HomeMy WebLinkAbout3583; Cannon Road Lift Station; Kelly Ranch Village E - Drainage Report Pt 1; 1998-09-01DRAINAGE REPORT
FOR
KELLY RANCH VILLAGE 'Ef
CARLSBAD, CALIFORNIA
CT-96-07
SEPTEMBER 1998
Prepared For:
SHEA HOMES
10721 Treena Street, Suite 200
San Diego, CA 92131
Prepared By:
PROJECT DESIGN CONSULTANTS
701 B Street, Suite 800
San Diego, C A 92101
Document No. 1239.10
DarfeR. Greenhalgh, PE ) RCE43964 Prepared By: JQZ
Checked By: DG
File: 1239.10
September 1998
ft TABLE OF CONTENTS
Section Page
1 INTRODUCTION 1
2 EXISTING CONDITIONS AND BACKGROUND 3
3 DEVELOPED CONDITIONS 4
4 HYDROLOGY METHODOLOGY 5
5 FLOOD ROUTING CALCULATIONS 29
6 INLET AND OUTLET DESIGN 49i
7 DETENTION BASIN DESIGN 54
8 BROW DITCH CAPACITY CALCULATIONS 58
9 REFERENCES 59
10 APPENDDC A - HYDROLOGY DESIGN CHARTS
Runoff Coefficients (Rational Method) A-l
Rainfall Intensity - Duration - Frequency Curves / A-2,
A-2.1
Nomograph — Time of Concentration for Natural Watersheds A-3.1
Urban Areas Overland Time of Flow Curves A-3.2
Gutter and Roadway Discharge Velocity Chart A-4
Capacity of Curb Inlets A-5
Nomograph - Capacity, Curb Inlet at Sag A-6
Selection of Riprap and Filter Blanket Material A-7
Design Charts of Riprap Outlet Protection A-8
APPENDDC B - DETENTION BASIN COMPUTER OUTPUT B-l
APPENDDC C - WSPG COMPUTER OUTPUT C-l
U
! REP/12391DR-902.DOC 11
File: 1239.10
September 1998
LIST OF FIGURES
Figure Description Page
1 Vicinity Map 2
LIST OF TABLES
Table Description Page
1 Predevelopment Hydrology Calculations 9
2 Postdevelopment Hydrology Calculations 12
3 Flood Routing Calculations 31
4 Inlet Location Table 51
5 Inlet Sizing Calculations 52
6 Riprap Calculations Summary 53
7 Tailwater Condition Summary 55
8 Summary of Flows 56
9 Summary of Brow Ditch Flows 58
ATTACHMENTS
Exhibit A Drainage Area Map - Predeveloped Conditions
Exhibit B Drainage Area Map - Developed Conditions
Exhibit C Drainage Area Map - Adjacent Area (Redeveloped Condition)
REP/12391DR.DOC 111
File: 1239.10
September 1998
SECTION 1
INTRODUCTION
This drainage report has been prepared to document the design and calculations for the storm
drain system associated with the Tentative Map of Village 'E'. The development is located in the
Kelly Ranch Master Planned Community in the City of Carlsbad, southeast of Cannon Road and
south of El Camino Real. It is approximately 4 miles east of Interstate Route 5 and is about
3 miles south of State Route 78. Please refer to the vicinity map on Page 2.
The objective of this drainage report is to determine pipe, catch basin, and curb inlet sizes, and
design a detention basin under the developed conditions to carry a required frequency storm
water volume in the development area.
The project is located within the City of Carlsbad limits and is subject to City standards. The
drainage subbasin layout and the storm drainage system are shown on Exhibit 'A' attached to this
report.
REP/12391DR-902.DOC
File: 1239.10
September 1998
Project site
VICINITY MAP
Figure 1. Vicinity Map
REP/12391DR-902.DOC
File: 1239.10
September 1998
SECTION 2
EXISTING CONDITIONS AND BACKGROUND
This project lies south of the Agua Hedionda Lagoon and therefore any runoff from the site,
overland or underground, should be taken to a desilting basin and then outletted.
The existing storm drain facilities (refer to the Tentative Map) were constructed as part of a mass
grading project that took into account the proposed development in Area 'E'.
All runoff from this project will be deposited in a proposed offsite desilting basin and outletted to
a proposed storm drain pipe (please refer to City of Carlsbad Drawing 333-2G).
The existing 10-year/6-hour and 100-year/6-hour peak flows are shown on the predevelopment
hydrology calculation tables.
U
REP/12391DR-902.DOC
D
File: 1239.10
September 1998
SECTION 3
DEVELOPED CONDITIONS
The Kelly Ranch Village 'E' consists of 144 residential, 4 nonresidential, and 5 open space units
contained within 45.0 gross acres.
Drainage from the developed area will be conveyed via underground storm drain pipes in the
local streets and outletted into an offsite detention basin that will then be outletted to the Agua
Hedionda Lagoon.
Drainage from a portion of proposed Cannon Road is collected into four curb inlets; each inlet
connects to the major drainage system of the developed area through underground pipes.
There are various ways to collect the surface runoff from the hill located south of the developed
area. Drainage from Basin Bl and Basin Cl (refer to Exhibit 'A') will be collected into two catch
basins, then connect to the major system through underground pipes. On Basin B5, the storm
water will travel through a brow ditch and curb outlet to join the gutter flow. Surface runoff from
Basins Dl and D2 will be collected into the detention basin as an overland runoff or through the
brow ditch to the detention basin.
The 100-year/6-hour storm will be used to design drainage facilities between the top of curbs.
The 10-year/6-hour and 100-year/6-hour storms will be analyzed to determine the detention basin
capacities. The 100-year/6-hour storm situation will be analyzed to determine storm drain pipes
and the culvert crossing Cannon Road.
REP/1239JDR-902.DOC
0
File: 1239.10
September 1998
SECTION 4
Q
HYDROLOGY METHODOLOGY
This drainage system has been designed in general conformance with the County of San Diego
Hydrology Manual. Drainage basins are less than 0.5 square mile; therefore, the Rational and
Modified Rational Methods were utilized to calculate storm runoff. The underground storm drain
system is designed to convey the 100-year-frequency storm water. Pipes are sized for
nonpressurized flow. The underground systems outlet to detention basin via energy dissipators.
The hydrological analysis utilized to determine the runoff at each design point was the Rational
Method (Q = C x 7 x A). The following pages describe the methods used to determine each
component of the Rational Method equation, in which
Q = Runoff (CFS),
C = Runoff coefficient,
IA = Rainfall intensity (in/hr), and
A = Area (acres).
4.1 Determination of Runoff Coefficient
Runoff coefficients are dependent on the proposed land use of the basin. Coefficients for this
project were obtained from the County of San Diego Design and Procedure Manual (see
Appendix A-l). Soil Group D has been assumed for this area. Based on these criteria, the
following runoff coefficients were used:
Natural Undisturbed Area = 0.45
Single-Family Units =0.55
Paved Areas =0.95.
REP/12391DR-902.DOC
File: 1239.10
September 1998
, For some basins which have more than one land use (i.e., Basins A4 and C8), weighted values of
jj C will be used in calculations.
H!_J 4.2 Determination of Intensity
H Rainfall intensity (7) is based on the "Intensity-Duration-Frequency" curves in the County of San
Diego Drainage Design Manual (see Appendix A-2).
0
• 4.3 Time of Concentration
Time of concentration is the time required for runoff to flow from the most remote part of the
[[ watershed to the outlet point or design point under consideration. The time of concentration (rc)
at any point within the drainage area is given by:
U Tc = Tt+Tt,
h where
^ Tt = Inlet time and
p T, = Travel time.
P, Inlet time is broken down into two components: overland time (T0) and gutter time
Tt = T0 + Tg;
therefore,tJ
D
The following paragraphs further define the individual components of the time of concentration
and the methods used to quantify those components.
4.3.1 Overland Time (T0)
Overland time is the period required for runoff to travel from the farthest edge of a drainage
basin to the street gutter. The method of determining overland time is dependent on the type of
REP/12391DR-902.DOC
File: 1239.10
September 1998
watershed. For natural watersheds, overland time is determined using the Appendix A-3.1 (taken
from the San Diego County Design Manual).
4.3.2 Gutter Time ( Tg)
The gutter time is determined by assuming an initial time of concentration, Tt (may use T0 for the
parkway or a lot) and calculating an initial Qt. To determine the velocity in the gutter, divide Qt
by 2 to obtain an average flow. Use this average flow with the graph in the Appendix to
determine an average velocity, V, for this gutter length, L.
Add this
a new
assumed
is gutter time to T0 to obtain a new time of concentration, Tc. Use this new Tc to calculate
Q/2 and determine a new V^e, hi order to calculate a new Tg. Repeat procedure until
d TC = T0 + Tg.
4.3.3 Travel Time (7,)
Travel time is the time required for flow to travel the length of the storm drain to the point in
question. Travel time is calculated by using the following formula:
Travel Time = L/(Vx 60),
where
L = Pipe length (feet) and
V= Velocity of flow in pipe (ft/sec).
4.4 Determination of Areas
The area (A) of each drainage basin was determined from the Drainage Area Map. See the
Developed Drainage Basins Exhibit.
REP/12391DR-902.DOCn
File: 1239.10
September 1998
4.5 Modified Rational Method
The Modified Rational Method was utilized to calculate peak storm water flows and route the
calculated flows through the proposed drainage system.
When two flows combine at a junction point, the smaller of the flows has been decreased by
using the Modified Rational Method. This procedure accounts for the differing times of
concentration for the flows upstream of the junction point. The smaller Q is reduced by either the
ratio of the intensities or the ratio of the times of concentration, according to the following
procedure:
• Let Q, T, and / correspond to the tributary with the largest discharge.
• Let q, t, and / correspond to the tributary with the smallest discharge.
• Let Q and T correspond to the peak discharge and the time of concentration
when peak flow occurs.
If T> t, the peak discharge is corrected by the ratio of the intensities:
Q = Q + q(I/i) and T = T.
If T< t, the peak discharge is corrected by the ratio of the times of concentration:
Q = Q + q(Tlt) and T = T.
4.6 Hydrology Calculations
Consider that the existing condition of the project site is undeveloped, and all runoff as natural
overland flow will be concentrated and deposited in a desilting basin. Therefore, the
predevelopment hydrology calculation is based on the assumption that the whole drainage area is
one basin with natural overland flow, to determine the time of concentration and peak discharge.
The calculations are shown in Table 1.
The hydrology calculations for the developed condition are shown in Table 2. Each basin is
identified relative to the pipe system used to collect runoff from it. Basin areas, C-factors, lengths
of flow paths, slopes of flow paths, times of concentration, intensities, and total flows are also
listed.
The basins are analyzed as urban overland flow and gutter flow.
REP/12391DR-902.DOC 8
File: 1239.10
September 1998
Table 1. Predevelopment Hydrology Calculations
• Surface Runoff for 10-Year/6-Hour Storm
• Surface Runoff for 100-Year/6-Hour Storm
REP/12391DR.DOC 9
_m f—i
26-Aug-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1230.10 Frequency 10 yrs. DSND by: JQZ
File Name: pRE-ioyr.wQi P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
Type of
Travel
A
Natural Ovrlnd
L
(ft)
2750
H
(ft)
280
Pipe
Dia(in)
Slope
(ft/ft)
0.102
Velocity
(ft/s)
Tc
(min)
8.4
Revised
Tc
18.4
Intensity
(in/hr)
2.05
C
0.45
A
(ac)
72.8
CA
32.8
Sum
Ca
32.8
Total Q
(cfs)
67.2
r3- CT3. cn cr3-AuC^3- CTD. 03 cDxAC
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1230.10
File Name: pRB-iooy.wQi
From
Node
To
Node
SUBBASIN
Type of
Travel
A
Natural Ovrlnd
L
(ft)
2750
H
(ft)
280
Pipe
Dia(in)
"~i-TYif - IAH -.-.J/A
Frequency
P6=
Slope
(ft/ft)
0.102
Velocity
(ft/s)
r / } Try j..- L J - 1 J • L, 1 W- — • ' "" ' — - — - — ~-^"'~ ^- ' "Lfc-o'jGH 1 iorro
100 yrs. DSNDby: JQZ
2.6 CHKD by: MW
Tc
(min)
8.4
Revised
Tc
18.4
Intensity
(in/hr)
2.96
C
0.45
A
(ac)
72.8
CA
32.8
Sum
Ca
32.8
Total Q
(cfs)
97.1
File: 1239.10
September 1998
Table 2. Postdevelopment Hydrology Calculations
• Surface Runoff for 10-Year/6-Hour Storm
• Surface Runoff for 100- Year/6-Hour Storm
REP/12391DR-902.DOC 12
j , , , , "OFSep-98~" ' ' ' ' teTAILEDlDRAlNAGETALCULSTIONS^ ' " " ' ' ' " ' ' ' ' '
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: FI-IO.WQI P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
Flood Route
SUBBASIN
SUBBASIN
Type of
Travel
Al
Urban Overland
Gutter
(Avg flow depth =
A2
Urban Overland
Gutter
(Avg flow depth =
Al A2
Al
A3
Urban Overland
Gutter
(Avg flow depth =
A4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
540
0.28
120
800
0.3
and
120
400
0.3
40
880
0.38
H
(ft)
1.2
5.26
ft.
1.2
16
ft.
A2
1.2
6.5
ft.
0.8
5.5
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.010
0.010
w Widt
0.010
0.020
wWidt
0.010
0.016
wWidt
0.020
0.006
wWidt
Velocity
(ft/s)
2.6
9.0
3.7
10.0
3.3
10.0
2.3
14
Tc
(min)
10.8
3.5
ft.)
10.8
3.6
ft.)
10.8
2
ft.)
3.6
6.4
ft.)
Revised
Tc
10.8
14.3
10.8
14.4
14.4
10.8
12.8
3.6
10
Intensity
(in/hr)
2.89
2.41
2.89
2.4
2.4
2.89
2.59
5.86
3.03
C
0.55
0.55
0.55
0.55
0.55
0.55
0.7
0.7
A
(ac)
1.8
1.8
3.4
3.4
2.9
2.9
1.5
1.5
CA
1
1
1.9
1.9
1.6
1.6
1.1
1.1
Sum
Ca
1
1
1.9
1.9
1.6
1.6
1.1
1.1
Total Q
(cfs)
2.4
4.6
7.0
4.1
3.3
J u J ' ' 6l-Sep-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: FI-IO.WQI P6= 1.8 CHKD by: MW
From To
Node Node
SUBBASIN
SUBBASIN
Type of
Travel
A5
Urban Overland
Gutter
(Avg flow depth =
A6
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
400
0.25
120
970
0.25
H
(ft)
20
5.2
ft.
1.2
36.4
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Slope
(ft/ft)
0.167
0.013
w Widt
0.010
0.038
w Widt
Velocity
(ft/s)
2.5
7.5
4.3
7.5
Tc
(min)
3.1
2.7
ft.)
10.8
3.8
ft.)
Revised
Tc
3.1
5.8
10.8
14.6
Intensity
(in/hr)
6.46
4.31
2.89
2.38
C
0.7
0.7
0.55
0.55
A
(ac)
0.6
0.6
2.5
2.5
CA
0.4
0.4
1.4
1.4
Sum
Ca
0.4
0.4
1.4
1.4
Total Q
(cfs)
1.7
3.3
, j , . i , bl-Sep-98^ ' ' ' ' DlBi AlLBD-DRAiMA-GE CAilCUboIOlV;* l ' ' ' l ] L-—) L~^ \—
Proj.Name: KELLY RANCH AREA 'E'
Prqj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: R-IO.WQI P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
SUBBASIN
Type of
Travel
Bl
Natural Ovrlnd
Drainage Ditch
Dn =
B2
Urban Overland
Gutter
(Avg flow depth =
B3
Urban Overland
Gutter
(Avg flow depth =
B4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
360
640
0.83
100
360
0.27
100
400
0.24
100
350
0.25
H
(ft)
119
24.3
ft.
1
6.7
ft.
1
6.7
ft.
1
5.7
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.331
0.038
0.010
0.019
w Widt
0.010
0.017
w Widt
0.010
0.016
wWidt
Velocity
(ft/s)
8.8
3.5
8.5
3.2
7.0
3.1
7.5
Tc
(min)
1.1
1.22
9.9
1.7
ft.)
9.9
2.1
ft.)
9.9
1.9
ft.)
Revised
Tc
11.1
12.32
9.9
11.6
9.9
12
9.9
11.8
Intensity
(in/hr)
2.84
2.65
3.05
2.76
3.05
2.7
3.05
2.73
C
0.45
0.55
0.55
0.55
0.55
0.55
0.55
A
(ac)
9.6
2.1
2.1
1.2
1.2
1.5
1.5
CA
4.3
0
1.2
1.2
0.7
0.7
0.8
0.8
Sum
Ca
4.3
4.3
1.2
1.2
0.7
0.7
0.8
0.8
Total Q
(cfs)
12.2
12.2
3.3
1.9
2.2
i j . 1 i 1 ^psJep_9
l
8 ' ' ' ' ' DETAILED DRAlNAtjE CAtCUtSTIONS ' " J ' ' ' ' ^ ' l ' '
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: FMO.WQI P6= 1.8 CHKD by: MW
From To
Node Node
SUBBASIN
Input Flow
SUBBASIN
SUBBASIN
Flood Route
SUBBASIN
Type of
Travel
B5a
Natural Ovrlnd
Drainage Ditch
Dn =
Gutter
(Avg flow depth =
B5b
Urban Overland
Gutter
(Avg flow depth =
B5
B5a
B6
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
340
260
0.43
550
0.23
110
550
0.23
and
100
580
0.24
H
(ft)
102
13
ft.
24
ft.
1.1
24
ft.
B5b
1
27.9
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.300
0.050
w Widt
0.044
w Widt
0.01
0.044
w Widt
0.010
0.048
w Widt
Velocity
(ft/s)
7.1
16.5
4
6.5
4.5
6.5
4.8
7
Tc
(min)
1.1
0.6
ft.)
Tc=
L 2.3
ft.)
10.4
2
ft.)
9.9
2
ft.)
