Loading...
HomeMy WebLinkAboutCT 01-05; CALAVERA HILLS VILLAGE W; DRAINAGE STUDY CALAVERA HILLS VILLAGE W; 2002-11-26DRAINAGE STUDY FOR CALAVERA HILLS - VILLAGE W C.T. 01-05 Job No. 98-1020 November 26, 2002 Revised: November 12, 2003 RECEIVBD NOV ^ I 'M ENGINEERING DEPARTMENT Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, Califomia 92008-6603 Tel: (760)931-7700 Fax: (760)931-8680 Keith Hansen RCE 60223 Exp. 06/30/04 Date TABLE OF CONTENTS SECTION 1 HYDROLOGY FOR ON-SITE SYSTEM INTRODUCTION Purpose of Study Scope STUDY AREA Soils Groups Land Uses HYDROLOGY Rational Method Description Program Process CONCLUSION SECTION 2 SECTION 3 Vicinity Map Rimoff Coefficients Isopluvial Maps IOO-Year, 6-Hour 100-Year, 24-Hour Intensity-Duration Design Chart - Appendix XI-A San Diego County Soils hiterpretation Study Urban Areas Overland Time of Flow Curves - Appendix X-C Nomograph for Determination of Tc for Natural Watersheds - Appendix X-A Inlet Calculation Formulas Proposed Condition Hydrology - 100-year Analysis System '100' System '200' SECTION 4 Storm Drain Line Hydraulics for Rich Field Drive, Moon Field Drive, Meadow Drive & Bypass System Rich Field Drive Main Line Rich Field Drive Laterals Moon Field Drive Main Line Moon Field Drive Laterals Meadow Drive Laterals (part of Rich Field Drive system) Bypass System SECTION 5 Curb Inlet, Type "F" Catch Basin and Brow Ditch Calculations SECTION 6 Exhibit A Northerly Proposed On-Site Drainage Map Exhibit B Southerly Proposed On-Site Drainage Map W:\MSOFFICE\WINWORD\981020\Village W Drainage Study.dcx; SECTION 1 INTRODUCTION Purpose of Study This drainage study was prepared to determine the onsite post-developed stormwater runoff quantities and proposed onsite stormwater conveyance systems' hydraulic conditions for Calavera Hills Village 'W' (CT 01-05). Scope Calavera Hills Village 'W' will be a single-family residential subdivision. Approximately 22.65 acres of the site will be analyzed for stormwater mnoff conditions. Stormwater conveyenace pipes will be analyzed for hydraulic conditions, and Type "F" catchbasin inlet capacities and brow ditch capacities will be verified. System ' IOO' will be the onsite stormwater mnoff conveyance system and System '200' will be a bypass conveyance system that will discharge directly into the conveyance system along College Boulevard. System ' 100' will ultimately discharge into College Boulevard's stormater conveyance system at the southerly end of the site. System '200' will discharge westerly from the westerly portion of the site into College Boulevard's stormwater conveyance system. STUDY AREA Soils Groups For on-site, per the San Diego Coimty Soils Interpretation Study, soil type D was used. Land Use For proposed conditions, single-family land use was utilized for Calavera Hills-Village W site. HYDROLOGY The rational method for storm water mnoff was used for this study according to the County of San Diego Hydrology Manual and Design Procedure Manual. Rational Method Description The rational method, as described in the 1985 San Diego County Flood Control/Hydrology Manual, is used to estimate surface mnoff flows. The basic equation: Q = CIA C = mnoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the lOO-year design storm, the corresponding 6-hour rainfall amount is 2.6 inches. A computer program developed by CivilCADD/CIVILDESIGN Engineering Software ® 1993, Version 3.2, was used to determine tiie times of concentration and corresponding intensities and flows for the various hydrological processes performed in tiiis model. This program also determines the street flow and pipeflow characteristics for each segment modeled. Program Process The rational metiiod program is a computer-aided design program where tiie user develops a node link model of the watershed. Developing independent node link models of each interior watershed and linking fliese submodels together at confluence points create the node link model. The program has tiie capability of performing calculations for II different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream. 2. Street flow through sub-area, includes sub-area mnoff. 3. Addition of nmoff from sub-area to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. Pipeflow travel time (user-specified pipe size). 7. Improved channel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User-specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main streams. CONCLUSION The onsite stormwater drainage systems were analyzed and yielded the following approximate peak stormwater values: For the 100-year storm The total proposed Q for System '100' = 36.92 cfs The total proposed Q for System '200' = 1.27 cfs The proposed onsite peak runoff that will discharge into College Boulevard at tiie southerly end oftiie site (System '100') is consistent with tiie values determined in CT 00-02. The proposed condition's peak flow will not significantly affect the downstream facilities per 390-9 or the design of the master detention facilities. SECTION 2 CITY OF OCEANSIDE HIGHWAY NOT TO SCALE : OTY OF mTA \\ OTY OF SAN MARCOS PACIFIC ' OCEAN ENCINITAS VICINITY MAP NO SCALE RUNOFF COEFFICIENTS (R,\TIONAL METHOD) L.AND USE Coefficient, C L.AND USE Soil Group 'D A B (2 D Undeveloped .50 .55 .40 . J-S Residential: .Rural .50 . 55 .40 Single Family .40 .45 .50 Multi-Units .45 .50 .60 — r. . \.' Mobile Homes (2) .45 .50 .55 . 65 Commercial (2) . 70 . 75 .80 .35 S0°6 Impervious Industrial (2) .80 .85 . 90 .95 90% ImTJervious N'OTES: fl) Obtain soil group frora maps on file with the Department of Sanitation and Flood Control. (2) '^ere actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coetticient C may be revised by multiplying 80% or 90% by the ratio of actual imp'-rviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider ccmmercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = S0% Revised C = |° X 0.85 = 0. 5.3 APPENDIX :\ COUrfTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 100-YEAR 8-HOUl PllEClFlTAT!0f3 ^20^ ISOPLUVIALS OF lOO-YEAR 6-HOUR pnEClFiTATiOri m E?3T!!S CF AN KJGii Prepn U.S. DEPARTMEN > I SPECIAL. STUDIES URANCH, OFFICE OF II 30'_ 118' 4 by r OF COMMERCE NATIONAL OCli-ANIC AND AT.ljoSPIIERIC ADKl.NISTRATION DROLOGY. NATIONAL WEATHER SERVICE COUNTY OF SAN OIEGO OEPARTMENT OF SANITATION & FLOOD CONTROL 100-YEAR 24-l!0ljR PRECIPITATION -20VISOPLUVIALS OF 100 -YEAR 24-HOUR PRECiPiTATiON IN TEtiTHS OF AN IHCH INTENSITY-DUPATION DESIGN CHART ^"iTflTfTrnrnh''•' M<ntrii.iii.ti.i.ti.iiit-r-r-r i i i-ia-iUTTrrn;;lir. -.645 I = 7.44 D I = Intensity (In./Hr.) p = 6 Hr. Precipitation (In.) 6 D = Duration (Min.) 10 15 20 30 40 50 1 Directions for Application: \ From Drecipitation naps detennine 6 hr. and Sanual (10. 50 and 100 yr. maps included in th Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so • that it is within the range of 45% to 65% ot the24hr. precipitation. (Not npplicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency _l£^2JI^- 1) Pfi = ^24"" ^ 2) Adjusted *Pg= 2.' ^ P24 in. 3) 4) I = . min. in/hr. *Not Applicable to Desert Region Unll me Revised 1/85 aPPPNniX XI-A o <5 A 6 \CA RLSBAD of- / Vo 6. U^B/9A/ ^^£^S OUS^L/PA/£> T/A4S OF FLOW CU/?\/eS £xa/77p/e •• •• I tT/rg/A a/' F/otv • SOO /A S/ope - /.a %, CoeMc/e/t/ o/ ^u/ro/f. C '.SO 1.6^1-1- c)Arr SAN DIEGO COUNTY DEPARTMENT-OF SPECIAL DISTRICT SERVICES APPROVED DESIGN M>\NUAL URBAN AREAS OVERLAND TIME OF FLOW CURVES DATE ft/f/6? APPENDIX X-; Fee/ '4aao '3ooo -2000 .jas £Qa/?r/o/\/ 7//rfe of coficsn^/^/on Leng//> of i/vafersAed 7e L // Df/fare/rce //t a/ffva/Zan aJong e/feefyVe s/ooa //ne (See /)ppem/ix'X-8) j- L " hr—/aea 900 BOO - 70O - e bo \ /o- •soo ^\ -400 .300 4- 3- 200 • /OO \ \ / •so • 40 V-30 as- {FOR NATURAL WATERSHEDS] — ZO II ADD TEN MINUTES TO l! NOTE K AOD TEN MINUTES TO . I COMPUTED TIME OF CON- \ |CENTRAT10N. J — /O — 5 H • SOOO ^4^0 \ JOOO Mt/fufes 240 /BO /20 /OO 30 80 • 70 -£0 \ 2000 /300 /600 /4ao /20O /ooo 900 aoo 700 soo -SOO 1— too 300 -200 sa — 40 — 30 - 20 — /a — /6 — Af \ \—/2 - /o — 9 — a • 7 \—£ — 4 — J SAN OIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES APPROVED DESIGN MANUAL NOMOGRAPH FOR DETERMINATfON OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS DATE AMI I. APPENDIX A-10 Rev. X-A 5/81 INLET CALCULATION FORMULAS Street blct Cdntfuimus Grade Q « 0.7L (a+y)^ L-^ O • 0.7(a+y) where r » depth of flow in approach guner in feet 1 - depth of depression of flow line at inlet in feet L = length of dear openii^ni feet (nax. 30 feet) Q « flow in CFS Street Inlet Samp Conditioa where L « length of clear openmg ia feet Q » flow m CFS SECTION 3 SYSTEM '100' San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/11/03 VILLAGE 'W HYDROLOGY STUDY SYSTEM '100' FILE: VLWOIA PREPARED: NOVEMBER 26, 2002 REV: NOVEMBER 11, 2003 Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 175.00(Ft.) Highest elevation = 276.88(Ft.) Lowest elevation = 275.13(Ft.) Elevation difference = 1.75(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 13.10 min. TC = [1.8*(l.l-C)*distance^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(175.00'^.5}/( 1. OO'-(1/3) ] = 13.10 Rainfall intensity (I) = 3.681 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.445(CFS) Total initial stream area = 0.220(Ac.) -I--I--I-H--I--I- + -I--I--H-H + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 275.130(Ft.) End of street segment elevation = 226.970(Ft.) Length of street segment = 810.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.27 9(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.099(Ft.) Flow velocity = 4.71(Ft/s) 2.855(CFS) 4.707(Ft/s) TC 15.96 min. 0.000 0.000 0.000 1.000 ] Travel time = 2.87 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [SINGLE FAMILY area type Rainfall intensity = 3.240(In/Hr) for a Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 4.241(CFS) for 2.380(Ac.) Total runoff = 4.686(CFS) Total area = 2.60(Ac.) Street flow at end of street = 4.686(CFS) Half street flow at end of street = 4.686(CFS) Depth of flow = 0.315(Ft.), Average velocity = 5.231(Ft/s) Flow width (from curb towards crown)= 8.907(Ft.) 100.0 year storm 0.550 + +-H-H-H-I--H-f +-H-H-H-H-H-I-+ + +-I-+ + + +-I--H-I--H-h-H-f-H-I--H-h-H-I--I--H-H-f + + + + Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 215.16(Ft.) Downstream point/station elevation = 214.18(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.686(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.686(CFS) Normal flow depth in pipe = 3.47(In.) Flow top width inside pipe = 14.20(In.) Critical Depth = 9.97(In.) Pipe flow velocity = 19.64(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 15.97 min. Process from Point/Station 106.000 to Point/Station 106 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.600(Ac.) Runoff from this stream = 4.686(CFS) Time of concentration = 15.97 min. Rainfall intensity = 3.239(In/Hr) Program is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 264.90(Ft.) Lowest elevation = 263.60(Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.29 min. TC = [1.8*(l.l-C)*distance".5)/(% slope-(l/3)] TC = [1.8*(l.l-0.5500)*(130.00'^.5)/( 1.00^(1/3)]= 11.29 Rainfall intensity (I) = 4.051 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.290(CFS) Total initial stream area = 0.130(Ac.) + + + + + + + + + + + + + + + + + + Process from Point/Station 110.000 to Point/Station 112 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 269.290(Ft.) End of street segment elevation = 227.260(Ft.) Length of street segment = 560.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.493(CFS) Depth of flow = 0.231(Ft.), Average velocity = 4.615{Ft/s) 1.000 * 1.000 * 4.686) -i- 0.894 * 1.000 * 2.454) + = 6.881 Qmax(2) = 1.000 * 0.841 * 4.686) -I- 1.000 * 1.000 * 2.454) -I- = 6.395 Total of 2 main streams to confluence: Flow rates before confluence point: 4.686 2.454 Maximum flow rates at confluence using above data: 6.881 6.395 Area of streams before confluence: 2.600 1.210 Results of confluence: Total flow rate = 6.881(CFS) Time of concentration = 15.968 min. Effective stream area after confluence = 3.810(Ac.) Process from Point/Station 106.000 to Point/Station 114 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 213.85(Ft.) Downstream point/station elevation = 207.64(Ft.) Pipe length = 96.46(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.881(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.881(CFS) Normal flow depth in pipe = 5.61(In.) Flow top width inside pipe = 20.32(In.) Critical Depth = 11.16(In.) Pipe flow velocity = 12.32(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 16.10 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 114.000 to Point/Station 116 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 207.31(Ft.) Downstream point/station elevation = 204.08(Ft.) Pipe length = 170.01(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.881(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.881(CFS) Normal flow depth in pipe = 7.66(In.) Flow top width inside pipe = 22.38(In.) Critical Depth = 11.16(In.) Pipe flow velocity = 7.97(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 16.45 min. -H-I--H-H-H-H-H-H-I--H-1--H+++-f-I--I--h-I--H-I--H-h +-H-H-H-I--I--I--h-H-f + +-I--I--h Process from Point/Station 116.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.810(Ac.) Runoff from this stream = 6.881(CFS) Time of concentration = 16.45 min. Rainfall intensity = 3.177(In/Hr) Program is now starting with Main Stream No. 2 -H+-I--I--H-H-H-^ +-H-H-f-I--H-H + +-I--f-I--H +-H-I--H-h-H-I--H-H-H-h +-H-I--I--H-h-f +-H + + Process from Point/Station 118.000 to Point/Station 112.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 135.00(Ft.) Highest elevation = 228.61(Ft.) Lowest elevation = 227.26(Ft.) Elevation difference = 1.35(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.50 min. TC = [1.8*(1.1-C)*distance^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.5500) * (135.00^^.5) / ( 1. 00" (1/3) ] = 11.50 Rainfall intensity (I) = 4.002 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.396(CFS) Total initial stream area = 0.180(Ac.) + -H-l- + + + -H-H-H + -H-^ + + + + -l--l--H-l--l--H + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 112.000 to Point/Station 120.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 227.260(Ft.) End of street segment elevation = 213.880(Ft.) Length of street segment = 220.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.561(CFS) Depth of flow = 0.160(Ft.), Average velocity = 4.864(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 4.86(Ft/s) Travel time = 0.75 min. TC = 12.26 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.842(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.317(CFS) for 0.150(Ac.) Total runoff = 0.713(CFS) Total area = 0.33(Ac.) Street flow at end of street = 0.713(CFS) Half street flow at end of street = 0.713(CFS) Depth of flow = 0.191(Ft.), Average velocity = 4.075(Ft/s) Flow width (from curb towards crown)= 2.693(Ft.) +-H-I--H-I--H-H-h+-I--I-+ + + +-I-+ + + +-h-h +-H-H-H-H-I--I-+ + +-H-H-H-H-H-H-h-I--H-H-h-h-H-H Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.330(Ac.) Runoff from this stream = 0.713(CFS) Time of concentration = 12.2 6 min. Rainfall intensity = 3.842(In/Hr) + + + + + + + + + + + + + -l--H-H-H-l--l--H-H-l--H + + + + + -H-H-f-H-H-l--H-h-|- + + + + + + + -H + -l--f + -H + -H Process from Point/Station 122.000 to Point/Station 122.500 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.450 given for subarea Initial subarea flow distance = 56.00(Ft.) Highest elevation = 262.10(Ft.) Lowest elevation = 234.10(Ft.) Elevation difference = 28.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.38 min. TC = [1.8* (1.1-C) *distance".5) / (% slope'-(1/3) ] TC = [1.8* (1.1-0.4500) * ( 56.00'^.5)/( 50.00^(1/3)]= 2.38 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.031(CFS) Total initial stream area = 0.010(Ac.) + + + + + + + + + + + + + + + + + + + + + + -|--l--H-H-l- + -l--^-H-f-h + -H-H-l--f + -H-l--l--l--|- + + -)-4--f-^ Process from Point/Station 122.500 to Point/Station 119.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 234.10 (Ft.) Downstream point elevation = 214.64(Ft.) Channel length thru subarea = 520.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 0.800 Slope or 'Z' of right channel bank = 0.800 Estimated mean flow rate at midpoint of channel = 0.925(CFS) Manning's 'N' = 0.016 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.925(CFS) Depth of flow = 0.478(Ft.), Average velocity = 5.057(Ft/s) Channel flow top width = 0.7 65(Ft.) Flow Velocity = 5.06(Ft/s) Travel time = 1.71 min. Time of concentration = 6.71 min. Critical depth = 0.609(Ft.) Adding area flow to channel User specified 'C value of 0.450 given for subarea Rainfall intensity = 5.664(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.478(CFS) for 0.580(Ac.) Total runoff = 1.509(CFS) Total area = 0.59(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 119.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 205.53(Ft.) Downstream point/station elevation = 205.39(Ft.) Pipe length = 13.66(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.509(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.509(CFS) Normal flow depth in pipe = 4.58(In.) Flow top width inside pipe = 15.68(In.) Critical Depth = 5.53(In.) Pipe flow velocity = 4.26(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 6.77 min. -l--H-H-H-H-H-f-)--l--l--H-H-h + + + + + + + + + + + + + + + + + + + + + + + + + -l--H-l--H + + + + + + + ^ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.590(Ac.) Runoff from this stream = 1.509(CFS) Time of concentration = 6.77 min. Rainfall intensity = 5.636(In/Hr) + + +-f + +-I--H-H+-I-+-H-H-H-I-+-I--H-I-+ + +-f +-I--H-H-H-I-+ +-I--I-+-H-I--I--I-+ + + + + + Process from Point/Station 124.500 to Point/Station 124.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 125.00(Ft.) Highest elevation = 225.77(Ft.) Lowest elevation = 224.52(Ft.) Elevation difference = 1.25(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.07 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(125.00".5)/( 1.00^(1/3)]= 11.07 Rainfall intensity (I) = 4.103 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.316(CFS) Total initial stream area = 0.140(Ac.) + +-H+-H-^ + + +-I--I--I--I--I--H-H + +-I--H-H-H-H-H + ++-I--I--I--^+-H-h-^-H-h-H-I--I- Process from Point/Station 124.000 to Point/Station 120.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 224.520(Ft.) End of street segment elevation = 213.880(Ft.) Length of street segment = 380.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.546(CFS) Depth of flow = 0.263(Ft.), Average velocity = 3.082(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.317(Ft.) Flow velocity = 3.08(Ft/s) Travel time = 2.05 min. TC = 13.12 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.676(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.204(CFS) for 1.090(Ac.) Total runoff = 2.520(CFS) Total area = 1.23(Ac.) Street flow at end of street = 2.520(CFS) Half street flow at end of street = 2.520(CFS) Depth of flow = 0.296(Ft.), Average velocity = 3.404(Ft/s) Flow width (from curb towards crown)= 7.985(Ft. Process from Point/Station 120.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 120.000 Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.230(Ac.) Runoff from this stream = 2.520(CFS) Time of concentration = 13.12 min. Rainfall intensity = 3.676(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) Qmax(2) = Qmax(3) 0 .713 12. 26 3. 842 1 .509 6. 77 5. 636 2 .520 13. 12 3. 676 1 .000 * 1. 000 * 0 713) -H 0 . 682 * 1. 000 * 1 509) + 1 .000 * 0. 934 2 520) -1-= 4 095 1 .000 * 0. 552 * 0 713) + 1 .000 * 1. 000 * 1 509) + 1 . 000 * 0. 516 * 2 520) -1-= 3 202 0 .957 * 1. 000 * 0 713) + 0 .652 * 1. 000 * 1 509) -1- 1 .000 * 1. 000 2 520) + = 4 187 Total of 3 streams to confluence: Flow rates before confluence point: 0.713 1.509 2.520 Maximum flow rates at confluence using above data: 4.095 3.202 4.187 Area of streams before confluence: 0.330 0.590 1.230 Results of confluence: Total flow rate = 4.187(CFS) Time of concentration = 13.123 min. Effective stream area after confluence = 2.150(Ac.) Process from Point/Station 120.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 116.000 Upstream point/station elevation = 205.06(Ft.) Downstream point/station elevation = 204.08(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.187(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.187(CFS) 10 Normal flow depth in pipe = 3.28(In.) Flow top width inside pipe = 13.90(In.) Critical Depth = 9.41(In.) Pipe flow velocity = 18.99(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.13 min. + +++++++4. + + + + +++++++++++++ + ++4-+-h-H-H++-H-H+-H-H++ + -H+-H-l--H+-H+++-^-^+ Process from Point/Station 116.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.150(Ac.) Runoff from this stream = 4.187(CFS) Time of concentration = 13.13 min. Rainfall intensity = 3.676(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 104.500 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 228.27(Ft.) Lowest elevation = 226.97(Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.29 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5500)*(130.00^.5)/( 1.00"(1/3)]= 11.29 Rainfall intensity (I) = 4.051 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.245(CFS) Total initial stream area = 0.110(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + -H + + -H + + + -l--H-H + + + -l--H-l- + + -H-H-H + + + -l--^ Process from Point/Station 104.000 to Point/Station 126.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 226.970(Ft.) End of street segment elevation = 213.880(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street 11 Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.315(CFS) Depth of flow = 0.239(Ft.), Average velocity = 3.595(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.130(Ft.) Flow velocity = 3.60(Ft/s) Travel time = 1.39 min. TC = 12.68 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.759(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.985(CFS) for 0.960(Ac.) Total runoff = 2.230(CFS) Total area = 1.07(Ac.) Street flow at end of street = 2.230(CFS) Half street flow at end of street = 2.230(CFS) Depth of flow = 0.272(Ft.), Average velocity = 3.958(Ft/s) Flow width (from curb towards crown)= 6.789(Ft.) + + + + -F + + + + -H + + + -l- + -l- + + -f + + 4--F + + -H-l--H-l--l--H-l--l--h-h-h + + + + + + + + + + + -|- + + + + + Process from Point/Station 126.000 to Point/Station 126.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.070(Ac.) Runoff from this stream = 2.230(CFS) Time of concentration = 12.68 min. Rainfall intensity = 3.759(In/Hr) -I-+ +-I--H +-H-H-H-I--I--H-H-I--H-H-H-h-H-I--H-H-H-(--I--H-H + +-I--h-H + + +-H-I--I--I--I-+ +-f + + + + Process from Point/Station 121.000 to Point/Station 128.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 115.00(Ft.) Highest elevation = 225.67(Ft.) Lowest elevation = 224.52(Ft.) Elevation difference = 1.15(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.62 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5500)*(115.00".5)/( 1.00"(l/3)]= 10.62 12 Rainfall intensity (I) = 4.215 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.301(CFS) Total initial stream area = 0.130(Ac.) Process from Point/Station 128.000 to Point/Station 126.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 224.520(Ft.) End of street segment elevation = 213.880(Ft.) Length of street segment = 375.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.24 0(CFS) Depth of flow = 0.249(Ft.), Average velocity = 2.976(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.606(Ft.) Flow velocity = 2.98(Ft/s) Travel time = 2.10 min. TC = 12.72 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.752(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.671(CFS) for 0.810(Ac.) Total runoff = 1.973(CFS) Total area = 0.94(Ac.) Street flow at end of street = 1.973(CFS) Half street flow at end of street = 1.973(CFS) Depth of flow = 0.279(Ft.), Average velocity = 3.252(Ft/s) Flow width (from curb towards crown)= 7.101(Ft.) + + + + + + + + + + + + + + + + + + + -H-h + + + -H-^-H-l--l--l--h + -H-l--l--l- + + + -h-t--H-H-H + + + + + -H-^-l- + Process from Point/Station 126.000 to Point/Station 126.