Loading...
HomeMy WebLinkAbout3583; Cannon Road Lift Station; Kelly Ranch Village E - Drainage Report Pt 1; 1998-09-01DRAINAGE REPORT FOR KELLY RANCH VILLAGE 'Ef CARLSBAD, CALIFORNIA CT-96-07 SEPTEMBER 1998 Prepared For: SHEA HOMES 10721 Treena Street, Suite 200 San Diego, CA 92131 Prepared By: PROJECT DESIGN CONSULTANTS 701 B Street, Suite 800 San Diego, C A 92101 Document No. 1239.10 DarfeR. Greenhalgh, PE ) RCE43964 Prepared By: JQZ Checked By: DG File: 1239.10 September 1998 ft TABLE OF CONTENTS Section Page 1 INTRODUCTION 1 2 EXISTING CONDITIONS AND BACKGROUND 3 3 DEVELOPED CONDITIONS 4 4 HYDROLOGY METHODOLOGY 5 5 FLOOD ROUTING CALCULATIONS 29 6 INLET AND OUTLET DESIGN 49i 7 DETENTION BASIN DESIGN 54 8 BROW DITCH CAPACITY CALCULATIONS 58 9 REFERENCES 59 10 APPENDDC A - HYDROLOGY DESIGN CHARTS Runoff Coefficients (Rational Method) A-l Rainfall Intensity - Duration - Frequency Curves / A-2, A-2.1 Nomograph — Time of Concentration for Natural Watersheds A-3.1 Urban Areas Overland Time of Flow Curves A-3.2 Gutter and Roadway Discharge Velocity Chart A-4 Capacity of Curb Inlets A-5 Nomograph - Capacity, Curb Inlet at Sag A-6 Selection of Riprap and Filter Blanket Material A-7 Design Charts of Riprap Outlet Protection A-8 APPENDDC B - DETENTION BASIN COMPUTER OUTPUT B-l APPENDDC C - WSPG COMPUTER OUTPUT C-l U ! REP/12391DR-902.DOC 11 File: 1239.10 September 1998 LIST OF FIGURES Figure Description Page 1 Vicinity Map 2 LIST OF TABLES Table Description Page 1 Predevelopment Hydrology Calculations 9 2 Postdevelopment Hydrology Calculations 12 3 Flood Routing Calculations 31 4 Inlet Location Table 51 5 Inlet Sizing Calculations 52 6 Riprap Calculations Summary 53 7 Tailwater Condition Summary 55 8 Summary of Flows 56 9 Summary of Brow Ditch Flows 58 ATTACHMENTS Exhibit A Drainage Area Map - Predeveloped Conditions Exhibit B Drainage Area Map - Developed Conditions Exhibit C Drainage Area Map - Adjacent Area (Redeveloped Condition) REP/12391DR.DOC 111 File: 1239.10 September 1998 SECTION 1 INTRODUCTION This drainage report has been prepared to document the design and calculations for the storm drain system associated with the Tentative Map of Village 'E'. The development is located in the Kelly Ranch Master Planned Community in the City of Carlsbad, southeast of Cannon Road and south of El Camino Real. It is approximately 4 miles east of Interstate Route 5 and is about 3 miles south of State Route 78. Please refer to the vicinity map on Page 2. The objective of this drainage report is to determine pipe, catch basin, and curb inlet sizes, and design a detention basin under the developed conditions to carry a required frequency storm water volume in the development area. The project is located within the City of Carlsbad limits and is subject to City standards. The drainage subbasin layout and the storm drainage system are shown on Exhibit 'A' attached to this report. REP/12391DR-902.DOC File: 1239.10 September 1998 Project site VICINITY MAP Figure 1. Vicinity Map REP/12391DR-902.DOC File: 1239.10 September 1998 SECTION 2 EXISTING CONDITIONS AND BACKGROUND This project lies south of the Agua Hedionda Lagoon and therefore any runoff from the site, overland or underground, should be taken to a desilting basin and then outletted. The existing storm drain facilities (refer to the Tentative Map) were constructed as part of a mass grading project that took into account the proposed development in Area 'E'. All runoff from this project will be deposited in a proposed offsite desilting basin and outletted to a proposed storm drain pipe (please refer to City of Carlsbad Drawing 333-2G). The existing 10-year/6-hour and 100-year/6-hour peak flows are shown on the predevelopment hydrology calculation tables. U REP/12391DR-902.DOC D File: 1239.10 September 1998 SECTION 3 DEVELOPED CONDITIONS The Kelly Ranch Village 'E' consists of 144 residential, 4 nonresidential, and 5 open space units contained within 45.0 gross acres. Drainage from the developed area will be conveyed via underground storm drain pipes in the local streets and outletted into an offsite detention basin that will then be outletted to the Agua Hedionda Lagoon. Drainage from a portion of proposed Cannon Road is collected into four curb inlets; each inlet connects to the major drainage system of the developed area through underground pipes. There are various ways to collect the surface runoff from the hill located south of the developed area. Drainage from Basin Bl and Basin Cl (refer to Exhibit 'A') will be collected into two catch basins, then connect to the major system through underground pipes. On Basin B5, the storm water will travel through a brow ditch and curb outlet to join the gutter flow. Surface runoff from Basins Dl and D2 will be collected into the detention basin as an overland runoff or through the brow ditch to the detention basin. The 100-year/6-hour storm will be used to design drainage facilities between the top of curbs. The 10-year/6-hour and 100-year/6-hour storms will be analyzed to determine the detention basin capacities. The 100-year/6-hour storm situation will be analyzed to determine storm drain pipes and the culvert crossing Cannon Road. REP/1239JDR-902.DOC 0 File: 1239.10 September 1998 SECTION 4 Q HYDROLOGY METHODOLOGY This drainage system has been designed in general conformance with the County of San Diego Hydrology Manual. Drainage basins are less than 0.5 square mile; therefore, the Rational and Modified Rational Methods were utilized to calculate storm runoff. The underground storm drain system is designed to convey the 100-year-frequency storm water. Pipes are sized for nonpressurized flow. The underground systems outlet to detention basin via energy dissipators. The hydrological analysis utilized to determine the runoff at each design point was the Rational Method (Q = C x 7 x A). The following pages describe the methods used to determine each component of the Rational Method equation, in which Q = Runoff (CFS), C = Runoff coefficient, IA = Rainfall intensity (in/hr), and A = Area (acres). 4.1 Determination of Runoff Coefficient Runoff coefficients are dependent on the proposed land use of the basin. Coefficients for this project were obtained from the County of San Diego Design and Procedure Manual (see Appendix A-l). Soil Group D has been assumed for this area. Based on these criteria, the following runoff coefficients were used: Natural Undisturbed Area = 0.45 Single-Family Units =0.55 Paved Areas =0.95. REP/12391DR-902.DOC File: 1239.10 September 1998 , For some basins which have more than one land use (i.e., Basins A4 and C8), weighted values of jj C will be used in calculations. H!_J 4.2 Determination of Intensity H Rainfall intensity (7) is based on the "Intensity-Duration-Frequency" curves in the County of San Diego Drainage Design Manual (see Appendix A-2). 0 • 4.3 Time of Concentration Time of concentration is the time required for runoff to flow from the most remote part of the [[ watershed to the outlet point or design point under consideration. The time of concentration (rc) at any point within the drainage area is given by: U Tc = Tt+Tt, h where ^ Tt = Inlet time and p T, = Travel time. P, Inlet time is broken down into two components: overland time (T0) and gutter time Tt = T0 + Tg; therefore,tJ D The following paragraphs further define the individual components of the time of concentration and the methods used to quantify those components. 4.3.1 Overland Time (T0) Overland time is the period required for runoff to travel from the farthest edge of a drainage basin to the street gutter. The method of determining overland time is dependent on the type of REP/12391DR-902.DOC File: 1239.10 September 1998 watershed. For natural watersheds, overland time is determined using the Appendix A-3.1 (taken from the San Diego County Design Manual). 4.3.2 Gutter Time ( Tg) The gutter time is determined by assuming an initial time of concentration, Tt (may use T0 for the parkway or a lot) and calculating an initial Qt. To determine the velocity in the gutter, divide Qt by 2 to obtain an average flow. Use this average flow with the graph in the Appendix to determine an average velocity, V, for this gutter length, L. Add this a new assumed is gutter time to T0 to obtain a new time of concentration, Tc. Use this new Tc to calculate Q/2 and determine a new V^e, hi order to calculate a new Tg. Repeat procedure until d TC = T0 + Tg. 4.3.3 Travel Time (7,) Travel time is the time required for flow to travel the length of the storm drain to the point in question. Travel time is calculated by using the following formula: Travel Time = L/(Vx 60), where L = Pipe length (feet) and V= Velocity of flow in pipe (ft/sec). 4.4 Determination of Areas The area (A) of each drainage basin was determined from the Drainage Area Map. See the Developed Drainage Basins Exhibit. REP/12391DR-902.DOCn File: 1239.10 September 1998 4.5 Modified Rational Method The Modified Rational Method was utilized to calculate peak storm water flows and route the calculated flows through the proposed drainage system. When two flows combine at a junction point, the smaller of the flows has been decreased by using the Modified Rational Method. This procedure accounts for the differing times of concentration for the flows upstream of the junction point. The smaller Q is reduced by either the ratio of the intensities or the ratio of the times of concentration, according to the following procedure: • Let Q, T, and / correspond to the tributary with the largest discharge. • Let q, t, and / correspond to the tributary with the smallest discharge. • Let Q and T correspond to the peak discharge and the time of concentration when peak flow occurs. If T> t, the peak discharge is corrected by the ratio of the intensities: Q = Q + q(I/i) and T = T. If T< t, the peak discharge is corrected by the ratio of the times of concentration: Q = Q + q(Tlt) and T = T. 4.6 Hydrology Calculations Consider that the existing condition of the project site is undeveloped, and all runoff as natural overland flow will be concentrated and deposited in a desilting basin. Therefore, the predevelopment hydrology calculation is based on the assumption that the whole drainage area is one basin with natural overland flow, to determine the time of concentration and peak discharge. The calculations are shown in Table 1. The hydrology calculations for the developed condition are shown in Table 2. Each basin is identified relative to the pipe system used to collect runoff from it. Basin areas, C-factors, lengths of flow paths, slopes of flow paths, times of concentration, intensities, and total flows are also listed. The basins are analyzed as urban overland flow and gutter flow. REP/12391DR-902.DOC 8 File: 1239.10 September 1998 Table 1. Predevelopment Hydrology Calculations • Surface Runoff for 10-Year/6-Hour Storm • Surface Runoff for 100-Year/6-Hour Storm REP/12391DR.DOC 9 _m f—i 26-Aug-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1230.10 Frequency 10 yrs. DSND by: JQZ File Name: pRE-ioyr.wQi P6= 1.8 CHKD by: MW From Node To Node SUBBASIN Type of Travel A Natural Ovrlnd L (ft) 2750 H (ft) 280 Pipe Dia(in) Slope (ft/ft) 0.102 Velocity (ft/s) Tc (min) 8.4 Revised Tc 18.4 Intensity (in/hr) 2.05 C 0.45 A (ac) 72.8 CA 32.8 Sum Ca 32.8 Total Q (cfs) 67.2 r3- CT3. cn cr3-AuC^3- CTD. 03 cDxAC Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1230.10 File Name: pRB-iooy.wQi From Node To Node SUBBASIN Type of Travel A Natural Ovrlnd L (ft) 2750 H (ft) 280 Pipe Dia(in) "~i-TYif - IAH -.-.J/A Frequency P6= Slope (ft/ft) 0.102 Velocity (ft/s) r / } Try j..- L J - 1 J • L, 1 W- — • ' "" ' — - — - — ~-^"'~ ^- ' "Lfc-o'jGH 1 iorro 100 yrs. DSNDby: JQZ 2.6 CHKD by: MW Tc (min) 8.4 Revised Tc 18.4 Intensity (in/hr) 2.96 C 0.45 A (ac) 72.8 CA 32.8 Sum Ca 32.8 Total Q (cfs) 97.1 File: 1239.10 September 1998 Table 2. Postdevelopment Hydrology Calculations • Surface Runoff for 10-Year/6-Hour Storm • Surface Runoff for 100- Year/6-Hour Storm REP/12391DR-902.DOC 12 j , , , , "OFSep-98~" ' ' ' ' teTAILEDlDRAlNAGETALCULSTIONS^ ' " " ' ' ' " ' ' ' ' ' Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: FI-IO.WQI P6= 1.8 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN Flood Route SUBBASIN SUBBASIN Type of Travel Al Urban Overland Gutter (Avg flow depth = A2 Urban Overland Gutter (Avg flow depth = Al A2 Al A3 Urban Overland Gutter (Avg flow depth = A4 Urban Overland Gutter (Avg flow depth = L (ft) 120 540 0.28 120 800 0.3 and 120 400 0.3 40 880 0.38 H (ft) 1.2 5.26 ft. 1.2 16 ft. A2 1.2 6.5 ft. 0.8 5.5 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.010 0.010 w Widt 0.010 0.020 wWidt 0.010 0.016 wWidt 0.020 0.006 wWidt Velocity (ft/s) 2.6 9.0 3.7 10.0 3.3 10.0 2.3 14 Tc (min) 10.8 3.5 ft.) 10.8 3.6 ft.) 10.8 2 ft.) 3.6 6.4 ft.) Revised Tc 10.8 14.3 10.8 14.4 14.4 10.8 12.8 3.6 10 Intensity (in/hr) 2.89 2.41 2.89 2.4 2.4 2.89 2.59 5.86 3.03 C 0.55 0.55 0.55 0.55 0.55 0.55 0.7 0.7 A (ac) 1.8 1.8 3.4 3.4 2.9 2.9 1.5 1.5 CA 1 1 1.9 1.9 1.6 1.6 1.1 1.1 Sum Ca 1 1 1.9 1.9 1.6 1.6 1.1 1.1 Total Q (cfs) 2.4 4.6 7.0 4.1 3.3 J u J ' ' 6l-Sep-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: FI-IO.WQI P6= 1.8 CHKD by: MW From To Node Node SUBBASIN SUBBASIN Type of Travel A5 Urban Overland Gutter (Avg flow depth = A6 Urban Overland Gutter (Avg flow depth = L (ft) 120 400 0.25 120 970 0.25 H (ft) 20 5.2 ft. 1.2 36.4 ft. Pipe Dia(in) Avg Flo Avg Flo Slope (ft/ft) 0.167 0.013 w Widt 0.010 0.038 w Widt Velocity (ft/s) 2.5 7.5 4.3 7.5 Tc (min) 3.1 2.7 ft.) 10.8 3.8 ft.) Revised Tc 3.1 5.8 10.8 14.6 Intensity (in/hr) 6.46 4.31 2.89 2.38 C 0.7 0.7 0.55 0.55 A (ac) 0.6 0.6 2.5 2.5 CA 0.4 0.4 1.4 1.4 Sum Ca 0.4 0.4 1.4 1.4 Total Q (cfs) 1.7 3.3 , j , . i , bl-Sep-98^ ' ' ' ' DlBi AlLBD-DRAiMA-GE CAilCUboIOlV;* l ' ' ' l ] L-—) L~^ \— Proj.Name: KELLY RANCH AREA 'E' Prqj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: R-IO.WQI P6= 1.8 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN SUBBASIN Type of Travel Bl Natural Ovrlnd Drainage Ditch Dn = B2 Urban Overland Gutter (Avg flow depth = B3 Urban Overland Gutter (Avg flow depth = B4 Urban Overland Gutter (Avg flow depth = L (ft) 360 640 0.83 100 360 0.27 100 400 0.24 100 350 0.25 H (ft) 119 24.3 ft. 1 6.7 ft. 1 6.7 ft. 1 5.7 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.331 0.038 0.010 0.019 w Widt 0.010 0.017 w Widt 0.010 0.016 wWidt Velocity (ft/s) 8.8 3.5 8.5 3.2 7.0 3.1 7.5 Tc (min) 1.1 1.22 9.9 1.7 ft.) 9.9 2.1 ft.) 9.9 1.9 ft.) Revised Tc 11.1 12.32 9.9 11.6 9.9 12 9.9 11.8 Intensity (in/hr) 2.84 2.65 3.05 2.76 3.05 2.7 3.05 2.73 C 0.45 0.55 0.55 0.55 0.55 0.55 0.55 A (ac) 9.6 2.1 2.1 1.2 1.2 1.5 1.5 CA 4.3 0 1.2 1.2 0.7 0.7 0.8 0.8 Sum Ca 4.3 4.3 1.2 1.2 0.7 0.7 0.8 0.8 Total Q (cfs) 12.2 12.2 3.3 1.9 2.2 i j . 