Revised
Tc
11.1
11.71
11.64
13.94
10.4
12.4
12.4
9.9
11.9
Intensity
(in/hr)
2.84
2.74
2.75
2.45
2.96
2.64
2.64
3.05
2.71
C
0.45
0
0
0.55
0.55
0.55
0.55
A
(ac)
2
0
0
2
2
2.3
2.3
CA
0.9
0
0
1.1
1.1
1.3
1.3
Sum
Ca
0.9
0.9
0.9
1.1
1.1
1.3
1.3
Total Q
(cfs)
2.6
2.6
2.2
2.9
4.9
3.5
, , , , , £j^ep_98 DETAILED DRAINAGE CALCULATIONS
Proj . Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: ra-io.wgi P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
SUBBASIN
Type of
Travel
Cl
Natural Ovrlnd
Drainage Ditch
Dn =
C2
Urban Overland
Gutter
(Avg flow depth =
C3
Urban Overland
Gutter
(Avg flow depth =
C4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
520
300
0.39
120
440
0.26
100
350
0.24
120
740
0.31
H
(ft)
197
54
ft.
1.2
11
ft.
1
8.32
ft.
1.2
7.4
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.379
0.180
0.010
0.025
w Widt
0.010
0.024
w Widt
0.010
0.010
wWidt
Velocity
(ft/s)
11.6
3.9
8.0
3.8
7.0
2.7
10.5
Tc
(min)
1.4
0.43
10.8
1.9
ft.)
9.9
1.5
ft.)
10.8
4.6
ft.)
Revised
Tc
11.4
11.83
10.8
12.7
9.9
11.4
10.8
15.4
Intensity
(in/hr)
2.79
2.72
2.89
2.6
3.05
2.79
2.89
2.3
C
0.45
0.55
0.55
0.55
0.55
0.55
0.55
A
(ac)
2.9
2.1
2.1
1.7
1.7
2.7
2.7
CA
1.3
0
1.2
1.2
0.9
0.9
1.5
1.5
Sum
Ca
1.3
1.3
1.2
1.2
0.9
0.9
1.5
1.5
Total Q
(cfs)
3.6
3.6
3.1
2.5
3.5
' ' ' ' ' "OPSep-Vs^ ' ' ' ' DETAILElJbRAINA1GEt:AlXUCAtlONS" ' ' ' ' ' ' ' ' ' ' '
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: FS-IO.WQI P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
SUBBASIN
Flood Route
SUBBASIN
Type of
Travel
C5
Urban Overland
Gutter
(Avg flow depth =
C6
Urban Overland
Gutter
(Avg flow depth =
C7
Urban Overland
Gutter
(Avg flow depth =
C6 C7
C6
C8
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
880
0.3
120
480
0.26
120
420
0.23
and
40
1130
0.37
H
(ft)
1.2
12.5
ft.
1.2
7
ft.
1.2
7
ft.
C7
0.8
10
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.010
0.014
w Widt
0.010
0.015
wWidt
0.010
0.017
wWidt
0.020
0.009
w Widt
Velocity
(ft/s)
2.8
10.0
2.8
8
2.8
6.5
2.5
13.5
Tc
(min)
10.8
5.2
ft.)
10.8
2.9
ft.)
10.8
2.5
ft.)
3.6
7.5
ft-)
Revised
Tc
10.8
16
10.8
13.7
10.8
13.3
13.7
3.6
11.1
Intensity
(in/hr)
2.89
2.24
2.89
2.48
2.89
2.52
2.48
5.86
2.84
C
0.55
0.55
0.55
0.55
0.55
0.55
0.7
0.7
A
(ac)
3.1
3.1
1.9
1.9
1.2
1.2
2
2
CA
1.7
1.7
1
1
0.7
0.7
1.4
1.4
Sum
Ca
1.7
1.7
1
1
0.7
0.7
1.4
1.4
Total Q
(cfs)
3.8
2.5
1.8
4.3
4
Ol-Sep-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: FS-IO.WQI P6= 1.8 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
Type of
Travel
Dl
Natural Ovrlnd
Drainage Ditch
Dn =
D2
Natural Ovrlnd
L
(ft)
440
1480
1.27
560
H
(ft)
149
14.8
ft.
195
Pipe
Dia(in)
Slope
(ft/ft)
0.339
0.010
0.348
Velocity
(ft/s)
6.68
Tc
(min)
1.3
3.69
1.5
Revised
Tc
11.3
14.99
11.5
Intensity
(in/hr)
2.8
2.34
2.77
C
0.45
0.45
A
(ac)
17.1
4.1
CA
7.7
0
1.8
Sum
Ca
7.7
7.7
1.8
Total Q
(cfs)
21.6
21.6
5
, , , , , ^o'Ffcep^g"1 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ
File Name: F4-io.wQi P6= 1.8 CHKD by: MW
From To
Node Node
SUBBASIN
SUBBASIN
Type of
Travel
El
Urban Overland
Gutter
(Avg flow depth =
E2
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
40
870
0.44
40
1130
0.44
H
(ft)
0.8
5
ft.
0.8
10.5
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Slope
(ft/ft)
0.020
0.006
w Widt
0.020
0.009
w Widt
Velocity
(ft/s)
2.5
17.0
3.1
17.0
Tc
(min)
1.4
5.8
ft.)
1.4
6.1
ft.)
Revised
Tc
1.4
7.2
1.4
7.5
Intensity
(in/hr)
10.78
3.75
10.78
3.65
C
0.95
0.95
0.95
0.95
A
(ac)
1
1
1.4
1.4
CA
1
1
1.3
1.3
Sum
Ca
1
1
1.3
1:3
Total Q
(cfs)
3.8
4.7
05-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: FI-IOO.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
Flood Route
SUBBASIN
SUBBASIN
Type of
Travel
Al
Urban Overland
Gutter
(Avg flow depth =
A2
Urban Overland
Gutter
(Avg flow depth =
A1_A2
Al
A3
Urban Overland
Gutter
(Avg flow depth =
A4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
540
0.29
120
800
0.32
and
120
400
0.31
40
880
0.4
H
(ft)
1.2
5.26
ft.
1.2
16
ft.
A2
1.2
6.5
ft.
0.8
5.5
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.010
0.010
w Widt
0.010
0.020
w Widt
0.010
0.016
w Widt
0.020
0.006
w Widt
Velocity
(ft/s)
2.2
9.5
3.2
11.0
2.8
10.5
2.0
15
Tc
(min)
10.8
4.1
ft.)
10.8
4.2
ft.)
10.8
2.4
ft.)
3.6
7.3
ft.)
Revised
Tc
10.8
14.9
10.8
15
15
10.8
13.2
3.6
10.9
Intensity
(in/hr)
4.17
3.39
*
4.17
3.37
3.37
4.17
3.66
8.47
4.14
C
0.55
0.55
0.55
0.55
0.55
0.55
0.7
0.7
A
(ac)
1.8
1.8
3.4
3.4
2.9
2.9
1.5
1.5
CA
1
1
1.9
1.9
1.6
1.6
1.1
1.1
Sum
Ca
1
1
1.9
1.9
1.6
1.6
1.1
1.1
Total Q
(cfs)
3.4
6.4
9.8
5.9
4.6
' ' 103"Aug-98" ' ' ' ' DETAltED"DRAlNAGET:ALCUL7iTICJNSJ ' ' ' ' ' ' ' ' ' ' ' '
Proj .Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: FMOO.WQI P6= 2.6 CHKD by: MW
From To
Node Node
SUBBASIN
SUBBASIN
Type of
Travel
A5
Urban Overland
Gutter
(Avg flow depth =
A6
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
400
0.27
120
970
0.26
H
.(ft)
20
5.2
ft.
1.2
36.4
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Slope
(ft/ft)
0.167
0.013
w Widt
0.010
0.038
wWidt
Velocity
(ft/s)
2.4
8.5
4
8
Tc
(min)
3.1
2.8
ft.)
10.8
4
ft.)
Revised
Tc
3.1
5.9
10.8
14.8
Intensity
(in/hr)
9.32
6.16
4.17
3.4
C
0.7
0.7
0.55
0.55
A
(ac)
0.6
0.6
2.5
2.5
CA
0.4
0.4
1.4
1.4
Sum
Ca
0.4
0.4
1.4
1.4
Total Q
(cfs)
2.5
4.8
IZZh-
04-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: FI-IOO.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
SUBBASIN
Type of
Travel
Bl
Natural Ovrlnd
Drainage Ditch
Dn =
B2
Urban Overland
Gutter
(Avg flow depth =
B3
Urban-Overland —
Gutter
(Avg flow depth =
B4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
360
640
0.91.
100
360
0.28
-100-
400
0.25
100
350
0.26
H
(ft)
119
24.3
ft.
1
6.7
ft.
-1-
6.7
ft.
1
5.7
ft.
Pipe
Dia(in)
Avg Flo
.... . .._
Avg Flo
Avg Flo
Slope
(ft/ft)
0.331
0.038
0.010
0.019
wWidt
-070-10-
0.017
wWidt
0.010
0.016
wWidt
Velocity
(ft/s)
10.6
2.9
9.0
—
2.6
7.5
2.5
8.0
Tc
(min)
1.1
1.01
9.9
2.1
ft.)
—979-
2.6
ft.)
9.9
2.3
ft.)
Revised
Tc
11.1
12.11
9.9
12
9:9-
12.5
9.9
12.2
Intensity
(in/hr)
4.1
3.87
4.41
3.89
4.4-1
3.79
4.41
3.85
C
0.45
0.55
0.55
•0.55
0.55
0.55
0.55
A
(ac)
9.6
2.1
2.1
1.2
1.2
1.5
1.5
CA
4.3
0
1.2
1.2
0.7
0.7
0.8
0.8
Sum
Ca
4.3
4.3
1.2
1.2
0.7
0.7
0.8
0.8
Total Q
(cfs).
17.6
17.6
4.7
2.7
3.1
|
i ==si.
04-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: F2-ioo.wQi P6= 2.6 CHKD by: MW
From To
Node Node
SUBBASIN
Input Flow
SUBBASIN
SUBBASIN
Flood Route
SUBBASIN
Type of
Travel
B5a
Natural Ovrlnd
Drainage Ditch
Dn =
Gutter
(Avg flow depth —
B5b
Urban Overland
Gutter
(Avg flow depth =
B5
B5a
B6
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
340
260
0.48
550
0.23
110
550
0.24
and
100
580
0.25
H
(ft)
102
13
ft.
24
ft.
1.1
24
ft.
_ . . „
B5b
1
27.9
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.300
0.050
w Widt
0.044
wWidt
0.01
0.044
wWidt
_
0.010
0.048
wWidt
Velocity
(ft/s)
8.0
19
4
6.5
4.1
7
_
4.4
7.5
Tc
(min)
1.1
0.5
ft.)
Tc =
2.3
ft.)
10.4
2.2
ft.)
.. .
9.9
2.2
ft.)
Revised
Tc
11.1
11.64
11.64
13.94
10.4
12.6
—
12.6
9.9
12.1
Intensity
(in/hr)
4.1
3.97
3.97
3.54
4.27
3.77
_ .. ___
3.77
4.41
3.87
C
0.45
0
0
0.55
0.55
--
0.55
0.55
A
(ac)
2
0
0
2
2
2.3
2.3
CA
0.9
0
0
1.1
L1-1
1.3
1.3.
Sum
Ca
0.9
0.9
0.9
1.1
1.1
1.3
1.3
Total Q
(cfs)
3.7
3.7
3.2
4.1
7
5
— T r~v i — h i — i- i — \- r~i r — i i — h r~> r~> r~>- m~ c~> CD- c~3 cr~> CD- CD-' CD-
04-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: FS-IOO.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
SUBBASIN
SUBBASIN
Type of
Travel
Cl
Natural Ovrlnd
Drainage Ditch
Dn =
C2
Urban Overland
Gutter
(Avg flow depth =
C3
Urban Overland
Gutter
(Avg flow depth =
C4
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
520
300
0.43
120
440
0.27
100
350
0.25
120
740
0.33
H
(ft)
197
54
ft.
1.2
11
ft.
1
8.32
ft.
1.2
7.4
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.379
0.180
0.010
0.025
wWidt
0.010
0.024
w Widt
0.010
0.010
wWidt
Velocity
(ft/s)
14.0
'
3.3
8.5
3.1
7.5
2.3
11.5
Tc
(min)
1.4
0.36
10.8
2.2
ft.)
9.9
1.9
ft-)
10.8
5.4
ft.)
Revised
Tc
11.4
11.76
10.8
13
9.9
11.8
10.8
16.2
Intensity
(in/hr)
4.03
3.95
4.17
3.7
4.41
3.94
4.17
3.21
C
0.45
0.55
0.55
0.55
0.55
0.55
0.55
A
(ac)
2.9
2.1
2.1
1.7
1.7
2.7
2.7
CA
1.3
0
*
1.2
1.2
0.9
0.9
1.5
1.5
Sum
Ca
1.3
1.3
1.2
1.2
0.9
0.9
1.5
1.5
Total Q
(cfs)
5.2
5.2
4.4
3.5
4.8
05-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA '£'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: R-IOO.WQI P6= 2.6 CHKD by: MW
From To
Node Node
SUBBASIN
SUBBASIN
SUBBASIN
•
SUBBASIN
Flood Route
SUBBASIN
Type of
Travel
C5
Urban Overland
Gutter
(Avg flow depth =
C6
Urban Overland
Gutter
(Avg flow depth =
C7
Urban Overland
Gutter
(Avg flow depth =
C6 C7
C6
C8
Urban Overland
Gutter
(Avg flow depth =
L
(ft)
120
880
0.32
120
480
0.28
120
420
0.24
and
- 40
1130
0.4
H
(ft)
1.2
12.5
ft.
1.2
7
ft.
1.2
7
ft.
C7
0.8
10
ft.
Pipe
Dia(in)
Avg Flo
Avg Flo
Avg Flo
Avg Flo
Slope
(ft/ft)
0.010
0.014
wWidt
0.010
0.015
wWidt
0.010
0.017
w Widt
-
0.020
0.009
w Widt
Velocity
(ft/s)
2.7
11.0
2.5
9
2.6
7
2.5
15
Tc
(min)
10.8
5.4
ft.)
10.8
3.2
ft.)
10.8
2.7
ft.)
3.6
7.5
ft.)
Revised
Tc
10.8
16.2
10.8
14
10.8
13.5
14
3.6
11.1
Intensity
(in/hr)
4.17
3.21
'
4.17
3.53
4.17
3.61
3.53
8.47
4.1
C
0.55
0.55
0.55
0.55
0.55
0.55
0.7
0.7
A
(ac)
3.1
3.1
1.9
1.9
1.2
1.2
2
2
CA
1.7
1.7
1
1
0.7
0.7
1.4
1.4
Sum
Ca
1.7
1.7
1
1
0.7
0.7
1.4
1.4
Total Q
(cfs)
5.5
3.5
2.5
5.9
5.7
— 1 ,r-— i r~"~i r — i- r — i i i r~ i t > r — i r~i i i c T <"* — i-- f i ( — >- r — i- r — i- i — i- i — i-
04-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: ra-ioo.wQi P6= 2.6 CHKD by: MW
From
Node
To
Node
SUBBASIN
SUBBASIN
Type of
Travel
Dl
Natural Ovrlnd
Drainage Ditch
Dn =
D2
Natural Ovrlnd
L
(ft)
440
1480
1.45
560
H
(ft)
149
14.8
ft.
195
Pipe
Dia(in)
Slope
(ft/ft)
0.339
0.010
0.348
Velocity
(ft/s)
7.42
Tc
(min)
1.3
3.32
1.5
Revised
Tc
11.3
14.62
11.5
Intensity
(in/hr)
4.05
3.43
4
C
0.45
0.45
A
(ac)
17.1
4.1
CA
7.7
0
1.8
Sum
Ca
7.7
7.7
1.8
Total Q
(cfs)
31.2
31.2
7.2
, fe , , fr5-riiay-W " — ' ' DETXlLElTbRAlNAGETXLCt/LATldNS^ ' ' " ' "~^ J ' ' '
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: F4-ioo.wQi P6= 2.6 CHKD by: MW
From To
Node Node
SUBBASIN
SUBBASIN
Type of
Travel
El
Urban Overland
Gutter
(Avg flow depth =
E2
Durban Overland
Gutter
(Avg flow depth =
L
(ft)
40
870
0.47
40
1130
0.48
H
(ft)
0.8
5
ft.
0.8
10.5
ft.
Pipe
Dia(in)
Avg Flo
'
Avg Flo
Slope
(ft/ft)
0.020
0.006
w Widt
0.020
0.009
wWidt
Velocity
(ft/s)
2.3
18.5
2.8
19.0
Tc
(min)
1.4
6.3
ft.)
1.4
6.7
ft.)
Revised
Tc
1.4
7.7
1.4
8.1
Intensity
(in/hr)
15.57
5.19
15.57
5.02
C
0.95
0.95
0.95
0.95
A
(ac)
1
1
1.4
1.4
CA
1
1
1.3
1.3
Sum
Ca
1
1
1.3
1.3
Total Q
(cfs)
5.2
6.5
V
File: 1239.10
September 1998
SECTION 5
FLOOD ROUTING CALCULATIONS
The storm drain pipes for the proposed systems were designed based on Manning's equation:
where
n = Roughness coefficient,
A = Cross-sectional area of flow,
r = Hydraulic radius, and
s = Slope of culvert.
5.1 Flood Routing Method
The Modified Rational Method was utilized to calculate peak storm water flows and route the
calculated flows through the drainage system.
When two major basins combine at a junction point, the smaller of the flows has been decreased
by using the Modified Rational Method. This procedure accounts for the differing times of
concentration for the flows upstream of the junction point. The smaller Q is reduced by either the
ratio of the intensities or the ratio of the times of concentration, according to the following
procedure:
• Let Q, T, and / correspond to the tributary with the largest discharge.
• Let q, t, and i correspond to the tributary with the smallest discharge.
• Let Q and T correspond to the peak discharge and the tune of concentration
when peak flow occurs.
REP/12391DR-902.DOC 29
File: 1239.10
September 1998
If T > t, the peak discharge is corrected by the ratio of the intensities:
Q = Q + q(I/i~) and T = T.
n
- If T < t, the peak discharge is corrected by the ratio of the tunes of concentration:
U Q = Q + q(T/f) and T=T.
