Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 02-19; BRESSI RANCH PA 11; ADDENDUM DRAINAGE REPORT; 2004-09-01
ADDENDUM DRAINAGE REPORT BRESSI RANCH BACKBONE IMPROVEMENTS GREENHAVEN DRIVE PLANNING AREA 11 SEPTEMBER 2004 Prepared for LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS 701 'B' Street, Suite 800 SanDiego, CA 92101 (619) 235-6471 Job No. 2704.30 Gregory M. Shields, PE Registration Expires RCE 42951 03/31/04 Prepared By: RI Checked By: MW TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CONCLUSION 1 FIGURES 1.0 Vicinity Map 2 APPENDICES 1.0 AES Rational Method Computer Output 2.0 Curb Inlet Calculations 3.0 AES Pipeflow Computer Output EXHIBITS A Hydrology Node Number Map B Hydraulics Node Number Map T:\Water Resources\2407.3-Bressi Residential\PA-l 1 Addendum Sep-04\Report\Addendum PAI ICurb Inlet.doc 1.0 INTRODUCTION This report amends the previously approved Bressi Ranch Mass Grading and Backbone Improvement Drainage Report prepared by ProjectDesign Consultants to include the new storm drain curb inlet in Greenhaven Drive at station 15H-48.21. The inlet is to intercept flow before it can tum the comer into PA-11 at Keeneland Drive. The runoff for this area was previously included in the backbone calculations at the curb inlet at station 19-1-01.50 and is now divided between the two inlets. The total backbone flow at 19-1-01.50 was 109.31 cfs and is now 109.34 cfs. 2.0 CONCLUSION There is no increase in flow to the storm drain backbone system and therefore no adverse effect. T:\Water Resources\2407.3-Bressi Residential\PA-] 1 Addendum Sep.04\Report\Addendum PAI ICurb Inlet.doc UJ O O O a. MELROSE DRIVE POINSETTIA LANE VICINITY MAP NO SCALE T:\Water Resources\2407.3-Bressi Residential\PA-l 1 Addendum Sep-04\Repon\Addendum PAI ICurb Inlet.doc APPENDIX 1 AES RATIONAL METHOD COMPUTER OUTPUT T:\Water Resources\2407.3-Bressi Residential\PA-l 1 Addendum Sep-04\ReportUppendix.DOC RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - MASS GRADING ULTIMATE CONDITIONS * * SYSTEM 5000: NODES 5015 TO 5095 * * 1OO-YEAR STORM EVENT * ************************************************************ FILE NAME: 5000TM.DAT TIME/DATE OF STUDY: 15:56 07/22/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === = = = = = ========= ================= ====== = ==== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.57 2.00 0.0313 0.167 0.0150 2 50.0 35.0 0.020/0.020/0.020 0.67 2.00 0.0313 0.167 0.0150 3 10.0 5.0 0.001/0.001/ 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *************************************^:.k*************ic****l,i,***i,********l,**i,* FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 19.3 8 RAIN INTENSITY(INCH/HOUR) =3.08 TOTAL AREA(ACRES) = 14.40 TOTAL RUNOFF(CFS) = 28.54 ********************************************************i,i,*i,i,*i,i,ififi,iciii,i,i,i,.^.^^, FLOW PROCESS FROM NODE 5015.00 TO NODE 5016.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 362.50 DOWNSTREAM(FEET) = 361.59 FLOW LENGTH(FEET) = 90.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 22.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.22 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.54 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 19.56 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5016.00 = 90.30 FEET. *******************************************^^^ji..,t^jtjtj(.^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 5016.00 TO NODE 5025.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 3 61.26 DOWNSTREAM(FEET) = 359.05 FLOW LENGTH(FEET) = 220.69 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 22.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.19 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.54 PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) = 20.01 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5025.00 = 310.99 FEET. *******************************************^,*^,^,^,^•^,^,^,^,^,i,^,i,^^i,^,^,^,^,i,.^^,i,.^i,^^i,.^.l^^.^^.l^ FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.01 RAINFALL INTENSITY(INCH/HR) = 3.02 TOTAL STREAM AREA(ACRES) = 14.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.54 **********************************************ic**************i,i,i,i,iriricic**i,i,i,i,i, FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.96 RAIN INTENSITY(INCH/HOUR) = 3.80 TOTAL AREA(ACRES) = 5.58 TOTAL RUNOFF(CFS) = 12.06 ************************************************1,^:^:^•^,^,^,^,^,^,^;^r^,^,^,^..^.l,^,.f,.l,^,.^.^,.l^.^^.^ FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.96 RAINFALL INTENSITY(INCH/HR) = 3.80 TOTAL STREAM AREA(ACRES) = 5.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.06 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 28.54 20.01 3.016 14.40 2 12.06 13.96 3.804 5.58 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 34.68 13.96 3.804 2 38.10 20.01 3.016 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 38.10 Tc(MIN.) = 20.01 TOTAL AREA(ACRES) = 19.98 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5025.00 = 310.99 FEET. ****************************************^:*i,i,i,^•^,i,^,^:^:^,^,^,^,^,^^,^,^,^,.l,.^^,^^,.^.l,.^^^,.^.l^.^.l^.^.l^ FLOW PROCESS FROM NODE 5025.00 TO NODE 5030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 358.93 DOWNSTREAM(FEET) = 349.23 FLOW LENGTH(FEET) = 242.46 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.05 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 38.10 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 20.28 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5030.00 = 553.45 FEET. ********************************************i,i,i,i,1,i,i,i,i,i,i,i,i,^,i,4,^,i,^,.),i,^,^,i,.^^,.^.l,.l,.^.^.l^ FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.28 RAINFALL INTENSITY(INCH/HR) = 2.99 TOTAL STREAM AREA(ACRES) = 19.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 38.10 ***********************************************************ie*i,i,i,*i,*i,i,i,i,.),i,i,i,i, FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.12 RAIN INTENSITY(INCH/HOUR) = 3.78 TOTAL AREA(ACRES) = 2.32 TOTAL RUNOFF(CFS) = 4.99 ********************************************i,****i,i,ir****************i,*i:i,i,i,ici, FLOW PROCESS FROM NODE 5028.30 TO NODE 5030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.12 RAINFALL INTENSITY(INCH/HR) = 3.78 TOTAL STREAM AREA(ACRES) = 2.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.99 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 38.10 20.28 2.990 19.98 2 4.99 14.12 3.776 2.32 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 35.15 14.12 3.776 2 42.05 20.28 2.990 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.05 Tc(MIN.) = 20.28 TOTAL AREA(ACRES) = 22.30 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5030.00 = 553.45 FEET. ***************************************************.^,^jt.(tjt,t,t,t.j.jj.,^j(.,j..j.,t,t,^^.^.^^ FLOW PROCESS FROM NODE 5030.00 TO NODE 5025.60 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 348.90 DOWNSTREAM(FEET) = 344.10 FLOW LENGTH(FEET) = 211.67 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.33 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 42.05 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 20.57 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5025.60 = 765.12 FEET. ******************************^,i,^r*^,^,.^^,^,^,^,^,^,^,^,^;^,^,^,^,^r^,^,.^i^.^.^,.^^,.),i^.j^.)^.lfil..^.^.^.^.f. FLOW PROCESS FROM NODE 5025.60 TO NODE 5025.60 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.57 RAINFALL INTENSITY(INCH/HR) = 2.96 TOTAL STREAM AREA(ACRES) = 22.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 42.05 *********************************************.j.,t***************************** FLOW PROCESS FROM NODE 5025.60 TO NODE 5025.60 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.74 RAIN INTENSITY(INCH/HOUR) = 5.57 TOTAL AREA(ACRES) = 1.27 TOTAL RUNOFF(CFS) = 4.20 ******************************^,i!^!**^:.^^c*^,^:^,^,^,^f^c******************i,^,^:1,i,i,i,i,i,^,^,^, FLOW PROCESS FROM NODE 5025.60 TO NODE 5025.60 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.74 RAINFALL INTENSITY(INCH/HR) = 5.57 TOTAL STREAM AREA(ACRES) =1.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 42.05 20.57 2.963 22.30 2 4.20 7.74 5.565 1.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 26.59 7.74 5.565 2 44.29 20.57 2.963 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 44.29 Tc(MIN.) = 20.57 TOTAL AREA(ACRES) = 23.57 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5025.60 = 765.12 FEET. ************************************1,ic*****ici,*ir*************************i,*i,i, FLOW PROCESS FROM NODE 5025.60 TO NODE 5037.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 343.70 DOWNSTREAM(FEET) = 337.45 FLOW LENGTH(FEET) = 255.03 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.81 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.29 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 20.90 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5037.00 = 1020.15 FEET. *****************************i,i,i,*i,**i,1:i,:i,i,i:i,i,^;i,ir****************i,**ic*****l,i,i,* FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.90 RAINFALL INTENSITY(INCH/HR) = 2.93 TOTAL STREAM AREA(ACRES) = 23.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 44.29 *************************************i,*i,i!.i:***********************i,i,*ici,**1,i,i,i, FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.98 RAIN INTENSITY(INCH/HOUR) = 3.99 TOTAL AREA(ACRES) = 6.12 TOTAL RUNOFF(CFS) = 14.35 ****************************i,**i,i,ic*************ir***************************l, FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.98 RAINFALL INTENSITY(INCH/HR) = 3.99 TOTAL STREAM AREA(ACRES) = 6.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.35 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 44.29 20.90 2.933 23.57 2 14.35 12.98 3.987 6.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 46.92 12.98 3.987 2 54.84 20.90 2.933 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 54.84 Tc(MIN.) = 20.90 TOTAL AREA(ACRES) = 29.69 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5037.00 = 1020.15 FEET. *****************************************^:^:^,^,^,^,^r*^,^,^,^,^,i,^,^,^,^,^,^,.^^,^,.f,^,.^^,.l,^,.^.l^^^.^.^.^ FLOW PROCESS FROM NODE 5037.00 TO NODE 5040.