1 i 1 ^psJep_9 l 8 ' ' ' ' ' DETAILED DRAlNAtjE CAtCUtSTIONS ' " J ' ' ' ' ^ ' l ' ' Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: FMO.WQI P6= 1.8 CHKD by: MW From To Node Node SUBBASIN Input Flow SUBBASIN SUBBASIN Flood Route SUBBASIN Type of Travel B5a Natural Ovrlnd Drainage Ditch Dn = Gutter (Avg flow depth = B5b Urban Overland Gutter (Avg flow depth = B5 B5a B6 Urban Overland Gutter (Avg flow depth = L (ft) 340 260 0.43 550 0.23 110 550 0.23 and 100 580 0.24 H (ft) 102 13 ft. 24 ft. 1.1 24 ft. B5b 1 27.9 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.300 0.050 w Widt 0.044 w Widt 0.01 0.044 w Widt 0.010 0.048 w Widt Velocity (ft/s) 7.1 16.5 4 6.5 4.5 6.5 4.8 7 Tc (min) 1.1 0.6 ft.) Tc= L 2.3 ft.) 10.4 2 ft.) 9.9 2 ft.) Revised Tc 11.1 11.71 11.64 13.94 10.4 12.4 12.4 9.9 11.9 Intensity (in/hr) 2.84 2.74 2.75 2.45 2.96 2.64 2.64 3.05 2.71 C 0.45 0 0 0.55 0.55 0.55 0.55 A (ac) 2 0 0 2 2 2.3 2.3 CA 0.9 0 0 1.1 1.1 1.3 1.3 Sum Ca 0.9 0.9 0.9 1.1 1.1 1.3 1.3 Total Q (cfs) 2.6 2.6 2.2 2.9 4.9 3.5 , , , , , £j^ep_98 DETAILED DRAINAGE CALCULATIONS Proj . Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: ra-io.wgi P6= 1.8 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN SUBBASIN Type of Travel Cl Natural Ovrlnd Drainage Ditch Dn = C2 Urban Overland Gutter (Avg flow depth = C3 Urban Overland Gutter (Avg flow depth = C4 Urban Overland Gutter (Avg flow depth = L (ft) 520 300 0.39 120 440 0.26 100 350 0.24 120 740 0.31 H (ft) 197 54 ft. 1.2 11 ft. 1 8.32 ft. 1.2 7.4 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.379 0.180 0.010 0.025 w Widt 0.010 0.024 w Widt 0.010 0.010 wWidt Velocity (ft/s) 11.6 3.9 8.0 3.8 7.0 2.7 10.5 Tc (min) 1.4 0.43 10.8 1.9 ft.) 9.9 1.5 ft.) 10.8 4.6 ft.) Revised Tc 11.4 11.83 10.8 12.7 9.9 11.4 10.8 15.4 Intensity (in/hr) 2.79 2.72 2.89 2.6 3.05 2.79 2.89 2.3 C 0.45 0.55 0.55 0.55 0.55 0.55 0.55 A (ac) 2.9 2.1 2.1 1.7 1.7 2.7 2.7 CA 1.3 0 1.2 1.2 0.9 0.9 1.5 1.5 Sum Ca 1.3 1.3 1.2 1.2 0.9 0.9 1.5 1.5 Total Q (cfs) 3.6 3.6 3.1 2.5 3.5 ' ' ' ' ' "OPSep-Vs^ ' ' ' ' DETAILElJbRAINA1GEt:AlXUCAtlONS" ' ' ' ' ' ' ' ' ' ' ' Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: FS-IO.WQI P6= 1.8 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN SUBBASIN Flood Route SUBBASIN Type of Travel C5 Urban Overland Gutter (Avg flow depth = C6 Urban Overland Gutter (Avg flow depth = C7 Urban Overland Gutter (Avg flow depth = C6 C7 C6 C8 Urban Overland Gutter (Avg flow depth = L (ft) 120 880 0.3 120 480 0.26 120 420 0.23 and 40 1130 0.37 H (ft) 1.2 12.5 ft. 1.2 7 ft. 1.2 7 ft. C7 0.8 10 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.010 0.014 w Widt 0.010 0.015 wWidt 0.010 0.017 wWidt 0.020 0.009 w Widt Velocity (ft/s) 2.8 10.0 2.8 8 2.8 6.5 2.5 13.5 Tc (min) 10.8 5.2 ft.) 10.8 2.9 ft.) 10.8 2.5 ft.) 3.6 7.5 ft-) Revised Tc 10.8 16 10.8 13.7 10.8 13.3 13.7 3.6 11.1 Intensity (in/hr) 2.89 2.24 2.89 2.48 2.89 2.52 2.48 5.86 2.84 C 0.55 0.55 0.55 0.55 0.55 0.55 0.7 0.7 A (ac) 3.1 3.1 1.9 1.9 1.2 1.2 2 2 CA 1.7 1.7 1 1 0.7 0.7 1.4 1.4 Sum Ca 1.7 1.7 1 1 0.7 0.7 1.4 1.4 Total Q (cfs) 3.8 2.5 1.8 4.3 4 Ol-Sep-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: FS-IO.WQI P6= 1.8 CHKD by: MW From Node To Node SUBBASIN SUBBASIN Type of Travel Dl Natural Ovrlnd Drainage Ditch Dn = D2 Natural Ovrlnd L (ft) 440 1480 1.27 560 H (ft) 149 14.8 ft. 195 Pipe Dia(in) Slope (ft/ft) 0.339 0.010 0.348 Velocity (ft/s) 6.68 Tc (min) 1.3 3.69 1.5 Revised Tc 11.3 14.99 11.5 Intensity (in/hr) 2.8 2.34 2.77 C 0.45 0.45 A (ac) 17.1 4.1 CA 7.7 0 1.8 Sum Ca 7.7 7.7 1.8 Total Q (cfs) 21.6 21.6 5 , , , , , ^o'Ffcep^g"1 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 10 yrs. DSND by: JQZ File Name: F4-io.wQi P6= 1.8 CHKD by: MW From To Node Node SUBBASIN SUBBASIN Type of Travel El Urban Overland Gutter (Avg flow depth = E2 Urban Overland Gutter (Avg flow depth = L (ft) 40 870 0.44 40 1130 0.44 H (ft) 0.8 5 ft. 0.8 10.5 ft. Pipe Dia(in) Avg Flo Avg Flo Slope (ft/ft) 0.020 0.006 w Widt 0.020 0.009 w Widt Velocity (ft/s) 2.5 17.0 3.1 17.0 Tc (min) 1.4 5.8 ft.) 1.4 6.1 ft.) Revised Tc 1.4 7.2 1.4 7.5 Intensity (in/hr) 10.78 3.75 10.78 3.65 C 0.95 0.95 0.95 0.95 A (ac) 1 1 1.4 1.4 CA 1 1 1.3 1.3 Sum Ca 1 1 1.3 1:3 Total Q (cfs) 3.8 4.7 05-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: FI-IOO.WQI P6= 2.6 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN Flood Route SUBBASIN SUBBASIN Type of Travel Al Urban Overland Gutter (Avg flow depth = A2 Urban Overland Gutter (Avg flow depth = A1_A2 Al A3 Urban Overland Gutter (Avg flow depth = A4 Urban Overland Gutter (Avg flow depth = L (ft) 120 540 0.29 120 800 0.32 and 120 400 0.31 40 880 0.4 H (ft) 1.2 5.26 ft. 1.2 16 ft. A2 1.2 6.5 ft. 0.8 5.5 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.010 0.010 w Widt 0.010 0.020 w Widt 0.010 0.016 w Widt 0.020 0.006 w Widt Velocity (ft/s) 2.2 9.5 3.2 11.0 2.8 10.5 2.0 15 Tc (min) 10.8 4.1 ft.) 10.8 4.2 ft.) 10.8 2.4 ft.) 3.6 7.3 ft.) Revised Tc 10.8 14.9 10.8 15 15 10.8 13.2 3.6 10.9 Intensity (in/hr) 4.17 3.39 * 4.17 3.37 3.37 4.17 3.66 8.47 4.14 C 0.55 0.55 0.55 0.55 0.55 0.55 0.7 0.7 A (ac) 1.8 1.8 3.4 3.4 2.9 2.9 1.5 1.5 CA 1 1 1.9 1.9 1.6 1.6 1.1 1.1 Sum Ca 1 1 1.9 1.9 1.6 1.6 1.1 1.1 Total Q (cfs) 3.4 6.4 9.8 5.9 4.6 ' ' 103"Aug-98" ' ' ' ' DETAltED"DRAlNAGET:ALCUL7iTICJNSJ ' ' ' ' ' ' ' ' ' ' ' ' Proj .Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: FMOO.WQI P6= 2.6 CHKD by: MW From To Node Node SUBBASIN SUBBASIN Type of Travel A5 Urban Overland Gutter (Avg flow depth = A6 Urban Overland Gutter (Avg flow depth = L (ft) 120 400 0.27 120 970 0.26 H .(ft) 20 5.2 ft. 1.2 36.4 ft. Pipe Dia(in) Avg Flo Avg Flo Slope (ft/ft) 0.167 0.013 w Widt 0.010 0.038 wWidt Velocity (ft/s) 2.4 8.5 4 8 Tc (min) 3.1 2.8 ft.) 10.8 4 ft.) Revised Tc 3.1 5.9 10.8 14.8 Intensity (in/hr) 9.32 6.16 4.17 3.4 C 0.7 0.7 0.55 0.55 A (ac) 0.6 0.6 2.5 2.5 CA 0.4 0.4 1.4 1.4 Sum Ca 0.4 0.4 1.4 1.4 Total Q (cfs) 2.5 4.8 IZZh- 04-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: FI-IOO.WQI P6= 2.6 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN SUBBASIN Type of Travel Bl Natural Ovrlnd Drainage Ditch Dn = B2 Urban Overland Gutter (Avg flow depth = B3 Urban-Overland — Gutter (Avg flow depth = B4 Urban Overland Gutter (Avg flow depth = L (ft) 360 640 0.91. 100 360 0.28 -100- 400 0.25 100 350 0.26 H (ft) 119 24.3 ft. 1 6.7 ft. -1- 6.7 ft. 1 5.7 ft. Pipe Dia(in) Avg Flo .... . .._ Avg Flo Avg Flo Slope (ft/ft) 0.331 0.038 0.010 0.019 wWidt -070-10- 0.017 wWidt 0.010 0.016 wWidt Velocity (ft/s) 10.6 2.9 9.0 — 2.6 7.5 2.5 8.0 Tc (min) 1.1 1.01 9.9 2.1 ft.) —979- 2.6 ft.) 9.9 2.3 ft.) Revised Tc 11.1 12.11 9.9 12 9:9- 12.5 9.9 12.2 Intensity (in/hr) 4.1 3.87 4.41 3.89 4.4-1 3.79 4.41 3.85 C 0.45 0.55 0.55 •0.55 0.55 0.55 0.55 A (ac) 9.6 2.1 2.1 1.2 1.2 1.5 1.5 CA 4.3 0 1.2 1.2 0.7 0.7 0.8 0.8 Sum Ca 4.3 4.3 1.2 1.2 0.7 0.7 0.8 0.8 Total Q (cfs). 17.6 17.6 4.7 2.7 3.1 | i ==si. 04-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: F2-ioo.wQi P6= 2.6 CHKD by: MW From To Node Node SUBBASIN Input Flow SUBBASIN SUBBASIN Flood Route SUBBASIN Type of Travel B5a Natural Ovrlnd Drainage Ditch Dn = Gutter (Avg flow depth — B5b Urban Overland Gutter (Avg flow depth = B5 B5a B6 Urban Overland Gutter (Avg flow depth = L (ft) 340 260 0.48 550 0.23 110 550 0.24 and 100 580 0.25 H (ft) 102 13 ft. 24 ft. 1.1 24 ft. _ . . „ B5b 1 27.9 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.300 0.050 w Widt 0.044 wWidt 0.01 0.044 wWidt _ 0.010 0.048 wWidt Velocity (ft/s) 8.0 19 4 6.5 4.1 7 _ 4.4 7.5 Tc (min) 1.1 0.5 ft.) Tc = 2.3 ft.) 10.4 2.2 ft.) .. . 9.9 2.2 ft.) Revised Tc 11.1 11.64 11.64 13.94 10.4 12.6 — 12.6 9.9 12.1 Intensity (in/hr) 4.1 3.97 3.97 3.54 4.27 3.77 _ .. ___ 3.77 4.41 3.87 C 0.45 0 0 0.55 0.55 -- 0.55 0.55 A (ac) 2 0 0 2 2 2.3 2.3 CA 0.9 0 0 1.1 L1-1 1.3 1.3. Sum Ca 0.9 0.9 0.9 1.1 1.1 1.3 1.3 Total Q (cfs) 3.7 3.7 3.2 4.1 7 5 — T r~v i — h i — i- i — \- r~i r — i i — h r~> r~> r~>- m~ c~> CD- c~3 cr~> CD- CD-' CD- 04-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: FS-IOO.WQI P6= 2.6 CHKD by: MW From Node To Node SUBBASIN SUBBASIN SUBBASIN SUBBASIN Type of Travel Cl Natural Ovrlnd Drainage Ditch Dn = C2 Urban Overland Gutter (Avg flow depth = C3 Urban Overland Gutter (Avg flow depth = C4 Urban Overland Gutter (Avg flow depth = L (ft) 520 300 0.43 120 440 0.27 100 350 0.25 120 740 0.33 H (ft) 197 54 ft. 1.2 11 ft. 1 8.32 ft. 1.2 7.4 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.379 0.180 0.010 0.025 wWidt 0.010 0.024 w Widt 0.010 0.010 wWidt Velocity (ft/s) 14.0 ' 3.3 8.5 3.1 7.5 2.3 11.5 Tc (min) 1.4 0.36 10.8 2.2 ft.) 9.9 1.9 ft-) 10.8 5.4 ft.) Revised Tc 11.4 11.76 10.8 13 9.9 11.8 10.8 16.2 Intensity (in/hr) 4.03 3.95 4.17 3.7 4.41 3.94 4.17 3.21 C 0.45 0.55 0.55 0.55 0.55 0.55 0.55 A (ac) 2.9 2.1 2.1 1.7 1.7 2.7 2.7 CA 1.3 0 * 1.2 1.2 0.9 0.9 1.5 1.5 Sum Ca 1.3 1.3 1.2 1.2 0.9 0.9 1.5 1.5 Total Q (cfs) 5.2 5.2 4.4 3.5 4.8 05-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA '£' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: R-IOO.WQI P6= 2.6 CHKD by: MW From To Node Node SUBBASIN SUBBASIN SUBBASIN • SUBBASIN Flood Route SUBBASIN Type of Travel C5 Urban Overland Gutter (Avg flow depth = C6 Urban Overland Gutter (Avg flow depth = C7 Urban Overland Gutter (Avg flow depth = C6 C7 C6 C8 Urban Overland Gutter (Avg flow depth = L (ft) 120 880 0.32 120 480 0.28 120 420 0.24 and - 40 1130 0.4 H (ft) 1.2 12.5 ft. 1.2 7 ft. 1.2 7 ft. C7 0.8 10 ft. Pipe Dia(in) Avg Flo Avg Flo Avg Flo Avg Flo Slope (ft/ft) 0.010 0.014 wWidt 0.010 0.015 wWidt 0.010 0.017 w Widt - 0.020 0.009 w Widt Velocity (ft/s) 2.7 11.0 2.5 9 2.6 7 2.5 15 Tc (min) 10.8 5.4 ft.) 10.8 3.2 ft.) 10.8 2.7 ft.) 3.6 7.5 ft.) Revised Tc 10.8 16.2 10.8 14 10.8 13.5 14 3.6 11.1 Intensity (in/hr) 4.17 3.21 ' 4.17 3.53 4.17 3.61 3.53 8.47 4.1 C 0.55 0.55 0.55 0.55 0.55 0.55 0.7 0.7 A (ac) 3.1 3.1 1.9 1.9 1.2 1.2 2 2 CA 1.7 1.7 1 1 0.7 0.7 1.4 1.4 Sum Ca 1.7 1.7 1 1 0.7 0.7 1.4 1.4 Total Q (cfs) 5.5 3.5 2.5 5.9 5.7 — 1 ,r-— i r~"~i r — i- r — i i i r~ i t > r — i r~i i i c T <"* — i-- f i ( — >- r — i- r — i- i — i- i — i- 04-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: ra-ioo.wQi P6= 2.6 CHKD by: MW From Node To Node SUBBASIN SUBBASIN Type of Travel Dl Natural Ovrlnd Drainage Ditch Dn = D2 Natural Ovrlnd L (ft) 440 1480 1.45 560 H (ft) 149 14.8 ft. 195 Pipe Dia(in) Slope (ft/ft) 0.339 0.010 0.348 Velocity (ft/s) 7.42 Tc (min) 1.3 3.32 1.5 Revised Tc 11.3 14.62 11.5 Intensity (in/hr) 4.05 3.43 4 C 0.45 0.45 A (ac) 17.1 4.1 CA 7.7 0 1.8 Sum Ca 7.7 7.7 1.8 Total Q (cfs) 31.2 31.2 7.2 , fe , , fr5-riiay-W " — ' ' DETXlLElTbRAlNAGETXLCt/LATldNS^ ' ' " ' "~^ J ' ' ' Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: F4-ioo.wQi P6= 2.6 CHKD by: MW From To Node Node SUBBASIN SUBBASIN Type of Travel El Urban Overland Gutter (Avg flow depth = E2 Durban Overland Gutter (Avg flow depth = L (ft) 40 870 0.47 40 1130 0.48 H (ft) 0.8 5 ft. 0.8 10.5 ft. Pipe Dia(in) Avg Flo ' Avg Flo Slope (ft/ft) 0.020 0.006 w Widt 0.020 0.009 wWidt Velocity (ft/s) 2.3 18.5 2.8 19.0 Tc (min) 1.4 6.3 ft.) 1.4 6.7 ft.) Revised Tc 1.4 7.7 1.4 8.1 Intensity (in/hr) 15.57 5.19 15.57 5.02 C 0.95 0.95 0.95 0.95 A (ac) 1 1 1.4 1.4 CA 1 1 1.3 1.3 Sum Ca 1 1 1.3 1.3 Total Q (cfs) 5.2 6.5 V File: 1239.10 September 1998 SECTION 5 FLOOD ROUTING CALCULATIONS The storm drain pipes for the proposed systems were designed based on Manning's equation: where n = Roughness coefficient, A = Cross-sectional area of flow, r = Hydraulic radius, and s = Slope of culvert. 5.1 Flood Routing Method The Modified Rational Method was utilized to calculate peak storm water flows and route the calculated flows through the drainage system. When two major basins combine at a junction point, the smaller of the flows has been decreased by using the Modified Rational Method. This procedure accounts for the differing times of concentration for the flows upstream of the junction point. The smaller Q is reduced by either the ratio of the intensities or the ratio of the times of concentration, according to the following procedure: • Let Q, T, and / correspond to the tributary with the largest discharge. • Let q, t, and i correspond to the tributary with the smallest discharge. • Let Q and T correspond to the peak discharge and the tune of concentration when peak flow occurs. REP/12391DR-902.DOC 29 File: 1239.10 September 1998 If T > t, the peak discharge is corrected by the ratio of the intensities: Q = Q + q(I/i~) and T = T. n - If T < t, the peak discharge is corrected by the ratio of the tunes of concentration: U Q = Q + q(T/f) and T=T. PU 5.2 Pipe Flow jj Travel time has been considered between the nodes of the flood-routed system. Travel time is calculated by using the following formula: Travel Time = L/(Vx 60), where L = Pipe length (feet) and pI V= Velocity of flow in pipe (ft/sec). njj 5.3 Flood Routing Tables D A flood routing table for each pipe system has been prepared, using a hydrology program which •consists of a system of macros developed within the QuattroPro software. A printout for each pipe system for the developed condition has been included in Table 3. REP/123 91DR-902.DOC 30 File: 1239.10 September 1998 Table 3. Flood Routing Calculations Flood Routing for 100-Year/6-Hour Storm Flood Routing for 100-Year/6-Hour Storm from Adjacent Area Calculation of Total Discharge to the Detention Basin for 100-Year/6-Hour Storm Calculation of Total Discharge to the Detention Basin for lO-Year/6-Hour Storm REP/12391DR-902.DOC 31 , v . , , 03-Aug-98 DETAILED DRAINAGE CALCULATIONS Proj . Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input 1A1 Flow 1A Node to Node Input Flow Node to Node Flood Route 1A 2A 2A 2A2 SUBBASIN Input Flow Node to Node Flood Route 2A2 2A1 Type of Travel 1A1 1A Pipe Flow D/d Calculated = 1A 1A 1A 2A1 1A1 1A Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 2A2 , 2A2 2A1 1A 2A1 Pipe Flow D/d Calculated = L (ft) 31.25 0.71 and 77.77 0.68 200.2 Full and 29.32 0.82 H (ft) 0.2 1A 1A 1 1.3 2A2 0.3 Pipe Dia(in) 18 18 18 18 Slope (ft/ft) 0.005 0.013 0.006 0.01 Velocity (ft/s) 4.8 7.7 5.5 6.8 Tc (min) Tc= 0.1 Tc= 0.2 0.6 Tc= 0.1 Revised Tc 15 15.1 14.9 15.1 15.3 15.9 10 15.9 16 Intensity (in/hr) 3.37 3.36 3.39 3.36 3.33 3.25 4.38 3.25 3.24 C A (ac) CA 0 0 0 0 Sum Ca 0 0 0 0 Total Q (cfs) 6.4 6.4 3.4 9.8 9.8 9.8 0.9 10.5 10.5 w 1 ' l ' k ' 03^Aug-98 ' ' ' ' "DETAltEirDRAI^AGECArcUL'STlbNS ' ' ' ' ' ' " "" ' ' ' "~ Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input 3A Flow 3A1 3A1 3A2 Node to Node Input 4A1 Flow 4A Node to Node Input Flow Node to Node Flood Route 4A 3A2 Type of Travel 3A 3A2 Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 4A1 4A Pipe Flow D/d Calculated = 4A 4A 4A1 3A2 4A1 4A Pipe Flow D/d Calculated = L (ft) 83.57 0.3 116.9 0.58 84.5 0.5 and 12.39 0.68 H (ft) 7.1 0.9 0.8 4A 4A 0.1 Pipe Dia(in) 18 18 18 18 Slope (ft/ft) 0.085 0.008 0.010 0.010 Velocity (ft/s) 13.4 5.6 5.9 6.6 Tc (min) Tc= 0.1 0.3 Tc= 0.2 Tc= 0 Revised Tc 13.2 13.3 13.6 7.7 7.9 10.9 7.9 7.9 Intensity (in/hr) 3.66 3.64 3.59 5.19 5.1 4.14 5.1 5.1 C A (ac) CA 0 0 0 0 Sum Ca 0 0 0 0 Total Q (cfs) 5.9 5.9 5.9 5.2 5.2 4.6 8.5 8.5 , , , , , OS-Aug-^ DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PEPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Flood Route 3A2 5A Node to Node Input 5A1 Flow 5A Node to Node Input Flow SUBBASIN Flood Route Node to Node Flood Route 5A 6A Type of Travel 3A 5A 3A 3A2 Pipe Flow D/d Calculated = 5A1 5A Pipe Flow D/d Calculated = 5A 5A 5A 5A1 5A 5A 6A 3A 5A Pipe Flow D/d Calculated = L (ft) and 62.88 0.64 32.75 0.23 and and 314.2 0.78 H (ft) 4A1 3A2 0.3 1.3 5A 5A 5A 1.6 Pipe Dia(in) 24 18 24 Slope (ft/ft) 0.005 0.039 0.005 Velocity (ft/s) 5.6 7.9 5.8 Tc (min) 0.2 Tc= 0.1 Tc= 0.9 Revised Tc 7.9 8.1 5.9 6 14.8 14.8 8.1 9 Intensity (in/hr) 5.1 5.02 6.16 6.09 3.4 3.4 5.02 4.69 C A (ac) CA 0 0 0 Sum Ca 0 0 0 Total Q (cfs) 11.9 11.9 2.5 2.5 4.8 6.2 15.3 15.3 \~ ( —— i-- i — ~v- f \- < \- ( v- i v r — v i v- / v i v- ( i-- ( — v i v- ( i • f 1- ' v- i >~ i — ~u 05-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input IB Flow 2B 2B 3B Node to Node Input 3B1 Flow 3B Node to Node Flood Route 3B 4B Node to Node Input Flow Type of Travel IB 3B Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 3B1 3B Pipe Flow D/d Calculated = 3B 4B IB 3B Pipe Flow D/d Calculated = 4B 4B L (ft) 90.95 0.52 249.4 0.66 31.25 0.58 and 101 0.46 H (ft) 1.9 2.5 0.2 3B1 3B 5.4 Pipe Dia(in) 24 24 ^ 18 24 Slope (ft/ft) 0.021 0.010 0.005 0.053 Velocity (ft/s) 10.6 8 4.4 15.9 Tc (min) Tc= 0.1 0.5 Tc= 0.1 0.1 Tc= Revised Tc 12.11 12.21 12.71 12 12.1 12.71 12.81 12.5 Intensity (in/hr) 3.87 3.85 3.75 3.89 3.87 3.75 3.73 3.79 C A (ac) CA 0 0 0 0 Sum Ca 0 0 0 0 Total Q (cfs) 17.6 17.6 17.6 * 4.7 4.7 22.2 22.2 2.7 [—)i—i f—i <—i i i r~i f—)•• i—i —i i—i r—i r—i-f—r- {—i i—v r—i- 05-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA *E* Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input 4B1 Flow 4B SUBBASIN Flood Route Node to Node Flood Route 4B 5B Node to Node Input 5B1 Flow 5B Type of Travel 4B1 4B Pipe Flow D/d Calculated = 4B 4B 4B 4B 5B 3B 4B Pipe Flow D/d Calculated = 5B1 5B Pipe Flow D/d Calculated = L (ft) 31.25 0.23 * and and 304 0.48 33.25 0.48 H (ft) 2.2 4B1 4B 4B 21.3 0.7 Pipe Dia(in) 18 24 18 Slope (ft/ft) 0.070 0.070 0.020 Velocity (ft/s) 10.4 18.7 8.3 Tc (min) Tc= 0.1 ' 0.3 Tc= 0.1 Revised Tc 12.2 12.3 12.3 12.81 13.11 12.6 12.7 Intensity (in/hr) 3.85 3.83 3.83 3.73 3.68 3.77 3.75 C „. A (ac) CA 0 0 0 Sum Ca 0 0 0 Total Q (cfs) 3.1 3.1 5.8 27.8 27.8 7 7 07-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Flood Route 5B 5B2 5B2 6B 6B 6B1 6B1 6B2 6B2 6B3 6B3 7B Node to Node Input 7B1 Flow 7B Node to Node Flood Route 7B 6A Type of Travel 5B 7B 4B 5B Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 7B1 7B Pipe Flow D/d Calculated = 7B 6A 5B 7B Pipe Flow D/d Calculated = L (ft) and 76.75 0.68 75.73 0.68 62.42 0.59 80 0.6 68.7 0.62 145.7 0.71 33.25 0.33 and 153 0.67 H (ft) 5B1 5B 2.8 2.8 3.4 4.1 3.3 4.7 1.3 7B1 7B 7.5 Pipe JJ>ia(in) 24 24 24 24 24 24 18 24 Slope (ft/ft) 0.036 0.037 0.055 0.051 0.048 0.032 0.040 0.049 Velocity (ft/s) 15.3 15.4 18 17.5 17 14.5 9.7 17.7 Tc (min) 0.1 0.1 0.1 0.1 0.1 0.2 Tc = 0.1 0.1 Revised Tc 13.11 13.21 13.31 13.41 13.51 13.61 13.81 12.1 12.2 13.81 13.91 Intensity (in/hr) 3.68 3.66 3.64 3.63 3.61 3.59 3.56 3.87 3.85 3.56 3.54 C A (ac) CA 0 0 0 0 0 0 0 0 Sum Ca 0 0 0 0 0 0 0 0 Total Q (cfs) 34.7 34.7 34.7 34.7 34.7 34.7 34.7 5 5 39.3 39.3 J '05-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSHD by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Flood Route 6A 7A Type of Travel 6A 7A 5A 6A Pipe Flow D/d Calculated = L (ft) and 190.3 0.6 H (ft) 7B 6A 1.1 Pipe Dia(in) 42 Slope (ft/ft) 0.006 Velocity (ft/s) 8.4 Tc (min) 0.4 Revised Tc 13.91 14.31 Intensity (in/hr) 3.54 3.48 C A (ac) CA 0 Sum Ca 0 Total Q (cfs) 50.7 50.7 w — 1 1—i i i - i i ( ~\ i !•• i i r i i i ( i i i- i i i i- i — i f — i i — i- i — i i — ' — ]~- ( — \-. 06-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input 1C Flow 2C Node to Node Input Flow Node to Node Flood Route 2C 3C Type of Travel 1C 2C Pipe Flow D/d Calculated = 2C 2C 2C 3C 1C 2C Pipe Flow D/d Calculated = L (ft) 76.91 0.5 and 61.16 0.73 H (ft) 0.8 2C 2C 0.6 Pipe Dia(in) 18 18 Slope (ft/ft) 0.010 0.010 Velocity (ft/s) 5.9 6.7 Tc (min) Tc= 0.2 Tc= 0.2 Revised Tc 11.76 11.96 13 11.96 12.16 Intensity (in/hr) 3.95 3.9 3.7 3.9 3.86 C A (ac) CA 0 0 Sum Ca 0 0 Total Q (cfs) 5.2 5.2 4.4 9:2 9.2 UJ — i i 1 i 1 Loe=kay=98J ' ' ' ' LDE-fAlh£D DkATIsAG^CALCOCATlblNS1 ' ' ' ' ' ' ' ' ' ' ' i Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input Flow Node to Node Flood Route 3C 4C 4C 5C 5C 7A Node to Node Flood Route 7A 6C 6C 1C 7C 8C 8C 9C Type of Travel 3C 3C 5C 7A 2C 3C Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 8C 9C 6A 7A Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = L (ft) and 105.8 0.71 68.8 0.3 49.1 0.71 and 213.8 0.7 239.1 0.68 70.68 0.64 205.5 0.64 H (ft) 3C 3C 2.1 24.6 1 5C 7A 1.2 1.4 0.5 1.4 Pipe Dia(in) 18 18 18 42 42 42 42 Slope (ft/ft) 0.020 0.358 0.020 0.005 0.006 0.007 0.007 Velocity (ft/s) ' 9.4 27.8 9.4 8.6 9 9.6 9.6 Tc (min) Tc= 0.2 0 0.1 0.4 0.4 0.1 0.4 Revised Tc 11.8 - 12.16 12.36 12.36 12.46 14.31 14.71 15.11 15.21 15.61 Intensity (in/hr) 3.94 3.86 3.82 3.82 3.8 3.48 3.42 3.36 3.34 3.29 C A (ac) CA 0 0 0 0 0 0 0 Sum Ca 0 0 0 0 0 0 0 Total Q (cfs) 3.5 12.6 12.6 12.6 12.6 62.2 62.2 62.2 62.2 62.2 cnr CZ3 cm cur czr cur LIU" 06-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: ]QZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Input 9C1 Flow 9C SUBBASIN Input Flow Node to Node Flood Route Node to Node Flood Route 9C 9C2 9C2 IOC Node to Node Input Flow Type of Travel 9C1 9C Pipe Flow D/d Calculated = 9C 1 9C 9C1 9C 9C IOC 8C 9C Pipe Flow D/d Calculated = Pipe Flow D/d Calculated = 10 IOC L (ft) 30.75 0.36 ' and and 198.3 0.83 233.7 0.83 H (ft) 0.8 9C 1 9C 1 1.2 Pipe Dia(in) 18 42 42 Slope (ft/ft) 0.026 0.005 0.005 Velocity (ft/s) 8.2 8.4 8.4 Tc (min) Tc = 0.1 Tc = 0.4 0.5 Tc= Revised Tc 16.2 16.3 * 16.2 16.2 15.61 16.01 16.51 14 Intensity (in/hr) 3.21 3.2 3.21 3.21 3.29 3.23 3.17 3.53 C A (ac) CA 0 0 0 Sum Ca 0 0 0 Total Q (cfs) 4.8 4.8 5.5 10:3 72.1 72.1 72.1 5.9 CZT 07-May-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: IOO-PIPE.WQI P6= 2.6 CHKD by: MW From Node To Node Node to Node Flood Route IOC 11C Node to Node Input 11C1 Flow 11C2 SUBBASIN Input Flow Node to Node Flood Route 11C2 11C Node to Node Flood Route 11C 12C Type of Travel IOC 11C 9C IOC Pipe Flow D/d Calculated = 11C1 11C2 Pipe Flow D/d Calculated = 11C2 11C2 11C 11C1 11C2 Pipe Flow D/d Calculated = 11CJ2Q IOC 11C Pipe Flow D/d Calculated = L (ft) and 33.6 0.76 84.5 0.72 and 34.11 0.41 and 256.9 0.86 H (ft) 10 IOC 0.2 0.4 11C2 3 11C2 11C 1.7 Pipe Dia(in) 42 18 18 42 Slope (ft/ft) 0.007 0.005 0.088 0.007 Velocity (ft/s) 9.9 4.7 16 9.6 Tc (min) 0.1 Tc = 0.3 Tc = 0 0.4 Revised Tc 16.51 16.61 ' 8.1 8.4 11.1 8.4 8.4 •16.61 17.01 Intensity (in/hr) 3.17 3.16 5.02 4.9 4.1 4.9 4.9 3.16 3.11 C A (ac) CA 0 0 0 0 Sum Ca 0 0 0 0 Total Q (cfs) 77.4 77.4 6.5 6.5 5.7 10.8 10.8 84.4 84.4 File: 1239.10 September 1998 The calculation of peak discharge from adjacent area to the detention basin (CP4) is based on Preliminary Drainage Report. Kelly Ranch Areas 'D' and 'F' through 'L'. Carlsbad, California, July 16, 1997. Refer to Pages 3, 10, and 16 through 18 of the report described above. The storm water comes from Areas A2, B2, C2, D2, E2, F2, and G2, which called System No. 2 and which will pour into the detention basin. The surface runoff calculation results from Table 5 (Pages 16 through 18 of referenced report) will be used to perform flood routing calculations. See the table on the next page for the CP4 peak discharge. See the attachment 'Exhibit C' for the subbasins. REP/12391 DR-902.DOC 43 08-Aug-98 DETAILED DRAINAGE CALCULATIONS Proj.Name: KELLY RANCH - SYSTEM #2 Proj. Num: 1224.8 Frequency 100 yrs. DSND by: JQZ File Name: ROUTE.WQI P6= 2.6 CHKD by: DG From Node To Node SUBBASIN Input Flow SUBBASIN Input Flow SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Input Flow Type of Travel A2 B2 AB A2 C2 ABC AB D2 E2 L (ft) and and H (ft) B2 C2 Pipe Dia(in) Slope (ft/ft) Velocity (ft/s) Tc (min) Tc= Tc= Tc= Tc= Tc= Revised Tc 5 11.7 5 14.7 5 2.2 11.8 [ntensity (in/hr) 6.85 3.96 6.85 3.42 6.85 11.63 3.94 C A (ac) CA Sum Ca Total Q (cfs) 19.9 9.9 24.1 11.6 28.0 8.1 10.2 1 f- 1 f 1 i 1 i — — i i "| r~ — i i ^ | i — ^~i ( — :i-=— | i — ~ — i r^"~^~[ <~~~~ — 1 r~^ — i i — "~T r^^~~i r~~~"y i — —=y i — •—< ' "08"-AUg3T ^ ' DETAILED DRAINAGECALCUCATIONS ' ' ' Proj .Name: KELLY RANCH - SYSTEM #2 Proj. Num: 1224.8 Frequency 100 yrs. DSND by: JQZ File Name: ROUTE.WQI P6= 2.6 CHKD by: DG From Node To Node SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Flood Route SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Flood Route Type of Travel DE D2 F2 DEF DE A F ABC G2 A G A F L (ft) and and and and H (ft) E2 F2 DEF G2 Pipe Dia(in) Slope (ft/ft) Velocity (ft/s) Tc (min) Tc= Tc= Revised Tc 11.8 13.6 11.8 5 6.5 5 Intensity (in/hr) 3.94 3.59 3.94 6.85 5.78 6.85 C A (ac) CA Sum Ca Total Q (cfs) 12.9 9 20.7 36.8 8.7 43.5 D File: 1239.10 September 1998 Use Modified Rational Method to determine total peak discharge (from CP1, CP2, CP3, and CP4). REP/I2391DR-902.DOC 46 08-Aug-98 DETAILED DRAINAGE CALCULATIONS ' Proj.Name: KELLY RANCH AREA 'E' Proj. Num: 1239.10 Frequency 100 yrs. DSND by: JQZ File Name: CPM.WQI P6= 2.6 CHKD by: MW From Node To Node SUBBASIN Input Flow SUBBASIN Input Flow SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Flood Route SUBBASIN Input Flow SUBBASIN Flood Route Type of Travel CP1 CP2 CP1 2 CP1 CP3 CP1 3 CP1 2 CP4 CP1 4 CP1 3 L (ft) and and and H (ft) CP2 CP3 CP4 Pipe Dia(in) Slope (ft/ft) Velocity (ft/s) Tc (min) Tc= Tc= Tc= Tc= Revised Tc 17 14.6 17 11.5 17 5 17 Intensity (in/hr) 3.11 3.43 3.11 4 3.11 6.85 3.11 C A (ac) CA Sum Ca Total Q (eft) 84.4 31.2 112.7 j l 7.2 118.3 43.5 138.0 File: 1239.10 September 1998 n Calculation of Total Discharge to the Detention Basin for 10-Year/6-Hour Storm Project Site Location: latitude 33°08'30", longitude 1 17°17'30". P For a 100-year/6-hour storm, PS = 2.6. H For a 10-year/6-hour storm, Pg = 1 .8. p Total Discharge to the Pond for 100-Year/6-Hour Storm:u Qioo = 138 CFS, Tc = 17 minutes, IIQO = 3.11 in/hr (see previous page).nL> Calculation for 10-Year/6-Hour Storm: n{_) I . Areas and 'C' values are the same as using the Qioo calculation. Y.-, 2. Assume !FC = 17 minutes. U P6 = 1 .8, T = 1 7 minutes. From Appendix A-2. 1 , 7;0 = 2.2 in/hr. =Qioo/Ac,Iio=Qio/Ac. - Qio/Qioo- Qio - Qioo(liollioo)- gvo -138(2.2/3. 11) = 98 CFS. REP/12391DR-902.DOC 48 File: 1239.10 September 1998 SECTION 6 INLET AND OUTLET DESIGN 6.1 Curb Inlet at Continuous Grade Use the results of surface runoff calculations (100-year/6-hour storm) to determine the length of curb inlet. Formula: Q = Q.7L(A + Y)3!2 from the City of San Diego Drainage Design Manual, Chart 1-103.6A (refer to Appendix A-5). 6.2 Curb Inlet at Sag From the City of San Diego Drainage Design Manual, Nomogram Chart 1-103.6C (refer to D"Appendix A-6): Assume H = 0.73 foot (measured from bottom of the opening to 0. 