HomeMy WebLinkAboutCT 00-16; Poinsettia Properties; Sewer Report; 2001-02-01SEWER REPORT
POINSETTIA PROPERTIES
PLANNING AREAS 2, 3 & 4
CARLSBAD, CALIFORNIA
CT 00-16
FEBRUARY 2001 2002
Prepared For:
JOHN LAING HOMES
895 Dove Street, Suite 110
Newport Beach, CA 92660
_y^\jM
PROJECTDESIGN CONSULTANTS
PLANNING « ENVIRONMENTAL » ENGINEERING • SrmviriVGPS
701 B Street, Suite 800, San Diego, CA 92101
619-235-6471 FAX 619-234-0349
Job No. 2068.00
Grego^Ek. ShieldsTPE RCE 42951
Registration Expires 07/15/03
Prepared By: TEH
Checked By: CT
DO-
TABLE OF CONTENTS
Page
I. Introduction 1
II. Design Criteria 3
III. Flow Calculations and Equations 4
IV. Conclusion 5
LIST OF FIGURES
Figure Page
1 Location Map 2
LIST OF TABLES
Table Page
1 Sewer Flow Calculations 6
2 Sewer Flow Calculations 7
APPENDIX
Appendix Page
1 Letter from City of Carlsbad, Public Works Engineering 8
2 Project Map 10
3 Memo from Glen Van Peski 12
ATTACHMENT
Exhibit A - Sewer System
REPORTV2068SR.DOC
I. INTRODUCTION
This sewer report has been prepared to document and validate the design for the proposed sewer
system associated with Poinsettia Properties Planning Areas 2, 3 and 4. The proposed
development is located in the City of Carlsbad, east of the San Diego Northern Railroad, west of
Avenida Encinas, south of Embarcadero Way, and north of Poinsettia Lane. It is approximately
0.25 miles west of Interstate 5, and about 14 miles south of State Route 78. Please refer to the
vicinity map on Page 2.
The project will accept the sewer flow from four different developments north, northwest, west,
and southwest (see Appendix 2 - Project Map) of the project. Two of the developments, the
north and northwest sites, will discharge their flow via an 8-inch pipeline at the north property
line. This incoming flow is calculated based on 400 dwelling units. The connection occurs at the
proposed Bay Lane (private), which intersects with Embarcadero Way (see Exhibit A - Sewer
System). The proposed development consists of 219 single-family lots, which will ultimately be
serviced by 6-inch, 8-inch, and 10-inch gravity sewer mains flowing to the proposed Interceptor
Sewer Pump Station at the southwest corner of the site. The pump station will also accept flows
from an 8-inch sewer main from the west. The development to the west and southwest will
discharge a flow equivalent to 229 dwelling units. The sewer pump station must, therefore, be
designed to lift the flow for a total of 849 dwelling units (see Appendix 1 - Letter from City of
Carlsbad, Public Works Engineering). The sewer pump station will then deliver the sewer flow
to the 21-inch sewer main described below.
In addition to the sewer system described above, a 21-inch sewer main will be routed through the
project. The sewer will enter the project site from the south (Poinsettia Lane) and run through the
proposed Sand Shell Avenue (private). From the cul-de-sac in Street 'D', it will connect to the
27-inch sewer trunk line described above. This 21-inch sewer line will accept the flows from the
sewer pump station via a 6-inch force main connecting to Access Hole 45 on Lot 226. Based on
the anticipated flow that will enter the pump station, a maximum discharge of 350 gpm will be
delivered through the force main into the 21-inch line at Access Hole 45.
