EQUATIONS: To = [ ( 11,9 x L^) / H I = 7,44 X Ps X Tc-^^ Q ^ C X I X A DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeff. cfs ft ft/ft Circ, 8,36 2.5 0,0200 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft m 0.8 0.18 2.5 1.000 0.29 B Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.71 7.25 2.26 CSP inlet Opening Height Wtr Surf. Elev. in in 8,0 8.5 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B (See SDRSD D-75) adequately accommodates the 100-year storm. Since the Wtr Surf, Elev, in the Ditch > Opening Height of the CSP Inlet Type B, the inlet has been depressed 1' using a 2.5' radius concrete apron so that 100% of the 100-year storm is intercepted. Also, the inlet has been modified with 2 openings and a grate on top for additional consideration to clogging. EQUATIONS: Channel Slope = flattest slope ot the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth ULTIMATE: CONCLUSION: assume conditions are the same in an ultimate scenario that they are in the interim scenario Project: Brow Ditch Type B (mod) from 170+76.72 to 174+30 (15:55:20 on 05/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 8.36 cfs channel diameter 2.50 ft slope of invert or channel bottom 0.020000 Manning coefficient 0.0160 RESULTS critical depth 0.96 ft normal depth 0.71 ft -> flow is supercritical (Yc > Yn) critical velocity 4.80 ft/sec critical top width 2.43 ft critical area 1.74 sq. ft critical slope 6.378258E-03 normal velocity 7.25 ft/sec normal top width 2.26 ft normal area 1.15 sq. ft NOTE: channel diameter (width) = 2.5 ft from station 170+77.44 to 171+50 (per plans) since this is the approximate location where flow from Existing Rancho Santa Fe and associated access / utility roads (representing 92.5% of the contributing area) combine with flow from the adjacent fill slope. INLET ANALYSIS: 50 Year Storm Drainage System; Storm Drain Line A Node: N A8 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 170+38.00 55.5' RT 330.27 Type B-1 on grade 1.51 0,95 1000 29.7 6.17 5,75 8.25 4.3 0.35 5.2 0,33 21 CONCLUSION: Required L (=21') will intercept 100% of the 50-year 0. INTERIM: Location FLEI, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 170438.00 55.5' RT' 330.27 Type B-1 on grade 1.12 0.95 1000 28.2 6.30 5,68 6.03 4.3 0.32 5.0 0.33 16 CONCLUSION: Required L (=16') will intercept 100% of the 50-year interim Q, however, ultimate condition dictates a L = 21'. EQUATIONS: Tc = [ ( 11.9 x L^) / H f^^ I = 7.44 X Ps X Tc"^^ Q = Cx IxA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Required L = O / (0.7 x ( a + y)' ^) = 30' maximum for Type B-1 inlet INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A8 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C Tc 1 0 QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 170+38.00 55.5' RT ^ 330.27 Type B-1 on grade 1.51 1,0 6.17 6.67 10,07 0.00 10.07 4.3 0.37 5.5 0.33 21 CONCLUSION: Inlet (L-21') designed for 50-year storm will intercept 8,61 cfs of the total 0. Qi ^bvpass CONCLUSION: Inlet (L-21') designed for 50-year storm will intercept 8,61 cfs of the total 0. cfs cfs CONCLUSION: Inlet (L-21') designed for 50-year storm will intercept 8,61 cfs of the total 0. 8.61 1.46 INTERIM: Location FL El. Description Area c Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft ,170+3a0p; : sis' iTr 330.27 Type B-1 on grade 1,12 1.0 6.30 6.59 7.36 0,00 7.36 4.3 0,35 5.1 0,33 21 CONCLUSION: Inlet (L=2r) is designed for the 50-year Ultimate storm and since Qi > Qtot, inlet will intercept 100% of the total interim Q, EQUATIONS: Tc = [ (11.9 x L^) / H 1 Qi Qbvpass CONCLUSION: Inlet (L=2r) is designed for the 50-year Ultimate storm and since Qi > Qtot, inlet will intercept 100% of the total interim Q, EQUATIONS: Tc = [ (11.9 x L^) / H 1 cfs cfs CONCLUSION: Inlet (L=2r) is designed for the 50-year Ultimate storm and since Qi > Qtot, inlet will intercept 100% of the total interim Q, EQUATIONS: Tc = [ (11.9 x L^) / H 1 8.24 0,00 l=7.44xp6xTc-^^ Q = C x I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per Cily of Carlsbad DS-1 "Local Depression" for curb inlets Qi= 0.7xL(a + y)'^ INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N AlO P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 167+08.05 ,11.92'RT 315.52 Type J on grade 0.77 0.95 490 22.7 5.00 6.59 4.83 5,2 0.29 4.8 0 44 CONCLUSION: Due lo a limited allowance for ponded width, a 4' curb opening is utilized with 125.4' of slotted CSP drain to intercept 100% of the 50-year Q. EQUATIONS. Tc = [ ( 11.9 X L') / H f^^ l = 7.44xp6xTc""^ Q = Cx Ix A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = Q/(0.7x(a + y)^^) SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A10 P6= 2.9 in. Minimum To = 5 min. INTERIM: Location FL El. Description Area C Tc 1 Q Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 167+08.05 11.92'RT 315.52 Type J on grade 0.77 0.95 5.00 7.64 5.60 0,00 5.60 5,2 0,26 4.9 0 60 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 125.4' of slotted CSP drain to intercept 100% of the 50-year Q. Qi Oovoass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 125.4' of slotted CSP drain to intercept 100% of the 50-year Q. cfs cfs EQUATIONS Tc = [ (11,9 X L^) / H 1 5.60 0.00 I = 7.44 X Pe X Tc"-^^ Q = Cx I X A y - depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = Q / ( 0.7 x ( a + y )' ^) CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN: Link SDA10.5 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = Pipe Diameter = Slope = 5.60 1.5 5.15 cfs ft % Normal Depth = 0.69 ft Normal Velocity = 7.05 fps Normal Top Width = 1,5 ft Velocity Head - 0,77 ft Freeboard Needed = 0,17 ft Freeboard Provided - 0,81 ft ULTIMATE: CONCLUSION: assume conditions are the same in an ultimate scenario that they are in the interim scenario. Project: Slotted CSP Drain from 167+12.45 to 168+38.13 Link: SDAIO.5 (18:13:52 On 05/23/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal / Crit;ical Deptih INPUTS circular section flow rate 5.60 cfs pipe diameter 1.50 ft slope of invert or channel bottom 0.051520 Manning coefficient 0.0240 RESULTS critical dept:h 0.91 ft normal depth 0.69 ft -> flow is supercritical (Yc > Yn) critical velocity 4.98 ft/sec critical top width 1.46 ft critical area 1.13 sq. ft critical slope 2.055167E-02 normal velocity 7.05 ft/sec normal top width 1.50 ft normal area 0.79 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N A10.5 P6= 2.5 in. Minimum Tc - 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 167+08.08 57.9'LT ; 316.18 Type F catch basin 0,03 0.95 370 12,6 5.00 6.59 0.17 EOUATIONS: Tc = [ ( 11.9 X L^) / H ] I = 7.44XPBXTC"^^ Q = C X IxA INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A10.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 167+08.08 , 57.'9'LT. - 316.18 Type F catch basin 0.03 0.95 370 12.6 5.00 7.64 0.20 EOUATIONS: Tc-[(11.9xL^)/H]^^^ I = 7.44 x Pg X Tc'^^ Q ^ C x 1 x A DAR Open Channel Flow Analysis & Design (No attached sheet for original output necessary) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 0.20 1.5 1.0 0.0341 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0.1 0,02 2 4 0.26 RW gutter Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0.07 2.65 1.21 critical Type F Inlet: Opening Wtr Surf, Height Elev. in in 9.0 0,8 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, retaining wall gutter (See Details) adequately accommodates the 100-year storm. Since Ihe Wtr Surf. Elev. in the gutter < Opening Height of the Type F Catch Basin, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion ot water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided - Channel Heigth - Normal Depth INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line A Node: N A12 INTERIM: Pg- 2.5 in. Minimum Tc = 5 min. Location FL El. Deschption Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 167+36.06 55.5' RT • 316.33 Type B-1 on grade 0,45 0,95 420 21.5 5.00 6.59 2.83 5,2 0.24 4.9 0.33 9 CONCLUSION: Inlet (L=16') is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year Q. EQUATIONS: Tc = [ ( 11.9 x L^) / H ] l = 7.44xPsXTc"^^ 0 = C X I x A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carisbad DS-1 "Local Depression" for curb inlets Required L = 0 / ( 0.7 x ( a + y )' ^) = 30' maximum for Type B-1 inlet INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A12 INTERIM: P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev, Description Area C Tc 1 Q Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft , 167+36.06^ 55.5'RT 316.33 Type B-1 on grade 0,45 0.95 5.00 7.64 3.28 1.46 4,74 5.2 0,27 5.0 0.33 15 CONCLUSION: Inlet (L=15') designed to accommodate bypass during the 100-year storm, however the inlet L=16' for added factor of safety, therefore, inlet will intercept 100% of the total Q. Qi Qbvpass CONCLUSION: Inlet (L=15') designed to accommodate bypass during the 100-year storm, however the inlet L=16' for added factor of safety, therefore, inlet will intercept 100% of the total Q. cfs cfs CONCLUSION: Inlet (L=15') designed to accommodate bypass during the 100-year storm, however the inlet L=16' for added factor of safety, therefore, inlet will intercept 100% of the total Q. 4.74 0.00 EQUATIONS: Tc = [ ( 11.9 x L^) / H l = 7.44xP6xTc^^ Q = C x I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V - velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Qi= 0.7xL(a+y)'^ ULTIMATE: CONCLUSION: assume conditions are the same in an ultimate scenario that they are in the interim scenario. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A14 p6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q Q' Qtot ft ac ft ft min in/hr cfs cfs cfs cfs 119+05.05:; •LCA' 7A.& RT 300.000 exist channel 7,30 0,45 2255 92,0 15,22 3.73 12.24 10.05 32.01 42.06 EQUATIONS: Tc = [ ( 11,9 x L^) / H ] Note: an additional 10 minutes is added to natural watersheds, however, since these are relatively small areas and since some of the travel time will be in a brow ditch and paved access road, only 5 minutes is added. I = 7.44 X Ps x Tc-"^ Q = C X I x A * = discharges are adjusted for a network time of concentration DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Output: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeff. cfs ft ft/ft Circ. 42.06 3 0,0372 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 3,0 0.33 3 1.3 0.01 Exist Brow Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 1.32 13.99 2.98 CONCLUSION: Since Normal Depth < Channel Height, the existing channel adaquately accommodates the 100-year storm. Since Freeboard Provided < Freeboard Needed, it is recommended that the channel be cleared of debris to increase capacity and freeboard. Since the existing channel is only intended to handle interim flows and only 10% of the channel experiences the entire concentrated flow, it is recommended that the channel not be "up-sized", EOUATIONS: Channel Slope - flattest slope of the channel carrying the greatest portion of water Velocity Head = { Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth ULTIMATE: CONCLUSION: assume conditions are the same in an ultimate scenario that they are in the interim scenario. This area will be developed in the future and this channel may be moved, widened, or underground. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line A Node: N A15 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev, Description Area c L H Tc 1 Q Q' Ochannel Qtot ft ac ft ft min in/hr cfs cfs cfs cfs 116-f04,64 'LCA'131.3^ RT 265.520 exist channel 1.11 0,45 405 46,7 6,83 6.25 3.12 1,33 42.06 43.39 Note: location is along a line running N84'H)1'15"W from alignment EOUATIONS: Tc = [ ( 11.9 x L^) / H Note: an additional 10 minutes is added to natural watersheds, however, since these are relatively small areas and since some of the travel time will be in a brow ditch, only 5 minutes is added, I = 7,44 X Ps X Tc-^^ Q= C X I X A ' - discharges are adjusted for a network time of concentration DAR Open Channel Flow Analysis & Design (See attached sheet for onginal output) Input: Output: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeff. cfs ft ft/ft Circ. 43.39 3 0.0250 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 2.3 0.38 3 1.6 0.09 Exist Brow Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-1,51 12.16 3.0 critical CONCLUSION: Since Normal Depth < Channel Height, the existing channel adaquately accommodates the 100-year storm. Since Freeboard Provided < Freeboard Needed, it is recommended that the channel be cleared of debris to increase capacity and freeboard. Since the existing channel is only intended to handle interim flows and the channel is considerably lower in elevation than La Costa Ave (therefore no property damage is possible), it is recommended that the channel not be 'up-sized'. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head - { Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth ULTIMATE: CONCLUSION: assume conditions are the same in an ultimate scenario that they are in the interim scenario. This area of MAG propoerties may be developed in the future and this channel may be moved, widened, or underground. Project: Existing Ditch from ^LCA' 119+05 to 121+19 (14:41:47 on 05/23/01) DAR Open Channel Flow Analysis Sc Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 42.06 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.037300 Manning coefficient 0.0160 RESULTS critical depth 2.11 ft normal depth 1.32 ft -> flow is supercritical (Yc > Yn) critical velocity 7.91 ft/sec critical top width 2.74 ft critical area 5.32 sq. ft critical slope 8.457102E-03 normal velocity 13.99 ft/sec normal top width 2.98 ft normal area 3 . 01 sq. ft Project: Existing Ditch from *LCA' begin to 119+05 (14:48:47 on 05/23/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 43.39 cfs channel diameter 3.00 ft slope of invert or channel bottcan 0.025000 Manning coefficient 0.0160 RESULTS critical depth 2.15 ft normal depth 1.51 ft -> flow is supercritical (Yc > Yn) critical velocity 8.02 ft/sec critical top width 2.71 ft critical area 5.41 sq. ft critical slope 8.645404E-03 normal velocity 12.16 ft/sec normal top width 3.00 ft normal area 3.57 sq. ft 100-YEAR INTERIM HYDRAULIC COMPUTATIONS: STORM DRAIN LINE A and related laterals ID Descrip Shape MatI Length N S Dia 0 ft % ft cfs SDA1 18" RCP Circ Cone 45,40 0.012 3.22 1.50 1,44 SDA2 18" RCP Circ Cone 42.30 0.012 4.56 1.50 SDA3 18" RCP Circ Cone 288-00 0.012 2,44 1.50 3.12 SDA4 18" RCP Circ Cone 41.80 0.012 ' 10.00 1.50 SDA5 18" RCP Circ Cone 296,00 0,012 4,13 1,50 5.67 SDA6 18" RCP - Circ Cone 125.25-; 0.012 1.06 1.50 SDA8 18" RCP Circ Cone 17,40 0,012 10,00 1.50 8.24 SDA9 24" RCP Circ Cone 296.00 0.012 4.46 2.00 . 0.20 SDA9,5 12" PCV-PP Circ Plastic 66.40 0.012 1.00 1,00 0.20 SDAIO 18" RCP Circ \ Cone 26.25 0.012 10.00 1.50 SDA11 30" RCP Circ Cone 14,43* 0,012 1,05 2.50 27.29 SDA11.5 18" RCP Circ : Cone 22.44 0.012 20.00 1.50 SDA12 30" RCP Circ Cone 246.06 0,012 1.05 2,50 32,01 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss fl fps ft fps cfs ft SDA1 0,27 6,68 0,45 3,23 20.42 0,16 SDA2 0.36 9.45 = 0.67 4.07 24.30 0.08 SDA3 0,43 7.57 0,67 4.07 17,78 0.28 SDA4 0.28 11.93 0.62-3.87 35.99: 0.23 SDA5 0.51 10.82 0,92 5,00 23.13 0,34 SDA6 0.94 - 7.22 1.12 5.91 11.72 0.35 SDA8 0,49 16,52 1,11 5,87 35,99 0,54 SDA9. 0.91 15.76 , : ,1-67 7.77 r 51.76 0.79 SDA9,5 0.15 2.57 0,18 2,04 3.86 0,07 SDAIO 0.41 • 14.94 0.93 5.04 35.99 0.19 SDA11 1.39 9.71 1,78 7,29 45,53 0,84 SDA11.5 0.31 18.04 ,0.84 4.68 50.89 0.34 SDA12 1,55 10,02 1,93 7.88 45,53 0-36 !D Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDA1 N Al N A2 0,75 0,27 345.75 343-81 345-77 344.49 SDA2 NA2 N A3 0.75 0.37 343.96 341.65 344.22 §^342^^ SDA3 N A3 N A5 0,95 0-43 341.90 334,35 342,16 335,24 SDA4 N A4 N A5 0.88 0.28 339.82 335.04 340.03 SDA5 N A5 N A9 1,26 0,51 334.85 321,87 335,23 * 323.70 SDA6 N A6 N A9 1.50 1.50 324.49 323.49 324.84 SDA8 NAB N A9 1.50 0.61 324,86 321.86 325,17 324.17 SDA9 N A9 NA11 2.00 0.91 323.49 308.74 324.43 i|312^^ SDA9.5 N A10.5 N AlO 0,50 0,15 313,20 312,19 313,20 312.30 SDAIO N AlO N All 1.12 0.45 311.58 308.28 311.97 ' ;• 31d'."^l"'; SDA11 N All N A12.5 2,50 2.29 310.30 309,54 310,98 310.50 SDA11.5 N A12 N A12.5 1,26 0.36 311.90 308.11 312.16 /: 311143lf! SDA12 N A12,5 N A13 2.29 1,55 309,54 306.22 310,50 307,78 1^. 100-YEAR INTERIM HYDRAULIC COMPUTATIONS: STORM DRAIN LINE A and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft tps fps SDA1 351 351.64 5,25 7-83 345,00 343,54 1,63 6.60 SDA2 351.64 . 350.51 7.68 , 8.86 343.21 . 341.28 3.52 SDA3 350,51 342.09 8.61 7.74 340.95 333,92 2,65 7'57 SDA4 343.12 , 342.09 3.30 7.05^ r: 338.94" 334.76;; 2.46 7'57 SDA5 342,09 330.26 7-24 8-39 333.59 321.36 3,59 l"a82 SDA6 326.47^ • - 330.26 .1.98 6.77 322.47 321.14 4.73 • l"a82 SDA8 330,27 330,26 5-41 8.40 322,99 321,25 4,66 12.16 SDA9 330.26 316.00 ,6.77 7,26 , 321.03 307.83 6.92 SDA9,5 316,18 315.52 2.98 3.33 312.70 312,04 0,50 2.56 SDAIO , 315-52 ,316.00 3.94 7.72 / 310.46, 307.83 : 4.09 : 2.56 SDA11 316,00 -5.70 -307.50 307.25 5,56 5.80 SDA11.5 316.33 - • 4.43 ; 310.64 : 307.75 : 3.00 , SDA12 -307,17 -0,95 307.25 304.67 6,80 10.01 NOTE: for cleanoufs and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. FL Elev's for slotted drain connections are located approximately 3,5' below "Inlet FL", ' - represents the true invert-to-invert length, not the length shown on the contract plans that accounts for additional skew & connection length. 100-YEAR ULTIMATE HYDRAULIC COMPUTATIONS: STORM DRAIN LINE A and related laterals ULTIMATE VS. INTERIM Computations: 1.) Culvert SDA1 not considered in Ultimate scenario. ID Descrip Shape MatI Length N s Dia Q ft % ft cfs SDA2 18" RCP Clrc: . ..Conc'' 42.30 0.012 ' 4.56,..,. .1.50_ 2.91 =, SDA3 18" RCP Circ Cone 288.00 0.012 ' 2.44" 1.50' 2.91 SDA4 18" RCP , Circ Cone --41.80 0.012 10.00'V ' '-1.50 ' 2.80 . . SDA5 18" RCP Circ Cone 296.00 0.012 4.13 1.50 5,71 SDA6 18" RCP • Circ -'. V CCKIC ' 125.25 0.012 -.1.06 C, 1.50 • •. 8.37 \?.^ SDA8 18" RCP Circ Cone 17.40 0.012 10.00 1.50 8,61 SDA9 24" RCP , - Circr • Cone'' ] ' 296.00 > 0.012-1. ' 4.46,' ' :V-2.00' 22.52 SDA9.5 12" PCV-PP Circ Plastic 6640 0.012 1.00 1.00 0.20 " SDAIO •18"RCP; Circ 'Conc.^ 26.25 0.012 10.00; /'1.50K 5.79 SDA11 30" RCP Circ Cone 14.43* 0.012 1.05 2.50 28,08 SDA11.5 18" RCP Circ" Cmc '" 22.44 0.012" • ^o.oo-'. . '1.50 • 4.74 SDA12 30" RCP Circ Cone 246.06 0.012 1.05 2,50 32.79 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft SpA2 0.35 , 9.26 ' • 3-98 . 24.30.. 0.25 . SDA3 0.41 7.42 0.65 3.98 17.78 " 0.27 ~SPA4 0.28-12.09. _q.64X • -3.93 -35.99, 'i'l 0.24-.,- SDA5 0,51 10,83' 0.92 5" 01 23.13 0.35 .' 'SDA6 0.94 ~ 7.22" 1.12-: 5.91 11.72? 0.35 . SDA8 0,50 16.72 1.14 6.00 35.99 ' 0.56 SDA9 0.92 15.91 1.69 , • 7.95' -51.76 • 0.82 SDA9.5 0.15 2.57 0.18 2,04 3.86 0.07 : SDAIO 0.41 -14.94-5.04 35.99 , ..0.19, ~ SDAl'l 1.42 9.75 1,81 7.39 45.53 0.87 SDA11.5, 0.31 18.04 0.84 ' 4.68 50.89 ' V '•o;34 SDA12 ' 1.57 10.12 1,95 7,99 45.53 0,36 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDA2 NA2 NA3 0.93 0.36-344,14 341.64 344.35 : 342.89 , SDA3 N A3 N A5 0,91 0.41 341.86 334.33 342.11 335.19 ' SDA4 N A4 N A5 0.91 0.29 339.85 ' 335.05 340.06 . 337.23 SDA5 N A5 N A9 1,27 0.51 334.86 321,87 335.26 323.70 SDA6 * NA6 NA9 1.50 1.50 324.55 * • ';^3.55 ' 324.90 324;53';-" SDA8 N A8 N A9 1.50 0,63 324.94 321.88 325.24 324.22 SDA9 NA9 NA11 2.00 .0.93 323.55 : 308.76 324.53 312.67 SDA9.5 N A10.5 N AlO 0,50 0.15 313.20 312,19 313,20 312.30 SDAIO NA10 NA11 -. 1.12 . 0.45 311.58 308.28 311.97 310.92 SDA11 N All N A12,5 2,50 2.31 310.37 309.56 311.06 310.55 SDA11.5 NA12 N A12.5 , 1.26 0.36 311.90 " 308.11 \ 312.16 311.43 SDA12 N A12,5 N A13 2,31 1,58 309.56 306.25 310.55 307.82 100-YEAR ULTIMATE HYDRAULIC COMPUTATIONS: STORM DRAIN LINE A and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDA2 351.64 350.51 7.50 8.87 343.21 341.28 2.52 8.95 SDA3 350.51 342,09 8.65 7.76 340,95 333.92 2.58 7.42 SDA4 343.12 342.09 3.27 7.04 . 338.94 334.76 2.49 11.78 SDA5 342.09 330.26 7.23 8.39 333.59 321.36 3.57 10.83 V SDA6 " 3aS.47 " 330.26 11.ga";;^^ ' 322.47 321.14 . i 4.73 ': - 4.73 SDA8 330,27 330.26 5.33 8.38 322.99 321.25 4.87 12.24 : SDA9 ' 330.26 ^ .316.00 , 6.71 Z _ 321.03 -.307.83 . 7.17 -15.86' - SDA9,5 316.18 315.52 2.98 3.33 312.70 312.04 0.50 2.56 SDAIO . 315.52 316.00 -~3.94'^r 7.72 310.46 307.83 ' ^ 4.09 , 13.00 SDA11 316,00 -5.63 -307.50 307.25 5.72 5,92 SDA11.5 ' 316.33 I 4.43 •r - 310.64 • 307.75 - 3.00' - 14.55 SDA12 -"'307.17 -0.93 307,25 304,67 6.92 10.06 NOTE: for cleanoufs and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively, FL Elev's for slotted drain connections are located approximately 3,5' below "Inlet FL". * = represents the true invert-to-invert length, not the length shown on the contract plans that accounts for additional skew & connection length. INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B4 ULTIMATE: P6= 2.5 in. Minimum Tc = 5 min. Location FL El, Description Areal CI Ll HI Tel I 1 01 ft ac ft ft min in/hr cfs 11+18.22 CR1 29.5'LT 370,87 Type B-2 in sag 0.13 0.95 129 0.1 5.00 6.59 0.83 Area2 C2 L2 H2 Tc2 12 02 ac ft ft min in/hr cfs 0,64 0,95 518 26.5 5,00 6.59 4.04 Total Area C Tem in 1 max Qtot a Req'd L Clr curb Area Curb Ht, d ac min in/hr cfs ft ft ft^ ft ft 0,78 0,95 5.00 6,59 4,86 0.33 10 4.86 0.5 0-30 CONCLUSION: d < curb ht,, therefore the required L {=12') is over-sized for the Ultimate condition and will intercept 100% of the 50-year O, INTERIM: Location FL El. Description Areal CI Ll H1 Tel I 1 01 ft ac ft ft min in/hr cfs 11-1-18.22 . CR1 29.5' LT 370.87 Type B-2 in sag 0.13 0,95 129 0.1 5.00 6.59 0.83 Area2 C2 L2 H2 Tc2 12 02 ac ft ft min in/hr cfs 0.64 0.95 518 26.5 5.00 6.59 4.04 Total Area C Tcmin 1 max Qtot a Req'd L Clr curb Area Curb Ht d ac min in/hr cfs ft ft ft^ ft ft 0.78 0.95 5,00 6,59 4.86 0.33 10 4.86 0.5 0,30 CONCLUSION: d < curb ht., therefore the required L (=12') is over-sized for the Uftimate condition and will intercept 100% of the 50-year Q, EQUATIONS Tc ^ [ (11,9 X L^) / H ] I = 7.44 X Pg X Te'^^ a = CxI xA Required L - Q x 2 where Q is maintained within top of curb elevation a = depth of depression per City ot Carlsbad DS-1 "Local Depression" for curb inlets Clear curb Area = L x .5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B4 P6= 2.9 in. Minimum Tc - 5 min. ULTIMATE: Location FLEI. Description Areal C1 Ll HI Tel 1 1 QI ft ac ft ft min in/hr cfs 11+18.22 CR1 29.5' LT 370.87 Type B-2 in sag 0.13 0.95 129 0.1 5.00 7,64 0.96 Area2 C2 L2 H2 Tc2 12 02 ac ft ft min in/hr cfs 0,64 0.95 518 26,5 5.00 7.64 4.68 Total Area C Tcmin 1 max Otot a Req'd L Clr curb Area Curb Ht. d ac min in/hr cfs ft ft ft^ ft ft 0.78 0,95 5.00 7.64 5.64 0.33 11 5.64 0.5 0.30 CONCLUSION: d < curb ht., therefore the required L (=12') will intercept 100% of the 100-year 0. INTERIM: Location FLEI, Description Areal CI Ll HI Tel 11 QI ft ac ft ft min in/hr cfs 11+18.22, CRt29.5^LT 370.87 Type B-2 in sag 0,13 0,95 129 0.1 5.00 7.64 0.96 Area2 C2 L2 H2 Tc2 12 Q2 ac ft ft min in/hr cfs 0,64 0.95 518 26.5 5.00 7.64 4.68 Total Area C Tcmin 1 max Otot a Req'd L Clr curb Area Curb Ht. d ac min in/hr cfs ft ft ft^ ft ft 0.78 0.95 5.00 7.64 5.64 0,33 11 5,64 0.5 0.30 CONCLUSION: d < curb ht,. therefore the required L (=12') will intercept 100% of the 100-year Q. EQUATIONS: Te = [ ( 11,9 x L' ) / H ] l=7.44xP6xTc 0 = C x I X A Required L - Q x 2 where Q is maintained within top of curb elevation a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Clear curb Area = L x ,5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 INLET ANALYSIS: 50 Year Storm Drainage System; Storm Drain Line B Node: N 85 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Areal CI Ll HI Tel 1 1 QI ft ae ft ft min in/hr cfs •11+18.22 CR1 29.5'RT 370,87 Type B-2 in sag 0,38 0.95 235 10.9 5.00 6.59 2.38 Area2 02 L2 H2 Tc2 12 Q2 ac ft ft min in/hr cfs 0.72 0.95 518 26.5 5.00 6,59 4.52 Total Area C Tcmin 1 max Qtot a Req'd L Clr curb Area Curb Ht. d ac min in/hr cfs ft ft ft ft 1.10 0.95 5.00 6.59 6.90 0,33 14 6.90 0,5 0.26 CONCLUSION: INTERIM: d < curb ht,, therefore the required L (=1 8') is over-sized for the 100-year storm, and will intercept 100% of the 50-year 0. Location FL El, Description Areal C1 Ll HI Tel 1 1 QI ft ae ft ft min in/hr cfs ' ;1)+18.22 CR1 29.5' RT 370,87 Type B-2 In sag 0.34 0,95 225 10,2 5.00 6.59 2.14 Area2 C2 L2 H2 Tc2 12 Q2 ae ft ft min in/hr cfs 0.75 0,95 518 26,5 5.00 6.59 4,68 Total Area C Tcmin 1 max Otot a Req'd L Clr curb Area Curb Ht. d ac min in/hr cfs ft ft ft^ ft fl 1.09 0.95 5.00 6.59 6.82 0,33 14 6.82 0.5 0.26 CONCLUSION: d < curb ht., therefore the required L (=18') is over-sized for the Ultimate condition and will intercept 100% of the 50-year 0. EOUATIONS: Tc = [ ( 11,9 x L^) / H ] l = 7,44xP6xTc"^^ Q - C x 1 x A Required L = Q x 2 where Q is maintained within top of curb elevation a - depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Clear curb Area = L x ,5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N 85 p6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Areal CI Ll HI Tel 1 1 01 tt ac ft tt min in/hr cfs . 11t18.22 CR1 2^.5' RT 370,87 Type B-2 in sag 0.38 0.95 235 10.8 5,00 7.64 2.76 Area2 C2 L2 H2 Tc2 12 Q2 ac ft ft min in/hr cfs 0.72 0.95 518 26.5 5.00 7.64 5.25 Total Area C Tcmin I max Qtot a Req'd L Ctr curb Area Curb Ht. d ac min in/hr cfs ft ft ft^ ft ft 1.10 0,95 5.00 7.64 9,16 0-33 18 9.16 0.5 0,30 CONCLUSION: d < curb ht,, therefore the required L (=18') will intercept 100% of the 100-year O, NOTE: Qtot includes 100-year bypass from Node N B11 of 0.79 cfs. INTERIM: Location FL El. Description Areal CI Ll HI Tel 1 1 01 ft ac ft ft min in/hr cfs 11+18.22 CRV 29.5'RT 370.87 Type B-2 in sag 0.34 0.95 225 10.1 5.00 7.64 2.48 Area2 C2 L2 H2 Tc2 12 02 ae ft ft min in/hr cfs 0.75 0.95 518 26.5 5.00 7.64 5,43 Total Area C Tcmin 1 max Qtot a Req'd L Clr curb Area Curb Ht. d ac min in/hr cfs ft ft ft^ ft ft 1.09 0.95 5,00 7.64 7,91 0.33 16 7.91 0.5 0.28 CONCLUSION: d < curb ht., therefore the required L (=18') is over-sized for the Ultimate condition and will intercept 100% of the 100-year interim Q. EQUATIONS: Tc = [ ( 11,9 x L^) / H ] l = 7,44xPsxTe""^ O = C X I X A Required L = Q x 2 where O is maintained within top of curb elevation a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Clear curb Area = L x .5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line 8 Node: N B7 Pe- 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs .11+82.37 'CRr 110.3' RT 405.80 CSP Type B in sump 1.58 0.55 615 55.2 7,77 4,96 4,32 INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B7 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 11+82.37.: 'CRV 110.3' RT 405.80 CSP Type B in sump 1.58 0.55 615 55.2 7.77 5,75 5,01 EQUATIONS: Tc = [ ( 11.9 x L^) / H f^^ Note: an additional 10 minutes is added to natural watersheds, however, since this is a relatively small area and since some of the travel time will be in the brow ditch, only 5 minutes is added, l = 7.44xP6xTc""^ 0 = 0x1 xA NOTE: Brow Ditch SDB7B700 receives 14% of the total Q with the remainder conveyed in Brow Ditch SDB7B701. CAPACITY CHECK OF BROW DITCH: Link SDB7B700 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 0,70 cfs Normal Depth = 0,20 ft Velocity Head = 0.28 ft Channel Height = 1.0 tt Normal Velocity -4,25 fps Freeboard Needed = 0.05 ft Channel Top Width = 2,0 ft Normal Top Width = 1.20 ft Freeboard Provided = 0.80 ft Channel Slope = 3.25 % CAPACITY CHECK OF BROW DITCH Link SDB7B701 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 4.31 cfs Normal Depth = 0-47 ft Velocity Head = 0.91 ft Channel Height = 1.0 ft Normal Velocity = 7.65 fps Freeboard Needed -0.12 ft Channel Top Width = 2.0 ft Normal Top Width = 1,70 ft Freeboard Provided = 0.53 ft Channel Slope = 3,73 % CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B (See SDRSD D-75) adequately accommodates the 100-year storm. The Wtr Surf. Elev. in the Ditch < Opening Height of the CSP Inlet Type B, however, the iniet has been depressed 1' using a 2,5' radius concrete apron so that 100% of the 100-year storm is intercepted. Also, the inlet has been modified with 2 openings and a grate on top for additional consideration to clogging. EOUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Brow Ditch Type B from *CR1' 11+53.03 to 12+50 RT Link: SDB7B700 (14:40:35 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 0.70 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.032500 Manning coefficient 0.0160 RESULTS critical dept:h 0.29 ft: normal depth 0.20 ft -> flow is supercritical (Yc > Yn) critical velocity 2.52 ft/sec critical top width 1.40 ft critical area 0.28 sq. ft critical slope 7.342841E-03 normal velocity 4.25 ft/sec normal top width 1.20 ft normal area 0.16 sq. ft Project: Brow Ditch Type B from 'CRl' 11+53.03 RT to 'RSF' 190+36.56 LT Link: SDB7B701 (14:42:40 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Gritical Depth INPUTS circular section flow rate 4.31 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.037300 Manning coefficient 0.0160 RESULTS critical depth 0.73 ft normal depth 0.47 ft -> flow is supercritical (Yc > Yn) critical velocity 4.16 ft/sec critical top width 1.93 ft critical area 1.04 sq. ft critical slope 6.821316E-03 normal velocity 7.65 ft/sec normal top width 1.70 ft normal area 0.56 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B11 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ae ft ft min in/hr cfs % ft fps ft ft 186+55.27^ 55.5' LT 375.74 Type B-1 on grade 1.20 0.95 440 41.3 5-00 6-59 7.48 3.8 0.35 4.9 0.33 19 CONCLUSION; Required L (=19') will intercept 100% of the 50-year 0. INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 186+55.27 41-LT ' 376.23 AC spillway on grade 0.36 1.0 455 17.8 5.00 6.59 2.34 3,8 0.25 4.1 0.5 5 CONCLUSION: AC spillway has a Required L = 5', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H l = 7.44xPsxTc"^^ O = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = O / ( 0.7 x ( a + y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Descrtption Area C L H Tc 1 Ob Otot Clr curb Area Clr curb Length h d ft ae ft ft min in/hr cfs cfs ft^ ft in ft ,186+55.27 '55.5'LT 374.61 Type B Int. (mod) - sump 0.84 0.9 435 42.4 5.00 6.59 4.96 7.29 5.81 9.00 9.0 0.42 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Iniet Interim (mod) acts as a weir and intercepts 100% of Q, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Iniet Interim (mod) acts as a weir and intercepts 100% of Q, in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Iniet Interim (mod) acts as a weir and intercepts 100% of Q, 5.0 375.03 375.36 375.73 EQUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 if for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N 811 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Te 1 0 QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft ^186+55.27 - 55.5' LT 1 375.74 Type B-1 on grade 1.20 0.95 5.00 7.64 8.67 0.00 8.67 3.8 0.35 5.0 0.33 19 CONCLUSIO N: Inlet (L= 19') designed for SO-year storm will intercept 7.52 cfs of the total Q. Qi Qbvoass cfs cfs 7.52 1.15 INTERIM: Location FL El. Description Area C Tc 1 Qa QDVD Qa tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 186+55.27 41" LT 376.23 AC spillway on grade 0.36 1.0 5.00 7.64 2.71 0.00 2.71 3.8 0.26 4.2 0.5 10 CONCLUSION- AC Spillway {L=10') is over designed for 50-year storm due to minimum length restrictions, therefore Qi Qbvoass spillway will intercept 100% of the 100-year Q. cfs cfs EQUATIONS: Te = f (11.9 x L' ) / H f^^ 4.64 0.00 I = 7.44 X Re X Tc Q = Cx I xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a+y)'^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft in ft in 18&t55.27-374.61 Type B Int. 0.84 0.9 5.00 7.64 5.75 0.00 8.46 5.81 9.00 9.0 0.48 5.8 55.5' LT (mod) - sump Wtr Surf. Top of Spillway CONCLUSION: d is conservatively interpolated since it falls in a transitional state El. Opening Depr. El. between weir and orifice. Wtr Surf. El. < Top of Opening < ft ft ft Spillway Depr. El., therefore the Type B Inlet Interim (mod) 375,09 375.36 375.73 intercepts 100% of Q. EQUATIONS Qtot = Qajot + Qb ^- Qbyp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 f^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 5.75 cfs Channel Height1.0 ft Channel Top Width - 3.0 ft Channel Slope = 3.8 % Normal Depth = 0.66 ft Normal Velocity = 8.00 fps Normal Top Width = 2.08 ft Velocity Head = 0.99 ft Freeboard Needed = 0.17 ft Freeboard Provided = 0.34 ft Project: Side Ditch from 186+61.27 to 190+33.06 LT (13:31:17 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00); Normal/Gritical Depth INPUTS trapezoidal section flow rate 5.75 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.95 ft normal depth 0.66 ft -> flow is supercritical (Yc > Yn) critical velocity 3.98 ft/sec critical top width 2.95 ft critical area 1.45 sq. ft critical slope 5.996764E-03 normal velocity 8.00 ft/sec normal top width 2.08 ft normal area 0.72 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node:N B12 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL Et. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 187+00.00 55.5'RT 377.46 Type B-1 on grade 0.56 0.95 410 16.5 5.00 6.59 3.52 3.8 0.28 4.3 0.33 11 CONCLUSION: Required L (=11') will intercept 100% of the 50-year 0, INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 187+00.00 41* RT ' 377.95 AC spillway on grade 0.26 1.0 360 14.4 5.00 6.59 1.71 3.8 0.23 4 0.5 4 CONCLUSION: AC spillway has a Required L = 4', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Oa. EQUATIONS: Tc = [ ( 11.9 x L^) / H ] I =7.44x PBXTC"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = O / ( 0.7 x ( a + y Y^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 187+00.00 • • 55.5'RT*' 376.33 Type B Int. (mod) - sump 0.28 0.9 315 19.7 5.00 6.59 1.68 3.39 5.81 9,00 9.0 0.26 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr, El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 3.1 376.59 377.08 377.45 EQUATIONS: Qtot = Oa + Qb Clear curb Area = 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El, + d Top of Opening - Fiowline El, + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System; Storm Drain Line B Node: N 812 P6= 2.9 in. linimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 0 Qbvc Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 187+00.00 - 55.5'RT' > 377.46 Type B-1 on grade 0.56 0.95 5.00 7.64 4.09 0-00 4,09 3.8 0,29 4.5 0,33 11 CONCLUSION: Inlet (L=1 f) designed for 50-year storm will intercept 5,68 cfs of the total 0, Qi Qbvpass CONCLUSION: Inlet (L=1 f) designed for 50-year storm will intercept 5,68 cfs of the total 0, cfs cfs CONCLUSION: Inlet (L=1 f) designed for 50-year storm will intercept 5,68 cfs of the total 0, 3.76 0,33 INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD QaJot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 187+00,00 '/: 4l'-RT- '-^i 377.95 AC spillway on grade 0.29 1.0 5.00 7.64 2.21 0.00 2.21 3.8 0,24 4,0 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ ( 11,9 x L^) / H l''^^ Qi Qbvpass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ ( 11,9 x L^) / H l''^^ cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ ( 11,9 x L^) / H l''^^ 4.46 0.00 l-7,44xP6xTc'^^ Q = Cx I xA y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)'^ Location FL El. Description Area C Tc 1 Qb Qbyp Otot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 137+00.00. 55.5' RT • 376.33 Type B Int. (mod) - sump 0.28 0.9 5.00 7.64 1.95 0.00 4.17 5.81 9.00 9.0 0.30 3.6 CONCLUSION: d is consen/atively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. Wtr Surf. El, Top of Opening Spillway Depr. El. CONCLUSION: d is consen/atively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. ft ft ft CONCLUSION: d is consen/atively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 376.63 377.08 377,45 EQUATIONS: Qtot = QaJot + Qb + O^ Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6,5" x 3") ] = 5.813 ft^ tor 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 1,95 cfs Channel Height = 1,0 ft Channel Top. Width = 3.0 ft Channel Slope ^ 3,8 % Normal Depth = 0,43 ft Normal Velocity = 6,11 fps Normal Top Width = 1.39 ft Velocity Head = 0.58 ft Freeboard Needed = 0.11 ft Freeboard Provided = 0,57 ft Project: Side Ditch from 187+00 to 189+87.15 [15:17:20 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 1.95 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottcan 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.60 ft normal depth 0.43 ft -> flow is supercritical (Yc > Yn) critical velocity 3.20 ft/sec critical top width 1.91 ft critical area 0.61 sq. ft critical slope 6.899738E-03 normal velocity 6.11 ft/sec normal top width 1.39 ft normal area 0.32 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B12.5 Pg- 2.5 in. IVlinimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft fl 183+25.00, 55.5'-LT 364.41 Type B-1 on grade 0.51 0,95 260 6.6 5.00 6.59 3.20 2.9 0,28 3.8 0.33 10 CONCLUSION: Required L (=10') will intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 183+25.00 41'LT 364,81 AC spillway on grade 0.20 1.0 260 5.2 5.00 6.59 1.32 2.9 0.22 3.4 0.5 3 CONCLUSION: AC spillway has a Required L = 3', however, due to the 0.854% cross-slope at this location the ponded width is unacceptably large, therefore, a 2' wide x 1' deep "V-channel is constructed along the EP per the details. This ditch begins upstream at station 184+10.95 and continues to the AC spillway at 183+25.00. And the resulting data is as follows: Area c Tc 1 Q S y ac min in/hr cfs % ft 0.11 1,0 5.00 6,59 0.75 2.9 0.16 EQUATIONS: Tc = [ ( 11.9 x L^) / H ] I = 7.44 X Pe X Tc"^^ Q = C xl xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = 0 / ( 0.7 x ( a + y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 183+25.00 55.5' LT 363.18 Type B Int. (mod) - sump 0.34 0.9 270 26,8 5.00 6,59 2.00 3.32 5.81 9.00 9.0 0.24 CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 2.9 363.42 363,93 364.31 EQUATIONS, Qtot = Qa + Ob Clear curb Area = 3 x [ ( 2 x 1 /2 x 2,5" x 1,5') + ( 6.5" x 3') j = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3") = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH AND SPILLWAY A,C, DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B12.5 P6= 2.9 in. Minimum Tc 5 min. ULTIMATE: Location FL El. Description Area C Tc I 0 Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft : 183+25.00. 55.5' LT 364,41 Type B-1 on grade 0.51 0,95 5.00 7.64 3.71 0.00 3.71 2.9 0.28 3.9 0.33 10 CONCLUSION: Inlet (L=10') designed for 50-year storm will intercept 3,35 cfs of the total Q. Qi Qbvcass CONCLUSION: Inlet (L=10') designed for 50-year storm will intercept 3,35 cfs of the total Q. cfs cfs CONCLUSION: Inlet (L=10') designed for 50-year storm will intercept 3,35 cfs of the total Q. 3.35 0.36 INTERIM: Location FL El. Description Area C Tc 1 Qa QQVP Oa^tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 183+25.00 41'LT 364.81 AC spillway on grade 0,20 1.0 5.00 7.64 1.53 0.00 1.53 2,9 0,23 3.5 0.5 10 CONCLUSION: AC Spillway is designed with a spillway ditch (see details) connected to it that will convey 100% of the 100-year Q, Qi CONCLUSION: AC Spillway is designed with a spillway ditch (see details) connected to it that will convey 100% of the 100-year Q, cfs cfs EQUATIONS: Tc = [ (11.9 x L' ) / H ] 4.32 0.00 I = 7.44 X Pe X Tc"^^ Q = Cx I xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of tfie County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL(a + y)'^ Location FL El, Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in .183+25.00. 55.5'LT • 363.18 Type B Int. (mod) - sump 0.34 0.9 5.00 7.64 2.33 0,00 3.85 5.81 9.00 9.0 0.26 3.1 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. Wtr Surf. El. Top of Opening Spillway Depr, Ei. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. 363.44 363.93 364.31 EQUATIONS: Qtot = Qa_tot + Qb + Q^yp Clear curb Area = 3 x [ ( 2 x 1/2 x 2,5" x 1,5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3") = 9' for 3 openings h ^ height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El. = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE A.C. DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 2.33 cfs Channel Height = 1.0 ft Channel Top Width = 3,0 ft Channel Slope = 3,8 % Normal Depth = 0.46 ft Normal Velocity = 6.39 fps Normal Top Width = 1.48 ft Velocity Head = 0.63 ft Freeboard Needed = 0.12 ft Freeboard Provided = 0.54 ft CAPACITY CHECK OF UPSTREAM SPILLWAY A.C. DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 1,53 cfs Channel Height = 0.5 ft Channel Top Width = 2.0 ft Channel Slope = 3,8 % Normal Depth = 0.34 ft Normal Velocity = 5.81 fps Normal Top Width = 1.45 ft Velocity Head = 0.52 ft Freeboard Needed = 0.085 ft Freeboard Provided = 0.16 ft Project: Side Ditch from 183+25 to 185+10 LT (16:22:15on 04/25/01) Project: Spillway A.C. Ditch from 183+25 to 184+10.95 (16:24:15 on 04/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 2.33 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.65 ft normal depth 0.46 ft -> flow is supercritical (Yc > Yn) critical velocity 3.32 ffsec critical top width 2.06 ft critical area 0.70 sq. ft critical slope 6.743002E-03 normal velocity 6.39 ft/sec normal top width 1,48 ft normal area 0.36 sq. ft DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 1.53 cfs bottom widtfi o.io ft side slope of trapezoidal section 2.000 slope of invert or channel bottom 0.038440 Manning coefficient 0.0150 RESULTS critical depth 0.49 ft normal depth 0.34 ft -> flow is supercritical (Yc > Yn) critical velocity 2,88 ft/sec critical top width 2.06 ft critical area 0.53 sq. ft critical slope 5.939228E-03 normal velocity 5.81 ft/sec normal top width 1.45 ft normal area 0.26 sq, ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B15 ULTIMATE: PG= 2.5 in. Minimum Tc = 5 min. Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft ;i82+43.64 55.5' RT 361,65 Type B-1 on grade 0,90 0.95 585 20.6 5,00 6.59 5.62 2.5 0.34 3,9 0.33 15 CONCLUSION: Required L (=15') will intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 162+43.64 55.5' RT 361.65 Type B-1 on grade 0.45 1.0 545 20,4 5.00 6.59 2.99 2.5 0.28 3,8 0.33 9 CONCLUSION: Required L (=9') will intercept 100% of the 50-year interim Q, however, ultimate condition dictates a L = 15' EQUATIONS: Tc = [(11.9xL^)/H]^^^ l = 7.44xPaXTc"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 'Local Depression" for curb inlets Required L = 0 / ( 0.7 x ( a + y )' ^) = 30' maximum for Type B-1 inlet Location FL El, Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 182+43.64 - ' 55.5' RT 360.98 V-notch in back of inlet 0.42 0.9 465 16,0 5.00 6.59 2.46 CONCLUSION: opening into the back of the B-1 inlet is designed to handle the 100-year storm. SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B15 Pe- 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C Tc 1 Q Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 182+43.64 55.5' RT 361.65 Type B-1 on grade 0,90 0.95 5.00 7.64 6.52 0.33 6.85 2.5 0,36 4-0 0.33 15 CONCLUSION: Inlet (L=15') designed for 50-year storm will intercept 6.02 cfs of the total 0. Qi cfs cfs 6.02 0.83 INTERIM: Location FL El. Description Area C Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 182+43.64 55.5'RT ' 361.65 Type B-1 on grade 0.45 1,0 5,00 7.64 3.46 0.00 3,46 2.5 0.29 3.9 0.33 15 CONCLUSION: Inlet (L=15') designed for 50-year ultimate storm condition and will intercept 100% of the total interim Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 l = 7.44xP6xTc Qi Qbvpass CONCLUSION: Inlet (L=15') designed for 50-year ultimate storm condition and will intercept 100% of the total interim Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 l = 7.44xP6xTc cfs cfs CONCLUSION: Inlet (L=15') designed for 50-year ultimate storm condition and will intercept 100% of the total interim Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 l = 7.44xP6xTc 5.18 0.00 Q = Cxl xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Qi= 0.7xL(a + y)'^ Location FL El. Description Area C Tc 1 Q ft ac min in/hr cfs 182+43:64 • 55.5' RT * 360.98 V-notch in back of inlet 0.42 0.9 5.00 7.64 2.85 CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 2,85 cfs Channel Height = i.o ft Channel Top Width = 3.0 ft Channel Slope = 2.5 % Normal Depth = 0.54 ft Norma! Depth in radius= 0.56 ft Normal Velocity = 5.71 fps Normal Top Width = 1.73 ft Velocity Head = 0.51 ft Freeboard Needed = 0.14 ft Freeboard Provided = 0.46 ft NOTE: Depth in radius based on SCS method described in Section 866 of the HDM (4th edt. Project: Side Ditch from 182+43.64 to 186+92.00 RT (18:12:27 on 04/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Gritical Depth INPUTS trapezoidal section flow rate 2.85 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.024920 Manning coefficient 0.0160 RESULTS critical depth 0.71 ft normal depth 0.54 ft -> flow is supercritical {Yc > Yn) critical velocity 3.45 ft/sec critical top width 2.23 ft critical area 0.83 sq. ft critical slope 6.569555E-03 normal velocity 5.71 ft/sec normal top width 1.73 ft normal area 0.50 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B16 Pe= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 179+40.44 6.75' LT": 357.35 Type B on grade 0,49 1.0 463 9.9 5.00 6.59 3.23 1.7 0,30 3.0 0 28 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.6' of slotted CSP drain to intercept 100% of the 50-year Q- INTERIM: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 179+40.44 • 6.75'LT'' 357,35 Type B on grade 0.31 1.0 445 9.7 5.00 6.59 2.07 1.7 0,27 2.8 0 21 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.6' of slotted CSP drain to intercept 100% of the 50-year 0, EQUATIONS: Tc = [ ( 11.9 x L^) / H ] I = 7.44XPBXTC"^ Q = Cx I X A y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = 0 / ( 0,7 x ( a + y )' ^) = 30' maximum for Type B-1 inlet SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B16 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 179+40.44, 6.75'LT 357.35 Type B on grade 0.49 1.0 5.00 7,64 3.74 0.36 4.10 1.7 0,33 3,2 0 31 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295,6' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: Qi Qbvpass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295,6' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: cfs cfs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295,6' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: 4.10 0,00 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295,6' of slotted CSP drain to intercept 100% of the 100-year Q. INTERIM: Location FL El. Description Area c Tc 1 Q QBVO Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 179+40.44 6.75' it' 357.35 Type B on grade 0.31 1.0 5.00 7,64 2.40 0.00 2.40 1.7 0.28 2.9 0 23 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.6' of slotted CSP drain to intercept 100% of the 100-year Q. Qi QbvDaas CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.6' of slotted CSP drain to intercept 100% of the 100-year Q. cfs cfs EQUATIONS: Tc = [(11.9xL^)/H]^^ 2.40 0.00 l=7.44xP6xTc""^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = 0 / ( 0.7 x ( a + y )^ ^) = 30' maximum for Type B-1 inlet CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN- UftK &P&E>S-5 DAR Open Channel Fiow Analysis & Design (See attached sheet for original output) Flow Rate = Pipe Diameter = Slope = 4.10 1.5 1.7 cfs ft % Norma! Depth = 0.79 ft Normal Velocity = 4.34 fps Normal Top Width = 1.5 ft Velocity Head = 0.29 ft Freeboard Needed = 0.20 ft Freeboard Provided = 0,71 ft NOTE: Ultimate condition analyzed only since it is the larger of the 2 flows. Project: Slotted CSP Drain from 179+45.14 to 182+39.60 Link: SDB15.5 (18:52:18 on 04/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 4.10 cfs pipe dieuneter 1.50 ft slope of invert or channel bottom 0.017350 Manning coefficient 0.0240 RESULTS critical depth 0.78 ft normal depth 0.7 9 ft -> flow is subcritical (Yn > Yc) critical velocity 4.45 ft/sec critical top width 1.50 ft critical area 0.92 sq. ft critical slope 1.856649E-02 normal velocity 4.34 ft/sec normal top width 1.50 ft normal area 0.95 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line B Node: N B17 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 179-K69.42 55.5' RT 356.35 Type B-1 on grade 0.47 0.95 300 7.6 5.00 6.59 2.96 1.7 0.30 3.0 0.33 8 CONCLUSION: Inlet (L= 11') is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year 0. INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft .179+69.42 - 55.5* RT- ' 356.35 Type B-1 on grade 0.42 0.95 300 7.6 5.00 6.59 2.60 1.7 0.28 2.9 0.33 8 CONCLUSION: Req'd L (=8') will intercept 100% of the 50-year interim 0, however, ultimate condition for the 100-year storm dictates L=11' EQUATIONS: Tc = [ ( 11.9 x L') / H ]^'' I = 7.44 X Ps x Tc Q = C x 1 x A y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual Required L = Q/{ 0.7 x ( a + y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line B Node: N B17 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area c Tc 1 Q Qbvo Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 179+69.42 55.5' RT 356.35 Type B-1 on grade 0.47 0,95 5,00 7.64 3.44 0,83 4.27 1.7 0.33 3.2 0,33 11 CONCLUSION: Inlet (L=11') designed to accommodate bypass during the 100-year storm and since Qi > Qtot, inlet will intercept 100% of the total Q. cfs cfs CONCLUSION: Inlet (L=11') designed to accommodate bypass during the 100-year storm and since Qi > Qtot, inlet will intercept 100% of the total Q. 4.27 0,00 INTERIM: Location FL El. Description Area C Tc 1 0 Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 179+69.42 55.5'RT 356.35 Type B-1 on grade 0.42 0.95 5,00 7.64 3,02 0,00 3.02 1,7 0,30 3.0 0.33 11 CONCLUSION: Inlet (L=11') designed to accommodate bypass during the 100-year storm and since Qi > Qtot. inlet will intercept 100% of the total interim Q. Qi CONCLUSION: Inlet (L=11') designed to accommodate bypass during the 100-year storm and since Qi > Qtot. inlet will intercept 100% of the total interim Q. cfs cfs EQUATIONS: Tc = [(11.9xL^)/H]^^^ 3.85 0,00 l = 7,44xp6XTc"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets Oi= 0.7xL(a + y)'^ 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE B and related laterals ID Descrip Shape Matl Length N S Dia 0 ft % ft cfs SDB1 24" RCP, Cone 40-00 0.012 . ...2.00 2.00-~ 0.00' • SDB2 24" RCP Circ Cone 131,65 0.012 1.51 2.00 0,00 SDB3 Cone 13.60 ' 0.012 15.00 . 