1 foot below top of curb) and h = 0.50 foot (height of the opening of curb inlet). Hlh = 0.73 foot/0.5 foot = 1 .46. Therefore, = 1.5CFS/foot (J The City of Carlsbad allows the use of 1 .7 CFS/foot for curb inlet design. <M Use the results of surface runoff calculations (100-year/6-hour storm) to determine the length of curb inlet. REP/12391 DR-902.DOC 49 File: 1239.10 September 1998 6.3 *F* Type Catch Basin ] The maximum allowable flow rate is determined using the orifice flow equation, as follows: where C = Coefficient of discharge (0.74) from Table 4-9, King's Handbook of Hydraulics: A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft2 per opening); g = Gravitational acceleration (32.2 ft/sec2); and h = Allowable height of ponded water (1.0 foot). Therefore, 0mox = (0.74)1.95V(2)(32.2)(l) = 11.5 CFS per opening. The required number of openings for Basin Bl is 2. (Qm = 17.6 CFS.) Basin Cl is 1. (Qm = 5.2 CFS.) 6.4 Curb Outlet The storm water Qioo= 3.7 CFS from the south hill of Basin 5B will be conveyed via curb outlet into the street gutter. Use City of San Diego Standard Drawing D-25, Curb Outlet. Check the curb outlet capacity, where A = 3 inches x 3 feet = 0.75 SF, S = 0.02, and n = 0.013. Q = (1AWn)RmSmA = 4.43 CFS. Since this number is greater than 3.7 CFS, the outlet capacity is okay. R£P/12391DR-902.DOC 50 Table 4. Inlet Location Table File: 1239.10 September 1998 Basin Name Al A2 A3 A4 El A5 A6 B2 B3 B4 B5 B6 C2 C3 C4 C5 C6 C8 E2 Street Name Merwin Drive Merwin Drive Millay Court Cannon Road Cannon Road Frost Avenue Frost Avenue Lynch Court Hillyer Street Hillyer Street Hillyer Street Frost Avenue Ciardi Court Ciardi Court Ashberry Road Ashberry Road Ashberry Road Cannon Road Cannon Road Street Station 7 + 62.27 W 7 + 62.27 E Cul-de-sac 1 12 + 75.00 S 1 12 + 75.00 N 1+ 81.80 S 1 + 81.80N 3 + 67.51 5 + 11.08 W 5 + 11.08 E 2 + 10.00 6 + 20.00 1 + 47.23 1+55.37 5 + 00.33 S 5 + 00.33 N Cul-de-sac 101+ 44.03 S 101+ 44.03 N REP/12391DR-902.DOC 51 File: 1239.10 September 1998 Table 5. Inlet Sizing Calculations Basin Name Al A2 A3 A4 A5 A6 B2 B3 B4 B5 B6 C2 C3 C4 C5 C6+C7 C8 El E2 Design 0 + Bypass (CFS) 3.4 6.4 5.9 4.6 2.5+2.0=4.5 4.8 4.7 2.7 3.1 5.0 5.0 4.4 3.5 4.8 5.5 6.0 5.7 5.2 5.5 Street Slope(1) Sump Sump Sump 1.0 1.3 3.8 Sump 1.7 1.6 5.2 4.8 Sump Sump 1.0 1.4 Sump 1.0 2.0 2.0 Flow Depth (feet) 0/Z=1.7 0/1=1.7 0/1=1.7 0.37 0.35 0.31 0/1=1.7 0.29 0.30 0.29 0.30 0/1=1.7 0/1=1.7 0.37 0.37 0/1=1.7 0.39 0.34 0.35 Flow Velocity V (ft/sec) - - - 2.6 2.9 4.5 - 2.9 3.0 5.1 5.0 - - 2.7 3.1 - 2.7 3.4 3.5 Opening Length (feet) 2 4 4 12 12 14 3 8 9 15 14 3 2 12 13 4 14 13 13 Total Length (feet) 5 5 5 13 13 15 5 9 10 16 15 5 5 13 14 5 15 14 14 Bypass 0 (CFS) 0 0 0 0 0 0 0 0 0 2.0 0 0 0 0 0 0 0 0 1.0(2) average street slope. (2)Bypass 0 to down street. REP/12391DR-9O2.DOC 52 File: 1239.10 September 1998 6.5 Outlet Design Analysis Riprap protection is provided at all outlets which discharge into unprotected natural areas, to minimize potential for erosion in these areas. Riprap rock class and apron thickness are determined in accordance with the Standard Specification for Public Works Construction, dated 1997 (see Appendix A-7). The riprap apron width, length, and median stone (Size D50) are based on the design charts of the Erosion and Sediment Control Handbook provided by the City of Carlsbad. Riprap calculations are summarized in Table 6 below: Refer to Kelly Ranch Village 'E' improvement plans for riprap and filter blanket thickness and specifications. Table 6. Riprap Calculations Summary Location Inside Detention Basin North of Cannon Road North of Cannon Road Pipe Diameter (inches) 42 36 Culvert 36 Culvert Flow (CFS) 84.4 52.2 52.2 Velocity (FPS) 9.6 7.4 7.4 Rock Class Light Facing Facing Median Stone (Size D50) (feet) 0.7 0.5 0.5 Apron Width (feet) 11 9 9 Length (feet) 22 20 20 n REP/12391DR.DOC 53 File: 1239.10 September 1998 f | 6.6 Underdrain Culvertu D The storm water from Basin A3 (Q = 5.9 CFS) will be concentrated into Inlet A3 (refer to' Tables 4 and 5). To prevent water ponding due to the sump inlet being blocked, a 12-inch- D diameter emergency culvert under the berm will be designed to release the discharge. For the 12-inch-diameter culvert, if the allowable maximum ponding elevation in the swale is 43.5 h (6 inches below finished grade), the outlet Q= 8.27 CFS, > 5.9 CFS. ;n The same situation applies to the sump inlet of Basins 6 and 7. The design incoming Q = IJ 6.0 CFS. The allowable maximum elevation on the swale is 30.6. For the 12-inch-diameter (n culvert, the outlet Q = 7.15 CFS, > 6.0 CFS. U Twelve-inch-diameter culverts will be used for emergencies at these two locations. See in;l I Drawing 363-3, Sheets 3 and 10 for plan/profile, and Appendix B for calculations. 'OQ REP/1239IDR-902.DOC 53-A File: 1239.10 September 1998 SECTION 7 DETENTION BASIN DESIGN Detention Basin A will be designed to reduce the postdevelopment peak flows from the project area and adjacent developed area. The 100-year/6-hour storm will be used on the detention basin calculations. The postdevelopment flows are measured from different areas to each concentration point (CP). The flow from the underground drainage system outlets at CP1. The runoff storm from Basin Dl will be collected on CP2 through a brow ditch. Assume the overland flow from Basin D2 will be collected on CP3, and the storm water of the adjacent developed area will be outletted at CP4 through an underground pipe system. (Refer to "Detention Basin A" map in Appendix B.) 7.1 Software of Design Calculations PONDPACK, a software package designed by Haestad Methods, routes inflow hydrographs through detention basins with user-defined stage-storage characteristics. The software has several options for outlet structure configurations, in order to accurately model the proposed design. The computer-generated output includes graphical presentations of the inflow and outflow hydrographs, as well as the input characteristics of the detention basins and outlet structures in tabular from. 7.2 Water Surface Elevations Determining the design minimum water surface elevation will not require consideration of desilting. (See Detention-Desilting Basin Notes on 363-3A.) Design Minimum Water Surface Elevation of 19.0 Feet = Bottom of Basin Elevation. The elevation of the top dike at the lower side of the detention basin is approximately 32 feet. The maximum water surface elevation assume 27 feet. REP/12391DR-902.DOC 54 File: 1239.10 September 1998 7.3 Tailwater Condition Analysis Based on the information from Howard H. Chang's study report Hydraulic Study for FEMA Conditional Letter of Map Revision (CLOMR) for Agua Hedionda Creek Near Kelly Ranch in the City of Carlsbad and San Diego County, California, the detention basin tailwater elevation could be determined. From the report (for the 100-year frequency only): At Section 2.63, WS Elevation = 16.5. At Section 2.71, WS Elevation = 20.1. The detention basin outlet point is located between these two sections and is 100 feet from Section 2.71. The distance between the sections on the outlet side is 400 feet. The water surface (WS) elevation at the outlet point will be: 16.5 + [(20.1 -16.5) x 3]/4 = 16.5 + 2.7 = 19.2. Use TW = 19.2 to check outlet Q and WS at Pond. Table 7. Tailwater Condition Summary Outlet Condition Free outfall (TW 17.00) TW 19.2 Outlet Q for 100-Year/6-Hour Storm (CFS) 104.4 103.0 104.3 Elevation at Pond (Feet) 22.66 22.66 22.68 The results show that the effect of tailwater at 19.2 could be ignored. (Refer to Appendix B for detailed calculations.) REP/12391DR.DOC 55 nu File: 1239.10 September 1998 7.4 Summary of Detention Flows The direct effect of Detention Basin A can be seen by comparing the peak inflow and outflow on the detention basin. For a 100-year/6-hour storm, the detention basin reduces the flow from 138 CFS to 104.4 CFS. For a 10-year/6-hour storm, the detention basin reduces the flow from 98.0 CFS to 66.4 CFS. Please refer to Table 8 for a summary of flows. The basin characteristics and computer-generated routing calculations are included for reference in Appendix B. Table 8. Summary of Flows Frequency of Flow 100-Year/6-Hour 10-Year/6-Hour Peak Inflow OP (CFS) 138.0 98.0 Tc (Minutes) 17.0 17.0 Peak Elevation (Feet) 22.83 22.37 Peak Outflow QP (CFS) 104.4 66.4 T (Minutes) 25.0 28.0 Predeveloped Peak Discharge Q (CFS) 97.1 67.2 REP/12391DR.DOC 56 File: 1239.10 September 1998 SECTION 8 BROW DITCH CAPACITY CALCULATIONS Brow ditches in the south portion of the development are to collect overland storm water from the south hill, and carry it into an underground drainage system or detention basin. The brow ditch design is based on City of San Diego Standard Drawing D-75, Type B (refer to Drawing 363-3B). 8.1 Capacity of Brow Ditches Ditch Width = 3 feet. Maximum Depth = 1.5 feet. Slope = 1.0%. Maximum Capacity: From King's Handbook, Table 7-14: where D = Depth of water = 1 .5 feet (when carrying Qmax), d = Diameter of channel = 3 feet, S = 0.01, D/d= 0.5, fC = 0.232, and n = 0.013. Q = (0.232/0.013)(3)8/3(0.01)1/2 = 33.4 CFS. The largest peak discharges collected by the brow ditch occur in Basin Dl. Qp = 31.2 CFS, which is less than 33.4 CFS. Therefore, the brow ditch size is appropriate. REP/12391DR-902.DOC 57 File: 1239.10 September 1998 8.2 Summary of Brow Ditch Flows These flows are shown in Table 9. Table 9. Summary of Brow Ditch Flows Flow From Bl B5a* Cl Dl QP (CFS) 17.6 3.7 5.2 31.2 Depth (Feet) 1.05 0.48 0.57 1.44 Velocity (FPS) 7.96 5.07 5.60 9.27 *QP from B5a, part of Basin B5. See hydrology calculation. REP/12391DR-902.DOC 58 File: 1239.10 September 1998 SECTION 9 REFERENCES • Standards for Design and Construction of Public Works Improvements in the City of Carlsbad, dated April 1993. • County of San Diego, Department of Public Works Flood Control Design: Hydrology Manual, October 1973, revised April 1993. • City of San Diego: Drainage Design Manual, April 1984, revised March 1989. • Project Design Consultants: Preliminary Drainage Report for Kelly Ranch Area '£', Carlsbad, California, prepared for The Kelly Ranch Land Company (Tentative Map CT 96-07). • Project Design Consultants: Preliminary Drainage Report for Kelly Ranch Area 'D', 'F' through 'L'. Carlsbad. California. Tentative Map CT 97-16, prepared for The Kelly Ranch Company. • Project Design Consultants: Detention Basins Analysis for Kelly Ranch Village '£'. July 1998. • Hydraulic Study for FEMA Conditional Letter of Map Revision CCLOMR') for Agua Hedionda Creek Near Kelly Ranch hi the City of Carlsbad and San Diego County, California, November 1997, prepared by Howard H. Chang, Ph.D., PE. REP/12391DR-9O2.DOC 59 File: 1239.10 September 1998 APPENDIX A HYDROLOGY DESIGN CHARTS REP/12391DR-902.DOC A-l 0 TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) Use Coefficient. C Soil Type (1) Residential: D Single Family .55 Multi-Units .70 Mobile Homes .65 Rural (lots greater than 1/2 acre) .45 Commercial (2) 80% Impervious .85 Industrial (2) ' : 90% Impervious . • •* • ;95 NOTES: •••-'.•.v ... ; • • ••;-.•'. •' -. •• (l)io, ,..Type.-D soil to be used for all areas.j jo sv •<2) j ;e where - actual- conditions' 'f- <fevia<e3r'signffica;n|{y ?^f rom '' %ie tabulated c .v. ;j4mperviousness values of 80% or.90%;?thebvalues giveh forcoeffident C,v may be revised by multiplying 80% or 9Q%_by-.the ratio of actual imperviousness to the tabulated imperviousness." However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial .v> property on D soil. , :-- - :• . v •^•^•^^^ ~-: "" "'" Actual:impe;rvioushess'"sn ^'"^ '= ' 50% ..;Q'I . •*•.-•.« :V-.-:-. :o: ••..-,-•: -o ^'^.- ' Tabulated imperviousness = 80% Revised C = Sr x 0.85 = 0.53 82 APPENDIX A-1 CD" JNTENSm-DURAT; DESIGN CHART -CD u 3 O l/>atcuc & irtcat i i i 1.1u.i n in i ru rnTVi -.645 = Intensity (In./Hr.) P, ° 6 Hr. Precipitation (In.) Duration (Min.) 2. =.-Z---:~....:.:r.. > IN 15 20 Minutes 30 40 50 1 Dnrnt.lnn 2 . 3 Hours 5 6 Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydroloo> Manual (10, 50 find 100 yr. maps included in U Design and .Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Drav/ a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency /OO yr. 24" 2) Adjusted *Pg= 3) t a 4) I = 24 in. min. n/hr. *Not Applicable to Desert Region APPENDIX u IV-A-14 Revised 1/85 a S" JNTENSITY-DUJVVI. DCSIGN CHART nrr^r 1.1•_».i LI-i .HJJj Equation: I •••* 7.44 P D "t645 rnirhm f. 1i «« Intensity (In./Hr.) , = 6 Hr. Precipitation (In.) 'i ,. D =« Duration (Min.) n:o •o ft)n o , ro 15 20 Minutes 5 6 Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrolooy Manual (10, 50 and 100 yr. maps included in th Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency l<> yr. In.,24" 2) Adjusted *Pg= 3) t,. - . in. min. 4) I 1n/hr. *Not Applicable to Desert Region APPENDIX XI IV-A-14 , Revised 1/85 0 ' 0 nu D' nU nu n Ut — i ,0 D ' •nU\ i n " ' •U ;n ••U D' :nu ;G ' r ' H 1 /---' r- - [''•••**-•* }-J°-J Cff /c \ H ) 5"000 % , T/^f Of cesiccsi/ra.i'/osi 4020 £ ' Lcng/A of • tva/?/-s-/ifd LJ 9 f);SS~ — .•«•>• • / A ' /_ ff iS//rer£/7C<: //? f/fva.//an a/ofiff ---- e/Scci'/se s/ooc ///jf (See typendix /• 8) ,- ^*f//es X*-<r/ #otrrs 2000 - /O —r — /000 _ *> 900 - 800 __ -700 ~~ - £00 \ ~\ f SOO \ -—400 ^ *~ NFS-»— ^ y — 300 ^^ 3~ \ \ 200 \ 2~ \ \ \ * : \- " X \./0o /-± • *•* ~ - -s-0 as— '— 40 ~ — 30 fNOTET^"1 a ":i*^as"t-"sj — 2O I ADD TEN MINUTES TO \ 1 COMPUTED TIME OF CON- ! JCENTRATION. i «-^^«-=^=^-==-tL==-^=»=s«jrt=Jl — /O — S" / SAN DIEGO COUNTY .. DEPARTMENT OF SPECIAL DISTRICT SERVICES j[J DESIGN MANUAL APPROVED 0. "» <r^.'/,^,, ."TTX <^— J — J? — / — - •s^-SJOO ~—40O0 9ASIA*—J(/OO '>* \ 2OOO \ — /300 \ — /^<i?