REPORT/2068SR.DOC
CITY OF OCFANSfDE
HIGHWAY-J^/fl
pro iec {
site
CITY OF. YISTA
cirr or
SAN MARCOS
PACIFIC
OCFAN
Figure 1. Location Map
II. DESIGN CRITERIA
The design criteria used in this report was established by the Carlsbad Municipal Water District
and are listed in "Carlsbad Standard Sewer System Design Criteria and Standard Drawings and
Specifications" dated May 11, 1993. The following is a brief summary from the above-
mentioned standards for various pipe sizes:
1. Depth of Peak Flow for 10-inch dia. & smaller
2. Depth of Peak Flow for 10-inch dia. & larger
3. Minimum Slope for 10-inch Pipe
4. Desirable Slope for 10-inch Pipe
5. Minimum Slope for 8-inch Pipe
6. Desirable Slope for 8-inch Pipe
7. Ratio of Peak to Average Flow
8. Flow Per Unit
9. Minimum Velocity
10. Manning's n
= half diameter, therefore D/d < 0.50
= % diameter, therefore D/d < 0.75
= 0.28%
= 0.40%
= 0.40%
= 0.50%
= 2.5:1
= 220 GPD
= 2FPS
= 0.011
REPORT/2068SR DOC
III. FLOW CALCULATIONS AND EQUATIONS
Flow Velocities (V) and Normal Depths (dn) are calculated using iterative solutions of the
following equations:
Typical Cross Section
Q - Volumetric Flow = V x A
where:
A = Cross-Sectional Area of Flow
V = Flow Velocity
A = (R) x [6/2 - Sin(0/2) x Cos(9/2)]
where:
0 = 2xCos~1[(R-<4)/(R)]
dn - Normal Depth
V= (l.4&6/n)Rh
mSl/2 (Manning Equation)
where:
n = Manning Roughness Coefficient = 0.011
RH = Hydraulic Radius = A/PW
Pw = Wetted Perimeter = 6 x R
S = Slope of Pipe
REPORT/2068SR DOC
IV. CONCLUSION
It was determined that a 10-inch PVC pipe will be suitable to carry the cumulative sewer flow
generated by the offsite developments from the north and northwest of the project and the
proposed development. This flow will discharge into the proposed sewer pump station at the
southwest corner. All proposed 10-inch sewer pipes meet the criterion of d/D less than 0.50 at a
minimum slope of 0.28%, and maintaining a velocity of 2 fps. All other onsite sewer mains, with
the exception of the 21-inch by-pass main, will be 6-inch or 8-inch PVC pipes. The d/D criterion
for a 21-inch line is 0.75 or less. Table 2 shows that the maximum d/D in the 21-inch sewer line
is 0.57.
All access holes are per Carlsbad Standard Drawing SI. The 6-inch and 8-inch sewer pipes have
been designed to meet the d/D less than 0.50 requirement. Some pipe sections are unable to reach
a velocity of 2 fps due to minimal flows, but all sections maintain velocities greater than 1.50
fps. Velocities between 1.50 fps and 2 fps are acceptable per discussions in a plan check meeting
held on October 24, 2001.
Table 1 on the following page identifies the hydraulic results of the proposed sewer design.
A 20-foot vertical curve transition, with a 50% tangent slope in and a 2% tangent slope out, may
be used to connect to the deep 10-inch sewer main (see Appendix for memo from Glen Van
Peski dated August 31, 2001).
REPORT72068SR.DOC
CT 00-16
CARLSBAD DWG NO: 397-7
PDC JOB NUMBER: 2068.00
DESIGN DATE: 11/7/01
TODAY'S DATE: 2/6/02
TABLE 1 - SEWER FLOW CALCULATIONS
POINSETTIA PROPERTIES
FROM
C13
A42
A41
NCOMINC
A12
C7
A19
A11
A11
C6
A18
C12
A40
A39
A38
A37
A10
A10
C5
A17
C10
A36
A9
A9
C4
A16
A35
A34
A33
A8
A8
C3
A15
C9
A32
A7
A7
C2
A14
C8
A32
A6
A6
A5
C1
A13
A30
A29
A28
A27
A4
A4
C11
A26
A25
A24
A23
A22
A21
A20
A3
A3
A2
TO
A42
A41
A12
A12
A11
A19
A11
A11
A10
A18
A10
A40
A39
A38
A37
AID
A10
A9
A17
A9
A36
A9
A9
A8
A16
A8
A34
A33
A8
A8
A7
A15
A7
A32
A7
A7
A6
A14
A6
A32
A6
A6
A5
A4
A13
A4
A29
A28
A27
A4
A4
A3
A26
A25
A24
A23
A22
A21
A20
A3
A3
A2
A1
DWELLING UNITSJ
IN-LINE
7
8
0
400
8
7
0
0
0
6
0
8
11
6
9
0
0
2
5
0
5
0
0
2
4
0
12
7
0
0
2
4
0
5
0
0
3
4
0
4
0
0
5
6
3
0
13
10
5
0
0
3
5
7
6
6
5
3
10
1
0
2
0
TOTAL
7
15
15
415
423
7
7
430
430 J
6
6
8
19
25
34
34
470
472
5
5
5
5
482
484
4
4
12
19
19
507
509
4
4
5
5
518
521
4
4
4
4
529
534
540
3
3
13
23
28
28
571
574
5
12
18
24
29
32
42
43
617
619
619
FLOW
PER D.U.