1.50'>T. 5.64\- SDB4 18" RCP Circ Cone 38.70 0.012 4.00 1.50 12.87 SDB6 Plastic 100.60 . 0.024^ \ 34.88" SDB8 30" RCP Circ Cone 147.35 0.012 2.13 2,50' 18.49 SDB9 Cone 107.00„ 0.012- ' 4.27 • -. ^00,^^-f 1^63'- SDBIO 18- RCP Circ Cone 90,25 0.012 3.70 1.50 8.46 SDBil^ - 1^1RCP%^ .*>pirc Cone 44.80 . 0.012. _ 10.54 1.50 - 1 4.17g SDBI2' 30" RCP Circ Cone 300.00 0.012 2.14 2.50 31.03 . SDB12.5 Circ„ ' Cone 91.50 o.o1^v 4.80>-, ^|,3.85"IV^ SDB13 18" RCP Circ Cone 41.75 0.012 ^ 4.80 1.50 ~ 3.85 SDBU-; Cone 12.25 0.012 • y i2.oof~-^-,^ • 1-501?: V?;6.317^'' SDB15 36" RCP Circ Cone 245.40 0.012 2.14 3.00 41,05 SDB16 :^Cim -Cone 64.65 0.0125--; 1.50V ;^ i.5dt?xf ,^.2.40>\ ' SDBI7" 36" RCp" Circ Cone 21.33 ' 0.012 1.73~ 3,60 41.05 SDB17.5"; COTIC 18.06* 0.012 , 5A2\K~ SDB18 36" RCP Circ Cone 27,67 0.012 ' 1.73 3.06 45.42 SDB19 36" RCP^' Cone 226.20' 0.012 - 0.60 3.001^ \' 45.42 -' ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft .|%;,SDBt ^. 0.00 . 0.00 34.66 0.00_- SDB2 0.00 0.00~' 0.00 0,00 30.12 ' 0.00 ;^SDB3-. 3r.*-l7-14-0.92 4.99 '-44.07i^; .'j\0.39^'. SDB4 ' 0.81 13.28 1.35 7.69 22.76 ^0.43~ 0.86 - 4.77 33.60;;" -0.35, SDB8 oVi""^ 11.37 1.46 6.23 64.85 0.62 iillDB9/--1.28 5.96 ' 50.64/V, " •: 0.61V- SDBIO 0.65 11.58 1.13 5.94 21.89~ 0.55 •r^^b8ii:'f rfi3:85 0.78 4.47- ' ' ' 36;95t^ •HO.31;.-' SDB12 1.22 13.08 1.90 7.76 65.00 ' ' 0'89 lIspBias i-^0.23 0.7^ 4.36 24.93,:, ,. O13OT:-; SDB13" 0.40 10.23 0,75 4.36 24.93 0.18 ;>3'gpBi4v, :'M^/^'3i ;p16.35 0.97 5.21 39.42<, \ 0.42"' sbB15 1.30 14.01' 2.09 7.82 105.70 0.37 SDB16 ' -/:m^/k.i Vi f 91' 0.59 3.75 13.94 .0.22 ' SDB17 1.38 12.96 2.09 7.82 95.04 1.26 r ;sDBi7.5. •;^0.3t]f; 20.40 0.90 4.91 57.31 . 0.23 SDB18 ~T.46" " 13.27 2,20 8.19 95,04 0.31 >SDB19 .'2.05 8.85 2.20 . 8.19 55.97 0.12 - 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE B and related laterals ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDBl NB1 NB2 0.00 0.00 , -- r' - .- SDB2 N 82 N B3 0.00 0.00 ---- :SDB3 NB4 NB3 1.41 0.43 366.40 . 363.38 S^T366.68-. . 366;i6.I^ SDB4 N B5 N B3 1.50 0.89 366,39 363.95 " 367.31 366.10 , SDB6 NB7 NB5 1.28 0.39 401.08 365.40 ," :.:-40i.37. 36a.30;,r SDB8 N B3 N B9 2,08 0.93 364,92 360.63 365.52 362.57 SDB9 NB10 NB9 1.89 0.70 366.33 360.57 "366.884 V 363.20 ' SDBIO N B11 N BIO 1.50 0.66 370.03 365.43 370.33 367.42 SDB11 NB12 : NB10 1.16 0.35 370.49 364.96>/ ,370.73 • ^ i367.75Vi' SDBl 2 N B9 N B13 2,50 1.22 362,33 354.35 " 363.27 356.99 i;_SDB12.5 NB12.5 NB14 1.11 0.40 360.61 355.51-;:,-; 360.84<;: 357.13-.; ~ SDBl 3 N B14 N B13 0.93 0,41 355.84 353.32 356.13 354,81 SDB14 NB15 NB13 1.50 " 0.50 356.01 353.52^^-"V35e.3t-i y 355.87'f SDB15 N B13 N 816,5 2.46 1,32 355,26 348.87' 356.21 351.82 C?;SDB16 NB16 NB17 0.83 0.42 354.35 352.97f-f'354^ 353.51-^. SDBl 7 N B16.5 N B17.5 3.00 1,67 350,56 348.52 " 351.51 350.12 : ,SpB17.5 NB17 NB17.5 1.12 0.36 : 353.31 347.96^f, 353.69',; 352.31 SDBl 8 N B17,5 N B18 2.51 1.74 349.36 348.11' 35040 349.89 ::SDB19 NB18 NB19 : ' '2.32 2.05 348.65 • 347.05'^; S 349.09 348.26 ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps i SDBl . 374.56 ,---:*' " -366.29 365.49 •*4;.i,o.oq._v' SD82 374.56 371,40 --365,16 363.17" ""o.oo' 0.00 ^;SDB3 370.87 371.40 4.47:" 8.02 V 364.99 362.9^ ft".13.3i^ 'SD84 370.87 371,40 4.48 7.45 364,61 363.06 7.28 11.74 • ,'"SDB6 405.80 370.87 ^ 4.72-" 5.47 399.80 -365.01^^ .f3;65^^ 'SDB8 371.40 372.07 6.48 11,44 362,84 359.70 4.24 11.16 . : SDB9 ; 376.27 372.07 • 9.94 "11.50 364.44 359.87j; -/t '-12.99^ SDBIO 374,61 376,27 4.58 10.84 368,11 364.77 4.79 11.31 ;/SDB11 376.33 376.27 , 5;84-11.31 ' 369.33 364.61-^ '^•-13.3'^^; SDB12 372,07 362,18 9.74 7.83 359,54 353.13 6.32 ' 13.02 - SDB12.5 363.18 362.99 ~^2;57 -,7.48 359.50 355.115>| ^4/.2:75'-: . >-io.i7;^^. SDB13 362,99 362.18 7.15 8.86 354.91 352.91* 3.35 9.75 SD614 361.65 362.18 . 5.64 8.66 354.49 353.02^ •p'^ 3.571". - 12.27^- SDB15 362.18 357.25 6.92 8.38 352.80 347.55"" 6.62 13.77 - SDB16 357.35 35635 3.00 3.38 353.52 352.55/1 fii .^40*; . 75.86^ SD817 357.25 -6,69 -347,22 346.85 5.81 10.12 vSDB17.5 356.35 -3.04 -352.19 347.60'7^ 3.82* 16.66, f SDB18 -356,95 -8,84 346.85 346-37 7,20 10.69 ' " SDB19 356.95 348.00 8.30 0.95 346.33 345 00 7.75 8.82> 1 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. FL Elev's for slotted drain connections are located approximately 3,5' below "Inlet FL", * = represents the true invert-to-invert length, not the length shown on the contract plans that accounts for additional skew & connection length. 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE B and related laterals ULTIMATE vs. INTERIM Computations: 1,) Ultimate scenario considers culvert SDB6 is removed or abandoned. 1,) Ultimate scenario considers culvert SDBl is connected to future development and receives flow as shown. ID Descrip Shape MatI Length N S Dia Q ft % ft cfs SDBl 24" RCP Circ Cone 40.00 ' 0.012 2.00 2.00' 34.70., SD82 24" RCP Circ Cone 131,65 6.012 1,51 2.00 34.70 rSDB3 18" RCP Circ Cone 13.60.: • ^0.012-'-15.00 1.50 • ".5:64'V ' SD84 18" RCP Circ Cone 38.70 0.012 " 4.00 1.50 9.*16 ' SDB8 30" RCP -Circ Cone " 147.3^'; <V0,012\' 2.13 ^ "2.50..\ ' r'^grso'.-*' SDB9 24" RCP Circ Cone 107.00 0.012 4.27 2.00 11.28 SDB10 ' 18" RCP Circ - Cone 90.25 \ *^^0.^)12,.'{. 3.70 1.50-,;T7.52.^*;- SD811 18" RCP Circ Cone 44.80 0.012 10.54 1,50 3.76 SDB12 30' RCP Circ Cone 300,00t* „;;o.>i2r; 2.14 , : 2.50. :\ ••^6o:7d^:-^ SDB12,5 18" RCP Circ Cone 91,50 o;oi2' 4.80 1.50 3^35 SDBl 3 18" RCP Circ Cone 41.75^-4.80 " 1.50 '^'j£35-^;' SD814 18" RCP Circ Cone 12.25 ' 6.012 12.00 1.50 6.02 SDB15 : 36" RCP. Circ Cone 245.40f^ /eP.012«e . 2.14 " 3.00. 70.15,'- . SD816 18" RCP Circ Cone 64.65 " 0.012 1.50 1.50 4.10' SDB17 36" RCP "Circ Cone -?.ro^oi>:f ' \ 1.73 ^ 3.00.V. SDB17.5 18" RCP Circ Cone 18.06*"' broi2"' 25.36 1.50' SDB18 36" RCP Circ Ccmc 27.67^ /f;p.oi2 . 1.73'^-' ; 3.00 .'^V; '::78.52V^" SD819 36" RCP Circ Cone 226.20' 0.012 0.60 " 3,00 78.52 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft , SDBl 1.64 12.57 1.92 11.20-3^.66. 1.9a SDB2 2.00 11.33 1,92 11.20 30.12 2.50 SDB3 ; 0.36 . 17.14' 0.92 4.99.'i;^ few.-. SDB4 0.66 12,18 1,17 6,19 22.76 0.42 : : SDB8 1.64 14.54 2.29 •^"64.85^? ' 0.32 V SDB9 0,64 12.97 1.21 5,70 "50.64 0.56 SDBIO 0.61 11.23 1.06 5.62:-|/ 0.49 , SDB11 0.32 13.44 0.74 4.32 36.95 0.29 SDB12 1.92 15.06 2.40 12.561' f-;65.oo;.'', 2.72 SDB12-5 0.37 9.84 0.70 4.16 ' 24.93 0.27 , SDB13 0.37 9.84 0.70 4.16 > 24.93 : 0.04 SDB14 0.40 16,13 0,95 5.12 39.42 0.19 SDBl 5 . 1.79 15.97 2.66 10.59 , ' 105.70 0.00 SDB16 0.56 6.84 0-78 4-45 13,94 0.31 SDBl 7 1.91 14.74 2.66 10.59 „ ^ \ 95.04 2.02 SDB17,5 0,39 23.15 1.12 5.91 57.31 0.32 SDB18 2.08 15.02 , 2.76 11.55 " , 95.04 . 0.61 SDB19 3.00 11.40 2,76 11,55 55.97 0.22 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE B and related laterals iD Upstrm Dwnstrm Act) Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm UpstmT Dwnstrm Upstmi Dwnstrm ft ft tt ft ft ft SDBl NB1 N 82 2.00 2.00 374.82 372.12 376.72 , ,1*374.02^. 368.54 SDB2 N 82 N 83 2.00 2.00 372,12 366,96 374,02 ,1*374.02^. 368.54 SDB3 N B4 N 83 1.50 1.50 366,52 366.96 366.70 . 368.54^ SDB4 N B5 N 83 1,50 1,50 367.49 366-96 367-90 368.54 SDB8 N B3 N 89 2.50 2.50 366.96 364.84 368.54 " 367.2^1 SDB9 N 810 N 89 1,76 0,65 366.20 360.52 366.71 363,01 SDBIO N B11 N BIO 1.50 0.62 369.84 365.39 370.15 • •367<^2^^ SDB11 N 812 N BIO 1,09 0.33 370,42 364,94 370.65 367.58 SDB12 NB9 NB13 2.50 2.50 364.84 356.38 367.22 SDB12,5 N B12-5 N 814 1,02 0,37 360.52 355.48 360.74 356,98 SDBl 3 N B14 N B13 1.34 1.50 356.25 356.38 356.32 ,^.357.g^ SDB14 N B15 N B13 1,50 1.50 356,08 356.38 356,27 357.91 SD815 NB13 N B16.5 3.00 3.00 356.38 353.91 357.91 ' 355^^^ SDB16 N 816 NB17 1.15 0.56 354,67 353,11 354,91 353.83 SDB17 N 816.5 NB17.5 3.00 3.00 353.91 351.70 355.44 -!,3S3'6^^ SDB17,5 NB17 N 817,5 1,44 0,47 353,63 348.07 354.17 352.96 SDBl 8 N B17.5 NB18 3.00 3.00 351.70 350.77 353.62 i 352^3M SDBl 9 N B18 N 819 3,00 2,76 350,77 347,76 352,69 349,83 ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDB1 -374.56 --366.29 365.49 11.05 11.05 SDB2 374.56 371,40 --365.16 363.17 11.05 11.05 SDB3 370.87 371.40 4.35 4.44 364.99 362.95 3.19 ''V'3-19JP^ SDB4 370,87 371,40 3-38 4,44 364.61 363,06 5,18 5;*i8 SDB8 371.40 372.07 4.44 7.23 362.84 359.70 10.08 : 12;63 SDB9 376-27 372-07 10.07 11.55 364,44 359,87 3.85 12;63 SDBIO 375.74 376.27 5.90 10.88 368.11 364.77 4 26 : ^lOi^ SDB11 377,46 376,27 7,04 11,33 369,33 364,61 2,73 12.98 SDB12 372.07 362.18 7.23 5.80 359.54 353.13 12.38^ •: 12.3^ SDB12,5 364,41 362,99 3,89 7,51 359.50 355,11 2.63' 9.78 SDBl 3 362.99 362.18 6.74 5.80 354.91 352.91 2.01 • 1.90^||^ SDB14 361.65 362,18 5,57 5,80 354,49 353.02 3,41 3,41 SDB15 362.18 357.25 5.80 3.34 352.80 347.55 992 9.92^ SDB16 357,35 356,35 2.68 3.24 353,52 352,55 2,82 6.76 SDB17 357.25 -3.34 -347.22 346.85 9.92 9-92^ SDB17,5 356,35 -2.72 -352.19 347.60 4-80 17.69 SDBl 8 -356.95 6.18 346.85 346.37 11.11 11.55 S0819 356,95 348,00 1 6,18 0,24 346,33 345,00 11,11 11.55 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. FL Elev's for slotted dram connections are located approximately 3,5' below "Inlet FL". * ^ represents the tme invert-to-invert length, not the length shown on the contract plans that accounts for additional skew & connection length. INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Une 0 Node: N 01 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. tt Description Area C L H Tc 1 Q S y V a Req'd L FL El. tt ac ft ft min in/hr cfs % ft fps ft ft ,199-fr66.69 55.5' RT 426.15 Type 8-1 on grade 1,25 0.95 875 33.9 5.03 6,56 7.80 3.8 0.35 4,9 0.33 20 CONCLUSION: Required L (=20') will intercept 100% of the 50-year Q. INTERIM: Location FL El. ft Description Area C L H Tc 1 0 S y V a Req'd L FL El. ft ac ft ft min in/hr cfs % ft fps ft ft 199+66.69 T 41-'RT 426,65 AC spillway on grade 0.72 1.0 1050 39.4 5.86 5.94 4,28 3,8 0,29 4,5 0.5 9 CONCLUSION: AC spillway has a Required L = 9', however, the min. L-value is L = 10'. therefore the AC spillway will intercept 100% of Qa. EQUATIONS.To = [ ( 11,9 X L^) / H f^^ I ^ 7,44 X PB X Tc"^^ 0 = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V ^ velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = 0 / ( 0,7 x ( a -n y )^ ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El, Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 199+66.69 55.5' RT 425,03 Type B Int, (mod) - sump 1.12 0.9 980 38,0 5,49 6.20 6.24 10.52 5,81 9.00 9.0 0.51 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr, El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. 6.1 425,54 425,78 426.15 EOUATIONS. Otot = Oa + Qb Clear curb Area = 3 x{ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] - 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El, + d Top ot Opening = Flowline El, + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N 01 p6= 2.9 in. Minimum Tc - 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qbvo Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 199+66.69 55.5'RT: 426,15 Type 8-1 on grade 1.25 0.95 5,03 7,61 9.04 0.00 9.04 3.8 0.37 5.0 0.33 20 CONCLUSION: Iniet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. Qi Qbvpass CONCLUSION: Iniet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. cfs cfs CONCLUSION: Iniet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. 8,20 0.84 INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 199+66.69: 41" RT • 426,65 AC spillway on grade 0,72 1.0 5,86 6,90 4,97 0.00 4.97 3.8 0.31 4.8 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. Qi Qbvpass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. cfs cfs EQUATIONS: Tc = [(11.9xL^)/H]^^^ 5.10 0,00 l = 7.44xp6xTc Q = C x I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL(a + y)'^ Location FL El, Description Area C Tc 1 Qb Qbvp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 199+66.69 55.5* RT 425,03 Type 8 Int, (mod) - sump 1.12 0.9 5.49 7.20 7.23 0.00 12.20 5.81 9.00 9.0 0.58 7.0 CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice, Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. Wtr Surf. El, Top of Opening Spillway Depr. El, CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice, Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice, Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type 8 Inlet Interim (mod) intercepts 100% of Q. 425,61 425.78 426.15 EQUATIONS: Qtot = Oa Jot + Qb + O^yp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6-5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El, for AC Spillway • 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 7.23 cfs Channel Height = 1.0 ft Channel Top Width - 3.0 ft Channel Slope = 3,8 % Normal Depth = 0.72 ft Normal Velocity = 8,47 fps Norma! Top Width = 2.27 ft Velocity Head = 1,11 ft Freeboard Needed = 0.18 ft Freeboard Provided = 0.28 ft Project: Side Ditch from 199+72.69 to 201+33.80 RT (14 :45:53 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 7.23 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 1.04 ft normal depth 0.72 ft -> flow is supercritical (Yc > Yn) critical velocity 4.16 ft/sec critical top width 3.23 ft critical area 1.74 sq. ft critical slope 5.820136E-03 normal velocity 8.47 ft/sec normal top width 2.27 ft normal area 0.85 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node: N C1.5 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 199+66.69 0.0'LT 426,74 CSP Type B in sump 0.40 0.9 970 36.9 5.48 6.21 2.24 EQUATIONS: Tc = [( 11,9xL^)/H]^®^ l=7.44xp6xTc"^^ Q = C X I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C1.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 199+66.69 0.0' LT 426,74 CSP Type B in sump 0.40 0.9 970 36.9 5.48 7,20 2.60 EQUATIONS: Tc-[{11.9xL^)/Hp^ |^7.44xP6xTc'^^ 0 = Cxlx A DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap. 2.60 3 0.1 0,03844 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0,5 0.09 3 6 0.14 Median Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.37 5.87 2.31 CSP Inlet: Opening Height Wtr Surf. Elev, in in 8,0 4.4 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Median Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev, in the Ditch < Opening Height of the CSP Inlet Type B, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope ^ flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Median Ditch from 199+66.69 to 209+33.80 (16:24:29 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 2.60 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.53 ft normal depth 0.37 ft -> flow is supercritical (Yc > Yn) critical velocity 2.95 ft/sec critical top width 3.25 ft critical area 0.88 sq. ft critical slope 6.172110E-03 normal velocity 5.87 ft/sec normal top width 2.31 ft normal area 0.44 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Une C Node: N C3 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 199+66.69 55.5'LT 426.15 Type B-1 on grade 1.58 0.95 1085 39.9 6,06 5.82 8.75 3.8 0.36 5.1 0.33 22 CONCLUSION: Required L (=22') will intercept 100% of the 50-year 0, INTERIM: Location FL El. ft Description Area C L H Tc 1 Q S y V a Req'd L FL El. ft ac ft ft min in/hr cfs % ft fps ft ft 199+66.69 41'LT - 426.65 AC spillway on grade 0.70 1.0 1015 39.4 5.64 6.10 4.27 3.8 0,29 4.4 0.5 9 CONCLUSION: AC Spillway has a Required L = 9', however, the min, L-value is L = 10', therefore the AC spillway will intercept 100% of Qa EQUATIONS: Tc = [ ( 11.9 x L^) / H ] ^^"^ I = 7.44 X Pe X Tc Q = Cx I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft ,199+66.69 55.5'LT' 425.03 Type B Int. (mod) • sump 0.70 0.9 960 38,0 5.36 6.30 3.94 8.21 5.81 9,00 9.0 0,46 CONCLUSION: d rs conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of 0, d Wtr Surf. El. Top of opening Spillway Depr. El. CONCLUSION: d rs conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of 0, in ft ft ft CONCLUSION: d rs conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of 0, 5.5 425.49 425.78 426.15 EQUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x I ( 2 x 1 /2 x 2.5" x 1.5') + ( 6,5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C3 P6= 2.9 in. IVlinimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs Cfs cfs % ft fps ft ft 199+66.69 55.5' LT' 426.15 Type B-1 on grade 1,58 0.95 6,06 6.75 10,15 0.00 10.15 3.8 0.39 5,2 0.33 22 CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,41 cfs of the total Q. Qi Qbvoass CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,41 cfs of the total Q. cfs cfs CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,41 cfs of the total Q. 9,41 0.74 INTERIM: Location FL El. Description Area C Tc 1 Oa QaJot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 199+66.69 4rLT' -• 426.65 AC spillway on grade 0.70 1.0 5,64 7.07 4.95 0.00 4.95 3,8 0.31 4,5 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. cfs cfs EQUATIONS Tc = [ ( 11,9 X L^) / H } 5.06 0.00 I = 7.44 X Ps x Tc Q=CxIxA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)^^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in ^^1^6:6^ • '-rSs's'Lt 425.03 Type B Int, (mod) - sump 0.70 0,9 5.36 7,31 4,57 0.00 9.52 5.81 9.00 9.0 0.50 6.0 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) intercepts 100% of Q. Wtr Surf. EI. Top of Opening Spillway Depr. El-CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) intercepts 100% of Q. 425.53 425.78 426,15 EQUATIONS: Qtot = QajOt + Qb O^yp Clear curb Area = 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6,5" x 3') ] = 5.813 f^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El. + d Top of Opening - Flowline El. + h Spillway Depression El. Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 4.57 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 3.8 % Normal Depth = 0,60 ft Normal Velocity = 7.55 fps Normal Top Width = 1,91 ft Velocity Head = 0.89 ft Freeboard Needed = 0.15 ft Freeboard Provided = 0,40 ft Project: Side Ditch from 199+72.69 to 20H-33.80 LT (11:51:38 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00 Normal/Critical Depth INPUTS trapezoidal section flow rate 4.57 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.86 ft normal depth 0.60 ft -> flow is supercritical (Yc > Yn) critical velocity 3.80 ft/sec critical top width 2 . 69 ft critical area 1.20 sq. ft critical slope 6.1789D8E-03 normal velocity 7.55 ft/sec normal top width 1.91 ft normal area 0.60 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node; N C7 Pe- 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL Ei. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 193+48.61 55.5' RT 402.39 Type B-1 on grade 1,23 0,95 625 31,6 5.00 6.59 7.68 3.8 0.35 4,9 0.33 20 CONCLUSION: Required L (=20') will intercept 100% of the 50-year 0. INTERIM: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 193+48.61 41'RT 402.89 AC spillway on grade 0.46 1.0 625 29.1 5.00 6,59 3.02 3.8 0,27 4,2 0.5 6 CONCLUSION: AC spillway has a Required L = 6', however, the min, L-value is L = 10', therefore the AC spillway will intercept 100% of Oa. EQUATIONS: Tc = [ ( 11,9 x L^) / H ] I = 7.44 X Ps X Tc" Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs Xf ft in ft 193+48.61 = 55.5^ RT 401,27 Type B Int. (mod) - sump 0.65 0.9 625 28.7 5.00 6,59 3,85 6.87 5,81 9.00 9.0 0,41 CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, 4,9 401,68 402,02 402.39 EOUATIONS: Qtot - Qa -n Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2,5" x 1.5') + ( 6,5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El. + d Top of Opening = Flowline El, + h Spillway Depression El. ^ Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C7 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C Tc 1 0 Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 193+48.61 55.5'RT^' 402.39 Type B-1 on grade 1.23 0.95 5.00 7.64 8.91 0.84 9.76 3.8 0.37 5.2 0.33 20 CONCLUSION: Inlet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. Qi Qbvoass CONCLUSION: Inlet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. cfs cfs CONCLUSION: Inlet (L=20') designed for 50-year storm will intercept 8.20 cfs of the total Q. 8.20 1.56 INTERIM: Location FL El. Description Area C Tc t Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 193+48.61' 41'RT 402.89 AC spillway on grade 0.46 1.0 5.00 7.64 3.50 0.00 3.50 3.8 0.28 4.3 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11 -9 x L^) / H 1^^^ Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11 -9 x L^) / H 1^^^ cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11 -9 x L^) / H 1^^^ 4.81 0.00 I = 7.44 x Ps X Tc Q = Cx IxA y = depth of How in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)'^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 193+48.61' 55.5'RTi 401,27 Type B Int. (mod) - sump 0.65 0.9 5,00 7.64 4,46 0,00 7.96 5.81 9,00 9.0 0.45 5.4 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. 401.72 402,02 402.39 EQUATIONS: Qtot = Qa_tot + Qb + Q^yp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') ^ 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El, -i- h Spillway Depression E!. ^ Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 4,46 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 3,8 % Normal Depth = 0.60 ft Normal Velocity = 7.51 fps Normal Top Width - 1,89 ft Velocity Head = 0.88 ft Freeboard Needed = 0.15 ft Freeboard Provided = 0.40 ft Project: Side Ditch from 193+54.610 to 199+60.69 RT (15:44:40 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Gritical Depth INPUTS trapezoidal section flow rate 4.46 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.85 ft normal depth 0.60 ft -> flow is supercritical (Yc > Yn) critical velocity 3.78 ft/sec critical top vjidth 2.56 ft critical area 1.18 sq. ft critical slope 6.198528E-03 normal velocity 7.51 ft/sec normal top width 1.89 ft normal area 0.59 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node: N C8 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FLEI. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 193+48.61 55.5'LT 402.39 Type B-1 on grade 1.58 0.95 650 47,6 5.00 6.59 11.98 3.8 0.41 5,5 0.33 27 CONCLUSION; Required L (=27') will intercept 100% of the 50-year Q (Note: Q increased due to the addition of a curb outlet upstream - See Contributing Flows below). INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft .19^8.61 41'LT 402,89 AC spillway on grade 0.45 1.0 600 29.3 5.00 6.59 2.96 3,8 0.26 4,2 0.5 6 CONCLUSION: AC spillway has a Required L = 6', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS Tc ^ [ (11.9 X L^) / H ] ^ U7.44xp6xTc"^ 0 = (CxlxA) + Qc where Qc exits into gufter via a Curb Outlet at Sta 196+90 y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q/ (0,7x(a + y = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El, Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Lengfti h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 193+48.61 55.5' LT 401.27 Type B Int. (mod) - sump 1.00 0.9 650 48.7 5.00 6.59 5.92 13.25 5,81 9.00 9.0 0.63 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev, < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev, < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev, < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) intercepts 100% of Q. 7.6 401.90 402,02 402.39 EQUATIONS: Qtot = Qa + Qb + Qc + Od Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') -i- ( 6.5" x 3') ] = 5.813 f^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH CONTRIBUTING FLOWS: Node ID FL El. Description Area C L H Tc 1 Qc Qd ft ac ft ft min in/hr cfs cfs N C8C801 440,61 downdrain 0,35 0.90 275 27.4 5.00 6.59 2.09 N C8C802 427.75 downdrain 0,38 0,90 385 32.3 5,00 6.59 2.28 SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF TERRACE DOWNDRAINS INLET ANALYSIS: 100 Year Storm - Part 1 Drainage System: Storm Drain Line C Node: N C8 P6= 2.9 in. Minimum Tc - 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 193+48.61 ^ 55.5'LT 402,39 Type B-1 on grade 1.58 0,95 5.00 7,64 13.90 0.74 14.63 3.8 0.43 5,6 0.33 27 CONCLUSION: Iniet (L^27') designed for 50-year storm will intercept 12.52 cfs of the total Q, (Note: 0 Increased due to the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2).), Qi Qbvpass CONCLUSION: Iniet (L^27') designed for 50-year storm will intercept 12.52 cfs of the total Q, (Note: 0 Increased due to the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2).), cfs cfs CONCLUSION: Iniet (L^27') designed for 50-year storm will intercept 12.52 cfs of the total Q, (Note: 0 Increased due to the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2).), 12,52 2.11 INTERIM: Location FLEI. Description Area C Tc 1 Qa QbVD QaJot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 193+48.61 402,89 AC spillway on grade 0.45 1.0 5.00 7.64 3.44 0.00 3,44 3.8 0.28 4.3 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. cfs cfs EQUATIONS: Tc = f( 11,9 x L^) / H 1^" 4.79 0.00 | = 7.44xP6xTc'^^ Q = (CxlxA)+Qc where Qc exits into gufter via a Curb Outlet at Sta 196+90 y - depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of How in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL(a + y)'^ Location FL El. Description Area C Tc 1 Ob Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 193+48.61 '55.5'LT • 401,27 Type B Int. (mod) - sump 1.00 0.9 5.00 7.64 6.86 0,00 15.37 5.81 9.00 9,0 0.75 9,0 CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as an orifice and intercepts 100% of 0, Wtr Surf, El. Top of Opening Spillway Depr. Ei. CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as an orifice and intercepts 100% of 0, ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as an orifice and intercepts 100% of 0, 402.02 402.02 402,39 EQUATIONS: Otot = Oa_tot + Qb + Q^^p -h Qc + Od Clear curb Area - 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] = 5.813 for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: Link - SDC8C800 DAR Open Channel Row Analysis & Design (See attached sheet for original output) Flow Rate = 9,29 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 3,8 % Normal Depth = 0,80 ft Normal Velocity = 9.01 fps Normal Top Width = 2.49 ft Velocity Head = 1,26 ft Freeboard Needed = 0,20 ft Freeboard Provided = 0,20 ft Project: Side Ditch from 193+54.61 to 199+60.69 LT Link: SDC8C800 (15:16:20 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Dept:h INPUTS trapezoidal section flow rate 9.29 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Meuming coefficient 0.0160 RESULTS critical depth 1.16 ft normal depth 0.80 ft -> flow is supercritical (Yc > Yn) critical velocity 4.38 ft/sec critical top width 3.57 ft critical area 2.12 sq. ft critical slope 5.632413E-03 normal velocity 9.01 £t/sec normal top width 2.49 ft normal area 1.03 sq. ft INLET ANALYSIS: 100 Year Storm - Part 2 Drainage System: Storm Drain Line C Node: N C8 P6= 2.9 in. Minimum Tc = 5 min. CONTRIBUTING FLOWS: Node ID FL El. Description Area C L H Tc 1 Qc Qd ft ac ft ft min in/hr cfs cfs N C8C801 440.61 downdrain 0.35 0,90 275 27,4 5,00 7.64 2.43 N CBC802 427.75 downdrain 0.38 0,90 385 29,3 5.00 7.64 2.64 EQUATION: Tc = [ ( 11,9 x L^) / H f^^ i = 7.44 X Pe X Tc"^^ 0 = C X I X A CAPACITY CHECK OF TERRACE DOWNDRAIN: Link SDC8C803 Geopak Hydraulics (See Technical Reference) Input: Output: Channel Flow Channel Channel Mannings Row Normal Normal Normal Section Rate Diameter Slope coeff. Type Depth Velocity Top Width cfs ft ft/ft ft fps ft Circ. 2,64 2 0.5000 0,016 Super-0.10 12.46 0.20 critical Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 2.4 0.03 2 1.00 0.90 downdrain CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace DownDrain (see details) adequately accommodates the 100-year storm, CAPACITY CHECK OF TERRACE DITCH UPSTREAM OF DOWNDRAIN: Link SDC8C804 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Output; Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ. 2,64 3 0.0400 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 0,6 0.08 3 1,00 0.68 D Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.32 6,45 1.86 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace Ditch Type D (SDRSD D-75) adequately accommodates the 100-year storm. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = { Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Links SDC8C801 and SDC8C802 are similar to Links SDC8C803 and SDC8C804 in channel geometries and slope with less discharge, therefore, no calculation is necessary. Project: Terrace Ditch Type D from 193+48.26 to 196+90 LT Link: SDC8C804 (17:12:08 on 04/12/01) DAR Open Channel Flovj Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.64 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0160 RESULTS critical depth 0.51 ft normal depth 0.32 ft -> flow is supercritical {Yc > Yn) critical velocity 3.36 ft/sec critical top width 2.25 ft critical area 0.79 sq. ft critical slope 6.228579E-03 normal velocity 6.45 ft/sec normal top width 1.86 ft normal area 0.41 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Une C Node: N CIO P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft ,190+39.06 55.5* LT ' 390.49 Type B-1 on grade 0,78 0.95 350 39.5 5.00 6.59 4.87 3.8 0.35 4.9 0.33 12 CONCLUSION: Inlet (L=20') is over-sized to accommodate bypass during the 100-year stomi, therefore will intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 190+39.06 '*4I*LT: 390.99 AC spillway on grade 0,22 1.0 300 18,0 5.00 6.59 1.48 3.8 0,22 3.9 0.5 3 CONCLUSION: AC spillway has a Required L = 3', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS Tc = [ (11.9 x L') / H 1 l = 7.44xP6xTc'^^ Q = C X I X A y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depressbn" for curb inlets & per plan details for AC spillway Required L = 0/{ 0.7 x ( a + y Y^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 389.37 Type B Int. (mod) - sump 0,50 0,9 350 40,6 5.00 6.59 2.98 4.45 5.81 9.00 9.0 0,31 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, 3,7 389,68 390.12 390.49 EQUATIONS. Qtot = Qa + Qb Clear curb Area - 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6,5" x 3') | = 5,813 ft^ for 3 openings Clear curb Length = { 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El, + d Top of Opening - Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C10 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft .190+39.06- 55.5'LT 390.49 Type B-1 on grade 0.78 0.95 5.00 7.64 5.65 2.11 7.76 3.8 0,35 5.2 0.33 20 CONCLUSION: Inlet (L=20') designed to accommodate bypass during the 100-year storm and since Qi = Q, inlet will intercept 100% of the total Q. Qi Qbvcass CONCLUSION: Inlet (L=20') designed to accommodate bypass during the 100-year storm and since Qi = Q, inlet will intercept 100% of the total Q. cfs cfs CONCLUSION: Inlet (L=20') designed to accommodate bypass during the 100-year storm and since Qi = Q, inlet will intercept 100% of the total Q. 7.76 0.00 INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 190-^39.06 '41'LT ' 390.99 AC spillway on grade 0.22 1.0 5,00 7.64 1.71 0.00 1.71 3.8 0.23 3.9 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = I ( 11,9 x L^) / H 1 Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = I ( 11,9 x L^) / H 1 cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = I ( 11,9 x L^) / H 1 4.37 0.00 l = 7,44xP6xTc"^= Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of How in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL(a + y)'^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in gl90+3£M)6;' ^-^5" SS^S'^tr^ 389.37 Type B Int. (mod) - sump 0,50 0.9 5.00 7,64 3.45 0.00 5.16 5.81 9,00 9.0 0,35 4.2 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. Wtr Surf. El. Top ot Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. 389.72 390.12 390.49 EQUATIONS: Qtot = Qa_tot + Qb + Q^yp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of ftow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysts & Design (See attached sheet for original output) Flow Rate - 3,45 cfs Channel Height = 1,0 ft Channel Top Width = 3.0 ft Channel Slope = 3,8 % Normal Depth = 0,54 ft Normal Velocity = 7.04 fps Normal Top Width - 1,72 ft Velocity Head = 0.77 ft Freeboard Needed = 0,135 ft Freeboard Provided = 0.46 ft Project: Side Ditch from 190+45.06 to 193+42.61 LT (11:55:56 on 04/14/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 3.45 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.77 ft normal depth 0.54 ft -> flow is supercritical (Yc > Yn) critical velocity 3.59 ft/sec critical top width 2.40 ft critical area 0.96 sq. ft critical slope 6.408835E-03 normal velocity 7.04 ft/sec normal top width 1.72 ft normal area 0.49 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node: N C11 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 190+3%|)6 415.22 CSP Type B in sump 3.61 0.60 975 64,2 9.46 4.37 9.45 CONCLUSION: CSP inlet is designed to accept 100% of 100-year Q, therefore, 100% of 50-year Q is also intercepted, EQUATIONS: Tc = [ ( 11,9 x L3 ) / H ].385 + 5 min for small natural watershed* l = 7,44xP6xTc-.645 Q = C X I x A where C is adjusted for composite areas ( graded slopes = 0.90, oftsite area = 0.55) INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C11 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 190+39.06 128.5'LT 415.22 CSP Type B in sump 3.61 0.60 975 64,2 9.46 5.07 10,96 EOUATIONS: Tc = [ (11.9 x L3 ) / H ].385 + 5 min for small natural watershed* 1 = 7.44 X P6 X TC-.645 Q = C X I X A where C is adjusted for composite areas ( graded slopes = 0.90, oftsite area = 0.55) DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ. 10.96 2 0.0300 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft 1.3 0.20 2 1,0 0,20 B Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0,81 9.20 1.96 CSP: Opening Height Wtr Surf, Elev. in in 8.0 9,7 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B (See SDRSD D-75) adequately accommodates the 10O-year storm. Since the Wtr Surf. Elev. in the Ditch > Opening Height of the CSP Inlet Type B, the inlet has been depressed 1' using a 2,5' radius concrete apron so that 100% of the 100-year storm is intercepted. Also, the inlet has been modified with 2 openings and a grate on top for additional consideration to clogging. EQUATIONS; Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Nomial Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth NOTE: Ultimate condition may eliminate this inlet or reduce it's watershed by as much as 90% Project: Brow Ditch Type B from 190+39.06 to 199+50.00 Link: SDCllCllOO (08:35:44 on 04/14/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 10.96 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.030000 Manning coefficient 0.0160 RESULTS critical depth 1.19 ft normal depth 0.81 ft -> flow is supercritical (Yc > Yn) critical velocity 5.64 ft/sec critical top width 1.96 ft critical area 1.94 sq. ft critical slope 8.139969E-03 normal velocity 9.20 ft/sec normal top width 1.9 6 ft normal area 1.19 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node; N C13 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 190+20.27 0.0' LT 390.53 CSP Type B in sump 0.39 0,9 945 36.6 5,34 6,31 2,22 EQUATIONS; Tc-[( 11,9xL-')/H] l-7,44xp5xTc"^^ 0 = C X I x A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C13 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev, Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 190+20.27 0.0'LT 390,53 CSP Type B in sump 0,39 0.9 945 36.6 5-34 7.32 2,57 EQUATIONS: Tc = [( 11.9xL^)/H]^^^ l = 7,44xP6xTc"^^ 0 = C X I X A DAR Open Channel Flow Analysis S Design (See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap-2,57 3 0.1 0.03844 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in i\ 0,5 0,09 3 6 0.13 Median Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0,37 5,86 2.30 CSP Inlet: Opening Height Wtr Surf, Elev, in in 8.0 4,4 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Median Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev. in the Ditch < Opening Height of the CSP Inlet Type B, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Median Ditch from 190+20.27 to 199+66.69 (14:09:20 on 04/13/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 2.57 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.52 ft normal depth 0.37 ft -> flow is supercritical (Yc > Yn) critical velocity 2.95 ft/sec critical top width 3.24 ft critical area 0.87sq. ft critical slope 6.181615E-03 normal velocity 5.86 ft/sec normal top width 2.30 ft normal area 0.44 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line C Node: N C14 P6= 2.5 in. Minimum Tc - 5 min. ULTIMATE: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 189+76.22 55.5'RT 388.08 Type B-1 on grade 0.72 0.95 475 31,9 5.00 6,59 4,50 3.8 0.30 4.6 0,33 13 CONCLUSION: Inlet (L=18') is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year Q, INTERIM: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 189+76.22 41' RT 388.57 AC spillway on grade 0.28 1.0 475 19.4 5,00 6.59 1.82 3,8 0,23 4,0 0.5 4 CONCLUSION: AC spillway has a Required L = 4', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa, EQUATIONS Tc - [ ( 11.9 X L^) / H ] I = 7,44 X Pg X Tc"^^ Q = C X I X A y - depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q/ (0.7x(a + y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Otot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 189+76.22 55.5'RT 386.95 Type B Int. (mod) - sump 0.40 0.9 460 33.1 5.00 6.59 2.35 4,17 5.81 9.00 9.0 0,30 CONCLUSION: d is conservatively interpolated, Wtr Surf, El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated, Wtr Surf, El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated, Wtr Surf, El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 3.6 387.25 387.70 388,07 EQUATIONS Qtot = Qa + Qb Clear curb Area = 3x[ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline Ei. + d Top of Opening = Flowline El, + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE too YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line C Node: N C14 Pg- 2.9 in. Minimum Tc = 5 min. ULTIMATE; Location FL El, Description Area C Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs cts cfs % ft fps ft ft 189+76.22 55.5'^ RT 388,08 Type B-1 on grade 0,72 0.95 5,00 7,64 5,22 1,56 6,78 3,8 0.34 4.9 0,33 18 CONCLUSION: Inlet (L=18') designed to accommodate bypass during the 100-year storm and since Qi > Q, inlet will intercept 100% ot the total 0, Qi Qbvpass CONCLUSION: Inlet (L=18') designed to accommodate bypass during the 100-year storm and since Qi > Q, inlet will intercept 100% ot the total 0, cfs cfs CONCLUSION: Inlet (L=18') designed to accommodate bypass during the 100-year storm and since Qi > Q, inlet will intercept 100% ot the total 0, 6.78 0.00 INTERIM: Location FL El, Description Area C Tc 1 Qa Q&vo QaJot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 189+76.22 41" RT 388,57 AC spillway on grade 0,28 1.0 5,00 7,64 2,12 0,00 2.12 3.8 0.24 4.0 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11,9 x L^) / H 1^^= Qi Qbvpass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11,9 x L^) / H 1^^= cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11,9 x L^) / H 1^^= 4.46 0.00 I = 7.44 X PB x Tc' '^^^ O = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a - depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Oi= 0.7xL(a+y)^^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 189+76.22 55.5' RT 386,95 Type B Int. (mod) - sump 0.40 0.9 5,00 7.64 2.72 0-00 4.84 5.81 9.00 9,0 0.32 3,8 CONCLUSION: d is consen/atively interpolated. Wtr Surf, El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. Wtr Surf. El, Top of Opening Spillway Depr, El, CONCLUSION: d is consen/atively interpolated. Wtr Surf, El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. ft ft ft CONCLUSION: d is consen/atively interpolated. Wtr Surf, El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. 387,27 387,70 388.07 EQUATIONS: Qtot = QaJot-i-Ob + Qbyp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6,5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El. = Flowline El, + d Top of Opening ^ Flowline El, + h Spillway Depression El, = Fiowline El, for AC Spillway • 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet tor original output) Flow Rate = 2,72 cfs Channel Height = 1,0 ft Channel Top Width = 3,0 ft Channel Slope = 3,8 % Normal Depth = 0,49 ft Normal Velocity - 6,64 fps Normal Top Width - 1,57 ft Velocity Head = 0.68 ft Freeboard Needed = 0.12 ft Freeboard Provided - 0.51 ft Project: Side Ditch from 189+82.22 to 193+42.61 RT (15:17:20 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00 Normal/Critical Depth INPUTS trapezoidal section flow rate 2.72 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.70 ft normal depth 0.49 ft -> flow is supercritical (Yc > Yn) critical velocity 3.42 ft/sec critical top width 2.19 ft critical area 0.79 sq. ft critical slope 6.609386E-03 normal velocity 6.64 ft/sec normal top width 1.57 ft normal area 0.41 sq. ft 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE C and related laterals ID Descrip Shape MatI Length N S Dia 0 ft % ft cfs SDCl . 18" RCP Circ Cone 51.75 0.012 5.10 : •'•50 SDCl.5 18" RCP Circ Cone 35.50 0,012 5.10 1-50 14.80 SDC2 18" RCP Circ Cone , 12.25 0.012 x.oo 1.50 •9.52^ SDC3 24" RCP Circ Cone 300.00 0.012 2,62 2,00 24.31 SDC4 24" RCP Circ Cone 300.00 0.012 :; 3.99:; 2.00 SDC5 18" RCP Circ Cone 90.25 0,012 1,02 1,50 7,96 SDC7 18" RCP Circ Cone 12.25 0.012 20.00: 1.50 14:72^ SDC8 30" RCP Circ Cone 300,00 0,012 3.87 2.50 46,78 SDC9 24" RCP Circ Cone > 12.25 0.012 -20.00 •> 2.00 -16.03| SOCIO 18" POP Circ Plastic 69,00 0.024 37,97 1,50 10.96 SDCl 2 36" RCP Circ Cone " 40.00 0.012 1.19 3.00 SDC13 36" RCP Circ Cone 84,75 0.012 1,19 3,00 62.90 SDCl 4.5 18" RCP Circ Cone 18.5-0.012 6.65 1.50 SDCl 4 36" RCP Circ Cone 57-25 0.012 1,19 3.00 67.60 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft tps ft fps cfs ft SDC1 0.73 14.36 1.32 . 7.40 25.70 .0.85 SDCl .5 0,82 15.05 1.40 8,62 25.70 0,11 SDC2 0.40 25.50 1.19 6.32 62.33 0.62 SDC3 1,13 13.26 1.74 8,36 39,67 1,36 SDC4 1.00 15.56 1.74 8.36 ; 48.95 0.06 : SDC5 0.92 7,02 1.09 5,77 11.49 0,32 SDC7 0.55 24.92 - 1.40 8.58 50.89 1.14 SDC8 1.30 18.10 2.25 10,04 87,41 1.23 SDC9 0.52 24.93 1.45 6.61 109.60 0.02 SDC10 0.58 17.54 1,27 6-88 35,06 0,74 SDC12 1.99 12.29 2.52-9.65 78.82 1.04 SDCl 3 2,02 12,40 2.55 9-82 78.82 0.10 SDCl 4.5 0.41 12.27 0.85 4.71 29.35 0.35 SDCl 4 2.13 12,57 2,62 10.31 78.82 0,32 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDCl NCI NCI .5 1.50 0.79 421.38 416.65 421.52 ^::419,2S(# SDCl,5 N C1,5 N 02 1,50 0,93 417.22 414,83 418,38 41743 SDC2 NC3 NC2 1.50 0.51 420-23 414.91 420.51 ,;i^^4^'!^^ SDC3 N C2 N C4 2.00 1,13 416-50 406.68 417.59 409.41 SDC4 NC4 NC5 1.80 1.00 407.02 394.26 408.11 ..•^398.0(111 SDC5 N C7 N C5 1,50 1,50 397,65 396,42 397,97 397,98" SDC7 NC8 NC5 1.50 0.75 ; 398.14 393.90 399.28 SDC8 N 05 N C9 2,50 1,31 396,42 382,64 397,98 387.64 SDC9 N CIO NC9 1.47 0.70 385.09 381.87 385.76 ; 386.03;fl SOCIO N C11 N CIO 1,50 0,58 412.72 384,60 412.96 389.39 SDCl 2 NC9 NC13 3.00 2.17 384.56 382.69 386.01 ^ ;384.ra>::5 SDCl 3 N C13 N C14.5 2,65 2,13 383.14 381,61 384,64 383.75 SDC14.5 NC14 N C14.5 1.28 0.47 382.74 380.70 383.00 382.36 - SDC14 N C14.5 N C15 2,94 2.28 382-42 381.07 384,07 383,21 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE C and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDCl 425.03 426.74 . 3.65 . 10.10 418.50 .415.86 . 6.90 13,03;^: SDCl,5 426.74 426,69 9,52 11-87 415,71 413.90 8.38 12.94 SDC2 -425.03 ' 426.69 ';:v4.80: 11.79 * 418.08 , . 414.40 M' 5.39 tf 18:22^;! SDC3 426,69 414.81 10,19 8.13 413,40 405-55 7.74 13.23 SDC4 414.81 ' 402.93 ^ 7.79 8.67 . = 405.22 393.26 ; 8.17 SDC5 401.27 402.93 3,62 6,51 394.46 393,04 4,50 4*56 SDC7 401.27 ' 402.93 3.13 9.04 .395.60 : 393.15 : , 8.33 SDC8 402.93 391.03 6.51 8,39 392.93 381,33 9,53 " 17.92 SDC9 389.37 391.03 4.29 9.16': ,383.62 381.17 " 6.51 • '\16.32|||^ SOCIO 415-22 389,37 2.50 4,77 410-22 384.02 6,20 17.53 SDCl2 ^ 391.03^ 390.53 6.47 ; 7.84 7 ' .381.00 • 380.52 n 8.66 SDC13 390,53 -7,39 -380,49 379.48 9.52 11,73 SDC14.5 386.95 "?4.21 ,381.46 380.23 , 3.02 SDC14 -381,79 -0.72 379.48 378,79 9-61 11,73 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. ' - represents the true invert-to-in vert length, not the length shown on the contract plans that accounts for additional skew & connection length. Q 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE C and related laterals ULTIMATE VS. INTERIM Computations: 1. ) Interim computations for SDC1 & S0C1,5 and S0C12 & SDCl 3 are shown as Ultimate computations S0C1 and SDC12, respectively, 2. ) Ultimate computation for culvert SOCIO consider a possible discharge of only 10% of the Interim discharge. 10 Descrip Shape MatI Length N S Dia Q ft % ft cfs SDC1 18" RCP Circ Cone 90.25 0.012 5.10 1.50 ' 8.20^11 SDC2 18" RCP Circ Cone 12.25 0-012 30,00 1.50 9,41 SDC3 24" RCP Circ Cone v\ 300.00 : 0.012 2.62 2.00 SDC4 24" RCP Circ Cone 300,00 0,012 3.99 2,00 17,61 SDC5 18" RCP Ctre Cone 90.25 0.012 . 1.02 1.50 S0C7 18" RCP Circ Cone 12.25 0,012 20.00 1,50 14.51 SDca, . 30" RCP Circ Cone 300.00 0.012 3.87., 2.50 SDC9 24" RCP Circ Cone 12.25 0.012 20,00 2,00 8,86 SOCIO. 18" PCP Circ Plastic 69.00-0.024 37.97 1.50 - SDCl 3 36" RCP Circ Cone 127.75 0,012 1-19 3.00 49,05 SDC14.5 18" RCP Circ Cone 18.5* 0.012 : 6.65 -1.50 SDCl 4 36" RCP Circ Cone 57.25 0,012 1.19 3.00 55,75 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft tps ft fps cfs ft SDCl 12.93 5.85 25.70 ; . 0.53 SDC2 0.39 25,42 {,'19 6.28 62.33 0,61 SDC3 ^0.93 12.25 1.51 6.91 39.67 0.87 . " SDC4 0,83 14,32 1,51 6,91 48.95 0,04 SDC5 ; 0:94 7.08 1.11 5.85 11.49 :'.''0.34~;,;: • / SDC7 0.55 24.83 1.39 8,47 50,89 1.11 f/) SpC8 \. 1.19, 17.46 ••/2M:-/\ 9.03 : 87.41 - •'i.2i'-^^^: SDC9 0-39 20,96 1.06 5,23 109.60 0.12 frf SDC10 0.18 9.00 0.39 3.00 35.06 :",0,14 SDC13 1,72 11,73 2,28 8.51 78.82 0,83 SDCl 4.5 0.49 13.50 •1.01 ^ 5.37 ; 29.35 0.45 SDC14 1,86 12.12 2.42 9,12 78,82 0.44 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDCl NCI NC2 1.50 0.59 :^ 420,37 414.49 , 420.67 -. t4i8^^^: S0C2 N C3 N C2 1.50 0,50 420,21 414,90 420,49 420,09 SDC3 NC2 NC4 2.00 0.93 415.78 406.48 416.52 -/•468!^^ S0C4 N C4 N C5 1,55 0,83 406.77 394,09 407.51 397^27 SDC5 NC7 NC5 1.50 1.50 397.55 396.27 397.89 - 397.5^ S0C7 N C8 N C5 1,50 0,74 398,11 393.89 399,22 398.26 SDC8 NC5 NC9 2.50 1.20 396.27 382.53 397.54 ^ 3873 9^ SDC9 N CIO N C9 1.19 0,48 384,81 381,65 385,23 385,24 SOCIO NC11 NCIO 0.75 0.18 410.97 384.20 410.97 - SDCl 3 N C9 N C14,5 3.00 1,77 384.11 381,25 385-23 383.24 SDCl 4.5 NC14 NC14.5 1.50 0.57 383.06 380.80 383.36 382;6;^^ SDCl 4 N C14,5 N CIS 2,86 2,01 382,34 380,80 383.63 382.71 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE C and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps , SDCl 426.15 426.74 ' 5.78 12.25 418.50 415.86 4.64 • -12.64,. . SDC2 426.15 426.69 5.94 11.79 418.08 414.40 5.33 18.23 SDC3 426.69 414.81' 10.91 8.33 413.40 405.55 • '5.6I, 'i '=.1^23* SDC4 414.81 402.93 8.04 8.84 4*05,22 393.26 6.74 14.28 SDCS . 402.39 , • 402.93; " 4.84 6.66 .394.46 393.04 ' 4.64 4.64 SDC7 402.39 402.93 4.28 9.04 395.60 393.15 8,21 16.75 SDC8 " ' 402.93" > ^;39i.o3;: '..^-6.66' . 8:50 "'392.93 381.33 8^1 .\ >J7.29 , - SDC9 390.49 391.03 5.68 9,38 383.62 381.17 ' 4.56 15.14 SOCIO ,415.22 " / 390.49 4.25 .6.29 • ^; 410.22 384.02 ->9:oo-;> SDCl 3 391.03 -6.92 • '380,49 379.48 6.94 11.30 SDC14.5-•:388.08, .; . .-5-02, : - _ ' ~ .381.46;,, 380.23 ' . 3:84t,? .v i~.10.93 * SDCl 4 -381.79" -0,99' 379.48' ' 378,79 8.02 11.06 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Iniet FL" value is Rim Elev and top of pipe, respectively. • ^ represents the true invert-to-invert length, not the length shown on the contract plans that accounts for additional skew & connection length. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line D Node: N D1 Ps- 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Description Atot C L H Tc 1 Q Qtot* ft ac ft ft min in/hr cfs cfs 2064-79.51 :;. 