^ — /too — /2OO — 70O0— soo— •800 — 700 — £00 — S"OO — 400 — 300 — 260 J, Mf/Ja/£s — 140 — /so — — — J£0 -/OO — 30 — SO — 70 £0 — so jfs\— * o . */)NM* J^/ — 20 — /e — /£ —/<r — /£ — /o — s — s _ 7 — £ — S — 4- — J ~ NOMOGRAPH FOR DETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS '•' A u-vr-hr— » • I-N. ••»*• A f\ * URBAN AREAS OVERLAND TIME OF FLOW CURVES •00 - Of 800 Feet. :°>^~^/r ri^Fri- Surface Flow TIM Curv« GlVEM FT. = I 5" 86 APPENDIX A-3.2 CHART 1-104.12 •• am cue noc ONLY Q3 — o« — EXAMPLE: \*tri«e OlSCKfiRCE (CFS.) ONE SIDE JO «0 SO Ci»tn^ 0«K> 3 Chart »»tr CWplh t Q4, Velocity * 4.4~t|Xt- REV.CITY OF SAN DIEGO - DESIGN -,GUIDE GUTTER AND ROADWAY DISCHARGE-VELOCITY CHART APPENDIX A-4 70A CHART 1-103,6 A CAPACITY OF CURB OPENING INLETS ASSUMED 2% CROWN, Q = 0.7L (A+Y)3/2 *A = 0.33 Y L = HEIGHT OF WATER AT CURB FACE (0,4' MAXIMUM) REFER TO CHART 1-104,12 LENGTH OF CLEAR OPENING OF INLET *Use A=0 when the inlet is adjacent to traffic; i;e., for a Type "0" median inlet or where the parking lane is removed. REV.CITYOfvSAN DIEGO - DESIGN'GUIDE •SHT: NO. CAPACOT: OF CURB OPENING APPENDIX A-5 »• CHART I-I03.6C 4-ELEVATION REV.CITY OF SAN DIEGO -i DESIGN -GUIDE - CAPACITY., CURB INLEt 'AT SAG' - .15 SHT. NO. 200-1.7 Selection of Riprap and Filter Blanket Material Table 200-1.7 Vel. Fl/Sec (1) 6-7 7-8 8-9.5 9.5-11 11/13 13-15 15-17 17-20 Rod: Cb« W No. 3 Back- •K No. 2 Back- ing Fac- ing Light 1/4 TON V4 TON 1 TON 2 TON Riprap Thick- lieu •T' .6 1.0 1.4 2.0 2.7 3.4 4.3 5.4 P*ih«r R>«itlr»t fVl I Iruvr I avfr(t\ OpU Sec. 200 (0 3/16' 1/4' 3/8' Vi' 3/4' 1' 1-1/2" 2' Opt.2 Sec.400 W C2 B3 — — _ _ mt_mm _ t Opt3 (5) D.G. D.G. D.O. 3/4' 1-1/2' P.B. 3/4" 1-1/2' P.B. 3/4' 1-1^' P.B. TYPE B TYPE B Lower Layer «S) _ _ — — SAND SAND SAND SAND See 200-1.6 See also 200-1.6(A) Practical use of this table is limited to situations where "T" is less than inside diameter. (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired riprap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness = 1 Foot or "T", whichever is less. (4) Standard Specifications for Public Works Construction. (5) D.G. = Disintegrated Granite, 1 MM to 10 MM. P.B. = Processed Miscellaneous Base. Type B = Type B bedding material, (minimum 75X crushed particles, 100% passing 2%" sieve, 10% passing 1" sieve). (6) Sand 75X retained on *200 sieve. APPENDIX A-7 i i n r i ri ii r» ri r i 7.54 Erosion and Sediment Control Handbook • • i i i i i f i § i f i ii i » « *ti Water Conveyance and Energy Dissipation 50 100 Discharge. ft3 sec 0.1 0.2 0.30.4 060.81 2 3 4 5 6 7 8 10 15 2025 Discharge, m' sec Fig. 7.-15 Design of riprap outlet protection from a round pipe flowing full: minimum lailwaier conditions. (6. 14) 7.55 30, Outlet ( vt" —pL s idiameter I f "~a——_ D r- L. -J 120, 110,A V<30X "> 109 vv ^^-v>ooX ' ' ./ / /srSjZ&iF^f *>/</„ 7\ it/ /M Tl\'*% i /////.? 77)V/ i// Ii50, 'OT 10 20 50 100 200 Discharge, ft3 sec 500 .1 .2 .3 .4 .5.6.7.8.91 2 3 4 5 6 7 3 :C 15 20 25 Oiscnarge. rr>2 sec Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full: maximum tailwater conditions. (6, 14) to find the riprap size and apron length. The apron width at the pipe end should be 3 times the pipe diameter. Where there is a well-defined channel immediately downstream from the apron, the width of the downstream end of the apron I should be equal to the width of the channel. Where there is no well-defined chan- nel immediately downstream from the apron, minimum tailwater conditions apply and the width of the downstream end of the apron should be equal to the pipe diameter plus the length of the apron. , EXAMPLE 7.4 Riprap Outlet Protection Design Calculation Tor Minimum Tailwater Condition • Given: A flow of 6 ft '/sec (0.17 mVsec) discharges from a 12-in (30-cm) pipe onto a 2 percent grassy slope with no defined channel. ^^ The required length, width, and median stone size c/w for a riprap apron. Solution: Since the pipe discharges onto a flat area with no defined channel, a mini- mum tailwater condition can be assumed. By Fig. 7.45, the apron length L, and median scone size dM are 10 ft (3 m) and 0.3 ft (9 cm), respectively. The upstream apron width W_, equals 3 times the pipe diameter D,: W,, « 3 x D. - 3(1 fti - 3 ft [3(0.3 m) = 0.9 m| The downstream apron width W,, equals the apron length plus the pipe diameter: W,t ~ D. - L, - I ft -t- 10 ft « 11 ft <O..J m - 3.0 m = 3.3 m) .Vote: When a concentrated How is discharged onto a slope las in this example!, gul- lying can occur downhill from the outlet protection. The spreading of concentrated rtow File: 1239.10 September 1998 APPENDIX B DETENTION BASIN COMPUTER OUTPUT -ma m s^s REP/12391DR-902.DOC B-l 36"0 RCP CULVERT CANNON ROAD 36 0 RCP CULVERT FUTURE S.D. PIPE DETENTION BASIN A 48"0 STAND PIPE 36"0 RCP CULVERT & 0.5% SLOPE • 36"0 RCP CULVERT @ 0.5% SLOPE 480 STAND PIPE EL 32.0± PLANVEW NOT TO SCALE WIDTH, LENGTH, RIP RAP S/Zf AND FILTER ROCK SIZE PER DWG JJJ-2G PROPOSED CANNON ROAD PEAK_EL_22.66 EL. 22.0 RIP RAP PER DWG 333-2G £ ?7gg x J6"0 RCP CULVERT & 0.5% SLOPE -48"t STAND PIPE 36"* RCP CULVERT @ 0.5% SLOPE BEYOND 48"0 STAND PIPE BEYOND SECTION'A-A' NOT TO SCALE OUTLET FOR DETENTION BASIN A Project Design Consultants PLANNING AND ENGINEERING 701 "B" Street. Suite 800. San Diego. Co. 92101 619'235'6471 FAX 234-0349 1239BASIN.dwg 51398 112152 100-YEAR/6-HOURFLOW 0 = 138.0 cfs Tc =17 mm. 51 = 138.0/17 = 8.12 cfs/min. AT" - 1 mln. AO = 8.12 cfs 52 = 138.0/(2x17) = 4.06 cfs/min. AT" = / mln. AO = 4.06 cfs 42s u S2 ti-YEAR/6-HOURFLOW Q = 98.0 cfs Tc = 17 min. 51 = 98.0/17 = 5.76 cfs/min. AT = 1 min. AO = 5.76 cfs 52 = 98.0/(2x17) = 2.88 cfs/min. AT = 1 min. AO = 2.88 cfs 50 -- •ao 34 Tc (min) 51 T (min.) Q (cfs) 0 4 0 32.5 8 64.9 12 97.4 16 129.9 17 138.0 20 125.B 24 28 109.6 93.4 36 60.9 42 36.5 46 20.3 51 0 51 T (min.) 0 (cfs) 0 0 4 8 23.06 46.12 12 69.18 16 92.23 17 98.0 20 89.35 24 77.82 28 66.29 36 42 43.24 25.94 46 14.41 51 0 INFLOW HYDROGRAPH5 FOR DETENTION BASINS A Project Design ConsuLtants PLANNING AND ENGINEERING 701 "B" Street. Suite 800, San Diego. Co. 92101 619 '235 -6 471 FAX 234 '034 9 1239BASIN.dwg 51398 112152 Detention Basin Route Calculations for 100-Year/6-Hour Storm m m Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Rain Dir: C:\HAESTAD\PPK6\UTIL\ JOB TITLE KELLY RANCH VILLAGE 'E' STORM DRAIN STUDY REPORT DETENTION BASIN A FOR 100-YEAR STORM • S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Table of Contents Table of Contents *********************** POND VOLUMES Pl-VL ........... Vol: Planimeter .................... 1.01 ******************** OUTLET STRUCTURES ********************* TEST ............ Outlet Input Data .................. 2.01 Individual Outlet Curves ........... 2.07 Composite Rating Curve ............. 2.16 *********************** POND ROUTING *********************** ROND ROUTE ...... Pond E-V-Q Table ................... 3.01 Pond Routing Summary ............... 3.02 Detention Time ..................... 3.03 Pond Routed HYG (total out) ........ 3 . 04 m m. » S/N: HOMOL0102009 Project Design Consultants r* Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Vol: Planimeter Name.... Pl-VL File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 VOLUME Page 1.01 POND VOLUME CALCULATIONS Planimeter scale: 40.00 ft/in Elevation (ft) 19.00 20.00 25.00 30.00 Planimeter (sq.in) 8.110 9.070 15.400 22.500 Area Al+A2+sqr(Al*A2) Volume ( acres ) ( acres ) ( cu . f t ) .2979 .3331 .5657 .8264 .0000 .9461 1.3329 2.0758 0 13737 96769 150705 Volume Sum (cu.ft) 0 13737 110506 261212 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2)) where: ELI, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for ELI, EL2, respectively Volume = Incremental volume between ELI and EL2 S/N: HOMOL0102009 Project Design Consultants fm Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST Page 2.01 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES REQUESTED POND WS ELEVATIONS: Min. Elev.= Increment = Max. Elev.= 19.00 ft 1.00 ft 27.00 ft OUTLET CONNECTIVITY ********************************************** --- > Forward Flow Only (Upstream to DnStream) < --- Reverse Flow Only (DnStream to Upstream) < --- > Forward and Reverse Both Allowed Structure Stand Pipe Orifice-Area Orifice-Area Culvert-Circular Stand Pipe Orifice-Area Orifice-Area Orifice-Area Culvert-Circular TW SETUP, DS Channel No. S2 F3 F2 C2 SI F6 F5 F4 Cl Outfall C2 C2 C2 TW Cl Cl Cl Cl TW El, ft 22.000 19.000 20.000 17.960 22.000 21.000 20.000 19.000 17.960 E2, ft 27.000 27.000 27.000 27.000 27.000 27.000 27.000 27.000 27.000 m i S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type. . . . Outlet Input Data Name. . . . TEST Page 2.02 File. . . . C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title. . . POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Structure ID Structure Type = S2 = Stand Pipe # of Openings Invert Elev. Diameter Orifice Area Orifice Coeff. Weir Length Weir Coeff. K, Submerged K, Reverse Kb,Barrel Barrel Length Mannings n 22.00 ft 48.00 in 12.5664 sq.ft .600 12.57 ft 3.490 .000 1.000 .000000 (per ft of full flow) .00 ft .0000 Structure ID Structure Type F3 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 19.00 ft .4500 sq.ft 19.67 ft 19.00 ft .600 Structure ID Structure Type F2 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 20.00 ft .4500 sq.ft 20.67 ft 20.00 ft .600 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Page 2.03 Structure ID Structure Type = C2 = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert Dnstream Invert = Horiz. Length = Barrel Length = Barrel Slope = OUTLET CONTROL DATA. Mannings n = Ke Kb Kr HW Convergence = INLET CONTROL DATA.. Equation form = Inlet Control K Inlet Control M Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 36.00 in 17.96 ft 17.00 ft 180.00 ft 180.00 ft .00533 ft/ft .0130 .2000 .007228 .2000 .001 1 .0098 2.0000 .03980 .6700 1.158 1.304 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft m m Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 21.43 ft > Flow = 42.85 cfs At T2 Elev = 21.87 ft > Flow = 48.97 cfs S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Page 2.04 Structure ID Structure Type SI Stand Pipe # of Openings Invert Elev. Diameter Orifice Area Orifice Coeff. Weir Length Weir Coeff. K, Submerged K, Reverse Kb,Barrel Barrel Length Mannings n 22.00 ft 48.00 in 12.5664 sq.ft .600 12.57 ft 3.490 .000 1.000 .000000 (per ft of full flow) .00 ft .0000 Structure ID Structure Type F6 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 21.00 ft .4500 sq.ft 21.67 ft 21.00 ft .600 Structure ID Structure Type F5 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 6 20.00 ft .4500 sq.ft 20.67 ft 20.00 ft .600 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Outlet Input Data Page 2.05 ^ Name.... TEST to. File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Structure ID = F4 Structure Type = Orifice-Area # of Openings = 6 Invert Elev. = 19.00 ft Area = .4500 sq.ft Top of Orifice = 19.67 ft Datum Elev. = 19.00 ft Orifice Coeff. = .600 S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Page 2.06 Structure ID Structure Type = Cl = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert =Dnstream Invert = Horiz. Length Barrel Length = Barrel Slope = OUTLET CONTROL DATA.. Mannings n = Ke Kb Kr HW Convergence = # X-Sections = INLET CONTROL DATA... Equation form = Inlet Control K Inlet Control M = Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 36.00 in 17.96 ft 17.00 ft 176.00 ft 176.00 ft .00545 ft/ft .0130 .2000 .007228 .2000 .001 11 1 .0098 2.0000 .03980 .6700 1.158 1.304 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft (user defined) Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 21.43 ft > Flow = 42.85 cfs At T2 Elev = 21.87 ft > Flow = 48.97 cfs Structure ID Structure Type = TW = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Min. TW Max. TW Min. HW Max. HW Min. Q Max. Q Iterations= tolerance = tolerance = tolerance = tolerance = tolerance = tolerance = 30 .01 ft .01 ft .01 ft .01 ft .10 cfs .10 cfs S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Individual Outlet Curves Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.07 RATING TABLE FOR ONE OUTLET TYPE Structure ID = S2 (Stand Pipe) **** Upstream ID = (Pond Water Surface) ^ DNstream ID = C2 (Culvert-Circular) m Pond WS. Device (into) Converge Next DS HGL Q SUM Elev. Q HW HGL DS HGL DS HGL Error Error «. ft cfs ft ft ft +/-ft +/-cfs - to* w- *•> MM *' III •* m m m 19.00 .00 ... WS below an 20.00 .00 WS below an 21.00 .00 WS below an 22.00 .00 WS below an 23.00 61.75 23.00DS HGL+LOSS 24.00 71.19 24.00DS HGL+LOSS 25.00 79.52 25.00DS HGL+LOSS 26.00 87.07 26.00DS HGL+LOSS 27.00 94.00 27.00DS HGL+LOSS invert; no flow. • * * ••• *•• ••• invert; no flow, invert; no flow. DS Chan. TW TW Error ft +/-ft Free Outfall Free Outfall Free Outfall Free Outfall invert; no flow. 23.00 > crest: 24.00 > crest: 25.00 > crest: 26.00 > crest: 27.00 > crest: 23.00 Flow set 24.00 Flow set 25.00 Flow set 26.00 Flow set 27.00 Flow set .000 .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream Free Outfall outlet . Free Outfall outlet. Free Outfall outlet. Free Outfall outlet . Free Outfall outlet. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Individual Outlet Curves Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.08 RATING TABLE FOR ONE OUTLET TYPE Structure ID = F3 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = C2 (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Pond WS. *• Elev. ft 19.00 Device Qcfs .00 ( into ) Converge HW HGL DS HGL ft ft WS below an IP* (H m m m w n>i •* 20. 21. 22. 23. 24. 25. 26. 27. 00 00 00 00 00 00 00 00 10.09 11.41 15.09 .00 .00 .00 .00 .00 20. H =.60 21. H =.77 22. H =1.35 23. 24. 25. 26. 27. 00 00 00 00 00 00 00 00 Next DS HGL DS HGL Error ft +/-ft Q SUM DS Chan. TW Error TW Error +/-cfs ft +/-ft Free Outfall invert; no flow. 19 20 20 23 24 25 26 27 .40 .23 .65 .00 .00 .00 .00 .00 19 20 20 23 Full 24 Full 25 Full 26 Full 27 Full .41 .23 .65 .00 riser .00 riser .00 riser .00 riser .00 riser .008 .001 .001 .000 flow. .000 flow. .000 flow. .000 flow. .000 flow. .000 Free Outfall .000 Free Outfall .000 Free Outfall .000 Free Outfall Q=o this opening. .000 Free Outfall Q=0 this opening. .000 Free Outfall Q=0 this opening. .000 Free Outfall Q=0 this opening. .000 Free Outfall' Q=0 this opening. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Individual Outlet Curves Name.... TEST Page 2.09 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F2 (Orifice-Area) to •M to «•* to i* *** to Hi •• IP I illi IPi i L Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Upstream ID = (Pond Water Surface) DNstream ID = C2 (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 11.41 21.00 20.23 20.23 .001 .000 Free Outfall H =.77 15.09 22.00 20.65 20.65 .001 .000 Free Outfall H =1.35 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. *"* S/N: HOMOL0102009 Project Design Consultants ^.to *• M Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type. . . . Name .... File Title. . . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Individual Outlet Curves Page 2.10 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = C2 (Culvert-Circular) Mannings open channel maximum capacity: 52.39 cfs UPstream ID's= S2, F3, F2 DNstream ID = TW (Pond Outfall) Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall REMARKS: Upstream HW & DNstream TW < Inv.El 10.09 19.41 Free Free .000 .004 Free Outfall CRIT. DEPTH CONTROL Vh= .367ft Dcr= 1.005ft CRIT. DEPTH 22.82 20.23 Free Free .000 .004 Free Outfall CRIT. DEPTH CONTROL Vh= .608ft Dcr= 1.538ft CRIT. DEPTH 30.18 20.65 Free Free .000 .003 Free Outfall INLET CONTROL... Equ.l: HW =2.69 dc=1.780 Ac=4.3699 61.75 23.00 Free Free .000 .000 Free Outfall INLET CONTROL... Submerged: HW =5.04 71.19 24.00 Free Free .000 .000 Free Outfall INLET CONTROL... Submerged: HW =6.04 79.52 25.00 Free Free .000 .000 Free Outfall INLET CONTROL. .. Submerged: HW =7.04 87.07 26.00 Free Free .000 .000 Free Outfall INLET CONTROL... Submerged: HW =8.04 94.00 27.00 Free Free .000 .000 Free Outfall INLET CONTROL. .. Submerged: HW=9.04 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 "*" Type.... Individual Outlet Curves Page 2.11 t_ Name. . . . TEST M File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES — RATING TABLE FOR ONE OUTLET TYPE *"• Structure ID = SI (Stand Pipe) *"* Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) ta Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ». ft cfs ft ft ft +/-ft +/-cfs ft +/-ft tan MM tmt m m m m I 19.00 .00 ... WS below an 20.00 .00 ... WS below an 21.00 .00 ... WS below an 22.00 .00 ... WS below an 23.00 61.75 23.00DS HGL+LOSS 24.00 71.20 24.00DS HGL+LOSS 25.00 79.54 25.00DS HGL+LOSS 26.00 87.07 26.00DS HGL+LOSS 27.00 94.00 27.00DS HGL+LOSS invert ; invert; invert; invert ; 23.00 > crest 24.00 > crest 25.00 > crest 26.00 > crest 27.00 > crest • * • no flow, no flow, no flow. no flow. 23.00 : Flow set 24.00 : Flow set 25.00 : Flow set 26.00 : Flow set 27.00 : Flow set ... ... Free Outfall ... ... Free Outfall Free Outfall ... ... Free Outfall .000 .000 Free Outfall to Downstream outlet. .000 .000 Free Outfall to Downstream outlet. .000 .000 Free Outfall to Downstream outlet..000 .000 Free Outfall to Downstream outlet. .000 .000 Free Outfall to Downstream outlet. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 •"• MM *•* iw MM HB «• j«« «M «••« «M M» <•» !• Ml m Type. . . . Name. . . . File. . . . Title.. . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Individual Outlet Curves Page 2 . 12 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F6 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 12.41 22.00 21.09 21.08 .006 .000 Free Outfall H =.91 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=o this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall" Full riser flow. Q=0 this opening. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type. . . . Name. . . . File Title. . . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Individual Outlet Curves Page 2 . 13 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F5 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 11.42 21.00 20.23 20.23 .001 .000 Free Outfall H = .77 12.41 22.00 21.09 21.08 .006 .000 Free Outfall H =.91 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. II * S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 m Type .... Name .... File Title. . . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Individual Outlet Curves Page 2 . 14 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F4 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 10.05 20.00 19.40 19.40 .000 .000 Free Outfall H =.60 11.42 21.00 20.23 20.23 .001 .000 Free Outfall H =.77 12.41 22.00 21.09 21.08 .006 .000 Free Outfall H =. 91 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. i m S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type. . . . ^ Name. . . . a. File Title. . . MB Pond WS. _ Elev. ft fp" ^^ 19. 20. 00 00 Individual Outlet Curves TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = Cl (Culvert-Circular) Page 2 . 15 Mannings open channel maximum capacity: 52.99 cfs UPstream ID's= SI, F6, F5, F4 DNstream ID = TW (Pond Outfall) Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs .00 10.05 ft 17 19 .96 .40 GRIT. DEPTH 21.00 22.84 20 .23 *" GRIT. DEPTH MM —•M mm _ m m m m m 22. 23. 24. 25. 26. 27. 00 00 00 00 00 00 37.22 61.75 71.20 79.54 87.07 94.00 21 INLET 23 INLET 24 INLET 25 INLET 26 INLET 27 INLET .08 ft Free Free ft +/-ft Free Free CONTROL Vh= .366ft Free Free CONTROL Vh= .608ft Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . Free .000 .000 Dcr= .000 Dcr= .000 Egu.l: HW =3.12 Free Submerged : HW Free Submerged : HW Free Submerged : HW Free Submerged : HW Free Submerged : HW .000 =5. .000 =6. .000 =7. .000 =8. .000 =9. +/-cfs .000 .000 1.003ft .000 1.538ft .000 dc=1.985 .000 04 .000 04 .000 04 .000 04 .000 04 ft Free Free +/-ft Outfall Outfall GRIT. DEPTH Free Outfall GRIT . DEPTH Free Ac=4 Free Free Free Free Free Outfall .9634 Outfall Outfall Outfall Outfall Outfall S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 m m Type.... Composite Rating Curve Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.16 ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. ft Q cfs Notes Converge TW Elev Error ft +/-ft Contributing Structures 19.00 .00 Free Outfall (no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1) 20.00 20.14 Free Outfall F3,C2,F4,C1 (no Q: S2,F2,S1,F6,F5) 21.00 45.65 Free Outfall F3,F2,C2,F5,F4,C1 (no Q: S2,S1,F6) 22.00 67.41 Free Outfall F3,F2,C2,F6,F5,F4,C1 (no Q: S2,S1) 23.00 123.50 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) 24.00 142.40 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) 25.00 159.06 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) 26.00 174.14 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) 27.00 187.99 Free Outfall S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Pond E-V-Q Table Name.... ROND ROUTE File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND ROUTE Page 3.01 HYG Dir Inflow HYG file Outflow HYG file LEVEL POOL ROUTING DATA C:\HAESTAD\PPK6\1239-P1\ 100YR.HYG - P1-P4 NONE STORED - ROND ROUTE OUT Pond Node Data = **" Pond Volume Data = t, Pond Outlet Data = _ No Infiltration «" INITIAL CONDITIONS P-VL Pl-VL TEST — Starting WS Elev = 19.00 ft , Starting Volume = 0 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs *"" Starting Total Qout= .00 cfs • Time Increment = 1.00 min m Elevation Outflow Storage Area ft cfs cu.ft acresm m M" m m m It 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 .00 20.14 45.65 67.41 123.50 142.40 159.06 174.14 187.99 0 13737 29146 46421 65668 86995 110506 136189 164015 .2979 .3331 .3748 .4188 .4653 .5143 .5657 .6139 .6641 Infilt. cfs .00 .00 .00 .00 .00 .00 .00 .00 .00 Q Total Cfs .00 20.14 45.65 67.41 123.50 142.40 159.06 174.14 187.99 2S/t + 0 cfs .00 478.03 1017.19 1614.78 2312.44 3042.21 3842.60 4713.77 5655.16 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Pond Routing Summary Page 3.02 Name ROND ROUTE File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND ROUTE LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPK6\1239-P1\ Inflow HYG file = 100YR.HYG - P1-P4 Outflow HYG file = NONE STORED - ROND ROUTE OUT Pond Node Data = P-VL Pond Volume Data = Pl-VL Pond Outlet Data = TEST No Infiltration INITIAL CONDITIONS Starting WS Elev = 19.00 ft Starting Volume = 0 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY ==================== Peak Inflow = 138.00 cfs at 17.00 min Peak Outflow = 104.42 cfs at 25.00 min Peak Elevation = 22.66 ft Peak Storage = 58894 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 0 + HYG Vol IN = 211140 - Infiltration = 0 - HYG Vol OUT = 211139 - Retained Vol = 2 Unrouted Vol =- cu.ft (.000% of Inflow Volume) ** S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Type.... Detention Time Name ROND ROUTE File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPKTitle... POND ROUTE Page 3.03 HYG Dir Inflow HYG file Outflow HYG file Pond Node Data Pond Volume DataPond Outlet Data No Infiltration DETENTION TIMES SUMMARY C:\HAESTAD\PPK6\1239-P1\ 100YR.HYG - P1-P4 NONE STORED - ROND ROUTE P-VL Pl-VL TEST OUT APPROXIMATE DETENTION TIME Tp, Outflow + Infilt. = Tp, Total Inflow = Peak to Peak = Qout+Infilt. Centroid = Inflow Centroid = Centroid to Centroid = Weighted Avg. Plug Time = Max.Plug Vol. Plug Time = Max.Inflow Plug Volume = 25.00 min 17.00 min 8.00 min 33.12 min 22.67 min 10.46 min 10.73 min 8.41 min 8157 cu.ft (From 17.00 to 18.00 min) Date: 10.01.1998 Type.... Pond Routed HYG (total out) Name.... ROND ROUTE Page 3.04 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND ROUTE POND ROUTED TOTAL OUTFLOW HYG... HYG file = HYG ID = ROND ROUTE OUT HYG Tag = Peak Discharge = Time to Peak = HYG Volume 104.42 cfs 25.00 min 211139 cu.ft Time min .00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 125.00 130.00 135.00 140.00 145.00 150.00 155.00 Time on .00 7.73 28.00 54.79 90.62 104.42 98.33 83.94 66.82 56.45 42.16 25.77 16.13 10.39 6.69 4.31 2.77 1.79 1.15 .74 .48 .31 .20 .13 .08 .05 .03 .02 .01 .01 .01 .00 HYDROGRAPH ORDINATES Output Time increment left represents time for .34 10.84 33.42 59.96 95.96 104.27 95.90 80.56 65.05 53.97 38.36 23.33 14.77 9.51 6.13 3.95 2.54 1.64 1.05 .68 .44 .28 .18 .12 .08 .05 .03 .02 .01 .01 .01 .00 1.34 14.38 39.09 65.35 99.78 103.50 93.20 77.07 63.12 51.37 34.73 21.13 13.53 8.71 5.61 3.61 2.33 1.50 .97 .62 .40 .26 .17 .11 .07 .04 .03 .02 .01 .01 .00 .00 (cfs) = 1.00 min first value 2.93 18.29 44.99 74.21 102.33 102.20 90.29 73.49 61.04 48.66 31.44 19.24 12.39 7.98 5.14 3.31 2.13 1.37 .88 .57 .37 .24 .15 .10 .06 .04 .03 .02 .01 .01 .00 .00 in each row. 5.08 22.86 49.85 83.49 103.82 100.45 87.20 69.83 58.81 45.86 28.47 17.62 11.34 7.31 4.70 3.03 1.95 " 1.26 .81 .52 .34 .22 .14 .09 .06 .04 .02 .02 .01 .01 .00 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 Appendix A A-l Index of Starting Page Numbers for ID Names P Pl-VL... 1.01 •»«__« TJ — —.«••.. «, ROND ROUTE... 3.01, 3.02, 3.03, 3.04 T TEST... 2.01, 2.07, 2.16 S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:31:07 Date: 10-01-1998 f 1 II II II II till f I II It I 1 II II f I II 240-j 0 Hydrograph RDND ROUTE DUT P1-P4 RDND ROUTE DUT 60 90 120 Tine (nin) 150 180 210 r T t i ri t i i i i t ii 11 rtii t i 1111 t i 11 r i t i 26.6- 25.9- 25.2- 24,5- 23,8- 23.1- 22.4- 21.7- 21,0- 20,3- 19.6- 18.9 0 30 Elev, vs, Flow TEST TEST 60 90 Flow 120 (cfs) 150 180 210 r i ri ri • i n r i f i t i f i f i t i f » t i f i -P Q- U Elev, vs, Volume . Pl-VL Pl-VL 0 40000 80000 120000 Volume (cu.ft) i • r 160000 200000 240000 280000 Detention Basin Route Calculations for 10-Year/6-Hour Storm Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Rain Dir: C:\HAESTAD\PPK6\UTIL\ JOB TITLE KELLY RANCH VILLAGE 'E' STORM DRAIN STUDY REPORT DETENTION BASIN A FOR 10-YEAR STORM S/N: HOMOL0102009 Project Design ConsultantsPond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Table of Contents i Table of Contents *********************** PONO VOLUMES *********************** Pl-VL Vol: Planimeter 1.01 ******************** OUTLET STRUCTURES ********************* TEST. , Outlet Input Data 2 .01 Individual Outlet Curves 2.07 Composite Rating Curve 2.16 *********************** POND ROUTING *********************** ROUTE 2 - 10YR. . Pond E-V-Q Table 3.01 Pond Routing Summary 3.02 Detention Time 3.03 Pond Routed HYG (total out) 3.04 *" S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Vol: Planimeter Name.... Pl-VL File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 VOLUME Page 1.01 POND VOLUME CALCULATIONS Planimeter scale: 40.00 ft/in Elevation (ft) 19.00 20.00 25.00 30.00 Planimeter (sq.in) 8.110 9.070 15.400 22.500 Area Al+A2+sqr (A1*A2) Volume (acres) (acres) (cu.ft) .2979 .3331 .5657 .8264 .0000 .9461 1.3329 2.0758 0 13737 96769 150705 Volume Sum (cu.ft) 0 13737 110506 261212 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes, Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt.(Areal*Area2)) where: ELI, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for ELI, EL2, respectively Volume = Incremental volume between ELI and EL2 S/N: HOMOL0102009 Project Design Consultants • Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.01 REQUESTED POND WS ELEVATIONS: Min. Elev.= Increment = Max. Elev.