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
TOTAL
D.U. POP
1540
3300
3300
91300
93060
1540
1540
94600
1320
1320
1760
4180
5500
7480
7480
103840
1100
1100
1100
1100
106480
880
880
2640
4180
4180
111980
880
880
1100
1100
114620
880
880
880
880
117480
118800
660
660
2860
5060
6160
6160
126280
1100
2640
3960
5280
6380
7040
9240
9460
136180
136180
TOTAL
POP
1540
3300
6600
97900
190960
1540
1540
94600
1320
1320
1760
5500
10181
17924
25658
103840
1100
1100
1100
1100
106480
880
880
3520
7700
4180
111980
880
880
1100
1100
114620
880
880
880
880
117480
236280
660
660
2860
7920
14080
20240
126280
1100
3740
7700
12980
19360
26400
35640
45100
136180
136180
PEAK/AVE
RATIO
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
PEAK FLOW
G.P.D.
3,850
8,250
16,500
244,750
477,400
3,850
3,850
236,500
3,300
3,300
4,400
13,750
25,453
44,810
64,145 j
259,600
2,750
2,750
2,750
2,750
266,200
2,200
2,200
8,800
19,250
10,450
279,950
2,200
2,200
2,750
2,750
286,550
2,200
2,200
2,200
2,200
293,700
590,700
1,650
1,650
7,150
19,800
35,200
50,600
315,700
2,750
9,350
19,250
32,450
48,400
66,000
89,100
112,750
340,450
340,450
C.F.S.
0.0060
0.0128
0.0255
0.3787
0.7387
0.0060
0.0060
0.3659
0.0051
0.0051
0.0068
0.0213
0.0394
0.0693
0.0993
0.4017
0.0043
0.0043
0.0043
0.0043
0.4119
0.0034
0.0034
0.0136
0.0298
0.0162
0.4332
0.0034
0.0034
0.0043
0.0043
0.4434
0.0034
0.0034
0.0034
0.0034
0.4545
0.9140
0.0026
0.0026
0.0111
0.0306
0.0545
0.0783
0.4885
0.0043
0.0145
0.0298
0.0502
0.0749
0.1021
0.1379
0.1745
0.5268
0.5268
PIPE
DIA (in)
6
8
8
8
10
6
6
10
6
6
8
8
8
8
8
10
6
6
6
6
10
6
6
8
8
8
10
6
6
8
8
10
6
6
6
6
10
10
6
6
8
8
8
8
10
8
8
8
8
8
8
8
8
10
10
ST
NAME
Seaward Ave
Seaward Ave
Seaward Ave
BayLn
Seaward Ave
Seaward Ave
~ Seaward Ave
Shoreline Dr
Sandside Ct
Sandside Ct
Waters End Dr
Waters End Dr
Sandside Ct
Sandside Ct
Sandside Ct
Shoreline Dr
Strand St
Strand St
Strand St
Strand St
Shoreline Dr
Saltgrass Ave
Saltgrass Ave
Clearwater St
Sallgrass Ave
Saltgrass Ave
Shoreline Dr
Coral Reef Ave
Coral Reef Ave
Coral Reef Ave
Coral Reef Ave
Shoreline Dr
Brookside Ct
Brookside Ct
Brookside Ct
Brookside Ct
Shoreline Dr
Shoreline Dr
Red Coral Ave
Red Coral Ave
Sweetwater St
Sweetwater St
Red Coral Ave
Red Coral Ave
Shoreline Dr
Waters End Dr
Waters End Dr
Waters End Dr
Waters End Dr
Waters End Dr
Waters End Dr/Sand Shell Ave
Sand Shell Ave
Sand Shell Ave
Sand Shell Ave
Sand Shell Ave
"FROM"
INV. STA.
8+46.66
7+48.24
4+89.66
4+49.90
1+00
2+11.51
1+00
1+00
2+04.95
5+57.13
3+60
7+65.99
5+00
2+70.00
3+17.21
1+00
2+08.81
3+85.02
2+71.08
5+33.99
1+00
2+10.82
1+90
5+33.05
2+60.82
7+51.03
1+00
2+1 1 .42
4+40
2+78.40
9+64.16
1+00
2+06.75
3+89.44
2+74.17
11+71.30
14+16.25
1+00
2+09.92
1+50
4+80
4+33.41
2+65.42
16+98.33
7+14.95
8+33.81
10+50
12+80.23
15+00
16+43.56
5+55.93
2+56.50
2+29.85
0+99.98
INV. EL.