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.940(Ac.) Runoff from this stream = 1.973(CFS) Time of concentration = 12.72 min. Rainfall intensity = 3.752(In/Hr) 13 Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(1) Qmax(2) 2.230 1.973 1.000 * 1.000 * 0.998 * 1.000 * 12.68 12.72 1.000 * 0.997 * 1.000 * 1.000 * 3.759 3.752 2.230) + 1.973) -1- 2.230) + 1.973) + 4.197 4 .198 Total of 2 streams to confluence: Flow rates before confluence point: 2.230 1.973 Maximum flow rates at confluence using above data: 4.197 4.198 Area of streams before confluence: 1.070 0.940 Results of confluence: Total flow rate = 4.198(CFS) Time of concentration = 12.717 min. Effective stream area after confluence = 2.010(Ac.) + + + + + + + + + 4. + + + + + + + + + + + + + + + + + + + + + + + + + -l--^-f + -l--H-l--l- + + -l--H + -H-H-H-H + + -^-H Process from Point/Station 126.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 205.69(Ft.) Downstream point/station elevation = 204.08(Ft.) Pipe length = 27.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.198(CFS) Given pipe size = 18. 00(In.) Calculated individual pipe flow = 4.198(CFS) Normal flow depth in pipe = 4.94(In.) Flow top width inside pipe = 16.06(In.) Critical Depth = 9.42(In.) Pipe flow velocity = 10.66(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.76 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 116.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.010(Ac.) Runoff from this stream = 4.198(CFS) Time of concentration = 12.76 min. Rainfall intensity = 3.744(In/Hr) Summary of stream data: 14 stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6. 881 16. 45 3. 177 2 4. 187 13. 13 3. 676 3 4 . 198 12. 76 3. 744 Qmax(1) = 1 000 * 1. 000 * 6. 881) + 0 864 * 1. 000 * 4 187) -(- 0 849 * 1. 000 * 4 198) + = 14.063 Qmax(2) = 1 000 * 0. 798 * 6 881) + 1 000 * • 1. 000 * 4 187) 0 .982 * 1. 000 4 198) -t-= 13.798 Qmax(3) = 1 .000 * 0 775 * 6 .881) + 1 .000 * 0 972 * 4 . 187) + 1 .000 * 1 000 * 4 .198) -1-= 13.604 Total of 3 main streams to confluence: Flow rates before confluence point: 6.881 4.187 4.198 Maximum flow rates at confluence using above data: 14.063 13.798 13.604 Area of streams before confluence: 3.810 2.150 2.010 Results of confluence: Total flow rate = 14.063(CFS) Time of concentration = 16.454 min. Effective stream area after confluence = 7.970(Ac. + + 4. + + + + + + + + -|- + + + + + + + + + + + + + + + + -H-H4- + -l--H-H + + -h-h-H-H-l--h-l- + -l--l--^-f- + + Process from Point/Station 116.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 203.75(Ft.) Downstream point/station elevation = 202.74(Ft.) Pipe length = 201.43(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.063(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 14.063(CFS) Normal flow depth in pipe = 17.44(In.) Flow top width inside pipe = 21.39(In.) Critical Depth = 16.22(In.) Pipe flow velocity = 5.75(Ft/s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 17.04 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + -|--l--l--(--l- + -i--l--^-l- + + -t--t--H-l--l--H + -H-H-H Process from Point/Station 130.000 to Point/Station 132.000 PIPEFLOW TRAVEL TIME (User specified size) **** 15 Upstream point/station elevation = 202.41(Ft.) Downstream point/station elevation = 201.33(Ft.) Pipe length = 216.62(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.063(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 14.063(CFS) Normal flow depth in pipe = 17.48(In.) Flow top width inside pipe = 21.35(In.) Critical Depth = 16.22(In.) Pipe flow velocity = 5.74(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 17.67 min. Process from Point/Station 132.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 201.00(Ft.) Downstream point/station elevation = 199.96(Ft.) Pipe length = 207.13(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.063(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 14.063(CFS) Normal flow depth in pipe = 17.44(In.) Flow top width inside pipe = 21.39(In.) Critical Depth = 16.22(In.) Pipe flow velocity = 5.76(Ft/s) Travel time through pipe = 0.60 min. Time of concentration (TC) = 18.27 min. Process from Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.970(Ac.) Runoff from this stream = 14.063(CFS) Time of concentration = 18.27 min. Rainfall intensity = 2.970(In/Hr) Program is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -H-H-H-H-H-l--t- + + -f + -l--l--f + Process from Point/Station 135.000 to Point/Station 124.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 225.B2(Ft.) 16 Lowest elevation = 224.52(Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.29 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(130.00".5)/( 1.00"(l/3)]= 11.29 Rainfall intensity (I) = 4.051 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.290(CFS) Total initial stream area = 0.130(Ac.) Process from Point/Station 124.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ) Top of street segment elevation = 224.520(Ft.) End of street segment elevation = 219.770(Ft.) Length of street segment = 255.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft Slope from curb to property line (v/hz) = Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.230(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.667(Ft.) Flow velocity = 2.30(Ft/s) 0.020 0.0150 0.0150 0.735(CFS) 2.296(Ft/s) TC = 13.14 min. 000 000 000 000 Travel time = 1.85 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [SINGLE FAMILY area type Rainfall intensity = 3.673(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.808(CFS) for 0.400(Ac.) Total runoff = 1.098(CFS) Total area = Street flow at end of street = 1.098(CFS) Half street flow at end of street = 1.098(CFS) Depth of flow = 0.254(Ft.), Average velocity = Flow width (from curb towards crown)= 5.879(Ft.) ] for a 100.0 year storm 0.53(Ac. 2.450(Ft/s) + + + + + + + + + + + + + + + + + + + + + + + + + + + -H-H + + + -H-H-l- + -f + + -H-h-F-H + + + + + + + -l--l--^ Process from Point/Station 136.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 17 Upstream point/station elevation = 201.59(Ft.) Downstream point/station elevation = 199.96(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.098(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.098(CFS) Normal flow depth in pipe = 1.53(In.) Flow top width inside pipe = 10.03(In.) Critical Depth = 4.68(In.) Pipe flow velocity = 15.21(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.14 min. + + -H-H-l- + + + + + -H-h-H-H-H-l--f + + + -H-l--l- + + -h-l--H-l--t- + + + -H-H-H-H-l--H-H + + + -f-H-h-h Process from Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.530(Ac.) Runoff from this stream = 1.098(CFS) Time of concentration = 13.14 min. Rainfall intensity = 3.673(In/Hr) Program is now starting with Main Stream No. 3 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 125.000 to Point/Station 128.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 225.72(Ft.) Lowest elevation = 224.52(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.84 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(120.00".5)/( 1.00"(l/3)]= 10.84 Rainfall intensity (I) = 4.157 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.252(CFS) Total initial stream area = 0.110(Ac.) + + + + + + + + + + + + + + + + -f + -H-l--H + + -f-l--l--l- + + -H-l--H-l- + + -l- + -f + + + + + -l- + -H-l- + -l--H-^ Process from Point/Station 128.000 to Point/Station 138.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 224.520(Ft.) End of street segment elevation = 219.770(Ft.) 18 2.000(In.) ,0130 grade break Length of street segment = 255.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft. Distance from crown to crossfall grade break = 15 Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = Manning's N in gutter = 0 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.242(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 5.281(Ft.) Flow velocity = 2.37(Ft/s) Travel time = 1.7 9 min. TC = 12.64 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [SINGLE FAMILY area type ] Rainfall intensity = 3.766(In/Hr Runoff coefficient used for sub-area, Subarea runoff = 1.181(CFS) for Total runoff = 1.432(CFS) Street flow at end of street = 500(Ft.) 0.903(CFS) 2.368(Ft/s) TC = 0. = 0. = 0. = 1. 000 000 000 000 for a 100.0 year storm Rational method,Q=KCIA, C = 0, 0.570(Ac.) Total area = 0.68(Ac.) 1.432(CFS) 550 Half street flow at end of street = 1.432(CFS) Depth of flow = 0.271(Ft.), Average velocity = 2.577(Ft/s) Flow width (from curb towards crown)= 6.733(Ft.) +++-l-++-^++-^-^-^-^--^-l-+-^+++-^-^^--^-^-^-^-^-^++-^+-f++-^-^-^-^-^+++-l--^-^-^-t- Process from Point/Station 138.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 202.58(Ft.) Downstream point/station elevation = 199.96(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.4 32(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.432(CFS) Normal flow depth in pipe = 2.57(In.) Flow top width inside pipe = 12.60(In.) Critical Depth = 5.37(In.) Pipe flow velocity = 9.24(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.69 min. 4--f-F + -f-l- + + -l--H-l--l- + -l--H-H-H + + + + + + + -l- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MAIN STREAMS **** 19 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.680(Ac.) Runoff from this stream = 1.432(CFS) Time of concentration = 12.69 min. Rainfall intensity = 3.757(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 14 063 18 27 2. 970 2 1 098 13 14 3. 673 3 1 432 12 69 3. 757 Qmax(1) = 1 000 * 1 000 * 14 063) -1- 0 809 * 1 000 * 1 098) + 0 791 * 1 000 1 432) -H Qmax(2) = 1 000 * 0 720 * 14 063) -1- 1 000 * 1 000 1 098) -1- 0 978 * 1 000 * 1 432) + = Qmax(3) = 1 000 * 0 695 14 063) -1- 1 000 * 0 965 * 1 098) + 1 000 * 1 000 1 432) = 16.083 12.616 12.261 Total of 3 main streams to confluence: Flow rates before confluence point: 14.063 1.098 1.432 Maximum flow rates at confluence using above data: 16.083 12.616 12.261 Area of streams before confluence: 7.970 0.530 0.680 Results of confluence: Total flow rate = 16.083(CFS) Time of concentration = 18.266 min. Effective stream area after confluence = 9.180(Ac.) + -H + +++ ++-f + -l--l- + -l--l--l--l- + + -l-+4- + + -(- + ++++-(- + + + + + + -|- + +++++++ + + + +++ Process from Point/Station 134.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 199.63(Ft.) Downstream point/station elevation = 196.70(Ft.) Pipe length = 266.06(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.083(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 16.083(CFS) Normal flow depth in pipe = 14.48(In.) Flow top width inside pipe = 23.48(In.) Critical Depth = 17.34(In.) 20 Pipe flow velocity = 8.12(Ft/s) Travel time through pipe = 0.55 min. Time of concentration (TC) = 18.81 min. -^-H-l-+-H-H-f + -H-H-^-H-l--H-^+ + + + + -H-l--l--h-l--H-t--h++++++-H-l--H-h-H-H++++ + + + + + Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.180(Ac.) Runoff from this stream = 16.083(CFS) Time of concentration = 18.81 min. Rainfall intensity = 2.914(In/Hr) Program is now starting with Main Stream No. 2 + + + + + -I--H-H-f+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 141.000 to Point/Station 136.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 135.00(Ft.) Highest elevation = 221.12(Ft.) Lowest elevation = 219.77(Ft.) Elevation difference = 1.35(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.50 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(135.00".5)/( 1.00"(l/3)]= 11.50 Rainfall intensity (I) = 4.002 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.308(CFS) Total initial stream area = 0.140(Ac.) -H-f-f+-f-H-I--H-H-h-H-f-H-I--I--H-I--H-H-H-H-H-H-H-I--H-f-h-H-I--H-I--f-f-t--H-H-H-I--f + + + + + + + Process from Point/Station 136.000 to Point/Station 144.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 219.770(Ft.) End of street segment elevation = 210.500(Ft.) Length of street segment = 275.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) 21 Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.068(CFS) Depth of flow = 0.235(Ft.), Average velocity = 3.122(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.894(Ft.) Flow velocity = 3.12(Ft/s) Travel time = 1.47 min. TC = 12.97 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.704(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.406(CFS) for 0.690(Ac.) Total runoff = 1.714(CFS) Total area = 0.83(Ac.) Street flow at end of street = 1.714(CFS) Half street flow at end of street = 1.714(CFS) Depth of flow = 0.264(Ft.), Average velocity = 3.388(Ft/s) Flow width (from curb towards crown)= 6.351(Ft.) + + + + + + + + + + + + + + + + + -h-h-H-H-f-l--t--f-h-H-H-H-h4--|--h-|--h-l--l--H-H-l- + -H-|--h-f-H-h-H-H Process from Point/Station 144.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 198.33(Ft.) Downstream point/station elevation = 196.70(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.714(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.714(CFS) Normal flow depth in pipe = 1.89(In.) Flow top width inside pipe = 11.03(In.) Critical Depth = 5.91(In.) Pipe flow velocity = 17.40(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.97 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.830(Ac.) Runoff from this stream = 1.714(CFS) Time of concentration = 12.97 min. Rainfall intensity = 3.704(In/Hr) Program is now starting with Main Stream No. 3 22 -f-I--I--h-I--F-H +-f-H-h-H-(--I--I--t--(-++-f-H-I--I--H-f-I--I--H-I--h-h-H-h-h-I--I--I--H-I--I--H Process from Point/Station 142.000 to Point/Station 138.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 135.00(Ft.) Highest elevation = 221.12(Ft.) Lowest elevation = 219.77(Ft.) Elevation difference = 1.35(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.50 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5500)*(135.00".5)/( 1.00"(l/3)]= 11.50 Rainfall intensity (I) = 4.002 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.242(CFS) Total initial stream area = 0.110(Ac.) -1--H-H-H-I--I--H-H-l--H-H-H-l--H-H-H-H-H-H-f-H-h-f-H-H-h-f+ + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 138.000 to Point/Station 146.000 **** STREET FLOW TRAVEL TIME -H SUBAREA FLOW ADDITION **** Top of street segment elevation = 219.770(Ft.) End of street segment elevation = 211.460(Ft.) Length of street segment = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.224(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.364(Ft.) Flow velocity = 2.97(Ft/s) Travel time = 1.4 6 min. TC Adding area flow to street Decimal fraction soil group A = 0 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Rainfall intensity = 3.706(In/Hr) for a 0.0150 0.0150 0.870(CFS) 2.968(Ft/s) 12.96 min. .000 ] 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 23 Subarea runoff = 1.162(CFS) for 0.57 0(Ac.) Total runoff = 1.404(CFS) Total area = 0.68(Ac.) Street flow at end of street = 1.404(CFS) Half street flow at end of street = 1.404(CFS) Depth of flow = 0.253(Ft.), Average velocity = 3.195(Ft/s) Flow width (from curb towards crown)= 5.804(Ft.) + + + +++ + + + + +++ +++ + ++++ ++++++++ + + + + + -H-H-H-H-H-H-f+-H-H-f-H-H-H-H-f-H+-H-H-H-H-H-H+ Process from Point/Station 146.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 197.17(Ft.) Downstream point/station elevation = 196.70(Ft.) Pipe length = 31.59(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.404(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.404(CFS) Normal flow depth in pipe = 4.02(In.) Flow top width inside pipe = 15.00(In.) Critical Depth = 5.32(In.) Pipe flow velocity = 4.76(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.07 min. +++4.++ + + + + + +++ + + +++++++++-H-H-H-f-f-f + -f-f-f-f-f-H-H-H-f-f-f-f-f-f-H-H-H-H-H-H-H-H-H-H-f-H-f+ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.680(Ac.) Runoff from this stream = 1.404(CFS) Time of concentration = 13.07 min. Rainfall intensity = 3.685(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16. 083 18 81 2. 914 2 1. 714 12 97 3. 704 3 1. 404 13 07 3. 685 Qmax(1) 1 000 * 1 .000 * 16. 083) -f 0 787 * 1 .000 * 1 714) -H 0 791 * 1 .000 * 1 404) -H = 18.542 Qmax(2) 1 000 * 0 .690 * 16 083) -f 1 000 * 1 .000 * 1 714) -f 1 000 * 0 .992 * 1 404) -f = 14.199 Qmax(3) 1 .000 * 0 .695 * 16 083) -f 0 .995 * 1 .000 * 1 714) -f 1 .000 * 1 .000 * 1 .404) -f = 14.286 24 Total of 3 main streams to confluence: Flow rates before confluence point: 16.083 1.714 1.404 Maximum flow rates at confluence using above data: 18.542 14.199 14.286 Area of streams before confluence: 9.180 0.830 0.680 Results of confluence: Total flow rate = 18.542(CFS) Time of concentration = 18.812 min. Effective stream area after confluence = 10.690(Ac.) +++++ + + ++-f + -f-f-f-f-f-f-f-H-H-H-H-H-f-H-H-H-H-H + -H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H+-f-f+-f-f-H+ Process from Point/Station 140.000 to Point/Station 147.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 196.37(Ft.) Downstream point/station elevation = 190.49(Ft.) Pipe length = 239.91(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.542(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 18.542(CFS) Normal flow depth in pipe = 12.33(In.) Flow top width inside pipe = 23.99(In.) Critical Depth = 18.60(In.) Pipe flow velocity = 11.40(Ft/s) Travel time through pipe = 0.35 min. Time of concentration (TC) = 19.16 min. + + +-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f +-f-f-H-f-H-f-f-H-H-H-H-H-H-H-H-H-H-H-H-H-H + Process from Point/Station 147.000 to Point/Station 147.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.690(Ac.) Runoff from this stream = 18.542(CFS) Time of concentration = 19.16 min. Rainfall intensity = 2.880(In/Hr) Program is now starting with Main Stream No. 2 ++ ++++ ++4--H-f-H-f + -f-f+-H-H-H-H-H-H-H-f-H-H-H-H-H-H-H-H-H-H-H-f-f-H-f-H-f-f-f-H-f-H-H-H-H-H-f-H-H-H-H+ Process from Point/Station 123.000 to Point/Station 123.500 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.450 given for subarea Initial subarea flow distance = 56.00(Ft.) Highest elevation = 262.10(Ft.) Lowest elevation = 234.10(Ft.) Elevation difference = 28.00(Ft.) Time of concentration calculated by the urban 25 areas overland flow method (App X-C) = 2.38 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.4500)*( 56.00".5)/( 50.00"(1/3)]= 2.38 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.031(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++-f+-f+++++++-f++-f+ Process from Point/Station 123.500 to Point/Station 147.500 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 234.10(Ft.) Downstream point elevation = 205.91(Ft.) Channel length thru subarea = 655.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 0.800 Slope or 'Z' of right channel bank = 0.800 Estimated mean flow rate at midpoint of channel = 0.925(CFS) Manning's 'N' = 0.016 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.925(CFS) Depth of flow = 0.466(Ft.), Average velocity = 5.329(Ft/s) Channel flow top width = 0.745(Ft.) Flow Velocity = 5.33(Ft/s) Travel time = 2.05 min. Time of concentration = 7.05 min. Critical depth = 0.609(Ft.) Adding area flow to channel User specified 'C value of 0.450 given for subarea Rainfall intensity = 5.489(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.433(CFS) for 0.580(Ac.) Total runoff = 1.4 64(CFS) Total area = 0.59(Ac.) + + + + + + + +-f-f-f-f-f-f-f +-f-f-f-f-f-f-H-f-f-f-f-f-H-f-f-H-f-I--I--H-H-H-H-I-+-I-+-I--I- Process from Point/Station 147.500 to Point/Station 147.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 199.00(Ft.) Downstream point/station elevation = 190.49(Ft.) Pipe length = 59.77(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.464(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.4 64(CFS) Normal flow depth in pipe = 2.36(In.) Flow top width inside pipe = 12.16(In.) Critical Depth = 5.44(In.) Pipe flow velocity = 10.68(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 7.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 26 Process from Point/Station 147.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 147.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.590(Ac.) Runoff from this stream = 1.464(CFS) Time of concentration = 7.14 min. Rainfall intensity = 5.443(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 18.542 1.464 Qmax(1) = 1.000 0.529 Qmax(2) = 1 1 ,000 ,000 19.16 7.14 1.000 * 1.000 * 0.373 * 1.000 * 2.880 5.443 18.542) -f 1.464) -f 18.542) -H 1.464) + 19.316 8.374 Total of 2 main streams to confluence: Flow rates before confluence point: 18.542 1.464 Maximum flow rates at confluence using above data: 19.316 8.374 Area of streams before confluence: 10.690 0.590 Results of confluence: Total flow rate = 19.316(CFS) Time of concentration = 19.163 min. Effective stream area after confluence = 11.280(Ac.) + + + + -H + + + + -H-H + -H-H + -H-H-f-H + -f-H-H-H4- + -H-f-f-f-f-f-H-H + -H-H-H-H-H-H-H-H-H + H--H + -H-H-H-f-f-f-f + + Process from Point/Station 147.000 to Point/Station 148.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 190.16(Ft.) Downstream point/station elevation = 187.65(Ft.) Pipe length = 74.15(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.316(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 19.316(CFS) Normal flow depth in pipe = 11.48(In.) Flow top width inside pipe = 23.98(In.) Critical Depth = 18.96(In.) Pipe flow velocity = 13.00(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 19.26 min. 27 + +++++++ + + + + + -f-f-f-f-H-f-f-f-f-H-H-H-H-H-H-f-f-f-f-f-f-f-f-f-H-f-f-f-H-l--^-f-l--H-V-H-^+-l--l-^ Process from Point/Station 148.000 to Point/Station 148.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 11.280(Ac.) Runoff from this stream = 19.316(CFS) Time of concentration = 19.26 min. Rainfall intensity = 2.871(In/Hr) Program is now starting with Main Stream No. 2 + + + +++ + 4. + ++++ +++ + + + +++-H + + + -H-H-H-H-H-H-f-H-H-f-f-f-f-H-H-H-f-H-f-f-f-f-f-f-H-f-H-f-H-^ Process from Point/Station 150.000 to Point/Station 144.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 125.00(Ft.) Highest elevation = 211.75(Ft.) Lowest elevation = 210.50(Ft.) Elevation difference = 1.25(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.07 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(125.00".5)/( 1.00"(l/3)]= 11.07 Rainfall intensity (I) = 4.103 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.293(CFS) Total initial stream area = 0.130(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + -H-H-H-H-H-H-H-H-H-H-H-H + -H-H-H-H-H-f-H-f-f-f-f-f-f-f-H + -H-H Process from Point/Station 144.000 to Point/Station 152.000 **** STREET FLOW TRAVEL TIME -H SUBAREA FLOW ADDITION **** Top of street segment elevation = 210.500(Ft.) End of street segment elevation = 200.450(Ft.) Length of street segment = 245.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.858(CFS) 28 Depth of flow = 0.216(Ft.), Average velocity = 3.315(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.952(Ft.) Flow velocity = 3.32(Ft/s) Travel time = 1.23 min. TC = 12.30 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.833(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.054(CFS) for 0.500(Ac.) Total runoff = 1.347(CFS) Total area = 0.63(Ac.) Street flow at end of street = 1.347(CFS) Half street flow at end of street = 1.347(CFS) Depth of flow = 0.243(Ft.), Average velocity = 3.517(Ft/s) Flow width (from curb towards crown)= 5.297(Ft.) +++ + + ++++4.+++++++ + + + + + + + + + + +++++-H-H-H-H-H-H-H-f-H-f-f-f-f-f-f-f-f + -f-f-f-f-f-f-^-H Process from Point/Station 152.000 to Point/Station 148.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 189.28(Ft.) Downstream point/station elevation = 187.65(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.347(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.347(CFS) Normal flow depth in pipe = 1.68(In.) Flow top width inside pipe = 10.48(In.) Critical Depth = 5.22(In.) Pipe flow velocity = 16.18(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.30 min. +++++++++++++++++++++-f++-f+-f+++++++-f-f-H-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-H-H-^ Process from Point/Station 148.000 to Point/Station 148.