Loading...
HomeMy WebLinkAbout3190; University Commons (Brookfield & Brounwer); University Commons (Brookfield & Brounwer); 2002-01-16Hydrology & Hydraulic Study Mass Grading University Commons (Brookfield and Brouwer portion) TSM 421 DWG NO. GP-2161 Date: January 16, 2002 •-a Prepared for: Brookfield Homes 12865 Pointe Del Mar Suite 200 Del Mar, CA 92014 Prepared by: O'Day Consultants, Inc. 5900 Pasteur Court Suite 100 Carlsbad, Califomia 92008' 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES •I •I Table of Contents Section Description A. Introduction and Description B. Hydrology Calculations Existing Conditions Appendix A -Exisfing conditions per: Preliminary Hydroloq Study University Commons (Brookfield and Brouwer Portion) dated July 27, 2000 C. Hydrology Calculations Developed Conditions Appendix B -Proposed conditions for Southem areas Appendix C -Proposed conditions for Northem & Industrial areas Page Nos. 4-6 7 8-28 29 30-91 92-136 D. Hydraulic Calculations Developed Conditions Appendix D -AES analysis of proposed storm drains for Southem areas Appendix E -Inlet, rip-rap and brow ditch sizing for Southem areas Appendix F -AES analysis of proposed storm drains for Northem & Industrial areas Appendix G -Inlet, rip-rap and brow ditch sizing for Northem & Industrial areas E. Hydrology/Hydraulic Calculations For Temporary Facilities Appendix H -Proposed conditions for temporary/inlet drainage areas F. Desilting/NPDES basin Hydrology/Hydraulics Appendix I -NPDES and Post Construction Desilfing Basin calculafions 137 138-252 253 - 275 276 - 336 337-349 350 351 - 369 370 371 -383 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES "•I m m m Exhibits Exhibit A Exhibit B Exhibit C Exhibit D Exhibit E Exhibit F Exhibit G Exhibit H Exhibit I Exhibit J Exhibit K Exhibit L Exhibit M Exhibit N Exhibit O Exhibit P Exhibh Q Exhibit R Exhibit S Exhibit T Exhibit U Exhibit V Exhibit W Exhibit X Vicinity Map Ownership Map Phased Grading Land Use Plan Runoff Coefficients (Rational Method) Rational Method C Values Soil Group Map 2-year 6-hour precipitation map 10-year 6-hoiir precipitation map 10-year 24-hour precipitation map 100-year 6-hour precipitation map 100-year 24-hour precipitation map Nomograph for Determination of Time of Concentration for Natural Watersheds Urban Areas Overland Time of Flow Curves Intensity Duration Design Chart Gutter and Roadway Discharge-Velocity Chart Table 200-1.7 Selection of Riprap and Filter Blanket Material Runoff Curve Number for Hydrologic Soil-cover Direct Runoff Chart Headwater Depth for Concrete Pipe Culverts/w Inlet Control 200-scale (Existing) Hydrology Map (Pocket) 200-scale (Developed) Hydrology Map Southem Area (Pocket) 200-scale (Developed) Hydrology Map North/Industrial Area (Pocket) 200-scale Hydraulic Map (Pocket) 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES A. Introduction and Description The puipose ofthis study is to analyze the hydrology for the existing, interim, and developed conditions for the University Commons project (Brookfield/Brouwer portion). This analysis is required to support the mass grading plans (Dwg. No. GP-2161) submitted to the City of San Marcos to obtain a grading permit. The site is located in the southwesterly portion ofthe City of San Marcos. The project is a portion of the 416-acre University Commons project, currently owned by four owners: Brookfield Homes, Brouwer, Shelley, and CIC Corporation. Exhibit A is a Vicmity Map of the site; Exhibit B depicts the ownership ofthe various parcels. This study is lunited to the Brookfield and Brouwer ownerships although provision is made to account for offsite drainage from surrounding properties. Brookfield Homes plans to purchase the Brouwer property prior to issuance of the grading permit. The mass grading for the project has been divided into two separate phases. Exhibit C graphically depicts the proposed phasing for the project. The phasing was required to account for the constraints ofthe project site. The first constraint is an existing two-lane collector (San Elijo Road) that bisects the southerly portion of the site. There are three major ufilities within San Elijo Road including a 15" sewer line, power poles with overhead telephone and cable lines, a 6" gas line, and a 27'730" tri- agency water line. The existing San Elijo Road in the developed condition will be eliminated and realigned to the ultimate aligmnent. The second constraint is an existing 10" sewer line that serves San Elijo Hills, the development to the east. The third constraint is an existing 18" water line owned by Olivenhain Municipal Water District. This water line mns north-south and bisects the southerly portion of the site. Phase 1 is depicted in Sheets I and 2 of Exhibit C. Sheet I includes the southerly portion of Phase 1 and Sheet 2, the northerly portion. It should be noted that Phase 1 will require interim grading and storm drain improvements to account for the constraints listed above and also to build a temporary detour road. Phase 2 is depicted in Sheets 3 and 4 of Exhibit C. Phase 2A on Sheet 3 completes the grading required to complete the realigned San Elijo Road. At this point, the existing utilities in the existing road will be built in the new alignment and surface improvements constmcted. Phase 2B on Sheet 4 then completes the mass grading. Existing Conditions The site is currently vacant and covered with natural vegetation. The property is bisected by both the Rancho Santa Fe Industrial Park development and the San Marcos Creek. The northerly portion of the Brookfield property immediately north of the industrial park currently drains to existing public storm drains. These storm drains ultimately drain to San Marcos Creek. The remaining southerly portion ofthe site drains to San Marcos Creek within tiie project boundaries. Exhibit U depicts these existing drainage pattems. 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES A preliminary hydrologic analysis of existing conditions was done by O'Day Consultants Inc. in July 27,2000 as part ofthe study titied Preliminary Hydrology Study University Commons (Brookfield and Brouwer portion). This section of the report is included here as Appendix A in Section B. Developed Conditions The Brookfield/Brouwer development would consist of approximately 340 single-family residential units, five multi-family lots, five industrial lots, and a recreation area. The Land Use Plan taken from the Specific Plan is included here as Exhibit D. The project also includes the constmction of Melrose Drive from Patton Street to its intersection with the new San Elijo Road. The City of San Marcos is building the portion of Melrose Drive west of Patton Street. San Elijo Road is a four-lane major arterial traversing through the southerly portion of the project site. It is the realignment of existing San Elijo Road (formerly Questhaven Road) and will be built as part ofthis project. Another major road contiguous to the project is Rancho Santa Fe Road to the west. The City of San Marcos is widening this road on the north side of the project. To the south, the City ofCarlsbad is undertaking the realignment of this road. Carlsbad's capital improvement project includes a new bridge at San Marcos Creek capable of conveying the 100-year storm event. Section C ofthis report includes the hydrologic calculations for developed conditions. Storm drains have been sized for developed conditions (Refer to Appendix B and C), and will be installed during Phases I and II grading. Analysis of Existing & Developed Conditions For Detention Requirements (lOO-year storm event) Developed conditions will result in an increase in impervious area and a corresponding increase in storm water flow rates. However, as a condition of approval, the City of San Marcos requires that "post-development storm flows shall not exceed existing storm flows" for the 100-year storm event. This issue is addressed in a separate report by Dr. Howard Chang. Interim Conditions As discussed above, temporary storm drains were provided in some cases because Phase I grading does not allow for ulfimate facilities. Secfion E of this report includes tiie analysis for these temporary facilifies. These facilities were sized forthe 100-year storm event in accordance with City of San Marcos requirement. Offsite Drainage We have assumed that future developments located offsite, per the City of San Marcos General Plan, will also be required to have post-development storm flows not exceeding existing storm flows. More particularly, we assumed in Appendix B, that areas with Assessors Parcel Numbers 223-080- 27 and 223-080-28, will have onsite detention in place prior to constmction and will not increase flows from their existing conditions. 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Erosion Control Facilities Please see the report, Hydrologic and Hydraulic Study, Erosion Control Measures for Mass Grading University Commons (Brookfield and Brouwer portion) TSM 421 Dwg. No. GP-2] 61, dated October 25, 2001 for hydrologic and hydraulic calculations related to erosion control facilities. Melrose Drive Crossing at San Marcos Creek The mass grading plans do not include grading within San Marcos creek. The creek crossing and hydraulic analysis of the crossing will be done with submittal of the improvement plans for Melrose Drive. A Conditional Letter of Map Revision (CLOMR) will also be filed with FEMA for the revision to the 100-year flood lines at that time. Desilting/NPDES basin Hydrology/Hydraulics A desilting/detention basin will be constmcted at the South end of the site, near the intersection of Melrose Avenue and San Elijo Road, in accordance with Resolution PCOl-3415 in which post development storm flows will not exceed existing storm flows for the 100-year storm event (See Appendix I). 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES B. Hydrology Calculations Existing Conditions The analyses of the existing conditions shown in the following Appendix A was calculated using CivilCADD version 2,1, which utilizes the San Diego County Rational Method. See Exhibit "U" for existing drainage basins and points of concentrated flows. Pertinent exhibits from the San Diego County Hydrology Manual are enclosed for reference, as follows: Exhibit E- Rimoff Coefficients Exhibit G- Soil Group Map Exhibit I- 10-year 6-hour precipitation map Exhibit K- 100-year 6-hour precipitation map Exhibit M- Nomograph for Determination of Time of Concertration for Natural' Watersheds Exhibit N- Urban Areas Overland Time of Flow Curves 971004-5 UNIVHRSn Y COM vIONS BR00KK!R1.D1 DMES m ^ APPENDIX A Existing Conditions y^r. Preliminary Hydroloq Study University Commons (Brookfield and Brouwer Portion)dated July 27, 2000 (Referto Exhibit "U") 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Prograin CIVILCADD/CIVILDESIGN Engineering Software, {c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/14/00 DRAINAGE STUDY FOR NORTH BROOKFIELD (BASIN A) 971004-UNIVERSITY COMMONS {100-YR EXISTING CONDITIONS) JUNE 14, 2000 - T.G. FILE: G:\ACCTS\971004\NBEA.OUT **REFER TO EXHIBIT «U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++ ++++ + +++ + ++++++ + + ++++ +++++ ++++ + + ++++++++++++^.++_^+ + ^^^^ Process from Point/Station 1.000 to Point/Station 2 000 +*** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.780 Decimal fraction soil group C = 0.220 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type Time of concentration computed by the natural watersheds nomograph {App X-A) TC = [11.9*length(Mi)-^3)/(elevation change) ] ^. 385 *60{min/hr) + 10 min Initial subarea flow distance - 2200.00[Ft.) Highest elevation = 815.00(Ft.) Lowest elevation = 41B.00{Ft.) Elevation difference = 397.00{Ft.) TC=[(11.9*0.4167-3)/{397.00)]-.385- 5.66 + 10 min. = 15.66 min. Rainfall intensity {I) = 3.785 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.361 Subarea runoff = 59.854(CFS) Total initial stream area = 43.800{Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 2.000 to Point/Station 3 QOO **** IHPRQVED CHANNEL TRAVEL TIME **** Upstream point elevation ^ 418.00(Ft.) Downstream point elevation = 355.00(Ft.) Channel length thru subarea = 1845.00(Ft. Channel base width = 3.000(Ft.) 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank - 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 87.185(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 4.000(Ft.) Flow{q) thru subarea = 87.185(CFS) Depth of flow = 1.119(Ft.), Average velocity = 14.873(Ft/s) Channel flow top width = 7.476(Ft.) Flow Velocity = 14.87(Ft/s) Travel time = 2.07 min. Time of concentration = 17.72 min. Critical depth = 1.969(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.780 Decimal fraction soil group C = 0.220 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.494(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0,361 Subarea runoff = 50.459(CFS) for 40.000(Ac.) Total runoff = 110.313(CFS) Total area = 83.80(Ac.) End of computations, total study area = 83.80 (Ac.) 10 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version.3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR NORTH BROOKFIELD (BASIN B) 971004-UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS) JUNE 16,2000 - T.G. FILE: G:\ACCTS\971004\NBEB.OUT **REFER TO EXHIBIT «U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++ + ++ + + + + + + Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.960 Decimal fraction soil group C = 0.040 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)^3)/[elevation change) ]^.385 *60(min/hr) + 10 min Initial subarea flow distance = 2200.00(Ft.) Highest elevation = 815.00(Ft.) Lowest elevation = 425.00(Ft.) Elevation difference = 390.00(Ft.) TC=[ (11. 9*0.4167'-3) / (390. 00) ] 385= 5.70 + 10 min. = 15.70 min. Rainfall intensity (I) = 3.779 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.352 Subarea runoff = 53.879(CFS) Total initial stream area = 40.500(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + l + + + + + + + + + + f4- + + + + 4- + + + + ^ Process from Point/Station 2.000 to Point/Station 3.000 ^*** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation ^ 425.00{Ft.) Downstream point elevation = 418.00(Ft.) Channel length thru subarea = 580.00(Ft.) Channel base width = 3.000(Ft.) II 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 56.007(CFS) Manning's 'N' = 0.018 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 56.007(CFS) Depth of flow = 1.276(Ft.), Average velocity = 7.905(Ft/s) Channel flow top width = 8.104(Ft.) Flow Velocity = 7.91(Ft/s) Travel time = 1.22 min. Time of concentration = 16.92 min. Critical depth = 1.578(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.960 Decimal fraction soil group C = 0.040 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.601(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 352 Subarea runoff = 4.056(CFS) for 3.200(Ac.) Total runoff = 57.935(CFS) Total area = 43.70(Ac.) End of computations, total study area = 43.70 (Ac.) 12 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/24/01 DRAINAGE STUDY FOR NORTH BROOKFIELD (BASIN C) 971004-UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS) JUNE 16, 2000 - T.G. FILE: G:\ACCTS\971004\NBEC.OUT **REFER TO EXHIBIT "U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method + +++ + + + ++++ ++++++++++++++ +++++ + + +++++++++ + +++_^++^._^_^+^._^^^^_^^ Process from Point/Station 1.000 to Point/Station 2 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 " " Decimal fraction soil group B = 0.510 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.4 90 (RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)'^3)/(elevation change) ] ^. 385 *60(min/hr) + 10 min Initial subarea flow distance = 1300.00(Ft.) Highest elevation - 445.00(Ft.) Lowest elevation = 335.00(Ft.) Elevation difference = 110.00(Ft.) TC=[(11.9*0.2462-3)/(110.00)]-.385= 5.05 + 10 min. = 15.05 min. Rainfall intensity (I) = 3.883 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.399 Subarea runoff = 25.100(CFS) Total initial stream area = 16.200(Ac.) End of computations, total study area= 16.20 (Ac.) 13 971004-5 UNIVERSnr COMMONS BROOKHELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology raanual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR NORTH BROOKFIELD (BASIN D) 971004-UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS) JUNE 16, 2000 - T.G. FILE: G:\ACCTS\971004\NBED.OUT **REFER TO EXHIBIT «U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation (inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3 . 000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method + ++++ ++++++++++++++ + + +++++ + + +++++++++++++++ +++ + + + + +++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.430 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.570 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)'^3) / (elevation change)]". 385 *60(min/hr) + 10 min Initial subarea flow distance = 1500.00(Ft.) Highest elevation = 590.50(Ft.) Lowest elevation = 345.00(Ft.) Elevation difference = 245.50(Ft.) TC=[ (11 . 9*0.2841'^3) / (245.50) ]-^. 385= 4 . 37 + 10 min. = 14.37 min. Rainfall intensity (I) = 4.000 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.407 Subarea runoff = 36.956(CFS) Totai initial stream area = 22.700(Ac.) End of computations, total study area= 22.70(Ac.) 14 Ml 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3,2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR BROOKFIELD (BASIN E) 971004-UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS) JUNE 16, 2000 - T.G. FILE: G:\ACCTS\971004\NBEE,OUT **REFER TO EXHIBIT «U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.480 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.520 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC - [11.9*length(Mi)"3)/(elevation change)385 *60(min/hr) + 10 min. Initial subarea flow distance = 1350.00(Ft.) Highest elevation = 666. 50(Ft.) Lowest elevation = 578.00(Ft.) Elevation difference = 88.50(Ft.) TC=[(11 . 9*0.2557'^3)/( 88 . 50) ] -. 385= 5.74 + 10 min. = 15.74 min. Rainfall intensity (I) = 3.773 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.402 Subarea runoff = 15.168(CFS) Total initial stream area = 10.000(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 578.00(Ft.) Downstream point elevation = 345.00{Ft.) Channel length thru subarea - 2800.00(Ft. Channel base width - 10.000(Ft.) 15 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10,000 Estimated mean flow rate at midpoint of channel = 50.586(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 3.000 (Ft.) Flow(q) thru subarea = 50.586(CFS) Depth of flow = 0.516(Ft.), Average velocity = 6.469(Ft/s) Channel flow top width = 20.317(Ft.) Fiow Velocity = 6.47(Ft/s) Travel time = 7.21 min. Tirae of concentration = 22.95 min. Critical depth = 0.727(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.480 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.520 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 2.958(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.402 Subarea runoff = 55.532(CFS) for 46.700(Ac.) Total runoff = 70.701(CFS) Total area = 56.70(Ac.) End of computations, total study area = 56.70 (Ac.) 16 »4l 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/30/00 971004 - UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS @ BASIN "F") FILE: G:\ACCTS\971004\EXF.OUT **REFER TO EXHIBIT "U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)"3)/(elevation change)]".385 *60(min/hr) + 10 min Initial subarea flow distance = 960.00(Ft.) Highest elevation = 747.00(Ft.) Lowest elevation = 550.00(Ft.) Elevation difference - 197.00{Ft.) TC=[ (11.9*0.1818-^3) / (197.00) ]-.385= 2.84 + 10 min. = 12.84 min. Rainfall intensity (I) = 4.301 for a LOO.O year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 10.839(CFS) Total initial stream area = 5.600(Ac.) + + + + + + + + + + + + + + + + + + + + ++ +++ + +^-++ + + ++ + + + + ++ -,-+4+ + + + + + + Process from Point/Station 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 550.00(Ft.) Downstream point elevation = 440.00(Ft.) Channel length thru subarea = 730.00(Ft. Channel base width = 10.000 (Ft.) 17 1^ m Ut m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = 60.875(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft,) Flow(q) thru subarea = 60,875(CFS) Depth of flow = 0.487(Ft.), Average velocity = 10.901(Ft/s) Channel flow top width = 12.923(Ft,) Flow Velocity = 10.90(Ft/s) Travel time = 1.12 min. Time of concentration = 13.96 min. Critical depth = 0.953(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.260 Decimal fraction soil group C = O.OOO Decimal fraction soil group D = 0.740 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.076(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0 424 Subarea runoff = 89.356(CFS) for 51.700(Ac.) Total runoff = 100.195(CFS) Total area = 57.30(Ac.) +++++++++++++++++++++++++++++4-+++++++++++++++++++++++++++^ Process from Point/Station 203.000 to Point/Station 203 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara number 1 ' Stream flow area = 57.300(Ac.) Runoff from this stream = 100.195(CFS) Time of concentration = 13.96 min. Rainfall intensity = 4.076(In/Hr) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++4 + + + + + + + 4 + + + ^._^ + ^ + ^^ Process from Point/Station 204.000 to Point/Station 205 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soii group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)'^3)/(elevation change)]. 385 *60(min/hr) + 10 min Initial subarea flow distance = 1000.00(Ft.) Highest elevation = 940.00(Ft.) Lowest elevation = 700.00(Ft.) Elevation difference = 240.00(Ft.) TC=[(11 . 9*0. 1894'^3)/(240.00)]'^.385= 2.76 + 10 min. = 12.76 min Rainfall intensity (I) = 4.319 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 6.608(CFS) Total initial stream area = 3.400(Ac.) + + + +++ + + + + ++++ + + + + + + + + + +++ + + ++ + + ++++ + + ++ ^4+++++++ + + + _(. + _^^_4^.^^_^_^^^ Process from Point/Station 205.000 to Point/Station 203 000 **** IMPROVED CHANNEL TRAVEL TIME **** 9710O4-5 UNIVERSITY COMMONS BROOKFIELD HOMES Upstream point elevation = 700.00(Ft.) Downstream point elevation = 440.00 (Ft.) Channel length thru subarea = 3400.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 4.OOO Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of channel = 58 . 889 (CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 58.889(CFS) Depth of flow = 0.391(Ft.), Average velocity = 6.976(Ft/s) Channel flow top width = 23.132(Ft.) Flow Velocity = 6.98(Ft/s) Travel time = 8.12 min. Time of concentration = 20.89 min. Critical depth = 0,617(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.143(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 76.101(CFS) for 53.800(Ac.) Total runoff = 82.709(CFS) Total area = 57.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 203.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 57.200(Ac.) Runoff from this stream - 82.709(CFS) Time of concentration = 20.89 min. Rainfall intensity = 3.143(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mini Rainfall Intensity (In/Hr) 1 100 . 195 13. 96 4 . 076 2 82 . 709 20. 89 3. 143 Qmax(1 ) = 1 . 000 * 1. 000 * 100.195) + 1 . 000 * 0. 668 * 82.709) + 155. ,475 Qmax(2 ) = 0 . 771 * 1.000 * 100.195) + 1 .000 * 1.000 * 82 .709) + = 159. . 974 Total of 2 streams to confluence: Flow rates before confluence point: 100.195 82.709 Maximum flow rates at confluence using above data: 155.475 159.974 Area of streams before confluence: 57.300 57.200 Results of confluence: 19 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES I I Total flow rate = 159.974(CFS) Time of concentration = 20.885 min. • Il Effective stream area after confluence = 114.500 (Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ •« Process from Point/Station 203.000 to Point/Station 206.000 **** IMPROVED CHANNEL TRAVEL TIME **** til m Upstream point elevation = 440.00(Ft.} Downstream point elevation = 390.00(Ft.) Channel length thru subarea = 1500.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel = 206.708 (CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft.) FlQw(q) thru subarea = 206.70B(CFS) Depth of flow = 1.021(Ft.), Average velocity = 8.068(Ft/s) Channel flow top width = 30.207(Ft.) Flow Velocity = 8.07(Ft/s) Travel time = 3.10 min. Time of concentration = 23.98 min. Critical depth = 1.328(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.240 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.760 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 2.875(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.426 Subarea runoff = 81.937(CFS) for 66.900(Ac.) Total runoff = 241.911(CFS) Total area = 181.40(Ac.) +++++-++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 181.400(Ac.) Runoff from this stream = 241.911 (CFS) Time of concentration = 23.98 min. Rainfall intensity = 2.875(In/Hr) + + + + + + + +++ + + + + +++ + + ++ ^-+ + + + ++++^-++++^-+^-+ +++++++++++++ + ^-+ + + + ^ Process from Point/Station 207.000 to Point/Station 208.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi)-3) / (elevation change )]. 385 *60(min/hr) + 10 min Initial subarea flow distance = 1150.00(Ft.) 20 971004-5 UNIVERSnr COMMONS BROOKFIELD HOMES Highest elevation = 1039.00(Ft.) Lowest elevation = 725.00(Ft.) Elevation difference = 314.00(Ft.) TC=[(11.9*0.2178-3)/(314.00)]-.385= 2.93 + 10 min. = 12.93 min Rainfall intensity (I) = 4.283 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 26.600(CFS) Total initial stream area = 13,800(Ac.) 4- + + + + + +++ + + + + + + + + + + + + + + + +++ + + + + +++ + + + + + + + + + + + + + + + + + + + + + ^.^^.^^ Process from Point/Station 208.000 to Point/Station 206 000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 725.00(Ft.) ' ' Downstream point elevation = 390.00 (Ft.) Channel length thru subarea = 3250.00(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 101.194(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 101.194(CFS) Depth of flow = 0.744(Ft.), Average velocity = 11.831(Ft/s) Channel flow top width = 12.978(Ft.) Flow Velocity = 11.83(Ft/s) Travel time = 4.58 min. Time of concentration = 17.51 min. Critical depth = 1.344(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.523(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 450 Subarea runoff = 122.689(CFS) for 77.400(AG.) Total runoff = 149.289(CFS) Total area = 91.20(Ac.) + + +++ + + +++++ + + +++ + + ++++++++ +++++++++++ + +++++++++ ++++^. + _^++++ Process from Point/Station 206.000 to Point/Station 206 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 91.200(Ac.) Runoff from this stream = 149.289(CFS) Time of concentration = 17.51 min. Rainfall intensity = 3.523(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 241.911 23.98 2.875 2 149.289 17.51 3.523 Qmax{I) = 1.000 * 1.000 * 241.911) + 21 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 0.816 * 1,000 * 149.289) + = 363.759 Qmax(2) = 1.000 * 0.730 * 241.911) + 1.000 * 1.000 * 149.289) + = 325.851 Total of 2 streams to confluence: Flow rates before confluence point: 241.911 149.289 Maxiraum flow rates at confluence using above data: 363.759 325.851 Area of streams before confluence: 181. 400 91.200 Results of confluence: Total flow rate - 363.759(CFS) Time of concentration = 23.984 min. Effective stream area after confluence = 272.600(Ac.) ++++^- + + + +++++++^-^-+^-^-+++++++^-+++++++++++++^-+++++++++++ + +++44 Process from Point/Station 206.000 to Point/Station 209 000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 390.00(Ft.) Downstream point elevation = 380.00(Ft.) Channel length thru subarea = 350.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel = 366.628(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.00O(Ft.) Flow(q) thru subarea = 366.628(CFS) Depth of flow = 1.464(Ft.), Average velocity = 9.165(Ft/s) Channel flow top width = 34.642(Ft.) Flow Velocity = 9.16(Ft/s) Travel time = 0.64 min. Time of concentration = 24.62 min. Critical depth = 1.859(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 2.827(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 5.470(CFS) for 4.300(Ac.) Total runoff = 369.229(CFS) Total area = 276.90(Ac.) +++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 209 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 276.900(Ac.) Runoff from this stream = 369.229{CFS) Tirae of concentration ^ 24.62 min. Rainfall intensity = 2.827(In/Hr) 22 •m m 971004-5 UNIVERSrrY COMMONS BROOKFIELD HOMES +++++++++++++++++++++++4-++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 211.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 " ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]^.385 *60(min/hr) + 10 min Initial subarea flow distance = 1050.00(Ft.) Highest elevation = 1001.00(Ft.) Lowest elevation = 700.00(Ft.) Elevation difference = 301.00(Ft.) TC=[(11.9*0.1989-3)/(301.00)]''.385= 2.68 + 10 min. = 12.68 min. Rainfall intensity (I) = 4.337 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 13.467(CFS) Total initial stream area = 6.900(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++^.^4 Process from Point/Station 211,000 to Point/Station 209.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 700.00 (Ft. ) ~ Downstream point elevation = 380.00(Ft.) Channel length thru subarea = 2350.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 76.609(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 76,609(CFS) Depth of flow = 0.390(Ft.), Average velocity = 9.461(Ft/s) Channel flow top width = 21.559(Ft.) Flow Velocity = 9.46(Ft/s) Travel time = 4.14 rain. Time of concentration = 16.82 min. Critical depth = 0.750(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.615(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0 450 Subarea runoff = 105.242(CFS) for 64.700(Ac.) Total runoff = 118.710[CFS) Total area = 71.60(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 209.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 71.600(Ac.) 23 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 118.710(CFS) 16.82 min. 3.615(In/Hr) TC [min] Rainfall Intensity (In/Hr) m m m m 1 369.229 2 118.710 Qmax(1) = 1.000 0.782 Qmax(2) = 1.000 * 1.000 * 24 . 62 16.82 1.000 1.000 0. 683 1.000 2.827 3.615 369.229) + 118.710) + 369.229) + 118,710) + 462.065 370.922 Total of 2 streams to confluence: Flow rates before confluence point: 369.229 118.710 Maximum flow rates at confluence using above data: 462.065 370.922 Area of streams before confluence: 276.900 71.600 Results of confluence: Total flow rate = 462.065(CFS) Time of concentration = 24.621 rain. Effective streara area after confluence = 348.500(Ac.) Process from Point/Station 209.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 210.000 512.449(CFS) Upstream point elevation = 380.00(Ft.) Downstreara point elevation = 345.00(Ft.) Channel length thru subarea = 1600.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at raidpoint of channel = Manning's 'N' = 0.030 Maximura depth of channel = 10.000{Ft.) Flow(q) thru subarea = 512.449(CFS) Depth of flow = 1.886(Ft.), Average velocity = 9.233(Ft/s) Channel flow top width = 38.860(Ft.) Flow Velocity = 9.23(Ft/s) Travel time = 2.89 rain. Time of concentration = 27.51 min. Critical depth = 2.250(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.100 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.900 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 2.632(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q^KCIA, C = 0,440 Subarea runoff = 88.004(CFS) for 76.000(Ac.) Total runoff = 550.069(CFS) Total area = 424.50(Ac.) End of computations, total study area = 424.50 (Ac.) 24 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology prograra based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/30/00 971004 - UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS @ BASIN "G") FILE: G:\ACCTS\971004\EXG.OUT **REFER TO EXHIBIT "U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Tirae of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]".385 *60(min/hr) + 10 min. Initial subarea flow distance = 1000.00(Ft.) Highest elevation = 775.00(Ft.) Lowest elevation = 574.00(Ft.) Elevation difference = 201.00(Ft.) TC=[ (11 . 9*0. 1894'^3) / (201.00) ]-.385= 2.96 + 10 min. = 12.96 min. Rainfall intensity (I) = 4.277 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 26.196(CFS) Total initial stream area = 17.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4 Process from Point/Station 102.000 to Point/Station 103.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 574.00(Ft.) Downstream point elevation = 420.00(Ft.) Channel length thru subarea = 2300.00(Ft. Channel base width = 20.000(Ft.) 25 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank = 4.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at raidpoint of channel = 96.176(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 96.176(CFS) Depth of flow = 0.543(Ft.), Average velocity = 7.987(Ft/s) Channel flow top width = 24.345(Ft.) Flow Velocity = 7.99(Ft/s) Travel time = 4.80 min. Time of concentration = 17.76 min. Critical depth = 0.844(Ft.) Adding area flow to channel Decimal fraction soil group A = 0,000 Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RUEV^L (greater than 1/2 acre) area type ] Rainfall intensity = 3.490(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0 350 Subarea runoff = 114.219(CFS) for 93.50O(Ac.) Total runoff = 140.415(CFS) Total area = lll.GO(Ac.) End of computations, total study area = 111.00 (Ac.) 26 •m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/30/00 971004 - UNIVERSITY COMMONS (100-YR EXISTING CONDITIONS Q BASIN'"H")' FILE: G:\ACCTS\971004\EXH.OUT **REFER TO EXHIBIT "U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3 000 P6/P24 = 57.7% San Diego hydrology raanual 'C values used Runoff coefficients by rational method !*SJ^^f.J5?^" ?°i!;'^i^.?f.^.^2-_-. 200.000 to Point/Station 201.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type Time of concentration coraputed by the natural watersheds nomograph (App X-A) TC= [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 rain Initial subarea flow distance = 1100.00(Ft.) Highest elevation = 455.00(Ft.) Lowest elevation = 375.00(Ft.) Elevation difference = 80.00(Ft.} TC=[(11.9*0.2083-3)/( 80.00)]".385= 4.71 + 10 min. = 14 71 min Rainfall intensity (I) = 3.941 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0 450 Subarea runoff = 16.317(CFS) Total initial streara area = 9.200(Ac.} End of coraputations, total study area = 9.20 (Ac.) 27 •HT- m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego_County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/30/00 971004 - UNIVERSITY COMMONS (100-YR EXISTING'TONM^ioNsTfiAi^N'-^n FILE: G:\ACCTS\971004\EXI.OUT **REFER TO EXHIBIT "U"** ********* Hydrology Study Control Information ********** O'Day Consultants, San DIEgo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3 000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational raethod Process frora Point/Station 200.000 to Point/Station 203 000 **** INITIAL AREA EVALUATION **** ^^luiun ^UJ.UUO Deciraal fraction soil group A = 0.000 ' ~ Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) 'l^.:.^}^-^:^^'''3''^l^^^''J^^^^^^^^^^on change)]-.385 *60(min/hr) + 10 min Initial subarea flow distance = 650.00(Ft.) ^ ' / lu min Highest eievation = 455.00(Ft.) Lowest elevation = 350.00(Ft.) Elevation difference = 105.00(Ft ) TC=[(11 9*0.1231-3)/(105.00)]-.385= 2.31 + 10 min. = 12 31 min Rainfall intensity (I) = 4.421 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0 45n Subarea runoff = 10.146(CFS) ^--^^u Total initial stream area = 5.100{Ac.) End of computations, total study area = ' 5.10 (Ac.) 28 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES C Hydrology Calculations Developed Conditions Hydrologic calculations w^^^ performed using CivilCADD version 2J, a computer program tiiat u estiieRationa Metho^^ See Appendices B and C for calculations. Pertinent exl^bitf^niSe San Diego County Hydrology Manual are listed in the table of contents for reference. 29 971004-5 UNIVERSITY COMMON BROOKFItLD HOMF APPENDIX B Proposed Conditions (Developed) 100-yr hydrology- Southem Areas (Refer to Exhibit "V") 30 m 971004-5 UNIVERSITY COMMONS BROOKFIELDHOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/12/01 DRAINAGE STUDY FOR SOUTH BROOKFIELD PER LOTTING OF 4-21-00 971004 - UNIVERSITY COMMONS (SOUTHERLY PORTION lOO-YEAR PROPOSED CONDITIONS) DECEMBER 29,2000 - T.G. FILE: G:\ACCTS\971004\SB100.OUT **REFER TO EXHIBIT "V"** ********* Hydrology Study Control Inforraation ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational raethod + + + + 4- + + + + + + + + + + + + + + + + + 4- + + + + + + + + + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration coraputed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(rain/hr) + 10 min. Initial subarea flow distance = 1510.00(Ft.) Highest elevation = 1039.00(Ft.) Lowest elevation = 620.00{Ft.) Elevation difference = 419.00(Ft.) TC=[(11.9*0.2860-3)/(419.00)]-.385= 3.59 + 10 min. = 13.59 min. Rainfall intensity (I) = 4.148 for a 100.0 year storm Effective runoff coefficient used for area [Q=KCIA) is C = 0.450 Subarea runoff = 11.573(CFS) Total initial stream area = 6.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 620.00[Ft.) 31 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Downstream point/station elevation = 611.00(Ft.) Pipe length = 430.00(Ft.) Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 11.573(CFS) Nearest computed pipe diameter = 18,00(In.) Calculated individual pipe flow = 11. 573 (CFS) Normal flow depth in pipe = 11.75(In.) Flow top width inside pipe = 17.14(In.) Critical Depth = 15.55(In.) Pipe flow velocity = 9.47(Ft/s) Travel time through pipe = 0.76 rain. Time of concentration (TC) = 14.34 rain. Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara number 1 Stream flow area = 6.200(Ac.) Runoff from this stream = 11.573(CFS) Time of concentration = 14 . 34 min. Rainfall intensity = 4.005(In/Hr) Process frora Point/Station 104.000 to Point/Station 105.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min Initial subarea flow distance = 990.00(Ft.) Highest elevation = 1037.00(Ft.) Lowest elevation = 700.00(Ft.) Elevation difference = 337.00(Ft.) TC=[(11 . 9*0.1875-3)/(337 .00))-.385= 2.40 + 10 min. = 12.40 min. Rainfall intensity (I) = 4.401 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 17.427(CFS) Total initial stream area = 8.800(Ac.) Process from Point/Station 105.000 to Point/Station 106.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 700.00 (Ft. ) ^ ' —— Downstream point elevation = 660.00(Ft.) Channel length thru subarea - 280.00(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at raidpoint of channel = 24.458(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 24.458(CFS) 32 971004^5 UNIVERSITY COMMONS BROOKFIELD HOMES m Depth of flow = 0.462(Ft.), Average velocity = 14.352(Ft/s) Channel flow top width = 4. 385(Ft.) Flow Velocity = 14.35(Ft/s) Travel time = 0.33 min. Time of concentration = 12.72 min. Critical depth = 1.063(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.OQO Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.328(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.450 Subarea runoff = 13.828(CFS) for 7.100(Ac.) Total runoff = 31.255(CFS) Total area = 15.90(Ac.) Process from Point/Station 106.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** 103.000 Upstream point/station elevation = 660.00(Ft.) Downstreara point/station elevation = 611.00(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.255(CFS) Nearest computed pipe diameter = 18 Calculated individual pipe flow = 31 Normal flow depth in pipe = 10.37(In.) Flow top width inside pipe = 17.79(In.) Critical depth could not be calculated. Pipe flow velocity = 29.66(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 12.84 min. 00 (In.) 255 (CFS) Process from Point/Station 103.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 103.000 Along Main Stream number: 1 in norraal stream nuraber 2 Stream flow area = 15.900(Ac.) Runoff from this stream = 31.255(CFS) Time of concentration = Rainfall intensity = 12.84 min. 4 . 301 (In/Hr) Summary of streara data m Streara Flow rate TC Rainfall Intensity m No . (CFS) (min) (In/Hr) m 1 11, , 573 14 . 34 4 . .005 Ml 2 31, ,255 12. 84 4 . , 301 Qmax(1) = 1, .000 * 1. 000 * 11. , 573) + 0, .931 * 1. 000 * 31. .255) + = 40. 679 •m Qmax[2) 1. .000 * 0. 895 * 11 , ,573) + m 1. .000 * 1. 000 * 31, .255) + 41. 618 Total of 2 streams to confluence: 33 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES MM Flow rates before confluence point: 11.573 31.255 Maxiraura flow rates at confluence using above data: 40.679 41.618 Area of strearas before confluence: 6.200 15.900 Results of confluence: Total flow rate = 41.618(CFS) Time of concentration = 12.844 min. Effective stream area after confluence = 22.100(Ac.) Process frora Point/Station 103.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Prograra estim.ated size) **** 107.000 Upstream point/station elevation = 611.00(Ft.) Downstream point/station elevation = 598.00(Ft.) Pipe length = 320.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 41.618(CFS) Nearest computed pipe diameter = 24 . OO(In.) Calculated individual pipe flow = 41.618(CFS) Normal flow depth in pipe = 18.00(In.) Flow top width inside pipe = 20.78(In.) Critical depth could not be calculated. Pipe flow velocity = 16.45(Ft/s) Travel time through pipe = 0.32 rain. Tirae of concentration (TC) = 13.17 min. Process from Point/Station 103.000 to Point/Station **** SUBAREA FLOW ADDITION **** 107.000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 13.17 min. Rainfall intensity = 4,232(In/Hr Runoff coefficient used for sub-area, Subarea runoff = 2.793(CFS) for for a 100.0 year storm Rational method, Q=KCIA, C = 0.550 1.200[Ac.) Total runoff = 44.411(CFS) Total area = 23.30(Ac. Process from Point/Station 107.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 107.000 Along Main Stream nuraber: 1 in norraal stream number 1 Stream flow area = 23.300(Ac.) Runoff from this stream = 44.411(CFS) Time of concentration = 13.17 min. Rainfall intensity - 4.232(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 110.000 to Point/Station * * + * + 4 109.000 34 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Wl Ml Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Tirae of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 1050.00(Ft.) Highest elevation = 1004.00(Ft.) Lowest elevation = 670.00(Ft.) Elevation difference = 334.00(Ft.) TC=[(11.9*0.1989-3)/(334.00)]-.385= 2.57 + 10 min. = 12.57 min. Rainfall intensity (I) = 4.361 for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 16.680(CFS) Total initial stream area = 8.500 (Ac.) Process from Point/Station 109.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 108.000 Upstream point elevation = Downstream point elevation = Channel length thru subarea Channel base width = Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = 670.00(Ft.) 610.00(Ft.) 270.00(Ft.) 3.000(Ft.) 1 .500 1.500 Estimated mean flow rate at midpoint of channel = 18 , 544 (CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 1B.544(CFS) Depth of flow = 0.346(Ft.), Average velocity = 15.228(Ft/s) Channel flow top width = 4. 038(Ft.) Flow Velocity = 15.23(Ft/s) Travel time = 0.30 min. Tirae of concentration = 12.87 rain. Critical depth = 0.906(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l.OOO [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.296(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 3.673(CFS) for 1.900[Ac.} Total runoff = 20.353(CFS) Total area = 10.40(Ac.) Process from Point/Station 108.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 107.000 Upstream point/station elevation = 610.00(Ft.) Downstream point/station elevation = 598.00{Ft.) Pipe length = 170.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.353(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 20.353(CFS) 35 9710O4-5 UNIVERSITY COMMONS BROOKFIELD HOMES Normal flow depth in pipe = 11,41(In.) Flow top width inside pipe = 17.34 (In.) Critical depth could not be calculated. Pipe flow velocity = 17.24(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 13.03 min. m Process from Point/Station 107,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 107.000 Along Main Streara nuraber: 1 in normal stream number 2 Stream flow area = 10.400(Ac.) Runoff from this stream = 20.353(CFS) Time of concentration = 13.03 min. Rainfall intensity = 4.261(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (mini Rainfall Intensity (In/Hr) m 1 2 44 . 20. 411 353 13.17 13.03 4. 4. 232 261 Qmax(1) = 1. 000 * 1. 000 * 44.411) + m Qmax(2) 0 . 993 * 1. 000 * 20,353) + = 64. 628 1. 000 * 0, 990 * 44.411) + 1. 000 * 1. 000 * 20,353) + = 64 . 306 Total of 2 streams to confluence: Flow rates before confluence point: 44.411 20.353 Maximum flow rates at confluence using above data: 64.628 64.306 Area of streams before confluence: 23.300 10.400 Results of confluence: Total flow rate = 64.628(CFS) Time of concentration = 13.169 min. Effective stream area after confluence ^ 33.700(Ac Process from Point/Station 107.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 111.000 Upstream point/station elevation = 598.00(Ft.) Downstream point/station elevation = 558.00(Ft.) Pipe length ^ 630,00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 64.628 (CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 64.628(CFS) Norraal flow depth in pipe = 18.75(In.) Flow top width inside pipe = 24.87 (In.) Critical depth could not be calculated. Pipe flow velocity = 21.94(Ft/s) Travel tirae through pipe = 0.48 min. Time of concentration [TC) = 13.65 min. 36 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES mt Process frora Point/Station 107.000 to Point/Station **** SUBAREA FLOW ADDITION **** 111.000 m Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 13.65 min. Rainfall intensity = 4.136(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 13.877(CFS) for 6.100(Ac.) Total runoff = 78.505(CFS) Total area = 39.80(Ac.) 0. 550 Process from Point/Station 111.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 111.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 39.800(Ac.) Runoff frora this stream = 78.505(CFS) Time of concentration = 13.65 rain. Rainfall intensity = 4.136(In/Hr) Process frora Point/Station 112.000 to Point/Station **** INITIAL AREA EVALUATION **** 113.000 m Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RUEUVL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 rain Initial subarea flow distance = 1220.00(Ft.) Highest elevation = 1000.00(Ft.) Lowest elevation = 600.00(Ft.) Elevation difference = 400.00(Ft.) TC=[(11.9*0.2311-3)/(400.00)]-.3a5= 2.85 + 10 min. = 12.85 rain. Rainfall intensity (I) = 4.299 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 14.509(CFS) Total initial stream area = 7.500(Ac.) Process from Point/Station 113.000 to Point/Station 111.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 600.00(Ft.) Downstream point/station elevation = 558.00(Ft.) Pipe length = 240.00{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow ^ 14.509 (CFS) Nearest computed pipe diameter = 12 . 00(In.) 37 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Calculated individual pipe flow = 14.509(CFS) Normal flow depth in pipe = 9.56(In.) Flow top width inside pipe = 9.66(In.) Critical depth could not be calculated. Pipe flow velocity = 21.63(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 13.04 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 111,000 **** CONFLUENCE OF MINOR STREAMS **** Jl Along Main Streara number: 1 in normal streara number 2 Stream flow area - 7.500(Ac.) Runoff from this streara = 14.509(CFS) Tirae of concentration = 13.04 min. Rainfall intensity = 4.259 (In/Hr) Suramary of stream data: Stream Flow rate TC No. (CFS) (rain) (CFS) m 1 78. 