238.0' LT 378.50 36" Wing Type Headwall 57.11 0,55 3425 161.5 23.33 2.83 88.86 98-55 CONTRIBUT NG FLOWS: Node ID FL El, Description Area C L H Tc 1 Q ft ae ft ft min in/hr cfs N ET 509.40 36" Wing Headwall 10,63 0,55 1500 238.6 9.42 5.08 41,89 N El El 07* 508.50 18" inlet apron 7,88 0,55 1390 41.5 17.94 3,35 14,53 N D1D100 378,50 end brow ditch 2,56 0,55 935 129.5 8.24 5.54 7.81 N D1D101 378.50 end brow ditch 11.35 0,55 1870 147.5 16.86 3,49 21,77 N D1D102 410.00 terrace - brow 0,27 0.90 200 20,0 5,00 7.64 1,83 N D1D103 410.00 terrace - brow 0.23 0.90 360 46,0 5,00 7.64 1.57 •Note: See Inlet Anaylsis:100 Year Storm Drainage System E for further information EQUATIONS: Tc = [ (11,9 x L^) / H ] 10 min for large natural watershed I = 7.44 X Pe X Tc"-^^ Q - C X I X A Qtot = Total area discharge adjusted for a network time of concentration including the areas N El & N El El 07 conveyed via pipes detailed in Storm Drain System E. CAPACITY CHECK OF BROW DITCH: Link SDD1D100 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 7,81 cfs Channel Height = 1.0 ft Channel Top Width = 2,0 ft Channel Slope = 5.25 % Normal Depth = 0.58 ft Normal Velocity = 10.25 fps Normal Top Width = 1.82 ft Velocity Head = 1.63 ft Freeboard Needed = 0.15 ft Freeboard Provided = 0,42 ft CAPACITY CHECK OF BROW DITCH: Link SDD1D101 DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 25.16 cts Channel Height- 1,25 ft Channel Top Width = 3.0 ft Channel Slope = 7,14 % Normal Depth = 0,85 Normal Velocity = 15.37 Normal Top Width = 2.70 Note: 15" channel height and 36" channel width begins at location shown on plans CAPACITY CHECK OF TERRACE DITCH: Link SDD1D102 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 1.83 cfs Channel Height = 1,0 ft Channel Top Width = 3,0 ft Channel Slope = 2,00 % Normal Depth = 0.32 Normal Velocity = 4,53 Normal Top Width = 1.85 ft fps ft ft fps ft Velocity Head = Freeboard Needed - Freeboard Provided = Velocity Head : Freeboard Needed Freeboard Provided 3,67 ft 0,21 ft 0,40 ft 0.32 ft 0-08 ft 0.68 ft Link SDD1D103 is similar to Link S001D102 in channel geometries and slope with less discharge, therefore, no calculation is necessary Project: Brow Ditch Type B from 206+83 to 213+50 LT Link: SDDIDIOO (14:24:58 on 03/17/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Crit:ical Depth INPUTS circular section flow rate 7.81 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.052500 Manning coefficient 0.0160 RESULTS critical depth 0.99 ft normal depth 0.5 8 ft -> flow is supercritical (Yc > Yn) critical velocity 5.01 ft/sec critical top width 2.00 ft critical area 1.56 sq. ft critical slope 7.363408E-03 normal velocity 10.25 ft/sec normal top width 1.82 ft normal area 0.76 sq. ft Project: Brow Ditch Type B (mod) from 199+50 to 206+76 Link: SDDIDIOI (10:50:09 on 03/18/01) INPUTS circular section flow rate 25.16 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.071400 Manning coefficient 0.0160 RESULTS critical depth 1.62 ft normal depth 0.85 ft -> flow is supercritical (Yc > Yn) critical velocity 6.47 ft/sec critical top width 2.99 ft critical area 3.89 sq. ft critical slope 6.689007E-03 normal velocity 15.37 ft/sec normal top width 2.7 0 ft normal area 1. 64 sq. ft Note: channel diameter (width) = 2.0 ft from station 199+50 to 204+10 (per plans) since only 7.5% of the total discharge flows through this portion of the Brow Ditch. Channel diameter (width) increases to 3.0 ft (the basis of this calculation) where indicated on the plans. Project: Terrace Ditch Type D frcon 204+75 to 205+94 Link: SDD1D102 (16:16:59 on 03/18/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 1.83 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.020000 Manning coefficient 0.0160 RESULTS critical depth 0.42 ft normal depth 0.32 ft -> flow is supercritical (Yc > Yn) critical velocity 3.05 ft/sec critical top width 2.08 ft critical area 0.60 sq. ft critical slope 6.44B931E-03 normal velocity 4.53 ft/sec normal top width 1.85 ft normal area 0.40 sq. ft OUTLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line D Node: N D4 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev, Description A C L H Tc 1 Oa Qtot ft ac ft ft min in/hr cfs cfs ,204+40-84: 286.21'RT 353,06 36" Wing Type Headwall 1.10 0,73 430 56.9 6,81 6,26 5.00 139.84 CONTRIBUTING FLOWS: Node ID FL El, Description Area C L H Tc 1 Qb Qc ft ac ft ft min in/hr cfs cfs N D4D400' 386.25 brow ditch 1,24 0,66 455 65.8 6.83 6.25 5.09 N D4D40r 408.00 brow ditch 3.92 0.63 1000 152.0 8.29 5.51 13.61 N D4D404-508.66 brow ditch 2.28 0.57 1100 96.3 9.38 5,09 6,61 Areas represent mainly fill slopes and offsite areas from 204+43 to 222+43 draining to Node N D4 via a brow ditch and passing through one ciulvert at access road 'SDGE3', N D4D431 429.00 downdrain 0.41 0.90 370 37.0 5,00 7.64 2.82 N D4D421 403.00 downdrain 0.41 0.90 350 37,0 5.00 7.64 2.81 N D4D432 381,40 downdrain 0.38 0,90 350 74.6 5,00 7.64 2,61 N D40422 379,33 terrace ditch 0.38 0,90 415 46,7 5,00 7.64 2.61 Areas represent fill slopes draining via terrace ditches to Node N D4. Qbtot= 36.16 N D4D433 405.00 terrace ditch 0.42 0.90 420 40.0 5,00 7.64 2.86 N D4D423 384.00 terrace ditch 0,27 0.90 420 61.0 5.00 7.64 1.88 N D4D410 370,00 terrace ditch 0.22 0.90 420 75.0 5.00 7.64 1.53 Areas represent fill slopes draining via terrace / brow ditches to Node N D4D410 as a separate Qclot = 6.27 outlet than Node N D4 (See location 'E' in Appendix C or in plans). EQUATIONS: Tc = [ (11.9 X L^) / H f^^ + 5 min for small natural watershed' l = 7,44xP6xTc""^ Q = C X I X A where C is adjusted for composite areas ( graded slopes = 0.90, oftsite area ^ 0.55) Qtot = total discharge from associated watersheds to Nodes N El, NE1 E107, N Dl, and N 04 (adjusted for a network time of concentration), but not including tfiose discharging from Node N E20 (See Storm Drain System E). CAPACITY CHECK OF BROW DITCH: Link SDD4D400 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 32.52 cfs Channel Height = 1.5 ft Channel Top Width = 3,0 ft Cfiannei Slope = 5,00 % Normal Depth = 1.06 ft Normal Velocity = 14.53 fps Normal Top Width = 2,87 ft Velocity Head = 3,28 ft Freeboard Needed = 0.27 ft Freeboard Provided = 0.44 ft CAPACITY CHECK OF BROW DITCH: Link SDD4D401 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 25.72 cfs Channel Height = 1,5 ft Channel Top Width = 3.0 ft Channel Slope = 5.00 % Normal Depth = 0.94 ft Normal Velocity = 13,61 fps Normal Top Width = 2.78 ft Velocity Head = 2,88 ft Freeboard Needed = 0.24 ft Freeboard Provided - 0,56 ft Note: 18" channel height and 36" channel width begins at location shown on plans CAPACITY CHECK OF BROW DITCH: Link SDD4D402 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Row Rate ^ 13.97 cfs Channel Height = 1.0 ft Channel Top Width = 2.0 ft Channel Slope = 10.00 % Normal Depth = 0,67 ft Normal Velocity = 15.21 fps Normal Top Width = 1,89 ft Velocity Head = 3,59 ft Freeboard Needed = 0,17 ft Freeboard Provided = 0,33 ft CAPACITY CHECK OF BROW DITCH: Link SDD4D403,5 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 6,61 cfs Channel Height = 1.0 ft Channel Top Width = 2.0 ft Channel Slope = 8.50 % Normal Depth = 0,47 ft Normal Velocity = 11.60 fps Normal Top Width = 1.70 ft Velocity Head Freeboard Needed Freeboard Provided 2. .09 ft 0. 12 ft 0, 53 ft CAPACITY CHECK OF TERRACE DITCH: Link SDD4D431 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate - 2.82 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 4.00 % Normal Depth = 0.33 ft Normal Velocity = 6.57 fps Normal Top Width = 1.89 ft Velocity Head = 0,67 ft Freeboard Needed = 0.08 ft Freeboard Provided = 0.67 ft CAPACITY CHECK OF TERRACE DITCH: Link SDD4D421 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 5.63 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 4.00 % Normal Depth = 0.46 ft Normal Velocity = 8.08 fps Normal Top Width = 2.17 ft Velocity Head = 1,01 ft Freeboard Needed = 0,12 ft Freeboard Provided = 0.54 ft Links SDD4D432, SDD4D443 and SDD4D422, SDD4D442 are similar to Links SDD4D431 and SDD4D421 respectively, in channel geometries and slope with less discharge, therefore, no calculation is necessary. CAPACITY CHECK OF BROW DITCH: Link SDD4D410 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 6.27 cfs Channel Height = 1,0 ft Channel Top Width = 2,0 ft Channel Slope = 3,70 % Normal Depth = 0.57 ft Normal Velocity = 8.49 fps Normal Top Width = 1.81 ft Velocity Head = 1.12 ft Freeboard Needed = 0,14 ft Freelxiard Provided = 0,43 ft Project: Brow Ditch Type B from 204+44 to 206+45 RT Link: SDD4D400 (16:29:45 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 32.52 cfs channel dicuneter 3.00 ft slope of invert or channel bottom 0.050000 Manning coefficient 0.0160 RESULTS critical depth 1.85 ft normal depth 1.06 ft -> flow is supercritical (Yc > Yn) critical velocity 7.11 ft/sec critical top width 2.92 ft critical area 4.58 sq. ft critical slope 7.332288E-03 normal velocity 14.53 ft/sec normal top width 2.87 ft normal area 2.24 sq. ft NOTE: channel depth is 18" Project: Brow Ditch Type B from 206+45 to 209+40 RT Link: SDD4D401 (16:37:43 on 04/19/01) INPUTS circular section flow rate 25.72 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.050000 Manning coefficient 0.0160 RESULTS critical depth 1.64 ft normal depth 0.94 ft -> flow is supercritical {Yc > Yn) critical velocity 6.52 ft/sec critical top width 2.99 ft critical area 3.94 sq. ft critical slope 6.732043E-03 normal velocity 13.61 ft/sec normal top width 2.78 ft normal area 1.89 sq. ft NOTE: channel depth is 18" Project: Brow Ditch Type B from 209+40 to 212+11 RT Link: SDD4D402 (16:57:04 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 13.97 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.100000 Manning coefficient 0.0160 RESULTS critical depth 1.35 ft normal depth 0.67 ft -> flow is supercritical (Yc > Yn) critical velocity 6.21 ft/sec critical top width 1.88 ft critical area 2.25 sq. ft critical slope 9.1498D8E-03 normal velocity 15.21 ft/sec normal top width 1.89 ft normal area 0.92 sq. ft Project: Brow Ditch Type B from 212+52 to 222+43 RT Link: SDD4D403.5 (17:04:49 on 04/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 6.61 cfs channel dicuneter 2.00 ft slope of invert or channel bottom 0.085000 Manning coefficient 0.0160 RESULTS critical depth 0.91 ft normal depth 0.47 ft -> flow is supercritical (Yc > Yn) critical velocity 4.75 ft/sec critical top width 1.99 ft critical area 1.39 sq. ft critical slope 7.136071E-03 normal velocity 11.60 ft/sec normal top width 1.7 0 ft normal area 0 .57 sq. ft Project: Terrace Ditch Type D from 206+94 to 209+97 RT Link: SDD4D431 (10:58:02 on 04/18/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.82 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0160 RESULTS critical depth 0.52 ft normal depth 0.33 ft -> flow is supercritical (Yc > Yn) critical velocity 3.42 ft/sec critical top width 2.28 ft critical area 0.83 sq. ft critical slope 6.193720E-03 normal velocity 6.57 ft/sec normal top width 1.89 ft normal area 0.43 sq. ft Project: Terrace Ditch Type D from 206+47 to 209+40 RT Link: SDD4D421 (10:58:02 on 04/18/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 5.63 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0160 RESULTS critical depth 0.74 ft normal depth 0.46 ft -> flow is supercritical (Yc > Yn) critical velocity 4.12 ft/sec critical top width 2.59 ft critical area 1.37 sq. ft critical slope 5.933832E-D3 normal velocity 8.08 ft/sec normal top width 2.17 ft normal area 0.70 sq. ft Project: Brow Ditch Type B from 200+20 to 202+06 RT Link: SDD4D410 (09:28:32 on 04/09/01) DAR Open Channel Flow Tmalysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 6.27 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.037000 Manning coefficient 0.0160 RESULTS critical depth 0.89 ft normal depth 0.57 ft -> flow is supercritical (Yc > Yn) critical velocity 4.67 ft/sec critical top width 1.99 ft critical area 1.34 sq. ft critical slope 7.078705E-03 normal velocity 8.49 ft/sec normal top width 1.81 ft normal area 0.74 sq. ft 100-YEAR INTERIM HYDRAULIC COMPUTATIONS: STORM DRAIN LINE D ID Descrip Shape MatI Length N S Dia Q ft % ft cfs . SDDl. 36" RCP Giro 'Concur 222.10 0.012 1.56 3.00 121.14 SDD2 36" RCP Circ Cone 218.30 0.012 7.95 3.00 121.14 • SDD3~\;i 36" RCP Circ f 148.65 . ' 0.012 " ' 2.66 : > :,3.oo' .121.14 SDD4D403A 18" RCP Circ Cone 16.00 0.012 5.00 1.50 6.61 SDD4b4d3B - 18" RCP Circ "^*T'16.00 ' 0.012 io,oo':>' • 1.50 ' 6.61 ' ID Normal Normal Critical Cntical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft SDDl 3.00 17.58 2.95 17.20., „98.55 2.43 \ SDD2 1.67 30.07 2.95 17.20 203.73 0.82 SDD3 C 2.54 . 18.97 ^2.95,"^. ;--^:i7.20 117.85 ^ ' 0.44. SDD4D403A^ 0.52 12,10 " 1,00 5.31 25.45 0.02' SDD4D'403B : 6.44 -* 15.52 "•tl-OO-^t-' %6.31 35.99 ' o,i3r'» ID Upstrm Node Dwnstrm Node ActI Depth Upstrm ActI Depth Dwnstrm HGL Upstrm HGL Dwnstrm EGL Upstrm EGL Dwnstrm ft ft ft ft ft ft SDDIj; 'SDD2 SDb3.:- SDD4b403'A SDD4D403B ND1 N D2 : ND3 \ N b4D402,5 N D4D403 ' ND2 - N D3 . N D4 ' * N D4D402 ND4D402.5 3.00 ''l'02 V,- 3.00 - 1.76 ""'2.66 " ' 0.64 -'-^ 0.54 • • 386.82 378.15 .-360.41 : 472,90 ^ 474.61 ^378.1^JV 358.78 .355'7^-V 471.72 ' '472.42'*^'^- 391.38 382.75 p.: 365.01 473,34 475.05 " 382.75,^, 371.10 . 360.91 473.05' 474.48""' ID Inlet FL Inlet FL Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft fps fps ,||,38t.5p;.j:' :;;;377.38^i;v \, 1274.38 • 17.14, ~ . 17.14 SDD2 " 377,38 360.02 " 374.38 ' '357.02 " 17.14' 28.14 •'^60.02 J:' jf3^06^ ,,'17.14 _ Vl8.26l\ SDD4D403A 473,38 472.58 471.88 471.08 5.18 9.25 "SDb4D403B '¥:!474.98''-' "-FALSE""'" 'S'471.88 4.65 -' 1l'!49' Note: for pipe ends, "Inlet FL" value is top of pipe elev. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N El Pe= 2.9 In. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 Q Qtot ft ac ft ft min in/hr cfs cfs 228442.47 105.58' RT 509,40 30" L-Type Headwall 10.63 0.55 1500 238.6 9.42 5,08 29.69 41.89 CONTRIBUTING FLOWS: Node ID FL El, Description Area C L H Tc 1 Qa ft ac ft ft min in/hr cfs N E1E101 528.40 inlet apron 0.40 0,55 320 59.6 5.00 7.64 1,67 N El El 02 569,67 ditch 2,21 0.55 1250 178.3 9.01 5,23 6.35 N El El 04 530,65 inlet apron 0.97 0,55 530 59.4 7.27 6.00 3.20 N El El 06 567,00 inlet apron 1,46 0,55 880 23.0 10.88 4.63 3,72 Total = 14,94 EOUATIONS: Tc = [ (11.9 x L^) / H ] Note: an additional 10 minutes is added to natural watersheds, however, since these are relatively small areas and since some of the travel time will be in the brow ditch, only 5 minutes is added. l-7.44xPsxTc"^^ Q = C X I X A Qtot - 0 + Qa CAPACITY CHECK OF BROW DITCH: Link SDE1E100 DAR Open Channel Row Analysis & Design (See attached sheet for original output) Flow Rate = 7.35 cfs Channel Height = 1.0 ft Channel Top Width = 2.0 ft Channel Slope = 8.93 % Normal Depth = 0.49 ft Normal Velocity = 12.17 fps Normal Top Width ^ 1.73 ft Velocity Head Freeboard Needed Freeboard Provided 2 30 ft 0 12 ft 0 51 ft CAPACITY CHECK OF BROW DITCH: Link SDE1E102 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 6.35 cfs Normal Depth = 0.45 ft Velocity Head = 2 29 ft Channel Height -1,0 ft Normal Velocity = 12.14 fps Freeboard Needed = 0 11 ft Channel Top Width = 2,0 ft Normal Top Width -1.67 ft Freeboard Provided -0 55 ft Channel Slope = 10.00 % CAPACITY CHECK OF BROW DITCH: Link SDE1E103 DAR Open Channel Ftow Analysis S Design (See attached sheet for original output) Flow Rate = 10,85 cfs Normal Depth = 0.64 fl Velocity Head = 2 45 ft Channel Height = 1,0 ft Normal Velocity = 12,57 fps Freeboard Needed = 0 16 ft Channel Top Width = 2,0 ft Normal Top Width = 1,86 ft Freeboard Provided = 0 36 ft Channel Slope = 7.16 % CAPACITY CHECK OF BROW DITCH: Link SDE1 El 05 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 8,60 cfs Normal Depth = 0.52 ft Velocity Head = 2,73 ft Channel Height = 1.0 ft Normal Velocity = 13,25 fps Freeboard Needed = 0,13 ft Channel Top Width = 2,0 ft Normal Top Width = 1.75 ft Freeboard Provided - 0,48 ft Channel Slope = 10,00 % Project: Brow Ditch Type B from 222+50 to 226+38 RT Link: SDE1E102 (14:53:28 on 03/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 6.35 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.100000 Manning coefficient 0.0160 RESULTS critical depth 0.89 ft normal depth 0.45 ft -> flow is supercritical (Yc > Yn) critical velocity 4.69 ft/sec critical top width 1.99 ft critical area 1.36 sq. ft critical slope 7.091945E-03 normal velocity 12.14 ft/sec normal top width 1.67 ft normal area 0.52 sq. ft Project: Brow Ditch Typo B from 227+02 to 228+40 RT Link: SDElElOO (14:48:35 on 03/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 7.35 cfs pipe diameter 2.0 0 ft slope of invert or channel bottom 0.089300 Manning coefficient 0.0160 RESULTS critical depth 0.96 ft normal depth 0.49 ft -> flow is supercritical (Yc > Yn) critical velocity 4.91 ft/sec critical top width 2.00 ft critical area 1.50 sq. ft critical slope 7.271705E-03 normal velocity 12.17 ft/sec normal top width 1.73 ft normal area 0.60 sq. ft Project: Brow Ditch Type B from 228+50 to 230+90 RT Link: SDE1E103 (14:57:55 on 03/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 10.85 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.071600 Manning coefficient 0.0160 RESULTS critical depth 1.18 ft normal depth 0.64 ft -> flow is supercritical (Yc > Yn) critical velocity 5.62 ft/sec critical top width ' 1.97 ft critical area 1.93 sq. ft critical slope 8.108321E-03 normal velocity 12.57 ft/sec normal top width 1.86 ft normal area 0.86 sq. ft Project: Brow Ditch Type B from 231+48 to 233+74 RT Link: SDE1E105 (15:10:39 on 03/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 8.60 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.100000 Manning coefficient 0.0160 RESULTS critical depth 1-05 ft normal depth 0.52 ft -> flow is supercritical {Yc > Yn) critical velocity 5.18 ft/sec critical top width 2.00 ft critical area 1.66 sq. ft critical slope 7.533671E-03 normal velocity 13.25 ft/sec normal top width 1.75 ft normal area 0.65 sq. ft INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E10107 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs ;227+52.47 105.39'Lt 508.50 18" inlet apron 7.88 0.55 1390 41.5 17.94 3.35 14.53 EQUATIONS: Tc = [ (11.9 x L^) / H ]^^^ (add 10 minutes for natural areas) I = 7.44 X Ps X Tc" 0 = C X I X A CAPACITY CHECK OF BROW DITCH: Link SDE1E107 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 14.53 cfs Channel Height - 1.5 ft Channel Top Width = 2.0 ft Channel Slope = 2,35 % Normal Depth = 1,02 ft Normal Velocity - 9,04 fps Normal Top Width = 2.00 ft Velocity Head = 1.27 ft Freeboard Needed = 0.26 ft Freeboard Provided = 0.48 ft Project: Brow Ditch Type B (mod) from 227+58.47 to 231+51 LT Link: SE1E107 (09:41:49 on 05/14/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 14.53 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.02350 Manning coefficient 0.0160 RESULTS critical depth 1.37 ft normal depth 1.02 ft -> flow is supercritical (Yc > Yn) critical velocity 6.32 ft/sec critical top width 1.86 ft critical area 2.30 sq. ft critical slope 9.371832E-03 normal velocity 9.04 ft/sec normal top width 2.00 ft normal area 1.61 sq. ft NOTE: channel depth = 18" where indicated on plans INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E5 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 221+64.58 55.5' LT 516,91 Type B-1 on grade 1.47 0.95 850 13.5 6.93 5.34 7.47 3.0 0,36 4,5 0.33 19 CONCLUSION: Required L (=19') will intercept 100% of the 50-year 0. INTERIM: Location FL El. Description Area C L H Tc 1 Qa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 221+64.58 -4rLT 517.41 AC spillway on grade 0.58 1.0 850 13.0 7.03 5.29 3.07 3.0 0,28 3.5 0,5 6 CONCLUSION: AC spillway has a Required L = 6", however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ (11.9 x L' ) / H f^^ 1 = 7.44 X Pg X Tc Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0,7 x ( a + y )' ^) ^ 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 221+64.58. "55^5'LT'" 515.78 Type B Int. (mod) - sump 0,76 0.9 800 14.2 6.34 5.65 3.87 6.94 5-81 9,00 9.0 0,39 CONCLUSION: d is conservatively interpolated. W(r Surf. El. < Top of Opening < Spillway d wtr Surf. El. Top of Opening Spillway Depr. El. Depr El. therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, in ft ft ft Depr El. therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0, 4.7 516.17 516.53 516.91 EQUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d ^ depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El. = Flowline Ei. -f d Top of Opening = Flowline El, + h Spillway Depression El, = Flowline El, for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E5 Pe- 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q QDVP Qtot S y V a L ft ac min In/hr cfs cfs cfs % ft fps ft ft 221+64.58 55.5'LT^ 516.91 Type B-1 on grade 1.47 0,95 6.93 6.19 8.66 0.00 8,66 3,0 0.37 4.6 0.33 19 CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.72 cfs of the total 0. Qi QtJVDaas CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.72 cfs of the total 0. cfs cfs CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.72 cfs of the total 0. 7.72 0.94 INTERIM: Location FL El. Description Area C Tc 1 Qa Qa tot S y V a L ft ac min in/hr cts cfs cfs % ft fps ft ft 221+64.58 41-LT • 517.41 AC spillway on grade 0,58 1.0 7,03 6,13 3,56 0.00 3.56 3.0 0.29 3.9 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 01 Qfiypaas CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 4,92 0.00 1 = 7.44 X Ps X Tc" ""^ Q = Cx Ix A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure f^flanual a ^ depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)'^ Location FLEl. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 221+64.58; 55.5' LT 515.78 Type B Int. (mod) - sump 0.76 0.90 6.34 6,56 4.49 0,00 8.05 5.81 9.00 9,0 0.43 5.2 CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it fails in a transitional state between weir and orifice. Wtr Surf, El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 516.21 516,53 516.91 EOUATIONS Qtot = Qa_tot + Qb + Qoyp Clear curb Area - 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Row Analysis & Design (See attached sheet for original output) Flow Rate = 4.49 cfs Channel Height = 1.0 ft Channel Top Width ^ 3,0 ft Channel Slope = 3,0 % Normal Depth = 0,63 ft Normal Velocity = 6,85 fps Normal Top Width - 1.99 ft Velocity Head = 0,73 ft Freeboard Needed = 0.158 ft Freeboard Provided = 0.37 ft Project: Side Ditch from 221+64.58 to 224+40 LT (14:14:10 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 4.49 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.030000 Manning coefficient 0.0160 RESULTS critical depth 0.86 ft normal depth 0.63 ft -> flow is supercritical (Yc > Yn) critical velocity 3.78 ft/sec critical top width 2.67 ft critical area 1.19 sq. ft critical slope 6.193124E-03 normal velocity 6.85 ft/sec normal top width 1.99 ft normal area 0.66 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E5.5 P6= 2.5 In. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cts 221+64.58 0.0' LT 517,51 CSP Type B in sump 0.33 0,9 800 12.9 6.57 5,52 1.65 EQUATIONS; Tc = [( 11.9xL^)/H]^^^ I = 7,44 X P5 X Tc"^^ Q = C X 1 X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E5.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 221+64.58 • O.O' LT 517,51 CSP Type B in sump 0.33 0,9 800 12.9 6.57 6.40 1,92 EQUATIONS: Tc = [( 11.9X L^)/H ]^^^ l=7.44xp5xTc""^ Q = Cxl xA DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 1,92 3 0.1 0,03 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0-4 0,09 3 6 0.17 Median Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0,34 4,96 2.16 critical CSP Inlet: Opening Wtr Surf. Height Elev. in in 8,0 4.1 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Median Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf, Elev. in the Ditch < Opening Height of the CSP Inlet Type B. 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Median Ditch from 221+64.58 to 224+40 (16:08:09 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Norma1/Critical Depth INPUTS trapezoidal section flow rate 1.92 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.030000 Manning coefficient 0.0160 RESULTS critical depth 0.46 ft normal depth 0.34 ft -> flow is supercritical (Yc > Yn) critical velocity 2.78 ft/sec critical top width 2 . 88 ft critical area 0.69 sq. ft critical slope 6.425207E-03 normal velocity 4.96 ft/sec normal top width 2.16 ft normal area 0.39 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E6 P6= 2.5 In. Minimum Tc = 5 min. ULTIMATE: Location FL El, ft Description Area C L H Tc 1 Q S y V a Req'd L FL El, ft ac ft ft min in/hr cfs % ft fps ft ft 22T+64.58 55.5' RT 516.91 Type B-1 on grade 1.66 0,95 850 13,5 6.93 5.34 8.41 3,0 0.37 4.6 0.33 21 CONCLUSION: Required L (=21') will intercept 100% of the 50-year Q, Flow (Qc=3,47 cfs) from downdrain will enter into the back of the inlet (See below,). INTERIM: Location FL El, Description Area C L H Tc 1 Qa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 221+64.58. 41' RT '•-' 517.41 AC spillway on grade 0.57 1.0 850 13,0 7,03 5.29 3.04 3.0 0.28 3,5 0.5 6 CONCLUSION: AC spillway has a Required L = 6", however, the min. L-value is L = 10', therefore the AC spiilway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H f^^ l = 7.44xPexTc'"^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / { 0,7 x ( a + y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Ob Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 221+64.58 55.5' RT'" 515.78 Type B Int. (mod) - sump 0.96 0,9 800 14.2 6.34 5.65 4.86 10.92 5,81 9.00 9.0 0.55 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. d Wtr Surf, El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf, Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. 6,6 516.33 516,53 516.91 EOUATIONS: Qtot = Qa + Qb + Qc Clear curb Area 3 x [ ( 2 x 1/2 x 2,5" x 1,5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = { 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El, = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH CONTRIBUTING FLOWS: Node ID FL El. Descripfion Area C L H Tc 1 Oc ft ac ft ft min in/hr cfs N E6E600 541.98 downdrain 0-51 0.9 320 18,0 5.00 6,59 3,02 SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF TERRACE DOWNDRAIN INLET ANALYSIS: 100 Year Storm - PART 1 Drainage System: Storm Drain Line E Node: N E6 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FLEI, Description Area C Tc 1 Q QbVD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 221+64.58 55.5' RT 516.91 Type B-1 on grade 1.66 0,95 6.93 6.19 9.76 0,00 9.76 3.0 0.39 4.7 0,33 21 CONCLUSION: Inlet (L=21') designed for 50-year storm will intercept 8.98 cfs of the total Q. Flow (Qc=4.03 cfs) from downdrain will enter into the back of the inlet (See next page). Qi Qbvoass CONCLUSION: Inlet (L=21') designed for 50-year storm will intercept 8.98 cfs of the total Q. Flow (Qc=4.03 cfs) from downdrain will enter into the back of the inlet (See next page). cfs cfs CONCLUSION: Inlet (L=21') designed for 50-year storm will intercept 8.98 cfs of the total Q. Flow (Qc=4.03 cfs) from downdrain will enter into the back of the inlet (See next page). 8,98 0.78 INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 221+64.58 41'RT 517.41 AC spillway on grade 0,57 1.0 7,03 6.13 3.52 0,00 3,52 3,0 0.29 3.9 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. cfs cfs EQUATIONS: Tc = [(11,9xL^)/H]^^^ 4,92 0.00 l = 7.44xp5xTc^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)^^ Location FL Ei. Description Area C Tc ! Qb Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 221+64.58.; 55.5' RT V 515.78 Type B Int. (mod) - sump 0.96 0.9 6.34 6.56 5.64 0,00 9.16 5.81 9.00 9,0 0.62 7,4 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. Wtr Surf, El. Top of Opening Spillway Depr, Et. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. 516.40 516,53 516,91 EQUATIONS: Qtot = Qa_tot + Qb + Q^yp + Qc Clear curb Area = 3x[ (2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3' )] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') ^ 9' for 3 openings h = height of opening d ^ depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression E!. = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE A.C, DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 5.64 cfs Channel Height = 1,0 ft Channel Top Width = 3,0 ft Channel Slope = 3,0 % Normal Depth = 0.69 tt Normal Velocity = 7,25 fps Norma! Top Width = 2.16 ft Velocity Head = 0.82 ft Freeboard Needed = 0,17 ft Freeboard Provided = 0.31 ft Project: Side Ditch from 221+64.58 to 224+40 RT (15:24:44 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Crit:ical Depth INPUTS trapezoidal section flow rate 5.64 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.030000 Manning coefficient 0.0160 RESULTS critical depth 0.94 ft normal depth 0.69 ft -> flow is supercritical (Yc > Yn) critical velocity 3.96 ft/sec critical top width 2.93 ft critical area 1.42 sq. ft critical slope 6.011887E-D3 normal velocity 7.25 ft/sec normal top width .i 2.16 ft normal area 0.78 sq. ft INLET ANALYSIS: 100 Year Storm - PART 2 Drainage System: Storm Drain Line E Node: N E6 Pe- 2.9 in. Minimum Tc = 5 min. CONTRIBUTING FLOWS: Node ID FL Ei. Description Area C L H Tc 1 Qc ft ac ft ft min in/hr cfs N E6E600 541,98 downdrain 0,51 0.9 320 18,0 5.00 7.64 3.51 EQUATIONS: Tc = [ ( 11.9 x ) / H I = 7.44 X PgXTc'"^ Q = C X 1 X A CAPACITY CHECK OF TERRACE DOWNDRAIN: Link SDE6E600 Geopak Hydraulics {See Technical Reference) Flow Rate = 3.51 cfs Channel Height = 1,0 ft Channel Top Width = 2,0 fl Channel Slope = 50.0 % Normal Depth Normal Velocity Normal Top Width = 0,12 ft 13.85 fps 0,24 ft Velocity Head = 3.04 ft Freeboard Needed = 0.04 ft Freeboard Provided = 0.85 ft CAPACITY CHECK OF TERRACE DITCH: Link SDE6E601 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 3.51 cfs Channel Height = 1.0 ft Channel Top Width - 3.0 ft Channel Slope = 2.50 % Normal Depth = 0.41 ft Normal Velocity = 5.95 fps Normal Top Width = 2.07 ft Velocity Head = 0.55 ft Freeboard Needed = 0.10 ft Freeboard Provided = 0.59 ft Project: Terrace Ditch Type D from 221+64.58 to 225+33 RT Link: SDE6E601 (17:13:22 on 04/11/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 3.51 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.025000 Manning coefficient 0.0160 RESULTS critical depth 0.58 ft normal depth 0.41 ft -> flow is supercritical (Yc > Yn) critical velocity 3.52 ft/sec critical top width 2.38 ft critical area 0.97 sq. ft critical slope 6.089727E-03 normal velocity 5.95 ft/sec normal top width 2.07 ft normal area 0.59 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E9 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 215-t^1.64 55.5'LT^ 491.38 Type B-1 on grade 1,13 0.95 700 28.6 5.00 6,59 7.09 5.7 0.32 5.8 0.33 19 CONCLUSION: Required L (=19') will intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area C L H Tc 1 Qa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 215+51.64 41'LT 491.88 AC spillway on grade 0,43 1.0 700 28.1 5,00 6.59 2.86 5.7 0.25 5.1 0,5 6 CONCLUSION: AC spillway has a Required L = 6', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS. Tc = [ ( 11.9 X L^) / H f^^ l = 7.44xPexTc'"^ Q = Cx I xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a -i- y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area c L H Tc 1 Qb Qtot Clr curb Area Clr curb Lengtti h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft .215+51.64 ~ 55.5* Lf "-' 490.25 Type B Int. (mod) - sump 0.60 0,9 600 35.8 5.00 6.59 3.53 6.40 5.81 9.00 9.0 0,39 CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, in ft H ft CONCLUSION: d is conservatively interpolated. Wtr Surf, El. < Top of Opening < Spillway Depr, El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 4,7 490.64 491.00 491.38 EQUATIONS Qtot - Qa + Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2,5" x 1.5') + ( 6.5" x 3') j = 5,813 ff for 3 openings Clear curb Length = ( 3 x 3") = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E9 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Q&VD Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 215+51.64 'SS.S'LT 491.38 Type B-1 on grade 1,13 0.95 5.00 7.64 8.22 0.94 9.16 5,7 0.34 6.0 0.33 19 CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.29 cfs of the total Q. INTERIM: Qi CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.29 cfs of the total Q. INTERIM: cfs cfs CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.29 cfs of the total Q. INTERIM: 7.29 1.86 CONCLUSION: Inlet (L=19') designed for 50-year storm will intercept 7.29 cfs of the total Q. INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft ;215+5t64 "1^1^- 491,88 AC spillway on grade 0.43 1.0 5.00 7.64 3.32 0.00 3.32 5.7 0,25 5.1 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. Qi Qbvoass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. cfs cfs EQUATIONS: Tc = f ( 11,9 x L^) / H ] 4.57 0.00 I = 7,44XPBXTC"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a-Hy)^^ Location FL El, Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 215+51.64 '55.5'LT 490.25 Type B Int. (mod) - sump 0.60 0.9 5.00 7.64 4.10 0.00 7.42 5.81 9,00 9,0 0.55 6.6 CONCLUSION: d is conservatively interpolated since it falls in a transitional state Wtr Surf. El. Top of Opening Spillway Depr. El, between weir and orifice, Wtr Surf. El, < Top of Opening < Spillway Depr, El,, therefore the Type 8 Inlet Interim (mod) acts as a weir and intercepts 100% of Q. fl ft ft between weir and orifice, Wtr Surf. El, < Top of Opening < Spillway Depr, El,, therefore the Type 8 Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 490.80 491,00 491,38 EQUATIONS Otot = Qa_tOt -i- Qb + Qt^p Clear curb Area - 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length ^ ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El, -i- h Spillway Depression El. = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 4.10 cfs Channel Height = 1,0 ft Channel Top Width = 3.0 ft Channel Slope = 5,7 % Normal Depth = 0.53 ft Normal Velocity = 8.53 fps Normal Top Width = 1.70 ft Velocity Head = 1,13 ft Freeboard Needed - 0.133 ft Freeboard Provided = 0,47 ft Project: Side Ditch from 215+51.64 to 221+56.58 LT (15:46:59 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 4.10 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.057030 Manning coefficient 0.0160 RESULTS critical depth 0.83 ft normal depth 0.53 ft -> flow is supercritical (Yc > Yn) critical velocity 3.71 ft/sec critical top width 2.58 ft critical area 1.10 sq. ft critical slope 6.266747E-03 normal velocity 8.53 ft/sec normal top width 1.70 ft normal area 0.48 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N Ell P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 215+51.64 " 55.5'RT' 491.38 Type B-1 on grade 1.58 0.95 700 28,6 5.00 6.59 12.49 5.7 0.38 6.2 0.33 30 CONCLUSION: Required L (=29') will intercept 100% of the 50-year Q (Note: Q increased due the addition of a curb outlet upstream - See Contributing Flows below). INTERIM: Location FLEI, Description Area C L H Tc 1 Oa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 215451.64' -4 4-,.'RJ 491.88 AC spillway on grade 0.44 1.0 700 28,1 5.00 6.59 2.90 5.7 0.25 5.1 0.5 6 CONCLUSION: AC spillway has a Required L = 6', however, the min, L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ { 11,9 x L^) / H ]^^^ I = 7.44 X Pg X Tc""^ 0 = ( C X I X A) +Qc where Qc exits into gutter via a Curb Outlet at Sta 218+51 y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q/ (0.7x(a + y Y^} - 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cts cfs ft^ ft in ft 215+51.64 55.5' RT 490.25 Type B Int. (mod) - sump 1.04 0,9 660 49.8 5,00 6.59 6.17 11,69 5.81 9.00 9.0 0.56 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 6.7 490,81 491,00 491.38 EQUATIONS: Qtot = Qa + Qb + Qc Clear curb Area = 3 x [ (2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3'} = 9' for 3 openings h = height of opening d - depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El. = Flowline El, + d Top of Opening = Flowline El, + h Spillway Depression El. = Flowline El, tor AC Spiilway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH CONTRIBUTING FLOWS: Node ID FL El. Description Area C L H Tc 1 Qc ft ac tt ft min in/hr cfs N E11E1101 530,66 downdrain 0-44 0,9 355 35.3 5,00 6.59 2,62 SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF TERRACE DOWNDRAINS INLET ANALYSIS: 100 Year Storm - PART 1 Drainage System: Storm Drain Line E Node: N Ell P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 215+51:64. " 55.5'Rt- 491,38 Type B-1 on grade 1,58 0.95 5.00 7.64 11.45 0.78 15.27 5,7 0.41 6.9 0.33 29 CONCLUSION: Inlet (L=29') designed for 50-year storm will intercept 12.92 cfs of the total 0 (Note: Q increased due the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2). Qi Qbvoass CONCLUSION: Inlet (L=29') designed for 50-year storm will intercept 12.92 cfs of the total 0 (Note: Q increased due the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2). cfs cfs CONCLUSION: Inlet (L=29') designed for 50-year storm will intercept 12.92 cfs of the total 0 (Note: Q increased due the addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2). 12.92 2.35 INTERIM: Location FL El. Description Area C Tc I Qa QbVD Qa_tol S y V a L ft ac min in/hr cfs cfs cts % ft fps ft ft 215+51.64 • 41" RT 491,88 AC spillway on grade 0.44 1.0 5.00 7.64 3.36 0,00 3.36 5.7 0.26 5,1 0.5 10 CONCLUSION: AC Spillway (L=l 0') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 Qi Qfjvpaas CONCLUSION: AC Spillway (L=l 0') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 cfs cfs CONCLUSION: AC Spillway (L=l 0') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H 1 4,62 0.00 U7.44xP6xTc"'^^ O = ( C X I X A ) + Qcjot where Qc_tot* exits into gutter via a Curb Outlet at Sta 218+51 y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carisbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a+y)'^ Location FL El, Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ff ft in ft in 215+51.64 490.25 Type B Int. (mod) - sump 1.04 0.9 5.00 7.64 7.16 0.00 13.56 5.81 9.00 9.0 0.63 7.6 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. Wtr Surf, El. Top of Opening Spillway Depr. El, CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. EL, therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q. 490.88 491,00 491.38 EQUATIONS: Qtot = Qa + Qb + QcJot* Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1,5') + ( 6.5" x 3') ] - 5.813 f^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El, = Flowline El. + d Top of Opening = Flowline El, + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 10.20 cfs Channel Height = 1,0 ft Channel Top Width - 3,0 ft Channel Slope = 5.7 % Normal Depth = 0.76 ft Normal Velocity = 10,70 fps Normal Top Width = 2,39 ft Velocity Head = 1.78 ft Freeboard Needed = 0.19 ft Freeboard Provided = 0.24 ft Project: Side A.C. Ditch from 215+51.64 to 221+56.58 RT Link: SDEllEllOO (14:13:51 on 04/09/01) DAR Open Channel Flow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS trapezoidal section flow rate 10.20 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.057030 Manning coefficient 0.0160 RESULTS critical depth 1-20 ft normal depth 0.76 ft -> flow is supercritical (Yc > Yn) critical velocity 4.46 ft/sec critical top width 3.71 ft critical area 2.29 sq. ft critical slope 5.563912E-03 normal velocity 10.70 ft/sec normal top width 2.39 ft normal area 0.95 sq. ft Project: Terrace Ditch Type D from 218+51 to 221+64 Link: SDE11E1102 (13:59:33 on 04/09/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 3.04 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0160 RESULTS critical depth 0 . 54 f t normal depth 0.35 ft -> flow is supercritical (Yc > Yn) critical velocity 3.49 ft/sec critical top width 2.31 ft critical area 0.87 sq. ft critical slope - 6 .156025E-'03 normal velocity 6.72 ft/sec normal top width 1.92 ft normal area 0.45 sq. ft INLET ANALYSIS: 100 Year Storm - PART 2 Drainage System: Storm Drain Line E Node: N Ell Ps- 2.9 in. Minimum Tc = 5 min. CONTRIBUTING FLOWS; Node ID FL B. Description Area C L H Tc 1 Qc tt ac ft ft min in/hr cfs N E11E1101 530,66 downdrain 0.44 0.9 355 35.3 5,00 7.64 3.04 EQUATIONS: Tc = [ ( 11,9 x ) / H ] | = 7.44XPGXTC'^^ Q = C X I X A CAPACITY CHECK OF TERRACE DOWNDRAIN: Link SDE11 El 101 Geopak Hydraulics (See Technical Reference) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ. 3.04 2 0.5000 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 2,5 0.03 2 1.00 0.89 downdrain Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0,11 12,71 0.22 critical CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace DownDrain (see details) adequately accommodates the 100-year storm. CAPACITY CHECK OF TERRACE DITCH UPSTREAM OF DOWNDRAIN: Link SDE11 El 102 DAR Open Channel Row Analysis & Design (See attached sheet for original output) input: Output: Channel Flow Channel Channel Mannings Section Rale Diameter Slope coeft. cfs ft ft/ft Circ. 3,04 3 0.0400 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 0.7 0.09 3 1.00 0,65 D Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0,35 6.72 1.92 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace Ditch Type D (SDRSD D-75) adequately accommodates the 100-year storm. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = { Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E11.5 Ps= 2.9 in. Minimum Tc - 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 215+51:64. 117.9'RT 515.75 CB Type F in sump 0,30 0,90 365 38.3 5.00 7.64 2,04 EOUATIONS: Tc = [( 11,9xL^)/H]^^^ I - 7.44 X Pg X Tc'^'' Q - C X I X A Link SDDE11.5E11.500 (Terrace Ditch upstream of the Catch Basin) is calculated in the Ultimate inlet analysis since this senario produces the largest discharge. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E11.5 Ps= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc-1 Q ft ac ft ft min in/hr cfs Jtj4^i;64 Mnrg-^RT 515.75 CB Type F in sump 2.48 0.67 1000 89,3 9.04 5.21 8,66 EQUATIONS: Tc = [ ( 11.9 x L3 ) / H ],385 + 5 min for smalt natural watershed' l = 7.44xP6xTc'"^ O = C X I X A where C is adjusted for composite areas ( graded slopes = 0.90, oftsite area = 0.55) CAPACITY CHECK OF UPSTREAM TERRACE DITCH: Link SDE11,5E11.500 DAR Open Channel Row Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs tt ft/ft Circ. 8,66 3 0.0400 0-016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft n 1.3 0,14 3 1.0 0,43 D Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0.57 9,18 2.36 critical Catch Basin: Opening Wtr Surf. Height Elev, in in 9,0 6.8 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace Ditch Type D (SDRSD D-75) adequately accommodates the 100-year storm. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion ot water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Terrace Ditch Type D from 215+52 to 218-I-51 Link: SDEll.5E11.500 (18:22:17 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal / Crit;ical Depth INPUTS circular section flow rate 8.66 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0160 RESULTS critical depth 0.93 ft normal depth 0.57 ft -> flow is supercritical (Yc > Yn) critical velocity 4.65 ft/sec critical top width 2.77 ft critical area 1.86 sq. ft critical slope 5.896546E-03 normal velocity 9.18 ft/sec normal top width 2.36 ft normal area 0 . 94 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E14 Ps^ 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc I Q S y V a Req'd L ft ac ft ft min in/hr cfs % tt fps ft ft 209+33.80. 55.5'LT 463.33 Type B-1 on grade 1,13 0.95 650 46,7 5,00 6.59 7.09 3.8 0,34 4,8 0.33 18 CONCLUSION: Inlet (L=25') is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year 0. INTERIM: Location FL El, Description Area C L H Tc 1 Qa S y V a Req'd L ft ac ft tt min in/hr cfs % ft fps ft ft 209+33.80 41''LT. 463.82 AC spillway on grade 0,46 1.0 650 32.2 5.00 6,59 3.03 3.8 0.27 4,2 0,5 6 CONCLUSION: AC spillway has a Required L = 6'. however, the min, L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H f^^ l = 7,44xP5xTc"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL EI. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 209+33.80 55.5' LT 462.20 Type B Int. (mod) - sump 0.52 0,9 650 47.8 5,00 6.59 3.09 6.12 5,81 9.00 9.0 0.39 CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. d Wtr Surf, El, Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of 0. 4.7 462.59 462.95 463.32 EQUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of fiow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No-12 Water Surface El. = Fiowline El. + d Top of Opening = Flowline El, + h Spillway Depression El. = Flowline El. for AC Spillway • 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E14 P6= 2.9 in. /linimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps tt ft 209+33.80 55.5' LT 463,33 Type B-1 on grade 1.13 0.95 5.00 7.64 8.22 1,86 10,08 3.8 0.37 5.1 0.33 25 CONCLUSION: Inlet (L=25') designed to accommodate bypass during the 100-year storm will intercept 100% of the total Q. Qi ^bvoaas CONCLUSION: Inlet (L=25') designed to accommodate bypass during the 100-year storm will intercept 100% of the total Q. cfs cfs CONCLUSION: Inlet (L=25') designed to accommodate bypass during the 100-year storm will intercept 100% of the total Q. 10.08 0.00 INTERIM: Location FL El, Description Area C Tc 1 Qa Qbyp Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft ,{^9-t33.80; ^'''•4rLT'"' 463.82 AC spiilway on grade 0.46 1.0 5.00 7,64 3.51 0,00 3,51 3,8 0.30 4.5 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. EQUATIONS: Tc = f (11.9 x L^) / H l'^^^ Qi ^bvoasa CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. EQUATIONS: Tc = f (11.9 x L^) / H l'^^^ cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. EQUATIONS: Tc = f (11.9 x L^) / H l'^^^ 5.01 0.00 l=7.44xPexTc"°*^ Q = Cxl xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL(a + y)'^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d tt ac min in/hr cfs cfs cfs tt^ ft in ft in 209+33.80 55.5' LT 462.20 Type B Int. (mod) - sump 0.52 0.9 5,00 7.64 3.58 0.00 7.10 5.81 9.00 9.0 0.42 5.0 CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. wtr Surf. El. Top of Opening Spillway Depr, El, CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. tt ft ft CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 462.62 462,95 463,32 EQUATIONS. Qtot = QaJot + Qb + Q^ Clear curb Area - 3 x [ ( 2 x 1/2 x 2.5" x 1.5') -t- ( 6,5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 3.58 Channel Height = 1.0 Channel Top Width = 3,0 Channel Slope ^ 3,8 cfs ft ft Normal Depth = 0,55 ft Normal Velocity = 7,11 fps Normal Top Width = 1.74 ft Velocity Head = 0.78 ft Freeboard Needed = 0.138 ft Freeboard Provided = 0,45 ft Project: Side Ditch from 209+33.80 to 215+43.64 LT (20:11:14 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 3.58 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.78 ft normal depth 0.55 ft -> flow is supercritical (Yc > Yn) critical velocity 3.62 ft/sec critical top width 2.44 ft critical area 0.99 sq. ft critical slope 6.378140E-03 normal velocity 7.11 ft/sec normal top width 1.74 ft normal area 0.50 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E14.5 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 209-^33.80 0.0' RT 463.94 CSP Type B in sump 0.51 0.9 1231 53.3 6.27 5.69 2.60 EQUATIONS: Tc = [ ( 11.9xL^)/H ]^^^ l = 7,44xP6xTc"^^ Q = Cx I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E14.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 209+33.80 0.0' RT • 463.94 CSP Type B in sump 0.51 0.9 1231 53.3 6.27 6.60 3.02 EQUATIONS: Tc = [ ( 11.9xL^)/H]^°^ I = 7.44 X Pg X Tc'^^ Q = CxlxA DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Fiow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 3,02 3 0.1 0,03844 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ff 0.6 0,10 3 6 0,12 Median Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0.39 6.10 2.44 critical CSP inlet: Opening Wtr Surf, Height Elev. in in 9,0 4,7 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Median Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf, Elev. in the Ditch < Opening Height of the CSP Inlet Type B, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0.25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Median Ditch from 209+33.80 to 221+64.58 (20:42:28 on 04/12/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 3.02 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.038440 Manning coefficient 0.0160 RESULTS critical depth 0.56 ft normal depth 0.39 ft -> flow is supercritical (Yc > Yn) critical velocity 3.04 ft/sec critical top width 3.45 ft critical area 0.99 sq. ft critical slope 6.050754E-03 normal velocity 6.10 ft/sac normal top width 2.44 ft normal area 0.50 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line E Node: N E15 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 0 QbVD Qtot s y V ft ac ft ft min in/hr cfs cfs cfs % ft fps 209+33.80 55.5' RT 463.33 Type B-1 on grade 1.30 0.95 700 54,7 5.00 6.59 8.11 0.00 8.11 3,8 0,36 5.0 CONCLUSION: Inlet (L=28') Is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year Q. a Req'd L CONCLUSION: Inlet (L=28') Is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year Q. ft ft CONCLUSION: Inlet (L=28') Is over-sized to accommodate bypass during the 100-year storm, therefore will intercept 100% of the 50-year Q. 0.33 20 INTERIM: Location FLEI. Description Area C L H Tc 1 Oa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft ;209+33.»3. 