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 337.12 DOWNSTREAM(FEET) = 328.83 FLOW LENGTH(FEET) = 271.74 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.05 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 54.84 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 21.20 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5040.00 = 1291.89 FEET. **********************************^:^,^,**^,*^•^:.k*****************^,^:*^:^,^,^,^,^^,^,^,i,^,^, FLOW PROCESS FROM NODE 5040.00 TO NODE 5040.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.20 RAINFALL INTENSITY(INCH/HR) = 2.91 TOTAL STREAM AREA(ACRES) = 29.69 PEAK FLOW RATE(CFS) AT CONFLUENCE = 54.84 ***********************************************^,^:*********^,*^,^,^:^,^f^,^,^,^,^,^,^,^,^:^,^, FLOW PROCESS FROM NODE 5038.30 TO NODE 5040.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.02 RAIN INTENSITY(INCH/HOUR) = 4.19 TOTAL AREA(ACRES) = 1.76 TOTAL RUNOFF(CFS) = 4.14 **************************************************************************** FLOW PROCESS FROM NODE 5038.30 TO NODE 5040.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.02 RAINFALL INTENSITY(INCH/HR) = 4.19 TOTAL STREAM AREA(ACRES) = 1.76 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.14 *********************************************************^^.^^.^^.,.^^.^.^^^^^^^^^ FLOW PROCESS FROM NODE 5039.30 TO NODE 5040.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.95 RAIN INTENSITY(INCH/HOUR) = 3.99 TOTAL AREA(ACRES) = 1.56 TOTAL RUNOFF(CFS) = 3.49 •^**********************************************************.,,^^.^.,.^.^.^^.^^^^^^^^ FLOW PROCESS FROM NODE 5039.30 TO NODE 5040.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.95 RAINFALL INTENSITY(INCH/HR) = 3.99 TOTAL STREAM AREA(ACRES) = 1.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.49 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 54.84 21.20 2.906 29.69 2 4.14 12.02 4.190 1.76 3 3.49 12.95 3.993 1.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 45.50 12.02 4.190 2 47.34 12.95 3.993 3 60.25 21.20 2.906 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 60.25 Tc(MIN.) = 21.20 TOTAL AREA(ACRES) = 33.01 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5040.00 = 1291.89 FEET. *******************************************************.t,.^^,^,^.^.i,^.^.i^.^^^^^^^_^_^^^ FLOW PROCESS FROM NODE 5040.00 TO NODE 5060.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 328.50 DOWNSTREAM(FEET) = 310 25 FLOW LENGTH(FEET) = 302.57 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.83 ESTIMATED PIPE DIAlffiTER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =60.25 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 21.45 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5060.00 = 1594.46 FEET. ****************************** *******************************^^,^,^^.^.f^^.^.^.^^^^_ FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.45 RAINFALL INTENSITY(INCH/HR) = 2.88 TOTAL STREAM AREA(ACRES) = 33.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 60.25 **************************************************************.i,i,^^.^.^.^^.^.^.^.^^^^ FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.26 RAIN INTENSITY(INCH/HOUR) = 3.75 TOTAL AREA(ACRES) = 21.67 TOTAL RUNOFF(CFS) = 42.91 ************************************************************^,i,i,.^^.^^^.^^^.^.l^^^^^ FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.26 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 21.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 42.91 ***********************************************************^,.i,.^.^.^.^.f^.i^.i^.i^.^.^^_^^^^ FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.43 RAIN INTENSITY(INCH/HOUR) = 4.90 TOTAL AREA(ACRES) = 0.95 TOTAL RUNOFF(CFS) = 2.64 **************************************************************^,^,^,.^^.^.l,.l,.l,.^.^.^^^ FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.43 RAINFALL INTENSITY(INCH/HR) = 4.90 TOTAL STREAM AREA(ACRES) = 0.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.64 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 60.25 21.45 2.883 33.01 2 42.91 14.26 3.753 21.67 3 2.64 9.43 4.900 0.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 70.96 9.43 4.900 2 91.23 14.26 3.753 3 94.78 21.45 2.883 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 94.78 Tc(MIN.) = 21.45 TOTAL AREA(ACRES) = 55.63 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5060.00 = 1594.46 FEET. *****************************************************************.^i,^,.^.y^.^.i^.f^.f^.i^ FLOW PROCESS FROM NODE 5060.00 TO NODE 5065.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 309.92 DOWNSTREAM(FEET) = 295.59 FLOW LENGTH(FEET) = 259.56 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.56 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 94.78 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 21.65 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5065.00 = 1854.02 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5065.00 TO NODE 5065.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.65 RAINFALL INTENSITY(INCH/HR) = 2.87 TOTAL STREAM AREA(ACRES) = 55.63 PEAK FLOW RATE(CFS) AT CONFLUENCE = 94.78 *****************************************************************.f..)..^.^.i^.i^.^.^.f^.f^.i^ FLOW PROCESS FROM NODE 5061.10 TO NODE 5061.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 290.00 UPSTREAM ELEVATION(FEET) = 319.80 DOWNSTREAM ELEVATION(FEET) = 304.79 ELEVATION DIFFERENCE(FEET) = 15.01 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.658 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.87 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 1.87 **************************************************************************** FLOW PROCESS FROM NODE 5061.30 TO NODE 5065.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.3 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.87 **************************************************************************** FLOW PROCESS FROM NODE 5062.10 TO NODE 5062.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 290.00 UPSTREAM ELEVATION(FEET) = 319.80 DOWNSTREAM ELEVATION(FEET) = 304.79 ELEVATION DIFFERENCE(FEET) = 15.01 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.658 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) = 1.18 **************************************************************************** FLOW PROCESS FROM NODE 5062.30 TO NODE 5065.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.18 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 94.78 21.65 2.866 55.63 2 1.87 6.00 6.559 0.30 3 1.18 6.00 6.559 0.19 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 44.47 6.00 6.559 2 44.47 6.00 6.559 3 96.11 21.65 2.866 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 96.11 Tc(MIN.) = 21.65 TOTAL AREA(ACRES) = 56.12 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5065.00 = 1854.02 FEET. ***************************************************i.*.^*jt,tjt****************** FLOW PROCESS FROM NODE 5065.00 TO NODE 5070.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 295.21 DOWNSTREAM(FEET) = 281.29 FLOW LENGTH(FEET) = 295.26 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.19 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =96.11 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 21.90 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5070.00 = 2149.28 FEET. ********************************************************************.j^*^,^^.i,.),.j^.), FLOW PROCESS FROM NODE 5069.00 TO NODE 5069.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 2.846 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.24 SUBAREA RUNOFF(CFS) = 0.65 TOTAL AREA(ACRES) = 56.36 TOTAL RUNOFF(CFS) = 96.76 TC(MIN.) = 21.90 ************************************************************************^^.i^.^.i^ FLOW PROCESS FROM NODE 5069.00 TO NODE 5075.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 274.66 DOWNSTREAM(FEET) = 260.16 FLOW LENGTH(FEET) = 204.18 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 23.38 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 96.76 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 22.04 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5075.00 = 2353.46 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5075.00 TO NODE 5075.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.04 RAINFALL INTENSITY(INCH/HR) = 2.83 TOTAL STREAM AREA(ACRES) = 56.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 96.76 **************************************************************************^,.i, FLOW PROCESS FROM NODE 5074.20 TO NODE 5075.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.70 RAIN INTENSITY(INCH/HOUR) = 4.04 TOTAL AREA(ACRES) = 6.98 TOTAL RUNOFF(CFS) = 14.66 ***********************************************************************^,.)^.^.^.^ FLOW PROCESS FROM NODE 5074.20 TO NODE 5075.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.70 RAINFALL INTENSITY(INCH/HR) = 4.04 TOTAL STREAM AREA(ACRES) = 6.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.66 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 96.76 22.04 2.833 56.36 2 14.66 12.70 4.044 6.98 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 82.46 12.70 4.044 2 107.03 22.04 2.833 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 107.03 Tc(MIN.) = 22.04 TOTAL AREA(ACRES) = 63.34 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5075.00 = 2353.46 FEET. *************************************************************************.,,*./, FLOW PROCESS FROM NODE 5075.00 TO NODE 5080.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 259.53 DOWNSTREAM(FEET) = 247.62 FLOW LENGTH(FEET) = 145.42 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.13 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 107.03 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 22.14 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5080.00 = 2498.88 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5080.00 TO NODE 5080.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.14 RAINFALL INTENSITY(INCH/HR) = 2.83 TOTAL STREAM AREA(ACRES) = 63.34 PEAK FLOW RATE(CFS) AT CONFLUENCE = 107.03 **********************************************************************^.*^,^,.^i, FLOW PROCESS FROM NODE 5078.00 TO NODE 5078.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.36 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 4.36 *************************************************************************^,if^, FLOW PROCESS FROM NODE 5078.00 TO NODE 5080.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 **************************************************************************** FLOW PROCESS FROM NODE 5079.00 TO NODE 5079.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 1.00 *************************************************************i,^,^,^,.i,.i,.i,.