50.38
46.96
39.25
34.79
34.01
42.60
38.14
33.26
40.75
36.55
54.92
48.98
43.78
39.50
37.15
32.57
40.00
36.18
46.70
42.70
31.87
40.30
35.87
47.80
40.94
35.76
31.18
40.84
35.84
46.97
40.22
30.50
44.43
40.26
47.80
40.01
29.83
29.06
39.47
34.00
48.83
42.23
36.41
34.52
27.57
54.79
50.04
45.71
41.11
38.32
36.59
35.95
33.04
26.91
26.47
"TO"
INV. STA.
7+48.24
4+89.66
4+49.90
2+58.32
2+40.43
2+11.51
2+40.43
3+17.21
2+04.95
2+31.41
3+60
1+00
5+00
2+70.00
2+31.41
5+33.99
2+08.81
2+35.02
2+71.08
2+35.02
7+51.03
2+10.82
2+35.82
5+32.99
2+60.82
2+35.82
9+64.16
2+11.42
2+43.24
2+78.40
2+43.24
11+71.30
2+04.20
2+39.44
2+74.17
2+39.44
14+16.25
16+98.33
2+09.92
2+37.15
4+80
8+21.55
2+65.42
2+37.15
19+09.90
8+33.81
10+50
12+80.23
15+00
16+43.56
5+55.93
2+56.50
2+29.85
0+99.98
INV. EL.
47.06
39.35
34.11
34.11
33.36
38.24
33.36
32.67
36.65
32.67
49.08
43.88
39.60
37.25
32.67
31.97
36.28
31.97
42.80
31.97
31.28
35.97
31.29
41.04
35.86
31.29
30.60
35.94
29.94
40.32
29.94
29.93
40.36
L 29.94
40.11
29.94
29.16
27.67
34.10
27.68
42.33
36.51
34.62
27.68
27.01
50.14
45.81
41.21
38.42
36.69
36.05
33.14
27.02
26.57
26.30
DIST BTWN
CL OF AH (ft)
258.58
39.76
209.47
111.51
28.92
217.21
104.95
26.46
197.13
260.00
265.99
230.00
38.59
216.78
108.81
26.21
113.94
36.06
217.04
110.82
25.00
342.99
272.23
25.00
213.13
111.42
31.82
161.60
35.16
207.14
104.20
35.24
115.27
34.73
244.95
282.08
109.92
27.23
330.00
341.55
167.99
28.27
211.57
118.86
216.19
230.23
219.77
143.56
60.79
299.43
26.65
129.87
44.31
HORIZ PIPE
LENGTH (ft)
110.77
253.58
34.76
169.06
204.47
109.01
23.92
212.21
102.45
21.46
194.63
255.00
260.99
225.00
33.59
211.78
106.31
21.21
1 1 1 .44
31.06
212.04
108.32
20.00
337.99
267.23
20.00
208.13
108.92
26.82
159.10
30.16
202.14
101.70
30.24
112.77
29.73
239.95
277.08
107.42
22.23
325.00
336.55
162.99
23.27
206.57
116.36
211.19
225.23
214.77
138.56
55.79
294.43
21.65
124.87
39.31
DESIGN
SLOPE (%
3.00
3.00
14.79
0.40
0.32
4.00
19.98
0.28
4.00
18.08
3.00
2.00
1.60
1.00
13.33
0.28
3.50
50.00 *
3.50
50.00 *
0.28
4.00
43.80 **
2.00
1.90
42.70 ***
0.28
4.50
33.89 *
4.18
50.00 *
0.28
4.00
50.00 *
6.82
50.00 *
0.28
0.50
5.00
50.00 *
2.00
1.70
1.10
50.00 *
0.27
4.00
2.00
2.00
1.25
1.18
0.97
0.95
50.00 *
0.28
0.43
dnW
0.0272
0.0348
0.0325
0.301 1
0.4188
0.0248
0.0143
0.2942
0.0236
0.0133
0.0265
0.0483
0.0673
0.1001
0.0641
0.3092