41'RT^^ 463.82 AC spillway on grade 0.47 1.0 720 32.2 5.00 6.59 3.09 3.8 0.27 4,1 0.5 7 CONCLUSION: AC spillway has a Required L = 7', however, the min. L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11,9 x L^) / H ] I = 7.44 x Pg X Tc'-^^ Q = Cxl xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q/( 0.7 x ( a + y )^^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft "^''is^'-RTlF 462.20 Type B Int. (mod) - sump 0.68 0.9 720 55,8 5.00 6.59 4.01 7.10 5.81 9.00 9.0 0.39 CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 4.7 462,59 462.95 463.32 EOUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ff for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Fiowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line E Node: N E15 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Deschption Area C Tc 1 Q Qbvp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft > 209-^.80 55.5' RT 463.33 Type B-1 on grade 1.30 0.95 5.00 7.64 9,41 2.35 11.76 3,8 0.39 5.5 0.33 28 CONCLUSION • Inlet (L=28') designed to accommodate bypass during the 100-year storm will intercept 100% of the total Q. Qi INTERIM: cfs cfs INTERIM: 11.76 0,00 INTERIM: Location FL El, Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % tt fps ft ft ^9+33.80 -^41'RT 463.82 AC spiilway on grade 0.47 1.0 5.00 7.64 3,58 0.00 3,58 3,8 0,28 4.4 0,5 10 CONCLUSION • AC Soiilwav (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore Qi Qbypass spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H ] cfs cfs spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = f ( 11.9 x L^) / H ] 4.82 0,00 I = 7.44 X Ps X Tc- Q^ C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a+y)'^ Location FL El. Description Area C Tc t Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 42pM^.80/t, 55 5' RT 462.20 Type B Int, (mod) - sump 0.68 0,9 5.00 7.64 4,65 0,00 8.24 5.81 9,00 9,0 0.43 5.2 CONCLUSION : d is conservatively interpolated since il falls in a transitional state Wtr Surf, El. Top ol Opening Spillway Depr. El. between weir and orifice, Wtr Surf. El. < Top of Opening < Spiilway Depr. El,, therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q, ft ft ft between weir and orifice, Wtr Surf. El. < Top of Opening < Spiilway Depr. El,, therefore the Type B Inlet Interim (mod) acts as intercepts 100% of Q, 462.63 462,95 463.32 EOUATIONS: Qtot = Qa_tot + Qb + Q^yp Clear curb Area = 3 x [ ( 2 x 1/2 x 2,5" x 1.5') +( 6.5" x 3')] = 5.813 ft^ for 3 openings Ciear curb Length = ( 3 x 3') = 9' for 3 openings h - height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening - Flowline El. + h Spillway Depression El, = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 4,65 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 3.8 % Normal Depth = 0.61 ft Normal Velocity = 7,59 fps Normal Top Width- 1,92 ft Velocity Head = 0.89 ft Freeboard Needed = 0,15 ft Freeboard Provided = 0,39 tt Project: Side Ditch from 209+33.80 to 215+43.64 RT (13:37:47 on 04/13/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 4.65 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.038440 Manning coefficient 0-0160 RESULTS critiical depth 0.87 ft normal depth 0.61 ft -> flow is supercritical (Yc > Yn) critical velocity 3.81 ft/sec critical top width 2.71 ft critical area 1.22 sq. ft critical slope 6.164969E-03 normal velocity 7.59 ft/sec normal top width 1.92 ft normal area 0.61 sq. ft 00-YEAR INTERIM HYDRAUL C COMPUTATION: STORM DRAIN LINE E and related laterals ID Descrip Shape MatI Length Dia Q ft % cfs SDE1E101 SDE1E104 SDE1E106 SDE1 . SDE1E107 SDE1.5 . SDE4 SDE5 SDE5.5 SDE6 SDE7 SDE8 SDE9 SDEIO SDE11 SDE12 SDE13 : SDE14 SDE14.5 SDE15 SDE16 SDE17 SDE17.5 SDE18 SDE19 SDE20 18" RCP 18" RCP 18" RCP 30" RCP 18" RCP 30" RCP 18" RCP 18" RCP 18" RCP 24" RCP 24" RCP 18" RCP 24" RCP 18" RCP 30" RCP 30" RCP 18" RCP 18" RCP .-18": RCP 30"" RCP 36" RCP. 48" RCP 48" RCP 48" RCP i^' RCp; 48" RCP Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ. Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Circ Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Cone Conc> Cone Conc: Cone Cone Cone 56.00 40-00 64.00 276.03 88,00 8.97 • 12.25 35-50 5^.75 300,00 300.00 12,25 90.25- 58,35 300.00 300,00 -12.25 35.50 51.75 - 142.00 '52.00^ 97,00 66.00 365.20 128.00 16,00 0.012 0,012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0,012 0.012 0,012 0.012 0.012 0.012 0,012 0.012 0.012 . 0.012 0,012 - 0.012 0.012 0.012 0,012 8.61 10,00 7.56 3.14 8-26 3.14 10.00 2,00 2.00 5,02 2.87 10,94 2.79 * 40,63 5.17 3,96 14.45 3,00 3.00 12.33 0.50 0,50 8.32 3,95 48.66 2,00 14.53 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps efs ft SDE1E101 0.48 : . 15.16 ; 1.05 5.56 . 33.39 0.09 SDE1E104 0.57 17,83 1,26 6,83 35,99 0,22 SDE1E106 . 0.35 11.90 0.74 -4.30 31.29 0.29 SDE1 -1.31 16.38 2.19 9.40 78.74 1.31 SDE1E107 0.70 17,96 1,40 8,49 32,71 1,12 SDE1.5 1.39. 16.73 2.26 10.05 78.74 0.21 SDE4 ' - 0.48 16.41 1.10 5.80 35.99 0.52 SDE5 1.08 10,26 1,38 8.24 16,09 0.01 SDE5.5 . 1.00 10,08 1.34 \7.59 , 16.09 0.28 SDE6 0,88 16,51 1,68 7,84 54,91 1,19 SDE7 1.04 -13.42 1.68 7.84 41.52 -0.00 SDE8 0.45 16.56 1,06 5,59 37,64 0,49 SDE9 0^84 12.03 1.40 • 6.42 . , 40.94 0.64 SDEIO 0,17 18,01 0.54 3.57 72.54 0,20 SDE11 1.08 19.28 2.11 8.86 101.04 0.87 SDE12 1.17 17,47 2,11 8,86 88,43 0,06 SDE13 0.41 18.05 1.03 5.47 43.26 0.36 SDE14 0,81 11,52 1.28 7,00 19.71 0.02 SDE14.5 0.68 10.65 1.11 5.87 19.71 0.34 ' SDE15 1,03 29,12 2,36 11.61 156.03 1,45 SDE16 0.00 0.17 0.05 0.00 51.09 0.00 SDE17 2,02 8,73 2,25 7,67 110.04 1.63 SDE17.5 0.95 24.33 2.25 7.67 448.86 0.00 SDE18 1.15 18.65 2.25 7,67 309.28 1,21 SDE19 0.62 45.37 2.25 7.67 1085.51 1.16 SDE20 1.37 14 62 2.25 7,67 220.05 0,05 100-YEAR INTERI M HYDRAULIC COMPUTATU DN: STORM DRAIN LINE E and related ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDE1E101 NEtEIOI NE1E100. 1.14 0.50 529.54 524.08 530.02 527.25* SDE1E104 N E1E104 N E1E103 1.48 0.63 532.13 527.28 532.86 530.95 ;SDE1E106 NE1E106 • NE1E105 ' ,1.08 0.35 564.08 558.51 564.31 . 560.65 • - SDE1 NE1 NE1.5 2.50 1.33 • 512.90 502.06 514.27''-506.13 SDE1E107 N E1E107 N El .5 1.50 0.73 512.18 501.96 512.18 506.53 : SDE13 NE1.5 ' ' NE2 • 2.46 1.92 , ' 503.19 502,37 50476 -'* 604.46r' .SDE4 NE5,-- NE4 1.50 0.61 ' 510.51 , 508.05 510.822 '•^1510.29'^ SDE5 N E5.5 N E4 1.50 1.50 510.64 510.12 511.6r 511.07 SDE5.5 NE6 ' ' -, N E5.5 1.50 1.50 , 511.53 ' 510.64 512.32; % -511.61-"^^ SDE6 N E4 N E7 2,00 0.88 510.12 493.06 511.07 497.29 •;SDE7 * ' N £7 >" 'NE8 ' 1.68 1.04 . 493.53 " ' 484.29 •"• 494.48^"' 487.07'i'" ""SDE8 N E9 N E8 1.50 0.57 486.43 483.94 486.74 486.25 ; SDE9 ' NE11 tN E8 2.00 o:87^ 488.00 484.33 ^ 488.64' ; .7^486.39?'.-, SDEIO N E11.5 N Ell 0.75 0.17 510.75 486.46 510.94 491.53 ; SDE11 NEB ; NE12 2.50 . - 1.09 i 485.90 . 468.50 -V 487.12"^ .i474;20';-'- SDE12 NE12 ' N E13 2,17 1.17 469.25 456,71 470.47 461.38 ' SDE13 ' ' NE14:'^^ NE13 , ' 1.50 ' ^1.50h-, 458.85^^ 459.02 459.08 ^^461.l2??f sbE14 N EI4.5'" N E13 1.50 1.50 459.33 459.02 459.96 " 461.12 , SDE14.5 ^ 'riEis T N El 43 i-5o''.;i \ 459.90, - ' 459.33- V i-460.181| SDE15 " 'N E13 N E16 2.50 1,09 ' 459.02 438.79 461.12 450.22 SDE16 ',r'4NE17 NE16 :r3.oo5.\ 441.23.-' 441.24,, ; ,441.237^ SDE17 ' ' N E16 N El 7.5" 3.87 2.03 441.24 438.92 442,16 440.10 SDE17.5 '-.NEIT'.S'.:-^ N E18 • - -. '2:25 • 1:11 V: r438.8tr 432,18 ^;439;72i^ |tjS8:2i:'u*f SDE18 N E18 N EI9' 3.45 1.16 434.19 417.48 435.11 422.82 • SDE19 " ''NE19 'NE19.5-- 3.41 0.63 r f4t9.^40 • 354.34 "'420"3t"^ ^l334JZP^_ SDE20 N E19.5 N E20 2.29 1.79 355.67 354.85 356.59 356.47 aterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Veto Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstnn Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDE1E101; ^j3529.90|:ii ;r^525.083:: ^:;,528.40^ Crr.f-:i523.58,f,^ ^^11^25';^ SDE1E104 528.15 • «, .^ ^^ 530,65'"" 526,65"""'"^ 6.16 "I5T34 SDE1E10& . 564.50- ;. 559.66 ' 1:15'.T! "563.00 ~-' 558.16' 2.72 • . 11.69-- SDE1 , ' . ,511.90 . _ • 509.40 . 500.73 -; 8.72^-;.^ „n'16.17-. '; SDE1E107 ' 510.00" 502.73 -0.77 508.50 501.23 8.22 17.12 SDE1.5 .\* -502.95 • - ' 0.58"?' 500.73 ' ^ 500.45-" 9.58", ' t1.58 ^ SDE4 515.78 517.45 . 5.27 9.40 -508.67 ^7 507.44"' ' 4.56 - V 11.97 •: SDE5 517.51 517.45 6,88 7.33 507.93 507,23 7.93 7.93 SDE5.5 515.78 -517.51 4.25 6.88 . 509.03 , " S07.§9 7.15 - 7.15''': SDE6 517.45 506.54 7,33 13,47 507.25 492.18 7.02 16.47 SDE7 506.54 491.93 13.01 7.64 491.85 483.25 7.84 \ 13.38 SDE8 490.25 491.93 3,82 7.99 484.71 483.37 4.20 12.18 SDE9 490.25 491.93 2.25 7.59 485.96 483.46 4.81 -^ 11.50- SDEIO 515.75 490.25 5.00 3.79 510,00 486.29 2.31 17.90 SDE11 . "491.93 475.99 6.02 7.50 482.92 • 467.41 7.98 19.13 SDE12 475.99 463.86 6.74 715 467.08 455.54 8.65 1732 SDE13 .462.20 463.86 3.35 4.84 • 457.20 455.43 4,01 4.01 • SDE14 463.94 463.86 4-61 4.84 456.39 455.32 6.37 6,37 SDE14.5 - 462.20 463.94 2.30 4.61 458.03 456.48 4.66 4.66 ' SDE15 463,86 458.14 4.84 19.35 455.21 437.70 11,35 27.08 SDE16 440.96 458.14 -16.90 437.96 437.70 0.00 0.00 SDE17 458.14 458.00 16,90 19.08 437.37 436,89 4.48 8.69 SDE17,5 458.00 439.00 ; 19.20 6:82 436.56 431.07 : 7.67 19.68 SDE18 439.00 425,57 4,81 8,09" 430.74 416.32 4.83 18,52 SDE19 425.57 365.25 6.17 10.91 415.99 353.71 , 4.89 43.78 SDE20 365,25 357,06 9.58 2,21 353,38 353,06 7.49 10,20 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE E and related laterals ULTIMATE vs. INTERIM Computations: 1. ) Culverts SDE1E101, SDE1E104, and SDE1E106 drain watersheds that are similar in both senarios, therefore no Ultimate computations are necessary. 2. ) Culverts SDEl. SDEl El07, and SDE1,5 drain watersheds that are similar in both senarios, therefore no Ultimate computations are necessary. 3. ) Interim computations for SDE5 & SDE5.5 and SDE14 & SDE14.5 are shown as Ultimate computations SDE5 and SDEl 4, respectively, 4. ) No Ultimate computations are necessary for culverts SDE17.5, SDE18, SDE19, and SDE20 since these are interim facilities only. ID Descrip Shape MatI Length N s Dia Q ft % ft cfs . SDE4 18" RCP , Circ_ Cone 12.25 ^ 0.012 , 10.00 1.50 SDE5 18" RCP Circ Cone 35.50 0.012 2.00 1,50 12.45 SDE6 . 24-RCP " Circ Cone 300.00, 0.012. 5.02 • 2-00> X ••:20.1lJ(> SDE7 24" RCP Cire Cone 300.00 0.012 2,87 2.00 20.11 SDE8 18" RCP Circ ' Cwic . J2.25 '0.012 10.94" -. • .4.50,-,^ • SDE9 24" RCP Circ Cone 90.25 0.012 2.79 2.00* 20.59 SDEIO 18" RCP Circ COTIG 58.35 0.012 • 40.63 .,1.50 8.66 ' SDE11 30" RCP Circ Cone 300,00 0.012 5,17 2.50 41.00 SDE12 30" RCP Ctrc Cone ' ^ 300.00 \' 0.012 3.96 - • 2.50 '' 41.00 SDE13 18" RCP Circ Cone 12.25 0.012 14,45 1.50 10.08 SDE14 18" RCP , Circ . CorxG 35.50 0.012 , 3.00 1.50 . ' r11>6 ; SDE15 30" RCP Cire Cone 142,00 0.012 12,33 2.50 62.73 SDE16 .38" RCP ^ Circ • Cone - 5Z0O ' 0.012 0.50^ -.3.00 . 45.70. SDE17 48" RCP Circ Cone 97.00 0.012 0.50 4.00 108.42 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft SDE4 ; 0.47 ,•16.22 1.08 ' 5.69 35.99 0.50 SDE5 0.99 10.07 1.33 7.51 16.09 0.27 SDE6 0.84 , ' '16.11 1.61 -:7.42 • • 54.91 • 1.05 , SDE7 0.98 " 13.12 1,61 7.42 41.52 0.00 SDE8 0.45 _ . ' 16.48 1.05' 5.54 •" 37.64 0.48 ' SDE9 1,00 13.06 1,63 7.52 40.94 0.73 • SDEIO 0.35 27.64 * 1.14> 6.01 72.54 0.56 SDEll 1.11 19.52 2,15 9.13 101.04 1.12 SDEl 2 1.20 17.67 " 2.15 9.13 88.43 0.07 SDE13 0.49 19.95 1,22 6.53 43.26 0.51 SDEl 4: 0.84 11.64 1.30 7.21 19.71 0.69. SDE15 1.10 30.05 2.41 12,93 156,03 1.98 SDE16 ' 2.20 8.23 2.20 • 8.22 51.09 0.65 SDE17 3.23 9.98 3,15 10.21 110,04 1.74 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft . SDE4 -NE5 NE4 1.50 0.59 .510.44 508.03 ; 510.75 510.24 SDE5 N E6 N E4 1,50 1,50 511.22 509,91 511,99 510.76 SDE6-. NE4 NE7 2.00 0.84 =. 509.91 493.02 510.76 497.05 t SDE7 N E7 N E8 1.61 0,98 493.46 484,23 494,32 486.90 SDE8 N E9 NE8 1.50 ; 0.56 : 486.40 ; 483.93 ; 486.71 486.22 SDE9 N Ell N E8 2.00 1.05 488.32 484.51 489.20 486.87 SDEIO NE11.5 NE11 1.50 : 0.36 511.96 486.65 512.26 497.91 SDEll N E8 N E12 2.50 1,12 486,19 468.53 487.49 474.36 SDE12 NE12 NE13 2.22 -1.20 469.30 456.74 470.59 461.52 SDE13 N E14 N E13 1.50 1,50 459.62 459,60 460.12 462.19 SDEl 4 NE15 NE13 1.50 1.50 461.17 459.60 461.86 462.19 SDE15 N E13 N El 6 2,50 1.17 459.60 438,87 462.19 450.84 SDE16 N E17 . NE16 3.00 , 3.00 443.19 442.34 : ^443.84 443.89 .;> SDE17 N E16 N E17,5 4,00 3.15 442-34 440,04 ' 443.89 441.33 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE E and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Veto ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDE4 516.91 517.45 6.47 9.41 508.67 507.44 4.37 •11.69,*^^ SDE5 516,91 517.45 5,69 7.54 509-03 507,23 7,05 7,05 SDE6 517.45 506.54 7.54 . 13.52:., 507.25 492.18 6.40 , . •s16.08jiji SDE7 506,54 491,93 13,08 7,69 491,85 483,25 7.42 13.08 SDE8 491.38 491.93 4.98 8.00 484.71 483.37 4.13 : •;i2.i2! " SDE9 491.38 491,93 3,06 7,42 485.96 483-46 6,55 12,32 SDEIO 515.75 490.25. 3.79 3.60 : 510.00 486.29 4.90 • SDE11 491.93 475.99 5-74 7,47 482.92 467,41 8.35 'l9.36 SDE12 475.99 463.86 6.70 • 7.12 467.08 455.54 SDE13 463.33 463,86 3,71 4,27 457,20 455.43 5,70 5,70 SDE14 , - 463.33 J 463.86 2.16 ' 4.26 458.03 ; 455.32 : ' 6.66 "S SDE15 463,86 458-14 4,26 19,27 455.21 437.70 12,78 2772 SDE16 ;440.96 : 458.14 -: .15.80 \ >437.96 437.70 6.47 .- '^ SDE17 458.14 458,00 15,80 17,96 437,37 436.89 8.63 10.21 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. ••a m INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F1 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL EI. Description Area C L H Tc I Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 240+32.50 65.5' LT 508.12 Type B-1 on grade 2,11 0.95 1100 22.3 7.70 4.99 9,99 3,9 0,38 5.3 0.33 24 CQNCLUSIQN: Required L {=24') will intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area C L H Tc 1 Qa S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 240+32.50 41'LT 508.61 AC spillway on grade 0,77 1.0 1100 21,8 7.76 4.96 3.84 3.9 0.21 4.5 0.5 9 CONCLUSION: AC spillway has a Required L - 10" the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H ] I = 7.44 X Pg X Te"-^^ Q = C X I X A y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )^ ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft \2404<^.50; 506.99 Type B Int. (mod) - sump 1.17 0.9 1100 22.3 7,69 4.99 5.26 9.10 5.81 9.00 9.0 0.53 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 6.3 507.51 507.74 508.11 EQUATIONS: Qtot = Qa -i- Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ff for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline EL + d Top of Opening = Flowline El. + h Spiilway Depression E!. = Flowline El, for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N Fl P6= 2.9 in. Minimum Tc 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qbvo Qtot S y V a L ft ae min in/hr cfs cfs cfs % ft fps ft ft 240+32.50 55.5* LT' 508.12 Type B-1 on grade 2.11 0.95 7.70 5.79 11.59 0.00 11,59 3.9 0.40 5.4 0.33 27 CONCLUSION: Inlet (L=25'} designed for 50-year storm will intercept 10.69 efs of the total Q. Qi Qbvoass CONCLUSION: Inlet (L=25'} designed for 50-year storm will intercept 10.69 efs of the total Q. cfs efs CONCLUSION: Inlet (L=25'} designed for 50-year storm will intercept 10.69 efs of the total Q. 11.59 0.00 INTERIM: Location FL Ei. Description Area C Tc 1 Qa Qbvp Qa_tol S y V a L ft ac min in/hr cfs efs cfs % ft fps ft ft 240+32,50 /' 41" LT 508,61 AC spillway on grade 0,77 1.0 7.76 5.75 4.45 0.00 4.45 3.9 0.30 4.6 0.5 10 CONCLUSION: AC Spillway L=10' designed for 50-year storm will intercept 100%> of the 100-yr Q EQUATIONS: Tc = f ( 11.9 x L^) / H 1^^= Qi Qbypass CONCLUSION: AC Spillway L=10' designed for 50-year storm will intercept 100%> of the 100-yr Q EQUATIONS: Tc = f ( 11.9 x L^) / H 1^^= cfs cfs CONCLUSION: AC Spillway L=10' designed for 50-year storm will intercept 100%> of the 100-yr Q EQUATIONS: Tc = f ( 11.9 x L^) / H 1^^= 5.01 0,00 I = 7.44 x Pg X Tc"^^ 0 = C X 1 X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway 01= 0.7xL(a-i-y)'-^ Location FL El. Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft^ ft in ft in 3 240+32.50 ••"••5^'W:^ 506.99 Type B Int. (mod) - sump 1.17 0,9 7.69 5.79 6.10 0.00 10.55 5,81 9.00 9.0 0.58 70 CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, ft ft ft CONCLUSION: d is conservatively interpolated since il falls in a transitional state between weir and orifice. Wtr Surf. El, < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 507.57 507.74 508,11 EQUATIONS: Qtot = Qa_tot + Qb + Qcyp Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to iniet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface EL = Flowline El, + d Top of Opening = Flowline El. + h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 6,10 cfs Channel Height = 1.0 ft Channel Top Width = .3,0 ft Channel Slope = 3.96 % Normal Depth = 0.45 ft Normal Velocity = 8.08 fps Normal Top Width = 2.35 ft Velocity Head = 1,01 ft Freeboard Needed = 0,113 ft Freeboard Provided = 0.55 ft Project: Side A.C. Ditch from 235+05 to 240+26.50 LT (11:42:56 on 02/22/01} DAR Open Channel Flow Analysis & Design (Version 4.00): Normal /Critical Dept:h INPUTS trapezoidal section flow rate 6.10 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0-039610 Manning coefficient 0.0160 RESULTS critical depth 0.74 ft normal depth 0.45 ft -> flow is supercritical (Yc > Yn) critical velocity 3.94 ft/sec critical top width 3.21 ft critical area 1.55 sq. ft critical slope 5.656042E-03 normal velocity 8.08 ft/sec normal top width 2.35 ft normal area 0.76 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F2.5 Ps- 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 240+32.50 0.0'LT 508.83 CSP Type B in sump 0.44 0.9 1100 21.6 7.79 4.95 1.94 EQUATIONS: Tc = [(11,9xL^)/H]^^^ I = 7.44 X Ps X Tc-"^ 0 = C X I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F2.5 PB- 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs -240+32.50; • 0.0'LT 508.83 CSP Type B in sump 0,44 0.9 1100 21.6 7.79 5.74 2,25 EQUATIONS: Tc = E( ILSKL'^j/H l = 7.44xP6xTc"^^ Q = Cx I xA DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 2,25 3 0.1 0.0396 0.015 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0,5 0,06 3 6 0.27 Median Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.24 5,52 2.43 CSP Inlet: Opening Height Wtr Surf. Elev. in in 8,0 2.9 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, fwledian Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev, in the Ditch < Opening Height of the CSP Inlet Type B, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flaftest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed - 0,25 x Normal Depth for Supercritica! flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Median Ditch from 235+05 to 240+31 (11:50:19 on 02/22/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 2.25 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.039610 Manning coefficient 0.0150 RESULTS critical depth 0-38 ft normal depth 0-24 ft -> flow is supercritical (Yc > Yn) critical velocity 2.81 ft/sec critical top width 3.26 ft critical area 0.80 sq. ft critical slope 6.254661E-03 normal velocity 5.52 ft/sec normal top width 2.43 ft normal area 0.41 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F3 ULTIMATE: Pg- 2.5 in. Minimum Tc = 5 min. Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ae ft ft min in/hr cfs % ft fps ft ft 240432^ 55.5'RT - 508.12 Type B-1 on grade 2.31 0,95 956 22.3 6.54 5.54 14.22 3.9 0,42 5.6 0.33 31 CONCLUSION: Required L (=30'} will intercept 100% of the 50-year Q (Note: Q increased due to the addition of a curb outlet upstream - Contributing Flows below). See INTERIM: Location FL El. Description Area C L H Tc I Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 240+^.50 41'RT^ 508.61 AC spillway on grade 0.76 1.0 1100 21.8 7.76 4.96 3.75 3.9 0.29 4.5 0.5 8 CONCLUSION: AC spillway has a Required L = 8', however, the min, L-value is L = 10', therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H J I = 7.44 X Pg X Tc" Q = (CxlxA)+Qe where Qc exits into gufter via a Curb Outlet at Sta 236+76 y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details lor AC spillway Required L = Q / ( 0.7 x ( a -t- y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El. Deseription Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 240+32.50'i. • ^'55!V'-FiTS- 506.99 Type B Int. (mod) - sump 1,40 0.90 1100 22.3 7.69 4.99 6.29 12.11 5,81 9.00 9.0 0,67 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, d Wtr Surf, El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, in ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice, Wtr Surf. Elev. < Top of Opening < Spillway Depr. Elev., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 8.0 507,66 507,74 508.11 EQUATIONS: Qtot = Qa + Qb + Qe Clear curb Area = 3 x [ { 2 x 1/2 x 2,5" x 1,5') -H ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = { 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression CONTRIBU SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH ING FLOWS: Node ID FL El. Description Area C L H Tc 1 Qc ft ac ft ft min in/hr cfs N F3F301 545.09 downdrain 0.35 0.90 250 22,9 5.00 6.59 2.07 SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF TERRACE DOWNDRAINS INLET ANALYSIS: 100 Year Storm - PART 1 Drainage System: Storm Drain Line F Node: N F3 Pg- 2.9 in. linimum Tc = 5 min. U7.44xPsxTc""^ Q = (CxlxA) + Qc where Qc exits into gutter via a Curb Outlet at Sta 236-1-76 y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway 01= 0.7xL(a + y)'^ Location FL El. Description Area C Tc 1 0 QbVD Qtot S y V a L ft ae min in/hr cfs cfs cfs % ft fps ft ft 240-^2.50: 55.5' RT 508.12 Type B-1 on grade 2.31 0.95 6.70 6.33 16-29 0.00 16.29 3.9 0.43 5,8 0.33 30 CONCLUSION: Inlet (L=30') designed for 50-year storm will intercept 13,87 els of the total Q. (Note: Q increased due to the Qi Qbvoass addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2), INTERIM: cfs efs addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2), INTERIM: 13.87 2.42 addition of a curb outlet upstream - See Contributing Flows shown on sheet PART 2), INTERIM: Location FL El. Description Area C Tc 1 Oa Qbvo Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 240+32.50 41'RT* ' 508.61 AC spillway on grade 0.76 1.0 7,76 5.75 4.36 0,00 4.36 3.9 0.30 4.6 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. Qi Qbypass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length restrictions, therefore spillway will intercept 100% of the 100-year 0. cfs cfs EQUATIONS: Tc = i(11,gxL^)/H]-'^^ 5.01 0,00 Location FL El. Description Area C Tc 1 Qb QbvP Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr cfs cfs cfs ft in ft in |^0+32.5p:r ''%5l5'^'Rf"=^- 506.99 Type B Int. (mod) - sump 1.40 0.90 7,69 5.79 7.29 0.00 14.05 5.81 9.00 9,0 0.80 9,6 CONCLUSION: d is conservatively interpolated since it falls in a transitional state Wtr Surf. El. Top of Opening Spillway Depr. El. between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. ft ft ft between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El,, therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 507.79 507,74 508.11 EQUATIONS: Otot = Qa_tot + Qb -f Q^yp + Qc Clear curb Area = 3 x [ ( 2 x 1/2 x 2.5" x 1.5') -h ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface El. = Flowline El, + d Top of Opening = Flowline El. -i- h Spillway Depression El, = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: Link - SDF3F3Q0 DAR Open Channel Flow Analysis & Design (See attached sheet tor onginal output) Flow Rale = 9.69 cfs Channel Height - 1.0 ft Channel Top Width = 3,0 ft Channel Slope = 3,96 % Normal Depth = 0.57 ft Normal Velocity = 9.14 fps Normal Top Width = 2.71 ft Velocity Head = 1.30 ft Freeboard Needed = 0.14 ft Freeboard Provided = 0.43 ft INLET ANALYSIS: 100 Year Storm - PART 2 Drainage System: Storm Drain Line F Node: N F3 P6= 2.9 in. Minimum Tc = 5 min. CONTRIBUTING FLOWS: Node ID FL El. Description Area C L H Tc 1 Qe ft ac ft ft min in/hr efs N F3F301 545.09 downdrain 0.35 0.90 250 22,9 5.00 7.64 2.40 EQUATIONS: Tc = [ ( 11,9x L^)/H ]^^^ | = 7,44xPsxTc"^^ Q = C X IxA CAPACITY CHECK OF TERRACE DOWNDRAIN: Link SDF3F301 Geopak Hydraulics (See Technical Reference) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ. 2.40 2 0.5000 0.016 Channel Sizing; Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 2.1 0.03 2 1.00 0.90 downdrain Output: Flow Normal Normal Normal Type Depth Velocity Top Width ft fps ft Super-0.10 11.65 0.20 critical CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace DownDrain (see details) adequately accommodates the 100-year storm. CAPACITY CHECK OF TERRACE DITCH UPSTREAM OF DOWNDRAIN: Link SDF3F302 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ, 2.40 3 0.0235 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 0.4 0,09 3 1.00 0.65 D Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.35 5.20 1,93 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Terrace Ditch Type D (SDRSD D-75) adequately accommodates the 100-year storm. EOUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed - 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Side Ditch from 235+05 to 240+26.50 Link: SDF3F300 (11:15:31 on 02/22/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 9.69 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.03961 Manning coefficient 0.0160 RESULTS critical depth 0.93 ft normal depth 0.57 ft -> flow is supercritical (Yc > Yn) critical velocity 4.35 ft/sec critical top width 3.79 ft critical area 2.23 sq. ft critical slope 5.356374E-03 normal velocity 9.14 ft/sec normal top width 2.71 ft normal area 1.06 sq. ft Project: Terrace Ditch Type D from 233+52 to 236+67.5 Link: SDF3F302 (15:43:35 on 02/05/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.40 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.023500 Manning coefficient 0.0160 RESULTS critical depth 0.48 ft normal depth 0.3 5 ft -> flow is supercritical (Yc > Yn) critical velocity 3.27 ft/sec critical top width 2.20 ft critical area 0.73 sq. ft critical slope 6.281567E-03 normal velocity 5.20 ft/sec normal top width 1.93 ft normal area 0.4 6 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F9.5 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr efs % ft fps ft ft 242+13.97: 55.5* RT^- 500,97 Type B on grade 0.26 0.95 260 11.0 5,00 6,59 1.63 4.6 0,20 4.1 0.33 6 CONCLUSION: Required L (=6') will intercept 100% of the 50-year Q, INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr efs % ft fps ft ft 242+13.97 41'RT 501.36 AC spillway on grade 0.11 1.0 188 10.6 5.00 6.59 0,70 4.6 0.20 4.3 0.5 2 CONCLUSION: AC spillway has a Required L = 2', however, due to the 0.66% cross-slope at this location the ponded width is unacceptably large, therefore, a 2' wide x 6" deep "spillway AC Ditch" is constructed along the EP per the details. This ditch begins upstream at station 240+63,81 and continues to the AC spillway at 242+13,97. And the resulting data is as follows: Area C Tc 1 0 S y ac min in/hr cfs % ft 0.19 1,0 5.00 6.59 1,28 4.6 0.20 EQUATIONS: Tc = f ( 11.9 x L^) / H 1^^^ l = 7,44xP5xTc-"^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = 0 / (0.7 x ( a + y )'^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El, Description Area C L H Tc 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft 242+13.97 • 55.62* RT 499,74 Type B Int. (mod) - sump 0.09 0.9 188 12.3 5.00 6-59 0.55 1.25 5,81 9,00 9.0 0.15 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El, Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 1,8 499.89 500.49 500.86 EQUATIONS: Qtot = Qa + Qb Clear curb Area = 3 x [ ( 2 x 1/2 x 2,5" x 1.5') + ( 6.5" x 3') ] = 5.813 f^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No, 12 Water Surface El. = Flowline El. + d Top of Opening = Flowline El, + h Spillway Depression El, - Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH AND SPILLWAY A.C, DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F9.5 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area c Tc 1 Q Qovp Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft :242+la97, :--'55.6Mf- 500,97 Type B on grade 0,26 0.95 5.00 7,64 1,89 2.42 4.31 4.6 0,25 4.4 0.33 6 CONCLUSION: Inlet (L=6') designed for 50-year storm will intercept 1,86 cfs of the total Q. Qi ^bypass CONCLUSION: Inlet (L=6') designed for 50-year storm will intercept 1,86 cfs of the total Q. efs cfs CONCLUSION: Inlet (L=6') designed for 50-year storm will intercept 1,86 cfs of the total Q. 1.86 2.45 INTERIM: Location FL El. Description Area C Tc 1 Qa ObVP Qa_tot S y V a L ft ae min in/hr cfs efs cfs % ft fps ft ft 242+13.97 "41' RT-- 501.36 AC spillway on grade 0.11 1.0 5.00 7,64 0.82 0,00 0.82 4.6 0,20 4.3 0.5 10 CONCLUSION: AC Spillway is designed with a spillway ditch (see details) connected to it that will convey 100% of the 100-year Q, Qi Qbvoass CONCLUSION: AC Spillway is designed with a spillway ditch (see details) connected to it that will convey 100% of the 100-year Q, cfs cfs EQUATIONS: Tc = [ ( 11.9 x L' ) / H 1^'' 4.10 0.00 l = 7.44xp6xTc^'^ Q = C X I x A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)'^ Location FL El, Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ae min in/hr cfs efs cfs ft^ ft in ft in 499,74 Type B Int. (mod) - sump 0.09 0.9 5.00 7,64 0.63 0.00 1.45 5.81 9,00 9.0 0.16 2.0 CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. Wtr Surf, El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El, < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 499,90 500,49 500.86 EOUATIONS Qtot - Oajot + Qb + Q„yp Clear curb Area = 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6,5" x 3') ] = 5.813 ff for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d - depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface Ei. = Flowline El. + d Top of Opening - Flowline El. + h Spillway Depression El. = Flowline El, for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE A,C, DITCH: DAR Open Channel Flow Analysis & Design {See attached sheet for original output) Flow Rate = 0.63 cfs Channel Height ^ 1,0 ft Channel Top Width = 3,0 ft Channel Slope = 4.6 % Normal Depth = 0.26 ft Normal Velocity = 4.95 fps Normal Top Width = 0.88 ft Velocity Head = 0.38 ft Freeboard Needed = 0.07 ft Freeboard Provided = 0.74 ft CAPACITY CHECK OF UPSTREAM SPILLWAY A.C. DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 0.82 cfs Channel Height = 0.5 ft Channel Top Width = 2.0 ft Channel Slope = 4.6 % Normal Depth = 0.25 ft Normal Velocity = 5.34 fps Normal Top Width = 1.11 ft Velocity Head = 0.44 ft Freeboard Needed = 0.06 ft Freeboard Provided = 0.25 ft Project: Side Ditch from 240+38.50 to 242+07.97 LT (21:22:15 on 02/25/01) Project: Spillway A.C. Ditch from 240+63.81 to 242+13.97 (21:22:15on 02/25/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rale 0.63 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.046390 Manning coefficient 0.0160 RESULTS critical depth 0.37 ft normal depth 0.26 ft -> flow is supercritical {Yc > Yn) critical velocity 2.55 ft/sec critical top width 1,22 ft critical area 0.25 sq. ft eritieal slope 7.972116E-03 normal velocity 4.95 ft/sec normal top width 0.88 ft normal area 0,13 sq. ft INPUTS trapezoidal section flow rate 0.82 cfs bottom width 0.10 ft side slope of trapezoidal section 2.000 slope of invert or channel bottom 0.046390 Manning coefficient 0.0150 RESULTS critical depth 0.38 ft normal depth 0.25 ft -> flow is supercritical (Yc > Yn) critical velocity 2.54 ft/sec critical top width 1,61 ft critical area 0.32 sq. ft critical slope 6.443090E-03 normal velocity 5.34 ft/sec normal top width 1.11 ft normal area 0.15 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System; Storm Drain Line F Node: N F10.5 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C L H Tc 1 O S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 245+95.52. "e.75'RT* 481.67 Type B on grade 0.41 1.0 540 24.3 5.00 6.59 2.70 5.6 0.25 4.9 0 32 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 50-year 0, INTERIM: Location FL El. Description Area C L H Tc 1 0 S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 245+95.52 6.75" RT 481.67 Type B on grade 0,30 1.0 505 24.3 5.00 6.59 1.95 5,6 0.22 4.8 0 26 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 50-year O. EQUATIONS: Tc = [ (11.9 x L^) / H ]^'' 1 = 7.44 x Pg X Tc Q = CxI xA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of fiow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = Q / ( 0.7 x ( a + y )^ ^) = 30' maximum for Type B-1 inlet SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F10.5 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El, Description Area C Tc 1 Q Qbvp Qtot S y V a L ft ae min in/hr efs cfs cfs % ft fps ft ft 245+95.52 ' 6.75' RT 481.67 Type B on grade 0.41 1.0 5,00 7,64 3.13 2.45 5.58 5.6 0.29 5.3 0 35 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. Qi Qbvoass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. cfs efs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. 5.58 0,00 INTERIM: Location FL El, Description Area c Te 1 Q Qbvo Qtot S y V a L ft ae min in/hr efs efs cfs % ft fps ft ft . 245+95.52 *16.75'RT 481.67 Type B on grade 0.30 1.0 5.00 7.64 2.26 0.00 2.26 5.6 0.24 4.9 0 28 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. EQUATIONS; Tc = [ ( 11.9 x L^) / H 1^^^ Qi Qbypass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. EQUATIONS; Tc = [ ( 11.9 x L^) / H 1^^^ cfs efs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.85' of slotted CSP drain to intercept 100% of the 100-year Q. EQUATIONS; Tc = [ ( 11.9 x L^) / H 1^^^ 2.26 0.00 Q = CxlxA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = 0 / ( 0.7 x { a + y )^^) = 30' maximum for Type B-1 inlet CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN: Link SDF8.75 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = Pipe Diameter - Slope = 5,58 1.5 5.6 cfs ft % Normal Depth = 0.67 ft Normal Velocity = 7.27 fps Normal Top Width = 1,49 ft Velocity Head = 0.82 ft Freeboard Needed = 0.17 ft Freeboard Provided = 0.83 ft NOTE: Ultimate condition analyzed only since it is the larger of the 2 flows. Project: Slotted CSP Drain from 242+96.71 to 245+91.37 Link: SDF8.75 13:12:10 on 02/04/01) DAR Open Channel Flow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS circular section flow rate 5.58 cfs pipe diameter 1.50 ft slope of invert or channel bottom 0.056150 Manning coefficient 0.0240 RESULTS critical depth 0.91 ft normal depth 0.67 ft -> flow is supercritical (Yc > Yn) critical velocity 4.97 ft/sec critical top width 1.47 ft critical area 1.12 sq. ft critical slope 2.052093E-02 normal velocity 7.27 ft/sec normal top width 1.49 ft normal area 0.77 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F10.75 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 245+91.13 O.b' LT 481 -02 CSP Type B in sump 0.24 0.90 560 29.0 5.00 6,59 1,39 EQUATIONS: Tc = [(11,9xL^)/H]^^^ l = 7,44xP5xTc'^^ Q = C X I X A INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F10.75 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q ft ac ft ft min in/hr efs -245+91.13, o.oaT • • 481,02 CSP Type B in sump 0.24 0.90 560 29.0 5.00 7,64 1.62 EQUATIONS: Tc = [(11.9xL^)/H]^^^ I = 7.44 X Pg X Te'"^ O = C X 1 X A DAR Open Channel Flow Analysis & Design {See attached sheet for original output) Input: Channel Flow Side Bottom Channel Mannings Section Rate Slope Width Slope coeff. cfs ft ft/ft Trap, 1,62 3 0.1 0,05615 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft in ft 0,6 0,07 3 6 0.23 Median Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.28 6.01 1.80 CSP Inlet: Opening Height Wtr Surf. Elev. in in 8,0 3.4 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Median Ditch (See Details) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev. in the Ditch < Opening Height of the CSP Inlet Type B, 100% of the 100-year storm is intercepted. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Height - Normal Depth Project: Median Ditch from 240+34 to 244+41.13 (12:55:04 on 02/27/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 1-62 cfs bottom width 0.10 ft side slope of trapezoidal section 3.000 slope of invert or channel bottom 0.056150 Manning coefficient 0.0160 RESULTS critical depth 0.43 ft normal depth 0.28 ft -> flow is supercritical (Yc > Yn) critical velocity 2.69 ft/sec critical top width 2.69ft critical area 0.60 sq. ft critical slope 6.571476E-03 normal velocity 6.01 ft/sec normal top width 1.80 ft normal area 0.27 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F11.5 PG= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Te 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 248+98.45 6.75' FT • 464.66 Type B on grade 0.30 1.0 430 23.3 5.00 6,59 1.97 5.6 0.23 4.9 0 26 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.9' of slotted CSP drain to intercept 100% of the 50-year Q. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F11.5 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Tc 1 Q Qbyp Qtot S y V a L ft ac min in/hr cfs cfs efs % ft fps ft ft 248+98.45 ' 6.75'RT - " 464.66 Type B on grade 0.30 1.0 5.00 7.64 2.28 0.00 2,28 5.6 0.23 5.3 0 29 CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.9' of slotted CSP drain to intercept 100% of the 100-year Q, Qi Qbvoass CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.9' of slotted CSP drain to intercept 100% of the 100-year Q, cfs cfs CONCLUSION: Due to a limited allowance for ponded width, a 4' curb opening is utilized with 295.9' of slotted CSP drain to intercept 100% of the 100-year Q, 2,28 0.00 EQUATIONS: Tc = [ ( 11.9 x L") / H I = 7.44 X Pg X Te-"^ Q = CxlxA y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets except for median inlets in super elevated crossfalls. Required L = Q / (0.7 x { a + y )' ^) = 30' maximum for Type B-1 inlet CAPACITY CHECK OF UPSTREAM SLOTTED CSP DRAIN: DAR Open Channel Fiow Analysis & Design (See attached sheet for original output) Flow Rate = Pipe Diameter = Slope = 2.28 1.5 5.6 cfs ft % Normal Depth = 0.42 ft Normal Velocity = 5.68 fps Normal Top Width - 1,34 ft Velocity Head = 0,50 ft Freeboard Needed = 0.11 ft Freeboard Provided = 1.08 ft INTERIM: CONCLUSION: Slotted drain not installed in Interim condition. Type B inlet is buried (see profiles). INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F12 P6= 2.5 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ae ft ft min in/hr efs % ft fps ft ft ;„24&t-98.45& 463.16 Type B-1 on grade 1.30 1.0 875 48.8 5.00 6.59 8.59 5.6 0.34 5.9 0.33 22 CONCLUSION: Required L (=22') wilt intercept 100% of the 50-year Q. INTERIM: Location FL El. Description Area c L H Te 1 0 S y V a Req'd L ft ae ft ft min in/hr efs % ft fps ft ft 248+98.45 ."41*LT 463.65 AC spillway on grade 0,86 1.0 900 47.4 5,00 6.59 5.68 5.6 0.30 5,5 0.5 11 CONCLUSION: AC Spillway (L=l 1') will intercept 100% of the 50-year Q, EQUATIONS: Tc = [( 11.9 X L^)/H ] I = 7.44 X Pe X Tc"^^ Q = C X I X A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q/ (0.7x { a + y )' ^) = 10' minimum for AC spillway = 30' maximum for Type B-1 inlet Location FL El, Description Area C L H Te 1 Qb Qtot Clr curb Area Clr curb Length h d ft ac ft ft min in/hr cfs cfs ft^ ft in ft ;:248+98.45v 462,02 Type B Int. (mod) - sump 0.43 0,9 870 46.0 5.00 6,59 2.54 8.22 5,81 9.00 9.0 0.47 CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. d Wtr Surf. El. Top of Opening Spillway Depr. El. CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. in ft ft ft CONCLUSION: d is conservatively interpolated. Wtr Surf. El. < Top of Opening < Spillway Depr, El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q. 5.6 462.49 462.77 463.15 EQUATIONS: Qtot = Qa + Ob Clear curb Area = 3 x [ { 2 x 1/2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5,813 ft^ for 3 openings Clear curb Length = { 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 Water Surface Ei. = Flowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression SEE 100 YEAR ANALYSIS FOR CAPACITY CHECK OF UPSTREAM SIDE DITCH INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Une F Node: N F12 P6= 2.9 in. Minimum Tc = 5 min. ULTIMATE: Location FL El. Description Area C Te 1 Q Qbvo Qtot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft .248+9a45 55.62' LT 463.16 Type B-1 on grade 1.30 0.95 5.00 7.64 9.47 0.00 9.47 5,6 0.38 6.4 0.33 22 CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,30 cfs of the total Q. Qi Qbvoass CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,30 cfs of the total Q. cfs cfs CONCLUSION: Inlet (L=22') designed for 50-year storm will intercept 9,30 cfs of the total Q. 9.30 0.17 INTERIM: Location FL El. Description Area C Te 1 Qa Qbvp Qa_tot S y V a L ft ac min in/hr cfs cfs cfs % ft fps ft ft 248+98.45: ! 41' LT 463.65 AC spillway on grade 0.86 1.0 5.00 7.64 6.59 0.00 6.59 5.6 0.32 5,8 0.5 11 CONCLUSION: AC Spillway (L=l 1') designed for the 50-year storm will intercept 5.50 cfs of the total Q, intercept 100% of the total 0. Qi Qbvoass CONCLUSION: AC Spillway (L=l 1') designed for the 50-year storm will intercept 5.50 cfs of the total Q, intercept 100% of the total 0. cfs cfs CONCLUSION: AC Spillway (L=l 1') designed for the 50-year storm will intercept 5.50 cfs of the total Q, intercept 100% of the total 0. 5.50 1.09 l = 7.44xP6xTc"^ Q = Cx Ix A y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0.7xL(a + y)'^ Location FL El, Description Area C Tc 1 Qb Qbyp Qtot Clr curb Area Clr curb Length h d d ft ac min in/hr efs cfs cfs ft^ ft in ft in 248+98.45 55.62' LT 462.02 Type B Int. (mod) - sump 0.43 0.9 5.00 7.64 2.95 0,00 8.45 5.81 9.00 9.0 0.52 6.2 CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, Wtr Surf. El. Top of Opening Spillway Depr. El, CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, ft ft ft CONCLUSION: d is conservatively interpolated since it falls in a transitional state between weir and orifice. Wtr Surf. El. < Top of Opening < Spillway Depr. El., therefore the Type B Inlet Interim (mod) acts as a weir and intercepts 100% of Q, 462.54 462-77 463.15 EOUATIONS Qtot = Qa_tot + Qb + Qbyp Clear curb Area = 3 x [ ( 2 x 1 /2 x 2.5" x 1.5') + ( 6.5" x 3') ] = 5.813 ft^ for 3 openings Clear curb Length = ( 3 x 3') = 9' for 3 openings h = height of opening d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No,12 Water Surface El, = Fiowline El. + d Top of Opening = Flowline El. + h Spillway Depression El. = Flowline El. for AC Spillway - 6" depression CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 2-95 cfs Channel Height - 1.0 ft Channel Top Width = 3,0 ft Channel Slope = 5,6 % Normal Depth = 0.47 ft Normal Velocity = 7.81 fps Normal Top Width = 1.51 ft Velocity Head = 0.95 ft Freeboard Needed = 0.12 ft Freeboard Provided = 0.53 ft Project: Side Ditch from 240+38.50 to 248+92.45 LT (15 : 16:55 on 02/06/01) DAR Open Channel Flow Analysis & Design {Version 4.00): Normal/Critiical Depth INPUTS trapezoidal section flow rate 2.95 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.056150 Manning coefficient 0.0160 RESULTS critical depth 0.72 ft normal depth 0.47 ft -> flow is supercritical {Yc > Yn) critical velocity 3.48 ft/sec critical top width 2.26 ft critical area 0.85 sq. ft critical slope 6.540274E-03 normal velocity 7.81 ft/sec normal top width 1.51 ft normal area 0.38 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Une F Node; N F13 INTERIM: Pe- 2.5 in. Minimum Tc = 5 min. Location FL El. Description Area C L H Te 1 Q ft ac ft ft min in/hr cfs 248+98.45 71.62' LT 460.64 CSP Type B in sump 8.79 0.55 1380 104.4 10.52 4.08 19.71 CONCLUSION: CSP inlet is designed to accept 100% of 100-year Q, therefore, 100% of 50-year Q is also intercepted. EQUATIONS: C = 0.55 based on soil Type B and Residential land use. Tc = [(11.9xL^)/Hl^^^ l = 7.44xPBxTe"^^ Q = Cxl xA Note: an additional 10 minutes is added to natural watersheds, however, since this a relatively small area and since 53% of the total amount of the water is conveyed in a brow ditch, only 5 minutes is added. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F13 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 0 ft ac ft ft min In/hr cfs ->^48+9|m| 460.64 CSP Type B in sump 8,79 0.55 1380 104.4 10.52 4,73 22.87 EOUATIONS: Tc = [ (11,9 x L') / H ] l=7.44xP6XTc'"^ Q=CxIxA DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeff. cfs ft ft/ft Circ. 12.12 2 0.0300 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 1.4 0.22 2 1,25 0,39 B Output: Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.86 9.45 1.98 CSP: Opening Height Wtr Surf. Elev. in in 8.0 10,3 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B Mod (See SDRSD D-75) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev. in the Ditch > Opening Height of the CSP Inlet Type B, the inlet has been depressed 1' using a 2.5' radius concrete apron so that 100% of the 100 -year storm ts intercepted. Also, the inlet has been modified with 2 openings and a grate on top for additional consideration to clogging. EQUATIONS: Channel Slope = flattest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided ^ Channel Heigth - Normal Depth Project: Brow Ditch Type B (mod) from 237+02 to 248+95.95 LT (14:34:07 on 02/07/01) DAR Open Channel Flow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS circular section flow rate 12.12 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.030000 Manning coefficient 0.0160 RESULTS critical depth 1.25 ft normal depth 0.86 ft -> flow is supercritical (Yc > Yn) critical velocity 5.87 ft/sec critical top width 1.94 ft critical area 2.07 sq. ft critical slope 8.498183E-03 normal velocity 9.45 ft/sec normal top width 1.98 ft normal area 1.28 sq. ft Note: channel intercepts 53% of total flow from the watershed area. Channel depth = 15". INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F15 P6= 2.9 In. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Qa Qa-Qtot ft ac ft ft min in/hr cfs cfs cfs . 250+39.54: •'143.45' RT 417,50 36" Wing Headwall 0.42 0.90 245 31.5 5.00 7.64 2.91 1.91 78.21 CONCLUSION: Rip rap pad will be designed to handle a total ftow of 78.21 cfs (velocity in pipe will also dictate). EOUATIONS: Tc = [ ( 11.9 x L') / H ] I = 7,44 X Pg x Tc'"^ Q = C X I X A Qtot = Qa* + Qb' + Qc_tot* from contributing flows from areas 1 and 2 shown below where * = 0 adjusted for a network time of concentration 1. CONTRIBUTING FLOWS: Node ID FL El. Description 0 Qb* Qe- ft cfs cfs cfs N F15 417,50 36" headwall 61,51 57.38 N F16,5 450.25 AC Spillway 3.23 3.07 N F17.75 429.00 downdrain 4.49 3-29 N F22 428.92 outlet apron 13.53 12.56 Qc tot = 21.25 Qc tot' = 18.92 CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE NORTH: Link SDFl 6 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate= 21.25 cfs Channel Height = 1.5 ft Channel Top Width = 2.5 ft Channel Slope = 2.82 % Normal Depth = 1.07 ft Normal Velocity = 10.61 fps Normal Top Width = 2.47 ft Velocity Head = 1.75 ft Freeboard Needed = 0.27 ft Freeboard Provided = 0.43 ft Node ID FL El. Description Area C L H Tc 1 Q Q- ft ac ft ft min in/hr cfs cfs N F17.5 429.00 downdrain 0.65 0.90 515 48.0 5,00 7,64 4.49 3.49 CAPACITY CHECK OF UPSTREAM TERRACE DITCH: Link SDFl 7.75 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 4.49 cfs Normal Depth -0.39 ft Velocity Head = 1.04 ft Channel Height = 1,0 ft Normal Velocity -8.17 fps Freeboard Needed = 0.10 ft Channel Top Width = 3.0 ft Normal Top Width = 2,03 ft Freeboard Provided = 0.61 ft Channel Slope = 5.0 % CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE SOUTH: Link SDF18 • handles 54% of the flow to N E15 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 1,57 cfs Normal Depth = 0-33 ft Velocity Head = 0.32 ft Channel Height = 1.0 ft Normal Velocity = 4,56 fps Freeboard Needed = 0,08 ft Channel Top Width = 2.0 ft Normal Top Width = 1.49 ft Freeboard Provided = 0,67 ft Channel Slope = 2.0 % Project: Brow Ditch Type B (mod) from 250+60 to *LTD' 10+34.64 RT Link: SDFl6 (09:28:07 on 02/19/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 21.25 cfs channel diameter 2.50 ft slope of invert or channel bottom 0.028200 Manning coefficient 0.0160 RESULTS critical depth 1.56 ft normal depth 1.07 ft -> flow is supercritical (Yc > Yn) critical velocity 6.56 ft/sec critical top width 2.42 ft critical area 3.23 sq. ft critical slope 7.892482E-03 normal velocity 10.61 ft/sec normal top width 2.47 ft normal area 2.00 sq. ft NOTE: Channel depth = 18" and channel width = 30" where indicated on plans. Project: Terrace Ditch Type D from 246+94 to 251+52 Link: SDF17.75 (19:12:32 on 02/10/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 4.49 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.050000 Manning coefficient 0.0160 RESULTS critical depth 0.66 ft normal depth 0.39 ft -> flow is supercritical (Yc > Yn) critical velocity 3.87 ft/sec critical top width 2.49 ft critical area 1.16 sq. ft critical slope 5.995713E-03 normal velocity 8.17 ft/sec normal top width 2.03 ft normal area 0.55 sq. ft Project: Brow Ditch Type B from 248+00 to 250+31 RT Link: SDFl8 (19:09:09 on 02/10/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 1.57 cfs channel dieimeter 2.00 ft slope of invert or channel bottom 0.020000 Manning coefficient 0.0160 RESULTS critical depth 0.43 ft normal depth 0.33 ft -> flow is supercritical (Yc > Yn) critical velocity 3.13 ft/sec critical top width 1.65 ft critical area 0.50 sq. ft critical slope 6.877644E-03 normal velocity 4.56 ft/sec normal top width 1.49 ft normal area 0.34 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: NF16.5 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C L H Tc 1 0 a Req'd L Clr Area Ht. d ft ae ft ft min in/hr cfs ft ft ft' ft ft 251+51J6 ea.O* RT 450.25 AC spillway In sump 0.47 0.90 950 49.8 5,00 6.59 2.79 0,5 20.0 10.0 0.5 0.15 CONCLUSION: d < curb Ht, therefore the required L (=20', 10' each side) will intercept 100% of the 50-year Q. EQUATIONS. Te = [ ( 11.9 X L^) / H ] ]=7.44xP6xTc"^^ O = C X I X A Required L = 10' minimum on each side a = depth of depression per SDRSD D-22 "Asphalt Concrete Spillways" Clear curb Area = L x .5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F16.