^.i,.^.i^.^.^.^.i^ FLOW PROCESS FROM NODE 5079.00 TO NODE 5080.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 107.03 22.14 2.825 63.34 2 4.36 6.00 6.559 0.70 3 1.00 6.00 6.559 0.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 51.47 6.00 6.559 2 51.47 6.00 6.559 3 109.34 22.14 2.825 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 109.34 Tc(MIN.) = 22.14 TOTAL AREA(ACRES) = 64.20 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5080.00= 2498.88 FEET. ************************************************************.^^,.^^,^,.^.^.i^^.^.^.^^.^^^ FLOW PROCESS FROM NODE 5080.00 TO NODE 5081.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 247.29 DOWNSTREAM(FEET) = 223.07 FLOW LENGTH(FEET) = 297.48 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.94 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 109.34 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 22.33 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5081.00 = 2796.36 FEET. ****************************************************************^^J,^^^^.^^^.^.^.l^.f. FLOW PROCESS FROM NODE 5081.00 TO NODE 5081.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.33 RAINFALL INTENSITY(INCH/HR) = 2.81 TOTAL STREAM AREA(ACRES) = 64.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 109.34 **************************************************************************** FLOW PROCESS FROM NODE 5081.10 TO NODE 5081.10 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 ***********************************************************************.^i,.i,.i,.), FLOW PROCESS FROM NODE 5081.10 TO NODE 5081.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 226.00 DOWNSTREAM(FEET) = 224.47 FLOW LENGTH(FEET) = 6.25 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.65 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.25 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 6.01 LONGEST FLOWPATH FROM NODE 5081.10 TO NODE 5081.00 = 303.73 FEET. ************************************************************************i,i,.),.^ FLOW PROCESS FROM NODE 5081.00 TO NODE 5081.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.01 RAINFALL INTENSITY(INCH/HR) = 6.55 TOTAL STREAM AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.25 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 109.34 22.33 2.810 64.20 2 1.25 6.01 6.552 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 48.13 6.01 6.552 2 109.88 22.33 2.810 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 109.88 Tc(MIN.) = 22.33 TOTAL AREA(ACRES) = 64.40 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5081.00 = 2796.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5081.00 TO NODE 5085.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 222.74 DOWNSTREAM(FEET) = 193.18 FLOW LENGTH(FEET) = 516.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.33 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 109.88 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 22.72 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5085.00 = 3312.96 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5085.00 TO NODE 5085.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.72 RAINFALL INTENSITY(INCH/HR) = 2.78 TOTAL STREAM AREA(ACRES) = 64.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 109.88 **************************************************************************** FLOW PROCESS FROM NODE 5083.00 TO NODE 5085.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 17.63 RAIN INTENSITY(INCH/HOUR) = 3.27 TOTAL AREA(ACRES) = 1.90 TOTAL RUNOFF(CFS) = 3.50 **************************************************************************** FLOW PROCESS FROM NODE 5083.00 TO NODE 5085.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.63 RAINFALL INTENSITY(INCH/HR) = 3.27 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.50 ****** ***************************************************.^^.^^.^^.^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 5085.40 TO NODE 5085.40 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.99 TOTAL AREA(ACRES) = 0.32 TOTAL RUNOFF(CFS) = 1.99 ***********************************************************^^^^^^^.^.^.^^^^^^^^ FLOW PROCESS FROM NODE 5084.00 TO NODE 5085.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.99 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 109.88 22.72 2.779 64.40 2 3.50 17.63 3.273 1.90 3 1-99 6.00 6.559 0.32 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORmLA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 50.29 6.00 6.559 2 97.80 17.63 3.273 3 113.69 22.72 2.779 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 113.69 Tc(MIN.) = 22.72 TOTAL AREA(ACRES) = 66.62 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5085.00 = 3312.96 FEET. ***************************************************i,^,.),.j,.^.^^^.^.^.i^^^^^^^ FLOW PROCESS FROM NODE 5085.00 TO NODE 5090.00 IS CODE = 31 ********* »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 192.68 DOWNSTREAM(FEET) = 187.88 FLOW LENGTH(FEET) = 114.77 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.14 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 113.69 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 22.81 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5090.00 = 3427.73 FEET. ********************************************************************i,i,^.^.i,^.i,.^ FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.81 RAINFALL INTENSITY(INCH/HR) = 2.77 TOTAL STREAM AREA(ACRES) = 66.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 113.69 *********************************************************************i,.^^,.^^,.f,.i, FLOW PROCESS FROM NODE 5086.60 TO NODE 5090.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.97 RAIN INTENSITY(INCH/HOUR) = 3.64 TOTAL AREA(ACRES) = 26.99 TOTAL RUNOFF(CFS) = 47.68 ***********************************************************************i,.f,.^.f.^, FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.97 RAINFALL INTENSITY(INCH/HR) = 3.64 TOTAL STREAM AREA(ACRES) = 26.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.68 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 113.69 22.81 2.772 66.62 2 47.68 14.97 3.637 26.99 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 134.32 14.97 3.637 2 150.03 22.81 2.772 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS- PEAK FLOW RATE(CFS) = 150.03 Tc(MIN.) = 22 81 TOTAL AREA(ACRES) = 93.61 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5090.00 = 3427.73 FEET. ***************************************************,, FLOW PROCESS FROM NODE 5090.00 TO NODE 5095.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< PIPESIZE (NON-PRESSURE FL0W)««< ELEVATION DATA: UPSTREAM (FEET) = 187.36 DOWNSTREWEETr="""l7r9r""" FLOW LENGTH(FEET) = 221.63 MANNING'S N = 0 013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.53 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 150.03 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 22 98 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5095.00 = 3649.36 FEET. **************************************************,,, FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 =========== CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE- TIME OF CONCENTRATION(MIN.) =22.98 RAINFALL INTENSITY(INCH/HR) = 2.76 TOTAL STREAM AREA(ACRES) = 93.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = 150.03 ******************************************************, FLOW PROCESS FROM NODE 5091.00 TO NODE 5091.00 IS CODE = 22 __>>»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6 559 SUBAREA RUNOFF(CFS) = 3.18 TOTAL AREA(ACRES) = 0.51 TOTAL RUNOFF(CFS) = 3.18 ******************************************************,^,,,,,^,^,,^^^^^^^^^^ FLOW PROCESS FROM NODE 5091.00 TO NODE 5095.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< —PIPESIZE (NON-PRESSURE FL0W)««< ELEVATION DATA: UPSTREAM(FEET) = 180.56 DOWNSTREAMiFEETr=~""l7r9r""" FLOW LENGTH(FEET) = 40.76 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.18 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 6.12 LONGEST FLOWPATH FROM NODE 5091.00 TO NODE 5095.00 = 40.76 FEET. ***************************************************************,t^^,t.i^,^,j.,t,j.^,j.,j. FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.12 RAINFALL INTENSITY(INCH/HR) = 6.48 TOTAL STREAM AREA(ACRES) = 0.51 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.18 ***********************************************************.^.^i,^,.i^.i^.)^.i,.^.f..i^.i,.i^.i^.^^^ FLOW PROCESS FROM NODE 5094.00 TO NODE 5095.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.08 RAIN INTENSITY(INCH/HOUR) = 3.47 TOTAL AREA(ACRES) = 2.58 TOTAL RUNOFF(CFS) = 5.02 i*******************************************************.^.!,.!,^./,.!^.,.^.),.!^^.^.!^.^.^.!,.^.!^.^.^ FLOW PROCESS FROM NODE 5094.00 TO NODE 5095.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 180.56 DOWNSTREAM(FEET) = 180.00 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.02 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 16.10 LONGEST FLOWPATH FROM NODE 5085.40 TO NODE 5095.00 = 10.00 FEET. *********************************************************.i,.i,.)^.i,.^.i,^^.^.^.^.i,.^.^.^..i^.i^.i^.i^ FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 16.10 RAINFALL INTENSITY(INCH/HR) = 3.47 TOTAL STREAM AREA(ACRES) = 2.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.02 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 150.03 22.98 2.758 93.61 2 3.18 6.12 6.476 0.51 3 5.02 16.10 3.471 2.58 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 69.77 6.12 6.476 2 125.96 16.10 3.471 3 155.37 22.98 2.758 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 155.37 Tc(MIN.) = 22.98 TOTAL AREA(ACRES) = 96.70 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 5095.00 = 3649.36 FEET. *****************************************************************.^.^.i,.^^,.^.i^.^.f^.f^.)^ FLOW PROCESS FROM NODE 5095.00 TO NODE 1080.00 IS CODE = 31 »»>COMPUTE PI PE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 177.62 DOWNSTREAM(FEET) = 174.74 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.72 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 155.37 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 23.02 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 1080.00 = 3699.36 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 96 155 70 TC(MIN.) = 37 23.02 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 CURB INLET CALCULATIONS T:\Water Resources\2407.3-Bressi Residential\PA-l 1 Addendum Sep-04\Report\Appendix.DOC CURB INLETS - ULTIMATE QIOO Street Name Street Station Street Side Q % Street Y CALC'D OPEN. NET OPENING CURB INLET BYPASS Street Name Street Station Street Side (CFS) Slope (Feet) L-(FEET) (FEET) SIZE (FT) Q (Cfs) Greenhaven Drive 15+48.21 Soutii 0.65 7.10 0.15 2.79 3.00 4.00 0.00 Note: Use 5 foot curb inlet minimum APPENDIX 3 AES PIPEFLOW COMPUTER OUTPUT T:\Water Resources\2407.3-Bressi Residential\PA-l 1 Addendum Sep-04\ReportV^ppendix.DOC *****************************************************************.j,.l,.l,.t..l,.l^^.