505 13. 65 4 , ,136 m 2 14 . Qmax(l) = 509 13.04 4 , ,259 m 1. 000 * 1,000 * 78.505) + 0. 971 * 1.000 * 14.509) + m Qmax(2) = 1. 000 * 0. 955 * 78.505) + m 1. 000 * 1. 000 * 14.509) + = Total of 2 streams to confluence: Flow rates before confluence point: Rainfall Intensity (In/Hr) 92.593 19.51! 78.505 14.509 Maximum flow rates at confluence using above data: 92.593 89.518 Area of strearas before confluence: 39.800 7.500 Results of confluence: Total flow rate = 92.593(CFS) Time of concentration = 13.647 min. Effective stream area after confluence = 47.300(Ac + f+++++ + + + + + +++ +++ + + + +++++ + + + + ++++++++ + ^-+^-+ ++++ + + ++++++^-+^ Process from Point/Station 111.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 558.00(Ft.) ' ~~ Downstream point/station elevation = 550.00(Ft.) Pipe length = 100,00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 92.593 (CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 92.593(CFS} Normal flow depth in pipe = 23.91(In.) Flow top width inside pipe = 17.20(In.) Critical depth could not be calculated. Pipe flow velocity = 24.88(Ft/s) Travel time through pipe = 0.07 rain. 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Tirae of concentration (TC) = 13.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 114,000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** m Along Main Stream number: 1 in normal stream number 1 Stream flow area = 47.300(Ac.) Runoff from this stream = 92.593(CFS) Time of concentration = 13.71 min. Rainfall intensity = 4.123(In/Hr) M ++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 115.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min Initial subarea flow distance = 940.00(Ft.) Highest elevation = 925.00(Ft.) Lowest elevation = 590.00(Ft.) Elevation difference = 335.00(Ft.) TC=[(11.9*0.1780-3)/(335.00)]-.385= 2,26 + 10 min. = 12,26 rain. Rainfall intensity (I) = 4.432 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 6.182(CFS) Total initial stream area = 3.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 590.0O(Ft.) Downstream point/station elevation = 550.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.182(CFS Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 6.182(CFS) Normal flow depth in pipe = 6.29(In.) Flow top width inside pipe = 8.25(In.) Critical depth could not be calculated. Pipe flow velocity = 18.75(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 12.44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.100{Ac.) 39 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Runoff from this stream = 6.182(CFS) Time of concentration = 12.44 min. Rainfall intensity = 4.391{In/Hr) Suraraary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) *m 1 92.593 13. 71 4.123 m 2 6.182 12. 44 4 .391 Qmax(1) = 1.000 * 1. 000 * 92. 593) + 0.939 * 1, 000 * 6. 182) + ^ 98,399 Qmax(2) = 1.000 * 0 . 907 * 92. 593) + 1.000 * 1, 000 * 6. 182) + = 90.169 <m Total of 2 streams to confluence: Flow rates before confluence point: 92.593 6.182 Maximura flow rates at confluence using above data: 98.399 90.169 Area of streams before confluence: 47.300 3.100 Results of confluence: Total flow rate = 98.399(CFS) Tirae of concentration = 13.714 min. Effective stream area after confluence = 50.400(Ac.) m Process frora Point/Station 114.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 117.000 Upstream point/station elevation = 550.00(Ft.) Downstream point/station elevation = 521.00(Ft.) Pipe length = 350.00(Ft.) Manning's W = 0.013 No. of pipes = 1 Required pipe flow = 98 . 399(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 98.399(CFS) Normal flow depth in pipe = 20.93(In.) Flow top width inside pipe = 27.56(In.) Critical depth could not be calculated. Pipe flow velocity = 26,91(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 13.93 min. Ml Process from Point/Station 117.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 117.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area - 50.400(Ac.) Runoff from this stream - 98.399(CFS) Time of concentration = 13.93 min. Rainfall intensity = 4.082(In/Hr) 40 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Process from Point/Station 119.000 to Point/Station 118.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 270.00(Ft.) Highest elevation = 580.00(Ft.) Lowest elevation = 542.00 (Ft.) Elevation difference = 38.00(Ft.) \ Time of concentration calculated by the urban' areas overland flow method (App X-C) = 6.74 min. rc = [1.8*(l.l-C)*distance-.5)/(% slope-{l/3)] TC = [1.8*(l.l-0.5500)*(270,00-.5)/( 14.07-(1/3)]= 6.74 Rainfall intensity (I) = 6.521 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 2.511(CFS) Total initial streara area = 0.700(Ac.) ^-++^-++^-+++++++++++++++ ++++++++++++ ++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 117.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 54 2.000(Ft.) " ~~ End of street segment elevation = 521.000(Ft.) Length of street segment = 580.0O0(Ft.) Height of curb above gutter flowline = 6.0(In, ) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) ^ 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.221(CFS) Depth of flow = 0,306(Ft.), Average velocity = 4.305(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.564(Ft.) Flow velocity = 4.31(Ft/s) Travel time = 2.25 rain. TC = 8.98 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000- [SINGLE FAMILY area type ] Rainfall intensity = 5.417(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 12.810(CFS) for 4.300(Ac.) Total runoff = 15.321(CFS) Total area = 5.00(Ac.) Street flow at end of street - 15.321(CFS) Half street flow at end of street - 7.661(CFS) Depth of flow = 0.343(Ft.), Average velocity = 4.747(Ft/s) 41 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Flow width (from curb towards crown)= 12.420(Ft.) *• Process from Point/Station 117,000 to Point/Station 117.000 **** CONFLUENCE OF MINOR STREAMS **** m ^ Along Main Stream number: 1 in normal stream number 2 " *• Stream flow area = 5.000(Ac.) Runoff from this stream = 15.321(CFS) ^ Time of concentration = 8.98 min. ^ Rainfall intensity = 5.417(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity - No. (CFS) (min) (In/Hr) 1 98. 399 13. 93 4. 082 2 15. 321 8. 98 5. 417 Qraax(1) = 1. 000 * 1. 000 * 98 .399) + 0. 754 * 1. 000 * 15 .321) + = 109. 943 Qmax(2) = 1. OOO * 0. 645 * 98 .399) + 1. OOO * 1. 000 * 15 .321) + = 78. 772 Total of 2 streams to confluence: Flow rates before confluence point: 98.399 15.321 Maximum flow rates at confluence using above data: 109.943 78.772 Area of streams before confluence: 50.400 5.000 Results of confluence: Total flow rate = 109.943(CFS) Time of concentration = 13.931 rain. Effective streara area after confluence = 55.400(Ac.) Process frora Point/Station 117.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 521.00(Ft.) Downstream point/station elevation = 502.00(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 109.943 (CFS) Nearest coraputed pipe diameter = 30.00(In.) Calculated individual pipe flow = 109.943(CFS) Normal flow depth in pipe = 22.50(In.) Flow top width inside pipe = 25.98(Ini) Critical depth could not be calculated. Pipe flow velocity = 27.83(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 14.06 min. Process from Point/Station 114.000 to Point/Station 120.000 **** SUBAREA FLOW ADDITION **** 42 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.06 min. Rainfall intensity = 4,057(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 10.710(CFS) for 4.800(Ac.) Total runoff = 120.654(CFS) Total area = 60.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 60.20O(Ac,) Runoff from this stream = 120.654(CFS) Time of concentration = 14.06 min. Rainfall intensity = 4.057(In/Hr) Program is now starting with Main Stream No. 2 +4-++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 121.000 to Point/Station 122.000 **** INITIAL AREA EVALUATION **** ] Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Initial subarea flow distance = 100.00(Ft.) Highest elevation = 607.00(Ft.) Lowest elevation = 605.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.86 min. TC = [1.8*(l.l-C)*di3tance-.5)/(% slope-(1/3) ] TC = [1.8*(1.1-0.5500)*(100.00-,5)/( 2.00-(l/3)]= 7.86 Rainfall intensity (I) = 5.905 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.974(CFS) Total initial stream area = 0.300(Ac.) 4-+4-4-+ ++++ +++ + + ++++++ ++ + + + + + +++ ++++++ + + + +++ + Process from Point/Station 122,000 to Point/Station 123.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 605.000(Ft.) End of street segment elevation = 570.000(Ft.) Length of street segment = 770.000(Ft.) Height of curb above gutter flowline = 6.0{In.) Width of half street (curb to crown) - 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft. Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 43 971004-5 UNIVERSITV COMMONS BROOKFIELD HOMES Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) ,„ Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1,500(Ft.) iM Glitter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 •m Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ** Estimated mean flow rate at raidpoint of street = 17.214 (CFS) Depth of flow = 0.344(Ft.), Average velocity = 5.322(Ft/s) Streetflow. hydraulics at midpoint of street travel: Halfstreet flow width = 12,433(Ft.) * Flow velocity = 5.32(Ft/s) Travel time = 2.41 min. TC = 10.27 rain. *• Adding area flow to street ^ Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ^ Deciraal fraction soil group D = 1.000 ^ [SINGLE FAMILY area type ] Rainfall intensity = 4.969(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 " Subarea runoff = 27.329(CFS) for 10.000(Ac.) m Total runoff = 28.303(CFS) Total area = 10.30(Ac.) Street flow at end of street = 28,303(CFS) ^ Half street flow at end of street = 14.152(CFS) Depth of flow = 0.397(Ft.), Average velocity = 6.009(Ft/s) m Flow width (from curb towards crown)= 15.112(Ft.) <m + + + + + + + + + + + 4- + + 4- + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + m Process frora Point/Station 123.000 to Point/Station 123.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 — Stream flow area = 10.300(Ac.) Runoff from this stream = 28.303(CFS) Time of concentration = 10.27 min. Rainfall intensity = 4.969 (In/Hr) Process from Point/Station 124.000 to Point/Station 125.000 - **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 ^ Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] 0 Time of concentration computed by the natural watersheds nomograph (App X-A) ^ TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(rain/hr) + 10 rain. Initial subarea flow distance = 1170.00(Ft,) * Highest elevation = 1038.00(Ft.) Lowest elevation = 725.00(Ft.) m Elevation difference = 313.00(Ft.) TC=[(11.9*0.2216-3}/(313.00)]-.385= 2.99 + 10 min. = 12.99 min. * Rainfall intensity (I) = 4.270 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 24.019(CFS) 44 97I004-S UNIVERSHY COMMONS BROOKFIELD HOMES m Total initial stream area = 12.500 (Ac) m ++++++++++++++++++++++++++++++++++++++++++4-++++++++++++^ Process from Point/Station 125.000 to Point/Station 126.000 **** IMPROVED CHANNEL TRAVEL TIME **** m m Upstream point elevation = 725.00(Ft.) Downstream point elevation = 580.00(Ft.) Channel length thru subarea = 1280.00(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 36.797(CFS) Manning's 'N' = 0.020 Maximura depth of channel = 4.000(Ft.) Flow(q) thru subarea = 36.797(CFS) Depth of flow = 0.622(Ft.), Average velocity = 15.044(Ft/s) Channel flow top width = 4.866(Ft.) Flow Velocity = 15.04(Ft/s) Travel time = 1.42 min. Time of concentration = 14.41 min. Critical depth = 1,328(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.994(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0,450 Subarea runoff - 23.904(CFS) for 13.300(Ac.) Total runoff = 47.923(CFS) Total area = 25.80(Ac.) ii 4-4- + + 4-4- + + 4- + 4-4-4- + 4-4-4- + 4- + 4-4- + + 4-4-4- + 4-4- + 4-4-4-4-4- + 4- + + 4- + 4- + + + 4- + 4- + 4-4- + 4-4-4-4- + 4-4-4-4- + 4-4-4-4-4- Process from Point/Station 126.000 to Point/Station 123.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 580.00(Ft.) Downstreara point/station elevation = 570.00(Ft.) Pipe length = 150.00[Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 47.923(CrS) Nearest computed pipe diaraeter = 24 . 00(In.) Calculated individual pipe flow = 47.923(CFS) Normal flow depth in pipe = 16.55(In.) Flow top width inside pipe = 22 . 21(In.) Critical depth could not be calculated. Pipe flow velocity = 20.75(Ft/s) Travel time through pipe = 0.12 min. Tirae of concentration (TC) = 14.53 min. ++4-+ 4-4-4-4-4-4- + 4-4-4-4-4-4-4-4-4-4-4-++ 4-4-+ 4-4-4-+ 4-4-+ 4-4-4-4-+ 4-4-f+ 4-4-4-4-+ 4-4-4-+ +4-4-4-4-+ + ++ 4-4- ++ 4-4-4-+ 4- Process from Point/Station 123.000 to Point/Station 123.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 25,800(Ac.) Runoff from this stream = 47.923(CFS) Time of concentration = 14.53 min. 45 971004-5 UNIVERSHY COMMONS BROOKFIELD HOMES m Rainfall intensity = 3.973 (In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity -Ml No. (CFS) (rain) (In/Hr) •m 1 28.303 10.27 4.969 *• 2 47.923 14,53 3.973 Qmax(1) Qmax (2) = 1.000 * 1.000 * 28.303) + 1.000 * 0.707 * 47.923) + = 62.177 0.799 * 1.000 * 28.303) + 1.000 * 1.000 * 47.923) + = 70.551 Total of 2 streams to confluence: Flow rates before confluence point: 28.303 47.923 Maximum flow rates at confluence using above data: 62.177 70.551 Area of streams before confluence: 10.300 25.800 Results of confluence: Total flow rate = 70.551(CFS) Time of concentration = 14.528 min. Effective stream area after confluence = 36.100(Ac, Process frora Point/Station 123,000 to Point/Station 127.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 570.00 (Ft.) Downstreara point/station elevation = 558.00(Ft.) — Pipe length = 270.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 70.551(CFS) ™ Nearest computed pipe diaraeter = 30.00(In.) Calculated individual pipe flow = 70.551(CFS) *• Normal flow depth in pipe = 20.60(In.) Flow top width inside pipe = 27.83(In.) « Critical depth could not be calculated. Pipe flow velocity = 19.64(Ft/s) Travel time through pipe = 0.23 min. Tirae of concentration (TC) — 14.76 rain. Process frora Point/Station 127.000 to Point/Station 127.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in normal streara number 1 ' ~~ Stream flow area = 36.100(Ac.) Runoff from this streara = 70.551(CFS) Time of concentration = 14.76 min. Rainfall intensity = 3.933(In/Hr) Process from Point/Station 128.000 to Point/Station 129.000 **** INITIAL AREA EVALUATION **** 46 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m m •mi m Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 562.00(Ft.) Lowest elevation = 560,00(Ft.) Elevation difference = 2.00(Ft.) Tirae of concentration calculated by the urban areas overland flow method (App X-C) = 9.78 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.5500)*(130.00'-,5)/( 1.54-(l/3)]= 9.78 Rainfall intensity (I) = 5.128 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.564(CFS) Total initial stream area = 0.200(Ac,) + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -K-|--f-|- + + + + + + + + + + + + + + + + + + Process from Point/Station 129.000 to Point/Station 127.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 560.000(Ft.) End of street segment elevation = 558.00O(Ft.) Length of street segment = 420.000(Ft.) Height of curb above gutter flowline = 6.0 (In,) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 5.077(CFS) Depth of flow = 0.335(Ft.), Average velocity = 1.684 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.983(Ft.) Flow velocity = 1.68(Ft/s) Travel time = 4.16 min. TC = 13.93 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4,081(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational raethod, Q^KCIA, C = 0.550 Subarea runoff = 7.183(CFS) for 3.200(Ac.) Total runoff = 7.747(CFS) Total area = 3.40(Ac.) Street flow at end of street = 7.747{CFS) Half street flow at end of street = 3.873(CFS) Depth of flow = 0.378(Ft.), Average velocity = 1.867(Ft/s) Flow width (from curb towards crown)= 14.155(Ft.) 47 971004-5 UNIVERSrry COMMONS BROOKFIELD HOMES Process frora Point/Station 127.000 to Point/Station 127.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal stream number 2 Streara flow area = 3.400(Ac.) Runoff from this stream = 7.747(CFS) Time of concentration = 13.93 min. Rainfall intensity = 4.081 (In/Hr) Summary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 70. 551 14 . 76 3. 933 2 7 . 747 13. 93 4 . 081 Qmax(1) 1. 000 * 1. 000 * 70 .551) + 0. 964 * 1. 000 * 7 ,747) + = 78.016 Qmax(2) = 1. 000 * 0. 944 * 70 .551) + 1. 000 * 1. 000 * 7 .747) + = 74.364 Total of 2 streams to confluence: Flow rates before confluence point: 70.551 7.747 Maximum flow rates at confluence using above data: 78.016 74.364 Area of strearas before confluence: 36,100 3.400 Results of confluence: Total flow rate = 78.016(CFS) Tirae of concentration = 14.757 min. Effective stream area after confluence = 39.500(Ac. Process from Point/Station 127.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 558.00(Ft.) Downstream point/station elevation = 549.00(Ft.) Pipe length = 500.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 78.016(CFS) Nearest coraputed pipe diameter = 36.00(In.) Calculated individual pipe flow = 78.016(CFS) Normal flow depth in pipe = 26.02(In.) Flow top width inside pipe = 32.23(In.) Critical Depth = 32.99(In.) Pipe flow velocity = 14.27(Ft/s) Travel time through pipe = 0.58 rain. Time of concentration (TC) = 15.34 min. Process frora Point/Station 130.000 to Point/Station 131.000 *+** PIPEFLOW TRAVEL TIME (Prograra estimated size) Upstream point/station elevation = 549.00(Ft. 48 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Downstream point/station elevation = 520.00(Ft.) Pipe length = 500.00(Ft.) Manning's N = 0.013 ^ No. of pipes = 1 Required pipe flow = 78.016{CFS) Nearest computed pipe diameter = 27.00(In.) m Calculated individual pipe flow = 78.016(CFS) Normal flow depth in pipe = 23,44(In.) Ml Flow top width inside pipe = 18.28(In.) Critical depth could not be calculated. •I Pipe flow velocity = 21.27(Ft/s) Travel time through pipe = 0.39 min. m Time of concentration (TC) = 15.73 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 131.000 **** SUBAREA FLOW ADDITION **** m m m m Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15,73 min. Rainfall intensity = 3.774 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 21.792(CFS) for 10.500(Ac.) Total runoff = 99.809(CFS) Total area = 50.00(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 120.000 **** PIPEFLOW TEIAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 520.00(Ft.) Downstream point/station elevation = 502.00(Ft.) Pipe length = 540.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 99.809(CFS) Nearest coraputed pipe diaraeter = 33 . 00(In.) Calculated individual pipe flow = 99.809(CFS) Normal flow depth in pipe = 28.17(In.) Flow top width inside pipe = 23,33(In.) Critical depth could not be calculated. Pipe flow velocity = 18.48(Ft/s) Travel time through pipe = 0.4 9 min. Time of concentration (TC) = 16.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ~" In Main Streara nuraber; 2 Stream flow area = 50.000(Ac.) Runoff from this stream = 99.809(CFS) Time of concentration = 16.22 rain. Rainfall intensity = 3.700(In/Hr) Suraraary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 49 971004-5 UNIVERSriY COMMONS BROOKFIELD HOMES '"1 1 2 120. 99. 654 809 14 16 .06 .22 4 . 3. 057 700 ll« Qmax(1) = 1. 000 * 1 .000 * 120. 654) + 1. 000 * 0 .867 * 99. 809) + = 207. 188 Qmax(2) = 0. 912 * 1 .000 * 120. 654) + 1. 000 * 1 .000 * 99. 809) + = 209. 852 Total of 2 main streams to confluence: Flow rates before confluence point: 120.654 99.809 Maximum flow rates at confluence using above data: 207.188 209.852 Area of strearas before confluence: 60.200 50.000 Results of confluence: Total flow rate = 209.852(CFS) Tirae of concentration = 16.220 min. Effective streara area after confluence = 110.200(Ac.) Process from Point/Station 120.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 502.00(Ft.) Downstream point/station elevation = 478.00(Ft,) Pipe length = 320.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 209.852(CFS) Nearest computed pipe diameter = 39,00(In.) Calculated individual pipe flow = 209.852(CFS) Normal flow depth in pipe = 29.72(In.) Flow top width inside pipe = 33.22(In.) Critical depth could not be calculated. Pipe flow velocity = 30.96(Ft/s) Travel tirae through pipe = 0.17 min. Time of concentration (TC) = 16.39 min. Process frora Point/Station 132.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 1 Stream flow area = 110.200(Ac.) Runoff from this stream = 209.852(CFS) Time of concentration = 16.39 min. Rainfall intensity = 3.675(In/Hr) Process from Point/Station 133.000 to Point/Station 134.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 50 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the 4 natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)385 *60(min/hr) + 10 min. „„ Initial subarea flow distance = 1100.00(Ft.) Highest elevation = 985.00(Ft.) •rf Lowest elevation - 850.00(Ft.) Elevation difference = 135.00(Ft.) m TC=[(11.9*0.2083^3)/(135.00)]-.385= 3.85 + 10 min. = 13,85 min. Rainfall intensity (I) = 4.097 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,450 Subarea runoff = 14.566(CFS) Total initial stream area = 7.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-+++++++ Process from Point/Station 134.000 to Point/Station 135.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 850.00(Ft.) Downstream point elevation = 485.00(Ft.) Channel length thru subarea = 1080.00(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated raean flow rate at midpoint of channel = 37,337(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 37.337(CFS) Depth of flow = 0.460(Ft.), Average velocity = 22.023(Ft/s) Channel flow top width = 4.379(Ft.) Flow Velocity = 22.02(Ft/s) Travel time = 0.82 min. Tirae of concentration = 14.67 min. Critical depth = l,344(Ft,) Adding area flow to channel Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C == 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.949(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 43.888(CFS) for 24.700(Ac.) Total runoff = 58.454(CFS) Total area = 32.60(Ac.) + + + +++++ + + + + + + ++++ + + + + + + + + + + + + ++++++++++++ + + + + +++++++++++++++ + ++++-i--f++ Process from Point/Station 135.000 to Point/Station 136.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 485.00(Ft.) ~ — - - Downstream point/station elevation = 478.10(Ft.) Pipe length = 300.00(Ft.} Manning's N = 0.013 No. of pipes = 1 Required pipe flow ^ 58.454(CFS) Nearest computed pipe diaraeter = 30.00(In.) Calculated individual pipe flow = 58.454(CFS) Norraal flow depth in pipe = 23.11(In.) Flow top width inside pipe = 25.24(In.) 51 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES iin Critical depth could not be calculated. Pipe flow velocity = 14.41(Ft/s) Travel time through pipe = 0.35 min. Time of concentration (TC) = 15.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-(-+ Process from Point/Station 135.000 to Point/Station 136.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 15.01 min. Rainfall intensity = 3.889(In/Hr) for a 100,0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 3.150{CFS) for 1.800(Ac.) Total runoff = 61.605(CFS) Total area = 34.40(Ac.) ++++++++++++++++++++ +++++++++++++++++++ + +++++++++++++++++++++ + ++++++-(--I- Process from Point/Station 136.000 to Point/Station 132,000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 478.10(Ft.) Downstream point/station elevation = 478.00(Ft.) Pipe length = 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61,605(CFS) Nearest coraputed pipe diameter = 57.00(In.) Calculated individual pipe flow = 61.605(CFS) Normal flow depth in pipe = 49.88(In.) Flow top width inside pipe = 37.70(In.) Critical Depth = 26.94(In.) Pipe flow velocity = 3.75(Ft/s) Travel time through pipe = 0.67 min. Time of concentration (TC) = 15.68 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 2 Stream flow area = 34.400(Ac.) Runoff from this stream = 61.605(CFS) Time of concentration = 15.68 min. Rainfall intensity = 3.782 (In/Hr) Suraraary of stream data: Stream No. Flow rate (CFS) TC (mini Rainfall Intensity (In/Hr) 1 209. ,852 16. 39 3 .675 2 61, , 605 15. 68 3 ,782 Qmax 1 ;ii NM 1, ,000 * 1. 000 * 209. ,852) + 0, , 972 * 1. 000 * 61, , 605) + = •«• Qraax 1 [2; 1 - 269,715 52 97I0O4-5 UNIVERSITY COMMONS BROOKHELD HOMES 'in 1.000 * 0,957 * 209,852) + 1.000 * 1.000 * 61.605) + = 262.332 Total of 2 streams to confluence: A Flow rates before confluence point: 209.852 61,605 •m Maximum flow rates at confluence using above data: 269.715 262.332 **• Area of strearas before confluence: 110.200 34.400 ^ Results of confluence: Total flow rate = 269.715(CFS) Time of concentration = 16.392 min. Effective stream area after confluence = 144,600(Ac.) «• •* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 132.000 to Point/Station 137.000 m **** PIPEFLOW TRAVEL TIME (Program estimated size) **** m Upstream point/station elevation = 478 . 00 (Ft.) Downstream point/station elevation = 405.00(Ft.) * Pipe length = 810.00(Ft.) Manning's N = 0.013 ^ No. of pipes = 1 Required pipe flow = 269.715(CFS) Nearest coraputed pipe diaraeter = 42.00(In,) Calculated individual pipe flow = 269.715(CFS) Normal flow depth in pipe = 30.94(In.) M Flow top width inside pipe = 37.00(In.) Critical depth could not be calculated. ^ Pipe flow velocity = 35,49(Ft/s) Travel time through pipe = 0.38 rain. Mi Time of concentration (TC) = 16.77 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ m Process frora Point/Station 132.000 to Point/Station 137.000 **** SUBAREA FLOW ADDITION **** Deciraal fraction soil group A = 0.000 * Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 m Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] "* Time of concentration = 16.77 min. Rainfall intensity = 3.621{In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 3.585(CFS) for 1.800(Ac.) Total runoff = 273.300(CFS) Total area = 146.40(Ac.) m ^ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 137.000 to Point/Station 137.000 **** CONFLUENCE OF MINOR STREAMS **** m Along Main Stream number: 1 in normal stream number 1 Stream flow area = 146.400(Ac.) ^ Runoff from this stream = 273.300(CFS) Time of concentration = 16.77 min. * Rainfall intensity - 3.621 (In/Hr) 53 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES +++ ++++++ + + + + + + + +++++ + + + + + + + + + + + + + + ++ + + + + + + + ++ + + + + ++++ + + + + + + + + + + + + -I- + + 4- Process from Point/Station 142.000 to Point/Station 143.000 **** INITIAL AREA EVALUATION **** M Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.050 ^ Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.950 * [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the «• natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 rain. * Initial subarea flow distance = 1180.00(Ft.) Highest elevation = 600.00(Ft.) Lowest elevation = 412.00(Ft.) Elevation difference = 188.00(Ft.) * TC=[(11.9*0.2235-3)/(188.00)]-.385= 3.67 + 10 min. = 13.67 min. Rainfall intensity (I) = 4.131 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.445 ^ Subarea runoff = 28.861(CFS) Total initial stream area = 15.700(Ac.) m ^ + ++++++++++++++ +++++++++++++++-(-++++ ++++++++++++++++++++++-l-+++ +++++ + ++-f Process from Point/Station 143.000 to Point/Station 143.000 **** SUBAREA FLOW ADDITION **** m ^ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.350 ^ Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.650 m [MULTI - UNITS area type ] Time of concentration = 13 . 67 rain, ^ Rainfall intensity = 4.131(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0. 630 ^ Subarea runoff = 12.492(CFS) for 4.800(Ac.) Total runoff = 41.353(CFS) Total area = 20.50(Ac.) •m +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-f++++++++++++ Process from Point/Station 143.000 to Point/Station 138.000 ^ **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** *• Upstreara point/station elevation = 412.00(Ft.) ~ Downstreara point/station elevation = 406.00(Ft.) « Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 41.353(CFS) * Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 41.353(CFS) Normal flow depth in pipe = 17.79(In.) ^ Flow top width inside pipe = 25.60(In.) Critical Depth = 25.29(In.) ^ Pipe flow velocity = 14.89(Ft/s) Travel time through pipe = 0.22 rain. «H Time of concentration (TC) = 13.90 min, •Ml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + 4- + + + + + + + + -H- + *i Process from Point/Station 138.000 to Point/Station 138.000 **** SUBAREA FLOW ADDITION **** 54 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES "IW «MI Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 13.90 min. Rainfall intensity = 4.088(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 15.289(CFS) for 6.800(Ac.) Total runoff = 56.642(CFS) Total area = 27.30(Ac.) +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++++ + + ++ + ++ + + + + + + + + 4-+ + + ++4-+ + + -H+ + Process from Point/Station 138.000 to Point/Station 137.000 **** PIPEFLOW TE<AVEL TIME (Program estimated size) **** im Upstream point/station elevation = 406.00(Ft.) Downstreara point/station elevation = 405.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.642(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 56.642(CFS) Normal flow depth in pipe = 30.94(In.) Flow top width inside pipe = 31.59(In.) Critical Depth = 28.85(In.) Pipe flow velocity = 8.02(Ft/s) Travel time through pipe = 0.42 rain. Time of concentration (TC) = 14.31 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++•++++++++++++ Process from Point/Station 137.000 to Point/Station 137.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream number 2 Streara flow area = 27.300(Ac. Runoff from this stream = 56.642(CFS) Tirae of concentration = 14. 31 rain. Rainfall intensity 4.011(In/Hr) Sumraary of stream data: •m Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) '•m 1 273.300 16,77 3.621 2 56.642 14 . 31 4 .011 Qmax(1) = '•I 1.000 * 1.000 * 273.300) + '•I 0.903 * 1.000 * 56.642) 324.435 Qmax(2) = 1.000 * 0.853 * 273. 300) + m 1.000 * 1.000 * 56.642) + = 289.866 m Total of 2 strearas to confluence: Flow rates before confluence point: 273. 300 56.642 Maximura flow rates at confluence using above data: M 324 ,435 289.866 Area of streams before confluence: 146.400 27.300 55 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Results of confluence: Total flow rate = 324.435(CFS) Time of concentration = 16,772 rain. Effective streara area after confluence = 173,700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 137.000 to Point/Station 144.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 4O5.0O(Ft.) Downstreara point/station elevation = 389,00(Ft.) Pipe length = 350.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 324.435(CFS) Nearest computed pipe diaraeter = 48.00(In.) Calculated individual pipe flow = 324.435(CFS) Normal flow depth in pipe = 42.38(In.) Flow top width inside pipe = 30.88(In.) Critical depth could not be calculated. Pipe flow velocity = 27.62(Ft/s) Travel time through pipe = 0.21 rain. Time of concentration (TC) = 16.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 144.000 to Point/Station 144.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 173.700(Ac.) Runoff from this stream = 324.435(CFS) Time of concentration = 16.98 min. Rainfall intensity = 3.592(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 146.000 to Point/Station 147.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 430.00(Ft.) Highest elevation = 525.00(Ft.) Lowest elevation = 448.00 (Ft.) Elevation difference = 77.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.85 min. TC - [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.5500)* (430.00-.5)/( 17 . 91-(1/3)]= 7.85 Rainfall intensity [I) = 5.910 for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 15.603(CFS) Total initial stream area = 4.800(Ac.) ++ + + + + ++ + + + ++++++ + + + + + + + + + + + + + + + + + + + + + + -»-+ +++ + + + + + + + + + + + + + + + + + + + + + + + +++ 56 ^ 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES .« Process from Point/Station 147.000 to Point/Station 147,000 **** SUBAREA FLOW ADDITION **** ••m . Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 m Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] * Time of concentration = 7.85 min. Rainfall intensity = 5.910(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 10.077(CFS) for 3.100(Ac.) Total runoff = 25.681(CFS) Total area = 7.90(Ac.) m ^ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-++++ Process from Point/Station 147.000 to Point/Station 148,000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ^ Upstream point/station elevation = 448.00 (Ft.") Downstream point/station elevation = 421.00(Ft.) Pipe length = 370.00(Ft.) Manning's N = 0.013 "** No.' of pipes = 1 Required pipe flow = 25.681(CFS) M Nearest coraputed pipe diameter = 18.00(In.) Calculated individual pipe flow = 25.681(CFS) ^ Normal flow depth in pipe = 13.41(In.) Flow top width inside pipe = 15.70(In.) m Critical depth could not be calculated. Pipe flow velocity = 18,18(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 8.19 rain. WMI <'«. + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +-I- Process from Point/Station 148.000 to Point/Station 148.000 m **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 8.19 min. *" Rainfall intensity = 5.751(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 12.336(CFS) for 3.900(Ac.) ^ Total runoff = 38.017(CFS) Total area = 11.80(Ac.) ^ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ m Process from Point/Station 148.000 to Point/Station 149.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** «i . , Upstream point/station elevation = 421.00(Ft.) * Downstream point/station elevation = 415.00(Ft.) Pipe length = 220.00(Ft,) Manning's N = 0.013 •~ No. of pipes = 1 Required pipe flow = 38.017(CFS) Nearest coraputed pipe diameter ^ 24.00(In,) * Calculated individual pipe flow = 38.017(CFS) Normal flow depth in pipe = 20.06(In.) Flow top width inside pipe = 17.78{In.) 57 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Critical depth could not be calculated. Pipe flow velocity = 13.55(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 8.46 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++++++++ Process from Point/Station 149.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 415.00(Ft.) Downstream point/station elevation = 391.00(Ft.) Pipe length = 530.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 38.017(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 38.017(CFS) Normal flow depth in pipe = 16.08(In.) Flow top width inside pipe = 22.57(In.) Critical depth could not be calculated. Pipe flow velocity = 16.98(Ft/s) Travel time through pipe = 0.52 min. Tirae of concentration (TC) = 8.98 min. +++++++++++++-(-+++++++++++++++++++++++ +++++++++ ++++++++ ++++ ++++++++++++ Process from Point/Station 149,000 to Point/Station 150.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 8.98 min. Rainfall intensity = 5.419(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 25.036(CFS) for 8.400(Ac.) Total runoff = 63.053(CFS) Total area = 20.20(Ac.) m 4. + + -t--l- + + + + + 4- + ++ ++ + + + + ++ + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + +++ + + + + + + + + + + + + + + + Process from Point/Station 150.000 to Point/Station 145.000 *+** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 391.00(Ft.) Downstream point/station elevation = 390.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 63.053 (CFS) Nearest computed pipe diameter = 42.00(In,) Calculated individual pipe flow = 63.053(CFS) Normal flow depth in pipe = 30,75(In.) Flow top width inside pipe = 37.20(In.) Critical Depth = 29.86(In.) Pipe flow velocity = 8.35(Ft/s) Travel time through pipe = 0.40 min. Time of concentration (TC) = 9,38 min. ++ + + + -I--I- + + ++++ + + + + +++ + + +++ + +++ + + + +++ + + + + +++++ + ++++++ + +++ +++ +++ + + + + +++ + + Process from Point/Station 145.000 to Point/Station 145.000 **** CONFLUENCE OF MINOR STREAMS **** 58 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Along Main Stream number: 2 in normal stream number 1 Stream flow area = 20,200(Ac.) Runoff from this stream = 63.053(CFS) *• Time of concentration = 9.38 min. Rainfall intensity = 5.269(In/Hr) 4-+ + + +++ + + + + + +++ + + +++ +++ + + + + + + ++++ +++ + +++++++ + +++ +++ + + + + + + + + + + + + + + + + + + + Process from Point/Station 156.000 to Point/Station 157.000 ^ **** INITIAL AREA EVALUATION **^* 4i Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 200.00(Ft.) Highest elevation = 428.00(Ft.) Lowest elevation = 426.00(Ft.) Elevation difference = 2,00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 14.00 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.5500)*(200.00-.5)/( 1.00-(l/3)]= 14.00 Rainfall intensity (I) = 4.068 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.448(CFS) Total initial streara area = 0.200(Ac.) + + + + +-f-(--I--l-H.-n-+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +- + ++ + +++ + + + Process from Point/Station 157.000 to Point/Station 155,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 426.000(Ft.) End of street segment elevation = 422.000(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft,) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0,020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown ^ 0.0150 Estimated mean flow rate at midpoint of street = 5.818(CFS) Depth of flow = 0.332(Ft.), Average velocity = 1.977(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.831(Ft.) Flow velocity = 1,98(Ft/s) Travel time = 5.06 min. TC = 19.06 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 59 - 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 1* Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.335(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 8.803(CFS) for 4.800(Ac.) Total runoff = 9.251(CFS) Total area = 5.00(Ac.) Street flow at end of street = 9.251(CFS) Half street flow at end of street = 4,625(CFS) Depth of flow = 0.379(Ft.), Average velocity = 2.214(Ft/s) Flow width (from curb towards crown)= 14.206(Ft.) m m + + + + + + + + + + + + + +++ ++++ + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + +++ + + + 4- +++ + + + + + + + + + Process from Point/Station 155.000 to Point/Station 158,000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 422.00(Ft.) ~ Downstream point/station elevation = 401.00(Ft.) Pipe length = 250.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.251(CFS) Nearest computed pipe diameter = 12-00(In.) Calculated individual pipe flow = 9.251(CFS) Normal flow depth in pipe = 8.86(In.) Flow top width inside pipe = 10.55 (In.) Critical depth could not be calculated. Pipe flow velocity = 14.87(Ft/s) Travel tirae through pipe = 0.28 rain. Time of concentration (TC) = 19.34 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 158.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 19.34 rain. Rainfall intensity = 3.303(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 6.541(CFS) for 3.600(Ac.) Total runoff = 15.792(CFS) Total area = 8.60(Ac.) -(-+ + + + ++++++ + + +++++++++++++++ + + + + + +++ + + ++++++ + + +++++ + ++++ + + ++++++++++++ Process from Point/Station 158.000 to Point/Station 145.000 *+** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 401.00(Ft.) ~ Downstream point/station elevation = 390.00(Ft.) Pipe length = 470.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.792(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 15.792(CFS) Normal flow depth in pipe = 14.4a(In.) Flow top width inside pipe = 14.27(In.) Critical Depth - 17.05(In.) Pipe flow velocity = 10.37(Ft/s) Travel time through pipe = 0.76 min. 60 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Time of concentration (TC) = 20.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 145.000 to Point/Station 145.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Tirae of concentration = 20.09 min. Rainfall intensity = 3.223(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 6.204(CFS) for 3.500(Ac.) Total runoff = 21.995(CFS) Total area = 12.10(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 145.000 to Point/Station 145.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara number 2 Stream flow area = 12.100(Ac.) Runoff from this stream = 21.995(CFS) Time of concentration = 20.09 min. Rainfall intensity = 3.223(In/Hr) Sumraary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 63.053 21.995 Qmax(1) = Qmax(2) = 1.000 * 1.000 * 0.612 * 1.000 * 9.38 20.09 1.000 * 0.467 * 1.000 * 1.000 * 63.053: 21.995: 5.269 3.223 63.053) + 21.995) + = 73.317 60.560 Total of 2 streams to confluence: Flow rates before confluence point: 63.053 21.995 Maximum flow rates at confluence using above data: 73.317 60.560 Area of strearas before confluence: 20.200 12.100 Results of confluence: Total flow rate = 73.317(CFS) Time of concentration = 9.376 min. Effective streara area after confluence = 32.300(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 145.000 to Point/Station 144.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 390.00(Ft. 61 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES t Downstream point/station elevation = 389.00(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 , No. of pipes = 1 Required pipe flow = 73.317(CFS) Nearest computed pipe diameter = 42.00(In.) » Calculated individual pipe flow = 73.317(CFS) Normal flow depth in pipe = 31.78(In.) • Flow top width inside pipe = 36.04(In.) Critical Depth = 32,19(In.) Pipe flow velocity = 9.38(Ft/s) Travel time through pipe = 0,28 min. Time of concentration (TC) = 9.66 min. +++++++++++++++++++ + ++++++++++++++++++++ + + +++++++++++++++++++++++-I-++++ Process from Point/Station 144.000 to Point/Station 144.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 m stream flow area = 32.300(Ac.) Runoff from this stream = 73,317(CFS) ^ Tirae of concentration = 9.66 min. Rainfall intensity = 5.169(In/Hr) «g Suramary of stream data: ^ Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Ml 1 324.435 16.98 3.592 2 73.317 9.66 5.169 «• Qmax (1) = 1.000 * 1.000 * 324.435) + 0.695 * 1.000 * 73.317) + = 375.386 Qmax (2) = 1.000 * 0.569 * 324.435) + 1.000 * 1.000 * 73.317) + = 257.855 ><* Total of 2 main streams to confluence: * Flow rates before confluence, point: 324.435 73.317 Maximura flow rates at confluence using above data: 375,386 257.855 * Area of streams before confluence: 173.700 32.300 Results of confluence: Total flow rate = 375.386(CFS) Time of concentration = 16.984 min. Effective streara area after confluence = 206.000(Ac. + + + + + + + ++++ + + + + + + ++++++ ++ + + + + + + + +++++ + + + + -i--t--i--(-++++ + +++ + +++++ ++++++ + +++ + Process frora Point/Station 144.000 to Point/Station 216.000 **** PIPEFLOW TRAVEL TIME (Program e'stimated size) **** Upstream point/station elevation = 389.00(Ft.) Downstream point/station elevation = 387.00 (Ft.) Pipe length = 600.00(Ft.) Manning's N - 0.013 No. of pipes - 1 Required pipe flow - 375.386(CFS) 62 971004-5 UNIVERSnr COMMONS BROOKFIELD HOMES Nearest computed pipe diameter = 84.00(In.) Calculated individual pipe flow = 375.386(CFS) Normal flow depth in pipe = 70.31(In.) Flow top width inside pipe = 62.05(In.) Critical Depth = 61.29 (In.) Pipe flow velocity = 10.92(Ft/s) Travel time through pipe = 0.92 min. Time of concentration (TC) = 17.90 min. +++++++++++++++++++ ++++++ + ++++ + +++++++++++++++++++++++++++++-I-++++++++ + Process from Point/Station 216.000 to Point/Station 216.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D - 1.000 [SINGLE FAMILY area type ] Time of concentration = 17.90 min. Rainfall intensity = 3.472(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 4.201(CFS) for 2.200(Ac.) Total runoff = 379.588(CFS) Total area = 208.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 216.000 to Point/Station 216.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 1 Stream flow area = 208.200(Ac.) Runoff from this streara = 379.588(CFS) Time of concentration = 17.90 min. Rainfall intensity = 3.472(In/Hr) Prograra is now starting with Main Streara No. 2 + + + + + +++ +++ + ++++++++++++++ +++ + + ++ +++++++ + + + + + ++++++++++++++++++ + ++++-(-+ Process frora Point/Station 201.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Tirae of concentration computed by the natural watersheds noraograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 2970.00(Ft.) Highest elevation = 945.00(Ft.) Lowest elevation - 490.00(Ft.) Elevation difference = 455.00(Ft.) TC=[ (11.9*0.5625-3)/(455.00)]-.385= 7.59 + 10 min. = 17.59 rain. Rainfall intensity (I) = 3.511 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 55.147(CFS) Total initial stream area = 34.900(Ac.) 63 9710O4-5 UNIVERSriY COMMONS BROOKFIELD HOMES ++-f-f + + + + + + + + + + + + + + + + + + -»- + + + + + + + + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + +- + + + + + + + -l- + Process frora Point/Station 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 490.00(Ft.) Downstream point elevation = 449.00(Ft.) Channel length thru subarea = 850.00 (Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 74.030(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 74.030(CFS) Depth of flow = 1.151(Ft.), Average velocity = 13. 602(Ft/s) Channel flow top width = 6.454(Ft.) Flow Velocity = 13.60(Ft/s) Travel time = 1.04 min, Tirae of concentration = 18.63 min. Critical depth = 1.938(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.384(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 36.390(CFS) for 23.900(Ac.) Total runoff = 91.537(CFS) Total area = 58.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-+++++++++++++ Process from Point/Station 203.000 to Point/Station 203.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 18.63 min. Rainfall intensity = 3.384(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational raethod, Q=KCIA, C = 0.450 Subarea runoff = 17.814(CFS) for 11.700(Ac.) Total runoff = 109.351(CFS) Total area = 70.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** PIPEFLOW TE^AVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 449.00(Ft,) Downstream point/station elevation = 447.00(Ft.) Pipe length = 80. 00(Ft.) Manning's Nl = 0.013 No. of pipes = 1 Required pipe flow = 109.351(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 109.351(CFS) Normal flow depth in pipe = 30.84(In.) Flow top width inside pipe = 25.22(In.) 64 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Critical depth could not be calculated. Pipe flow velocity = 16.95(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 18.71 rain. ++++++++-!-+++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++++ Process frora Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nuinber 1 Stream flow area = 70.500(Ac.) Runoff from this stream = 109.351(CFS) Time of concentration = 18.71 rain. Rainfall intensity = 3.374(In/Hr) + + + ++4-+ 4- + + + +++ +++ ++ + + + + +++ + + + + + + + + + + + ++++ + ++ + + + + + + + + + +++ +++++ + ++ + + + + + + Process frora Point/Station 205.000 to Point/Station 206.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 466.00(Ft.) Lowest elevation = 464.00(Ft.) Elevation difference = 2.00(Ft.) Tirae of concentration calculated by the urban areas overland flow method (App X-C) = 7.86 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0. 