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El, Description Area C Tc 1 Qa QbVD Qa_tot a Req'd L Ctr Area Ht. d ft ac min in/hr cfs cfs cfs ft ft ft^ ft ft 450,25 AC spillway in sump 0.47 0.90 5,00 7.64 3.23 0.00 3.23 0,5 20.0 10,0 0.5 0.16 CONCLUSION: d < curb Ht,, therefore the required L (=20', 10' each side) wilt intercept 100% of the 50-year 0. EQUATIONS: Tc = [ ( 11.9 x L^) / H ] l = 7.44xP5xTc'"^ Q = Cx I xA Required L = 10' minimum on each side a = depth of depression per SDRSD D-22 "Asphalt Concrete Spillways" Clear curb Area = L x .5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 CAPACITY CHECK OF UPSTREAM SIDE DITCH: DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 3.23 cfs Channel Height = 1.0 ft Channel Top Width = 3.0 ft Channel Slope = 5,6 % Normal Depth = 0.49 ft Normal Velocity = 7.99 fps Normal Top Width = 1,56 ft Velocity Head = 0.99 ft Freeboard Needed = 0.12 ft Freeboard Provided = 0,51 ft Project: Side Ditch from 242+19.97 to 251+51.76 RT Link: SDF16.5 (16:02:48 on 02/18/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 3.23 cfs bottom width 0.10 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.056150 Manning coefficient 0.0160 RESULTS critical depth 0.72 ft normal depth 0.47 ft -> flow is supercritical (Yc > Yn) critical velocity 3.48 ft/sec critical top width 2.26 ft critical area 0.85 sq. ft critical slope 6.540274E-03 normal velocity 7.81 ft/sec normal top width 1.51 ft normal area 0.38 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node; N F20 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr cfs % ft fps ft ft 251+52.34' ''4VL7'' 449.39 AC spillway on grade 0.57 1.0 430 24.6 5.00 6.59 3.76 5.6 0.27 5.1 0.5 8 CONCLUSION: AC spillway has a Required L = 8', however, the min. L-value is L = 10", therefore the AC spillway will intercept 100% of Qa. EQUATIONS.Tc = [ (11.9 x L^) / H f^^ | = 7.44xpGxTe'^^ 0=(CxIxA) y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )'^) = 10' minimum for AC spillway INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F20 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C Tc 1 Qa Qbvp Qa_tot S y V a L ft ac min in/hr efs cfs cfs % ft fps ft ft 449,39 AC spiilway on grade 0.57 1.0 5.00 7,64 4,36 1.09 5.45 5.6 0.29 5.5 0.5 10 CQNCLUSION: AC Spillway (L=10') is over designed (or 50-year storm due to minimum length requirements, therefore spillway will intercept 100% of the 100-year Q. Qi Qbvoass CQNCLUSION: AC Spillway (L=10') is over designed (or 50-year storm due to minimum length requirements, therefore spillway will intercept 100% of the 100-year Q. efs cfs EQUATIONS: Tc = [ ( 11,9 X L^) / H 1^^ 5.45 0.00 I = 7.44 x Pg X Tc"^^ O- ( Cxi xA) y = depth of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Qi= 0,7xL{a + y)'^ INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F20.5 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc 1 Q S y V a Req'd L ft ac ft ft min in/hr efs % ft fps ft ft 11+99.51 " 28'LT-. 438.68 AC spillway on grade 0.22 1.0 350 19.8 5.00 6.59 1.44 5,6 0.20 4,5 0.5 4 CONCLUSION: AC spillway has a Required L = 4', however, the min. L-value is L = 10'. therefore the AC spillway will intercept 100% of Qa. EQUATIONS: Tc = [ ( 11.9 x L^) / H I^^^ l = 7.44xP5xTc""^ Q = ( Cx I X A) y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a = depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Required L = Q / ( 0.7 x ( a + y )'^) = 10' minimum for AC spillway INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F20.5 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C Tc 1 Qa QbVD Qa_tot S y V a L ft ae min in/hr cfs efs cfs % ft fps ft ft 11+99.51 28-LT " 438.68 AC spillway on grade 0.22 1.0 5.00 7.64 1.67 0,00 1.67 5.6 0.21 4.5 0.5 10 CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length requirements, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ { 11.9 x L^) / H 1^^^ Qi Qbvpass CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length requirements, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ { 11.9 x L^) / H 1^^^ cfs cfs CONCLUSION: AC Spillway (L=10') is over designed for 50-year storm due to minimum length requirements, therefore spillway will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ { 11.9 x L^) / H 1^^^ 4.19 0.00 Q = (Cx Ix A) y = depth of flow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual V = velocity of ftow in approach based on Appendix X-D of the County of San Diego Design and Procedure Manual a ^ depth of depression per City of Carlsbad DS-1 "Local Depression" for curb inlets & per plan details for AC spillway Oi= 0.7xL(a + y)^^ INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line F Node: N F21 INTERIM: P5= 2.5 In. Minimum Tc = 5 min. Location FL Ei, Description Area C L H Tc 1 Q QN F20 Qtot ft ae ft ft min in/hr efs cfs cfs 11+9931 34'LT 436.36 CSP Type B in sump 1.05 0.80 650 42.6 5.00 6.59 5.55 3.76 9.32 CONCLUSION: CSP inlet is designed to accept 100% of 100-year 0, therefore, 100% of 50-year Q is also intercepted. EOUATIONS: Te = [ ( 11.9 x L^) / H ]^^^ l = 7.44xp6xTc"^ O = C X 1 x A NOTE: Node N F21 also receives additional flow from the attached A.C. spillway (See Node N F20.5) INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F21 P6= 2.9 Minimum Tc = 5 m in. INTERIM: Location FL El, Description Area C L H To 1 Q QNF20 Qtot ft ac ft ft min in/hr cfs cfs efs --11+99.51- 34'LT 436,36 CSP Type B in sump 1.05 0.80 650 42.6 5.00 7.64 6,44 5.45 11.89 EOUATIONS: Tc = [ (11.9 x L^) / H ]^°^ I = 7,44 X Pg X Tc"^^ 0 = C X 1 X A NOTE: Node N F21 also receives additional flow from the attached A.C. spillway (See Node N F20.5) DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. cfs ft ft/ft Circ. 11.89 2 0,0200 0,016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft ft 1,0 0,24 2 1.25 0,30 B Output; Flow Type Normal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.95 8.09 2.0 CSP: Opening Height Wtr Surf. Elev. in in 8,0 11.4 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B (See SDRSD D-75) adequately accommodates the 100-year storm. Since the Wtr Surf. Elev, in the Ditch > Opening Height of the CSP Inlet Type B, the inlet has been depressed 1' using a 2,5' radius concrete apron so that 100% of the 100 -year storm is intercepted. Also, the inlet has been modified with 2 openings and a grate on top for additional consideration to clogging. EQUATIONS: Channel Slope = flaftest slope of the channel carrying the greatest portion of water Velocity Head = ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritical flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Brow Ditch Type B (mod) from 248+98.45 to 'LTD' 11 +99.51 Link: SDF20 (12:03:31 on 02/04/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 11.89 cfs pipe diameter 2.00 ft slope of invert or channel bottom 0.020000 Manning coefficient 0.0160 RESULTS critical depth 1.24 ft normal depth 0.95 ft -> flow is supercritical (Yc > Yn) critical velocity 5 . 82 ft/sec critical top width 1.94 ft critical area 2.04 sq. ft critical slope 8.421323E-03 normal velocity 8.09 ft/sec normal top width 2.00 ft normal area 1.47 sq. ft NOTE: channel depth = IS'' at station 10+57.37 where Side Ditch connects with Brow Ditch. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line F Node: N F30 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL El. Description Area C L H Tc I Q Q* Qtot ft ac ft ft min in/hr cfs cfs efs 247+62.30 180.55'FIT'* 421.15 Riprap outlet 13.84 0.55 2055 238.9 16.36 3.56 27.08 19.30 44.74 CONCLUSION: Rip rap pad will be designed to handle a total flow of 75.79 cfs. EQUATIONS: C = 0.55 based on soil Type B and Residential land use. /H I 385 Te = [ (11.9xL Note: an additional 10 minutes is added to natural watersheds l=7.44xP6xTc^^ Q = C X I X A Qtot = Q* + Qtot" from contributing flows from areas shown below where * = Q adjusted for a network time of concentration CONTRIBUTING FLOWS: Node ID FL El. Description Area C L H Tc 1 0 Q* ft ac ft ft min In/hr efs cfs N F32 452.61 downdrain 0.38 0,90 350 39.4 5.00 7.64 2,59 2,02 N F33 453.75 brow ditch 5.17 0.65 875 116,3 8.13 5.58 18,75 18,17 N F3301 517.27 iniet apron 0,58 0,75 780 64.7 5.00 7.64 3.32 3.22 N F34 468.34 downdrain 0,38 0.90 350 37.7 5.00 7.64 2.61 2.03 Q,o,* = 25,44 CAPACITY CHECK OF UPSTREAM MINOR DRAINAGE CHANNEL TO THE SOUTH: Link SDF30 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate ^ 44.74 cfs Normal Depth = 0.67 ft Velocity Head = 4,25 ft Channel Height = 2.50 ft Normal Velocity = 16.55 fps Freeboard Needed = 0.17 ft Channel Top Width = 10,5 ft Normal Top Width = 5.0 ft Freeboard Provided = 1.83 ft Channel Slope -8.0 % Bottom Width = 3,0 ft Side Slope = 1,5 CAPACITY CHECK OF UPSTREAM MINOR DRAINAGE CHANNEL TO THE SOUTH: Link SDF31 DAR Open Channel Flow Analysis S Design (See attached sheet for original output) Flow Rate = 23,42 efs Normal Depth -0,46 ft Velocity Head = 2,96 ft Channel Height -2.50 ft Normal Velocity = 13,8 fps Freeboard Needed = 0,12 ft Channel Top Width ^ 10,5 ft Normal Top Width = 4,4 ft Freetraard Provided -2.04 ft Channel Slope = 8,4 % Bottom Width -3-0 ft Side Slope = 1,5 CAPACITY CHECK OF UPSTREAM TERRACE DITCH: Link SDF32 DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate -2.59 cfs Normal Depth = 0,30 ft Velocity Head -0.79 ft Channel Height = 1.0 ft Norma! Velocity = 7.1 fps Freeboard Needed = 0,08 ft Channel Top Width ^ 3.0 ft Normal Top Width = 1.8 ft Freeboard Provided -0,70 ft Channel Slope = 5,4 % CAPACITY CHECK OF UPSTREAM TERRACE DITCH: Link SDF34 DAR Open Channel Flow Analysis & Design {See attached sheet for original output) Flow Rate = 2,61 cfs Normal Depth = 0,30 ft Velocity Head -0,79 ft Channel Height = 1,0 ft Normal Velocity -7,1 fps Freeboard Needed = 0.08 ft Channel Top Width = 3,0 ft Normal Top Width = 1.8 ft Freeboard Provided = 0,70 ft Channel Slope = 5.4 CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE SOUTH: Link SDF3303 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 3.22 cfs Normal Depth = 0,30 ft Velocity Head = 1.24 ft Channel Height = 1.00 ft Normal Velocity = 8,94 fps Freeboard Needed = 0.08 ft Channel Top Width = 2.0 ft Normal Top Width = 1.51 ft Freeboard Provided = 0.70 ft Channel Slope = 7.4 % CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE SOUTH: Link SDF3301 DAR Open Channel Row Analysis & Design {See attached sheet for original output) Flow Rate = 3,22 cfs Normal Depth = 0.32 ft Velocity Head -1 .53 ft Channel Height = 1.00 ft Normal Velocity = 9,94 fps Freeboard Needed = 0. ,08 ft Channel Top Width = 2.0 ft Normal Top Width = 1,47 ft Freeboard Provided = 0. .68 ft Channel Slope -10.0 ADDITIONAL CONSIDERATION: Maximum discharge of Upstream Mahr Reservoir Dam Spillway Should the Mahr Reservoir Dam upstream of this drainage system convey the probable maximum flood {PMF) during the 100-year storm even the result will be an additional 310 cfs added to the system. The channel has been designed to handle this situation. CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE SOUTH: Link SDF30 DAR Open Channel Flow Analysis & Design {See attached sheet for original output) Flow Rate = 354,74 cfs Normal Depth = 2,01 ft Velocity Head = 13.42 ft Channel Height = 2.50 ft Normal Velocity = 29.4 fps Freeboard Needed = 0.5 ft Channel Top Width = 10.5 ft Normal Top Width = 9,02 ft Freetraard Provided = 0.5 ft Channel Slope = 8.0 % Bottom Width = 3.0 ft Side Slope = 1.5 CAPACITY CHECK OF UPSTREAM BROW DITCH TO THE SOUTH: Link SDF31 DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 333.42 cfs Normal Depth -1.92 ft Velocity Head ^ 13.53 ft Channel Height = 2.50 ft Normal Velocity = 29.52 fps Freeboard Needed = 0.48 ft Channel Top Width = 10.5 ft Normal Top Width = 8.8 ft Freeboard Provided = 0.58 ft Channel Slope = 8.4 % Bottom Width = 3.0 ft Side Slope = 1,5 Project: Minor Drainage Channel from 246+99 to 247+62.30 Link: SDF30 (10:10:00 on 02/16/01} DAR Open Channel Plow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS trapezoidal section flow rate 44.74 cfs bottom width 3.00 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.080000 Manning coefficient 0.0160 RESULTS critical depth 1.48 ft normal depth 0.67 ft -> flow is supercritical (Yc > Yn) critical velocity 5.78 ft/sec critical top width 7.44 ft critical area 7.73 sq. ft critical slope 4.285820E-03 normal velocity 16.55 ft/sec normal top width 5.02 ft normal area 2.70 sq. ft NOTE: channel depth = 30", top width = 10.5' Project: Minor Drainage Channel from 235+52 to 246+99 Link: SDF31 (16:18:19 on 02/16/01) DAR Open Channel Flow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS trapezoidal section flow rate 23.42 cfs bottom width 3.00 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.0844500 Manning coefficient 0.0160 RESULTS critical depth 1.03 ft normal depth 0.46 ft -> flow is supercritical (Yc > Yn) critical velocity 4.98 ft/sec critical top width 6.10 ft critical area 4.70 sq. ft critical slope 4.633931E-03 normal velocity 13.80 ft/sec normal top width 4.38 ft normal area 1.70 sq. ft NOTE: channel depth = 30", top width = 10.5' Project: Terrace Ditch Type D from 244+12 to 246+94 Link: SDF32 (16:24:14 on 10/06/99) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 2.59 cfs channel diameter 3.00 ft slope of invert or channel bottom 0.054000 Manning coefficient 0.0160 RESULTS critical depth 0.50 ft normal depth 0.30 ft -> flow is supercritical (Yc > Yn) critical velocity 3.34 ft/sec critical top width 2.24 ft critical area 0.78 sq. ft critical slope 6.238987E-03 normal velocity 7.12 ft/sec normal top width 1.79 ft normal area 0.36 sq. ft Project: Terrace Ditch Type D from 241+13 to 244+12 Link: SDF34 (16:25:57 on 10/06/99) DAR Open Channel Flow Analysis & Design (Version 4.00) : Normal/Critical Depth INPUTS circular section flow rate 2.61 cfs channel dieuneter 3.00 ft slope of invert or channel bottom 0.054000 Manning coefficient 0.0160 RESULTS critical depth 0.50 ft normal depth 0.30 ft -> flow is supercritical (Yc > Yn) critical velocity 3.35 ft/sec critical top width 2.24 ft critical area 0.78 sq. ft critical slope 6.234769E-03 normal velocity 7.13 ft/sec normal top width 1.80 ft normal area 0.37 sq. ft Project: Brow Ditch Type B from 235+50 to 239+00.43 RT Link: SDF3301 (16:35:56 on 10/06/99) DAR Open Channel Flow T^alysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 3.22 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.100000 Manning coefficient 0.0160 RESULTS critical depth 0.63 ft normal depth 0.32 ft -> flow is supercritical (Yc > Yn) critical velocity 3.82 ft/sec critical top width 1.86 ft critical area 0.84 sq. ft critical slope 6.751811E-03 normal velocity 9.94 ft/sec normal top width 1.47 ft normal area 0.32 sq. ft Project: Brow Ditch Type B from 239+44.62 to 246+99 RT Link: SDP3303 (16:41:51 on 10/06/99) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 3.22 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.074000 Manning coefficient 0.0160 RESULTS critical depth 0.63 ft normal depth 0.34 ft -> flow is supercritical (Yc > Yn) critical velocity 3.82 ft/sec critical top width 1.86 ft critical area 0.84 sq. ft critical slope 6.751811E-03 normal velocity 8.94 ft/sec normal top width 1.51 ft normal area 0 .36 sq. ft Project: Minor Drainage Channel from 246+99 to 247+63.24 Link: SDF30 with additional flow from dam spillway (10:10:00 on 02/16/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 354.74 cfs bottom width 3.00 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.080000 Manning coefficient 0.0160 RESULTS critical depth 4.22 ft normal depth 2.01 ft -> flow is supercritical (Yc > Yn) critical velocity 9.00 ft/sec critical top width 15.67 ft critical area 39.43 sq. ft critical slope 3.354865E-03 normal velocity 29.40 ft/sec normal top width 9.02 ft normal area 12.07 sq. ft NOTE: channel depth = 30", top width = 10.5' Project: Minor Drainage Channel from 235+52 to 246+99 Link: SDF31 with additional flow from dam spillway (10:15:00 on 02/16/01) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS trapezoidal section flow rate 333.42 cfs bottom width 3.00 ft side slope of trapezoidal section 1.500 slope of invert or channel bottom 0.084450 Manning coefficient 0.0160 RESULTS critical depth 4.10 ft normal depth 1.92 ft -> flow is supercritical (Yc > Yn) critical velocity 8.89 ft/sec critical top width 15.31 ft critical area 37.58 sq. ft critical slope 3.379317E-03 normal velocity 29.52 ft/sec normal top width 8.77 ft normal area 11.32 sq. ft NOTE: channel depth = 30", top width = 10.5' 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE F and related laterals ID Descrip Shape MatI Length N S Dia 0 ft % ft cfs SDFl 18" RCP Circ . Cone 12.25 0.012 20.00 1.50 ,i0j5^;^ SDF2 18" RCP Circ Cone 51.75 0,012 2,00 1-50 13,61 SDF2.5 18" RCP Circ Cone 35.50 0.012 2.00 : 1.50 SDF3 24" RCP Circ Cone 43,20 0.012 9,03 2.00 26.23 . SDF4 18" RCP Circ Gone 16.00 0.012 7.31 V 1.50 SDF5 24" RCP Circ Cone 90,00 0.012 2,00 2,00 " o.ob SDF6 30" RCP Circ ; Cone 208.70 0.012 2.00 ^ 2.50 , SDF8 18" RCP Circ Cone 41,75 0.012 3,04 1,50 SDF8.5 18" RCP Circ ; A Cone 89.45 0.012 : 1.50 1.50 " SDF9 30" RCP Circ Cone 294-15 0.012 5.05 2-50 27.58 SDF9.5 , 18" RCP Circ ' Cone : 41.75 0.012 7.00: -1.50 V SDF9.75 18" CSP Circ Plastic 5,00 0,024 8.40 1.50 1,62 . SDFIO 30" RCP ;Circ ^ Cone. 292!35 0.012 5.71: 2.50 ,\ SDF11 24" RCP Circ Cone 12,25 0,012 5.50 2.00 31.29 SDF11.5 18" RCP Circ Cone 41.75 0.012 ^ 10.00 1.50 • SDF12 24" RCP Circ Cone 12,15 0.012 3-00 2.00 22.87 SDFl3 . 36" RCP . Circ Cone 52.00 0.012 5.52,; 3.00 - SDF14 36" RCP Circ Cone 179,75 0,012 19.15 3,00 ' *61,51 SDF14.5 36" RCP Circ Cone 16.00 0.012 5.00 3.00 SDF21 18" RCP Circ.-«- Cone, -160.00 0.012,. 1.50 -i : 1.50 SDF3302A 18" RCP Circ Cone 20.00 0.012 20.00 -. 1.50 SDF3302B 18" RCP Circ Cone 24.00 0.012 5,21 1,50 3.32 ID Normal Normal Critical Critical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft . SDFl 0.46 22.71 , V, 1.25 6.71 50.89 0.70 SDF2 1.06 10,23 L37 8,04 16,09 1,62 SDF2.5 1.20 10.37 ' 1.42 9.07 16.09 : 0.01 SDF3 0.83 21,47 1.79 8,84 73,65 1,52 SDF4 . 0.00 0.48 0.05 0.01 30.77 ; 0.00 SDF5 0,00 0,29 0.06 0,00 34.66 0,00 SDF6 1.13 12.21 1.75 7.17 62.84 0.00 SDF8 0.27 6-55 0,45 3-24 19,84 0,22 SDF8.5 0.33 5.09 0.45 3.24 13.94 i 0.16 SDF9 0,90 17.38 1.79 7,33 99.86 0,12 SDF9.5 0.36 11.72 0.75 4.36 30.11 : 0.46 SDF9.75 0,32 5,93 0,48 3.34 16.49 0.17 SDFIO 0.92 18.76; 1.90 7.74 106,14 0.31 SDF11 1.05 18,68 1,88 10-21 57.48 0.13 SDF11.5 0.00 0.53 0.05 0.01 35.99 0.00 SDF12 1,05 13,77 1.70 8,03 42.45 0,82 SDFl 3 1.25 22.10 2.53 9.68 169.77 1.41 SDF14 0,90 34,65 2.53 9,68 316,20 1,03 SDF14.5 1.28 21.32 2.53 9.68 161.57 0.07 SDF21 1.19 8.97 1.37 8.00 13.93 1.00 SDF3302A 0.26 16.25 0.70 4.15 50.89 0.11 SDF3302B 0,36 10.09 0,70 4,15 25,97 0.00 { f 100-YEAR INTERIM HYDRAULIC COMPUTATION: STORM DRAIN LINE F and related laterals ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft tt ft ft ft SDFl NF1 . NF2 1.50 0.64 501.43 497.21 501.67-^ . 500.54 SDF2 N F3 N F2.5 1.50 1,50 502,44 500.11 503.36 501.33 • SPF2.5'-'NF2.5' ; ; 'N F2 - 1.50 : '1.50 • 500.11 . 499.42 ' 501.33-/500.64 SDF3 N F2 N F4 2,00 0.98 499,42 493.19 500.64 497.75 SDF4 ^ N F5 -KF4 0.22 : \. 1.50 '493.49 493.64" -^ • 493.49" ^ • 494.43 SDF5 N F6 N F4 0.06 0.00 493.85 491.99 493.85 492.00 ,SDF6^ , '•?"NF4 ' ' NF7 •'1.75 1.14. 493.64 488.86" ' '•494:43/ 1 491.13 SDF8 N F9 N F7 0.67 0.28 489.50 487.84 489.66 488,49 SDF8.5 -- NF9.5 - NF9^ 0.75 0.33 491.25 489.49 491.28 .489.89 SDF9 N F7 N Fio' 1.91 0,90 489,30 473.43 490.13 478,10 ' SDF9.5"J • .NFIO.5'^ NFtO - '1.22 . ' 0.38 476.50 f 472.74 ."-5476.79 -••',474.69 SDF9,75 ' ' N F10.75 N F10.5 0,75 0,33 476.77 475.93 476.84 476.41 ; SDFIO "• -'NF10 NF11 .2.20 '. ' 0.93 474.40 •"456.45; 475.33:{ ""^461:87 SDFll N F12 N F11 2.00 2.00 459.30 459.13 ' 460.84 460.59 f SDF11.5 • NFII.5-NF11 ^•,0.05 0.00 "459.53 455.30 ; /^' 459.53" 455.31 • SDF12 N F13 N Fl"2 2.00 2,00 460.20 459.30 460.96 460.84 - SDF13 y F11 " NF14_ ^i:3.oo 1.55.-' 459.13 453.87,„>"' 460.5?: 458.24 SDF14 N F14 N F14,5 3.00 0.92 455.66 419.55 457.11 436,93 SDF143 ; N F14.5 NF15' ' -.?-60 :-^ . ;i.85_. ,420.90 - 419.35,;7 '-'422.36"'""'' '422.17 SpF21 : L': 'NF2r ' ,NF22 .-31.50 v?^ •434.73 - '431.13'/' . 435.72. 432.39 . i;SDF3302A '.VfNF3301^ NF3302.-v^.^0.'80•^J :\ 0.29 : ; 514.55 . 5io:o4<;-t--^'rsisjsyc SDF3302B " N F33d2' N F3303 0.70 0.40 510.45 508.90 " 510.71 510.13 ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert AcM Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstnn Dwnstrm ft ft ft ft ft ft fps fps SDFl 506.99 508.65 5.56 ,11.44-. 499.02 • ..^496.57 5.97 . 14.61 . SDF2 ' 506.99 508.83 4.55 8.72 498.24 497.21 ' 7.70 7,70 SDF2.5\' f "508.83 508.65, -8.72:/-' V- 9.23 :li ' ,.497.1£j : . 1^496.44'/:}/ I-,, 8.8? ^ SDF3" 508.65 506.74 9.23 13.55 496.11 492.21' " 8.35 17.10 SDF4 ; - * ' 506.74 " • ! • 13.10 493.27 - 492.10/ , . oloo; • > 0.00 SDF5 -506.74 • 14.75 493.79 491.99 0.00 0.29 SDF6 ', \-506.74 _ 497.10 - 13.10' , , 8.24-' 491.89 - 487.72 12.08 ~; SDF8 495.43 497.10 5,93 9.26 488,83 487.56 1.91 6.48 SDF8.5 .,,499.74 497.10 . „ ~ 8.49 " 7.61 • 490.50 ' 489.1^ •*'%". ..ir.i'.64/' .' •*5.09 . SDF9 '497.10 480.70 7.80 7.27 487.39 472.53 6.86 17.31 SDF9.5 ''481.67 480.70 5.17-, 7.96' 475.28 472.36 ?i" ;;/-,2.52>''-11.18 SDF9.75 481.02 481.67 4.25 5.74 476.02 475.60 1.83 5.52 SDFIO' 480.70 463.69 6.30 7.24 472.20 455.52 : K^/-6i7S 18.65 SDFll ^ 462.02 463,69 2.72 4,56 456,08 455.41 9.96 9,96 SDFll.S 463.69 -8.39 459.48 455.30'{ v: 0.01 0.53 SDF12 460.64 462.02 0,44 2.72 456,77 456.41 7.28 7,28 SDF13 463.69 460.44 -4.56 - 6.57 455.19-452.32-1 8.70 16.76 SDF14 460.44 432.00 4.78 12.45 452.10 418.63 8.70 33.39 SDF14.5 432.00 420.50 11.10 1.15 -418.30 . 417.50""' ^' \ 9.45 13.49 SDF21 431.44 -0.31 432.36 429.94 7.65 8.97 SDF3302A 515.25 _ _. -i , 513.75 509.75 3.46 14.10 SDF3302B -510.00 --509,75 508.50 4,15 8,89 NOTE: for cleanoufs, plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively, FL Elev's for slotted drain connections are located approximately 3,5' below "Inlet FL". 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE F and related laterals ULTIMATE vs. INTERIM Computations: 1. ) Culverts SDF3302A, and SDF3302B drain watersheds that are similar in both senarios, therefore no Ultimate computations are necessary, 2. ) Interim computations for SDF2 & SDF2,5 are shown as Ultimate computation SDF2- 3. ) No Ultimate computations are necessary for culverts SDF9,75, SDF12, SDF14, SDF14,5, and SDF21 since these are interim facilities only. ID Descrip Shape MatI Length N S Dia Q ft % ft cfs SDFl 18" RCP Circ Cone 12.25 0.012 20.00 1.50 SDF2 18" RCP Circ Cone 90,25 0.012 2,00 1.50 13.42 SDF3 24" RCP Circ Cone " 43.20 0.012 9.03 2.00 \^ SDF4 18" RCP Circ Cone 16.00 0,012 7,31 1,50 4'10 SDF5 24" RCP' Circ Cone -90.00 0.012 2.00 2.00 • i mmm SDF6 30" RCP Circ Cone 208,70 0.012 2,00 2.50 57.58 SDF8 18" RCP Circ Cone 41.75 0.012 f> 3.04 1.50 ' - SDF8,5 18" RCP Circ Cone 89,45 0.012 1.50 1.50 1.86 SDF9 30' RCP Circ Cone 5 294.15 0.012 : 5.05 2.50. "' SDF9.5 18" RCP Circ Cone 41,75 0,012 7,00 1,50 5.58 SDFIO , 30" RCP Circ.. Cone . 292.35 0.012 ' 571 2,50 SDF11 24" RCP Cire Cone 12.25 0,012 5,50 2.00 9"",30 SDFl 1.5 : 18" RCP. . . Circ Cone, 41.75 0.012 10.00 . 1.50 SDF13 36" RCP Circ Cone 52,00 0.012 5,52 3,00 76.49 ID Normal Normal Cntical Cntical Capacity Upstrm Depth Velo Depth Velo Junct Loss ft fps ft fps cfs ft SDFl 0.45 22.37 1.22 6.50 -50.89 0.66 SDF2 1,05 10,21 1,37 7,95 16.09 1.57 SDF3 0.78 20.81 1.72 8.15 73.65 1.26 SDF4 0.37 12.10 0,78 4-45 30,77 0,08 SDF5 1.44 12.42 1.86 '9.87 34.66 . 1.43 SDF6 1,88 14.55 2.38 11-95 62.84 2,11 SDF8 0.31 ' 7.05 0.51 3.48 19.84 0.04 SDF8.5 0,37 5,49 0.51 3.48 13.94 0,19 SDF9 1.39 21.21 y 2.39 12.29 : : 99.86 0.21 SDF9,5 0.44 13,02 0,91 4.97 30,11 0.38 SDF10 1.41 22.70 2.42 13.36 106.14 076 SDFll 0,54 13.45 1,09 5.32 57,48 0,19 SDFl 1.5. 0.26 11.39 0.57 3.69 , 35.99 0.21 SDF13 1,41 23,38 2.74 11.31 169,77 0,00 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDF1 ,NF1 N F2 1.50 0.62 501.29 497.19 501.55 500^^^: SDF2 N F3 N F2 1,50 1,50 501,89 499.09 502,78 500.12 SDF3 N F2 N F4 2.00 0.91 499.09 493.12 500.12 ••497:4&|;f SDF4 N F5 N F4 1.50 1.50 496,34 496,38 496-42 498,60 SDF5 N F6 N F4 2.00 2.00 499.15 496.38 500.58 498.6bfu' SDF6 N F4 N F7 2.50 1.91 496.38 489,63 498,60 492,81' SDF8 N F9 N F7 1.08 1.50 489.91 489.99 489.94 492.34^1 SDF8,5 N F9.5 N F9 0,75 0,37 491,25 489,53 491,39 490.00 SDF9 NF7 N FIO 2.50 1.41 489.99 473.94 492.34 48073 SDF9.5 N F10,5 N FIO 1-40 0.46 476.68 472.82 476.96 475.11 SDF10 N FIO N F11 2.50 1.43 475.38 456.95 478.16 464.71 SDFll N F12 N F11 1,77 2,00 457.85 457.93 458.04 459,91 SDFll.S N F11.5 N F11 0.80 0.26 460.28 455.56 460.48 457.53 SDF13 N F11 N F14 2.74 1,77 457.93 454.09 459,91 458.93 100-YEAR ULTIMATE HYDRAULIC COMPUTATION: STORM DRAIN LINE F and related laterals ID Inlet FL Inlet FL Freeboard Freeboard Invert Invert ActI Velo Acti Velo Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps SDFl 506.99 508.65 5.70 11.46 499.02 : 496.57 5.65 • 14.48^ SDF2 506.99 508.65 5,10 9,56 498,24 496.44 7,60 7.60 SDF3 508.65 506.74 / 9.56 : 13.62 ,496.11 492.21 • 7.44 \ vitei^ SDF4 -506,74 -10,36 493-27 ' 492,10 2,32 2.32 SDF5' -506.74 10.36 493.79 491.99 9.58 . SDF6 506,74 497,10 10.36 7,47 491,89 487.72 11,73 14.28 SDF8 495.43 497.10 5.52 - 7.11 488.83 487.56 1.37 SDF8,5 499-74 497,10 8.49 7.57 490,50 489.16 2.11 5,47 SDF9 * 497.10 480.70 7.11 6.76 487.39 ' 472.53 12.10 ; SDF9,5' 481,67 480,70 4.99 7.88 475.28 472.36 3.26 12.10 SDFIO ;. 480.70 463.69 5.32 6.74; 472.20 ' 456.52 13 23 22.3gK SDF11 462,02 463.69 4.17 5,76 456.08 455.41 3,17 2,96 SDFli.5 -463.69 -8.13 -459.48 -455.30 2.38 ^IIJZO^ SDF13 463.69 460,44 5.76 6.35 455,19 452.32 11,31 17*64 NOTE: for cleanoufs. plugged pipe stubs, and outlet pipes, "Inlet FL" value is Rim Elev and top of pipe, respectively. FL Elev's for slotted drain connections are located approximately 3,5' below "Inlet FL". m n. INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Une G Node: N Gl P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Deseription Area C L H Tc 1 Q ft ac tt ft min in/hr cfs . 17+20.91 •CRI" 42.7'RT 384.32 30" Wing Headwall 28,32 0.45 2100 132,7 18.17 2.87 36.52 EQUATIONS: Tc = [ (11,9 X L^) / H ] + 10 min for natural watershed | = 7,44xPexTc"^^ 0 = C X I X A A = area includes area from the north A.C, spillway INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line G Node: N Gl P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Description Area C L H Tc 1 Q ft ae ft ft min in/hr cfs ' 17+20.91- 'CRI'42.7'RT 384.32 30" Wing Headwall 28,32 0.45 2100 132.7 18.17 3,32 42.36 EQUATIONS: Te = [ ( n ,9 X L^) / H ]^^^ + 10 min for natural watershed I =7,44xp6xTe"^^ Q = C X I X A A = area includes area from the north A.C, spillway CAPACITY CHECK OF BROW DITCH: Link SDG1G100 DAR Open Channel Flow Analysis & Design (See aftached sheet for original output) Flow Rate = 2.40 cfs Channel Height- 1,0 ft Channel Top Width = 2,0 ft Channel Slope = 2,00 % Normal Depth = 0.41 ft Normal Velocity = 5.17 fps Normal Top Width = 1.62 ft Velocity Head Freeboard Needed Freeboard Provided 0.42 ft 0.10 ft 0.59 ft CAPACITY CHECK OF BROW DITCH: Link SDG1G101 DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Flow Rate = 0.50 cfs Normal Depth = 0.14 ft Velocity Head = 0.44 ft Channel Height = 1-0 tt Normal Velocity = 5.33 fps Freeboard Needed = 0.04 ft Channel Top Width = 2.0 ft Normal Top Width = 1,01 ft Freeboard Provided = 0.86 ft Channel Slope = 8.33 % Project: Brow Ditch Type B from 'CRl' 12+50 to 17+15 RT Link: SDGIGIOO (10:18:26 on 11/17/99) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Crit:ical Depth INPUTS circular section flow rate 2.40 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.020000 Manning coefficient 0.0160 RESULTS critical depth 0.54 ft normal depth 0.41 ft -> flow is supercritical (Yc > Yn) critical velocity 3.52 ft/sec critical top width 1.77 ft critical area 0.68 sq. ft critical slope 6.760920E-03 normal velocity 5.17 ft/sec normal top width 1.62 ft normal area 0.46 sq. ft Project: Brow Ditch Type B from 'CRl' 17+30 to 18+50 RT Link: SDGIGIOI (10:05:51 on 11/17/99) DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Critical Depth INPUTS circular section flow rate 0.50 cfs channel diameter 2.00 ft slope of invert or channel bottom 0.083300 Manning coefficient 0.0160 RESULTS critical depth 0.24 ft normal depth 0.14 ft -> flow is supercritical (Yc > Yn) critical velocity 2.31 ft/sec critical top width 1.30 ft critical area 0.22 sq. ft critical slope 7.610967E-03 normal velocity 5.33 ft/sec normal top width 1.01 ft normal area 0,09 sq. ft INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line G Node: North AC Spillway INTERIM: P6= 2.5 in. Minimum Tc - 5 min. Location FL Elev. Description Total Area C L H Tc 1 Qa a Req'd tot L Clear curb Area Curb Ht. d ft ac ft ft min in/hr efs ft ft ft^ tt ft 17+27.03 •cnv 12' RT 396.53 AC Spillway in sag 0.12 0.95 370 21.5 5.00 6.59 0.74 0.5 20.0 10.00 0.5 0.05 CONCLUSION: d < curb ht., therefore the required L (=20', 10' each side ) will intercept 100% of the 50-year Q. Node: South AC Spillway INTERIM: Location FL Elev. Description Total Area C L H Tc 1 Qb a Req'd totL Clear curb Area Curb Ht. d ft ac ft tt min in/hr cfs tt ft ft^ ft ft 17+27.03 'CR1*20'LT 396.37 AC Spillway in sag 0.55 0.95 630 37.6 5.00 6.59 3.41 0,5 20.0 10.00 0.5 0.15 CONCLUSION: d < curb hi., therefore the required L (=20', 10' each side ) will intercept 100% of the 50-year Q. INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line G Node: North AC Spillway INTERIM: P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev. Description Total Area C L H Te 1 Oa a Req'd tot L Clear curb Area Curb Ht. d ft ac ft ft min in/hr cfs ft ft ft^ ft ft 17+27.03 'CRl' 12' RT 396.53 AC Spillway in sag 0.12 0.95 370 21.5 5.00 7.64 0.85 0.5 20.0 10.00 0.5 0.07 CONCLUSION: d < curb ht., therefore the required L (^20', 10' each side ) will intercept 100% of the 100-year 0. Node: South AC Spillway INTERIM: Location FL Elev. Deseription Total Area C L H Tc 1 Qb a Req'd totL Clear curb Area Curb Ht d ft ac ft ft min in/hr cfs ft ft ft^ ft ft 17+27.03 *CR1'20'LT 396.37 AC Spillway in sag 0.55 0.95 630 37.6 5.00 7.64 3.96 0.5 20.0 10,00 0.5 0.17 CONCLUSION: d < curb ht, therefore the required L (=20', 10' each side ) will intercept 100% of the 100-year Q. EQUATIONS: Tc = [ ( 11.9 x L') / H ] -6dS l = 7,44xP6XTc' Q-C X I X A Required L = 10' minimum on each side a = depth of depression per SDRSD D-22 "Asphalt Concrete Spillways" Clear curb Area = L x .5" d = depth of flow to inlet opening based on Chart 13 "Curb-opening inlet capacity in sump locations" of the Drainage of Highway Pavements HEC No.12 INLET ANALYSIS: 50 Year Storm Drainage System: Storm Drain Line G Node: N G2 P6= 2.5 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Description Area C Tc 1 Q Qb Qtot ft ac min in/hr cfs efs cfs 16+76.11, 'CRl' 82.30'LT 386.26 CB Type F in sump 0.10 0.90 5.00 6.59 0.59 3.96 4.55 EQUATIONS: Tc = [ ( 11.9xL^)/H ]^^^ l = 7.44xPsxTc""^ Q = C X I X A Qb = discharge intercepted by the South AC Spillway INLET ANALYSIS: 100 Year Storm Drainage System: Storm Drain Line G Node: N G2 P6= 2.9 in. Minimum Tc = 5 min. INTERIM: Location FL Elev. Description Area C Te 1 Q Qb Qtot ft ac min in/hr cfs cfs cfs : 16+76.11" ,; 'CRT 82.30'LT' 386.26 CB Type F in sump 0.10 0.90 5.00 7.64 0.68 3.96 4.64 EQUATIONS: Te = [(11.9xL^)/H]^^^ l = 7.44xP6xTc"^ Q = C xl X A Qb = discharge intercepted by the South AC Spillway DAR Open Channel Flow Analysis & Design (See attached sheet for original output) Input: Channel Flow Channel Channel Mannings Section Rate Diameter Slope coeft. efs ft ft/ft Circ. 4.64 2 0.0656 0.016 Channel Sizing: Velocity Freeboard Channel Channel Freeboard Channel Head Needed Top Width Height Provided Type ft ft ft ft m 1.4 0.11 2 1.0 0.58 B Output: Flow Type Nornnal Depth Normal Velocity Normal Top Width ft fps ft Super- critical 0.42 9.55 1.64 Catch Basin: Opening Height Wtr Surf. Elev. in in 9.0 5.0 CONCLUSION: Since Normal Depth < Channel Height and Freeboard Provided > Freeboard Needed, Brow Ditch Type B (See SDRS D-75) adaquately accommodates the 100-year storm. EQUATIONS: Channel Slope = flaftest slope of the channel carrying the greatest portion of water Velocity Head - ( Normal Velocity)^ / 2 x g Freeboard Needed = 0,25 x Normal Depth for Supercritica! flow in a trapezoidal channel Freeboard Provided = Channel Heigth - Normal Depth Project: Brow Ditch Type B from *CR1' 16+76.11 to 17+27.03 LT (15:10:11 on 01/12/99} DAR Open Channel Flow Analysis & Design (Version 4.00): Normal/Crit; ical Depth INPUTS circular section flow rate 4.64 cfs channel diameter 2.00 ft slope of invert or channel bottcan 0.065600 Manning coefficient 0.0160 RESULTS critiical depth 0.76 ft normal depth 0.42 ft -> flow is supercritical (Yc > Yn) critical velocity 4.26 ft/sec critical top width 1.94 ft critical area 1.09 sq. ft critical slope 6.855672E-03 normal velocity 9.55 ft/sec normal top width 1.64 ft normal area 0.49 sq. ft 100-YEAR INTERIM HYDRAULIC COMPUTATIONS: STORM DRAIN LINE G ID Descrip Shape MatI Length N S Dia Q ft % ft cfs ;X SDG1 SDG2 30" RCP Ex. 30" RCP Circ Circ CC»1C; Cone 133.16 5a 52 0.012 0.012 2,63 1.00 2.50 r ^ 2.50 46.79 ID Normal Depth Normal Velo Critical Depth Critical Velo Capacity Upstrm Junct Loss ft fps ft fps cfs ft SDG1 SDG2 1.38 2,20 15.25 , 10,23 2.18 2.26 9,34 ' 10.04 72.06 44,44 . 1.35 , 1,00 ID Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft SDG1 N Gl NG2 2.50 1.44-387.85 . " 382.26 ,. 389.21|f| "^"SDG2 NG2 N G3 2.50 2.20 383.58 382.13 385.15' " 383.76 ID Inlet FL inlet FL Freeboard Freeboard Invert Invert ActI Velo ActI Velo Upstrm Dwnstrm Upstrm Dwnstnn Upstrm Dwnstrm Upstrm Dwnstrm ft ft ft ft ft ft fps fps spQi:i> ji:386.8%># .386.26. ; 384.32 , 380.82 8.63 SDG2 386?26""" 385.17 "^68" """3,04" 380.33 379.93 9.53 10.23 Note: for pipe ends, "Inlet FL" value is top of pipe elev. Project: Slotted CSP Drain from 159+32.41 to 162+30.58 (11:09::^^ on 02/13/03) DAR Open Channel Flow Analysis s Design (Version 4.00): Norma1/Critical Depth INPUTS circular section flow rate 2.93 cfs pipe diameter 1.50 ft slope of invert or channel bottom 0.040000 Manning coefficient 0.0240 RESULTS critical depth 0.65 tt normal depth 0.52 ft -> flow is supercritical (Yc > Yn) critical velocity 3.99 ft/sec critical top width 1.49 ft critical area 0.73 sq. ft critical slope 1.742903E-02 normal velocity 5,40 ft/sec normal top width 1.43 ft normal area 0.b4 sq. ft APPENDIX A MAPS & CHARTS APPENDIX B TECHNICAL REFERENCE: HYDRAULICS + SPLASH WALL REINF. CALC. 16.12 Hydraulic Grade Line Computations The methodology employed to by GEOPAK Drainage to compute the water surface profiles though a storm drain network is typical of any open channel water surface procedure. A backwater analysis is performed through the system beginning at the most downstream point (outlet) and progressing upstream to the most remote nodes. GEOPAK Drainage will compute the hydraulic grade line using gradually varied flow analysis in free surface flow conditions and pressure flow computations under flill flow conditions. The resulting hydraulic gradeline represents the locus of elevations to which the water would rise if open to atmospheric pressure (e.g., piezometer tubes) along a pipe run and can is can be used to evaluate the adequacy of the design and identify areas where flooding occurs. Hydraulic = Water Level Grade Line Piezometers 16-16 GEOPAK Drainage GEOPAK 98 16.12.1 Hydraulic Gradeline The hydraulic gradeline (HGL) procedure begins at the most dovmstream node (outlet) and proceeds upstream through each link in the same fashion. A starting HGL at this downstream point elevation must be defined. The procedure for developing the HGL through a link of the network fi-om downstream node to upstream node is as follows: Downstream EGL — ,2 /V 1 2g Downstream HGL ® AX Energy Gradeline (EGL) © Hydraulic Gradeline (HGL) — uniform depth critical depth 1. Beginning with the HGL at the downstream node (HGLi), the Energy Gradeline (EGLi) is computed from: EGL = HGL + — 2g where: V = velocity at flow depth HGL (m/s) g = gravity (9.81) HGL = elevation of hydraulic gradeline Assuming a very small change in the energy and depth (Ay) compute the HGL2 fi-om HGL2 = HGL1+ Ay 2. Determine the distance along the pipe (Ax) to create the Ay loss due to friction = Ax = SfAy where Sf = 0.5(Si+S2) 3. This procedure of computing HGL2 and the distance along the pipe proceeds until the end of the pipe has been reached yielding the HGL at the upstream end of the pipe. 4. The resulting upstream HGL is subsequenfly used on the next upstream pipe as its starting downstream HGL. GEOPAK Drainage GEOPAK 98 Technical Reference 16-17 can alternatively used the computed energy gradeline upstream as the starting downstream EGL on the next pipe upstream. This altemative •• method differs in that the EGL's upstream and downstream at a node are equal rather than the conventional assumption that the HGL's are equal. . If junction losses are desired they computed prior to progressing upstream and added to the hydraulic gradeline. 16.12.2 Special Considerations If the starting HGL is less than critical depth then crifical depth will be assumed. If the HGL converges to equal the uniform depth the computations proceed to the upstream end at unifonn depth Once the HGL reaches the soffit of the pipe full flow condifions begin. Hydraulically steep pipes where uniform depth is less than the critical depth are checked with a backwater profile to verify if the resulting upstream HGL drowns out critical depth at the upstream end. If it does than the backwater profile is accepted. If the backwater curve does not exceed the critical depth, then a forewater profile is generated for this supercritical condifion. A forewater profile uses the same procedure as above but progresses fi^om the upstream end towards the downstream end. It begins at critical depth at the upstream end and converges towards uniform depth as the calculations proceed downstream. Hydraulic jumps may occur when mixing supercritical and subcritical water surface profiles. GEOPAK Drainage does not compute the exact location of a jump but will check if downstream subcritical depths have sufficient energy to force a supercritical profile to its conjugate depth thereby satisfying the condifions required for a jump to occur. Message will be appear indicating the existence of a jump. 16-18 GEOPAK Drainage GEOPAK 98 16.13 Junction Loss Methodologies Five junction loss methodologies are discussed: • Free surface transition losses • Pressure flow transition losses • Bend losses • Terminal inlet / junction losses • Complex junction losses 16.13.1 Transition Losses - Free Surface The energy losses may be expressed in terms of the kinetic energy at the between the incoming and outgoing pipes: 2g where Kt is the transition Loss Coefficient. where: Vi = upstream velocity V2 = downstream velocity ,\ Ki = Loss Coefficient for expansion of contraction 16.13.2 Transition Losses - Pressure Flow The energy losses may be expressed in terms of the kinetic energy at the between the incoming and outgoing pipes: 2g where Kt is the transition Loss Coefficient. H,=K,C \ )forV2>Vi 2g H, =K,i^^'~^'^ ) forV,>V2 2g GEOPAK 98 Technical Reference 16-19 where: Vi = upstream velocity V2 = downstream velocity ^ Kt = Loss Coefficient for expansion of contracfion 16.13.3 Bend Losses Method 1 Bend losses may be estimated from the equation: Hb =Kt 2g Where the Kb can be estimated from the following table. K - Bend Loss Coefficient Degree of Turn at Bend 0.10 20 0.32 40 0.64 60 1.06 80 1.32 90 Method 2 Bend losses may be estimated fi-om the equation: H. = K,- Where the Kb can be estimated fi-om the following table. K - Bend Loss Coefficient Degree of Turn at Bend 0.19 15 0.35 30 0.47 45 0.56 60 0.64 75 0.70 90 16-20 GEOPAK Drainage GEOPAK 98 16.13.4 Curve Losses Losses for curved pipe segments may be estimated from the equation: If K. -25, — where: {{) = central angle of bend in degrees 16.13,5 Terminal Inlet/Junction Loss 2g where: V = Velocity at terminal end of juncfion Kt = Loss Coefficient for terminal juncfion -W^ 16.13.6 Complex Junctions Manhole losses in many cases comprise a significant percentage of the overall losses within a sewer system. Losses at junctions are dependent upon flow characteristics, juncfion geometry and relative sewer diameters. Method 1 Losses at juncfions where one or more incoming laterals occur may be estimated by combining the laws of pressure plus momentum where Hj is equal to the junction losses. GEOPAK 98 Technical Reference 16-21 How Plow Using the laws of pressure plus momentum, the loss Hj can be estimated as follows: Method 2 2 A^g A,g A,g Losses at junctions where one or more incoming laterals occur utilizes the principle of conservation of energy, involving position energy and momentum energy. The energy content of the inflows is equal to the energy content of the outflow plus any losses due to the collision and turbulence. The loss Hj can be estimated as follows: 16-22 GEOPAK Drainage GEOPAK 98 where: Q = discharges V = horizontal velocities K = bend loss factor GEOPAK 98 Technical Reference 16-23 DOKKEN 3914 MURPHY CANYON ROAD. SUITE A-153 • SAN DIEGO CA 92123 PHONE (619) 514-8377. FAX (619) 514-8608 8" CONC BLK SPLASH WALL. GROUT CORES SOLID 8\, ^ MOUND GROUT FINISH ^4 BARS FULL LENGTH SPLASH WALL DETAIL NO SCALE K%%^0^^^(.^^'\-^ Cm-m"" \JSE CF4'^ ^A- JOB SUBJECT DATE , 4'Lh°l joe NO. JOB ^1 f ' CHECK SHEET ol ^ APPENDIX C RIPRAP DESIGN LOCATION A: Armoring of fill slope at Inlet to existing storm drain system 1. ) Description of Natural Depression: a. highly vegetated b. 4.0% slope c. > 20' top width d. assymetrical parabolic shape 2. ) Description of Fill Slope and Inlet: a. 18" RCP with straight headwall b. conveying 18 cfs (Interim condition dictates) c. 100-Year HGL = 328 ft d. Vin = 0 fps due to ponding nature 3.) Conclusion: a. Riprap pad to armor fill slope to an elevation of 328.0 ft, thus a total area of 875 sq. ft b. Rock Class = Light rock class is recommended. c. Recommended riprap T = 5.0 ft d. No Required Filter Blanket r \ LOCATION B: Outlet for Storm Drain Line B to Detention Basin 1. ) Description of Natural Channel: a. grass lined b. 1.0% slope c. < 20' top width d. trapezodial shape 2. ) Description of Outlet: a. 36" RCP b. conveying approximately 78.5 cfs (Ultimate condition dictates) c. Assume minimum tailwater conditions d. Vout = 11.6 fps 3.) Conclusion: a. b. c. d. e. 3Do = 9 ft, La = 20 ft, Wd = 29 ft dSO = .60 ft WT = Volume x62.2 Ib/ft^ xy = (4/3)(n)(d50/2)^x62.2 x2.65 = 19 Ib, therefore Rock Class is No.2 Backing However, due to a Vout = 11.6 fps, Rock Class = 1/4 Ton is recommended. Riprap T = 3 x d50iM TON where d50iM TON = 2 [ (WT / 62.2 x y) x 3/4jt f'^ therefore, T = 3 X 2 [ (500 / 62.2 x 2.65) x 3/47t ]1/3 = 5.39 ft = 5.4 ft Required Filter Blanket: 3/4" crushed rock atop sand atop filter fabric LOCATION 0: Outlet for Detention Basin 1. ) Description of Natural Channel: a. highly vegetated b. 7.0% slope c. < 20' top width d. parabolic shape 2. ) Description of Outlet: a. 18" CMP b. conveying approximately 10 cfs (maximum capacity) c. Assume minimum tailwater conditions d. Vout = 18.0 fps 3.) Conclusion: a. 3Do = 5 ft. La = 10 ft, Wd = 15 ft, however, due to the location of the spillway and for added safety, recommended that riprap pad dimensions are as follows: 3Do = 8 ft. La = 20 ft, Wd = 28 ft b. d50 = .10ft c. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(7t){d50/2)=^ x 62.2 x 2.65 = 0.09 Ib, therefore Rock Class is No.3 Backing d. However, due to a Vout = 18.0 fps, Rock Class = 2 Ton is recommended. e. Riprap T = 3 x dSOroN where d50T0N = 2 [ (WT / 62.2 x y) x 3/47i therefore, T = 3 X 2 [ (4000 / 62.2 x 2.65) x 3/47c 11/3 = 10.77 ft = 11.0 ft f. Required Filter Blanket: 2" crushed rock atop sand atop filter fabric LOCATION D: Outlet for Storm Drain Line C 1. ) Description of Natural Channel: a. highly vegetated b. 23.0% slope c. > 20' top width d. parabolic shape 2. ) Description of Outlet: a. 36" RCP b. conveying approximately 67.6 cfs (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 11.7 fps 3.) Conclusion: a. 3Do = 7.5 ft, La = 26 ft, Wd = 28.5 ft b. d50 = 0.90 ft c. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(7i)(d50/2)^ x 62.2 x 2.65 = 63 Ib, therefore Rock Class is Facing d. However, due to a Vout = 13.14 fps, Rock Class = 1/4 Ton is recommended. e. Riprap T = 3 x d50,/4TON where d50,/4TON = 2 [ (WT / 62.2 x y) x 3/4n j''^ therefore, T = 3 X 2 [ (500 / 62.2 x 2.65) x 3/4n ]1/3 = 5.39 ft = 5.4 ft f. Required Filter Blanket: 3/4" crushed rock atop sand atop filter fabric • a LOCATION E: Outlet for Brow & Terrace Ditch svstems adjacent to Storm Drain Line E 1.) Description of Natural Channel: a. highly vegetated b. 17% slope c. > 20' top width d. parabolic shape 2.) Description of Outlet: a. 24" Brow Ditch b. conveying approximately 6.3 cfs (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 8.5 fps 3.) Conclusion: a. 3Do = 6 ft. La = 10 ft, Wd = 12 ft, but due to topography and orientation of outlet ditches, therefore: 3Do = 24 ft, La = 10 ft, Wd = 28 ft b. dSO = 0.9 ft c. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(Ti)(d50/2)^ x 62.2 x 2.65 = 63 Ib, therefore Rock Class is Facing d. However, due to field conditions. Rock Class = Light is recommended. e. Riprap T = 3 x d50LiGHT where d50LiGHT = 2 [ (WT / 62.2 x y) x 3/4JT therefore, T = 3 X 2 [ (200 / 62.2 x 2.65) x 3/47i ]1/3 = 3.9 ft = 4.0 ft f. Required Filter Blanket: 1/2" crushed rock atop filter fabric LOCATION F: Armoring of fill slope at Inlet for Storm Drain Line D 1.) Description of Natural Channel: a. highly vegetated with rocks b. 4.4% slope c. > 20' top width d. symetrical parabolic shape 2.) Description of Fill Slope and Inlet: a. 36" RCP with trash rack b. conveying 121 cfs (Interim condition dictates) 0. 100-Year HGL = 386.8 ft d. Vin = 0 fps due to ponding nature 3.) Conclusion: a. Riprap pad to armor fill slope to an elevation of 388.0 ft, thus a total area of 790 sq. ft b. Rock Class = 1/4 Ton Is recommended. c. Recommended riprap T = 3.0 ft d. No Required Filter Blanket LOCATION G: Outlet for Storm Drain Line D and E 1. ) Description of Natural Channel: a. highly vegetated with rocks b. 6.3% slope c. > 20' top width d. assymetrical parabolic shape 2. ) Description of Outlet: a. 36" RCP and 48" RCP b. conveying 121 cfs from 36" RCP and 55.7 cfs from 48" RCP (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 11.5 fps and 10.2 fps respectively 3.) Conclusion: a. 3Do = 21 ft, La = 35 ft, Wd = 56 ft, however due to existing topography and rocky soil conditions, recommended that riprap pad dimensions are as follows: 3Do = 22 ft. La = 60 ft, Wd = 34 ft b. d50 = 0.90 ft 0. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(7i)(d50/2)^ x 62.2 x 2.65 = 63 Ib, therefore Rock Class Is Facing d. However, due to an average Vout = 11.5 fps and rocky soil conditions, Rock Class = 1/2 Ton is recommended. e. Riprap T = 3 x d50,/2TON where d50v2TON = 2 [ (WT / 62.2 x y) x 3/47i ]* therefore, T = 3 x 2 [ 1000 / 62.2 x 2.65) x 3/47i ]1/3 = 6.8 ft = 7.0 ft f. Required Filter Blanket: 1" crushed rock atop sand atop filter fabric ,1/3 • ;7 LOCATION H: Outlet for Storm Drain Line E-5 1. ) Description of Natural Channel: a. highly vegetated b. 3.2% slope c. > 20' top width d. parabolic shape 2. ) Description of Outlet: a. 30" RCP b. conveying approximately 47 cfs (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 11.6 fps 00 „ • > 26' 3.) Conclusion: a. 3Do = 7.5 ft, La = 26 ft, Wd = 28.5 ft b. d50 = 0.55 ft c. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(7i)(d50/2)^ x 62.2 x 2.65 = 14 Ib, therefore Rock Class is No.2 Backing d. However, due to a Vout = 11.6 fps. Rock Class = 1/4 Ton is recommended. e. Riprap T = 3 x d50i/4 TON where d50v4 TON = 2 t (WT / 62.2 x y) x 3/4TI therefore, T = 3 X 2 t (500 / 62.2 x 2.65) x 3/47r ]1/3 = 5.39 ft = 5.4 ft f. Required Filter Blanket: 3/4" crushed rock atop sand atop filter fabric LOCATION I: Outlet for Minor Drainage Channel adiacent to Storm Drain Line F 1. ) Description of Natural Channel: a. highly vegetated b. 4.0% slope c. < 20' top width d. parabolic shape 2. ) Description of Outlet: a. 10.5' wide x 30" deep Minor Drainage Channel b. conveying approximately 45 cfs (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 16.5 fps CUTOFF WALL FOR DRAINAGE CHANNEL PER D-7Z 3.) Conclusion: a. b. 0. d. e. f. 3Do = 12 ft, La = 23 ft, Wd = 35 ft d50 = 0.55 ft WT = Volume x 62.2 Ib/ft^ x y = (4/3){n)(d50/2)^ x 62.2 x 2.65 = 14 Ib, therefore Rock Class is No.3 Backing However, due to a Vout = 16.5 fps, Rock Class = 1 Ton is recommended. Riprap T = 3 x dSOjoN where d50TON = 2 [ (WT / 62.2 x y) x 3/47i therefore, T = 3 X 2 [ (2000 / 62.2 x 2.65) x 3/47i ]1/3 = 8.6 ft Required Filter Blanket: 1-1/2" crushed rock atop sand atop filter fabric LOCATION J: Outlet for Storm Drain Line F 1. ) Description of Natural Channel: a. highly vegetated b. 12% slope 0. > 20' top width d. parabolic shape 2. ) Description of Outlet: a. 36" RCP b. conveying approximately 78.2 cfs (Interim condition dictates) c. Assume minimum tailwater conditions d. Vout = 13.5 fps 3.) Conclusion: a. 3Do = 12 ft, La = 25 ft, Wd = 29 ft b. d50 = 0.9 ft 0. WT = Volume x 62.2 Ib/ft^ x y = (4/3)(n)(d50/2)^ x 62.2 x 2.65 = 63 Ib, therefore Rock Class is Facing d. However, due to a Vout = 13.5 fps. Rock Class = 1/2 Ton is recommended. e. Riprap T = 3 x 650,i2 TON where d50i/2 TON = 2 [ (WT / 62.2 x y) x 3/47t therefore, T = 3 X 2 [ (1000 / 62.2 x 2.65) x 3/47C ]1/3 = 6.8 ft = 7.0 ft f. Required Filter Blanket: 1" crushed rock atop sand atop filter fabric 7.54 -Erosion and Sediment Control Handbook Outlet pipe diameter 50 100 200 Discharge, ft^/sec H 1—F-h —I 1 1 I IIIIH 1 1—I 1 I I 0.