= 19.00 ft 1.00 ft 27.00 ft ********************************************** OUTLET CONNECTIVITY ********************************************** > Forward Flow Only (Upstream to DnStream) < Reverse Flow Only (DnStream to Upstream) < > Forward and Reverse Both Allowed Structure Stand Pipe Orifice-Area Orifice-Area Culvert-Circular Stand Pipe Orifice-Area Orifice-Area Orifice-Area Culvert-Circular TW SETUP, DS Channel No. S2 F3 F2 C2 SI F6 F5 F4 Cl Outfall C2 C2 C2 TW Cl Cl Cl Cl TW El, ft 22.000 19.000 20.000 17.960 22.000 21.000 20.000 19.000 17.960 E2, ft 27.000 27.000 27.000 27.000 27.000 27.000 27.000 27.000 27.000 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Outlet Input Data Name. . . . TEST File ---- C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.02 OUTLET STRUCTURE INPUT DATA Structure ID Structure Type = S2 = Stand Pipe # of Openings Invert Elev. Diameter Orifice Area Orifice Coeff. Weir Length Weir Coeff. K, Submerged K, Reverse Kb, Barrel Barrel Length Mannings n 22.00 ft 48.00 in 12.5664 sq.ft .600 12.57 ft 3.490 .000 1.000 .000000 (per ft of full flow) .00 ft .0000 Structure ID Structure Type F3 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 6 19.00 ft .4500 sq.ft 19.67 ft 19.00 ft .600 Structure ID Structure Type F2 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 20.00 ft .4500 sq.ft 20.67 ft 20.00 ft .600 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST Page 2.03 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Structure ID Structure Type = C2 = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert = Dnstream Invert = Horiz. Length = Barrel Length = Barrel Slope = OUTLET CONTROL DATA. Mannings n = Ke Kb Kr HW Convergence = INLET CONTROL DATA.. Equation form = Inlet Control K Inlet Control M Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 36.00 in 17.96 ft 17.00 ft 180.00 ft 180.00 ft .00533 ft/ft .0130 .2000 .007228 .2000 .001 1 .0098 2.0000 .03980 .6700 1.158 1.304 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 21.43 ft > Flow = 42.85 cfs At T2 Elev = 21.87 ft > Flow = 48.97 cfs S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.. Name.. B. File.. Title. Outlet Input Data TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Page 2.04 Structure ID Structure Type SI Stand Pipe # of Openings Invert Elev. Diameter Orifice Area Orifice Coeff. Weir Length Weir Coeff. K, Submerged K, Reverse Kb,Barrel Barrel Length Mannings n 22.00 ft 48.00 in 12.5664 sq.ft .600 12.57 ft 3.490 .000 1.000 .000000 (per ft of full flow) .00 ft .0000 Structure ID Structure Type F6 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 6 21.00 ft .4500 sq.ft 21.67 ft 21.00 ft .600 Structure ID Structure Type F5 Orifice-Area # of Openings Invert Elev. Area Top of Orifice Datum Elev. Orifice Coeff. 20.00 ft .4500 sq.ft 20.67 ft 20.00 ft .600 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Outlet Input Data Page 2.05 Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Structure ID = F4 Structure Type = Orifice-Area # of Openings = 6 Invert Elev. = 19.00 ft Area = .4500 sq.ft Top of Orifice = 19.67 ft Datum Elev. = 19.00 ft Orifice Coeff. = .600 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Outlet Input Data Name.... TEST Page 2.06 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES OUTLET STRUCTURE INPUT DATA Structure ID Structure Type = Cl = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert = Dnstream Invert = Horiz. Length = Barrel Length = Barrel Slope = OUTLET CONTROL DATA.. Mannings n = Ke Kb Kr HW Convergence = # X-Sections = INLET CONTROL DATA... Equation form = Inlet Control K Inlet Control M = Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 36.00 in 17.96 ft 17.00 ft 176.00 ft 176.00 ft .00545 ft/ft .0130 .2000 007228 .2000 .001 11 1 .0098 2.0000 .03980 .6700 1.158 1.304 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft (user defined) Use unsubmerged inlet control Form 1 equ. below Tl elev. *• use submerged inlet control Form 1 equ. above T2 elev. |i In transition zone between unsubmerged and submerged inlet control, |l interpolate between flows at Tl & T2... At Tl Elev = 21.43 ft > Flow = 42.85 cfs At T2 Elev = 21.87 ft > Flow = 48.97 cfs Structure ID Structure Type = TW - TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Min. TW Max. TW Min. HW Max. HW Min. Q Max. Q Iterations= tolerance = tolerance = tolerance = tolerance = tolerance = tolerance = 30 .01 ft .01 ft .01 ft .01 ft .10 cfs .10 cfs S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Tiroe: 12:16:39 Date: 10-01-1998 IK, #* rL Type .... Name. . . . File. . . . Title. . . „.«• «*« Pond WS. Elev. ft M" 19 . 00 <** 20.00 .-21.00 22.00 w 23.00 24.00*«• 25.00P«I ^ 26.00 27.00 Individual Outlet Curves Page 2.07 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = S2 (Stand Pipe) Upstream ID = (Pond Water Surface) DNstream ID = C2 (Culvert-Circular) Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 61.75 23.00 23.00 23.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 71.19 24.00 24.00 24.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 79.52 25.00 25.00 25.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 87.07 26.00 26.00 26.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 94.00 27.00 27.00 27.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. S/N: HOMOL0102009 Project Design Consultants ,•„ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 HP* ill Type.... Individual Outlet Curves Page 2.08 Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F3 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = C2 (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft +/-cfs ft +/-ft 19.00 .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 20.00 10.09 20.00 19.40 19.41 .008 .000 Free Outfall H =.60 21.00 11.41 21.00 20.23 20.23 .001 .000 Free Outfall TT = 77 22.00 15.09 22.00 20.65 20.65 .001 .000 Free Outfall H =1.35 23.00 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 24.00 .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 25.00 .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 26.00 .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 27.00 .00 27.00 27.00 27.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 w k Type.... Individual Outlet Curves Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.09 JIM II RATING TABLE FOR ONE OUTLET TYPE Structure ID = F2 (Orifice-Area) Pond WS. Elev. ft 19.00 Upstream ID = DNstream ID = C2 NUMBER OF OPENINGS EACH FLOW = SUM OF Device (into) Converge Q HW HGL DS HGL cfs .00 ft • • • WS below an 20.00 .00 • • • WS below an 21. 22. 23. 24. 25. 26. 27. 00 00 00 00 00 00 00 11.41 15.09 .00 .00 .00 .00 .00 21. H =.77 22. H =1.35 23. 24. 25. 26. 27. 00 00 00 00 00 00 00 ft • • • invert • • • invert 20.23 20.65 23.00 24.00 25.00 26.00 27.00 (Pond Water Surface) (Culvert-Circular) = 6 OPENINGS X FLOW FOR ONE OPENING Next DS HGL Q SUM DS Chan. TW DS HGL Error Error TW Error ft +/-ft • ••• • • +/-cfs »* • ft +/-ft Free Outfall ; no flow. • ••• • ••• •Free Outfall ; no flow. 20 20 23 Full 24 Full 25 Full 26 Full 27 Full .23 .65 .00 riser .00riser .00 riser .00 riser .00 riser .001 .001 .000 flow. .000 flow. .000 flow. .000 flow. .000 flow. * • • Q=0 • Q=0 • Q=0 • Q=0 •Q=0 000 000 000 this 000 this 000 this 000 this 000 this Free Outfall Free Outfall Free Outfall opening . Free Outfall opening . Free Outfall opening . Free Outfall opening . Free Outfall" opening. iW S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type. . . . Name. . . . mm File. . . . Title. . . «MT k» tM Pond WS. ., Elev.w «__ 19 .00 Individual Outlet Curves TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = C2 (Culvert-Circular) Mannings open channel maximum capacity: 52.39 UPstream ID's= S2, F3, F2 DNstream ID = TW (Pond Outfall) Device (into) Converge Next DS HGL Q SUM Q HW HGL DS HGL DS HGL Error Error cfs .00 ft ft * • ** • • REMARKS: Upstream 20 .00 10 .09 19 .41 Free10 CRIT. DEPTH CONTROL 21 .00 22 .82 20 .23 Free *" CRIT. DEPTH CONTROL te* 22 4. 23 » *i 24 *i 25 II 26 *" 27 illf .00 .00 .00 .00 .00 .00 30 61 71 79 87 94 .18 .75 .19 .52 .07 .00 20 INLET 23 INLET 24 INLET 25 INLET 26 INLET 27 INLET . 65 Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . . 00 Free CONTROL. . . .00 Free CONTROL. . . .00 Free CONTROL. . . ft +/-ft • • •* * * HW & DNstream TW < Free Vh= .367ft Free Vh= .608ft Free Equ.l: HW =2 Free Submerged : Free Submerged : Free Submerged : Free Submerged : Free Submerged : .000 Dcr= .000 Dcr= .000 .69 .000 HW =5. .000 HW =6. .000 HW =7. .000 HW =8. .000 HW =9. +/-cfs •• • Page 2 . 10 cfs DS Chan. TW TW Error ft Free +/-ft Outfall Inv.El 1. 1. .004 005ft .004 538ft .003 dc=1.780 04 04 04 04 04 .000 .000 .000 .000 .000 Free Outfall CRIT . DEPTH Free Outfall CRIT. DEPTH Free Ac= Free Free Free Free Free Outfall 4.3699 Outfall Outfall Outfall Outfall Outfall 11 ii ••r S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 in Type.... Individual Outlet Curves Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 2.11 m m RATING TABLE FOR ONE OUTLET TYPE Structure ID = SI (Stand Pipe) f« ii «tii•P **•• in w HMt *•hi? **» Pond WS. Elev. ft 19 20 21 22 23 24 25 26 27 .00 .00 .00 .00 .00 .00 .00 .00 .00 Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) Device (into) Converge Next DS HGL Q SUM Q HW HGL DS HGL DS HGL Error Error cfs ft ft ft +/-ft +/-cfs • • • • 61. 71. 79. 87. 94. 00 00 00 00 75 20 54 07 00 WS WS WS WS DS DS DS DS DS * • • below an • • • below an • • • below an • • * below an 23.00 HGL+Loss 24.00 HGL+Loss 25.00 HGL+LOSS 26.00 HGL+LOSS 27.00 HGL+LOSS invert ; invert ; • • • invert ; • • • invert ; 23.00 > crest: 24.00 > crest: 25.00 > crest: 26.00 > crest: 27.00 > crest: no flow. no flow. • * • no flow. * • • no flow. 23.00 Flow set 24.00 Flow set 25.00 Flow set 26.00 Flow set 27.00 Flow set • • • • • • • * • • • • .000 • • • • • • • • • • • • .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream .000 .000 to Downstream DS Chan. TW TW Error ft +/-ft Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall outlet . Free Outfall outlet. Free Outfall outlet. Free Outfall outlet. Free Outfall outlet. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Wtf nm MM 4* IP* M *• IN -m Type. . . . Name. . . . File. . . . Title.. . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Individual Outlet Curves Page 2.12 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F6 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into) Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 12.41 22.00 21.09 21.08 .006 .000 Free Outfall H =.91 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. h S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 « fft 11 f* i* f" t. •i* !«* H •V Type. . . . Name. . . . File Title. . . Pond WS. Elev. ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 individual Outlet Curves Page 2.13 TEST C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = F5 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS X FLOW FOR ONE OPENING Device (into), Converge Next DS HGL Q SUM DS Chan. TW Q HW HGL DS HGL DS HGL Error Error TW Error cfs ft ft ft +/-ft +/-cfs ft +/-ft .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. .00 ... ... ... ... ... Free Outfall WS below an invert; no flow. 11.42 21.00 20.23 20.23 .001 .000 Free Outfall H =.77 12.41 22.00 21.09 21.08 .006 .000 Free Outfall H =.91 .00 23.00 23.00 23.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 24.00 24.00 24.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 25.00 25.00 25.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 26.00 26.00 26.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. .00 27.00 27.00 27.00 .000 .000 Free Outfall" Full riser flow. Q=0 this opening. S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Individual Outlet Curves Page 2.14 Name.... TEST fa, File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES <" RATING TABLE FOR ONE OUTLET TYPE 1* Structure ID = F4 (Orifice-Area) Upstream ID = (Pond Water Surface) DNstream ID = Cl (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS x FLOW FOR ONE OPENING fw j|^£IH •m ^ Mv' ' m f* M ~ fat ** M fm JHT Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft +/-cfs ft +/-ft 19. 20. 21. 22. 23. 24. 25. 26. 27. S/N: Pond 00 .00 ... WS below an 00 10.05 20.00 H =.60 00 11.42 21.00 H =.77 00 12.41 22.00 H =.91 00 .00 23.00 00 .00 24.00 00 .00 25.00 00 .00 26.00 00 .00 27.00 HOMOL0102009 Project Pack Ver: 8-01-98 (61) • • • • • • invert; no flow. 19.40 19.40 20.23 20.23 21.09 21.08 23.00 23.00 Full riser 24.00 24.00 Full riser 25.00 25.00 Full riser 26.00 26.00 Full riser 27.00 27.00 Full riser Design Consultants • • • • .000 .001 .006 .000 flow. Q=0 .000 flow. Q=0 .000 flow. Q=0 .000 flow. Q=0 .000 flow. Q=0 Compute Time: 12 : 16 : 39 Free Outfall 000 Free Outfall 000 Free Outfall 000 Free Outfall 000 Free Outfall this opening. 000 Free Outfall this opening. 000 Free Outfall this opening . 000 Free Outfall this opening. 000 Free Outfall this opening. Date: 10-01-1998 w fa* Type.... Individual Outlet Curves Name. . . . TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES RATING TABLE FOR ONE OUTLET TYPE Structure ID = Cl (Culvert-Circular) Page 2.15 Mannings open channel maximum capacity: 52.99 cfs — UPstream ID's= SI, F6, F5, F4m DNstream ID = TW (Pond Outfall) (M Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW IP. Elev. Q HW HGL DS HGL DS HGL Error Error TW Error W ^ ft cfs ft ft 19.00 .00 17.96 Free 20.00 10.05 19.40 Free ft +/-ft Free Free CRIT. DEPTH CONTROL Vh= .366ft 21.00 22.84 20.23 Free Free * f CRIT. DEPTH CONTROL Vh= .608ftm IP •• F£ f* IM f» m an *» IM 22.00 37.22 21.08 Free INLET CONTROL. . . 23.00 61.75 23.00 Free INLET CONTROL. . . 24.00 71.20 24.00 Free INLET CONTROL. . . 25.00 79.54 25.00 Free INLET CONTROL. . . 26.00 87.07 26.00 Free INLET CONTROL. . . 27.00 94.00 27.00 Free INLET CONTROL. . . Free .000 .000 +/-cfs .000 .000 Dcr= 1.003ft .000 Dcr= .000 Equ.l: HW =3.12 Free Submerged : HW Free Submerged : HW Free Submerged : HW Free Submerged : HW Free Submerged : HW .000 — e^^ ~J • .000 =6. .000 =7. .000 =8. .000 =9. .000 1.538ft .000 dc=1.985 .000 04 .000 04 .000 04 .000 04 .000 04 ft +/-ft Free Outfall Free Outfall CRIT . DEPTH Free Outfall CRIT . DEPTH Free Outfall Ac=4.9634 Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall - S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Composite Rating Curve Name.... TEST File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title. .. POND-1 OUTLET STRUCTURES Page 2.16 ***** COMPOSITE OUTFLOW SUMMARY **** ^ WS Elev, Elev. •* ft 19. - 20. 