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.630(Ac.) Runoff from this stream = 1.347(CFS) Time of concentration = 12.30 min. Rainfall intensity = 3.832(In/Hr) Program is now starting with Main Stream No. 3 + + + + + + + + +++ + +++ + + + + + + + -H-H-H-H + -H-H-H-H + -f-f-H-H-H-f-f-f-f-H-f-H-H-H-H-H-H-H-H-H-H-H-H-f-H-H-H + ^ Process from Point/Station 154.000 to Point/Station 146.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 29 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.) Highest elevation = 212.76(Ft.) Lowest elevation = 211.46(Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.29 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(130.00".5)/( 1.00"(l/3)]= 11.29 Rainfall intensity (I) = 4.051 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.267(CFS) Total initial stream area = 0.120(Ac.) -H-H-H-H-H-H-H-H-H-H-f-f-f-f+++++ +++ +++-f + + -H + -H + -H-H-H-H-H-H-H-H-H-H-H-H-f-f-f + -H-f-f-f-f-f-H-H-f^ Process from Point/Station 146.000 to Point/Station 156.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 211.460(Ft.) End of street segment elevation = 200.450(Ft.) Length of street segment = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.958(CFS) Depth of flow = 0.221(Ft.), Average velocity = 3.399(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.235(Ft.) Flow velocity = 3.40(Ft/s) Travel time = 1.27 min. TC = 12.56 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.781(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.289(CFS) for 0.620(Ac.) Total runoff = 1.557(CFS) Total area = 0.74(Ac.) Street flow at end of street = 1.557(CFS) Half street flow at end of street = 1.557(CFS) Depth of flow = 0.250(Ft.), Average velocity = ,3.653(Ft/s) 30 Flow width (from curb towards crown)^ 5.689(Ft.: -H-H-H-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-f-f-f-f+-I--H-H-H-H-H-I--H-I--I--I--I-+-I- Process from Point/Station 156.000 to Point/Station 148.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 188.03(Ft.) Downstream point/station elevation = 187.65(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.557(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.557(CFS) Normal flow depth in pipe = 4.31(In.) Flow top width inside pipe = 15.36(In.) Critical Depth = 5.61(In.) Pipe flow velocity = 4.80(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 12.66 min. -f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+ Process from Point/Station 148.000 to Point/Station 148.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = 0.740(Ac.) 1.557(CFS) 12.66 min. 3.763(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 19 316 19. 26 2. 871 2 1 347 12. 30 3. 832 3 1 557 12. 66 3. 763 Qmax(1) = 1 000 * 1. 000 * 19. 316) -f 0 749 * 1. 000 * 1. 347) -f 0 763 * 1. 000 -k 1. 557) -f = 21.513 Qmax(2) = 1 000 * 0. 639 -k 19. 316) -f 1 000 * 1. 000 * 1. 347) -f 1 000 * 0. 972 * 1. 557) -f = 15.201 Qmax(3) = 1 .000 * 0. 657 * 19. 316) -f 0 .982 * 1. 000 * 1. 347) -f 1 .000 * 1. 000 1. 557) -f = 15.575 Total of 3 main streams to confluence: Flow rates before confluence point: 19.316 1.347 1.557 Maximum flow rates at confluence using above data: 31 21.513 15.201 15.575 Area of streams before confluence: 11.280 0.630 0.740 Results of confluence: Total flow rate = 21.513(CFS) Time of concentration = 19.258 min. Effective stream area after confluence = 12.650(Ac. ++++++++++++++++++++++-i-+-f++-f-f-f-f-f-f-f+-f+-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-^ Process from Point/Station 148.000 to Point/Station 158.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 187.32(Ft.) Downstream point/station elevation = 182.73(Ft.) Pipe length = 121.55(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.513(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 21.513(CFS) Normal flow depth in pipe = 11.85(In.) Flow top width inside pipe = 24.00(In.) Critical Depth = 19.89(In.) Pipe flow velocity = 13.92(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 19.40 min. ++-I--1--f+-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f++-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+ Process from Point/Station 158.000 to Point/Station 158.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.650(Ac.) Runoff from this stream = 21.513(CFS) Time of concentration = 19.40 min. Rainfall intensity = 2.857(In/Hr) Program is now starting with Main Stream No. 2 + +-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-H-H-H-H-f +-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-H-f-f-f-f-f +-f-f-f-f-f-f ^ Process from Point/Station 160.000 to Point/Station 102.500 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 276.33(Ft.) Lowest elevation = 275.13(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.84 min. 32 TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(120.00".5)/( 1.00"(l/3)]= 10.84 Rainfall intensity (I) = 4.157 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0. Subarea runoff = 0.229(CFS) Total initial stream area = 0.100(Ac.) 550 -f-f-f-f-f-f-f-H-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 102.500 to Point/Station 161.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** 0.0150 0.0150 Top of street segment elevation = 275.130(Ft.) End of street segment elevation = 244.270(Ft.) Length of street segment = 720.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break • Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.272(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 6.749(Ft.) Flow velocity = 3.91(Ft/s) Travel time = 3.07 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Rainfall intensity = 3.541(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 3.330(CFS) for 1.710(Ac.) Total runoff = 3.559(CFS) Total area = Street flow at end of street = 3.559(CFS) Half street flow at end of street = 3.559(CFS Depth of flow = 0.306(Ft.), Average velocity = Flow width (from curb towards crown)= 8.477(Ft.) 2.184(CFS) 3.913(Ft/s) 13.91 min. ] for a 100.0 year storm = 0.550 1.81(Ac.) 4.334(Ft/s) -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 161.000 to Point/Station 163.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 235.60(Ft.) Downstream point/station elevation = 235.33(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 33 No. of pipes = 1 Required pipe flow = 3.559(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.559(CFS) Normal flow depth in pipe = 4.17(In.) Flow top width inside pipe = 15.18(In.) Critical Depth = 8.64(In.) Pipe flow velocity = 11.48(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.92 min. -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f +-f-f-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f Process from Point/Station 163.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 235.00(Ft.) Downstream point/station elevation = 221.17(Ft.) Pipe length = 96.81(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.559(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.559(CFS) Normal flow depth in pipe = 3.64(In.) Flow top width inside pipe = 14.46(In.) Critical Depth = 8.64(In.) Pipe flow velocity = 13.91(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 14.03 min. -f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.810(Ac.) Runoff from this stream = 3.559(CFS) Time of concentration = 14.03 min. Rainfall intensity = 3.521(In/Hr) -f-f-f-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f + +-f-f-f-f-f-f-f-f-f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + + Process from Point/Station 160.500 to Point/Station 161.500 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 150.00(Ft.) Highest elevation = 245.77(Ft.) Lowest elevation = 244.27(Ft.) Elevation difference = 1.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.12 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5500)* (150.00".5)/( 1.00"(l/3)]= 12.12 34 Rainfall intensity (I) = 3.869 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.426(CFS) Total initial stream area = 0.200(Ac.) + + + + + + + + + + + + + + + -H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + -f-l--f-|--^-H-H-^-H + -^-^ Process from Point/Station 161.500 to Point/Station 162.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 244.270(Ft.) End of street segment elevation = 235.150(Ft.) Length of street segment = 64.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.660(CFS) Depth of flow = 0.145(Ft.), Average velocity = 6.969(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 6.97(Ft/s) Travel time = 0.15 min. TC = 12.28 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.838(In/Hr) for a 100.0 year storm ^ Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.464(CFS) for 0.220(Ac.) Total runoff = 0.890(CFS) Total area = 0.42(Ac.) Street flow at end of street = 0.890(CFS) Half street flow at end of street = 0.890(CFS) Depth of flow = 0.162(Ft.), Average velocity = 7.511(Ft/s) Flow width (from curb towards crown)= 1.500(Ft.) + + + + + + + + + ++++-H + -f-f-f-f-f-f-H-H-H-H + -H-H-H-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-I--t--^++-H-H-I-+ + Process from Point/Station 162.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 221.98(Ft.) Downstream point/station elevation = 221.17(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.890(CFS) Given pipe size = 18.00(In.) 35 Calculated individual pipe flow = 0.890(CFS) Normal flow depth in pipe = 1.63(In.) Flow top width inside pipe = 10.33(In.) Critical Depth = 4.20(In.) Pipe flow velocity = 11.18(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.28 min. + + + + + + + + + + + -H-H-f-f-f-f-f + -f + -f-f-f-f + -f-f-f-f-f-f-f-f-f + -H-H-^-H-H + -^ + + -H + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.420(Ac.) Runoff from this stream = 0.8 90(CFS) Time of concentration = 12.28 min. Rainfall intensity = 3.837(In/Hr) + + + + + + + + +++-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + -|- + -f-H-H-f-<-H-H-H-H-^-H-^ + -H-^ + + + + + + + + + + + + + + + + + + Process from Point/Station 107.000 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type 1 Initial subarea flow distance = 130.00(Ft.) Highest elevation = 270.59(Ft.) Lowest elevation = 269.29(Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.29 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(130.00".5)/{ 1.00"(l/3)]= 11.29 Rainfall intensity (I) = 4.051 for a 100.0 year storm^ Effective runoff coefficient used for area (Q=KCIA) is C - 0.550 Subarea runoff = 0.267(CFS) Total initial stream area = 0.120(Ac.) ++++++++++++-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-t-^-^-^-^-H-H-^-^-^-^+++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 166.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION Top of street segment elevation = 269.290(Ft.) End of street segment elevation = 235.090(Ft.) Length of street segment = 625.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) 36 Slope from curb to property line (v/hz) = 0.000 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.072(CFS) Depth of flow = 0.260(Ft.), Average velocity = 4.274(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.183(Ft.) Flow velocity = 4.27(Ft/s) Travel time = 2.4 4 min. TC = 13.72 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.572(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 3.182(CFS) for 1.620(Ac.) Total runoff = 3.450(CFS) Total area = 1.74(Ac.) Street flow at end of street = 3.450(CFS) Half street flow at end of street = 3.450(CFS) Depth of flow = 0.295(Ft.), Average velocity = 4.738(Ft/s) Flow width (from curb towards crown)= 7.909(Ft.) -f+-f-f-f-f f-f-f-f-f+-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-f-f-f+ Process from Point/Station 166.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 221.31(Ft.) Downstream point/station elevation = 221.17(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.450(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.450(CFS) Normal flow depth in pipe = 8.55(In.) Flow top width inside pipe = 17.98(In.) Critical Depth = 8.51(In.) Pipe flow velocity = 4.17(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.83 min. -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.740(Ac.) Runoff from this stream = 3.4 50(CFS) Time of concentration = 13.83 min. Rainfall intensity = 3.553(In/Hr) Summary of stream data: 37 stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3 559 14 03 3. 521 2 0 890 12 28 3. 837 3 3 450 13 83 3. 553 Qmax(1) 1 000 * 1 .000 * 3 .559) -f 0 .918 * 1 .000 * 0 .890) -f 0 .991 * 1 .000 * 3 .450) -f = 7.793 Qmax(2) = 1 .000 * 0 .875 * 3 .559) + 1 .000 * 1 .000 * 0 .890) -f 1 .000 * 0 .888 * 3 .450) -f = 7.068 Qmax(3) = 1 .000 * 0 .986 * 3 .559) -f 0 .926 * 1 .000 * 0 .890) -f 1 .000 * 1 .000 * 3 .450) + 7.782 Total of 3 streams to confluence: Flow rates before confluence point: 3 .559 0. 890 3. 450 Maximum flow rates at confluence using above data: 7. 793 7.06 8 7.78 2 Area of streams before confluence : 1. 810 0.420 1.740 Results of confluence : Total flow rate = 7 . 793(CFS) Time of concentration = 14.032 min. Effective stream area after confluence = 3. 970(Ac -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f++-f-f-f-f+ Process from Point/Station 164.000 to Point/Station 167.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 220.84(Ft.) Downstream point/station elevation = 210.06(Ft.) Pipe length = 115.67(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.793(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.793(CFS) Normal flow depth in pipe = 6.04(In.) Flow top width inside pipe = 17.00(In.) Critical Depth = 12.98(In.) Pipe flow velocity = 14.96(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 14.16 min. -f-f-f-f-f-f-f-f-f +-f-f-f-f-f-f-H-f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+ Process from Point/Station 167.000 to Point/Station 168.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 209.73(Ft.) Downstream point/station elevation = 190.44(Ft.) 38 Pipe length = 207.39(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.793(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.7 93(CFS) Normal flow depth in pipe = 6.05(In.) Flow top width inside pipe = 17.00(In.) Critical Depth = 12.98(In.) Pipe flow velocity = 14.96(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 14.39 min. +++++++++++^-+++++-^-^-f-f-f-f-H-f-f-f-f-H-H-H-H+-f-f-f-f-f-f-f-f-f-f•f-f-f-f-f+-f-f-f-l--l--l--^ Process from Point/Station 168.000 to Point/Station 168.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.970(Ac.) Runoff from this stream = 7.793(CFS) Time of concentration = 14.39 min. Rainfall intensity = 3.464(In/Hr) +++++++++++++++++++-H-H-f-f-f-f-f-f-f-f-H-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-H-f-f-f-f-f-f-f-ft Process from Point/Station 169.000 to Point/Station 162.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 155.00(Ft.) Highest elevation = 236.64(Ft.) Lowest elevation = 235.09(Ft.) Elevation difference = 1.55(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.33 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(155.00".5)/( 1.00"(l/3)]= 12.33 Rainfall intensity (I) = 3.828 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.316(CFS) Total initial stream area = 0.150(Ac.) + + + + + + + + + + + + + + + -l--H-H-f-f-f + -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 162.000 to Point/Station 172.000 STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** **** Top of street segment elevation = 235.090(Ft.) End of street segment elevation = 200.610(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 39 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.526(CFS) Depth of flow = 0.221(Ft.), Average velocity = 5.422(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.231(Ft.) Flow velocity = 5.42(Ft/s) Travel time = 0.98 min. TC = 13.31 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.643(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.304(CFS) for 1.150(Ac.) Total runoff = 2.620(CFS) Total area = 1.30(Ac.) Street flow at end of street = 2.620(CFS) Half street flow at end of street = 2.620(CFS) Depth of flow = 0.254(Ft.), Average velocity = 5.883(Ft/s) Flow width (from curb towards crown)= 5.855(Ft.) + + + + + + + + + + + + + + -f-f-H-H-H-f-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-I--H-l--H-l--I- Process from Point/Station 172.000 to Point/Station 168.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 192.07(Ft.) Downstream point/station elevation = 190.44(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.620(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.620(CFS) Normal flow depth in pipe = 2.31(In.) Flow top width inside pipe = 12.04(In.) Critical Depth = 7.35(In.) Pipe flow velocity = 19.75(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.31 min. 4.++ +++ + + + + + + + + + -h-|--f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f + -H-H-H-l--H-H-H-H + Process from Point/Station 168.000 to Point/Station 168.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.300(Ac.) Runoff from this stream = 2.620(CFS) Time of concentration = 13.31 min. 40 Rainfall intensity = 3.643(In/Hr) ++++++++++++++++++++-f+-f++++++++++-H-H+++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 166.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 236.29(Ft.) Lowest elevation = 235.09(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.84 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1 8*(l.l-0.5500)*(120.00".5)/( 1.00"(l/3)]= 10.84 Rainfall intensity (I) = 4.157 for a 100.0 year storm^ Effective runoff coefficient used for area (Q=KCIA) is C - U.i)bU Subarea runoff = 0.274(CFS) Total initial stream area = 0.120(Ac.) ++++++++++++++++++++-f+++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 166.000 to Point/Station 174.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 235.090(Ft.) End of street segment elevation = 201.890(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.880(CFS) Depth of flow = 0.182(Ft.), Average velocity = 5.698(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.280(Ft.) Flow velocity = 5.70(Ft/s) Travel time = 0.88 min. TC = 11.72 mm. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C Decimal fraction soil group D 0.000 1.000 41 [SINGLE FAMILY area type ] Rainfall intensity = 3.954(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.153(CFS) for 0.530(Ac.) Total runoff = 1.427(CFS) Total area = 0.65(Ac.) Street flow at end of street = 1.427(CFS) Half street flow at end of street = 1.427(CFS) Depth of flow = 0.216(Ft.), Average velocity = 5.452(Ft/s) Flow width (from curb towards crown)= 3.991(Ft.) + +++++ +++ +++ + + + ++-H-h-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-^ Process from Point/Station 174.000 to Point/Station 168.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 190.60(Ft.) Downstream point/station elevation = 190.44(Ft.) Pipe length = 32.09(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.427(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.427(CFS) Normal flow depth in pipe = 5.35(In.) Flow top width inside pipe = 16.45(In.) Critical Depth = 5.37(In.) Pipe flow velocity = 3.24(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 11.89 min. +++-H-I--f-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f+ Process from Point/Station 168.000 to Point/Station 168.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.650(Ac.) Runoff from this stream = 1.427(CFS) Time of concentration = 11.89 min. Rainfall intensity = 3.918(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity (In/Hr) No. (CFS) (min) 1 7. 793 14 . 39 3. 464 2 2. 620 13. 31 3. 643 3 1 427 11. 89 3 918 Qmax(1) 1 000 * 1. 000 * 7 793) + 0 951 * 1. 000 * 2 620) -f 0 884 * 1. 000 * 1 427) -f = Qmax(2) 1 000 * 0. 925 * 7 793) -f 1 000 * 1. 000 * 2 620) -f 0 930 * 1. 000 * 1 427) -f = Qmax(3) 1 000 * 0. 826 * 7 793) + 11.546 11.155 42 1.000 * 0.893 * 2.620) -f 1.000 * 1.000 * 1.427) -f = 10.204 Total of 3 streams to confluence: Flow rates before confluence point: 7.793 2.620 1.427 Maximum flow rates at confluence using above data: 11.546 11.155 10.204 Area of streams before confluence: 3.970 1.300 0.650 Results of confluence: Total flow rate = 11.546(CFS) Time of concentration = 14.392 min. Effective stream area after confluence = 5.920(Ac.) +++ + + +++ + + + + + + + ++-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 168.000 to Point/Station 158.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 190.11(Ft.) Downstream point/station elevation = 182.73(Ft.) Pipe length = 72.03(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.546(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.546(CFS) Normal flow depth in pipe = 7.28(In.) Flow top width inside pipe = 17.67(In.) Critical Depth = 15.54(In.) Pipe flow velocity = 17.26(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 14.4 6 min. ++ + ++++ + +++ + + +++ + -h-H-|--f-f-f-f-f-f-f-f + -f-f-f + -f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H + Process from Point/Station 158.000 to Point/Station 158.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.920(Ac.) Runoff from this stream = 11.546(CFS) Time of concentration = 14.46 min. Rainfall intensity = 3.453(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 21.513 19.40 2.857 2 11.546 14.46 3.453 Qmax(1) Qmax(2) 1.000 * 1.000 * 21.513) + 0.827 * 1.000 * 11.546) -H = 31.065 1.000 * 0.745 * 21.513) -f 43 1.000 * 1.000 * 11.546) -f = 27.580 Total of 2 main streams to confluence: Flow rates before confluence point: 21.513 11.546 Maximum flow rates at confluence using above data: 31.065 27.580 Area of streams before confluence: 12.650 5.920 Results of confluence: Total flow rate = 31.065(CFS) Time of concentration = 19.404 min. Effective stream area after confluence = 18.570(Ac.) 4.+ + + + ++++ +++ +++ ++-h-H-f-f-f-f-f-f-f-f-f-H-H-H-H+-f-f-f-f-f-f-f-f-f-f-f-f + -f-f-l--l--H-H-H-H Process from Point/Station 158.000 to Point/Station 176.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 182.40(Ft.) Downstream point/station elevation = 173.74(Ft.) Pipe length = 104.98(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.065(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 31.065(CFS) Normal flow depth in pipe = 11.70(In.) Flow top width inside pipe = 23.99(In.) Critical Depth = 22.52(In.) Pipe flow velocity = 20.46(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 19.49 min. + + + + + + + + + + + + + + -|--H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + -f-f-f-f-f + -f-f + + + -H-H Process from Point/Station 176.000 to Point/Station 176.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 18.570(Ac.) Runoff from this stream = 31.065(CFS) Time of concentration = 19.4 9 min. Rainfall intensity = 2.849(In/Hr) Program is now starting with Main Stream No. 2 + +++ + ++++++++ + + -f-f-f-f-f-f-f-f-f-f-f-f •f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-I-+ Process from Point/Station 177.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type 44 Initial subarea flow distance = 125.00(Ft.) Highest elevation = 201.70(Ft.) Lowest elevation = 200.45(Ft.) Elevation difference = 1.25(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.07 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(125.00".5)/( 1.00"(l/3)]= 11.07 Rainfall intensity (I) = 4.103 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.406(CFS) Total initial stream area = 0.180(Ac.) + + ++++ +++ ++++++++ + -|--H-f-f-f-f-f-f-f-f-f-f-f-f + + -f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f Process from Point/Station 152.000 to Point/Station 180.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 200.450(Ft.) End of street segment elevation = 189.800(Ft.) Length of street segment = 235.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.903(CFS) Depth of flow = 0.216(Ft.), Average velocity = 3.485(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.956(Ft.) Flow velocity = 3.49(Ft/s) Travel time = 1.12 min. TC = 12.19 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.855(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.933(CFS) for 0.440(Ac.) Total runoff = 1.339(CFS) Total area = 0.62(Ac.) Street flow at end of street = 1.339(CFS) Half street flow at end of street = 1.339(CFS) Depth of flow = 0.239(Ft.), Average velocity = 3.664(Ft/s) Flow width (from curb towards crown)= 5.128(Ft.) H + +-I-+-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-H-f-f-f-f-f-f-f-H-H-f-f-f-f-f-f-f-f-f-H-H-H-H-H-H-H-H-f-f-f-f 45 Process from Point/Station 180.000 to Point/Station 176.