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 5 6 7 8 10 15 20 25 Discharge, mVsec Fig. 7.45 Design of riprap outlet protection from a round pipe flowing full; minimum tailwater conditions. (6,14) REFERENCE: Erosion and Sediment Control Handbook (Goldman, Jackson, & Bursztynsky) 7.54 -Erosion and Sediment Control Handbook Outlet pipe diameter D 50 100 200 Discharge, ft^/sec 1 1 1 I llllll 1 1 1 llllll 1 h-1- 0.1 0.2 0.30.4 0.6 0.8 1 2 3 4 5 6 7 8 10 15 20 25 Discharge, mVsec Fig. 7.45 Design of riprap outlet protection from a round pipe flowing full; minimum tailwater conditions. (6, 14) REFERENCE: Erosion and Sediment Control Handbook (Goldman. Jackson. & Bursztyn.sky) 200-1.5 Stone for Riprap (Pg. 87) Add: "The individual classes of rocks used in slope protection shall conform to Table 200-1.6(8). PERCENTAGE LARGER THAN Table 200-1.6(8) CLASSES ROCK S[Z£S 2 TON 1 TON 1/2 TON 1/4 TON NO.2 BACK- ING NO.3 BACK- ING 4 TON 0.3 2 TON 30-100 0.3 I TON 93-100 50-100 &-3 1/2 TON 30-100 0.3 1/4 TON 95-100 30-100 200 U 95.100 73 LB 95-100 0.3 23 LB 25-75 0-5 5LB 90-100 23-75 1 LB 9&-100 The amount of material smaller than the smallest size listed in the table for any class of rock slope protection shall not exceed the percentage limit listed in the table detennined on a weight basis. Compliance with the percentage limit shown in the table for all other sizes of the individual pieces of any class of rock slope protection shall be determined by the ratio of the number of individual pieces larger than the smallest size listed in the table for that class also pertaining to 200-1.6.1. 2 200-1.6.1 Selection of Riprap and Filter Blanket Material Table 200-1.6.1(A) Vel. Fi/Sec (1) Rock Rjprap Tliick- aut •T" Fiher BtuJcel f31 UDi>er Laverfi) Vel. Fi/Sec (1) Rock Rjprap Tliick- aut •T" OpLl Sec. 200 (*) OpL2 Sec.40 0 (4) Opi.3 (5) Lower L»yer {(S) 6-7 No. 3 Back- ing .6 3/16-C2 D.O. ~ 7-8 No. 2 Back- ing 1.0 1/4-B3 D.O. — 8-9.3 Fac- bg 1.4 VV — D.O. — 9.5-U Light 2.0 1/2' — 3/4- 1- 1/2- P.B. — U/13 1/4 TON 2.7 3/4-— 3/4- 1- 1/2" P.B. SAND 13-15 1/2 TON 3.4 1" — 3/4- 1- 1/2* P.B. SAND 15-17 1 TON 4.3 1-1/2-— TYPE B SAND 17-20 2 TON 3.4 2-— TYPE B SAND See 200-1.6 Practical use of this table is limited to situations where "T" is less than inside diameter. (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired riprap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness = 1 Foot or "T", whichever is less. (4) Standard Speci ficat ions for Public Works Construction. (5) D.G. = Disintegrated Granite, I HH to 10 MM. P.B. = Processed Miscellaneous Base. Type B = Type B bedding material, (minimum 7S% crushed particles. lOOX passing 2 1/2" sieve. 10% passing l" sieve). ;6) Sand 75% retained on #200 sieve. REFERENCE: 1994 Regional Supplement Amendments to •"Greenbook" Standard Specifications for Public Works Construction 1994 Edition. APPENDIX D ANALYSIS OF EXISTING SYSTEMS LOCATION A: 1. ) Description of Existing System: a. 30" RCP with Wing Type Headwall b. Inlet pipe at 2.0% with Invert FL = 265.52 ft c. Drains 18.27 acres 2. ) Description of Improvements: a. No Interim improvements to system b. Improvements divert 8.1 acres to exist system B IT gum I ! ,i / r I i I _/•' SDAA2 V/:/ J^^_,^. EXiSTffiG SYSfEM; LOCATION A • i: A' AA/ 3.) Conclusion: a. Conduct hydrologic analysis to compare existing and proposed 100-vear flows to the system. ' b. Conduct hydraulic analysis to determine the 100-year HGL elevation. LOCATION A: HYDROLOGIC ANALYSIS: 100 Year Storm Node: N A15 - Existing pipe intercepting System A discharge and outletting it underneath existing La Costa Ave. to an existing system. EXISTING: P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev. Description Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 116+04.641 LCA'131.3'RT 265,520 Wing-Type headwall 18.27 0.45 1235 90.5 15,13 3.74 30.75 CONCLUSION: Existing 30" RCP with Wing-Type headwall is designed for 30,75 cfs EQUATIONS: FL Elev. = flowline invert of the pipe was surveyed at 0,08 ft lower than shown on As-Built. Tc = [ (11.9 X L^} / H ] + 10 min for natural watershed l = 7,44xP6xTc Q = C X I X A PROPOSED INTERIM Location FL Elev, Description Area C L H Tc 1 0 QN A15* Qtot' ft ac ft ft min In/hr cfs cfs cfs 116+04.64 LCA'131.3'RT 265,520 Wing-Type headwall 12,52 0.45 1300 93.0 15.39 3,70 20.85 44.00 64,47 Note: location is along a line running N84'^01'15"W from alignment CONCLUSION: Though there is a slight reduction in the existing contributing area, there is an increase in contributing area from the realigned Rancho Santa Fe Rd. at a higher runoff coefficient and a shorter time of concentration which results in Qproposed > Qaxisiing- NOTE: The realignment of Rancho Santa Fe Rd. diverts 4.65 acres from location B to location A. NOTE: QfjAis' = discharge adjusted for a network time of concentration per System A analysis * = discharge is adjusted for a network time of concentration PROPOSED ULTIMATE: CONCLUSION: No ultimate plans have been made for this area, however, there may be a significant increase in the runoff coefficient and a decrease in the time of concentration due to future development. LOCATION A: HYDRAULIC ANALYSIS: 100 Year Storm ID Descrip Shape MatI Length N S Dia Q Normal Depth Normal Velo Critical Depth ft % ft cfs ft fps ft SDAA1 SDAA2 30" RCP 36" RCP Cifc Circ Cone Cone 18.00 68.00 0.012 0.012 2.00 2,00 3.00 3.00 64.47 70.47 1.73 1.83 15.30 15,59 2.58 2.66 ID Critical Velo Capacity Upslrm Junct Loss Upstrm Node Dwnstrm Node ActI Depth Upstrm ActI Depth Dwnstrm HGL Upstrm HGL Dwnstrm EGL Upstrm EGL Dwnstrm fps cfs ft ft ft ft ft ft ft SDAA1 SDAA2 9.98 10.62 102.19 102.19 1.07 0,08 NAA1 N AA2 NAA2 N AA3 3.00 3,00 3.00 3.00 271.16 269.93 269.93 269.06 272.45 271.47 271.47 270.88 CONCLUSION: Maximum Allowable HGL = La Costa Ave top of curb (273.97'). Interim condition results in 2' - 10" freeboard, therefore OK. KSSIP" ON*^ STD. BRONZE DISC IN 'cONC. MO^ ?L?lL«^?!r!lS5i?!lS«. SPiJfS^^ LOCATION ABOUT EDO'NORTH OF STA.261*98,72 Ci^T^^!!^«-« J..Z^^^rl JBERTA.STOCKtON R.C.E.^3359J DATE THE USER OF THIS PROPERTY K ADVISEO, HOWEVER, THAT THE LOT OR PAO CREATED MAY OR MAT NOT B£ COMPLETELY St/fTAflLE TOR THE USE WTENCeO. THE USER IS ACVISEO TD EMPLOY SLITASLE SOILS AND STRUITURAL ENCINEEHfNG ADWCE IN CON(«CT10N WITH ANY PftOSPECTftt DEVELOPUCNT OR USE. ENGINEER OF WORK STDOCTON RCE. 33591 CRAWN BY DE9GIC0 BY^ a/(. [CHECKED BY' CK. APPROVED BY RANCHO WNWFEf£AO-Si:«^^^^^ W « ««« *«™ « mMTE H>0 FENCE EAST SIDE OF ROAD. UO— PftCMt T44.4»O0 RECORD FROM: COUNTY BENCH LEVEL J-0302 ELEVATION: 176,18 DHTUM^U.S.C.6 G.S. iws xm mmoat, OMUMO, CAt/f tooa mom w-4Mr KVGIONS SHEET 3 CITV OF CARLSBAD BV6*gaWW6 0£/WTM£NT SWET73 II _ GRADtNG PLANS FOR^ CARLSBAD TRACT NO. 84-7 Lfl COSTA CONDOMINIUMS 4PPff0l«D - , CITY EN&NEEIf mom PROJECT Nt PE. 2.85.05 ore. C/^/^s SCALES' S^f AS SHOWN 2S3-7A JOB Na909 ' S73fiM DftA/NSee see. swecT 3 see sHT.'i \Dm3iON 3ou/vaA/rr CAHLSSAD TOACT JNO. 34-7 DWG. JNO. 253--A sx/sr sm/fM DRAIN EllSr •A-4-CO STORM ORAJN DATA NO DEUTA OR SRQ RADIUS LENGTH REMAflKS ae.06>' II tl fl ^i •• •• " i'tres'oe'' 4&00' /8.S7- •• - - Sb'/fcp /asa-o w 42S9' 4S.ao' /SC.OO' ALL STOf?MD^I^ Af?e PUBLIC R£MOI/e exiST /KPJS—• INLETfREPLACe W/M&V TO SEAL NSIYJOWr "AS BUILT" OAl£ REM1EWED BY; mSPECroR DATE ENGINEER OF WORK GLEN K. VAN 'P^l RCE. NO 41204 FXP 1/11/9!> BENCH MARK DESCRIPTION: STD. BRONZE DISC IN CONCRETE MONUMENT. LOCATION: ABOUT 200', N/0 STA. 261+98.72 RANCHO SANTE FE RD. ~A.S. 454- NEAR FENCE EAST SIDE OF ROAD. RECORD FROM: COUNTY OF SAN DIEGO. OEPT. OF PUBLIC WORKS - J-0303 SMEEt /2 CITY OF CARLSBAD CN«INtCRIH« DEPARTMENT SHEE f? PLANS FOR THE IMPROVEMENT OF STORM DRAIN CI 85-15 ^ ^CJ^A^^^ APPN01 RE 33,1 OWN tV.. 0*TE LOCATION B: 1.) Description of Existing System: a. b. c. 18" RCP with Straight Type Headwall Inlet pipe at 11.15% with invert FL = 325.08 ft Drains 18.49 acres 2.) Description of Improvements; a. No interim improvements to system b. Improvements divert 4.65 acres to location A and 6.65 acres to a detention basin M BB83 ^^f^/BBB2 ' LOCATION B 3.) Conclusion: a. Conduct hydrologic analysis to compare existing and proposed 100-year flows to the system. b. Conduct hydraulic analysis to determine the 100-year HGL elevation. LOCATION B: HYDROLOGIC ANALYSIS: 100 Year Storm Node: N BBB1 - Existing pipe intercepting existing / interim discharge and outletting it underneath existing Rancho Santa Fe to Esfera St. P6= 2.9 in. Minimum Tc = 5 min. EXISTING: Location FL El. Description Area C L H Tc 1 Q H ac ft ft min in/hr cfs 177+65.51 133:56" LT 325.08 Straight headwall 18.49 0.45 1890 135.9 17.17 3.45 28.69 CONCLUSION: Existing 18" RCP with Straight Type headwall is intended to handle 28.69 cfs PROPOSED INTER M: Location FL El. Description Area C L H Tc 1 Q 0* Otot" ft ac ft ft min in/hr cfs cfs cfs 177+65^1 133.56' LT 325.08 Straight headwall 7.20 0.45 780 77.9 8.20 5.55 18.00 2.75 19.99 CONCLUSION: Qp,opose<j < Qexisting. therefore the existing 18" RCP with Straight Type headwall will require no improvements, however, an additional tailwater analysis it made using Geopak software (see attached) to determine the amount of flooding. EQUATIONS: FL Elev, = flowline invert of the pipe was surveyed at 0.67 ft lower than shown on As-Buitt. Tc = [( 11.9xL^)/Hp°^ I = 7.44 x Pg X Tc" "^ 0 = Cxl xA O* = discharge from adjacent cut slope and interim area (0.40 ac) conveyed via Side Graded Ditch. *• = total discharge is adjusted for a network time of concentration PROPOSED ULTIMATE: CONCLUSION: Currently there are no ultimate plans for this area of the project. Future developers will be responsible for analyzing this system for any resultant change in hydrologic factors as well as the limited capacity of a "high-side" gutter for the ultimate width on Rancho Santa Fe Road (interimly conveyed via the Side AC Ditch). LOCATION B: HYDRAULIC ANALYSIS: 100 Year Storm (D Descrip Shape MatI Length N S Dia Q Normal Depth Normal Velo Critical Depth ft % ft cfs ft fps ft SDBBB1 18" RCP , .Circ 159.00 0.012 11.15 1.50 19.99 0.77 21.77 1.47 SDBBB2 24" RCP Circ Cone 286.35 0,012 20.00 2.00 19.99 0.58 26.54 1.61 ID Critical Capacity Upstrm Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Velo Junct Loss Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm fps cfs ft ft ft ft ft ft ft SDBBB1 11.38 38.00 • 1.69 NBBB1 NBBB2 1.50 0.78 328.23 309.10 330.24 316.30 SDBBB2 7.40 109.60 0.12 N BBB2 N BBB3 1.72 0.58 309.04 296.90 309.89 307.87 CONCLUSION: Maximum Allowable HGL = EXST Rancho Santa Fe Rd. (332'). Interim condition results in 3' - 9" freeboard, therefore OK. STOh W DRA IN DATA NO. -A OR BRG. RADIUS LENGTH REMARKS DATA @ se'^cA> J c vrcrr DATA @ 4'/3-S4-fV 7/.^s• NO. DELTA Off BRG. RADIOS LENGTH REMARKS @ 3?0 29' 8' V.C. Si 37^5^ P4'^CP <i> 5500' 8- V.C <s> N43'50WW seoo-fi- V.C /V4J'£0-(}0-iV JO' 2S.^ <> SFAfCH MARK DESCRIPTION' STANDi^RC BRMZ^DlSC. IN ClVVf. W'Vv LOCATION • ABOUT 20C NORTH OF ^JA 261.9f.7^ 5ANTA FE ROAO -RS i:'E-\R f ('".'•',' SIDE OF ROAD RECORD FROM: COUNTY BENCH LE Vets. J-0302 ELEVATION 176 It DATUM• USC COiS loia-r? H-3-77 f-CL OiTE BY "AS Sl/n r- £i_ ECTR'Cei svsrEM ffEVISlONS PLANS FOR THE IMPROVEMENTS OF : STORM DRAIN a SEWER CARLSBAD TRACT NO. 72-20 [LA COSTA VALE)UNIT NO.3 APPRCVt RE 13426 426 y CITY EN^^ER CHKD BY \FiFinpv \PRO.!ECr Nl I 74-9 SCALE%y ^°!/l:-AB NOTED DRAWING fJ" 176-2 LOCATION C: 1.) Description of Existing System: a. 30" RCP with L Type Headwall b. Inlet pipe at 1.0% with invert FL = 380.81 ft c. Drains 29.4 acres 2.) Description of Improvements: a. Remove headwall and approximately 48 ft of pipe and attach a Catch Basin Type F and additional section of pipe to convey discharge underneath Connector Rd. b. Improvements divert 0.49 acres to a detention basin and 0.42 acres to location B STORM DRAIN SYSTEM G 'EXISTING SYSTEM: LOCATION C .lOO-YEAR STORM PONDED SURFACE ELEV. 3.) Conclusion: a. Conduct hydrologic analysis to compare existing and proposed 100-year flows to the system. b. Conduct hydraulic analysis to determine the 100-year HGL elevation. LOCATION C: HYDROLOGIC ANALYSIS: 100 Year Storm Node: Existing pipe intercepting System G discharge and outletting it underneath existing Rancho Santa Fe Rd. EXISTING: P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev. Description Area C L H Tc 1 0 ft ac ft ft min in/hr cfs 1G448i}6 *CRr48'LT 380.81 L-Type headwall 29.40 0.45 2260 80.2 20.80 3.05 40.31 CONCLUSION: Existing 30" RCP with L-Type headwall is intended to handle 40.31 cfs EOUATIONS: FL Elev. = flowline invert of the pipe was surveyed at 0.19 ft lower than shown on As-Built. Tc = [ (11.9 X L^) / H -1-10 min for natural watershed t = 7.44 X Pg X Tc' Q = CxI xA PROPOSED INTERIM: Location FL Elev. Description AN G2 Atot QN GI QN GS' Qtot ft ac ac ac cfs cfs cfs 17+20.91 'CRV 42.7' RT 384.32 30" Wing Headwall 28.32 0.10 28.42 42.37 4,42 46.79 CONCLUSION: Though there is a reduction in the contributing area, due to an increase in the runoff coefficient and a shorter time of concentration, Q proposed > Qexisimg. however, hydraulics show that this pipe will work under pressure flow. NOTE: ' = discharges are adjusted for a network time of concentration NOTE: See analysis of "N Gl" and "N G2" in Storm Drain System G calculations. PROPOSED ULTIMATE: CONCLUSION: The contributing area to node N Gl will be greatly increased, resulting in an approximate 13.9 acre increase in diversion to this system. LOCATION C: HYDRAULIC ANALYSIS: 100 Year Storm ID Descrip Shape MatI Length N S Dia Q Norma! Depth Normal Velo Critical Depth ft % ft cfs ft fps ft SDG1 30" RCP ate Cone •133.18 0.012 2.63 2.50 42^7 1.38 SDG2 30" RCP Circ EX Cone 58.52 0.012 1.00 2.50 46.79 2.20 10.23 2.26 ID Critical Capacity Upstrm Upstrm Dwnstrm ActI Depth Actl Depth HGL HGL EGL EGL Velo Junct Loss Node Node Upstnn Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm fps cfs ft ft ft ft ft ft ft SDQl 9.34 72.06 1.35 NQ1 NG2 2.50 1.44 387.85i :&ii2;26^n ^^389.21 385.50 SDG2 10.04 44.44 1.00 N G2 NG3 2.50 2.20 383.58 382.13 385.15 383,76 CONCLUSION: Maximum Allowable HGL = EXST inlet at EXST Rancho Santa Fe Rd (386'). Interim condition results in 3' -10" freeboard, therefore OK. 490 480 4O0 390 in r, 390 380 SCALE .'HOU. I PROFILE STORM DRAIN ON LOT 56 SCALE: HOR. I'-SO' mi''8' _ , PftOFIL£ 5EWBR Mm ON LOT 91 SCAL£: HOR. r- 50' MER. I'- 8' FOtf SEW£/^ IN KHO, 3ANTA PS f^OAO SEE SHEET 7or3S. CT 72-20 PLAN SCALE - f-50' PLAN SCALE :r. so- PROFILE STORM DRAIN ON LOT 93 SCALE. HOR. so' V£R./"'S' /a'TYPE 'B'INLET PER SAN DiEGO f AREA REGIONAL SID. OKG. M» D-£ - ^- TYPE'S'INLET PER SANOIESO AREA REGIdNAL STD. DWG.N^O-Z ^/aso'oo'oo-Vi/ FOR SEWER IN KHO SANTA FS RAAO SEE SHEET O OP as, cr 72-20 SAHTA PE RCXAO SEE SHECIT aof=39 CT 7Z-SO 7-TfPE'C-l' IHLET PER SAH DIESO r AREA REGIONAL STQ OMB M* OS •L'TYPE HEAOmLL PeR_ SAN oieso Ai?eA REStamB Ttvec-INLET P£ff_ SAN OIEGO AREA REGIONAL STD OWG N? D-3 cr 71- 20 UNIT NO.3 PLAN SCALE: r- SO- SEWER DATA u^^TAORBRa RADIUS LENGm REMARKS SOO' 34.16-8-V.C ^ I8'2Q~W. 175.03- 20.00' f/.3rOS'/0'H 220.3/' MSO'OOOOW. 20.00-- j-ir/4-or eoi6' - N 84*00OO'W. 158.40- M55'Z7'4rW. moo-3'V.C. ENGINW OF WORK: —^.^X-grf ...^^^.< -f?.c.e. f4/s STORM DRAIN DATA NO. DELTA Off BRG RADIUS LENGTH REHtARKS M/8'47-38-lV. 46.03-I8'R.C.R N.33'05-/0-W. /5Z37-' - (a M44'3eiO-)V. 3B2S 36'ltC.P £) N.44'36-/0-W. 125.12' • U.44'3e-/0-K. moo' 30-f?.C.P lo-io-nvi.a. DATE RICK ENGINEERING COMPANY PLANNERS-ARCHITECTS-CIVIL EWGIl^EiRS - LJINO SURVETOBS 3088 PIO PICO 0«:VE, SUITE 202, C/lRLSBaC,CALIF 92003 TELEPHONE 1714)729-0987 PRIVATE CONTRACT 3r 'AS SaiLTBFW£R SyST£l4 REVISION'; SHEET 7 CITY OF CARLSBAD t.NGlNEERING DE =aRT M£NT SHEETS 9 PLANS FOR THE IMPROVEMENT OF SEWER & STORMDRAtN IN CARLSBAD TRACT NO. 76-3 flPPflQV BE f64ZG i4ZG Vc.TY zm\Him DWN 3-ifl.PORTER CHKD F;EUD ev PROJECT MO. SCALES DRiWING \0. LOCATION D: 1. ) Description of Existing System: a. 30" RCP with inlet apron b. Iniet pipe at 14.2% with invert FL = 256.9 ft c. Drains 21.1 acres 2. ) Description of Improvements: a. No interim improvements to system b. Improvements divert 7.1 acres to exist system which wiil be routed through a detention basin EXISTING SYSTFU. LOCATION D^^^^= // ^ Do^ SDoo^ KT' O a., TO / J 0O3 3.) Conclusion: a. Conduct hydrologic analysis to compare existing and proposed 100-year flows to the system. b. Conduct hydraulic analysis to determine the 100-year HGL elevation. LOCATION D: HYDROLOGIC ANALYSIS: 100 Year Storm Node: N DDI - Existing pipe intercepting System B discharge and outletting it underneath existing La Costa Ave. to an existing system. EXISTING: Note: location is along a line running N84'^1'15"W from alignment CONCLUSION: Existing 30" inlet apron is intended to handle 33.82 cfs P6= 2.9 in. Minimum Tc = 5 min. Location FL Elev. Descriptior Area C L H Tc 1 Q ft ac ft ft min in/hr cfs 256.900 Apron 21.07 0.45 1650 127.1 16.29 3.57 33.82 EQUATIONS: Tc = {(11.9 X L^) / H ] + 10 min f or natural watershed I = 7.44 X Pg X Tc **^ 0 = Cxl xA PROPOSED INTERIM Location FL Elev. Descriptior Area C L H Tc 1 0 QBASIN* Qtot ft ac ft ft min in/hr cfs cfs cfs 256.900 Apron 21.07 0.45 1650 127.1 16.29 3.57 33.82 10.70 44.52 Note: location is along a line running N84'^01 '15"W from alignment CONCLUSION: Due to an inadequate capacity in the existing systems for locations A and B (flowing directly into developed communities), the diversion and detention of flow this system is the most direct route to the Encinitas Creek without disturbing or endangering the existing developed properties. NOTE: * = See Appendix E for the detention basin routing calculations. The value of 10.70 cfs is a conservative value using the Rational Method; a much more accurate value of 7.78 cfs is obtained using the SCS Method. PROPOSED ULTIMATE: CONCLUSION: No ultimate plans have been made for this area, however, there may be a significant increase in the runoff coefficient and a decrease in the time of concentration due to future development. LOCATION D: HYDRAULIC ANALYSIS: 100 Year Storm ID Descrip Shape MatI Length N S Dia Q Normal Depth Normal Velo Critical Depth ft % ft cfs H fps ft SDDD1 30'RCP EX. Cone .0.012 14.20 ', . ) 2.50 4432 0.88 .28.83 2.22 - SDDD2 30" RCP Circ EX Cone 93.00 0.012 3.70 2.50 55.50 1.47 18.54 2.36 ID Critical Capacity Upstrm Upstrm Dwnstrm ActI Depth ActI Depth HGL HGL EGL EGL Velo Junct Loss Node Node Upstrm Dwnstrm Upstrm Dwnstrm Upstrm Dwnstrm fps cfs ft ft ft ft ft ft ft 167.27 -0.865; NODI :NDD2 ;2l5q: ^i; 259.97 261.43 260.38 SDDD2 11.57 85.47 0.75 N DD2 N DD3 2.50 1.61 257.13 252.15 259.21 256.44 CONCLUSION: Maximum Allowable HGL = La Costa Ave top of curb {260.51'). Interim condition results in 6.5" freeboard, therefore OK. aSO NLY. ct. - 280 f- 280 SLY. CB.- IS! « HO'V.C. f.sx It 264. 'O&AT^ Item % CLI60 C1.20O 1 5 1 1 ft* imNALSfioum INLET APRON-SAm.sra Dm.O-39 lAOO U: 1950-0 H.l?9i - 2S a.0. 15% FUl SORSKZEyArxW a LA COSTA IS4 3 SCALE: HORIZ. VERT. AVENUE r- 50" 135 T3B 86 137 139 I»m AMSliO^ me. MyM mi 134 SUPERELEVATION DIAGRAM SCALE > HORIZ. f- 100' VERT I". 2' 08 140 140 mx iA COSTA Antr. met coNsrmicrePs/tffmfs Ase eoAsmtrxwanMS£ ser^ 4b«r4(9. eoc-io CENTERUNE Na DELTAORML RAMUS DATA LENGTH < S < S 1 TOTAL ameatrA-t A'TS'SO^' If'IOOO' Ml sup^LmmNjmisiTm *** ""^ <9 142 <; S ss /8-A£r '• P^m>^ JO'A-LR Remve^' MPtGi CONNECT (S££ NOT£ aeLOUW PIAN) STORM DRAIN SCALE- HORIZ. T • 40" VERT r - 6*^ ^fUTO^L^^ -27 SLOPE -260 t e. n^yv 'a'm^T DiVO. 0-2 143 Ai^l& I44« V -KT SHADE ONLY -260 SLY. CI SOTS: see Dm. Na 205-2D POR AB'BUILT 145 .fS-mAm£EM£NEHT xc^^K-msriMTE DATE OCT. 22.1990 RIWANP SCOPE StS0t4^C 00C*^Th2Smi me MY 14, mi REMARKS 1 \\(f /44*MM iACOSTM 4ii£Afi/£ 4^*-Xt9TAf/ SOTAMCIA aAimiADE t'ENO' STR^ smj sDi PES. sro. am M-9 _ 2\6'mK * CUT OPP ma PEP 6-22 XACPA0AF7ER PLAN LA COSTA AVENUE CURB MTA ^CUAORIM RAOmS LENGTH NO. WATER OATA DELIA OR BRQ RADIUS LENGTH REMARKS DRAIN DATA OS yj>'4H' I REMARKS i4SI?' f2^AC^a.0e NO. DELTA OR BRG. RADIUS LENGTH REMARKS *w (D /AOO' *)• KCP isaeo * > V4fai,'/0'i¥ 14 04' * • • A'AP'sie.tn" • a.fi0 vsA'se-'/s-'E A/Of-l%'KPI»90'0 Q if€irC^M • • Q 9000' 3'^j^a/so NOTE' mrep LINE ON LU COSTA m/om ESTANCM IS TOOECONsnfucno sy OTHERS PRIOR TP 7»E REMAINING VHHTER UAIES OHS/7E. dENCH MARK OESCRIPTION' 9TD. BRONZE DISC IN CONC MON. LOCATION. ABOUT 200'NORTH Of STA. 26UM.r2 RANCHO SANTA FE ROAO-R.$. 454-NEAR FENCE EAST StOE OF ROAD. RECORD FROM'OOUNTY BENCH LEVEL J-0302 ELEVATION: ITt.lB MTUM U S C 8 6 S R(ffiERT A. STOCKTON <t5£»C R.C.E. 33591 DATE DRAWN ev o%:ir..m CHfCKED av CK-APPROVEO BY RICK ENGINEERING COMPANY PiANWEWS ARCHITECTS C'VIL ENGINEERS L AND SuRi/EVOSS 3098 PiOPiCO DSiVE, SUITE ;p2, CARL5BiO,C(»Llf 9^000 TELEPKONE I 'lai T2<i -4987 PRIVATE CONTRACT Ciiy OF CARLSBAD ENGINEERING DEWiRTMENT PLANS FOR THE BiflPROVEMENT OF: LA COSTA AVENUE LA COSTA CONDOMINIUMS CT 84-7 OWN Sf CHKD Bv FIELC BI PROJECT NO CT84-7 HORI? AS SHOWN OR/*viNG faO ii il •MWIU — mma NOWL. 840- *^«»*T. »-A^.f. mnt itoi'BO' JfiL 1 9ACICFILL KMINO '- HtAOWALL ML. 260- LT ca '1 -si 3 *• • w lA N ^ 1 ^ M lA N ^ 1 S»JL^*lt'ltCjr 4f.f4-% liSO D E 3 •o is t a 1 Si 260—t" CUr-OFf IVAlL ('tcwss 'a* cow.) yrORM PRAIN P^OfjlLE SCALES- HORZ. r-50' VERT r- 8^ PROFILE- DOUBLE 72" R.C.P a MISION ESTANCIA STA. 42*28 , SCALES'HORZ < VERT I"" 8" lliaff* >$A£'filWf£ ml smxeiemiAfi» 2.45% UiPT' AXIS iPMowm fir) sanstEi£¥iTieiiTiUNSinm auPEir irmiopp 260- RT BERM -260 •250 •73 -260 -260 -250 -taz ff«775 TCtUK .~6.Z57.7S TZ. mtS 42 43 SUPERELEVATION DIAGRAM 44 sumELEVJuriON siar/f £A$£NiGifr^ ooc^^tt'ssmi X OAjEff'OCT. i2,mo \v PROFILE SCALE - HORIZ. V^RT 44 ZAA1'-I^''NCP liSQ0»4St 43 iiuiri» S£? l/AJ. PT CLAS. CUTOPP MU. Z.I • TNlCX noncTiON l^ffCIC SiPPS ^TSCrjiS^^ . I-TOAJ tK>CJ(. 4.S rWC^. P7LTSM OLAiJKBT- /.f 'TWieNMSREGATS OGt l^'TWCASANP MP M PLUS ift4 w/sof ESTjiMTiA comimcTm 70 aearc^UEJis. p^ie comrjeocnoN . CMAMGESer POiP£»/£m Eos-eo Sf^fii, I'SAMTA ^A:^I0££S) ^^"^"^ DETAIL. DBLE.72" R.CP §IMKM itTANCiA tJA.AUtO OO A6,^Mefi £AISTM,'/t4l R£LOCAT£P OA/A/O STORM DRAIN DATA DELTA OR 8H& RAOtUS LENGTH REMARKS IfKCP-ISSO-i MS4*40100'B 79000' QBLB 72'fiCP /V/fA4'4a'w 27.00" fi'/KTIXM 44.iff 36'KP • I3»0 SiST li'RCP- I3SC-D A'7'3%'4T 37S' 7/S.SO' joiKP- usao A7EfVf9^Jlf 123.04' M-iKP isse-o NO. SEWER DELTA OR BRG RADIUS DATA LENGTH REMARKS /V //'JO OiTE SS4S£I0' IZ'l/.Cfi! NOTE! SEE D^NO 206 ZD FO^ AS-auiLT -£X7sr ^ag«a*«f2?^.^>^ Sk>iiOffv4fvsre££)CA: ^ire/ATsrML MEWI^'ACE CURB NO DELTA OR BRG. RADIUS m.- DAIA LENGTH REMARKS t W/A/S I4ALLS SES L£Pr icrff^/t&fTsrALL^ ^JM£4MP7EX .r9*'/«rf SPOOL CF rose WATER DATA NO. DELTA OR 8RG. RADIUS LENGTH REMARKS A'mrsir ACP a too A/7I*/O'00'£ SO' 4'ACFa3SO MOTE' mTEX LINE ON lAOl STA, )4/S70N ESTMC/A H 7PSE CONSTRUCTED O/ 07N4M PRIOR 70 77^£ TKMAMONfi mreRLiAJEi ONSITE 40^S&^ ^oe^/fE/rTVontMXi 4t4Wr XMO NO CENTERUKE DATA DELTA OR BRG. RADIUS LENGTH REMARKS DETAIL - ry^/t)puces I^OP^ NOSCALE ^^M>mV^.} BENCH MARK OeSCNIPTION' STO. BRONZE DISC IN CONC MON LOCATION' AKUT 200'NORTH OF STA.2«I*M.72 RANCHO SANTA ft ROAD- R.S. 4S4-NCA FENCE EAST SIDE OF RQAO. RECORD FROMi COUNTY BENCH LEVEL J-0S02 ELEVATION. ITS.IB UTUy U.S.C • 6.S IS IfBO'tt-f0.59' trrfpfscu^s N. SB* OS'IT'W &'Sfm'43P S9.lt' » f A'^OS'fV 36' 50.00' lie 06 • 1 MS' H • RICK E PLANNERS fl siGlNEEft KHITECTS CIV NG CO IL ENGt^EER5 WPANY uaNDSURVEfOflS lose PiO PICO DRIVE, SUIE 202, CaHLSBAD,CaLlF 92008 TELEPHONE (7l4)729-a9fl7 PRIVATE CONTRACT SHEET -go. CITY OF CARLSBAD ENGINEERthG DEPARTMENT SH'-i TS 25 PLANS FOR THE IMPROVEMENT OF: MISION ESTANCIA Lfl COSTA CONDOMINIUMS ICT 84-7) RE I^Taf CITY siyCNEEfl OWN QV CHKO BT FIELD BV PROJECT NO ' CT84-7 SCALES ^°^^'AS SHOWN OOOwiNG NO 253-7 LOCATION E: 1.) Description of Existing System: a. 18" RCP with B-1Type inlet b. Inlet pipe at 13.2% with invert FL = 271.67 ft c. Drains 2.42 acres under Rancho Santa Fe Rd. to a community to the southeast 2.) Description of Improvements: a. b. Add 300 ft of Slotted CSP Drain to maintain the existing drainage conditions after the placement of a raised median. Improvements divert no additional acres to the system, but do divide the area with the raised median, reducing flow to the downstream inlet and increasing flow to the upstream inlet. 3.) Conclusion: a. b. No hydrologic analysis is necessary since the difference in existing and proposed flows to the system Is negligible. No hydraulic analysis is necessary since the difference in existing and proposed flows to the system is negligible. FOe STORM QB4/A/ CONTINUATION ORMma M APPENDIX E DETENTION BASIN DESIGN RANCHO SANTA FE ROAD-CiTY OF CARLSBAD, CA RANCHO SANTA FE ROAD DETENTION BASIN STUDY 1.0 PROTECT LOCATION The project is located along Rancho Santa Fe Road, Phase I within the County of San Diego and in the City of Carlsbad. 2.0 PROJECT DESCRIPTION This Detention Basin Study consists of analyzing Rancho Santa Fe Road (RSFR) Storm Drainage System "B" Improvements and the impact to an existing tributary of the Encinitas Creek Watershed. System "B" Improvement's peak flow discharge need to be reduced due to the limited capacity of the downstream existing facilities located at the intersection of La Costa Avenue and Camino De Los Coshes. The existing 30-inch RCP has an existing capacity of 10 cfs, see Appendix "D", Location "D" for calculations. This Detention Basin Study will determine if a detention basin is required and what capacity is needed to limit the peak discharge to 10.0 cfs. 3.0 PURPOSE This study was initiated by the City of Carlsbad for the purpose of designing, planning and constructing the Rancho Santa Fe Road Improvement Project. This study specifically addresses the following: A. RSFR Improvements and limiting the discharge of System "B" to 10.0 cfs Maximum, (Interim Condition). B. Analyzing the Detention Basin sized for RSFR Improvements after additional flows are directed into System "B" from the adjacent La Costa Villages Development, (Ultimate Condition). No set maximum discharge is used as the existing facilities are anticipated to be improved by the adjacent developments. 4.0 CONCLUSIONS & RECOMMENDATIONS Interim Improvements: This scenario consists of analyzing the RSFR Improvement Project based on the Phase I Construction Drawings without the adjacent development completed. The total drainage area for System "B" in the Interim condition is 7.34 Acres. The weighted "C-value" for the total area is 0.84 as shown on page 9.01. This resulted in a peak flow of 49 cfs for a Time of Concentration DOKKEN ENGINEERING Version 4/10/01 Page 1 p-.\l058\400\Det, Basin\I058 Det. Basin Report.doc RANCHO SANTA FE ROAD CITY OF CARLSBAD, CA of 5 minutes as shown on page 9.02. The Rainfall-Intensity-Duration Curve is shown on page 3.01 and is based on the County of San Diego's Hydrology manual. The maximum allowable outlet flow is 10.0 cfs for this scenario, based on the existing downstream conditions. A Hydrograph was developed for this drainage area using the Modified Rational Method. The Program PondPack by Heasted was utilized to estimate the required storage by overlaying the output hydrograph, (10 cfs) with the Modified Rational hydrograph, and computing the area (volume) formed between the two curves. The program determined that the maximum required storage of 0.41 ac-ft, would be required for a storm with a flow of 14 cfs into the basin for a duration of 36 minutes, as shown on the graph on page 9.02. Once this preliminary information was determined a grading plan was developed and the basin elevation vs. storage volume was inputed into the PondPack Program. The basin designed has 0.75 ac-ft storage capacity below the Emergency Spillway. In addition an outlet structure was designed and inputted into PondPack. The final results for this scenario determined that the peak outflow of the basin into the existing tributary is 9.6 cfs which is below the 10 cfs capacity for the existing facilities. The peak storage volume of the basin is .40 ac-ft. and results in a water surface elevation in the basin of 347.0 feet which is two feet below the Emergency Spillway. The pond routing summary is located on page 8.11. Ultimate Improvements: This scenario consists of analyzing the RSFR Improvement Project based on the Phase I Construction Drawings with an additional 7.4 acres or 34 cfs being directed into the Storm Drainage System "B". The adjacent development Villages of La Costa has been constructed for this scenario. The total drainage area for System "B" in the Ultimate condition is 14.21 Acres. This resulted in a peak flow of 80.56 cfs for a Time of Concentration of 5 minutes, as shown on page 10.02, utilizing the County of San Diego's Hydrology manual. A Hydrograph was developed for this drainage area using the Modified Rational Method. The Program PondPack by Heasted was utilized to estimate the required storage by overlaying the output hydrograph with the Modified Rational hydrograph, and computing the area (volume) formed between the two curves. The program determined that the maximum required storage of 0.96 ac-ft, would be required if the outflow was limited to 10 cfs. The maximum storage requirement was for a flow of 14 cfs into the basin for a duration of 78 minutes, as shown on page 10.03. However, this scenario did not limit the maximum allowable outlet flow. The basin and outlet structure remain as designed in the Interim scenario. It is assumed that the existing downstream facilities at the intersection of La Costa Avenue and Camino De Los Coshes will be upsized to handle additional flows. DOKKEN ENGINEERING Version 4/10/01 Page 2 P \1058UOO\Det. Basin\1058 Det. Basin Report.doc RANCHO SANTA FE ROAD CITY OF CARLSBAD, CA The final results for this scenario determined that the peak outflow of the basin into the existing tributary is 12.6 cfs, as shown on page 9.15, which is above the 10 cfs capacity for the existing facilities. As noted previously, the downstream drainage facilities are expected to be upsized as a condition of the future development. The peak storage volume of the basin is 0.56 ac-ft. and results in a water surface elevation in the basin of 348.0 feet which is 1.0 feet beiow the Emergency Spillway. DOKKEN ENGINEERING Version 4/10/01 wwo.dakke Page 3 P:\l058\400\Det. Basin\1058 Det. Basin Report.doc Pe = 2.9 in 100-YEAR INTERIM STORM SUMMARY Drainage Watershed Soil Land Runoff Area Time of Rainfall 100 Year System No. Area No. Group Use Coefficient Concentration Intensity Flow ac mm in/hr cfs B N B4 D Rdwy 0.95 0.78 5.00 7.64 5.64 N B5 D Rdwy 0.95 1.09 5.00 7.64 7.91 N B7 D UOS 0.55 1.58 7.77 5.75 5.01 N B11 D Rdwy 1.00 0.36 5.00 7.64 2.71 D Rdwy 0.90 0.84 5.00 7.64 5.75 N B12 0 Rdwy 1.00 0.29 5.00 7.64 2.21 D Rdwy 0.90 0.28 5.00 7.64 1.95 N B12.5 D Rdwy 1.00 0.20 5.00 7.64 1.53 D Rdwy 0.90 0.34 5.00 7.64 2.33 N B15 D Rdwy 1.00 0.45 5.00 7.64 3.46 D Rdwy 0.90 0.42 5.00 7.64 2.85 N B16 D Rdwy 1.00 0.31 5.00 7.64 2.40 N 817 D Rdwy 0.95 0.42 5.00 7.64 3.02 P6=2.9 in 100-YEAR ULTIMATE STORM SUMMARY Drainage Watershed Soil Land Runoff Area Time of Rainfall 100 Year System No. Area No. Group Use Coefficient Concentration Intensity Flow ac mm in/hr cfs B N B4 D Rdwy 0.95 0.78 5.00 7.64 5.64 N B5 D Rdwy 0.95 1.10 5.00 7.64 8.01 N B11 D Rdwy 0.95 1.20 5.00 7.64 8.67 N B12 D Rdwy 0.95 0.56 5.00 7.64 4.09 N B12.5 D Rdwy 0.95 0.51 5.00 7.64 3.71 NB15 D Rdwy 0.95 0.90 5.00 7.64 6.52 NB16 D Rdwy 1.00 0.49 5.00 7.64 3.74 N 817 D Rdwy 0.95 0.47 5.00 7.64 3.44 NOTE: 34.7 cfs is added to System B from future development Rdwy = roadway, medians, cut/fill slopes •UOS = undeveloped open space Job File: C:\PONDPACK\RSF\RSF-MRM.PPW Rain Dir: C:\HAESTAD\PPKW\RAINFALL\ JOB TITLE City of Carlsbad Rancho Santa Fe Road North, Phase I (Interim Improvements) Contract No. 3190 Modified Rational Method DE File No. 1058 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Table of Contents i Table of Contents ******************** NETWORK SUMMARIES ********************* Watershed SDlOO Executive Summary (Nodes) 1.01 Executive Summary (Links) 1.02 ****************** DESIGN STORMS SUMMARY ******************* IDF Storms 10.. Rational Storms 2.01 ********************** RAINFALL DATA *********************** IDF tbl 10 SDlOO I-D-F Table 3 . 01 ********************** ipQ CALCULATIONS ********************* DEVELOPED TC Tc Calcs 4.01 *********************** "pif^E VS ELEV *********************** POND OUT SDlOO Time-Elev 5.01 *********************** POND VOLUMES *********************** POND Vol: Elev-Volume 6.01 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Table of Contents ii Table of Contents (continued) ******************** OUTLET STRUCTURES ********************* OUTLET Outlet Input Data 7.01 Individual Outlet Curves 7.04 Composite Rating Curve 7.08 *********************** POND ROUTING *********************** OUTLET SDlOO Diverted Hydrograph 8.01 POND Pond E-V-Q Table 8.07 POND IN SDlOO Node: Pond Inflow Summary 8.08 POND OUT SDlOO Pond Routing Summary 8.11 ****************** RATIONAL METHOD CALCS ******************* INTERIM C and Area 9.01 ULTIMATE SDlOO Mod. Rational Graph 9.02 Mod. Rational Storm Calcs 9.03 Mod. Rational Hyg 9.04 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Executive Summary (Nodes) Name.... Watershed File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 1.01 Event; 100 yr NETWORK SUMMARY -- NODES (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Storm Tag Name = ^ ^ ^ ^ ^ ^ Data Type, File, ID = Total Rainfall Depth= .0000 in Duration Multiplier = 0 Resulting Duration = .0000 hrs Resulting Start Time= .0000 hrs Step= .0000 hrs End= .0000 hrs Node ID Outfall OUTFALL POND POND ULTIMATE Type JCT IN POND OUT POND AREA HYG Vol Qpeak ac-ft Trun. hrs .695 .697 .695 .697 L .6260 .0840 .6260 .0833 Qpeak cfs 9.58 14.05 9.58 14.05 Max WSEL ft 347.05 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Executive Summary (Links) Name.... Watershed File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 1.02 Event: 100 yr NETWORK SUMMARY -- LINKS (UN=Upstream Node; DL=DNstream End of Link; DN=DNstream Node) (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Storm Tag Name Data Type, File, ID = Total Rainfall Depth= .0000 in Duration Multiplier = 0 Resulting Duration - . 0000 hrs Resulting Start Time= . 0000 hrs Step= . 0000 hrs End= . ,0000 hrs HYG Vol Peak Time Peak Q Link ID Type ac-ft Trun. hrs cfs End Points ADD ADD UN .697 L .0833 14.05 ULTIMATE DL .697 L .0833 14.05 DN .697 .0840 14.05 POND IN OUTLET PONDrt UN .697 .0840 14.05 POND IN OUTLET .695 .6260 9.58 POND OUT DL .695 .6260 9.58 DN .695 .6260 9.58 OUTFALL S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time : 15:57:0 8 Date: 04-06-2001 Type.... Rational Storms Page 2.01 Name.... IDF Storms 10 File.... C:\HAESTAD\PPKW\RAINFALL\SD.IDQ Title... City of Calsbad Rancho Santa Fe Road North, Phase I (Ultimate Improvements) Contract No. 3190 Modified Rational Method DE File No. 1058 I-D-F DESIGN STORM SUMMARY Storm Queue File,ID = SD.IDQ IDF Storms 10 Storm Tag Name = SDlOO File: Type, ID = SD.IDF: I-D-F Storm... IDF tbl 10 Storm Frequ. = 100 yr S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... I-D-F Table Name.... IDF tbl 10 Tag: SDlOO File.... C:\HAESTAD\PPKW\RAINFALL\SD.IDF Storm... IDF tbl 10 Tag: SDlOO Page 3.01 Event: 100 yr Rainfall-Intensity-Duration Curve Time, hrs Intens., in/hr .0820 7 .9000 .1660 5.0000 ,2500 4.0000 3340 3.3000 .5000 2.5000 .6660 2.1000 8340 1.8000 1. 0000 1.6000 1. 5000 1.2500 2 . 0000 1.0000 2 . 5000 .8900 3. 0000 .7900 3. 5000 .7000 4. 0000 .6500 4. 5000 .6000 5. 0000 .5600 5. 5000 .5250 6. 0000 .5000 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Tc Calcs Name.... DEVELOPED TC File.... C:\PONDPACK\RSF\RSF-MRM.PPW Page 4.01 TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: User Defined Description: Pipes Segment #1 Time: .0833 hrs Total Tc: .0833 hrs Calculated Tc < Min.Tc: Use Minimum Tc... Use Tc = .0833 hrs S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Tc Calcs Page 4.02 Name.... DEVELOPED TC File.... C:\PONDPACK\RSF\RSF-MRM.PPW Tc Equations used... ===== User Defined =====================================================: Tc = Value entered by user Where: Tc = Time of concentration S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.01 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. .0000 ] 343 .88 343 .88 343 .89 343 .90 343 .91 .0100 j 343 .92 343 .94 343 .96 343 .99 344 .02 .0200 j 344 .06 344 .11 344 .16 344 .22 344 .27 .0300 [ 344 .33 344 .40 344 .47 344 .50 344 .51 .0400 1 344 .52 344 .53 344 .53 344 .54 344 .55 .0500 1 344 .56 344 .57 344 .58 344 .59 344 .60 .0600 I 344 . 61 344 .63 344 .64 344 .65 344 .66 .0700 1 344 .68 344 .69 344 .70 344 .72 344 .73 .0800 1 344 .75 344 .76 344 .78 344 .80 344 .81 .0900 1 344 .83 344 .84 344 .86 344 .88 344 .89 .1000 i 344 .91 344 .92 344 .94 344 .95 344 .97 .1100 1 344 .98 345 .00 345 .01 345 .03 345 .04 .1200 1 345 .05 345 .07 345 .08 345 .09 345 .10 .1300 1 345 .12 345 .13 345 .14 345 .16 345 .17 .1400 1 345 .18 345 .19 345 .21 345 .22 345 .23 .1500 1 345 .24 345 .26 345 .27 345 .28 345 .29 .1600 1 345 .30 345 .32 345 .33 345 .34 345 .35 .1700 I 345 .37 345 .38 345 .39 345 .40 345 .41 .1800 1 345 .42 345 .44 345 .45 345 .46 345 .47 .1900 1 345 .48 345 .49 345 .50 345 .52 345 .53 .2000 1 345 .54 345 .55 345 .56 345 .57 345 .58 .2100 { 345 .59 345 .60 345 .61 345 .62 345 .63 .2200 1 345 .64 345 .65 345 .66 345 .67 345 .68 .2300 i 345 .69 345 .70 345 .71 345 .72 345 .73 .2400 1 345 .75 345 .76 345 .77 345 .78 345 .79 .2500 I 345 .80 345 .81 345 .82 345 .82 345 .83 .2600 1 345 .84 345 .85 345 .86 345 .87 345 .88 .2700 1 345 .89 345 .90 345 .91 345 .92 345 .93 .2800 I 345 .94 345 .95 345 .96 345 .97 345 .98 .2900 1 345 .99 346 .00 346 .01 346 .02 346 .03 .3000 j 346 .03 346 .04 346 .05 346 .06 346 .07 .3100 [ 346 .08 346 .09 346 .10 346 .11 346 .12 .3200 1 346 .12 346 .13 346 . 14 346 15 346 .16 .3300 1 346 .17 346 .18 346 .18 346 19 346 .20 .3400 1 346 .21 346 .22 346 .23 346 24 346 .24 .3500 1 346 .25 346 .26 346 .27 346 28 346 .28 .3600 I 346 .29 346 .30 346 .31 346 32 346 .33 .3700 I 346 .33 346 .34 346 .35 346 36 346 .36 .3800 1 346 .37 346 .38 346 .39 346 40 346 .40 .3900 j 346 41 346 42 346 .43 346 43 346 .44 .4000 j 346 .45 346 46 346 .46 346 47 346 .48 .4100 1 346 49 346 49 346 .50 346 51 346 .51 .4200 j 346 52 346 53 346 .54 346 54 346 .55 .4300 1 346 56 346 56 346 .57 346 58 346 .58 .4400 1 346 59 346 60 346 .60 346 61 346 .61 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.02 Event: 100 yr TIME vs. ELEVATION (ft) Time hrs Output Time increment = .0020 hrs Time on left represents time for first value in each row. .4500 1 346 .62 346 .63 346 .63 346 .64 346 .65 .4600 1 346 . 65 346 .66 346 .67 346 .67 346 .68 .4700 1 346 .68 346 .69 346 .70 346 .70 346 .71 .4800 1 346 .71 346 .72 346 .73 346 .73 346 .74 .4900 1 346 .74 346 .75 346 .76 346 .76 346 .77 .5000 j 346 .77 346 .78 346 .78 346 .79 346 .80 .5100 1 346 .80 346 .81 346 .81 346 .82 346 .82 .5200 j 346 .83 346 .83 346 .84 346 .84 346 .85 .5300 1 346 .85 346 .86 346 .87 346 .87 346 .88 .5400 1 346 .88 346 .89 346 .89 346 .90 346 .90 .5500 1 346 .91 346 .91 346 .92 346 .92 346 .93 .5600 1 346 .93 346 .94 346 .94 346 .95 346 .95 .5700 1 346 .96 346 .96 346 .97 346 .97 346 .98 .5800 1 346 .98 346 .98 346 .99 346 .99 347 .00 .5900 j 347 .00 347 .01 347 .01 347 .02 347 .02 .6000 1 347 .03 347 .03 347 .03 347 .04 347 .04 .6100 1 347 .04 347 .05 347 .05 347 .05 347 .05 .6200 1 347 .05 347 .05 347 .05 347 .05 347 .05 .6300 1 347 05 347 .05 347 .05 347 05 347 .05 .6400 1 347 05 347 .04 347 04 347 04 347 04 .6500 1 347 03 347 03 347 02 347 02 347 02 .6600 j 347 01 347 00 347 00 346 99 346 99 .6700 1 346 98 346 97 346 97 346 96 346 95 .6800 1 346 94 346 93 346 92 346 92 346 91 .6900 ! 346 90 346 89 346 88 346 87 346 86 .7000 1 346 85 346 85 346 84 346 83 346 82 .7100 1 346 81 346 80 346 80 346 79 346 78 .7200 1 346 77 346 76 346 76 346 75 346 74 .7300 1 346 73 346 72 346 72 346 71 346 70 .7400 1 346 69 346 68 346 68 346 67 346 66 .7500 1 346 65 346 65 346 64 346 63 346 62 .7600 1 346 62 346 61 346 60 346 59 346 59 .7700 1 346 58 346 57 346 57 346 56 346 55 .7800 i 346. 54 346 54 346 53 346 52 346. 52 .7900 1 346. 51 346 50 346 50 346. 49 346. 48 .8000 1 346. 47 346. 47 346. 46 346. 45 346. 45 .8100 1 346. 44 346. 43 346. 43 346. 42 346 . 41 .8200 1 346. 40 346 . 40 346. 39 346. 38 346. 38 .8300 j 346. 37 346 . 36 346 . 36 346. 35 346. 34 .8400 1 346. 34 346. 33 346. 32 346. 32 346. 31 .8500 I 346. 31 346. 30 346. 29 346 . 29 346. 28 .8600 i 346. 27 346 . 27 346 . 26 346 . 25 346. 25 .8700 i 346. 24 346. 24 346. 23 346. 22 346. 22 .8800 1 346. 21 346. 21 346. 20 346. 19 346. 19 .8900 1 346. 18 346 . 18 346. 17 346 . 16 346. 16 .9000 I 346. 15 346. 15 346. 14 346. 13 346. 13 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.03 Event: 10 0 yr TIME vs. ELEVATION (ft) Time hrs Output Time increment = .0020 hrs Time on left represents time for first value in each row, .9100 1 346 .12 346.12 346 .11 346 .11 346.10 .9200 1 346 .09 346.09 346 .08 346 .08 346.07 .9300 1 346 .07 346.06 346 .06 346 .05 346.04 .9400 i 346 .04 346.03 346 .03 346 .02 346.02 .9500 1 346 .01 346.01 346 .00 346 .00 345.99 .9600 1 345 .99 345.98 345 .97 345 .97 345.96 .9700 1 345 .96 345.95 345 .95 345 .94 345.94 .9800 j 345 .93 345.93 345 .92 345 .92 345.91 .9900 1 345 .91 345.90 345 .90 345 .89 345.89 1 .0000 1 345 .88 345.88 345 .87 345 .87 345.86 1 .0100 j 345 .86 345.85 345 .85 345 .84 345.84 1 .0200 1 345 .83 345.83 345 .82 345 .82 345.81 1 .0300 1 345 .81 345.80 345 .80 345 .79 345.79 1 .0400 I 345 .79 345.78 345 .78 345 .77 345.77 1 .0500 1 345 .76 345.76 345 .75 345 .75 345.74 1 .0600 1 345 .74 345.73 345 .73 345 .73 345.72 1 .0700 1 345 .72 345.71 345 .71 345 70 345.70 1 .0800 1 345 .69 345.69 345 .69 345 68 345.68 1 .0900 I 345 .67 345.67 345 .66 345 66 345.65 1 .1000 1 345 65 345.65 345 64 345 64 345.63 1 .1100 i 345 63 345.62 345 62 345 62 345.61 1 .1200 I 345 61 345.60 345 60 345 60 345.59 1 .1300 1 345 59 345.58 345 58 345 57 345.57 1 .1400 i 345 57 345.56 345 56 345 55 345.55 1 .1500 1 345 55 345.54 345 54 345 53 345.53 1 .1600 1 345 53 345.52 345 52 345 51 345.51 1 1700 1 345 51 345.50 345 50 345 49 345.49 1 1800 ! 345 49 345.48 345 48 345 47 345.47 1 1900 1 345 47 345.46 345 46 345 45 345.45 1 2000 1 345 45 345.44 345 44 345 44 345.43 1 2100 1 345 43 345.42 345 42 345 42 345.41 1 2200 1 345 41 345.41 345 40 345 40 345.39 1 2300 1 345 39 345.39 345 38 345 38 345.38 1 2400 1 345 37 345.37 345 37 345. 36 345.36 1 2500 1 345 35 345.35 345. 35 345. 34 345.34 1 2600 1 345 . 34 345.33 345. 33 345. 33 345.32 1 2700 ! 345. 32 345.32 345. 31 345. 31 345.31 1 2800 1 345. 30 345.30 345. 30 345. 29 345.29 1 2900 I 345 . 29 345.28 345. 28 345. 28 345.27 1 3000 1 345. 27 345.27 345. 26 345. 26 345.26 1 3100 j 345. 25 345.25 345 . 25 345. 25 345.24 1 3200 1 345. 24 345.24 345. 23 345. 23 345.23 1 3300 1 345. 22 345.22 345. 22 345. 21 345.21 1. 3400 i 345. 21 345.21 345 . 20 345. 20 345.20 1. 3500 1 345. 19 345.19 345. 19 345. 19 345.18 1. 3600 1 345. 18 345.18 345. 17 345. 17 345.17 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.04 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time increment = .0020 hrs hrs [ Time on left represents time for first value in each row. 1.3700 1 345 .17 345.16 345.16 345.16 345.15 1.3800 i 345 .15 345.15 345.15 345.14 345.14 1.3900 1 345 .14 345.14 345.13 345.13 345.13 1.4000 1 345 .12 345.12 345.12 345.12 345.11 1.4100 1 345 .11 345.11 345.11 345.10 345.10 1.4200 1 345 .10 345.10 345.09 345.09 345.09 1.4300 1 345 .09 345.08 345.08 345.08 345.08 1.4400 i 345 .07 345.07 345.07 345.07 345.06 1.4500 1 345 .06 345 .06 345.06 345.05 345.05 1.4600 1 345 .05 345.05 345.05 345.04 345.04 1.4700 j 345 .04 345.04 345.03 345.03 345.03 1.4800 1 345 .03 345 .02 345.02 345.02 345.02 1.4900 I 345 .02 345.01 345.01 345.01 345.01 1.5000 1 345 .00 345.00 345.00 345.00 345.00 1.5100 I 344 .99 344 . 99 344.99 344.99 344.98 1.5200 1 344 .98 344.98 344.98 344.97 344.97 1.5300 j 344 .97 344.97 344.96 344.96 344.96 1.5400 j 344 96 344.95 344.95 344.95 344.95 1.5500 1 344 94 344.94 344.94 344.94 344.94 1.5600 1 344 93 344.93 344.93 344.93 344.92 1.5700 j 344 92 344.92 344.92 344.91 344.91 1.5800 1 344 91 344.91 344.91 344.90 344.90 1.5900 1 344 90 344.90 344.89 344.89 344.89 1.6000 i 344 89 344 . 89 344.88 344.88 344.88 1.6100 1 344 88 344.88 344.87 344.87 344.87 1.6200 1 344 87 344.86 344.86 344.86 344.86 1.6300 1 344 86 344.85 344.85 344.85 344.85 1.6400 I 344 85 344.84 344.84 344.84 344.84 1.6500 I 344 84 344.83 344.83 344.83 344.83 1.6600 1 344 83 344.82 344.82 344.82 344.82 1.6700 1 344 82 344.81 344.81 344.81 344.81 1.6800 I 344 81 344.81 344.80 344.80 344.80 1.6900 [ 344 80 344.80 344.79 344.79 344.79 1.7000 I 344. 79 344.79 344.78 344.78 344.78 1.7100 1 344 . 78 344.78 344.78 344.77 344.77 1.7200 [ 344 . 77 344.77 344.77 344.76 344.76 1.7300 1 344. 76 344.76 344.76 344.76 344.75 1.7400 1 344. 75 344.75 344.75 344.75 344.75 1.7500 1 344. 74 344.74 344.74 344.74 344.74 1.7600 I 344. 73 344.73 344.73 344.73 344.73 1.7700 I 344. 73 344 .72 344.72 344.72 344.72 1.7800 1 344 . 72 344 .72 344.72 344.71 344.71 1.7900 1 344. 71 344.71 344.71 344.71 344.70 1.8000 1 344. 70 344.70 344.70 344 .70 344.70 1.8100 I 344 . 69 344.69 344.69 344. 69 344.69 1.8200 1 344. 69 344.68 344.68 344.68 344.68 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.05 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. 1.8300 1 344 .68 344.68 344.68 344.67 344 .67 1.8400 1 344 .67 344.67 344.67 344.67 344 .67 1.8500 [ 344 .66 344.66 344.66 344.66 344 .66 1.8600 I 344 .66 344.66 344.65 344.65 344 .65 1.8700 1 344 .65 344.65 344.65 344.64 344 .64 1.8800 1 344 .64 344.64 344.64 344.64 344 .64 1.8900 1 344 .64 344.63 344.63 344.63 344 .63 1.9000 1 344 .63 344.63 344.63 344.62 344 .62 1.9100 I 344 .62 344.62 344.62 344.62 344 .62 1.9200 1 344 .61 344.61 344.61 344.61 344 .61 1.9300 j 344 .61 344.61 344.61 344.60 344 .60 1.9400 1 344 .60 344.60 344.60 344.60 344 .60 1.9500 1 344 .60 344.59 344.59 344.59 344 .59 1.9600 1 344 .59 344.59 344.59 344.59 344 .58 1.9700 1 344 .58 344.58 344.58 344.58 344 .58 1.9800 1 344 .58 344.58 344.57 344.57 344 .57 1.9900 1 344 .57 344.57 344.57 344.57 344 .57 2.0000 1 344 .56 344.56 344.56 344.56 344 56 2.0100 1 344 .56 344.56 344.56 344.56 344 55 2.0200 1 344 .55 344.55 344.55 344.55 344 55 2.0300 j 344 55 344.55 344.55 344.54 344 54 2.0400 1 344 54 344.54 344.54 344.54 344 54 2.0500 1 344 54 344.54 344.53 344.53 344 53 2.0600 j 344 53 344.53 344.53 344.53 344 53 2.0700 1 344 53 344.52 344.52 344.52 344 52 2.0800 1 344 52 344.52 344.52 344.52 344 52 2.0900 1 344 52 344.51 344.51 344.51 344 51 2.1000 1 344 51 344.51 344.51 344.51 344 51 2.1100 1 344 51 344.50 344.50 344.50 344 50 2.1200 1 344 50 344.50 344.49 344.47 344 47 2.1300 1 344 46 344.45 344.44 344.43 344. 42 2.1400 j 344 41 344.40 344.39 344 .38 344. 38 2.1500 1 344 37 344.36 344.35 344.35 344. 34 2.1600 1 344 33 344.32 344.32 344.31 344. 30 2.1700 I 344. 30 344.29 344 .29 344.28 344 . 27 2.1800 1 344. 27 344.26 344.26 344.25 344. 25 2.1900 1 344. 24 344.24 344.23 344.23 344. 22 2.2000 1 344. 22 344.21 344.21 344.20 344. 20 2.2100 j 344. 20 344.19 344.19 344.18 344. 18 2.2200 1 344. 18 344.17 344.17 344 .17 344. 16 2.2300 1 344 . 16 344.16 344 .15 344.15 344. 15 2.2400 [ 344. 14 344.14 344.14 344.13 344. 13 2.2500 I 344. 13 344.13 344.12 344 .12 344. 12 2.2600 1 344 . 12 344.11 344.11 344.11 344. 11 2.2700 1 344. 10 344.10 344.10 344.10 344. 10 2.2800 1 344. 09 344.09 344.09 344.09 344. 09 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File.... C;\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.06 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. 2.2900 1 344.08 344.08 344.08 344.08 344.08 2.3000 1 344.08 344.07 344.07 344.07 344.07 2.3100 1 344.07 344.07 344.07 344.06 344.06 2.3200 1 344.06 344.06 344.06 344.06 344.06 2.3300 1 344.06 344.05 344.05 344.05 344.05 2.3400 1 344.05 344.05 344.05 344.05 344.05 2.3500 1 344.04 344.04 344.04 344.04 344.04 2.3600 1 344.04 344.04 344.04 344.04 344.04 2.3700 1 344.04 344.04 344.03 344.03 344.03 2.3800 1 344.03 344.03 344.03 344.03 344.03 2.3900 1 344.03 344.03 344.03 344.03 344.03 2.4000 1 344.03 344.03 344.03 344.02 344.02 2.4100 I 344.02 344.02 344.02 344.02 344.02 2.4200 1 344. 02 344.02 344.02 344.02 344.02 2.4300 1 344.02 344.02 344 . 02 344.02 344.02 2.4400 i 344.02 344.02 344.02 344.02 344.02 2.4500 1 344.02 344.02 344.01 344.01 344.01 2.4600 1 344.01 344.01 344.01 344.01 344.01 2.4700 1 344.01 344.01 344.01 344.01 344.01 2.4800 I 344.01 344.01 344.01 344.01 344.01 2.4900 1 344.01 344.01 344.01 344.01 344.01 2.5000 1 344.01 344.01 344.01 344.01 344.01 2.5100 1 344.01 344.01 344.01 344.01 344.01 2.5200 ! 344.01 344.01 344.01 344.01 344.01 2.5300 i 344.01 344.01 344.01 344.01 344.01 2.5400 I 344.01 344.01 344.01 344.01 344.01 2.5500 1 344.01 344.01 344.01 344.01 344.00 2.5600 1 344.00 344.00 344.00 344.00 344.00 2.5700 j 344.00 344.00 344.00 344.00 344.00 2.5800 1 344 . 