5500)*(100.00-.5)/( 2.00-(l/3)]= 7.86 Rainfall intensity (I) = 5.905 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C - 0.550 Subarea runoff = 0.650(CFS) Total initial stream area = 0.200(Ac.) +++++4-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 464.000(Ft.) End of street segment elevation = 447.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(3) of the street Distance frora curb to property line = 10.000(Ft,) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown ^ 0.0150 Estimated mean fiow rate at midpoint of street = 7.957(CFS' 65 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Depth of flow = 0.315(Ft.), Average velocity = 3.102(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.007(Ft.) Flow velocity = 3.10(Ft/s) Travel time = 5.10 min. TC = 12.96 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity == 4.276 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 10.582(CFS) for 4.500(Ac.) Total runoff = 11.232(CFS) Total area = 4.70(Ac.) Street flow at end of street = 11.232(CFS) Half street flow at end of street = 5.616(CFS) Depth of flow = 0.348(Ft.), Average velocity = 3.371(Ft/s) Flow width (from curb towards crown)= 12.628(Ft.) + -!--(--(--)- + -|- + + + +++ + + + + + + + +++ + + + + + + + + +++ + + + + + +++ + + + + + + + + + + + +++ + + + + + + + + + + + ++- + Process from Point/Station 204.000 to Point/Station 204.000 m **** CONFLUENCE OF MINOR STREAMS **** w Along Main Stream number: 2 in normal streara nuraber 2 Stream flow area = 4.700(Ac.) Runoff from this stream = 11.232 (CFS) Time of concentration = 12.96 min. — Rainfall intensity = 4.276 (In/Hr) Sumraary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 109.351 18.71 3.374 2 11.232 12.96 4.276 -Ml Qmax(1 Qmax(2) = 1.000 * 1.000 * 109.351) + 0.789 * 1.000 * 11.232) + = 118.215 1.000 * 0.693 * 109.351) + 1.000 * 1.000 * 11.232) + = 86.988 Total of 2 strearas to confluence: Flow rates before confluence point: 109.351 11.232 Maxiraum flow rates at confluence using above data: 118.215 86.988 Area of streams before confluence: 70 . 500 4.700 Results of confluence: Total flow rate = 118.215(CFS) Tirae of concentration = 18.711 min. Effective stream area after confluence = 75.200(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 207.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 66 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Upstream point/station elevation = 447.00(Ft.) .„ Downstream point/station elevation = 446.50(Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.013 m No. of pipes = 1 Required pipe flow = 118.215(CFS) Nearest computed pipe diameter = 51.00(In.) « Calculated individual pipe flow 118.215(CFS) Normal flow depth in pipe = 41.34(In.) Flow top width inside pipe = 39.96(In.) Critical Depth = 38.93(In.) Pipe flow velocity = 9.59(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 18.88 min. + -(- + -H + + + + + + + + +++ + + +++ + + + + + + +++ + +++ + + + + + + + + + + + + + + + + + + + ++++++ + + ++++ + + + + + + Process from Point/Station 207.000 to Point/Station 207,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 75.200(Ac.) Runoff from this streara = 118.215(CFS) Time of concentration = 18.88 min. Rainfall intensity = 3.354(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 209.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.600 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.400 [RURAL (greater than 1/2 acre) area type 1 Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 1800.00(Ft.) Highest elevation = 640.00 (Ft.) Lowest elevation = 450.00 (Ft.) Elevation difference = 190.00(Ft.) TC=[(11.9*0.3409-3)/(190.00)]".385^ 5.96 + 10 min. = 15.96 min. Rainfall intensity (I) = 3.739 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.390 Subarea runoff = 71.746(CFS) Total initial streara area = 49.200(Ac.) + 4-++ ++++++ ++++++++++++++++ +++++ +++ + + +++++ +++ +++ +++ +++++++++++++ + +++++ Process from Point/Station 209.000 to Point/Station 207.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 450.00(Ft.) Downstream point/station elevation = 446.50(Ft.) Pipe length - 70,00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 71,746(CFS Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 71.746(CFS) Normal flow depth in pipe = 23.11(In.) Flow top width inside pipe - 18. 96(In.) 67 971004-5 UNIVERSriY COMMONS BROOKHELD HOMES Critical depth could not be calculated. Pipe flow velocity = 19.79(Ft/s) Travel time through pipe = 0.0 6 min. Time of concentration (TC) = 16.02 min. ++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 207.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 49.200(Ac.) Runoff from this stream = 71.746(CFS) Time of concentration = 16.02 min. Rainfall intensity = 3.730(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 118. 215 18.88 3. 354 2 71. 746 16.02 3. 730 m Qmax 1 [1) = 1. 000 * 1.000 * 118 .215) + Qmax (2) 0. 899 * 1.000 * 71 .746) + = 182 .731 1. 000 * 0.848 * 118 .215) + 1. 000 -* 1.000 * 71 .746) + = 172 .011 Total of 2 strearas to confluence: Flow rates before confluence point: 118.215 71.746 Maximum flow rates at confluence using above data: 182.731 172.011 Area of streams before confluence: 75.200 49.200 Results of confluence: Total flow rate = 182.731(CFS) Time of concentration = 18.885 min. Effective streara area after confluence = 124.400(Ac + + _|.4. + + 4. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + +++ + + + + + + Process frora Point/Station 207.000 to Point/Station 208.100 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 446.50(Ft.) Downstreara point/station elevation = 423,00(Ft.) Pipe length = 820.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 182,731 (CFS) Nearest coraputed pipe diaraeter = 42.00(In.) Calculated individual pipe flow = 182.731(CFS) Normal flow depth in pipe = 38.63(In,) Flow top width inside pipe = 22.84(In.) Critical depth could not be calculated. Pipe flow velocity = 19,74(Ft/s) Travel time through pipe = 0.69 min. Time of concentration (TC) = 19,58 min. 68 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ++ + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + ++++ + + + + + + + + + + + + + + +•+++++++ + +++ + + + + Process from Point/Station 208.100 to Point/Station 208.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 124.400(Ac.) Runoff from this stream = 182.731(CFS) Time of concentration = 19.58 min. Rainfall intensity = 3.277 (In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + Process from Point/Station 219.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds noraograph (App X-A) TC = [11.9*length(Mi)"3)/(elevation change) ]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 870.00(Ft.) Highest elevation = 630.00(Ft.) Lowest elevation = 430.00(Ft.) Elevation difference = 200.00(Ft.) TC=[(11.9*0.1648-3)/(200.00)]-.385= 2.52 + 10 min. = 12.52 min. Rainfall intensity (I) = 4.372 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 18.362(CFS) Total initial stream area = 12.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 208.100 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 430.00(Ft.) ~ Downstream point/station elevation = 423.00(Ft.) Pipe length = 60.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.362(CFS) Nearest computed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 18.362(CFS) Normal flow depth in pipe = 10.45(In.) Flow top width inside pipe = 13.79{In.) Critical depth could not be calculated. Pipe flow velocity = 20.11(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.100 to Point/Station 208.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal stream number 2 Stream flow area = 12.000(Ac.) Runoff from this stream = 18.362(CFS) Time of concentration = 12 .57 min. Rainfall intensity = 4.361[In/Hr) 69 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 182.731 18.362 Qmax(l) = Qraax (2) = 1.000 * 0.752 * 1.000 * 1.000 * 19. 58 12.57 1.000 * 1.000 * 0.642 * 1.000 * 3.277 4 .361 182.731) + 18.362) + 182.731) + 18.362) + 196.531 135.712 Total of 2 streams to confluence: Flow rates before confluence point: 182.731 18.362 Maximum flow rates at confluence using above data: 196.531 135.712 Area of streams before confluence: 124.400 12.000 Results of confluence: Total flow rate = 196.531(CFS) Time of concentration = 19.577 min. Effective stream area after confluence = 136.400(Ac.) Process from Point/Station 208.100 to Point/Station 208.100 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.300 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 0.700 [SINGLE FAMILY area type ] Time of concentration = 19.58 min. Rainfall intensity = 3.277 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.520 Subarea runoff = 9.544(CFS) for 5.600(Ac.) Total runoff - 206.074(CFS) Total area = 142.00(Ac.) Process frora Point/Station 208.100 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 211.000 Upstreara point/station elevation = 423.00(Ft.) Downstream point/station elevation = 419.00(Ft.) Pipe length = 340.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 206.074 (CFS) Nearest computed pipe diameter = 54.00(In.) Calculated individual pipe flow = 206.074(CFS) Normal flow depth in pipe = 42-70(In.) Flow top width inside pipe = 43.93(In.) Critical Depth - 48.90(In.) Pipe flow velocity = 15.28(Ft/s) Travel time through pipe = 0.37 min. Time of concentration (TC) = 19.95 min. 70 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 211.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara number 1 Stream flow area = 142.000(Ac.) Runoff from this stream = 206.074(CFS) Time of concentration = 19.95 min. Rainfall intensity = 3.238(In/Hr) +++4.++ + +++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++++++ Process frora Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi)-3)/(elevation change)]-.385 *60(rain/hr) + 10 min, Initial subarea flow distance = 730.00(Ft.) Highest elevation = 590.00(Ft.) Lowest elevation = 450.00(Ft.) Elevation difference = 140.00(Ft.) TC=[(11.9*0.1383-3)/(140.00)]-.385= 2.36 + 10 min. = 12.36 min. Rainfall intensity (I) = 4.408 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 4.166(CFS) Total initial stream area = 2.700(Ac.) + 4_ + + + + + -t- + + + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process frora Point/Station 213.000 to Point/Station 211.000 **+* PIPEFLOW TRAVEL TIME (Prograra estimated size) * * * * Upstream point/station elevation = 450.00(Ft.) Downstream point/station elevation = 419.00(Ft.) Pipe length - 100.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 4.166(CFS) Nearest coraputed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.166(CFS) Normal flow depth in pipe = 4.25(In.) Flow top width inside pipe = 8. 99(In.) Critical depth could not be calculated. Pipe flow velocity = 20.33(Ft/s) Travel time through pipe = 0.08 rain. Tirae of concentration (TC) = 12.45 min. + + ^_ + _l__(_ + + +++-l- + + + +++ +++ + + + + + + + + + + + + + + + + + + ++++++ +++++ +++ + + + +++ + + + +++ + +++ + Process from Point/Station 211.000 to Point/Station 211.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.700(Ac.) Runoff frora this stream = 4.166(CFS) Time of concentration = 12.45 min. 71 Ml 971004-5 UNIVERSnV COMMONS BROOKFIELD HOMES Rainfall intensity = 4.390(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No, (CFS) (min) (In/Hr) 1 206.074 19.95 3.238 2 4.166 12.45 4.390 Qraax(1) = 1.000 * 1.000 * 206.074) + 0.738 * 1.000 * 4.166) + = 209.147 Qmax(2) = 1.000 * 0.624 * 206.074) + 1.000 * 1.000 * 4.166) + = 132.731 Total of 2 streams to confluence: Flow rates before confluence point: 206.074 4.166 Maximura flow rates at confluence using above data: 209.147 132.731 Area of streams before confluence: 142.000 2.700 Results of confluence: Total flow rate = 209.147(CFS) Time of concentration = 19.948 min. Effective stream area after confluence = 144.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 211.000 to Point/Station 211.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ^ Upstream point/station elevation = 419.00(Ft.) Downstream point/station elevation = 4I7.00(Ft.) Pipe length = 60.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 209.147(CFS) •m Nearest computed pipe diameter = 45.00 (In.) Calculated individual pipe flow = 209,147(CFS) Norraal flow depth in pipe = 34.92 (In,) Flow top width inside pipe = 37.52(In.) Critical depth could not be calculated. Pipe flow velocity = 22.74(Ft/s) * Travel tirae through pipe = 0.04 min. Time of concentration (TC) = 19.99 min. m * 4. + + 4, + + + + + + + + + + + + + + + + + + + + ++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 211.100 to Point/Station 211.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 144.700(Ac.) Runoff from this stream = 209.147(CFS) Time of concentration = 19.99 rain. Rainfall intensity = 3.233 (In/Hr) + + _,_+ + + + + + + + + 4-++ + + + + + +++++ + + ++++ + +++++ + + +++-*-+ + + + +++ + +++ + + •!-++++ + + + +++ + + + Process from Point/Station 151.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** 72 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Ml Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 200.00(Ft.) Highest elevation = 449.00(Ft.) Lowest elevation = 447.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 14.00 min. TC = [1.8*(1.1-C) *distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.5500)*(200.00-.5)/( 1.00-(l/3)]= 14.00 Rainfall intensity (I) = 4.068 for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.550 Subarea runoff = 0.448(CFS) Total initial stream area = 0.200(Ac.) ^.+_,_+ + +++++^-+^-++++^-^-+++-^ ++++++++++++++++++++++++++++++++++++++++++++++-^ Process from Point/Station 152.000 to Point/Station 153.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 447.000(Ft.) End of street segment elevation = 428.000(Ft.) Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.042 (CFS) Depth of flow = 0.273(Ft.), Average velocity = 3.502(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 8.896(Ft.) Flow velocity = 3.50(Ft/s) Travel tirae = 3.09 rain. TC = 17.09 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.577 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 9.836(CFS) for 5.000(Ac.) Total runoff = 10.284(CFS) Total area = 5.20(Ac.) Street flow at end of street = 10.284(CFS) Half street flow at end of street = 5.142(CFS) Depth of flow - 0.316(Ft.), Average velocity = 3.975(Ft/s) Fiow width (from curb towards crown)= 11.056(Ft.) 73 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES + 4.+ + + + 4. +++ + + + + + -)- + + + + + + + + + ++++ + + + +++ +++ + + + + +++ + + + + + + + ++++++ ++++++ + + 4- + + + Process frora Point/Station 153.000 to Point/Station 154.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 428.00(Ft.) Downstream point/station elevation = 425.00(Ft.) Pipe length = 490.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.284 (CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 10.284(CFS) Normal flow depth in pipe = 14.60(In.) Flow top width inside pipe = 19.33(In.) Critical Depth - 14.32(In.) Pipe flow velocity = 5,76(Ft/s) Travel time through pipe = 1.42 min. Time of concentration (TC) = 18.51 min. + +++++++-»--n--I--I-+++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 154.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (SINGLE FAMILY area type ] Time of concentration = 18.51 min. Rainfall intensity = 3.398 (In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 m Subarea runoff = 8.036(CFS) for 4,300(Ac.) Total runoff = 1B.320(CFS) Total area = 9.50(Ac.) m 4.4. + + + + + + + + 4.4--)- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + +++ + + + + +++ + + + + Process from Point/Station 154.000 to Point/Station 211.100 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** — Upstreara point/station elevation = 425.00(Ft.) Downstreara point/station elevation = 417.00(Ft.) — Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.320(CFS) Nearest coraputed pipe diameter = 21.00(In.) Calculated individual pipe flow = 18.320(CFS) *• Normal flow depth in pipe = 13.04 (In.) Flow top width inside pipe = 20.37(In.) *" Critical Depth = 18.65(In.) Pipe flow velocity = 11.67(Ft/s) Travel time through pipe = 0.43 min. ^ Time of concentration (TC) = 18.94 min. ^ +++ + +++++ +++ + + + + + -1- + + + + + ++++ + + + + +++ + + +++++++ + + +++ + + + + + +++++++ + + + +++ +++ + m Process from Point/Station 211.100 to Point/Station 211.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 9.500(Ac.) Runoff from this stream = 18.320(CFS) Tirae of concentration ~ 18.94 min. 74 m Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 3.348 (In/Hr) TC (mini 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Rainfall Intensity (In/Hr) 1 209.147 19.99 3. 233 m 2 18.320 18 . 94 3. 348 Qmax(l) = 1.000 * 1.000 * 209.147) + 0.966 * 1.000 * 18.320) + = 226.839 Qmax(2) = 1.000 * 0.947 * 209.147) + 1.000 * 1.000 * 18.320) + 216.461 m Total of 2 streams to confluence: Flow rates before confluence point: m 209.147 18.320 M Maximum flow rates at confluence using above data: 226.839 216.461 Area of strearas before confluence: m 144.700 9.500 Ml Results of confluence: Total flow rate = 226.839(CFS) Tirae of concentration = 19.992 min. Effective streara area after confluence = 154.200(Ac MR + + + + 4- + + + +++ + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + Process from Point/Station 211,100 to Point/Station 214.000 * * * * PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 417.00(Ft.) Downstream point/station elevation = 405.00(Ft.) Pipe length = 600.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 226.839(CFS) Nearest coraputed pipe diameter = 51.00(In.) Calculated individual pipe flow = 226.839(CFS) Normal flow depth in pipe = 39.66(In.) Flow top width inside pipe = 42.42(In.) Critical depth could not be calculated. Pipe flow velocity = 19.15(Ft/s) Travel time through pipe = 0.52 min. Time of concentration (TC) = 20.51 rain. 4. + 4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4- + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 214.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 154.200(Ac.) Runoff frora this stream = 226.839(CFS) Time of concentration = 20.51 min. Rainfall intensity = 3.180(In/Hr) 4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4- + ++ + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 212.000 to Point/Station 215.000 **** INITIAL AREA EVALUATION **** 75 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration coraputed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 1280.00(Ft.) Highest elevation = 590.00(Ft.) Lowest elevation = 430.00(Ft.) Elevation difference = 160.00(Ft.) TC=[(11.9*0.2424-3)/(160.00)]-.385= 4.29 + 10 min. = 14.29 min. Rainfall intensity (I) = 4.014 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 23.183(CFS) Total initial stream area = 16.500(Ac.) .^4-4.+ + 4-4-4-4-4-4-4.4.4-4-4- + + + + + + + ++++++ + + + + + +++ + + + + + + + + + + +++ + +++4-+ + +++ + + + + + + + + + + Process from Point/Station 215.000 to Point/Station 214.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 43O.0O(Ft.) Downstream point/station elevation = 405.00(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.183(CFS) Nearest computed pipe diaraeter = 15.00{In.) Calculated individual pipe flow = 23.183(CFS) Normal flow depth in pipe = 8.38(In.) Flow top width inside pipe = 14.90(In.) Critical depth could not be calculated. Pipe flow velocity = 32.89(Ft/s) Travel tirae through pipe = 0.04 min. Time of concentration (TC) = 14.33 min. .,-4-4.4-4-4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-++++++ +++ + + +++++++++++++++++++++ +++++++++++++ +++++ Process from Point/Station 214.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 16.500(Ac.) Runoff frora this stream = 23.183(CFS) Time of concentration ^ 14. 33 min. Rainfall intensity 4 .00 8 (In/Hr) Summary of streara • data: Stream Flow rate TC Rainfall Intensity m No. (CFS) (min) ( In/Hr) 1 226.839 20.51 3.180 m 2 23.183 14 . 33 4 .008 Qmax(1) = 1.000 * 1.000 * 226.839) + 0.793 * 1.000 * 23.183) + = 245.233 Qmax(2) = 1 . 000 * 0.699 * 226.839) + 1.000 * 1.000 * 23.183) + = 181.633 76 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Total of 2 streams to confluence: Flow rates before confluence point: 226.839 23.183 Maximum flow rates at confluence using above data: 245.233 181.633 Area of streams before confluence: 154.200 16.500 Results of confluence: Total flow rate = 245.233(CFS) Tirae of concentration = 20.514 min. Effective stream area after confluence = 170.700(Ac.) + 4-4-4-4- + + + + + + + + + + ++++ + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ Process from Point/Station 214.000 to Point/Station 216.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstreara point/station elevation = 405.00(Ft.) Downstream point/station elevation = 387.00(Ft.) Pipe length = 540.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 245.233(CFS) Nearest computed pipe diameter = 48.00(In.) Calculated individual pipe flow = 245.233(CFS) Normal flow depth in pipe = 36.80(In.) Flow top width inside pipe = 40.61(In.) Critical depth could not be calculated. Pipe flow velocity = 23.72(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 20.89 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + +++ + + + Process frora Point/Station 216.000 to Point/Station 216.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Stream number: 2 Stream flow area = 170.700(Ac.) .... Runoff from this stream = 245.233(CFS) Time of concentration = 20. .89 rain. Rainfall intensity 3.143(In/Hr) Summary of stream > data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) ( In/Hr) 1 379.588 17 . 90 3.472 2 245.233 20.89 3.143 Qmax(1) = 1.000 * 1.000 * 379.588) + 1.000 * 0.857 * 245.233) + = 589.683 Qmax(2) = m 0.905 * 1.000 * 379.588) + 1.000 * 1.000 * 245.233) + = 588.785 Total of 2 raain streams to confluence: Flow rates before confluence point: 379,588 245.233 Maximum flow rates at confluence using above data: 77 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 589.683 588.785 Area of streams before confluence: 208.200 170.700 Results of confluence; Total flow rate = 589.683(CFS) Time of concentration = 17.900 min. Effective streara area after confluence = 378.900(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + + + + + + + + + + + + + + + + + + + + + + + ++++ + + + + + + + + +++++ + + + + + +++++- + + + + Process frora Point/Station 216.000 to Point/Station 217.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 387.00(Ft.) Downstream point/station elevation = 373.20(Ft.) Pipe length = 500.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 589.683(CFS) Nearest computed pipe diameter = 66.00(In.) Calculated individual pipe flow = 589.683(CFS) Normal flow depth in pipe = 58.31(In.) Flow top width inside pipe = 42.35(In.) Critical depth could not be calculated. Pipe flow velocity = 26.54(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 18.21 min. -1-4-4-4-+++++++++++++++++++++++++++++++++++++-!--*--*- ++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 217,000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.200 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.800 [SINGLE FAMILY area type ] Time of concentration = 18,21 min. Rainfall intensity = 3.433(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.530 Subarea runoff = 19.107(CFS) for 10.500(Ac.) Total runoff = 608.790(CFS) Total area = 389.40(Ac.) 4-4.4-4-4.4-4-4-4-4-4-4-4--^ ++++++++ + +++ + ++++++++++ +++++++++++ + ++++ + +++ +++++++ ++++++ Process frora Point/Station 217.000 to Point/Station 218.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 373,20(Ft.) Downstream point/station elevation = 345.00(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 608.790(CFS: Nearest computed pipe diameter = 54.00(In.) Calculated individual pipe flow - 608.790(CFS) Normal flow depth in pipe = 44.72(In.) Flow top width inside pipe = 40.75 (In.) Critical depth could not be calculated. Pipe flow velocity = 43.20(Ft/s) Travel time through pipe - 0.12 min. Time of concentration (TC) - 18.33 min. 78 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES End of computations, total study area = 389.40 (Ac.) 79 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 m Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology raanual ^ Rational Hydrology Study Date: 10/23/01 * DRAINAGE STUDY FOR SOUTH BROOKFIELD PER LOTTING OF 4-21-00 (WEST SIDE) 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) •« JANUARY 1, 2001 - T.G. FILE: G:\ACCTS\971004\SB200.OUT **REFER TO EXHIBIT "V"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 6 hour, precipitation(inches) = 3.000 Map data precipitation entered: 24 hour precipitation (inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational raethod 4 4-4-4-4-4-4-4-4-4-4-4-4- + + + + + + + + + + + + + +++ + + + + + + + + + + +++++ + + + +++ + + + + + + + + + + + + + + + + + + + + Process from Point/Station 219.000 to Point/Station 220.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 400.00(Ft.) Lowest elevation - 398.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 7.86 min. TC = [1.8*(1.1-C)*distance-. 5)/(% slope-(l/3)] TC = [1.8*(l.l-0.5500)*(100.00-.5)/( 2.00-(l/3)]= 7.86 Rainfall intensity (I) = 5.905 for a 100.0 year storm "* Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.650(CFS) Total initial stream area = 0.200 (Ac.) m + + 4-4-4-4-+ 4-4-4-4-4- + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + * Process from Point/Station 220.000 to Point/Station 159.000 m **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 398.000(Ft.) End of street segment elevation = 387.000(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000 (Ft, 80 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.957(CFS) Depth of flow = 0.306(Ft.), Average velocity = 3.355(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.558(Ft.) Flow velocity = 3.35(Ft/s) Travel time = 2.48 min. TC = 10.34 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.946(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 12.242(CFS) for 4.500(Ac.) Total runoff = 12.892(CFS) Total area = 4.70(Ac.) Street flow at end of street = 12.892(CFS) Half street flow at end of street = 6.446(CFS) Depth of flow = 0.351(Ft.), Average velocity = 3.770(Ft/s) Flow width (from curb towards crown)= 12.801(Ft.) +++++.+++++4-++++++++++++++++++++ + ++++++ + ++++++++++++++++++++++++++ + + + ++ Process from Point/Station 159.000 to Point/Station 159.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream nuraber 1 Stream flow area = 4.700(Ac.) Runoff frora this stream = 12.892 (CFS) Tirae of concentration = 10.34 min. Rainfall intensity = 4 . 946 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 161.000 to Point/Station 161.100 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MULTI - UNITS area type ] Initial subarea flow distance = 620.00(Ft.) Highest elevation = 440.00(Ft.) Lowest eievation = 359,00(Ft.) Elevation difference = 81.00(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 7.61 min. TC = [1. 8* (1.1-C) *distance''. 5) / (% slope-(l/3)] TC - [1.8*(l.l-0.7000)*(620.00-.5)/( 13.06-(1/3) ] = 7.61 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Rainfall intensity (I) = 6.027 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 16.033(CFS) Total initial stream area = 3.800(Ac.) +++ + ++++4. + +++++4. +++ + + + + + + + ++++ + + +++ + +++ + + + + + + +++++ + + +++ + + + + + ++-+++ + ++4- + Process from Point/Station 161.100 to Point/Station 159.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 359.00(Ft.) Downstream point/station elevation = 356.75(Ft.) Pipe length = 248.60{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.033(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 16.033(CFS) Normal flow depth in pipe - 15.45(In.) Flow top width inside pipe = 22.99(In.) Critical Depth = 17.33 (In.) Pipe flow velocity = 7.51(Ft/s) Travel time through pipe = 0.55 min. Time of concentration (TC) = 8.16 min. + + 4_ + + + + + + + + + + + + 4- + + + 4-4- + + + + + + + + + + + +++ + + + + +++ + + + + + + + + +++++ + + + + +++ + + + + + + + + Process frora Point/Station 159.000 to Point/Station 159.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.800(Ac.) Runoff from this stream = 16.033(CFS) Time of concentration = 8.16 min. Rainfall intensity = 5.761(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 12.892 10.34 4.946 2 16.033 8.16 5.761 Qmax(1) = 1.000 * 1.000 * 12.892) + 0.859 * 1.000 * 16.033) + - 26.656 Qmax(2) = 1.000 * 0.789 * 12.892) + 1.000 * 1.000 * 16.033) + = 26.210 Total of 2 streams to confluence: Flow rates before confluence point: 12.892 16.033 Maximum flow rates at confluence using above data: 26.656 26.210 Area of streams before confluence: 4.700 3.800 Results of confluence: Total flow rate = 26.656(CFS) Tirae of concentration = 10.342 min. Effective stream area after confluence = 8.500(Ac 82 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ++++4-4-++4- + + +++ + + + ++ + + + + + + +++ + +++ + +++ + + + + + + + + + + + + ++++ +++ +++ + + + -+ + + 4-I- + + + + Process from Point/Station 159.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 387.00(Ft.) Downstream point/station elevation = 385.00(Ft.) Pipe length = 400.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 26.656(CFS) Nearest computed pipe diaraeter = 30.00(In.) Calculated individual pipe flow = 26.656(CFS) Normal flow depth in pipe = 22.64(In.) Flow top width inside pipe = 25.82(In.) Critical Depth = 21.12(In.) Pipe flow velocity = 6.70(Ft/s) Travel time through pipe = 0.99 min. Time of concentration (TC) = 11.34 min. ++4-++ +++++++++++++++++++++++++++++-f-+++++++++++++++-'-+++++++++++-++4-i-+4-+ + Process from Point/Station 160.000 to Point/Station 160.000 **** SUBAREA FLOW ADDITION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 11.34 min. Rainfall intensity = 4.662(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 8.205 (CFS) for 3.200(Ac.) Total runoff = 34.861(CFS) Total area = 11.70(Ac.) ++++++++++++++++ + ++ + + +++ + + ++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 160.000 to Point/Station 160.000 **** SUBAREA FLOW ADDITION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type ] Tirae of concentration = 11.34 rain. Rainfall intensity = 4.662(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff = 8.811(CFS) for 2.700(Ac.) Total runoff = 43.672(CFS) Total area = 14.40(Ac.) ++++++ + + + +++++ +++ + + + + +++ + ++ ++++++++++ + + ++++ + + ++++ ++++++++++-(-+-*-+++ + +++ + Process frora Point/Station 160.000 to Point/Station 218.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 385.00(Ft.) Downstream point/station elevation = 345.00(Ft.) Pipe length = 460.00(Ft.) Manning's N - 0,013 No. of pipes - 1 Required pipe flow = 43.672[CFS Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 43.672(CFS) Normal flow depth in pipe = 16.10(In.) 83 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Flow top width inside pipe = 17.76(In.) Critical depth could not be calculated. Pipe flow velocity = 22.0B(Ft/s) Travel time through pipe = 0.35 rain. Time of concentration (TC) = 11.68 min. End of computations, total study area = 14.40 (Ac.) 84 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/30/00 DRAINAGE STUDY FOR BROOKFILED (PARK) 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JUNE 30, 2000 - T.G. FILE: SB300 **REFER TO EXHIBIT "V"** ********* Hydrology Study Control Information *-*****-**** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology raanual 'C values used Runoff coefficients by rational raethod + + 4- + + ++ + + + + + + 4-+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + Process from Point/Station 301.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.450 given for subarea Initial subarea flow distance = 630.00(Ft.) Highest elevation = 385.00(Ft.) Lowest elevation = 370.00(Ft.) Elevation difference = 15.00(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 21.99 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.4500)*(630.00-.5)/( 2.38-(l/3)l= 21.99 Rainfall intensity (I) = 3.040 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 7.251(CFS) Total initial streara area = 5.300(Ac.) End of computations, total study area =^ 5.30 (Ac.) 85 •m 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Contral Division 1985 hydrology manual Rational Hydrology Study Date: 06/30/00 DRAINAGE STUDY FOR BROOKFIELD (AREA 'BA') 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JUNE 30, 2000 - T.G. FILE: 300A **REFER TO EXHIBIT "V"** ******•*:** Hydrology Study Control Inforraation ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual *C' values used Runoff coefficients by rational method +4-4. + + + +++ + + ++4. + + + + + + + + + + + + + + + + + + + + + + + + + +++++ + + + + + + ++++ + + + + + + + + + + + + + + + + Process frora Point/Station 303.000 to Point/Station 304.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.500 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.500 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min Initial subarea flow distance = 980.00(Ft.) Highest elevation = 590.00(Ft.) Lowest elevation = 380.00(Ft.) Elevation difference - 210.00(Ft.) TC=[(11.9*0.1856-3)/(210.00)]-.385- 2.84 + 10 min. = 12.84 min. Rainfall intensity (I) = 4.302 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 17.896(CFS) Total initial stream area = 10.400(Ac.) End of computations, total study area = 10.40 (Ac.) 86 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ^ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 «i Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual w Rational Hydrology Study Date: 01/02/01 « DRAINAGE STUDY FOR SOUTH BROOKFIELD PER LOTTING OF 4-21-00 (WEST SIDE) 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) — JANUARY 1, 2001 - T.G. FILE: G:\ACCTS\971004\SB400.OUT **REFER TO EXHIBIT "V"** m ********* Hydrology Study Control Information ********** ** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 m Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 " 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method + + + + + ++ + + + + + + 4- + + 4-+ + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + ++++ + + + + + + + + + + + + ++ + + + + + Process from Point/Station 161.000 to Point/Station 165.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A - 0.000 Decimal fraction soil group B = 0.200 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.800 [RUEIAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds noraograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60 (min/hr) + 10 min. Initial subarea flow distance = 1050.00(Ft.) Highest elevation = 610.00(Ft.) Lowest elevation = 450.00(Ft.) Elevation difference = 160.00(Ft.) TC=[(11.9*0.1989-3)/(160.00)]-.385- 3.42 + 10 min. = 13.42 rain. Rainfall intensity (I) = 4.182 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.430 Subarea runoff = 28.772(CFS) Total initial stream area = 16.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 165.000 to Point/Station 162.000 Jr*** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 450.00(Ft.) Downstreara point elevation = 423.00(Ft.) Channel length thru subarea = 770.00(Ft.) Channel base width = 3.000(Ft-) Slope or 'Z' of left channel bank = 1.500 87 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 36.415(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) m Flow(q) thru subarea = 36.415(CFS) Depth of flow = 0.856(Ft.), Average velocity = 9.927(Ft/s) <« Channel flow top width = 5.569(Ft.) Flow Velocity = 9.93(Ft/s) Travel time = 1.29 min. Time of concentration = 14.71 min. Critical depth = 1.328(Ft.) Adding area flow to channel * Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.900 ^ Decimal fraction soil group C = 0.000 ^ Decimal fraction soil group D = 0.100 [MULTI - UNITS area type ] Rainfall intensity = 3.941(In/Hr) for a 100.0 year storm ^ Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0-520 ^ Subarea runoff = 17.419(CFS) for 8.500(Ac.) Total runoff = 46.192(CFS) Total area = 24.50(Ac.) m ^ + + + + + + +++ + ++4- + + + + + ++4- + + + + + + + + + + + +++ + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 162.000 to Point/Station 162.000 **** SUBAREA FLOW ADDITION **** Ml Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 0.00.0 [MULTI - UNITS area type 1 Time of concentration = 14.71 min. Rainfall intensity = 3.941 (In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.500 Subarea runoff = 13.005(CFS) for 6.600(Ac.) Total runoff = 59.197(CFS) Total area = 31.10(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 163.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 4 23.000(Ft.) End of street segment elevation = 399.000(Ft,) Length of street segment - 730.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000{Ft.) Slope from curb to property line (v/hz) - 0.020 Gutter width - 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 66.049(CFS) Depth of flow = 0.540(Ft.), Average velocity = 6.596(Ft/s) m - 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.99(Ft.) Streetflow hydraulics at midpoint of street travel: m Halfstreet flow width = 20.000(Ft.) Flow velocity = 6.60(Ft/s) m Travel time = 1.84 min. TC = 16.55 min.. Adding area flow to street * Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.350 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.650 *" [MULTI - UNITS area type ] Rainfall intensity = 3.652(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.630 Subarea runoff = 16.565(CFS) for 7.200(Ac,) Total runoff = 75.762(CFS) Total area = 38.30(Ac.) Street flow at end of street = 75,762(CFS) Half street flow at end of street = 37.881(CFS) Depth of flow = 0.564(Ft,), Average velocity = 6.824(Ft/s) Warning: depth of flow exceeds top of curb Note; depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.19(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 163.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 400.00(Ft.) Downstream point/station elevation = 390.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 75.762(CFS) Nearest coraputed pipe diaraeter = 30.00(In.) Calculated individual pipe flow = 75.762(CFS) Norraal flow depth in pipe = 20.79(In.) Flow top width inside pipe = 27.68(In.) Critical depth could not be calculated. Pipe flow velocity = 20.88(Ft/s) Travel tirae through pipe = 0.16 min. Time of concentration (TC) = 16.71 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 16.71 min. Rainfall intensity = 3.629(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 7.136(CFS) for 3.600(Ac.) Total runoff = 82.948(CFS) Total area = 41.90(Ac.) + + + + + ++ + + + + + + + + + +++ + + + + + + 4 + + + +++ + +++ + +++++ +++ + + + + + + ++++++++++ + + + +++ + + + 89 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Process from Point/Station 164.000 to Point/Station 165.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** «• . Upstreara point/station elevation = 390.00(Ft,) JM Downstreara point/station elevation = 343.00(Ft,) Pipe length = 200.00(Ft.) Manning's N = 0.013 m No, of pipes = 1 Required pipe flow = 82.948 (CFS) Nearest coraputed pipe diameter = 24.00(In.) Calculated individual pipe flow = 82.948(CFS) Normal flow depth in pipe = 15.61(In.) « Flow top width inside pipe = 22.89(In.) Critical depth could not be calculated. " Pipe flow velocity = 38.38(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 16.80 min. End of computations, total study area = 41.90 (Ac.) 90 •Ml m Ml 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/04/01 DRAINAGE STUDY FOR AREA S. BROOKFIELD (NODE 4 01) 971004 - UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JANUARY 4, 2001 - T.G. FILE: G:\ACCTS\971004\SBAR.OUT **RQfer to Exhibit "V"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++ +++++++++++++++++++++++++++++++++++++++ + +++4.4.4.4.4.+++++^.+^ Process from Point/Station 400.000 to Point/Station 401.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 500.00(Ft.) Highest elevation = 410.00(Ft.) Lowest elevation = 380.00(Ft.) Elevation difference = 30.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.18 min. TC = [1.8*(l.l-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l,l-0.5500)*(500.00-.5)/( 6.O0-(l/3)]= 12.18 Rainfall intensity (I) = 4.450 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 4.895(CFS) Total initial stream area = 2.000(Ac.) End of computations, total study area= 2.00(Ac.) 91 971004-5 UNIVER.SITY COMMON! BROOkFIElD HOME! APPENDIX C Proposed Conditions (Developed) 100-yr hydrology-Northem & Industrial Areas (Refer to Exhibit "W") 92 M 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/03/01 DRAINAGE STUDY FOR NORTH BROOKFIELD PER LOTTING OF 4-21-00 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JANUARY 3, 2001 - T.G. FILE: G:\ACCTS\971004\NB100.OUT **Refer to Exhibit "W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology raanual 'C values used Runoff coefficients by rational raethod ++ + +++++++++++ +++++ + +++++-*-+++-*-+++ + ++++ + ++++++++ + + + + + + ++++ ++-!-+ +++++++++ Process frora Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ——- —- — — _ Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration coraputed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min Initial subarea flow distance = 1000.00(Ft.) Highest elevation = 755,00(Ft.) Lowest elevation = 465.00(Ft.) Elevation difference = 290.00(Ft.) TC=[(11.9*0.1894-3)/(290.00)]-.385= 2.57 + 10 min. = 12.57 rain. Rainfall intensity (I) = 4.362 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 10.229(CFS) Total initial stream area = 6.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 465.00(Ft.) Downstream point elevation = 420.00(Ft.) Channel length thru subarea = 400.00(Ft. 93 Ml -•I 41 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated raean flow rate at raidpoint of channel = 12.366(CFS) Manning's 'N' = 0.020 Maxiraum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 12.366(CFS) Depth of flow = 0.333(Ft.), Average velocity = 10.604(Ft/s) Channel flow top width = 4.000(Ft.) Flow Velocity = 10.60(Ft/s) Travel time = 0.63 min. Time of concentration = 13.20 min. Critical depth = 0.711(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.227(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.350 Subarea runoff = 4.142(CFS) for 2.800(Ac.) Total runoff = 14.371(CFS) Total area = 9.50(Ac.) Mi ^ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-++++++++++++ Process from Point/Station 103.000 to Point/Station 107.000 ^ **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 420.00(Ft.) Downstream point/station elevation = 415.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.371(CFS) — Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 14.371(CFS) Normal flow depth in pipe = 12,94(In.) Flow top width inside pipe = 16.19(In.) Critical Depth = 16.69(In.) Pipe flow velocity = 10.58(Ft/s) '* Travel time through pipe = 0.32 min. Time of concentration (TC) = 13.51 min. End of computations, total study area = 9.50 (Ac.) Ml m m 94 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/03/01 DRAINAGE STUDY FOR NORTH BROOKFIELD PER LOTTING OF 4-21-00 971004 - UNIVERSITY COMMONS (100-YR PROPOSED CONDITION) JANUARY 3, 2001 - T.G. FILE: G:\ACCTS\971004\NB101.OUT **Refer to Exhibit «W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++ + + 4-++ 4-++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + ++ + + + + + + + Process from Point/Station 103.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type ] Initial subarea flow distance = 800.00{Ft,) Highest elevation = 420.00(Ft.) Lowest elevation = 403.00(Ft.) Elevation difference = 17.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 15.84 min. * TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] m TC = [1.8*(l.l-0.7000)*(800.00-,5)/( 2.13-(l/3)]= 15.84 Rainfall intensity (I) = 3.757 for a 100.0 year storm ^ Effective runoff coefficient used for area (Q=KCIA) is C = 0,700 Subarea runoff = 29.718(CFS) m Total initial stream area = 11.300(Ac.) m + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + -I- + -I--I-+ + + + + + + + + + -!- + + * Process frora Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 403.00(Ft.) Downstream point/station elevation = 360.00(Ft.) Pipe length = 150.00(Ft.) Manning's N - 0.013 No. of pipes = 1 Required pipe flow - 29.718(CFS 95 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 29.718(CFS) Norraal flow depth in pipe = 10.71(In.) Flow top width inside pipe = 13.56(In.) Critical depth could not be calculated. Pipe flow velocity = 31.69(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 15.92 min. End of computations, total study area = 11.30 (Ac.) m 96 m m m •m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR NORTH BROOKFIELD PER LOTTING OF 4-21-00 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) APRIL 17, 2000 - T.G. FILE: G:\ACCTS\971004\NB200.OUT **Refer to Exhibit «W"** ********* Hydrology Study Control Inforraation *********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storra event year is 100.0 ^ Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 m 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 ^ P6/P24 = • 57.7% San Diego hydrology manual 'C values used Ml Runoff coefficients by rational method MH + +++++++ + +++-++++++++++++++++++ +++++++++++++++ +++++++++++++++++++++++++ * Process from Point/Station 201.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 1,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds noraograph (App X-A) TC = [11.9*length(Mi)^3)/(elevation change) 385 *60(rain/hr) + 10 min. Initial subarea flow distance = 950.00(Ft.) Highest elevation = 775.00(Ft.) Lowest elevation = 505.00(Ft.) Elevation difference = 270.00(Ft.) TC=[ (11.9*0.1799-3)/(270.00) ]-.385= 2.49 + 10 min. = 12.49 min. Rainfall intensity (I) = 4.380 for a 100.0 year storm Effective runoff coefficient used for area [Q=KCIA) is C = 0.350 Subarea runoff = 8.431(CFS) Total initial streara area = 5.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 505.00(Ft.) Downstreara point elevation = 470.00(Ft.) Channel length thru subarea - 250,00[Ft. Channel base width = 3.000(Ft.) 97 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at raidpoint of channel = 12.494(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 12.494(CFS) Depth of flow = 0.314(Ft.), Average velocity = 11.444(Ft/s) Channel flow top width = 3.943(Ft.) Flow Velocity = 11.44(Ft/s) Travel time = 0.36 min. Time of concentration = 12.85 min. Critical depth = 0.719(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.299{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.350 Subarea runoff = 7.975(CFS) for 5.300(Ac.) Total runoff = 16.407(CFS) Total area = 10.80(Ac.) +++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 203.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 470.00(Ft.) Downstream point/station elevation = 417.00(Ft.) Pipe length = 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.407(CFS) Nearest coraputed pipe diaraeter = 12.0O(In.) Calculated individual pipe flow = 16.407(CFS) Norraal flow depth in pipe = 7.93(In.) Flow top width inside pipe = 11.36(In.) Critical depth could not be calculated. Pipe flow velocity = 29.78(Ft/s) Travel tirae through pipe = 0.08 min. Time of concentration (TC) = 12.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 204.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Ml Upstream point/station elevation = 417.00(Ft.) Downstreara point/station elevation = 411.00(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.407(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 16.407(CFS) Normal flow depth in pipe = 13.35 (In.) Flow top width inside pipe = 20.21 (In.) Critical Depth = 17.88(In.) Pipe flow velocity = 10.18(Ft/s) Travel time through pipe = 0.49 min. Time of concentration (TC) = 13.43 min. + + + + + + + + + + + +++ + + + + + + + + ++ + + + +++ + + + + + + + + + + + + 4+ 4-+++ + ++ + + + + + + + + + + + ++ 4- + + + + + 98 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Process from Point/Station 205.000 to-Point/Station 205.