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 175.37(Ft.) Downstream point/station elevation = 173.74(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.339(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.339(CFS) Normal flow depth in pipe = 1.68(In.) Flow top width inside pipe = 10.47(In.) Critical Depth = 5.19(In.) Pipe flow velocity = 16.15(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.20 min. +++++++++++++++ + -H+-H-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + + -f-f-f-f-f-f-f-f-f-f-f-H-H + Process from Point/Station 176.000 to Point/Station 176.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.620(Ac.) Runoff from this stream = 1.339(CFS) Time of concentration = 12.20 min. Rainfall intensity = 3.854(In/Hr) Program is now starting with Main Stream No. 3 + + + + + + + + + + + + + + + + + + -H-l--f-t--f-f-f + -f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-H-f-f-f-f-f-f-f-f-f-f + Process from Point/Station 178.000 to Point/Station 156.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 201.65(Ft.) Lowest elevation = 200.45(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.8 4 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5500)*(120.00".5)/( 1.00"(l/3)]= 10.84 Rainfall intensity (I) = 4.157 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.206(CFS) Total initial stream area = 0.090(Ac.) + + + +++ + + + + ++++ + -|--|--f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-H-f-f-f-f-H-f-f-f + -f-f-f-f-H Process from Point/Station 156.000 to Point/Station 182.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** 46 Top of street segment elevation = 200.450(Ft.) End of street segment elevation = 190.720(Ft.) Length of street segment = 220.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.252(CFS) Depth of flow = 0.126(Ft.), Average velocity = 3.533(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 3.53(Ft/s) Travel time = 1.04 min. TC = 11.88 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.919(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.970(CFS) for 0.450(Ac.) Total runoff = 1.176(CFS) Total area = 0.54(Ac.) Street flow at end of street = 1.176(CFS) Half street flow at end of street = 1.176(CFS) Depth of flow = 0.232(Ft.), Average velocity = 3.556(Ft/s) Flow width (from curb towards crown)= 4.777(Ft.) -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-H-H-f+-H-H-H + Process from Point/Station 182.000 to Point/Station 176.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 180.95(Ft.) Downstream point/station elevation = 173.74(Ft.) Pipe length = 31.33(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.176(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.17 6(CFS) Normal flow depth in pipe = 1.90(In.) Flow top width inside pipe = 11.05(In.) Critical Depth = 4.85(In.) Pipe flow velocity = 11.83(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 11.93 min. + + + + + + + + + + + + + + + + + + -h-f-H-f-f-f-f-f-f-f-f-f-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f + 47 Process from Point/Station 176.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 176.000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = Runoff from this stream 0.540(Ac.) 1.176(CFS) Time of concentration = 11. 93 min. Rainfall intensity = 3 .910(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) ( In/Hr) 1 31 065 19. 49 2. 849 2 1 339 12. 20 3. 854 3 1 176 11. 93 3. 910 Qmax(1) 1 000 * 1. 000 * 31 .065) -f 0 739 * 1. 000 * 1 .339) -f 0 729 * 1. 000 * 1 .176) -f = 32.911 Qmax(2) 1 000 * 0. 626 * 31 .065) -f 1 .000 * 1. 000 * 1 .339) -f 0 .986 * 1. 000 * 1 .176) -f = 21.937 Qmax(3) 1 .000 * 0. 612 31 .065) -f 1 .000 * 0. 978 1 .339) -f 1 .000 * 1. 000 * 1 .176) -f = 21.496 Total of 3 main streams to confluence: Flow rates before confluence point: 31.065 1.339 1.176 Maximum flow rates at confluence using above data: 32.911 21.937 21.496 Area of streams before confluence: 18.570 0.620 0.540 Results of confluence: Total flow rate = 32.911(CFS) Time of concentration = 19.489 min. Effective stream area after confluence 19.730(Ac.) -I--I--h-f-f-f-f-f-f-f-f-f-f-f-f-f++-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-^ Process from Point/Station 176.000 to Point/Station 184.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 173.41(Ft.) Downstream point/station elevation = 169.08(Ft.) Pipe length = 254.57(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 32.911(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 48 3.612(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 5.386(Ft.) Minor friction loss = 2.556(Ft.) K-factor = 1.50 Pipe flow velocity = 10.48(Ft/s) Travel time through pipe = 0.41 min. Time of concentration (TC) = 19.89 min. -H-(--1-+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-H-H + Process from Point/Station 184.000 to Point/Station 184.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 19.730(Ac.) Runoff from this stream = 32.911(CFS) Time of concentration = 19.89 min. Rainfall intensity = 2.811(In/Hr) Program is now starting with Main Stream No. 2 -H-H-H-f-f-f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H + Process from Point/Station 186.000 to Point/Station 180.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 160.00(Ft.) Highest elevation = 191.50(Ft.) Lowest elevation = 189.80(Ft.) Elevation difference = 1.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.27 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(160.00".5)/( 1.06"(l/3)]= 12.27 Rainfall intensity (I) = 3.839 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.676(CFS) Total initial stream area = 0.320(Ac.) -H-H-f-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f +-f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-f-f-f-f-f-f-f + Process from Point/Station 180.000 to Point/Station 188.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 189.800(Ft.) End of street segment elevation = 179.380(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street 49 Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.605(CFS) Depth of flow = 0.253(Ft.), Average velocity = 3.649(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.807(Ft.) Flow velocity = 3.65(Ft/s) Travel time = 1.14 min. TC = 13.41 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.625(In/Hr) for a 100.0 year storm _ Runoff coefficient used for sub-area. Rational method,Q=KCIA, C - O.bbU Subarea runoff = 1.754(CFS) for 0.880(Ac.) Total runoff = 2.430(CFS) Total area = 1.20(Ac.) Street flow at end of street = 2.430(CFS) Half street flow at end of street = 2.430(CFS) Depth of flow = 0.280(Ft.), Average velocity = 3.954(Ft/s) Flow width (from curb towards crown)= 7.156(Ft.) + + + + +++ + + ++++ +++ + + + + +++ + + + + -f +++++-H + + -H+++ + -H + -H+++ + + + + -H+ + ++++ +++ + +++ + ++++ Process from Point/Station 188.000 to Point/Station 188.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.200(Ac.) Runoff from this stream = 2.430(CFS) Time of concentration = 13.41 min. Rainfall intensity = 3.625(In/Hr) ++++++++++++++++++++++++++++++++++++++-H+++++++++++++++++++++++++++++++ Process from Point/Station 190.000 to Point/Station 192.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.870 given for subarea Initial subarea flow distance = 40.00(Ft.) Highest elevation = 193.46(Ft.) Lowest elevation = 192.66(Ft.) Elevation difference = 0.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.08 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8700)*( 40.00".5)/( 2.00"(l/3)]= 2.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year stom Effective runoff coefficient used for area (Q=KCIA) is C - U.b/U Subarea runoff = 0.060(CFS) 50 Total initial stream area = 0.010(Ac.) + + + +++++++++++++-H-H-|--f-H-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H+ Process from Point/Station 192.000 to Point/Station 188.000 **** STREET FLOW TRAVEL TIME -H SUBAREA FLOW ADDITION **** Top of street segment elevation = 192.660(Ft.) End of street segment elevation = 179.380(Ft.) Length of street segment = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.071(CFS) Depth of flow = 0.076(Ft.), Average velocity = 2.716(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.72(Ft/s) Travel time = 1.60 min. TC = 6.60 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 5.730(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.198(CFS) for 0.380(Ac.) Total runoff = 1.257(CFS) Total area = 0.39(Ac.) Street flow at end of street = 1.257(CFS) Half street flow at end of street = 1.257(CFS) Depth of flow = 0.232(Ft.), Average velocity = 3.818(Ft/s) Flow width (from curb towards crown)= 4.762(Ft.) ++++++++++++++++-i--H-f-f-f-f-f-f-f+-f-f-f+-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-f-f-f-f-f-f-f Process from Point/Station 188.000 to Point/Station 188.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.390(Ac.) Runoff from this stream = 1.257(CFS) Time of concentration = 6.60 min. Rainfall intensity = 5.730(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity 51 No. (CFS) (min) 1 2. 430 13 41 3. 625 2 1. 257 6 .60 5. 730 Qmax 1) = 430) Qmax 1 000 * 1 .000 * 2 430) -f 0 633 * 1 .000 * 1 257) -f - Qmax (2) = 430) 1 .000 * 0 .492 * 2 430) •f 1 .000 * 1 .000 * 1 .257) -f (In/Hr) 3.225 2.452 Total of 2 streams to confluence: Flow rates before confluence point: 2.430 1.257 Maximum flow rates at confluence using above data: 3.225 2.452 Area of streams before confluence: 1.200 0.390 Results of confluence: Total flow rate = 3.225(CFS) Time of concentration = 13.414 min. Effective stream area after confluence = 1.590(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 188.000 to Point/Station 184.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 171.88(Ft.) Downstream point/station elevation = 170.25(Ft.) Pipe length = 3.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.225(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.225(CFS) Normal flow depth in pipe = 2.55(In.) Flow top width inside pipe = 12.56(In.) Critical Depth = 8.20(In.) Pipe flow velocity = 21.02(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.42 min. Process'from'Point/Station 184.000 to Point/Station 184.000 **** CONFLUENCE OF MAIN STREAMS **** +++++++++++++++++++++++++-f++-H+++++++++++++++++++++++++++++ +++++++ The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.590(Ac.) Runoff from this stream = 3.225(CFS) Time of concentration = 13.42 min. Rainfall intensity = 3.624(In/Hr) Program is now starting with Main Stream No. 3 -f-f +++++++++++++-f+++++++-f+++++++++++++++++++++++++++++++++ ++++++++ +++++ 52 Process from Point/Station 194.000 to Point/Station 182.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 191.92(Ft.) Lowest elevation = 190.72(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.84 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1 8*(l.l-0.5500)*(120.00".5)/( 1.00"(l/3)]= 10.84 Rainfall intensity (I) = 4.157 for a 100.0 year storm^ Effective runoff coefficient used for area (Q=KCIA) is C - 0.550 Subarea runoff = 0.252(CFS) Total initial stream area = 0.110(Ac.) + + + + + + + + + + + + + -H-f-f-f-f-f 4--f-f-f-f-f-f-f-f-f + -H-H-H-H-H-H-f-f-f-f-f-f-f-f-f-f-f-H-H-H-r-H-f-f-f + -f-f-f + -H-H-H-H-H-f-f-f-^ Process from Point/Station 182.000 to Point/Station 196.000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 190.720(Ft.) End of street segment elevation = 179.380(Ft.) Length of street segment = 27 0.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.846(CFS) Depth of flow = 0.214(Ft.), Average velocity = 3.348(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.875(Ft.) Flow velocity = 3.35(Ft/s) Travel time = 1.34 min. TC = 12.19 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type 1 Rainfall intensity = 3.856(In/Hr) for a 100.0 year storm ^ Runoff coefficient used for sub-area. Rational method,Q=KCIA, C - 0.550 Subarea runoff = 1.103(CFS) for 0.520(Ac.) 53 Total runoff = 1.354(CFS) Total area = 0.63(Ac.) Street flow at end of street = 1.354(CFS) Half street flow at end of street = 1.354(CFS) Depth of flow = 0.242(Ft.), Average velocity = 3.555(Ft/s) Flow width (from curb towards crown)= 5.277(Ft.) +++++ + +++++-h + -f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-f-f-f-f-f-f-H + -H-H-H-H-f-f-f-f-f-f-f-f-f-f-H-H-H-f-f-f-f-f-f-f Process from Point/Station 196.000 to Point/Station 196.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.630(Ac.) Runoff from this stream = 1.354(CFS) Time of concentration = 12.19 min. Rainfall intensity = 3.856(In/Hr) +++++++++ + +++-H-f-f-f-f-f-f-f+-f-f-f-f++-f-f-f-f-f + -f-f-f-H-f-f-f-f-H-H-H-H-H-H-H-H-H-f-f-f-f-f-H+-f + -f-H-H-H-f-f-f + Process from Point/Station 198.000 to Point/Station 200.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.980 given for subarea Initial subarea flow distance = 17.00(Ft.) Highest elevation = 188.46(Ft.) Lowest elevation = 188.12(Ft.) Elevation difference = 0.34(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.71 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"{l/3)] TC = -[1.8*(1.1-0.9800)*( 17.00".5)/( 2.00"(l/3)]= 0.71 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C - 0.980 Subarea runoff = 0.067(CFS) Total initial stream area = 0.010(Ac.) + + + ++++++ + ++-H-H-f-f-f-f-f + -f-f-f-f-f-f-f-f-f-f-f-f-f-H-f-f-H-f-f-f-f-f-f-H-H-H-H-H-H-H-H-f-f-f-f^ Process from Point/Station 200.000 to Point/Station 196.000 **** STREET FLOW TRAVEL TIME -H SUBAREA FLOW ADDITION * * + + Top of street segment elevation = 188.120(Ft.) End of street segment elevation = 17 9.380(Ft.) Length of street segment = 270.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft. Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 54 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.078(CFS) Depth of flow = 0.086(Ft.), Average velocity = 2.341(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.34(Ft/s) Travel tirae = 1.92 min. TC = 6.92 min. Adding area flow to street 0.000 0.000 ] for a 100.0 year storm Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Rainfall intensity = 5.554(In/Hr) Runoff coefficient used for sub-area. Rational method,Q-KCIA, C - Subarea runoff = 0.947(CFS) for 0.310(Ac.) Total runoff = 1.014(CFS) Total area = 0.32(Ac.) Street flow at end of street = 1.014(CFS) Half street flow at end of street = 1.014(CFS) Depth of flow = 0.233(Ft.), Average velocity = 3.045(Ft/s) Flow width (from curb towards crown)= 4.801(Ft.) 0.550 + + + + + + + + + + + + -H-H-H-H-H-H-H-H-H-H-H-H-H-f-f-f-H-f-f-f-f-f-f-f-f-H-H-H-H-H-f + -f-f-f-f-f-f-f + -f-f-H-H-f-f-f-H-H-H-H-f-f-f-f + Process from Point/Station 196.000 to Point/Station 196.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area, = 0.320(Ac.) Runoff from this stream = 1.014(CFS) Time of concentration = 6.92 min. Rainfall intensity = 5.554(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 1. 354 12. 19 3. 856 1 014 6. 92 5. 554 1 000 * 1. 000 * 1 354) -f 0 694 * 1. 000 * 1 014) -f = 1 000 0. 568 1 354) -f 1 .000 * 1. 000 * 1 .014) -f = 2.058 1.783 Total of 2 streams to confluence: Flow rates before confluence point: 1.354 1.014 Maximum flow rates at confluence using above data: 2.058 1.783 Area of streams before confluence: 0.630 0.320 Results of confluence: Total flow rate = 2.058(CFS) Time of concentration = 12.189 min. 55 Effective stream area after confluence 0.950(Ac.) +++++++++++++++++++++++++++-f++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 196.000 to Point/Station 184.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 2.058(CFS) 058(CFS) Upstream point/station elevation = 171.75(Ft.) Downstream point/station elevation = 169.08(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 2 Normal flow depth in pipe = 3.05(In.) Flow top width inside pipe = 13.51(In.) Critical Depth = 6.48(In.) Pipe flow velocity = 10.36(Ft/s)^ Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.23 min ++++++++++++++++++++++++++++-f+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 184.000 to Point/Station 184.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = 0.950(Ac.) 2.058(CFS) 12.23 min. 3.847(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 32. 911 19. 89 2. 811 2 3. 225 13. 42 3. 624 3 2 058 12. 23 3. 847 Qmax(1) = 911) 1 000 * 1. 000 * 32. 911) -f 0 776 * 1. 000 * 3. 225) -f 0 731 * 1. 000 * 2. 058) •f = 36.917 Qmax(2) = Qmax(2) 1 .000 * 0. 674 32. 911) -f 1 .000 * 1 000 3. 225) -f 0 .942 * 1 000 2. 058) -f = 27.360 Qmax(3) = 1 .000 * 0 615 * 32 911) -f 1 .000 * 0 .912 * 3 225) -f 1 .000 * 1 .000 * 2 058) -f = 25.236 Total of 3 main streams to confluence: Flow rates before confluence point: 32.911 3.225 2.058 Maximum flow rates at confluence using above data: 56 36.917 27.360 25.236 Area of streams before confluence: 19.730 1.590 0.950 Results of confluence: Total flow rate = 36.917(CFS) Time of concentration = 19.894 min. Effective stream area after confluence = 22.270(Ac. + + ++4. + + + +++ + + + + + + + + -H-H + -f-f-f-f-f + -f-f-f+-f-f-f-f-f-f-f++-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-^ Process from Point/Station 184.000 to Point/Station 202.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 168.75(Ft.) Downstream point/station elevation = 168.20(Ft.) Pipe length = 109.17(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 36.917(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 36.917(CFS) Normal flow depth in pipe = 23.91(In.) Flow top width inside pipe = 34.01(In.) Critical Depth = 23.71(In.) Pipe flow velocity = 7.41(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 20.14 min. End of computations, total study area = 22.27 (Ac. 57 SYSTEM *200' San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/19/02 VILLAGE 'W' HYDROLOGY STUDY SYSTEMM '200' BY: JST FILE: VLW02 PREPARED: DECEMBER 17,2002 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method + +++++++ + +++-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-f-f-f-f-f-f-f-f-f-f-H-H + Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation = 271.00(Ft.) Lowest elevation = 269.90(Ft.) Elevation difference = 1.10(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.38 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*( 50.00".5)/( 2.20"(l/3)]= 5.38 Rainfall intensity (I) = 6.532 for a 100.0 year storm^ Effective runoff coefficient used for area (Q=KCIA) is C - 0.550 Subarea runoff = 0.036(CFS) Total initial stream area = 0.010(Ac.) +++ + + + + + + + + + -H + -f-f-f-f-f-f-f + -f + -f-f-f-f-f-f-f-f-f-f-f-f-f-H-H-H-H-f-f-f-f-f-f-f-f-f-H-H-H+ Process from Point/Station 202.000 to Point/Station 204.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 269.90(Ft.) Downstream point elevation = 261.60(Ft.) Channel length thru subarea = 150.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 0.701(CFS) Manning's 'N' = 0.025 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.701(CFS) Depth of flow = 0.348(Ft.), Average velocity = 3.855(Ft/s) Channel flow top width = 1.044(Ft.) Flow Velocity = 3.86(Ft/s) Travel time = 0.65 min. Time of concentration = 6.03 min. Critical depth = 0.422(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 6.070(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.235(CFS) for 0.370(Ac.) Total runoff = 1.271(CFS) Total area = 0.38(Ac.) •f-f-f-f-f +-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f+-f-f-f-f-f-f-f-f-H-H-H-H-H-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f + Process from Point/Station 204.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 255.88(Ft.) Downstream point/station elevation = 254.23(Ft.) Pipe length = 16.51(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.271(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.271(CFS) Normal flow depth in pipe = 2.41(In.) Flow top width inside pipe = 12.25(In.) Critical Depth = 5.06(In.) Pipe flow velocity = 9.04(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.06 min. End of computations, total study area = 0.38 (Ac.) SECTION 4 RICH FIELD DRIVE MAIN LINE ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * SYSTEM '100' MAIN LINE - RICH FIELD DRIVE * * J.N. 981020-5 FILE: VLWOl.RES * ************************************************************************** FILE NAME: VLW01.DAT TIME/DATE OF STUDY: 08:31 11/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 202.00- 185.00 184.00 177.00 176.00 159.00 158.00 149.00 148.00 147.30 147.00 139.00 140.00 135.00- 1.99 Dc 801.42 1.90*Dc 857.40 } HYDRAULIC JUMP 2.99 1058.72 3.11 1.88*Dc 1009.62 783.17 UPSTREAM RUN MODEL PRESSURE PRESSURE-f PROCESS HEAD(FT) MOMENTUM(POUNDS) 1.98 Dc 801.35 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 3.27* 732.31 } HYDRAULIC JUMP 455.90 1.66 Dc 1.86 1.58 Dc 1.55 Dc 1.55*Dc 1.75* 406.39 390.56 368.87 368.87 319.96 DOWNSTREAM RUN FLOW PRESSURE-f DEPTH(FT) MOMENTUM(POUNDS) 809.45 } HYDRAULIC JUMP 1.45*Dc 303.53 1.82* 1.39* 1.90*Dc 1.14* 1.02* 1. 88*Dc 1.00 1.16* 0. 97* 0. 99* 0. 94* 1. 55*Dc 1.21 1. 44*Dc 940.19 857.40 1193.46 1202.96 783.17 614.61 536.14 520.13 505.32 494.67 368.87 316.45 303.53 134.00 133.00 132.00 131.00 130.00 117.00 116.00 115.00 114.00 107.00 106.00 104.00 JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.52* 258.70 } HYDRAULIC JUMP 1.45 255.35 1.35*Dc 253.26 } HYDRAULIC JUMP 1.45 255.27 1.35*Dc 1.45* 253.26 255.14 1.89* 203.89 } HYDRAULIC JUMP 0.93*Dc 99.15 1.22 112.20 0.93*Dc 99.15 1.30 87.51 0.83*Dc 64.74 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 1.35 Dc 1.01* 1.35*Dc 1.01* 1.35*Dc 1.35 Dc 0. 65 0.93*Dc 0.49* 0.93*Dc 0.46* 0.83*Dc 25 253.26 282.51 253.26 282.51 253.26 253.26 118.66 99.15 163.17 99.15 97 . 65 64 .74 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 202.00 FLOWLINE ELEVATION = 168.20 PIPE FLOW = 36.92 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 169.200 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.98 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 202.00 : HGL = < 170.018>;EGL= < 171.072>;FLOWLINE= < 168.200> ****************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 185.00 IS CODE = 1 UPSTREAM NODE 185.00 ELEVATION = 168.75 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.92 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 109.17 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.99 CRITICAL DEPTH(FT) = 1. 98 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 392 11 492 3 444 940 19 6 099 1 416 11 247 3 381 927 40 12 192 1 439 11 012 3 323 915 44 18 279 1 462 10 787 3 270 904 24 24 358 1 486 10 570 3 222 893 80 30 429 1 509 10 362 3 178 884 06 36 492 1 533 10 163 3 137 875 00 42 544 1 556 9 970 3 100 866 58 48 586 1 579 9 785 3 067 858 79 54 615 1 603 9 607 3 037 851 59 60 630 1 626 9 436 3 009 844 96 66 630 1 649 9 271 2 985 838 88 72 612 1 673 9 111 2 962 833 32 78 572 1 696 8 957 2 943 828 28 84 508 1 719 8 809 2 925 823 72 90 414 1 743 8 666 2 909 819 63 96 285 1 766 8 528 2 896 815 99 102 113 1 789 8 394 2 884 812 79 107 885 1 813 8 265 2 874 810 01 109 170 1 818 8 237 2 872 809 45 NODE 185.00 : HGL = < 170.142>;EGL= < 172.194>;FLOWLINE= < 168.750> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 184.00 185.00 TO NODE ELEVATION = 184.00 IS CODE = 5 169.08 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 32. 91 36. 92 3.23 0.78 0.00= DIAMETER ANGLE FLOWLINE CRITICAL 24.00 0.00 169.08 1.90 36.00 - 168.75 1.98 18.00 90.00 170.25 0.68 18.00 90.00 169.08 0.33 =Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 10. 675 11.495 4 .114 0.442 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A1-HA2) *16 .1) -HFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01833 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01584 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01709 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.068 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-HHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.555)-f( 0.000) = 0.555 NODE 184.00 : HGL = < 170.980>;EGL= < 172.750>;FLOWLINE= < 169.080> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 177.00 184.00 TO NODE ELEVATION = 177.00 IS CODE = 1 173.41 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 32.91 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 254.57 FEET MANNING'S N = 0.01300 • HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS ===> NORMAL PIPEFLOW IS PRESSURE FLOW RESULTS NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) = 1. 