PU 5.2 Pipe Flow
jj Travel time has been considered between the nodes of the flood-routed system. Travel time is
calculated by using the following formula:
Travel Time = L/(Vx 60),
where
L = Pipe length (feet) and
pI V= Velocity of flow in pipe (ft/sec).
njj 5.3 Flood Routing Tables
D A flood routing table for each pipe system has been prepared, using a hydrology program which
•consists of a system of macros developed within the QuattroPro software. A printout for each
pipe system for the developed condition has been included in Table 3.
REP/123 91DR-902.DOC 30
File: 1239.10
September 1998
Table 3. Flood Routing Calculations
Flood Routing for 100-Year/6-Hour Storm
Flood Routing for 100-Year/6-Hour Storm
from Adjacent Area
Calculation of Total Discharge to the
Detention Basin for 100-Year/6-Hour Storm
Calculation of Total Discharge to the
Detention Basin for lO-Year/6-Hour Storm
REP/12391DR-902.DOC 31
, v . , , 03-Aug-98 DETAILED DRAINAGE CALCULATIONS
Proj . Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
1A1
Flow
1A
Node to Node
Input Flow
Node to Node
Flood Route
1A 2A
2A 2A2
SUBBASIN
Input Flow
Node to Node
Flood Route
2A2 2A1
Type of
Travel
1A1 1A
Pipe Flow
D/d Calculated =
1A 1A
1A 2A1
1A1 1A
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
2A2 ,
2A2 2A1
1A 2A1
Pipe Flow
D/d Calculated =
L
(ft)
31.25
0.71
and
77.77
0.68
200.2
Full
and
29.32
0.82
H
(ft)
0.2
1A 1A
1
1.3
2A2
0.3
Pipe
Dia(in)
18
18
18
18
Slope
(ft/ft)
0.005
0.013
0.006
0.01
Velocity
(ft/s)
4.8
7.7
5.5
6.8
Tc
(min)
Tc=
0.1
Tc=
0.2
0.6
Tc=
0.1
Revised
Tc
15
15.1
14.9
15.1
15.3
15.9
10
15.9
16
Intensity
(in/hr)
3.37
3.36
3.39
3.36
3.33
3.25
4.38
3.25
3.24
C A
(ac)
CA
0
0
0
0
Sum
Ca
0
0
0
0
Total Q
(cfs)
6.4
6.4
3.4
9.8
9.8
9.8
0.9
10.5
10.5
w
1 ' l ' k ' 03^Aug-98 ' ' ' ' "DETAltEirDRAI^AGECArcUL'STlbNS ' ' ' ' ' ' " "" ' ' ' "~
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
3A
Flow
3A1
3A1 3A2
Node to Node
Input
4A1
Flow
4A
Node to Node
Input Flow
Node to Node
Flood Route
4A 3A2
Type of
Travel
3A 3A2
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
4A1 4A
Pipe Flow
D/d Calculated =
4A 4A
4A1 3A2
4A1 4A
Pipe Flow
D/d Calculated =
L
(ft)
83.57
0.3
116.9
0.58
84.5
0.5
and
12.39
0.68
H
(ft)
7.1
0.9
0.8
4A 4A
0.1
Pipe
Dia(in)
18
18
18
18
Slope
(ft/ft)
0.085
0.008
0.010
0.010
Velocity
(ft/s)
13.4
5.6
5.9
6.6
Tc
(min)
Tc=
0.1
0.3
Tc=
0.2
Tc=
0
Revised
Tc
13.2
13.3
13.6
7.7
7.9
10.9
7.9
7.9
Intensity
(in/hr)
3.66
3.64
3.59
5.19
5.1
4.14
5.1
5.1
C A
(ac)
CA
0
0
0
0
Sum
Ca
0
0
0
0
Total Q
(cfs)
5.9
5.9
5.9
5.2
5.2
4.6
8.5
8.5
, , , , , OS-Aug-^ DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PEPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Flood Route
3A2 5A
Node to Node
Input
5A1
Flow
5A
Node to Node
Input Flow
SUBBASIN
Flood Route
Node to Node
Flood Route
5A 6A
Type of
Travel
3A 5A
3A 3A2
Pipe Flow
D/d Calculated =
5A1 5A
Pipe Flow
D/d Calculated =
5A 5A
5A
5A1 5A
5A 6A
3A 5A
Pipe Flow
D/d Calculated =
L
(ft)
and
62.88
0.64
32.75
0.23
and
and
314.2
0.78
H
(ft)
4A1 3A2
0.3
1.3
5A 5A
5A
1.6
Pipe
Dia(in)
24
18
24
Slope
(ft/ft)
0.005
0.039
0.005
Velocity
(ft/s)
5.6
7.9
5.8
Tc
(min)
0.2
Tc=
0.1
Tc=
0.9
Revised
Tc
7.9
8.1
5.9
6
14.8
14.8
8.1
9
Intensity
(in/hr)
5.1
5.02
6.16
6.09
3.4
3.4
5.02
4.69
C A
(ac)
CA
0
0
0
Sum
Ca
0
0
0
Total Q
(cfs)
11.9
11.9
2.5
2.5
4.8
6.2
15.3
15.3
\~ ( —— i-- i — ~v- f \- < \- ( v- i v r — v i v- / v i v- ( i-- ( — v i v- ( i • f 1- ' v- i >~ i — ~u
05-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
IB
Flow
2B
2B 3B
Node to Node
Input
3B1
Flow
3B
Node to Node
Flood Route
3B 4B
Node to Node
Input Flow
Type of
Travel
IB 3B
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
3B1 3B
Pipe Flow
D/d Calculated =
3B 4B
IB 3B
Pipe Flow
D/d Calculated =
4B 4B
L
(ft)
90.95
0.52
249.4
0.66
31.25
0.58
and
101
0.46
H
(ft)
1.9
2.5
0.2
3B1 3B
5.4
Pipe
Dia(in)
24
24
^
18
24
Slope
(ft/ft)
0.021
0.010
0.005
0.053
Velocity
(ft/s)
10.6
8
4.4
15.9
Tc
(min)
Tc=
0.1
0.5
Tc=
0.1
0.1
Tc=
Revised
Tc
12.11
12.21
12.71
12
12.1
12.71
12.81
12.5
Intensity
(in/hr)
3.87
3.85
3.75
3.89
3.87
3.75
3.73
3.79
C A
(ac)
CA
0
0
0
0
Sum
Ca
0
0
0
0
Total Q
(cfs)
17.6
17.6
17.6
*
4.7
4.7
22.2
22.2
2.7
[—)i—i f—i <—i i i r~i f—)•• i—i —i i—i r—i r—i-f—r- {—i i—v r—i-
05-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA *E*
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
4B1
Flow
4B
SUBBASIN
Flood Route
Node to Node
Flood Route
4B 5B
Node to Node
Input
5B1
Flow
5B
Type of
Travel
4B1 4B
Pipe Flow
D/d Calculated =
4B
4B 4B
4B 5B
3B 4B
Pipe Flow
D/d Calculated =
5B1 5B
Pipe Flow
D/d Calculated =
L
(ft)
31.25
0.23
*
and
and
304
0.48
33.25
0.48
H
(ft)
2.2
4B1 4B
4B
21.3
0.7
Pipe
Dia(in)
18
24
18
Slope
(ft/ft)
0.070
0.070
0.020
Velocity
(ft/s)
10.4
18.7
8.3
Tc
(min)
Tc=
0.1
'
0.3
Tc=
0.1
Revised
Tc
12.2
12.3
12.3
12.81
13.11
12.6
12.7
Intensity
(in/hr)
3.85
3.83
3.83
3.73
3.68
3.77
3.75
C „. A
(ac)
CA
0
0
0
Sum
Ca
0
0
0
Total Q
(cfs)
3.1
3.1
5.8
27.8
27.8
7
7
07-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Flood Route
5B 5B2
5B2 6B
6B 6B1
6B1 6B2
6B2 6B3
6B3 7B
Node to Node
Input
7B1
Flow
7B
Node to Node
Flood Route
7B 6A
Type of
Travel
5B 7B
4B 5B
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
7B1 7B
Pipe Flow
D/d Calculated =
7B 6A
5B 7B
Pipe Flow
D/d Calculated =
L
(ft)
and
76.75
0.68
75.73
0.68
62.42
0.59
80
0.6
68.7
0.62
145.7
0.71
33.25
0.33
and
153
0.67
H
(ft)
5B1 5B
2.8
2.8
3.4
4.1
3.3
4.7
1.3
7B1 7B
7.5
Pipe
JJ>ia(in)
24
24
24
24
24
24
18
24
Slope
(ft/ft)
0.036
0.037
0.055
0.051
0.048
0.032
0.040
0.049
Velocity
(ft/s)
15.3
15.4
18
17.5
17
14.5
9.7
17.7
Tc
(min)
0.1
0.1
0.1
0.1
0.1
0.2
Tc =
0.1
0.1
Revised
Tc
13.11
13.21
13.31
13.41
13.51
13.61
13.81
12.1
12.2
13.81
13.91
Intensity
(in/hr)
3.68
3.66
3.64
3.63
3.61
3.59
3.56
3.87
3.85
3.56
3.54
C A
(ac)
CA
0
0
0
0
0
0
0
0
Sum
Ca
0
0
0
0
0
0
0
0
Total Q
(cfs)
34.7
34.7
34.7
34.7
34.7
34.7
34.7
5
5
39.3
39.3
J '05-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSHD by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Flood Route
6A 7A
Type of
Travel
6A 7A
5A 6A
Pipe Flow
D/d Calculated =
L
(ft)
and
190.3
0.6
H
(ft)
7B 6A
1.1
Pipe
Dia(in)
42
Slope
(ft/ft)
0.006
Velocity
(ft/s)
8.4
Tc
(min)
0.4
Revised
Tc
13.91
14.31
Intensity
(in/hr)
3.54
3.48
C A
(ac)
CA
0
Sum
Ca
0
Total Q
(cfs)
50.7
50.7
w
— 1 1—i i i - i i ( ~\ i !•• i i r i i i ( i i i- i i i i- i — i f — i i — i- i — i i — ' — ]~- ( — \-.
06-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
1C
Flow
2C
Node to Node
Input Flow
Node to Node
Flood Route
2C 3C
Type of
Travel
1C 2C
Pipe Flow
D/d Calculated =
2C 2C
2C 3C
1C 2C
Pipe Flow
D/d Calculated =
L
(ft)
76.91
0.5
and
61.16
0.73
H
(ft)
0.8
2C 2C
0.6
Pipe
Dia(in)
18
18
Slope
(ft/ft)
0.010
0.010
Velocity
(ft/s)
5.9
6.7
Tc
(min)
Tc=
0.2
Tc=
0.2
Revised
Tc
11.76
11.96
13
11.96
12.16
Intensity
(in/hr)
3.95
3.9
3.7
3.9
3.86
C A
(ac)
CA
0
0
Sum
Ca
0
0
Total Q
(cfs)
5.2
5.2
4.4
9:2
9.2
UJ
— i i 1 i 1 Loe=kay=98J ' ' ' ' LDE-fAlh£D DkATIsAG^CALCOCATlblNS1 ' ' ' ' ' ' ' ' ' ' ' i
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input Flow
Node to Node
Flood Route
3C 4C
4C 5C
5C 7A
Node to Node
Flood Route
7A 6C
6C 1C
7C 8C
8C 9C
Type of
Travel
3C 3C
5C 7A
2C 3C
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
8C 9C
6A 7A
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
L
(ft)
and
105.8
0.71
68.8
0.3
49.1
0.71
and
213.8
0.7
239.1
0.68
70.68
0.64
205.5
0.64
H
(ft)
3C 3C
2.1
24.6
1
5C 7A
1.2
1.4
0.5
1.4
Pipe
Dia(in)
18
18
18
42
42
42
42
Slope
(ft/ft)
0.020
0.358
0.020
0.005
0.006
0.007
0.007
Velocity
(ft/s)
' 9.4
27.8
9.4
8.6
9
9.6
9.6
Tc
(min)
Tc=
0.2
0
0.1
0.4
0.4
0.1
0.4
Revised
Tc
11.8
-
12.16
12.36
12.36
12.46
14.31
14.71
15.11
15.21
15.61
Intensity
(in/hr)
3.94
3.86
3.82
3.82
3.8
3.48
3.42
3.36
3.34
3.29
C A
(ac)
CA
0
0
0
0
0
0
0
Sum
Ca
0
0
0
0
0
0
0
Total Q
(cfs)
3.5
12.6
12.6
12.6
12.6
62.2
62.2
62.2
62.2
62.2
cnr CZ3 cm cur czr cur LIU"
06-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: ]QZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Input
9C1
Flow
9C
SUBBASIN
Input Flow
Node to Node
Flood Route
Node to Node
Flood Route
9C 9C2
9C2 IOC
Node to Node
Input Flow
Type of
Travel
9C1 9C
Pipe Flow
D/d Calculated =
9C
1 9C
9C1 9C
9C IOC
8C 9C
Pipe Flow
D/d Calculated =
Pipe Flow
D/d Calculated =
10 IOC
L
(ft)
30.75
0.36
'
and
and
198.3
0.83
233.7
0.83
H
(ft)
0.8
9C
1 9C
1
1.2
Pipe
Dia(in)
18
42
42
Slope
(ft/ft)
0.026
0.005
0.005
Velocity
(ft/s)
8.2
8.4
8.4
Tc
(min)
Tc =
0.1
Tc =
0.4
0.5
Tc=
Revised
Tc
16.2
16.3
*
16.2
16.2
15.61
16.01
16.51
14
Intensity
(in/hr)
3.21
3.2
3.21
3.21
3.29
3.23
3.17
3.53
C A
(ac)
CA
0
0
0
Sum
Ca
0
0
0
Total Q
(cfs)
4.8
4.8
5.5
10:3
72.1
72.1
72.1
5.9
CZT
07-May-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
Node to Node
Flood Route
IOC 11C
Node to Node
Input
11C1
Flow
11C2
SUBBASIN
Input Flow
Node to Node
Flood Route
11C2 11C
Node to Node
Flood Route
11C 12C
Type of
Travel
IOC 11C
9C IOC
Pipe Flow
D/d Calculated =
11C1 11C2
Pipe Flow
D/d Calculated =
11C2
11C2 11C
11C1 11C2
Pipe Flow
D/d Calculated =
11CJ2Q
IOC 11C
Pipe Flow
D/d Calculated =
L
(ft)
and
33.6
0.76
84.5
0.72
and
34.11
0.41
and
256.9
0.86
H
(ft)
10 IOC
0.2
0.4
11C2
3
11C2 11C
1.7
Pipe
Dia(in)
42
18
18
42
Slope
(ft/ft)
0.007
0.005
0.088
0.007
Velocity
(ft/s)
9.9
4.7
16
9.6
Tc
(min)
0.1
Tc =
0.3
Tc =
0
0.4
Revised
Tc
16.51
16.61
'
8.1
8.4
11.1
8.4
8.4
•16.61
17.01
Intensity
(in/hr)
3.17
3.16
5.02
4.9
4.1
4.9
4.9
3.16
3.11
C A
(ac)
CA
0
0
0
0
Sum
Ca
0
0
0
0
Total Q
(cfs)
77.4
77.4
6.5
6.5
5.7
10.8
10.8
84.4
84.4
File: 1239.10
September 1998
The calculation of peak discharge from adjacent area to the detention basin (CP4) is based on
Preliminary Drainage Report. Kelly Ranch Areas 'D' and 'F' through 'L'. Carlsbad, California,
July 16, 1997. Refer to Pages 3, 10, and 16 through 18 of the report described above. The storm
water comes from Areas A2, B2, C2, D2, E2, F2, and G2, which called System No. 2 and which
will pour into the detention basin. The surface runoff calculation results from Table 5 (Pages 16
through 18 of referenced report) will be used to perform flood routing calculations. See the table
on the next page for the CP4 peak discharge. See the attachment 'Exhibit C' for the subbasins.
REP/12391 DR-902.DOC 43
08-Aug-98 DETAILED DRAINAGE CALCULATIONS
Proj.Name: KELLY RANCH - SYSTEM #2
Proj. Num: 1224.8 Frequency 100 yrs. DSND by: JQZ
File Name: ROUTE.WQI P6= 2.6 CHKD by: DG
From
Node
To
Node
SUBBASIN
Input Flow
SUBBASIN
Input Flow
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Input Flow
Type of
Travel
A2
B2
AB
A2
C2
ABC
AB
D2
E2
L
(ft)
and
and
H
(ft)
B2
C2
Pipe
Dia(in)
Slope
(ft/ft)
Velocity
(ft/s)
Tc
(min)
Tc=
Tc=
Tc=
Tc=
Tc=
Revised
Tc
5
11.7
5
14.7
5
2.2
11.8
[ntensity
(in/hr)
6.85
3.96
6.85
3.42
6.85
11.63
3.94
C A
(ac)
CA Sum
Ca
Total Q
(cfs)
19.9
9.9
24.1
11.6
28.0
8.1
10.2
1 f- 1 f 1 i 1 i — — i i "| r~ — i i ^ | i — ^~i ( — :i-=— | i — ~ — i r^"~^~[ <~~~~ — 1 r~^ — i i — "~T r^^~~i r~~~"y i — —=y i — •—<
' "08"-AUg3T ^ ' DETAILED DRAINAGECALCUCATIONS ' ' '
Proj .Name: KELLY RANCH - SYSTEM #2
Proj. Num: 1224.8 Frequency 100 yrs. DSND by: JQZ
File Name: ROUTE.WQI P6= 2.6 CHKD by: DG
From
Node
To
Node
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Flood Route
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Flood Route
Type of
Travel
DE
D2
F2
DEF
DE
A F
ABC
G2
A G
A F
L
(ft)
and
and
and
and
H
(ft)
E2
F2
DEF
G2
Pipe
Dia(in)
Slope
(ft/ft)
Velocity
(ft/s)
Tc
(min)
Tc=
Tc=
Revised
Tc
11.8
13.6
11.8
5
6.5
5
Intensity
(in/hr)
3.94
3.59
3.94
6.85
5.78
6.85
C A
(ac)
CA Sum
Ca
Total Q
(cfs)
12.9
9
20.7
36.8
8.7
43.5
D
File: 1239.10
September 1998
Use Modified Rational Method to determine total peak discharge (from CP1, CP2, CP3, and
CP4).