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream nuraber 1 Streara flow area = 10.800(Ac.) Runoff from this stream = 16.407 (CFS) Time of concentration = 13.43 min. Rainfall intensity = 4.180(In/Hr) ++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 207.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 300.00(Ft.) Highest elevation = 545.00(Ft.) Lowest elevation = 487.00(Ft.) Elevation difference = 58.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.55 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.4500)*(300.00-.5)/( 19.33-(1/3)]= 7.55 Rainfall intensity (I) = 6.059 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 5.726(CFS) Total initial stream area = 2.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station eievation = 487.00(Ft.) Downstream point/station elevation = 411.00(Ft.) Pipe length = 380.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.726(CFS) Nearest computed pipe diaraeter = 9.00(In.) Calculated individual pipe flow = 5.726(CFS) Normal flow depth in pipe = 5.94(In.) Flow top width inside pipe = 8.53(In.) Critical depth could not be calculated. Pipe flow velocity = 18.49(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 7.89 rain. 4.4- + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + +++ + + + + + + + + Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 2 Stream flow area = 2.100(Ac.) Runoff from this stream = 5.726{CFS) Time of concentration = 7.89 min. Rainfall intensity = 5.888(In/Hr) Summary of stream data: 99 9710O4-5 UNIVERSITY COMMONS BROOKFIELD HOMES Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 16.407 13. 43 4 .180 2 Qmax (1) 5.726 7 . 89 5.888 1.000 * 1. 000 * 16. 407) + 0.710 * 1. 000 * 5. 726) + = 20. ,471 Qmax(2) = 1. 000 * 0. ,588 * 16. 407) + 1.000 * 1. ,000 * 5. 726) + = 15, .370 Total of 2 streams to confluence: Flow rates before confluence point: 16.407 5.726 Maxiraum flow rates at confluence using above data: 20.471 15.370 Area of streams before confluence: 10.800 2.100 Results of confluence: Total flow rate = 20.471(CFS) Time of concentration = 13.427 min. Effective stream area after confluence = 12.900(Ac Process from Point/Station 205.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** 206.000 Upstreara point/station elevation = 411.00(Ft.) Downstream point/station elevation = 393.00(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.471(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 20.471(CFS) Normal flow depth in pipe = 10.90(In.) Flow top width inside pipe = 17.59(In.) Critical depth could not be calculated. Pipe flow velocity = 18.29(Ft/s) Travel tirae through pipe = 0.20 min. Time of concentration (TC) = 13.63 min. Process from Point/Station 206.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 206.000 Along Main Streara number: 1 in normal stream nuraber 1 Stream flow area = 12.900(Ac,) Runoff from this stream = 20.471(CFS) Time of concentration = 13.63 min. Rainfall intensity = 4.140(In/Hr) Process frora Point/Station 208.000 to Point/Station **** INITIAL AREA EVALUATION **** 209.000 Decimal fraction soil group A - 0.000 100 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Deciraal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 480.00(Ft.) Lowest elevation = 454.00(Ft.) Elevation difference = 26.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) - 4.91 min. TC = [1.8* (1.1-C) *distance-. 5) / (% slope''(1/3) ] TC = [1.8*(1.1-0.4500)*(130.00-.5)/{ 20.00-(1/3)]= 4.91 Setting tirae of concentration to 5 rainutes Rainfall intensity (I) = 7.904 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 1.067(CFS) Total initial stream area = 0.300(Ac.) +++4-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 209.000 to Point/Station 210.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 454.D00(Ft.) End of street segment elevation - 448.000(Ft.) Length of street segment = 560.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at raidpoint of street = 10.315(CFS) Depth of flow = 0.365(Ft.), Average velocity = 2.720(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 13.509(Ft.) Flow velocity = 2.72(Ft/s) Travel time = 3.43 min. TC = 8.43 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0,000 [SINGLE FAMILY area type ] Rainfall intensity = 5.643(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 13.204(CFS) for 5.200(Ac.) Total runoff = 14.271(CFS) Total area = 5.50(Ac.) Street flow at end of street = 14.271(CFS) Half street flow at end of street = 7.135(CFS) Depth of flow = 0.402(Ft.), Average velocity = 2.945(Ft/s) Flow width (frora curb towards crown)= 15.336(Ft.) 101 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES + + + + + + + + + 4- + 4. + 4-+ +++ + + + + + + + + + + + + + + + + + + + ++++ + + + + + ++++++ + +++-*- + + + + + ++++ + + + + Process from Point/Station 210.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation - 448.00{Ft.) Downstream point/station elevation = 393.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.271(CFS) Nearest coraputed pipe diameter = 12.00(In.) Calculated individual pipe flow = 14.271(CFS) Norraal flow depth in pipe = 7.85(In.) Flow top width inside pipe = 11.41(In.) Critical depth could not be calculated. Pipe flow velocity = 26.20(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 8.56 min. +++ + 4- + + + 4-+4-4- + +.+ + + + + + + +++ + + + + + + + + + +++ + + + +++ + + + + + + + + + + + ++++ + + + + + + + + + + + + + Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 2 Streara flow area = 5.500(Ac.) Runoff from this stream = 14.271(CFS) Time of concentration = 8.56 min. Rainfall intensity = 5.588(In/Hr) Sumraary of stream data: Stream Flow rate TC Rainfall Intensity (MM No. (CFS) (min) (In/Hr ) ... 1 20.471 13.63 4 . 140 2 14.271 8 .56 5. 588 Qmax(1) = 1.000 * 1.000 * 20.471) + 0.741 * 1.000 * 14.271) + = 31. 043 Qmax(2) = • •• 1.000 * 0.628 * 20.471) + 1.000 * 1.000 * 14 .271) + = 27 . 128 Total of 2 streams to confluence: tl-Flow rates before confluence point: 20.471 14.271 Maximum flow rates at confluence using above data: 31.043 27.128 Area of strearas before confluence: 12.900 5.500 Results of confluence: Total flow rate = 31.043(CFS) Time of concentration = 13.628 min. Effective stream area after confluence = 18.400(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 207.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 393.00(Ft.) Downstream point/station elevation - 386.00(Ft. 102 m 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Pipe length = 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow - 31.043(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 31.043(CFS) Normal flow depth in pipe = 15.68(In.) Flow top width inside pipe = 18.27(In.) Critical depth could not be calculated. Pipe flow velocity = 16.12(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 13.78 rain. + + + +4- + + + +++4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ +++ + + + ++ + + + + +++ + + + + + + + + + + + Process from Point/Station 205.000 to Point/Station 207.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.950 Decimal fraction soil group C = 0.050 Decimal fraction soil group D = 0,000 [SINGLE FAMILY area type _ ] Time of concentration = 13.78 rain. Rainfall intensity = 4.110(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.453 Subarea runoff = 3,161(CFS) for 1.700(Ac.) Total runoff = 34.205(CFS) Total area = 20.10(Ac.) End of computations, total study area = 20.10 (Ac.) 103 NM m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR NORTH BROOKFIELD PER LOTTING OF 4-21-00 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) APRIL 17, 2000 - T.G. FILE: G:\ACCTS\971004\NB300.OUT **Refer to Exhibit «W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology raanual 'C values used Runoff coefficients by rational method +++++++++++++++4-+++++++++-^+ + + t+++++++ ++++-»-+++ + +++++++++++ +++ +++ +++++"*-+ Process frora Point/Station 301.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11,9*length(Mi)"3)/(elevation change)]-.385 *60(min/hr) + 10 rain. Initial subarea flow distance = 950.00(Ft.) Highest elevation = 812.00(Ft.) Lowest elevation = 550.00(Ft.) Elevation difference = 262.00(Ft.) TC=[(11 - 9*0 .1799-3)/(262.00)]-.385= 2.52 + 10 min. = 12.52 min. Rainfall intensity (I) = 4.373 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C - 0.350 Subarea runoff = 12.858(CFS) Total initial streara area = 8.400(Ac.) ++4-+++ +++ + + + + + +++ + + + + + +++ ++++++++ +++++ + + +++ +++++++++ + ++++++ + + +•*- + + + + + + + Process from Point/Station 302.000 to Point/Station 303.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 550.00(Ft.} Downstream point elevation = 479.00(Ft.) Channel length thru subarea = 450.00(Ft. Channel base width = 3.000(Ft.) 104 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES -M Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 •« Estimated mean flow rate at midpoint of channel = 16.302(CFS) Manning's 'N' =0.020 * Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 16.302(CFS) Depth of flow = 0.355(Ft.), Average velocity = 13.013(Ft/s) Channel flow top width = 4.064(Ft.) Flow Velocity = 13.01(Ft/s) Travel time = 0.58 rain. " Time of concentration = 13.09 min. Critical depth = 0.836(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.248(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.350 Subarea runoff = 6.691(CFS) for 4.500(Ac.) Total runoff = 19.549(CFS) Total area = 12.90(Ac.) ++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 211.000 to Point/Station 303.000 **** SUBAREA FLOW ADDITION **** Mk m Ml Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE .FAMILY area type ] Time of concentration = 13.09 min. Rainfall intensity = 4.248(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.450 Subarea runoff = 1.147(CFS) for 0.600(Ac.) Total runoff = 20.696(CFS) Total area = 13.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 306.000 to Point/Station 303.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = O.OOO [SINGLE FAMILY area type ] Time of concentration = 13.09 min. Rainfall intensity = 4.248(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.765(CFS) for 0.400(Ac.) Total runoff = 21.460(CFS) Total area = 13.90(Ac.) + + + + + + + +++ + +++++ + + ++++++ + ++ +++ + + + + + +++ + + + + + + + ++++ + + + ++++++ + + -I- + + +++ + + + + Process from Point/Station 303.000 to Point/Station 304,000 ***+ PIPEFLOW TRAVEL TIME (Prograra estiraated size) *+** Upstream point/station elevation = 479.00(Ft. 105 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Downstreara point/station elevation = 478.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.460(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 21.460(CFS) Normal flow depth in pipe = 16.45(In.) Flow top width inside pipe = 17.30(In.) Critical Depth = 19.54(In.) Pipe flow velocity = 10.61(Ft/s) Travel time through pipe = 0.08 min. Tirae of concentration (TC) = 13.17 rain. + + + + + + + + + + 4- + + + + + 4- + 4- + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + +++++ + + ++ + + + + + + Process frora Point/Station 312.000 to Point/Station 304.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Time of concentration = 13.17 min. Rainfall intensity = 4.232(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.523(CFS) for 0.800(Ac.) Total runoff = 22.984(CFS) Total area = 14.70(Ac.) ++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 313.000 to Point/Station 304.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Time of concentration = 13.17 min. Rainfall intensity = 4.232(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.333(CFS) for 0.700(Ac.) Total runoff = 24.317(CFS) Total area = 15.40{Ac.) ++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 304.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in normal streara number 1 Streara flow area = 15.400(Ac.) Runoff from this stream = 24.317(CFS) Time of concentration = 13.17 rain. Rainfall intensity = 4.232(In/Hr) ++++++++++++-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 305.000 to Point/Station 306.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 106 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES m m Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length (Mi)'"3) / (elevation change) ]-. 385 *60(min/hr) + 10 min. Initial subarea flow distance = 1270.00(Ft.) Highest elevation = 800.00(Ft.) Lowest elevation = 500.00(Ft.) Elevation difference = 300.00(Ft.) TC=[(11.9*0.2405-3)/(300.00)]-.385= 3.34 + 10 rain. = 13.34 rain. Rainfall intensity (I) = 4.197 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 15.865(CFS) Total initial stream area = 10.800(Ac.) + ++4-4- + + + + + + + 4. + + + + + + + + + + + + + + + +++ + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 306.000 to Point/Station 304.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 500.00(Ft.) Downstream point/station elevation = 478.00(Ft.) Pipe length = 240.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.865(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 15.865(CFS) Norraal flow depth in pipe = 10.25(In.) Flow top width inside pipe = 13.95(In.) Critical depth could not be calculated. Pipe flow velocity = 17.75(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 13.57 min. + + + + ++++ + +++++4-++++++++++++++++++ ++++ + +++-I-+++++++++++++++++++++++ ++++ + Process frora Point/Station 304.000 to Point/Station 304.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 2 Stream flow area = 10.800(Ac.) Runoff from this stream = 15.865(CFS) Time of concentration = 13.57 min. Rainfall intensity = 4.152(In/Hr) Summary of stream data: •mm Stream Flow rate TC Rainfall Intensity ™ No. (CFS) (min) (In/Hr) 1 24 .317 13. 17 4 .232 2 15.865 13. 57 4 .152 Qmax(1 ) = 1.000 * 1. ,000 * 24 . .317; 1 + 1.000 * 0. .971 * 15. ,865; 1 + = 39.721 Qmax(2 ) - 0.981 * 1. .000 * 24 , , 317: } + Ml 1.000 * 1, .000 * 15, .865 ) + = 39.724 m Total of 2 strearas to confluence: Ml 107 m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Flow rates before confluence point: 24.317 15.865 Maximum flow rates at confluence using above data: 39.721 39.724 Area of streams before confluence: 15.400 10.800 Results of confluence: Total flow rate = 39.724(CFS) Time of concentration = 13.566 min. Effective streara area after confluence = 26.200(Ac.) ++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 304.000 to Point/Station 307.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 478.00(Ft.) ^ Downstream point/station elevation = 452.00(Ft.) Pipe length = 270.00(Ft.) Manning's N = 0.013 « No. of pipes = 1 Required pipe flow = 39.724(CFS) Nearest computed pipe diameter = 21.0Q(In.) m Calculated individual pipe flow = 39.724(CFS) Normal flow depth in pipe = 14.32(In.) Mf Flow top width inside pipe = 19.56(In.) Critical depth could not be calculated. Pipe flow velocity = 22.76(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 13.76 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 307.000 to Point/Station 307.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 26.200(Ac.) Runoff from this streara = 39.724(CFS) •* Time of concentration = 13.76 rain. Rainfall intensity = 4.114 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 309.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 300.00(Ft.) Highest elevation = 550.00(Ft.) Lowest elevation = 470.00(Ft.) Elevation difference = 80.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.78 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.4500)*(300.00-.5)/( 26.67-(1/3)]= 6.78 Rainfall intensity (I) = 6.493 for a 100.0 year storm Effective runoff coefficient used for area [Q=KCIA) is C = 0.450 Subarea runoff = 1.753(CFS) 108 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Total initial stream area = 0.600(Ac.) ++++++++++++-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 310,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 0.0150 0.0150 Top of street segment elevation = 47O.0OO(Ft.) End of street segment elevation = 454.0OO(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N frora grade break to crown = Estimated raean flow rate at raidpoint of street = Depth of flow = 0.281(Ft.), Average velocity = Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 9,287(Ft.) Flow velocity = 3.75(Ft/s) Travel time = 2.22 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [SINGLE F7\MILY area type Rainfall intensity = 5.409(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.450 Subarea runoff = 8.763(CFS) for 3.600(Ac.) Total runoff = 10.516(CFS) Total area = Street flow at end of street = 10.516(CFS) Half street flow at end of street = 5.258(CFS: Depth of flow = 0.314(Ft.), Average velocity = Flow width (from curb towards crDwn)= 10.955(Ft.) 7.012(CFS) 3.755(Ft/s) 9.00 min. ] 4.20(Ac.) 4.136(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 307.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 454.00(Ft.) Downstream point/station elevation = 452.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10,516(CFS Nearest computed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 10.516(CFS) Normal flow depth in pipe = 10.28 (In.) Flow top width inside pipe = 13.93(In.) Critical depth couid not be calculated. Pipe flow velocity = 11.73(Ft/s) Travel time through pipe - 0.07 rain. Time of concentration (TC) = 9.07 min. 109 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ^ + + + + + ++4- + + + + + 4- + + + +++ + + + + + ++ + + + + + + +++ + + + + + + + + + + + + + + + + +++ +++ +++ + + + ++++ + + Process from Point/Station 307.000 to Point/Station 307.000 m **** CONFLUENCE OF MINOR STREAMS **** m Along Main Stream number: 1 in norraal streara nuraber 2 Streara flow area = 4.200(Ac.) Runoff from this stream = 10.516(CFS) Time of concentration = 9.07 min. Rainfall intensity = 5.382(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2 Qmax(1) 39. 724 13.76 4 . ,114 10. 516 9.07 5. , 382 1. 000 * 1.000 * 39. 724) + 0. 764 * 1.000 * 10. 516) + = 47 . ,762 1. 000 * 0. 659 * 39. 724) + 1. 000 * 1.000 * 10. 516) + 36, .704 Qmax(2) = Total of 2 streams to confluence: Flow rates before confluence point: 39.724 10.516 Maximura fiow rates at confluence using above data: 47.762 36.704 Area of streams before confluence: 26.200 4.200 Results of confluence: Total flow rate = 47.762(CFS) Time of concentration = 13.763 min. Effective stream area after confluence = 30.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 307.000 to Point/Station 311.000 * ** * PIPEFLOW TRAVEL TIME (Program estiraated size) * * * * Upstreara point/station elevation = 452.00(Ft.) Downstream point/station elevation = 410.00(Ft.) Pipe length - 380.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 47 . 762 (CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 47.762(CFS) Normal flow depth in pipe = 15.68(In.) Flow top width inside pipe = 18.27 (In.) Critical depth could not be calculated. Pipe flow velocity = 24.81(Ft/s) Travel time through pipe = 0.26 min. Tirae of concentration (TC) = 14.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 311.000 **** SUBAREA FLOW ADDITION **** no 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 4* Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.400 Decimal fraction soil group C = 0.600 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type 1 Time of concentration = 14.02 min. Rainfall intensity = 4.065(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.480 Subarea runoff = 4.488(CFS) for 2.300(Ac.) Total runoff = 52.250(CFS) Total area = 32.70(Ac.) End of computations, total study area = 32.70 (Ac.) Ill 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/27/00 971004 UNIVERSITY COMMONS lOO-YEAR SYSTEMS 100-103 ADDED TOGETHER AT MELROSE 7-27-00 FILE: G:\ACCTS\971004\NMEL.OUT **Refer to Exhibit «W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by raodified rational method ++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 311.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.480 given for subarea Rainfall intensity (I) = 4 . 065 for a 100.0 year storm User specified values are as follows: •m TC = 14.02 rain. Rain intensity = 4.06(In/Hr) Total area = 32.70(Ac.) Total runoff = 52,25(CFS) m 4.4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + Process from Point/Station 311.000 to Point/Station 207.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 407.00(Ft.) ^ Downstreara point/station elevation = 386.00(Ft.) Pipe length = 1050.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 52.250(CFS) Given pipe size = 42.00(In.) m Calculated individual pipe flow = 52.250(CFS) Normal flow depth in pipe = 17.61 (In.) «i Flow top width inside pipe = 41.45(In.) Critical Depth = 27.14(In.) Pipe flow velocity = 13.65(Ft/s) Travel time through pipe = 1,28 rain. m Time of concentration (TC) = 15.30 min. m ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207,000 to Point/Station 207.000 112 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 1 Stream flow area = 32.700(Ac.) Runoff from this stream = 52.250(CFS) Time of concentration = 15.30 rain. Rainfall intensity = 3.842(In/Hr) + + 4. + + 4. + 4- + + + + + + + + + + + ++ + + + + +++++ + + + +++++ + +++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 207.000 to Point/Station 207.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.450 given for subarea Rainfall intensity (I) = 4.110 for a 100.0 year storm User specified values are as follows: TC = 13.78 min. Rain intensity = 4.11(In/Hr) Total area = 20.10(Ac.) Total runoff = 34.20(CFS) ++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 207,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 20.100(Ac.) Runoff from this stream = 34.200(CFS) Tirae of concentration = 13.78 min. Rainfall intensity = 4.110(In/Hr) Sumraary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 52.250 15.30 3.842 2 34.200 13.78 4.110 Qmax(l) = 1.000 * 1.000 * 52.250) + 0.935 * 1.000 * 34.200) + = 84.216 Qmax (2) = 1.000 * 0.901 * 52.250) + 1.000 * 1.000 * 34.200) + = 81.254 Total of 2 streams to confluence: Flow rates before confluence point: 52.250 34 .200 Maximura flow rates at confluence using above data: 84.216 81.254 Area of streams before confluence: 32.700 20.100 Results of confluence: Total flow rate = 84,216(CFS) Time of concentration = 15.302 min. Effective stream area after confluence = 52.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 106.000 *+** PIPEFLOW TRAVEL TIME (User specified size) **** 113 m 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Upstream point/station elevation = 386.0O(Ft.) Downstream point/station elevation = 358.00(Ft.) Pipe length = 600.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 84.216(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 84.216(CFS) Normal flow depth in pipe = 18.14 (In.) Flow top width inside pipe = 41.61(In.) Critical Depth = 34.32(In.) Pipe flow velocity = 21.15(Ft/s) Travel tirae through pipe = 0.47 min. Tirae of concentration (TC) = 15.77 min. ++4-4.+++4-+4.4-++++++++++++++++++++++++++++++++++++++++++++++++-t+++++-+++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Streara flow area = 52.800(Ac.) Runoff from this stream = 84.216(CFS) Tirae of concentration = 15.77 min. Rainfall intensity = 3,767(In/Hr) +4-4- + + + ++ + + 4- + + + + + ++++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + +++ ++ + + + + -*- Process from Point/Station 311.000 to Point/Station 106.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.700 given for subarea Initial subarea flow distance = 1600,00(rt.) Highest elevation = 407.00(Ft.) Lowest elevation = 358.00(Ft.) Elevation difference = 49.00(Ft.) Tirae of concentration calculated by the urban areas overland flow raethod (App X-C) = 19.83 min, TC = [1.8*(l.l-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.7000)*(1600.00-.5)/( 3.06-(l/3)]= 19.83 Rainfall intensity (I) = 3.250 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 15.925(CFS) Total initial stream area = 7.000(Ac.) + + ++++++-++++++ +++++++++ ++++ + + ++++++++++ +++ ++++++ + +++ + + + + + ++++ +++ +++++ + Process frora Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 2 " Stream flow area = 7.000(Ac.) Runoff from this stream = 15.925(CFS) Time of concentration = 19.83 min. Rainfall intensity = 3.250(In/Hr) ++++++++-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 105.000 to Point/Station 106.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** •ser specified 'C value of 0.515 given for subarea Rainfall intensity (I) - 3.958 for a 100.0 year storm 114 971004-5 UNXVERSITY COMMONS BROOKFIELD HOMES User specified values are as follows: TC = 14.61 min. Rain intensity = 3.96(In/Hr) Total area = 20.80 (Ac) Total runoff = 37.47 (CFS) + + + + + +. + + + + 4- + + + +++ + + + + + + +++ + + + + + + + + + + + + + +++ ++++++ + + + + + + + + + + + + + + ++++ +++ + Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 20.800(Ac.) Runoff from this stream = 37.470(CFS) Time of concentration = 14.61 min. Rainfall intensity = 3.958(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mini Rainfall Intensity (In/Hr) 1 84.216 15.77 3. 767 2 15.925 19.83 3. 250 3 37 . 470 14.61 3. 958 « Qraax(1) 1. 000 * 1.000 * 84.216) + 1.000 * 0.795 * 15.925) + 0. 952 * 1.000 * 37.470) + = 132, . 544 Qmax 1 [2) 0. 863 * 1.000 * 84.216) + 1.000 * 1.000 * 15.925) + 0.821 * 1.000 * 37.470) + = 119 . 348 Qmax (3) 1.000 + 0. 926 * 84.216) + 1.000 * 0.737 * 15.925) + 1.000 * 1.000 37.470) + 127 .200 Ml Total of 3 streams to confluence: Flow rates before confluence point: 84.216 15.925 37.470 Maximum flow rates at confluence using above data: 132,544 119.348 127.200 Area of streams before confluence: 52.800 7 .000 20.800 Results of confluence: Total flow rate = 132.544(CFS) Time of concentration = 15.775 min. Effective stream area after confluence = End of coraputations, total study area = 80,600(Ac.) 80.60 (Ac 115 -M Ml Ml 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/16/00 DRAINAGE STUDY FOR NORTH BROOKFIELD PER LOTTING OF 4-21-00 971004-UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) APRIL 18, 2000 - T.G. FILE: G:\ACCTS\971004\NB400.OUT **RQfar to Exhibit "W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 401.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RUE^L (greater than 1/2 acre) area type 1 Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 1150.00(Ft.) Highest elevation = 810.00(Ft.) Lowest elevation = 535.00(Ft.) Elevation difference = 275.00(Ft.) TC=[(11.9*0.2178-3)/(275.00)]-.385= 3.08 + 10 min. = 13.08 min. Rainfall intensity (I) = 4.251 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 13.688(CFS) Total initial stream area = 9.200(Ac.) + + + + + + + + + +++++++ + + + + + + + + + + + +++ + + ++ + +++++ + + + + + + + + +++++++ +++-*• + + +++++ ++++ Process from Point/Station 402.000 to Point/Station 403.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 535.00(Ft.) Downstream point elevation = 455.00(Ft.) Channel length thru subarea = 550.00(Ft.) Channel base width = 3.000 (Ft.) 116 Ml 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at raidpoint of channel = 22.764(CFS) Manning's 'N' = 0.020 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 22.764(CFS) Depth of flow = 0.441(Ft.), Average velocity = 14.114(Ft/s) Channel flow top width = 4.322(Ft.) Flow Velocity = 14.11(Ft/s) Travel tirae = 0.65 min. Time of concentration = 13.7 3 min. Critical depth = 1.016(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RUEUVL (greater than 1/2 acre) area type ) Rainfall intensity = 4.120(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.350 Subarea runoff = 17.593(CFS) for 12.200(Ac.) Total runoff = 31.281(CFS) Total area = 21.40(Ac.) ++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 455.00(Ft.) Downstream point/station elevation = 450.00(Ft.) Pipe length = 130.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.281(CFS) Nearest computed pipe diaraeter = 21.00(In.) Calculated individual pipe flow = 31.281(CFS) Normal flow depth in pipe = 17.34(In.) Flow top width inside pipe = 15.93(In.) Critical depth could not be calculated. Pipe flow velocity = 14.72(Ft/s) Travel time through pipe = 0.15 min. Tirae of concentration (TC) = 13.88 rain. + + + + 4- + + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + + 4- + + + + + + + + + + + + Process from Point/Station 403.000 to Point/Station 404.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 13.88 rain. Rainfall intensity = 4.092(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.350 Subarea runoff = 7.018(CFS) for 4.900(Ac.) Total runoff = 38.298(CFS) Total area = 26.30(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 404.000 **** CONFLUENCE OF MINOR STREAMS **** 17 971004-5 UNIVERSriY COMMONS BROOKFIELD HOMES Along Main Stream number: 1 in normal stream number 1 m Stream flow area = 26.300(Ac.) Runoff from this stream = 38.298(CFS) ** Time of concentration = 13.88 min. Rainfall intensity = 4.092(In/Hr) *• + + + + ++4- + + + + + 4-4- + + + 4- + +++ + + + + +++ + + + + +++ +++ + + +++ + + + + + + + + + + + + + + + + +++ + + + + + + + Process from Point/Station 308.000 to Point/Station 405.000 • **** INITIAL AREA EVALUATION **** 401 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ^ Decimal fraction soil group C = 0.000 « Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type 1 Initial subarea flow distance = 280.00(Ft.) Highest elevation = 550.00(Ft.) M Lowest elevation = 475.0a(Ft.) Elevation difference = 75.00(Ft.) ^ Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.54 min. •Ml TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.4500)*(280.00-.5)/( 26.79-(1/3)]= 6.54 « Rainfall intensity (I) = 6.645 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 M» Subarea runoff = 1.794(CFS) Total initial stream area = 0.600(Ac.) M + + + + + + + + + + + + 4- + + + + 4- + + + + +++ + + + + + + + + + +++ + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + Process frora Point/Station 405.000 to Point/Station 406.000 — **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 475.000(Ft.) End of street segraent elevation = 458.000(Ft.) Length of street segment = 640.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(3) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 8.971(CFS' Depth of flow = 0.308(Ft.), Average velocity = 3.709(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width - 10.668(Ft.) Flow velocity = 3.71(Ft/s) Travel time = 2.88 min. TC = 9.42 min. Adding area flow to street Decimal fraction soii group A = 0.000 Deciraal fraction soil group B = 1.000 Deciraal fraction soil group C = 0.000 118 m 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Rainfall intensity = 5.254(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 11.348(CFS) for 4.800(Ac.) Total runoff = 13.142{CFS) Total area = 5.40(Ac.) Street flow at end of street = 13.142(CFS) Half street flow at end of street = 6.571(CFS) Depth of flow = 0.344(Ft.), Average velocity = 4.067(Ft/s) Flow width (from curb towards crown)= 12. 427(Ft.) 4 + + + + + + + 4-4. + + + + + + + + + 4-+ + + + + + + + +++ + + + + + +++ +++ + + + + + + + + ++ + + + + + + + + + + + + + + + + + + Process frora Point/Station 406.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 458.00(Ft.) Downstream point/station elevation = 450,00(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.142(CFS) Nearest coraputed pipe diameter = 15.00(In.) Calculated individual pipe flow = 13.142(CFS) Normal flow depth in pipe = 8.75(In.) Flow top width inside pipe = 14.79(In.) Critical depth could not be calculated. Pipe flow velocity = 17.68(Ft/s) Travel tirae through pipe = 0.08 rain. Time of concentration (TC) = 9.49 min. + + + + + + + + 4-+- + + + + + + +-4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + Process from Point/Station 404.000 to Point/Station 404.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal stream number 2 Stream flow area = 5.400(Ac.) Runoff frora this streara = 13.142(CFS) Time of concentration = 9.49 min. Rainfall intensity = 5.227(In/Hr) Suramary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) ( In/Hr) 1 38.298 13,88 4 .092 mi 2 13.142 9.49 5.227 Qmax(1 ) = 1.000 * 1.000 * 38.2981 1 + 0.783 * 1.000 * 13.142: 1 + = 48.587 <MI Qmax(2 ) = 1.000 * 0.684 * 38.298: ) + •m 1.000 * 1.000 * 13.142, ) + = 39.346 Ml Total of 2 streams to confluence: Flow rates before confluence point: -38.298 13,142 Maximura flow rates at confluence using above data: 48.587 39.346 Area of streams before confluence: 25.300 5.400 119 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Ml Results of confluence: Total flow rate = 48.587(CFS) Time of concentration = 13.877 min. Effective stream area after confluence = 31.700(Ac.) + + + + + + + + + + 4.+4-4. + 4. + + + + + + + + +++ + + + + + +++ + +++-+++++ + + + + + + + + + + + + + + + + + + + + + +++-I-+ Process from Point/Station 404.000 to Point/Station 407.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 450.00(Ft.) Downstream point/station elevation = 440.00(Ft.) Pipe length = 290.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 48.587(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 48.587(CFS) Normal flow depth in pipe = 19.03(In.) Flow top width inside pipe = 24.63(In.) Critical depth could not be calculated. Pipe flow velocity = 16.22(Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 14.17 min. + + + 4- +++- + ++ + + + + + + + + + + + + + + + +++ + + + + +++ + ++++ + +++ + +++ + + + + + + + + ++ + + + + -I- + + + + +++ Process from Point/Station 404.000 to Point/Station 407.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 14.17 min. Rainfall intensity = 4,036(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.350 Subarea runoff = 3.955(CFS) for 2.800(Ac.) Total runoff = 52.542(CFS) Total area = 34.50(Ac.) +++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 407.000 to Point/Station 408.000 *••*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 440.00(Ft.) Downstream point/station elevation = 400.00(Ft.) Pipe length = 650.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 52,542(CFS) Nearest computed pipe diaraeter = 24.00(In.) Calculated individual pipe flow = 52.542(CFS) Normal flow depth in pipe = 18.42(In.) Flow top width inside pipe = 20.27(In.) Critical depth could not be calculated. Pipe flow velocity = 20.30(Ft/s) Travel time through pipe = 0.53 min. Time of concentration (TC) = 14.71 min. +++++++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 407.000 to Point/Station 408.000 **** SUBAREA FLOW ADDITION **** 120 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Decimal fraction soii group A = 0.000 Decimal fraction soil group B = 0.350 Decimal fraction soil group C = 0.650 Decimal fraction soil group D = 0.000 [SINGLE FAMILY area type ] Time of concentration = 14.71 min. Rainfall intensity = 3.941(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.483 Subarea runoff = 10.649(CFS) for 5.600(Ac.) Total runoff = 63.191(CFS) Total area = 40.10 (Ac.) End of computations, total study area = 40.10 (Ac.) 121 Ml 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/09/02 DRAINAGE STUDY FOR NORTH BROOKFIELD (MARTIN + OFFSITE) 971004 - UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JANUARY 9, 2002 - T.L.G. FILE: G:\ACCTS\971004\NB500.OUT **Refer to Exhibit «W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C - 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds noraograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 min. Initial subarea flow distance = 1000.00(Ft.) Highest elevation = 775.00(Ft.) Lowest elevation = 574.00(Ft.) Elevation difference = 201.00(Ft.) TC=[(11,9*0.1894-3)/(201.00)]-.385= 2.96 + 10 min. = 12.96 min. Rainfall intensity (I) = 4.277 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 26.196(CFS) Total initial stream area = 17.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 574.00(Ft.} Downstream point elevation = 498.00(Ft.) Channel length thru subarea = 750.00(Ft. Channel base width = 20.000(Ft.) 122 Ml *• 971004-5 UNIVERSIFY COMMONS BROOKFIELD HOMES Ml Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated raean flow rate at midpoint of channel = 67.211(CFS) Manning's 'N' =0.030 * Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 67.211(CFS) ^ Depth of flow = 0.394(Ft.), Average velocity = 8.214(Ft/s) Channel flow top width = 21.574(Ft.) Flow Velocity = 8.21(Ft/s) Travel time = 1.52 rain. Tirae of concentration = 14.48 min. Critical depth = 0.688(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.981(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.350 Subarea runoff = 76.361(CFS) for 54.800(Ac.) Total runoff = 102.557(CFS) Total area = 72.30(Ac.) + +++ + + + + + + + + + + 4- + + 4-4- + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + +++ + +++ +++++ + + + +++ + + + Process from Point/Station 503.000 to Point/Station 504.000 **** PIPEFLOW TE^AVEL TIME (Program estimated size) **** Upstream point/station elevation = 498.00(Ft.) " Downstream point/station elevation = 421.00(Ft.) Pipe length = 1350.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 102.557(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 102.557(CFS) Normal flow depth in pipe = 26.06(In.) Flow top width inside pipe = 20.26(In.) Critical depth could not be calculated. Pipe flow velocity = 22.63(Ft/s) Travel time through pipe = 0.99 min. Time of concentration (TC) = 15.47 min. m ^ + + +++ + + + 4- + + + + + 4- + + + + + + + + + + + + + 4- + 4- + + + + + + + + + + + + + + +++ + + + 4- + + + + + + + + + + + + + + + + 4- + Process from Point/Station 504.000 to Point/Station 504.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 1.000 ^ Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Mi [SINGLE FAMILY area type ] Time of concentration = 15.47 min. m Rainfall intensity = 3.814 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 ^ Subarea runoff = 35.187(CFS) for 20.500(Ac.) Total runoff = 137.744(CFS) Total area = 92.80(Ac.) m +++++++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 505.000 ^ **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 123 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m m upstream point/station elevation = 421.00(Ft.) Downstream point/station elevation = 400.00(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 137.744(CFS) Nearest coraputed pipe diameter = 33.00(In.) Calculated individual pipe flow = 137.744(CFS) Norraal flow depth in pipe = 26.58(In.) Flow top width inside pipe = 26,13(In.) Critical depth could not be calculated. Pipe flow velocity = 26.85(Ft/s) _ Travel time through pipe = 0.19 min. Tirae of concentration (TC) = 15.66 min. +++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 505.000 to Point/Station 505.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream number 1 Stream flow area = 92.800(Ac.) Runoff frora this streara = 137.744(CFS) Tirae of concentration = 15.66 rain. Rainfall intensity = 3.785(In/Hr) +++-+++++++++++++4-+++++++++++++++++ +++++++++++++++++++++++++++++ +++++++ Process from Point/Station 506.000 to Point/Station 507.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Tirae of concentration coraputed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)-3)/(elevation change)]-.385 *60(min/hr) + 10 rain. Initial subarea flow distance = 900.00(Ft.) Highest elevation = 746.00(Ft.) Lowest elevation = 510.00(Ft.) Elevation difference = 236.00(Ft.) TC=[ (11.9*0,1705-3) /(236.00) ]-.385= 2.46 + 10 min. = 12.46 min. Rainfall intensity (I) = 4.386 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 13.201(CFS) Total initial stream area = 8.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 508.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation - 510,00(Ft.) * Downstream point elevation = 423.00(Ft.) Channel length thru subarea = 1000.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank - 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 20. 570(CFS Manning's 'N' = 0.015 124 m 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 20.570(CFS) Depth of flow = 0.502(Ft.), Average velocity = 14.868(Ft/3) Channel flow top width = 3.507(Ft.) Flow Velocity = 14.87(Ft/s) Travel time = 1.12 min. Time of concentration = 13.58 min. Critical depth = 1.125(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.149(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,0=KCIA, C = 0.350 Subarea runoff = 13.940(CFS) for 9.600(Ac.) Total runoff = 27.142(CFS) Total area = 18.20(Ac.) + 4-+++ + + + + + + +++ + + + + + + + + + + + + + + + + + + ++-t- +++ +++ +++++ + + + + + +++ + + + + + + + + + + + + + + + + Process from Point/Station 508.000 to Point/Station 508.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 423.OO(Ft.) Downstream point/station elevation = 406.00(Ft.) Pipe length = 17.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.142(CFS) Nearest coraputed pipe diameter = 12.00(In.) Calculated individual pipe flow = 27.142(CFS) Normal flow depth in pipe = 7.84(In.) Flow top width inside pipe = 11.42(In.) Critical depth could not be calculated. Pipe flow velocity = 49.94(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 13.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 505.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 406.00(Ft.) Downstream point/station elevation = 400.00(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.142(CFS) Nearest computed pipe diaraeter = 24.00(In.) Calculated individual pipe flow = 27.142(CFS) Normal flow depth in pipe = 16.97(In.) Flow top width inside pipe = 21.85(In.) Critical Depth = 21.73(In.) Pipe flow velocity = 11.43(Ft/s) Travel time through pipe = 0.44 min. Time of concentration (TC) = 14.03 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 505.000 to Point/Station 505.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 125 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Stream flow area = 18.200(Ac.) Runoff from this stream = 27.142(CFS) Time of concentration = 14.03 min. Rainfall intensity = 4.064(In/Hr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) -1 137.744 15. 66 2 27.142 14 . 03 Qmax(1 ) = 1.000 * 1. 000 * 137 0.931 * 1. 000 * 27 Mi Qmax(2 ) = 1.000 * 0. 896 * 137 1.000 * 1. 000 * 27 Ml Total of 2 streams to confluence: Rainfall Intensity (In/Hr) 3.785 4.064 163.023 150.514 Flow rates before confluence point: 137.744 27.142 Maxiraum flow rates at confluence using above data: 163.023 150.514 Area of streams before confluence: 92.800 18.200 Results of confluence: Total flow rate = 163.023(CFS) Time of concentration = 15.659 min. Effective stream area after confluence = 111.000(Ac, +++++++++++++++++++ ++++ +++++++++++++++++++ ++++++++ + ++++++++ + + ++++++++ + Process from Point/Station 505.000 to Point/Station 509.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 400.00(Ft.) Downstream point/station elevation = 397.00(Ft.) Pipe length = 125.00(Ft.) Manning's N - 0.013 No. of pipes = 1 Required pipe flow = I63.023(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = 163.023(CFS) Normal flow depth in pipe = 36.47(In.) Flow top width inside pipe = 28. 41(In.) Critical depth could not be calculated. Pipe flow velocity = 18.37(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 15.77 min. End of computations, total study area = 111.00 (Ac.) 126 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/08/02 DRAINAGE STUDY FOR INDUSTRIAL AREA 971004 - UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) OCTOBER 29, 2001 - T.L.G. FILE: G:\ACCTS\971004\M100.OUT **Refar to Exhibit «W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++ + ++-+ +++++++++ + ++++ ++++++++++++++++++++++++ +++++++ + + ++++++++ Process from Point/Station 1807.000 to Point/Station 1805.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 480.00(Ft.) Highest elevation = 410.00(Ft.) Lowest elevation = 398.70(Ft.) Elevation difference = 11.30(Ft.) Tirae of concentration calculated by the urban areas overland flow method (App X-C) = 4.45 rain. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.9500)*(480.00-.5)/( 2.35-(l/3)]= 4.45 Setting tirae of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.769(CFS) Total initial streara area = 2.100(Ac.) + ++++ +++ + ++++++++++ + + ++ + ++++ ++++++++++ + +++ + + + ++++++ + + + +++++++++ + + +++++ Process frora Point/Station 1805.000 to Point/Station 1805.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 1 Stream flow area - 2.100[Ac.) 127 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Runoff from this stream = 15.769(CFS) Time of concentration = 5.00 rain. Rainfall intensity = 7.904(In/Hr) + ++4-4. + + + + +- + + +++ + + + + + + +++ + + + + + + +++ + + + + + + + + + + + + + +++ + + + ++++ + + + + ++ + + + + + + + + Process from Point/Station 1806.000 to Point/Station 1805.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.850 given for subarea Initial subarea flow distance = 750.00(Ft.) Highest elevation = 418.00(Ft.) Lowest elevation = 386.00(Ft.) Elevation difference = 32.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.60 min. TC = [1.8*(1.1~C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.8500)*(750.00'^.5)/( 4.27-(l/3)]= 7.60 Rainfall intensity (I) = 6.034 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 12.823(CFS) Total initial stream area = 2.500(Ac.) + + + + + + 4-4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++++ + + + + +++ + + + + + + ++ + +++ + + + + + Process from Point/Station 1805.000 to Point/Station 1805.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal streara number 2 Streara flow area = 2.500(Ac.) Runoff frora this streara = 12.823(CFS) Time of concentration = 7.60 min. Rainfall intensity = 6.034 (In/Hr) Suramary of stream data: Streara No. Flow rate (CFS) TC [min) Rainfall Intensity (In/Hr) •m 1 2 Qmax(1 15.769 12 .823 Qmax(2) = 000 000 763 000 5.00 7 . 60 1. 000 0. 658 1.000 1.000 15.769) 12.823) 15.769) 12.823) 904 034 24.207 24.862 Total of 2 streams to confluence: Flow rates before confluence point: 15.769 12.823 Maximum flow rates at confluence using above data: 24.207 24.862 Area of streams before confiuence: 2,100 2.500 Results of confluence: Total flow rate - 24.862(CFS) Time of concentration = 7,598 min. Effective streara area after confluence = 4.600(Ac 128 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++++++++++ Process from Point/Station 1805.000 to Point/Station 1804.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 398.70(Ft.) Downstream point/station elevation = 382.60(Ft.) Pipe length = 200.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.862(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 24.862(CFS) Normal flow depth in pipe = 12.56(In.) Flow top width inside pipe = 16.53(In.) Critical depth could not be calculated. Pipe flow velocity = 18.87(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 7.77 min. +++++++4-++++++++++++ +++++-*-+++++++++++++++++++++++++++++++ + ++++++++++++ Process from Point/Station 1804.000 to Point/Station 1804.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 1 Streara flow area = 4.600(Ac.) Runoff from this stream = 24.862(CFS) Time of concentration = 7.77 min. Rainfall intensity = 5.946(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1808.000 to Point/Station 1804.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = O.OOO Decimal fraction soii group C = 0.000 Decimal fraction soil group D - 1.000 [INDUSTRIAL area type 1 Initial subarea flow distance = 480.00(Ft.) Highest elevation = 392.70(Ft.) Lowest elevation = 382.60(Ft.) Elevation difference = 10.10(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.62 min. TC = [1.8* (1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.9500)*(480.00-.5)/( 2.10-(l/3)]= 4.62 Setting tirae of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q-KCIA) is C = 0.950 Subarea runoff = 15.769(CFS) Total initial streara area = 2.100(Ac.) + + + 4-4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 1804.000 to Point/Station 1804.