90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.14 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .138 17 825 6 075 1193 46 7 . 672 1 . 168 17 261 5 798 1161 08 15 . 427 1 . 199 16 735 5 550 1131 18 23 .275 1 .229 16 243 5 329 1103 59 31 .226 1 .260 15 782 5 130 1078 10 39 .292 1 .290 15 351 4 952 1054 59 47 .486 1 .321 14 946 4 792 1032 89 55 . 824 1 .351 14 566 4 648 1012 89 64 .321 1 .382 14 209 4 519 994 47 72 .995 1 .412 13 874 4 403 977 54 81 .865 1 .443 13 558 4 299 962 00 90 .952 1 . 473 13 262 4 206 947 77 100 .278 1 .504 12 984 4 123 934 77 109 .868 1 .534 12 722 4 049 922 95 119 .743 1 .565 12 476 3 983 912 24 129 . 924 1 .595 12 246 3 925 902 59 140 . 423 1 .626 12 029 3 874 893 95 151 .241 1 . 656 11 827 3 830 886 29 162 . 348 1 . 687 11 638 3 791 879 57 173 . 661 1 .717 11 462 3 758 873 75 185 .006 1 .748 11 298 3 731 868 83 196 .054 1 .778 11 148 3 709 864 78 206 .237 1 . 809 11 009 3 692 861 60 214 . 694 1 . 839 10 883 3 680 859 30 220 .358 1 .870 10 771 3 672 857 88 222 .337 1 .900 10 671 3 670 857 40 254 . 570 1 . 900 10 671 3 670 857 40 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ===> NORMAL PIPEFLOW IS PRESSURE FLOW DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1 . 900 10 671 3 670 857 40 0.034 1 . 904 10 659 3 670 857 40 0.134 1 . 908 10 648 3 670 857 43 0.300 1 . 912 10 636 3 670 857 47 0.529 1 . 916 10 625 3 670 857 53 0.821 1 . 920 10 614 3 671 857 61 1.173 1 . 924 10 604 3 671 857 71 1.582 1 . 928 10 594 3 672 857 83 2 047 1 932 10 584 3 672 857 97 2 565 1 936 10 574 3 673 858 12 3 133 1 940 10 564 3 674 858 30 3 747 1 944 10 555 3 675 858 50 4 406 1 948 10 547 3 676 858 72 5 106 1 952 10 538 3 678 858 96 5 844 1 956 10 530 3 679 859 22 6 616 1 960 10 522 3 680 859 51 7 421 1 964 10 515 3 682 859 82 8 254 1 968 10 508 3 684 860 16 9 113 1 972 10 502 3 686 860 52 9 995 1 976 10 496 3 688 860 92 10 896 1 980 10 490 3 690 861 34 11 815 1 984 10 485 3 692 861 80 12 748 1 988 10 481 3 695 862 30 13 693 1 992 10 477 3 697 862 85 14 646 1 996 10 474 3 701 863 44 15 606 2 000 10 472 3 704 864 12 ===> FLOW IS UNDER PRESSURE 254.570 2.993 10.476 4.697 1058.72 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 198.99 FEET UPSTREAM OF NODE 184.00 | I DOWNSTREAM DEPTH = 2.762 FEET, UPSTREAM CONJUGATE DEPTH = 1.350 FEET | NODE 177.00 : HGL = < 174.548>;EGL= < 179.485>;FLOWLINE= < 173.410> ****************************************************************************** FLOW PROCESS FROM NODE 177.00 TO NODE 17 6.00 IS CODE = 5 UPSTREAM NODE 176.00 ELEVATION = 173.74 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 31. 07 24 . 00 0.00 173.74 1.88 19.253 DOWNSTREAM 32 . 91 24 . 00 -173.41 1.90 17.831 LATERAL #1 1.34 18.00 90. 00 173.74 0.43 1.187 LATERAL #2 0.50 18.00 70.00 173.74 0.26 0.443 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) * 16 . 1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07022 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05534 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06278 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.251 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.033)-f( 0.000) = 1.033 NODE 176.00 : HGL = < 174.762>;EGL= < 180.517>;FLOWLINE= < 173.740> ****************************************************************************** FLOW PROCESS FROM NODE 17 6.00 TO NODE 159.00 IS CODE = 1 UPSTREAM NODE 159.00 ELEVATION = 182.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 31.07 CFS 104.98 FEET PIPE DIAMETER = MANNING'S 24.00 INCHES N = 0.01300 NORMAL DEPTH(FT) = 0. 97 CRITICAL DEPTH(FT) 1.8? 3 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 .877 10 145 3 476 783 17 0 .049 1 .841 10 269 3 479 783 78 0 .189 1 . 805 10 411 3 489 785 52 0 .423 1 .768 10 568 3 504 788 35 0 .754 1 .732 10 743 3 526 792 29 1 . 189 1 . 696 10 934 3 554 797 34 1 . 737 1 . 660 11 142 3 589 803 53 2 .410 1 . 624 11 368 3 632 810 91 3 .221 1 .588 11 612 3 683 819 51 4 .190 1 . 552 11 875 3 743 829 42 5 .337 1 . 516 12 159 3 813 840 69 6 . 691 1 .480 12 464 3 894 853 41 8 .284 1 .444 12 793 3 987 867 67 10 .160 1 .407 13 147 4 093 883 58 12 .373 1 . 371 13 528 4 215 901 27 14 . 994 1 .335 13 938 4 354 920 87 18 . 117 1 .299 14 380 4 512 942 54 21 . 872 1 .263 14 856 4 692 966 45 26 .439 1 .227 15 371 4 898 992 82 32 . 085 1 .191 15 927 5 132 1021 86 39 .226 1 . 155 16 530 5 400 1053 86 48 .560 1 .119 17 184 5 707 1089 10 61 .396 1 . 083 17 896 6 059 1127 95 80 . 685 1 . 046 18 671 6 463 1170 81 104 . 980 1 . 021 19 247 6 777 1202 96 NODE 159.00 HGL < 184.277>;EGL= < 185.876>;FLOWLINE= < 182.400> ****************************************************************************** FLOW PROCESS FROM NODE 159.00 TO NODE 158.00 IS CODE = 5 UPSTREAM NODE 158.00 ELEVATION = 182.73 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) FLOW (CFS) 21.57 31.07 9.50 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL 24 . 00 24 . 00 18.00 0.00 0.00 90.00 0.00 182.73 182.40 182.73 0.00 1. 66 1.88 1.19 0.00 VELOCITY 6.866 10.145 5.376 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00909 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01630 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01270 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.858)-H( 0.000) = 0.858 0.000 FEET NODE 158.00 HGL < 186.002>;EGL= < 186.734>;FLOWLINE= < 182.730> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 14 9.00 158.00 TO NODE 149.00 IS CODE = 1 ELEVATION = 187.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.57 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 121.55 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.99 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.16 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1. 66 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-H CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 . 160 11 415 3 184 536 14 1 . 478 1 . 153 11 497 3 207 538 77 3 . 043 1 . 146 11 580 3 230 541 46 4 .705 1 .139 11 665 3 254 544 21 6 .472 1 . 132 11 751 3 278 547 03 8 . 355 1 . 126 11 838 3 303 549 91 10 .366 1 .119 11 927 3 329 552 85 12 . 519 1 .112 12 018 3 356 555 85 14 .831 1 . 105 12 109 3 383 558 92 17 .320 1 .098 12 202 3 412 562 06 20 .011 1 .091 12 297 3 441 565 27 22 . 931 1 .085 12 393 3 471 568 55 26 . 115 1 . 078 12 491 3 502 571 90 29 . 605 1 . 071 12 591 3 534 575 32 33 .455 1 . 064 12 692 3 567 578 82 37 . 735 1 . 057 12 794 3 601 582 40 42 . 535 1 .050 12 899 3 636 586 05 47 . 979 1 .044 13 005 3 672 589 78 54 .240 1 .037 13 113 3 709 593 59 61 .571 1 .030 13 223 3 747 597 49 70 .366 1 .023 13 335 3 786 601 47 81 .283 1 .016 13 448 3 826 605 53 95 . 557 1 .009 13 564 3 868 609 69 115 . 961 1 .003 13 682 3 911 613 93 121 . 550 1 .002 13 700 3 918 614 61 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.27 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-H CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .272 6. 866 4 004 732 31 44 .352 2 . 000 6. 866 2 732 483 03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-H CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 44 .352 2 .000 6. 864 2 732 483 03 44 .773 1 . 986 6. 870 2 720 480 65 45 . 148 1 . 973 6. 882 2 709 478 49 45 .495 1 . 959 6. 898 2 699 476 48 45 .820 1 . 946 6. 916 2 689 474 60 46 . 126 1 . 932 6. 937 2 680 472 84 46 .414 1 . 919 6. 960 2 671 471 17 46 . 686 1 . 905 6. 985 2 663 469 60 46 . 943 1 .891 7. 012 2 655 468 13 47 .186 1 . 878 7 . 041 2 648 466 74 47 .414 1 .864 7 . 072 2 641 465 44 47 .628 1 .851 7. 104 2 635 464 22 47 .829 1 .837 7 . 138 2 629 463 09 48 .016 1 .824 7 . 174 2 623 462 04 48 .189 1 .810 7 . 212 2 618 461 07 48 .349 1 .797 7 . 251 2 613 460 19 48 .495 1 .783 7 . 292 2 609 459 38 48 . 628 1 .769 7 . 334 2 605 458 66 48 .746 1 .756 7 . 378 2 602 458 02 48 .850 1 .742 7 . 424 2 599 457 46 48 . 939 1 .729 7. 471 2 596 456 99 49 .013 1 .715 7. 520 2 594 456 60 49 .071 1 .702 7 . 571 2 592 456 29 49 . 114 1 . 688 7 . 623 2 591 456 07 49 . 139 1 . 674 7 . 677 2 590 455 94 49 . 148 1 . 661 7 . 732 2 590 455 90 121 .550 1 . 661 7 . 732 2 590 455 90 END OF HYDRAULIC JUMP ANALYSIS 1 PRESSURE-HMOMENTUM I DOWNSTREAM BALANCE OCCURS AT DEPTH 21.66 FEET UPSTREAM OF NODE 158.00 | 1.008 FEET I 2.651 FEET, UPSTREAM CONJUGATE DEPTH 188.480>;EGL= < 190.504>;FLOWLINE= < 187.320> NODE 149.00 HGL < ****************************************************************************** FLOW PROCESS FROM NODE 149.00 TO NODE 148.00 IS CODE = 5 UPSTREAM NODE 148.00 ELEVATION = 187.65 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 19.32 21.57 1.35 0.90 0.00= DIAMETER (INCHES) 24.00 24.00 18.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 90.00 187.65 187.32 187.65 187.65 CRITICAL DEPTH(FT.) 1.58 1.66 0.44 0.35 VELOCITY (FT/SEC) 12.870 11.418 1.224 0.816 =Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-f A2 )* 16 . 1) -fFRICTION LOSSES UPSTREAM: DOWNSTREAM: MANNING'S MANNING'S = 0.01300; = 0.01300; FRICTION SLOPE = 0. FRICTION SLOPE = 0. ASSUMED AS 0.02766 AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.111 FEET JUNCTION LOSSES = (DY-f HV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.683)-f( 0.000) = 0.683 ENTRANCE LOSSES 03294 02238 0.000 FEET NODE 148.00 HGL < 188.615>;EGL= < 191.187>;FLOWLINE= < 187.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 147.30 148.00 TO NODE ELEVATION = 147.30 IS CODE = 1 190.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.32 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 74.15 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 96 CRITICAL DEPTH(FT) 1.5 3 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0. 993 12 399 3. 382 505 .32 1 . 877 0. 992 12 422 3. 389 506 .04 3 .839 0. 991 12 445 3. 397 506 .76 5 .896 0. 989 12 468 3. 404 507 .48 8 .055 0. 988 12 491 3. 412 508 .21 10 . 326 0. 986 12 514 3. 420 508 .95 12 .721 0. 985 12 538 3. 427 509 . 68 15 .254 0. 983 12 561 3. 435 510 . 42 17 . 940 0. 982 12 585 3. 443 511 . 17 20 .798 0. 981 12 608 3. 450 511 .91 23 . 850 0. 979 12 632 3. 458 512 . 66 27 . 123 0. 978 12 656 3. 466 513 . 42 30 . 650 0. 976 12 680 3. 474 514 . 18 34 . 470 0. 975 12 704 3. 482 514 . 94 38 . 637 0. 973 12 728 3. 490 515 . 70 43 .215 0. 972 12 752 3. 498 516 .47 48 .291 0. 970 12 776 3. 507 517 .24 53 .983 0. 969 12 800 3. 515 518 . 02 60 . 457 0. 968 12 825 3. 523 518 .80 67 . 953 0. 966 12 849 3. 531 519 .58 74 . 150 0. 965 12 866 3. 537 520 .13 NODE 147.30 : HGL = < 191. 153>;EGL= < 193.542>; FLOWLINE= < 190. 160> ****************************************************************************** FLOW PROCESS FROM NODE 147.30 TO NODE 147.00 IS CODE = 5 UPSTREAM NODE 147.00 ELEVATION = 190.49 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 18.54 24 .00 0. 00 190.49 1.55 12.766 DOWNSTREAM 19.32 24 .00 -190.16 1.58 12.403 LATERAL #1 0.78 18.00 90.00 190.49 0.33 0.811 LATERAL #2 0.00 0.00 0. 00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) )/( (Al-fA2) *16.1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03315 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02983 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0314 9 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.126 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = {DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.419)-f( 0.000) = 0.419 NODE 147.00 : HGL = < 191.431>;EGL= < 193.961>;FLOWLINE= < 190.490> ****************************************************************************** FLOW PROCESS FROM NODE 14 7.00 TO NODE 139.00 IS CODE = 1 UPSTREAM NODE 139.00 ELEVATION = 196.37 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.54 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 161.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 92 CRITICAL DEPTH(FT) 1.55 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.55 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 548 7 .104 2 332 368. 87 0 . 036 1. 523 7.222 2 333 369. 03 0 . 138 1. 497 7 . 347 2 336 369. 49 0 .313 1. 472 7 .478 2 341 370. 26 0 .569 1. 447 7 . 616 2 348 371. 34 0 . 913 1. 422 7 .761 2 357 372 . 76 1 . 357 1. 396 7 . 914 2 369 374 . 52 1 . 913 1. 371 8.075 2 384 376. 65 2 . 594 1. 346 8.244 2 402 379. 16 3 .419 1. 320 8 . 422 2 423 382. 06 4 .408 1. 295 8.611 2 447 385. 39 5 .585 1. 270 8.809 2 476 389. 17 6 . 983 1 . 245 9.018 2 508 393. 41 8 . 638 1. 219 9.239 2 546 398. 15 10 . 601 1. 194 9.473 2 588 403. 41 12 .934 1. 169 9.719 2 637 409. 24 15 .720 1. 144 9.981 2 691 415. 66 19 . 072 1. 118 10.257 2 753 422. 72 10 23.150 1 093 10 551 2 823 430.45 28 .185 1 068 10 862 2 901 438.91 34.541 1 043 11 193 2 989 448.16 42.824 1 017 11 545 3 088 458.24 54.1^4 0 992 11 920 3 200 469.24 71.150 0 967 12 321 3 325 481.21 101.971 0 941 12 748 3 467 494.25 161.760 0 941 12 762 3 471 494.67 139.00 HGL = < 197 918>;EGL= < 198.702>;FLOWLINE= < 196.370 NODE ****************************************************************************** FLOW PROCESS FROM NODE 139.00 TO NODE 14 0.00 IS CODE = 5 UPSTREAM NODE 140.00 ELEVATION = 196.70 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 16. 08 24.00 0.00 196.70 1.45 5.526 DOWNSTREAM 18 . 54 24.00 -196.37 1.55 7 . 097 LATERAL #1 1.71 18.00 90.00 196.70 0.49 0. 970 LATERAL #2 0.75 18.00 70.00 196.70 0.32 0.425 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) * 16 . 1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00459 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00751 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00605 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.024 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHV1-HV2)-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.218)-f( 0.000) = 0.218 NODE 140.00 : HGL = < 198.446>;EGL= < 198.920>;FLOWLINE= < 196.700> ****************************************************************************** FLOW PROCESS FROM NODE 14 0.00 TO NODE 135.00 IS CODE = 1 UPSTRE/VM NODE 135.00 ELEVATION = 199.63 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.08 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 266.06 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.21 CRITICAL DEPTH(FT) = 1.4 5 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.444 6.620 2.125 303.53 0.041 1.434 6.667 2.125 303.56 11 0 145 1 425 6 715 2. 125 303 62 0 317 1 415 6 763 2. 126 303 72 0 565 1 406 6 813 2. 127 303 87 0 894 1 396 6 863 2. 128 304 05 1 315 1 387 6 915 2. 130 304 28 1 836 1 377 6 968 2. 132 304 55 2 469 1 368 7 021 2. 134 304 86 3 228 1 358 7 076 2. 136 305 21 4 130 1 349 7 132 2 . 139 305 61 5 193 1 339 7 189 2. 142 306 05 6 443 1 330 7 247 2 . 146 306 54 7 910 1 320 7 306 2. 150 307 07 9 630 1 311 7 366 2 . 154 307 65 11 654 1 301 7 428 2. 159 308 28 14 045 1 292 7 490 2. 164 308 96 16 891 1 282 7 554 2. 169 309 69 20 314 1 273 7 620 2. 175 310 47 24 491 1 263 7 686 2 . 181 311 31 29 702 1 254 7 754 2. 188 312 19 36 411 1 244 7 824 2. 195 313 13 45 488 1 235 7 895 2. 203 314 13 58 893 1 225 7 967 2. 212 315 18 82 908 1 216 8 041 2. 220 316 29 266 060 1 215 8 051 2. 222 316 45 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH (FT) 1. 2. 3. 4 . 4 . 5. 6. ,048 , 071 , 071 ,045 , 995 , 917 ,813 7 . 681 8.520 9.328 10.105 10.848 11.557 12.228 12.861 13.452 13.998 14.498 14.947 15.341 15.677 15.949 16.152 , 746 , 734 ,722 ,710 , 698 , 686 , 674 , 662 1. 650 1. 638 626 614 , 602 ,590 1.578 1.566 1.554 1. 542 VELOCITY (FT/SEC) 5.524 SPECIFIC ENERGY(FT) 2 .220 1.530 1.518 1.506 1.494 1.482 1.470 555 587 620 653 688 724 761 798 837 877 918 960 002 047 092 138 186 234 284 335 388 442 497 ,214 ,207 ,201 ,195 , 189 ,183 , 178 , 172 2 .167 2 .163 2.158 2.154 2.150 2.146 2.142 2.139 2.136 2.134 2.131 2.129 2.128 2.126 2.125 PRESSURE-f MOMENTUM(POUNDS) 319.96 318.75 317.57 316. 44 315.36 314.31 313.31 312.36 311.44 310.58 309.76 308.99 308.26 307.58 306.96 306.38 305.85 305.37 304.95 304.58 304.26 304.00 303.80 303.65 12 16.279 16.323 266.060 303.56 303.53 303.53 1.458 6.553 2.125 1.446 6.611 2.125 1.446 6.611 2.125 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 3.07 FEET UPSTREAM OF NODE 140.00 | I DOWNSTREAM DEPTH = 1.710 FEET, UPSTREAM CONJUGATE DEPTH = 1.215 FEET | NODE 135.00 HGL < 201.074>;EGL= < 201.755>;FLOWLINE= < 199.630> ****************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 134.00 IS CODE = 5 UPSTREAM NODE 134.00 ELEVATION = 199.96 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTRE;^ DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14.06 16.08 1.10 0. 92 0.00= DIAMETER ANGLE (INCHES) (DEGREES) ELEVATION 24.00 0.00 199.96 24.00 - 199.63 18.00 90.00 199.96 18.00 90.00 199.96 =Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.35 5.481 1.45 6. 613 0.39 0. 668 0.36 0.559 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4 ) ) / ( (Al-fA2) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00557 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.194)-f( 0.000) = 0.194 00449 00664 0.000 FEET NODE 134.00 HGL < 201.482>;EGL= < 201.948>;FLOWLINE= < 199.960> ****************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 133.00 IS CODE = 1 UPSTREAM NODE 133.00 ELEVATION = 201.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.06 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 207.13 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.4 5 CRITICAL DEPTH(FT) = 1.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.760 5.496 8.206 FLOW DEPTH VELOCITY (FT) 1.014 1.028 1.041 1.055 (FT/SEC) 8.787 8.642 8.501 8.365 SPECIFIC ENERGY(FT) 2.214 2.188 2.164 2.142 PRESSURE-f MOMENTUM(POUNDS) 282.51 279.91 277.45 275.15 13 10 888 1 068 8 234 2 122 272 99 13 539 1 082 8 106 2 103 270 96 16 159 1 095 7 983 2 085 269 06 18 743 1 109 7 864 2 069 267 30 21 288 1 122 7 748 2 055 265 65 23 791 1 135 7 636 2 041 264 13 26 248 1 149 7 527 2 029 262 72 28 654 1 162 7 421 2 018 261 42 31 005 1 176 7 319 2 008 260 23 33 293 1 189 7 220 1 999 259 14 35 513 1 203 7 123 1 991 258 15 37 655 1 216 7 029 1 984 257 27 39 711 1 230 6 938 1 978 256 48 41 668 1 243 6 850 1 972 255 78 43 513 1 256 6 764 1 967 255 17 45 229 1 270 6 681 1 963 254 65 46 795 1 283 6 600 1 960 254 22 48 185 1 297 6 521 1 957 253 87 49 366 1 310 6 444 1 955 253 60 50 295 1 324 6 370 1 954 253 41 50 913 1 337 6 298 1 953 253 30 51 142 1 350 6 227 1 953 253 26 207 130 1 350 6 227 1 953 253 26 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .522 5 480 1 988 258 70 2 . 032 1 .519 5 490 1 987 258 54 4 . 113 1 .516 5 500 1 986 258 37 6 .249 1 .514 5 510 1 985 258 21 8 .444 1 .511 5 521 1 984 258 05 10 .705 1 .508 5 531 1 983 257 89 13 .038 1 .505 5 542 1 982 257 73 15 .451 1 .502 5 552 1 981 257 58 17 . 953 1 .500 5 563 1 980 257 43 20 . 556 1 .497 5 574 1 979 257 28 23 .272 1 .494 5 584 1 979 257 13 26 . 117 1 .491 5 595 1 978 256 99 29 . Ill 1 .488 5 606 1 977 256 85 32 .277 1 .486 5 617 1 976 256 71 35 . 645 1 .483 5 628 1 975 256 57 39 .255 1 .480 5 639 1 974 256 44 43 . 157 1 .477 5 650 1 973 256 31 47 .420 1 .474 5 661 1 972 256 18 52 .143 1 .472 5 672 1 972 256 05 57 .466 1 .469 5 684 1 971 255 93 63 . 610 1 .466 5 695 1 970 255 81 70 . 944 1 .463 5 706 1 969 255 69 80 .160 1 .461 5 718 1 969 255 58 92 .812 1 .458 5 730 1 968 255 46 113 .891 1 .455 5 741 1 967 255 35 14 207.130 1.455 5.742 1.967 255.35 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 164.15 FEET UPSTREAM OF NODE 134.00 | I DOWNSTREAM DEPTH = 1.455 FEET, UPSTREAM CONJUGATE DEPTH = 1.252 FEET | NODE 133.00 : HGL = < 202.014>;EGL= < 203.214>;FLOWLINE= < 201.000> ****************************************************************************** FLOW PROCESS FROM NODE 133.00 TO NODE 132.00 IS CODE = 5 UPSTREAM NODE 132.00 ELEVATION = 201.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 14.06 24 . 00 0.00 201.33 1.35 6.229 DOWNSTREAM 14 . 06 24 . 00 -201.00 1.35 8.789 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00= ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A1-HA2) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00607 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01472 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01039 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.069)-f( 0.000) = 0.069 NODE 132.00 : HGL = < 202.680>;EGL= < 203.283>;FLOWLINE= < 201.330> ****************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 131.00 IS CODE = 1 UPSTREAM NODE 131.00 ELEVATION = 202.41 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.06 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 216.62 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.46 CRITICAL DEPTH(FT) = 1.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.014 8.787 2.214 282.51 2.749 1.028 8.642 2.188 279.91 5.474 1.041 8.501 2.164 277.45 8.173 1.055 8.365 2.142 275.15 10.842 1.068 8.234 2.122 272.99 13.481 1.082 8.106 2.103 270.96 15 16. 086 1 095 7 . 983 2 085 269 06 18. 656 1 109 7 . 864 2 069 267 30 21. 185 1 122 7 . 748 2 055 265 65 23 672 1 135 7 . 636 2 041 264 13 26 112 1 149 7. 527 2 029 262 72 28 500 1 162 7 421 2 018 261 42 30 831 1 176 7 319 2 008 260 23 33 099 1 189 7 220 1 999 259 14 35 297 1 203 7 123 1 991 258 15 37 417 1 216 7 029 1 984 257 27 39 449 1 230 6 938 1 978 256 48 41 382 1 243 6 850 1 972 255 78 43 202 1 256 6 764 1 967 255 17 44 892 1 270 6 681 1 963 254 65 46 432 1 283 6 600 1 960 254 22 47 797 1 297 6 521 1 957 253 87 48 954 1 310 6 444 1 955 253 60 49 861 1 324 6 370 1 954 253 41 50 463 1 337 6 298 1 953 253 30 50 685 1 350 6 227 1 953 253 26 216 620 1 350 6 227 1 953 253 26 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 350 6. 227 1. 953 253. 26 0 025 1 355 6. 205 1. 953 253. 27 0 101 1 359 6 184 1. 953 253 28 0 234 1 363 6 162 1. 953 253 30 0 430 1 367 6 141 1. 953 253 32 0 694 1 372 6 120 1. 954 253 35 1 033 1 376 6 099 1 954 253 39 1 455 1 380 6 079 1 954 253 44 1 . 972 1 384 6 058 1 955 253 49 2 .593 1 389 6 038 1 955 253 55 3 332 1 393 6 018 1 955 253 62 4 207 1 397 5 998 1 956 253 69 5 236 1 . 401 5 978 1 957 253 77 6 .446 1 .406 5 958 1 957 253 86 7 .869 1 .410 5 939 1 958 253 95 9 .544 1 .414 5 920 1 958 254 05 11 . 525 1 .418 5 900 1 959 254 16 13 . 885 1 . 422 5 881 1 960 254 27 16 .726 1 . 427 5 863 1 961 254 39 20 .197 1 .431 5 844 1 962 254 .52 24 .528 1 .435 5 825 1 962 254 . 65 30 .109 1 .439 5 807 1 963 254 .79 37 .665 1 .444 5 .789 1 964 254 . 94 48 .828 1 .448 5 .771 1 965 255 . 09 68 . 835 1 .452 5 .753 1 966 255 .24 216 .620 1 .453 5 .751 1 966 255 .27 -END OF HYDRAULIC JUMP ANALYSIS- 16 I PRESSURE-fMOMENTUM BALANCE OCCURS AT 173.68 FEET UPSTREAM OF NODE 132.00 | I DOWNSTREAM DEPTH = 1.452 FEET, UPSTREAM CONJUGATE DEPTH = 1.254 FEET | NODE 131.00 HGL < 203.424>;EGL= < 204.624>;FLOWLINE= < 202.410> ******************************************************************jfj,^^ + *V,,^.^ + ^^ FLOW PROCESS FROM NODE 131.00 TO NODE 130.00 IS CODE = 5 UPSTREAM NODE 130.00 ELEVATION = 202.74 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14.06 14.06 0.00 0.00 0.00== DIAMETER ANGLE (INCHES) (DEGREES) FLOWLINE ELEVATION 24.00 0.00 202.74 24.00 - 202.41 0.00 0.00 0.00 0.00 0.00 0.00 ^=Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.35 1.35 0.00 0.00 VELOCITY (FT/SEC) 6.229 8 . 789 0.000 0. 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS (DELTA4) )/( (Al-fA2 )* 16 .1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00607 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01472 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01039 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.069)-f( 0.000) = 0.069 NODE 130.00 HGL = < 204.090>;EGL= < 204.693>;FLOWLINE= < 202.740> *********************************************************j,JtJ,Jr,j,jt^t*,*.jt^m.jtjtjf^,^,,tjpj,jp FLOW PROCESS FROM NODE 130.00 TO NODE 117.00 IS CODE = 1 UPSTREAM NODE 117.00 ELEVATION = 203.75 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.06 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 201.43 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.45 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.35 FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .350 6 227 1 953 253 26 0 . 024 1 . 355 6 206 1 953 253 27 0 . 