^.^.f^.l^.^.^. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * Hydraulic Analysis System 5000 * * 1OO-YEAR STORM EVENT * *********************************************************************i^.^.^.),^^ FILE NAME: L5000.DAT TIME/DATE OF STUDY: 15:53 09/21/2004 ********************************************************************.ff.i,.i,.f..f..i,.i^.f..f..f^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE-l- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 5000.00- 8.59* 8886.79 } FRICTION 5001.00- } JUNCTION 5001.90- } FRICTION 5002.00- } JUNCTION 5002.90- } FRICTION 5003.00- } JUNCTION 5003.90- } FRICTION 5004.00- } MANHOLE 5004.90- } FRICTION 5005.00- } JUNCTION 5005.90- } FRICTION 5006.00- } JUNCTION 5006.90- } FRICTION 6.27* 7068.43 6.58* 7053.74 } HYDRAULIC JUMP 4916.59 5007.00- 3.59 Dc 4.71 3.20 Dc 2.93 Dc 2.93 Dc 2.93 Dc 2.93 Dc 2.93 Dc 2.93 Dc 3 .13 2.92 Dc 4381.75 3590.14 3962.07 3962.07 3962.07 3962.07 3925.78 3925.78 3824.24 3753.05 DOWNSTREAM RUN FLOW PRESSURE-l- DEPTH(FT) MOMENTUM(POUNDS) 7126.98 2.17 2.38 2.12 2.95* 1.89* 1.95* 2.11* 1.75* 1.74* 1.62* 1.59* 1.74* 1.65* 1.89* 6499.28 6831.14 5201.02 4988.80 4822.54 4707.19 5667.16 5716.78 6176.56 6241.26 5651.18 5690.47 4917.02 5007.90 5007.10 5007.20 5008.00 5008.90 5009.00 5009.90 5010.00 5010.90 5011.00 5011.90 5012.00 5012.90 5013.00 5013.90 5014.00 5015.00 5015.90 5020.00 5020.90- 5030.00 5030.90 5031.00 5031.90 5032.00 5032.90 5035.00 MAXIMUM JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 3.95 3647.94 2.88 Dc 3210.66 3.06 3219.46 2.88 Dc 3175.82 2.88 Dc 3175.82 2.88 Dc 3175.82 2.87 Dc 3106.27 2.87*Dc 3106.27 5.55* 2782.94 } HYDRAULIC JUMP 2.51 Dc 1570.37 2.92 1455.78 2.40*Dc 1372.31 3.12 1253.71 2.17*Dc 1024.05 3.85* 1495.41 1286.65 3 .17* FRICTION-HBEND } HYDRAULIC JUMP 2.17 DC 1044.00 JUNCTION 2.51 958.41 FRICTION-HBEND 2.09*Dc 904.51 JUNCTION 3.10* 888.73 FRICTION-HBEND } HYDRAULIC JUMP 604.60 JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.82*Dc 3.02* 2.56* 1.76*Dc 1.96* 3.59* 3 .77* 862.95 720.81 550.81 562.80 881.18 915.48 1.59* 1.68* 1.65* 1.78* 1.77* 1.79* 1.74* 2.87*Dc 1.28 1.75* 1.48* 2.40*Dc 1.41* 2.17*Dc 1.50 1.50 1.46* 1.23* 2.09*Dc 1.54 1.82*Dc 1.52 1.45 1.75*Dc 1.75 Dc 1.75 Dc 1.75 Dc PROFILE = 25 4931.27 4644.74 4670.75 4307.40 4320.28 4291.25 4293.06 3106.27 2548.56 1847.78 1805.50 1372.32 1289.97 1024.05 1238.17 1240.93 1268.48 1246.55 904.51 627.63 604.60 632.52 648.74 550.78 550.78 550.78 550.78 NUMBER OF ENERGY BALANCES USED IN EACH NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************^,.i^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5 000.00 FLOWLINE ELEVATION = 174.74 PIPE FLOW = 155.30 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 183.330 FEET NODE 5000.00 : HGL = < 183.330>;EGL= < 185.702>;FLOWLINE= < 174.740> ***************************************************************************.),.^.^ FLOW PROCESS FROM NODE 5000.00 TO NODE 5001.00 IS CODE = 1 UPSTREAM NODE 5001.00 ELEVATION = 177.62 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 155.30 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 48.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 155.30)/( 1436.432))**2 = 0.01169 HF=L*SF = ( 48.00)*(0.01169) = 0.561 NODE 5001.00 : HGL = < 183.891>;EGL= < 186.263>;FLOWLINE= < 177.620> **************************************************************************i,.^.^.^. FLOW PROCESS FROM NODE 5001.00 TO NODE 5001.90 IS CODE = 5 UPSTREAM NODE 5001.90 ELEVATION = 177.95 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 149.90 48.00 20.00 177.95 3.59 11.929 DOWNSTREAM 155.30 48.00 - 177.62 3.63 12.358 LATERAL #1 2.10 30.00 80.00 179.15 0.47 0.428 LATERAL #2 3.30 18.00 90.00 180.45 0.69 1.867 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI* COS(DELTAl)-Q3 *V3 * COS(DELTA3)- Q4*V4*COS(DELTA4))/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01089 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01169 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01129 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-HHV1-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.473)+( 0.000) = 0.473 NODE 5001.90 : HGL = < 184.526>;EGL= < 186.736>;FLOWLINE= < 177.950> **************************************************************************i,*i,.i, FLOW PROCESS FROM NODE 5001.90 TO NODE 5002.00 IS CODE = 1 UPSTREAM NODE 5002.00 ELEVATION = 187.36 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 149.90 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 221.63 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 2.02 CRITICAL DEPTH(FT) 3 .59 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .947 15 .097 6 .489 5201 .02 2.060 2.910 15 .301 6 .548 5237 .25 4.332 2.873 15 .512 6 .612 5276 .06 6.838 2.836 15 .732 6 681 5317 .56 9.601 2 .798 15 .960 6 756 5361 .84 12 .648 2 .761 16 .197 6 837 5409 .00 16.011 2.724 16 .443 6 925 5459 .16 19.726 2.686 16 .699 7 019 5512 .44 23.836 2.649 16 .964 7 121 5568 .95 28.394 2.612 17 .241 7 230 5628 .84 33.460 2.575 17 .528 7 348 5692 .26 39.109 2.537 17 .827 7 475 5759 .35 45.432 2.500 18 .138 7 611 5830 .28 52.541 2.463 18 .461 7 758 5905 .22 60.581 2 .425 18 .798 7 916 5984 37 69.735 2 .388 19 .149 8 085 6067 93 80.247 2.351 19 514 8. 268 6156 11 92.446 2.314 19 895 8. 464 6249 15 106.794 2.276 20 293 8. 675 6347 30 123.969 2 .239 20 708 8. 902 6450 82 145.022 2 .202 21 141 9. 146 6560 00 171.715 2.164 21 593 9. 409 6675 17 207.352 2.127 22 066 9. 693 6796 64 221.630 2.117 22 200 9. 774 6831 14 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 6.58 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-H CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 6 .576 11.929 8.786 7053.74 81.616 4.000 11.929 6.210 5033.43 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 81.616 4.000 11.925 6.210 5033.43 82.066 3.984 11.930 6.195 5022.24 82.459 3.968 11.940 6.183 5012.30 82.817 3.951 • 11.952 6.171 5003.20 83.149 3.935 11.967 6.160 4994.77 83 .456 3 .919 11 .983 6 .150 4986 .93 83 .742 3 .903 12 .002 6 .141 4979 .63 84 .008 3 . 886 12 . 022 6 .132 4972 .81 84 257 3.870 12 . 043 6 .124 4966 .46 84 489 3 .854 12 . 066 6 116 4960 .55 84 704 3 . 838 12 .090 6 109 4955 .06 84 904 3 .822 12 .116 6 103 4949 .97 85 088 3 .805 12 143 6 096 4945 27 85 258 3 .789 12 171 6 091 4940 95 85 414 3 .773 12 200 6 086 4937 00 85 556 3.757 12 231 6 081 4933 42 85 684 3 .741 12 262 6 077 4930 19 85 798 3 .724 12 295 6 073 4927 31 85 899 3 .708 12 328 6 070 4924 79 85 986 3 . 692 12 363 6 067 4922 60 86 060 3.676 12 399 6 064 4920 76 86 120 3 .659 12 436 6 062 4919 25 86 168 3.643 12 474 6 061 4918. 09 86 201 3.627 12 513 6. 060 4917. 25 86 222 3 . 611 12 553 6. 059 4916. 75 86. 228 3.595 12. 593 6 . 059 4916. 59 221. 630 3.595 12. 593 6. 059 4916. 59 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-HMOMENTUM BALANCE OCCURS AT 9.97 FEET UPSTREAM OF NODE 5001.90 | I DOWNSTREAM DEPTH = 6.262 FEET, UPSTREAM CONJUGATE DEPTH = 2.124 FEET j NODE 5002.00 : HGL = < 190.307>;EGL= < 193.849>;FLOWLINE= < 187.360> *********************************************************************,^,^^,^.jt.^,^.^^ FLOW PROCESS FROM NODE 5002.00 TO NODE 5002.90 IS CODE = 5 UPSTREAM NODE 5002.90 ELEVATION = 187.86 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 113.70 42.00 0.00 187.86 3.20 21.426 DOWNSTREAM 149.90 48.00 - 187.36 3.59 15.102 LATERAL #1 36.20 30.00 90.00 188.86 2.04 8.442 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (A1-HA2 ) *16 .1)-HFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03939 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01366 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02652 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.032)+( 0.000) = 3.032 NODE 5002.90 : HGL = < 189.752>;EGL= < 196.881>;FLOWLINE= < 187.860> ****************************************************************************** FLOW PROCESS FROM NODE 5002.90 TO NODE 5003.00 IS CODE = 1 UPSTREAM NODE 5003.00 ELEVATION = 192.68 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 113.70 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 114.77 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.86 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3 .20 DISTANCE FROM CONTROL(FT) 0.000 4.502 9.215 14.157 19.351 24.820 30.593 36.702 43.187 50.094 57.476 65.399 73.943 83.209 93 .322 104.445 114.770 FLOW DEPTH (FT) 1.955 1, 1. 1. 1. 1. .951 .947 .943 .939 .935 1.931 1.927 1.923 1.919 1.915 1.911 1.907 1.903 1.899 1.895 1.892 VELOCITY (FT/SEC) 20.569 20.620 20.672 20.725 20.777 20.830 20.883 20.936 20.990 21.044 21.098 21.152 21.207 21.262 21.317 21.373 21.420 SPECIFIC ENERGY(FT) 8.529 8.558 8.587 8.616 8.646 8.676 8.707 8.738 8.768 8.800 8.831 8.863 8.895 8.927 8.960 8.993 9.021 PRESSURE+ MOMENTUM(POUNDS) 4822.54 4832.55 4842.62 4852.76 4862.97 4873.23 4883.57 4893.97 4904.43 4914.97 4925.57 4936.24 4946.97 4957.78 4968.65 4979.59 4988.80 NODE 5003.00 HGL < 194.635>;EGL= < 201.208>;FLOWLINE= < 192.680> ************************************************,^,^.j^,^,j.^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE UPSTREAM NODE 5003.90 5003.00 TO NODE ELEVATION = 5003.90 IS CODE = 5 193.18 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) 109.90 36.00 113.70 42.00 2.40 18.00 1.40 18.00 (DEGREES) ELEVATION 0.00 193.18 192.68 90.00 194.68 90.00 194.68 DEPTH(FT.) 2.93 3 .20 0.59 0.44 (FT/SEC) 20.644 20.575 3.751 3 .205 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (A1-HA2 ) *16 .1)-HFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03807 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03542 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03674 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.147 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-HHV1-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.703)-H( 0.000) = 0.703 NODE 5003.90 HGL < 195.294>;EGL= < 201.911>;FLOWLINE= < 193.180> ****************************************************************************** FLOW PROCESS FROM NODE 5003.90 TO NODE 5004.00 IS CODE = 1 UPSTREAM NODE 5004.00 ELEVATION = 200.