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number; 1 in normal stream nuraber 2 Stream flow area = 2,100(Ac.) Runoff from this stream = 15.769(CFS) Time of concentration = 5.00 rain. 129 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Rainfall intensity - 7.904(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 24.862 7.77 5.946 2 15.769 5.00 7.904 Qraax(1) = 1.000 * 1.000 * 24.862) + 0.752 * 1.000 * 15.769) + = 36.723 Qmax(2) = 1.000 * 0.643 * 24.862) + 1.000 * 1.000 * 15.769) + = 31.757 Total of 2 streams to confluence: Flow rates before confluence point: 24.862 15.769 Maximum flow rates at confluence using above data: 36.723 31.757 Area of streams before confluence: 4.600 2.100 Results of confluence: Total flow rate = 36.723(CFS) Time of concentration = 7.775 min. Effective stream area after confluence = 6.700(Ac.) +++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1804.000 to Point/Station 1803.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 382.60(Ft.) Downstream point/station elevation = 377.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No., of pipes = 1 Required pipe flow = 36.723 (CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 36.723(CFS) Normal flow depth in pipe = 19.05(In.) Flow top width inside pipe = 19.41(In.) Critical depth could not be calculated. Pipe flow velocity = 13,73(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 8.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 1803.000 to Point/Station 1803.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream number 1 Stream flow area = 6.700(Ac.) Runoff from this streara = 36.723(CFS) Time of concentration = 8.02 min. Rainfall intensity = 5.829(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1809.000 to Point/Station 1803.000 **** INITIAL AREA EVALUATION **** 130 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m Mi Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type 1 Initial subarea flow distance = 550.00{Ft.) Highest elevation = 390.00(Ft.) Lowest elevation = 377.00(Ft.) Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 4.75 min. TC = [1.8*(1.1-C)*distance-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.9500)*(550.00-.5)/( 2.36-(l/3)]= 4.75 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.769(CFS) Total initial stream area = 2.100(Ac.) + +++4- + + + + + + + + + +++ + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + ++++ + +++ + + + + + + + + +++++- Process from Point/Station 1803.000 to Point/Station 1803.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.100(Ac.) Runoff from this stream = 15.769(CFS) Time of concentration = 5.00 min. Rainfall intensity = 7.904(In/Hr) Sumraary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qraax(2) 36.723 15.769 Qraax(1) = 1.000 0. 737 1. 000 1.000 8.02 5.00 1.000 * 1.000 * 0.624 * 1.000 * 5.829 7.904 36.723) + 15.769) + 36.723) + 15.769) + 48.352 38.670 Total of 2 streams to confluence: Flow rates before confluence point: 36.723 15.769 Maximura flow rates at confluence using above data: 48.352 38.670 Area of streams before confluence: 6.700 2.100 Results of confluence: Total flow rate = 48.352(CFS) Time of concentration = 8.018 min. Effective streara area after confluence = 8.800(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 1803.000 to Point/Station 1802.000 ****--piPEFLOW TRAVEL TIME [Program estimated size) **** 131 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES Mi Upstream point/station elevation = 377.00(Ft.) Downstream point/station elevation = 372.00(Ft.) Pipe length = 250.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 48.352 (CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 48 .352 (CFS) Normal flow depth in pipe = 20. 93 (In.) Flow top width inside pipe = 27.56(In.) Critical Depth = 27.33(In.) Pipe flow velocity = 13.22(Ft/s) Travel time through pipe = 0.32 rain. Time of concentration (TC) = 8.33 min. ++ +++++++4-++++++++++ +++++++++++++ ++++++++++++++++++++ + ++++++++-++++++++ Process frora Point/Station 1802.000 to Point/Station 1802.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 1 Stream flow area - 8.800(Ac.) Runoff from this stream = 48.352(CFS) Time of concentration = 8.33 rain. Rainfall intensity = 5.6a6(In/Hr) ++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1810.000 to Point/Station 1802.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 _—— _ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 400.00(Ft.) Highest elevation = 378.20(Ft.) Lowest elevation = 372.00(Ft.) Elevation difference = 6.20(Ft.) Tirae of concentration calculated by the urban areas overland flow method (App X-C) = 4.67 min. TC = [1.8*(l.l-C)*distance-.5)/(% slope-(l/3)] TC = [1 . 8* (1.1-0.9500)*(400.00-.5)/( 1.55-(l/3)3= 4.67 Setting tirae of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.769(CFS) Total initial stream area = 2.100(Ac.) ++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1802.000 to Point/Station 1802.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.100(Ac.) Runoff from this stream = 15.769(CFS) Time of concentration = 5.00 min. Rainfall intensity = 7.904(In/Hr) 132 971004-5 UNIVERSriY COMMONS BROOKFIELD HOMES Process from Point/Station 1805.000 to Point/Station **** INITIAL AREA EVALUATION **** 1802.000 User specified 'C value of 0.850 given for subarea Initial subarea flow distance = 450.00(Ft.) Highest elevation = 386.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference = 18.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.01 min. TC = [1.8*(l.l-C)*distance-.5)/(% slQpe^(l/3)] TC = [1.8*(l.l-0.8500)*(450.00-.5)/( 4.00-(l/3)]= 6.01 Rainfall intensity (I) = 7.017 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 5.726(CFS) Total initial stream area = 0.960(Ac.) Process from Point/Station 1802.000 to Point/Station 1802.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 3 Streara flow area = 0.960(Ac.) Runoff frora this streara = 5.726(CFS) Time of concentration = 6.01 rain. Rainfall intensity = 7.017(In/Hr) Suraraary of streara data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 48. 352 8. 33 5. 686 2 15. 769 5. 00 7 . 904 3 5. 726 6. 01 7 . 017 Qmax(1) = 1. 000 * 1. 000 * 48 . 352) + 0 . 719 * 1. 000 * 15 .769) + 0 . 810 * 1. 000 * 5 .726) + 64 . 334 Qmax(2) = 1. 000 * 0 . 600 * 48 . 352) + 1. 000 * 1. 000 * 15 .769) + 1. 000 * 0. 831 * 5 .726) + = 49. . 543 Qmax(3) = 1. 000 * 0. ,722 * 48 .352) + 0. 888 * 1. . 000 * 15 .769) + 1. 000 * 1. ,000 * 5 .726) + = 54. . 619 Total of 3 streams to confluence: Flow rates before confluence point: 48.352 15.769 5.726 Maximum flow rates at confluence using above data: 64.334 49.543 54.619 Area of streams before confluence: 8.800 2.100 0.960 Results of confluence: Total flow rate = 64.334(CFS) Time of concentration = 8.333 rain. Effective stream area after confluence = 11.860(Ac 133 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ,^ ++ + ++++ +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + +++ + + +++ + + + + 4- + + + + + + Process from Point/Station 1802.000 to Point/Station 1801.000 Ml **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ^ Upstream point/station elevation = 372.00(Ft.) Downstream point/station elevation = 350.00(Ft.) * Pipe length = 70.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 64.334(CFS) ™ Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 64.334(CFS) Normal flow depth in pipe = 13.24(In.) Flow top width inside pipe = 20.27(In.) Critical depth could not be calculated. Pipe flow velocity = 40.24(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 8.36 min. End of coraputations, total study area = 11.86 (Ac.) Ml 134 Ml Ml Ml 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/03/01 DRAINAGE STUDY FOR INDUSTRIAL AREA 971004 - UNIVERSITY COMMONS (100-YR PROPOSED CONDITIONS) JANUARY 3, 2001 - T.G. FILE: G:\ACCTS\971004\M200.OUT **RQfQr to Exhibit "W"** ********* Hydrology Study Control Inforraation ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++ +++ + + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1808.000 to Point/Station 1702.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type ] Initial subarea flow distance = 530.00(Ft.) Highest elevation = 378.20(Ft.) Lowest elevation = 360.00(Ft.) Elevation difference = 18.20(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 4.12 min. TC = [1.8*(1.1-C)*distance-,5)/(% slope-(l/3)J TC = [l.B*(l.l-0.9500)*(530.00-.5)/( 3.43-(l/3)]= 4.12 Setting time of concentration to 5 minutes Rainfall intensity (I) - 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 22.527(CFS) Total initial stream area = 3.000(Ac.) End of coraputations, total study area = 3.00 (Ac.) 135 .M 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date; 10/31/01 DRAINAGE STUDY FOR INDUSTRIAL AREA 971004 - UNIVERSITY COMMONS (lOO-YEAR PROPOSED CONDITIONS OCTOBER 31, 2001 - T.L.G. FILE: G:\ACCTS\971004\NB900.OUT **Refer to Exhibit "W"** ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 901.000 to Point/Station 902.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D - 1.000 [RUE^L (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi)^3)/(elevation change)]-.385 *60(min/hr) Initiai subarea flow distance = 900.00(Ft.) Highest elevation = 440.00(Ft.) Lowest elevation = 370.00(Ft.) Elevation difference = 70.00{Ft.) TC=[(11.9*0.1705-3)/( 70.00)]-.385= 3.93 Rainfall intensity (I) = 9.232 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 9.140(CFS) Total initial stream area = 2.200(Ac.} End of coraputations, total study area = 2.20 (Ac.) 136 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ^- Hydraulic Calculations Developed Conditions The Hydraulics of each storm drain, catch basin, clean-out and inlet were calculated using^rf.a„«rf Engineering Software HydoWIN v.2001, a computer program that analyzes the hydraulics in pressure and gradual varied flows. See Appendices D and F, The northerly portion of thc development will drain to existing storm drain systems. The City of San Marcos rs burldrng a 42" storm drain in Melrose Drive. The pipe has been designed to adequately handle Brookfield's proposed development. The easterly portion ofthe northerly development will dram to an existmg 36" pipe that drains southerly to San Marcos Creek. Storm drain inlets will include fossil filters to comply with NPDES requirements. The southerly portion of the development will drain to San Marcos Creek via a system of storm drams sized to handle thc lOO-year storm. Two box culverts, in accordance with Resolution PCOl- 3415 (Post development storm flows do not exceed existing flows for the 100-year storm event) will be constructed in order to balance existing vs. developed flows. This issue is addressed in a separate report by Dr. Howard Chang. A desilting basin will be constmcted to serve the majority of ^^rNS ™- P""'"" ^" '''•"^^ <^ inlets to comply With MFDbS requirements. ^ 137 971004-5 UNtVERSITY COMMOr BROOKFIhLD HOMI APPENDIX D AES Analysis of Proposed Storm Drains for Southem Areas (Refer to Exhibit "X") m 138 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES tM m m m .****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by; O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (100-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING E. ON SAN ELIJO AND S. ON STREET 'A' * * FILE: G:\ACCTS\971004\AES100.OUT T.L.G. **Refer to Exhibit «X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES100.DAT TIME/DATE OF STUDY: 09:24 10/30/2001 .^^,*i*i.i*******j,********************************************* ****************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 218.00- 217.00- 217.10- 217 .20- 217.30- 216.00- 216.10- 216.20- 216.30- 144 . 00- 144 .10- 144.20- 144.30- 144.50- 144.60- 137.00- 6.70* 9.04 6.30*Dc 9. 87* 26637.40 31964.70 26447.41 UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 7.00* 27068.47 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS ' 26761.80 32819.82 HYDRAULIC JUMP 6.23*Dc 25226.11 25169.04 21605.90 21556.02 19648.33 19436.73 18382.04 14072.17 12107.92 12185.35 12107.92 11.03* 9. 54* 9 . 58* 8 .79* 9. 39* 8 . 95* 6 .59 4.88 Dc 5.19 4.88 Dc 5.77 6.29 Dc 4 .05* 6.30*Dc 4 . 60 6. 23*Dc 3 . 92 5.11 Dc 4 . 23 3. 85 2 . 93 2. 61 2.74* 2 . 62* 2 . 57* 2.83* 26447.44 33665.07 26447.41 28489.82 25226.11 14638.70 13345.31 13763.32 14549,79 14536.14 16470,94 17694.43 18601,75 18984.11 17100.58 139 971004-5 UNIVERSHY COMMONS BROOKFIELD HOMES -Hi 137.10- JUNCTION 6.76 12038.70 2.16* 17226. 51 - 137.20- FRICTION 4.59 Dc 9620.44 2.05* 18352. 97 •Ml 137.30- JUNCTION 4.50 13145.19 2.20* 20302. 81 137.40- FRICTION 3.95 Dc 12739.46 2.33* 18993. 35 137.50- JUNCTION 3.49 Dc 15655.88 2.59* 18995. 00 132.00- FRICTION 3.49*Dc 15655.87 3.49* Dc 15655. 87 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ^^^***jrjj********************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 218.00 FLOWLINE ELEVATION = 350.10 PIPE FLOW = 608.80 CFS PIPE DIAMETER = 84 . 00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.100 FEET NODE 218.00 : HGL = < 357.100>;EGL= < 360.986>;FLOWLINE^ < 350.100> ****************************************************************************** FLOW PROCESS FROM NODE 218,00 TO NODE 217.00 IS CODE = 1 UPSTREAM NODE 217.00 ELEVATION = 351.17 (FLOW SEALS IN REACH) r CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 608.80 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 107.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 5.46 CRITICAL DEPTH(FT) = 6. 30 ==================; ---===-- - --==---=^= •================= =============== M DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 7.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY ( FT) MOMENTUM ( POUNDS ) Mi 0 . 000 7 .000 15.814 10.886 27068,47 20.926 6. 972 15.821 10.861 27008.90 35.767 6. 944 15.834 10.839 26956.07 48 . 131 6.915 15.850 10.819 26907.65 Ml 58.863 6.887 15.869 10.800 26862.83 68.383 6.859 15.891 10.783 26821.16 76.939 6.831 15.915 10.766 26782.32 84.695 6.803 15.941 10.751 26746.11 m 91.767 6.775 15.970 10.737 26712.35 98.237 6.746 16.000 10.724 26680.93 m 104.168 6.718 16.032 10.712 26651.74 m 107.000 6.704 16. 049 10.706 26637.40 NODE 217.00 : HGL = < 357.i 374>;EGL= < 361.876>;FLOWLINE= < 351.170> **+*************************************************************************** FLOW PROCESS FROM NODE 217,00 TO NODE 217.10 IS CODE - 5 UPSTREAM NODE 217.10 ELEVATION = 351.30 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) m 140 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY PIPE (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT . ) (FT/SEC) tiM UPSTREAM 608.80 84.00 45.00 351.30 6.30 26.412 DOWNSTREAM 608.80 84 .00 -351.17 6.30 16.054 ""* LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00= ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. D0WNSTRE7\M: MANNING'S N = 0.013OO; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01524 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.076 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.227)+( 0.076)+( 0.000) = 4.303 02259 00790 0.000 FEET NODE 217.10 : HGL = < 355 . 346>;EGL= < 366.178>; FLOWLINE= < 351.300> ******************************************************************************* FLOW PROCESS FROM NODE 217.10 TO NODE 217.20 IS CODE = 1 UPSTREAM NODE 217.20 ELEVATION - 358.58 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 608.80 CFS PIPE DIT^ETER = 84.00 INCHES PIPE LENGTH = 182.40 FEET MANNING'S N = 0.0130O NORMAL DEPTH(FT) 3.40 CRITICAL DEPTH(FT) = 6.30 ... UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6. 30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: m DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY ( FT ) MOMENTUM ( POUNDS ) 0. 000 6,296 16.691 10.624 26447.41 0.207 6.180 16.925 10.631 26462.27 Ut 0.841 6.064 17,181 10.651 26506.96 1 . 929 5.949 17.460 10.685 26581.95 m 3.504 5.833 17.761 10.734 26687.94 Ml 5 . 610 5,717 18.085 10.799 26825.93 8 . 301 5. 602 18,434 10.882 26997.12 11.643 5,486 18.808 10.983 27202.96 15.715 5.371 19,209 11.104 27445.09 Ml 20.614 5.255 19.639 11.247 27725.42 26.456 5.139 20.098 11.415 28046.09 ••I 33.388 5.024 20. 588 11.610 28409.49 41,586 4 . 908 21.113 11.834 28818.33 51.277 4.792 21.675 12.092 29275.63 62 .745 4 . 677 22 .276 12.387 29784.79 •m 76.364 4 .561 22 . 919 12.723 30349.60 92. 623 4.446 23.608 13.105 30974.32 m 112.194 4 . 330 24.348 13.541 31663.74 136.021 4.214 25. 142 14.036 32423.26 •m 165,491 4 .099 25.995 14.598 33258.98 m 182.400 4.046 26.404 14 .878 33665.07 •m iM NODE 217.20 : HGL - < 364. 876>,-EGL= < 369. 204>;FLOWLINE= < 358.580> m 141 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ****************************************************************************** FLOW PROCESS FROM NODE 217.20 TO NODE 217.30 IS CODE = 5 UPSTREAM NODE 217.30 ELEVATION = -359.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY Mm (CFS) (INCHES) ( DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 589.70 84 .00 45.00 359.00 6.23 15.323 DOWNSTREAM 608.80 84 .00 -358.58 6.30 16.696 LATERAL #1 9.60 18 .00 90.00 361.33 1.20 5.432 m LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 m Q5 9.50= ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00852 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00800 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0082 6 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.041 FEET ENTRANCE LOSSES = 0.866 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.410)+( 0.041)+( 0.866) = 3.317 NODE 217.30 : HGL = < 368.875>;EGL= < 372.521>;FLOWLINE= < 359.000> ^t**+**k*********************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 216.00 217.30 TO NODE ELEVATION = 216.00 IS CODE = 1 367.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 589.70 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 508.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 4.46 CRITICAL DEPTH(FT! UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 6.23 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 0 .000 6. 229 16.296 10.355 25226.11 m 0,289 6. 158 16.439 10,357 25231.36 1 . 174 6.088 16,591 10.364 25247.13 Ml 2. 691 6.017 16.750 10,376 25273.54 Ml 4 .882 5. 946 16.917 10.393 25310.71 7 .800 5. 876 17.093 10.416 25358.83 im 11.509 5.805 17.277 10.443 25418.09 16.083 5.735 17 .470 10.477 25488.72 m 21. 615 5. 664 17.671 10,516 25570.99 28 .214 5.594 17.881 10.561 25665.19 m 36.013 5. 523 18.100 10.613 25771.64 45.173 5.452 18.329 10.672 25890.69 m 55.895 5 . 382 18.568 10.739 26022.73 68 .427 5.311 18.817 10.813 26168.16 m 83.087 5.241 19.076 10.895 26327.42 MM 100.281 5.170 19.346 10.985 26500.99 fl 120.550 5. 099 19.627 11.085 26689.38 144 . 625 5 .029 19.920 11.195 26893.14 '<«« 173.534 4 . 958 20.226 11.314 27112.85 142 208.785 252.717 309.251 385.744 498.728 508.500 817 747 67 6 605 602 20.544 20.875 21.221 21.581 21.956 21.975 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 11.445 27349.14 11.588 27602.69 11.744 27874.22 11.912 28164.50 12.096 28474.36 12 .105 28489 . 82 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 9.87 Ml PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) Mi 0.000 9.875 15.323 13.521 32819.82 398.654 7 . 000 15. 323 10. 646 25915.78 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 7 1 O II 1 o II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: .mm DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ MM CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 398.654 7.000 15.318 10.646 25915.78 „„ 402.306 6.969 15.326 10,619 25850.39 405.427 6. 938 15.340 10.594 25792.26 408.242 6. 907 15.358 10.572 25738 .88 410.822 6.877 15.379 10.551 25689.38 -.„ 413.203 6.846 15.403 10.532 25643.29 415.412 6.815 15.430 10.514 25600 .28 417.464 6.784 15.459 10.497 25560.12 419.374 6.753 15.491 10.482 25522.62 421.150 6.722 15.524 10.467 25487.68 422.801 6. 691 15.559 10.453 25455 .17 •m 424 .333 6. 661 15,597 10.440 25425.01 425.749 6. 630 15.636 10.428 25397 .14 m 427.055 6.599 15,677 10.418 25371.49 428.252 6. 568 15.720 10.408 25348.01 m 429.343 6. 537 15.764 10.398 25326.68 430.329 6.506 15.810 10.390 25307.45 mi 431.213 6. 476 15.858 10.383 25290.30 431.994 6.445 15.907 10,376 25275.21 Mi 432.672 6.414 15.958 10.371 25262.15 433.249 6. 383 16.011 10.366 25251.13 •mm 433.723 6. 352 16.065 10.362 25242.12 4M 434.093 6.321 16.120 10.359 25235.11 434.360 6.290 16.177 10.357 25230.11 434,521 6.260 16.236 10.355 25227.11 434.575 6.229 16.296 10.355 25226.11 m 508.500 6. 229 16.296 10.355 25226.11 HYDRAULIC JUMP ANALYSIS m PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT DEPTH = 7.523 FEET, 326.10 FEET UPSTREAM OF NODE 217.30 UPSTREAM CONJUGATE DEPTH = 4.941 FEET NODE 216.00 : HGL = < 373.229>;EGL= < 377.355>;FLOWLINE= < 367.000> ***********+****************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 216.10 IS CODE = 5 UPSTREAM NODE 216.10 ELEVATION = 367.75 (FLOW IS AT CRITICAL DEPTH) 143 M 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 375.40 84.00 90.00 367.75 5.11 589.70 84.00 - 367.00 6.23 214.30 54.00 0.00 369.50 4.12 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 9.755 16.301 13.474 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00345 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00758 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00552 JUNCTION LENGTH = 9.00 FEET FRICTION LOSSES = 0.050 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.849)+{ 0.050)+( 0.000) = . 2.898 NODE 216.10 : HGL = < 378.776>;EGL= < 380.253>;FLOWLINE= < 367.750> ********************** .^^^j,.j,>*.************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 216.20 216.10 TO NODE ELEVATION = 216.20 IS CODE = 1 369.75 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 375.40 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 149.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 375.40)/( 6388.383))**2 = 0.00345 HF=L*SF = ( 149.50)*(0.00345) = 0.516 NODE 216.20 : HGL = < 379 . 292>; EGL= < 38 0 . 770>; FLOWLINE= < 369.750> ****************** .^**jr******************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 216.30 216.20 TO NODE 216.30 IS CODE = 5 ELEVATION = 370.08 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 371.40 375.40 2.00 0 .00 DIAMETER (INCHES) 84 , 00 84 .00 18.00 0 . 00 ANGLE ; DEGREES] 0.00 90.00 0 .00 FLOWLINE ELEVATION 370.08 369.75 375.25 0 . 00 CRITICAL DEPTH(FT. ; 5.08 5.11 0.53 0. 00 VELOCITY (FT/SEC) 9. 651 9,755 1.132 0 , 000 2.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00338 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00345 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00342 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.296 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.031)+( 0.014)+( 0.296) = 0.341 MODE 216.30 : HGL = < 37 9 . 664>; EGL= < 381.110>; FLOWLINE= < 370.080> *****************+**** ^^ij,*^*.^*.***-*-******************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 144.00 216.30 TO NODE ELEVATION = 144.00 IS CODE = 1 371.79 (FLOW IS UNDER PRESSURE; CALCULATE FRICTION LOSSES(LACFCD! 144 971004-5 UNTVERSrrV COMMONS BROOKFIELD HOMES PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 371.40 CFS PIPE DIAMETER = 84.00 INCHES 270.90 FEET MANNING'S N = 0.01300 ;( 371.40)/( 6388.354))**2 = 0.00338 270.90)* (0.00338) = 0.916 NODE 144.00 : HGL = < 380.580>;EGL= < 382.026>;FLOWLINE= < 371.790> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 144.10 144.00 TO NODE 144.10 IS CODE = 5 ELEVATION = 371.89 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 324.40 371.40 47 .00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 84.00 0.00 371.89 4.74 84.00 - 371.79 5.08 48.00 90.00 373.34 2.05 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 8.429 9. 651 3.740 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00258 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00338 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00298 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.343)+( 0.012)+( 0.000) = 0.355 NODE 144.10 : HGL = < 381.277>;EGL= < 382.380>;FLOWLINE= < 371.890> ^.^**.*jr^*********************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 144.20 144.10 TO NODE ELEVATION = 144.20 IS CODE = 1 372.65 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 324.40 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 124.40 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 324.40)/( 6388.428))**2 = 0.00258 HF=L*SF = ( 124.40)* (0.00258) = 0.321 NODE 144.20 : HGL = < 381 . 598>;EGL= < 382. 7 01>; FLOWLINE= < 372.650> .jj^^^^.*jtjfjt- + i^******* + ********************************************************** FLOW PROCESS FROM NODE 144.20 TO NODE 144.30 IS CODE = 5 UPSTREAM NODE 144.30 ELEVATION = 373.65 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 320.40 324 . 40 2. 00 0 .00 2. 00== DIAMETER ANGLE FLOWLINE CRITICAL INCHES) (DEGREES) ELEVATION DEPTH(FT 66.00 0.00 373.65 4.88 84.00 - 372.65 4.74 18.00 90.00 380.47 0.53 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 27.119 8 .429 3. 553 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.03694 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00258 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01976 145 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Mi JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 4.00 FEET 0.07 9 FEET ENTRANCE LOSSES = 0.221 FEET (TRANSITION LOSS) + (FRICTION LOSS) + (ENTRANCE LOSSES) ( 4.807)+( 0.079)+( 0.221) = 5.107 NODE 144.30 : HGL = < 376.388>;EGL= < 387.808>;FLOWLINE= < 373.650> *********** ******************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 14 4.50 144.30 TO NODE ELEVATION = 144.50 IS CODE = 1 377.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 320.40 CFS PIPE DIAMETER = 66.00 INCHES •m PIPE LENGTH = 133.31 FEET MANNING'S N = 0. 01300 m NORMAL DEPTH(FT) 2. 91 CRITICAL DEPTH(FT) 4 .88 m UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.62 m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 0.000 2. 619 28.709 15.425 18601.75 10.624 2. 630 28.546 15.291 18508.40 21.620 2 . 642 28.384 15.160 18416.22 33.023 2 . 653 28.224 15.031 18325.20 mm 44.871 2 . 665 28.066 14.904 18235.33 57.207 2 . 677 27.910 14.780 18146.58 «• 70.082 2. 688 27 .756 14.658 18058.94 83.555 2 .700 27.603 14.538 17972.40 mm 97.694 2.712 27.452 14 .421 17886.93 112.582 2.723 27.302 14.305 17802.52 — 128.314 2 .735 27.154 14.191 17719.17 M» 133.310 2,738 27.110 14.158 17694.43 NODE 144.50 : HGL = < 380. 289>;EGL= < 393.095>;FLOWLINE= < 377.670> ****************************************************************************** FLOW PROCESS FROM NODE 144.50 TO NODE 144.60 IS CODE = 2 UPSTREAM NODE 144.60 ELEVATION = 377.77 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 320.40 CFS PIPE DIAMETER = 66.00 INCHES AVERAGED VELOCITY HEAD = 13.107 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(13.107) = 0.655 NODE 144.60 : HGL = < 380. 342>;EGL= < 393.751>;FLOWLINE= < 377.770> ^^^ + jj.^**** + ******************************************************************* FLOW PROCESS FROM NODE 144.60 TO NODE 137.00 IS CODE = 1 mn UPSTREAM NODE 137 .00 ELEVATION = 384.24 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): Mi PIPE FLOW 320.40 CFS PIPE DIAMETER = 66.00 INCHES *• PIPE LENGTH = 96.50 FEET MANNING'S N = 0.01300 i 1 1 ft NORMAL DEPTH(FT) 2 . 31 CRITICAL DEPTH(FT) - 4.88 i 1 1 ft UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT 1 CO II 1 CNJ 11 1 II 1 3 i 1 1 ft 146 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) iM 0.000 2.826 26.048 13.368 17100.58 5.277 2.805 26.290 13.544 17235.27 •mm 10.863 2.785 26.537 13.726 17372.94 MM 16.786 2.764 26.788 13. 914 17513.69 mt 23.078 2.743 27.045 14 .108 17657.57 29.776 2.723 27.306 14.308 17804.67 •m 36.923 2.702 27.572 14.514 17955.07 m 44 .570 2. 682 27.844 14.728 18108.85 52.775 2.661 28.121 14.948 18266.09 61.607 2. 640 28.403 15.175 18426.90 71.148 2. 620 28.691 15.410 18591.35 81.499 2.599 28.985 15.653 18759.55 92.781 2.579 29.285 15.903 18931.60 96.500 2.572 29.376 15.981 18984.11 m NODE 137.00 : ; HGL = < 387. 066>;EGL= < 397.608>;FLOWLINE= < 384.240> ****************************************************************************** FLOW PROCESS FROM NODE 137.00 TO NODE 137.10 IS CODE = 5 UPSTREAM NODE 137.10 ELEVATION = 384.34 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 273.30 320.40 47 . 10 0.00 DIAMETER (INCHES) 66.00 66. 00 36.00 0. 00 ANGLE ; DEGREES; 0.00 90.00 0.00 FLOWLINE ELEVATION 384.34 384.24 385.68 0.00 CRITICAL DEPTH(FT.; 4.59 4.88 2.24 0.00 VELOCITY (FT/SEC) 31.608 26.056 8 .339 0 . 000 0.00-==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06264 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03322 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04793 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.192 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.211)+( 0-192)+( 0.000) = 4.403 NODE 137.10 : HGL = < 386.498>;EGL= < 402.011>;FLOWLINE= < 384.340> Jr***************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 137.20 137.10 TO NODE ELEVATION = 137.20 IS CODE = 1 387.45 (FLOW IS SUPERCRITICAL; CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 273.30 CFS PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 76,90 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2,44 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4 .59 DISTANCE FROM CONTROL(FT) FLOW DEPTH VELOCITY SPECIFIC (FT) (FT/SEC) ENERGY(FT' PRESSURE+ MOMENTUM(POUNDS 147 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 0.000 2.051 33.830 19.833 18352.97 9.962 2.066 33.490 19.493 18181.06 m 20.242 2.082 33.158 19.164 18012.54 30.871 2.097 32.831 18.844 17847.32 tt 41.880 2.112 32.510 18.534 17685.32 53.308 2.128 32.195 18.232 17526.48 m» 65.200 2.143 31.885 17.940 17370.69 m 76.900 2.158 31.598 17.671 17226.51 m NODE 137.20 : : HGL = < 389. 501>;EGL= < 407.283>;FLOWLINE= < 387.450> ***************************************************************************** FLOW PROCESS FROM NODE 137.20 TO NODE 137.30 IS CODE = 5 UPSTREAM NODE 137.30 ELEVATION = 388.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 QS FLOW (CFS) 269.30 273.30 2.00 0.00 2. 00== DIAMETER ANGLE (INCHES) (DEGREES; FLOWLINE ELEVATION 48.00 0.00 388.40 66.00 - 387.45 18.00 90.00 390.95 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 3.95 4.59 0.53 0.00 VELOCITY (FT/SEC) 38.109 33.840 3.553 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10304 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07556 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08930 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.357 FEET ENTRANCE LOSSES = 3.556 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.951)+( 0.357)+( 3.556) = 5.865 NODE 137.30 : HGL = < 390.596>;EGL= < 413.148>;FLOWLINE= < 388.400> ^..^^jj^jri*********************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 137.40 137.30 TO NODE ELEVATION = 137.40 IS CODE = 1 430.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD); PIPE FLOW = 269.30 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 397.20 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.19 CRITICAL DEPTH(FT) 3. 95 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2.328 35.474 21 .880 18993.35 5.895 2 .322 35.579 21.991 19045.83 12.066 2. 317 35.686 22 .103 19098.68 18.538 2.311 35.793 22.217 19151.89 25. 340 2 . 305 35.901 22.331 19205.47 32.503 2 .299 36.009 22 .446 19259.43 40.065 2 .294 36.118 22 .563 19313.77 48.069 2 .288 36,228 22 . 681 19368.48 56.566 2 . 282 36.339 22 .800 19423.57 65.616 2 . 277 36.450 22 . 920 19479,05 148 971O04-5 UNIVERSITY COMMONS BROOKFIELD HOMES Ml 75.289 2.271 36.562 23.041 19534.92 85.674 2.265 36.675 23.164 19591.19 •m 96.874 2 .259 36.789 23.288 19647.84 109.022 2.254 36.903 23.413 19704.90 m 122.282 2.248 37.018 23.540 19762.36 136.866 2.242 37.134 23.667 19820.22 mi 153.055 2 .237 37.250 23.796 19878.50 171.229 2.231 37.368 23.927 19937.18 191.917 2.225 37.486 24 .058 19996.29 215.898 2.219 37.605 24.191 20055.80 •mm 244.379 2.214 37.724 24 .326 20115.75 Mi 279.382 2.208 37.845 24.462 20176.12 324.697 2 .202 37.966 24.599 20236.92 388 . 841 2.197 38.088 24.737 20298.15 397.200 2.196 38.098 24 .748 20302.81 Mi NODE 137.40 : : HGL = < 432.32E J>;EGL= < 451.1 B80>;FLOWLINE= < 430.000: ****************************************************************************** « FLOW PROCESS FROM NODE 137.40 TO NODE 137.50 IS CODE = 5 UPSTREAM NODE 137.50 ELEVATION = 430.50 (FLOW IS SUPERCRITICAL) m CALCULATE JUNCTION LOSSES: *• PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) •mm UPSTREAM 269.30 4 2.00 0.00 4 30.50 3.4 9 35.347 DOWNSTREAM 269.30 48.00 - 430.00 3.95 35.485 *• LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 — Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08932 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0.08557 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08745 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.350 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ^ JUNCTION LOSSES = ( 0.256)+( 0.350)+( 0.000) = 0.606 NODE 137.50 : HGL = < 433.085>;EGL= < 452.486>;FLOWLINE= < 430.500> j,.y,**j,j,*A**J,*********A********************************************************* FLOW PROCESS FROM NODE 137.50 TO NODE 132.00 IS CODE = 1 ^ UPSTREAM NODE 132.00 ELEVATION = 468.50 (FLOW IS SUPERCRITICAL) m CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 269.30 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 404.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.53 CRITICAL DEPTH(FT) = 3,49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS; 0.000 3.489 27.990 15.662 15655.87 0 841 3.451 28.062 15.686 15670.07 2*742 3.412 28.17 0 15.742 15703.99 149 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES M 5. 368 3.374 28.307 15.824 15752.46 8.610 3.336 28 . 467 15.927 15813.29 m 12.427 3.297 28.648 16.049 15885.24 16.809 3.259 28.848 16.190 15967.54 itt 21.773 3.221 29.067 16.349 16059.66 27.347 3.182 29.304 16.525 16161.30 ••• 33.581 3.144 29.559 16.720 16272.24 M 40.537 3.106 29.830 16.932 16392.37 48.297 3.067 30.119 17.163 16521.67 56.968 3.029 30.425 17.412 16660.15 mm 66.684 2.991 30.749 17.681 16807.90 77.617 2. 952 31.089 17.970 16965.03 89.994 2. 914 31.448 18.281 17131.71 104.114 2.876 31.825 18.613 17308.13 120.384 2.838 32.221 18.968 17494.54 Ml 139.378 2.799 32.635 19.348 17691.21 161.939 2.761 33.070 19.753 17898.44 mm 189.376 2.723 33.525 20.185 18116.58 223.884 2. 684 34.001 20.647 18346.02 m 269.582 2. 646 34.499 21.138 18587.15 335.729 2.608 35.019 21.662 18840.45 — 404.000 2.585 35.336 21.986 18995.00 Ml NODE 132.00 : HGL = < 471. 989>;EGL= < 4 8 4 .162>;FLOWLINE= < 468.500> jjjUjfVr********************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: Mil NODE NUMBER = 132 .00 FLOWLINE ELEVATION = 468 .50 ASSUMED UPSTREAM CONTROL HGL 471.99 FOR DOWNSTRE/^ RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Ml 150 m Mt Ml 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date; 01/01/99 License ID 1423 Analysis prepared by: 0'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (101-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING E. ON STREET 'B' & S. ON STREET 'L' * * FILE: G:\ACCTS\971004\AES101.OUT T.L.G. **Rafer to Exhibit "X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES101.DAT TIME/DATE OF STUDY: 14:43 12/29/2000 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) twr 144.00- FRICTION 7 .24* 4937.46 2.04 1966.93 145.00-6.08* 4027.88 2.59 Dc 1816.76 •m JUNCTION M 145.10-6. 47* 3285.59 2.19 1730.64 M FRICTION 145.20-6.12* 3128.03 2.55 Dc 1675.61 mm JUNCTION m 145.30- FRICTION 6.33* 2931.97 1.82 1481.23 150.00-3. 99* 1895.82 2.39 Dc 1344.43 JUNCTION m 150.10- FRICTION 4 .31* HYDRAULIC 1508.73 JUMP 1.17 1308.32 mm 149.00- JUNCTION 2.08* Dc 901.14 2.08*Dc 901.14 m 149.10- FRICTION 3. 92* HYDRAULIC 1388 .28 JUMP 1.49 1039.85 mm 148.00- JUNCTION 2.08* Dc 901.14 2.08*Dc 901.14 tt 148 .10- FRICTION 4 .49 1397.72 1.02* 1441.48 148.20-1. 91 Dc 903.17 0.83* 1842.26 MANHOLE tt 148.30- FRICTION 1. 91 Dc 903.17 0. 82* 1862.69 m 148.40-1.91 Dc 903.17 1. 31* 1106. 67 Mi MANHOLE .148.50-1.91 Dc 903.17 1. 34* 1086.77 FRICTION 147.00-1. 91 Dc 903.17 1.61* 949.69 151 tm Mi m •tt 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 147.10- 147 .20- 147.30- 147.40- JUNCTION FRICTION JUNCTION FRICTION 2.57 1.89*Dc 5.31* 4.32* 939.21 820.21 1400.42 1205.42 1.24* 1.89*Dc 1.33 1.8 6 Dc 1042 .27 820.21 864.79 741.72 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 144.00 FLOWLINE ELEVATION = 373.34 PIPE FLOW = 73.30 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTRE/^ CONTROL HGL = 380.580 FEET NODE 144.00 : HGL = < 380 - 580>;EGL= < 381.108>;FLOWLINE- < 373.340> ***************************************************************************** FLOW PROCESS FROM NODE 144.00 TO NODE 145.00 IS CODE = 1 UPSTREAM NODE 145.00 ELEVATION = 374.87 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 73.30 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 142.10 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 73.30)/( 1436.432))**2 = 0.00260 HF=L*SF = ( 142.10)*(0.00260) = 0.370 NODE 145.00 : HGL = < 380.950>;EGL= < 381.478>;FLOWLINE= < 374.870> Jrjfi*************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 145.10 IS CODE = 5 UPSTREAM NODE 145.10 ELEVATION = 375.87 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) UPSTREAM 63. .10 36.00 90.00 375 . 87 DOWNSTREAM 73. ,30 48 . 00 -374 . 87 LATERAL #1 10. .20 18 .00 90.00 377 . 37 LATERAL #2 0, .00 0 . 00 0.00 0. 00 05 0, .00= ==Q5 EQUALS BASIN INPUT-== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 2,55 8.927 2.59 5.833 1.23 5.772 0.00 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00895 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00260 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00578 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.023 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.080)+( 0.023)+( 0.000) = 2.103 NODE 145.10 : HGL = < 382.344>;EGL- < 383.582>;FLOWLINE- < 375.870> ****************************************************************************** FLOW PROCESS FROM NODE 14 5.10 TO NODE 145.20 IS CODE = 1 UPSTREAM NODE 145.20 ELEVATION - 377.32 (FLOW IS UNDER PRESSURE) 152 971004.-5 UNIVERSITY COMMONS BROOKHELD HOMES CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 63.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 122.10 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 63.10)/( 666.985))**2 = 0.00895 HF=L*SF = ( 122.10)*(0.00895) = 1.093 NODE 145.20 : HGL = < 383.437>;EGL= < 384.674>;FLOWLINE= < 377.320> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 145.30 145.20 TO NODE 145.30 IS CODE = 5 ELEVATION = 377.65 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) [CFS) 54.00 36.00 0.00 377.65 63.10 36.00 - 377.32 9.10 18.00 45.00 378.82 0.00 0.00 0.00 0.00 0,00===Q5 EQUALS BASIN INPUT=== 2.39 2.55 1.17 0.00 VELOCITY (FT/SEC) 7. 639 8. 927 5.150 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MT^NNING'S N = 0.01300; FRICTION SLOPE = 0.00655 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00895 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00775 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.031 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.186)+( 0.031)+( 0.000) = 0.217 NODE 145.30 : HGL = < 383.985>;EGL= < 384.891>;FLOWLINE= < 377.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 150.00 145.30 TO NODE ELEVATION = 150.00 IS CODE = 1 381.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 54.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 290.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 54.00)/( 666.984))**2 = 0.00655 HF=L*SF = ( 290.00)*(0.00655) = 1.901 NODE 150.00 : HGL = < 385.886>;EGL= < 386.792>;FLOWLINE= < 381.900> ..jtij,**-************************************************************************ FLOW PROCESS FROM NODE UPSTREAM NODE 150.10 150.00 TO NODE 150.10 IS CODE = 5 ELEVATION = 382.40 (FLOW IS UNDER PRESSURE) m CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 38 .00 54 .00 13. 00 0.00 3.00== DIAMETER ANGLE FLOWLINE CRITICAL INCHES) (DEGREES) ELEVATION DEPTH(FT.) 30.00 0.00 382.40 36.00 - 381.90 18.00 90.00 383.40 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE 2. 08 2 . 39 1. 35 0 . 00 0.00858 0 .00655 VELOCITY (FT/SEC) 7 .741 7 . 639 7 . 356 0.000 153 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Ml m mm m AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00757 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0.181 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.642)+( 0.030)+( 0.181) = 0.853 NODE 150.10 : HGL = < 386.714>;EGL= < 387.645>;FLOWLINE= < 382.400> Jr***************************************************************************** FLOW PROCESS FROM NODE 150.10 TO NODE 149.00 IS CODE = 1 UPSTREAM NODE 149.00 ELEVATION = 403.67 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 38.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 449.10 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1-14 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.08 2.08 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ •m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.084 8. 690 3.257 901.14 m 0.042 2.046 8,835 3.259 901.58 0.173 2.008 8 . 989 3.264 902.92 0.401 1. 970 9.154 3.272 905.20 0.736 1. 932 9. 330 3.285 908 .46 MM 1. 190 1.895 9.517 3.302 912.74 1.776 1.857 9.716 3.324 918.08 2. 510 1. 819 9. 928 3.351 924.56 3. 412 1.781 10.153 3.383 932.21 4 .505 1.744 10.392 3,422 941 . 12 5. 817 1 .706 10.647 3.467 951.35 7.382 1. 668 10,918 3.520 962.99 9.242 1. 630 11.206 3.581 976,13 Ml 11.451 1. 592 11.513 3. 652 990.86 14 . 076 1. 555 11.841 3.733 1007.31 m 17.204 1.517 12.190 3.826 1025.59 •ltt 20.949 1. 479 12.563 3 . 931 1045.85 25.470 1.441 12.962 4 .052 1068.23 30.987 1. 403 13.390 4 .189 1092.92 mm 37.825 1.366 13.848 4 .345 1120.11 m 46.487 1. 328 14.341 4 .523 1150 .02 57.822 1.290 14 . 870 4 .726 1182.90 mt 73.419 1,252 15.441 4. 957 1219.04 96.852 1.215 16.058 5.221 1258.76 m 139.598 1. 177 16.725 5.523 1302.44 449.100 1. 172 16.814 5.564 1308.32 Mi HYDRAULIC JUMP : UPSTREAM RUN ANALYSIS RESULTS tm DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT ) = 4.31 Ml PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 154 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES •m 0.000 4. 314 7.741 5.245 1508.73 46.791 2.500 7.741 3.431 952.95 m iM ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 46.791 2.500 7.739 3.431 952.95 MM 47 .174 2.483 7 .746 3.416 948.37 47.517 2. 4 67 7.759 3.402 944.24 Ml 47.834 2.450 7.776 3.390 940.40 48.132 2.433 7.796 3.378 936.81 m 48.411 2.417 7 . 819 3.367 933.43 m 48.675 2.400 7 .844 3.356 930.25 m 48.924 2.383 7.872 3.346 927,25 49.159 2.. 367 7. 901 3.337 924.43 m 49.380 2.350 7. 933 3.328 921.79 m 49.588 2.333 7 . 967 3.320 919.30 49.784 2.317 8 .002 3.312 916.99 49.967 2.300 8.040 3,304 914.83 50.137 2.283 8.079 3.298 912.83 fl 50.295 2.267 8 .120 3.291 910.98 50.441 2.250 8.163 3.286 909.30 «•• 50.574 2.234 8.208 3.280 907.76 50.694 2.217 8.254 3.276 906.39 m 50.801 2 .200 8.303 3.271 905.17 50.895 2.184 8.353 3.268 904.11 •mm 50.976 2.167 8 .404 3.264 903.21 51.042 2. 150 8 .458 3.262 902.47 .tmf 51.095 2.134 8. 513 3.260 901,89 51.133 2.117 8.570 3.258 901.47 ,™ 51.157 2. 100 8. 629 3.257 901.22 51.165 2.084 8 . 690 3.257 901.14 449.100 2.084 8.690 3.257 901.14 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 16.90 FEET UPSTREAM OF NODE 150.10 DOWNSTREAM DEPTH = 3.659 FEET, UPSTREAM CONJUGATE DEPTH = 1.172 FEET NODE 149.00 : HGL = < 405.754>;EGL= < 406.927>;FLOWLINE= < 403.670> Ml m m ****************************************************************************** FLOW PROCESS FROM NODE 149.00 TO NODE 149.10 IS CODE = 5 UPSTREAM NODE 149.10 ELEVATION = 404.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 38 .00 38 .00 0.00 0.00 0. 00=^ DIAMETER ANGLE FLOWLINE CRITICAL INCHES; DEGREES) ELEVATION DEPTH(FT 30.00 90.00 404.00 2.08 30.00 - 403.67 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=-= VELOCITY (FT/SEC) 7.741 8. 693 0. 000 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00858 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0.00834 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00846 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.034 FEET ENTRANCE LOSSES = 0.000 FEET 155 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.891)+( 0.034)+( 0.000) = 1.925 NODE 149.10 : HGL = < 407 . 921>;EGL= < 408 . 852>; FLOWLINE= < 404.OOO ****************************************************************************** FLOW PROCESS FROM NODE 149.10 TO NODE 148.00 IS CODE = 1 UPSTREAM NODE 148.00 ELEVATION = 411.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 38.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 343.60 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS Mi NORMAL DEPTH(FT) = 1.47 CRITICAL DEPTH(FT) 2.08 mm UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.08 m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 0.000 2.084 8 .690 3.257 901.14 0.058 2.059 8.783 3.258 901.32 ma 0.238 2.034 8.881 3.260 901.89 0.549 2 .010 8.983 3.263 902.85 Wl 1.004 1.985 9.089 3.269 904.20 1.616 1. 960 9. 200 3.275 905.97 im 2.400 1.936 9. 315 3.284 908.15 3.375 1.911 9. 435 3.294 910.77 MM 4 .563 1.886 9.561 3.307 913.84 5. 991 1.862 9. 691 3.321 917.36 7. 689 1.837 9.827 3.337 921.36 9. 696 1. 812 9.968 3.356 925.86 m 12.059 1.788 10.115 3. 377 930.86 14.835 1.763 10.268 3.401 936.39 •m 18.100 1.738 10.427 3.428 942 .48 21. 948 1.714 10.593 3.457 949.13 tt 26.505 1. 689 10.766 3. 490 956.37 31.940 1. 664 10.946 3. 526 964.23 m 38.494 1. 640 11.133 3 .565 972.73 46.517 1. 615 11.328 3. 609 981.90 56.552 1. 590 11.532 3. 656 991.77 69.512 1.566 11.744 3.708 1002.38 mt 87.106 1. 541 11.965 3.765 1013.74 fl 113.176 1. 516 12.196 3.827 1025.92 160.054 1.492 12.437 3. 895 1038.93 mm 343.600 1.490 12.454 3. 900 1039.85 m HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS mm DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT ) = 3.92 m PRESSURE FLOW PROFILE COMPUTED INFORMATION: m DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 0. 000 3. 921 7 .741 4 .852 1388 .28 120.549 2 . 500 7.741 3.431 952.95 Ml mm 156 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2 .50 mm GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: m DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) mm 120.549 2.500 7.739 3.431 952.95 121.785 2.483 7.746 3.416 948.37 m 122.869 2. 467 7.759 3.402 944.24 123.866 2.450 7.776 3.390 940.40 •mm 124.793 2.433 7.796 3.378 936.81 m 125.661 2.417 7.819 3.367 933.43 m 126.478 2.400 7.844 3.356 930.25 127.247 2.383 7.872 3.346 927.25 m 127.972 2.367 7.901 3.337 924.43 128.654 2.350 7.933 3. 328 921.79 129.297 2.333 7 .967 3.320 919.30 129.900 2.317 8.002 3.312 916.99 Ml 130.465 2.300 8.040 3.304 914.83 m 130.992 2.283 8.079 3.298 912.83 131.481 2 .267 8.120 3.291 910.98 131.932 2.250 8.163 3.286 909.30 132.346 2.234 8.208 3.280 907 .76 m 132.720 2 .217 8.254 3.276 906.39 133.055 2 ,200 8.303 3.271 905.17 mm 133.350 2.184 8.353 3.268 904.11 133.604 2 .167 8 .404 3.264 903.21 mm 133.816 2 . 150 8.458 3.262 902.47 133.983 2.134 8.513 3.260 901.89 134.105 2. 117 8.570 3.258 901.47 134.180 2 .100 8. 629 3.257 901.22 mt 134.206 2.084 8. 690 3.257 901 . 14 mt 343.600 2.084 8. 690 HYDRAULIC JUMP 3.257 ANALYSIS 901.14 PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 96.62 FEET UPSTREAM OF NODE 149.10 DEPTH = 2.782 FEET, UPSTREAM CONJUGATE DEPTH =^ 1.4 91 FEET NODE 148.00 : HGL = < 413.084>;EGL= < 414,257>;FLOWLINE= < 411.000> j,.**>.*j,*.