097 1 .359 6 185 1 953 253 28 0 .226 1 .363 6 164 1 953 253 29 0 .414 1 .367 6 144 1 953 253 32 0 . 668 1 .371 . 6 123 1 954 253 35 0 . 994 1 .375 6 103 1 954 253 38 1 .401 1 .379 6 083 1 954 253 43 1 .898 1 .383 6 063 1 954 253 48 2 .495 1 .387 6 044 1 955 253 53 17 3. 207 1 391 6 024 1. 955 253.60 4 . 049 1 396 6 005 1. 956 253.67 5. 040 1 400 5 985 1. 956 253.74 6. 204 1 404 5 966 1. 957 253.82 7 . 573 1 408 5 947 1. 957 253.91 9. 184 1 412 5 929 1. 958 254.00 11. 090 1 416 5 910 1. 959 254.11 13. 361 1 420 5 892 1. 959 254 .21 16. 094 1 424 5 873 1. 960 254.32 19. 433 1 428 5 855 1. 961 254 .44 23. 600 1 432 5 837 1. 962 254.57 28. 968 1 437 5 819 1. 963 254.70 36. 235 1 441 5 802 1. 964 254.83 46. 971 1 445 5 784 1. 965 254.98 66. 212 1 449 5 767 1. 966 255.12 201. 430 1 449 5 764 1. 966 255.14 117 .00 HGL = < 205. 199>;EGL= < 205.716>; FLOWLINE= < 203.750 NODE ****************************************************************************** FLOW PROCESS FROM NODE 117.00 TO NODE 116.00 IS CODE = 5 UPSTREAM NODE 116.00 ELEVATION = 204.08 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.88 24.00 0.00 204.08 0.93 2.240 DOWNSTREAM 14.06 24.00 - 203.75 1.35 5.766 LATERAL #1 4.19 18.00 90.00 204.08 0.78 2.371 LATERAL #2 2.99 18.00 90.00 204.08 0.66 1.692 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4 ) ) / ( (Al-fA2) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00080 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00504 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.002 92 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.329)-f( 0.000) = 0.329 NODE 116.00 : HGL = < 205.967>;EGL= < 206.045>;FLOWLINE= < 204.080> ***************************************************************************jr+^ FLOW PROCESS FROM NODE UPSTREAM NODE 115.00 116.00 TO NODE 115.00 IS CODE = 1 ELEVATION = 207.31 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.88 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 170.01 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.64 CRITICAL DEPTH(FT) = 0. 93 18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 . 930 4 805 1 289 99 15 0 .020 0 . 919 4 884 1 289 99 17 0 .084 0 . 907 4 966 1 290 99 25 0 .195 0 .895 5 051 1 292 99 38 0 .358 0 .884 5 139 1 294 99 57 0 .579 0 .872 5 229 1 297 99 81 0 .865 0 .860 5 323 1 300 100 11 1 .223 0 .849 5 420 1 305 100 47 1 . 662 0 .837 5 520 1 310 100 89 2 .193 0 .825 5 624 1 317 101 37 2 .828 0 .813 5 732 1 324 101 93 3 .582 0 .802 5 844 1 332 102 55 4 . 475 0 .790 5 959 1 342 103 24 5 .530 0 .778 6 079 1 353 104 01 6 .776 0 .767 6 204 1 365 104 86 8 .251 0 .755 6 334 1 378 105 79 10 .004 0 . 743 6 468 1 394 106 80 12 . 104 0 .732 6 608 1 410 107 90 14 . 645 0 .720 6 754 1 429 109 10 17 .767 0 .708 6 906 1 449 110 39 21 .683 0 . 697 7 064 1 472 111 78 26 .757 0 . 685 7 229 1 497 113 28 33 .663 0 . 673 7 401 1 524 114 89 43 . 925 0 . 662 7 581 1 555 116 61 62 . 422 0 . 650 7 769 1 588 118 47 170 .010 0 . 649 7 788 1 591 118 66 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.994 3. 970 5. 930 7.872 9.797 11.704 13.591 15.457 17.301 19.119 20.909 22.667 24 . 389 26.071 27.705 FLOW DEPTH (FT) 887 848 1.810 772 734 695 657 619 581 542 504 1.466 1.428 1.389 1.351 1.313 VELOCITY (FT/SEC) 2.240 ,268 ,300 ,337 ,377 , 422 2.471 2.525 2.583 2.646 2.714 2.787 2.867 2.953 3.046 3.146 SPECIFIC ENERGY(FT) 1. 965 1. 928 1.892 1.857 1.821 1.787 1.752 1.718 1. 684 1. 651 1. 619 1.587 1.555 1.525 1.495 1.467 PRESSURE-f MOMENTUM(POUNDS) 203.89 196.98 190.22 183.62 177.20 170.95 164.90 159.03 153.38 147.93 142.71 137.72 132.98 128.48 124.24 120.28 19 29 285 1 275 3 255 1 439 116 60 30 801 1 236 3 373 1 413 113 22 32 243 1 198 3 501 1 389 110 15 33 595 1 160 3 641 1 366 107 41 34 842 1 122 3 793 1 345 105 02 35 959 1 083 3 959 1 327 103 00 36 919 1 045 4 141 1 311 101 37 37 681 1 007 4 341 1 300 100 16 38 195 0 969 4 561 1 292 99 41 38 387 0 930 4 805 1 289 99 15 170 010 0 930 4 805 1 289 99 15 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 28.42 FEET UPSTREAM OF NODE 116.00 I DOWNSTREAM DEPTH = 1.2 95 FEET, UPSTREAM CONJUGATE DEPTH = 0.64 9 FEET NODE 115.00 HGL < 208.240>;EGL= < 208.599>;FLOWLINE= < 207.310> ****************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 114.00 IS CODE = 5 UPSTREAM NODE 114.00 ELEVATION = 207.64 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 6.88 6.88 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 24.00 90.00 207.64 24.00 - 207.31 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0. 93 0. 93 0.00 0.00 VELOCITY (FT/SEC) 11.691 4 .806 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-f A2 )* 16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03017 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.121 FEET ENTRANCE LOSSES (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) ( 1.648)-f( 0.000) = 1.648 0.05559 0.00475 0.000 FEET JUNCTION LOSSES = JUNCTION LOSSES = NODE 114.00 HGL < 208.125>;EGL= < 210.247>;FLOWLINE= < 207.640> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 107.00 114.00 TO NODE ELEVATION = 107.00 IS CODE = 1 213.85 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 6.88 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 96.46 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.47 CRITICAL DEPTH(FT) = 0. 93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0. 93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 20 E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 0 . 930 4 805 1 289 99 15 0 . 012 0 . 912 4 932 1 290 99 21 0 .051 0 .893 5 066 1 292 99 41 0 . 119 0 .875 5 207 1 296 99 74 0 .220 0 .856 5 356 1 302 100 22 0 .359 0 .838 5 513 1 310 100 85 0 .540 0 .819 5 679 1 320 101 65 0 .769 0 .801 5 854 1 333 102 61 1 . 054 0 . 782 6 040 1 349 103 76 1 .401 0 .764 6 238 1 368 105 10 1 .823 0 . 745 6 448 1 391 106 64 2 . 329 0 .727 6 671 1 418 108 41 2 . 937 0 .708 6 909 1 450 110 41 3 . 665 0 . 690 7 163 1 487 112 67 4 .536 0 . 671 7 435 1 530 115 21 5 .582 0 . 653 7 725 1 580 118 04 6 . 845 0 . 634 8 038 1 638 121 19 8 .380 0 . 616 8 373 1 705 124 70 10 .268 0 .597 8 735 1 783 128 60 12 . 624 0 .579 9 126 1 873 132 92 15 . 630 0 .560 9 549 1 977 137 72 19 .591 0 .542 10 009 2 098 143 03 25 .079 0 .523 10 509 2 239 148 93 33 .380 0 .505 11 056 2 404 155 48 48 . 623 0 .486 11 655 2 597 162 77 96 .460 0 . 485 11 687 2 607 163 17 NODE 107.00 HGL < 214.780>;EGL= < 215.139>;FLOWLINE= < 213.850> ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 214.18 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4 . 69 6.88 2.19 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 18.00 90.00 214.18 0.83 24.00 - 213.85 0.93 18.00 90.00 214.18 0.56 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 10.138 4 . 806 3. 650 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) *16 .1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04691 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02583 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.103 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.099)-f( 0.000) = 1.099 21 NODE 106.00 HGL < 214.642>;EGL= < 216.238>;FLOWLINE= < 214.180> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 104.00 106.00 TO NODE 104.00 IS CODE = 1 ELEVATION = 215.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 4.69 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.29 CRITICAL DEPTH(FT) 0.8 3 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.8 3 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .832 4 660 1 169 64 .74 0 . 004 0 .810 4 815 1 170 64 .81 0 .016 0 .788 4 981 1 174 65 .03 0 .038 0 .767 5 160 1 180 65 . 40 0 .070 0 .745 5 351 1 190 65 . 93 0 .116 0 . 723 5 558 1 203 66 .64 0 . 176 0 .702 5 781 1 221 67 .55 0 .253 0 . 680 6 022 1 243 68 . 66 0 .351 0 . 658 6 283 1 272 70 .00 0 .472 0 . 637 6 567 1 306 71 .59 0 . 622 0 . 615 6 876 1 349 73 .46 0 . 805 0 .593 7 214 1 402 75 . 63 1 .030 0 .571 7 584 1 465 78 . 14 1 .306 0 .550 7 991 1 542 81 . 02 1 . 644 0 .528 8 440 1 635 84 .34 2 .060 0 .506 8 939 1 748 88 .13 2 . 576 0 .485 9 493 1 885 92 .48 3 .222 0 .463 10 112 2 052 97 .47 3 .250 0 .462 10 135 2 058 97 .65 NODE 104.00 HGL = < 215.992>;EGL= < 216.329>;FLOWLINE= < 215.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 104.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 215.16 215.99 FOR D0WNSTRE7\M RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 22 RICH FIELD DRIVE LATERALS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 15-f50.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIA.RES * ************************************************************************** FILE NAME: VLW01A.DAT TIME/DATE OF STUDY: 22:15 11/11/2003 **************************************************************************^^^,^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 184.00- 2.50* 204.41 0.32 74.81 } FRICTION } HYDRAULIC JUMP 188.00- 0.68*Dc 39.88 0.68*Dc 39.88 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ************************************************************************,*.,^^^jt* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 184.00 FLOWLINE ELEVATION = 170.25 PIPE FLOW = 3.23 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 172.750 FEET NODE 184.00 : HGL = < 172.750>;EGL= < 172.802>;FLOWLINE= < 170.250> ***************************************************************************+^,+ FLOW PROCESS FROM NODE 184.00 TO NODE 188.00 IS CODE = 1 UPSTREAM NODE 188.00 ELEVATION = 171.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.23 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.68 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .684 4 . 112 0.947 39 88 0 .002 0 .665 4. 265 0.948 39 93 0 .009 0 . 647 4 . 429 0.951 40 08 0 .021 0 .628 4. 606 0.957 40 35 0 .039 0 .609 4. 796 0.966 40 73 0 .064 0 .590 5. 002 0.979 41 25 0 .098 0 .571 5. 225 0.995 41 90 0 .142 0 .552 5. 467 1.017 42 70 0 .197 0 .534 5. 731 1.044 43 68 0 .266 0 .515 6. 019 1.078 44 83 0 .352 0 .496 6. 335 1.119 46 19 0 . 458 0 . 477 6. 682 1.171 47 78 0 .589 0 . 458 7. 065 1.234 49 63 0 .751 0 .439 7. 489 1.311 51 76 0 . 951 0 .420 7 . 961 1.405 54 22 1 .200 0 . 402 8. 489 1.521 57 07 1 .512 0 .383 9. 082 1. 664 60 35 1 .906 0 .364 9. 753 1.842 64 15 2 .412 0 .345 10. 516 2.063 68 55 3 .072 0 .326 11. 390 2.342 73 68 3 .250 0 .322 11. 583 2.407 74 81 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.50 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .500 1. 828 2 552 204 .41 1.998 1 .500 1. 828 1 552 94 .14 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.998 1 .500 1. 827 1 552 94 14 2.062 1 .467 1. 837 1 520 90 62 2.125 1 .435 1. 855 1 488 87 17 2.187 1 .402 1. 879 1 457 83 80 2.249 1 .369 1. 908 1 426 80 51 2.310 1 .337 1. 942 1 395 77 30 2.371 1 .304 1. 979 1 365 74 18 2.431 1 .272 2. 022 1 335 71 16 2.490 1 .239 2. 068 1 305 68 24 2.548 1 .206 2. 120 1 276 65 42 2. 606 1. 174 2. 177 1.247 62 71 2. 663 1. 141 2. 239 1.219 60 12 2. 718 1. 108 2. 306 1.191 57 65 2 773 1. 076 2. 380 1.164 55 31 2 826 1. 043 2. 461 1.137 53 10 2 877 1. Oil 2. 550 • 1.112 51 03 2 927 0. 978 2. 646 1.087 49 10 2 97 4 0. 945 2. 752 1.063 47 33 3 019 0. 913 2. 868 1.041 45 72 3 061 0. 880 2. 996 1.020 44 27 3 100 0. 847 3. 137 1.000 43 01 3 134 0. 815 3. 292 0. 983 41 94 3 163 0. 782 3. 465 0.969 41 07 3 186 0. 750 3. 657 0.957 40 43 3 201 0. 717 3. 871 0.950 40 02 3 207 0. 684 4 . 112 0.947 39 88 3 .250 0. 684 4 . 112 0. 947 39 88 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 3.11 FEET UPSTREAM OF NODE 184.00 | I DOWNSTREAM DEPTH = 0.837 FEET, UPSTREAM CONJUGATE DEPTH = 0.554 FEET | NODE 188.00 : HGL = < 172.564>;EGL= < 172.827>;FLOWLINE= < 171.880> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 188.00 FLOWLINE ELEVATION = 171.88 ASSUMED UPSTREAM CONTROL HGL = 172.56 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 15-f65.46 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIB.RES * ************************************************************************** FILE NAME: VLW01B.DAT TIME/DATE OF STUDY: 22:18 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 184.00- 3.67* 326.64 0.27 40.29 } FRICTION 196.00- 0.99* 40.00 0.54 Dc 22.38 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 184.00 FLOWLINE ELEVATION = 169.08 PIPE FLOW = 2.06 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 172.750 FEET NODE 184.00 : HGL = < 172.750>;EGL= < 172.771>;FLOWLINE= < 169.080> ****************************************************************************** FLOW PROCESS FROM NODE 184.00 TO NODE 196.00 IS CODE = 1 UPSTREAM NODE 196.00 ELEVATION = 171.75 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.06 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.67 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE-f MOMENTUM(POUNDS) 0.000 22.234 3.670 1.500 1.166 3.691 1.166 1.521 326. 87. 64 36 NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) = 0.54 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L( FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUN 22 .234 1 500 1. 165 1 521 87 36 22 . 624 1 462 1. 173 1 483 83 17 23 .011 1 423 1. 188 1 445 79 06 23 .396 1 385 1. 208 1 408 75 02 23 .780 1 347 1. 232 1 370 71 08 24 .162 1 308 1. 259 1 333 67 23 24 .542 1 270 1. 291 1 296 63 49 24 .920 1 232 1. 326 1 259 59 86 25 .296 1 193 1. 366 1 222 56 36 25 .669 1 155 1. 411 1 186 52 99 26 .040 1 117 1. 460 1 150 49 75 26 .407 1 078 1. 515 1 114 46 65 26 .770 1 040 1. 575 1 078 43 71 27 . 130 1 002 1. 643 1 043 40 91 27 .250 0 988 1. 667 1 032 40 00 NODE 196.00 : HGL = < 172.738>;EGL= < 172.782>;FLOWLINE= < 171.750> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 196.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 171.75 172.29 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 15-f50.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIC.RES * ************************************************************************** FILE NAME: VLW01C.DAT TIME/DATE OF STUDY: 22:20 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 176.00- 6.78* 666.90 0.19 28.29 } FRICTION 180.00- 5.15* 487.22 0.43 Dc 12.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 176.00 FLOWLINE ELEVATION = 173.74 PIPE FLOW = 1.34 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 180.520 FEET NODE 176.00 : HGL = < 180.520>;EGL= < 180.529>;FLOWLINE= < 173.740> ****************************************************************************** FLOW PROCESS FROM NODE 176.00 TO NODE 180.00 IS CODE = 1 UPSTREAM NODE 180.00 ELEVATION = 175.37 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.34 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.34)/( 104.533))**2 = 0.00016 HF=L*SF = ( 3.25)* (0.00016) = 0.001 NODE 180.00 : HGL = < 180.521>;EGL= < 180.529>;FLOWLINE= < 175.370> ***********************************************jt*Vt*,i.,^,i.jt^l,,jt,*,^.*j,***j^***j,****jjj,, UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 180.00 FLOWLINE ELEVATION = 175.37 ASSUMED UPSTREAM CONTROL HGL = 175.80 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 15-f65.4 6 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOID.RES * ************************************************************************** FILE NmE: VLW01D.DAT TIME/DATE OF STUDY: 22:21 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 176.00- 6.78* 666.45 0.17 25.24 } FRICTION } HYDRAULIC JUMP 182.00- 0.41*Dc 11.01 0.41*Dc ' 11.01 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 17 6.00 FLOWLINE ELEVATION = 173.74 PIPE FLOW = 1.18 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 180.520 FEET NODE 176.00 : HGL = < 180.520>;EGL= < 180.527>;FLOWLINE= < 173.740> ****************************************************************************** FLOW PROCESS FROM NODE 17 6.00 TO NODE 182.00 IS CODE = 1 UPSTREAM NODE 182.00 ELEVATION = 180.95 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.18 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.33 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL^DEPTH(FT) = 0.16 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.41 DISTANCE FROM CONTROL(FT) 0.000 0.002 0. 009 0.021 0.040 0.065 0.099 0.142 0.197 0.264 0.346 0.447 0.569 0.718 0. 900 1.122 1.394 1.732 2.156 2.696 3.400 4.350 5. 697 7.784 11.713 31.330 FLOW DEPTH (FT) 0.406 0.396 0.386 0. 376 0.366 0.356 0.347 0.337 0.327 0.317 0.307 0.297 0.287 0.277 0.267 0.257 0.248 0.238 0.228 0.218 0.208 0.198 0.188 0.178 0.168 0.168 VELOCITY (FT/SEC) .054 .161 .276 .398 .528 .668 . 817 . 977 .150 .336 .537 ,755 , 992 .249 .531 .840 6.181 6.556 . 973 .438 7.958 8.544 9.207 9. 963 10.832 10.832 3, 3, 3, 3. 3. 3, 3, 3. 4, 4 4 4 4 . 5. 5, 5. 6. 7, SPECIFIC ENERGY(FT) 0.551 0.551 0.553 0.556 0.560 0.565 0.573 0.582 0.594 0. 609 0.627 0. 648 0. 674 0.705 0.743 0.787 0.841 0. 906 0. 983 1.077 1.192 1. 1. 1, 1. 1. .332 .505 .721 .991 , 991 PRESSURE-f MOMENTUM(POUNDS) 11.01 11.02 11.05 11.12 11.20 11.32 11.47 11. 65 11.86 12.11 12.41 12.75 13.14 13.59 14.10 14 . 68 15.34 16.08 16. 93 17.89 18. 98 20.23 21.67 23.32 25.24 25.24 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 6.78 DISTANCE FROM CONTROL(FT) 0.000 22.956 PRESSURE VELOCITY SPECIFIC HEAD(FT) (FT/SEC) ENERGY(FT) 6.780 0.668 6.787 1.500 0.668 1.507 PRESSURE-f MOMENTUM(POUNDS) 666.45 84.23 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 22.956 1.500 0. 668 1.507 23.146 1.456 0.673 1.463 23.335 1. 412 0.684 1.420 23.524 1.369 0.697 1.376 23.713 1. 325 0.714 1.333 2 PRESSURE-f MOMENTUM(POUNDS) 84.23 79.43 74 .71 70.07 65.54 23. 901 1.281 0 734 1.290 61 .14 24. 089 1.237 0 756 1.246 56 .86 24. 277 1.194 0 782 1.203 52 .74 24 . 464 1.150 0 811 1.160 48 .76 24. 650 1.106 0 844 1.117 44 94 24. 836 1.062 0 881 1.074 41 29 25. 022 1.019 0 923 1.032 37 81 25. 206 0.975 0 970 0.990 34 52 25. 389 0. 931 1 023 0.947 31 40 25. 571 0.887 1 084 0.906 28 48 25. 751 0.844 1 152 0.864 25 76 25. 929 0.800 1 231 0.823 23 23 26. 104 0.756 1 321 0.783 20 91 26. 275 0.712 1 426 0.744 18 80 26. 441 0.669 1 549 0.706 16 91 26. 600 0. 625 1 693 0. 669 15 25 26. 749 0.581 1 866 0.635 13 83 26. 885 0.537 2 074 0.604 12 67 27. 000 0.494 2 329 0.578 11 78 27. 084 0.450 2 648 0. 559 11. 21 27. 119 0.406 3 054 0.551 11. 01 31. 330 0.406 3 054 0.551 11. 01 END OF HYDRAULIC JUMP I PRESSURE-fMOMENTUM BALANCE OCCURS AT 26.08 FEET UPSTREAM OF NODE 176.00 | I DOWNSTREAM DEPTH = 0.761 FEET, UPSTREAM CONJUGATE DEPTH = 0.191 FEET | NODE 182.00 : HGL = < 181.356>;EGL= < 181.501>;FLOWLINE= < 180.950> ****************************************************************,^,^*^^^,_^^^^,^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 182.00 FLOWLINE ELEVATION = 180.95 ASSUMED UPSTREAM CONTROL HGL = 181.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 17-f85.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIE.RES * ************************************************************************** FILE NAME: VLW01E.DAT TIME/DATE OF STUDY: 22:23 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 148.00- 3.55* 310.75 0.19 28.53 } FRICTION 152.00- 1.92* 131.07 0.44 Dc 13.06 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 14 8.00 FLOWLINE ELEVATION = 187.65 PIPE FLOW = 1.35 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 191.200 FEET NODE 148.00 : HGL = < 191.200>;EGL= < 191. 209>;FLOWLINE= < 187.650> ****************************************************************************** FLOW PROCESS FROM NODE 148.00 TO NODE 152.00 IS CODE = 1 UPSTREAM NODE 152.00 ELEVATION = 189.28 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING S N = 0 .01300 SF=(Q/K)**2 = ( ( 1.35)/( 105.313))**2 = 0 00016 HF=L*SF = ( 3 25)*(0.00016) = 0.001 NODE 152.00 : HGL = < 191.201>;EGL= < 191.210>;FLOWLINE= < 189.280> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 152.00 FLOWLINE ELEVATION = 189.28 ASSUMED UPSTREAM CONTROL HGL = 189.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 17-f85.00 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIE.RES * ************************************************************************** FILE NAME: VLW01F.DAT TIME/DATE OF STUDY: 08:29 11/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 148.00- 3.55* 311.42 0.36 17.33 } FRICTION 156.00- 3.18* 270.18 0.47 Dc 15.70 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 148.00 FLOWLINE ELEVATION = 187.65 PIPE FLOW = 1.56 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 191.200 FEET NODE 148.00 : HGL = < 191.200>;EGL= < 191.212>;FLOWLINE= < 187.650> ****************************************************************************** FLOW PROCESS FROM NODE 148.00 TO NODE 156.00 IS CODE = 1 UPSTREAM NODE 156.00 ELEVATION = 188.03 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.56)/( 105.027))**2 = 0.00022 HF=L*SF = ( 27.25)*(0.00022) = 0.006 NODE 156.00 : HGL = < 191.206>;EGL= < 191.218>;FLOWLINE= < 188.030> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 156.00 FLOWLINE ELEVATION = 188.03 ASSUMED UPSTREAM CONTROL HGL = 188.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 18-f63.78 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIT.RES * ************************************************************************** FILE NAME: VLW01T.DAT TIME/DATE OF STUDY: 22:26 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 147.00- 3.55* 311.09 0.20 30.87 } FRICTION } HYDRAULIC JUMP 147.50- 0.45*Dc 14.43 0.45*Dc 14.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 147.00 FLOWLINE ELEVATION = 190.4 9 PIPE FLOW = 1.46 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.040 FEET NODE 147.00 : HGL = < 194.040>;EGL= < 194.051>;FLOWLINE= < 190.490> ****************************************************************************** FLOW PROCESS FROM NODE 147.00 TO NODE 147.50 IS CODE = 1 UPSTREAM NODE 147.50 ELEVATION = 199.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.46 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 59.77 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) = 0.45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 453 3.243 0.616 14. 43 0. 003 0. 443 3.347 0. 617 14 . 44 0. 014 0. 433 3.458 0.618 14 . 48 0. 033 0. 422 3.576 0.621 14 . 55 0. 062 0. 412 3.701 0.625 14 . 64 0. 101 0. 402 3.834 0. 630 14. 77 0. 153 0. 392 3.975 0.637 14 . 93 0. 219 0. 381 4.126 0. 646 15. 13 0. 301 0. 371 4.288 0.657 15. 37 0. 402 0. 361 4 .461 0.670 15 64 0 526 0. 351 4.647 0.686 15 96 0 676 0. 340 4.847 0.705 16 33 0 858 0. 330 5.062 0.728 16 75 1 077 0 320 5.295 0.755 17 23 1 342 0 310 5.547 0.788 17 77 1 663 0 299 5.820 0.826 18 38 2 054 0 289 6.118 0.871 19 07 2 535 0 279 6.443 0.924 19 84 3 .132 0 269 6.800 0.987 20 71 3 .886 0 258 7.192 1.062 21 .68 4 .860 0 248 7.625 1.151 22 .78 6 . 158 0 238 8.104 1.258 24 .02 7 .978 0 .228 8.638 1.387 25 .42 10 .7 67 0 .217 9.236 1.543 27 .01 15 .955 0 .207 9. 907 1.732 28 .81 59 .770 0 . 197 10.667 1.965 30 . 87 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.55 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 3. 550 0.826 3.561 311.09 14.418 1.500 0.826 1.511 85. 04 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 14.418 1.500 0.826 1.511 85.04 14.711 1.458 0.832 1.469 80.46 15.003 1.416 0.845 1.427 75.94 15.295 1.374 0.860 1.386 71.51 15.586 1.332 0.880 1.345 67.18 15. 876 1. 291 0.902 1. 303 62.96 16. 165 1. 249 0.928 1. 262 58.87 16. 453 1. 207 0. 958 1. 221 54 . 90 16. 741 1. 165 0.991 1. 180 51.08 17. 027 1. 123 1.028 1. 140 47.41 17. 312 1. 081 1.070 1. 099 43.89 17. 596 1. 039 1.117 1. 059 40.53 17. 877 0. 997 1.170 1. 019 37.34 18 157 0. 956 1.229 0. 979 34.33 18 433 0 914 1.295 0 940 31.49 18 707 0 872 1.370 0 901 28.84 18 975 0 830 1.455 0 863 26.37 19 239 0 788 1.552 0 825 24.11 19 495 0 746 1.663 0 789 22.05 19 743 0 704 1.791 0 754 20.20 19 .978 0 662 1.939 0 721 18.57 20 .197 0 621 2.114 0 .690 17 .18 20 .393 0 .579 2.321 0 . 662 16.04 20 .558 0 .537 2.569 0 .639 15.18 20 .675 0 .495 2.870 0 . 623 14.63 20 .722 0 .453 3.243 0 .616 14.43 59 .770 0 .453 3.243 0 . 616 14.43 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 18.59 FEET UPSTREAM OF NODE 147.00 | I DOWNSTREAM DEPTH = 0.890 FEET, UPSTREAM CONJUGATE DEPTH = 0.201 FEET | NODE 147.50 : HGL = < 199.453>;EGL= < 199.616>;FLOWLINE= < 199.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 147.50 FLOWLINE ELEVATION = 199.00 ASSUMED UPSTREAM CONTROL HGL = 199.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 20-f30.