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 109.90 CFS PIPE DIAMETER 36.00 INCHES PIPE LENGTH = 222.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 2 .24 CRITICAL DEPTH(FT) 2.93 UPSTREAM ::ONTROL ASSUMED FLOWDEPTH(FT) 1.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 751 25 655 11 977 5667. 16 8 .004 1. 770 25 312 11 725 5599. 33 16 .217 1. 790 24 979 11 484 5533. 67 24 .659 1. 809 24 655 11 254 5470. 11 33 .352 1. 829 24 340 11 034 5408. 58 42 .322 1 . 849 24 035 10 824 5348. 99 51 .600 1 . 868 23 737 10 623 5291. 30 61 .220 1. 888 23 448 10 431 5235. 43 71 .223 1. 908 23 167 10 247 5181. 33 81 .656 1. 927 22 894 10 071 5128. 94 92 .578 1. 947 22 628 9 903 5078. 21 104 .057 1. 967 22 369 9 741 5029. 08 116 .177 1. 986 22 117 9 587 4981. 50 129 .044 2. 006 21 872 9 439 4935. 44 142 .789 2. 026 21 634 9 298 4890. 83 157 .581 2. 045 21 402 9 162 4847. 65 173 .646 2. 065 21 176 9 032 4805. 84 191 .283 2. 085 20 956 8 908 4765. 38 210 .919 2 . 104 20 742 8 789 4726 . 22 222 .000 2. 114 20 637 8 731 4707. 19 NODE 5004.00 : HGL = < 202.241>;EGL= < 212.467>;FLOWLINE= < 200.490> ****************************************************************************** FLOW PROCESS FROM NODE 5004.00 TO NODE 5004.90 IS CODE = 2 UPSTREAM NODE 5004.90 ELEVATION = 200.82 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 109.90 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 10.327 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(10.327) = 0.516 36.00 INCHES NODE 5004.90 : HGL = < 202.557>;EGL= < 212.984>;FLOWLINE= < 200.820> ****************************************************************************** FLOW PROCESS FROM NODE 5004.90 TO NODE 5005.00 IS CODE = 1 UPSTREAM NODE 5005.00 ELEVATION = 220.29 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW PIPE LENGTH 109.90 CFS 294.98 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.75 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.93 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 1 .621 28 .202 13 .979 6176 .56 5 .157 1 .626 28 .093 13 .889 6154 .60 10 508 1 .631 27 .985 13 .799 6132 .83 16 070 1 .636 27 .878 13 .712 6111 .25 21 862 1 .641 27 .772 13 .625 6089 .86 27 908 1 . 646 27 . 667 13 .539 6068 .65 34 233 1 .651 27 .562 13 .454 6047 .62 40 868 1 .656 27 .458 13 .371 6026 .78 47 848 1 .661 27 355 13 .288 6006 11 55 216 1 .666 27 253 13 .206 5985 61 63 022 1 . 671 27 152 13 .126 5965 29 71 326 1 .676 27 051 13 .046 5945 15 80. 201 1 . 681 26 952 12 . 967 5925 18 89. 742 1 .686 26 853 12 .890 5905 37 100. 062 1 . 691 26 754 12 813 5885 73 Ill. 311 1 .696 26 657 12 .737 5866 26 123. 685 1 .701 26 560 12 662 5846 96 137. 451 1 706 26 464 12 588 5827 82 152. 981 1 711 26. 369 12 515 5808 84 170. 821 1 716 26. 274 12 443 5790. 02 191. 818 1 722 26. 181 12 371 5771. 35 217. 389 1 727 26. 087 12 301 5752. 85 250. 195 1 732 25. 995 12 231 5734. 50 294. 980 1 737 25. 906 12 164 5716. 78 NODE 5005 .00 : HGL = < 221. 911>;EGL= < 234 .269>; FLOWLINE= < 220.290> ****************************************************************************.^.^ FLOW PROCESS FROM NODE 5005.00 TO NODE 5005.90 IS CODE = 5 UPSTREAM NODE 5005.90 ELEVATION = 220.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 109.30 36.00 0.00 220.62 2.93 28.705 DOWNSTREAM 109.90 36.00 - 220.29 2.93 28.211 LATERAL #1 0.60 18.00 90.00 221.96 0.29 2.539 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (A1-HA2 ) *16 .1)-HFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08815 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08391 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08603 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.344 FEET ENTRANCE LOSSES (DY-HHV1-HV2)-H (ENTRANCE LOSSES) ( 0.737)+( 0.000) = 0.737 0.000 FEET NODE 5005.90 : HGL = < 222.211>;EGL= < 235.006>;FLOWLINE= < 220.620> ****************************************************************************** FLOW PROCESS FROM NODE 5005.90 TO NODE 5006.00 IS CODE = 1 UPSTREAM NODE 5006.00 ELEVATION = 247.29 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 109.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 297.48 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.58 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.74 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 .93 ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ lOL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 1 738 25 .737 12 .030 5651 .18 3.635 1 732 25 .848 12 .113 5673 .24 7.448 1 726 25 .961 12 .198 5695 .54 11.458 1 719 26 .075 12 .284 5718 .06 15.681 1 713 26 .190 12 .371 5740 .83 20.138 1 707 26 .307 12 .460 5763 .83 24.855 1 701 26 .424 12 .549 5787 .07 29.859 1 695 26 .542 12 .641 5810 .55 35.183 1 688 26 .662 12 .733 5834 .28 40.866 1 682 26 .782 12 .827 5858 .26 46.955 1 676 26 .904 12 .923 5882 .50 53.506 1 670 27 .027 13 .020 5906 .99 60.588 1 664 27 .151 13 .118 5931 .74 68.286 1 657 27 .277 13 .218 5956 .75 76.708 1 651 27 .403 13 .319 5982 .02 85.992 1 645 27 .531 13 .422 6007 .57 96.321 1 639 27 .660 13 .526 6033 .39 107.942 1 633 27 .791 13 .633 6059 .48 121.200 1 626 27 .922 13 .740 6085 .85 136.603 1 620 28 .055 13 .850 6112 .51 154.937 1 614 28 .189 13 .961 6139 .45 177.520 1 608 28 .325 14 .074 6166 .68 206.821 1 602 28 .462 14 .188 6194 .20 248.390 1 595 28 .600 14 .305 6222 .02 297.480 1 .591 28 .696 14 .386 6241 .26 5006.00 HGL = < 249. 028>;EGL= < 259.320>;FLOWLINE= < 247. 290> ****************************************************************************** FLOW PROCESS FROM NODE 5006.00 TO NODE 5006.90 IS CODE = 5 UPSTREAM NODE 5006.90 ELEVATION = 247.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 106.40 36.00 0.00 247.62 DOWNSTREAM 109.30 36.00 - 247.29 LATERAL #1 1.80 18.00 90.00 249.12 LATERAL #2 1.10 18.00 90.00 249.12 Q5 0.00===Q5 EQUALS BASIN INPUT=== DEPTH(FT.) 2.92 2.93 0.50 0.39 (FT/SEC) 26.749 25.745 3 .445 2.996 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / { (A1-HA2) *16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07039 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.282 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-HHV1-HV2 )-H (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.059)+( 0.000) = 1.059 NODE 5006.90 : HGL = < 249.268>;EGL= < 260.378>;FLOWLINE= < 247.620> ****************************************************************************** 07446 06631 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 5007.00 5006.90 TO NODE ELEVATION = 5007.00 IS CODE = 1 259.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 106.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 145.42 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.59 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.89 2.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-H OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .890 22 .673 9 877 4917 02 3 .112 1 .878 22 .843 9 986 4948 62 6 .400 1 .866 23 .016 10 097 4980 85 9 .880 1 .854 23 .193 10 212 5013 73 13 .569 1 .842 23 .372 10 329 5047 28 17 .490 1 .830 23 .554 10 450 5081 50 21 .665 1 .818 23 .740 10 575 5116 42 26 .123 1 .806 23 .929 10 703 5152 03 30 . 898 1 .794 24 .121 10 834 5188 37 36 .028 1 .782 24 .317 10 969 5225 44 41 .560 1 .770 24 .516 11 108 5263 27 47 .549 1 .758 24 .719 11 252 5301 87 54 .065 1 .745 24 .926 11 399 5341 .25 61 .193 1 .733 25 .136 11 550 5381 43 69 .041 1 .721 25 .350 11 706 5422 .44 77 .746 1 .709 25 .569 11 867 5464 29 87 .492 1 .697 25 .791 12 032 5507 00 98 .524 1 .685 26 .017 12 202 5550 59 111 .190 1 .673 26 .248 12 378 5595 08 125 .996 1 .661 26 .483 12 558 5640 50 143 .729 1 .649 26 .722 12 744 5686 86 145.420 1.648 26.IAO 12.758 5690.47 NODE 5007.00 : HGL = < 261.720>;EGL= < 269.707>;FLOWLINE= < 259.830> ****************************************************************************** FLOW PROCESS FROM NODE 5007.00 TO NODE 5007.90 IS CODE = 5 UPSTREAM NODE 5007.90 ELEVATION = 260.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 96.76 106.40 9.64 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 36.00 36.00 24.00 0.00 0.00 90.00 0.00 260.16 259.83 261.16 0.00 :==Q5 EQUALS BASIN INPUT= 2.88 2.92 1.11 0.00 25.440 22.680 5.385 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A1-HA2) *16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06929 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04869 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05899 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.236 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-HHVI-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.092)+( 0.000) = 2.092 NODE 5007.90 : HGL = < 261.750>;EGL= < 271.800>;FLOWLINE= < 260.160> ****************************************************************************** FLOW PROCESS FROM NODE 5007.90 TO NODE 5007.10 IS CODE = 1 UPSTREAM NODE 5007.10 ELEVATION = 274.66 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 96.76 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 203.84 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.58 CRITICAL DEPTH(FT) = 2.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3.762 7.701 11.833 16.176 20.751 25.581 30.694 36.123 41.906 48.089 FLOW DEPTH VELOCITY (FT) 678 674 670 666 662 658 654 650 646 1.641 1.637 (FT/SEC) 23.790 23.860 23.931 24.002 24.074 24.146 24.218 24.291 24.365 24.438 24.513 SPECIFIC ENERGY(FT) 10.471 10.519 10.568 10.617 10.666 10.716 10.767 10.818 10.869 10.921 10.974 PRESSURE+ MOMENTUM(POUNDS) 4644.74 4656.91 4669.15 4681.49 4693.91 4706.42 4719.02 4731.70 4744.48 4757.34 4770.30 54.727 1 633 24 588 11 027 4783.35 61.888 1 629 24 663 11 080 4796.49 69.656 1 625 24 739 11 134 4809.72 78.136 1 621 24 815 11 189 4823.05 87.465 1 617 24 892 11 244 4836.47 97.822 1 613 24 969 11 300 4849.99 109.450 1 609 25 047 11 357 4863.60 122.688 1 605 25 125 11 414 4877.31 138.036 1 601 25 204 11 471 4891.12 156.267 1 597 25 283 11 529 4905.03 178.676 1 593 25 363 11 588 4919.04 203.840 1 590 25 432 11 640 4931.27 5007.10 HGL = < 276 338>;EGL= < 285.131>;FLOWLINE= < 274.660 NODE ****************************************************************************** FLOW PROCESS FROM NODE 5007.10 TO NODE 5007.20 IS CODE = 5 UPSTREAM NODE 5007.20 ELEVATION = 274.66 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 96.11 36.00 0.00 274.66 2.88 24.136 DOWNSTREAM 96.76 36.00 - 274.66 2.88 23.797 LATERAL #1 0.65 18.00 90.00 275.41 0.30 0.577 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (A1-HA2 ) *16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06059 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05815 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05937 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.059 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.224)+( 0.000) = 0.224 NODE 5007.20 : HGL = < 276.310>;EGL= < 285.355>;FLOWLINE= < 274.660> ****************************************************************************** FLOW PROCESS FROM NODE 5007.20 TO NODE 5008.00 IS CODE = 1 UPSTREAM NODE 5008.00 ELEVATION = 280.96 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 96.11 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 89.19 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.57 CRITICAL DEPTH(FT) = 2.