*********************************************************************** FLOW PROCESS FROM NODE 148.00 TO NODE 148.10 IS CODE = 5 UPSTREAM NODE 148.10 ELEVATION = 411.50 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL tt2 Q5 FLOW (CFS) 34 . 00 38 . 00 2. 00 0 . 00 2 .00=^ DIAMETER ANGLE (INCHES) (DEGREES; FLOWLINE ELEVATION 24.00 90.00 411.50 30.00 - 411.00 18.00 90.00 412.00 0 . 00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT,) 1,91 2.08 0.53 0.00 VELOCITY (FT/SEC) 21.223 8. 693 2. 088 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08574 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00834 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04704 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES = 0.188 FEET ENTRANCE LOSSES = 0.235 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 4.830)+( 0.188)+( 0.235) = 5.253 157 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Ml Mi Mi NODE 148.10 : HGL = < 412.1 516>;EGL= < 419.510>;FLOWLINE= < 411.500> m j,j,^^jrj^**Ajjj,******************************************************************* m FLOW PROCESS FROM NODE 14 8. 10 TO NODE 14 8.20 IS CODE - 1 •mt UPSTREAM NODE 148.20 ELEVATION = 419 .50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): fli PIPE FLOW 34.00 CFS PIPE DIAMETER = 24.00 INCHES Ml PIPE LENGTH = 110.30 FEET MANNING'S N = 0. 01300 Mi NORMAL DEPTH(FT) 1. 07 CRITICAL DEPTH(FT) = 1.91 Ml UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.83 m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 'fl DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.831 27.545 12.620 1842.26 3.495 0.840 27.134 12.280 1815.87 fl 7.088 0.850 26.734 11.954 1790.26 10.788 0.859 26.345 11.643 1765.39 14.607 0.869 25.967 11.345 1741.23 18.556 0.878 25.599 11.060 1717 .75 22.649 0.888 25.240 10.786 1694.94 26.902 0.897 24.892 10.524 1672.77 Ml 31.336 0.907 24.552 10.273 1651.21 35.971 0. 916 24 .222 10.032 1630.24 40.835 0. 926 23.900 9.801 1609.85 45.961 0. 935 23.586 9.579 1590.01 Ml 51.388 0. 945 23.280 9.365 1570.71 57.166 0. 954 22.982 9.160 1551.93 fl 63.356 0. 964 22.691 8.964 1533.64 70.038 0. 973 22.407 8.774 1515.84 Mi 77 .318 0.983 22.131 8. 592 1498.51 85.338 0. 992 21.861 8.417 1481.63 fl 94.297 1. 001 21.597 8.249 1465.19 MH 104.488 1.011 21.340 8 .087 1449.17 110.300 1.016 21.216 8 .010 1441.48 NODE 148.20 : HGL = < 420.331>;EGL= < 432.120>;FLOWLINE= < 419.500> jrj^ijt************************************************************************** FLOW PROCESS FROM NODE 148.20 TO NODE 148.30 IS CODE = 2 UPSTREAM NODE 148.30 ELEVATION = 419.83 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 34.00 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 11.926 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* (11.926) = 0.596 NODE 148.30 ; HGL = < 420.654>;EGL= < 432.717>;FLOWLINE= < 419.830> jj + ^jtjr************************************************************************* FLOW PROCESS FROM NODE 148.30 TO NODE 148.40 IS CODE = 1 UPSTREAM NODE 148.40 ELEVATION - 435.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW - 34.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 63.50 FEET MANNING'S N - 0.01300 158 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES m NORMAL DEPTH(FT) 0.76 CRITICAL DEPTH(FT) 1.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.308 15.612 5.095 1106.67 0. 636 1.286 15.919 5.224 1123.93 1.329 1.264 16.241 5.362 1142.21 2.087 1.242 16.577 5.512 1161.56 2.915 1.220 16.930 5.674 1182.04 3.824 1.198 17.300 5.849 1203.72 4.821 1.176 17.689 6.038 1226.67 5.918 1.154 18.097 6.243 1250.96 7.130 1.132 18.526 6.465 1276.69 8.471 1.110 18.977 6.706 1303.93 9. 960 1.088 19.452 6. 967 1332.80 11.622 1.066 19.952 7 .252 1363.40 13.484 1.044 20.479 7.561 1395.85 15.582 1.022 21.036 7.898 1430.29 17.962 1.001 21.624 8 .266 1466.86 20.680 0. 979 22.246 8.668 1505.72 23.815 0. 957 22.904 9.108 1547.04 27.470 0. 935 23.602 9.590 1591.02 31.792 0. 913 24 .342 10.119 1637 .88 36.997 0 .891 25.129 10.702 1687.86 43.418 0. 869 25.967 11.345 1741.22 51.616 0.847 26.859 12.056 1798.27 62.643 0.825 27.811 12.843 1859.34 63.500 0.824 27.863 12 .887 1862.69 NODE 148.40 : HGL = < 436. 478>;EGL= < 440.265>;FLOWLINE= < 435.170> ****************************************************************************** FLOW PROCESS FROM NODE 148.40 TO NODE 148.50 IS CODE = 2 UPSTREAM NODE 148.50 ELEVATION = 435.50 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 34.00 CFS PIPE DIAMETER = 24.00 INCHES AVEE^GED VELOCITY HEAD = 3.701 FEET HMN = . 05* (AVERAGED VELOCITY HEAD) = . 05* ( 3.701) = 0.185 NODE 148.50 : HGL = < 436.835>;EGL= < 440.451>;FLOWLINE= < 435.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 147.00 148.50 TO NODE 147.00 IS CODE = 1 ELEVATION = 439,57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH - 100.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.29 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.61 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; 1 . 91 Ml 159 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.612 12.524 4 .049 949.69 1.436 1.599 12.620 4 .074 953.84 2. 985 1.586 12.719 4.100 958.17 4.657 1.573 12.820 4.127 962.71 6.464 1.560 12.925 4 .156 967.44 8.419 1.547 13.032 4.186 972.39 mt 10.536 1.534 13.142 4 .218 977.54 12.835 1.521 13.255 4 .251 982.90 '" 15.335 1.508 13.371 4.286 988,49 18.061 1.495 13.490 4.323 994.29 21.043 1.482 13.613 4 .362 1000.33 24.317 1.469 13.739 4 .402 1006.60 27.926 1.456 13.868 4. 445 1013.12 fl 31.925 1.443 14.000 4 . 489 1019.87 36.382 1.431 14.136 4 .535 1026.88 41.385 1.418 14.276 4 . 584 1034.15 47.051 1.405 14.419 4. 635 1041.68 MM 53.537 1.392 14.567 4 . 688 1049.49 61.063 1.379 14.718 4.744 1057.58 69.954 1.366 14.873 4 . 803 1065.95 80.711 1.353 15.033 4. 864 1074.62 94 .174 1.340 15.197 4 . 928 1083.60 100.300 1.335 15.254 4. 951 1086.77 NODE 147.00 : HGL = < 441.182>;EGL= < 443.619>;FLOWLINE= < 439.570> .^j,jr*jrj,j,Ajt********************************************************************* FLOW PROCESS FROM NODE 147.00 TO NODE 147.10 IS CODE = 5 OPSTREAM NODE 147.10 ELEVATION = 439.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) m UPSTREAM 32.00 24.00 0.00 439.90 1.89 15.709 DOWNSTREAM 34,00 24.00 439.57 1.91 12.528 •« LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 •M Q5 2.00===Q5 EQUALS BASIN INPUT=== mt JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION fl UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, 04061 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0. 02329 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03195 IP JUNCTION LENGTH 4.00 FEET fl FRICTION LOSSES = 0.128 FEET ENTRANCE LOSSES = 0.4 87 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) •SB JUNCTION LOSSES = ( 0.733)+( 0.128)+( 0.4 87) = 1.348 fl NODE 147.10 : HGL = < 441 . 135>;EGL= < 444.967>;FLOWLINE= < 439.900> mm ^jt^jj^j^**^********************************************************************* FLOW PROCESS FROM NODE 14 7.10 TO NODE 147.20 IS CODE = 1 fl UPSTREAM NODE 147.20 ELEVATION = 442.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW - 32.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 36.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1 . 04 CRITICAL DEPTH(FT) = 1 . 89 160 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.89 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.890 10.408 3.573 820.21 0.055 1.856 10.522 3.576 820.78 0.217 1.821 10.652 3.584 822.42 0.487 1.787 10.798 3.599 825.12 0.869 1.753 10.960 3.619 828.85 1.369 1.719 11.136 3.646 833.63 1. 996 1. 685 11.328 3.67 9 839.47 2.762 1.650 11.536 3.718 846.39 fl 3. 682 1.616 11.761 3.765 854.45 4 .776 1.582 12.002 3.820 863.69 •mm 6.067 1.548 12.262 3.884 874.16 7.583 1.514 12.540 3.957 885.92 m 9.360 1.480 12.839 4 . 041 899.07 11.443 1.445 13.159 4.136 913.67 13.891 1.411 13.502 4.244 929.83 16.778 1.377 13.869 4 .366 947.66 HM 20.204 1.343 14.264 4.504 967.27 24 .305 1.309 14.687 4.660 988.81 ^..^ 29.270 1.274 15.142 4.837 1012.44 35.383 1.240 15.630 5.036 1038.31 36.500 1.235 15.704 5.067 1042.27 NODE 147.20 : HGL = < 4 44. 390>;EGL= < 446.073>;FLOWLINE= < 442.500> .^^.A************************************************************************** FLOW PROCESS FROM NODE 147.20 TO NODE 147.30 IS CODE = 5 UPSTREAM NODE 147.30 ELEVATION = 442.83 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 30.00 24.00 90.00 4 42.83 1.86 9.54 9 DOWNSTREAM 32.00 24.00 - 442.50 1.89 10.411 LATERAL #1 0-00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.00=—Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTRE7\M: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01759 D0WNSTRE7VM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01730 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01744 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.070 FEET ENTRANCE LOSSES = 0.337 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES - ( 3.079)+( 0.070)+( 0.337) = 3.485 NODE 147.30 : HGL = < 448.142>;EGL= < 449.558>;FLOWLINE= < 442.830> J,.***jr********************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 147.40 147.30 TO NODE ELEVATION = 147.40 IS CODE = 1 444.50 (FLOW IS UNDER PRESSURE; CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 30.00 CFS PIPE DIAMETER = 24.00 INCHES 161 fl 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES PIPE LENGTH = 38 . 4 0 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 30.00)/( 226.225))**2 = 0.01759 HF=L*SF = ( 38.40)*(0.01759) = 0.675 NODE 147.40 : HGL = < 44 8 . 817>; EGL= < 450. 233>; FLOWLINE= < 444.500> — ^.^.^^jrjj^^j,.^^.tj,.*j,***************************** + ********************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 147.40 FLOWLINE ELEVATION = 444,50 ASSUMED UPSTREAM CONTROL HGL = 4 4 6. 36 FOR DOWNSTREAM RUN ANALYSIS •m fl ==____======================================================= ====== END OF GRADUALLY VARIED FLOW ANALYSIS fl M 162 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (1G2-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING N. ON STREET 'L' & E. ON STREET 'K' * * FILE: G:\ACCTS\971004\AES102.OUT **Refer to Exhibit «X"** * j,*jfjrjj**jj*.*.**************************************************************** FILE NAME: G:\ACCTS\971004\AES102.DAT TIME/DATE OF STUDY: 15:24 12/29/2000 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS; 145.00- FRICTION 3.58* 699.66 1.09 541.48 JIM 158.00- JUNCTION 1.46*Dc 468.76 1.46*Dc 468.76 158.10-5.19* 583.97 0.63 249.05 FRICTION HYDRAULIC JUMP mt 155.00-1.18*Dc 162.06 1.18*Dc 162.06 m JUNCTION m 155.10-2.06* 168.98 0. 60 75.16 MSB FRICTION 155.20-1. 40* 96.56 0.8 3 Dc 64 .92 Ml MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION jjjjt^jtA-************************************************************************ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 145.00 FLOWLINE ELEVATION = 377.37 PIPE FLOW = 18.80 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 380.950 FEET NODE 145.00 : HGL = < 380.950>;EGL= < 382.707>;FLOWLINE= < 377.370> ****************************************************************************** FLOW PROCESS FROM NODE • 145.00 TO NODE 158. 00 IS CODE = 1 UPSTREAM NODE 158.00 ELEVATION = 390.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): 163 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES PIPE FLOW PIPE LENGTH = 18.80 CFS PIPE DIAMETER = 18.00 INCHES 291.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3. 58 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.580 10.639 5.337 699.66 182.931 1.500 10.639 3.257 470.29 NORMAL DEPTH(FT) = 1.07 CRITICAL DEPTH(FT) 1.46 1.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 182.931 1.500 10.635 3.257 470.29 fl 183.052 1.498 10.636 3.256 470.13 183.153 1.497 10.637 3.255 470.00 fll 183.242 1.495 10.639 3.254 469.87 183.322 1. 493 10.641 3.253 469.76 183.395 1.492 10.643 3.252 469.65 183.461 1.490 10.645 3.251 469.55 fl 183.521 1.488 10.648 3.250 469.46 183.577 1.487 10.650 3.249 469.38 — 183.627 1.485 10.653 3.248 469.30 183.673 1.483 10.656 3.248 469.23 UMI 183.715 1.482 10.659 3.247 469.17 183.754 1.480 10.663 3.247 469.11 183.788 1.478 10.666 3.246 469.05 183.819 1 .477 10.670 3.246 469.00 fli 183.847 1.475 10.674 3.245 468.96 183.872 1.474 10 . 678 3.245 4 68.92 m 183.894 1. 472 10.682 3.245 468.88 fl 183.913 1.470 10. 686 3.244 468.85 ^m 183.929 1.469 10.690 3.244 468.83 183.943 1.467 10.694 3.244 468.80 mm 183.953 1 .465 10.699 3.244 468.79 m 183.962 1.464 10.703 3.244 468.77 183.968 1.4 62 10.708 3.244 468.76 183.971 1 .460 10.713 3.244 468.76 183.972 1.459 10 . 718 3.244 468.76 fl 291.000 1.459 10.718 3.244 468.76 NODE 158.00 : : HGL = < 391. 459>;EGL= < 393.243>;FLOWLINE= < 390.000> .^J,*J,*Jr*,*********************************************************************** FLOW PROCESS FROM NODE 158.00 TO NODE 158.10 IS CODE = 5 UPSTREAM NODE 158.10 ELEVATION = 390.33 (FLOW IS AT CRITICAL DEPTH) Ml CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 9.30 18.00 90.00 390.33 18.80 18.00 - 390.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CRITICAL DEPTH(FT.; 1. 18 1.46 0.00 0.00 VELOCITY (FT/SEC) 5 .263 10.721 0.000 0. 000 164 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Q5 9.50===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00784 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02830 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01807 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.072 FEET ENTRANCE LOSSES = 0.357 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.273)+( 0.072)+( 0.357) = 2.702 NODE 158.10 : HGL = < 395.516>;EGL= < 395.946>;FLOWLINE= < 390.330> ****************************************************************************** FLOW PROCESS FROM NODE 158.10 TO NODE 155.00 IS CODE = 1 UPSTREAM NODE 155.00 ELEVATION = 412.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 9.30 CFS PIPE DIAMETER = 18.00 INCHES m PIPE LENGTH = 342.20 FEET MANNING'S N = 0. 01300 mt HYDEIAULIC JUMP: 1 DOWNSTREAM RUN ANALYSIS RESULTS m NORMAL DEPTH(FT) 0.61 CRITICAL DEPTH(FT) = 1.18 -UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.1 1 00 1 •fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: H,. DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) mm 0 . OOO 1.179 6.241 1.784 162.06 0. 017 1. 156 6.361 1.785 162.15 •m 0. 072 1 . 134 6.489 1.788 162.41 0. 167 1. Ill 6. 625 1.793 162.86 fl 0.307 1.088 6.769 1.800 163.51 0 .498 1.066 6.923 1.811 164.37 m 0.746 1. 043 7 .086 1.823 165.44 1. 059 1.021 7.260 1.840 166.75 fl 1. 445 0 . 998 7.445 1.859 168.29 1 . 914 0. 976 7 . 641 1.883 170 .10 fl 2.480 0. 953 7.850 1. 911 172 .19 fl 3.158 0 . 930 a . 074 1. 943 174 . 56 3.967 0 . 908 8. 312 1 . 981 177.26 4 . 932 0.885 8.566 2.025 180.29 6. 083 0. 863 8.838 2.076 183.69 fl 7.460 0.840 9.129 2.135 187 .48 9.116 0.818 9.441 2.203 191.70 m 11.122 0.795 9.777 2.280 196.38 13.579 0.772 10.137 2. 369 201.56 fl 16.637 0.750 10 . 526 2.471 207.30 20.527 0.727 10.945 2. 589 213.64 fl 25.636 0.705 11.399 2.724 220.65 32.694 0. 682 11.892 2 . 879 228 .40 Ml 43.340 0. 659 12.427 3.059 236.98 62.839 0. 637 13.010 3.267 246,46 mm 342.200 0. 631 13.168 3.325 249,05 fl HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5,19 165 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES PRESSURE FLOW PROFILE COMPUTED INFORMATION: m m DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ m m CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.186 5.263 5.616 583.97 m 66.425 1.500 5.263 1.930 177.55 fl ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: Ml DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ mt CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 66.425 1.500 5.261 1.930 177.55 m 66.635 1.487 5.268 1.918 176.26 66.826 1.474 5.281 1. 908 175.08 mm 67 .005 1. 461 5.298 1.898 173.97 67 .175 1.449 5.318 1.888 172.93 m 67.336 1.436 5.340 1 .879 171.94 67 .489 1.423 5.366 1. 870 171.00 mi 67.635 1.410 5.393 1.862 170.11 67 .774 1.397 5.423 1.854 169.26 fl 67.906 1.384 5.455 1.847 168.47 68.031 1.371 5.489 1.840 167.72 68.150 1.359 5.525 1.833 167.01 68.262 1.346 5.563 1.827 166.35 fl 68.367 1.333 5. 603 1.821 165.74 68.465 1.320 5. 644 1.815 165.17 —-68.556 1.307 5.688 1.810 164.64 68.640 1.294 5.734 1.805 164.17 mM 68.716 1.282 5.782 1.801 163.73 68 .785 1.269 5.832 1.797 163.35 HH 68 . 845 1.256 5.884 1.794 163.01 68,898 1.243 5. 938 1.791 162.73 Mi 68.942 1.230 5.994 1.788 162.49 68.977 1.217 6.053 1 .786 162.30 mi 69.002 1.204 6.113 1.785 162.17 mt 69.018 1.192 6.176 1.784 162.09 ^m 69,023 1.179 6.241 1.784 162.06 342.200 1.179 6.241 1.784 162.06 W HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 54.82 FEET UPSTREAM OF NODE 158.10 DEPTH = 2.144 FEET, UPSTREAM CONJUGATE DEPTH = 0.632 FEET NODE 155.00 : HGL = < 413.179>;EGL= < 413.784>;FLOWLINE= < 412.000> Jr***************************************************************************** FLOW PROCESS FROM NODE 155.00 TO NODE 155.10 IS CODE = 5 UPSTREAM NODE 155.10 ELEVATION = 412.33 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: fl PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4 . 70 9. 30 0.00 0. 00 4 DIAMETER ANGLE FLOWLINE CRITICAL INCHES) (DEGREES) ELEVATION DEPTH(FT 18.00 90.00 412.33 18.00 - 412.00 0,00 0.00 0,00 0.00 0.00 0.00 60===Q5 EQUALS BASIN INPUT=== 0. 83 1. 18 0. 00 0.00 VELOCITY (FT/SEC) 2. 660 6.243 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 166 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00200 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00851 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00525 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.021 FEET ENTRANCE LOSSES = 0.121 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.577)+( 0.021)+{ 0.121) = 0.719 NODE 155.10 : HGL = < 414.393>;EGL= < 414.503>;FLOWLINE^ < 412.330> ^ ****************************************************************************** m FLOW PROCESS FROM NODE 155.10 TO NODE 155.20 IS CODE = 1 UPSTREAM NODE 155.20 ELEVATION = 413.06 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): m PIPE FLOW = 4.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.60 FEET MANNING'S N = 0.01300 ^ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.06 m m PRESSURE FLOW PROFILE COMPUTED INFORMATION : mt DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ fl CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.063 2. 660 2.173 168.98 -31.363 1.500 2. 660 1. 610 106.93 -NORMAL DEPTH(FT) 0.58 CRITICAL DEPTH(FT) 0.83 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: na DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) Ml 31.363 1 . 500 2.659 1. 610 106.93 32.793 1.473 2 . 670 1.584 104.09 fl 34.171 1 .447 2. 689 1.559 101.34 jm 35.519 1.420 2.715 1 .534 98. 68 mi 36.600 1.398 2.739 1. 515 96.56 NODE 155.20 : HGL = < 414 .458>;EGL= < 414.575>;FLOWLINE= < 413.060> fl ****************************************************************************** ^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 155.20 FLOWLINE ELEVATION = 413.06 M ASSUMED UPSTREAM CONTROL HGL = 413.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 167 971O04-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE ^ (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) fl Ver. 8.0 Release Date: 01/01/99 License ID 1423 ^ Analysis prepared by: Mi O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 fl Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (103-SERIES) * ^ * SOUTH BROOKFIELD - S.D. ALONG STREET 'G' * * FILE: G:\ACCTS\971004\AES103.OUT T.L.G. **Refer to Exhibit «X"** * ************************************************************************** fl - FILE NAME: G:\ACCTS\971004\AES103.DAT TIME/DATE OF STUDY: 13:42 01/02/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 137.00- 2.44 1435.90 1.64* 1741.21 FRICTION 138.00- 2.44*Dc 14 35.90 2.43*Dc 14 35.90 JUNCTION 138.10- 2.93* 1187.66 1.64 1122.00 FRICTION HYDRAULIC JUMP 143.00- 2.16*Dc 1015.37 2.16*Dc 1015.37 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 137.00 FLOWLINE ELEVATION = 385.68 PIPE FLOW = 56.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 387.7 20 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2,04 FT.) IS LESS THAN CRITICAL DEPTH( 2.44 FT.) ^==> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 137.00 : HGL = < 387.322>;EGL= < 390.494>;FLOWLINE= < 385.680> *jt***jr************************************************************************ FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 1 UPSTREAM NODE 138.00 ELEVATION = 390.20 (FLOW IS SUPERCRITICAL) 168 fl 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES in CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 56.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 198.40 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.61 CRITICAL DEPTH(FT) = 2.44 m UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:, mt DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ tt CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 2.435 9.208 3.752 1435.90 m 0.080 2.402 9.327 3.753 1436.37 0.300 2.369 9.452 3.757 1437.62 m 0.674 2.336 9.582 3.762 1439.69 1.214 2.303 9.719 3.770 1442.60 m 1.940 2.270 9.862 3.781 1446.37 2.869 2.237 10.012 3.794 1451.04 Ml 4.025 2.204 10.168 3.810 1456.63 5.436 2.171 10.331 3.829 1463.20 fl 7 .133 2.138 10.502 3.851 1470.76 9.156 2.104 10.681 3.877 1479.37 fl 11.553 2.071 10.868 3. 907 1489.06 14.381 2. 038 11.064 3.940 1499.89 fl 17 .712 2.005 11.268 3. 978 1511.90 21.640 1. 972 11.483 4 .021 1525.15 fl 26.281 1.939 11.707 4 .069 1539.70 31.792 1. 906 11.942 4 . 122 1555.60 •m 38.385 1.873 12.188 4 .181 1572.94 mt 46.357 1.840 12.446 4 .247 1591.78 fl 56.145 1.807 12.716 4 .320 1612.20 68 .423 1.774 13.000 4 .400 1634.29 fl 84.328 1.741 13.299 4 .489 1658 .14 tt 105.985 1.708 13.612 4 .587 1683.86 138 .177 1. 675 13.942 4 . 695 1711.55 196.246 1. 642 14 .289 4 .814 1741.35 fl 198.400 1. 642 14 .287 4 .814 1741.21 fl NODE 138.00 : HGL = < 392. 635>;EGL= < 393.952>;FLOWLINE= < 390.200> ****************************************************************************** FLOW PROCESS FROM NODE 138.00 TO NODE 138.10 IS CODE = 5 UPSTREAM NODE 138.10 ELEVATION = 390.70 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 41.30 56. 60 15.30 0.00 DIAMETER (INCHES) 30.00 36.00 24 . 00 0.00 ANGLE ; DEGREES; 0.00 90. 00 0 .00 FLOWLINE ELEVATION 390.70 390.20 391.70 0. 00 CRITICAL DEPTH(FT. : 2.16 2.44 1.41 0.00 VELOCITY (FT/SEC) 8.414 9.200 6.349 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01014 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.00731 AVEFIAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00873 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES = 0.035 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES 169 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES JUNCTION LOSSES = ( 0.741)+( 0.035)+( 0.000) = 0.776 NODE 138.10 : HGL = < 393.629>;EGL= < 394.728>;FLOWLINE= < 390.700> ****************************************************************************** FLOW PROCESS FROM NODE 138.10 TO NODE 143.00 IS CODE = 1 UPSTREAM NODE 143.00 ELEVATION = 393.20 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 135.30 FEET MANNING'S N = 0.01300 fl HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS Ml NORMAL DEPTH(FT) 1. 60 CRITICAL DEPTH(FT) 2.16 Ml UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.16 m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.156 9. 172 3.463 1015.37 0.065 2.134 9.251 3. 464 1015.53 0.266 2.112 9.334 3.466 1016.03 0. 613 2.090 9.421 3.469 1016.86 1.117 2.067 9.511 3.473 1018.04 1.792 2.045 9.605 3.479 1019.57 2. 653 2 .023 9.702 3.486 1021.45 3.719 2.001 9.803 3. 494 1023.70 5.013 1.979 9. 909 3.504 1026.32 IHfl 6.560 1.956 10.018 3.516 1029.32 8 . 394 1.934 10.131 3.529 1032.72 10.553 1. 912 10.249 3.544 1036.52 13.086 1.890 10.370 3. 561 1040.73 16.051 1. 868 10.497 3.580 1045.37 19.524 1.846 10.628 3. 601 1050.45 23.604 1.823 10,764 3. 623 1055.98 fl 28 .417 1.801 10,905 3. 649 1061.98 34.141 1.779 11.050 3. 676 1068.46 41.018 1.757 11.202 3.706 1075.44 49. 408 1.735 11.359 3.739 1082.93 fl 59.869 1 .712 11.521 3 .775 1090.96 73.334 1.690 11.690 3.814 1099.54 91.555 1. 668 11.865 3.855 1108.70 118.468 1. 646 12.047 3. 901 1118.45 m 135.300 1. 638 12.112 3. 917 1122.00 fl HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS m DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT ) = 2.93 m PRESSURE FLOW PROFILE COMPUTED INFORMATION: m DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 2 . 929 8 .414 4 .028 1187.66 fl 51. 441 2. 500 8. 414 3.599 1056.26 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 170 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES .'.Hi GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: •-' DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ HW CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) HW 51 .441 2.500 8 .411 3.599 1056.26 52.852 2.486 8.417 3.587 1052.51 mt 54.061 2.472 8.427 3.576 1049.16 m 55.158 2.459 8.441 3-566 1046.06 m 56.167 2.445 8.458 3.556 1043,17 57.103 2.431 8.476 3. 548 1040.47 57.976 2.417 8 .497 3.539 1037.94 fl 58.792 2.404 8. 519 3.531 1035.57 59.554 2.390 8.543 3.524 1033.34 fl 60.268 2. 376 8 .569 3.517 1031.26 60.935 2.362 8.596 3.511 1029.32 Ml 61.558 2.349 8.625 3.505 1027.51 62.137 2.335 8.655 3.499 1025.83 fl 62.674 2.321 8. 687 3.494 1024.28 63.170 2.307 8.720 3.489 1022.86 Mi 63.624 2.294 8.754 3.484 1021.56 64.038 2.280 8.790 3.480 1020.39 fl 64 .412 2.266 8 .827 3.477 1019,34 64 .744 2.252 8 .866 3.474 1018.41 m 65.035 2.239 8. 906 3.471 1017.61 65.284 2.225 8 .947 3.469 1016.92 — 65.490 2.211 8. 989 3.4 67 1016.37 65.652 2.197 9.033 3.465 1015.93 •IM 65.770 2.184 9.078 3 .464 1015.62 65.842 2.170 9.124 3.463 1015.43 65.866 2.156 9.172 3.463 1015.37 135.300 2.156 9.172 3.463 1015.37 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 28.79 FEET UPSTRE7VM OF NODE 138.10 DEPTH = 2.68 9 FEET, UPSTREAM CONJUGATE DEPTH = 1.65 6 FEET NODE 143.00 : HGL = < 395.356>;EGL= < 396,663>;FLOWLINE= < 393.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 143.00 FLOWLINE ELEVATION = 393.20 ASSUMED UPSTREAM CONTROL HGL = 395.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 171 .fl 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ***************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (104-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING FROM STREET 'H' TO STREET 'G' * * FILE: G:\ACCTS\971004\AESl04.OUT T.L.G. **RefQr to Exhibit «X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES104.DAT TIME/DATE OF STUDY: 13:56 01/02/2001 ******************************************************************************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 138.00- 1.41 283.76 0.58* 610.71 FRICTION 138.20- 1.41*Dc 283.76 1.41*Dc 283.76 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.00 FLOWLINE ELEVATION = 391.70 PIPE FLOW = 15.30 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 392.640 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.94 FT.) IS LESS THAN CRITICAL DEPTH ( 1.41 FT.) CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 138.00 : HGL = < 392.280>;EGL= < 398.627>;FLOWLINE= < 391.700> ****************************************************************************** FLOW PROCESS FROM NODE 138.00 TO NODE 138.20 IS CODE = 1 UPSTREAM NODE 138.20 ELEVATION = 407.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH - 89.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.55 CRITICAL DEPTH(FT) = 1.41 172 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1.41 M GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ •m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0,000 1.410 6.4 62 2.059 283.76 0.011 1.375 6. 640 2.060 284.01 0.044 1.341 6.831 2.066 284.79 0.103 1.306 7.036 2.076 286.13 fl 0.192 1.272 7.257 2.090 288.06 0.315 1.237 7.495 2.110 290.63 fll 0.476 1.203 7.750 2.136 293.90 0.682 1.168 8.026 2.169 297.90 m 0.940 1.134 8.324 2.210 302.71 1.259 1.099 8. 647 2.261 308.40 fl 1.649 1.065 8. 997 2.322 315.04 2.126 1.030 9.378 2.397 322.74 m 2.704 0. 996 9,792 2.485 331.60 3.406 0.961 10.245 2.592 341.73 fl 4.260 0.927 10.741 2.719 353.30 5.303 0.892 11.286 2.871 366.47 Ml 6.582 0.857 11.887 3.053 381.45 8 .167 0.823 12.552 3.271 398.47 fl 10.154 0.788 13.290 3.533 417.82 12.686 0.754 14.115 3.849 439.87 Ml 15.988 0.719 15.039 4.234 465.02 20.439 0. 685 16.082 4 .703 493.82 26.755 0. 650 17.264 5.281 526.89 36.552 0. 616 18.613 5.999 565.08 mm 55.026 0.581 20.165 6.899 609.40 89.300 0.580 20.211 6.927 610.71 m NODE 138.20 : HGL = < 408. 410>;EGL= < 409.059>;FLOWLINE= < 407.000> M ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 407.00 408.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 173 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES •m * * * * *"* ************************************************************************ ^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 fl Analysis prepared by: fl O'Day Consultants, Inc. Mi 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 •m Tel: (760) 931-7700 Fax: (760) 931-8680 Mi ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (105-SERIES) * fl * SOUTH BROOKFIELD - S.D. LATERAL FURTHERST S. ON STREET 'L' * FILE: G:\ACCTS\971004\AESl05.OUT T.L.G. * Mi ************************************************************************** • FILE NAME: G:\ACCTS\971004\AES105.DAT TIME/DATE OF STUDY: 17:21 01/02/2001 **Refer to Exhibit «X"** Ml ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 148.00- 1.08 97.22 0.66* 115.73 FRICTION 14 8.60- 0.97*Dc 95.56 0.97*Dc 95.56 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 148.00 FLOWLINE ELEVATION = 412.00 PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 413.080 FEET NODE 148.00 : HGL = < 412.660>;EGL= < 413.760>;FLOWLINE= < 412.000> ****************************************************************************** FLOW PROCESS FROM NODE 14 8.00 TO NODE 14 8. 60 IS CODE = 1 UPSTREAM NODE 148.60 ELEVATION = 413.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 174 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNC 0.000 0.970 5.209 1.392 95. 56 'M 0.019 0.956 5.296 1.392 95.59 0.077 0.943 5.387 1.393 95.68 ->•« 0.180 0,929 5. 481 1.395 95.83 fl 0.331 0,915 5.579 1.398 96.04 0.536 0.901 5. 681 1.403 96.32 0.801 0.887 5.787 1.408 96.67 1.134 0.873 5. 898 1.414 97.09 fl 1.543 0.860 6. 014 1.421 97.59 2.038 0.846 6.134 1.430 98.17 fl 2.631 0.832 6.260 1.441 98.82 3.338 0.818 6. 391 1.453 99.56 m 4 .176 0 .804 6. 528 1.466 100.40 5.167 0.790 6.671 1.482 101.32 fl 6.341 0.777 6.821 1.499 102.34 7 .733 0.763 6.977 1.519 103.47 Mi 9.392 0.749 7 .141 1.541 104.70 11.384 0.735 7.313 1.566 106.05 fl 13.801 0.721 7 .494 1.594 107.52 16.777 0.707 7 . 683 1.625 109.12 fl 20.522 0.694 7 .882 1.659 110.85 25.386 0.680 8 .092 1. 697 112.73 MM 32.028 0.666 8. 312 1.739 114.76 36.500 0 . 660 8 .416 1.760 115.73 NODE 148.60 : HGL = < 413 . 970>; EGL= < 414 . 392>; FLOWLINE= < 413.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 148.60 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 413.00 413.97 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 175 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES fl fl ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 TVnalysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (106-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL MIDWAY STREET 'L', S. OF STREET 'B' * * FILE: G:\ACCTS\971004\AES106.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES106.DAT TIME/DATE OF STUDY: 11:17 08/13/2001 **Refor to Exhibit "X"** ~* **************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 150,00- 2.49* 214.08 0.59 71.18 FRICTION 150.20- 1.83* 140.97 0.81 Dc 61.34 MT^IMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 150.00 FLOWLINE ELEVATION = 383.40 PIPE FLOW - 4.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 385.890 FEET NODE 150.00 : HGL = < 385 . 890>;EGL- < 385. 991>;FLOWLINE= < 383.400> ****************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.20 IS CODE = 1 UPSTREAM NODE 150.20 ELEVATION = 384.13 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 4.50 CFS PIPE DIAMETER 18 .00 INCHES PIPE LENGTH = 36.50 FEET MANNING' 'S N = 0.01300 SF=(Q/K)**2 = ( ( 4.50)/( 105.043))**2 = 0 .001 84 HF-L*SF = ( 36, .50)*(0.00184) = 0.067 NODE 150.20 : HGL = < 38 5 . 957 >; EGL= < 386. 058>; FLOWLINE= < 384.130> ****************************************************************************** 176 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES fl tm UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 150.20 FLOWLINE ELEVATION = 384.13 ASSUMED UPSTREAM CONTROL HGL = 384.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Ml Ml 177 fl fl Mi m 971004-5 UNTVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004-UNIVERSITY COMMONS (107-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL ON STREET 'A', FURTHERST SOUTH * * FILE:\ACCTS\971004\AES107.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES107.DAT TIME/DATE OF STUDY: 17:42 01/02/2001 **Refer to Exhibit «X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM ( POUNDS ) 137.20- 0.50 18.84 0.41* 20.07 FRICTION 137.60- 0.50*Dc 18.84 0.50*Dc 18.84 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ********************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 137.20 FLOWLINE ELEVATION = 390.95 PIPE FLOW = 1.80 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL - 389.600 FEET *NOTE- ASSUMED DOWNSTREAM CONTROL DEPTH( -1.35 FT.) IS LESS THAN CRITICAL DEPTH( 0.50 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 137.20 : HGL = < 391. 363>; EGL= < 391. 685>; FLOWLINE= < 390.950> * ** * ************************************************************************** FLOW PROCESS FROM NODE 137.20 TO NODE 137. 60 IS CODE = 1 UPSTREAM NODE 137.60 ELEVATION = 391.40 (FLOW IS SUPERCRITICAL; CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1-80 CFS PIPE DIAMETER = 18,00 INCHES PIPE LENGTH = 40.50 FEET MANNING'S N = 0.01300 'NORMAL~DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) = 0.50 178 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 0,50 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0.505 3.444 0.689 18.84 m 0.009 0.501 3.480 0.689 18 .84 0. 038 0.497 3,517 0.689 18 .85 m 0. 089 0.493 3.555 0.690 18.85 mm 0.164 0.490 3. 593 0. 690 18 .87 0 .264 0.486 3.632 0.691 18.88 0.394 0. 482 3. 672 0.691 18. 91 mm 0. 555 0.478 3.712 0.692 18. 93 fl 0.752 0.474 3.754 0.693 18 .96 0. 990 0.470 3.796 0.694 18 . 99 i« 1.273 0.4 67 3.839 0. 696 19. 03 1. 608 0.463 3.883 0. 697 19.07 fl 2 . 003 0.459 3, 928 0. 699 19.12 2 .467 0.455 3.974 0.700 19.17 •m 3.012 0.451 4.021 0.702 19.23 3. 656 0.447 4 .069 0.705 19.29 fl 4 . 417 0 .444 4 ,118 0.707 19. 35 5. 324 0.440 4 .168 0.710 19.42 6. 417 0.436 4 .219 0.712 19.50 7.753 0.432 4 .271 0.715 19.58 mt 9. 422 0.428 4 .325 0.719 19. 67 11.573 0.424 4 .379 0.722 19.76 •m 14 .486 0.421 4 .435 0.726 19.86 18 .794 0.417 4 .492 0.730 19.96 fl 26.518 0.413 4 . 551 0.735 20.07 iim 40.500 0.413 4 .552 0.735 20.07 fl NODE 137.60 : . HGL = < 391. . 905>;EGL= < 392.089>;FLOWLINE= < 391.400> ****************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 137.60 ASSUMED UPSTREAM CONTROL HGL = ************************************************ FLOWLINE ELEVATION = 391.40 391.90 FOR DOWNSTRETU^ RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 179 971004-5 UNrVERSHY COMMONS BROOKHELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (108-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL ON STREET 'A', SOUTH OF STREET 'B' * FILE- G:\ACCTS\971004\AES108.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES108.DAT TIME/DATE OF STUDY: 08:02 01/03/2001 **Refar to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 144.20- 1-13* 50.54 0.44 22.80 FRICTION ^ ^ 144.40- 0.66* 23.23 0.53 Dc 21.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ********************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 144.20 FLOWLINE ELEVATION = 380.47 PIPE FLOW = 2.00 CFS PIPE DIAMETER - 18.00 INCHES ASSUMED D0WNSTRE;\M CONTROL HGL = 381,600 FEET NODE 144.20 : HGL = < 381 - 600>;EGL= < 381. 630>;FL0WLINE= < 380.470> ****************************************************************************** FLOW PROCESS FROM NODE 144.20 TO NODE 144.40 IS CODE = 1 UPSTREAM NODE 144.40 ELEVATION = 380.90 (FLOW IS SUBCRITICAL) fl m CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES(LACFCD) 2.00 CFS 40.60 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 m NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH(FT) -0.53 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 180 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 10, DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ -m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.130 1.400 1.160 50. 54 fl 2.217 1.106 1.431 1.138 48.56 4.426 1.082 1. 465 1.116 46.63 6. 628 1.058 1.500 1.093 44.76 8.821 1.035 1. 538 1.071 42.94 mt 11.004 1.011 1. 579 1.049 41.19 13.177 0. 987 1. 622 1.028 39.49 •m 15.337 0. 963 1. 668 1.006 37.86 fl 17.484 0.939 1.718 0. 985 36.29 19.615 0. 915 1.770 0. 964 34.79 21.728 0.891 1. 827 0. 943 33.35 23.821 0.867 1.888 0.923 31. 99 fl 25.891 0 .844 1.953 0. 903 30. 69 27.933 0.820 2.024 0,883 29, 46 mt 29.943 0.796 2.100 0.864 28.31 31.915 0.772 2.182 0.846 27.24 m 33.842 0.748 2 . 270 0.828 26.24 35.715 0.724 2.367 0.811 25.33 m 37.522 0.700 2.471 0.795 24 .51 39.248 0. 676 2.585 0.780 23.77 fl 40.600 0. 657 2. 688 0.769 23.23 NODE 144.40 : HGL = < 381.557>;EGL= < 381.669>;FLOWLINE= < 380.900> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 144.40 FLOWLINE ELEVATION = 380.90 ASSUMED UPSTREAM CONTROL HGL = 381.43 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS fl m 181 fl fl m m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES *************-***************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (109-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL ON STREET 'A', SOUTH OF SAN ELIJO * FILE: G:\ACCTS\971004\AES109.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES109.DAT TIME/DATE OF STUDY: 08:14 01/03/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note- "*" indicates nodal point data used.) 'UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS ) 216.20- 4.04* 367,63 0.39 27.16 FRICTION 216.60- 3.06* 259.58 0.55 Dc 22.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ********************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.20 FLOWLINE ELEVATION = 375.25 PIPE FLOW = 2.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 379.290 FEET NODE 216.20 : HGL = < 379.290>;EGL= < 379.312>;FLOWLINE= < 375.250> ****************************************************************************** FLOW PROCESS FROM NODE 216.20 TO NODE 216.60 IS CODE = 1 UPSTREAM NODE 216.60 ELEVATION = 376.25 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 50.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 - (( 2.10)/( 105.073))**2 - 0.00040 HF-L*SF - ( 50.50)*(0.00040) = 0.020 NODE 216.60 : HGL = < 379.310>;EGL= < 379.332>;FLOWLINE= < 376.250> ********** ******************************************************************** 182 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.60 FLOWLINE ELEVATION = 376.25 ASSUMED UPSTREAM CONTROL HGL = 376.80 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 183 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl Ml ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (110-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING S. ON STREET 'L' * * FILE: G:\ACCTS\971004\AES110.OUT T.L.G, * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES110.DAT TIME/DATE OF STUDY: 13:44 08/10/2001 **Refer to Exhibit «X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 145_30- 5.17* 938.37 1.01 280.46 FRICTION „^ 145,40- 4.63* 832.09 1.35 Dc 251.82 ^ JUNCTION * 145.50- 5.16* 836.79 0.71 87.99 FRICTION * 145.60- 4.98* 801.60 0.87 Dc 83.10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 145.30 FLOWLINE ELEVATION = 378.82 PIPE FLOW = 14.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 383.990 FEET • NODE 145 , 30 : HGL = < 383.990>;EGL= < 384.298>;FLOWLINE= < 378.820> fl ****************************************************************************** FLOW PROCESS FROM NODE 145.30 TO NODE 145.40 IS CODE = 1 UPSTREAM NODE 145.40 ELEVATION = 379.50 (FLOW IS UNDER PRESSURE) * CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 14.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 36.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 14.00)/( 226.245))**2 = 0.00383 HF=L*SF = ( 36,00)*(0.00383) = 0.138 184 fl fl Ml 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES NODE 145.40 : HGL = < 384.128>;EGL= < 384.436>;FLOWLINE= < 379.500> ,***************************************************************************** FLOW PROCESS FROM NODE 145.40 TO NODE 145.50 IS CODE = 5 UPSTREAM NODE 145.50 ELEVATION = 379.58 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 6.00 24.00 45.00 379,58 0.87 1.910 DOWNSTREAM 14.00 24.00 - 379.50 1.35 4.456 LATERAL #1 0.00 0.00 0.00 0.00 O.OO 0.000 LATERAL #2 0.00 0.00 0.00 0.00 O.OO 0.000 Q5 8.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM- MANNING'S N = 0.01300; FRICTION SLOPE = 0.00070 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00383 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00227 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.O62 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.285) + ( 0.009) + ( 0.062) = 0.356 NODE 145.50 : HGL = < 384.735>;EGL= < 384.792>;FLOWLINE= < 379.580> * * * *************************************************************************** FLOW PROCESS FROM NODE 145.50 TO NODE 145.60 IS CODE = 1 UPSTREAM NODE 145.60 ELEVATION = 379.77 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 14,97 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.00)/( 226.244))**2 = 0.00070 HF=L*SF = ( 14 .97) *(0.00070) = 0.011 NODE 145.60 : HGL = < 384 . 746>;EGL= < 384 . 802>;FLOWLINE= < 379.770> * * * *************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 145.60 FLOWLINE ELEVATION = 379.77 ASSUMED UPSTREAM CONTROL HGL = 380. 64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 185 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES Ml ^**********************************************************^****************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** ^ * 971004 - UNIVERSITY COMMONS (200-SERIES) * * loUTH BROOKFIELD - S.D. RUNNING ALONG SAN ELIJO, E. OF STREET 'A' * * PTT P- R•\ACCTS\971004\AES200.OUT T.L.G. *n**;**;;***********- **Refer to Exhibit «X"** FILE NAME: G:\ACCTS\971004\AES200.DAT TIME/DATE OF STUDY: 11:19 12/29/2000 **********************************************************************•'******* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note- "*" indicates nodal point data used.) 'nP.^iJTRF.Alvl RUN DOWNSTREAM RUN NODE NUMBER 216.00- MODEL 1 PRESSURE PRESSURE+ FLOW PRESSURE+ mt. NODE NUMBER 216.00- PROCESS 1 HEAD{FT) MOMENTUM(POUNDS) 6.23* 25226.11 DEPTH(FT) MOMENTUM(POUN US) 6.23 25226.11 •WW 216.10- JUNCTION 10.78* 15787.57 2. 60 12909.88 Mi 216.40- FRICTION HYDRAULIC JUMP 5.16 10209.72 3. 37* 10317.88 fl 216.50- JUNCTION 5.86 10675.58 2.87* 11354.84 m 214 . 00- FRICTION 4.25 Dc 9234.13 3.10* 10637.69 fl 214.10- JUNCTION 4 . 61 8832.35 2.89* 10400.42 fl 214.20- FRICTION 4.20 Dc 8620.57 3. 63* 8931.33 Ml 214.30- JUNCTION 4.19 Dc 8390.79 3. 64* 8655.59 211.10- FRICTION 4.19*Dc 8390.79 4.19*Dc 8390.79 w fl 211.11- JUNCTION 5 . 32* 8370.60 3.28 7956.99 FRICTION 3. 30 7930.15 fl 211.00- FRICTION 4 . 94* 7992.49 3. 30 7930.15 JUNCTION 3.16 7932.77 Mi 211.20- JUNCTION 5 . 03* 7937.46 3.16 7932.77 211.20- FRICTION HYDRAULIC JUMP 3.19* 7895.58 mi 208.00- FRICTION 4.07 Dc 7255.15 3.19* 7895.58 m 208.10- JUNCTION 5 . 20 6993.79 2.49* 7760.93 FRICTION 3.91*Dc 6073.87 fl 207.00-3.91*Dc 6073 . 87 3.91*Dc 6073.87 JUNCTION 186 fl fll fll 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 207 10- 3.98* 1042.06 1-34 471.47 207.20- ™™ 2.05* 485.15 1.62_Dc 447.82_ "'MAXIMUM NOMBER OF ENERGY BALANCES USED IN '"NOTE-'S^EADY'FLOW"HYD^ULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. TriHCTTOH ANALYSIS USING FULL INTEGRATION FORMULATION **^***™******I*i- DOWNSTREAM PIPE FLOW CONTROL DATA: nn wnnR MHMRFR = 216 00 FLOWLINE ELEVATION = 3 67.00 P?p| FLOW = 589:70 CFS PIPE DIAMETER = 84.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 373.230 FEET ''NODr"ll6To7rHGr=T'373.230>;EGL= < 377 . 355>; FLOWLINE= < 367. OOO * * ** ************************************************************************** FTOW PROCESS FROM NODE 216.00 TO NODE 216.10 IS CODE = 5 UPSTREAM NODE 21^ ELEVATION =^_J69.50__(FLOW_UNSEALS_IN_RE^^ 'CALCULATE ^"NCTION^LOSSES:^^^^^ ^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 245.20 54.00 0.00 369.50 4.26 15.417 DOWNSTREAM 589.70 84.00 - 367.00 6.23 16.298 TATFRAT #1 344 50 84.00 90.00 367.75 4.89 8.952 LA?1^ ll 0-00 0.00 0.00 0.00 0.00 0.000 Q5 Q.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM- MANNING'S N = 0.01300; FRICTION SLOPE = 0.01555 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE ^0.00758 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01156 FSN™: 0a'04FlfT ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 6.508)+( 0.104)+( 0.000) = 6.612 NODE 216.10 : HGL = < 380.276>;EGL= < 383.967>;FLOWLINE^ < 369.500> * * * * * ************************************************************************* FTOW PROCESS FROM NODE 216.10 TO NODE 216.40 IS CODE = 1 UPS?RE^ NODE 216.40 ELEVATION = 377.07^_{HYDRAULIC_JUMP_^^^^ CALCULATE FRICTION LOSSES (LACFCD) : TXICUI7C PIPE FLOW = 245.20 CFS PIPE DIAMETER = 54,00 INCHES PIPE LENGTH = 125.40 FEET MANNING'S^N^_=__0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS "NOR^L'DEPTH(Fir=""] 2.27 ^^^!^^^^:^°!!!"lI!i=;_==_!;!L._. 'UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = ^=^==.=======- 1RADUALLY"VARIED FLOW PROFILE COMPUTED INFORMATION^ 'DTSTANCE'FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 'co"(Fr (^T) (FT/SEC) H:NERGY(FT) M0MENTUM(P0UNDS n 000 3.372 19.175 9.085 10317.88 2:753 3.328 19.438 9.199 10408.04 187 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 5.761 3.284 19.712 9.321 10503.75 9.049 3.240 19.997 9. 453 10605.23 12,645 3.196 20.294 9.595 10712.69 fl 16,581 3.152 20.602 9.746 10826.37 20.897 3.108 20.923 9.910 10946.52 ••1 25.635 3.063 21.257 10,085 11073.42 30,849 3.019 21. 605 10.272 11207.34 m 36.600 2.975 21.968 10.473 11348.61 42.962 2.931 22.345 10.689 11497.55 50.025 2 .887 22.738 10,921 11654.52 57.900 2.843 23.148 11.169 11819.90 fl 66.722 2.799 23.575 11.435 11994.10 76.665 2.755 24 .021 11.720 12177.56 m 87.952 2.711 24 .486 12.026 12370.76 100.876 2.667 24,971 12.355 12574.20 115.836 2.623 25.478 12.709 12788.42 mn 125.400 2.599 25,764 12.912 12909.88 m HYDRAULIC JUMP : UPSTREAM RUN ANALYSIS RESULTS mm DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 10.78 fl PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) mm 0. 000 10.776 15.417 14 . 467 15787.57 125.400 5. 156 15.417 8.847 10209.74 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 116.86 FEET UPSTREAM OF NODE 216.10 DOWNSTREAM DEPTH = 5.538 FEET, UPSTREAM CONJUGATE DEPTH = 3,247 FEET NODE 216.40 : HGL = < 380.442>;EGL= < 386.155>;FLOWLINE= < 377.070> ****************************************************************************** FLOW PROCESS FROM NODE 216.40 TO NODE 216.50 IS CODE = 5 UPSTREAM NODE 216.50 ELEVATION = 377.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 241.20 245.20 2.00 0.00 DIAMETER (INCHES) 54 . 00 54.00 18 .00 0.00 ANGLE DEGREES) 0 .00 90.00 0.00 FLOWLINE ELEVATION' 377 .40 377.07 380.07 0.00 CRITICAL DEPTH(FT.) 4.25 4.26 0. 53 0.00 VELOCITY (FT/SEC) 22.502 19.181 3.553 0.000 2.