0.0233
0.0120
0.0233
0.0124
0.3131
0.0207
0,0112
0.0392
0.0568
0.0201
0.3220
0.0185
0.0108
0.0203
0.0122
0.3261
0.0210
0.0112
0.0180
0.0108
0.3305
0.4164
0.0169
0.0096
0.0357
0.0599
0.0870
0.0418
0.3473
0.0203
0.0405
0.0566
0.0811
0.0997
0.1216
0.1413
0.0608
0.3585
0.3190
dp/D
0.05
0.05
0.05
0.45
0.50
0.05
0.03
0.35
0.05
0.03^
0.04
0.07
0.10
0.15
0.10
0.37
0.05
0.02
0.05
0.02
0.38
0.04
0.02
0.06
0.09
0.03
0.39
0.04
0.02
0.03
0.02
0.39
0.50
0.02
0.50
0.02
0.40
0.50
0.03
0.02
0.05
0.09
0.13
0.06
0.42
0.03
0.06
0.08
0.12
0.15
0.18
0.21
0.09
0.43
0.38
INLINE CFS
0.0060
0.0128
0.0255
0.3787
0.7387
0.0060
0.0060
0.3659
0.0051
0.0051
0.0068
0.0213
0.0394
0.0693
0.0993
0.4017
0.0043
0.0043
0.0043
0.0043
0.4119
0.0034
0.0034
0.0136
0.0298
0.0162
0.4332
0.0034
0.0034
0.0043
0.0043
0.4434
0.0034
0.0034
0.0034
0.0034
0.4545
0.9140
0.0026
0.0026
0.0111
0.0306
0.0545
0.0783
0.4885
0.0043
0.0145
0.0298
0.0502
0.0749
0.1021
0.1379
0.1745
0.5268
0.5268
Q (cfs)
0.0066
0.0130
0.0250
0.3787
0.7387
0.0062
0.0043
0.3663
0.0056
0.0035
0.0073
0.0213
0.0385
0.0695
0.1002
0.4018
0.0051
0.0046
0.0051
0.0050
0.4115
0.0043
0.0038
0.0137
0.0293
0.0152
0.4333
0.004
0.003
0.0049
0.0056
0.4435
0.0044
0.0040
0.0041
0.0037
0.4546
0.9143
0.0031
0.0029
0.0112
0.0311
0.0545
0.0787
0.4886
0.0047
0.0147
0.0299
0.0502
0.0749
0.1021
0.1374
0.1737
0.5268
0.5278
n
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.01 1
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
0.011
e (rad)
0.47
0.46
0.45
1.47
1.58
0.45
0.34
1.27
0.44
0.33
0.40
0.55
0.65
0.80
0.63
1.31
0.44
0.31
0.44
0.32
1.32
0.41
0.30
0.49
0.59
0.35
1.34
0.39
0.30
0.35
0.27
1.35
0.41
0.30
0.38
0.29
1.36
1.57
0.37
0.28
0.47
0.61
0.74
0.51
1.40
0.35
0.50
0.59
0.71
0.79
0.88
0.96
0.61
1.43
1.33
P(ft)
0.24
0.31
0.30
0.98
1.31
0.22
0.17
1.06
0.22
0.16
0.27
0.36
0.43
0.53
0.42
1.09
0.22
0.16
0.22
0.16
1.10
0.21
0.15
0.33
0.39
0.23
1.12
0.19
0.15
0.23
0.18
1.13
0.21
0.15
0.19
0.15
1.14
1.31
0.18
0.14
0.31
0.41
0.49
0.34
1.17
0.23
0.33
0.39
0.48
0.53
0.59
0.64
0.41
1.19
1.11
A(ft21
0.00
0.01
0.01
0.15
0.27
0.00
0.00
0.17
0.00
0.00
0.00
0.01
0.02
0.03
0.02
0.18
0.00
0.00
0.00
0.00
0.19
0.00
0.00
0.01
0.01
0.00
0.19
0.00
0.00
0.00
0.00
0.20
0.00
0.00
0.00
0.00
0.20
0.27
0.00
0.00
0.01
0.02
0.03
0.01
0.22
0.00
0.01
0.01
0.02
0.03
0.04
0.05
0.02
0.22
0.19
VELOCITY
(f.D.S.)