REP/I2391DR-902.DOC 46
08-Aug-98 DETAILED DRAINAGE CALCULATIONS '
Proj.Name: KELLY RANCH AREA 'E'
Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ
File Name: CPM.WQI P6= 2.6 CHKD by: MW
From
Node
To
Node
SUBBASIN
Input Flow
SUBBASIN
Input Flow
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Flood Route
SUBBASIN
Input Flow
SUBBASIN
Flood Route
Type of
Travel
CP1
CP2
CP1 2
CP1
CP3
CP1 3
CP1 2
CP4
CP1 4
CP1 3
L
(ft)
and
and
and
H
(ft)
CP2
CP3
CP4
Pipe
Dia(in)
Slope
(ft/ft)
Velocity
(ft/s)
Tc
(min)
Tc=
Tc=
Tc=
Tc=
Revised
Tc
17
14.6
17
11.5
17
5
17
Intensity
(in/hr)
3.11
3.43
3.11
4
3.11
6.85
3.11
C A
(ac)
CA Sum
Ca
Total Q
(eft)
84.4
31.2
112.7
j
l
7.2
118.3
43.5
138.0
File: 1239.10
September 1998
n Calculation of Total Discharge to the Detention Basin for 10-Year/6-Hour Storm
Project Site Location: latitude 33°08'30", longitude 1 17°17'30".
P
For a 100-year/6-hour storm, PS = 2.6.
H For a 10-year/6-hour storm, Pg = 1 .8.
p Total Discharge to the Pond for 100-Year/6-Hour Storm:u
Qioo = 138 CFS, Tc = 17 minutes, IIQO = 3.11 in/hr (see previous page).nL> Calculation for 10-Year/6-Hour Storm:
n{_) I . Areas and 'C' values are the same as using the Qioo calculation.
Y.-, 2. Assume !FC = 17 minutes.
U
P6 = 1 .8, T = 1 7 minutes. From Appendix A-2. 1 , 7;0 = 2.2 in/hr.
=Qioo/Ac,Iio=Qio/Ac.
- Qio/Qioo-
Qio - Qioo(liollioo)-
gvo -138(2.2/3. 11) = 98 CFS.
REP/12391DR-902.DOC 48
File: 1239.10
September 1998
SECTION 6
INLET AND OUTLET DESIGN
6.1 Curb Inlet at Continuous Grade
Use the results of surface runoff calculations (100-year/6-hour storm) to determine the length of
curb inlet.
Formula:
Q = Q.7L(A + Y)3!2
from the City of San Diego Drainage Design Manual, Chart 1-103.6A (refer to Appendix A-5).
6.2 Curb Inlet at Sag
From the City of San Diego Drainage Design Manual, Nomogram Chart 1-103.6C (refer to
D"Appendix A-6):
Assume
H = 0.73 foot (measured from bottom of the opening
to 0. 1 foot below top of curb) and
h = 0.50 foot (height of the opening of curb inlet).
Hlh = 0.73 foot/0.5 foot = 1 .46.
Therefore,
= 1.5CFS/foot
(J The City of Carlsbad allows the use of 1 .7 CFS/foot for curb inlet design.
<M Use the results of surface runoff calculations (100-year/6-hour storm) to determine the length of
curb inlet.
REP/12391 DR-902.DOC 49
File: 1239.10
September 1998
6.3 *F* Type Catch Basin
]
The maximum allowable flow rate is determined using the orifice flow equation, as follows:
where
C = Coefficient of discharge (0.74) from Table 4-9,
King's Handbook of Hydraulics:
A = Area of clean opening (3 feet x 0.65 foot =
1.95 ft2 per opening);
g = Gravitational acceleration (32.2 ft/sec2); and
h = Allowable height of ponded water (1.0 foot).
Therefore,
0mox = (0.74)1.95V(2)(32.2)(l) = 11.5 CFS per opening.
The required number of openings for
Basin Bl is 2. (Qm = 17.6 CFS.)
Basin Cl is 1. (Qm = 5.2 CFS.)
6.4 Curb Outlet
The storm water Qioo= 3.7 CFS from the south hill of Basin 5B will be conveyed via curb outlet
into the street gutter. Use City of San Diego Standard Drawing D-25, Curb Outlet.
Check the curb outlet capacity, where A = 3 inches x 3 feet = 0.75 SF, S = 0.02, and n = 0.013.
Q = (1AWn)RmSmA = 4.43 CFS.
Since this number is greater than 3.7 CFS, the outlet capacity is okay.
R£P/12391DR-902.DOC 50
Table 4. Inlet Location Table
File: 1239.10
September 1998
Basin Name
Al
A2
A3
A4
El
A5
A6
B2
B3
B4
B5
B6
C2
C3
C4
C5
C6
C8
E2
Street Name
Merwin Drive
Merwin Drive
Millay Court
Cannon Road
Cannon Road
Frost Avenue
Frost Avenue
Lynch Court
Hillyer Street
Hillyer Street
Hillyer Street
Frost Avenue
Ciardi Court
Ciardi Court
Ashberry Road
Ashberry Road
Ashberry Road
Cannon Road
Cannon Road
Street Station
7 + 62.27 W
7 + 62.27 E
Cul-de-sac
1 12 + 75.00 S
1 12 + 75.00 N
1+ 81.80 S
1 + 81.80N
3 + 67.51
5 + 11.08 W
5 + 11.08 E
2 + 10.00
6 + 20.00
1 + 47.23
1+55.37
5 + 00.33 S
5 + 00.33 N
Cul-de-sac
101+ 44.03 S
101+ 44.03 N
REP/12391DR-902.DOC 51
File: 1239.10
September 1998
Table 5. Inlet Sizing Calculations
Basin
Name
Al
A2
A3
A4
A5
A6
B2
B3
B4
B5
B6
C2
C3
C4
C5
C6+C7
C8
El
E2
Design 0 +
Bypass
(CFS)
3.4
6.4
5.9
4.6
2.5+2.0=4.5
4.8
4.7
2.7
3.1
5.0
5.0
4.4
3.5
4.8
5.5
6.0
5.7
5.2
5.5
Street
Slope(1)
Sump
Sump
Sump
1.0
1.3
3.8
Sump
1.7
1.6
5.2
4.8
Sump
Sump
1.0
1.4
Sump
1.0
2.0
2.0
Flow
Depth
(feet)
0/Z=1.7
0/1=1.7
0/1=1.7
0.37
0.35
0.31
0/1=1.7
0.29
0.30
0.29
0.30
0/1=1.7
0/1=1.7
0.37
0.37
0/1=1.7
0.39
0.34
0.35
Flow
Velocity V
(ft/sec)
-
-
-
2.6
2.9
4.5
-
2.9
3.0
5.1
5.0
-
-
2.7
3.1
-
2.7
3.4
3.5
Opening
Length
(feet)
2
4
4
12
12
14
3
8
9
15
14
3
2
12
13
4
14
13
13
Total
Length
(feet)
5
5
5
13
13
15
5
9
10
16
15
5
5
13
14
5
15
14
14
Bypass
0
(CFS)
0
0
0
0
0
0
0
0
0
2.0
0
0
0
0
0
0
0
0
1.0(2)
average street slope.
(2)Bypass 0 to down street.
REP/12391DR-9O2.DOC 52
File: 1239.10
September 1998
6.5 Outlet Design Analysis
Riprap protection is provided at all outlets which discharge into unprotected natural areas, to
minimize potential for erosion in these areas.
Riprap rock class and apron thickness are determined in accordance with the Standard
Specification for Public Works Construction, dated 1997 (see Appendix A-7). The riprap apron
width, length, and median stone (Size D50) are based on the design charts of the Erosion and
Sediment Control Handbook provided by the City of Carlsbad.
Riprap calculations are summarized in Table 6 below:
Refer to Kelly Ranch Village 'E' improvement plans for riprap and filter blanket thickness and
specifications.
Table 6. Riprap Calculations Summary
Location
Inside Detention Basin
North of Cannon Road
North of Cannon Road
Pipe
Diameter
(inches)
42
36
Culvert
36
Culvert
Flow
(CFS)
84.4
52.2
52.2
Velocity
(FPS)
9.6
7.4
7.4
Rock
Class
Light
Facing
Facing
Median Stone
(Size D50)
(feet)
0.7
0.5
0.5
Apron
Width
(feet)
11
9
9
Length
(feet)
22
20
20
n
REP/12391DR.DOC 53
File: 1239.10
September 1998
f | 6.6 Underdrain Culvertu
D The storm water from Basin A3 (Q = 5.9 CFS) will be concentrated into Inlet A3 (refer to'
Tables 4 and 5). To prevent water ponding due to the sump inlet being blocked, a 12-inch-
D diameter emergency culvert under the berm will be designed to release the discharge. For the
12-inch-diameter culvert, if the allowable maximum ponding elevation in the swale is 43.5
h (6 inches below finished grade), the outlet Q= 8.27 CFS, > 5.9 CFS.
;n The same situation applies to the sump inlet of Basins 6 and 7. The design incoming Q =
IJ 6.0 CFS. The allowable maximum elevation on the swale is 30.6. For the 12-inch-diameter
(n culvert, the outlet Q = 7.15 CFS, > 6.0 CFS.
U
Twelve-inch-diameter culverts will be used for emergencies at these two locations. See
in;l I Drawing 363-3, Sheets 3 and 10 for plan/profile, and Appendix B for calculations.
'OQ
REP/1239IDR-902.DOC 53-A
File: 1239.10
September 1998
SECTION 7
DETENTION BASIN DESIGN
Detention Basin A will be designed to reduce the postdevelopment peak flows from the project
area and adjacent developed area. The 100-year/6-hour storm will be used on the detention basin
calculations. The postdevelopment flows are measured from different areas to each concentration
point (CP). The flow from the underground drainage system outlets at CP1. The runoff storm
from Basin Dl will be collected on CP2 through a brow ditch. Assume the overland flow from
Basin D2 will be collected on CP3, and the storm water of the adjacent developed area will be
outletted at CP4 through an underground pipe system. (Refer to "Detention Basin A" map in
Appendix B.)
7.1 Software of Design Calculations
PONDPACK, a software package designed by Haestad Methods, routes inflow hydrographs
through detention basins with user-defined stage-storage characteristics. The software has several
options for outlet structure configurations, in order to accurately model the proposed design. The
computer-generated output includes graphical presentations of the inflow and outflow
hydrographs, as well as the input characteristics of the detention basins and outlet structures in
tabular from.
7.2 Water Surface Elevations
Determining the design minimum water surface elevation will not require consideration of
desilting. (See Detention-Desilting Basin Notes on 363-3A.)
Design Minimum Water Surface Elevation of 19.0 Feet = Bottom of Basin Elevation.
The elevation of the top dike at the lower side of the detention basin is approximately 32 feet.
The maximum water surface elevation assume 27 feet.
REP/12391DR-902.DOC 54
File: 1239.10
September 1998
7.3 Tailwater Condition Analysis
Based on the information from Howard H. Chang's study report Hydraulic Study for FEMA
Conditional Letter of Map Revision (CLOMR) for Agua Hedionda Creek Near Kelly Ranch in
the City of Carlsbad and San Diego County, California, the detention basin tailwater elevation
could be determined.
From the report (for the 100-year frequency only):
At Section 2.63, WS Elevation = 16.5.
At Section 2.71, WS Elevation = 20.1.
The detention basin outlet point is located between these two sections and is 100 feet from
Section 2.71. The distance between the sections on the outlet side is 400 feet. The water surface
(WS) elevation at the outlet point will be:
16.5 + [(20.1 -16.5) x 3]/4 = 16.5 + 2.7 = 19.2.
Use TW = 19.2 to check outlet Q and WS at Pond.
Table 7. Tailwater Condition Summary
Outlet Condition
Free outfall
(TW 17.00)
TW 19.2
Outlet Q for
100-Year/6-Hour
Storm (CFS)
104.4
103.0
104.3
Elevation at Pond
(Feet)
22.66
22.66
22.68
The results show that the effect of tailwater at 19.2 could be ignored. (Refer to Appendix B for
detailed calculations.)
REP/12391DR.DOC 55
nu
File: 1239.10
September 1998
7.4 Summary of Detention Flows
The direct effect of Detention Basin A can be seen by comparing the peak inflow and outflow on
the detention basin. For a 100-year/6-hour storm, the detention basin reduces the flow from
138 CFS to 104.4 CFS. For a 10-year/6-hour storm, the detention basin reduces the flow from
98.0 CFS to 66.4 CFS. Please refer to Table 8 for a summary of flows. The basin characteristics
and computer-generated routing calculations are included for reference in Appendix B.
Table 8. Summary of Flows
Frequency of
Flow
100-Year/6-Hour
10-Year/6-Hour
Peak Inflow
OP
(CFS)
138.0
98.0
Tc
(Minutes)
17.0
17.0
Peak
Elevation
(Feet)
22.83
22.37
Peak Outflow
QP
(CFS)
104.4
66.4
T
(Minutes)
25.0
28.0
Predeveloped
Peak
Discharge
Q
(CFS)
97.1
67.2
REP/12391DR.DOC 56
File: 1239.10
September 1998
SECTION 8
BROW DITCH CAPACITY CALCULATIONS
Brow ditches in the south portion of the development are to collect overland storm water from
the south hill, and carry it into an underground drainage system or detention basin.
The brow ditch design is based on City of San Diego Standard Drawing D-75, Type B (refer to
Drawing 363-3B).
8.1 Capacity of Brow Ditches
Ditch Width = 3 feet. Maximum Depth = 1.5 feet. Slope = 1.0%.
Maximum Capacity:
From King's Handbook, Table 7-14:
where
D = Depth of water = 1 .5 feet (when carrying Qmax),
d = Diameter of channel = 3 feet,
S = 0.01,
D/d= 0.5,
fC = 0.232, and
n = 0.013.
Q = (0.232/0.013)(3)8/3(0.01)1/2 = 33.4 CFS.
The largest peak discharges collected by the brow ditch occur in Basin Dl. Qp = 31.2 CFS, which
is less than 33.4 CFS. Therefore, the brow ditch size is appropriate.
REP/12391DR-902.DOC 57
File: 1239.10
September 1998
8.2 Summary of Brow Ditch Flows
These flows are shown in Table 9.
Table 9. Summary of Brow Ditch Flows
Flow
From
Bl
B5a*
Cl
Dl
QP
(CFS)
17.6
3.7
5.2
31.2
Depth
(Feet)
1.05
0.48
0.57
1.44
Velocity
(FPS)
7.96
5.07
5.60
9.27
*QP from B5a, part of Basin B5. See hydrology calculation.
REP/12391DR-902.DOC 58
File: 1239.10
September 1998
SECTION 9
REFERENCES
• Standards for Design and Construction of Public Works Improvements in the City of
Carlsbad, dated April 1993.
• County of San Diego, Department of Public Works Flood Control Design: Hydrology
Manual, October 1973, revised April 1993.
• City of San Diego: Drainage Design Manual, April 1984, revised March 1989.
• Project Design Consultants: Preliminary Drainage Report for Kelly Ranch Area '£',
Carlsbad, California, prepared for The Kelly Ranch Land Company (Tentative Map
CT 96-07).
• Project Design Consultants: Preliminary Drainage Report for Kelly Ranch Area 'D', 'F'
through 'L'. Carlsbad. California. Tentative Map CT 97-16, prepared for The Kelly Ranch
Company.
• Project Design Consultants: Detention Basins Analysis for Kelly Ranch Village '£'. July
1998.
• Hydraulic Study for FEMA Conditional Letter of Map Revision CCLOMR') for Agua
Hedionda Creek Near Kelly Ranch hi the City of Carlsbad and San Diego County,
California, November 1997, prepared by Howard H. Chang, Ph.D., PE.
REP/12391DR-9O2.DOC 59
File: 1239.10
September 1998
APPENDIX A
HYDROLOGY DESIGN CHARTS
REP/12391DR-902.DOC A-l
0
TABLE 2
RUNOFF COEFFICIENTS (RATIONAL METHOD)
DEVELOPED AREAS (URBAN)
Use Coefficient. C
Soil Type (1)
Residential: D
Single Family .55
Multi-Units .70
Mobile Homes .65
Rural (lots greater than 1/2 acre) .45
Commercial (2)
80% Impervious .85
Industrial (2) ' :
90% Impervious . • •* • ;95
NOTES:
•••-'.•.v ... ; • • ••;-.•'. •' -. ••
(l)io, ,..Type.-D soil to be used for all areas.j jo sv
•<2) j ;e where - actual- conditions' 'f- <fevia<e3r'signffica;n|{y ?^f rom '' %ie tabulated
c .v. ;j4mperviousness values of 80% or.90%;?thebvalues giveh forcoeffident C,v may be revised by multiplying 80% or 9Q%_by-.the ratio of actual
imperviousness to the tabulated imperviousness." However, in no case shall
the final coefficient be less than 0.50. For example: Consider commercial
.v> property on D soil. , :-- - :• . v •^•^•^^^ ~-:
"" "'" Actual:impe;rvioushess'"sn ^'"^ '= ' 50%
..;Q'I . •*•.-•.« :V-.-:-. :o: ••..-,-•: -o ^'^.- '
Tabulated imperviousness = 80%
Revised C = Sr x 0.85 = 0.53
82 APPENDIX A-1
CD"
JNTENSm-DURAT; DESIGN CHART -CD
u
3
O
l/>atcuc
&
irtcat
i i i 1.1u.i n in i ru rnTVi
-.645
= Intensity (In./Hr.)
P, ° 6 Hr. Precipitation (In.)
Duration (Min.)
2. =.-Z---:~....:.:r..
>
IN
15 20
Minutes
30 40 50 1
Dnrnt.lnn
2 . 3
Hours
5 6
Directions for Application:
1) From precipitation naps determine 6 hr. and
24 hr. amounts for the selected frequency.
These maps are printed in the County Hydroloo>
Manual (10, 50 find 100 yr. maps included in U
Design and .Procedure Manual).
2) Adjust 6 hr. precipitation (if necessary) so
that it is within the range of 45% to 65% of
the 24 hr. precipitation. (Not applicable
to Desert)
3) Plot 6 hr. precipitation on the right side
of the chart.