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.78 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1 780 21 .996 9 297 4307.40 3 . 352 1 771 22 119 9 373 4328.03 6. 878 1 763 22 243 9 450 4348.95 10. 595 1 755 22 369 9 529 4370.17 14 . 520 1 747 22 496 9 610 4391.69 18. 675 1 738 22 625 9 692 4413.52 23. 082 1 730 22 755 9 776 4435.65 27. 770 1 722 22 888 9 861 4458.11 32 . 771 1 714 23 021 9 948 4480.88 38. 123 1 706 23 157 10 037 4503.98 43 . 872 1 697 23 294 10 128 4527.41 50. 073 1 689 23 433 10 221 4551.18 56 . 793 1 681 23 573 10 315 4575 .29 64 . 117 1 673 23 716 10 412 4599.75 72. 149 1 665 23 860 10 510 4624.55 81. 026 1 656 24 006 10 611 4649.72 89. 190 1 650 24 128 10 695 4670.75 008 .00 HGL = < 282. 740>;EGL= < 290.257>;FLOWLINE= < 280.960 ****************************************************************************** FLOW PROCESS FROM NODE 5008.00 TO NODE 5008.90 IS CODE = 2 UPSTREAM NODE 5008.90 ELEVATION = 281.29 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 96.11 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 7.544 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 7.544) = 0.377 NODE 5008.90 : HGL = < 283.064>;EGL= < 290.634>;FLOWLINE= < 281.290> ****************************************************************************** FLOW PROCESS FROM NODE 5008.90 TO NODE 5009.00 IS CODE = 1 UPSTREAM NODE 5009.00 ELEVATION = 295.54 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 96.11 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.96 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.77 CRITICAL DEPTH(FT) = 2.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.786 21.900 9.238 4291.25 4.451 1.786 21.907 9.242 4292.48 9.094 1.785 21.915 9.247 4293.72 13.946 1.785 21.922 9.252 4294.96 19.027 1.784 21.929 9.256 4296.20 24.358 1.784 21.937 9.261 4297.44 29.966 1.783 21.944 9.265 4298.69 35.880 1.783 21.952 9.270 4299.93 42.135 1.782 21.959 9.274 4301.17 48.774 1.782 21.966 9.279 4302.42 55.844 1 .781 21 .974 9 .283 4303.67 63 .407 1 .781 21 .981 9 .288 4304.92 71.534 1 .780 21 .989 9 .293 4306.17 80.317 1 .780 21 .996 9 .297 4307.42 89.870 1 779 22 .004 9 302 4308.67 100.339 1 .779 22 . Oil 9 306 4309.92 111.918 1 778 22 . 019 9 311 4311.17 124.870 1 778 22 .026 9 316 4312.43 139.561 1 777 22 .033 9 320 4313.68 156.529 1 777 22 .041 9 325 4314.94 176.610 1 776 22 .048 9 329 4316.20 201.200 1 776 22 .056 9 334 4317.46 232.922 1 775 22 .063 9 339 4318.72 277.664 1 775 22 . 071 9 343 4319.98 295.960 1 774 22 .073 9 344 4320.28 5009.00 HGL = < 297. 326>;EGL= < 304.778>;FLOWLINE= < 295.540> NODE ****************************************************************************** FLOW PROCESS FROM NODE 5009.00 TO NODE 5009.90 IS CODE = 5 UPSTREAM NODE 5009.90 ELEVATION = 295.87 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 94.80 96.11 0.80 0.51 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION 36.00 36.00 18.00 18.00 0.00 90.00 90.00 295.87 295.54 297.04 297.04 DEPTH(FT.) 2.87 2.88 0.33 0.26 (FT/SEC) 22.285 21.907 1.921 1.224 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI* COS(DELTAl)-Q3 *V3 * COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04963 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04711 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04837 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.193 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.545)+( 0.000) = 0.545 NODE 5009.90 : HGL = < 297.611>;EGL= < 305.323>;FLOWLINE= < 295.870> ****************************************************************************** FLOW PROCESS FROM NODE 5009.90 TO NODE 5010.00 IS CODE = 1 UPSTREAM NODE 5010.00 ELEVATION = 309.92 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 94.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 259.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.69 CRITICAL DEPTH(FT) = 2.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 872 13 .607 5 .749 3106 27 0 .125 2 .825 13 .729 5 .754 3108 26 0 .490 2 .778 13 .870 5 .767 3113 98 1 .087 2 .731 14 .029 5 .789 3123 23 1 .918 2 .684 14 .206 5 .819 3135 90 2 .994 2 . 637 14 .399 5 .858 3151 95 4 .328 2 .590 14 .609 5 .906 3171 38 5 .944 2 .542 14 .837 5 .963 3194 26 7 .867 2 .495 15 .082 6 .030 3220 66 10 .131 2 .448 15 .345 6 .107 3250 68 12 .781 2 .401 15 .627 6 .195 3284 45 15 .869 2 .354 15 .928 6 .296 3322 14 19 .461 2 .307 16 .250 6 .410 3363 93 23 .641 2 .260 16 .593 6 .538 3410 02 28 .517 2 .212 16 .959 6 .681 3460 64 34 .226 2 .165 17 .349 6 . 842 3516 06 40 .954 2 . 118 17 .765 7 .022 3576 58 48 .951 2 .071 18 .208 7 .222 3642 52 58 .570 2 .024 18 .681 7 .446 3714 25 70 .329 1 .977 19 .185 7 .695 3792 18 85 . 035 1 .930 19 .723 7 .974 3876 77 104 .041 1 .882 20 .298 8 .284 3968 53 129 .886 1 .835 20 .913 8 .631 4068 04 168 .279 1 .788 21 .572 9 .019 4175 93 237 .547 1 .741 22 .278 9 .452 4292 95 259 .560 1 .741 22 .279 9 .453 4293 06 NODE 5010.00 : HGL = < 312.792>;EGL= < 315.669>;FLOWLINE= < 309.920> ****************************************************************************** FLOW PROCESS FROM NODE 5010.00 TO NODE 5010.90 IS CODE = 5 UPSTREAM NODE 5010.90 ELEVATION = 310.25 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 60.30 36.00 0.00 310.25 DOWNSTREAM 94.80 36.00 - 309.92 LATERAL #1 32.50 30.00 60.00 310.42 LATERAL #2 2.00 24.00 60.00 310.75 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) 2 .51 2 .87 1.94 0.49 (FT/SEC) 8.531 13 .611 6.621 0.637 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01287 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.260)+( 0.000) = 1.260 00817 01757 0.000 FEET NODE 5010.90 : HGL = < 315.799>;EGL= < 316.929>;FLOWLINE= < 310.250> ****************************************************************.l,.^.),^,^.^.l,.),.f^.^.^.^.l^.^ FLOW PROCESS FROM NODE 5010.90 TO NODE 5011.00 IS CODE = 1 UPSTREAM NODE 5011.00 ELEVATION = 328.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 60.30 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 302.57 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.26 CRITICAL DEPTH(FT) = 2.51 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 1.636 3 .397 5 .297 7.349 9.569 11.977 14.593 17 .442 20.556 23.969 27 .725 31. 878 36.493 41.654 47.467 54.074 61.666 70.513 81.006 93.756 109.784 131.007 161.732 215.774 302.570 FLOW DEPTH (FT) 1.750 1.730 1.710 1.691 1.671 1.652 1.632 1.612 1.593 1.573 1.554 1.534 1. 1. 1. 1. .514 .495 .475 .456 1.436 1.417 1.397 1.377 1.358 1.338 1.319 1.299 1.279 1.279 VELOCITY (FT/SEC) 14.086 14.280 14.479 14.684 14.896 15.114 15.339 15 .572 15.811 16.058 16.313 16.577 16.849 17.131 17.422 17.723 18.034 18.356 18.690 19 .036 19.395 19.767 20.152 20.553 20.969 20.980 SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUNDS) 4.832 1847.78 4.898 1865.21 4.968 1883.40 5.041 1902.35 5.119 1922.12 5.201 1942.72 5.288 1964.18 5.380 1986.55 5.477 2009.84 5.580 2034.11 5.689 2059.39 5.804 2085.71 5.926 2113.13 6.055 2141.69 6.191 2171.43 6.336 2202.42 6.489 2234.70 6.652 2268.33 6.825 2303.37 7.008 2339.90 7.202 2377.98 7.409 2417.68 7.629 2459.09 7.862 2502.29 8.111 2547.37 8.118 2548.56 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 48.891 PRESSURE HEAD(FT) 5.549 3.000 VELOCITY (FT/SEC) 8.531 8.531 SPECIFIC ENERGY(FT) 6.679 4.130 PRESSURE+ MOMENTUM (POUNDS) 2782.94 1658.47 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 48 .891 3 .000 8.528 4 130 1658 .47 49 .230 2 .980 8.536 4 112 1650 67 49 .533 2 .961 8.550 4 096 1643 63 49 . 814 2 .941 8.568 4 081 1637 10 50 .077 2 .921 8.590 4 068 1630 98 50 .325 2 .901 8.614 4 054 1625 22 50 .558 2 .882 8.642 4 042 1619 .81 50 .779 2 .862 8.671 4 030 1614 72 50 .987 2 .842 8.704 4 019 1609 92 51 .182 2 .822 8.738 4 009 1605 42 51 .367 2 .803 8.774 3 999 1601 21 51 .540 2 .783 8.813 3 990 1597 27 51 .702 2 .763 8. 853 3 981 1593 60 51 .852 2 .743 8.896 3 973 1590 20 51 .992 2 .724 8.940 3 966 1587 07 52 .120 2 .704 8.987 3 959 1584 21 52 .237 2 .684 9.035 3 953 1581 61 52 .343 2 .665 9.085 3 947 1579 28 52 .437 2 .645 9.137 3 942 1577 21 52 .520 2 .625 9.191 3 938 1575 42 52 .591 2 .605 9.247 3 934 1573 89 52 .650 2 .586 9.304 3 931 1572 63 52 .696 2 .566 9.364 3 928 1571 65 52 .729 2 .546 9.426 3 927 1570 94 52 .750 2 .526 9.489 3 925 1570 52 52 .757 2 .507 9.555 3 925 1570 37 302 .570 2 .507 9.555 3 925 1570 37 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 10.20 FEET UPSTREAM OF NODE 5010.90 j I DOWNSTREAM DEPTH = 5.018 FEET, UPSTREAM CONJUGATE DEPTH = 1.279 FEET | NODE 5011.00 : HGL = < 330.250>;EGL= < 333.332>;FLOWLINE= < 328.500> ****************************************************************************** FLOW PROCESS FROM NODE 5011.00 TO NODE 5011.90 IS CODE = 5 UPSTREAM NODE 5011.90 ELEVATION = 328.83 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 54.80 60.30 3.00 2.50 0.00 = : DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 36.00 36.00 18.00 18.00 0.00 90.00 90.00 328.83 328.50 330.33 330.33 2 .40 2 .51 0.66 0.60 :=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02797 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01977 VELOCITY (FT/SEC) 15.711 14.090 4.018 3.798 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02387 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.095 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.815)+( 0.000) = 0.815 0.000 FEET NODE 5011.90 : HGL = < 330.315>;EGL= < 334.148>;FLOWLINE= < 328.830> ******************************************************************^..f..)^.)^.i,.i,.i^.i,.i,.i,.^.^ FLOW PROCESS FROM NODE 5011.90 TO NODE 5012.00 IS CODE = 1 UPSTREAM NODE 5012.00 ELEVATION = 337.12 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 54.80 CFS PIPE PIPE LENGTH = 271.74 FEET DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.45 CRITICAL DEPTH(FT) = 2.40 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0. 070 0.263 0.590 1. 1. 2. 3 . 4. FLOW DEPTH (FT) 2 .399 2.361 2 .322 2.284 .066 .707 .529 .557 .814 6.333 8.150 10.310 12.869 15.895 19.477 23 .728 28.797 34.886 42.282 51.403 62.898 77.857 98.324 128.896 184.320 271.740 2 . 