1.59
1.87
3.98
2.47
2.69
1.72
2.69
2.13
1.67
2.44
1.57
1.89
2.09
2.12
5.85
2.18
1.55
3.79
1.5S
3.87
2.20
1.54
3.40
1.65
2.04
4.93
2.23
1.51
2.91
1.55
3.83
2.24
1.55
3.62
1.83
3.53
2.26 •
3.36
1.50
3.27
1.55
2.00
2.03
8.61
2.27
1.52
1.69
2.09
2.08
2.29
2.35
2.54
10.95
2.35
2.75
* = 50% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE
** = 43.80% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE
*** = 42.70% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE
2068 - Sewer Flow Calculations - 020102.xls
121001
TABLE 2 - SEWER FLOW CALCULATIONS
POINSETTIA PROPERTIES
FROM
SOUTH
A46
A45
A44
TO
A46
A45
A44
A43
PEAK FLOW
G.P.M.
2,431
2,431
2,431
2,781
C.F.S.
5.4153
5.4153
5.4153
6.1951
PIPE
DIA (in)
21
21
21
21
ST
NAME
Sand Shell Ave
Sand Shell Avej
DIST BTWN
CL OF AH (ft)
128.57
339.59
151.23
64.51
HORIZ PIPE
LENGTH (ft)
126.07
334.59
146.23
59.51
DESIGN
SLOPE (%'
0.29
0.29
0.29
dnW
0.9130
0.9130
0.9915
cyo
0,52
0.52
0.57
INLINE CFS
5.4153
5.4153
6.1951
Q (cfs)
5.4153
5.4153
6.1951
n
0.011
0.011
0.011
6 (rad)
1.61
1.61
1.70
p(m
2.82
2.82
2.98
A m-h
1.27
1.27
1.41
VELOCITY
(f.D.S.)
4.27
4.27
4.41
2068 - Sewer Flow Calculations - 020102.xls
21 "SEWER
APPENDIX 1
LETTER FROM CITY OF CARLSBAD
PUBLIC WORKS ENGINEERING
REPORT72068SR.DOC
July26: 2001
Gregory M. Shields, P.E.
Project Design Consultants
701 B Street Suite 800
San Dieco.CA 92101
Re:Sliorcs PA 2-Lift Station
Dear Greg:
Per vour rcquesl 1 am sending you information regarding the proposed lift station for
Poinsettia Shores PA 7 Enclosed there is a site plan for Knots Lane Lift Station. This is a
desirable footprint and was used to help determine the Site Development Plan for PA 2
done b\ Himsakei and Associates Also there are copies of the improvement plans that
show (he two sewers that uerc constructed to or near the property line of PA 2
As we discussed in our meeting last ueek. flows Irom the nonh and \vest will be diverted
to this lift station The additional flows include the 400 EDUs from Embarcadeio Lane to
the north of PA 2 and 229 EDUs from (he west. Total EDUs including the 220 EDUs
from PA 2 equals 849 In this case an EDU is equivalent to 220-galions'day average flow
Use a peaking factor of 2 5 to determine peak flow
Also as ue have discussed, design issues related to the lift station and the sewer trunk
relocation should be directed to the Design Division of Public Works Engineering to nr\
attention
Sincerelv.
Mark Biskup
Project Engineer
Public Woiks Engineerin
Ei:c!c>-.od KiiOli L.I SMr I'bi; !>.•.•;
APPENDIX 2
PROJECT MAP
REPORT72068SR.DOC 10
PROPOSED LIFT STATlO
LIFT STATION
r
APPENDIX 3
MEMO FROM GLEN VAN PESKI
REPORT72068SR.DOC 12
August 31,2001
TO: TIM EISENHAUER, PROJECT DESIGN CONSULTANTS
FROM: Consultant Project Engineer, Glen Van Peski
COPY: Skip Hammann, Principal Civil Engineer, Land Development
Barbara Kennedy, Project Planner
RE: POINSETTIA PROPERTIES P.A. 2, 3, & 4
Per our meeting this week, I have the following information:
Sewer
Per our discussion, avoid the maintenance issues posed by drop manholes by sloping the
normal depth sewer lines down to the invert of the deep manholes. Use a maximum sewer
grade of 50% (2:1), with a minimum 20-foot vertical curve at the manhole. Use a 2% tangent
grade entering the deep manhole.
Substantial conformance
In checking with the project planner, she said that all retaining walls should remain below the
height requiring a permit (30"). Also, she mentioned that it was planned that there would be
steps up to some of the houses, so be sure and take that into account in your grading design.
Water meters
I am still checking on being able to cluster the water meters for the courtyards. I believe we
have done that before in the City, I just haven't located the project yet. The individual services
would have to be designed to stay within the common area lots and not go across individual
lots.