4) Drav/ a line through the point parallel to the
plotted lines.
5) This line is the intensity-duration curve for
the location being analyzed.
Application Form:
0) Selected Frequency /OO yr.
24"
2) Adjusted *Pg=
3) t a
4) I =
24
in.
min.
n/hr.
*Not Applicable to Desert Region
APPENDIX u
IV-A-14
Revised 1/85
a S"
JNTENSITY-DUJVVI. DCSIGN CHART
nrr^r 1.1•_».i LI-i
.HJJj Equation: I •••* 7.44 P D "t645
rnirhm f.
1i
«« Intensity (In./Hr.)
, = 6 Hr. Precipitation (In.)
'i ,. D =« Duration (Min.)
n:o
•o
ft)n
o ,
ro
15 20
Minutes
5 6
Directions for Application:
1) From precipitation naps determine 6 hr. and
24 hr. amounts for the selected frequency.
These maps are printed in the County Hydrolooy
Manual (10, 50 and 100 yr. maps included in th
Design and Procedure Manual).
2) Adjust 6 hr. precipitation (if necessary) so
that it is within the range of 45% to 65% of
the 24 hr. precipitation. (Not applicable
to Desert)
3) Plot 6 hr. precipitation on the right side
of the chart.
4) Draw a line through the point parallel to the
plotted lines.
5) This line is the intensity-duration curve for
the location being analyzed.
Application Form:
0) Selected Frequency l<> yr.
In.,24"
2) Adjusted *Pg=
3) t,. - .
in.
min.
4) I 1n/hr.
*Not Applicable to Desert Region
APPENDIX XI
IV-A-14 ,
Revised 1/85
0
'
0
nu
D'
nU
nu
n
Ut — i
,0
D '
•nU\ i
n " '
•U
;n ••U
D'
:nu
;G ' r ' H
1 /---' r- - [''•••**-•* }-J°-J
Cff /c \ H )
5"000 % , T/^f Of cesiccsi/ra.i'/osi
4020 £ ' Lcng/A of • tva/?/-s-/ifd
LJ 9 f);SS~ — .•«•>• • / A ' /_ ff iS//rer£/7C<: //? f/fva.//an a/ofiff
---- e/Scci'/se s/ooc ///jf (See typendix /• 8) ,-
^*f//es X*-<r/ #otrrs
2000
-
/O —r — /000 _
*> 900
- 800 __
-700 ~~
- £00 \ ~\ f
SOO \
-—400 ^ *~
NFS-»— ^ y
— 300 ^^ 3~
\
\
200 \ 2~
\
\
\ *
: \-
" X \./0o /-±
• *•*
~ -
-s-0 as—
'— 40
~
— 30
fNOTET^"1 a ":i*^as"t-"sj
— 2O I ADD TEN MINUTES TO \
1 COMPUTED TIME OF CON- !
JCENTRATION. i
«-^^«-=^=^-==-tL==-^=»=s«jrt=Jl
— /O
— S"
/
SAN DIEGO COUNTY
.. DEPARTMENT OF SPECIAL DISTRICT SERVICES
j[J DESIGN MANUAL
APPROVED 0. "» <r^.'/,^,, ."TTX
<^—
J —
J? —
/ —
-
•s^-SJOO
~—40O0
9ASIA*—J(/OO '>*
\
2OOO \
— /300 \
— /^<i?^
— /too
— /2OO
— 70O0— soo— •800
— 700
— £00
— S"OO
— 400
— 300
— 260
J,
Mf/Ja/£s
— 140
— /so
—
—
— J£0
-/OO
— 30
— SO
— 70
£0
— so
jfs\— * o
. */)NM* J^/
— 20
— /e
— /£
—/<r
— /£
— /o
— s
— s
_ 7
— £
— S
— 4-
— J
~
NOMOGRAPH FOR DETERMINATION
OF TIME OF CONCENTRATION (Tc)
FOR NATURAL WATERSHEDS
'•' A u-vr-hr— » • I-N. ••»*• A f\ *
URBAN AREAS OVERLAND
TIME OF FLOW CURVES
•00
- Of 800 Feet.
:°>^~^/r ri^Fri-
Surface Flow TIM Curv«
GlVEM FT.
= I 5"
86 APPENDIX A-3.2
CHART 1-104.12
•• am
cue noc ONLY
Q3 —
o« —
EXAMPLE:
\*tri«e
OlSCKfiRCE (CFS.)
ONE SIDE
JO «0 SO
Ci»tn^ 0«K> 3
Chart »»tr CWplh t Q4, Velocity * 4.4~t|Xt-
REV.CITY OF SAN DIEGO - DESIGN -,GUIDE
GUTTER AND ROADWAY
DISCHARGE-VELOCITY CHART APPENDIX A-4
70A
CHART 1-103,6 A
CAPACITY OF CURB OPENING INLETS
ASSUMED 2% CROWN,
Q = 0.7L (A+Y)3/2
*A = 0.33
Y
L =
HEIGHT OF WATER AT CURB FACE (0,4' MAXIMUM)
REFER TO CHART 1-104,12
LENGTH OF CLEAR OPENING OF INLET
*Use A=0 when the inlet is adjacent to traffic;
i;e., for a Type "0" median inlet or where the
parking lane is removed.
REV.CITYOfvSAN DIEGO - DESIGN'GUIDE •SHT: NO.
CAPACOT: OF CURB OPENING
APPENDIX A-5
»•
CHART I-I03.6C
4-ELEVATION
REV.CITY OF SAN DIEGO -i DESIGN -GUIDE
- CAPACITY., CURB
INLEt 'AT SAG'
- .15
SHT. NO.
200-1.7 Selection of Riprap and Filter Blanket
Material
Table 200-1.7
Vel.
Fl/Sec
(1)
6-7
7-8
8-9.5
9.5-11
11/13
13-15
15-17
17-20
Rod:
Cb«
W
No. 3
Back-
•K
No. 2
Back-
ing
Fac-
ing
Light
1/4
TON
V4
TON
1
TON
2
TON
Riprap
Thick-
lieu
•T'
.6
1.0
1.4
2.0
2.7
3.4
4.3
5.4
P*ih«r R>«itlr»t fVl I Iruvr I avfr(t\
OpU
Sec. 200
(0
3/16'
1/4'
3/8'
Vi'
3/4'
1'
1-1/2"
2'
Opt.2
Sec.400
W
C2
B3
—
—
_
_
mt_mm
_ t
Opt3
(5)
D.G.
D.G.
D.O.
3/4'
1-1/2'
P.B.
3/4"
1-1/2'
P.B.
3/4'
1-1^'
P.B.
TYPE
B
TYPE
B
Lower
Layer
«S)
_
_
—
—
SAND
SAND
SAND
SAND
See 200-1.6 See also 200-1.6(A)
Practical use of this table is limited to situations
where "T" is less than inside diameter.
(1) Average velocity in pipe or bottom velocity in
energy dissipater, whichever is greater.
(2) If desired riprap and filter blanket class is not
available, use next larger class.
(3) Filter blanket thickness = 1 Foot or "T", whichever
is less.
(4) Standard Specifications for Public Works
Construction.
(5) D.G. = Disintegrated Granite, 1 MM to 10 MM.
P.B. = Processed Miscellaneous Base.
Type B = Type B bedding material, (minimum 75X
crushed particles, 100% passing 2%" sieve, 10%
passing 1" sieve).
(6) Sand 75X retained on *200 sieve.
APPENDIX A-7
i i n r i ri ii r» ri r i
7.54 Erosion and Sediment Control Handbook
• • i i i i i f i § i f i ii i » « *ti
Water Conveyance and Energy Dissipation
50 100
Discharge. ft3 sec
0.1 0.2 0.30.4 060.81 2 3 4 5 6 7 8 10 15 2025
Discharge, m' sec
Fig. 7.-15 Design of riprap outlet protection from a round pipe flowing full: minimum
lailwaier conditions. (6. 14)
7.55
30,
Outlet (
vt" —pL s idiameter I f "~a——_
D r- L. -J 120,
110,A
V<30X "> 109
vv ^^-v>ooX ' ' ./ / /srSjZ&iF^f *>/</„ 7\ it/ /M Tl\'*% i /////.? 77)V/ i// Ii50,
'OT
10 20 50 100 200
Discharge, ft3 sec
500
.1 .2 .3 .4 .5.6.7.8.91 2 3 4 5 6 7 3 :C 15 20 25
Oiscnarge. rr>2 sec
Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full: maximum
tailwater conditions. (6, 14)
to find the riprap size and apron length. The apron width at the pipe end should
be 3 times the pipe diameter. Where there is a well-defined channel immediately
downstream from the apron, the width of the downstream end of the apron
I should be equal to the width of the channel. Where there is no well-defined chan-
nel immediately downstream from the apron, minimum tailwater conditions
apply and the width of the downstream end of the apron should be equal to the
pipe diameter plus the length of the apron.
,
EXAMPLE 7.4 Riprap Outlet Protection Design Calculation Tor Minimum
Tailwater Condition
• Given: A flow of 6 ft '/sec (0.17 mVsec) discharges from a 12-in (30-cm) pipe onto a 2
percent grassy slope with no defined channel.
^^
The required length, width, and median stone size c/w for a riprap apron.
Solution: Since the pipe discharges onto a flat area with no defined channel, a mini-
mum tailwater condition can be assumed.
By Fig. 7.45, the apron length L, and median scone size dM are 10 ft (3 m) and 0.3 ft
(9 cm), respectively. The upstream apron width W_, equals 3 times the pipe diameter D,:
W,, « 3 x D.
- 3(1 fti - 3 ft [3(0.3 m) = 0.9 m|
The downstream apron width W,, equals the apron length plus the pipe diameter:
W,t ~ D. - L,
- I ft -t- 10 ft « 11 ft <O..J m - 3.0 m = 3.3 m)
.Vote: When a concentrated How is discharged onto a slope las in this example!, gul-
lying can occur downhill from the outlet protection. The spreading of concentrated rtow
File: 1239.10
September 1998
APPENDIX B
DETENTION BASIN COMPUTER OUTPUT
-ma
m
s^s
REP/12391DR-902.DOC B-l
36"0 RCP CULVERT
CANNON ROAD 36 0 RCP CULVERT
FUTURE S.D. PIPE
DETENTION BASIN A
48"0 STAND PIPE 36"0 RCP CULVERT & 0.5% SLOPE
• 36"0 RCP CULVERT @ 0.5% SLOPE
480 STAND PIPE
EL 32.0±
PLANVEW
NOT TO SCALE
WIDTH, LENGTH, RIP RAP S/Zf
AND FILTER ROCK SIZE PER
DWG JJJ-2G
PROPOSED
CANNON ROAD
PEAK_EL_22.66
EL. 22.0 RIP RAP PER
DWG 333-2G
£ ?7gg x J6"0 RCP CULVERT & 0.5% SLOPE
-48"t STAND PIPE 36"* RCP CULVERT @ 0.5% SLOPE BEYOND
48"0 STAND PIPE BEYOND
SECTION'A-A'
NOT TO SCALE
OUTLET FOR DETENTION BASIN A
Project Design Consultants
PLANNING AND ENGINEERING
701 "B" Street. Suite 800. San Diego. Co. 92101
619'235'6471 FAX 234-0349
1239BASIN.dwg 51398 112152
100-YEAR/6-HOURFLOW
0 = 138.0 cfs Tc =17 mm.
51 = 138.0/17 = 8.12 cfs/min.
AT" - 1 mln. AO = 8.12 cfs
52 = 138.0/(2x17) = 4.06 cfs/min.
AT" = / mln. AO = 4.06 cfs
42s
u S2
ti-YEAR/6-HOURFLOW
Q = 98.0 cfs Tc = 17 min.
51 = 98.0/17 = 5.76 cfs/min.
AT = 1 min. AO = 5.76 cfs
52 = 98.0/(2x17) = 2.88 cfs/min.
AT = 1 min. AO = 2.88 cfs
50 --
•ao
34
Tc (min)
51
T (min.)
Q (cfs)
0 4
0 32.5
8
64.9
12
97.4
16
129.9
17
138.0
20
125.B
24 28
109.6 93.4
36
60.9
42
36.5
46
20.3
51
0
51
T (min.)
0 (cfs)
0
0
4 8
23.06 46.12
12
69.18
16
92.23
17
98.0
20
89.35
24
77.82
28
66.29
36 42
43.24 25.94
46
14.41
51
0
INFLOW HYDROGRAPH5 FOR DETENTION BASINS A
Project Design ConsuLtants
PLANNING AND ENGINEERING
701 "B" Street. Suite 800, San Diego. Co. 92101
619 '235 -6 471 FAX 234 '034 9
1239BASIN.dwg 51398 112152
Detention Basin Route Calculations
for 100-Year/6-Hour Storm
m
m
Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Rain Dir: C:\HAESTAD\PPK6\UTIL\
JOB TITLE
KELLY RANCH VILLAGE 'E'
STORM DRAIN STUDY REPORT
DETENTION BASIN A
FOR 100-YEAR STORM
• S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Table of Contents
Table of Contents
*********************** POND VOLUMES
Pl-VL ........... Vol: Planimeter .................... 1.01
******************** OUTLET STRUCTURES *********************
TEST ............ Outlet Input Data .................. 2.01
Individual Outlet Curves ........... 2.07
Composite Rating Curve ............. 2.16
*********************** POND ROUTING ***********************
ROND ROUTE ...... Pond E-V-Q Table ................... 3.01
Pond Routing Summary ............... 3.02
Detention Time ..................... 3.03
Pond Routed HYG (total out) ........ 3 . 04
m
m.
»
S/N: HOMOL0102009 Project Design Consultants
r* Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Vol: Planimeter
Name.... Pl-VL
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 VOLUME
Page 1.01
POND VOLUME CALCULATIONS
Planimeter scale: 40.00 ft/in
Elevation
(ft)
19.00
20.00
25.00
30.00
Planimeter
(sq.in)
8.110
9.070
15.400
22.500
Area Al+A2+sqr(Al*A2) Volume
( acres ) ( acres ) ( cu . f t )
.2979
.3331
.5657
.8264
.0000
.9461
1.3329
2.0758
0
13737
96769
150705
Volume Sum
(cu.ft)
0
13737
110506
261212
POND VOLUME EQUATIONS
* Incremental volume computed by the Conic Method for Reservoir Volumes.
Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2))
where: ELI, EL2 = Lower and upper elevations of the increment
Areal,Area2 = Areas computed for ELI, EL2, respectively
Volume = Incremental volume between ELI and EL2
S/N: HOMOL0102009 Project Design Consultants
fm Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
Page 2.01
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
REQUESTED POND WS ELEVATIONS:
Min. Elev.=
Increment =
Max. Elev.=
19.00 ft
1.00 ft
27.00 ft
OUTLET CONNECTIVITY
**********************************************
--- > Forward Flow Only (Upstream to DnStream)
< --- Reverse Flow Only (DnStream to Upstream)
< --- > Forward and Reverse Both Allowed
Structure
Stand Pipe
Orifice-Area
Orifice-Area
Culvert-Circular
Stand Pipe
Orifice-Area
Orifice-Area
Orifice-Area
Culvert-Circular
TW SETUP, DS Channel
No.
S2
F3
F2
C2
SI
F6
F5
F4
Cl
Outfall
C2
C2
C2
TW
Cl
Cl
Cl
Cl
TW
El, ft
22.000
19.000
20.000
17.960
22.000
21.000
20.000
19.000
17.960
E2, ft
27.000
27.000
27.000
27.000
27.000
27.000
27.000
27.000
27.000
m
i
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type. . . . Outlet Input Data
Name. . . . TEST
Page 2.02
File. . . . C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title. . . POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Structure ID
Structure Type
= S2
= Stand Pipe
# of Openings
Invert Elev.
Diameter
Orifice Area
Orifice Coeff.
Weir Length
Weir Coeff.
K, Submerged
K, Reverse
Kb,Barrel
Barrel Length
Mannings n
22.00 ft
48.00 in
12.5664 sq.ft
.600
12.57 ft
3.490
.000
1.000
.000000 (per ft of full flow)
.00 ft
.0000
Structure ID
Structure Type
F3
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
19.00 ft
.4500 sq.ft
19.67 ft
19.00 ft
.600
Structure ID
Structure Type
F2
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
20.00 ft
.4500 sq.ft
20.67 ft
20.00 ft
.600
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Page 2.03
Structure ID
Structure Type
= C2
= Culvert-Circular
No. Barrels =
Barrel Diameter =
Upstream Invert
Dnstream Invert =
Horiz. Length =
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA.
Mannings n =
Ke
Kb
Kr
HW Convergence =
INLET CONTROL DATA..
Equation form =
Inlet Control K
Inlet Control M
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
36.00 in
17.96 ft
17.00 ft
180.00 ft
180.00 ft
.00533 ft/ft
.0130
.2000
.007228
.2000
.001
1
.0098
2.0000
.03980
.6700
1.158
1.304
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
m
m
Use unsubmerged inlet control Form 1 equ. below Tl elev.
Use submerged inlet control Form 1 equ. above T2 elev.
In transition zone between unsubmerged and submerged inlet control,
interpolate between flows at Tl & T2...
At Tl Elev = 21.43 ft > Flow = 42.85 cfs
At T2 Elev = 21.87 ft > Flow = 48.97 cfs
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Page 2.04
Structure ID
Structure Type
SI
Stand Pipe
# of Openings
Invert Elev.
Diameter
Orifice Area
Orifice Coeff.
Weir Length
Weir Coeff.
K, Submerged
K, Reverse
Kb,Barrel
Barrel Length
Mannings n
22.00 ft
48.00 in
12.5664 sq.ft
.600
12.57 ft
3.490
.000
1.000
.000000 (per ft of full flow)
.00 ft
.0000
Structure ID
Structure Type
F6
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
21.00 ft
.4500 sq.ft
21.67 ft
21.00 ft
.600
Structure ID
Structure Type
F5
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
6
20.00 ft
.4500 sq.ft
20.67 ft
20.00 ft
.600
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Outlet Input Data Page 2.05
^ Name.... TEST
to. File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Structure ID = F4
Structure Type = Orifice-Area
# of Openings = 6
Invert Elev. = 19.00 ft
Area = .4500 sq.ft
Top of Orifice = 19.67 ft
Datum Elev. = 19.00 ft
Orifice Coeff. = .600
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Page 2.06
Structure ID
Structure Type
= Cl
= Culvert-Circular
No. Barrels =
Barrel Diameter =
Upstream Invert =Dnstream Invert =
Horiz. Length
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA..