21. *• 22. 23. H*> 24. 1- 25'* 26. 27. «H in *• 00 00 00 00 00 00 00 00 00 Total Q Qcfs .00 20.14 45.65 67.41 123.50 142.40 159.06 174.14 187.99 Notes TW Elev Error ft +/-ft Contributing structures Free Free Free Free Free Free Free Free Free Outfall Outfall Outfall Outfall Outfall Outfall Outfall Outfall Outfall (no F3 F3 F3 S2 S2 S2 S2 S2 ,C2 ,F2 ,F2 ,C2 ,C2 ,C2 ,C2 ,C2 Q: S2,F3,F2,C2 ,F4,C1 (no Q: ,C2,F5,F4,C1 ,C2,F6,F5,F4,C ,S1,C1 (no Q: ,S1,C1 (no Q: ,S1,C1 (no Q: ,S1,C1 (no Q: ,S1,C1 (no Q: ,S1,F6, S2,F2, (no Q: 1 (no F3,F2, F3,F2, F3,F2, F3,F2, F3,F2, F5, SI, S2, Q:F6, F6, F6, F6, F6, F4, F6, SI, S2, F5, F5, F5, F5, F5, Cl) F5) F6) SI) F4) F4) F4) F4) F4) b. r» L S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 *"• to Type.... Pond E-V-Q Table Name ROUTE 2 - 10YR File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... THE ROUTE FOR 10-YR STORM LEVEL POOL ROUTING DATA HYG Dir = C:\HAESTAD\PPK6\1239-P1\ Inflow HYG file = P1-4.HYG - 10 YEAR Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT Pond Node Data = P-VL Pond Volume Data = Pl-VL Pond Outlet Data = TEST ^ No Infiltration *• INITIAL CONDITIONS Page 3.01 to •1*» to *In Pi•V ?*ii «M Starting WS Elev 19.00 ft Starting Volume - 0 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment Elevation ft 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 Outflow Cfs .00 20.14 45.65 67.41 123.50 142.40 159.06 174.14 187.99 = 1.00 min Storage cu.ft 0 13737 29146 46421 65668 86995 110506 136189 164015 Area acres .2979 .3331 .3748 .4188 .4653 .5143 .5657 .6139 .6641 Infilt. cfs .00 .00 .00 .00 .00 .00 .00 .00 .00 Q Total Cfs .00 20.14 45.65 67.41 123.50 142.40 159.06 174.14 187.99 2S/t + 0 cfs .00 478.03 1017.19 1614.78 2312.44 3042.21 3842.60 4713'. 77 5655.16 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Pond Routing Summary Page 3.02 Name ROUTE 2 - 10YR File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... THE ROUTE FOR 10-YR STORM LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPK6\1239-P1\ Inflow HYG file = P1-4.HYG - 10 YEAR Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT Pond Node Data «= P-VL Pond Volume Data = Pl-VL Pond Outlet Data = TEST No Infiltration INITIAL CONDITIONS Starting WS Elev = 19.00 ft Starting Volume = 0 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 98.00 cfs at 17.00 min Peak Outflow = 66.40 cfs at 28.00 min Peak Elevation = 21.95 ft Peak Storage = 45582 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 0 + HYG Vol IN = 149939 - Infiltration = 0 - HYG Vol OUT = 149937 - Retained Vol = 2 Unrouted Vol =- cu.ft (.000% of Inflow Volume) ** S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Detention Time Name ROUTE 2 - 10YR File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... THE ROUTE FOR 10-YR STORM DETENTION TIMES SUMMARY HYG Dir = C:\HAESTAD\PPK6\1239-P1\ Inflow HYG file = P1-4.HYG - 10 YEAR Outflow HYG file = NONE STORED - ROUTE 2 - 10YOUT Pond Node Data = P-VL Pond Volume Data = Pl-VL Pond Outlet Data = TEST No Infiltration Page 3.03 APPROXIMATE DETENTION TIME Tp, Outflow + Infilt. = Tp, Total Inflow = Peak to Peak = Qout+Infilt. Centroid Inflow Centroid = Centroid to Centroid = Weighted Avg. Plug Time = Max.Plug Vol. Plug Time =Max.Inflow Plug Volume = 28.00 min17.00 min 11.00 min 33.84 min 22.67 min 11.18 min 11.47 min 9.30 min 5794 cu.ft (From 17.00 to 18.00 min) S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Type.... Pond Routed HYG (total out) Name ROUTE 2 - 10YR Page 3.04 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... THE ROUTE FOR 10-YR STORM f" ta POND ROUTED TOTAL OUTFLOW HYG... HYG file = HYG ID = ROUTE 2 - 10YOUT HYG Tag = Peak Discharge = Time to Peak = HYG Volume 66.40 Cfs 28.00 min 149937 cu.ft Time min .00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 125.00 130.00 135.00 140.00 145.00 150.00 155.00 Time on .00 5.49 19.29 40.34 57.86 65.37 65.98 61.86 54.50 44.70 30.92 19.03 12.26 7.89 5.08 3.27 2.11 1.36 .87 .56 .36 .23 .15 .10 .06 .04 .03 .02 .01 .01 .00 .00 HYDROGRAPH ORDINATES Output Time increment left represents time for .24 7.70 23.09 44.98 60.05 65.96 65.48 60.61 52.73 41.97 28.13 17.43 11.22 7.23 4.66 3.00 1.93 1.24 .80 .52 .33 .21 .14 .09 .06 .04 .02 .02 .01 .01 .00 .95 10.21 27.18 48.78 61.87 66.30 64.80 59.24 50.89 39.22 25.46 15.96 10.28 6.62 4.26 2.75 1.77 1.14 .73 .47 .30 .20 .13 .08 .05 .03 .02 .01 .01 .01 .00 (cfs) =1.00 min first value 2.08 12.99 31.42 52.26 63.35 66.40 63.96 57.76 48.97 36.47 23.05 14.62 9.41 6.06 3.90 2.51 1.62 1.04 .67 .43 .28 .18 .12 .07 .05 .03 .02 .01 .01 .01 .00 in each row. 3.61 16.02 35.82 55.28 64.50 66.29 62.98 56.17 46.98 33.70 20.87 13.39 8.62 5.55 3.57 2.30 1.48 .95 .61 .40 .26 .16 .11 .07 .04 .03 .02 .01 .01 .00 .00 S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 Appendix A Index of Starting Page Numbers for ID Names P •« Pl-VL. . . 1.01 to R ROUTE 2 - 10YR... 3.01, 3.02, 3.03, •" 3.04 ^ TEST... 2.01, 2.07, 2.16 S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Time: 12:16:39 Date: 10-01-1998 r i ri r i rr r i r i r r i i ri ri r i f i ri ri r i r i r i f i f i in Q-u o 0 30 Hydrograph RDUTE 2 - 10YDUT 108n 99- 90- 81- 72- 63- 54- 45- 36- 27- 18- 9- AA\VJ A\i \\J \\1 \\I \\ / \ V n V \ — 10 YEAR RDUTE 2 - 10YDUT 60 90 120 Tine (n i n) 150 180 210 i r i f i r i r i t i i i f f i r i f i i i f i i i f i i i f i Elev, vs, Flow TEST TEST 30 60 90 120 Flow (cfs) 150 180 210 Tailwater Condition Calculations r Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Rain Dir: C:\HAESTAD\PPK6\UTIL\ JOB TITLE KELLY RANCH VILLAGE 'E' STORM DRAIN STUDY REPORT DETENTION BASIN A FOR 100-YEAR STORM CHECK OUTLET Q AT 19.2 TAILWATER CONDITION S/N: HOMOL0102009 Project Design Consultants ^ Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998 -k. - Table of Contents i Table of Contents ******************** OUTLET STRUCTURES ********************* TAILWATER CHECK Composite Rating Curve 1.01 ** S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998t^ Type.... Composite Rating Curve Name TAILWATER CHECK File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... POND-1 OUTLET STRUCTURES Page 1.05 ***** COMPOSITE OUTFLOW SUMMARY **** CUMULATIVE HGL CONVERGENCE ERROR .006 (+/- ft) FLOW PATH: Elev= 21.5; Branch: F3-C2-TW * Max. convergence errors shown may also occur for flow paths other than the ones listed above. WS Elev, Total Q Notes Elev. ft 19.00 19.20 20.00 21.00 21.50 22.00 22.66 22.68 22.70 23.00 24.00 25.00 26.00 27.00 Q cfs .00 .00 8.46 21.65 27.89 46.24 103.00 104.27 105.54 130.93 164.01 184.12 202.25 218.87 TW Elev ft 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20 converge Error +/-ft .000 .000 .002 .003 .006 .001 .003 .004 .004 .000 .000 .000 .000 .000 Contributing Structures (no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1) (no Q: S2,F3,F2,C2,S1,F6,F5,F4,C1) F3,C2,F4,C1 (no Q: S2 ,F2 , S1,F6, F5) F3,F2/C2,F5,F4,C1 (no Q: S2,S1,F6) F3,F2,C2,F6,F5,F4,C1 (no Q: S2,S1) S2,F3,F2,C2,F6,F5,F4,C1 (no Q: SI) S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2) S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2) S2,C2,S1,F6,F5,F4,C1 (no Q: F3,F2) S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) S2,C2,S1,C1 (no Q: F3 ,F2,F6,F5, F4) S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) S2,C2,S1,C1 (no Q: F3,F2,F6,F5,F4) S2,C2,S1,C1 (no Q: F3 ,F2 ,F6,F5,F4) S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 4^ Date: 10-01-1998 Appendix A A-l Index of Starting Page Numbers for ID Names "* S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 14:05:46 Date: 10-01-1998 Underdrain Culvert Calculations for Basin A3 •PI to Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Rain Dir: .\util\ JOB TITLE KELLY RANCH VILLAGE 'E' STORM DRAIN STUDY REPORT SUB BASIN A3 CHECK EMERGENCY CULVERT CAPACITY S/N: HOMOL0102009 Project Design Consultants r~ Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 Table of Contents i Table of Contents ******************** OUTLET STRUCTURES ********************* UNDERDRAIN CULVT Outlet Input Data 1.01 Composite Rating Curve 1.04 'L,S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 r^ Type.... Outlet Input Data Page 1.01 Name UNDERDRAIN CULVT File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN REQUESTED POND WS ELEVATIONS: Min. Elev.= 38.94 ft Increment = 1.00 ft Max. Elev.= 43.50 ft Spot Elevations, ft 43.50 ********************************************** OUTLET CONNECTIVITY ********************************************** > Forward Flow Only (Upstream to DnStream) < Reverse Flow Only (DnStream to Upstream) < > Forward and Reverse Both Allowed Structure No. Outfall El, ft E2, ft Culvert-Circular Cl > TW 38.940 43.500 TW SETUP, DS Channel S/N: HOMOL0102009 Project Design Consultants p Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 Type.... Outlet Input Data Name UNDERDRAIN CULVT File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN Page 1.02 OUTLET STRUCTURE INPUT DATA P A^ij Structure ID Structure Type = Cl = Culvert-Circular No. Barrels = Barrel Diameter = Upstream Invert = Dnstream Invert = Horiz. Length = Barrel Length = Barrel Slope = OUTLET CONTROL DATA. Mannings n = Ke Kb Kr HW Convergence = INLET CONTROL DATA.. Equation form = Inlet Control K = Inlet Control M Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 12.00 in 38.94 ft 39.09 ft 25.00 ft 25.00 ft -.00600 ft/ft .0130 .2000 031274 .2000 .001 1 .0045 2.0000 .03170 .6900 1.098 1.200 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 40.04 ft > Flow = 2.75 cfs At T2 Elev = 40.14 ft > Flow - 3.14 cfs S/N: HOMOL0102009 Project Design Consultants *" Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 Type.... Outlet Input Data Page 1.03 Name UNDERDRAIN CULVT File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs S/N: HOMOL0102009 Project Design Consultants •*" Pond Par-V V«a-r? a-m-QR (&1\ fVvmrni-he Time- DQ;2n«Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 m m Type.... Composite Rating Curve Name ---- UNDERDRAIN CULVT File ---- C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN Page 1.04 ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. ft Q cfs Notes Converge TW Elev Error ft +/-ft Contributing Structures 38.94 39.94 40.94 41.94 42.94 43.50 .00 Free Outfall 1.66 Free Outfall 4.25 Free Outfall 6.11 Free Outfall 7.56 Free Outfall 8.27 Free Outfall None contributing Cl Cl Cl Cl Cl S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 Appendix A A-l Index of Starting Page Numbers for ID Names UNDERDRAIN CULVT. . . 1.01, 1.04 «•* S/N: HOMOL0102009 Project Design Consultants '! Pond Pack Ver: 8-01-98 (61) Compute Time: 09:20:07 Date: 09-04-1998 Underdrain Culvert Calculations for Basins C6 and C7 mu *" Job File: C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK «. Rain Dir: .\util\ JOB TITLE KELLY RANCH VILLAGE 'E' STORM DRAIN STUDY REPORT SUB BASIN C6 & C7 CHECK EMERGENCY CULVERT CAPACITY m pt m S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998 Table of Contents int. Table of Contents ******************** OUTLET STRUCTURES ********************* * UNDERDRAIN CVT-1 Outlet Input Data 1.01 Composite Rating Curve 1.04 it !*. i' •pr In S/N: HOMOL0102009 Project Design Consultants *"" --Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998 Type.... Outlet Input Data Name UNDERDRAIN CVT-1 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN Page 1.01 REQUESTED POND WS ELEVATIONS: Min. Elev.= Increment = Max. Elev.= 27.30 ft 1.00 ft 30.60 ft Spot Elevations, ft 30.60 ********************************************** OUTLET CONNECTIVITY********************************************** > Forward Flow Only (Upstream to DnStream) < Reverse Flow Only (DnStream to Upstream) < > Forward and Reverse Both Allowed Structure Culvert-Circular TW SETUP, DS Channel No. Outfall El, ft E2, ft Cl > TW 27.300 30.600 .*» m S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998 Type. . . . Outlet Input Data Name ---- UNDERDRAIN CVT-1 Page 1.02 File ---- C: \HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN OUTLET STRUCTURE INPUT DATA Structure ID Structure Type = Cl = Culvert-Circular No. Barrels = Barrel Diameter - Upstream Invert = Dnstream Invert = Horiz. Length = Barrel Length = Barrel Slope = OUTLET CONTROL DATA.. Mannings n = Ke Kb Kr HW Convergence = INLET CONTROL DATA... Equation form = Inlet Control K = Inlet Control M Inlet Control c = Inlet Control Y Tl ratio (HW/D) T2 ratio (HW/D) Slope Factor = 12.00 in 27.30 ft 26.20 ft 30.00 ft 30.02 ft .03667 ft/ft .0130 .2000 .031274 .2000 .001 1 .0045 2.0000 .03170 .6900 1.076 1.179 -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below Tl elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At Tl Elev = 28.38 ft > Flow = 2.75 cfs At T2 Elev = 28.48 ft > Flow = 3.14 cfs S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998 «. Type.... Outlet Input Data Page 1.03 Name UNDERDRAIN CVT-1 tH File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK p- Title... 12" UNDERDRIAN *• OUTLET STRUCTURE INPUT DATA Structure ID = TWStructure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations^ 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs it • S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998 Type.... Composite Rating Curve Name UNDERDRAIN CVT-1 File C:\HAESTAD\PPK6\1239-P1\1239-P1.PPK Title... 12" UNDERDRIAN Page 1.04 ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. ft Qcfs NotesConverge TW Elev Errorft +/-ft Contributing Structures 27.30 28.30 29.30 30.30 30.60 .00 Free Outfall 2.35 Free Outfall 5.08 Free Outfall 6.73 Free Outfall 7.15 Free Outfall None contributing Cl Cl Cl Cl m m S/N: HOMOL0102009 Project Design Consultants Pond Pack Ver: 8-01-98 (61) Compute Time: 09:28:28 Date: 09-04-1998