00 344.00 344.00 344.00 344.00 2.5900 1 344.00 344.00 344.00 344.00 344.00 2.6000 1 344.00 344.00 344.00 344.00 344 .00 2.6100 1 344.00 344.00 344.00 344.00 344.00 2.6200 I 344.00 344.00 344 .00 344.00 344.00 2.6300 j 344.00 344.00 344 .00 344.00 344.00 2.6400 1 344.00 344.00 344.00 344.00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Vol: Elev-Volume Page 6.01 Name.... POND File.... C:\PONDPACK\RSF\RSF-MRM.PPW USER DEFINED VOLUME RATING TABLE Elevation Volume (ft) (ac-ft) 343.88 .000 344.00 .002 344.50 .008 345.00 .073 345.50 .148 346.00 .227 346.50 .307 347.00 .391 347.50 .477 348.00 .566 348.50 .658 349.00 .753 349.50 .853 350.00 .964 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Outlet Input Data Page 7.01 Name.... OUTLET File.... C:\PONDPACK\RSF\RSF-MRM.PPW REQUESTED POND WS ELEVATIONS; Min. Elev.= 344.00 ft Increment = .50ft Max. Elev.= 348.50 ft ********************************************** OUTLET CONNECTIVITY ********************************************** > Forward Flow Only ( Upstream to DnStream) < Reverse Flow Only ( DnStream to Upstream) < > Forward and Reverse Both Allowed Structure No. Outfall El, ft E2 , ft Weir-Rectangular WL > CV 347.870 348 .500 Weir-Rectangular WR > CV 347.870 348 .500 Orifice-Area OR > CV 344.000 348 .500 Culvert-Circular CV > TW 343 .870 348 .500 TW SETUP, DS Channel S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 NOTE: WL = Weir, left side opening of outlet structure WR = Weir, right side opening of outlet structure OR = Orifice, 9" slot opening at front of outlet structure CV = Culvert, 18" CSP exiting the outlet structure Type.... Outlet Input Data Name OUTLET Page 7.02 File.. C:\PONDPACK\RSF\RSF-MRM.PPW OUTLET STRUCTURE INPUT DATA Structure ID = WL Structure Type = Weir-Rectangular # of Openings = 1 Crest Elev. = 347.87 ft Weir Length = 2.00 ft Weir Coeff. = 3 .300000 Weir TW effects (Use adjustment equation) Structure ID WR Structure Type Weir-Rectangular # of Openings 1 Crest Elev. 347.87 ft Weir Length = 2.00 ft Weir Coeff. = 3 .300000 Weir TW effects (Use adjustment equation) Structure ID OR Structure Type Orifice-Area # of Openings -1 Invert Elev. = 344.00 ft Area 2.6250 sq.ft Top of Orifice = 347.50 ft Datum Elev. = 344.00 ft Orifice Coeff. .500 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Outlet Input Data Name.... OUTLET File.... C:\PONDPACK\RSF\RSF-MRM.PPW OUTLET STRUCTURE INPUT DATA Page 7.03 Structure ID Structure Type CV Culvert-Circular No. Barrels Barrel Diameter = Upstream Invert Dnstream Invert = Horiz. Length Barrel Length Barrel Slope OUTLET CONTROL DATA.. Mannings n = Ke Kb Kr HW Convergence INLET CONTROL DATA... Equation form Inlet Control K Inlet Control M Inlet Control c Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor 1 1.5000 ft 343.87 ft 343.50 ft 36.75 ft 36.75 ft .01007 ft/ft .0130 .5000 .018213 .5000 .001 1 .0078 2.0000 .02920 .7400 1.131 1.202 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) + /- ft Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 345.57 ft > Flow = 7.58 cfs At T2 Elev - 345.67 ft > Flow = 8.66 cfs Structure ID = TW Structure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Individual Outlet Curves Name.... OUTLET File C:\PONDPACK\RSF\RSF-MRM.PPW Page 7.04 RATING TABLE FOR ONE OUTLET TYPE Structure ID = WL (Weir-Rectangular) Upstream ID DNstream ID (Pond Water Surface; = CV (Culvert-Circular) Pond WS. Device (into) Converge Next DS HGL Q SUM Elev. Q HW HGL DS HGL DS HGL Error Error ft cfs ft ft ft +/-ft +/-cfs DS Chan. TW TW Error ft +/-ft 344.00 .00 WS below an 344.50 .00 WS below an 345.00 .00 WS below an 345.50 .00 WS below an 346.00 .00 WS below an 346.50 .00 WS below an 347.00 .00 WS below an 347.50 .00 WS below an 347.87 .00 WS below an 348.00 .31 348.00 H=.13; Htw=, 348.50 3.09 348.50 H=.63; Htw=, invert; no flow. invert; no flow, invert; no flow. invert; no flow. invert; no flow. invert; no flow. invert; no flow. invert; no flow. invert; no flow. Free 346.65 00; Qfree=.31; Free 347.62 00; Qfree=3.09; .000 .000 000 000 Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Individual Outlet Curves Name.... OUTLET File.... C:\PONDPACK\RSF\RSF-MRM.PPW Page 7.05 RATING TABLE FOR ONE OUTLET TYPE Structure ID = WR (Weir-Rectangular) Upstream ID DNstream ID = (Pond Water Surface) = CV (Culvert-Circular) Pond WS. Device (into) Converge Next DS HGL Q SUM Elev. Q HW HGL DS HGL DS HGL Error Error ft cfs ft ft ft +/-ft +/-cfs DS Chan. TW TW Error ft +/-ft 344.00 .00 WS below an 344.50 .00 WS below an 345.00 .00 WS below an 345.50 .00 WS below an 346.00 .00 WS below an 346.50 .00 WS below an 347.00 .00 WS below an 347.50 .00 WS below an 347.87 .00 WS below an 348.00 .31 348.00 H=.13; Htw=, 348.50 3.09 348.50 H=.63; Htw=, invert; no f1ow, invert; no flow. invert; no flow, invert; no flow. invert; no flow, invert; no flow. invert; no flow. invert; no flow. invert; no flow. Free 346.65 00; Qfree=.31; Free 347.62 00; Qfree=3.09; .000 .000 000 000 Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Individual Outlet Curves Name.... OUTLET File C:\PONDPACK\RSF\RSF-MRM.PPW Page 7.06 Pond WS. Elev. ft RATING TABLE FOR ONE OUTLET TYPE Structure ID = OR (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = CV (Culvert-Circular) Device (into) Converge Next DS HGL Q SUM Q HW HGL DS HGL DS HGL Error Error cfs ft ft ft +/-ft +/-cfs DS Chan. TW TW Error ft +/-ft 344.00 .00 ... ... ... WS below an invert; no flow. 344.50 .77 344.50 344.37 344.37 .005 .000 Hi=.13; Ht=3.13; Qt=18.62 345.00 1.97 345.00 344.69 344.69 .003 .000 Hi=.31; Ht=2.ai; Qt=17.66 345.50 3.71 345.50 344.94 345.04 .100 .000 Hi=.56; Ht=2.56; Qt=16.86 346.00 5.10 346.00 345.28 345.28 .000 .000 Hi=.72; Ht=2.22; Qt=15.70 346.50 6.96 346.50 345.59 345.58 .007 .000 Hi=.91; Ht=1.91; Qt=14.57 347.00 9.35 347.00 345.86 345.97 .101 .000 Hi=1.14; Ht=1.64; Qt=13.47 347.50 11.50 347.50 346.31 346.32 .009 .000 H =1.19 347.87 12.30 347.87 346.51 346.52 .018 .000 H =1.37 348.00 12.10 348.00 346.68 346.65 .026 .000 H =1.32 348.50 9.49 348.50 347.69 347.62 .068 .000 H =.81 Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Individual Outlet Curves Page 7.07 Name.... OUTLET File.... C:\PONDPACK\RSF\RSF-MRM.PPW RATING TABLE FOR ONE OUTLET TYPE Structure ID = CV (Culvert-Circular) Mannings open channel maximum capacity: 11.34 cfs upstream ID's= WL, WR, OR DNstream ID = TW (Pond Outfall) Pond WS. Device (into) ( :::onverge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/• -ft +/-cfs ft +/-ft 344. 00 00 343.87 Free Free .000 .000 Free Outfall 344. 50 77 344.37 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .114ft Dcr= . .325ft CRIT.DEPTH 345. 00 1. 97 344.69 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .194ft Dcr= , .529ft CRIT.DEPTH 345. 50 3. 71 345.04 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .287ft Dcr= , .736ft CRIT.DEPTH 346. 00 5. 10 345.28 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .359ft Dcr= , .870ft CRIT.DEPTH 346. 50 6. 96 345.58 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .458ft Dcr= : L.021ft CRIT.DEPTH 347. 00 9. 35 345 .97 Free Free .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .609ft Dcr= : L.182ft CRIT.DEPTH 347. 50 11. 50 346.32 Free Free .000 .000 Free Outfall BACKWATER CONTROL.. Vh= .705ft hwDi = 1.388ft Lbw= 36.8ft 347. 87 12 . 30 346.52 Free Free .000 .000 Free Outfall FULL FLOW. ..Lfull=6. 36ft Vh=.753ft HL=1.217ft 348. 00 12 . 71 346.65 Free Free .000 .000 Free Outfall FULL FLOW. ..Lfull=17 '.08ft Vh=.! 304ft HL=1.456ft 348. 50 15. 67 347.62 Free Free .000 .000 Free Outfall FULL FLOW. ..Lfull=34 ..18ft Vh=l .222ft HL=2 . 594ft S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7 . .0 (325) Compute Time: 15 :57 :08 Date: 04-06-2001 Type.... Composite Rating Curve Name OUTLET Page 7.08 File.. C:\PONDPACK\RSF\RSF-MRM.PPW COMPOSITE OUTFLOW SUMMARY WS Elev, Total Q Elev. ft Q cfs Notes Converge TW Elev Error ft +/"ft Contributing Structures 344. 00 .00 Free Outfall (no Q: WL,WR,OR,CV) 344. 50 .77 Free Outfall OR,CV (no Q WL,WR) 345. 00 1 .97 Free Outfall OR,CV (no Q WL,WR) 345. 50 3 .71 Free Outfall OR,CV (no Q WL,WR) 346. 00 5 .10 Free Outfall OR,CV (no Q WL,WR) 346. 50 6 .96 Free Outfall OR,CV (no Q WL,WR) 347. 00 9 .35 Free Outfall OR,CV (no Q WL,WR) 347. 50 11 .50 Free Outfall OR,CV (no Q WL,WR) 347. 87 12 .30 Free Outfall OR,CV (no Q WL,WR) 348. 00 12 .71 Free Outfall WL,WR,OR,CV 348. 50 15 .67 Free Outfall WL,WR,OR,CV S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.01 Event: 100 yr DIVERTED HYDROGRAPH HYG file = HYG ID = OUTLET HYG Tag = SDlOO Peak Discharge = Time to Peak = HYG Volume 9.58 cfs .62 60 hrs .695 ac-ft Time hrs HYDROGRAPH ORDINATES (cfs) Output Time increment = .0020 hrs Time on left represents time for first value in each row. .0160 1 .00 .03 10 .17 .25 .0260 j .33 .42 51 .61 .72 .0360 1 .78 .79 81 .83 .85 .0460 j .87 .89 . 91 .94 .96 .0560 1 .99 1 .01 1. 04 1 .07 1.10 .0660 1 1.13 1 .16 1. 19 1 .22 1.26 .0760 1 1.29 1 .33 1. 36 1 .40 1.44 .0860 1 1.48 1 .52 1. 55 1 .59 1.63 .0960 1 1.67 1 .71 1. 74 1 .78 1.82 .1060 1 1.86 1 .89 1. 93 1 .97 2.01 .1160 1 2 .06 2 .10 2. 15 2 .20 2 .24 .1260 1 2 .29 2 .33 2. 38 2 .42 2.46 .1360 1 2 .51 2 .55 2 . 60 2 .64 2 .68 .1460 1 2 .73 2 .77 2 . 81 2 .86 2.90 .1560 1 2 .94 2 .98 3 . 03 3 .07 3.11 .1660 I 3 .15 3 .19 3 . 24 3 .28 3.32 .1760 1 3 .36 3 .40 3. 44 3 .48 3 .52 .1860 1 3 .56 3 .60 3 . 64 3 .68 3 .72 .1960 1 3 .75 3 .78 3 . 81 3 .84 3 .87 .2060 1 3 .90 3 .93 3 . 96 3 .99 4.02 .2160 I 4.04 4 .07 4. 10 4 .13 4 .16 .2260 1 4.19 4 .22 4 . 25 4 .28 4.30 .2360 1 4.33 4 .36 4. 39 4 .42 4.45 .2460 1 4.47 4 .50 4. 53 4 .56 4.59 .2560 j 4. 61 4 .64 4 . 67 4 .70 4.72 .2660 1 4.75 4 .78 4. 80 4 .83 4.86 .2760 j 4.89 4 .91 4 . 94 4 .97 4.99 .2860 i 5. 02 5 .04 5. 07 5 .10 5.13 .2960 [ 5.16 5 .20 5. 23 5 .27 5.30 .3060 1 5.33 5 .37 5. 40 5 .43 5.47 .3160 1 5.50 5 .53 5. 56 5 .60 5.63 .3260 1 5. 66 5 .69 5. 72 5 .76 5.79 .3360 1 5.82 5 .85 5. 88 5 .91 5 .95 S/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.02 Event; 100, yr HYDROGRAPH ORDINATES (cfs) Time 1 hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. .3460 1 5.98 6.01 6 .04 6 .07 6.10 .3560 I 6.13 6.16 6.19 6.22 6.25 .3660 1 6.28 6 .31 6.34 6 .37 6.40 .3760 1 6.43 6 .46 6.49 6 .51 6.54 .3860 1 6.57 6.60 6.63 6.66 6.69 .3960 1 6.71 6.74 6.77 6 .80 6.83 .4060 j 6 .85 6.88 6.91 6 .94 6.96 .4160 j 7.00 7.03 7.06 7 .10 7 .13 .4260 1 7.16 7 .19 7.23 7.26 7 .29 .4360 j 7.32 7.35 7 .38 7 .42 7.45 .4460 I 7.48 7.51 7 .54 7.57 7 . 60 .4560 1 7.63 7 .66 7 .69 7 .72 7.75 .4660 1 7.78 7.81 7.84 7 .87 7.90 .4760 1 7.93 7.95 7.98 8 .01 8.04 .4860 j 8.07 8.10 8.12 8.15 8 .18 .4960 1 8.21 8.23 8.26 8.29 8.32 .5060 1 8 .34 8.37 8.40 8 .42 8.45 .5160 1 8.48 8.50 8.53 8.55 8 .58 .5260 i 8.60 8.63 8.66 8.68 8.71 .5360 1 8.73 8.76 8.78 8.81 8.83 .5460 1 8.85 8 .88 8.90 8.93 8.95 .5560 I 8.98 9.00 9.02 9.05 9.07 .5660 1 9.09 9.12 9 .14 9.16 9.19 .5760 I 9.21 9.23 9.25 9.28 9 .30 .5860 1 9.32 9.34 9.36 9 .38 9.40 .5960 1 9.42 9.44 9.46 9 .48 9 .49 .6060 ] 9.51 9 .52 9.54 9 .55 9.56 .6160 i 9.56 9 .57 9.58 9.58 9.58 .6260 i 9.58 9 .58 9.58 9.58 9.57 .6360 I 9.57 9.56 9.55 9.54 9.53 .6460 1 9 . 52 9 . 50 9.49 9 . 47 9.45 .6560 1 9.43 9.41 9.39 9.37 9.34 .6660 ! 9.31 9.28 9.25 9.22 9.18 .6760 [ 9.15 9.11 9 . 07 9.03 8.99 .6860 1 8.94 8 .90 8.86 8 .82 8.78 .6960 1 8.74 8.70 8.65 8 .61 8.57 .7060 1 8.53 8.49 8.45 8.41 8.37 .7160 I 8.33 8.30 8.26 8.22 8 .18 .7260 1 8.14 8.10 8.06 8.03 7 .99 .7360 1 7.95 7.91 7 .88 7 . 84 7 .80 .7460 1 7.77 7.73 7 .69 7 . 66 7 .62 .7560 I 7.59 7 .55 7 .52 7 .48 7 .45 .7660 1 7.41 7.38 7 . 34 7 .31 7 .27 .7760 1 7.24 7 .20 7 .17 7 .14 7 .10 .7860 I 7 . 07 7 .04 7 . 00 6.97 6 .94 .7960 1 6.92 6 .89 6.86 6.84 6.81 .8060 1 6.78 6.76 6 .73 6 .71 6 . 68 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.03 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time 1 Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. .8160 1 6.66 6.63 6. 60 6.58 6.55 .8260 1 6 .53 6.50 6.48 6.45 6.43 .8360 [ 6.40 6.38 6.36 6.33 6.31 .8460 1 6.28 6.26 6.23 6.21 6.19 .8560 1 6.16 6.14 6.12 6.09 6.07 .8660 1 6.05 6.02 6. 00 5 .98 5.95 .8760 1 5.93 5.91 5.89 5 .86 5.84 .8860 I 5.82 5.80 5.77 5.75 5.73 .8960 1 5 .71 5.69 5. 66 5. 64 5.62 .9060 j 5.60 5.58 5.56 5.54 5.51 .9160 I 5.49 5.47 5.45 5.43 5.41 .9260 1 5.39 5.37 5.35 5.33 5.31 .9360 1 5.29 5.27 5.25 5.23 5.21 .9460 1 5 .19 5.17 5.15 5.13 5.11 .9560 1 5.09 5.08 5.06 5.05 5.03 .9660 1 5.02 5.00 4.99 4.97 4.96 .9760 j 4.94 4.93 4.92 4.90 4.89 .9860 i 4.87 4.86 4.84 4.83 4.82 .9960 1 4.80 4.79 4.77 4.76 4.75 1.0060 1 4.73 4.72 4.70 4.69 4.68 1.0160 1 4.66 4.65 4. 64 4.62 4.61 1.0260 1 4.60 4 .58 4.57 4.56 4.54 1.0360 1 4.53 4 .52 4.50 4.49 4.48 1.0460 1 4.46 4.45 4.44 4.42 4.41 1.0560 1 4.40 4.39 4.37 4.36 4.35 1.0660 I 4.34 4.32 4.31 4.30 4.28 1.0760 1 4.27 4.26 4.25 4.23 4.22 1.0860 I 4.21 4.20 4.19 4.17 4.16 1.0960 1 4.15 4.14 4.12 4.11 4.10 1.1060 1 4.09 4.08 4. 07 4.05 4.04 1.1160 I 4 . 03 4 .02 4 .01 3 . 99 3 .98 1.1260 1 3.97 3 .96 3 .95 3 .94 3 .92 1.1360 1 3 .91 3 .90 3 .89 3 .88 3 .87 1.1460 1 3 .86 3 .85 3.83 3.82 3.81 1.1560 j 3 .80 3 .79 3.78 3 .77 3.76 1.1660 [ 3 .75 3 .73 3.72 3.71 3 .70 1.1760 1 3. 59 3 .67 3 . 66 3.64 3 .63 1.1860 1 3 . 62 3.60 3 .59 3.58 3 .56 1.1960 1 3.55 3 .53 3 .52 3.51 3.49 1.2060 I 3 .48 3.47 3 .45 3 .44 3 .43 1.2160 1 3 .41 3 .40 3 .39 3.38 3.36 1.2260 I 3 .35 3 .34 3 .32 3 .31 3 .30 1.2360 1 3.29 3 .27 3 .26 3 .25 3 .24 1.2460 1 3.22 3.21 3.20 3 .19 3 .18 1.2560 1 3.16 3.15 3 .14 3 .13 3.12 1.2660 1 3 .10 3.09 3 .08 3.07 3.06 1.2760 1 3 .04 3.03 3 .02 3.01 3 .00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C;\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.04 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time [ Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. 1.2860 1 2 .99 2.98 2 .96 2 .95 2 .94 1.2960 1 2 .93 2 .92 2 . 91 2 .90 2.89 1.3060 1 2 .87 2 .86 2 .85 2 .84 2.83 1.3160 1 2 .82 2 .81 2 .80 2 .79 2 .78 1.3260 1 2 .77 2 .76 2 .75 2 .73 2 .72 1.3360 1 2 .71 2 .70 2 . 69 2 .68 2 .67 1.3460 j 2 .66 2 .65 2 .64 2 .63 2 .62 1.3560 1 2 .61 2 .60 2 .59 2.58 2 .57 1.3660 j 2 .56 2 .55 2 .54 2 .53 2 .52 1.3760 j 2 .51 2.50 2 .49 2 .49 2 .48 1.3860 j 2 .47 2.46 2 .45 2 .44 2.43 1.3960 I 2 .42 2.41 2 .40 2.39 2.38 1.4060 j 2 .37 2.36 2 .36 2 .35 2.34 1.4160 1 2 .33 2.32 2 .31 2 .30 2 .29 1.4260 1 2 .28 2.28 2 .27 2 .26 2 .25 1.4360 1 2 .24 2 .23 2 .22 2 .22 2.21 1.4460 I 2 .20 2 .19 2 .18 2 .17 2 .17 1.4560 1 2 .16 2 .15 2 .14 2 .13 2 .12 1.4660 1 2 .12 2 .11 2 .10 2.09 2 .08 1.4760 I 2 .08 2 .07 2 .06 2.05 2 .04 1.4860 1 2 .04 2 .03 2 .02 2 .01 2 .01 1.4960 i 2 .00 1.99 1 .98 1.98 1.97 1.5060 1 1 .96 1.96 1 .95 1.94 1.94 1.5160 i 1 .93 1.93 1 .92 1.91 1.91 1.5260 1 1 .90 1.90 1 .89 1.89 1.88 1.5360 1 1 .87 1.87 1 .86 1.86 1.85 1.5460 I 1 .85 1.84 1 .83 1.83 1.82 1.5560 1 1 .82 1.81 1 .81 1.80 1.80 1.5660 i 1 .79 1.78 1 .78 1.77 1. 77 1.5760 1 1 .76 1.76 1 .75 1.75 1.74 1.5860 j 1 .74 1.73 1 .73 1.72 1.71 1.5960 1 1 .71 1.70 1 .70 1.69 1.69 1.6060 1 1 .68 1.68 1 .67 1.67 1.66 1.6160 1 1 .66 1.65 1 .65 1.64 1.64 1.6260 j 1 .63 1.63 1 .62 1.62 1.61 1.6360 1 1 .61 1.60 1 .60 1.59 1.59 1.6460 1 1 .58 1.58 1 .57 1.57 1.56 1.6560 1 1 .56 1.56 1 . 55 1.55 1.54 1.6660 I 1 .54 1.53 1 .53 1.52 1.52 1.6760 1 1 .51 1.51 1 .50 1.50 1.49 1.6860 1 1 .49 1.49 1 .48 1.48 1.47 1.6960 1 1 .47 1.46 1 .45 1.45 1.45 1.7060 1 1 .45 1.44 1 .44 1.43 1.43 1.7160 1 1 .42 1.42 1 .41 1.41 1.41 1.7260 j 1 .40 1.40 1 .39 1.39 1.38 1.7360 j 1 38 1.38 1 .37 1.37 1.36 1.7460 j 1 36 1.36 1 .35 1.35 1.34 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.05 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time 1 hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. 1.7560 1 1.34 1.34 1.33 1.33 1.32 1.7660 1 1.32 1.31 1.31 1.31 1.30 1.7760 j 1.30 1.29 1.29 1.29 1.28 1.7860 I 1.28 1.28 1.27 1.27 1.26 1.7960 [ 1.26 1.26 1.25 1.25 1.24 1.8060 1 1.24 1.24 1.23 1.23 1.23 1.8160 1 1.22 1.22 1.21 1.21 1.21 1.8260 j 1.20 1.20 1.20 1.19 1.19 1.8360 [ 1.19 1.18 1.18 1.17 1.17 1.8460 I 1.17 1.16 1.16 1.16 1.15 1.8560 I 1.15 1.15 1.14 1.14 1.14 1.8660 1 1.13 1.13 1.13 1.12 1.12 1.8760 1 1.11 1.11 1.11 1.10 1.10 1.8860 1 1.10 1.09 1. 09 1.09 1.08 1.8960 j 1.08 1.08 1.07 1.07 1.07 1.9060 1 1.07 1.06 1.06 1.06 1.05 1.9160 1 1.05 1.05 1.04 1.04 1. 04 1.9260 1 1.03 1.03 1.03 1.02 1.02 1.9360 1 1.02 1.01 1.01 1.01 1.01 1.9460 I 1.00 1.00 1.00 .99 .99 1.9560 1 .99 .98 .98 .98 .97 1.9660 1 .97 .97 .97 .96 .96 1.9760 1 .96 .95 .95 .95 .95 1.9860 j .94 .94 .94 .93 .93 1.9960 [ .93 .93 .92 .92 .92 2.0060 1 .91 .91 .91 .91 .90 2.0160 I .90 .90 .89 .89 .89 2.0260 1 .89 .88 .88 .88 .88 2.0360 1 .87 .87 .87 .87 .86 2.0460 i .86 .86 .85 .85 .85 2.0560 I . 85 -84 . 84 . 84 .84 2.0660 1 .83 .83 .83 .83 .82 2.0760 1 .82 .82 .82 .81 .81 2.0860 1 .81 .81 .80 .80 .80 2.0960 I .80 .79 .79 .79 .79 2.1060 j .78 .78 .78 .78 .78 2.1160 I .77 .77 .77 .76 .74 2.1260 1 .73 .71 .70 . 68 .67 2.1360 1 .66 .64 . 63 .62 . 60 2.1460 1 .59 .58 .57 .55 .54 2.1560 1 .53 .52 .51 .50 .49 2.1660 1 .48 .47 .46 .45 .44 2.1760 1 .43 .42 .41 .40 .39 2.1860 I .39 .38 .37 .36 .36 2.1960 1 .35 .34 .33 .33 .32 2.2060 1 .31 .31 .30 .29 .29 2.2160 I .28 .28 .27 .26 .26 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:^57:08 Date: 04-06-2001 Type.... Diverted Hydrograph Name.... OUTLET File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 8.06 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time 1 hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. 2.2260 1 .25 .25 .24 .24 .23 2.2360 1 .23 .22 .22 .21 .21 2.2460 1 .21 .20 .20 .19 .19 2.2560 1 .18 .18 .18 .17 .17 2.2660 1 .17 .16 .16 .16 .15 2.2760 1 .15 .15 .14 .14 .14 2.2860 1 .13 .13 .13 .13 .12 2.2960 1 .12 .12 .12 .11 .11 2.3060 i .11 .11 .10 .10 .10 2.3160 1 .10 .10 .09 .09 .09 2.3260 1 .09 .09 .08 .08 .08 2.3360 1 .08 .08 .08 .07 .07 2.3460 I .07 .07 .07 .07 .07 2.3560 1 .06 .06 .06 .06 .06 2.3660 I .06 .06 .06 .05 .05 2.3760 1 .05 .05 .05 .05 .05 2.3860 1 .05 .05 .04 .04 .04 2.3960 1 .04 .04 .04 .04 .04 2.4060 1 .04 .04 .04 .04 .03 2.4160 i .03 .03 .03 .03 .03 2.4260 I .03 .03 .03 .03 .03 2.4360 1 .03 .03 .03 .03 .03 2.4460 1 .02 .02 .02 .02 .02 2.4560 1 .02 .02 .02 .02 .02 2.4660 1 .02 .02 .02 .02 .02 2.4760 I .02 .02 .02 .02 .02 2.4860 I .02 .02 .02 .02 .01 2.4960 1 .01 .01 .01 .01 .01 2.5060 1 .01 .01 .01 .01 .01 2.5160 1 .01 .01 .01 . 01 .01 2.5260 i .01 . 01 .01 .01 .01 2.5360 1 .01 .01 .01 .01 .01 2.5460 1 .01 .01 .01 .01 .01 2.5560 I .01 .01 .01 .01 .01 2.5660 i .01 .01 .01 .01 .01 2.5760 1 .01 .01 .01 .01 .01 2.5860 1 .01 .01 .01 .01 .01 2.5960 1 .01 .00 .00 .00 .00 2.6060 1 .00 .00 . 00 .00 .00 2.6160 1 .00 .00 .00 .00 .00 2.6260 I .00 .00 .00 .00 .00 2.6360 1 .00 .00 .00 .00 .00 2.6460 1 .00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 15:57:08 Date: 04-06-2001 Type.... Pond E-V-Q Table Name.... POND File.... C:\PONDPACK\RSF\RSF-MRM.PPW Page 8.07 LEVEL POOL ROUTING DATA HYG Dir Inflow HYG file Outflow HYG file C;\PONDPACK\RSF\ NONE STORED - POND NONE STORED - POND IN SDlOO OUT SDlOO Pond Node Data = POND Pond Volume Data = POND Pond Outlet Data = OUTLET No Infiltration INITIAL CONDITIONS Starting WS Elev Starting Volume = Starting Outflow = Starting Infiltr. = Starting Total Qout= Time Increment = Elevation Outflow ft cfs 343.88 ft .000 ac-ft .00 cfs .00 cfs .00 cfs .0020 hrs Storage ac-ft Infilt. cfs Q Total cfs 2S/t + cfs 343.88 .00 .000 .00 .00 .00 344.00 .00 .002 .00 .00 24.20 344.50 .77 .008 .00 .77 97 .57 345.00 1.97 .073 .00 1.97 885.27 345.50 3.71 .148 .00 3 .71 1794.51 346.00 5.10 .227 .00 5.10 2751.80 346.50 6.96 .307 .00 6.96 3721.66 347.00 9.35 .391 .00 9.35 4740.45 347.50 11.50 .477 .00 11.50 5783.20 347.87 12.30 .543 .00 12 .30 6580.90 348.00 12.71 .566 .00 12 .71 6861.31 348.50 15 . 67 . 658 .00 15.67 7977.47 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:0! Date: 04-06-2001 Type.... Node: Pond Inflow Summary Page 8.08 Name.... POND IN Event: 100 yr File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO SUMMARY FOR HYDROGRAPH ADDITION at Node: POND IN HYG Directory: C:\PONDPACK\RSF\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag WARNING: Adding in hydrograph that is truncated on left... WARNING: Missed peak when adding hydrograph... ADD ULTIMATE ULTIMATE SDlOO INFLOWS TO: POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs ULTIMATE SDlOO .697 .0833 14.05 TOTAL FLOW INTO: POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs POND IN SDlOO .697 .0840 14.05 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Node: Pond Inflow Summary Name.... POND IN File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 8.09 Event: 100 yr TOTAL NODE INFLOW. HYG file = HYG ID = POND HYG Tag = SDlOO IN Peak Discharge = Time to Peak = HYG Volume 14.05 cfs .0840 hrs .697 ac-ft Time hrs HYDROGRAPH ORDINATES (cfs) Output Time increment = .0020 hrs Time on left represents time for first value in each row. .0000 1 00 34 67 1 .01 1 35 .0100 1 1 69 2 02 2 36 2 70 3 04 .0200 1 3 37 3 71 4 05 4 39 4 72 .0300 1 5 06 5 40 5 73 6 07 6 41 .0400 I 6 75 7 08 7 42 7 76 8 10 .0500 1 8 43 8 77 9 11 9 44 9 78 .0600 i 10 12 10 46 10 79 11 13 11 47 .0700 1 11 81 12 14 12 48 12 82 13 16 .0800 1 13 49 13 83 14 05 14 05 14 05 .0900 I 14 05 14 05 14 05 14 05 14 05 .1000 1 14 05 14 05 14 05 14 05 14 05 .1100 1 14 05 14 05 14 05 14 05 14 05 .1200 1 14 05 14 05 14 05 14 05 14 05 .1300 I 14 05 14 05 14 05 14 05 14 05 .1400 1 14 05 14 05 14 05 14 05 14 05 .1500 1 14 05 14 05 14 05 14 05 14 05 .1600 1 14 05 14 05 14 05 14 05 14 05 .1700 1 14 05 14 05 14 05 14 05 14 05 .1800 I 14 05 14 05 14 05 14 05 14 05 .1900 1 14 05 14 05 14 05 14 05 14 05 .2000 1 14 05 14 05 14 05 14 05 14 05 .2100 1 14 05 14 05 14 05 14 05 14 05 .2200 I 14 05 14 05 14 05 14 05 14 05 .2300 1 14 05 14 05 14 05 14 05 14 05 .2400 1 14 05 14 05 14 05 14 05 14 05 .2500 j 14 05 14 05 14 05 14 05 14 05 .2600 1 14 05 14 05 14 05 14 05 14 05 .2700 1 14 05 14 05 14 05 14 05 14 05 .2800 I 14 05 14 05 14 05 14 05 14 05 .2900 1 14 05 14 05 14 05 14 05 14 05 .3000 I 14 05 14 05 14 05 14 05 14 05 .3100 1 14 05 14 05 14 05 14 05 14 05 .3200 I 14 05 14 05 14 05 14 05 14 05 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date; 04-06-2001 Type.... Node: Pond Inflow Summary Name.... POND IN File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 8.10 Event: 100 yr Time hrs HYDROGRAPH ORDINATES (cfs) Output Time increment = .0020 hrs Time on left represents time for first value in each row. .3300 1 14 05 14 05 14 05 14 .05 14 05 .3400 1 14 05 14 05 14 05 14 05 14 05 .3500 1 14 05 14 05 14 05 14 05 14 05 .3600 1 14 05 14 05 14 05 14 05 14 05 .3700 I 14 05 14 05 14 05 14 05 14 05 .3800 1 14 05 14 05 14 05 14 05 14 05 .3900 1 14 05 14 05 14 05 14 05 14 05 .4000 1 14 05 14 05 14 05 14 05 14 05 .4100 1 14 05 14 05 14 05 14 05 14 05 .4200 1 14 05 14 05 14 05 14 05 14 05 .4300 1 14 05 14 05 14 05 14 05 14 05 .4400 1 14 05 14 05 14 05 14 05 14 05 .4500 I 14 05 14 05 14 05 14 05 14 05 .4600 1 14 05 14 05 14 05 14 05 14 05 .4700 I 14 05 14 05 14 05 14 05 14 05 .4800 1 14 05 14 05 14 05 14 05 14 05 .4900 I 14 05 14 05 14 05 14 05 14 05 .5000 1 14 05 14 05 14 05 14 05 14 05 .5100 1 14 05 14 05 14 05 14 05 14 05 .5200 1 14 05 14 05 14 05 14 05 14 05 .5300 I 14 05 14 05 14 05 14 05 14 05 .5400 1 14 05 14 05 14 05 14 05 14 05 .5500 1 14 05 14 05 14 05 14 05 14 05 .5600 1 14 05 14 05 14 05 14 05 14 05 .5700 1 14 05 14 05 14 05 14 05 14 05 .5800 1 14 05 14 05 14 05 14 05 14 05 .5900 1 14 05 14 05 14 05 14 05 14 05 .6000 ! 13 97 13 71 13 37 13 04 12 70 .6100 1 12 36 12 03 11 69 11 35 11 01 .6200 1 10 68 10 34 10 00 9 66 9 33 .6300 1 8 99 8 65 8 31 7 98 7 64 .6400 I 7 30 6 97 6 63 6 29 5 95 .6500 i 5 62 5 28 4 94 4 60 4 27 .6600 1 3 93 3 59 3 26 2 92 2 58 .6700 j 2 24 1 91 1 57 1 23 89 .6800 j 56 22 00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Pond Routing Summary Name.... POND OUT Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 8.11 Event: 100 yr LEVEL POOL ROUTING SUMMARY HYG Dir Inflow HYG file Outflow HYG file C:\PONDPACK\RSF\ NONE STORED - POND NONE STORED - POND IN SDlOO OUT SDlOO Pond Node Data = POND Pond Volume Data = POND Pond Outlet Data = OUTLET No Infiltration INITIAL CONDITIONS Starting WS Elev Starting Volume Starting Outflow Starting Infiltr. Starting Total Qout: Time Increment 343.88 ft .000 ac-ft .00 cfs .00 cfs .00 cfs .0020 hrs INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Peak Inflow = Outflow 14.05 9.58 cfs at cfs at .0840 .6260 hrs hrs Peak Peak Elevation = Storage = 347.05 .400 ft ac-ft MASS BALANCE (ac-ft) + Initial Vol = + HYG Vol IN - Infiltration = - HYG Vol OUT = - Retained Vol = Unrouted Vol = .000 .697 .000 .695 .002 -.000 ac-ft (.000% of Inflow Volume) S/N: 321C01B06A8A PondPack Ver: 7.0 Dokken Engineering :325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... C and Area Name.... INTERIM Page 9.01 File.... C:\PONDPACK\RSF\RSF-MRM.PPW Title... Interim RATIONAL C COEFFICIENT DATA Interim Soil/Surface Description B4 B5 B7 Bll B12 B12 .5 B15 B16 B17 Area acres 1. 9500 9500 4500 0000 9000 0000 9000 0000 9000 0000 9000 0000 9500 .780 1.090 1.580 .360 .840 .260 .300 .200 .340 .450 .410 .310 .420 C x Area acres .741 1.036 .711 .360 .756 .260 .270 .200 .306 .450 .369 .310 .399 WEIGHTED C & TOTAL AREA > .8403 7 .340 6.168 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time 15:57:0! Date: 04-06-2001 Type.... Mod. Rational Graph Name.... ULTIMATE Tag; SDlOO File.... C;\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 9.02 Event: 100 yr MODIFIED RATIONAL METHOD Graphical Summary for Maximum Required Storage Method I Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600; ********************************************************************** * RETURN FREQUENCY: 100 yr * 'C Adjustment: 1.000 Allowable Outflow: 10.00 cfs Required Storage; .414 ac-ft * Peak Inflow: 14.05 cfs * .HYG File: SDlOO ********************************************************************** Td = .6000 hrs Approx. Duration for Max. Storage Tc= .0833 hrs I = 7.8551 in/hr . Q = 48.85 cfs I Return Freq: 100 yr 7 C adj.factor:1.000 Area = 7.340 acres Weighted C = .840 Adjusted C = .840 Required Storage .-- .414 ac-ft I Td= .6000 hrs I = 2.2590 in/hr x X x X x x xlx xxxxxxxxxx Q= 14.05 cfs o Q = 10.00 cfs X (Allow.Outflow] X NOT TO SCALE . X o X .6240 hrs S/N; 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Mod. Rational Storm Calcs Name.... ULTIMATE Tag: SDlOO File.... C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 9.03 Event: 100 yr MODIFIED RATIONAL METHOD Summary for Single Storm Frequency Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600) RETURN FREQUENCY: ; 100 yr "C Adjustment = 1, .OOOAllowable ; Q = 10.00 cfs Hydrograph Storm Duration, Td = .6000 hrs Tc = .0833 hrs Hydrograph File: SDlOO VOLUMES Wtd. Adjusted Duration Intens. Area Qpeak ] Inflow Storage 'C 'C hrs in/hr acres cfs 1 - - ac-ft ac-ft .840 .840 .0833 7 .8551 7 .340 48.85 1 .336 .268 .840 .840 .1667 4.9921 7 .340 31.05 1 .428 .324 .840 .840 .2500 4.0000 7 .340 24.88 1 .514 .376 .840 .840 .3333 3 .3056 7 .340 20.56 1 .566 .394 .840 .840 .5000 2 .5000 7.340 15.55 1 .642 .401 ****** ****************************************************** Storage Maximum .840 .840 .6000 2 .2590 7.340 14.05 1 .697 .414 ****** ********************************************************************** . 840 .840 .6667 2 .0988 7.340 13.05 1 .719 .409 .840 .840 .8333 1.8012 7.340 11.20 1 .771 .393 .840 .840 1.0000 1.6000 7.340 9.95 1 Qpeak < Qallow S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:01 Date: 04-06-2001 Type.. Name.. File.. Storm. Q = Mod. Rationa1 Hyg ULTIMATE Tag: SDlOO C:\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.04 Event: 100 yr MODIFIED RATIONAL METHOD HYDROGRAPH CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600) Tag Freq File IDF Curve SDlOO 100 SD.IDF IDF tbl 10 Td = .6000 hrs Tag Freq C C adj | (years) factor | C final I in/hr Area | acres | Peak Q cfs SDlOO 100 .840 1.000 1 .840 2 .2590 7.340 1 14.05 HYG file = HYG ID = ULTIMATE HYG Tag = SDlOO Peak Discharge = Time to Peak HYG Volume 14.05 .0833 .697 cfs hrs ac-ft WARNING: Hydrograph truncated on left side. HYDROGRAPH ORDINATES (cfs) Time | hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. .0013 1 .22 .56 .89 1 .23 1.57 .0113 1 1 .91 2 .24 2 .58 2 .92 3.26 .0213 j 3 .59 3 .93 4 .27 4 .60 4 . 94 .0313 j 5 .28 5.62 5 .95 6 .29 6.63 .0413 j 6 .97 7.30 7 .64 7 .98 8.31 .0513 1 8 .65 8 .99 9 .33 9 .66 10.00 .0613 1 10 .34 10.68 11 .01 11 .35 11.69 .0713 1 12 .03 12.36 12 .70 13 .04 13.37 .0813 1 13 .71 14 .05 14 .05 14 .05 14.05 .0913 1 14 .05 14.05 14 .05 14 .05 14.05 .1013 I 14 .05 14.05 14 .05 14 .05 14.05 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Type.... Mod. Rational Hyg Name.... ULTIMATE Tag: SDlOO File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 9.05 Event: 100 yr WARNING: Hydrograph truncated on left side HYDROGRAPH ORDINATES (cfs) Time [ Output Time increment = .0020 irs hrs 1 Time on left represents time for first value in each row. .1113 1 14 .05 14 .05 14 .05 14 .05 14 .05 .1213 1 14 .05 14 .05 14 .05 14 .05 14 .05 .1313 1 14 .05 14 .05 14 .05 14 .05 14 .05 .1413 1 14 .05 14 .05 14 .05 14 .05 14 .05 .1513 j 14 .05 14 .05 14 .05 14 .05 14 .05 .1613 i 14 .05 14 .05 14 .05 14 .05 14 .05 .1713 1 14 .05 14 .05 14 .05 14 .05 14 .05 .1813 I 14 .05 14 .05 14 .05 14 .05 14 .05 .1913 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2013 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2113 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2213 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2313 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2413 1 14 .05 14 .05 14 .05 14 .05 14 .05 .2513 j 14 .05 14 .05 14 .05 14 .05 14 .05 .2613 I 14 .05 14 .05 14 .05 14 .05 14 .05 .2713 1 14 .05 14 05 14 .05 14 .05 14 .05 .2813 1 14 .05 14 05 14 .05 14 .05 14 .05 .2913 I 14 .05 14 05 14 .05 14 .05 14 .05 .3013 1 14 .05 14 05 14 .05 14 .05 14 .05 .3113 1 14 .05 14 05 14 .05 14 .05 14 .05 .3213 1 14 .05 14 05 14 .05 14 .05 14 .05 .3313 1 14 .05 14 05 14 .05 14 .05 14 .05 .3413 i 14 .05 14 05 14 .05 14 .05 14 .05 .3513 1 14 .05 14 05 14 .05 14 .05 14 .05 .3613 1 14 .05 14 05 14 .05 14 .05 14 .05 .3713 1 14 .05 14 05 14 .05 14 .05 14 .05 .3813 j 14 . 05 14 05 14 .05 14 . 05 14 .05 .3913 1 14 .05 14 05 14 .05 14 .05 14 .05 .4013 I 14 .05 14 05 14 .05 14 .05 14 .05 .4113 1 14 .05 14 05 14 .05 14 .05 14 .05 .4213 i 14 .05 14 05 14 .05 14 .05 14 .05 .4313 i 14 .05 14 05 14 .05 14 .05 14 .05 .4413 j 14 .05 14 05 14 .05 14 .05 14 .05 .4513 1 14 .05 14 05 14 .05 14 05 14 .05 .4613 I 14 05 14 05 14 .05 14 05 14 .05 .4713 1 14 05 14 05 14 .05 14 05 14 05 .4813 1 14 05 14 05 14 05 14 05 14 05 .4913 I 14 05 14 05 14 05 14 05 14 05 .5013 1 14 05 14 05 14 05 14 05 14 05 .5113 1 14 05 14 05 14 05 14 05 14 05 .5213 1 14 05 14 05 14 05 14 05 14 05 .5313 1 14 05 14 05 14 05 14 05 14 05 .5413 1 14 05 14 05 14 05 14 05 14 05 Type.... Mod. Rational Hyg Name.... ULTIMATE Tag: SDlOO File.... C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 9.06 Event: 100 yr WARNING; Hydrograph truncated on left side Time 1 hrs 1 Time on HYDROGRAPH ORDINATES Output Time increment left represents time for cfs) = .0020 hrs first value in each row. .5513 1 14.05 14.05 14.05 14.05 14.05 .5613 I 14.05 14.05 14.05 14.05 14.05 .5713 1 14.05 14.05 14.05 14.05 14.05 .5813 1 14.05 14.05 14.05 14.05 14.05 .5913 j 14.05 14.05 14.05 14.05 14.05 .6013 1 13 .83 13.49 13 .16 12 .82 12.48 .6113 1 12 .14 11.81 11.47 11.13 10.79 .6213 1 10.46 10.12 9.78 9.44 9.11 .6313 1 8.77 8.43 8.10 7.76 7 .42 .6413 1 7.08 6.75 6.41 6 .07 5.73 .6513 I 5.40 5.06 4.72 4.39 4.05 .6613 I 3 .71 3.37 3.04 2 .70 2.36 .6713 1 2 .02 1.69 1.35 1.01 .67 .6813 1 .34 .00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Appendix A A-1 Index of Starting Page Numbers for ID Names D DEVELOPED TC... 4.01 I IDF Storms 10... 2.01 IDF tbl 10 SDlOO... 3.01 INTERIM... 9.01 O OUTLET... 7.01, 7.04, 7.08, 8.01 p POND... 6.01, 8.07 POND IN SDlOO... 8.08 POND OUT SDlOO... 5.01, 8.11 U ULTIMATE SDlOO... 9.02, 9.03, 9.04 W Watershed SDlOO... 1.01, 1.02 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 15:57:08 Date: 04-06-2001 Job File: C;\P0NDPACK\RSF\R5F-MRM.PPW Rain Dir: C:\HAESTAD\PPKW\RAINFALL\ JOB TITLE City of Calsbad Rancho Santa Fe Road North, Phase I (Ultimate Improvements) Contract No. 3190 Modified Rational Method DE File No. 1058 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Table of Contents Table of Contents ******************** NETWORK SUMHARIES ********************* Watershed SDlOO Executive Summary (Nodes) 1.01 Executive Summary (Links) 1.02 DESIGN STORMS SUMMARY ******************* IDF Storms 10.. Rational Storms 2.01 tx******************** RAINFALL DATA *********************** IDF tbl 10 SDlOO I-D-F Table 3.01 ****«*******«*»*«**»«* JQ CALCULATIONS ********************* DEVELOPED TC Tc Calcs 4.01 ««««****«Di««««««»»»««v4: HYG ADD I TI ON *********************** OUTFALL SDlOO Node: Addition Summary 5.01 t»t ***** if **** If ****** * Ti[^^ VS ELEV *********************** POND OUT SDlOO Time-Elev 6.01 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Table of Contents ii Table of Contents (continued) *********************** POND VOLUMES *********************** POND Vol: Elev-Volume 7.01 ******************** OUTLET STRUCTURES ********************* OUTLET Outlet Input Data 8.01 Individual Outlet Curves 8.04 Composite Rating Curve 8.08 *********************** POND ROUTING *********************** OUTLET SDlOO Diverted Hydrograph 9.01 POND Pond E-V-Q Table 9.09 POND IN SDlOO Node: Pond Inflow Summary 9.10 POND OUT SDlOO Pond Routing Summary 9.15 ****************** RATIONAL METHOD CALCS ******************* DEVELOPED CA C and Area 10.01 ULTIMATE SDlOO Mod. Rational Graph 10.02 Mod. Rational Storm Calcs 10.03 Mod. Rational Hyg 10.04 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Executive Summary (Nodes) Name.... Watershed File C:\P0NDPACK\R5F\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 1.01 Event: 100 yr NETWORK SUMMARY -- NODES (Trun.= HYG Truncation: Blank=None: L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File,ID = Storm Tag Name Data Type, File, ID = Total Rainfall Depth= Duration Multiplier = Resulting Duration = Resulting Start Time= .0000 in 0 .0000 hrs .0000 hrs Step= .0000 hrs End= .0000 hrs Node ID Type HYG Vol Qpeak ac-ft Trun. hrs Outfall OUTFALL POND POND ULTIMATE JCT IN POND OUT POND AREA 1. 530 1.532 1.530 1.532 L 1.3080 .0840 1.3080 .0833 Qpeak cfs 12.59 14.26 12.59 14.26 Max WSEL ft 347.96 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Executive Summary (Links) Name.... Watershed File C:\P0NDPACK\RSF\R5F-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 1.02 Event: 100 yr NETWORK SUMMARY -- LINKS (UN=Upstream Node; DL=DNstream End of Link; DN=DNstream Node) (Trun.= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left & Rt) DEFAULT Design Storm File.ID = Storm Tag Name Data Type. File, ID = Total Rainfall Depth= Duration Multiplier = Resulting Duration = Resulting Start Time= .0000 in 0 0000 hrs 0000 hrs Step= .0000 hrs End= .0000 hrs Link ID Type HYG Vol ac-ft Trun, Peak Time hrs Peak Q cfs End Points ADD ADD UN 1.532 L .0833 14.26 ULTIMATE DL 1.532 L .0833 14.26 DN 1.532 .0840 14.26 POND IN OUTLET PONDrt UN 1.532 .0840 14.26 POND IN OUTLET 1.530 1.3080 12.59 POND OUT DL 1.530 1.3080 12.59 DN 1.530 1.3080 12.59 OUTFALL 5/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Rational Storms Page 2.01 Name.... IDF Storms 10 File C:\HAESTAD\PPKW\RAINFALL\SD.IDQ Title... City of Calsbad Rancho Santa Fe Road North, Phase I (Ultimate Improvements) Contract No. 3190 Modified Rational Method DE File No. 1058 I-D-F DESIGN STORM SUMMARY Storm Queue File,ID = SD.IDQ IDF Storms 10 Storm Tag Name = SDlOO File: Type, ID = SD.IDF: I-D-F Storm... IDF tbl 10 Storm Frequ. = 100 yr S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date; 04-06-2001 Type.... I-D-F Table Name IDF tbl 10 Tag: SDlOO File C:\HAESTAD\PPKW\RAINFALL\SD.IDF Storm... IDF tbl 10 Tag: SDlOO Page 3.01 Event: 100 yr Rainfall-Intensity-Duration Curve Time, hrs Intens., In/hr .0820 7 .9000 .1660 5 .0000 .2500 4 .0000 .3340 3 .3000 .5000 2 .5000 .6660 2, .1000 .8340 1, .8000 1, .0000 1, .6000 1. .5000 1, ,2500 2, ,0000 1, ,0000 2, .5000 ,8900 3, .0000 ,7900 3. ,5000 ,7000 4, .0000 .6500 4. .5000 ,6000 5, ,0000 ,5600 5. ,5000 ,5250 6. ,0000 5000 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Tc Calcs Name.... DEVELOPED TC File C:\P0NDPACK\RSF\RSF-MRM.PPW Page 4.01 TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: User Defined Description: PIpes Segment #1 Time: .0833 hrs Total Tc: .0833 hrs Calculated Tc < Min.Tc: Use Minimum Tc... Use Tc = .0833 hrs Type.... Tc Calcs P^g^ ^-02 Name DEVELOPED TC File C:\P0NDPACK\R5F\RSF-MRM.PPW Tc Equations used... ===== User Defined ======================================================' Tc = Value entered by user Where: Tc = Time of concentration Type.... Node; Addition Summary Page 5.01 Name OUTFALL Event; 100 yr File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO SUMMARY FOR HYDROGRAPH ADDITION at Node: OUTFALL HYG Directory: C:\PONDPACK\RSF\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag OUTLET POND IN OUTLET SDlOO INFLOWS TO: OUTFALL — - — Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs OUTLET SDlOO 1.530 1.3080 12.59 TOTAL FLOW INTO: OUTFALL - -- Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs OUTFALL SDlOO 1.530 1.3080 12.59 5/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date; 04-06-2001 Type.... Time-Elev Name POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 6.01 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time increment = .0020 hrs hrs 1 Time on left represents t Ime for first value in each row. .0000 1 343 .88 343 .88 343 .89 343 .90 343 .91 .0100 1 343 .92 343 .94 343 .95 343 .99 344 .02 .0200 1 344 .07 344 . 12 344 .17 344 .22 344 .28 .0300 1 344 .34 344 .41 344 .48 344 .50 344 .51 .0400 1 344 .52 344 .53 344 .54 344 .54 344 .55 .0500 1 344 . 56 344 .57 344 .58 344 .59 344 .60 .0600 1 344 .62 344 .63 344 .64 344 .55 344 .67 .0700 1 344 .68 344 .69 344 .71 344 .72 344 .74 .0800 1 344 .75 344 .77 344 .79 344 80 344 .82 .0900 1 344 .83 344 .85 344 .87 344 88 344 .90 .1000 1 344 .91 344 93 344 .95 344 96 344 .98 .1100 1 344 .99 345 01 345 .02 345 03 345 .05 .1200 1 345 .06 345 07 345 .09 345 10 345 11 .1300 1 345 13 345 14 345 .15 345 17 345 18 .1400 1 345 19 345 20 345 .22 345 23 345 24 .1500 1 345 25 345 27 345 28 345 29 345 30 .1600 1 345 32 345 33 345 34 345 35 345 37 .1700 1 345 38 345 39 345 40 345 41 345 43 .1800 1 345 44 345 45 345 46 345 47 345 49 .1900 1 345 50 345 51 345 52 345 53 345 54 .2000 1 345 55 345 56 345 57 345 58 345 59 .2100 1 345 61 345 62 345 53 345 54 345 65 .2200 1 345 66 345 67 345 58 345 69 345 70 .2300 1 345 71 345 72 345 73 345 74 345 75 .2400 ! 345 76 345 77 345 78 345 79 345 80 .2500 1 345 81 345 82 345 83 345 84 345 85 .2600 1 345 86 345 87 345 88 345 89 345 90 .2700 1 345 91 345 92 345 93 345 94 345 95 .2800 1 345 96 345 97 345 98 345 99 346 00 .2900 1 346 01 346 02 346 03 345 04 346 05 .3000 1 345 06 346 07 346 08 345 08 345 09 .3100 1 346 10 346 11 346 12 345 13 346 14 .3200 1 346 15 345 15 346 17 345 17 345 18 .3300 1 346 19 346 20 345 21 346 22 345 23 .3400 1 346 24 345 24 345 25 346 26 345 27 .3500 1 346 28 346. 29 346 29 346. 30 346. 31 .3600 1 346 32 345. 33 346 34 345. 34 346. 35 .3700 1 346 36 346. 37 346 38 346. 38 346. 39 .3800 1 346. 40 346. 41 346 42 346. 42 346. 43 .3900 1 346. 44 346. 45 346 45 345. 45 346. 47 .4000 1 346. 48 346. 49 346 49 345. 50 346. 51 .4100 1 346. 51 346. 52 346. 53 346. 54 346. 54 .4200 1 346. 55 346. 56 345. 56 346. 57 346. 58 .4300 j 346. 58 346. 59 345. 60 345. 50 346. 61 .4400 1 346. 62 346. 62 346. 63 345. 64 345. 64 S/N; 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name POND OUT Tag; SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 6.02 Event: 100 yr TIME vs. ELEVATION (ft) Time 1 Output Time i ncrement = .0020 hrs hrs 1 Time on left represents time for first value in each row .4500 1 346 .65 345.66 345.56 345 .57 346 .68 .4600 1 346 .58 346.69 346.69 346 .70 345 .71 .4700 1 345 .71 345.72 346.73 346 .73 346 .74 .4800 1 346 .74 346.75 345.76 345 .76 346 .77 .4900 1 346 .77 345.78 346.79 346 .79 346 .80 .5000 1 345 .80 346.81 346.81 346 .82 346 .83 .5100 1 346 .83 346.84 346.84 345 .85 346 .85 .5200 1 346 .85 345.86 346.87 346 .88 346 .88 .5300 I 346 .89 346.89 346.90 345 .90 345 .91 .5400 1 345 .91 346.92 346.92 346 .93 346 .93 .5500 1 346 .94 346.94 345.95 346 .95 346 .96 .5600 1 346 .95 346.97 346.97 346 .98 345 .98 .5700 1 346 .99 346.99 347.00 347 .00 347 .01 .5800 1 347 .01 347.02 347.02 347 03 347 .03 .5900 1 347 .04 347.04 347.04 347 05 347 .05 .6000 1 347 05 347.06 347.07 347 07 347 08 .6100 [ 347 08 347.08 347.09 347 09 347 10 .6200 1 347 10 347.11 347.11 347 11 347 12 .5300 1 347 12 347.13 347.13 347 14 347 14 .6400 1 347 14 347.15 347.15 347 16 347 15 .6500 1 347 16 347.17 347.17 347 18 347 18 .6500 1 347 18 347.19 347.19 347 20 347 20 .5700 1 347 20 347.21 347.21 347 22 347 22 .5800 1 347 22 347.23 347.23 347 23 347 24 .6900 1 347 24 347.25 347.25 347 25 347 25 .7000 1 347 26 347.26 347.27 347 27 347 27 .7100 1 347 28 347.28 347.29 347 29 347 29 .7200 1 347 30 347.30 347.30 347 31 347 31 .7300 1 347 31 347.32 347.32 347 32 347 33 .7400 1 347 33 347.33 347.34 347 34 347 34 .7500 1 347 35 347.35 347.35 347 35 347 35 .7600 1 347 36 347.37 347.37 347 37 347 38 .7700 1 347 38 347.38 347.39 347 39 347 39 .7800 1 347 39 347.40 347.40 347 40 347 41 .7900 1 347 41 347.41 347.42 347 42 347 42 .8000 1 347 42 347.43 347.43 347. 43 347. 44 .8100 1 347. 44 347.44 347.45 347. 45 347 45 .8200 1 347. 45 347.46 347.46 347. 46 347. 47 .8300 1 347. 47 347.47 347.47 347. 48 347. 48 .8400 1 347. 48 347.48 347.49 347. 49 347. 49 .8500 i 347. 50 347.50 347.50 347. 50 347. 51 .8600 1 347. 51 347.51 347.51 347. 52 347. 52 .8700 1 347. 52 347.52 347.53 347. 53 347. 53 .8800 1 347. 53 347.54 347.54 347. 54 347 . 54 .8900 1 347. 55 347.55 347.55 347. 55 347. 56 .9000 1 347. 56 347.56 347.56 347. 57 347. 57 5/N; 321C01BO6A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 5.03 Event: 100 yr TIME vs. ELEVATION (ft) Time | Output Time Increment = .0020 hrs hrs 1 Time on left represents t ime for first value in each row .9100 1 347 .57 347.57 347 .57 347 .58 347 .58 .9200 1 347 .58 347.58 347 .59 347 .59 347 .59 .9300 1 347 .59 347.60 347 .60 347 .60 347 .60 .9400 1 347 .61 347.51 347 .51 347 .61 347 .52 .9500 1 347 .62 347.62 347 .62 347 .52 347 .53 .9600 1 347 .53 347.63 347 .63 347 .64 347 .64 .9700 1 347 .54 347.64 347 .65 347 .65 347 .65 .9800 1 347 .65 347.55 347 .55 347 .66 347 .66 .9900 1 347 .66 347.67 347 .67 347 .57 347 .57 1 .0000 1 347 .67 347.68 347 .68 347 .68 347 .68 1 .0100 1 347 .69 347.69 347 .59 347 .69 347 .69 1 .0200 1 347 .70 347.70 347 .70 347 .70 347 .70 1 .0300 1 347 .71 347.71 347 .71 347 .71 347 .72 1 .0400 1 347 .72 347.72 347 .72 347 .72 347 .73 1 .0500 1 347 .73 347.73 347 .73 347 .73 347 .74 1 .0600 1 347 .74 347.74 347 .74 347 .74 347 .75 1 .0700 I 347 .75 347.75 347 .75 347 75 347 75 1 .0800 1 347 76 347.76 347 .75 347 77 347 77 1 .0900 1 347 77 347.77 347 77 347 78 347 78 1 .1000 1 347 78 347.78 347 78 347 79 347 79 1 .1100 1 347 79 347.79 347 79 347 80 347 80 1 .1200 1 347 80 347.80 347 80 347 80 347 81 1 .1300 1 347 81 347.81 347 81 347 81 347 82 1 .1400 1 347 82 347.82 347 82 347 82 347 83 1 .1500 1 347 83 347.83 347 83 347 83 347 84 1 .1600 1 347 84 347.84 347 84 347 84 347 84 1 .1700 1 347 85 347.85 347 85 347 85 347 85 1 1800 I 347 85 347.86 347 86 347 85 347 86 1 1900 1 347 87 347.87 347 87 347 87 347 87 1 2000 1 347 87 347.88 347 88 347 88 347 88 1 2100 I 347 88 347.89 347 89 347 89 347 89 1 2200 1 347 89 347.89 347 90 347 90 347 90 1 2300 1 347 90 347.90 347 90 347 91 347 91 1 2400 1 347 91 347.91 347 91 347 91 347 92 1 2500 1 347 92 347.92 347 92 347 92 347 92 1 2600 1 347 93 347.93 347 93 347. 93 347. 93 1 2700 1 347. 93 347.94 347 94 347. 94 347. 94 1 2800 1 347. 94 347.94 347 95 347. 95 347. 95 1 2900 1 347. 95 347.95 347. 95 347. 96 347. 95 1 3000 1 347. 96 347.95 347. 96 347. 96 347. 95 1 3100 1 347. 96 347.95 347 . 96 347. 96 347. 95 1 3200 1 347. 96 347.96 347. 95 347. 95 347. 95 1 3300 1 347. 95 347.94 347. 94 347. 93 347. 93 1 3400 1 347. 93 347.92 347. 92 347. 91 347. 90 1. 3500 1 347. 90 347.89 347 . 89 347. 88 347. 87 1. 3600 I 347. 86 347.86 347. 85 347. 84 347. 83 S/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 6.04 Event: 100 yr TIME vs. ELEVATION (ft) Time | Output Time increment = .0020 hrs hrs i Time on left represents t ime for first value in each row. 1.3700 1 347 .82 347 .81 347 .80 347 .79 347 .78 1.3800 1 347 .77 347 .76 347 .75 347 .74 347 .73 1.3900 1 347 .72 347 .71 347 .59 347 .68 347 .67 1.4000 1 347 .66 347 .55 347 .64 347 .53 347 .62 1.4100 i 347 .61 347 .60 347 .58 347 . 57 347 .56 1.4200 1 347 .55 347 .54 347 .53 347 .52 347 .51 1.4300 1 347 .50 347 .49 347 .48 347 .47 347 .45 1.4400 1 347 .44 347 .43 347 .42 347 .41 347 .40 1.4500 1 347 .39 347 .38 347 .37 347 .36 347 .35 1.4600 1 347 .34 347 .33 347 .32 347 .31 347 .30 1.4700 1 347 .29 347 .28 347 .27 347 .25 347 .25 1.4800 1 347 .24 347 .23 347 . 22 347 .21 347 .20 1.4900 1 347 .19 347 .18 347 .17 347 .16 347 .15 1.5000 1 347 .14 347 .13 347 .12 347 11 347 .10 1.5100 1 347 .09 347 08 347 .07 347 06 347 .05 1.5200 1 347 .05 347 04 347 03 347 02 347 .01 1.5300 1 347 .00 345 99 346 98 346 97 346 .96 1.5400 1 346 95 345 95 346 94 346 93 346 92 1.5500 1 346 91 346 90 346 89 345 88 346 88 1.5600 1 346 87 345 86 346 85 345 84 346 83 1.5700 1 346 82 346 82 346 81 346 80 345 79 1.5800 1 346 78 346 77 345 77 346 75 346 75 1.5900 1 346 74 346 73 346 73 346 72 346 71 1.6000 i 346 70 346 70 346 69 346 58 346 67 1.6100 1 346 66 346 65 346 65 345 64 346 53 1.6200 1 345 63 345 62 346 61 345 50 346 50 1.6300 1 346 59 346 58 346 58 346 57 346 55 1.5400 1 346 55 346 55 345 54 346 53 346 53 1.5500 1 346 52 346 51 345 51 346 50 346 49 1.6600 1 345 48 346 48 346 47 346 46 346 46 1.6700 1 345 45 345 44 346 43 346 43 346 42 1.6800 1 345 41 345 41 345 40 346 39 346 39 1.6900 I 346 38 345 37 345 37 346 35 345 35 1.7000 1 346 35 346 34 346 33 345 33 346 32 1.7100 1 346 31 346 31 346 30 345 29 346 29 1.7200 f 346 28 346 28 346 27 346 26 346 26 1.7300 1 346 25 346 24 346 24 346 23 346 23 1.7400 1 346 22 346 21 345 21 346 20 346 20 1.7500 \ 345 19 346 18 346 18 346 17 346 17 1.7600 1 345 15 345. 15 346 15 346. 14 346 14 1.7700 i 346 13 345. 12 345. 12 346. 11 346. 11 1.7800 1 346. 10 346. 10 345. 09 346. 08 346. 08 1.7900 1 346 07 346. 07 345. 06 346. 06 346. 05 1.8000 1 345. 05 346. 04 345. 04 346. 03 346. 02 1.8100 1 346. 02 345. 01 346. 01 345. 00 346. 00 1.8200 1 345. 99 345. 99 345. 98 345. 98 345. 97 S/N: 321CO1B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.. Name.. File.. Storm. Time-Elev POND OUT Tag; SDlOO C:\PONDPACK\RSF\RSF-MRM.PPW IDF tbl 10 Tag; SDlOO Page 6.05 Event: 100 yr Time TIME vs. ELEVATION (ft) Output Time Increment = .0020 hrs hrs 1 Time on left represents time for first value In each row. 1 .8300 ! 345 .97 345 .96 345 .96 345 .95 345 .95 1 .8400 1 345 .94 345 .94 345 .93 345 .92 345 .92 1 .8500 1 345 .91 345 .91 345 .90 345 .90 345 .89 1 .8600 1 345 .89 345 .88 345 .88 345 .87 345 .87 1 .8700 1 345 .86 345 .86 345 .85 345 .85 345 .84 1 .8800 1 345 .84 345 .84 345 .83 345 .83 345 .82 1 .8900 1 345 .82 345 .81 345 .81 345 .80 345 .80 1 .9000 1 345 .79 345 .79 345 .78 345 .78 345 .77 1 .9100 1 345 .77 345 .76 345 .75 345 .75 345 .75 1 .9200 1 345 .75 345 .74 345 .74 345 .73 345 .73 1 .9300 1 345 .72 345 .72 345 .71 345 .71 345 .70 1 .9400 1 345 .70 345 .70 345 .69 345 .69 345 .68 1 .9500 1 345 .68 345 .57 345 .67 345 .56 345 .66 1 .9600 ! 345 .66 345 65 345 .65 345 .54 345 .64 1 .9700 1 345 .63 345 63 345 .63 345 62 345 .52 1 9800 1 345 .51 345 51 345 61 345 60 345 60 1 9900 [ 345 .59 345 59 345 58 345 58 345 58 2 0000 1 345 57 345 57 345 56 345 56 345 56 2 0100 1 345 55 345 55 345 54 345 54 345 54 2 0200 1 345 53 345 53 345 52 345 52 345 52 2 0300 1 345 51 345 51 345 50 345 50 345 50 2 0400 1 345 49 345 49 345 48 345 48 345 48 2 0500 1 345 47 345 47 345 46 345 45 345 45 2 0600 1 345 45 345 45 345 44 345 44 345 44 2 0700 1 345 43 345 43 345 43 345 42 345 42 2 0800 1 345 41 345 41 345 41 345 40 345 40 2 0900 1 345 40 345 39 345 39 345 38 345 38 2 1000 1 345 38 345 37 345 37 345 37 345 35 2 1100 1 345 36 345 35 345 35 345 35 345 35 2 1200 1 345 34 345 34 345 34 345 33 345 33 2 1300 i 345 32 345 32 345 32 345 31 345 31 2 1400 1 345 31 345 30 345 30 345 30 345 29 2 1500 1 345 29 345 29 345 28 345 28 345 28 2 1600 1 345 27 345 27 345 27 345 27 345 25 2 1700 j 345 26 345 26 345 25 345 25 345 25 2 1800 1 345 24 345 24 345 24 345 23 345 23 2. 1900 1 345 23 345. 22 345 22 345 22 345. 22 2. 2000 1 345 21 345. 21 345 21 345. 20 345. 20 2. 2100 1 345 20 345. 20 345. 19 345. 19 345. 19 2. 2200 1 345. 18 345 . 18 345. 18 345. 18 345. 17 2 . 2300 1 345. 17 345. 17 345. 15 345. 16 345. 16 2. 2400 1 345. 16 345. 15 345. 15 345. 15 345. 14 2. 2500 1 345. 14 345. 14 345. 14 345. 13 345. 13 2. 2600 1 345. 13 345. 13 345. 12 345. 12 345. 12 2. 2700 1 345. 12 345. 11 345. 11 345. 11 345. 10 2. 2800 1 345. 10 345. 10 345. 10 345. 09 345. 