Mannings n =
Ke
Kb
Kr
HW Convergence =
# X-Sections =
INLET CONTROL DATA...
Equation form =
Inlet Control K
Inlet Control M =
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
36.00 in
17.96 ft
17.00 ft
176.00 ft
176.00 ft
.00545 ft/ft
.0130
.2000
.007228
.2000
.001
11
1
.0098
2.0000
.03980
.6700
1.158
1.304
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
(user defined)
Use unsubmerged inlet control Form 1 equ. below Tl elev.
Use submerged inlet control Form 1 equ. above T2 elev.
In transition zone between unsubmerged and submerged inlet control,
interpolate between flows at Tl & T2...
At Tl Elev = 21.43 ft > Flow = 42.85 cfs
At T2 Elev = 21.87 ft > Flow = 48.97 cfs
Structure ID
Structure Type
= TW
= TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED
CONVERGENCE TOLERANCES...
Maximum
Min. TW
Max. TW
Min. HW
Max. HW
Min. Q
Max. Q
Iterations=
tolerance =
tolerance =
tolerance =
tolerance =
tolerance =
tolerance =
30
.01 ft
.01 ft
.01 ft
.01 ft
.10 cfs
.10 cfs
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Individual Outlet Curves
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.07
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = S2 (Stand Pipe)
**** Upstream ID = (Pond Water Surface)
^ DNstream ID = C2 (Culvert-Circular)
m Pond WS. Device (into) Converge Next DS HGL Q SUM
Elev. Q HW HGL DS HGL DS HGL Error Error
«. ft cfs ft ft ft +/-ft +/-cfs
-
to*
w-
*•>
MM
*'
III
•*
m
m
m
19.00 .00 ...
WS below an
20.00 .00
WS below an
21.00 .00
WS below an
22.00 .00
WS below an
23.00 61.75 23.00DS HGL+LOSS
24.00 71.19 24.00DS HGL+LOSS
25.00 79.52 25.00DS HGL+LOSS
26.00 87.07 26.00DS HGL+LOSS
27.00 94.00 27.00DS HGL+LOSS
invert; no flow.
• * * ••• *•• •••
invert; no flow,
invert; no flow.
DS Chan. TW
TW Error
ft +/-ft
Free Outfall
Free Outfall
Free Outfall
Free Outfall
invert; no flow.
23.00
> crest:
24.00
> crest:
25.00
> crest:
26.00
> crest:
27.00
> crest:
23.00
Flow set
24.00
Flow set
25.00
Flow set
26.00
Flow set
27.00
Flow set
.000 .000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
Free Outfall
outlet .
Free Outfall
outlet.
Free Outfall
outlet.
Free Outfall
outlet .
Free Outfall
outlet.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Individual Outlet Curves
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.08
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F3 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = C2 (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Pond WS.
*• Elev.
ft
19.00
Device
Qcfs
.00
( into ) Converge
HW HGL DS HGL
ft ft
WS below an
IP*
(H
m
m
m
w
n>i
•*
20.
21.
22.
23.
24.
25.
26.
27.
00
00
00
00
00
00
00
00
10.09
11.41
15.09
.00
.00
.00
.00
.00
20.
H =.60
21.
H =.77
22.
H =1.35
23.
24.
25.
26.
27.
00
00
00
00
00
00
00
00
Next DS HGL
DS HGL Error
ft +/-ft
Q SUM DS Chan. TW
Error TW Error
+/-cfs ft +/-ft
Free Outfall
invert; no flow.
19
20
20
23
24
25
26
27
.40
.23
.65
.00
.00
.00
.00
.00
19
20
20
23
Full
24
Full
25
Full
26
Full
27
Full
.41
.23
.65
.00
riser
.00
riser
.00
riser
.00
riser
.00
riser
.008
.001
.001
.000
flow.
.000
flow.
.000
flow.
.000
flow.
.000
flow.
.000 Free Outfall
.000 Free Outfall
.000 Free Outfall
.000 Free Outfall
Q=o this opening.
.000 Free Outfall
Q=0 this opening.
.000 Free Outfall
Q=0 this opening.
.000 Free Outfall
Q=0 this opening.
.000 Free Outfall'
Q=0 this opening.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Individual Outlet Curves
Name.... TEST
Page 2.09
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F2 (Orifice-Area)
to
•M
to
«•*
to
i*
***
to
Hi
••
IP
I
illi
IPi
i
L
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Upstream ID = (Pond Water Surface)
DNstream ID = C2 (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
11.41 21.00 20.23 20.23 .001 .000 Free Outfall
H =.77
15.09 22.00 20.65 20.65 .001 .000 Free Outfall
H =1.35
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
*"* S/N: HOMOL0102009 Project Design Consultants
^.to
*•
M
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type. . . .
Name ....
File
Title. . .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Individual Outlet Curves Page 2.10
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = C2 (Culvert-Circular)
Mannings open channel maximum capacity: 52.39 cfs
UPstream ID's= S2, F3, F2
DNstream ID = TW (Pond Outfall)
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
REMARKS: Upstream HW & DNstream TW < Inv.El
10.09 19.41 Free Free .000 .004 Free Outfall
CRIT. DEPTH CONTROL Vh= .367ft Dcr= 1.005ft CRIT. DEPTH
22.82 20.23 Free Free .000 .004 Free Outfall
CRIT. DEPTH CONTROL Vh= .608ft Dcr= 1.538ft CRIT. DEPTH
30.18 20.65 Free Free .000 .003 Free Outfall
INLET CONTROL... Equ.l: HW =2.69 dc=1.780 Ac=4.3699
61.75 23.00 Free Free .000 .000 Free Outfall
INLET CONTROL... Submerged: HW =5.04
71.19 24.00 Free Free .000 .000 Free Outfall
INLET CONTROL... Submerged: HW =6.04
79.52 25.00 Free Free .000 .000 Free Outfall
INLET CONTROL. .. Submerged: HW =7.04
87.07 26.00 Free Free .000 .000 Free Outfall
INLET CONTROL... Submerged: HW =8.04
94.00 27.00 Free Free .000 .000 Free Outfall
INLET CONTROL. .. Submerged: HW=9.04
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
"*" Type.... Individual Outlet Curves Page 2.11
t_ Name. . . . TEST
M File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
— RATING TABLE FOR ONE OUTLET TYPE
*"• Structure ID = SI (Stand Pipe)
*"* Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
ta Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Elev. Q HW HGL DS HGL DS HGL Error Error TW Error
». ft cfs ft ft ft +/-ft +/-cfs ft +/-ft
tan
MM
tmt
m
m
m
m
I
19.00 .00 ...
WS below an
20.00 .00 ...
WS below an
21.00 .00 ...
WS below an
22.00 .00 ...
WS below an
23.00 61.75 23.00DS HGL+LOSS
24.00 71.20 24.00DS HGL+LOSS
25.00 79.54 25.00DS HGL+LOSS
26.00 87.07 26.00DS HGL+LOSS
27.00 94.00 27.00DS HGL+LOSS
invert ;
invert;
invert;
invert ;
23.00
> crest
24.00
> crest
25.00
> crest
26.00
> crest
27.00
> crest
• * •
no flow,
no flow,
no flow.
no flow.
23.00
: Flow set
24.00
: Flow set
25.00
: Flow set
26.00
: Flow set
27.00
: Flow set
... ... Free Outfall
... ... Free Outfall
Free Outfall
... ... Free Outfall
.000 .000 Free Outfall
to Downstream outlet.
.000 .000 Free Outfall
to Downstream outlet.
.000 .000 Free Outfall
to Downstream outlet..000 .000 Free Outfall
to Downstream outlet.
.000 .000 Free Outfall
to Downstream outlet.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
•"•
MM
*•*
iw
MM
HB
«•
j««
«M
«••«
«M
M»
<•»
!•
Ml
m
Type. . . .
Name. . . .
File. . . .
Title.. .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Individual Outlet Curves Page 2 . 12
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F6 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
12.41 22.00 21.09 21.08 .006 .000 Free Outfall
H =.91
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=o this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall"
Full riser flow. Q=0 this opening.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type. . . .
Name. . . .
File
Title. . .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Individual Outlet Curves Page 2 . 13
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F5 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
11.42 21.00 20.23 20.23 .001 .000 Free Outfall
H = .77
12.41 22.00 21.09 21.08 .006 .000 Free Outfall
H =.91
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
II
*
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
m
Type ....
Name ....
File
Title. . .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Individual Outlet Curves Page 2 . 14
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F4 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
10.05 20.00 19.40 19.40 .000 .000 Free Outfall
H =.60
11.42 21.00 20.23 20.23 .001 .000 Free Outfall
H =.77
12.41 22.00 21.09 21.08 .006 .000 Free Outfall
H =. 91
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
i
m
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type. . . .
^ Name. . . .
a. File
Title. . .
MB
Pond WS.
_ Elev.
ft
fp"
^^
19.
20.
00
00
Individual Outlet Curves
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Cl (Culvert-Circular)
Page 2 . 15
Mannings open channel maximum capacity: 52.99 cfs
UPstream ID's= SI, F6, F5, F4
DNstream ID = TW (Pond Outfall)
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs
.00
10.05
ft
17
19
.96
.40
GRIT. DEPTH
21.00 22.84 20 .23
*" GRIT. DEPTH
MM
—•M
mm
_
m
m
m
m
m
22.
23.
24.
25.
26.
27.
00
00
00
00
00
00
37.22
61.75
71.20
79.54
87.07
94.00
21
INLET
23
INLET
24
INLET
25
INLET
26
INLET
27
INLET
.08
ft
Free
Free
ft +/-ft
Free
Free
CONTROL Vh= .366ft
Free Free
CONTROL Vh= .608ft
Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
Free
.000
.000
Dcr=
.000
Dcr=
.000
Egu.l: HW =3.12
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
.000
=5.
.000
=6.
.000
=7.
.000
=8.
.000
=9.
+/-cfs
.000
.000
1.003ft
.000
1.538ft
.000
dc=1.985
.000
04
.000
04
.000
04
.000
04
.000
04
ft
Free
Free
+/-ft
Outfall
Outfall
GRIT. DEPTH
Free Outfall
GRIT . DEPTH
Free
Ac=4
Free
Free
Free
Free
Free
Outfall
.9634
Outfall
Outfall
Outfall
Outfall
Outfall
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
m
m
Type.... Composite Rating Curve
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.16
***** COMPOSITE OUTFLOW SUMMARY ****
WS Elev, Total Q
Elev.
ft
Q
cfs
Notes
Converge
TW Elev Error
ft +/-ft Contributing Structures
19.00 .00 Free Outfall (no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1)
20.00 20.14 Free Outfall F3,C2,F4,C1 (no Q: S2,F2,S1,F6,F5)
21.00 45.65 Free Outfall F3,F2,C2,F5,F4,C1 (no Q: S2,S1,F6)
22.00 67.41 Free Outfall F3,F2,C2,F6,F5,F4,C1 (no Q: S2,S1)
23.00 123.50 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
24.00 142.40 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
25.00 159.06 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
26.00 174.14 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
27.00 187.99 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Pond E-V-Q Table
Name.... ROND ROUTE
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND ROUTE
Page 3.01
HYG Dir
Inflow HYG file
Outflow HYG file
LEVEL POOL ROUTING DATA
C:\HAESTAD\PPK6\1239-P1\
100YR.HYG - P1-P4
NONE STORED - ROND ROUTE OUT
Pond Node Data =
**" Pond Volume Data =
t, Pond Outlet Data =
_ No Infiltration
«" INITIAL CONDITIONS
P-VL
Pl-VL
TEST
— Starting WS Elev = 19.00 ft
, Starting Volume = 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
*"" Starting Total Qout= .00 cfs
• Time Increment = 1.00 min
m Elevation Outflow Storage Area
ft cfs cu.ft acresm
m
M"
m
m
m
It
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
.00
20.14
45.65
67.41
123.50
142.40
159.06
174.14
187.99
0
13737
29146
46421
65668
86995
110506
136189
164015
.2979
.3331
.3748
.4188
.4653
.5143
.5657
.6139
.6641
Infilt.
cfs
.00
.00
.00
.00
.00
.00
.00
.00
.00
Q Total
Cfs
.00
20.14
45.65
67.41
123.50
142.40
159.06
174.14
187.99
2S/t + 0
cfs
.00
478.03
1017.19
1614.78
2312.44
3042.21
3842.60
4713.77
5655.16
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Pond Routing Summary Page 3.02
Name ROND ROUTE
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND ROUTE
LEVEL POOL ROUTING SUMMARY
HYG Dir = C:\HAESTAD\PPK6\1239-P1\
Inflow HYG file = 100YR.HYG - P1-P4
Outflow HYG file = NONE STORED - ROND ROUTE OUT
Pond Node Data = P-VL
Pond Volume Data = Pl-VL
Pond Outlet Data = TEST
No Infiltration
INITIAL CONDITIONS
Starting WS Elev = 19.00 ft
Starting Volume = 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = 1.00 min
INFLOW/OUTFLOW HYDROGRAPH SUMMARY
====================
Peak Inflow = 138.00 cfs at 17.00 min
Peak Outflow = 104.42 cfs at 25.00 min
Peak Elevation = 22.66 ft
Peak Storage = 58894 cu.ft
MASS BALANCE (cu.ft)
+ Initial Vol = 0
+ HYG Vol IN = 211140
- Infiltration = 0
- HYG Vol OUT = 211139
- Retained Vol = 2
Unrouted Vol =- cu.ft (.000% of Inflow Volume)
** S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Type.... Detention Time
Name ROND ROUTE
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPKTitle... POND ROUTE
Page 3.03
HYG Dir
Inflow HYG file
Outflow HYG file
Pond Node Data
Pond Volume DataPond Outlet Data
No Infiltration
DETENTION TIMES SUMMARY
C:\HAESTAD\PPK6\1239-P1\
100YR.HYG - P1-P4
NONE STORED - ROND ROUTE
P-VL
Pl-VL
TEST
OUT
APPROXIMATE DETENTION TIME
Tp, Outflow + Infilt. =
Tp, Total Inflow =
Peak to Peak =
Qout+Infilt. Centroid =
Inflow Centroid =
Centroid to Centroid =
Weighted Avg. Plug Time =
Max.Plug Vol. Plug Time =
Max.Inflow Plug Volume =
25.00 min
17.00 min
8.00 min
33.12 min
22.67 min
10.46 min
10.73 min
8.41 min
8157 cu.ft (From 17.00 to 18.00 min)
Date: 10.01.1998
Type.... Pond Routed HYG (total out)
Name.... ROND ROUTE
Page 3.04
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND ROUTE
POND ROUTED TOTAL OUTFLOW HYG...
HYG file =
HYG ID = ROND ROUTE OUT
HYG Tag =
Peak Discharge =
Time to Peak =
HYG Volume
104.42 cfs
25.00 min
211139 cu.ft
Time
min
.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00
100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
Time on
.00
7.73
28.00
54.79
90.62
104.42
98.33
83.94
66.82
56.45
42.16
25.77
16.13
10.39
6.69
4.31
2.77
1.79
1.15
.74
.48
.31
.20
.13
.08
.05
.03
.02
.01
.01
.01
.00
HYDROGRAPH ORDINATES
Output Time increment
left represents time for
.34
10.84
33.42
59.96
95.96
104.27
95.90
80.56
65.05
53.97
38.36
23.33
14.77
9.51
6.13
3.95
2.54
1.64
1.05
.68
.44
.28
.18
.12
.08
.05
.03
.02
.01
.01
.01
.00
1.34
14.38
39.09
65.35
99.78
103.50
93.20
77.07
63.12
51.37
34.73
21.13
13.53
8.71
5.61
3.61
2.33
1.50
.97
.62
.40
.26
.17
.11
.07
.04
.03
.02
.01
.01
.00
.00
(cfs)
= 1.00 min
first value
2.93
18.29
44.99
74.21
102.33
102.20
90.29
73.49
61.04
48.66
31.44
19.24
12.39
7.98
5.14
3.31
2.13
1.37
.88
.57
.37
.24
.15
.10
.06
.04
.03
.02
.01
.01
.00
.00
in each row.