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION OPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02769 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01874 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02321 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.093 FEET ENTRANCE LOSSES = 1.143 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.745)+( 0.093)+( 1.143) = 1.980 NODE 216.50 : HGL = < 380.273>;EGL= < 388.135>;FLOWLINE= < 377.400> ****************************************************************************** FLOW PROCESS FROM NODE 216.50 TO NODE 214.00 IS CODE = 1 UPSTREAM NODE 214.00 ELEVATION = 389.50 (FLOW IS SUPERCRITICAL) 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 241.20 CFS PIPE DIAMETER = 54.00 INCHES 1 PIPE LENGTH = 426.80 FEET MANNING'S N = 0 .01300 NORMAL DEPTH (FT) 2.85 CRITICAL DEPTH(FT ) = 4.25 lilt UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.10 l'« GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ilUf DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) •mm 0.000 3. 103 20.617 9.707 10637.69 6.385 3.093 20.692 9.745 10665.20 m 13.098 3.082 20.767 9.783 10693.05 20.170 3.072 20.843 9. 822 10721,26 tm 27.633 3.062 20.920 9.862 10749.83 35.527 3.052 20.997 9.902 10778.75 M 43.894 3.042 21.075 9. 943 10808.04 52.788 3.032 21.154 9. 985 10837.69 ••m 62.267 3. 022 21.234 10.027 10867.72 72.405 3.012 21.314 10.070 10898.11 • HU 83.285 3. 002 21.395 10.114 10928.89 95.010 2. 991 21.477 10.158 10960.05 107.707 2 . 981 21.559 10.203 10991.59 121.532 2.971 21.643 10.249 11023.52 136.681 2. 961 21.727 10.296 11055.84 153.406 2. 951 21.812 10.343 11088.56 172.043 2. 941 21.898 10.391 11121.68 • M 193.042 2 . 931 21.984 10.440 11155.21 • M 217.036 2. 921 22.072 10.490 11189.15 244 . 952 2 . 911 22.160 10.540 11223.50 •« 278.228 2 . 900 22.249 10.592 11258.27 iM 319.273 2. 890 22.339 10.644 11293.46 372. 601 2.880 22.429 10.697 11329.09 •« 426.800 2. 873 22,495 10.735 11354.84 NODE 214.00 : HGL = < 392.603>;EGL= < 399. 207>;FLOWLINE= < 389.500> ****************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 214.10 IS CODE = 5 UPSTREAM NODE 214.10 ELEVATION = 390.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 230.80 241.20 10.40 0.00 DIAMETER (INCHES) 54 . 00 54 .00 24 ,00 0.00 ANGLE .DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 390.00 389.50 392.00 0. 00 CRITICAL DEPTH(FT. ; 4 .20 4 .25 1.15 0.00 VELOCITY (FT/SEC) 21.350 20.624 5. 534 0.000 0.00==-Q5 EQUALS BASIN INPUT==- JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02482 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02234 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02358 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES - 0.094 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES; JUNCTION LOSSES = ( 0.671)+( 0.094)+( 0.000) = 0,765 189 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES NODE 214.10 : HGL = < 392.894>;EGL= < 399.972>;FLOWLINE= < 390.000> fl ****************************************************************************** FLOW PROCESS FROM NODE 214.10 TO NODE 214.20 IS CODE = 1 UPSTREAM NODE 214.20 ELEVATION = 401.18 (FLOW IS SUPERCRITICAL) fl CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 230.80 CFS PIPE DIAMETER = 54.00 INCHES fl PIPE LENGTH = 428.60 FEET MANNING'S N = 0.01300 Ml NORMAL DEPTH(FT) 2.85 CRITICAL DEPTH(FT) = 4,20 fl UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3. 63 m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: mm DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) •m 0.000 3. 625 16.804 8.013 8931.33 3.507 3.594 16.942 8.054 8966.47 •mt 7.332 3. 563 17 .084 8.098 9003.67 11.502 3.532 17.230 8.145 9042.98 ^m 16.050 3.501 17.381 8.194 9084.43 21.013 3.469 17.536 8.247 9128.08 26.433 3.438 17.696 8 .304 9173.97 32.360 3. 407 17.860 8.363 9222.16 .MB 38.854 3.376 18.029 8.426 9272.69 45.982 3.345 18.203 8.493 9325.62 53.830 3.313 18.381 8.563 9381.02 62.496 3.282 18.565 8.637 9438.94 72.103 3.251 18 .754 8.716 9499.46 IB 82 .806 3.220 18.949 8.798 9562.63 IB 94 .795 3.188 19.149 8.886 9628.53 fl 108.321 3. 157 19.354 8. 978 9697.25 fl 123.709 3.126 19.566 9.074 9768.85 141.403 3.095 19.784 9.176 9843.42 "m 162.026 3.064 20.008 9.283 9921.05 tt 186.486 3.032 20.238 9.396 10001.83 216.198 3.001 20.475 9.515 10085.85 m 253.529 2 . 970 20.719 9. 640 10173.23 302.916 2. 939 20.971 9.772 10264.06 m 374 .333 2 . 908 21.229 9,910 10358.45 428.600 2 .894 21.344 9. 972 10400.42 fl NODE 214.20 : HGL - < 404. , 8 05>;EGL= < 409.193>;FLOWLINE= < 401.180> ****************************************************************************** •1 FLOW PROCESS FROM NODE 214, .20 TO NODE 214.30 IS CODE = 5 fl UPSTREAM NODE 214.30 ELEVATION = 401.60 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: m PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY tt (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 226.80 54 . 00 0.00 401.60 4.19 16.444 DOWNSTREAM 230.80 54 .00 -401.18 4.20 16.809 fl LATERAL #1 4.00 18 .00 90.00 404 . 18 0,77 3.905 fl LATERAL #2 0 . 00 0 .00 0.00 0 .00 0.00 0.000 Q5 0.00===Q5 : EQUALS BASIN INPUT==- JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 190 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01361 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01422 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01392 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.056 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.193)+{ 0.056)+( 0.000) = 0.249 NODE 214.30 : HGL = < 405.243>;EGL= < 409.442>;FLOWLINE= < 401.600> ™ ****************************************************************************** fl FLOW PROCESS FROM NODE 214.30 TO NODE 211.10 IS CODE = 1 UPSTREAM NODE 211.10 ELEVATION = ' J03.37 (FLOW IS SUPERCRITICAL) •m CALCULATE FRICTION LOSSES(LACFCD): fl PIPE FLOW 226.80 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 115.4 0 FEET MANNING'S N = 0.01300 m NORMAL DEPTH(FT: I = 3.44 CRITICAL DEPTH(FT) = 4.19 fl UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4 .19 -•• mm GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4. 186 14.707 7.546 8390.79 0.224 4.156 14 .774 7.547 8391.61 0. 900 4. 126 14 .845 7.550 8394.06 2.036 4 .096 14.918 7.554 8398.11 3. 650 4 .066 14.996 7.560 8403.74 ml 5.763 4 .036 15.076 7.568 8410.96 8 .408 4.006 15.160 7.577 8419.75 'm 11.621 3.976 15.247 7.588 8430.12 15.451 3. 946 15.337 7.601 8442.07 nm 19.956 3. 917 15.430 7.616 8455.60 25.210 3.887 15.527 7.632 8470.72 31.301 3.857 15.627 7.651 8487.45 38.341 3.827 15,730 7.671 8505.80 fl 46.471 3.797 15.836 7.693 8525.79 55,867 3.767 15.946 7.718 8547 .44 m 66.762 3.737 16.059 7.744 8570.76 fl 79.460 3. 707 16,176 7.773 8595.78 94.376 3.677 16.296 7.803 8622.53 112.093 3.647 16.420 7.836 8651.02 115.400 3.643 16.439 7.842 8655.59 fl NODE 211.10 : HGL = < 407. 556>;EGL= < 410.916>;FLOWLINE= < 403.370> W ***************************************************************************** FLOW PROCESS FROM NODE 211.10 TO NODE 211.11 IS CODE = 5 UPSTREAM NODE 211.11 ELEVATION = 403.47 (FLOW IS AT CRITICAL DEPTH; CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS ) (INCHES) ( DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 209. 10 54 .00 0.00 403.47 4.09 13.147 DOWNSTREAM 226. 80 54 . 00 -403.37 4 . 19 14 .711 LATERAL #1 17. 70 24 .00 90.00 404.67 1. 52 5 . 634 LATERAL #2 0. 00 0.00 0.00 0.00 0.00 0.000 Q5 0. 00= ==Q5 EQUALS BASIN INPUT=== fl 191 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 'I* iM fl fl JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,01131 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01151 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01141 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.04 6 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.508)+( 0.046)+( 0.000) = 0.554 NODE 211.11 : HGL = < 408.786>;EGL= < 411.470>;FLOWLINE= < 403.470> ****************************************************************************** FLOW PROCESS FROM NODE 211.11 TO NODE 211.00 IS CODE = 1 UPSTREAM NODE 211.00 ELEVATION = 405.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 209.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 108.70 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 209.10)/( 1966.516))**2 = 0.01131 HF=L*SF = ( 108.70)*(0.01131) = 1.229 NODE 211.00 : HGL = < 410.015>;EGL= < 412.699>;FLOWLINE- < 405.080> ****************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 211.20 IS CODE = 5 UPSTREAM NODE 211.20 ELEVATION = 405.18 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 206.10 54.00 0.00 405.18 4.07 12.95 9 DOWNSTREAM 209.10 54.00 - 405.08 4.09 13.147 LATERAL #1 3.00 18.00 90.00 406.62 0.66 1.698 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT-== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01098 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01131 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01114 JUNCTION LENGTH = 4.00 FEET fl FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-n (FRICTION LOSS) + (ENTRANCE LOSSES) « JUNCTION LOSSES = ( 0.076)+( 0.045)+( 0.000) = 0.121 * NODE 211.20 : HGL = < 410.213>;EGL= < 412.820>;FLOWLINE= < 405.180> ^ ^^**************************************************************************** FLOW PROCESS FROM NODE 211.20 TO NODE 208.00 IS CODE = 1 *• UPSTREAM NODE 208.00 ELEVATION = 410.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 206.10 CFS PIPE DIAMETER = 54.00 INCHES * PIPE LENGTH = 309.90 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.16 CRITICAL DEPTH(FT) = 4^07 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.19 192 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES *• 'HI GRADUALLY VARIED FLOW PROFILE COMPUTED INFOEy^TION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ fl CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.187 17.109 7 .735 7895.58 6.809 3.186 17.116 7 .737 7897.32 13.917 3.185 17.122 7.740 7899.07 •4Mi 21.348 3.183 17.129 7.742 7900.82 29.135 3.182 17.135 7.744 7902.57 37.311 3.181 17.141 7.747 7904.32 -.m 45.917 3.180 17.148 7 .749 7906.08 -.m 54,998 3.179 17.154 7.751 7907.84 64.610 3.178 17.161 7.754 7909.60 74.816 3.177 17.167 7.756 7911.37 fl 85.694 3.176 17.174 7 .758 7913.14 97.336 3.175 17.180 7.761 7914.91 109.856 3.173 17.187 7 .763 7916,68 123.393 3.172 17.193 7.766 7918.46 UM 138.127 3.171 17.200 7 .768 7920.24 154.283 3.170 17.207 7.770 7922.03 ..^ 172.165 3.169 17.213 7.773 7923.81 192.177 3.168 17 .220 7.775 7925.60 ™i 214.891 3.167 17.226 7 . 777 7927.39 241.142 3.166 17.233 7.780 7929.19 ... 272.226 3.165 17.239 7.782 7930.99 309.900 3.164 17 .246 7.785 7932.77 HYDRAULIC.JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.03 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ fl CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.033 12.959 7 . 640 7937.46 116.610 4 . 500 12.959 7.108 7408.67 fl ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4 .50 fl mt GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ im CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 116.610 4 . 500 12,955 7, 108 7408.67 -Ml 119.672 4 . 483 12.960 7 .093 7393.84 122.202 4.466 12.969 7 . 079 7380.70 fl 124.445 4 .449 12.981 7 .067 7368.68 126.471 4 .432 12.996 7 . 056 7357.56 m 128.321 4 . 415 13.012 7 .046 7347.23 130.020 4 . 398 13.030 7 . 036 7337.62 fl 131.586 4 . 381 13.049 7 .027 7328.66 133.032 4 . 364 13,070 7 . 018 7320.32 tt 134.369 4 . 347 13.093 7 .010 7312.56 135.603 4 . 330 13.116 7 .003 7305.36 fl 136.742 4 . 313 13.141 6. 996 7298.69 Ml 137 . 789 4 .296 13.168 6. 990 7292.54 138.750 4 . 279 13.195 6. 984 7286.89 139.627 4 .262 13.223 6. 979 7281.73 fl fl 140.423 4.245 13.253 6, 97 4 7277.05 mt 193 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 141,140 4.228 13.284 6. 970 7272.84 141.780 4 .211 13.316 6.966 7269.09 » 142.343 4.194 13.348 6.962 7265.80 142.831 4 .177 13.382 6.959 7262.96 fl 143.244 4.160 13.417 6.957 7260.57 143.583 4 .143 13.453 6. 955 7258.61 143.847 4.126 13.490 6.953 7257.10 144.036 4.109 13.528 6.952 7256.02 m 144.150 4.092 13.566 6.952 7255.37 144.189 4 .075 13.606 6. 951 7255.15 309.900 4.075 13.606 6.951 7255.15 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 1.04 FEET UPSTREAM OF NODE 211.20 DOWNSTREAM DEPTH = 5.028 FEET, UPSTREAM CONJUGATE DEPTH = 3.164 FEET NODE 208.00 : HGL = < 413.187>;EGL= < 417.735>;FLOWLINE= < 410.000> ****************************************************************************** FLOW PROCESS FROM NODE 208 . 00 TO NODE 208.10 IS CODE = 5 UPSTREAM NODE 208.10 ELEVATION = 410.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 182.70 54.00 0 .00 410.33 3.91 20.221 DOWNSTREAM 206.10 54.00 - 410.00 4.07 17.114 LATERAL #1 23.40 24.00 90.00 412.50 1.72 8.149 LATERAL #2 0.00 0.00 0.00 0.00 O.OO 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02464 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01521 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01992 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.080 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.356)+( 0.080)+( 0.000) = 1-435 NODE 208.10 : HGL = < 412 . 821>;EGL= < 419.170>;FLOWLINE= < 410.330> ****************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 207.00 IS CODE = 1 UPSTREAM NODE 207.00 ELEVATION = 422.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 182.70 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 438.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 2.4 3 lil- UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 3.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS' 0 000 3.907 12.453 6.317 6073.87 0 127 3.848 12.611 6.319 6076,02 0 519 3.789 12.779 6.327 6082.50 1 195 3.730 12.957 6.339 6093.43 194 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES 2.179 3.671 13.146 6.357 6108.92 3.500 3. 612 13.347 6.380 6129.11 ..^ 5.191 3.553 13.558 6.410 6154.17 7.294 3.495 13.782 6.446 6184.26 <M 9. 855 3.436 14 .019 6.489 6219.59 12.934 3.377 14.268 6.540 6260.37 "•* 16.600 3.318 14 .531 6.598 6306.85 20.938 3.259 14.808 6. 666 6359.28 26.054 3.200 15.101 6.743 6417.95 32.080 3.141 15.410 6.830 6483.18 'tm 39.183 3.082 15.735 6. 929 6555.31 fl 47 .577 3.023 16.079 7.040 6634.71 fl 57.548 2.964 16.442 7 .164 6721.80 69.484 2.905 16.825 7.303 6817.02 83.927 2.846 17.229 7.458 6920.85 fll 101.677 2.787 17.657 7 .631 7033.86 123.973 2.728 18.110 7.823 7156.61 ••1 152.893 2.669 18.589 8.038 7289.78 192.337 2.610 19.098 8.276 7434.07 fl 251.072 2.551 19.637 8-542 7590.29 357.230 2.492 20.209 8 .837 7759.31 •m 438.500 2.491 20.215 8.840 7760.93 mt NODE 207.00 : : HGL = < 425. , 907>;EGL= < 428.317>;FLOWLINE= < 422.000> fl fl ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.10 IS CODE = 5 UPSTREAM NODE 207.10 ELEVATION = 424.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 22.80 30.00 45.00 424.00 1.62 4.645 DOWNSTREAM 182.70 54.00 - 4 22.00 3.91 12.457 LATERAL #1 159.90 54.00 0.00 422.20 3.70 10.054 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 QS 0.00==-Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTRE7VM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00309 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00789 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0054 9 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 207.10 : HGL = < 427.982>;EGL= < 428.317>;FLOWLINE= < 424.000> ****************************************************************************** Ml ma FLOW PROCESS FROM NODE 207.10 TO NODE 207.20 UPSTREAM NODE 207.20 ELEVATION = 426.63 IS CODE = 1 (FLOW SEALS IN REACH) Ml fl CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 22.80 CFS PIPE DIAMETER = PIPE LENGTH = 262.20 FEET MANNING'S 30.00 INCHES N = 0.01300 Ml DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3. 98 fl PRESSURE FLOW PROFILE COMPUTED INFORMATION: fl mm 195 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ll DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD{FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3. 982 4 .645 4 .317 1042.06 fl 213.531 2.500 4. 645 2.835 588.11 NORMAL DEPTH(FT) 1.33 CRITICAL DEPTH(FT; ) = 1.62 fl ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 213.531 2.500 4 . 643 2. 835 588.11 fl 218.193 2.465 4 .656 2. 802 577.97 •m 222.535 2.430 4 .680 2.770 568.36 226.696 2.395 4 .711 2.740 559.12 230.717 2.360 4 .748 2.710 550.23 234.620 2.325 4.791 2.682 541.67 fl 238.417 2 .290 4.838 2. 654 533.42 242.116 2.255 4.891 2. 627 525.49 mi 245.721 2.220 4 . 948 2. 600 517.88 249.234 2.185 5.009 2.575 510.60 mm 252.654 2.150 5.075 2.550 503.66 255.980 2.115 5. 147 2.526 497.05 259.207 2.080 5.222 2.504 490.80 um 262.200 2.046 5.300 2.483 485.15 NODE 207.20 : HGL = < 4 28 . 67 6>;EGL= < 429.113>;FLOWLINE= < 426.630> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 207 .20 FLOWLINE ELEVATION = 426.63 Ml ASSUMED UPSTREAM CONTROL HGL 428.25 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS fl •il 196 fl 97 1 004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl m tt tt fl ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (201-SERIES) * * SOUTH BROOKFIELD - S.D. LINE 'X' * * FILE: G:\ACCTS\971004\AES201.OUT **Refer to Exhibit "X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES201.DAT TIME/DATE OF STUDY: 11:54 01/14/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS 208.10-2.00 530.92 1.31* 559.02 FRICTION 208.20-2.20 570.14 0. 96* 746.91 JUNCTION 208.30-1.71 477 . 54 0. 69* 839.95 FRICTION 208 .40-1.46*Dc 452.30 1.46*Dc 452.30 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 208.10 FLOWLINE ELEVATION = 411.80 PIPE FLOW = 23.30 CFS PIPE DIAMETER = 24,00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 413.800 FEET NODE 208.10 : HGL = < 413.115>;EGL= < 414.873>;FLOWLINE= < 411.800> ****************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.20 IS CODE = 1 UPSTREAM NODE 208.20 ELEVATION - 412.43 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 78.25 FEET MANNING'S N - 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) - 2.00 CRITICAL DEPTH(FT) - 1.7 2 197 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.96 ••1 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ "IM CONTROL(FT) (FT) (FT/SEC) ENERGY{FT) MOMENTUM(POUNDS) 0.000 0.956 15,709 4 .790 746.91 <W • 6.823 0.986 15.091 4.525 721.88 13.622 1.017 14.520 4 .292 699.06 fl 20.393 1,047 13.990 4 .088 678.25 Ml 27.134 1.077 13.499 3.909 659.27 33.841 1.108 13.042 3.751 641.96 40.510 1.138 12.616 3.611 626.17 47.137 1.169 12.219 3.488 611.79 Ml 53.716 1.199 11.848 3.380 598.70 60.241 1.229 11.501 3.285 586.81 fl 66.704 1.260 11.176 3.200 576.03 73.095 1.290 10.872 3.126 566.28 -Ml 78.250 1.315 10.637 3.073 559.02 fl NODE 208.20 : HGL = < 413. 386>;EGL= < 417.220>;FLOWLINE= < 412.430> ****************************************************************************** FLOW PROCESS FROM NODE 208.20 TO NODE 208.30 IS CODE = 5 UPSTREAM NODE 208.30 ELEVATION = 412.93 (FLOW IS SUPERCRITICAL) CALCULATE -JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 18 .40 23.30 0.00 0.00 DIAMETER (INCHES) 18.00 24.00 0.00 0.00 ANGLE ; DEGREES: 0.00 0.00 0.00 FLOWLINE ELEVATION 412.93 412.43 0.00 0.00 CRITICAL DEPTH(FT.) 1.46 1.72 0.00 0.00 VELOCITY (FT/SEC) 23.151 15.713 0.000 0.000 4.90===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.16308 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04951 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10629 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.425 FEET ENTRANCE LOSSES = 0.767 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.531)+( 0.425)+( 0.767) = 4.723 NODE 208.30 HGL = < 413.621>;EGL= < 421.943>;FLOWLINE= < 412.930> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 208.40 208.30 TO NODE ELEVATION = 208.40 IS CODE = 1 421.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 28.37 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.46 198 fl 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS ••m 0.000 1.455 10.501 3.168 452.30 0.024 1.420 10.627 3.175 453.02 fl 0.090 1.385 10.788 3.193 455.01 0.197 1.350 10.980 3.223 458.15 0.345 1.315 11.201 3.264 462.41 0.536 1.280 11.451 3.317 467.78 •mm 0.774 1.245 11.730 3.383 474.29 1.064 1.210 12.041 3.463 481.99 m 1.414 1.175 12.385 3.558 490.95 fl 1.830 1.140 12.763 3.671 501.26 2.325 1.105 13.180 3.804 513.02 2.912 1.070 13.638 3.960 526.36 fl 3.608 1.035 14 .141 4 .142 541.42 •m 4 .435 1.000 14.695 4 .355 558.39 5.420 0. 965 15.305 4.605 577.48 rm 6.602 0.930 15.978 4.897 598.92 8.030 0.895 16.723 5.240 623.01 m 9.774 0.860 17.548 5.645 650.09 11.931 0.825 18.465 6.123 680.59 mm 14.648 0.790 19.489 6. 692 714.99 18.153 0.755 20. 636 7.372 753.90 m 22.831 0.720 21.927 8.191 798.06 28.370 0.691 23.144 9.013 839.95 mt NODE 208.40 : : HGL = < 423. 055>;EGL= < 424,768>;FLOWLINE= < 421.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 208.40 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 4 21.60 423.06 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 199 m 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES •m fl m . ****************************************************************************** *i PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) 'mi (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 fl Analysis prepared by: fl O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 * ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (202-SERIES) * * SOUTH BROOKFIELD - S.D. LINE 'Z' * « * FILE: G:\ACCTS\971004/AES202.OUT T.L.G. **Refer to Exhibit "X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES202.DAT fl TIME/DATE OF STUDY: 11:25 01/14/2002 m Ml ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) •~1 UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ fl NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 211.00- FRICTION 3 . 40* 311.56 0.50 73.44 211.30-2.18* 176.59 0.27 162.93 « MANHOLE 211.40-1. 85 140.68 0.27* 162.61 m FRICTION fl 211.50-0.79*Dc 56.06 0.79*Dc 56.06 mi MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 211.00 FLOWLINE ELEVATION = 406.62 PIPE FLOW = 4.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HiSL = 410. 020 FEET NODE 211.00 : HGL = < 410 . 020>;EGL= < 410.108>;FLOWLINE= < 406.620> ****************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 211.30 IS CODE - 1 UPSTREAM NODE 211.30 ELEVATION = 407.95 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 66.30 FEET MANNING'S N = 0.01300 SF-(Q/K)**2 - (( 4.20)/( 105.046))**2 = 0.00160 200 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES HF=L*SF = ( 66.30)*(0.00160) = 0.106 NODE 211.30 : HGL = < 410.126>;EGL= < 410.214>;FLOWLINE^ < 407.950> ****************************************************************************** FLOW PROCESS FROM NODE 211.30 TO NODE 211.40 IS CODE = 2 UPSTREAM NODE 211.40 ELEVATION = 408.28 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) PIPE DIAMETER = 18.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 4.20 CFS AVERAGED VELOCITY HEAD = 3.088 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 3.088) = 0.154 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 211.40 : HGL = < 408.546>;EGL= < 414.635>;FLOWLINE= < 408.280> ****************************************************************************** FLOW PROCESS FROM NODE 211.40 TO NODE 211.50 IS CODE = 1 UPSTREAM NODE 211.50 ELEVATION = 438.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 62.10 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.24 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 .79 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ -m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.785 4.484 1 .098 56.06 mt 0.003 0.764 4 . 645 1.099 56.12 0.011 0.742 4 .818 1.103 56.33 0.025 0. 720 5.004 1.109 56.70 0.047 0. 699 5.205 1. 120 57 .22 0.077 0. 677 5. 422 1.134 57 . 92 0.117 0. 655 5. 658 1. 153 58 .82 "« 0.169 0. 634 5.913 1.177 59. 92 0.236 0 . 612 6.192 1.208 61.25 •m 0.318 0 .591 6,497 1.246 62.84 0.421 0 .569 6.830 1.294 64 .71 rn 0. 548 0.547 7 .197 1. 352 66.89 0.704 0.526 7. 602 1.424 69.42 fl 0.897 0. 504 8.051 1. 511 72. 35 1.136 0.483 8.551 1. 619 75.73 m 1. 433 0. 461 9.109 1.750 79. 64 1^ 1.804 0.439 9.737 1. 912 84 . 15 2.274 0. 418 10.447 2 .113 89 . 37 2.876 0. 396 11.254 2. 364 95. 42 fl 3. 661 0.374 12.179 2. 679 102 .46 m 4 .710 0. 353 13.247 3. 079 110.71 6.163 0.331 14.491 3.594 120 .43 fl 8.281 0.310 15. 955 4 .265 131. 97 11.663 0 . 288 17.696 5.154 145.81 Ml 18.237 0.266 19.796 6.355 162.61 62 .100 0 .266 19.796 6. 355 162.61 fl mt 201 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES NODE 211.50 : HGL = < 438 . 785>; EGL= < 439.098>; FLOWLINE= < 438.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 211.50 FLOWLINE ELEVATION = 438.00 ASSUMED UPSTREAM CONTROL HGL = 438,79 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 202 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (203-SERIES) * * SOUTH BROOKFIELD - S.D. LINE 'Y' * * FILE: G:\ACCTS\971004\AES203.OUT * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES2 03.DAT TIME/DATE OF STUDY: 16:15 12/29/2000 **Refer to Exhibit "X"** **************************************** *'* ************************************ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 214.20- 0.77 52.61 0.47* 71.23 FRICTION 214.40- 0.77 Dc 52.61 0.26* 154.09 MANHOLE 214.50- 0.77 Dc 52.61 0.26* 151.50 FRICTION 214.60- 0.77*Dc 52.61 0.77*Dc 52.61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.20 FLOWLINE ELEVATION = 404.18 PIPE FLOW = 4.00 CFS PIPE DIAMETER - 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 404.810 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.63 FT.) IS LESS THAN CRITICAL DEPTH( 0.77 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 214.20 : HGL = < 404.650>;EGL= < 405.758>;FLOWLINE= < 404.180> **** * ******************************** ***************************************** FLOW PROCESS FROM NODE 214.20 TO NODE 214.40 IS CODE = 1 UPSTREAM NODE 214.40 ELEVATION = 406.37 (FLOW IS SUPERCRITICAL) 203 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 78.50 FEET MANNING'S N - 0.01300 mt NORMAL DEPTH(FT) 0.49 CRITICAL DEPTH(FT) 0.77 mt UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.26 mt GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: rm DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) m 0.000 0.258 19.701 6.289 154.09 1.913 0.267 18.738 5.723 146.74 3.859 0.277 17.853 5.229 140.01 5.841 0.286 17.039 4 .797 133.82 fl 7 .863 0.295 16.286 4 .416 128.12 9. 928 0 . 304 15.590 4 .080 122.87 •m> 12.042 0. 313 14.944 3.783 118.01 mi 14.208 0. 322 14.343 3.519 113.50 16.435 0.332 13.783 3.283 109.32 18.729 0.341 13.260 3.072 105.44 21.101 0.350 12.771 2. 884 101.82 mm 23.560 0. 359 12.312 2.714 98.45 26.122 0. 368 11.882 2.562 95.30 28.804 0.377 11.478 2.424 92.36 31.627 0. 386 11.097 2. 300 89. 61 34.620 0. 396 10.738 2.187 87 .04 37.820 0 .405 10.399 2.085 84 . 63 41.278 0 .414 10.079 1.992 82.37 45.065 0.423 9.776 1. 908 80.24 49.285 0. 432 9.488 1. 831 78 .25 54.098 0.441 9.216 1,761 76.38 59.776 0. 450 8.957 1. 697 74 . 63 66.824 0. 460 8.711 1. 639 72. 98 -m 76.381 0. 469 8 .477 1. 585 71.43 fl 78.500 0 .470 8 .446 1.578 71 .23 NODE 214.40 : HGL = < 406.628>;EGL= < 412.659>;FLOWLINE= < 406.370> ****************************************************************************** FLOW PROCESS FROM NODE 214.40 TO NODE 214.50 IS CODE = 2 UPSTREAM NODE 214.50 ELEVATION = 406.87 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 4.00 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 5.928 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 5.928) = 0.296 NODE 214.50 : HGL = < 407.131>;EGL= < 412.956>;FLOWLINE= < 406.870> ****************************************************************************** FLOW PROCESS FROM NODE 214.50 TO NODE 214.60 IS CODE = 1 UPSTREAM NODE 214.60 ELEVATION = 431.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH - 53.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0. 24 CRITICAL DEPTH(FT) = 0 . 77 204 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: fl DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0,765 4.411 1.068 52. 61 0.003 0.744 4.569 1.069 52 . 67 fm 0.011 0.724 4 .739 1.072 52. 87 0.025 0.703 4. 921 1.079 53.20 0.047 0.682 5.119 1.089 53. 69 0.078 0. 661 5.331 1.102 54 . 34 mm 0.119 0. 640 5.562 1.121 55.17 0.172 0. 619 5.813 . 1.144 56.20 0.239 0.598 6.085 1.173 57 . 43 0.323 0.577 6.383 1.210 58. 90 m^ 0.427 0.556 6.708 1.255 60. 63 0.555 0.535 7.066 1.311 62 . 65 0.714 0.514 7.461 1.379 64 . 99 IM 0.909 0.493 7.898 1.463 67 . 69 1.150 0.472 8.383 1.564 70. 82 1.449 0.452 8. 926 1. 689 74 .42 1.823 0.431 9.534 1.843 78 .57 2.295 0.410 10.221 2.033 83.36 2.899 0.389 11.001 2.269 88 . 92 3. 685 0.368 11.892 2.565 95. 38 4 .734 0.347 12.920 2.940 102.92 6.184 0.326 14 .113 3.421 111.79 8.293 0.305 15.514 4 . 045 122.30 11.653 0.284 17.175 4 .868 134.86 18.167 0.263 19.171 5.974 150.05 53.400 0 .261 19.362 6.086 151.50 NODE 214.60 : HGL = < 431. 7 65>;EGL= < 432.068>;FLOWLINE= < 431.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.60 FLOWLINE ELEVATION = 431.00 ASSUMED UPSTREAM CONTROL HGL = 431.77 FOR DOWNSTREAM RUN ANALYSIS fl END OF GRADUALLY VARIED FLOW ANALYSIS 205 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (204-SERIES) * * SOUTH BROOKFIELD - S.D. LINE 'Q' * * FILE: G:\ACCTS\971004\AES204.OUT T.L.G. **Refer to Exhibit «X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES204.DAT TIME/DATE OF STUDY: 10:22 11/14/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-I- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM ( POUNDS ) 214.00- 1.71 505.91 0.98* 718.13 FRICTION 214.20- 1.71 Dc 505,91 0.65* 1202.73 JUNCTION 214.30- 1.48 Dc 672.28 0.72* 1252.50 FRICTION 214.40- 1.48*Dc 672.28 1.48*Dc 672.28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.00 FLOWLINE ELEVATION = 392.00 PIPE FLOW = 23.20 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 392.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.60 FT.) IS LESS THAN CRITICAL DEPTH( 1.71 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 214.00 : HGL = < 392.984>;EGL= < 396,516>;FLOWLINE- < 392.000> ****************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 214.20 IS CODE = 1 UPSTREAM NODE 214.20 ELEVATION = 392.79 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.20 CFS PIPE DIAMETER - 24.00 INCHES 206 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl fl fl -M PIPE LENGTH = 78.90 FEET MANNING'S N = 0. .01300 *« NORMAL DEPTH(FT) 1.69 & 1.99 CRITICAL DEPTH(FT] 1 = 1.71 fl NOTE: SUGGEST CONSIDERATION OF WAVE ACTION , UNCERTAINTY, ETC. ^tm UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 iML GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ mt CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) fl 0.000 0. 646 26.418 11.490 1202 .73 fl 9.617 0. 688 24 . 247 9.823 1107.50 19.271 0.729 22.382 8 .513 1026.19 28 .957 0.771 20.765 7.470 956.26 fl 38.675 0. 813 19.352 6.632 895.75 48.424 0. 854 18.110 5.950 843.12 fl 58.206 0. 896 17.012 5.393 797.15 68.026 0. 938 16.035 4 . 933 756.87 fl 77.890 0. 979 15.162 4 .551 721.49 78.900 0. 984 15.078 4 .516 718.13 •m NODE 214.20 : HGL = < 393. 4 36>;EGL= < 404.280>;FLOWLINE= < 392.790> ****************************************************************************** FLOW PROCESS FROM NODE 214.20 TO NODE 214.30 IS CODE = 5 UPSTREAM NODE 214.30 ELEVATION = 393.29 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION DEPTH(FT.) FLOW (CFS) 23.20 23.20 0. 00 0. 00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL 18.00 24 .00 0. 00 0. 00 0.00 0.00 0.00 393.29 392.79 0. 00 0. 00 1.48 1.71 0.00 0.00 VELOCITY (FT/SEC) 27.500 26.426 0 . 000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.22083 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.20635 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.21359 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.854 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES - (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.622)+( 0.854)+( 0.000) = 1.477 NODE 214.30 : HGL = < 394.013>;EGL= < 405.757>;FLOWLINE= < 393.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 214.40 214.30 TO NODE ELEVATION = 214.40 IS CODE = 1 408.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 49.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) - 0.66 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.4: 207 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 1. 482 13.154 4 .170 672.28 fl 0.047 1.449 13.265 4.183 673.64 0.167 1. 416 13.422 4.215 677.14 mm 0.349 1. 383 13.617 4.264 682.38 m 0.591 1.350 13.847 4.329 689.21 m 0.894 1.317 14.109 4.410 697.58 1.261 1.284 14.403 4 .507 707.48 "* 1. 699 1.251 14.731 4.623 718.95 fll 2.214 1.218 15.094 4 .758 732.05 2.817 1.185 15.493 4 . 914 746.86 tm 3.521 1.152 15.930 5.095 763.49 4.342 1.119 16.409 5,302 782.07 m 5.301 1.086 16.933 5.541 802.75 6.422 1.053 17.505 5.814 825.73 mt 7.739 1. 020 18.132 6.128 851.23 9.297 0. 987 18 .818 6.489 879.48 m 11.153 0. 954 19.569 6. 904 910,79 13.388 0. 921 20.395 7. 383 945.51 •M 16.116 0.888 21.302 7. 938 984.05 19.505 0. 855 22.304 8.584 1026.88 fll 23.817 0 . 822 23.411 9.337 1074.59 29,495 0. 789 24.639 10.221 1127. 84 ,„.., 37.372 0.755 26.007 11.264 1187.45 ••at 49.000 0. 723 27 .492 12.467 1252.50 NODE 214.40 : HGL = < 409.982>;EGL= < 412.670>;FLOWLINE= < 408.500> ***************************** + **********************^*^^^j^^^^^^^^^^j_^_^^^_^^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.40 FLOWLINE ELEVATION = 408.50 ASSUMED UPSTREAM CONTROL HGL = 409.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS iM fl 208 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (205-SERIES) * * SOUTH BROOKFIELD - S.D. RUNNING ALONG STREET 'J' * * FILE: G:\ACCTS\971004\AES205.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES205.DAT TIME/DATE OF STUDY: 08:56 01/03/2001 **Rofer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 211.10- 2.89* 577.08 0.86 531.33 FRICTION 154.00- 1.54*Dc 362.29 1.54*Dc 3 62.29 JUNCTION 154,10- 2.17* 273.08 0.95 204.23 FRICTION HYDRAULIC JUMP 153.00- 1.23*Dc 186.98 1.23*Dc 186.98 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION *****************************************************************************^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 211.10 FLOWLINE ELEVATION = 404.67 PIPE FLOW = 18.30 CFS PIPE DIAMETER - 24 . 00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 407.560 FEET NODE 211.10 : HGL = < 407.560>;EGL= < 408.087>;FLOWLINE= < 404.670> ****************************************************************************** FLOW PROCESS FROM NODE 211.10 TO NODE 154.00 IS CODE = 1 UPSTREAM NODE 154,00 ELEVATION = 408.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.30 CFS PIPE DIAMETER = 24 , 00 INCHES PIPE LENGTH ^ 54,60 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.8 9 209 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES PRESSURE FLOW PROFILE COMPUTED INFORMATION: rm DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 2.890 5.825 3.417 577.08 fl 16.346 2.000 5.825 2.527 402.61 fll NORMAL DEPTH(FT) 0.79 CRITICAL DEPTH(FT) 1.54 mm ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 flt GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: mt DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 16.346 2. 000 5.823 2.527 402.61 16.655 1. 982 5.832 2.510 399.32 16.936 1.963 5.848 2.495 396.29 Mi 17.201 1. 945 5.869 2.480 393.44 17.453 1. 926 5.893 2.466 390.74 17.693 1. 908 5.921 2.453 388.18 17.922 1. 890 5.952 2.440 385.74 IM 18.140 1.871 5. 986 2.428 383.43 18.349 1.853 6.023 2.416 381.23 JJttm. 18.548 1.835 6_.0 62 2.406 379.16 18.737 1.816 6.104 2.395 377.20 mm 18.916 1.798 6.149 2.385 375.35 19.085 1.779 6.196 2.376 373.62 19.245 1.761 6.245 2.367 372.01 19.394 1.743 6.297 2.359 370.51 19.533 1.724 6.352 2.351 369.13 19.662 1.706 6.409 2.344 367.87 ,™ 19.779 1. 687 6.469 2.338 366.73 19.885 1.669 6.531 2.332 365.71 fl 19.978 1.651 6.596 2.327 364.82 20.059 1. 632 6.664 2.322 364.06 fl 20.127 1. 614 6.735 2.319 363.43 fl 20.182 1.596 6.808 2.316 362.94 fl 20.221 1. 577 6.884 2.314 362.58 20.246 1.559 6. 964 2.312 362.36 fl 20.254 1.540 7.046 2.312 362.29 « 54.600 1.540 7.046 2.312 362.29 NODE 154.00 : HGL - < 409. 54 0>;EGL- < 410.312>;FLOWLINE= < 408.000> ****************************************************************************** FLOW PROCESS FROM NODE 154.00 TO NODE 154.10 IS CODE = 5 UPSTREAM NODE 154.10 ELEVATION = 408.50 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 10 .30 18 . 30 4 . 00 0.00 DIAMETER (INCHES) 18 . 00 24 .00 18 . 00 0,00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 0.00 408.50 408.00 408.80 0.00 CRITICAL DEPTH(FT.: 1.23 1.54 0 .77 0.00 VELOCITY (FT/SEC) 5.828 7 .048 2.449 0. 000 4.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00961 210 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00741 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00851 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.034 FEET ENTRANCE LOSSES = 0.154 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.699)+( 0.034)+( 0.154) = 0.887 NODE 154.10 : HGL = < 410.671>;EGL= < 411.199>;FLOWLINE= < 408.500> ****************************************************************************** FLOW PROCESS FROM NODE 154.10 TO NODE 153.00 IS CODE = 1 UPSTREAM NODE 153.00 ELEVATION = 412.12 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 195.30 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS m NORMAL DEPTH(FT) 0. 94 CRITICAL DEPTH(FT) 1,23 m UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .1.23 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) ^ 0.000 1.235 6. 616 1.915 186.98 0.029 1.223 6.673 1. 915 187.00 0.118 1.211 6.733 1.916 187.07 0.272 1.200 6.795 1.917 187.20 0.497 1.188 6.859 1. 919 187.38 0.799 1.176 6.925 1. 922 187.61 1. 187 1.165 6. 994 1.925 187.89 1.668 1.153 7.064 1. 928 188.23 tti 2.255 1.141 7 .137 1. 933 188.63 2. 958 1.130 7.212 1.938 189.08 Wl 3.794 1.118 7.290 1. 944 189.59 4.780 1.106 7 .370 1.950 190.17 m 5.939 1.095 7.453 1. 958 190.81 7.299 1.083 7 .538 1.966 191.51 mm 8.895 1. 071 7. 626 1.975 192.28 10.773 1.060 7.717 1. 985 193.11 m 12.991 1.048 7.811 1.996 194.02 15.633 1.036 7. 908 2.008 195.00 M 18.810 1.024 8.008 . 2.021 196.05 22.691 1.013 8. Ill 2.035 197.18 fl 27.533 1. 001 8 .218 2.050 198.39 33.770 0. 989 8 .328 2.067 199.68 m 42.217 0. 978 8.442 2.085 201.06 tf 54.699 0. 966 8 .559 2.104 202.52 77.082 0 . 954 8. 681 2,125 204.08 fl 195.300 0. 953 8 . 692 2.127 204.23 Ml HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ====-====.=======^== •.=^=========== :===^= = ==== = ===, ^=^=========== =================== mi DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT ) = 2.17 fl PRESSURE FLOW PROFILE COMPUTED INFORMATION: m^ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ 211 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 2.171 5.829 2. 699 273.08 •« 75.259 1.500 5.829 2.028 199,04 fl ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: fl DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) n 75.259 1.500 5.827 2.028 199.04 Mi 76.287 1.489 5.833 2.01B 197,99 Mi 77.180 1.479 5.843 2.009 197,04 77.998 1.468 5.857 2.001 196.15 78.757 1.458 5.874 1. 994 195.32 Ml 79.469 1.447 5.893 1.986 194.54 80.137 1.436 5.913 1.980 193.80 80.768 1.426 5. 936 1.973 193.10 81.363 1,415 5. 961 1. 967 192.44 Ml 81.924 1.405 5.987 1.961 191.83 82.454 1.394 6.015 1.956 191.25 ''<*• 82.952 1.383 6.044 1. 951 190.70 83.420 1.373 6.075 1.946 190.20 IM 83.858 1.362 6.108 1.942 189.73 84.266 1.352 6.142 1. 938 189.30 . ...^ 84.644 1.341 6.177 1.934 188.90 84.992 1.330 6.214 1. 930 188.54 85.309 1.320 6.253 1. 927 188.22 85.593 1.309 6.293 1. 924 187.93 85.845 1.298 6.334 1. 922 187.68 86.063 1.288 6.377 1.920 187.47 IxtM 86.246 1.277 6.422 1.918 187.29 86.391 1.267 6 .468 1. 917 187.15 'M 86.498 1.256 6.516 1.916 187.05 86.564 1.245 6.565 1.915 187.00 ifl 86.587 1.235 6. 616 1. 915 186.98 195.300 1.235 6.616 1. 915 186.98 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 70.08 FEET UPSTRE7\M OF NODE 154.10 DEPTH = 1.546 FEET, UPSTREAM CONJUGATE DEPTH = 0.954 FEET NODE 153.00 : HGL = < 413.355>;EGL= < 414.035>;FLOWLINE= < 412.120> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 153.00 FLOWLINE ELEVATION = 412.12 ASSUMED UPSTREAM CONTROL HGL = 413.35 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 212 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (206-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL ALONG STREET 'J' * * FILE: G:\ACCTS\971004\AES206.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES206.DAT TIME/DATE OF STUDY: 09:09 01/03/2001 **Refer to Exhibit «X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM ( POUNDS) 154.00- 0.77 52.61 0.55* 60.85 FRICTION 154.20- 0.77*Dc 52.61 0.77*Dc 52.61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 154.00 FLOWLINE ELEVATION = 408.80 PIPE FLOW = 4.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.540 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.74 FT.) IS LESS THAN CRITICAL DEPTH( 0.77 FT.) ==^^ CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 154.00 : HGL = < 409.354>;EGL= < 410.061>;FLOWLINE= < 408.8O0> ****************************************************************************** FLOW PROCESS FROM NODE 154,00 TO NODE 154.20 IS CODE = 1 UPSTREAM NODE 154.20 ELEVATION = 409.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 4.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0. 54 CRITICAL DEPTH(FT) = 0.77 213 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.765 4.411 1.068 52. 61 0.016 0.756 4 .478 1.068 52. 62 0.064 0.747 4 . 548 1.068 52. 66 0.149 0.738 4.620 1.070 52.72 0.273 0.729 4. 694 1.071 52 .80 0.442 0.720 4 .770 1.073 52. 92 0.660 0.711 4.849 1.076 53,05 0.933 0.702 4 . 931 1.079 53.22 1.267 0. 692 5.015 1.083 53.42 >m 1. 671 0.683 5.102 1.088 53. 64 >m 2.154 0, 674 5.192 1.093 53. 90 2.727 0.665 5.285 1.099 54 .19 3.406 0. 656 5.382 1.106 54 .51 tM 4.206 0. 647 5.482 1. 114 54 .87 5.151 0.638 5.585 1.123 55.26 6.269 0.629 5. 693 1.132 55. 69 7.597 0.620 5.804 1.143 56.16 9.187 0. 611 5.919 1.155 56. 67 11.109 0. 601 6.039 1.168 57 .21 13.468 0. 592 6.164 1.183 57 .81 16.426 0.583 6.293 1.199 58.45 20.256 0.574 6.428 1.216 59. 13 25,465 0. 565 6.568 1.235 59.87 33.199 0. 556 6.713 1.256 60. 66 36.500 0.554 6.749 1.261 60. 85 NODE 154.20 : HGL = < 410.265>;EGL= < 410.568>;FLOWLINE= < 409.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 154.20 FLOWLINE ELEVATION = 409.50 ASSUMED UPSTREAM CONTROL HGL = 410.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 214 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (207-SERIES) * * SOUTH BROOKFIELD - LATERAL ON SAN ELIJO AT INTERSECTION OF STRET 'A' * * FILE: G:\ACCTS\971004\AES207.OUT T.L.G. **Rafer to Exhibit "X"** * ************************************************************************** FILE N/y^E: G:\ACCTS\971004\AES207.DAT TIME/DATE OF STUDY: 11:12 01/14/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS} DEPTH(FT) MOMENTUM(POUNDS) 216.40- 1-02 110.01 0.90* 112.59 FRICTION 216.70- 1.02*Dc 110.01 1.02*Dc 110.01 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 « NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.40 FLOWLINE ELEVATION = 380.07 PIPE FLOW = 7.0O CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 380.440 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH ( 0.37 FT.) IS LESS THAN CRITICAL DEPTH( 1.02 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 216.40 : HGL = < 380.971>;EGL= < 381.590>;FLOWLINE= < 380.070> ****************************************************************************** FLOW PROCESS FROM NODE 216.40 TO NODE 216.70 IS CODE = 1 UPSTREAM NODE 216.70 ELEVATION = 381.01 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7,00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 94.36 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 1.02 fl fl 215 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1.02 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ -CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.024 5.443 1.485 110.01 0.016 1.019 5.474 1.485 110.02 0.066 1.014 5.505 1.485 110.03 0.153 1.009 5.536 1.485 110.05 0.281 1.004 5.568 1.485 110.08 0.453 0. 999 5.600 1.486 110.12 0.674 0.994 5.633 1.487 110.16 m 0.950 0.988 5.666 1.487 110.22 « 1.286 0. 983 5.700 1.488 110.28 « 1. 691 0. 978 5.734 1.489 110.35 2.172 0. 973 5.768 1.4 90 110.43 2.741 0.968 5.803 1.491 110.52 m 3.410 0.963 5.839 1.493 110.62 4 .196 0. 958 5.875 1.494 110.73 ™ 5.120 0. 953 5. 912 1.496 110,85 6.207 0. 947 5.949 1.497 110.97 7.492 0. 942 5.986 1.499 111.11 9.022 0. 937 6.025 1.501 111.26 ..... 10.862 0.932 6.064 1.503 111.42 13.110 0.927 6.103 1.506 111.58 ..... 15.913 0. 922 6.143 1.508 111.76 19.523 0. 917 6.183 1.511 111.95 24.408 0.912 6.225 1.514 112.15 31.621 0.907 6.266 1.517 112.36 44 . 541 0. 901 6.309 1.520 112.58 94.360 0. 901 6.312 1.520 112.59 fl • NODE 216.70 : HGL = < 382. 034>;EGL= < 382.495>;FLOWLINE= < 381.010> fl ****************************************************************************** M UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.70 FLOWLINE ELEVATION = 381.01 fl fl ASSUMED UPSTREAM CONTROL HGL 382.03 FOR DOWNSTREAM RUN ANALYSIS Ml END OF GRADUALLY VARIED FLOW ANALYSIS 216 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl « * * * * *•* ************************************************************************ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (208-SERIES) * * SOUTH BROOKFIELD - S.D. LATERAL NEAREST TO OUTLET ON SAN ELIJO * * FILE: G:\ACCTS\971004\AES208.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES208.DAT TIME/DATE OF STUDY: 10:20 01/03/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM ( POUNDS ) 217.20- 3.55* 409.82 0.89 189.62 FRICTION 217.40- 2.64* 309.00 1.20 Dc 169.38 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.20 FLOWLINE ELEVATION = 361.33 PIPE FLOW = 9.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 364.880 FEET NODE 217.20 : HGL = < 364.880>;EGL= < 365.338>;FLOWLINE= < 361.330> ****************************************************************************** FLOW PROCESS FROM NODE 217.20 TO NODE 217.40 IS CODE = 1 UPSTREAM NODE 217.40 ELEVATION = 362.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9,60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 78.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.60)/( 105.042))**2 = 0.00835 HF-L*SF = ( 78.50)*(0.00835) = 0.656 NODE 217.40 : HGL = < 365.536>;EGL= < 365.994>;FLOWLINE= < 362.900> 217 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.4 0 FLOWLINE ELEVATION = 362.90 ASSUMED UPSTREAM CONTROL HGL = 364.10 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 218 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m m m ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERISTY COMMONS (209-SERIES) * * S.D. LATERAL IN SAN ELIJO ROAD @ SE BOUNDARY * * FILE: G:\ACCTS\971004\AES209.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES209.DAT TIME/DATE OF STUDY: 10:47 11/16/2001 **Refer to Exhibit «X"** ******** ** ******************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTRE7\M RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS ) DEPTH(FT) MOMENTUM(POUNDS) 220.00- 4.00 2512.10 1.54* 2878.50 FRICTION 220.60- 2.68*Dc 2018.66 2.68*Dc 2018.66 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 220.00 FLOWLINE ELEVATION = 435.70 PIPE FLOW = 71.70 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 439.700 FEET NODE 220.00 : HGL = < 437.239>;EGL= < 443.231>;FLOWLINE= < 435.700> ****************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 220.60 IS CODE = 1 UPSTREAM NODE 220.60 ELEVATION = 442.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 71.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 111.06 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.41 CRITICAL DEPTH(FT) = 2.68 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT} = 2.