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIG.RES * ************************************************************************** FILE NAME: VLW01G.DAT TIME/DATE OF STUDY: 08:30 11/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 140.00- 2.55* 201.69 0.22 36.97 } FRICTION 144.00- 0.90* 31.88 0.49 Dc 17.64 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.00 FLOWLINE ELEVATION = 196.70 PIPE FLOW = 1.71 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 199.250 FEET NODE 140.00 : HGL = < 199.250>;EGL= < 199.265>;FLOWLINE= < 196.700> ****************************************************************************** FLOW PROCESS FROM NODE 14 0.00 TO NODE 144.00 IS CODE = 1 UPSTREAM NODE 144.00 ELEVATION = 198.33 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.71 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE-f MOMENTUM(POUNDS) 0.000 2.550 0. 96E J 2.565 201.69 2.095 1.500 0. 96f J 1.515 85. 91 NORMAL DEPTH(FT) = 0.16 CRITICAL DEPTH(FT) = 0.49 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUN 2. 095 1 .500 0 967 1 515 85 . 91 2. 175 1 .460 0 975 1 474 81 .50 2. 254 1 .419 0 988 1 434 77 .16 2. 334 1 .379 1 006 1 395 72 . 90 2. 413 1 .339 1 027 1 355 68 . 73 2. 492 1 .298 1 052 1 316 64 . 67 2 . 570 1 .258 1 080 1 276 60 .73 2 . 649 1 .218 1 113 1 237 56 .91 2 . 726 1 . 177 1 149 1 198 53 .22 2. 804 1 . 137 1 189 1 159 49 . 68 2. 881 1 .097 1 235 1 120 46 .28 2. 958 1 .056 1 285 1 082 43 .03 3. 033 1 . 016 1 342 1 044 39 . 94 3. 109 0 . 976 1 405 1 006 37 . 01 3. 183 0 . 935 1 475 0 969 34 .26 3. 250 0 .898 1 548 0 935 31 . 88 44 . 00 HGL = < 199 228>;EGL= < 199.265>;FLOWLINE= < 198. 330 NODE ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 144.00 FLOWLINE ELEVATION = 198.33 ASSUMED UPSTREAM CONTROL HGL = 198.82 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 20-f45.98 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIH.RES * ************************************************************************** FILE NAME: VLW01H.DAT TIME/DATE OF STUDY: 08:27 11/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 140.00- 2.55* 200.64 0.34 15.27 } FRICTION 146.00- 2.09* 149.43 0.44 Dc 13.68 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.00 FLOWLINE ELEVATION = 196.70 PIPE FLOW = 1.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 199.250 FEET NODE 140.00 : HGL = < 199.250>;EGL= < 199.260>;FLOWLINE= < 196.700> ****************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 146.00 IS CODE = 1 UPSTREAM NODE 146.00 ELEVATION = 197.17 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.59 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {{ 1.40)/( 105.150))**2 = 0.00018 HF=L*SF = ( 31.59)* (0.00018) = 0.006 NODE 146.00 : HGL = < 199.256>;EGL= < 199.265>;FLOWLINE= < 197.170> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 14 6.00 FLOWLINE ELEVATION = 197.17 ASSUMED UPSTREAM CONTROL HGL = 197.61 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 23-f02.22 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOII.RES * ************************************************************************** FILE NAME: VLW01I.DAT TIME/DATE OF STUDY: 22:31 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 134.00- 1.99* 138.06 0.16 22.67 } FRICTION } HYDRAULIC JUMP 136.00- 0.39*Dc 10.07 0.39*Dc 10.07 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.00 FLOWLINE ELEVATION = 199.96 PIPE FLOW = 1.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 201.950 FEET NODE 134.00 : HGL = < 201.950>;EGL= < 201.956>;FLOWLINE= < 199.960> ****************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 136.00 IS CODE = 1 UPSTREAM NODE 136.00 ELEVATION = 201.59 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.10 CFS PIPE DITMVIETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.13 CRITICAL DEPTH(FT) 0.39 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0.392 2. 995 0. 531 10.07 0. 001 0.381 3. 112 0. 532 10.08 0. 005 0.370 3. 238 0. 533 10.12 0. 012 0.360 3. 373 0. 537 10.19 0. 022 0.349 3. 519 0. 542 10.29 0 036 0.339 3. 676 0. 549 10.42 0 055 0.328 3. 845 0. 558 10.59 0 079 0.318 4 . 029 0. 570 10.80 0 109 0.307 4 . 228 0. 585 11.05 0 148 0.296 4 . 445 0. 604 11.34 0 195 0.286 4 . 683 0. 627 11.69 0 254 0.275 4 . 943 0. 655 12.10 0 327 0.265 5 229 0. 690 12.56 0 416 0.254 5 546 0. 732 13.10 0 526 0.244 5 897 0 784 13.72 0 . 662 0.233 6 287 0 847 14.44 0 .833 0.222 6 725 0 925 15.26 1 .047 0.212 7 217 1 021 16.21 1 .322 0.201 7 775 1 141 17.30 1 . 678 0.191 8 411 1 290 18.56 2 . 153 0.180 9 141 1 478 20.04 2 .806 0.170 9 985 1 719 21.76 3 .250 0.165 10 .428 1 854 22.67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.99 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.990 0.622 1.996 138.06 0. 977 1.500 0.622 1.506 84.03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.977 1.500 0.622 1.506 84.03 1.065 1.456 0.628 1.462 79.17 1.153 1.411 0.638 1.418 74.38 1.241 1.367 0.651 1.374 69. 68 1.329 1.323 0.667 1.330 65.09 1.417 1.278 0.685 1.286 60.63 1.504 1.234 0.707 1.242 56.31 1. 592 1 190 0.732 1.198 52.13 1. 679 1 145 0.760 1.154 48.10 1. 766 1 101 0.791 1.111 44.25 1. 852 1 057 0.827 1.067 40.56 1. 939 1 012 0.867 1.024 37.05 2 024 0 968 0.912 0.981 33.72 2 110 0 924 0.963 0.938 30.58 2 195 0 879 1.021 0.896 27 . 64 2 279 0 .835 1.088 0.853 24.89 2 362 0 .791 1.164 0.812 22.35 2 444 0 .746 1.252 0.771 20.02 2 524 0 .702 1.355 0.730 17.90 2 602 0 . 658 1.475 0.691 16.00 2 677 0 .613 1.618 0. 654 14.33 2 747 0 .569 1.789 0.619 12.91 2 .812 0 .525 1.997 0.587 11.74 2 .866 0 .480 2.254 0.559 10.85 2 . 907 0 .436 2.577 0.539 10.28 2 .923 0 .392 2.995 0.531 10.07 3 .250 0 .392 2.995 0.531 10.07 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 2.70 FEET UPSTREAM OF NODE 134.00 | I DOWNSTREAM DEPTH = 0.598 FEET, UPSTREAM CONJUGATE DEPTH = 0.242 FEET | NODE 136.00 : HGL = < 201.982>;EGL= < 202.121>;FLOWLINE= < 201.590> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 136.00 FLOWLINE ELEVATION = 201.59 ASSUMED UPSTREAM CONTROL HGL = 201.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 23-f02.22 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIJ.RES * ************************************************************************** FILE NAME: VLW01J.DAT TIME/DATE OF STUDY: 22:32 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 134.00- 1.99* 138.98 0.22 25.03 } FRICTION } HYDRAULIC JUMP 138.00- 0.45*Dc 14.05 0.45*Dc 14.05 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.00 FLOWLINE ELEVATION = 199.96 PIPE FLOW = 1.43 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 201.950 FEET NODE 134.00 : HGL = < 201.950>;EGL= < 201.960>;FLOWLINE= < 199.960> ****************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 138.00 IS CODE = 1 UPSTREAM NODE 138.00 ELEVATION = 202.58 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 0 .448 3. 224 0. 610 14 .05 0 .004 0 .439 3. 320 0. 610 14 .06 0 .018 0 .430 3. 421 0. 611 14 .09 0 .042 0 .420 3. 528 0. 614 14 .15 0 .078 0 .411 3. 641 0. 617 14 .23 0 . 127 0 . 401 3. 760 0. 621 14 .34 0 . 192 0 .392 3. 887 0. 627 14 .47 0 .273 0 .383 4 . 021 0. 634 14 .63 0 .375 0 .373 4. 164 0. 643 14 .82 0 .500 0 .364 4 . 316 0. 653 15 .05 0 . 651 0 .355 4 . 478 0. 666 15 .31 0 .834 0 . 345 4 . 651 0. 681 15 .60 1 .053 0 .336 4. 836 0. 699 15 .94 1 .317 0 .327 5. 035 0. 720 16 .32 1 .634 0 .317 5. 248 0. 745 16 .75 2 .015 0 .308 5. 477 0. 774 17 .23 2 .477 0 .298 5. 724 0. 808 17 .76 3 .041 0 .289 5. 992 0. 847 18 .36 3 .736 0 .280 6. 281 0. 893 19 .03 4 .607 0 .270 6. 597 0. 946 19 .77 5 .723 0 .261 6. 940 1. 009 20 . 60 7 . 197 0 .252 7 . 315 1. 083 21 .53 9 .248 . 0 .242 7 . 727 1. 170 22 .56 12 .362 0 .233 8. 181 1. 273 23 .71 18 .101 0 .224 8. 682 1. 395 25 .00 27 .250 0 .223 8. 694 1. 398 25 .03 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1. 99 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1. 990 0.809 2.000 138.98 5.106 1.500 0.809 1.510 84 . 94 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.106 1.500 0.809 1.510 84 . 94 5.543 1.458 0.815 1. 468 80.34 5.978 1.416 0.827 1.426 75.80 6.412 1.374 0.843 1.385 71.35 6.845 1.332 0.862 2 1.343 67.00 7.277 1. 290 0.884 1.302 62 76 7 .708 1 248 0.910 1.260 58 65 8.138 1 206 0.939 1.219 54 67 8.566 1 163 0. 972 1.178 50 83 8.993 1 121 1.009 1.137 47 14 9.418 1 079 1.050 1.096 43 61 9.840 1 037 1.097 1.056 40 24 10.260 0 995 1.149 1.016 37 04 10.677 0 953 1.207 0. 976 34 01 11.090 0 911 1.273 0.936 31 16 11.498 0 869 1.347 0.897 28 50 11.899 0 827 1.431 0.859 26 03 12.293 0 785 1.528 0.821 23 76 12.677 0 743 1. 638 0.784 21 69 13.048 0 701 1.766 0.749 19 84 13.401 0 659 1.914 0.716 18 21 13.730 0 617 2.089 0.684 16 81 14.026 0 574 2.296 0.656 15 67 14.275 0 532 2.545 0. 633 14 81 14.453 0 490 2.848 0. 616 14 25 14.525 0 448 3.224 0. 610 14 05 27.250 0 448 3.224 0.610 14 05 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 12.20 FEET UPSTREAM OF NODE 134.00 | I DOWNSTREAM DEPTH = 0.7 95 FEET, UPSTREAM CONJUGATE DEPTH = 0.229 FEET | NODE 138.00 : HGL = < 203.028>;EGL= < 203.190>;FLOWLINE= < 202.580> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.00 FLOWLINE ELEVATION = 202.58 ASSUMED UPSTREAM CONTROL HGL = 203.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 29-f40.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIK.RES * ************************************************************************** FILE NAME: VLW01K.DAT TIME/DATE OF STUDY: 08:28 11/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 116.00- 1.97* 153.78 0.43 85.68 } FRICTION } HYDRAULIC JUMP 120.00- 0.78*Dc 55.88 0.78*Dc 55.88 } JUNCTION 120.50- 1.03* 40.63 0.40 16.54 } FRICTION 119.00- 0.89* 30.58 0.47 Dc 15.83 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 FLOWLINE ELEVATION = 204.08 PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 206.050 FEET NODE 116.00 : HGL = < 206.050>;EGL= < 206.137>;FLOWLINE= < 204.080> ****************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 205.06 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 0.01300 NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.78 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .784 4 .481 1 . 096 55 .88 0 . 004 0 .764 4 . 632 1 . 097 55 . 94 0 . 015 0 . 743 4 .795 1 . 101 56 13 0 .035 0 .723 4 .969 1 107 56 45 0 . 066 0 .703 5 156 1 116 56 92 0 .109 0 . 682 5 358 1 128 57 54 0 . 165 0 . 662 5 575 1 145 58 32 0 .238 0 . 641 5 810 1 166 59 29 0 .329 0 . 621 6 064 1 192 60 46 0 .443 0 . 600 6 340 1 225 61 84 0 .583 0 .580 6 641 1 265 63 46 0 .756 0 .560 6 970 1 314 65 35 0 . 967 0 .539 7 330 1 374 67 52 1 .225 0 . 519 7 725 1 446 70. 03 1 . 542 0 .498 8 162 1. 533 72. 90 1 . 933 0 .478 8. 645 1. 639 76. 19 2 .417 0 .457 9. 183 1 . 768 79. 96 3 .023 0 . 437 9. 784 1. 925 84 . 28 3 .250 0 .431 9. 976 1. 977 85. 68 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.97 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 1.970 1.567 1.500 VELOCITY (FT/SEC) 2.371 2.371 SPECIFIC ENERGY(FT) 2.057 1.587 PRESSURE-f MOMENTUM(POUNDS) 153.78 101.95 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 1.567 1 .500 2 370 1 587 101.95 1.660 1 . 471 2 381 1 559 98 .89 1.750 1 .443 2 400 1 532 95. 92 1.840 1 .414 2 426 1 506 93.02 1. 927 1 .385 2 456 1 479 90.20 2.014 1 .357 2 491 1 453 87.46 2.099 1 .328 2 531 1 428 84 . 80 2.182 1 . 300 2 575 1 403 82.23 2 265 1. 271 2 . 624 1. 378 79 .74 2 346 1. 242 2 . 677 1. 354 77 35 2 425 1. 214 2 .734 1. 330 75 05 2 502 1. 185 2 797 1. 307 72 86 2 578 1. 156 2 865 1. 284 70 76 2 651 1. 128 2 939 1. 262 68 78 2 722 1. 099 3 018 1. 241 66 92 2 791 1. 071 3 104 1. 220 65 17 2 856 1. 042 3 197 1. 201 63 55 2 918 1. 013 3 298 1. 182 62 06 2 976 0. 985 3 406 1. 165 60 71 3 029 0. 956 3 524 1. 149 59 50 3 077 0. 927 3 652 1. 135 58. 45 3 120 0. 899 3 790 1. 122 57 . 57 3 155 0. 870 3 941 1. 111 56. 85 3 182 0. 841 4 105 1. 103 56. 32 3 200 0. 813 4 . 284 1. 098 56. 00 3 206 0. 784 4 . 481 1. 096 55. 88 3. 250 0. 784 4 . 481 1. 096 55. 88 END OF HYDRAULIC JUMP ANALYSI S I PRESSURE-fMOMENTUM BALANCE OCCURS AT 3.08 FEET UPSTREAM OF NODE 116.00 | I DOWNSTREAM DEPTH = 0.925 FEET, UPSTREAM CONJUGATE DEPTH = 0.661 FEET | NODE 120.00 : HGL = < 205.844>;EGL= < 206.156>;FLOWLINE= < 205.060> **********************************************************************^^^j,.j^^^,^ FLOW PROCESS FROM NODE 120.00 TO NODE 120.50 IS CODE = 5 UPSTREAM NODE 120.50 ELEVATION = 205.39 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.57 18.00 0. 00 205.39 0.47 1.208 DOWNSTREAM 4 .19 18 . 00 -205.06 0.78 4 .482 LATERAL #1 0.00 0. 00 0.00 0.00 0. 00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.62===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-f A2 )* 16 . 1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00033 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.0054 8 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.002 91 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.062 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.228)-f( 0.062) = 0.291 NODE 120.50 : HGL = < 206.424>;EGL= < 206.447>;FLOWLINE= < 205.390> ************************************************************************j^^^^^^ FLOW PROCESS FROM NODE 120.50 TO NODE 119.00 IS CODE = 1 UPSTREAM NODE 119.00 ELEVATION = 205.53 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.57 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.66 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.47 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 0 . 000 1 .034 1 208 1. 057 40 . 63 2 .161 1 .012 1 238 1. 035 38 . 91 4 . 317 0 .989 1 270 1. 014 37 .25 6 .465 0 .967 1 304 0. 993 35 .63 8 . 607 0 . 944 1 340 0. 972 34 .07 10 . 741 0 . 921 1 379 0. 951 32 .57 12 .866 0 .899 1 420 0. 930 31 . 11 13 . 660 0 .890 1 436 0. 922 30 .58 NODE 119.00 HGL = < 206. 420>;EGL= < 206.452>; FLOWLINE= < 205. 530> *************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 119.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 205.53 206.00 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * RICH FIELD DRIVE 29_40.00 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIL.RES * ************************************************************************** FILE NAME: VLW01L.DAT TIME/DATE OF STUDY: 22:40 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 116.00- 1.97* 153.87 0.44 83.51 } FRICTION } HYDRAULIC JUMP 126.00- 0.79*Dc 56.06 0.79*Dc 56.06 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 FLOWLINE ELEVATION = 204.08 PIPE FLOW = 4.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 206.050 FEET NODE 116.00 : HGL = < 206.050>;EGL= < 206.138>;FLOWLINE= < 204.080> ****************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 126.00 IS CODE = 1 UPSTREAM NODE 126.00 ELEVATION = 205.69 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.30 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.79 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 785 4 . 484 1. 098 56. 06 0. Oil 0. 770 4 . 594 1. 098 56. 09 0. 044 0. 755 4 . 710 1. 100 56. 19 0. 102 0. 740 4 . 831 1. 103 56. 36 0. 189 0. 725 4 . 959 1. 107 56 60 0. 307 0. 710 5. 094 1. 114 56 91 0 461 0. 696 5. 236 .1. 121 57 31 0 656 0. 681 5. 386 1. 131 57 80 0 897 0 666 5. 544 1. 143 58 37 1 192 0 651 5. 712 1. 158 59 04 1 548 0 636 5. 890 1. 175 59 81 1 976 0 621 6. 078 1. 195 60 69 2 487 0 606 6. 279 1. 218 61 69 3 098 0 591 6. 4 92 1. 246 62 81 3 828 0 576 6. 719 1. 277 64 07 4 703 0 561 6. 961 1. 314 65 47 5 756 0 546 7 . 220 1. 356 67 02 7 032 0 531 7. 497 1. 404 68 75 8 598 0 516 7. 794 1. 460 70 65 10 547 0 501 8 . 114 1. 524 72 76 13 .027 0 486 8. 458 1. 598 75 09 16 .284 0 471 8. 830 1. 683 77 67 20 .785 0 456 9. 232 1. 781 80 51 27 .300 0 .442 9 650 1. 889 83 51 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1. 97 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.970 2 . 377 2.058 153.87 8.192 1.500 2.377 1.588 102.05 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 8.192 1.500 2.376 1.588 102.05 8. 676 1.471 2.387 1.560 98. 99 9.148 1.443 2.406 1.533 96.02 9. 611 1.414 2.431 1.506 93.13 10.067 1.386 2.462 1.480 90.31 10.517 1.357 2.497 1.454 87.58 10.960 1.328 2.537 1.428 84.92 11. 396 1 300 2 581 1.403 82.35 11. 825 1 271 2 629 1.379 79.87 12. 246 1 243 2 682 1.354 77.48 12. 660 1 214 2 740 1.331 75.19 13 064 1 185 2 803 1.308 73.00 13 459 1 157 2 871 1.285 70.91 13 844 1 128 2 945 1.263 68.93 14 216 1 100 3 024 1.242 67 . 07 14 575 1 071 3 110 1.221 65.32 14 918 1 043 3 203 1.202 63.71 15 244 1 014 3 303 1.183 62.22 15 551 0 985 3 412 1.166 60.87 15 834 0 957 3 529 1.150 59.67 16 091 0 928 3 657 1.136 58.62 16 317 0 900 3 795 1.123 57.74 16 508 0 871 3 945 1.113 57.02 16 655 0 842 4 109 1.105 56.50 16 751 0 814 4 288 1.099 56.17 16 786 0 785 4 484 1.098 56.06 27 300 0 785 4 484 1.098 56.06 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 12.41 FEET UPSTREAM OF NODE 116.00 | I DOWNSTREAM DEPTH = 1.231 FEET, UPSTREAM CONJUGATE DEPTH = 0.478 FEET | NODE 126.00 : HGL = < 206.475>;EGL= < 206.788>;FLOWLINE= < 205.690> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 126.00 FLOWLINE ELEVATION = 205.69 ASSUMED UPSTREAM CONTROL HGL = 206.48 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS MOON FIELD DRIVE MAIN LINE ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MOON FIELD DRIVE MAIN LINE * * J.N. 981020-5 FILE: VLWOIN.RES * ************************************************************************** FILE NAME: VLW01N.DAT TIME/DATE OF STUDY: 20:27 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 3.42* 440.71 158.00- } FRICTION 169.00- } JUNCTION 168.00- } FRICTION 167.50- } JUNCTION 167.00- } FRICTION 165.00- } JUNCTION 164.00- } FRICTION 163.50- } JUNCTION 163.00- } FRICTION 161.00- } HYDRAULIC JUMP 1.30 Dc 220.24 1.86 1.08 Dc 1.08 Dc 1.08*Dc 1.51* 189.09 127.09 127.09 127.09 97.55 } HYDRAULIC JUMP 0.72*Dc 45.23 0.90 0.72*Dc 49.17 45.23 DOWNSTREAM RUN FLOW PRESSURE-f DEPTH(FT) MOMENTUM(POUNDS) 382.30 0.63 1.01* 0.50* 0.54* 0. 52* 1. 08*Dc 0.32 0.72*Dc 0.51* 0.72*Dc 238.94 231.83 214.09 220.87 127.09 92.07 45.23 53. 80 45.23 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 158.00 PIPE FLOW = 11.55 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 182.73 PIPE DIAMETER = 18.00 INCHES 186.150 FEET NODE 158.00 : HGL = < 186.150>;EGL= < 186.813>;FLOWLINE= < 182.730> ****************************************************************************** FLOW PROCESS FROM NODE 158.00 TO NODE 169.00 IS CODE = 1 UPSTREAM NODE 169.00 ELEVATION = 190.11 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.55 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 72.03 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.61 CRITICAL DEPTH(FT) 1.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .012 9 100 2. 299 238 94 0 .380 0 . 996 9 267 2. 330 241 41 0 .802 0 . 980 9 442 2. 365 244 08 1 .271 0 . 964 9 625 2. 403 246 95 1 .791 0 . 947 9 817 2. 445 250 04 2 .370 0 . 931 10 018 2. 490 253 36 3 .013 0 . 915 10 228 2. 540 256 91 3 .729 0 .899 10 449 2. 595 260 71 4 . 527 0 .882 10 680 2 . 655 264 78 5 .419 0 .866 10 922 2. 720 269 13 6 .417 0 .850 11 177 2. 791 273 78 7 . 540 0 .834 11 445 2 . 869 278 74 8 .807 0 .817 11 727 2. 954 284 04 10 .242 0 .801 12 023 3. 047 289 70 11 .879 0 .785 12 336 3. 149 295 73 13 .758 0 .769 12 665 3. 261 302 17 15 . 934 0 . 752 13 013 3. 384 309 04 18 .480 0 .736 13 380 3. 518 316 38 21 . 501 0 . 720 13 769 3. 666 324 21 25 . 149 0 . 704 14 180 3. 828 332 59 29 . 660 0 . 688 14 616 4 . 007 341 54 35 .430 0 . 671 15 079 4 . 204 351 12 43 .203 0 . 655 15 571 4 . 422 361 37 54 . 651 0 . 639 16 095 4 . 664 372 36 72 .030 0 . 625 16 566 4 . 889 382 30 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.42 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) 0.000 21.247 HEAD(FT) 3.420 1.500 (FT/SEC) 6.536 6.536 ENERGY(FT) 4.083 2.163 MOMENTUM(POUNDS) 440.71 228.99 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 21.247 21.327 21.399 21.465 21.526 21.584 21.638 21.689 21.736 21.781 21.823 21.862 21.898 21.932 21.963 21.991 22.017 22.040 22.061 22.079 22.094 22.107 22.117 22.124 22.128 22.130 72.030 FLOW DEPTH (FT) 1.500 1.492 1. 484 1.475 1.4 67 1.459 1.451 1.443 434 426 418 410 402 393 385 1.377 369 361 352 344 336 328 320 1.312 1.303 1.295 1.295 VELOCITY (FT/SEC) 6.534 6.538 6.547 6.557 6.570 6.584 6.600 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 SPECIFIC ENERGY(FT) 2.163 617 635 655 676 698 722 746 771 798 825 854 883 914 946 978 012 046 082 118 118 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2, 2, 2, 2, 2, 2 2 2 2 2 2 156 150 143 138 133 128 123 119 114 111 107 104 101 098 095 093 091 089 087 086 084 084 083 083 082 ,082 PRESSURE-f MOMENTUM(POUNDS) 228.99 228.19 227.47 226.81 226.19 225.61 225.07 224.56 224.08 223.64 223.22 222.84 222.48 222.14 221.84 221.56 221.31 221.09 220.89 220.72 220.57 220.45 220.36 220.29 220.25 220.24 220.24 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 6.22 FEET UPSTREAM OF NODE 158.00 | I DOWNSTREAM DEPTH = 2.858 FEET, UPSTREAM CONJUGATE DEPTH = 0.630 FEET | NODE 169.00 : HGL = < 191.122>;EGL= < 192.409>;FLOWLINE= < 190.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 168.00 169.00 TO NODE ELEVATION = 168.00 IS CODE = 5 190.44 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 7.79 11.55 1.43 2.33 0.00= DIAMETER ANGLE FLOWLINE (INCHES) 18.00 18.00 18.00 18.00 (DEGREES) ELEVATION 0.00 45.00 90.00 190.44 190.11 190.44 190.44 ==Q5 EQUALS BASIN INPUT== CRITICAL VELOCITY DEPTH(FT.) 1.08 1.30 0.45 0.58 (FT/SEC) 14.905 9.102 2.198 3.581 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09219 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01902 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05561 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.222 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.986)-f( 0.000) = 1.986 NODE 168.00 HGL < 190.945>;EGL= < 194.395>;FLOWLINE= < 190.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 167.50 168.00 TO NODE ELEVATION = 167.50 IS CODE = 1 209.73 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.7 9 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 207.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.50 CRITICAL DEPTH(FT) I.OS UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0.538 13 650 3. 433 214 . 09 0 934 0.537 13 698 3. 452 214 . 77 1 912 0.536 13 746 3 472 215 45 2 938 0.534 13 795 3 491 216 13 4 016 0.533 13 844 3 511 216 82 5 153 0.532 13 893 3 530 217 52 6 352 0.530 13 943 3 551 218 22 7 623 0.529 13 992 3 571 218 92 8 972 0.527 14 043 3 591 219 63 10 409 0. 526 14 093 3 612 220 35 11 946 0.525 14 144 3 633 221 07 13 596 0.523 14 195 3 654 221 79 15 376 0.522 14 247 3 675 222 52 17 308 0.520 14 299 3 697 223 26 19 .417 0.519 14 351 3 719 224 00 21 .737 0.518 14 403 3 741 224 75 24 .313 0.516 14 456 3 763 225 50 27 .206 0.515 14 510 3 786 226 26 30 .501 0.513 14 563 3 809 227 02 34 .320 0.512 14 . 617 3 832 227 79 38 .858 0.511 14 .672 3 855 228 57 44 .436 0.509 14 .726 3 879 229 35 51 .660 0.508 14 .781 3 903 230 13 61 .889 0.507 14 .837 3 927 230 93 79 .482 0.505 14 .893 3 951 231 72 207 .390 0.505 14 . 900 3 955 231 83 NODE 167.50 HGL < 210.268>;EGL= < 213.163>;FLOWLINE= < 209.730> ****************************************************************************** FLOW PROCESS FROM NODE 167.50 TO NODE 167.00 IS CODE = 5 UPSTREAM NODE 167.00 ELEVATION = 210.06 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 7.79 18.00 0.00 210.06 DOWNSTREAM 7.79 18.00 - 209.73 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 o.OO===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1 08 1 08 0 00 0 00 VELOCITY (FT/SEC) 14.135 13.654 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) *16.1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07958 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07233 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07596 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.304 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.524)-f( 0.000) = 0.524 NODE 167.00 HGL < 210.585>;EGL= < 213.687>;FLOWLINE= < 210.060> ****************************************************************************** FLOW PROCESS FROM NODE 167.00 TO NODE 165.00 IS CODE = 1 UPSTREAM NODE 165.00 ELEVATION = 220.84 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.79 CFS PIPE PIPE LENGTH = 115.67 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.50 CRITICAL DEPTH(FT) = 1.08 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.08 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1 .080 5 718 1 .588 127 09 0.013 1 . 