5.08
22.86
49.85
83.49
103.82
100.45
87.20
69.83
58.81
45.86
28.47
17.62
11.34
7.31
4.70
3.03
1.95 "
1.26
.81
.52
.34
.22
.14
.09
.06
.04
.02
.02
.01
.01
.00
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
Appendix A A-l
Index of Starting Page Numbers for ID Names
P
Pl-VL... 1.01
•»«__« TJ — —.«••.. «,
ROND ROUTE... 3.01, 3.02, 3.03,
3.04
T
TEST... 2.01, 2.07, 2.16
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998
f 1 II II II II till f I II It I 1 II II f I II
240-j
0
Hydrograph
RDND ROUTE DUT
P1-P4
RDND ROUTE DUT
60 90 120
Tine (nin)
150 180 210
r T t i ri t i i i i t ii 11 rtii t i 1111 t i 11 r i t i
26.6-
25.9-
25.2-
24,5-
23,8-
23.1-
22.4-
21.7-
21,0-
20,3-
19.6-
18.9
0 30
Elev, vs, Flow
TEST
TEST
60 90
Flow
120
(cfs)
150 180 210
r i ri ri • i n r i f i t i f i f i t i f » t i f i
-P
Q-
U
Elev, vs, Volume
. Pl-VL
Pl-VL
0 40000 80000 120000
Volume (cu.ft)
i • r
160000 200000 240000 280000
Detention Basin Route Calculations
for 10-Year/6-Hour Storm
Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Rain Dir: C:\HAESTAD\PPK6\UTIL\
JOB TITLE
KELLY RANCH VILLAGE 'E'
STORM DRAIN STUDY REPORT
DETENTION BASIN A
FOR 10-YEAR STORM
S/N: HOMOL0102009 Project Design ConsultantsPond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Table of Contents i
Table of Contents
*********************** PONO VOLUMES ***********************
Pl-VL Vol: Planimeter 1.01
******************** OUTLET STRUCTURES *********************
TEST. , Outlet Input Data 2 .01
Individual Outlet Curves 2.07
Composite Rating Curve 2.16
*********************** POND ROUTING ***********************
ROUTE 2 - 10YR. . Pond E-V-Q Table 3.01
Pond Routing Summary 3.02
Detention Time 3.03
Pond Routed HYG (total out) 3.04
*" S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Vol: Planimeter
Name.... Pl-VL
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 VOLUME
Page 1.01
POND VOLUME CALCULATIONS
Planimeter scale: 40.00 ft/in
Elevation
(ft)
19.00
20.00
25.00
30.00
Planimeter
(sq.in)
8.110
9.070
15.400
22.500
Area Al+A2+sqr (A1*A2) Volume
(acres) (acres) (cu.ft)
.2979
.3331
.5657
.8264
.0000
.9461
1.3329
2.0758
0
13737
96769
150705
Volume Sum
(cu.ft)
0
13737
110506
261212
POND VOLUME EQUATIONS
* Incremental volume computed by the Conic Method for Reservoir Volumes,
Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2))
where: ELI, EL2 = Lower and upper elevations of the increment
Areal,Area2 = Areas computed for ELI, EL2, respectively
Volume = Incremental volume between ELI and EL2
S/N: HOMOL0102009 Project Design Consultants
• Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.01
REQUESTED POND WS ELEVATIONS:
Min. Elev.=
Increment =
Max. Elev.=
19.00 ft
1.00 ft
27.00 ft
**********************************************
OUTLET CONNECTIVITY
**********************************************
> Forward Flow Only (Upstream to DnStream)
< Reverse Flow Only (DnStream to Upstream)
< > Forward and Reverse Both Allowed
Structure
Stand Pipe
Orifice-Area
Orifice-Area
Culvert-Circular
Stand Pipe
Orifice-Area
Orifice-Area
Orifice-Area
Culvert-Circular
TW SETUP, DS Channel
No.
S2
F3
F2
C2
SI
F6
F5
F4
Cl
Outfall
C2
C2
C2
TW
Cl
Cl
Cl
Cl
TW
El, ft
22.000
19.000
20.000
17.960
22.000
21.000
20.000
19.000
17.960
E2, ft
27.000
27.000
27.000
27.000
27.000
27.000
27.000
27.000
27.000
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Outlet Input Data
Name. . . . TEST
File ---- C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.02
OUTLET STRUCTURE INPUT DATA
Structure ID
Structure Type
= S2
= Stand Pipe
# of Openings
Invert Elev.
Diameter
Orifice Area
Orifice Coeff.
Weir Length
Weir Coeff.
K, Submerged
K, Reverse
Kb, Barrel
Barrel Length
Mannings n
22.00 ft
48.00 in
12.5664 sq.ft
.600
12.57 ft
3.490
.000
1.000
.000000 (per ft of full flow)
.00 ft
.0000
Structure ID
Structure Type
F3
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
6
19.00 ft
.4500 sq.ft
19.67 ft
19.00 ft
.600
Structure ID
Structure Type
F2
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
20.00 ft
.4500 sq.ft
20.67 ft
20.00 ft
.600
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
Page 2.03
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Structure ID
Structure Type
= C2
= Culvert-Circular
No. Barrels =
Barrel Diameter =
Upstream Invert =
Dnstream Invert =
Horiz. Length =
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA.
Mannings n =
Ke
Kb
Kr
HW Convergence =
INLET CONTROL DATA..
Equation form =
Inlet Control K
Inlet Control M
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
36.00 in
17.96 ft
17.00 ft
180.00 ft
180.00 ft
.00533 ft/ft
.0130
.2000
.007228
.2000
.001
1
.0098
2.0000
.03980
.6700
1.158
1.304
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
Use unsubmerged inlet control Form 1 equ. below Tl elev.
Use submerged inlet control Form 1 equ. above T2 elev.
In transition zone between unsubmerged and submerged inlet control,
interpolate between flows at Tl & T2...
At Tl Elev = 21.43 ft > Flow = 42.85 cfs
At T2 Elev = 21.87 ft > Flow = 48.97 cfs
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type..
Name..
B. File..
Title.
Outlet Input Data
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Page 2.04
Structure ID
Structure Type
SI
Stand Pipe
# of Openings
Invert Elev.
Diameter
Orifice Area
Orifice Coeff.
Weir Length
Weir Coeff.
K, Submerged
K, Reverse
Kb,Barrel
Barrel Length
Mannings n
22.00 ft
48.00 in
12.5664 sq.ft
.600
12.57 ft
3.490
.000
1.000
.000000 (per ft of full flow)
.00 ft
.0000
Structure ID
Structure Type
F6
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
6
21.00 ft
.4500 sq.ft
21.67 ft
21.00 ft
.600
Structure ID
Structure Type
F5
Orifice-Area
# of Openings
Invert Elev.
Area
Top of Orifice
Datum Elev.
Orifice Coeff.
20.00 ft
.4500 sq.ft
20.67 ft
20.00 ft
.600
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Outlet Input Data Page 2.05
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Structure ID = F4
Structure Type = Orifice-Area
# of Openings = 6
Invert Elev. = 19.00 ft
Area = .4500 sq.ft
Top of Orifice = 19.67 ft
Datum Elev. = 19.00 ft
Orifice Coeff. = .600
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Outlet Input Data
Name.... TEST
Page 2.06
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
OUTLET STRUCTURE INPUT DATA
Structure ID
Structure Type
= Cl
= Culvert-Circular
No. Barrels =
Barrel Diameter =
Upstream Invert =
Dnstream Invert =
Horiz. Length =
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA..
Mannings n =
Ke
Kb
Kr
HW Convergence =
# X-Sections =
INLET CONTROL DATA...
Equation form =
Inlet Control K
Inlet Control M =
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
36.00 in
17.96 ft
17.00 ft
176.00 ft
176.00 ft
.00545 ft/ft
.0130
.2000
007228
.2000
.001
11
1
.0098
2.0000
.03980
.6700
1.158
1.304
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
(user defined)
Use unsubmerged inlet control Form 1 equ. below Tl elev.
*• use submerged inlet control Form 1 equ. above T2 elev.
|i In transition zone between unsubmerged and submerged inlet control,
|l interpolate between flows at Tl & T2...
At Tl Elev = 21.43 ft > Flow = 42.85 cfs
At T2 Elev = 21.87 ft > Flow = 48.97 cfs
Structure ID
Structure Type
= TW
- TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED
CONVERGENCE TOLERANCES...
Maximum
Min. TW
Max. TW
Min. HW
Max. HW
Min. Q
Max. Q
Iterations=
tolerance =
tolerance =
tolerance =
tolerance =
tolerance =
tolerance =
30
.01 ft
.01 ft
.01 ft
.01 ft
.10 cfs
.10 cfs
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Tiroe: 12:16:39 Date: 10-01-1998
IK,
#*
rL
Type ....
Name. . . .
File. . . .
Title. . .
„.«•
«*« Pond WS.
Elev.
ft
M" 19 . 00
<** 20.00
.-21.00
22.00
w
23.00
24.00*«•
25.00P«I
^ 26.00
27.00
Individual Outlet Curves Page 2.07
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = S2 (Stand Pipe)
Upstream ID = (Pond Water Surface)
DNstream ID = C2 (Culvert-Circular)
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
61.75 23.00 23.00 23.00 .000 .000 Free Outfall
DS HGL+Loss > crest: Flow set to Downstream outlet.
71.19 24.00 24.00 24.00 .000 .000 Free Outfall
DS HGL+Loss > crest: Flow set to Downstream outlet.
79.52 25.00 25.00 25.00 .000 .000 Free Outfall
DS HGL+Loss > crest: Flow set to Downstream outlet.
87.07 26.00 26.00 26.00 .000 .000 Free Outfall
DS HGL+Loss > crest: Flow set to Downstream outlet.
94.00 27.00 27.00 27.00 .000 .000 Free Outfall
DS HGL+Loss > crest: Flow set to Downstream outlet.
S/N: HOMOL0102009 Project Design Consultants
,•„ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
HP*
ill
Type.... Individual Outlet Curves Page 2.08
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F3 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = C2 (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Elev. Q HW HGL DS HGL DS HGL Error Error TW Error
ft cfs ft ft ft +/-ft +/-cfs ft +/-ft
19.00 .00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
20.00 10.09 20.00 19.40 19.41 .008 .000 Free Outfall
H =.60
21.00 11.41 21.00 20.23 20.23 .001 .000 Free Outfall
TT = 77
22.00 15.09 22.00 20.65 20.65 .001 .000 Free Outfall
H =1.35
23.00 .00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
24.00 .00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
25.00 .00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
26.00 .00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
27.00 .00 27.00 27.00 27.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
w
k
Type.... Individual Outlet Curves
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.09
JIM
II
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F2 (Orifice-Area)
Pond WS.
Elev.
ft
19.00
Upstream ID =
DNstream ID = C2
NUMBER OF OPENINGS
EACH FLOW = SUM OF
Device (into) Converge
Q HW HGL DS HGL
cfs
.00
ft
• • •
WS below an
20.00 .00 • • •
WS below an
21.
22.
23.
24.
25.
26.
27.
00
00
00
00
00
00
00
11.41
15.09
.00
.00
.00
.00
.00
21.
H =.77
22.
H =1.35
23.
24.
25.
26.
27.
00
00
00
00
00
00
00
ft
• • •
invert
• • •
invert
20.23
20.65
23.00
24.00
25.00
26.00
27.00
(Pond Water Surface)
(Culvert-Circular)
= 6
OPENINGS X FLOW FOR ONE OPENING
Next DS HGL Q SUM DS Chan. TW
DS HGL Error Error TW Error
ft +/-ft
• ••• • •
+/-cfs
»* •
ft +/-ft
Free Outfall
; no flow.
• ••• • ••• •Free Outfall
; no flow.
20
20
23
Full
24
Full
25
Full
26
Full
27
Full
.23
.65
.00
riser
.00riser
.00
riser
.00
riser
.00
riser
.001
.001
.000
flow.
.000
flow.
.000
flow.
.000
flow.
.000
flow.
*
•
•
Q=0
•
Q=0
•
Q=0
•
Q=0
•Q=0
000
000
000
this
000
this
000
this
000
this
000
this
Free Outfall
Free Outfall
Free Outfall
opening .
Free Outfall
opening .
Free Outfall
opening .
Free Outfall
opening .
Free Outfall"
opening.
iW
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type. . . .
Name. . . .
mm File. . . .
Title. . .
«MT
k»
tM
Pond WS.
., Elev.w «__
19 .00
Individual Outlet Curves
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = C2 (Culvert-Circular)
Mannings open channel maximum capacity: 52.39
UPstream ID's= S2, F3, F2
DNstream ID = TW (Pond Outfall)
Device (into) Converge Next DS HGL Q SUM
Q HW HGL DS HGL DS HGL Error Error
cfs
.00
ft ft
* • ** • •
REMARKS: Upstream
20 .00 10 .09 19 .41 Free10 CRIT. DEPTH CONTROL
21 .00 22 .82 20 .23 Free
*" CRIT. DEPTH CONTROL
te* 22
4. 23
»
*i 24
*i 25
II 26
*" 27
illf
.00
.00
.00
.00
.00
.00
30
61
71
79
87
94
.18
.75
.19
.52
.07
.00
20
INLET
23
INLET
24
INLET
25
INLET
26
INLET
27
INLET
. 65 Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
. 00 Free
CONTROL. . .
.00 Free
CONTROL. . .
.00 Free
CONTROL. . .
ft +/-ft
• • •* * *
HW & DNstream TW <
Free
Vh= .367ft
Free
Vh= .608ft
Free
Equ.l: HW =2
Free
Submerged :
Free
Submerged :
Free
Submerged :
Free
Submerged :
Free
Submerged :
.000
Dcr=
.000
Dcr=
.000
.69
.000
HW =5.
.000
HW =6.
.000
HW =7.
.000
HW =8.
.000
HW =9.
+/-cfs
•• •
Page 2 . 10
cfs
DS Chan. TW
TW Error
ft
Free
+/-ft
Outfall
Inv.El
1.
1.
.004
005ft
.004
538ft
.003
dc=1.780
04
04
04
04
04
.000
.000
.000
.000
.000
Free Outfall
CRIT . DEPTH
Free Outfall
CRIT. DEPTH
Free
Ac=
Free
Free
Free
Free
Free
Outfall
4.3699
Outfall
Outfall
Outfall
Outfall
Outfall
11
ii
••r
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
in
Type.... Individual Outlet Curves
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 2.11
m
m
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = SI (Stand Pipe)
f«
ii
«tii•P
**••
in
w
HMt
*•hi?
**»
Pond WS.
Elev.
ft
19
20
21
22
23
24
25
26
27
.00
.00
.00
.00
.00
.00
.00
.00
.00
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
Device (into) Converge Next DS HGL Q SUM
Q HW HGL DS HGL DS HGL Error Error
cfs ft ft ft +/-ft +/-cfs
•
•
•
•
61.
71.
79.
87.
94.
00
00
00
00
75
20
54
07
00
WS
WS
WS
WS
DS
DS
DS
DS
DS
* • •
below an
• • •
below an
• • •
below an
• • *
below an
23.00
HGL+Loss
24.00
HGL+Loss
25.00
HGL+LOSS
26.00
HGL+LOSS
27.00
HGL+LOSS
invert ;
invert ;
• • •
invert ;
• • •
invert ;
23.00
> crest:
24.00
> crest:
25.00
> crest:
26.00
> crest:
27.00
> crest:
no flow.
no flow.
• * •
no flow.
* • •
no flow.
23.00
Flow set
24.00
Flow set
25.00
Flow set
26.00
Flow set
27.00
Flow set
• • •
• • •
• * •
• • •
.000
• • •
• • •
• • •
• • •
.000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
.000 .000
to Downstream
DS Chan. TW
TW Error
ft +/-ft
Free Outfall
Free Outfall
Free Outfall
Free Outfall
Free Outfall
outlet .
Free Outfall
outlet.
Free Outfall
outlet.
Free Outfall
outlet.
Free Outfall
outlet.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Wtf
nm
MM
4*
IP*
M
*•
IN
-m
Type. . . .
Name. . . .
File. . . .
Title.. .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Individual Outlet Curves Page 2.12
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F6 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
12.41 22.00 21.09 21.08 .006 .000 Free Outfall
H =.91
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
h
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
«
fft
11
f*
i*
f"
t.
•i*
!«*
H
•V
Type. . . .
Name. . . .
File
Title. . .
Pond WS.
Elev.
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
individual Outlet Curves Page 2.13
TEST
C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = F5 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING
Device (into), Converge Next DS HGL Q SUM DS Chan. TW
Q HW HGL DS HGL DS HGL Error Error TW Error
cfs ft ft ft +/-ft +/-cfs ft +/-ft
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
.00 ... ... ... ... ... Free Outfall
WS below an invert; no flow.
11.42 21.00 20.23 20.23 .001 .000 Free Outfall
H =.77
12.41 22.00 21.09 21.08 .006 .000 Free Outfall
H =.91
.00 23.00 23.00 23.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 24.00 24.00 24.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 25.00 25.00 25.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 26.00 26.00 26.00 .000 .000 Free Outfall
Full riser flow. Q=0 this opening.
.00 27.00 27.00 27.00 .000 .000 Free Outfall"
Full riser flow. Q=0 this opening.
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Individual Outlet Curves Page 2.14
Name.... TEST
fa, File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
<" RATING TABLE FOR ONE OUTLET TYPE
1* Structure ID = F4 (Orifice-Area)
Upstream ID = (Pond Water Surface)
DNstream ID = Cl (Culvert-Circular)
NUMBER OF OPENINGS = 6
EACH FLOW = SUM OF OPENINGS x FLOW FOR ONE OPENING
fw
j|^£IH
•m
^
Mv' '
m
f*
M
~
fat
**
M
fm
JHT
Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW
Elev. Q HW HGL DS HGL DS HGL Error Error TW Error
ft cfs ft ft ft +/-ft +/-cfs ft +/-ft
19.
20.
21.
22.
23.
24.
25.
26.
27.
S/N:
Pond
00 .00 ...
WS below an
00 10.05 20.00
H =.60
00 11.42 21.00
H =.77
00 12.41 22.00
H =.91
00 .00 23.00
00 .00 24.00
00 .00 25.00
00 .00 26.00
00 .00 27.00
HOMOL0102009 Project
Pack Ver: 8-01-98 (61)
• • • • • •
invert; no flow.
19.40 19.40
20.23 20.23
21.09 21.08
23.00 23.00
Full riser
24.00 24.00
Full riser
25.00 25.00
Full riser
26.00 26.00
Full riser
27.00 27.00
Full riser
Design Consultants
• • • •
.000
.001
.006
.000
flow. Q=0
.000
flow. Q=0
.000
flow. Q=0
.000
flow. Q=0
.000
flow. Q=0
Compute Time: 12 : 16 : 39
Free Outfall
000 Free Outfall
000 Free Outfall
000 Free Outfall
000 Free Outfall
this opening.
000 Free Outfall
this opening.
000 Free Outfall
this opening .
000 Free Outfall
this opening.
000 Free Outfall
this opening.
Date: 10-01-1998
w
fa*
Type.... Individual Outlet Curves
Name. . . . TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Cl (Culvert-Circular)
Page 2.15
Mannings open channel maximum capacity: 52.99 cfs
— UPstream ID's= SI, F6, F5, F4m DNstream ID = TW (Pond Outfall)
(M
Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW
IP. Elev. Q HW HGL DS HGL DS HGL Error Error TW Error
W
^
ft cfs ft ft
19.00 .00 17.96 Free
20.00 10.05 19.40 Free
ft +/-ft
Free
Free
CRIT. DEPTH CONTROL Vh= .366ft
21.00 22.84 20.23 Free Free
* f CRIT. DEPTH CONTROL Vh= .608ftm
IP
••
F£
f*
IM
f»
m
an
*»
IM
22.00 37.22 21.08 Free
INLET CONTROL. . .
23.00 61.75 23.00 Free
INLET CONTROL. . .
24.00 71.20 24.00 Free
INLET CONTROL. . .
25.00 79.54 25.00 Free
INLET CONTROL. . .