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 219 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.680 10.757 4 .477 2018.66 0.061 2.629 10.917 4 .480 2019.86 M 0.249 2.578 11.091 4 .489 2023.45 0.573 2.527 11.281 4 .504 2029.49 -nn 1.043 2.476 11.487 4 .526 2038.06 1.673 2.425 11.709 4 .555 2049.23 fl 2.480 2.374 11.947 4 .592 2063.12 3.485 2.323 12.203 4 .637 2079.86 •m 4 .712 2.272 12.478 4 .691 2099.59 -m 6.192 2.221 12.772 4.756 2122.48 -m 7. 961 2.171 13.088 4 .832 2148.72 10.064 2.120 13.426 4 .920 2178.51 mi 12.557 2.069 13.788 5.023 2212.11 15.511 2.018 14 .176 5.140 2249.77 fl 19.014 1. 967 14.592 5.275 2291.81 23.183 1. 916 15.039 5.430 2338.55 mm 28.172 1.865 15.520 5.607 2390.38 mt 34.190 1.814 16.036 5.810 2447.73 41.533 1.763 16.592 6.041 2511.08 50.637 1.712 17.192 6.305 2581.01 62.178 1. 661 17 .841 6.607 2658.13 77 .292 1. 611 18.543 6. 953 2743.17 98.114 1.560 19.304 7.350 2836.97 111.060 1.539 19.638 7.531 2878.50 NODE 220.60 : HGL = < 444. 780>;EGL= < 44 6.577>;FLOWLINE= < 442.100> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 220.60 FLOWLINE ELEVATION = 442 .10 •m ASSUMED UPSTREAM CONTROL HGL 444.78 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS m 220 fl fl 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES *"* **************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (210-SERIES) * * S.D. IN SAN ELIJO ROAD @ SE BOUNDARY * * FILE: G:\ACCTS\971004\AES210.OUT T.L.G, * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES210.DAT TIME/DATE OF STUDY: 10:39 11/16/2001 **RefQr to Exhibit "X"** :j7* **************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 207.10- MODEL PROCESS PRESSURE HEAD(FT) 4 .17 PRESSURE+ MOMENTUM(POUNDS) 5111.27 FLOW DEPTH(FT) 2.30* PRESSURE+ MOMENTUM(POUNDS) 6522.83 220.00- FRICTION 3.69*Dc 4996.86 3.69* Dc 4996.86 fl 220.10- JUNCTION 4 .52* 4068.70 2.47 3681.36 fl 220.20- FRICTION 3.81* 3640.32 3.16 Dc 3383.18 fl 220.30- JUNCTION 5. 92* 3230.49 2.16 1983.75 fl 220.40- FRICTION 4.88* 2770.65 2. 63 Dc 1879.35 Mi MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 mm NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA; NODE NUMBER = 207.10 FLOWLINE ELEVATION = 422.33 PIPE FLOW = 159.40 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 426.500 FEET NODE 207.10 ; HGL = < 424.629>;EGL= < 430.535>;FLOWLINE= < 422.330> ****************************************************************************** FLOW PROCESS FROM NODE 207.10 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 434.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): 221 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES I* PIPE FLOW 159.40 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 446.40 FEET MANNING' S N = 0 .01300 NORMAL DEPTH(FT) 2.24 CRITICAL . DEPTH(FT ) = 3. 69 mm OPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3. 69 ^m GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3. 690 11.417 5.715 4996.86 m 0.116 3. 632 11.586 5.718 4998.85 0.456 3.574 11.764 5.724 5004.55 m 1.039 3.516 11.952 5.736 5014.07 1.889 3.458 12.150 5.752 5027.57 mm 3.035 3.400 12.359 5.774 5045.19 4 .508 3.342 12.579 5.801 5067.11 -» 6.347 3.285 12.812 5.835 5093.51 mm 8.598 3. 227 13.056 5.875 5124.60 11.315 3.169 13.314 5.923 5160.58 14.563 3.111 13.586 5.979 5201.71 18.423 3.053 13.872 6.043 5248.24 22.991 2. 995 14.174 6.117 5300.46 28.391 2. 937 14.492 6.200 5358.67 34 .777 2.879 14 .828 6.296 5423.22 42.350 2.821 15.183 6.403 5494.47 51.374 2.763 15.558 6.524 5572.84 62.209 2.706 15.954 6.661 5658.76 75.358 2.648 16.374 6.813 5752.73 91.564 2.590 16.818 6.984 5855.28 mt 111.974 2.532 17 .289 • 7.176 5967.01 138.519 2.474 17 .789 7 .391 6088.58 m 174.816 2.416 18.319 7.630 6220.71 228.998 2.358 18 .884 7.899 6364.22 M 327.168 2.300 19.485 8 .199 6519.99 446.400 2.299 19.496 8.205 6522.83 fl fl NODE 220.00 : HGL = < 4 37. 8 90>;EGL= < 439. 915>;FLOWLINE= < 434.200> ****************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 220.10 IS CODE = 5 UPSTREAM NODE 220.10 ELEVATION = 435,20 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 109.30 159.40 50.10 0.00 DIAMETER (INCHES) 42.00 54 . 00 36.00 0.00 ANGLE DEGREES) 40.00 60 .00 0. 00 FLOWLINE ELEVATION 435.20 434.20 435.70 0. 00 CRITICAL DEPTH(FT.) 3.16 3.69 2.30 0.00 VELOCITY (FT/SEC) 11.360 11.412 7 . 088 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01180 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00656 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00918 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.055 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 1.753)+( 0.055)+( 0.000) = 1.808 « 222 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES NODE 220.10 : HGL = < 439. 719>; EGL= < 4 41. 723>; FLOWLINE= < 435.200 ****************************************************************************** FLOW PROCESS FROM NODE 220.10 TO NODE 220.20 IS CODE = 1 UPSTREAM NODE 220.20 ELEVATION = 436.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 109,30 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 49.69 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 109.30)/( 1006.116))**2 = 0.01180 HF=L*SF = ( 49.69)*(0.01180) = 0.586 NODE 220.20 : HGL = < 440 . 306>; EGL= < 442 . 310>; FLOWLINE= < 436.500> ****************************************************************************** FLOW PROCESS FROM NODE 220.20 TO NODE 220.30 IS CODE = 5 UPSTREAM NODE 220.30 ELEVATION = 437.00 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT . ) (FT/SEC) UPSTREAM 68.30 36.00 0.00 437.00 2. 63 9.662 DOWNSTREAM 109.30 42.00 - 436.50 3.16 11.360 LATERAL #1 0.00 0,00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 41.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01049 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01180 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01114 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.401 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.619)+( 0.045)+( 0.401) = 2.065 NODE 220.30 : HGL = < 442.925>;EGL= < 444.374>;FLOWLINE= < 437.000> ****************************************************************************** FLOW PROCESS FROM NODE 220.30 TO NODE 220.40 IS CODE = 1 UPSTREAM NODE 220.40 ELEVATION = 441.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 68.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 282.04 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6B.30)/( 666.983))**2 = 0.01049 HF=L*SF = ( 282.04)*(0.01049) = 2.957 NODE 220.40 : HGL = < 445.882>;EGL= < 447.332>;FLOWLINE= < 441.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 220.40 FLOWLINE ELEVATION = 441.00 ASSUMED UPSTREAM CONTROL HGL = 4 43,63 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 223 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGEU\M PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (300-SERIES) * * SOUTH BROOKFIELD - S.D ALONG STREET 'C * * FILE: G:\ACCTS\971004\AES300.OUT T.L.G. **Refer to Exhibit "X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES300.DAT TIME/DATE OF STUDY: 07:12 01/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 218.00- MODEL PROCESS PRESSURE HEAD(FT) 2. 50 PRESSURE+ MOMENTUM(POUNDS) 1136.80 FLOW DEPTH(FT) 1.80* PRESSURE+ MOMENTUM(POUNDS) 1165.63 160.00- FRICTION 2.20 Dc 1102.41 1.72* 1197.23 160.10- MANHOLE 2.20 Dc 1102.41 1. 87* 1144.33 m 159.00- FRICTION 2.20*Dc 1102.41 2.20* Dc 1102.41 fl MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 218.00 FLOWLINE ELEVATION = 350.10 PIPE FLOW = 43.70 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 352.600 FEET NODE 218.00 : HGL = < 351.903>;EGL= < 353.966>;FLOWLINE= < 350.100> ****************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 160.00 IS CODE = 1 * UPSTREAM NODE 160.00 ELEVATION = 354.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 43.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 283.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1-81 CRITICAL DEPTH(FT) = 2.20 tf 224 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES M UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.72 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+- ••- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.722 12.119 4 .004 1197.23 3.374 1.725 12.092 3. 997 1195.76 6.868 1.728 12.066 3.991 1194.30 10.493 1.732 12,040 3. 984 1192.85 14.260 1.735 12.014 3. 978 1191.42 ^mt 18 .185 1.739 11.988 3.972 1190.01 22.282 1.742 11.962 3. 965 1188.61 26.571 1.745 11.937 3. 959 1187,22 fl 31.074 1.749 11.911 3. 953 1185.84 35,816 1.752 11.886 3.947 1184.48 40.829 1.756 11.861 3. 942 1183.13 46.149 1.759 11.836 3.936 1181.80 mm 51.823 1,762 11.811 3. 930 1180.48 57.907 1.766 11.786 3. 924 1179.17 64.473 1.769 11.762 3. 919 1177.88 71.613 1.773 11.737 3.913 1176.60 79.447 1.776 11.713 3.908 1175.33 88.140 1.780 11.689 3. 902 1174.07 97.921 1.783 11.665 3.897 1172.83 109.128 1.786 11.641 3.892 1171.60 122.282 1.790 11.617 3.887 1170.38 138.257 1.793 11.593 3. 882 1169.18 _ 158.696 1.797 11 . 570 3.876 1167.99 187.280 1.800 11.547 3.871 1166.81 235.835 1.803 11.523 3.8 67 1165.64 283.400 1.803 11.523 3. 866 1165.63 NODE 160.00 : HGL = < 356. 052>;EGL= < 358.334>;FLOWLINE= < 354.330> ****************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 160.10 IS CODE = 2 UPSTREAM NODE 160.10 ELEVATION = 354.66 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 43.70 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 2.093 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = , 05*( 2.093) = 0.105 NODE 160.10 : HGL = < 356.533>;EGL= < 358.438>;FLOWLINE= < 354.660> ,*************************************************************************** FLOW PROCESS FROM NODE UPSTRET^ NODE 159.00 160.10 TO NODE 159.00 IS CODE = 1 ELEVATION = 356.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 43.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 112.20 FEET MANNING'S N = 0.01300 fl m NORMAL DEPTH(FT) = 1.85 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.20 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.20 225 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES m DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 2.202 9.540 3.617 1102.41 0.066 2.188 9.589 3. 617 1102.48 m 0.268 2.174 9.640 3. 618 1102.70 0. 615 2.160 9.692 3.619 1103.07 1.118 2.145 9.745 3.621 1103.59 1.787 2.131 9.800 3. 623 1104.26 HUM 2. 639 2.117 9.856 3. 626 1105.08 3. 688 2.103 9.914 3.630 1106.05 •— 4 .956 2.088 9.974 3, 634 1107.18 6.466 2.074 10.035 3.639 1108.46 mt 8.248 2.060 10.098 3.644 1109.90 10.335 2.045 10.162 3. 650 1111.51 12.772 2.031 10.228 3.656 1113.27 15. 611 2.017 10.295 3.664 1115.20 mm 18.922 2.003 10.364 3. 672 1117.30 22.792 1.988 10.435 3.680 1119.56 « 27.336 1. 974 10.508 3. 690 1122.00 fl 32.711 1. 960 10.583 3.700 1124.62 39.139 1.945 10.659 3.711 1127.41 46.942 1. 931 10.737 3.722 1130.38 56.622 1. 917 10.817 3.735 1133.54 69.019 1.903 10.899 3.748 1136.89 85.709 1.888 10.982 3.762 1140.42 110.235 1.874 11.068 3.777 1144.16 112.200 1.873 11.072 3.778 1144.33 NODE 159.00 : HGL = < 358. 452>;EGL= < 359.867>;FLOWLINE= < 356.250> ****************************************************************************** mm UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 159.00 FLOWLINE ELEVATION = 356.25 mt ASSUMED UPSTREAM CONTROL HGL 358.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS fl fl tf tf 226 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERISTY COMMONS (301-SERIES) * * SOUTH BROOKFIELD - TEMP. S.D. RUNNING FROM BOY TO STREET 'C * * FILE: G:\ACCTS\971004\AES301.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES301.DAT TIME/DATE OF STUDY: 16:30 01/02/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS ) 159.00- 1.23 153.73 0.94* 15 6.82 FRICTION 161.10- 1.10*Dc 150.81 1.10*Dc 150.81 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 159.00 FLOWLINE ELEVATION == 356.75 PIPE FLOW = 9.50 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.980 FEET NODE 159.00 : HGL = < 357.686>;EGL= < 358.359>;FLOWLINE= < 356.750> ****************************************************************************** FLOW PROCESS FROM NODE 159.00 TO NODE 161.10 IS CODE = 1 UPSTREAM NODE 161.10 ELEVATION = 359.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.50 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 248,60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = 1.10 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.10 227 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.101 5.355 1.547 150.81 0.021 1.095 5.397 1.547 150.82 0.088 1.088 5. 439 1.547 150.85 0.203 1.081 5.482 1.548 150.89 mm 0.372 1.074 5.526 1.548 150.96 0. 601 1.067 5.570 1.549 151.04 •^ 0.895 1.060 5. 615 1.550 151.14 1.262 1.053 5. 661 1.551 151.27 m 1.709 1.047 5.707 1.553 151.41 2.248 1.040 5.754 1.554 151.57 •tm 2.890 1.033 5. 803 1.556 151.76 3.649 1.026 5.852 1.558 151.96 mm 4.543 1.019 5.901 1.560 152.19 5.595 1.012 5.952 1.563 152.44 mi 6.830 1.006 6.004 1.566 152.71 mt 8.286 0. 999 6.056 1.569 153.00 10.008 0. 992 6.109 1.572 153.31 12.061 0. 985 6.164 1.575 153.65 14.532 0.978 6.219 1.579 154.01 17.552 0.971 6.275 1.583 154.40 21.322 0.964 6.333 1.588 154,81 26.179 0. 958 6.391 1.592 155.25 32.758 0. 951 6.450 1.597 155.71 42.479 0. 944 6.511 1.603 156.20 59.908 0. 937 6.572 1. 608 156.71 248.600 0. 936 6.585 1.609 156.82 fl NODE 161.10 ; ; HGL = < 360. 101>;EGL= < 360.547>;FLOWLINE= < 359.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 161.10 ASSUMED UPSTRET^ CONTROL HGL = FLOWLINE ELEVATION = 359.00 360.10 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 228 971004-5 UNTVERSITY COMMONS BROOKHELD HOMES fl *************************************************************************** ** * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference; WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (302-SERIES) * * S. BROOKFIELD - S.D. WITHIN PARK AREA * * FILE: G:\ACCTS\971004\AES402.OUT **RafQr to Exhibit «X"** * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES302.DAT TIME/DATE OF STUDY: 09:01 01/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 413.00- 1.50* 141.14 0.76 132.77 FRICTION 412.00- 1.05*Dc 116.40 1.05*Dc 116.40 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 413.00 FLOWLINE ELEVATION = 353,22 PIPE FLOW = 7.30 CFS PIPE DIAJ^ETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 354.720 FEET NODE 413.00 : HGL = < 354.720>;EGL= < 354.985>;FLOWLINE= < 353.220> ****************************************************************************** FLOW PROCESS FROM NODE 413.00 TO NODE 412.00 IS CODE = 1 UPSTREAM NODE 412.00 ELEVATION = 354.63 (FLOW SEALS IN REACH) ^m -m CALCULATE FRICTION PIPE FLOW PIPE LENGTH - LOSSES(LACFCD): 7.30 CFS PIPE DIAMETER = 18.00 INCHES 73.03 FEET MANNING'S N = 0.01300 •H. NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = 1 . 05 flf DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 229 971004-5 UNTVERSITY COMMONS BROOKHELD HOMES -m DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 4 .130 1.765 141.14 <m 1.153 1.482 4 .139 1.748 139.27 2.219 1.464 4 .156 1.732 137.52 — 3.234 1.446 4.178 1.717 135.85 4.208 1.427 4 .205 1.702 134.25 Ml 5.146 1.409 4.235 1. 688 132.72 6.052 1.391 4 .268 1.674 131.25 6.928 1.373 4 .305 1. 661 129.85 7 .773 1.355 4 .345 1. 648 128.50 •Ml 8.590 1.337 4 .388 1. 636 127.22 9.377 1.319 4. 435 1. 624 126.00 — 10.135 1.300 4 .484 1.613 124.85 fl 10.861 1.282 4 .537 1.602 123.76 11.556 1.264 4 .592 1.592 122.74 12.218 1.246 4 .651 1.582 121.78 12.844 1.228 4 .713 1. 573 120.90 mi 13.432 1.210 4.779 1.565 120.09 13.981 1.192 4 .848 1.557 119.35 14.485 1.173 4 . 921 1.550 118.68 14.942 1.155 4 .997 1.543 118.10 15.347 1.137 5.077 1.538 117.60 15.695 1.119 5.162 1.533 117.18 15.981 1.101 5.251 1.529 116.84 16.196 1.083 5.344 1.526 116.60 16.332 1.065 5.442 1.525 116.45 16.380 1.04 6 5.544 1.524 116.40 73.030 1.046 5. 544 1.524 116.40 NODE 412.00 : : HGL = < 355. 676>;EGL= < 356.154>;FLOWLINE= < 354.630> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 412 . 00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 354.63 355.68 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS fl 230 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ********** ******************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: fl O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel, (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (400-SERIES) * SOUTH BROOKFIELD - S.D. RUNNING S. ON STREET 'D' & CALLED AS LINE 'A' * FILE: G:\ACCTS\971004\AES400.OUT T.L.G. ************************************************************************** FILE NAME: G:\ACCTS\971004\AES400.DAT TIME/DATE OF STUDY: 08:22 11/14/2001 **Refer to Exhibit '^X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN fl itf NODE NUMBER 165.00- MODEL PROCESS PRESSURE HEAD(FT) 4 .08 PRESSURE+ MOMENTUM(POUNDS) 3022.09 FLOW DEPTH(FT) 1.18* PRESSURE+ MOMENTUM(POUNDS) 5252.36 fl 165. 10- FRICTION 2.8 0 Dc 2514.05 1.43* 4145.51 Ml 165. 20- MANHOLE 2.80 Dc 2514.05 1. 42* 4178.61 fl 164 . .00- FRICTION 2.80 Dc 2514.05 2.15* 2778.54 164. , 10- JUNCTION 3.39 2409.57 1.80* 2726.58 fl 163. ,00- FRICTION 2.73*Dc 2193.36 2.73* Dc 2193.36 tf 163. . 10- JUNCTION 6. 20* 3649.93 2.73 Dc 2193.36 fl 163, .20- FRICTION . 7.37* 4162.62 2.73 Dc 2193.36 fl 163, .30- JUNCTION 9.06* 4294.39 2.05 1607.80 mi 163, . 40- FRICTION 8 .00* 3828.52 2.49 Dc 1529,86 tf 163 .50- JUNCTION 9,88* 4657.69 1. 61 1928.56 fl tf 162 . 00- FRICTION 8 .15* 3893.57 2.49 Dc 1529.86 fl MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE -25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** 231 971004-5 UNTVERSITY COMMONS BROOKFIELD HOMES DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 165.00 FLOWLINE ELEVATION = 343.00 PIPE FLOW = 82.90-CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 347.080 FEET NODE 165.00 : HGL = < 344.178>;EGL= < 360.280>;FLOWLINE= < 343.000> ****************************************************************************** FLOW PROCESS FROM NODE 165.00 TO NODE 165.10 IS CODE = 1 UPSTREAM NODE 165.10 ELEVATION = 364.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 82.90 CFS PIPE DIAMETER = 36.00 INCHES ••^ PIPE LENGTH = 126.30 FEET MANNING'S N = 0 .01300 -m NORMAL DEPTH(FT) 1.14 CRITICAL DEPTH(FT ) = 2.80 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.43 'Ml GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1.426 25.021 11.153 4145.51 2.132 1.414 25.286 11.349 4185.70 4.389 1.403 25.557 11.551 4226.80 6.782 1.391 25.833 11.760 4268,85 m 9. 325 1.380 26.115 11.976 4311.87 12.033 1.368 26.403 12.199 4355.88 m 14.923 1.356 26.697 12.431 4400.92 18.017 1.345 26.998 12.670 4447.02 fl' 21.337 1. 333 27.305 12.918 4494.20 24.912 1.322 27.619 13.174 4542.49 •m 28.777 1. 310 27.940 13.440 4591.94 32.971 1.299 28.269 13.715 4642.58 m 37.545 1.287 28.605 14.000 4694.44 42.560 1.275 28.948 14.296 4747.55 fl 48 .095 1.264 29.299 14.602 4801.97 54 .250 1.252 29.659 14.920 4857.72 m 61.158 1 .241 30.027 15,250 4914.86 68.999 1.229 30.404 15.592 4973.42 m 78.022 1.217 30.790 15.947 5033.46 88.598 1.206 31.185 16.316 5095.02 tf 101.297 1. 194 31.589 16.699 5158.15 117.076 1.183 32.004 17.097 5222.90 126.300 1.178 32.193 17 .280 5252.36 tf NODE 165.10 : HGL = < 365. 4 2 6>;EGL= < 375.153>;FLOWLINE= < 364.000> ****************************************************************************** FLOW PROCESS FROM NODE 165.10 TO NODE 165.20 IS CODE = 2 UPSTREAM NODE 165.20 ELEVATION = 364.33 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 82.90 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 9.813 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*[ 9.813) = 0.491 NODE 165.20 : HGL = < 365.746>;EGL= < 375.644>;FLOWLINE= < 364.330> ****************************************************************************** 232 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl FLOW PROCESS FROM NODE UPSTREAM NODE 164.00 165.20 TO NODE ELEVATION = 164.00 IS CODE = 1 376.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 82.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 116.60 FEET MANNING'S N = 0.01300 ml m M NORMAL DEPTH(FT) 1.31 CRITICAL DEPTH(FT) = 2.80 ml m M UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.15 ml m M GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) fl 0.000 2.151 15.281 5.779 2778.54 1.169 2.117 15.544 5.871 2809.51 2.457 2.083 15.819 5. 972 2842.65 3.876 2.049 16.108 6.081 2878.07 <M 5. 440 2.016 16.410 6.200 2915.88 7.165 1. 982 16.727 6.329 2956.21 9.070 1. 948 17.058 6.469 2999.17 11.178 1. 914 17.406 6.622 3044.91 Ml 13.515 1.881 17.771 6.787 3093.59 16.112 1.847 18.154 6.967 3145,36 19.007 1. 813 18.555 7 . 163 3200.41 22.244 1.779 18.977 7 .375 3258.93 25.879 1.745 19.421 7.606 3321.14 29.983 1.712 19.888 7 .857 3387.26 34.643 1. 678 20.379 8 .131 3457.55 39.973 1. 644 20 .897 8. 429 3532.28 -46.121 1. 610 21.443 8.754 3611.76 53.293 1.577 22.019 9.110 3696.31 61.772 1. 543 22.628 9.498 3786.31 71. 979 1. 509 23.272 9.924 3882.16 84.564 1.475 23.953 10.390 3984.29 100.616 1,441 24.676 10.902 4093.20 116,600 1.416 25.239 11.314 4178.61 NODE 164.00 : HGL = < 378. 151>;EGL= < 381.779>;FLOWLINE= < 376.OOO ****************************************************************************** FLOW PROCESS FROM NODE 164.00 TO NODE 164.10 IS CODE = 5 UPSTREAM NODE 164.10 ELEVATION = 376.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 75.80 36,00 0.00 376.33 82.90 36.00 - 376.00 7.10 18.00 90.00 377.50 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.; 2.73 2.80 1.03 0.00 VELOCITY (FT/SEC) 17.095 15.285 5.479 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.02852 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02073 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02462 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.098 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES 233 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl M JUNCTION LOSSES = ( 0.792)+( 0.098)+{ 0.000) = 0.891 NODE 164.10 : HGL = < 378.132>;EGL= < 382.670>; FLOWLINE= < 376.330> ****************************************************************************** FLOW PROCESS FROM NODE 164.10 TO NODE 163.00 IS CODE = 1 UPSTREAM NODE 163.00 ELEVATION = 384.55 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 75.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 269.80 FEET MANNING'S N = 0.01300 •um NORMAL DEPTH(FT) 1.76 CRITICAL DEPTH(FT) 2.73 •um UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.73 •um GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.726 11.231 4.686 2193.36 0.101 2.688 11.346 4.688 2194.17 0.396 2.649 11.471 4.694 2196.48 0.892 2.611 11.604 4.703 2200.30 1. 603 2.572 11 .746 4.716 2205.65 2.543 2. 534 11.898 4.733 2212.54 3.733 2.495 12 .059 4 .755 2221.00 5.197 2.457 12.230 4.781 2231.09 6.964 2.418 12 .410 4.811 2242.85 9. 070 2.380 12.601 4.847 2256.33 11.558 2.341 12.803 4.888 2271.59 14,480 2.303 13.015 4 .935 2288.70 17.903 2.264 13.239 4.988 2307.74 21.909 2.226 13.475 5.047 2328.79 26.602 2.187 13.724 5.114 2351.94 32.116 2.149 13.986 5.188 2377.29 38.631 2.110 14 .262 5.271 2404.94 . 46.389 2 .072 14 .552 5.362 2435.03 55.731 2.033 14 .859 5.464 2467.68 -67.157 1.995 15.182 5.576 2503.02 81. 442 1.956 15.523 5.700 2541.22 * 99.891 1.918 15.882 5.837 2582.45 124.944 1.879 16.262 5.988 2626.89 162.095 1.841 16.663 6.155 2674.74 228.967 1.802 17 .087 6.338 2726.24 •m 269.800 1.802 17 .089 6.340 2726.58 m NODE 163.00 : HGL = < 387. , 27 6>;EGL= < 389.236>;FLOWLINE= < 384.550> ***************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 163.10 IS CODE = 5 UPSTREAM NODE 163.10 ELEVATION = 384.88 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL tti LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 75.80 36.00 90.00 384.88 75.80 36.00 - 384.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00==-Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT. 2.73 2. 73 0.00 0. 00 VELOCITY (FT/SEC) 10.724 11.230 0.000 0,000 234 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,01291 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01128 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01210 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.597)+( 0.036)+( 0.000) = 3.633 NODE 163.10 : HGL = < 391. 084>; EGL= < 392 . 8 69>; FLOWLINE= < 384.880> ****************************************************************************** FLOW PROCESS FROM NODE 163.10 TO NODE 163.20 IS CODE = 1 UPSTREAM NODE 163.20 ELEVATION = 387.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 75.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 300.60 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 75.80)/( 666.985))**2 = 0.01292 HF=L*SF = ( 300.60)*(0.01292) = 3.882 NODE 163.20 : HGL = < 394 . 966>; EGL= < 396.752>; FLOWLINE= < 387.600> ****************************************************************************** FLOW PROCESS FROM NODE 163.20 TO NODE 163.30 IS CODE = 5 UPSTREAM NODE 163.30 ELEVATION = 387.70 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 59.20 36.00 0.00 387.70 2.4 9 8.375 DOWNSTREAM 75.80 36.00 - 387.60 2.7 3 10.724 LATERAL #1 8.30 18.00 90.00 388.40 1.12 4.697 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 8.30===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00788 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01291 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01040 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = 0.357 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.696)+( 0.042)+( 0.357} = 1.095 NODE 163.30 : HGL = < 396 . 758>;EGL= < 397.847>;FLOWLINE= < 387.700> ****************************************************************************** FLOW PROCESS FROM NODE 163.30 TO NODE 163.40 IS CODE = 1 •« OPSTREAM NODE 163.40 ELEVATION = 390.68 (FLOW IS UNDER PRESSURE) • CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 59.20 CFS PIPE DIAMETER = 36.00 INCHES • PIPE LENGTH = 244.20 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 59.20)/( 666.983))**2 = 0.00788 HF=L*SF = ( 244.20)*(0.00788) = 1.924 " NODE 163.40 : HGL = < 398.682>; EGL= < 399.771>; FLOWLINE= < 390.680> — j^j^^*************************************************************************** 235 fl 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES FLOW PROCESS FROM NODE 163.40 TO NODE 163.50 IS CODE = 5 UPSTREAM NODE 163.50 ELEVATION = 391.01 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 59.20 36.00 90.00 . 391.01 2.49 8.375 DOWNSTREAM 59.20 36.00 - 390.68 2.49 8,375 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 O.OO 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00788 D0WNSTRE7UV1: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00788 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00788 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.032 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.178)+( 0.032)+( 0.000) = 2.210 NODE 163.50 : HGL = < 400.891>;EGL= < 401.981>;FLOWLINE= < 391.010> ****************************************************************************** FLOW PROCESS FROM NODE 163.50 TO NODE 162.00 IS CODE = 1 UPSTREAM NODE 162.00 ELEVATION = 393.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 59.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 32.70 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 59.20)/( 666.997))**2 = 0.00788 HF=L*SF = ( 32.70)*(0.00788) = 0.258 NODE 162.00 : HGL = < 401.149>;EGL= < 402.238>;FLOWLINE= < 393.OOO ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 162.00 FLOWLINE ELEVATION = 393.00 ASSUMED UPSTREAM CONTROL HGL = 395.49 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 236 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES ***********"******************************************************************* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (401-SERIES) * * SOUTH BROOKFIELD - S.D.'U' * * FILE: G:\ACCTS\971004\AES401.OUT * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES401.DAT TIME/DATE OF STUDY: 09:40 08/13/2001 **Refer to Exhibit «X"** ***************************************************************** ************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: '**" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 164.00- 0.95 91.55 0.82* 94.42 FRICTION 164.20- 0.95*Dc 91.55 0.95*Dc 91.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 164.00 FLOWLINE ELEVATION = 377.50 PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 378.150 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.65 FT.) IS LESS THAN CRITICAL DEPTH( 0.95 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 164.00 : HGL = < 378.324>;EGL= < 378.909>;FLOWLINE= < 377.500> ****************************************************************************** FLOW PROCESS FROM NODE 164.00 TO NODE 164.20 IS CODE = 1 UPSTREAM NODE 164.20 ELEVATION = 378,30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH - 79.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.82 CRITICAL DEPTH[FT) = 0.95 237 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-+ -* CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.954 5.142 1.365 91 .55 0.016 0. 949 5.176 1.365 91.55 0.066 0.943 5.211 1.365 91.56 0. 153 0.938 5.246 1.365 91.59 0.281 0.932 5.282 1.366 91.62 0.453 0.927 5.319 1.367 91.66 0. 674 0. 922 5.356 1.367 91.71 •fll 0. 950 0.916 5.393 1.368 91.77 1.287 0.911 5.431 1.369 91.84 •V 1.692 0.905 5.470 1.370 91.92 2.175 0. 900 5.509 1.371 92.01 2.745 0.894 5.550 1.373 92.11 'tttt 3.417 0.889 5.590 1.375 92.22 4 .206 0 . 884 5. 632 1.376 92.34 5.134 0.878 5. 674 1.378 92.47 6.226 0.873 5.716 1.380 92. 61 'MrM 7.518 0.867 5.760 1.383 92.76 9.057 0.862 5.804 1.385 92. 93 10.910 0.856 5.849 1.388 93.10 13.173 0.851 5.894 1.391 93.29 15.997 0.846 5.940 1.394 93.49 19.635 0.840 5.988 1.397 93,70 24.560 0.835 6.035 1.401 93.92 31.837 0.829 6.084 1.404 94 .16 -m 44 .877 0.824 6.134 1.408 94 .41 79.300 0.824 6.136 1.409 94. 42 m NODE 164.20 : HGL = < 379 . 254>; EGL= < 37 9. 665>; FLOWLINE= < 378.300> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 164,20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 378.30 379.25 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS fl 238 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES fl ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (402-SERIES) * * SOUTHBROOKFIELD - S.D. LINE 'M' * * FILE: G:\ACCTS\971004\AES402.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES4 02.DAT TIME/DATE OF STUDY: 09:10 01/02/2001 **Refar to Exhibit «X"** ** **************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 163.20- 6.60* 947.26 1.01 456.74 FRICTION 163.60- 5.61* 838.30 1.43 Dc 382.40 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 163.20 FLOWLINE ELEVATION = 388.40 PIPE FLOW = 16.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.000 FEET NODE 163.20 : HGL - < 395.000>;EGL= < 396.37 0>;FLOWLINE= < 388.400> ****************************************************************************** FLOW PROCESS FROM NODE 163.20 TO NODE 163.60 IS CODE = 1 UPSTREAM NODE 163.60 ELEVATION = 390,00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH - 24.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 16.60)/( 105.044))**2 = 0.02497 HF=L*SF = ( 24.50)* (0.02497) = 0.612 NODE 163.60 : HGL = < 395.612>;EGL= < 396.982>;FLOWLINE= < 390.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: 239 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES NODE NUMBER = 163.60 FLOWLINE ELEVATION = 390.00 ASSUMED UPSTREAM CONTROL HGL = 391.43 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS •m 240 fl « 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERSITY COMMONS (405-SERIES) * * SOUTH BROOKFIELD - S.D. IN FUTURE LOT 73 * * FILE: G:\ACCTS\971004\AES405.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\AES405.DAT TIME/DATE OF STUDY: 07:59 01/04/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS fl 401.00-2 . 00* 210.85 0.55 76.38 FRICTION HYDRAULIC JUMP 401.10- JUNCTION 1.40 110,68 0.29* 168.90 tf 401.20- FRICTION 0.85 DC 68.57 0.30* 189.48 fl 401.30-0. 85*Dc 68.57 0 . 8 5 * Dc 68 .57 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 401.00 FLOWLINE ELEVATION = 340.00 PIPE FLOW = 4.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 342.000 FEET NODE 401.00 : HGL = < 342.000>;EGL= < 342.038>;FLOWLINE= < 340.000> ****************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 401.10 IS CODE = 1 UPSTREAM NODE 401.10 ELEVATION = 340.60 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 65.90 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 241 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES NORMAL DEPTH(FT) 0. 65 CRITICAL DEPTH(FT) 0.78 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 0.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.288 17.568 5.084 168.90 3.045 0.303 16.369 4.466 157.78 6.132 0.317 15.305 3. 956 147.94 9.264 0.331 14.354 3.533 139.21 12.441 0.346 13.500 3.178 131.41 •mm 15. 666 0. 360 12.730 2.878 124 .44 fl 18.941 0.375 12.034 2.625 118.18 fl 22.271 0.389 11.400 2.408 112.54 25.661 0. 403 10.823 2.223 107.45 29.117 0.418 10.294 2.064 102.84 fl 32.646 0.432 9.809 1. 927 98. 67 36.258 0 . 446 9.362 1.808 94 .89 39.966 0.461 8.950 1.706 91. 45 43.783 0. 475 8.569 1.616 88.33 fl 47 . 731 0 .490 8.215 1.538 85.50 51.833 0. 504 7.886 1.470 82. 92 m 56.124 0 . 518 7.580 1.411 80.58 60.648 0.533 7.294 1.359 78.46 fl 65.470 0.547 7.027 1.314 76.53 65,900 0.548 7. 006 1.311 76,38 mi HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD. (FT) = 2.00 m fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.000 1.559 2.038 210.85 fl 5. 577 1. 951 1.569 1. 989 201.39 11.088 1.902 1.588 1. 942 192.11 16.562 1.854 1.612 1.894 183.01 mt 22.005 1 . 805 1. 642 1.847 174.12 mt 27.422 1.756 1. 676 1. 800 165.44 32.814 1 .707 1.715 1.753 157.01 m 38.181 1.658 1.759 1.706 148 .83 fl 43.523 1. 609 1.808 1. 660 140.93 48.837 1. 561 1.863 1. 614 133.31 54.121 1.512 1. 923 1.569 126.00 59.371 1. 463 1. 989 1. 524 118.99 fl 64 .583 1. 414 2.063 1. 480 112.32 65.900 1.402 2.083 1. 469 110.68 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 52.19 FEET UPSTREAM OF NODE 401.00 DEPTH = 1.530 FEET, UPSTREAM CONJUGATE DEPTH = 0.351 FEET NODE 401.10 : HGL = < 340.888>;EGL= < 345.684>;FLOWLINE= < 340.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 401.20 401 . 10 TO NODE ELEVATION = 401.20 IS CODE = 5 341.10 (FLOW IS SUPERCRITICAL; 242 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.90 4 .90 0.00 0.00 DIAMETER (INCHES) 18.00 24 .00 0.00 0.00 ANGLE ; DEGREES] 0.00 0.00 0.00 FLOWLINE ELEVATION 341.10 340.60 0.00 0.00 CRITICAL DEPTH(FT.) 0.85 0.78 0.00 0.00 VELOCITY (FT/SEC) 19.757 17.573 0.000 0.000 0,00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.26492 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 1.060 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.715)+( 1.060)+( 0.000) = 1.775 29555 23428 0.000 FEET NODE 401.20 : HGL = < 341. 397>; EGL= < 347 . 458>; FLOWLINE= < 341.100> ****************************************************************************** FLOW PROCESS FROM NODE 401.20 TO NODE 401.30 IS CODE = 1 UPSTREAM NODE 401.30 ELEVATION = 372.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 78.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.28 CRITICAL DEPTH(FT) 0.85 UPSTREAM CONTROL ASSUMED • FLOWDEPTH (FT) = O.E 35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0.851 4 .733 1.199 68 .57 0. 003 0. 828 4 .895 1.201 68.65 .•4 0. 013 0.805 5.069 1.204 68. 89 0. 032 0.782 5.256 1.212 69.30 0. 059 0. 759 5.458 1.222 69. 91 0 . 097 0.736 5. 676 1.237 70.72 0. 148 0.713 5.912 1.256 71.75 0 .214 0 . 690 6.168 1.281 73.01 0. 297 0. 667 6.447 1.313 74 .55 0 . 400 0 . 644 6.750 1. 352 76.37 0. 528 0. 621 7.082 1.401 78 .51 0 . 686 0.598 7.447 1. 460 81.00 0. 881 0.575 7 .848 1,533 83. 89 1. 119 0 .552 8.292 1. 621 87.24 1. 414 0. 530 8.784 1.728 91.09 1. 779 0.507 9.332 1.860 95. 52 2.233 0. 484 9. 947 2.021 100.63 mt 2. 806 0.461 10.638 2,219 106.51 3. 536 0 .438 11.421 2.464 113.31 4 . 483 0. 415 12.313 2.770 121.19 5.743 0 . 392 13.338 3.156 130.37 mm 7. 477 0 . 369 14.523 3.646 141.13 9. 992 0 .346 15.908 4 .278 153.82 m 13.982 0 . 323 17 .541 5.104 168.92 243 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES 21.687 0.300 19.4 92 6.203 187,06 78.500 0.297 19.751 6.358 189.48 NODE 401.30 : HGL = < 372.851>;EGL= < 37 3,199>;FLOWLINE= < 372.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 401.30 FLOWLINE ELEVATION = 372,00 ASSUMED UPSTREAM CONTROL HGL = 372.85 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 244 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES fl •;f"*** ****************************************************** * ******************* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIV. COMMONS (LOW FLOW PIPE - 2-YEAR) * * LOW FLOW PIPE INTO DETENTION BASIN ON SOUTH SIDE * * G:\ACCTS\971004\LOFL2.OUT * ************************************************************************** FILE NAME: G:\ACCTS\971004\LOFL2,DAT TIME/DATE OF STUDY: 13:44 11/02/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS 217.50- FRICTION 1.70* 119.77 0. 62 49. 66 217.20- JUNCTION 0.73*Dc 47.54 0.73*Dc 47.54 217.30-0.41* 4 .57 0. 14 2.48 FRICTION HYDRAULIC JUMP 159.20-0.20*Dc 1. 95 0.20*Dc 1. 95 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.50 FLOWLINE ELEVATION = 355.4 0 PIPE FLOW = 3.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.100 FEET NODE 217.50 : HGL = < 357.100>;EGL= < 357.168>;FL0WL1NE= < 355.400> ****************************************************************************** FLOW PROCESS FROM NODE 217.50 TO NODE 217.20 IS CODE = 1 UPSTREAM NODE 217.20 ELEVATION = 357.08 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 169.28 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.70 245 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) vm 0.000 1.700 2,094 1.768 119.77 23.033 1.500 2.094 1.568 97.72 -am NORMAL DEPTH(FT) 0. 62 CRITICAL DEPTH(FT) 0.73 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 •am GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ •m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) fl 23.033 1.500 2.093 1.568 97.72 26.450 1.469 2.103 1.538 94.42 29.774 1.439 2.122 1. 509 91.21 mt 33.047 1.408 2.147 1.480 88 . 08 fl 36.279 1.378 2.177 1.451 85.03 39.476 1.347 2.212 1. 423 82.05 42. 641 1.316 2.251 1.395 79,17 45.775 1.286 2.294 1.368 76.37 .mm 48 .878 1.255 2.342 1.340 73. 66 51.950 1.225 2.395 1.314 71.06 54.988 1.194 2.453 1.287 68.56 57.992 1.163 2.515 1.262 66.16 fl 60.956 1.133 2.584 1.236 63.88 63.877 1.102 2. 658 1.212 61.72 fll 66.748 1.071 2.739 1.188 59.68 69.563 1. 041 2.826 1.165 57 .77 « 72.311 1.010 2. 922 1.143 55.99 74.981 0. 980 3.026 1. 122 54.36 fl 77.556 0.949 3.138 1.102 52.88 80.016 0. 918 3.262 1.084 51.55 tf 82.332 0.888 3.396 1.067 50.39 84.466 0.857 3.544 1. 052 49.41 mm 86.361 0.827 3.705 1.040 48. 62 87.936 0.796 3.883 1.030 48.04 tf 89.059 0.765 4 .080 1.024 47. 67 89.510 0.735 4 .298 1.022 47 . 54 mm 169.280 0.735 4 .298 1.022 47.54 fl NODE 217.20 : HGL = < 357 . 815>;EGL= < 358.102>;FLOWLINE= < 357.080 ****************************************************************************** FLOW PROCESS FROM NODE 217.20 TO NODE 217.30 IS CODE = 5 UPSTREAM NODE 217.30 ELEVATION = 358.25 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 QB FLOW (CFS) 0.30 3.70 3.40 0.00 0. 00== DIAMETER ANGLE FLOWLINE CRITICAL INCHES) (DEGREES) ELEVATION DEPTH(FT.) 18.00 10.00 358.25 18.00 - 357.08 18.00 90.00 358,25 0.00 0.00 0.00 ^Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE -- 0.20 0.73 0.70 0.00 0.00031 0.00532 VELOCITY (FT/SEC) 0.765 4 .299 4 .182 0 .000 246 971004-5 UNIVERSITY COMMONS BROOKFIELD HOMES AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00281 JUNCTION LENGTH = 9.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.542)+( 0,025)+( 0.000) = 0.567 NODE 217.30 : HGL = < 358.660>;EGL= < 358.669>;FLOWLINE= < 358.250> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 159.20 217.30 TO NODE ELEVATION = 159.20 IS CODE = 1 364.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 198.54 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.14 CRITICAL DEPTH(FT) 0. 20 Mil UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.20 ~, GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: M DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUMi (POUNDS) 0.000 0.202 2.112 0.271 1. 95 -"•4 0.003 0.199 2.154 0.271 1. 95 0.013 0.197 2.196 0.271 1. 96 0.029 0.194 2.241 0.272 1.96 0.054 0. 191 2.286 0.272 1. 96 0. 087 0.189 2.334 0.273 1. 97 0.130 0.186 2. 383 0,274 1.98 0.184 0.183 2. 433 0.275 1.99 0.250 0.181 2.486 0.277 2.00 0.329 0. 178 2. 541 0.278 2.01 0.425 0. 175 2. 597 0.280 2.02 ... 0.538 0.173 2. 656 0.282 2.04 0. 673 0.170 2.717 0 .285 2.05 mi 0.831 0.167 2.781 0.287 2.07 1.019 0. 165 2.847 0.291 2.09 m 1.241 0.162 2. 916 0.294 2.12 1.504 0.159 2. 988 0.298 2.14 •m 1. 821 0.157 3.063 0.302 2.17 2.203 0.154 3.141 0.307 2.20 mi 2. 673 0.151 3.223 0 .313 2.23 3.262 0.149 3.308 0. 319 2.26 fl 4 . 026 0.146 3. 397 0. 325 2.30 5.066 0.143 3.4 90 0. 333 2. 34 •m 6. 611 0.141 3.588 0. 341 2.38 m 9. 395 0.138 3,691 0.350 2.43 m 159.873 0.135 3.798 0.359 2.48 •m 198.540 0.135 3.798 0. 359 2.48 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 247 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNC 0.000 0.410 0.766 0.419 4 .57 0.272 0.402 0.788 0.411 4.38 0.543 0.393 0.812 0.404 4 .20 0. 812 0.385 0.836 0.396 4.02 1.079 0.377 0.862 0.388 3.85 1.345 0.368 0.890 0.381 3. 69 1.608 0.360 0. 919 0.373 3,54 1.870 0.352 0.950 0.366 3, 39 2.128 0.343 0. 983 0.358 3.25 2.384 0.335 1.018 0.351 3.11 2.637 0.327 1.055 0.344 2.98 •mt 2.886 0.318 1.095 0.337 2.86 3.130 0. 310 1.137 0.330 2.74 mm 3.370 0.302 1.182 0.323 2.64 mm 3. 604 0.293 1.230 0.317 2.53 3.831 0.285 1.282 0.311 2.44 4 .051 0.277 1.338 0.305 2.35 4.261 0.268 1.398 0.299 2.28 -mm 4 .462 0.260 1.463 0.293 2.20 4. 649 0.252 1.533 0.288 2.14 4 .822 0.243 1. 609 0.284 2.09 4. 977 0.235 1. 692 0.280 2.04 mt 5.109 0.227 1.783 0.276 2.00 5.215 0.219 1.882 0.274 1. 98 5.285 0,210 1. 992 0.272 1.96 5.311 0.202 2.112 0.271 1.95 ,^ 198.540 0.202 2.112 HYDRAULIC JUMP 0.271 ANALYSIS 1. 95 PRESSURE+MOMENTUM BALANCE OCCURS AT 3.74 FEET UPSTREAM OF NODE 217.30 DOWNSTREAM DEPTH = 0.288 FEET, UPSTREZ\M CONJUGATE DEPTH = 0.135 FEET NODE 159.20 : HGL = < 364.202>;EGL= < 364.271>;FLOWLINE= < 364.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 159.20 FLOWLINE ELEVATION = 364.00 - ASSUMED UPSTREAM CONTROL HGL = 364.20 FOR DOWNSTREAM RUN ANALYSIS fl ^^^^^__^^^^^^^^^== = _-^_=== = = = = ====== = ============== = ===== = =======:============== = END OF GRADUALLY VARIED FLOW ANALYSIS mt « 248 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES tf ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIV. COMMONS (LOW FLOW - lOO-YEAR) * * LOW FLOW PIPE INTO DETENTION BASIN ON SOUTH SIDE * * G:\ACCTS\971004\LOFL100.OUT * ************************************************************************** FILE NAME: G:\ACCTS\971004\LOFL100.DAT TIME/DATE OF STUDY: 13:52 11/02/2001 **R©fQr to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 217.50-1.70* 790. 15 1.49 767,59 mm FRICTION 217.20-9.61* 1662. ,21 1.49 Dc 767.59 •m JUNCTION 217.30-14 .89* 1561, ,42 0.29 17.78 fl FRICTION 159.20-9.18* 931, .26 0.44 Dc 13. 68 mm tf MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 mm tf NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.50 FLOWLINE ELEVATION = 355.40 PIPE FLOW = 25.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.100 FEET NODE 217.50 : HGL = < 357.100>;EGL= < 360.208>;FLOWLINE= < 355.400 ****************************************************************************** FLOW PROCESS FROM NODE 217.50 TO NODE 217.20 IS CODE = 1 UPSTREAM NODE 217.20 ELEVATION = 357.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 169.28 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {( 25.00)/( 105.043))**2 = 0.05664 HF=L*SF = ( 169.28)* (0.05664 ) - 9.588 249 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES NODE 217.20 : HGL = < 366. 688>; EGL= < 369. 796>; FLOWLINE= < 357.080> ****************************************************************************** FLOW PROCESS FROM NODE 217.20 TO NODE 217.30 IS CODE = 5 UPSTREAM NODE 217.30 ELEVATION = 358 .25 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.40 18.00 10.00 358.25 0.44 0.792 DOWNSTREAM 25.00 18.00 - 357.08 1.4 9 14.147 LATERAL #1 23.60 18.00 90.00 358.25 1.4 8 13.355 LATERAL #2 0.00 0.00 0.00 0.00 O.OO 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00018 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05664 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02841 JUNCTION LENGTH = 9.00 FEET FRICTION LOSSES = 0.256 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.098)+( 0.256)+( 0.000) = 3.354 NODE 217.30 : HGL = < 373 .141>; EGL= < 373. 150>; FLOWLINE= < 358.250> ****************************************************************************** FLOW PROCESS FROM NODE 217.30 TO NODE 159.20 IS CODE = 1 UPSTREAM NODE 159.20 ELEVATION = 364.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 198.54 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.40)/( 105.026))**2 = 0.00018 HF=L*SF = ( 198.54)*(0.00018) = 0.035 NODE 159.20 :' HGL = < 373. 176>; EGL= < 373. 186>; FLOWLINE= < 364.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 159.20 FLOWLINE ELEVATION = 364.00 ASSUMED UPSTREAM CONTROL HGL = 364.44 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 250 971004-5 UNIVERSIFY COMMONS BROOKFIELD HOMES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants Inc. 5900 Pasteur Ct. Suite 100 Carlsbad, CA. 92008 Tel. (760) 931-7700 Fax. (760) 931-8680 ************************** DESCRIPTION OF STUDY ************************** * 971004 - UNIVERISTY COMMONS * * LOW-FLOW DETENTION BASIN OUTLET PIPE * * FILE: G:\ACCTS\971004\LOFLOUT.OUT T.L.G. * ************************************************************************** FILE NAME: G:\ACCTS\971004\LOFLOUT.DAT TIME/DATE OF STUDY: 13:49 11/13/2001 **Refer to Exhibit "X"** ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1.00- 1.53* 128.16 0.93 93.73 FRICTION 2.00- 1.18* 99.77 0.96 Dc 93.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 34 9.00 PIPE FLOW - 6.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 350.530 FEET NODE 1.00 : HGL = < 35 0 . 5 30>; EGL= < 350. 721>; FLOWLINE= < 349.000> ****************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 UPSTREAM NODE 2.00 ELEVATION = 349.50 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = PIPE LENGTH = 70.65 FEET MANNING'S 18.00 INCHES N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.53 PRESSURE FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS; 251 971004-5 UNIVERSITY COMMONS BROOKHELD HOMES • •ttt 0.000 1.530 3.508 1.721 128.16 8.348 1.500 3.508 1. 691 124.86 mt NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) 0. 96 mt ASSUMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 mt GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ •m CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) •tm 8.348 1.500 3.507 1. 691 124.86 13.729 1.478 3.518 1. 671 122.61 18.639 1.457 3.536 1. 651 120.48 •m 23,312 1.435 3.561 1. 632 118.42 mm 27.817 1.414 3.590 1. 614 116.44 mm 32.192 1.392 3.623 1,596 114.54 36.460 • 1.371 3.660 1.579 112.70 40,637 1.349 3.701 1.562 110.93 44.735 1.328 3.746 1.546 109.23 48.761 1.306 3.794 1.530 107.61 52.722 1.285 3.846 1.515 106.06 56.620 1. 263 3.902 1.500 104.58 60.458 1.242 3.962 1.486 103,18 64 .236 1.220 4 .026 1.472 101.86 67.953 1.199 4.093 1.459 100.63 70.650 1.183 4 .146 1.450 99.77 NODE 2.00 : HGL = < 350. 683>;EGL= < 350.950>;FLOWLINE= < 349,500> *****************************************************************************, UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2.00 FLOWLINE ELEVATION = 34 9.50 ASSUMED UPSTREAM CONTROL HGL = 350.46 FOR DOWNSTREAM RUN ANALYSIS END OF GFIADUALLY VARIED FLOW ANALYSIS fl fl 252