2 . 2. 2. 2, 2. 2. 1. .246 .208 .170 .132 .094 . 056 ,018 980 1.942 1.904 1.866 . 828 .790 .752 .714 . 676 .638 1. 600 1.562 1.524 1.485 1.485 1. 1, 1. 1, 1. 1. VELOCITY (FT/SEC) 9.042 9.182 9.330 9.486 9.650 9.822 10.004 10.195 10.397 10.609 10.833 11.068 11.317 11.579 11.855 12.147 12.455 12.782 13.127 13.493 13.881 14.293 14.731 15.197 15.694 15.706 SPECIFIC ENERGY(FT) 3 .669 3 .671 3 .675 3 . 682 3 .693 3 .707 3 .725 3 .747 3 .774 3 .805 3.841 3 .884 3 .932 3 .987 4.050 4.120 4.200 4. 4 . 4. 4. 4. 4. 5. 5. .290 .391 .504 .631 .774 ,933 .112 .312 5.31? PRESSURE+ MOMENTUM(POUNDS) 1372.32 1372.93 1374.57 1377.28 1381.11 1386.09 1392.29 1399.74 1408.52 1418.68 1430.30 1443.44 1458.20 1474.66 1492.92 1513.09 1535.28 1559.63 1586.27 1615.36 1647.08 1681.62 1719.19 1760.02 1804.38 1805.50 NODE 5012.00 : HGL = < 339.519>;EGL= < 340.789>;FLOWLINE= < 337.120> *****************************************************************^,^,.i,.),.f,.),.f^.)^.^.^.^.i^.i^ FLOW PROCESS FROM NODE 5012.00 TO NODE 5012.90 IS CODE = 5 UPSTREAM NODE 5012.90 ELEVATION = 337.45 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 44.30 36.00 0.00 337.45 2.17 13.623 DOWNSTREAM 54.80 36.00 - 337.12 2.40 9.030 LATERAL #1 10.50 24.00 90.00 338.45 1.16 5.553 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02206 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00705 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01455 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.058 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.949)+( 0.000) = 0.949 NODE 5012.90 : HGL = < 338.856>;EGL= < 341.738>;FLOWLINE= < 337.450> ********************************************************************,j.,^,^.^^,j.j^^^.^ FLOW PROCESS FROM NODE 5012.90 TO NODE 5013.00 IS CODE = 1 UPSTREAM NODE 5013.00 ELEVATION = 343.53 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 44.30 CFS PIPE PIPE LENGTH = 255.03 FEET DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.37 CRITICAL DEPTH(FT) = 2.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .168 8.096 3 .186 1024 .05 0 .053 2 .136 8.225 3.187 1024 .37 0 .219 2 .105 8.359 3.190 1025 .35 0 .509 2 .073 8.500 3 .195 1027 .01 0 .936 2 .041 8.646 3 .203 1029 .37 1 .515 2 . 010 8.799 3 .213 1032 .47 2 .264 1 .978 8.959 3.225 1036 34 3 .203 1 .946 9.127 3 .240 1041 00 4 .355 1 .914 9 .301 3 .259 1046 49 5 .750 1 .883 9.484 3 .280 1052 86 7 .422 1 .851 9.675 3 .305 1060 13 9 .412 1 .819 9.876 3.334 1068 35 11 .771 1 .787 10.085 3.368 1077 56 14 .563 1 .756 10.305 3 .406 1087 83 17 .868 1 .724 10.535 3 .448 1099 19 21 .789 1 .692 10.777 3.497 llll 72 26 .462 1 .660 11.031 3.551 1125 47 32 .074 1 .629 11.297 3.612 1140. 51 38.883 1 597 11.578 3 . 680 1156.91 47.271 1 565 11.873 3 .755 1174 .77 57.830 1 534 12.183 3 . 840 1194.16 71.552 1 502 12.511 3.934 1215.19 90.296 1 470 12.857 4.038 1237.97 118.244 1 438 13 .222 4.155 1262.60 168.811 1 407 13.608 4.284 1289.23 255.030 1 406 13.619 4.288 1289.97 5013.00 HGL = < 345 698>;EGL= < 346.716>;FLOWLINE= < 343.530> ****************************************************************************** FLOW PROCESS FROM NODE 5013.00 TO NODE 5013.90 IS CODE = 5 UPSTREAM NODE 5013.90 ELEVATION = 344.03 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 42.10 30.00 90.00 344.03 2.17 8.577 DOWNSTREAM 44.30 3 6.00 - 343.53 2.17 8.098 LATERAL #1 2.20 18.00 90.00 345.03 0.56 1.245 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01053 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00580 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00817 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.033 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.303)+( 0.000) = 2.303 NODE 5013.90 : HGL = < 347.878>;EGL= < 349.020>;FLOWLINE= < 344.030> ****************************************************************************** FLOW PROCESS FROM NODE 5013.90 TO NODE 5014.00 IS CODE = 1 UPSTREAM NODE 5014.00 ELEVATION = 345.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 42.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 54.91 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 42.10)/( 410.177))**2 = 0.01053 HF=L*SF = ( 54.91)*(0.01053) = 0.578 NODE 5014.00 : HGL = < 348.456>;EGL= < 349.598>;FLOWLINE= < 345.290> ****************************************************************************** FLOW PROCESS FROM NODE 5014.00 TO NODE 5015.00 IS CODE = 3 UPSTREAM NODE 5015.00 ELEVATION = 348.90 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 42.10 CFS PIPE DIAMETER = 30.00 INCHES CENTRAL ANGLE = 34.500 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 156.76 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.51 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.17 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUN 0 000 1 463 14 105 4 554 1268. 48 3 340 1 465 14 085 4 547 1267 . 14 6 813 1 466 14 064 4 540 1265. 81 10 431 1 468 14 044 4 533 1264. 49 14 206 1 470 14 024 4 526 1263. 17 18 154 1 472 14 004 4 519 1261. 86 22 293 1 473 13 984 4 512 1260. 55 26 643 1 475 13 964 4 505 1259. 25 31 229 1 477 13 944 4 498 1257. 95 36 080 1 479 13 924 4 491 1256. 66 41 230 1 480 13 904 4 484 1255. 38 46 719 1 482 13 884 4 477 1254. 10 52 598 1 484 13 865 4 471 1252. 82 58 930 1 486 13 845 4 464 1251. 56 65 794 1 487 13 826 4 457 1250. 29 73 291 1 489 13 806 4 451 1249. 04 81 555 1 491 13 787 4 444 1247 . 78 90 767 1 493 13 767 4 438 1246. 54 101 180 1 494 13 748 4 431 1245. 29 113 168 1 496 13 729 4 425 1244. 06 127 305 1 498 13 710 4 418 1242. 83 144 557 1 500 13 690 4 412 1241. 60 156 760 1 501 13 680 4 408 1240. 93 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.17 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY CONTROL(FT) HEAD(FT) (FT/SEC) 0.000 3.166 8.577 62.236 2.500 8.577 SPECIFIC ENERGY(FT) 4.308 3.642 PRESSURE+ MOMENTUM(POUNDS) 1286.65 1082.60 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 62.236 2 .500 8.574 3.642 1082.60 63 .144 2 .487 8.579 3.631 1079.03 63.931 2 .474 8.589 3.620 1075.85 64.648 2.461 8.603 3.611 1072.91 65 .310 2 .448 8.618 3.602 1070.17 65 924 2 434 8 636 3 593 1067.62 66 498 2 421 8 655 3 585 1065.22 67 034 2 408 8 676 3 578 1062.98 67 536 2 395 8 699 3 571 1060.88 68 005 2 382 8 724 3 564 1058.92 68 443 2 369 8 749 3 558 1057.09 68 851 2 356 8 777 3 553 1055.39 69 230 2 343 8 805 3 547 1053.81 69 582 2 330 8 835 3 542 1052.35 69 905 2 316 8 867 3 538 1051.01 70 201 2 303 8 899 3 534 1049.80 70 471 2 290 8 933 3 530 1048.70 70 713 2 277 8 968 3 527 1047.71 70 928 2 264 9 005 3 524 1046.84 71 115 2 251 9 042 3 521 1046.09 71 275 2 238 9 081 3 519 1045.46 71 408 2 225 9 121 3 517 1044.93 71 511 2 212 9 162 3 516 1044.53 71 586 2 198 9 204 3 515 1044.23 71 632 2 185 9 248 3 514 1044.06 71 647 2 172 9 293 3 514 1044.00 156 760 2 172 9 293 3 514 1044.00 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 13.71 FEET UPSTREAM OF NODE 5014.00 | I DOWNSTREAM DEPTH = 3.019 FEET, UPSTREAM CONJUGATE DEPTH = 1.499 FEET j NODE 5015.00 : HGL = < 350.363>;EGL= < 353.454>;FLOWLINE= < 348.900> ****************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.90 IS CODE = 5 UPSTREAM NODE 5015.90 ELEVATION = 349.23 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 38.10 30.00 0.00 349.23 2.09 15.821 DOWNSTREAM 42.10 30.00 - 348.90 2.17 14.109 LATERAL #1 4.00 18.00 90.00 350.23 0.77 4.412 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03631 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02522 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03076 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.123 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.894)+( 0.000) = 0.894 NODE 5015.90 : HGL = < 350.462>;EGL= < 354.348>;FLOWLINE= < 349.230> ****************************************************************************** FLOW PROCESS FROM NODE 5015.90 TO NODE 5020.00 IS CODE = 3 UPSTREAM NODE 5020.00 ELEVATION = 358.93 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 38.10 CFS CENTRAL ANGLE = 53.500 DEGREES PIPE LENGTH = 242.46 FEET PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.20 CRITICAL DEPTH(FT) 2 .09 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION : DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .086 8 704 3 .263 904. 51 0 .046 2 .050 8 840 3 .265 904. 90 0 .189 2 .015 8 984 3 .269 906. 09 0 .438 1 .979 9 138 3 .277 908. 11 0 . 802 1 .944 9 301 3 .288 910. 98 1 .295 1 .908 9 474 3 .303 914. 75 1 .930 1 .873 9 657 3 .322 919. 46 2 .725 1 . 837 9 851 3 .345 925. 14 3 .700 1 .802 10 057 3 .373 931. 85 4 .878 1 .766 10 275 3 .406 939. 64 6 .290 1 .730 10 506 3 .446 948. 57 7 .971 1 .695 10 751 3 .491 958. 70 9 .965 1 .659 11 Oil 3 .543 970. 11 12 .326 1 .624 11 286 3 .603 982. 86 15 .126 1 .588 11 578 3 .671 997. 06 18 .453 1 .553 11 889 3 .749 1012 . 78 22 .427 1 .517 12 219 3 .837 1030. 15 27 .211 1 .482 12 570 3 .937 1049. 26 33 .033 1 .446 12 944 4 .049 1070. 26 40 .228 1 .411 13 343 4 .177 1093 . 29 49 .317 1 .375 13 769 4 .320 1118. 51 61 .172 1 .339 14 224 4 .483 1146. 09 77 .434 1 .304 14 711 4 .667 1176. 25 101 .788 1 .268 15 234 4 .874 1209. 21 146 .064 1 .233 15 795 5 .109 1245. 23 242 .460 1 .232 15 816 5 .118 1246. 55 NODE 5020.00 HGL < 361.016>;EGL= < 362.193>;FLOWLINE= < 358.930> ****************************************************************************** FLOW PROCESS FROM NODE 5020.00 TO NODE 5020.90 IS CODE = 5 UPSTREAM NODE 5020.90 ELEVATION = 359.05 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 28.50 38.10 9.60 0.00 0.00= DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 0.00 30.00 30.00 24.00 0.00 90.00 0.00 359.05 358.93 359.55 0.00 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: CRITICAL DEPTH(FT.) 1.82 2.09 1.11 0.00 VELOCITY (FT/SEC) 5.806 8.707 3.056 0.000 DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00483 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00837 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00660 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.485) +( 0.000) = 0.485 NODE 5020.90 : HGL = < 362.155>;EGL= < 362.678>;FLOWLINE= < 359.050> ****************************************************************************** FLOW PROCESS FROM NODE 5020.90 TO NODE 5030.00 IS CODE = 3 UPSTREAM NODE 5030.00 ELEVATION = 361.26 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 2 8.50 CFS CENTRAL ANGLE = 47.700 DEGREES PIPE LENGTH = 220.69 FEET PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.53 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.82 1.82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0.040 0.163 0.377 0. 