26.00 87.07 26.00 Free
INLET CONTROL. . .
27.00 94.00 27.00 Free
INLET CONTROL. . .
Free
.000
.000
+/-cfs
.000
.000
Dcr= 1.003ft
.000
Dcr=
.000
Equ.l: HW =3.12
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
Free
Submerged : HW
.000
— e^^ ~J •
.000
=6.
.000
=7.
.000
=8.
.000
=9.
.000
1.538ft
.000
dc=1.985
.000
04
.000
04
.000
04
.000
04
.000
04
ft +/-ft
Free Outfall
Free Outfall
CRIT . DEPTH
Free Outfall
CRIT . DEPTH
Free Outfall
Ac=4.9634
Free Outfall
Free Outfall
Free Outfall
Free Outfall
Free Outfall
-
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Composite Rating Curve
Name.... TEST
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title. .. POND-1 OUTLET STRUCTURES
Page 2.16
***** COMPOSITE OUTFLOW SUMMARY ****
^ WS Elev,
Elev.
•* ft
19.
- 20.
21.
*• 22.
23.
H*> 24.
1- 25'* 26.
27.
«H
in
*•
00
00
00
00
00
00
00
00
00
Total Q
Qcfs
.00
20.14
45.65
67.41
123.50
142.40
159.06
174.14
187.99
Notes
TW Elev Error
ft +/-ft Contributing structures
Free
Free
Free
Free
Free
Free
Free
Free
Free
Outfall
Outfall
Outfall
Outfall
Outfall
Outfall
Outfall
Outfall
Outfall
(no
F3
F3
F3
S2
S2
S2
S2
S2
,C2
,F2
,F2
,C2
,C2
,C2
,C2
,C2
Q: S2,F3,F2,C2
,F4,C1 (no Q:
,C2,F5,F4,C1
,C2,F6,F5,F4,C
,S1,C1 (no Q:
,S1,C1 (no Q:
,S1,C1 (no Q:
,S1,C1 (no Q:
,S1,C1 (no Q:
,S1,F6,
S2,F2,
(no Q:
1 (no
F3,F2,
F3,F2,
F3,F2,
F3,F2,
F3,F2,
F5,
SI,
S2,
Q:F6,
F6,
F6,
F6,
F6,
F4,
F6,
SI,
S2,
F5,
F5,
F5,
F5,
F5,
Cl)
F5)
F6)
SI)
F4)
F4)
F4)
F4)
F4)
b.
r»
L
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
*"•
to
Type.... Pond E-V-Q Table
Name ROUTE 2 - 10YR
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... THE ROUTE FOR 10-YR STORM
LEVEL POOL ROUTING DATA
HYG Dir = C:\HAESTAD\PPK6\1239-P1\
Inflow HYG file = P1-4.HYG - 10 YEAR
Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT
Pond Node Data = P-VL
Pond Volume Data = Pl-VL
Pond Outlet Data = TEST
^ No Infiltration
*• INITIAL CONDITIONS
Page 3.01
to
•1*»
to
*In
Pi•V
?*ii
«M
Starting WS Elev 19.00 ft
Starting Volume - 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment
Elevation
ft
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
Outflow
Cfs
.00
20.14
45.65
67.41
123.50
142.40
159.06
174.14
187.99
= 1.00 min
Storage
cu.ft
0
13737
29146
46421
65668
86995
110506
136189
164015
Area
acres
.2979
.3331
.3748
.4188
.4653
.5143
.5657
.6139
.6641
Infilt.
cfs
.00
.00
.00
.00
.00
.00
.00
.00
.00
Q Total
Cfs
.00
20.14
45.65
67.41
123.50
142.40
159.06
174.14
187.99
2S/t + 0
cfs
.00
478.03
1017.19
1614.78
2312.44
3042.21
3842.60
4713'. 77
5655.16
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Pond Routing Summary Page 3.02
Name ROUTE 2 - 10YR
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... THE ROUTE FOR 10-YR STORM
LEVEL POOL ROUTING SUMMARY
HYG Dir = C:\HAESTAD\PPK6\1239-P1\
Inflow HYG file = P1-4.HYG - 10 YEAR
Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT
Pond Node Data «= P-VL
Pond Volume Data = Pl-VL
Pond Outlet Data = TEST
No Infiltration
INITIAL CONDITIONS
Starting WS Elev = 19.00 ft
Starting Volume = 0 cu.ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = 1.00 min
INFLOW/OUTFLOW HYDROGRAPH SUMMARY
Peak Inflow = 98.00 cfs at 17.00 min
Peak Outflow = 66.40 cfs at 28.00 min
Peak Elevation = 21.95 ft
Peak Storage = 45582 cu.ft
MASS BALANCE (cu.ft)
+ Initial Vol = 0
+ HYG Vol IN = 149939
- Infiltration = 0
- HYG Vol OUT = 149937
- Retained Vol = 2
Unrouted Vol =- cu.ft (.000% of Inflow Volume)
** S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Detention Time
Name ROUTE 2 - 10YR
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... THE ROUTE FOR 10-YR STORM
DETENTION TIMES SUMMARY
HYG Dir = C:\HAESTAD\PPK6\1239-P1\
Inflow HYG file = P1-4.HYG - 10 YEAR
Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT
Pond Node Data = P-VL
Pond Volume Data = Pl-VL
Pond Outlet Data = TEST
No Infiltration
Page 3.03
APPROXIMATE DETENTION TIME
Tp, Outflow + Infilt. =
Tp, Total Inflow =
Peak to Peak =
Qout+Infilt. Centroid
Inflow Centroid =
Centroid to Centroid =
Weighted Avg. Plug Time =
Max.Plug Vol. Plug Time =Max.Inflow Plug Volume =
28.00 min17.00 min
11.00 min
33.84 min
22.67 min
11.18 min
11.47 min
9.30 min
5794 cu.ft (From 17.00 to 18.00 min)
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Type.... Pond Routed HYG (total out)
Name ROUTE 2 - 10YR
Page 3.04
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... THE ROUTE FOR 10-YR STORM
f"
ta
POND ROUTED TOTAL OUTFLOW HYG...
HYG file =
HYG ID = ROUTE 2 - 10YOUT
HYG Tag =
Peak Discharge =
Time to Peak =
HYG Volume
66.40 Cfs
28.00 min
149937 cu.ft
Time
min
.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00
100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
Time on
.00
5.49
19.29
40.34
57.86
65.37
65.98
61.86
54.50
44.70
30.92
19.03
12.26
7.89
5.08
3.27
2.11
1.36
.87
.56
.36
.23
.15
.10
.06
.04
.03
.02
.01
.01
.00
.00
HYDROGRAPH ORDINATES
Output Time increment
left represents time for
.24
7.70
23.09
44.98
60.05
65.96
65.48
60.61
52.73
41.97
28.13
17.43
11.22
7.23
4.66
3.00
1.93
1.24
.80
.52
.33
.21
.14
.09
.06
.04
.02
.02
.01
.01
.00
.95
10.21
27.18
48.78
61.87
66.30
64.80
59.24
50.89
39.22
25.46
15.96
10.28
6.62
4.26
2.75
1.77
1.14
.73
.47
.30
.20
.13
.08
.05
.03
.02
.01
.01
.01
.00
(cfs)
=1.00 min
first value
2.08
12.99
31.42
52.26
63.35
66.40
63.96
57.76
48.97
36.47
23.05
14.62
9.41
6.06
3.90
2.51
1.62
1.04
.67
.43
.28
.18
.12
.07
.05
.03
.02
.01
.01
.01
.00
in each row.
3.61
16.02
35.82
55.28
64.50
66.29
62.98
56.17
46.98
33.70
20.87
13.39
8.62
5.55
3.57
2.30
1.48
.95
.61
.40
.26
.16
.11
.07
.04
.03
.02
.01
.01
.00
.00
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
Appendix A
Index of Starting Page Numbers for ID Names
P
•« Pl-VL. . . 1.01
to R
ROUTE 2 - 10YR... 3.01, 3.02, 3.03,
•" 3.04
^ TEST... 2.01, 2.07, 2.16
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998
r i ri r i rr r i r i r r i i ri ri r i f i ri ri r i r i r i f i f i
in
Q-u
o
0 30
Hydrograph
RDUTE 2 - 10YDUT
108n
99-
90-
81-
72-
63-
54-
45-
36-
27-
18-
9-
AA\VJ A\i \\J \\1 \\I \\
/ \ V
n V \ —
10 YEAR
RDUTE 2 - 10YDUT
60 90 120
Tine (n i n)
150 180 210
i r i f i r i r i t i i i f f i r i f i i i f i i i f i i i f i
Elev, vs, Flow
TEST
TEST
30 60 90 120
Flow (cfs)
150 180 210
Tailwater Condition Calculations
r
Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Rain Dir: C:\HAESTAD\PPK6\UTIL\
JOB TITLE
KELLY RANCH VILLAGE 'E'
STORM DRAIN STUDY REPORT
DETENTION BASIN A
FOR 100-YEAR STORM
CHECK OUTLET Q AT 19.2 TAILWATER CONDITION
S/N: HOMOL0102009 Project Design Consultants
^ Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998
-k.
-
Table of Contents i
Table of Contents
******************** OUTLET STRUCTURES *********************
TAILWATER CHECK Composite Rating Curve 1.01
** S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998t^
Type.... Composite Rating Curve
Name TAILWATER CHECK
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... POND-1 OUTLET STRUCTURES
Page 1.05
***** COMPOSITE OUTFLOW SUMMARY ****
CUMULATIVE HGL CONVERGENCE ERROR .006 (+/- ft)
FLOW PATH: Elev= 21.5; Branch: F3-C2-TW
* Max. convergence errors shown may also occur for
flow paths other than the ones listed above.
WS Elev, Total Q Notes
Elev.
ft
19.00
19.20
20.00
21.00
21.50
22.00
22.66
22.68
22.70
23.00
24.00
25.00
26.00
27.00
Q
cfs
.00
.00
8.46
21.65
27.89
46.24
103.00
104.27
105.54
130.93
164.01
184.12
202.25
218.87
TW Elev
ft
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
19.20
converge
Error
+/-ft
.000
.000
.002
.003
.006
.001
.003
.004
.004
.000
.000
.000
.000
.000
Contributing Structures
(no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1)
(no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1)
F3,C2,F4,C1 (no Q: S2 ,F2 , S1,F6, F5)
F3,F2/C2,F5,F4,C1 (no Q: S2,S1,F6)
F3,F2,C2,F6,F5,F4,C1 (no Q: S2,S1)
S2,F3,F2,C2,F6,F5,F4,C1 (no Q: SI)
S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2)
S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2)
S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2)
S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
S2,C2,S1,C1 (no Q: F3 ,F2,F6,F5, F4)
S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4)
S2,C2,S1,C1 (no Q: F3 ,F2 ,F6,F5,F4)
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46
4^
Date: 10-01-1998
Appendix A A-l
Index of Starting Page Numbers for ID Names
"* S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998
Underdrain Culvert Calculations for Basin A3
•PI
to
Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Rain Dir: .\util\
JOB TITLE
KELLY RANCH VILLAGE 'E'
STORM DRAIN STUDY REPORT
SUB BASIN A3
CHECK EMERGENCY CULVERT CAPACITY
S/N: HOMOL0102009 Project Design Consultants
r~ Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
Table of Contents i
Table of Contents
******************** OUTLET STRUCTURES *********************
UNDERDRAIN CULVT Outlet Input Data 1.01
Composite Rating Curve 1.04
'L,S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
r^
Type.... Outlet Input Data Page 1.01
Name UNDERDRAIN CULVT
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
REQUESTED POND WS ELEVATIONS:
Min. Elev.= 38.94 ft
Increment = 1.00 ft
Max. Elev.= 43.50 ft
Spot Elevations, ft
43.50
**********************************************
OUTLET CONNECTIVITY
**********************************************
> Forward Flow Only (Upstream to DnStream)
< Reverse Flow Only (DnStream to Upstream)
< > Forward and Reverse Both Allowed
Structure No. Outfall El, ft E2, ft
Culvert-Circular Cl > TW 38.940 43.500
TW SETUP, DS Channel
S/N: HOMOL0102009 Project Design Consultants
p Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
Type.... Outlet Input Data
Name UNDERDRAIN CULVT
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
Page 1.02
OUTLET STRUCTURE INPUT DATA
P
A^ij
Structure ID
Structure Type
= Cl
= Culvert-Circular
No. Barrels =
Barrel Diameter =
Upstream Invert =
Dnstream Invert =
Horiz. Length =
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA.
Mannings n =
Ke
Kb
Kr
HW Convergence =
INLET CONTROL DATA..
Equation form =
Inlet Control K =
Inlet Control M
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
12.00 in
38.94 ft
39.09 ft
25.00 ft
25.00 ft
-.00600 ft/ft
.0130
.2000
031274
.2000
.001
1
.0045
2.0000
.03170
.6900
1.098
1.200
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
Use unsubmerged inlet control Form 1 equ. below Tl elev.
Use submerged inlet control Form 1 equ. above T2 elev.
In transition zone between unsubmerged and submerged inlet control,
interpolate between flows at Tl & T2...
At Tl Elev = 40.04 ft > Flow = 2.75 cfs
At T2 Elev = 40.14 ft > Flow - 3.14 cfs
S/N: HOMOL0102009 Project Design Consultants
*" Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
Type.... Outlet Input Data Page 1.03
Name UNDERDRAIN CULVT
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
OUTLET STRUCTURE INPUT DATA
Structure ID = TW
Structure Type = TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED
CONVERGENCE TOLERANCES...
Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs
S/N: HOMOL0102009 Project Design Consultants
•*" Pond Par-V V«a-r? a-m-QR (&1\ fVvmrni-he Time- DQ;2n«Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
m
m
Type.... Composite Rating Curve
Name ---- UNDERDRAIN CULVT
File ---- C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
Page 1.04
***** COMPOSITE OUTFLOW SUMMARY ****
WS Elev, Total Q
Elev.
ft
Q
cfs
Notes
Converge
TW Elev Error
ft +/-ft Contributing Structures
38.94
39.94
40.94
41.94
42.94
43.50
.00 Free Outfall
1.66 Free Outfall
4.25 Free Outfall
6.11 Free Outfall
7.56 Free Outfall
8.27 Free Outfall
None contributing
Cl
Cl
Cl
Cl
Cl
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
Appendix A A-l
Index of Starting Page Numbers for ID Names
UNDERDRAIN CULVT. . . 1.01, 1.04
«•* S/N: HOMOL0102009 Project Design Consultants
'! Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998
Underdrain Culvert Calculations for Basins C6 and C7
mu
*" Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
«. Rain Dir: .\util\
JOB TITLE
KELLY RANCH VILLAGE 'E'
STORM DRAIN STUDY REPORT
SUB BASIN C6 & C7
CHECK EMERGENCY CULVERT CAPACITY
m
pt
m
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998
Table of Contents int.
Table of Contents
******************** OUTLET STRUCTURES *********************
* UNDERDRAIN CVT-1 Outlet Input Data 1.01
Composite Rating Curve 1.04
it
!*.
i'
•pr
In
S/N: HOMOL0102009 Project Design Consultants
*"" --Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998
Type.... Outlet Input Data
Name UNDERDRAIN CVT-1
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
Page 1.01
REQUESTED POND WS ELEVATIONS:
Min. Elev.=
Increment =
Max. Elev.=
27.30 ft
1.00 ft
30.60 ft
Spot Elevations, ft
30.60
**********************************************
OUTLET CONNECTIVITY**********************************************
> Forward Flow Only (Upstream to DnStream)
< Reverse Flow Only (DnStream to Upstream)
< > Forward and Reverse Both Allowed
Structure
Culvert-Circular
TW SETUP, DS Channel
No. Outfall El, ft E2, ft
Cl > TW 27.300 30.600
.*»
m
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998
Type. . . . Outlet Input Data
Name ---- UNDERDRAIN CVT-1
Page 1.02
File ---- C: \HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
OUTLET STRUCTURE INPUT DATA
Structure ID
Structure Type
= Cl
= Culvert-Circular
No. Barrels =
Barrel Diameter -
Upstream Invert =
Dnstream Invert =
Horiz. Length =
Barrel Length =
Barrel Slope =
OUTLET CONTROL DATA..
Mannings n =
Ke
Kb
Kr
HW Convergence =
INLET CONTROL DATA...
Equation form =
Inlet Control K =
Inlet Control M
Inlet Control c =
Inlet Control Y
Tl ratio (HW/D)
T2 ratio (HW/D)
Slope Factor =
12.00 in
27.30 ft
26.20 ft
30.00 ft
30.02 ft
.03667 ft/ft
.0130
.2000
.031274
.2000
.001
1
.0045
2.0000
.03170
.6900
1.076
1.179
-.500
(forward entrance loss)
(per ft of full flow)
(reverse entrance loss)
+/- ft
Use unsubmerged inlet control Form 1 equ. below Tl elev.
Use submerged inlet control Form 1 equ. above T2 elev.
In transition zone between unsubmerged and submerged inlet control,
interpolate between flows at Tl & T2...
At Tl Elev = 28.38 ft > Flow = 2.75 cfs
At T2 Elev = 28.48 ft > Flow = 3.14 cfs
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998
«. Type.... Outlet Input Data Page 1.03
Name UNDERDRAIN CVT-1
tH
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
p- Title... 12" UNDERDRIAN
*• OUTLET STRUCTURE INPUT DATA
Structure ID = TWStructure Type = TW SETUP, DS Channel
FREE OUTFALL CONDITIONS SPECIFIED
CONVERGENCE TOLERANCES...
Maximum Iterations^ 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs
it
•
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998
Type.... Composite Rating Curve
Name UNDERDRAIN CVT-1
File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK
Title... 12" UNDERDRIAN
Page 1.04
***** COMPOSITE OUTFLOW SUMMARY ****
WS Elev, Total Q
Elev.
ft Qcfs
NotesConverge
TW Elev Errorft +/-ft Contributing Structures
27.30
28.30
29.30
30.30
30.60
.00 Free Outfall
2.35 Free Outfall
5.08 Free Outfall
6.73 Free Outfall
7.15 Free Outfall
None contributing
Cl
Cl
Cl
Cl
m
m
S/N: HOMOL0102009 Project Design Consultants
Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998