057 5 852 1 .589 127 19 0.052 1 .034 5 995 1 .592 127 46 0.119 1 .011 6 148 1 .598 127 92 0.219 0 . 988 6 310 1 .606 128 57 0.355 0 . 965 6 484 1 . 618 129 44 0.533 0 . 942 6 668 1 . 633 130 52 0.757 0 .919 6 866 1 .651 131 85 1.036 0 .895 7 077 1 . 674 133 43 1.377 0 .872 7 303 1 .701 135 28 1.791 0 .849 7 545 1 .734 137 42 2.290 0 .826 7 804 1 .773 139 88 2.890 0 .803 8 084 1 .819 142. 69 3.610 0 .780 8 384 1 872 145. 86 4.474 0 .757 8 708 1 935 149. 45 5.516 0 734 9 .059 2.009 153 48 6.778 0 711 9 .438 2.095 158 00 8.319 0 688 9 .850 2.195 163 05 10.222 0 665 10 .298 2.313 168 71 12.609 0 642 10 .788 2.450 175 04 15.672 0 619 11 .323 2.611 182 11 19.730 0 596 11 .911 2.800 190 02 25.386 0 573 12 .559 3.023 198 89 33.997 0 550 13 .276 3.288 208 85 49.919 0 527 14 .072 3.603 220 05 115.670 0 525 14 .130 3. 627 220 87 165.00 HGL = < 221 920>;EGL= < 222.428>;FLOWLINE= < 220.S 340 NODE ****************************************************************************** FLOW PROCESS FROM NODE 165.00 TO NODE 164.00 IS CODE = 5 UPSTREAM NODE 164.00 ELEVATION = 221.17 (FLOW IS AT CRITICAL DEPTH) CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.72 2.015 1.08 5.712 0.35 0.623 0.70 2.339 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 3.56 18.00 0.00 221.17 DOWNSTREAM 7.79 18.00 - 220.84 LATERAL #1 0.89 18.00 90.00 221.17 LATERAL #2 3.34 18.00 90.00 221.17 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) * 16.1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00115 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00728 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00421 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.314)-f( 0.000) = 0.314 NODE 164.00 HGL < 222.679>;EGL= < 222.742>;FLOWLINE= < 221.170> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 163.50 164.00 TO NODE 163.50 IS CODE = 1 ELEVATION = 235.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 96.81 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC 0.72 PRESSURE-f -(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0.719 4 . 248 1. 000 45.23 0. 006 0.703 4 . 378 1. 001 45.27 0. 024 0. 686 4 . 516 1. 003 45.39 0. 056 0. 670 4 . 663 1. 007 45.60 0. 103 0.653 4. 820 1. 014 45. 90 0. 168 0. 636 4 . 987 1. 023 46.30 0. 254 0.620 5. 165 1. 034 46.80 0. 363 0. 603 5. 356 1. 049 47.41 0 499 0.586 5. 560 1. 067 48.15 0 666 0.570 5. 779 1. 089 49.01 0 871 0.553 6 015 1 115 50.01 1 120 0.536 6 270 1 147 51.16 1 420 0.520 6 544 1 185 52.48 1 784 0.503 6 842 1 231 53. 98 2 225 0.487 7 165 1 284 55.69 2 759 0.470 7 517 1 348 57.61 3 412 0.453 7 902 1 423 59.79 4 216 0.437 8 323 1 513 62.24 5 .217 0.420 8 787 1 620 65.00 6 .484 0.403 9 298 1 747 68.12 8 .123 0.387 9 .865 1 899 71. 65 10 .315 0.370 10 .495 2 .082 75. 64 13 .398 0.353 11 .201 2 .303 80.16 18 .136 0.337 11 . 994 2 .572 85.32 26 . 983 0.320 12 .890 2 . 902 91.21 96 .810 0.318 13 .020 2 .952 92.07 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.51 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 509 2. 015 1. 572 97. 55 0 060 1 500 2. 015 1. 563 96. 60 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .060 1 500 2. 014 1 563 96 60 0 .276 1 .469 2. 024 1 532 93 24 0 .488 1 .438 2. 043 1 502 89 96 0 . 697 1 .406 2. 068 1 473 86 76 0 . 903 1 .375 2. 097 1 444 83 63 1 .107 1 .344 2. 131 1 415 80 59 1 .309 1 .313 2. 170 1 386 77 64 1 .508 1 .282 2. 213 1 358 74 77 1 .705 1 .250 2. 261 1 330 72 01 1 .899 1 .219 2. 313 1 302 69 34 2 .089 1 .188 2. 371 1 275 66 78 2 .277 1 .157 2. 434 1 249 64 32 2. 460 1.126 2. 502 1.223 61. 99 2. 639 1.094 2. 576 1.198 59. 77 2. 813 1.063 2. 657 1.173 57 68 2. 982 1.032 2 745 1.149 55 72 3 144 1.001 2 841 1.126 53 90 3 299 0. 970 2 945 1.104 52 23 3 445 0.938 3 059 1.084 50 71 3 581 0.907 3 184 1.065 49 35 3 705 0.876 3 321 1.047 48 16 3 815 0.845 3 470 1.032 47 15 3 908 0.814 3 .635 1.019 46 34 3 .981 0.782 3 .818 1.009 45 73 4 .029 0.751 4 .019 1.002 45 36 4 .046 0.720 4 .243 1.000 45 .23 96 .810 0.720 4 HYDRAU" .243 Lie JUMP 1.000 ANALYSIS 45 .23 I PRESSURE-fMOMENTUM BALANCE OCCURS AT 0.35 FEET UPSTREAM OF NODE 164.00 | I DOWNSTREAM DEPTH = 1.4 58 FEET, UPSTREAM CONJUGATE DEPTH = 0.318 FEET | NODE 163.50 : HGL = < 235.719>;EGL= < 236.000>;FLOWLINE= < 235.000> ****************************************************************************** FLOW PROCESS FROM NODE 163.50 TO NODE 163.00 IS CODE = 5 UPSTREAM NODE 163.00 ELEVATION = 235.33 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.56 18 . 00 90.00 235.33 0.72 6.809 DOWNSTREAM 3.56 18 . 00 -235.00 0.72 4.249 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2) *16.1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0122 6 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.04 9 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-fHV1-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.555)-f( 0.000) = 0.555 01923 00530 0.000 FEET NODE 163.00 : HGL = < 235.835>;EGL= < 236.555>;FLOWLINE= < 235.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 161.00 163.00 TO NODE ELEVATION = 161.00 IS CODE = 1 235.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 3.56 CFS PIPE DIAMETER = 18.00 INCHES 3.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.35 CRITICAL DEPTH(FT) 0.72 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 720 4.243 1.000 45 .23 0. 008 0. 705 4.360 1.000 45 .26 0. 033 0. 690 4.482 1.002 45 .35 0. 077 0. 675 4.611 1.006 45 .52 0. 142 0 660 4.748 1.011 45 .75 0. 232 0 646 4.893 1.017 46 .07 0 349 0 631 5.046 1.026 46 .46 0 497 0 616 5.209 1.037 46 . 94 0 682 0 601 5.382 1.051 47 .50 0 908 0 586 5.566 1.067 48 .17 1 183 0 571 5.763 1.087 48 .94 1 514 0 556 5. 972 1.110 49 .82 1 912 0 .541 6.196 1.138 50 .82 2 .389 0 . 526 6.436 1.170 51 .95 2 . 963 0 .511 6.694 1.207 53 .23 3 .250 0 .505 6.806 1.225 53 .80 NODE 161.00 HGL = < 236. 320>;EGL= < 236.600>;FLOWLINE= < 235. 600> ,***************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 161.00 FLOWLINE ELEVATION = 235.60 ASSUMED UPSTREAM CONTROL HGL = 236.32 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS MOON FIELD DRIVE LATERALS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MOON FIELD DRIVE 16-f42.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIQ.RES * ************************************************************************** FILE NAME: VLW01Q.DAT TIME/DATE OF STUDY: 20:55 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 164.00- 1.57* 103.47 0.71 Dc 43.43 } FRICTION 166.00- 1.46* 91.19 0.71 Dc 43.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN E^CH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 164.00 FLOWLINE ELEVATION = 221.17 PIPE FLOW = 3.45 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 222.740 FEET NODE 164.00 : HGL = < 222.740>;EGL= < 222.799>;FLOWLINE= < 221.170> ****************************************************************************** FLOW PROCESS FROM NODE 164.00 TO NODE 166.00 IS CODE = 1 UPSTREAM NODE 166.00 ELEVATION = 221.31 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.45 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.57 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE-f MOMENTUM(POUNDS) 0.000 17.248 1.570 1.500 1. 952 1.952 1.629 1.559 103.47 95.75 NORMAL DEPTH(FT) 0.71 CRITICAL DEPTH(FT) 0.71 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 17.248 24.721 27.250 FLOW DEPTH (FT) 1.500 1.469 1.458 VELOCITY (FT/SEC) 1.952 1. 962 1. 967 SPECIFIC ENERGY(FT) 1.559 1.528 1.518 PRESSURE-f MOMENTUM(POUNDS) 95.75 92.36 91.19 NODE 166.00 : HGL = < 222. 768>;EGL= < 222.828>;FLOWLINE= < 221.310> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 166.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 221.31 222.02 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *************************************************J^^^^^^^J^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MOON FIELD DRIVE 16-f42.00 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIS.RES * **********************************************^j^^^^^^j^^^^^^^^^^^^^^^^^^^^^ FILE NAME: VLW01S.DAT TIME/DATE OF STUDY: 21:05 11/11/2003 ***********************************************^^^^j^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 164.00- 1.57* 91.29 0.17 13 95 } FRICTION 162.00- 0.75* 19.20 0.35 Dc 7.70 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *************************************************^^^^^^j^^^^^j^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 164.00 FLOWLINE ELEVATION = 221.17 PIPE FLOW = 0.89 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 222.740 FEET NODE 164.00 : HGL = < 222.740>;EGL= < 222.744>;FLOWLINE= < 221.170> *********************************************** ******************************* FLOW PROCESS FROM NODE 164.00 TO NODE 162.00 IS CODE = 1 UPSTREAM NODE 162.00 ELEVATION = 221.98 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.89 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.57 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE-f MOMENTUM(POUNDS) 0.000 0.281 1.570 1.500 0.504 1.574 0.504 1.504 91.29 83.57 NORMAL DEPTH(FT) = 0.14 CRITICAL DEPTH(FT) = 0.35 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.281 1.500 0. 503 1 504 83 57 0.4 65 1.454 0. 508 1 458 78 53 0. 649 1.408 0. 517 1 412 73 56 0.833 1.362 0. 528 1 366 68 69 1.016 1.316 0. 541 1 321 63 94 1.199 1.270 0. 558 1 275 59 33 1.383 1.224 0. 576 1 229 54 86 1.565 1.178 0. 597 1 184 50 54 1.748 1.132 0. 622 1 138 46 40 1.930 1.086 0. 649 1 093 42 43 2.112 1.041 0. 680 1 048 38 64 2.294 0.995 0. 715 1 003 35 04 2. 474 0. 949 0. 755 0 957 31 64 2. 554 0. 903 0. 801 0 913 28 44 2.833 0.857 0. 853 0 868 25 44 3.011 0.811 0. 913 0 824 22 65 3.188 0.765 0. 982 0 780 20 07 3.250 0.748 1. 010 0 764 19 20 NODE 162.00 : HGL = < 222.728>;EGL= < 222.744>;FLOWLINE= < 221.980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 162.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 221.98 222.33 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MOON FIELD DRIVE 19-f45.00 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIP.RES * ************************************************************************** FILE NAME: VLW01P.DAT TIME/DATE OF STUDY: 20:50 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 168.00- 3.96* 356.21 0.45 Dc 14.05 } FRICTION 174.00- 3.81* 339.22 0.45 Dc 14.05 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC' HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 168.00 FLOWLINE ELEVATION = 190.44 PIPE FLOW = 1.43 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.400 FEET NODE 168.00 : HGL = < 194.400>;EGL= < 194.410>;FLOWLINE= < 190.440> ****************************************************************************** FLOW PROCESS FROM NODE 168.00 TO NODE 174.00 IS CODE = 1 UPSTREAM NODE 174.00 ELEVATION = 190.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 32.09 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.43)/( 105.009))**2 = 0.00019 HF=L*SF = ( 32.09)*(0.00019) = 0.006 NODE 174.00 : HGL = < 194.406>;EGL= < 194.416>;FLOWLINE= < 190.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 174.00 FLOWLINE ELEVATION = 190.60 ASSUMED UPSTREAM CONTROL HGL = 191.05 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MOON FIELD DRIVE 19-f63.02 (RIGHT LATERAL) * * J.N. 981020-5 FILE: VLWOIO.RES * ************************************************************************** FILE NAME: VLW010.DAT TIME/DATE OF STUDY: 20:48 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 168.00- 3.96* 361.49 0.28 59.29 } FRICTION 172.00- 2.33* 181.98 0.61 Dc 30.46 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 168.00 FLOWLINE ELEVATION = 190.44 PIPE FLOW = 2.62 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.400 FEET NODE 168.00 : HGL = < 194.400>;EGL= < 194.434>;FLOWLINE= < 190.440> ****************************************************************************** FLOW PROCESS FROM NODE 168.00 TO NODE 172.00 IS CODE = 1 UPSTREAM NODE 172.00 ELEVATION = 192.07 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.62 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING S N = 0.01300 SF=(Q/K)**2 = ( ( 2.62)/( 105.244))**2 = 0 00062 HF=L*SF = ( 3 25)*(0.00062) = 0.002 NODE 172.00 : HGL = < 194.402>;EGL= < 194.436>;FLOWLINE= < 192.070> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 172.00 FLOWLINE ELEVATION = 192.07 ASSUMED UPSTREAM CONTROL HGL = 192.68 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS MEADOW DRIVE LATERALS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Ave. West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS * * MEADOW DRIVE 31-f88.66 (LEFT LATERAL) * * J.N. 981020-5 FILE: VLWOIM.RES * ************************************************************************** FILE NAME: VLW01M.DAT TIME/DATE OF STUDY: 22:44 11/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 2.06* 151.04 0.59 Dc 27.95 } FRICTION 112.00- 1.93* 137.23 0.59 Dc 27.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 214.18 PIPE FLOW = 2.45 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 216.24 0 FEET NODE 106.00 : HGL = < 216.240>;EGL= < 216.270>;FLOWLINE= < 214.180> FLOW PROCESS FROM NODE 106.00 TO NODE 112.00 IS CODE = 1 UPSTREAM NODE 112.00 ELEVATION = 214.32 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.45 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.26 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.45)/( 105.035))**2 = 0.00054 HF=L*SF = ( 27.26)* (0.00054) = 0.015 NODE 112.00: HGL =< 216.255>;EGL= < 216.285>;FLOWLINE= < 214.320> ***********************************-*****^***************'^*'****************** UPSTREAM PIPE FLOW CONTROL DATA: MonTT KinMRFR = 112 00 FLOWLINE ELEVATION = 214.32 ASSUMEHPSTREAM CONTROL HGL = 214.91 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS BYPASS SYSTEM ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE W HYDRAULICS SYSTEM '200' * * COLLEGE BLVD. 87-f38.10 (LATERAL FROM LOT 115) * * J.N. 981020-5 FILE: VLWOIR.RES * ************************************************************************** FILE NAME: VLW01R.DAT TIME/DATE OF STUDY: 15:06 12/19/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 206.00- 1.17* 50.85 0.21 21.66 } FRICTION } HYDRAULIC JUMP 204.00- 0.42*Dc 12.08 0.42*Dc 12.08 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 206.00 FLOWLINE ELEVATION = 254.23 PIPE FLOW = 1.27 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 255.400 FEET NODE 206.00 : HGL = < 255.400>;EGL= < 255.411>;FLOWLINE= < 254.230> ****************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 204.00 IS CODE = 1 UPSTREAM NODE 204.00 ELEVATION = 255.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.27 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.51 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) = 0.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0.422 3. 117 0.573 12 .08 0 004 0.413 3. 211 0.573 12 .09 0 016 0. 404 3. 310 0.574 12 .12 0 038 0.395 3. 415 0.576 12 .17 0 071 0.386 3. 525 0.579 12 .24 0 116 0. 377 3. 642 0.583 12 .33 0 175 0.369 3. 766 0.589 12 .45 0 250 0.360 3. 898 0.596 12 .59 0 343 0.351 4 . 038 0.604 12 .76 0 457 0.342 4 . 187 0.614 12 . 95 0 596 0.333 4 . 345 0.627 13 .18 0 763 0.324 4 . 515 0.641 13 .44 0 965 0.315 4 . 697 0.658 13 .73 1 .206 0.307 4 . 892 0.678 14 .07 1 497 0.298 5. 101 0.702 14 .44 1 847 0.289 5. 326 0.730 14 .86 2 .271 0.280 5. 569 0.762 15 .33 2 .788 0.271 5. 832 0.800 15 .86 3 .427 0.262 6 118 0.844 16 . 44 4 .227 0.253 6 428 0.896 17 .09 5 .252 0.245 6 767 0.956 17 .82 6 .609 0.236 7 137 1.027 18 . 63 8 .495 0.227 7 544 1.111 19 .54 11 .361 0.218 7 992 1.210 20 .55 16 .510 0.209 8 474 1.325 21 .66 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 . 170 0 858 1. 181 50 85 0 .294 1 . 140 0 881 1. 152 48 18 0 .587 1 . 110 0 905 1. 123 45 58 0 .880 1 .080 0 932 1. 094 43 07 1 .171 1 .050 0 961 1. 065 40 63 1 .462 1 .020 0 992 1. 036 38 28 1 .752 0 .990 1 026 1. 007 36 01 2 .040 0 . 960 1 062 0. 978 33 83 2 .327 0 . 931 1 102 0. 949 31 73 2 .612 0 . 901 1 146 0. 921 29 73 2 .895 0 .871 1 193 0. 893 27 82 3 . 176 0 . 841 1 246 0. 865 26 00 3 .454 0 .811 1 303 0. 837 24 28 3 .729 0 .781 1 365 0. 810 22 66 4 .000 0 .751 1 435 0. 783 21 13 4. 266 0. 721 1.511 0.756 19. 71 4 . 526 0. 691 1.596 0.731 18 39 4 . 779 0. 661 1.692 0.706 17 18 5 023 0 631 1.798 0.681 16 09 5 256 0 601 1.918 0. 658 15 10 5 475 0 571 2.054 0.637 14 24 5 675 0 541 2.209 0. 617 13 51 5 851 0 511 2.387 0.600 12 91 5 995 0 482 2.593 0.586 12 47 6 095 0 452 2.834 0.576 12 18 6 .133 0 422 3.117 0.573 12 08 16 .510 0 422 3.117 0.573 12 08 HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 4.07 FEET UPSTREAM OF NODE 206.00 | I DOWNSTREAM DEPTH = 0.744 FEET, UPSTREAM CONJUGATE DEPTH = 0.216 FEET | NODE 204.00 : HGL = < 256.302>;EGL= < 256.453>;FLOWLINE= < 255.880> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 204.00 FLOWLINE ELEVATION = 255.88 ASSUMED UPSTREAM CONTROL HGL = 256.30 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS SECTION 5 CURB INLET 1^ 20- 18 - 16- 14- 12 • 10- 9- 8- 7- 6 • 5- <0 Q. ^ 3- *3 OT 2 - 1.8- 1.6 - 1.4 • 1.2 • 1.0. 0.9. 0.8. 0.7. 0.6. 0.5 , 0.4 —1.5'- -n = .01 -^1 Concrete Gutter 5 6 7 8 9 10 Discharge (C.F.S.) EXAMPLE: Given: Q-10 S«2.S% Chart givas: Depth - 0.4, Velocity • 4.4 f.p.s. SOURCE: San Dlego County Department of Special District Services Design Manual FIGURE Gutter and Roadway Discharge - Velocity Ctiart Calavera Hills Village 'W CURB INLET SIZING Continuous Grade: L = Q/(0.7*(a+yr(3/2)) Sump Condition: L = Q = a = y = L = Q/2 L = Q = Curb inlet opening (ft) 100-yr peak flow (cfs) 0.33 ft depth of flow (ft) Curb inlet opening (ft) 100-yr peak flow (cfs) MEADOW DRIVE STA. 31-f87.97 (Contiuous Grade @ 17' RT) Q = s = y = L = UseL = 4.69 cfs 8.00 % 0.26 ft 14.8 ft 15 ft Opening MEADOW DRIVE STA. 31-f88.66 (Contiuous Grade @ 17' LT) Q = s = y = L = UseL = 2.45 cfs 8.00 % 0.23 ft 8.4 ft 9 ft Opening RICH FIELD DRIVE STA. 29-f40.00 (Sump Condition @ 17' LT) Opening RICH FIELD DRIVE STA. 29-f41.65 (Sump Condition @ 17' RT) Opening Q = L = UseL 3.23 cfs 1.6 ft 5 ft Q = L = UseL = 4.20 cfs 2.1 ft 5 ft 981020 11/10/03 G:\jobs\2002\981020\CALCS\VillageW\Curblnlet RICH FIELD DRIVE STA. 23-f02.22 (Contiuous Grade @ 17' IT) Q= 1.10 cfs s = 2.00 % y = 0.23 ft L= 3.7 ft Opening Use L = 5 ft RICH FIELD DRIVE STA. 23-f02.22 (Contiuous Grade @ 17' RT) Q= 1.44 cfs s = 2.00 % y = 0.23 ft L= 4.9 ft Opening Use L = 5 ft RICH FIELD DRIVE STA. 20-f30.00 (Contiuous Grade (g 17' LT) Q= 1.71 cfs s = 6.00 % y= 0.22 ft L = 6.0 ft Opening Use L = 6ft RICH FIELD DRIVE STA. 20-f45.98 (Contiuous Grade @ 17' RT) Q= 1.40 cfs s = 6.00 % y = 0.20 ft L= 5.2 ft Opening Use L = 6 ft RICH FIELD DRIVE STA. 17-f85.00 (Contiuous Grade @ 17' LT) Q= 1.35 cfs s = 2.00 % y = 0.23 ft L = 4.6 ft Opening Use L = 5 ft RICH FIELD DRIVE STA. 17-f85.00 (Contiuous Grade (g 17' RT) Q= 1.56 cfs s = 2.00 % y= 0.24 ft L = 5.2 ft Opening Use L = 6ft G:\jobs\2002\981020\CALCS\VillageW\Curblnlet MOON FIELD DRIVE STA. 15-f44.13 (Contiuous Grade @ 17' RT) Q = 3.56 cfs s = 6.57 % y = 0.26 ft L= 11.2ft Opening Use L = 12 ft MOON FIELD DRIVE STA. 16-f42.00 (Contiuous Grade (g 17' RT) Q = 0.89 cfs s = 12.00 % y = 0.25 ft L = 2.9 ft Opening Use L = 5 ft MOON FIELD DRIVE STA. 16-f42.00 (Contiuous Grade (g 17' LT) Q = 3.45 cfs s= 12.00% y = 0.26 ft L= 10.9 ft Opening UseL = 11 ft MOON FIELD DRIVE STA. 19-f63.02 (Contiuous Grade @ 17' RT) Q = 2.62 cfs s = 7.80 % y = 0.24 ft L= 8.7ft Opening Use L = 9 ft MOON FIELD DRIVE STA. 19-f45.70 (Contiuous Grade @ 17' LT) Q= 1.43 cfs s = 7.80 % y= 0.18 ft L= 5.6 ft Opening Use L = 6 ft RICH FIELD DRIVE STA. 15-f50.00 (Contiuous Grade @ 17' LT) Q= 1.34 cfs s = 6.00 % y= 0.19 ft L= 5.1 ft Opening Use L = 6 ft G:\jobs\2002\981020\CALCS\VillageW\Curblnlet RICH FIELD DRIVE STA. 15-f65.46 (Contiuous Grade @ 17' RT) Q= 1.18 cfs s = 6.00 % y= 0.19 ft L = 4.5 ft Opening Use L = 5 ft RICH FIELD DRIVE STA. 12-f97.87 (Sump Condition @ 17' LT) Q = 3.23 cfs L = 1.6 ft Opening Use L = 5 ft RICH FIELD DRIVE STA. 12-f97.87 (Sump Condition (g 17' RT) Q = 2.06 cfs L= 1.0ft Opening Use L = 5 ft G:\jobs\2002\981020\CALCS\VillageW\Gurblnlet TYPE "F" CATCH BASIN i!!4©6" both woys Rounded pipe ends See drowinq D-61~\ rf Monhole frame ond cover, See drawing M-2 Elev. shown on plans -11" unless shown olherwise on plons 4-f4 . oround pipe Slope floor 12:1 towards outlet SECTION A-A SECTION B-B 4-1^4 oround pipe PLAN NOTE 1. See Standard Drawing D-11 for additional notes ond detoils. When V exceeds 4' steps sholl be instolled. See Stondord Drowing^D-11 for detoils. Exposed edges of concrele sholl be rounded with a rodius of 1/2". Construct openings on both sides unless otherwise shown on plons. Mointoin 1 1/2" cleor spacing between reinforcing ond surfoce. LEGEND ON PLANS Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING RECOtlMENDED BY THE SAN OIEGO REOONAL STANOAROS COMMITTEE ORIGINAL Kerchevol 12/75 SAN DIEGO REGIONAL STANDARD DRAWING RECOtlMENDED BY THE SAN OIEGO REOONAL STANOAROS COMMITTEE CATCH BASIN - TYPE F RECOtlMENDED BY THE SAN OIEGO REOONAL STANOAROS COMMITTEE CATCH BASIN - TYPE F Chairperson R.C.E. 19246 Dote CATCH BASIN - TYPE F ORAWING n 7 NUMBER CATCH BASIN - TYPE F ORAWING n 7 NUMBER Type "F" Catch Basin inlet Flow Capacity Orifice Flow Equation: Q = C*A*(2*g*h)''0-5 Q = Flow Through One Type "F" Catch Basin Opening (cfs) 0 = Discharge Coefficient (0.67) A = Type "F" Catch Basin Opening Area (ft'^2)) g = Gravity Acceleration (32.2 ft/sec'^2) h = Water Head Above Orifice (ft) Typical Type "F" Catch Basin Openinq Based on San Diego Regional Standard Drawings; D-7 3' 6.5" A = 1.94 ft'^2 Based on San Diego Regional Standard Drawings; D-7 h = 0.4 ft From top of opening to rim 0 = 6.60 cfs Type "F" Catch Basin Locations: Rich Field Drive Sta 18+63.78 Qioo= 1.46 cfs See nodes 123.5-147.5 of Hydrology Calculations Rich Field Drive Sta 29+40.00 Qioo = 1.51 cfs See nodes 122.5 -119 of Hydrology Calculations College Boulevard Sta 87+38.10 Qioo = 1.27 cfs See Bypass Section of Hydrology Caiculations G:\jobs\2002\981020\CALCS\ViilageW\TypeFCB BROW DITCH O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** ****** * * * * * * * * * * * * * * * * * * *** |< ( 0.65') >| *** ***AAAAA^_g^ J 0.41')^^^^''*** ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****** ** Triangular Channel Brow Ditch Adjacent to College Boulevard Flowrate 0.380 CFS Velocity 2.882 fps Depth of Flow 0.405 feet Critical Depth 0.426 feet Freeboard 0.000 feet Total Depth 0.405 feet Width at Water Surface .... 0.649 feet Top Width 0.649 feet Slope of Channel 1.000 % Left Side Slope 0.800 : 1 Right Side Slope 0.800 : 1 X-Sectional Area 0.131 sq. ft. Wetted Perimeter 1.038 feet AR'^(2/3) 0.033 Mannings 'n' 0.013 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** ****** * * * ** * * * * * * * * * * * * * *** |< ( 0.92') >| *** ***AAAAA^^g^ J Q _ I J A A A A A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****** * * Triangular Channel Northerly Brow Ditch Adjacent to Lots 75 to 81 See Nodes 122.5 - 119 Flowrate 1.510 CFS Velocity 5.715 fps Depth of Flow 0.575 feet Critical Depth 0.740 feet Freeboard 0.000 feet Total Depth 0.575 feet Width at Water Surface .... 0.920 feet Top Width 0.920 feet Slope of Channel 3.740 % Left Side Slope 0.800 : 1 Right Side Slope 0.800 : 1 X-Sectional Area 0.264 sq. ft, Wetted Perimeter 1.472 feet AR^(2/3) 0.084 Mannings 'n' 0.016 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** * * * * * * * * * *** |< ( 0.89') * * * A A A A A^^ ^ g ^ J g ^ I J AAAA A*** *** *** * * * * * * * * * * * * * * * * * * * * * * * * ****** * * ****** * * * * * * * * * > I * * * Triangular Channel Southerly Brow Ditch Adjacent to Lots 82 to 93 See Nodes 123.5 - 147.5 Flowrate 1.4 60 CFS Velocity 5.975 fps Depth of Flow 0.553 feet Critical Depth 0.730 feet Freeboard 0.000 feet Total Depth 0.553 feet Width at Water Surface .... 0.885 feet Top Width 0.885 feet Slope of Channel 4.300 % Left Side Slope 0.800 : 1 Right Side Slope 0.800 : 1 X-Sectional Area 0.245 sq. ft, Wetted Perimeter 1.417 feet AR"(2/3) 0.076 Mannings 'n' 0.016