09 5/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 6.06 Event: 100 yr TIME vs. ELEVATION (ft) Time | Output Time i ncrement = .0020 hrs hrs [ Time on left represents time for first value In each row 2 .2900 1 345 .09 345 .09 345 .08 345 .08 345 .08 2 .3000 1 345 .08 345 .07 345 .07 345 .07 345 .07 2 .3100 1 345 .05 345 .05 345 .06 345 .05 345 .06 2 .3200 1 345 .05 345 .05 345 .05 345 .05 345 .04 2 .3300 1 345 .04 345 .04 345 .04 345 .03 345 .03 2 .3400 1 345 .03 345 .03 345 .03 345 .02 345 .02 2 .3500 1 345 .02 345 .02 345 .01 345 .01 345 .01 2 .3600 1 345 .01 345 .01 345 .00 345 .00 345 .00 2 .3700 1 345 .00 344 .99 344 .99 344 .99 344 .99 2 .3800 1 344 .98 344 .98 344 .98 344 98 344 .97 2 .3900 1 344 .97 344 .97 344 .97 344 96 344 .96 2 .4000 1 344 .95 344 .96 344 .95 344 95 344 .95 2 .4100 1 344 95 344 .95 344 .94 344 94 344 .94 2 .4200 1 344 94 344 93 344 .93 344 93 344 93 2 .4300 1 344 92 344 92 344 92 344 92 344 92 2 .4400 1 344 91 344 91 344 91 344 91 344 90 2 .4500 1 344 90 344 90 344 90 344 90 344 89 2 .4600 1 344 89 344 89 344 89 344 88 344 88 2 .4700 1 344 88 344 88 344 88 344 87 344 87 2 .4800 1 344 87 344 87 344 87 344 85 344 86 2 .4900 1 344 86 344 86 344 85 344 85 344 85 2 .5000 i 344 85 344 85 344 85 344 84 344 84 2 .5100 1 344 84 344 84 344 84 344 83 344 83 2 5200 1 344 83 344 83 344 83 344 82 344 82 2 5300 1 344 82 344 82 344 82 344 81 344 81 2 5400 1 344 81 344 81 344 81 344 80 344 80 2 5500 1 344 80 344 80 344 80 344 79 344 79 2 5600 1 344 79 344 79 344 79 344 79 344 78 2 5700 1 344 78 344 78 344 78 344 78 344 77 2 5800 1 344 77 344 77 344 77 344 77 344 77 2 5900 1 344 76 344 75 344 76 344 75 344 76 2 5000 1 344 75 344 75 344 75 344 75 344 75 2 5100 1 344 75 344 74 344 74 344 74 344 74 2 6200 1 344 74 344 74 344 73 344 73 344 73 2 6300 1 344 73 344 73 344 73 344 72 344 72 2 5400 1 344 72 344 72 344 72 344 72 344 71 2 6500 1 344 71 344 71 344 71 344 71 344 71 2 6600 1 344 70 344 70 344 70 344. 70 344 70 2 5700 j 344 70 344 69 344 69 344. 69 344 69 2 6800 1 344 69 344. 69 344 59 344. 68 344 68 2 6900 1 344. 68 344. 68 344 68 344. 68 344 67 2 7000 1 344. 57 344. 67 344 67 344. 67 344 57 2 7100 I 344. 67 344. 66 344. 56 344. 66 344. 66 2 7200 1 344. 55 344. 66 344. 66 344. 65 344. 65 2 7300 1 344. 55 344. 55 344. 65 344. 55 344. 65 2 7400 1 344. 64 344. 54 344. 64 344. 54 344. 64 5/N; 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag; SDlOO Page 6.07 Event: 100 yr TIME vs. ELEVATION (ft) Time | Output Time increment = .0020 hrs hrs 1 Time on left represents t ime for first value in each row 2 .7500 1 344 .54 344.54 344 .63 344 .53 344 .63 2 .7600 1 344 .63 344.63 344 .63 344 .63 344 .62 2 .7700 1 344 .62 344.62 344 .62 344 .62 344 .52 2 .7800 1 344 .62 344.62 344 .61 344 .61 344 .61 2 .7900 1 344 .61 344.61 344 .61 344 .61 344 .60 2 .8000 1 344 .50 344.60 344 .50 344 .60 344 .60 2 .8100 1 344 .60 344.60 344 .59 344 .59 344 .59 2 .8200 1 344 .59 344.59 344 .59 344 .59 344 .59 2 .8300 1 344 .58 344.58 344 .58 344 .58 344 .58 2 .8400 1 344 . 58 344.58 344 .58 344 .57 344 .57 2 .8500 1 344 .57 344.57 344 .57 344 .57 344 .57 2 .8600 1 344 .57 344.57 344 .55 344 .56 344 .56 2 .8700 [ 344 56 344.56 344 .56 344 .56 344 .56 2 .8800 1 344 55 344.55 344 .55 344 .55 344 .55 2 .8900 1 344 55 344.55 344 55 344 .55 344 .54 2 .9000 1 344 54 344.54 344 54 344 54 344 .54 2 9100 1 344 54 344.54 344 54 344 53 344 53 2 9200 1 344 53 344.53 344 53 344 53 344 53 2 9300 1 344 53 344.53 344 53 344 52 344 52 2 9400 1 344 52 344.52 344 52 344 52 344 52 2 9500 1 344 52 344.52 344 51 344 51 344 51 2 9600 1 344 51 344.51 344 51 344 51 344 51 2 9700 1 344 51 344.51 344 50 344 50 344 50 2 9800 1 344 50 344.50 344 50 344 49 344 48 2 9900 1 344 47 344.46 344 45 344 44 344 43 3 0000 1 344 42 344.41 344 40 344 40 344 39 3 0100 1 344 38 344.37 344 35 344 36 344 35 3 0200 1 344 34 344.33 344 33 344 32 344 31 3 0300 1 344 31 344.30 344 29 344 29 344 28 3 0400 1 344 28 344.27 344 27 344 25 344 25 3 0500 1 344 25 344.24 344 24 344 23 344 23 3 0600 1 344 22 344.22 344 21 344 21 344 21 3 0700 1 344 20 344.20 344 19 344 19 344 19 3 0800 1 344. 18 344.18 344 17 344 17 344 17 3 0900 1 344. 15 344.16 344 15 344 15 344 15 3. 1000 1 344. 15 344.14 344. 14 344 14 344. 13 3. 1100 1 344. 13 344.13 344. 13 344. 12 344. 12 3. 1200 1 344. 12 344.12 344. 11 344. 11 344. 11 3. 1300 1 344. 11 344.10 344. 10 344. 10 344. 10 3. 1400 1 344. 10 344.09 344. 09 344. 09 344. 09 3. 1500 1 344. 09 344.08 344. 08 344. 08 344. 08 3. 1600 1 344. 08 344.08 344. 07 344. 07 344. 07 3. 1700 1 344. 07 344.07 344. 07 344. 07 344. 06 3. 1800 1 344. 06 344.06 344. 06 344. 06 344. 05 3. 1900 1 344. 06 344.05 344. 05 344. 05 344. 05 3. 2000 1 344. 05 344.05 344. 05 344. 05 344. 05 S/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Time-Elev Name.... POND OUT Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag; SDlOO Page 6.08 Event: 100 yr TIME vs. ELEVATION (ft) Time | hrs 1 Time on left Output Time represents increment time for = .0020 hrs first value in each row 3.2100 1 344 .05 344.04 344 .04 344 .04 344 .04 3.2200 1 344 .04 344.04 344 .04 344 .04 344 .04 3.2300 1 344 .04 344.04 344 .04 344 .03 344 .03 3.2400 ! 344 .03 344.03 344 .03 344 .03 344 .03 3.2500 1 344 .03 344.03 344 .03 344 .03 344 .03 3.2600 1 344 .03 344.03 344 .03 344 03 344 .02 3.2700 1 344 .02 344.02 344 .02 344 02 344 .02 3.2800 1 344 .02 344.02 344 .02 344 02 344 .02 3.2900 1 344 .02 344.02 344 .02 344 02 344 .02 3.3000 1 344 .02 344.02 344 .02 344 02 344 .02 3.3100 I 344 .02 344.02 344 02 344 02 344 .01 3.3200 1 344 01 344.01 344 01 344 01 344 .01 3.3300 1 344 01 344.01 344 01 344 01 344 01 3.3400 1 344 01 344.01 344 01 344 01 344 01 3.3500 1 344 01 344.01 344 01 344 01 344 01 3.3600 1 344 01 344.01 344 01 344 01 344 01 3.3700 1 344 01 344.01 344 01 344 01 344 01 3.3800 1 344 01 344.01 344 01 344 01 344 01 3.3900 1 344 01 344.01 344 01 344 01 344 01 3.4000 1 344 01 344.01 344 01 344 01 344 01 3.4100 1 344 01 344.01 344 01 344 01 344 01 3.4200 1 344 01 344.00 344 00 344 00 344 00 3.4300 1 344 00 344.00 344 00 344 00 344 00 3.4400 I 344 00 344.00 344 00 344 00 344 00 3.4500 1 344 00 344.00 344 00 344 00 344 00 3.4600 1 344 00 344.00 344 00 344 00 344 00 3.4700 1 344 00 344.00 344 00 344. 00 344 00 3.4800 1 344 00 344.00 344 00 344. 00 344 00 3.4900 1 344 00 344.00 344 00 344. 00 344 00 3.5000 1 344 00 344.00 344 00 344. 00 344 00 3.5100 1 344 00 S/N: 321C01B05A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date; 04-06-2001 Type.... Vol: Elev-Volume Page 7.01 Name POND File C:\PONDPACK\RSF\RSF-MRM.PPW USER DEFINED VOLUME RATING TABLE Elevation Volume (ft) (ac-ft) 343.88 .000 344.00 .002 344.50 .008 345.00 .073 345.50 .148 345.00 .227 346.50 .307 347.00 .391 347.50 .477 348.00 .555 348.50 .658 349.00 .753 349.50 .853 350.00 .964 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Outlet Input Data Page 8.01 Name.... OUTLET File C:\P0NDPACK\RSF\R5F-MRM.PPW REQUESTED POND WS ELEVATIONS Min. Elev.= 344.00 ft Increment = .50 ft Max. Elev.= 348.50 ft *************************^»**m**************** OUTLET CONNECTIVITY »*»«««*»*»:«*«««*«4L*#*«v*4[T«««**«****»**«*««««* —> Forward Flow Only (UpStream to DnStream) <— Reverse Flow Only (DnStream to UpStream) <—> Forward and Reverse Both Allowed Structure No. Outfall El, ft E2. ft Weir-Rectangular WL ---> CV 347.870 348.500 Weir-Rectangular WR ---> CV 347.870 348.500 Orifice-Area OR ---> CV 344.000 348.500 Culvert-Circular CV ---> TW 343.870 348.500 TW SETUP, DS Channel NOTE: WL = Weir, left side opening of outlet structure WR = Weir, right side opening of outlet structure OR = Orifice, 9" slot opening at front of outlet structure CV = Culvert. 18" CSP exiting the outlet structure S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type.... Outlet Input Data Name OUTLET Page 8.02 File. C:\PONDPACK\RSF\RSF-MRM.PPW OUTLET STRUCTURE INPUT DATA Structure ID = WL Structure Type = Weir-Rectangular # of Openings 1 Crest Elev. 347.87 ft Weir Length 2.00 ft Weir Coeff. = 3.300000 Weir TW effects (Use adjustment equation) Structure ID = WR Structure Type = Weir-Rectangular # of Openings 1 Crest Elev. 347.87 ft Weir Length 2.00 ft Weir Coeff. = 3.300000 Weir TW effects (Use adjustment equation) Structure ID = OR Structure Type = Orifice-Area # of Openings 1 Invert Elev. 344.00 ft Area 2.6250 sq.ft Top of Orifice 347.50 ft Datum Elev. 344.00 ft Orifice Coeff. .500 S/N: 321C01B05A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type.... Outlet Input Data Name OUTLET File C:\PONDPACK\RSF\RSF-MRM.PPW OUTLET STRUCTURE INPUT DATA Page 8.03 Structure ID Structure Type = CV = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert = Dnstream Invert = Horiz. Length = Barrel Length Barrel Slope = OUTLET CONTROL DATA. Mannings n Ke Kb Kr HW Convergence = INLET CONTROL DATA.. Equation form = Inlet Control K Inlet Control M = Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 1.5000 ft 343.87 ft 343.50 ft 36.75 ft 35.75 ft .01007 ft/ft .0130 .5000 .018213 .5000 .001 1 .0078 2.0000 .02920 .7400 1.131 1.202 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control interpolate between flows at Tl & T2... At Tl Elev At T2 Elev 345.57 ft 345.67 ft > > Flow = Flow = 7.58 cfs 8.55 cfs Structure ID Structure Type = TW = TW SETUP. DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Max Imum Iterations= 30 Min . TW tolerance = .01 ft Max . TW tolerance = .01 ft Min . HW tolerance = .01 ft Max . HW tolerance = .01 ft Min . Q tolerance = .10 cfs Max . Q tolerance = .10 cfs S/N: 321C01B05A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Individual Outlet Curves Name OUTLET File C:\P0NDPACK\R5F\RSF-MRM.PPW Page 8.04 RATING TABLE FOR ONE OUTLET TYPE Structure ID = WL (Weir-Rectangular) Upstream ID = (Pond Water Surface) DNstream ID = CV (Culvert-Circular) Pond WS. Device (Into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft + /-ft + / -cfs ft + /-ft 344.00 .00 WS below an invert; no flow. Free Outfall 344.50 .00 WS below an invert; no flow. Free Outfall 345.00 .00 WS below an invert; no flow. Free Outfall 345.50 .00 WS below an invert; no flow. Free Outfall 346.00 .00 WS below an invert; no flow. Free Outfall 346.50 .00 WS below an invert; no flow. Free Outfall 347.00 .00 WS below an invert; no flow. Free Outfall 347.50 .00 WS below an invert; no flow. Free Outfall 347.87 .00 WS below an invert; no flow. Free Outfall 348.00 .31 348.00 Free 346.65 .000 .000 Free Outfall H= .13; Htw= .00; Qfree=.31; 348.50 3.09 348.50 Free 347.52 .000 .000 Free Outfall H= .53; Htw= .00; Qfree=3.09; S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date; 04-06-2001 Type.... Individual Outlet Curves Name OUTLET File C:\PONDPACK\RSF\RSF-MRM.PPW Page 8.05 RATING TABLE FOR ONE OUTLET TYPE Structure ID = WR (Weir-Rectangular) Upstream ID = (Pond Water Surface) DNstream ID = CV (Culvert-Circular) Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft + / -cfs ft + /-ft 344 00 00 WS below an invert; no flow. Free Outfall 344 50 00 WS below an invert; no flow. Free Outfall 345. 00 00 WS below an invert; no flow. Free Outfall 345. 50 00 WS below an invert; no flow. Free Outfall 345. 00 00 WS below an Invert; no flow. Free Outfall 345. 50 00 WS below an 1 nvert; no flow. Free Outfall 347. 00 00 WS below an invert; no flow. Free Outfall 347. 50 00 WS below an invert; no flow. Free Outfall 347. 87 00 WS below an invert; no flow. Free Outfall 348. 00 31 348.00 Free 346.65 .000 000 Free Outfall H= .13; Htw= .00; Qfree=.31; 348. 50 3. 09 348.50 Free 347.62 .000 000 Free Outfall H= .63; Htw= .00; Qfree=3.09; S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Individual Outlet Curves Name OUTLET File C;\PONDPACK\RSF\RSF-MRM.PPW Page 8.06 RATING TABLE FOR ONE OUTLET TYPE Structure ID = OR (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = CV (Culvert-Circular) Pond WS. Device (Into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Erri ft cfs ft ft ft + / -ft + / -cfs ft + /- 344. 00 ,00 WS below an invert; no flow. Free Outfall 344. 50 77 Hi 344.50 =.13; Ht= 344.37 3.13; Qt= 344.37 18.62 .005 .000 Free Outfall 345. 00 1. 97 Hi 345.00 =.31; Ht= 344.69 2.81; Qt= 344.59 17.66 .003 .000 Free Outfall 345. 50 3. 71 HI 345.50 =.55: Ht= 344.94 2.56; Qt= 345.04 16.86 .100 .000 Free Outfall 346. 00 5. 10 Hi 345.00 =.72; Ht= 345.28 2.22; Qt= 345.28 15.70 .000 .000 Free Outfall 345. 50 6. 96 Hi 346.50 =.91; Ht= 345. 59 1.91; Qt= 345.58 14.57 .007 .000 Free Outfall 347. 00 9. 35 Hi 347.00 =1.14; Ht 345.85 =1.64: Qt 345.97 =13.47 .101 .000 Free Outfall 347. 50 11. 50 H 347.50 = 1.19 346.31 346.32 .009 .000 Free Outfall 347. 87 12. 30 H 347.87 = 1.37 346.51 346.52 .018 .000 Free Outfall 348. 00 12. 10 H 348.00 =1.32 346.58 346.65 .026 .000 Free Outfall 348. 50 9. 49 H 348.50 = .81 347.69 347.62 .058 ,000 Free Outfall S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-05-2001 Type.... Individual Outlet Curves Name OUTLET File C:\PONDPACK\RSF\RSF-MRM.PPW Page 8.07 RATING TABLE FOR ONE OUTLET TYPE Structure ID = CV (Culvert-Circular) Mannings open channel maximum capacity; 11.34 cfs Upstream ID's= WL, WR, OR DNstream ID = TW (Pond Outfall) Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft+/-cfs ft +/-ft 344.00 .00 343.87 Free Free .000 344.50 .77 344.37 Free Free .000 CRIT.DEPTH CONTROL Vh= .114ft Dcr= 345.00 1.97 344.69 Free Free .000 CRIT.DEPTH CONTROL Vh= .194ft Dcr= 345.50 3.71 345.04 Free Free .000 CRIT.DEPTH CONTROL Vh= .287ft Dcr= 346.00 5.10 345.28 Free Free .000 CRIT.DEPTH CONTROL Vh= .359ft Dcr= 346.50 6.95 345.58 Free Free .000 CRIT.DEPTH CONTROL Vh= .458ft Dcr= 347.00 9.35 345.97 Free Free .000 CRIT.DEPTH CONTROL Vh= .609ft Dcr= 347.50 11.50 346.32 Free Free .000 BACKWATER CONTROL.. Vh= .705ft hwDi= 347.87 12.30 346.52 Free Free .000 FULL FLOW...Lfull=5.36ft Vh=.753ft 348.00 12.71 346.55 Free Free .000 FULL FLOW...Lfull=17.08ft Vh=.804ft 348.50 15.67 347.62 Free Free .000 FULL FLOW...Lfull=34.18ft Vh=l.222ft .000 Free Outfall .000 .325ft .000 .529ft .000 .736ft .000 .870ft .000 1.021ft .000 1.182ft .000 1.388ft Free Outfall CRIT.DEPTH Free Outfall CRIT.DEPTH Free Outfall CRIT.DEPTH Free Outfall CRIT.DEPTH Free Outfall CRIT.DEPTH Free Outfall CRIT.DEPTH Free Outfall Lbw= 36.8ft .000 Free Outfall HL=1.217ft .000 Free Outfall HL=1.456ft .000 Free Outfall HL=2.594ft S/N; 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-05-2001 Type.... Composite Rating Curve Name OUTLET Page 8.08 File C:\PONDPACK\RSF\RSF-MRM.PPW COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. ft Q cfs Notes Converge TW Elev Error ft +/-ft Contributing Structures 344 00 00 Free Outfall (no Q WL,WR,OR,CV) 344 50 77 Free Outfall OR.CV (no Q WL,WR) 345 00 1 97 Free Outfall OR.CV (no Q WL,WR) 345 50 3 71 Free Outfall OR,CV (no Q WL,WR) 346 00 5 10 Free Outfall OR,CV (no Q WL.WR) 345 50 5 95 Free Outfall OR.CV (no Q WL.WR) 347 00 9 35 Free Outfall OR.CV (no Q WL.WR) 347 50 11 50 Free Outfall OR.CV (no Q WL,WR) 347 87 12 30 Free Outfall OR.CV (no Q WL,WR) 348 00 12 71 Free Outfall WL.WR.OR.CV 348 50 15 67 Free Outfall WL.WR,OR.CV S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date; 04-06-2001 Type.... Diverted Hydrograph Name OUTLET File C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag; SDlOO Page 9.01 Event: 100 yr DIVERTED HYDROGRAPH HYG file = HYG ID = OUTLET HYG Tag = SDlOO Peak Discharge = Time to Peak = HYG Volume 12.59 cfs 1.3080 hrs 1.530 ac-ft HYDROGRAPH ORDINATES (cfs) Time [ Output Time increment = .0020 hrs hrs 1 Time •n left represents time for first value In each row. .0160 1 .00 04 .10 .18 .25 .0260 1 .34 43 . 52 .62 .73 .0350 1 .78 79 .81 .83 .85 .0460 1 .87 89 .92 .94 .97 .0560 1 .99 1 02 1.05 1.07 1 .10 .0650 1 1 .13 1 17 1.20 1.23 1 .27 .0750 1 1 .30 1 34 1.37 1.41 1 .45 .0860 1 1 .49 1 53 1.57 1.61 1 .65 .0960 1 1 .68 1 72 1.76 1.80 1 .84 .1060 1 1 .87 1 91 1.95 1.99 2 .04 .1160 1 2 .09 2 13 2.18 2.22 2 .27 .1260 1 2 .32 2 36 2.41 2.45 2 .50 .1360 1 2 .54 2 59 2.63 2.58 2 .72 .1450 1 2 .77 2 81 2.85 2.90 2 .94 .1550 1 2 .98 3 03 3.07 3.11 3 .15 .1660 1 3 .20 3 24 3.28 3.32 3 .36 .1760 1 3 .41 3 45 3.49 3.53 3 .57 .1860 1 3 .61 3 55 3.69 3.73 3 .76 .1960 1 3 .79 3 82 3.85 3.88 3 .91 .2060 1 3 .94 3 97 4.00 4.03 4 .06 .2160 1 4 .09 4 12 4.15 4.18 4 .21 .2260 1 4 .24 4 27 4.30 4.33 4 .35 .2360 1 4 .38 4 41 4.44 4.47 4 .50 .2460 1 4 .53 4 55 4.58 4.51 4 .64 .2560 1 4 .57 4 70 4.72 4.75 4 .78 .2660 1 4 .81 4 83 4.86 4.89 4 .92 .2760 1 4 94 4 97 5.00 5.03 5 .05 .2860 j 5 08 5 11 5.14 5.18 5 .21 .2960 1 5 25 5 28 5.32 5.35 5 .38 .3060 1 5 42 5 45 5.48 5. 52 5 .55 .3160 1 5 59 5 62 5.55 5.68 5 .72 .3260 i 5 75 5 78 5.81 5.85 5 .88 .3360 1 5 91 5 94 5.98 6.01 6 .04 5/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type... Name... File. . . Storm.. Diverted Hydrograph OUTLET C:\P0NDPACK\R5F\ IDF tbl 10 Tag: SDlOO Page 9.02 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time | hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value In each row. .3460 I 6.07 6.10 6 .13 6 . 16 6 .19 .3550 1 6.23 6.26 6 .29 6 .32 5 .35 .3660 1 5.38 5.41 5 .44 6 .47 6 .50 .3760 1 6.53 6.56 5 .59 5 .62 6 .65 .3860 1 6.67 5.70 5 .73 6 .76 6 .79 .3960 1 6.82 6.85 6 .88 6 .90 6 .93 .4060 1 6.96 6.99 7 .03 7 .06 7 .10 .4160 1 7.13 7.16 7 .20 7 .23 7 .26 .4260 1 7.30 7.33 7 .36 7 .39 7 .42 .4360 1 7.46 7.49 7 .52 7 .55 7 .58 .4450 1 7.62 7 .65 7 .58 7 .71 7 .74 .4560 1 7.77 7.80 7 .83 7 .86 7 .89 .4550 1 7.92 7.95 7 .98 8 .01 8 .04 .4760 1 8.07 8.10 8 13 8 .15 8 .18 .4850 1 8.21 8.24 8 27 8 30 8 32 .4960 1 8.35 8.38 8 41 8 43 8 46 .5060 ! 8.49 8.52 8 54 8 57 8 60 .5160 1 8.62 8.65 8 58 8 70 8 73 .5260 1 8.75 8.78 8 81 8 83 8 86 .5350 1 8.88 8.91 8 93 8 96 8 98 .5450 1 9.01 9.03 9 05 9 08 9 10 .5560 1 9.13 9.15 9 18 9 20 9 22 .5560 1 9.25 9.27 9 29 9 32 9 34 .5760 1 9.35 9.38 9 40 9 42 9 44 .5850 1 9.46 9.48 9 50 9 52 9 54 .5950 1 9.56 9.58 9 50 9 62 9 64 .6050 1 9.66 9.68 9 59 9 71 9 73 .6160 1 9.75 9.77 9 79 9 81 9 82 .6260 1 9.84 9.85 9 88 9 90 9 92 .6350 1 9.93 9.95 9 97 9 99 10 00 .6460 1 10.02 10.04 10 06 10 07 10 09 .6560 1 10.11 10.13 10 14 10 16 10 18 .6660 j 10.19 10.21 10 23 10 24 10 25 .6760 1 10.28 10.29 10 31 10 33 10 34 .6860 1 10.36 10.37 10 39 10 41 10 42 .6960 1 10.44 10.45 10 47 10 48 10 50 .7050 1 10.52 10. 53 10 55 10 56 10 58 .7150 1 10.59 10.61 10 62 10 54 10 65 .7260 1 10.67 10.68 10 70 10 71 10 73 .7360 I 10.74 10.75 10 77 10 78 10 80 .7460 1 10.81 10.83 10 84 10 85 10 87 .7560 1 10.88 10.90 10 91 10 92 10 94 .7660 1 10.95 10.97 10 98 10 99 11 01 .7760 I 11.02 11.03 11 05 11 06 11 07 .7860 1 11.09 11.10 11 11 11 12 11 14 .7960 1 11.15 11.16 11 18 11 19 11 20 .8060 1 11.21 11.23 11 24 11 25 11 25 S/N; 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type... Name... File... Storm.. Diverted Hydrograph OUTLET C;\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.03 Event; 100 yr HYDROGRAPH ORDINATES (cfs) Time j Output Time Increment = .0020 hrs hrs 1 Time on left represents t ime for first value in each row. .8160 1 11 .28 11 .29 11 .30 11 .31 11 .32 .8260 i 11 .34 11 .35 11 .36 11 .37 11 .38 .8350 1 11 .40 11 .41 11 .42 11 .43 11 .44 .8450 1 11 .46 11 .47 11 .48 11 .49 11 .50 .8560 1 11 .51 11 .51 11 .52 11 .52 11 .53 .8650 1 11 .53 11 .54 11 .54 11 .55 11 .56 .8760 1 11 .55 11 .57 11 .57 11 .58 11 .58 .8860 1 11 .59 11 .59 11 .60 11 .50 11 .61 .8950 1 11 .61 11 .52 11 .52 11 .53 11 .64 .9050 1 11 .64 11 .65 11 .65 11 .56 11 .66 .9160 1 11 .67 11 .67 11 .68 11 .68 11 .69 .9260 1 11 .59 11 70 11 .70 11 .71 11 .71 .9350 1 11 .72 11 72 11 .73 11 .73 11 .74 .9460 1 11 .74 11 75 11 .75 11 .76 11 .76 .9560 1 11 .77 11 77 11 .78 11 .78 11 .79 .9550 1 11 .79 11 80 11 .80 11 .81 11 .81 .9760 1 11 .82 11 82 11 .83 11 .83 11 .84 .9860 1 11 .84 11 85 11 .85 11 .86 11 .85 .9960 1 11 .87 11 87 11 .88 11 .88 11 .89 1.0060 1 11 .89 11 90 11 90 11 .91 11 .91 1.0160 1 11 91 11 92 11 92 11 .93 11 93 1.0260 1 11 94 11 94 11 95 11 .95 11 .96 1.0350 1 11 96 11 97 11 97 11 .98 11 .98 1.0460 i 11 98 11 99 11 99 12 00 12 00 1.0560 1 12 01 12 01 12 02 12 02 12 02 1.0660 1 12 03 12 03 12 04 12 04 12 05 1.0760 1 12 05 12 06 12 05 12 06 12 07 1.0860 1 12 07 12 08 12 08 12 09 12 09 1.0950 1 12 10 12 10 12 10 12 11 12 11 1.1060 1 12 12 12 12 12 13 12 13 12 13 1.1160 1 12 14 12 14 12 15 12 15 12 15 1.1260 1 12 16 12 16 12 17 12 17 12 18 1.1360 1 12 18 12 18 12 19 12 19 12 20 1.1460 1 12 20 12 21 12 21 12 21 12 22 1.1550 1 12 22 12 23 12 23 12 23 12 24 1.1650 j 12 24 12 25 12 25 12 25 12 26 1.1760 1 12 26 12 27 12 27 12 27 12 28 1.1860 1 12 28 12 29 12 29 12 29 12 30 1.1960 1 12 30 12 31 12 31 12 32 12 33 1.2060 1 12 33 12 34 12 34 12 35 12 35 1.2160 1 12 36 12 36 12 37 12 38 12 38 1.2260 1 12 39 12 39 12 40 12 40 12 41 1.2350 ! 12 41 12 42 12 42 12 43 12 43 1.2450 1 12 44 12 45 12 45 12 45 12 46 1.2560 1 12 47 12 47 12 48 12 48 12 49 1.2660 1 12 49 12 50 12 50 12 51 12 51 1.2760 1 12 52 12 52 12 53 12 53 12 54 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type... Name. . . File... Storm.. . Diverted Hydrograph . OUTLET . C:\PONDPACK\RSF\ . IDF tbl 10 Tag; SDlOO Page 9.04 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j hrs 1 Time Dn Output Time left represents increment time for = .0020 hrs first value in each row. 1.2850 1 12 .54 12.55 12 .55 12 .56 12 .56 1.2960 i 12 .57 12 . 57 12 .58 12 .58 12 .58 1.3060 1 12 .59 12. 59 12 .59 12 .59 12 .59 1.3160 1 12 .58 12.58 12 .58 12 .57 12 .56 1.3260 1 12 .56 12.55 12 .54 12 .53 12 .52 1.3350 1 12 .50 12.49 12 .48 12 .45 12 .45 1.3460 1 12 .43 12.41 12 .39 12 .37 12 .35 1.3550 1 12 .33 12.31 12 .29 12 .27 12 .25 1.3660 i 12 .23 12.22 12 .20 12 .18 12 .15 1.3760 [ 12 .13 12 .11 12 .09 12 .06 12 .04 1.3860 1 12 .02 11.99 11 .97 11 .94 11 .92 1.3960 1 11 .90 11.87 11 .85 11 .82 11 .80 1.4060 1 11 .78 11.75 11 .73 11 .71 11 .68 1.4160 1 11 .66 11.64 11 .51 11 .59 11 . 57 1.4250 1 11 54 11.52 11 .49 11 .45 11 .40 1.4360 1 11 35 11.31 11 .26 11 .21 11 .17 1.4460 1 11 12 11.07 11 .03 10 98 10 .94 1.4560 1 10 89 10.85 10 .80 10 76 10 .71 1.4660 1 10 67 10.63 10 .58 10 54 10 .49 1.4760 1 10 45 10.41 10 .37 10 32 10 .28 1.4860 1 10 24 10.20 10 .15 10 11 10 07 1.4950 1 10 03 9.99 9 .95 9 90 9 86 1.5060 1 9 82 9.78 9 .74 9 70 9 66 1.5160 1 9 62 9.58 9 54 9 50 9 46 1.5260 1 9 43 9.39 9 35 9 30 9 26 1.5360 1 9 22 9.17 9 13 9 09 9 04 1.5460 1 9 00 8.96 8 92 8 88 8 83 1.5550 1 8 79 8.75 8 71 8 67 8 53 1.5660 1 8 59 8.55 8 51 8 47 8 43 1.5760 1 8 39 8.35 8 31 8 27 8 23 1.5850 1 8 19 8.16 8 12 8 08 8 04 1.5960 1 8 00 7.97 7 93 7 89 7 85 1.5060 1 7 82 7.78 7 74 7 71 7 67 1.5160 1 7 64 7.60 7 55 7 53 7 49 1.6250 1 7 45 7.42 7 39 7 35 7 32 1.5350 1 7 29 7.25 7 22 7 18 7 15 1.6460 1 7 12 7.08 7 05 7 02 6 98 1.6560 1 6 95 6.93 5 90 6 87 6 85 1.6660 1 6 82 6.79 6 77 6 74 6 72 1.6760 1 6 69 6.65 5 64 6 61 6 59 1.6860 1 6 56 6. 54 6 51 6 49 6 45 1.6960 1 6 44 5.41 6 39 5 36 6 34 1.7050 1 5 32 5.29 6 27 5 24 5 22 1.7160 1 6 20 5.17 6 15 6 13 6 10 1.7250 1 6 08 6.05 6 03 6 01 5 99 1.7350 1 5 96 5.94 5 92 5 89 5 87 1.7460 1 5 85 5.83 5 81 5 78 5 76 5/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type... Name... File. .. Storm.. Dlverted Hydrograph OUTLET C;\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.05 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time | hrs 1 Time on Output Time left represents Increment time for = .0020 hrs first value in each row. 1.7550 1 5 .74 5 .72 5 .69 5 .67 5 .55 1.7660 ! 5 .63 5 .51 5 .59 5 .57 5 .54 1.7760 1 5 . 52 5 50 5 .48 5 .46 5 .44 1.7860 1 5 .42 5 .40 5 .38 5 .35 5 .34 1.7960 1 5 .32 5 29 5 .27 5 .25 5 .23 1.8060 1 5 .21 5 19 5 .17 5 .15 5 .13 1.8160 1 5 .12 5 10 5 .08 5 .07 5 .05 1.8260 1 5 .04 5 02 5 .01 4 .99 4 .98 1.8350 1 4 .96 4 95 4 .94 4 .92 4 .91 1.8460 1 4 89 4 88 4 .86 4 .85 4 .84 1.8550 1 4 82 4 81 4 79 4 .78 4 .77 1.8550 1 4 75 4 74 4 72 4 .71 4 .70 1.8760 I 4 58 4 67 4 65 4 .64 4 .63 1.8860 I 4 61 4 60 4 59 4 .57 4 .56 1.8960 t 4 55 4 53 4 52 4 .51 4 .49 1.9060 1 4 48 4 47 4 46 4 44 4 .43 1.9160 1 4 42 4 40 4 39 4 38 4 .37 1.9260 1 4 35 A 34 4 33 4 31 4 .30 1.9350 1 4 29 4 28 4 26 4 25 4 24 1.9460 1 4 23 4 21 4 20 4 19 4 18 1.9550 1 4 17 4 15 4 14 4 13 4 12 1.9660 1 4 11 4 09 4 08 4 07 4 06 1.9760 1 4 05 4 03 4 02 4 01 4 00 1.9860 1 3 99 3 98 3 95 3 95 3 94 1.9960 1 3 93 3 92 3 91 3 89 3 88 2.0060 1 3 87 3 86 3 85 3 84 3 83 2.0160 1 3 82 3 80 3 79 3 78 3 77 2.0250 1 3 76 3 75 3 74 3 73 3 72 2.0350 1 3 71 3 59 3 68 3 55 3 65 2.0450 1 3 64 3 52 3 61 3 59 3 58 2.0550 1 3 57 3 55 3 54 3 53 3 51 2.0560 1 3 50 3 49 3 47 3 46 3 45 2.0760 1 3 43 3 42 3 41 3 39 3 38 2.0860 1 3 37 3 35 3 34 3 33 3 32 2.0960 1 3 30 3 29 3 28 3 27 3 25 2.1060 1 3 24 3 23 3 22 3 20 3 19 2.1160 1 3 18 3 17 3 16 3 14 3 13 2.1260 1 3 12 3 11 3 10 3 08 3 07 2.1360 1 3 05 3 05 3 04 3 03 3 01 2.1460 1 3 00 2 99 2 98 2 97 2 96 2.1560 1 2 95 2 93 2 92 2 91 2 90 2.1560 1 2 89 2 88 2 87 2 86 2 85 2.1760 1 2 83 2 82 2 81 2 80 2 79 2.1860 1 2 78 2 77 2 76 2 75 2 74 2.1960 1 2 73 2 72 2 71 2 70 2 59 2.2060 1 2 68 2 67 2 55 2 65 2 64 2.2160 1 2 53 2 52 2 51 2 60 2 59 5/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type... Name... File... Storm.. Diverted Hydrograph OUTLET C;\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.05 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. 2.2260 1 2 .58 2 .57 2 .56 2 .55 2 .54 2.2350 1 2 .53 2 .52 2 .51 2 .50 2 .49 2.2460 1 2 .48 2 .47 2 .46 2 .45 2 .44 2.2550 1 2 .43 2 42 2 .41 2 .40 2 .40 2.2550 1 2 .39 2 38 2 .37 2 .36 2 .35 2.2760 1 2 .34 2 33 2 .32 2 .31 2 .31 2.2850 1 2 .30 2 29 2 .28 2 .27 2 .26 2.2960 1 2 .25 2 24 2 . 24 2 .23 2 .22 2.3060 1 2 .21 2 20 2 .19 2 .18 2 .18 2.3150 1 2 .17 2 16 2 .15 2 .14 2 .14 2.3260 1 2 .13 2 12 2 .11 2 .10 2 .09 2.3360 1 2 .09 2 08 2 .07 2 .06 2 .06 2.3460 1 2 .05 2 04 2 .03 2 .02 2 .02 2.3560 i 2 .01 2 00 1 .99 1 .99 1 .98 2.3660 1 1 97 1 96 1 96 1 .95 1 .95 2.3760 1 1 94 1 93 1 93 1 .92 1 .92 2.3860 1 1 91 1 90 1 90 1 .89 1 .89 2.3960 1 1 88 1 88 1 87 1 .85 1 .85 2.4060 1 1 85 1 85 1 84 1 .84 1 .83 2.4160 1 1 83 1 82 1 81 1 81 1 .80 2.4250 1 1 80 1 79 1 79 1 78 1 .78 2.4360 1 1 77 1 76 1 76 1 75 1 75 2.4460 1 1 74 1 74 1 73 1 73 1 72 2.4560 1 1 72 1 71 1 71 1 70 1 70 2.4550 1 1 69 1 69 1 68 1 58 1 67 2.4760 1 1 67 1 66 1 66 1 65 1 55 2.4860 1 1 54 1 54 1 53 1 53 1 62 2.4960 1 1 52 1 61 1 61 1 60 1 60 2.5060 1 1 59 1 59 1 58 1 58 1 57 2.5150 1 1 57 1 56 1 55 1 55 1 55 2.5260 1 1 54 1 54 1 53 1 53 1 52 2.5360 I 1 52 1 51 1 51 1 51 1 50 2.5460 1 1 50 1 49 1 49 1 48 1 48 2.5560 1 1 47 1 47 1 46 1 46 1 45 2.5660 1 1 45 1 45 1 44 1 44 1 43 2.5750 1 1 43 1 43 1 42 1 42 1 41 2.5860 1 1 41 1 40 1 40 1 40 1 39 2.5960 1 1 39 1 38 1 38 1 37 1 37 2.6060 ! 1 37 1 36 1 36 1 35 1 35 2.6160 1 1 34 1 34 1 34 1 33 1 33 2.6260 1 1 32 1. 32 1 32 1 31 1 31 2.6360 1 1 30 1. 30 1 30 1 29 1 29 2.6460 1 1 28 1. 28 1 28 1 27 1 27 2.6560 1 1 27 1. 26 1 26 1 25 1 25 2.6660 1 1 25 1. 24 1 24 1 23 1 23 2.6750 1 1 23 1. 22 1 22 1 22 1 21 2.6860 1 1 21 1. 20 1 20 1 20 1 19 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type... Name... File. . . Storm.. Diverted Hydrograph OUTLET C:\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.07 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j Output Time Increment = .0020 hrs hrs 1 Time on left represents time for first value In each row. 2.5950 1 1.19 1.19 1.18 1.18 1.18 2.7060 1 1.17 1.17 1.17 1.15 1.15 2.7150 1 1.15 1.15 1.15 1.14 1.14 2.7260 1 1.14 1.13 1.13 1.13 1.12 2.7350 1 1.12 1.12 1.11 1.11 1.11 2.7460 1 1.10 1.10 1.10 1.09 1.09 2.7550 1 1.09 1.08 1.08 1.08 1.07 2.7660 1 1.07 1.07 1.06 1.06 1.06 2.7760 1 1.05 1.05 1.05 1.04 1.04 2.7860 1 1.04 1.03 1.03 1.03 1.02 2.7960 1 1.02 1.02 1.02 1.01 1.01 2.8050 1 1.01 1.00 1.00 1.00 .99 2.8160 1 .99 .99 .98 .98 .98 2.8250 1 .98 .97 .97 .97 .96 2.8360 ! .96 .96 .95 .95 .95 2.8460 1 .95 .94 .94 .94 .94 2.8550 1 .93 .93 .93 .92 .92 2.8660 1 .92 .92 .91 .91 .91 2.8750 1 .90 .90 .90 .90 .89 2.8860 1 .89 .89 .89 .88 .88 2.8960 1 .88 .87 .87 .87 .87 2.9060 1 .86 .86 .86 .86 .85 2.9160 1 .85 .85 .85 .84 .84 2.9250 1 .84 .84 .83 .83 .83 2.9350 1 .83 .82 .82 .82 .82 2.9460 1 .81 .81 .81 .81 .80 2.9560 1 .80 .80 .80 .79 .79 2.9660 1 .79 .79 .78 .78 .78 2.9750 1 .78 .77 .77 .77 .77 2.9860 1 .75 .73 .72 .70 .59 2.9960 1 .67 .66 .55 .63 .62 3.0050 1 .51 .59 .58 . 57 .56 3.0150 j .55 .53 .52 . 51 .50 3.0250 1 .49 .48 .47 .46 .45 3.0360 1 .44 .43 .42 .42 .41 3.0460 1 .40 .39 .38 .37 .37 3.0560 1 .35 .35 .34 .34 .33 3.0660 1 .32 .32 .31 .30 .30 3.0760 1 .29 .28 .28 . 27 .27 3.0860 1 .25 .26 .25 .24 .24 3.0960 1 . 23 .23 .22 . 22 .22 3.1050 1 .21 .21 .20 .20 .19 3.1150 1 .19 .19 .18 .18 .17 3.1260 1 .17 .17 .15 .15 .16 3.1360 1 .15 .15 .15 .14 .14 3.1460 1 .14 .14 .13 .13 .13 3.1550 1 .12 .12 .12 .12 .11 5/N; 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type... Name... File... Storm.. Diverted Hydrograph OUTLET C;\PONDPACK\RSF\ IDF tbl 10 Tag: SDlOO Page 9.08 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time | Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value In each row. 3.1660 1 . 11 .11 .11 .11 .10 3.1750 1 .10 .10 .10 .09 .09 3.1850 1 .09 .09 .09 .09 .08 3.1960 1 .08 .08 .08 .08 .07 3.2060 1 .07 .07 .07 .07 .07 3.2150 1 .07 .06 .06 .06 .06 3.2260 1 .06 .06 .06 .06 .05 3.2350 i .05 .05 .05 .05 .05 3.2450 1 .05 .05 .05 .05 .04 3.2560 1 .04 .04 .04 .04 .04 3.2550 I .04 .04 .04 .04 .04 3.2760 1 .04 .03 .03 .03 .03 3.2850 1 .03 .03 .03 .03 .03 3.2960 1 .03 .03 .03 .03 .03 3.3050 1 .03 .02 .02 .02 .02 3.3160 1 .02 .02 .02 .02 .02 3.3250 1 .02 .02 .02 .02 .02 3.3360 1 .02 .02 .02 .02 .02 3.3460 1 .02 .02 .02 .02 .02 3.3560 1 .02 .01 .01 .01 .01 3.3550 1 .01 .01 .01 .01 .01 3.3760 1 .01 .01 .01 .01 .01 3.3860 1 .01 .01 .01 .01 .01 3.3960 1 .01 .01 .01 .01 .01 3.4060 1 .01 .01 .01 .01 .01 3.4150 1 .01 .01 .01 .01 .01 3.4260 1 .01 .01 .01 .01 .01 3.4360 1 .01 .01 .01 .01 .01 3.4460 1 .01 .01 .01 .01 .01 3.4560 I .01 .01 .01 .00 .00 3.4650 i .00 .00 .00 .00 .00 3.4760 1 .00 .00 .00 .00 .00 3.4860 1 .00 .00 .00 .00 .00 3.4950 1 .00 .00 .00 .00 .00 3.5050 1 .00 .00 .00 S/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Pond E-V-Q Table Name POND File C;\PONDPACK\RSF\RSF-MRM.PPW Page 9.09 LEVEL POOL ROUTING DATA HYG Dir Inflow HYG file Outflow HYG file C:\PONDPACK\RSF\ NONE STORED - POND NONE STORED - POND IN SDlOO OUT SDlOO Pond Node Data = POND Pond Volume Data = POND Pond Outlet Data = OUTLET No Infiltration INITIAL CONDITIONS Starting WS Elev Starting Volume Starting Outflow Starting Infiltr. Starting Total Qout= Time Increment 343.88 ft .000 ac-ft .00 cfs .00 cfs .00 cfs .0020 hrs ElevatIon Outflow Storage Infilt. Q Total 2S/t + 0 ft cfs ac-ft cfs cfs cfs 343.88 00 .000 .00 .00 00 344.00 00 .002 .00 .00 24 20 344.50 77 .008 .00 .77 97 57 345.00 1 97 .073 .00 1 .97 885 27 345.50 3 71 .148 .00 3 .71 1794 51 346.00 5 10 .227 .00 5 .10 2751 80 345.50 6 96 .307 .00 5 .96 3721 66 347.00 9 35 .391 .00 9 .35 4740 45 347.50 11 50 .477 .00 11 .50 5783 20 347.87 12 30 .543 .00 12 .30 6580 90 348.00 12 71 .566 .00 12 .71 6861 31 348.50 15 57 .658 .00 15 .67 7977 47 S/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date; 04-06-2001 Type.... Node; Pond Inflow Summary Page 9.10 Name POND IN Event: 100 yr File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO SUMMARY FOR HYDROGRAPH ADDITION at Node: POND IN HYG Directory: C:\PONDPACK\RSF\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag WARNING: Adding in hydrograph that is truncated on left... WARNING: Missed peak when adding hydrograph... ADD ULTIMATE ULTIMATE SDlOO INFLOWS TO; POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs ULTIMATE SDlOO 1.532 .0833 14.26 TOTAL FLOW INTO: POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft hrs cfs POND IN SDlOO 1.532 .0840 14.26 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Node: Pond Inflow Summary Name POND IN File C;\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag; SDlOO Page 9.11 Event: 100 yr TOTAL NODE INFLOW HYG file = HYG ID = POND HYG Tag = SDlOO IN Peak Discharge = Time to Peak = HYG Volume 14.25 cfs .0840 hrs 1.532 ac-ft HYDROGRAPH ORDINATES (cfs) Time | hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. .0000 1 .00 .34 .68 1 .03 1 .37 .0100 1 1 .71 2 05 2 .40 2 .74 3 .08 .0200 1 3 .42 3 77 4 .11 4 .45 4 .79 .0300 1 5 .13 5 48 5 .82 6 .16 6 .50 .0400 1 5 .85 7 19 7 . 53 7 .87 8 .21 .0500 1 8 .56 8 90 9 .24 9 .58 9 .93 .0600 1 10 .27 10 61 10 .95 11 .30 11 .64 .0700 1 11 98 12 32 12 .55 13 .01 13 .35 .0800 1 13 69 14 03 14 .26 14 .26 14 .25 .0900 1 14 26 14 26 14 .25 14 .25 14 .26 .1000 1 14 25 14 26 14 26 14 .26 14 .25 .1100 i 14 26 14 25 14 26 14 .26 14 .26 .1200 1 14 26 14 25 14 26 14 .26 14 .26 .1300 1 14 25 14 26 14 26 14 .26 14 25 .1400 1 14 26 14 26 14 26 14 25 14 26 .1500 1 14 26 14 26 14 25 14 26 14 25 .1600 ! 14 26 14 26 14 26 14 26 14 26 .1700 1 14 26 14 25 14 25 14 26 14 26 .1800 1 14 25 14 25 14 25 14 26 14 26 .1900 1 14 25 14 26 14 26 14 26 14 26 .2000 1 14 26 14 26 14 26 14 26 14 26 .2100 1 14 26 14 26 14 26 14 26 14 25 .2200 1 14 26 14 25 14 25 14 25 14 25 .2300 1 14 26 14 25 14 25 14 25 14 25 .2400 1 14 26 14 25 14 25 14 26 14 25 .2500 1 14 26 14 26 14 26 14 26 14 26 .2600 i 14 26 14 26 14 26 14 25 14 26 .2700 1 14 26 14 26 14 26 14 26 14 26 .2800 [ 14 26 14 26 14 25 14 26 14 26 .2900 1 14 25 14 26 14 26 14 26 14 26 .3000 1 14 25 14 25 14 26 14 26 14 25 .3100 1 14 25 14. 26 14 26 14 26 14 25 .3200 1 14 26 14. 26 14 26 14 26 14 26 S/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type... Name. . . File... Storm.. Node: Pond Inflow Summary POND IN C:\PONDPACK\RSF\RSF-MRM.PPW IDF tbl 10 Tag: SDlOO Page 9.12 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time 1 hrs 1 Time Output Time on left represents increment = .0020 hrs time for first value in each row. .3300 1 14 .26 14 .26 14 .26 14 .26 14 .26 .3400 1 14 .26 14 .25 14 .25 14 .26 14 .25 .3500 1 14 .26 14 .26 14 .25 14 .26 14 .26 .3500 1 14 .26 14 .26 14 .26 14 .26 14 .26 .3700 [ 14 .26 14 .25 14 .25 14 .26 14 .26 .3800 1 14 .25 14 .26 14 .26 14 26 14 .26 .3900 1 14 .26 14 26 14 .25 14 26 14 26 .4000 1 14 .25 14 26 14 .26 14 26 14 26 .4100 1 14 .26 14 26 14 26 14 26 14 25 .4200 1 14 .26 14 26 14 26 14 25 14 26 .4300 1 14 .26 14 25 14 26 14 26 14 25 .4400 1 14 .25 14 25 14 26 14 26 14 26 .4500 1 14 26 14 26 14 26 14 25 14 26 .4600 1 14 26 14 26 14 26 14 26 14 26 .4700 1 14 26 14 25 14 26 14 26 14 26 .4800 1 14 26 14 25 14 26 14 25 14 26 .4900 1 14 25 14 26 14 26 14 25 14 26 .5000 1 14 26 14 26 14 25 14 26 14 25 .5100 I 14 26 14 26 14 25 14 26 14 26 .5200 1 14 26 14 26 14 26 14 26 14 26 .5300 1 14 26 14 26 14 26 14 26 14 26 .5400 1 14 25 14 25 14 26 14 26 14 26 .5500 1 14 25 14 25 14 26 14 26 14 26 .5600 1 14 26 14 26 14 26 14 25 14 26 .5700 1 14 26 14 26 14 26 14 26 14 26 .5800 1 14 25 14 25 14 26 14 25 14 26 .5900 1 14 25 14 26 14 26 14 26 14 26 .5000 1 14 26 14 25 14 25 14 26 14 25 .5100 1 14 26 14 25 14 25 14 26 14 26 .6200 1 14 26 14 26 14 26 14 25 14 26 .5300 1 14 26 14 26 14 26 14 26 14 26 .5400 1 14 25 14 25 14 26 14 25 14 26 .6500 1 14 25 14. 26 14 26 14 26 14 25 .6500 1 14 25 14. 26 14 25 14 26 14 26 .5700 1 14 26 14. 26 14 25 14 26 14 25 .6800 1 14 26 14. 25 14 26 14. 25 14 26 .6900 1 14 26 14. 26 14 25 14. 26 14. 26 .7000 1 14 26 14. 25 14. 26 14. 25 14 26 .7100 1 14 26 14. 25 14. 26 14. 26 14 26 .7200 1 14 26 14. 26 14. 25 14. 26 14. 25 .7300 1 14. 26 14. 26 14. 26 14. 26 14. 25 .7400 1 14. 26 14. 26 14. 26 14. 25 14. 25 .7500 1 14. 26 14. 26 14. 26 14. 26 14. 26 .7600 1 14. 26 14. 25 14. 25 14. 26 14. 26 .7700 1 14. 26 14. 26 14. 25 14. 26 14. 26 .7800 1 14. 26 14. 26 14. 26 14. 26 14. 26 .7900 [ 14. 26 14. 26 14. 26 14. 26 14. 26 S/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type... Name... File... Storm.. Node: Pond Inflow Summary POND IN C:\PONDPACK\RSF\RSF-MRM.PPW IDF tbl 10 Tag: SDlOO Page 9.13 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. .8000 1 14 .25 14 .26 14.25 14 .26 14 .26 .8100 1 14 .26 14 .26 14.25 14 .25 14 .25 .8200 1 14 .26 14 .26 14.26 14 .26 14 .26 .8300 1 14 .25 14 .25 14.25 14 .26 14 .26 .8400 1 14 .25 14 .25 14.25 14 .26 14 .26 .8500 1 14 26 14 .26 14.26 14 .26 14 .25 .8500 1 14 25 14 .25 14.25 14 .25 14 26 .8700 1 14 26 14 26 14.26 14 .26 14 25 .8800 1 14 25 14 26 14. 26 14 .25 14 26 .8900 I 14 26 14 26 14.26 14 26 14 26 .9000 1 14 26 14 26 14.26 14 26 14 26 .9100 1 14 26 14 25 14.26 14 26 14 26 .9200 1 14 25 14 25 14.26 14 26 14 26 .9300 1 14 26 14 26 14.26 14 26 14 26 .9400 1 14 25 14 26 14.25 14 25 14 26 .9500 I 14 26 14 26 14.26 14 25 14 26 .9600 1 14 26 14 26 14. 26 14 26 14 25 .9700 1 14 26 14 25 14.25 14 26 14 26 .9800 1 14 26 14 26 14.26 14 26 14 26 .9900 1 14 25 14 25 14.26 14 25 14 26 1 .0000 1 14 26 14 26 14.26 14 26 14 26 1 .0100 1 14 26 14 26 14.26 14 26 14 25 1 .0200 1 14 26 14 26 14.26 14 26 14 25 1 .0300 1 14 26 14 25 14.25 14 26 14 26 1 .0400 1 14 26 14 26 14.26 14 25 14 25 1 .0500 1 14 26 14 26 14.26 14 25 14 25 1 .0600 1 14 26 14 25 14.26 14 25 14 26 1 .0700 [ 14 25 14 25 14.26 14 26 14 26 1 .0800 1 14 26 14 26 14.25 14 25 14 26 1 .0900 1 14 26 14 26 14.26 14 26 14 26 1 .1000 1 14 26 14 26 14. 26 14 26 14 26 1 .1100 1 14 26 14 25 14. 26 14 25 14 26 1 .1200 1 14 26 14 26 14. 26 14 25 14 26 1 .1300 1 14 26 14 26 14.26 14 26 14 26 1 .1400 1 14 26 14 26 14.26 14 26 14 26 1 .1500 1 14 26 14 25 14.25 14 26 14 26 1 .1600 1 14 26 14 26 14.25 14 26 14 26 1 1700 1 14 26 14 26 14. 26 14 26 14 26 1 1800 1 14 25 14 26 14. 26 14 26 14 25 1 1900 1 14 25 14 25 14.25 14 26 14 25 1 2000 1 14 26 14 26 14.26 14 26 14 26 1 2100 1 14. 26 14. 26 14.26 14 26 14 26 1 2200 [ 14. 26 14. 26 14. 26 14 26 14 26 1 2300 i 14. 26 14. 26 14. 26 14 26 14 26 1 2400 1 14. 26 14. 26 14.26 14 26 14. 26 1 2500 1 14. 26 14. 26 14. 26 14 25 14. 25 1 2600 1 14. 26 14. 26 14.26 14 25 14. 25 5/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time; 11:33:40 Date: 04-06-2001 Type.. Name.. File.. Storm. Node; Pond Inflow Summary POND IN C:\PONDPACK\RSF\RSF-MRM.PPW IDF tbl 10 Tag: SDlOO Page 9.14 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row. 1.2700 I 14.25 14 26 14.26 14 .26 14 .26 1.2800 ! 14.26 14 25 14.25 14 .26 14 .25 1.2900 1 14.26 14 26 14.26 14 .25 14 .26 1.3000 1 14.18 13 91 13.57 13 .23 12 .89 1.3100 1 12.54 12 20 11.85 11 .52 11 .18 1.3200 1 10.83 10 49 10.15 9 .81 9 .45 1.3300 1 9.12 8 78 8.44 8 .09 7 .75 1.3400 1 7.41 7 07 6.73 6 .38 5 04 1.3500 1 5.70 5 36 5.01 4 .67 4 33 1.3500 1 3.99 3 65 3.30 2 .96 2 52 1.3700 1 2.28 1 93 1.59 1 .25 91 1.3800 1 .56 22 .00 S/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date; 04-05-2001 Type.... Pond Routing Summary Name POND OUT Tag: SDlOO File C: \PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 9.15 Event: 100 yr HYG Dir Inflow HYG file = Outflow HYG file = Pond Node Data = Pond Volume Data = Pond Outlet Data = No Infiltration INITIAL CONDITIONS LEVEL POOL ROUTING SUMMARY C:\PONDPACK\RSF\ NONE STORED - POND NONE STORED - POND POND POND OUTLET IN SDlOO OUT SDlOO Starting WS Elev Starting Volume Starting Outflow Starting Infiltr. Starting Total Qout- Time Increment 343.88 ft .000 ac-ft .00 cfs .00 cfs .00 cfs .0020 hrs INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow 14.25 cfs at .0840 hrs Peak Outflow 12.59 cfs at 1.3080 hrs Peak Elevat ion = 347.96 ft Peak Storage = .559 ac-ft MASS BALANCE (ac-ft) + Initial Vol = .000 + HYG Vol IN = 1.532 - Infiltration = .000 - HYG Vol OUT = 1.530 - Retained Vol = .002 Unrouted Vol = .000 ac-ft (.001% of Inflow Volume) S/N: 321C01B05A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... C and Area Name DEVELOPED CA File C:\PONDPACK\RSF\RSF-MRM.PPW RATIONAL C COEFFICIENT DATA Page 10.01 Area C x Area Soil/Surface Description C acres acres B4 .9500 .780 .741 85 .9500 1.100 1.045 B7 .5500 7.470 4.109 Bll .9500 1.200 1.140 B12 .9500 . 560 .532 B12.5 .9500 .510 .485 BIS .9500 .900 .855 B16 1.0000 .490 .490 B17 .9500 .470 .447 Upstream Basin Area .4500 .730 .329 WEIGHTED C & TOTAL AREA ---> .7158 14.210 10.171 S/N; 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Mod. Rational Graph Name ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO Page 10.02 Event: 100 yr MODIFIED RATIONAL METHOD Graphical Summary for Maximum Required Storage Method I Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3500) ********************************************************************** * RETURN FREQUENCY; 100 yr | Allowable Outflow: 10.00 cfs * 'C Adjustment: 1.000 | Required Storage: .960 ac-ft * • * * Peak Inflow: 14.26 cfs * * .HYG File: 50100 * ******************************************************************:t:t** Q I Td = 1.3000 hrs Approx. Duration for Max. Storage Tc= .0833 hrs I = 7.8551 in/hr . Q = 80.56 cfs I Return Freq: 100 yr / C adj.factor:!.000 . X o Required Storage .960 ac-ft Area = 14.210 acres Weighted C = .716 Adjusted C = .716 • I -I • Td= 1.3000 hrs I = 1.3900 In/hr X X X X X X xlx XXXXXXXXXX Q= 14.25 cfs 0 Q = 10.00 cfs X (Allow.Outflow) NOT TO SCALE 1.3249 hrs S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Mod. Rational Storm Calcs Name ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\RSF-MRM.PPW Storm... IDF tbl 10 Tag: SDlOO MODIFIED RATIONAL METHOD Summary for Single Storm Frequency Page 10.03 Event: 100 yr Q = CiA * Units Conversion; Where Conversion = 43550 / (12 * 3500) RETURN FREQUENCY; 100 yr 'C Adjustment = 1.OOOAllowable Q = 10.00 cfs Hydrograph Storm Duration. Td = 1.3000 hrs Hydrograph File: SDlOO Tc = .0833 hrs VOLUMES Wtd. Adjusted Durat ion Intens. Area Qpeak | Inflow Storage 'C •c hrs 1 n/hr acres cfs 1 ac-ft ac-ft .716 .715 .0833 7.8551 14.210 80.56 [ .555 .484 .715 .716 .1667 4.9921 14.210 51.20 1 .705 .502 .716 .716 .2500 4.0000 14.210 41.03 1 .848 .710 .716 .716 .3333 3.3055 14.210 33.90 1 .934 .762 .716 .715 .5000 2.5000 14.210 25.64 1 1.060 .819 .716 .716 .6667 2.0988 14.210 21.53 1 1.186 .876 .716 .716 .8333 1.8012 14.210 18.47 [ 1. 272 .894 .715 .716 1.0000 1.6000 14.210 16.41 1 1.355 .909 '*********************************************************** storage Maximum .716 .716 1.3000 1.3900 14.210 14.26 1 1.532 .960 !***************************:r*********************************************** .716 .716 2.0000 1.0000 14.210 10.26 1 1.695 .834 .716 .716 3.0000 .7900 14.210 8.10 1 Qpeak < Qallow S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type.... Mod. Rational Hyg Name ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO Page 10.04 Event: 100 yr Q = MODIFIED RATIONAL METHOD HYDROGRAPH CIA * Units Conversion; Where Conversion = 43560 / (12 * 3600) Tag Freq File IDF Curve SDlOO 100 SD.IDF IDF tbl 10 Td = 1.3000 hrs Tag Freq C C adj 1 (years) factor | C final I in/hr Area j acres 1 Peak Q cfs SDlOO 100 .716 1.000 1 .715 1.3900 14.210 1 14.25 HYG file = HYG ID = ULTIMATE HYG Tag = SDlOO Peak Discharge = Time to Peak = HYG Volume 14.25 .0833 1.532 cfs hrs ac-ft WARNING: Hydrograph truncated on left side. HYDROGRAPH ORDINATES (cfs) Time j hrs 1 Time on Output Time left represents increment time for = .0020 hrs first value in each row. .0013 1 .22 56 .91 1 .25 1 .59 .0113 1 1 .93 2 28 2.62 2 .96 3 .30 .0213 1 3 .65 3 99 4.33 4 .57 5 .01 .0313 I 5 .36 5 70 6.04 6 .38 5 .73 .0413 1 7 .07 7 41 7.75 8 .10 8 .44 .0513 1 8 .78 9 12 9.45 9 .81 10 .15 .0513 1 10 .49 10 83 11.18 11 .52 11 .86 .0713 1 12 .20 12 54 12 .89 13 .23 13 .57 .0813 1 13 .91 14 26 14.25 14 . 26 14 . 26 .0913 1 14 .26 14 26 14.26 14 .26 14 .26 .1013 1 14 .26 14 25 14. 26 14 .25 14 .25 S/N; 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type.... Mod. Rational Hyg Name ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO WARNING: Hydrograph truncated on left side Page 10.05 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time j Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value In each row .1113 1 14.26 14.25 14.26 14.26 14.26 .1213 1 14.25 14.25 14.26 14.26 14.25 .1313 1 14.26 14.26 14.25 14. 25 14.26 .1413 I 14.26 14.26 14.25 14.26 14.26 .1513 1 14. 25 14.26 14.26 14.26 14.26 .1513 1 14.25 14.25 14.26 14.26 14.25 .1713 1 14.26 14.26 14.25 14.25 14.26 .1813 1 14. 25 14.25 14.26 14.26 14.26 .1913 1 14.25 14.25 14.26 14.25 14.25 .2013 1 14.26 14.26 14.25 14.25 14.26 .2113 1 14.26 14.25 14.25 14.26 14.25 .2213 1 14.26 14.26 14.25 14.26 14.26 .2313 1 14.26 14.26 14.26 14.26 14.26 .2413 1 14.25 14.25 14.26 14.26 14.25 .2513 1 14.26 14.25 14.25 14.26 14.26 .2613 1 14.26 14.25 14.25 14.25 14.26 .2713 1 14.26 14.26 14.26 14.26 14.26 .2813 1 14.26 14.26 14.26 14.26 14.25 .2913 1 14.25 14.25 14.25 14.26 14.25 .3013 1 14.26 14.26 14.25 14.25 14.26 .3113 1 14.26 14.26 14.25 14.26 14.26 .3213 1 14.26 14.25 14.25 14.25 14.26 .3313 1 14.26 14.26 14.25 14.26 14.26 .3413 t 14.25 14.26 14.26 14. 26 14.26 .3513 1 14.25 14.25 14.25 14.26 14.26 .3613 1 14.26 14.25 14. 25 14.25 14.26 .3713 1 14.25 14.26 14.26 14. 25 14.26 .3813 ! 14.25 14.25 14.25 14.25 14.26 .3913 1 14.26 14.25 14.25 14.26 14.26 .4013 1 14.26 14.26 14.26 14.26 14.26 .4113 i 14.26 14.26 14.26 14.26 14. 25 .4213 1 14. 25 14.26 14.26 14.26 14.26 .4313 [ 14.26 14.26 14.25 14.26 14.25 .4413 1 14.26 14.26 14.26 14. 26 14.25 .4513 1 14. 26 14.25 14.25 14.26 14. 26 .4613 1 14.26 14.26 14.25 14.26 14. 26 .4713 1 14.26 14.26 14.25 14.26 14.25 .4813 1 14.26 14.25 14.26 14. 25 14.26 .4913 [ 14. 25 14.26 14.26 14.25 14.26 .5013 1 14.25 14.26 14.26 14.26 14.26 .5113 1 14.26 14.26 14.26 14.25 14.26 .5213 1 14.26 14. 25 14.25 14. 25 14. 26 .5313 ( 14.26 14.25 14. 25 14.26 14.26 .5413 1 14.26 14.26 14.26 14.26 14.26 S/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-05-2001 Type.... Mod. Rational Hyg Name.... ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO WARNING: Hydrograph truncated on left side Page 10.06 Event: 100 yr HYDROGRAPH ORDINATES (cfs) Time | Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row .5513 1 14.25 14.25 14.26 14.25 14.26 .5613 1 14.26 14.26 14.26 14.25 14.25 .5713 1 14.26 14.25 14.26 14.26 14.25 .5813 1 14. 26 14.25 14.26 14.25 14.26 .5913 1 14.26 14.26 14.26 14.26 14. 26 .6013 1 14.26 14.26 14.26 14.26 14. 25 .5113 1 14. 25 14.25 14.25 14.25 14.26 .6213 1 14.26 14.25 14.26 14.25 14.26 .6313 1 14.25 14.26 14.25 14.26 14.26 .6413 1 14. 25 14.25 14.25 14.26 14.26 .6513 1 14.26 14.26 14.26 14.26 14.25 .6613 1 14. 26 14.26 14.25 14.26 14.26 .6713 1 14.26 14.26 14.26 14.26 14.25 .6813 1 14.26 14.26 14.26 14.25 14.26 .5913 1 14.25 14.26 14.25 14.26 14.26 .7013 1 14. 25 14.25 14.25 14.26 14.26 .7113 1 14.26 14.26 14.26 14.26 14.25 .7213 1 14.26 14.25 14.25 14.26 14.25 .7313 1 14.25 14.25 14.25 14.26 14.26 .7413 I 14.26 14.26 14.25 14.26 14.26 .7513 1 14.25 14.26 14.26 14. 26 14.25 .7513 1 14.25 14.26 14.26 14.26 14.26 .7713 1 14.26 14.26 14.26 14.25 14.26 .7813 i 14.26 14.25 14.25 14.25 14.26 .7913 1 14.25 14.26 14.25 14.26 14.26 .8013 1 14.26 14.25 14.25 14.25 14.26 .8113 1 14.25 14.25 14.25 14.26 14.26 .8213 1 14. 25 14.26 14.25 14.26 14.25 .8313 1 14.26 14.26 14.26 14.26 14.26 .8413 1 14.26 14.26 14.26 14.25 14.26 .8513 1 14.26 14.26 14.26 14.25 14.26 .8613 1 14.26 14.25 14.25 14.25 14.26 .8713 1 14.26 14.25 14.25 14.25 14.26 .8813 1 14.26 14.26 14.26 14.26 14.26 .8913 1 14. 26 14.26 14.25 14.25 14.26 .9013 I 14.26 14.25 14.26 14.25 14.26 .9113 1 14.26 14.26 14.26 14.26 14.26 .9213 1 14.26 14.26 14.26 14.26 14.26 .9313 1 14.26 14.26 14.26 14.26 14.26 .9413 1 14.25 14.26 14.26 14.26 14.26 .9513 1 14.26 14.26 14.26 14.26 14. 26 .9513 1 14.26 14.26 14.26 14.25 14.25 .9713 1 14.26 14.26 14.26 14.25 14.25 .9813 1 14.26 14.26 14.26 14.26 14.26 S/N: 321C01B06A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Type.... Mod. Rational Hyg Name ULTIMATE Tag: SDlOO File C:\PONDPACK\RSF\ Storm... IDF tbl 10 Tag: SDlOO WARNING: Hydrograph truncated on left side Page 10.07 Event; 100 yr HYDROGRAPH ORDINATES (cfs) Time | Output Time increment = .0020 hrs hrs 1 Time on left represents time for first value in each row .9913 1 14.26 14.25 14.26 14. 25 14.25 1.0013 1 14.26 14.26 14.26 14.26 14.26 1.0113 1 14. 25 14.26 14.25 14.26 14.26 1.0213 1 14.25 14.26 14.25 14.26 14.25 1.0313 1 14.26 14.26 14.25 14.26 14.26 1.0413 1 14.26 14.26 14.26 14.26 14.26 1.0513 1 14.25 14.26 14.26 14. 25 14.25 1.0613 1 14. 26 14.26 14.25 14.26 14.26 1.0713 1 14.26 14.26 14.26 14.26 14.26 1.0813 1 14.26 14.26 14.26 14.26 14.26 1.0913 1 14. 26 14.26 14.26 14.26 14.25 1.1013 1 14. 26 14.26 14.25 14.25 14.26 1.1113 1 14.26 14.26 14.26 14.26 14.26 1.1213 1 14.26 14.26 14.26 14.26 14.25 1.1313 1 14. 26 14.25 14.26 14.26 14.25 1.1413 1 14.26 14.25 14.26 14.26 14.25 1.1513 1 14.26 14.25 14.26 14.25 14.25 1.1613 1 14. 25 14.25 14.26 14.26 14.26 1.1713 1 14. 25 14.25 14.25 14.26 14.26 1.1813 1 14.25 14.26 14.25 14. 26 14.26 1.1913 1 14.26 14.26 14.25 14.26 14.26 1.2013 1 14. 25 14.26 14.25 14.26 14.26 1.2113 1 14.26 14.26 14.26 14.26 14.26 1.2213 1 14.25 14.26 14.26 14.25 14.25 1.2313 1 14. 26 14.26 14.25 14.26 14.26 1.2413 1 14.25 14.26 14.25 14.25 14.26 1.2513 1 14.25 14.26 14.26 14. 26 14.26 1.2613 1 14.26 14.26 14.26 14.26 14.26 1.2713 1 14.26 14.26 14.26 14.25 14.25 1.2813 1 14.26 14. 26 14.26 14.25 14.26 1.2913 1 14.26 14.25 14.26 14. 25 14.25 1.3013 1 14.03 13.59 13.35 13.01 12.55 1.3113 1 12 .32 11.98 11.64 11.30 10.95 1.3213 1 10.61 10.27 9.93 9.58 9.24 1.3313 1 8.90 8.55 8.21 7.87 7.53 1.3413 1 7.19 6.85 6. 50 6.16 5 .82 1.3513 1 5.48 5.13 4.79 4.45 4.11 1.3613 1 3.77 3 .42 3.08 2.74 2.40 1.3713 1 2.05 1.71 1.37 1.03 .68 1.3813 1 .34 .00 5/N: 321C01B06A8A Dokken Engineering PondPack Ver; 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Appendix A A-1 Index of Starting Page Numbers for ID Names D DEVELOPED CA... 10.01 DEVELOPED TC... 4.01 I IDF Storms 10... 2.01 IDF tbl 10 SDlOO... 3.01 0 OUTFALL SDlOO... 5.01 OUTLET... 8.01. 8.04, 8.08. 9.01 P POND... 7.01, 9.09 POND IN SDlOO... 9.10 POND OUT SDlOO... 6.01, 9.15 U ULTIMATE SDlOO... 10.02, 10.03. 10.04 W Watershed SDlOO... 1.01, 1.02 5/N: 321C01B05A8A Dokken Engineering PondPack Ver: 7.0 (325) Compute Time: 11:33:40 Date: 04-06-2001 Hydrograph OUTFALL SDlOO Currently Plotted Curves OUTFALL SDlOO OUTLET SDlOO Hydrograph OUTLET SDlOO Currently Plotted Curves POND OUT SDlOO OUTLET SDlOO Intensity-Duration-Frequency IDF tbl 10SD100 Currently Plotted Curves IDF tbl 10 SDlOO 3 4 Duration (hrs) Elev. vs. Flow OUTLET > UJ 348 • 347 346 345 344 Currently Plotted Curves OUTLET Hydrograph OUTFALL SD100 Currently Plotted Curves OUTFALL SDlOO OUTLET SDlOO Hydrograph OUTLET SDlOO Currently Plotted Curves POND OUT SDlOO OUTLET SDlOO