690 1.113 1.656 2.332 3.157 4.149 5.330 6.725 8.368 10.296 12.561 15.228 18.380 22.134 26.650 32.166 39.048 47.909 59.904 77.619 109.361 220.690 FLOW DEPTH (FT) 1.820 1. 809 1.797 1.786 1.774 1.763 1.751 1.740 1.728 1.717 1.705 . 694 .682 . 671 .659 .648 .636 .625 .613 .602 .590 ,579 ,567 556 1.544 1.544 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. VELOCITY (FT/SEC) 7.442 7.492 7.543 7.595 7.648 7.702 7.757 7.813 7.870 7.929 7.988 8.048 8.110 8.173 8.237 8.302 8.369 8.436 8.506 8.576 8.648 8.721 8.796 8.872 8.950 8.954 SPECIFIC ENERGY(FT) 2.681 2 . 2 . 2. 2 . 2. 2 . 2 . 2 . .681 .681 .682 .683 .684 .686 .688 .691 2.693 2.697 2 .700 2.704 2.709 2.713 .719 .724 .731 .737 2.745 2.752 2.761 2 .769 2 .779 2.789 2.790 2. 2 . 2. 2 , PRESSURE+ MOMENTUM(POUNDS) 604.60 604.64 604.74 604.92 605.17 605.49 605.89 606.37 606.92 607.55 608.26 609.06 609.93 610.89 611.94 613.08 614.30 615.61 617.02 618.52 620.12 621.81 623.61 625.51 627.51 627.63 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.10 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 3.105 5 .806 3.628 888 .73 130.713 2.500 5 .806 3 .023 703 .54 ===================== =========== ====== ====== ============== ============= ======== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 130.713 2.500 5 .804 3 . 023 703 .54 135.359 2.473 5 . 815 2.998 695 .84 139.519 2.446 5 .836 2.975 688 . 67 143 .414 2.418 5 . 862 2 .952 681 .86 147.110 2.391 5 .894 2.931 675 .38 150.641 2.364 5 .930 2 .910 669 .19 154.029 2.337 5 .970 2.891 663 .27 157.288 2.310 6 014 2.872 657 .63 160.426 2.282 6 061 2.853 652 25 163 .450 2 .255 6 113 2 . 836 647 14 166.362 2.228 6 167 2.819 642 29 169.164 2 .201 6 226 2.803 637 71 171.856 2.174 6 287 2.788 633 39 174.434 2.146 6 353 2.774 629 35 176.895 2.119 6 422 2.760 625 59 179.234 2 .092 6. 494 2 .747 622 11 181.444 2.065 6. 570 2.736 618 92 183.514 2.038 6. 650 2.725 616. 02 185.433 2 . 010 6. 734 2.715 613 . 43 187.188 1.983 6. 822 2.706 611. 16 188.760 1. 956 6. 914 2.699 609. 20 190.128 1.929 7. Oil 2.693 607. 58 191.265 1.902 7. 111 2.687 606. 29 192.137 1.875 7. 217 2.684 605. 36 192.701 1.847 7. 327 2.681 604. 79 192.904 1.820 7. 442 2.681 604. 60 220.690 1.820 7. 442 2.681 604. 60 Ejgp QP HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 180.45 FEET UPSTREAM OF NODE 5020.90 j DOWNSTREAM DEPTH = 2.077 FEET, UPSTREAM CONJUGATE DEPTH = 1.589 FEET I NODE 5030.00 HGL < 363.080>;EGL= < 363.941>;FLOWLINE= < 361.260> ***************************************************^*^^^^j^^j^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.90 IS CODE = 5 UPSTREAM NODE 5030.90 ELEVATION = 361.59 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 28.50 28.50 0.00 0.00 0.00= (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 30.00 90.00 361.59 1.82 30.00 - 361.26 1.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 5.806 7 .444 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00553 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.193)+( 0.000) = 1.193 00483 00623 0.000 FEET NODE 5030.90 : HGL = < 364.610>;EGL= < 365.134>;FLOWLINE= < 361.590> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5031.00 5030.90 TO NODE ELEVATION = 5031.00 IS CODE = 1 362.49 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 28.50 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 90.30 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 28.50)/( 410.179))**2 = 0.00483 HF=L*SF = ( 90.30)* (0.00483) = 0.436 NODE 5031.00 HGL < 365.046>;EGL= < 365.570>;FLOWLINE= < 362.490> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5031.90 5031.00 TO NODE ELEVATION = 5031.90 IS CODE = 5 362.99 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 24.60 28.50 2.30 1.60 0.00= DIAMETER ANGLE FLOWLINE CRITICAL 24.00 0.00 362.99 1.75 30.00 - 362.49 1.82 18.00 90.00 363.50 0.57 18.00 90.00 363.50 0.48 =Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 8.390 5.806 1.340 0.932 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01062 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00483 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00772 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.031 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.276)+( 0.000) = 0.276 NODE 5031.90 HGL < 364.753>;EGL= < 365.846>;FLOWLINE= < 362.990> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5032.00 5031.90 TO NODE ELEVATION = 5032.00 IS CODE = 1 364.81 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 182.79 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.75 DISTANCE FROM CONTROL(FT) 0.000 0.764 2.076 4.037 6.764 10.390 15.060 20.923 28.117 36.751 46.871 58.431 71.269 85.105 99.562 114.222 128.680 142.596 155.723 167.902 179.055 182.790 FLOW DEPTH (FT) 1.763 1.773 1.782 1.792 1.801 1.810 1.820 1. 829 1.839 1.848 1.858 .867 . 877 .886 .896 .905 .915 .924 .934 ,943 1.953 1.956 1. 1. 1. 1. 1. 1. 1. 1. 1. VELOCITY (FT/SEC) 8.387 8.353 8.319 8.286 8.254 8.223 8.193 8.164 8.136 8.109 8. 082 8.057 8.033 8. 009 7.987 7.965 7.945 7.926 7.908 7.892 7.876 7.871 SPECIFIC ENERGY(FT) 2.856 2.857 2.857 2.858 2. 2 . 2. 2. 2 . ,860 ,861 ,863 865 867 2.870 2.873 2.876 2.879 2.883 .887 .891 .896 .900 2.905 2.911 2.917 2.919 PRESSURE+ MOMENTUM(POUNDS) 550.81 550.90 551.04 551.23 551.47 551.75 552.09 552.48 552.92 553.41 553.95 554.54 555.18 555.88 556.63 557.44 558.30 559.22 560.21 561.25 562.37 562.80 NODE 5032.00 : HGL = < 366.766>;EGL= < 367.729>;FLOWLINE= < 364.810> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5032.90 5032.00 TO NODE ELEVATION = 5032.90 IS CODE = 5 3 65.14 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 24.60 24.60 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 90.00 365.14 1.75 24.00 - 364.81 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 7.830 7.874 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01182 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01055 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01119 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.954)+( 0.000) = 1.954 NODE 5032.90 : HGL = < 368.731>;EGL= < 369.683>;FLOWLINE= < 365.140> ****************************************************************************** FLOW PROCESS FROM NODE 5032.90 TO NODE 5035.00 IS CODE = 1 UPSTREAM NODE 5035.00 ELEVATION = 365.38 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.09 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {( 24.60)/( 226.220))**2 = 0.01183 HF=L*SF = ( 35.09)*(0.01183) = 0.415 NODE 5035.00 : HGL = < 369.146>;EGL= < 370.098>;FLOWLINE= < 365.380> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5035.00 FLOWLINE ELEVATION = 365.38 ASSUMED UPSTREAM CONTROL HGL = 367.13 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************,^.^.^,t^.J^.J^.J^J^.^.^^^J^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.00 - Bressi Ranch - Ultimate Conditions * * Lateral 5007.3 to 5007.4 * * 100 year storm event * ******************************************************************.^*j^^^.j(..^^. FILE NAME: SY5007_3.DAT TIME/DATE OF STUDY: 16:20 09/21/2004 ************************************************************jj..^.^,j..j..^j^jj.^.j.^^.^^.j.jj.jj..^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5007.30- 0.90* 27.61 0.11 13.78 } FRICTION } HYDRAULIC JUMP 5007.40- 0.30*Dc 5.17 0.30*Dc 5.17 } CATCH BASIN 5007.40- 0.42* 2.73 0.30 Dc 1.91 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************.^^.^,^^.j^.H.^.^^^^^.^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5007.30 FLOWLINE ELEVATION = 275.41 PIPE FLOW = 0.65 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 276.310 FEET NODE 5007.30 : HGL = < 276.310>;EGL= < 276.315>;FLOWLINE= < 275.410> ***********************************************************************^**.^.i^.i^^ FLOW PROCESS FROM NODE 5007.30 TO NODE 5007.40 IS CODE = 1 UPSTREAM NODE 5007.40 ELEVATION = 278.62 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.65 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.10 CRITICAL DEPTH(FT) = 0.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 299 2 .594 0 .404 5 .17 0 .001 0 291 2 .693 0 .404 5 .18 0 .004 0 284 2 . 800 0 .405 5 .20 0 .010 0 276 2 .914 0 .408 5 .23 0 .019 0 268 3 .036 0 .411 5 .28 0 .032 0 260 3 .168 0 .416 5 .35 0 .048 0 252 3 .309 0 .423 5 .43 0 .070 0 245 3 .462 0 .431 5 .53 0 .097 0 237 3 . 628 0 .441 5 .65 0 .130 0 229 3 . 808 0 .454 5 .79 0 .171 0 221 4 .003 0 .470 5 .95 0 .222 0 214 4 .217 0 .490 6 .15 0 .285 0 206 4 .450 0 .514 6 .37 0 .361 0 198 4 .707 0 .542 6 .62 0 .455 0 190 4 .990 0 .577 6 .91 0 .571 0 182 5 .303 0 .619 7 .25 0 .715 0 175 5 .652 0 .671 7 .63 0 .895 0 167 6 .041 0 .734 8 .06 1 .123 0 159 6 .479 0 .811 8 .57 1 .417 0 151 6 .973 0 .907 9 .14 1 .805 0 144 . 7 .534 1 .026 9 .81 2 .335 0 136 8 .177 1 .175 10 .57 3 .096 0 128 8 .919 1 .364 11 .47 4 .291 0 120 9 .782 1 .607 12 .53 6 .574 0 112 10 .796 1 .923 13 .77 8 .000 0 112 10 .802 1 .925 13 .78 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 0.900 0.587 0.905 27 61 0 .059 0.876 0.606 0.882 26 00 0 .118 0.852 0.627 0.858 24 45 0 .177 0.828 0.650 0.834 22 95 0 .235 0.804 0.674 0.811 21 50 0 .294 0.780 0.700 0.787 20 12 0 .352 0.756 0.728 0-764 18 79 0 .410 0.732 0.759 0.741 17 52 0 .468 0.708 0.792 0.717 16 30 0 .526 0.684 0.829 0.694 15 14 0 .583 0.660 0.868 0.671 14 04 0 .640 0.636 0.912 0.649 13 00 0 697 0.612 0 960 0 626 12 02 0 753 0 .588 1 012 0 603 11 .10 0 808 0.564 1 071 0 581 10 .24 0 862 0.539 1 136 0 560 9 43 0 916 0.515 1 209 0 538 8 69 0 968 0.491 1 291 0 517 8 02 1 018 0.467 1 383 0 497 7 40 1 067 0.443 1 488 0 478 6 86 1 112 0.419 1 608 0 459 6 38 1 154 0.395 1 747 0 443 5 97 1 191 0.371 1 908 0 428 5 64 1 222 0.347 2 097 0 416 5 39 1 244 0.323 2 323 0 407 5 23 1 252 0.299 2 594 0 404 5 17 8 000 0.299 2 594 0 404 5 17 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.60 FEET UPSTREAM OF NODE 5007.30 j I DOWNSTREAM DEPTH = 0.653 FEET, UPSTREAM CONJUGATE DEPTH = 0.112 FEET | NODE 5007.40 : HGL = < 278.919>;EGL= < 279.024>;FLOWLINE= < 278.620> ****************************************************************************** FLOW PROCESS FROM NODE 5007.40 TO NODE 5007.40 IS CODE = 8 UPSTREAM NODE 5007.40 ELEVATION = 278.62 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.65 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.59 FEET/SEC. VELOCITY HEAD = 0.105 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.105) = 0.021 NODE 5007.40 : HGL = < 279.045>;EGL= < 279.045>;FLOWLINE= < 278.620> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5007.40 FLOWLINE ELEVATION = 278.62 ASSUMED UPSTREAM CONTROL HGL = 278.92 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS