Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 02-19; BRESSI RANCHPA 11; DRAINAGE REPORT; 2004-06-01
DRAINAGE REPORT FOR BRESSI RANCH RESIDENTIAL PLANNING AREA 11 CARLSBAD, CALIFORNIA JUNE 2004 Prepared For: LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 PROJECTDESIGN CONSULTANTS PIANNING • Em'XRONMEffTAi • ENGINEERING • SVRVEY/GPS 701 B Street, Suite 800, San Diego, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 24i Gregof^y-M. Shields Registration Expires RCE 42951 03/31/06 Prepared by: RI Checked by: MW TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 PROJECT DRAINAGE BACKGROUND: MASS GRADING, AND PROPOSED CONDITION HYDROLOGY 3 2.1 Existing Condition Hydrology 4 2.2 Mass Grading Hydrology 4 2.3 Proposed Condition Hydrology 5 3.0 HYDROLOGY CRITERIA AND METHODOLOGY 5 3.1 Hydrology Criteria 5 3.2 Hydrology Methodology 6 3.3 Explanation of AES Rational Method Software 6 4.0 HYDROLOGY ANALYSIS RESULTS 8 5.0 HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS 8 5.1 Hydraulic Criteria and Methodology 9 5.2 Hydraulic Analysis Results 9 5.3 Explanation of the AES Pipeflow Hydraulic Software 9 6.0 CONCLUSION 10 FIGURES Page 1 Vicinity Map 2 TABLES Page 1 Hydrology Criteria 5 2 Existing Condition and Proposed Condition Hydrology Comparison 8 APPENDICES 1.0 lOO-year & 2-year: 6- and 24hr. Isopluvials Map 2.0 Proposed Conditions Rational Method Computer Output (lOO-year) 3.0 Proposed Conditions Rational Method Computer Output (2-year) 4.0 Roadside Ditch Rational Method Computer Output 5.0 Roadside Ditch Normal Depth Calculations i T:\WaterResources\2407.3-BressiResidential\PA-ll 3rd Final Submittal\Report\PAll-DR.doc 6.0 Type F Catch Basin & Curb Inlet Calculations 7.0 Pipeflow Computer Output 8.0 Pipe Velocities (2-year) 9.0 CDS Calculations EXHIBITS A Existing Conditions Hydrology Map B Proposed Conditions Hydrology Map C Proposed Conditions Pipeflow Node Number Map u T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAll-DR.doc 1.0 INTRODUCTION This drainage report has been prepared in support of the final engineering design of the storm drain improvements for Bressi Ranch Residential Planning Area 11 (Project). The overall Bressi Ranch development is located in the City of Carlsbad (City) and is bounded by: 1) Palomar Airport Road to the north, 2) future El Fuerte Street to the east, 3) El Camino Real to the west, and 4) Poinsettia Drive to the south. Within the Bressi Ranch development. Planning Area 11 is bounded by: 1) Greenhaven Drive to the east, 2) Planning Area 10 to the north, and 3) the offsite future La Costa Greens development project to the south and west. Refer to Figure 1: Vicinity Map, for the project location. In general, the Project is part of the Bressi Ranch master planned development consisting of 15 mixed-use planning areas (PA's). The PA's consist of residential, industrial, and commercial lots, open space and recreational area land use. The overall Bressi Ranch development will have been mass graded in preparation for the Project precise grading and construction of the PA-11 storm drain improvements. The mass grading will also include fmal design of the backbone storm drain system, temporary desilting basins and roadway improvements. The land uses for PA-11 consist of residential and open space area. The existing and proposed Project drainage pattems generally traverse the site southwesterly toward the La Costa Greens development. The land use associated with the La Costa Greens development adjacent to PA-11 is residential. From a regional drainage standpoint, storm drain laterals from the PA's convey Project storm runoff to the mass graded backbone storm drain system. These systems are identified in the approved drainage report prepared by ProjectDesign Consultants (PDC) titled "Drainage Report for Bressi Ranch Mass Grading (Mass Grading Report)", dated February 2003. PA-11 however does not drain into this backbone drainpipe system, but drains instead toward the adjacent La Costa Greens development currently under construction. The storm drain system will temporarily outlet to natural drainage. The adjacent development is currently in final engineering plan check, which proposes to construct storm drain facilities that will pick-up the drainage outflow from PA-11. The offsite storm drain construction is proposed to be completed 1 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAl 1-DR.doc MELROSE DRIVE POINSETTIA LANE Figure 1: Vicinity Map T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subniittal\Report\PAl 1 -DR.doc in Fall 2005. The Project storm water runoff will be treated per State NPDES construction and municipal storm water permit requirements. The post-construction BMPs for the Project were developed in conjunction with the overall Storm Water Management Plan (SWMP) dated September 2002. The water quality plan presented in the Residential TM SWMP consists of the following treatment control (structural) and source control BMPs: 1) Continuous Deflective Separation Units (CDS Units) at key backbone storm drain outfall locations as the main BMP for the project, 2) permanent landscaping, 3) good-housekeeping, and 4) education. Additional water quality benefits will be realized through the onsite parks, open space areas and grass lined roadside ditches. The construction phase BMPs will be addressed in the NPDES Storm Water Management Plan (SWPPP) for the project. The drainage analyses presented herein reflects a fmal engineering level-of-effort, which include: 1) lOO-year and 2-year storm event hydrologic analyses using pad, street grades and pipe invert elevations, and 2) lOO-year hydrologic analysis for sizing roadside ditches and catch basin capacities. Detailed hydraulic analysis of catch basins and storm drain hydraulic grade lines (HGL's). Therefore, the purpose ofthis report submittal is to acquire from the City: 1) approval ofthe proposed storm drain layout, 2) approval ofthe methodology used in the evaluation ofthe Project storm drain system hydrology and hydraulics. 2.0 PROJECT DRAINAGE BACKGROUND: MASS GRADING AND PROPOSED CONDITION HYDROLOGY This report provides Project ultimate condition lOO-year and 2-year storm flows for the design of the Project storm drain system. The flows then outlet to a natural condition with future storm drain in the La Costa Greens to be constructed which pick-up the flows generated by PA-11. The hydrology is based on the layout of the actual Project storm drain system, which in contrast to the mass grading hydrology, was based on a concept layout of the storm drain system. This approach is consistent with typical drainage practice, since final engineering drainage system 3 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAn-DR.doc layout was unknown prior to the first submittal of the Mass Grading Report. See Exhibit B for the proposed conditions hydrology map. From a regional drainage perspective, the PA-11 storm drains convey Project storm runoff to natural canyon watercourses along the southerly and westerly Project boundaries. The storm runoff ultimately drains to future La Costa Greens drainage improvements, which must be designed to accommodate the Project storm flows. The following sections address the existing and proposed condition hydrology. 2.1 Existing Condition Hydrology A key drainage design criterion for the overall Bressi Ranch development is storm runoff detention. Specifically, an existing and proposed conditions TM hydrology comparative analysis was performed to show that the majority of the Project storm runoff is diverted to the Bressi Ranch El Fuerte Street detention basin. From a regional standpoint, the Bressi Ranch storm runoff is detained back to existing conditions at this basin. The basin is located at the El Fuerte Street/Poinsettia Lane intersection (El Fuerte Basin). The design of the detention basin is included in the El Fuerte Street improvement and grading plans. The existing conditions analysis is contained in the PDC report, "Preliminary Drainage Report, Bressi Ranch, Planning Areas 1 Through 14 and Open Space 1 -6," dated March 2000, which was prepared for the approved Bressi Ranch Master TM. See Exhibit A for the existing conditions drainage map. 2.2 Mass Grading Hydrology The Project will be mass graded as part of the overall Bressi Ranch project (City Project No. CT 00-06). The drainage for the mass graded condition is addressed in the PDC "Drainage Report for Bressi Ranch Mass Grading," dated June 2002. The Mass Grading report provides: 1) mass graded condition 1 OO-year storm flows, and 2) ultimate condition 100-year storm flows within PA-11. 4 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subniittal\Report\PAll-DR.doc 2.3 Proposed Conditions Hydrology The hydrology analyses included herein are the ultimate condition hydrology calculations and reflects the current Project lot layout, roadway and storm drainpipe alignments. See Exhibit B for the proposed conditions hydrology drainage map. 3.0 HYDROLOGY CRITERIA AND METHODOLOGY 3.1 Hydrology Criteria This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. Also included is a description of the computer model used in the computations. Tabie 1: Hydrology Criteria Design Storm: lOO-year and 2-year, 6-hour storms. Land Use: Single-family residential & open space Runoff Coefficients: Based on criteria presented in the June 2003 County of San Diego Hydrology Manual. C=0.46 for single family residential and C=0.35 for open space lots and graded slopes. Hydrologic Soil Group: Soil Group 'D'. Intensity and Time of Concentration: Based on criteria presented in the June 2003 County of San Diego Hvdrologv Manual. See Appendix 1 for the Countv Isopluvials. Minimum Tc=6 minutes. T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAl 1-DR.doc 3.2 Hydrology Methodology The hydrology methodology for the Project is straightforward. The Modified Rational Method was used to determine the lOO-year and 2-year storm flows for the design of the storm drain improvements. The goal of the analysis was to: • Determine existing and design storm flows for the sizing of the intemal PA-11 storm drain system and storm drain laterals that discharge to La Costa Greens. Determine capacities of roadside ditches and catch basins. From an analytical perspective, the hydrology was prepared using lot, street, and pipe invert grades. • Verify that the project does not adversely impact the future La Costa Greens storm drain system. A comparative analysis was performed between the existing and TM hydrology storm runoffs at the project boundary. See Appendix 2, 3 and 4 for Project hydrology Rational Method computer output and Exhibits A and B for existing and proposed Project drainage maps. The Advanced Engineering Software (AES) Rational Method Program was used to perform the hydrologic calculations. The following section provides a brief explanation of the computational procedure used in the computer model. 3.3 Explanation of AES Rational Method Software The Advanced Engineering Software (AES) Rational Method Program was used to perform the hydrologic calculations. This section provides a brief explanation of the computational procedure used in the computer model. The AES Rational Method was used to determine the 100- and 2-year storm flows for the Project. The AES Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. The program has the capability of estimating conduit sizes to convey design storm flows, or the user may input specific conduit sizes and open channels. Soil types used in the model are based on hydrologic soil groups as 6 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAl I-DR.doc outlined in the Conservation Service's Soil Survey for San Diego County. The rainfall intensity distribution and runoff coefficients utilized by the program can be user-specified to be based on either the County of San Diego or the City of San Diego Drainage Design Manuals. Developing independent node link models for each interior watershed and linking these sub- models together at confluence points creates the node link model. The program allows up to five streams to confluence at a node. Stream entries must be made sequentially until all are entered. The program allows consideration of only one confluence at a time. The program has the capability of performing calculations for 17 hydrologic and hydraulic processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODE 1: CONFLUENCE analysis at node CODE 2: INITIAL sub area analysis CODE 3: PIPE/BOX travel time (COMPUTER estimated pipe/box size) CODE 4: PIPE/BOX travel time (USER specified pipe/box size) CODE 5: OPEN CHANNEL travel time CODE 6: STREET FLOW analysis through sub area, includes sub area runoff CODE 7: USER-SPECIFIED hydrology data at a node CODE 8: ADDITION of sub area runoff to MAIN-Stream CODE 9: V-GUTTER flow through sub area CODE 10: COPY MAIN-stream data onto memory BANK CODE 11: CONFLUENCE a memory BANK with the Mainstream memory CODE 12: CLEAR a memory BANK CODE 13: CLEAR the MAIN-stream CODE 14: COPY a memory BANK onto the Main-stream memory CODE 15: HYDROLOGIC data BANK storage ftinctions 7 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subniittal\Report\PAll-DR.doc CODE 16: USER-SPECIHED Source Flow at a node 4.0 HYDROLOGY ANALYSIS RESULTS In general the hydrology results presented herein were used to determine: 1) Project storm drain pipe sizes, 2) roadside ditch capacities, 3) catch basin capacities, 4) 2-year storm velocities, and 5) verify that detention is not required for the Project. Table 2 below provides a comparison of the existing and ultimate conditions storm flows for the Project. Table 2 indicates that the proposed lOO-year storm flows are less than existing conditions storm flows. Therefore, detention is not required for PA-11. This is due to the diversion of storm flow from the Project to the El Fuerte Basin, which was designed to acconmiodate the additional area and corresponding storm mnoff Table 2: Existing Condition and Ultimate Condition Hydrology Comparison Node Number EXISTING CONDITION PROPOSED CONDITION Node Number Q (CFS) A (ACRES) Q (CFS) A (ACRES) 601 68.9 46.5 30.6 18.9 501 39.7 25.4 12.0 4.4 TOTAL 108.6 71.9 42.6 23.3 See Appendix 2 for the proposed conditions Rational Method computer output. Also, see Exhibits A and B for the existing and proposed conditions drainage maps respectively. 5.0 HYDRAULIC CRITERIA, METHODOLOGY, AND RESULTS The following sections discuss the criteria and methodology employed in the hydraulic design of the storm drainage systems. Also included is a brief description of the computer software used in the analyses. T:\Water Resources\2407.3-Bressi ResidentialVPA-11 3rd Final Subniittal\Report\PAl I-DR.doc 5.1 Hydraulic Criteria and Methodology The hydraulic criterion for the design of the storm drain improvements is straightforward. The storm drainpipes were designed for the lOO-year storm event and open channel flow hydraulic conditions using Manning's equation. From a computer software perspective, the AES Rational Method Computer model, which uses Manning's equation for normal depth hydraulic calculations, was used to determine storm drainpipe sizes. Detailed analysis to determine hydraulic grade lines (HGL), hydraulic analyses for ditches, hydraulic analysis of catch basin inlets, and 2-year pipe velocities are also provided. 5.2 Hydraulic Analysis Results The storm drain improvements for the Project generally consist of a series of storm drainpipes and catch basin inlets that convey Project runoff offsite to the existing natural drainage courses tributary to the future La Costa Greens project. The proposed La Costa Green project storm drain improvements will need to accommodate the proposed storm flows from PA-11. 5.3 Explanation of the AES Pipeflow Hydraulic Software The AES Pipeflow model was used to determine the hydraulic grade line for the storm drainpipe improvements for this project. The AES computational procedure is based on solving BrnouUi's equation for the total energy at each section; and Manning's formula for the friction loss between the sections in each computational reach. Confluences are analyzed using pressure and momentum theory. In addition, the program uses basic mathematical and hydraulic principals to calculate data such as cross sectional area, velocity, wetted perimeter, normal depth, critical depth, and pressure and momentum. Model input basically includes storm drain facility geometry, inverts, lengths, confluence angles, and downstream/upstream boundary conditions, i.e., initial water surface elevations. The code numbers and their meanings are as follows: 9 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final SubmittaI\Report\PAl 1-DR.doc CODE 0: ENTER comments CODE 1: FRICTION losses CODE 2: MANHOLE losses CODE 3: PIPE-BEND losses CODE 4: SUDDEN PIPE enlargement CODE 5: JUNCTION losses CODE 6: ANGLE-POINT losses CODE 7: SUDDEN PIPE reduction CODE 8: CATCH BASIN entrance losses CODE 9: TRANSITION losses 6.0 CONCLUSION This drainage report supports the final engineering level of the proposed storm drain improvements associated with Bressi Ranch for Residential Planning Area 11 (Project). The overall Bressi Ranch development is located in the City of Carlsbad (City) and is bounded Palomar Airport Road to the north, future El Fuerte Street to the east. El Camino Real to the west, and Poinsettia Drive to the south. Within the Bressi Ranch development. Planning Area 11 is bounded by Greenhaven Drive to the east. Planning Area 10 to the north, and the offsite La Costa Greens development project to the south and west. Refer to Figure 1: Vicinity Map, for the project location. Included in this report are detailed storm drain analysis to determine hydraulic grade lines (HGL), hydraulic analyses for catch basin inlet capacity, roadside ditches capacity, and 2-year pipe velocities. Therefore, the purpose of this report submittal is to acquire from the City: 1) concept approval ofthe proposed storm drain layout, and 2) approval ofthe methodology used in the evaluation ofthe Project storm drain systems hydrology. Based on the results ofthe hydrology analysis, detention is not required for PA-11. 10 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAl 1-DR.doc The Project will meet State NPDES constmction and municipal storm water permit requirements. The post-construction BMPs for the Project are currently being developed in conjunction with the overall Storm Water Management Plan (SWMP) for Bressi Ranch. The SWMP was provided as a part of the approved master Tentative Map submittal. The final post- construction BMP design includes CDS units at key down-drain locations to the natural canyons located along the southerly and -westerly boundaries ofthe Project. Additionally the construction phase BMPs associated with the Project will be addressed in the Grading and Erosion Control Plans and the SWPPP. 11 T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\PAl 1-DR.doc APPENDIX 1 100-YEAR & 2-YEAR 6 & 24-hr ISOPLUVIALS T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\Appendix.doc Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are inciuded in the County Hydrology Manual (10,50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% lo 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side ofthe chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency 10J?_ year (b) Pe=2.80 in.,Pg,=5.10 ,-- = 56__%(2) (c) AdjustedPe<2) = 2.>0in. (d) tj5 = . min. (e) I = in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. p?. .. '.^ V"' Xii' .-„.. ""is" ........ 3.S 4 4.5 5 , 5.5 "6" biiiaHon _..„. ........ ..... .......... ^. ""! i 1 1 "r"" 5 2.S3 3.9S 5.27 6.S9 7.90 9.22 10.541 11.86113.17 14.49 15.81 ... "2.1Z 3.T8 4.24 5.30 6.36 7.42 8.48 9.64 10.60 11.66 12.72 10 1.68 2.53 3.37 4.21 5.0S 5.90 6.74 IW "8.42 '9.27' 10.11 IS "l.30" 1.95 "jT'sB ~xiA 3;89 "isi 's.i9 5.84 6149 7713' '7.'78 2b IM' T.62 2,15 '2.69 3.23" 3.77 "4.31" 4:85~ 5.39' TW •6.'46 '0.03 i.40 i.87 2.80 3.27 3.73 4.20 "W "5.T3" "5.6O "To "0.83 '1.24 TM zM •2.49 2!go 3.32 '3:73 4.is •4."56" 4."98 0.59 T63 "lis '1.72 2.07 2;4i" ~2J6 "aio •3.4s 3.79' 50 0.60 0.90 "1719 1.49 1:79 2'M '2.3i3 2.69 "2:98 3728 3.58 "m KS3 0.80 Toe "V33 T.59 "1.86 "•£12 2"39 "2.65 • ""2.'92 '"3.'i'a 90 OAi 6.61 o.ei T62 "lis 'i.43' i."63 i:84 2.04 2,25 2.4s 120 0.34' osi OM 0.65 i:i"9' "1.36" "lis' '170 2.04 150 0.29' 0.44 67s3 073" 0.88 i'oa i.W 1:32" "i.47 i762 "lT76 iao 0.26 0.39 0.52 oles' "678 6.9T 1.04 "ilis 1.31 i'.'44' ifsf 240 "o'zz" 6133 6.43 "6.64' 6.65 6.76 6.87 6.98 i.OiB' 1.19 "1736 300 0.28 0.38 0.47 0.56 0.66j 0.75 d:85 6.94" "Cos" "1.13 380 0.17 6.25 a33 '0.42 6I56 o'ss b;67 d.'75 "6.84" 0.92" "i.66" F 1 G U R E Intensity-Duration Design Chart - Template HazMat/County Hydrogeology Manual/lnt_Dur Design Chart.FHS Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included In the County Hydrology Manual (10,50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is wilhin the range of 45% lo 65% of the 24 hr precipitation (nol applicaple to Desert). (3) Plot 6 hr precipitation on the right side ofthe chart. (4) Draw a line Ihrough the poinl parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. '24 = 68 %(2) Application Form: (a) Selected frequency year (b) Pg = tJA in.. P24 =2_i00 .- (c) Adjusted Pg^^) = LA^ in. (d) t^ = . min. (e) I = ln./hr. Nole: This chart replaces the Intensily-Duration-Frequency curves used since 1965. .......... "1.3 "2 • "i's" ,3.5 4 4.5 .....5..,, .:5.£. ' 6 " buiaiildn .... .. . .. ....... "f ...... ""1 i "" 1 1 T" s 2.63 3.9S 5.27 6.59 7.90 9.22 10.54 11.86 13.17 14.49 15.61 7 2.12 3.18 4.24 5.30 6.36 •7.'42 8"48"' "9:54 "ioieo "11.66 12.72 10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 IS 1.30 1.95 2.59 3.24 "sisg '4.54 "'slisi 5.M 6.49 7713 "7.78 Jj, "iW i.62 "27i'5 "2."69"" -3:23 3.77 4.31 4.8S 5.39 '"•5.93 76.46' "0I93 i.'4"6 i.'8"7 2780 3.27 3."73" ~4J6 "4.67" 6 13' "Ceo o.'e3 1.24 1.66' ._ '2.49 "2,90 3:32" "373 "4.i5 '4."B6" '4."98" 40 0.69" iSs i7i38 1.72" 2.07 "2.76 "s.ib 3.45 3.79" "4:13 SO 6."66 6.96 "l7l9 i.'49 179 "2.6"9" '2."39 '2.69 "2.98" 3"28 3.68" 60 6.53 6.86 1.08 "1:33 V.59 1.86 "2J'2 "2!'39' "2".'65" '"2.92" 's.ia 90 '6.41' 6.61 a82 "1.62 "1.23 'i.43" i:"63" "1.84 2.04 2.25 2.45 120 0.34 6.'5i 6.68 6.85 i.62 1A9 "i.36" 1.53 i.76 i.87' "'2.64' 'iso oW 6.44 6.59 6.73 ass Tm 1.18 i:32" i.47 1.62 '176 180 0.26 0.39 0.52 'dita 078 0.91 1.04 "i.i8 1.3f i.44 "1.57 • 240' 653 6.43 "6.54~l 6.76" 6.87 'OM i.69 i.i9 "ilso 300 0.19 0.26 0.38 0.47 0.56 6.66 0.75 6.85 6.94 1.03"" "1.13 360 0.17 0.25 "6733 0'42' 656 "6.68 6:75 "6 "84 6792 1.00 FIGURE Intensity-Duration Design Chart • Template HazMal/Counly Hydrogeology Manual/lnt.Dur Oesign Chart.FHS / Orartge CotBUy , Riverside County 1 ..^ 1 San m-ano Coti-Hi,ty " ""4.0—,^ "15.^ \ 4.0 ,'--4 5, \ \ \\ \ ^\ \ \ \ PaloifBrvMauntjiti^J ,' \ N. \ \ \ \ \ \ _. / ^mj^a^ \ \ \ 3-S X '•^' 3,0 County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event - 6 Hours /V Isopluvial (inches) Map Notes Siaeplane Prqecd'on, Zone6, NAD83 Creatioh Date: June 22,2001 NOTTO BE USED FOR DESIGN C/\LCULATIONS MILES 7.S a/ne '-77 12.0 /1/'^<.. • /''/ ''^-^ / /// / ifieusi /' y Riverside County r. A^L4/ XKN .'3 ^^----/'--'-.-' \V\\ //\\ \ ','5'. W ^ ^^,-r.'-^x^^ xvii \ \ \7.6 \ \ --.,>^J \ V \ '«> 5.5 C O ' ^ Z:>^~. /"OO \ wx^^-.^-j^ —-''/'."r-'--,4.0 '—~JN> "^""^-^^ \ \ \ \_ V. y \ \ \ TQu^ \ X^ 7/ 10.6/'".:X'^ 8.6- ,,'/ JT^X ^ ! '' /i2.'o''' \\1 \ / ' > / Jy » \ * ^ /I* V \ \ » Couniy of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event - 24 Hours /V' Isqsluvial (Inches) Map Notes stateplane Prqedioii, Zone6. NAD83 Creation Date: Jime 22,2001 NOTTO BE USED FOR DESIGN C/^ULATIONS MLES 7.5 ^]/ciily_b]r(iio^>k)tii/!Gssnli/bity.3niI Orange Courity Riverside County \ San DVSJJO ColAHy 1.8 --IB- 2.0 '"Z.2 Palon^-Mguraajfr" \j) x?-?^/ ^fT^rx \\\ \\ i \ \ Iguana ^A e X /gisIA3ity_|^^<)ro^plolK/agaiTils/cmy^ County of San Diego Hydrology Manual Rainfall Isopluvials 2 Year Rainfall Event - 6 Hours /'V' Isopluvial (inches) Map Notes Stateplane Prelection, Zone6, NAD83 Creation Date: Ji^ 22,2001 NOT TO BE USED FOR DESIGN CALCULATIONS MLES 7.5 amecP Riverside County ^^3.6'-"^'-/ ^^o>s\ \ ^TLCXJATI \( ^-^^\ \ \\\\\\W\\\ Tri X > \i. N.VXX M ""X„ V."' i.<>----iKX_ Sai^-T^'^" \ X ^~-T?=' V > TP / sMilhtjcJ I t- «-5C^ To. \ \ '-Xlu 2.0 ^^ » Ky / f' J' •' \ ( \ \ \ \\\ \ ^^ ""'B -"-Js-iigua CaserneSp^ ^/ ^-"-") i fes- \ i \ V, ./r-\%ix;<:x-7"i i N \-- - .2=' i \ >. -."-N i \ -Kx\V-- /..-- V . -' ts lover Qjnf >,—- III'/ ' ..^ ^ llll/ I / ^ . ^;^^r^3nos/BaJaCaWon,« County of San Diego Hydrology Manual Rainfall Isopluvials 2 Year Rainfall Event - 24 Hours Isopluvial (inches) Map Notes Stateplane Pn^ectioa Zones, NA083 Cfe^on Date: .Ame 22,2001 NOTTO BE USED FOR DESIGN C/\LCULAT10NS MLES 7.S APPENDIX 2 PROPOSED CONDITIONS RATIONAL METHOD COMPUTER OUTPUT (lOO-YEAR) T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subniittal\Report\Appendix.doc ***************************** *********************************************** FiATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * DEVELOPED CONDITIONS * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 13-100.DAT TIME/DATE OF STUDY: 15:29 05/05/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 I INITIAL SUBAREA FLOW-LENGTH(FEET) = 323.00 UPSTREAM ELEVATION(FEET) = 312.00 DOWNSTREAM ELEVATION(FEET) = 3 09.00 ELEVATION DIFFERENCE(FEET) = 3.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.676 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.15 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.819 SUBAREA RUNOFF(CFS) = 2.22 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.22 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 306.00 DOWNSTREAM(FEET) = 301.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL SLOPE = 0.0101 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.115 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.53 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.85 AVEFIAGE FLOW DEPTH (FEET) = 0.77 TRAVEL TIME (MIN.) = 2.69 Tc(MIN.) = 12.36 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 6.61 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 8.50 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.93 FLOW VELOCITY(FEET/SEC.) = 3.21 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 783.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< t*************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 167.00 UPSTREAM ELEVATION(FEET) = 311.20 DOWNSTREAM ELEVATION{FEET) = 309.50 ELEVATION DIFFERENCE(FEET) = 1.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.600 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.27 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.844 SUBAREA RUNOFF(CFS) = 2.21 TOTAL AREA(ACRES) = 0.99 TOTAL RUNOFF(CFS) = 2.21 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 307.20 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 587.00 CHANNEL SLOPE CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.904 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.66 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = Tc(MIN.) = 13.41 SUBAREA AREA(ACRES) = 1.61 AREA-AVERAGE RUNOFF COEFFICIENT = TOTAL AREA(ACRES) = 2.60 0.63 TRAVEL TIME(MIN.) = 2.57 3.81 301.34 0.0100 SUBAREA RUNOFF(CFS) = 0.460 PEAK FLOW RATE(CFS) = 2.89 4.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.71 FLOW VELOCITY(FEET/SEC.) = 2.74 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 125.00 = 754.00 FEET. ************************************************************* FLOW PROCESS FROM NODE 125.00 TO NODE 275.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 288.54 DOWNSTREAM(FEET) = 287.04 FLOW LENGTH(FEET) = 7.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.67 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.42 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 275.00 = 761.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 UPSTREAM ELEVATION(FEET) = 340.00 DOWNSTREAM ELEVATION(FEET) = 328.50 ELEVATION DIFFERENCE(FEET) = 11.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.063 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.904 SUBAREA RUNOFF(CFS) = 2.66 TOTAL AREA(ACRES) = 0.98 TOTAL RUNOFF(CFS) = 2.66 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 303.78 CHANNEL LENGTH THRU SUBAREA(FEET) = 505.00 CHANNEL SLOPE = 0.0321 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.050 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.35 AVERAGE FLOW DEPTH(FEET) = 0.57 TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 9.00 SUBAREA AREA(ACRES) = 2.24 SUBAREA RUNOFF(CFS) = 5.20 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 3.22 PEAK FLOW RATE(CFS) = 7.48 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.67 FLOW VELOCITY(FEET/SEC.) = 4.79 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 155.00 = 770.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 155.00 TO NODE 270.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 295.29 DOWNSTREAM(FEET) = 289.21 FLOW LENGTH(FEET) = 28.36 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.48 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.02 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 270.00 = 798.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 270.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.02 RAINFALL INTENSITY(INCH/HR) = 5.04 TOTAL STREAM AREA(ACRES) = 3.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.48 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 345.00 DOWNSTREAM ELEVATION(FEET) = 312.00 ELEVATION DIFFERENCE(FEET) = 33.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.064 SUBAREA RUNOFF(CFS) = 1.27 TOTAL AREA(ACRES) = 0.39 TOTAL RUNOFF(CFS) = 1.27 **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 140.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 310.00 DOWNSTREAM(FEET) = 303.39 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0220 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.041 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.57 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.41 AVERAGE FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 6.82 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 4.59 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.64 FLOW VELOCITY(FEET/SEC.) = 3.85 LONGEST FLOWPATH FROM NODE 13 0.00 TO NODE 140.00 = 530.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 270.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 292.84 DOWNSTREAM(FEET) = 291.33 FLOW LENGTH(FEET) = 6.05 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.35 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.67 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 6.82 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 270.00 = 536.05 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 270.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.82 RAINFALL INTENSITY(INCH/HR) = 6.04 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.67 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.48 9.02 5.041 3.22 2 5.67 6.82 6.038 2.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.32 6.82 6.038 2 12.21 9.02 5.041 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.21 Tc(MIM.) = 9.02 TOTAL AREA(ACRES) = 5.26 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 270.00 = 798.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 275.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 291.00 DOWNSTREAM(FEET) = 287.04 FLOW LENGTH(FEET) = 241.07 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.00 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.21 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 9.52 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 275.00 = 1039.43 FEET. **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.21 9.52 4.868 5.26 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 275.00 = 1039.43 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.67 13.42 3.902 2.60 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 275.00 = 761.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 15.53 9.52 4.868 2 14.46 13.42 3.902 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.53 Tc(MIN.) = 9.52 TOTAL AREA(ACRES) = 7.86 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 110.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 285.87 DOWNSTREAM(FEET) = 285.31 FLOW LENGTH(FEET) = 22.98 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.53 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 9.56 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 110.00 = 1062.41 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 15.53 9.56 4.856 7.86 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 110.00 = 1062.41 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.50 12.36 4.115 4.49 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 783.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 22.10 9.56 4.856 2 21.66 12.36 4.115 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.10 Tc(MIN.) = 9.56 TOTAL AREA(ACRES) = 12.35 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 265.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 284.98 DOWNSTREAM(FEET) = 282.81 FLOW LENGTH(FEET) = 217.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.93 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.10 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 10.02 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 265.00 = 1279.42 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 262.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 282.48 DOWNSTREAM(FEET) = 256.05 FLOW LENGTH(FEET) = 103.47 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 26.99 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.10 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 10.08 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 262.00 = 1382.89 FEET. Jt*************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 192.00 TO NODE 193.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 171.00 UPSTREAM ELEVATION(FEET) = 321.43 DOWNSTREAM ELEVATION(FEET) = 313.66 ELEVATION DIFFERENCE(FEET) = 7.77 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.956 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.962 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.41 **************************************************************************** FLOW PROCESS FROM NODE 193.00 TO NODE 194.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TFIAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 303.45 FLOW LENGTH(FEET) = 25.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.55 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.41 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 7.08 LONGEST FLOWPATH FROM NODE 192.00 TO NODE 194.00 = 196.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 194.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.08 RAINFALL INTENSITY(INCH/HR) = 5.90 TOTAL STREAM AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.41 **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 255.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 352.80 DOWNSTREAM ELEVATION(FEET) = 3 51.50 ELEVATION DIFFERENCE(FEET) = 1.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.106 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 52.61 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.686 SUBAREA RUNOFF(CFS) = 0.71 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) = 0.71 **************************************************************************** FLOW PROCESS FROM NODE 255.00 TO NODE 260.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 351.50 DOWNSTREAM(FEET) = 313.66 CHANNEL LENGTH THRU SUBAREA(FEET) = 862.00 CHANNEL SLOPE = 0.0439 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.780 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.73 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.59 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 4.00 Tc(MIN.) = 14.10 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.02 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 1.49 PEAK FLOW RATE(CFS) = 2.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 4.04 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 260.00 = 1092.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 194.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStTRE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 303.45 FLOW LENGTH(FEET) = 5.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.48 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.59 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 14.11 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 194.00 = 1097.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 194.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.11 RAINFALL INTENSITY(INCH/HR) = 3.78 TOTAL STREAM AREA(ACRES) = 1.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.59 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.41 7.08 5.897 0.15 2 2.59 14.11 3.778 1.49 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.71 7.08 5.897 2 2.85 14.11 3.778 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.85 Tc(MIN.) = 14.11 TOTAL AREA(ACRES) = 1.64 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 194.00 = 1097.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 185.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 303.12 DOWNSTREAM(FEET) = 300.80 FLOW LENGTH(FEET) = 235.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.85 PIPE TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 14.94 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 185.00 = 1332.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 185.00 TO NODE 187.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 300.80 DOWNSTREAM(FEET) = 298.30 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.77 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.85 PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 15.81 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 187.00 = 1582.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 309.90 DOWNSTREAM ELEVATION(FEET) = 308.00 ELEVATION DIFFERENCE(FEET) = 1.90 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.638 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.831 SUBAREA RUNOFF(CFS) = 1.22 TOTAL AREA(ACRES) = 0.55 TOTAL RUNOFF(CFS) = 1.22 **************************************************************************** FLOW PROCESS FROM NODE 180.00 TO NODE 170.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 303.21 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 433.00 CHANNEL SLOPE = 0.0093 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.03 0 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.034 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.77 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.32 AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 3.11 Tc(MIN.) = 12.75 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 3.08 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 4.10 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.68 FLOW VELOCITY(FEET/SEC.) = 2.58 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 170.00 = 623.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.75 RAINFALL INTENSITY(INCH/HR) = 4.03 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.10 **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 165.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 245.00 UPSTREAM ELEVATION(FEET) = 316.50 DOWNSTREAM ELEVATION(FEET) = 314.00 ELEVATION DIFFERENCE(FEET) = 2.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.595 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.31 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.845 SUBAREA RUNOFF(CFS) = 1.67 TOTAL AREA(ACRES) = 0.75 TOTAL RUNOFF(CFS) = 1.67 **************************************************************************** FLOW PROCESS FROM NODE 165.00 TO NODE 170.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 345.00 CHANNEL SLOPE = 0.0255 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.388 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.59 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.60 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 11.19 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.83 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.65 PEAK FLOW RATE(CFS) = 5.35 END OF SUBAREA CHAJSINEL FLOW HYDRAULICS: DEPTH(FEET) = 0.61 FLOW VELOCITY(FEET/SEC.) = 3.99 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 170.00 = 590.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.19 RAINFALL INTENSITY(INCH/HR) = 4.3 9 TOTAL STREAM AREA(ACRES) = 2.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.35 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.10 12.75 4.034 2.21 2 5.35 11.19 4.388 2.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.95 11.19 4.388 2 9.02 12.75 4.034 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.02 Tc(MIN.) = 12.75 TOTAL AREA(ACRES) = 4.86 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 170.00 = 623.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 187.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 2 99.40 DOWNSTREAM(FEET) = 298.30 FLOW LENGTH(FEET) = 109.14 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.02 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 13.04 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 187.00 = 732.14 FEET. **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.02 13.04 3.976 4.86 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 187.00 = 732.14 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.85 15.81 3.511 1.64 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 187.00 = 1582.60 FEET. ** PEAK FLOW flATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.37 13.04 3.976 2 10.82 15.81 3.511 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.37 Tc(MIN.) = 13.04 TOTAL AREA(ACRES) = 6.50 **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 188.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 298.00 DOWNSTREAM(FEET) = 295.00 FLOW LENGTH(FEET) = 162.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.37 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 13.36 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 188.00 = 1744.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 188.00 TO NODE 262.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 294.50 DOWNSTREAM(FEET) = 256.05 FLOW LENGTH(FEET) = 192.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.66 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.37 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 13.52 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 262.00 = 1936.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.37 13.52 3.885 6.50 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 262.00 = 1936.60 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 22.10 10.08 4.693 12.35 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 262.00 = 1382.89 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 30.59 10.08 4.693 2 29.67 13.52 3.885 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.59 Tc(MIN.) = 10.08 TOTAL AREA(ACRES) = 18.85 **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 «<« **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 280.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 256.05 DOWNSTREAM(FEET) = 249.51 FLOW LENGTH(FEET) = 516.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.20 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.59 PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 11.02 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 280.00 = 2452.60 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 18.85 TC(MIN.) = 11.02 PEAK FLOW RATE(CFS) = 30.59 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407-BRESSI RANCH PA-11 * * DEVELOPED CONDITIONS * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 14-100.DAT TIME/DATE OF STUDY: 10:19 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 190.00 TO NODE 195.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 320.00 DOWNSTREAM ELEVATION(FEET) = 288.00 ELEVATION DIFFERENCE(FEET) = 32.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.064 SUBAREA RUNOFF(CFS) = 2.73 TOTAL AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) = 2.73 **************************************************************************** FLOW PROCESS FROM NODE 195.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 277.75 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = 0.0535 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.415 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.44 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.99 AVERAGE FLOW DEPTH(FEET) = 0.47 TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 6.21 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 5.40 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) = 7.88 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.56 FLOW VELOCITY(FEET/SEC.) = 6.64 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 215.00 = 505.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.21 RAINFALL INTENSITY(INCH/HR) = 6.42 TOTAL STREAM AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.88 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 225.00 UPSTREAM ELEVATION(FEET) = 280.15 DOWNSTREAM ELEVATION(FEET) = 263.00 ELEVATION DIFFERENCE(FEET) = 17.15 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.854 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.664 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 1.04 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.00 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = 0.0167 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.210 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.71 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 6.53 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.54 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) = 1.51 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 2.82 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 215.00 = 335.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.53 RAINFALL INTENSITY(INCH/HR) = 6.21 TOTAL STREAM AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.51 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.88 6.21 6.415 2.67 2 1.51 6.53 6.210 0.53 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.32 6.21 6.415 2 9.14 6.53 6.210 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.32 Tc(MIN.) = 6.21 TOTAL AREA(ACRES) = 3.20 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 215.00 = 505.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 200.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 255.78 DOWNSTREAM(FEET) = 255.33 FLOW LENGTH(FEET) = 9.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.79 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.32 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 6.22 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 = 514.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 10 >MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< »>> **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 225.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 620.00 UPSTREAM ELEVATION(FEET) = 308.74 DOWNSTREAM ELEVATION(FEET) = 263.54 ELEVATION DIFFERENCE(FEET) = 45.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.942 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.600 SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 0.29 TOTAL RUNOFF(CFS) = 0.88 **************************************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.54 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00 CHANNEL SLOPE = 0.0227 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.88 FLOW VELOCITY(FEET/SEC.) = 2.68 FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 6.59 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 230.00 = 725.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTFlATION(MIN. ) = 6.59 RAINFALL INTENSITY(INCH/HR) = 6.17 TOTAL STREAM AREA(ACRES) = 0.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.88 **************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 240.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 305.00 UPSTREAM ELEVATION(FEET) = 280.15 DOWNSTREAM ELEVATION(FEET) = 268.00 ELEVATION DIFFERENCE(FEET) = 12.15 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.796 SUBAREA RUNOFF(CFS) = 1.63 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 1.63 **************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 230.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0912 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.684 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.06 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.58 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.49 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.86 AREA-AVEflAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) = 2.46 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.27 FLOW VELOCITY(FEET/SEC.) = 5.91 LONGEST FLOWPATH FROM NODE 235.00 TO NODE 230.00 = 380.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.49 RAINFALL INTENSITY(INCH/HR) = 5.68 TOTAL STREAM AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.46 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.88 6.59 6.171 0.29 2 2.46 7.49 5.684 0.94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.04 6.59 6.171 2 3.27 7.49 5.684 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.27 Tc(MIN.) = 7.49 TOTAL AREA(ACRES) = 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 230.00 = 725.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 200.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 256.73 DOWNSTREAM(FEET) = 255.33 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.72 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.27 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.55 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 200.00 = 754.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.27 7.55 5.657 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 200.00 = 754.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.32 6.22 6.407 3.20 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 = 514.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 12.01 6.22 6.407 2 11.50 7.55 5.657 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.01 Tc(MIN.) = 6.22 TOTAL AREA(ACRES) = 4.43 **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 285.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 255.00 DOWNSTREAM(FEET) = 253.67 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.74 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.01 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 6.56 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 285.00 = 889.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 287.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 252.83 DOWNSTREAM(FEET) = 242.25 FLOW LENGTH(FEET) = 230.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.16 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.01 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 6.87 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 287.00 = 1119.95 FEET. **************************************************************************** FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 241.92 DOWNSTREAM(FEET) = 234.34 FLOW LENGTH(FEET) = 111.46 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES ' PIPE-FLOW VELOCITY(FEET/SEC.) = 14.12 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.01 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.00 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 290.00 = 1231.41 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.43 TC(MIN.) = 7.00 PEAK FLOW RATE(CFS) = 12.01 END OF RATIONAL METHOD ANALYSIS APPENDIX 3 PROPOSED CONDITIONS RATIONAL METHOD COMPUTER OUTPUT (2-YEAR) T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\Appendix.doc I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * DEVELOPED CONDITIONS * * 2-YEAR STORM EVENT * ************************************************************************** FILE NAME: 13-2.DAT TIME/DATE OF STUDY: 08:38 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 2.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.350 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RIMOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 323.00 UPSTREAM ELEVATION(FEET) = 312.00 DOWNSTREAM ELEVATION(FEET) = 309.00 ELEVATION DIFFERENCE(FEET) = 3.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.676 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.15 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.324 SUBAREA RUNOFF(CFS) = 1.07 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.07 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 306.00 DOWNSTREAM(FEET) = 301.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL SLOPE = 0.0101 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.927 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.62 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.3 6 AVERAGE FLOW DEPTH(FEET) = 0.54 TRAVEL TIME(MIN.) = 3.25 Tc(MIN.) = 12.93 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 3.09 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 3.98 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.65 FLOW VELOCITY(FEET/SEC.) = 2.64 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 783.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 167.00 UPSTREAM ELEVATION(FEET) = 311.20 DOWNSTREAM ELEVATION(FEET) = 309.50 ELEVATION DIFFERENCE(FEET) = 1.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.600 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.27 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.335 SUBAREA RUNOFF(CFS) = 1.06 TOTAL AREA(ACRES) = 0.99 TOTAL RUNOFF(CFS) = 1.06 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 3 07.20 DOWNSTREAM(FEET) = 301.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 587.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.810 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.74 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.10 AVERAGE FLOW DEPTH(FEET) = 0.44 TRAVEL TIME(MIN.) = 4.65 Tc(MIN.) = 14.25 SUBAREA AREA(ACRES) = 1.61 SUBAREA RUNOFF(CFS) = 1.34 AREA-AVEFIAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 2.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 2.22 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 125.00 = 754.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 275.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 288.54 DOWNSTREAM(FEET) = 287.04 FLOW LENGTH(FEET) = 7.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.09 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.16 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 14.26 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 275.00 = 761.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 UPSTREAM ELEVATION(FEET) = 340.00 DOWNSTREAM ELEVATION(FEET) = 328.50 ELEVATION DIFFERENCE(FEET) = 11.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.063 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.846 SUBAREA RUNOFF(CFS) = 1.28 TOTAL AREA(ACRES) = 0.98 TOTAL RUNOFF(CFS) = 1.28 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 303.78 CHANNEL LENGTH THRU SUBAREA(FEET) = 505.00 CHANNEL SLOPE = 0.0321 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.3 62 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.50 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.56 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 2.37 Tc(MIN.) = 9.43 SUBAREA AREA(ACRES) = 2.24 SUBAREA RUNOFF(CFS) = 2.43 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 3.22 PEAK FLOW RATE(CFS) = 3.50 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 3.93 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 155.00 = 770.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 155.00 TO NODE 270.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 295.29 DOWNSTREAM(FEET) = 289.21 FLOW LENGTH(FEET) = 28.36 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW 'VELOCITY(FEET/SEC.) = 15.08 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.50 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.46 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 270.00 = 798.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 270.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.46 RAINFALL INTENSITY(INCH/HR) = 2.36 TOTAL STREAM AREA(ACRES) = 3.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.50 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 345.00 DOWNSTREAM ELEVATION(FEET) = 312.00 ELEVATION DIFFERENCE(FEET) = 33.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.406 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 0.3 9 TOTAL RUNOFF(CFS) = 0.61 **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 140.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 310.00 DOWNSTREAM(FEET) = 303.39 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0220 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY{INCH/HOUR) = 2.828 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.69 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.80 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) = 7.14 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 2.15 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 2.65 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 3.15 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 140.00 = 530.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 270.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 292.84 DOWNSTREAM(FEET) = 291.33 FLOW LENGTH(FEET) = 6.05 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.67 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.65 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.14 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 270.00 = 536.05 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 270.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.14 RAINFALL INTENSITY(INCH/HR) = 2.83 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.65 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.50 9.46 2.357 3.22 2 2.65 7.14 2.826 2.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.30 7.14 2.826 2 5.71 9.46 2.357 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.71 Tc(MIN.) = 9.46 TOTAL AREA(ACRES) = 5.26 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 270.00 = 798.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 275.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 291.00 DOWNSTREAM(FEET) = 287.04 FLOW LENGTH(FEET) = 241.07 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.88 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.71 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 10.05 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 275.00 = 1039.43 FEET. **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.71 10.05 2.268 5.26 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 275.00 = 1039.43 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.16 14.26 1.809 2.60 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 275.00 = 761.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.24 10.05 2.268 2 6.72 14.26 1.809 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.24 Tc(MIN.) = 10.05 TOTAL AREA(ACRES) = 7.86 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 275.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 110.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 285.87 DOWNSTREAM(FEET) = 285.31 FLOW LENGTH(FEET) = 22.98 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.46 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.24 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 10.09 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 110.00 = 1062.41 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.24 10.09 2.261 7.86 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 110.00 = 1062.41 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.98 12.93 1.927 4.49 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 783.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.34 10.09 2.261 2 10.15 12.93 1.927 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.34 Tc(MIN.) = 10.09 TOTAL AREA(ACRES) = 12.35 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 12 >»»CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 265.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 284.98 DOWNSTREAM(FEET) = 282.81 FLOW LENGTH(FEET) = 217.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.59 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.34 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) = 10.64 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 265.00 = 1279.42 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 262.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 282.48 DOWNSTREAM(FEET) = 256.05 FLOW LENGTH(FEET) = 103.47 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.96 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.34 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.72 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 262.00 = 1382.89 FEET. **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 «<« **************************************************************************** FLOW PROCESS FROM NODE 192.00 TO NODE 193.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 171.00 UPSTREAM ELEVATION(FEET) = 321.43 DOWNSTREAM ELEVATION(FEET) = 313.66 ELEVATION DIFFERENCE(FEET) = 7.77 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.956 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.875 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 193.00 TO NODE 194.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 303.45 FLOW LENGTH(FEET) = 25.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.20 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 7.11 LONGEST FLOWPATH FROM NODE 192.00 TO NODE 194.00 = 196.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 194.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.11 RAINFALL INTENSITY(INCH/HR) = 2.84 TOTAL STREAM AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 255.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 352.80 DOWNSTREAM ELEVATION(FEET) = 351.50 ELEVATION DIFFERENCE(FEET) = 1.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.106 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 52.61 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.259 SUBAREA RUNOFF(CFS) = 0.34 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) = 0.34 **************************************************************************** FLOW PROCESS FROM NODE 255.00 TO NODE 260.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 351.50 DOWNSTREAM(FEET) = 313.66 CHANNEL LENGTH THRU SUBAREA(FEET) = 862.00 CHANNEL SLOPE = 0.0439 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.745 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.81 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.88 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 4.98 Tc(MIN.) = 15.09 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 0.93 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 1.49 PEAK FLOW RATE(CFS) = 1.20 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 3.24 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 260.00 = 1092.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 194.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 304.00 DOWNSTREAM(FEET) = 303.45 FLOW LENGTH(FEET) = 5.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.34 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.20 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 15.10 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 194.00 = 1097.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 194.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.10 RAINFALL INTENSITY(INCH/HR) = 1.74 TOTAL STREAM AREA(ACRES) = 1.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.20 7.11 2.835 0.15 2 1.20 15.10 1.744 1.49 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 0.76 7.11 2.835 2 1.32 15.10 1.744 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.32 Tc(MIN.) = 15.10 TOTAL AREA(ACRES) = 1.64 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 194.00 = 1097.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 194.00 TO NODE 185.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 3 03.12 DOWNSTREAM(FEET) = 3 00.80 FLOW LENGTH(FEET) = 235.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.32 PIPE TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 16.13 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 185.00 = 1332.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 185.00 TO NODE 187.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 300.80 DOWNSTREAM(FEET) = 298.30 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.83 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.32 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 17.22 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 187.00 = 1582.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 21 »»>FlATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 309.90 DOWNSTREAM ELEVATION(FEET) = 308.00 ELEVATION DIFFERENCE(FEET) = 1.90 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.638 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.329 SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.55 TOTAL RUNOFF(CFS) = 0.59 **************************************************************************** FLOW PROCESS FROM NODE 180.00 TO NODE 170.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 303.21 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 433.00 CHANNEL SLOPE = 0.0093 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.03 0 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.883 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.91 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 3.77 Tc(MIN.) = 13.41 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 1.44 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 1.91 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 2.11 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 170.00 = 623.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.41 RAINFALL INTENSITY(INCH/HR) = 1.88 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.91 **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 165.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 245.00 UPSTREAM ELEVATION(FEET) = 316.50 DOWNSTREAM ELEVATION(FEET) = 314.00 ELEVATION DIFFERENCE(FEET) = 2.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.595 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.31 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.336 SUBAREA RUNOFF(CFS) = 0.81 TOTAL AREA(ACRES) = 0.75 TOTAL RUNOFF(CFS) = 0.81 **************************************************************************** FLOW PROCESS FROM NODE 165.00 TO NODE 170.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 345.00 CHANNEL SLOPE = 0.0255 CHANNEL BASE(FEET) = 1.00 »Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.072 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.71 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.93 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 1.97 TC(MIN.) = 11.56 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 1.81 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.65 PEAK FLOW RATE(CFS) = 2.53 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 3.30 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 170.00 = 590.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.56 RAINFALL INTENSITY(INCH/HR) = 2.07 TOTAL STREAM AREA(ACRES) = 2.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.53 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.91 13.41 1.883 2.21 2 2.53 11.56 2.072 2.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.18 11.56 2.072 2 4.21 13.41 1.883 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.21 Tc(MIN.) = 13.41 TOTAL AREA(ACRES) = 4.86 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 170.00 = 623.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 187.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 299.40 DOWNSTREAM(FEET) = 298.30 FLOW LENGTH(FEET) = 109.14 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.30 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.21 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 13.75 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 187.00 = 732.14 FEET. **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.21 13.75 1.852 4.86 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 187.00 = 732.14 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.32 17.22 1.602 1.64 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 187.00 = 1582.60 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtlMBER (CFS) (MIN.) (INCH/HOUR) 1 5.26 13.75 1.852 2 4.96 17.22 1.602 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.26 Tc(MIN.) = 13.75 TOTAL AREA(ACRES) = 6.50 **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 187.00 TO NODE 188.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 298.00 DOWNSTREAM(FEET) = 295.00 FLOW LENGTH(FEET) = 162.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.04 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.26 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 14.14 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 188.00 = 1744.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 188.00 TO NODE 262.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 294.50 DOWNSTREAM(FEET) = 256.05 FLOW LENGTH(FEET) = 192.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.60 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.26 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 14.33 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 262.00 = 1936.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.26 14.33 1.804 6.50 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 262.00 = 1936.60 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.34 10.72 2.175 12.35 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 262.00 = 1382.89 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 14.28 10.72 2.175 2 13.84 14.33 1.804 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.28 Tc(MIN.) = 10.72 TOTAL AREA(ACRES) = 18.85 **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 280.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 256.05 DOWNSTREAM(FEET) = 249.51 FLOW LENGTH(FEET) = 516.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.70 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.28 PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 11.83 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 280.00 = 2452.60 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 18.85 TC(MIN.) = 11.83 PEAK FLOW RATE(CFS) = 14.28 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407-BRESSI RANCH PA-11 * * DEVELOPED CONDITIONS * * 2-YEAR STORM EVENT * ************************************************************************** FILE NAME: 14-2.DAT TIME/DATE OF STUDY: 10:23 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 2.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.350 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED FIATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximtom Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 190.00 TO NODE 195.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 320.00 DOWNSTREAM ELEVATION(FEET) = 288.00 ELEVATION DIFFERENCE(FEET) = 32.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.406 SUBAREA RUNOFF(CFS) = 1.32 TOTAL AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) = 1.32 **************************************************************************** FLOW PROCESS FROM NODE 195.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 277.75 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CHANNEL SLOPE = 0.0535 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR FIAINFALL INTENSITY (INCH/HOUR) = 3.039 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.60 TFU^VEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.00 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 6.38 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 2.56 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) = 3.73 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 5.45 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 215.00 = 505.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.3 8 RAINFALL INTENSITY(INCH/HR) = 3.04 TOTAL STREAM AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.73 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 225.00 UPSTREAM ELEVATION(FEET) = 2 80.15 DOWNSTREAM ELEVATION(FEET) = 263.00 ELEVATION DIFFERENCE(FEET) = 17.15 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.854 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.213 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW«<« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.00 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = 0.0167 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MAlsINING'S FACTOR = 0.025 MAXIMUM DEPTH (FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.950 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.63 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.21 AVEFIAGE FLOW DEPTH (FEET) = 0.20 TFIAVEL TIME (MIN.) = 0.83 Tc(MIN.) = 6.68 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.26 AREA-AVEFIAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) = 0.72 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.29 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 215.00 = 335.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.68 RAINFALL INTENSITY(INCH/HR) = 2.95 TOTAL STREAM AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.73 6.38 3.039 2.67 2 0.72 6.68 2.950 0.53 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.42 6.38 3.039 2 4.34 6.68 2.950 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.42 Tc(MIN.) = 6.38 TOTAL AREA(ACRES) = 3.20 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 215.00 = 505.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 200.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 255.78 DOWNSTREAM(FEET) = 255.33 FLOW LENGTH(FEET) = 9.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.63 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.42 PIPE TFIAVEL TIME (MIN.) = 0.02 Tc(MIN.) = 6.40 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 = 514.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 225.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 620.00 UPSTREAM ELEVATION(FEET) = 308.74 DOWNSTREAM ELEVATION(FEET) = 263.54 ELEVATION DIFFERENCE(FEET) = 45.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.942 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER TI^AN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.182 SUBAREA RUNOFF(CFS) = 0.42 TOTAL AREA(ACRES) = 0.29 TOTAL RUNOFF(CFS) = 0.42 **************************************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.54 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00 CHANNEL SLOPE = 0.0227 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.42 FLOW VELOCITY(FEET/SEC.) = 2.18 FLOW DEPTH(FEET) = 0.15 TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 6.74 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 230.00 = 725.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.74 RAINFALL INTENSITY(INCH/HR) = 2.93 TOTAL STREAM AREA(ACRES) = 0.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.42 **************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 240.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 3 05.00 UPSTREAM ELEVATION(FEET) = 280.15 DOWNSTREAM ELEVATION(FEET) = 268.00 ELEVATION DIFFERENCE(FEET) = 12.15 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.795 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 0.78 **************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 230.00 IS CODE = 51 »>»COMPUTE TFIAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.0912 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.728 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.99 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.52 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 7.54 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.41 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) = 1.18 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 4.81 LONGEST FLOWPATH FROM NODE 235.00 TO NODE 230.00 = 380.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.54 RAINFALL INTENSITY(INCH/HR) = 2.73 TOTAL STREAM AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.18 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.42 6.74 2.933 0.29 2 1.18 7.54 2.728 0.94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.48 6.74 2.933 2 1.57 7.54 2.728 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.57 Tc(MIN.) = 7.54 TOTAL AREA(ACRES) = 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 230.00 = 725.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 200.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 256.73 DOWNSTREAM(FEET) = 255.33 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.05 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.57 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 7.61 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 200.00 = 754.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.57 7.61 2.712 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 200.00 = 754.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.42 6.40 3.034 3.20 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 200.00 = 514.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.74 6.40 3.034 2 5.52 7.61 2.712 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.74 Tc(MIN.) = 6.40 TOTAL AREA(ACRES) = 4.43 **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 285.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL, TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 255.00 DOWNSTREAM(FEET) = 253.67 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.74 PIPE TFiAVEL TIME (MIN.) = 0.40 Tc(MIN.) = 6.79 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 285.00 = 889.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 287.00 IS CODE 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 252.83 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 230.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.03 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW(CFS) = 5.74 PIPE TRAVEL TIME(MIN.) = 0.38 242.25 NUMBER OF PIPES = Tc(MIN.) = LONGEST FLOWPATH FROM NODE 220.00 TO NODE 7.1i 287 00 = 1119.95 FEET. *************************************************************^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 241.92 DOWNSTREAM(FEET) = 234.34 FLOW LENGTH(FEET) = 111.46 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES 11.56 18.00 NUMBER OF PIPES = 1 PIPE-FLOW VELOCITY(FEET/SEC.) = ESTIMATED PIPE DIAMETER(INCH) = PIPE-FLOW(CFS) = 5.74 PIPE TRAVEL TIME(MIN.) = 0.16 LONGEST FLOWPATH FROM NODE Tc(MIN.) = 7.34 220.00 TO NODE 290.00 1231.41 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 4 5 43 TC(MIN.) = 74 7.34 END OF RATIONAL METHOD ANALYSIS APPENDIX 4 ROADSIDE DITCHES RATIONAL METHOD COMPUTER OUTPUT T:\Water Resources\2407.3-Bressi ResidenUal\PA-l 1 3rd Final Submittal\Report\Appendix.doc **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-ll-Ol.DAT TIME/DATE OF STUDY: 09:27 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 323.00 UPSTREAM ELEVATION(FEET) = 312.00 DOWNSTREAM ELEVATION(FEET) = 309.00 ELEVATION DIFFERENCE(FEET) = 3.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.676 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.15 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.819 SUBAREA RUNOFF(CFS) = 2.22 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.22 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 306.00 DOWNSTREAM(FEET) = 301.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL SLOPE = 0.0101 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.115 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.53 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.85 AVERAGE FLOW DEPTH (FEET) = 0.77 TFLAVEL TIME (MIN.) = 2.69 Tc(MIN.) = 12.3 6 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 6.61 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 8.50 END OF SUBAREA CFIANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.93 FLOW VELOCITY(FEET/SEC.) = 3.21 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 783.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 4.49 TC(MIN.) 8.50 = 12.36 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: PA-11-02.DAT TIME/DATE OF STUDY: 09:30 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DUI^TION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 167.00 UPSTREAM ELEVATION(FEET) = 311.20 DOWNSTREAM ELEVATION(FEET) = 3 09.50 ELEVATION DIFFERENCE(FEET) = 1.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.600 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.27 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.844 SUBAREA RUNOFF(CFS) = 2.21 TOTAL AREA(ACRES) = 0.99 TOTAL RUNOFF(CFS) = 2.21 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 51 »»>COMPUTE TFIAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 307.20 DOWNSTREAM(FEET) = 301.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 587.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.904 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.66 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.57 AVERAGE FLOW DEPTH(FEET) = 0.63 TRAVEL TIME(MIN.) = 3.81 Tc(MIN.) = 13.41 SUBAREA AREA(ACRES) = 1.61 SUBAREA RUNOFF(CFS) = 2.89 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 4.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.71 FLOW VELOCITY(FEET/SEC.) = 2.74 LONGEST FLOWPATH FROM NODE 115 00 TO NODE 125.00 = 754.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2 .60 4.67 TC(MIN.) = 13.41 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILENAME: PA-11-03.DAT TIME/DATE OF STUDY: 09:34 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED I^TIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 21 »»>FlATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 23 0.00 UPSTREAM ELEVATION(FEET) = 345.00 DOWNSTREAM ELEVATION(FEET) = 312.00 ELEVATION DIFFERENCE(FEET) = 33.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVEFILAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.064 SUBAREA RUNOFF(CFS) = 1.27 TOTAL AREA(ACRES) = 0.39 TOTAL RUNOFF(CFS) = 1.27 **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 140.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 310.00 DOWNSTREAM(FEET) = 303.39 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0220 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.041 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.57 TFIAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.41 AVERAGE FLOW DEPTH(FEET) = 0.52 TFAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 6.82 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 4.59 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.64 FLOW VELOCITY(FEET/SEC.) = 3.85 LONGEST FLOWPATH FROM NODE 130 00 TO NODE 140.00 = 530.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2.04 5.67 TC(MIN.) = 6.82 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGFIAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-11-04.DAT TIME/DATE OF STUDY: 09:39 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDFIAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 21 »»>FlATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 UPSTREAM ELEVATION(FEET) = 340.00 DOWNSTREAM ELEVATION(FEET) = 328.50 ELEVATION DIFFERENCE(FEET) = 11.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.063 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.904 SUBAREA RUNOFF(CFS) = 2.66 TOTAL AREA(ACRES) = 0.98 TOTAL RUNOFF(CFS) = 2.66 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 303.78 CFIANNEL LENGTH THRU SUBAREA (FEET) = 505.00 CFIANNEL SLOPE = 0.0321 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.050 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.35 AVERAGE FLOW DEPTH(FEET) = 0.57 TRAVEL TIME(MIN.) = 1-93 Tc(MIN.) = 9.00 SUBAREA AREA(ACRES) = 2.24 SUBAREA RUNOFF(CFS) = 5.20 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 3.22 PEAK FLOW RATE(CFS) = 7.48 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.67 FLOW VELOCITY(FEET/SEC.) = 4.79 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 155.00 = 770.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 3 7 .22 TC{MIN.) = 9.00 .48 ' END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-11-05.DAT TIME/DATE OF STUDY: 09:47 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER TFIAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 165.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 245.00 UPSTREAM ELEVATION(FEET) = 316.50 DOWNSTREAM ELEVATION(FEET) = 314.00 ELEVATION DIFFERENCE(FEET) = 2.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.595 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.31 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.845 SUBAREA RUNOFF(CFS) = 1.67 TOTAL AREA(ACRES) = 0.75 TOTAL RUNOFF(CFS) = 1.67 **************************************************************************** FLOW PROCESS FROM NODE 165.00 TO NODE 170.00 IS CODE = 51 »>»COMPUTE TFIAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 308.00 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU StTBAREA(FEET) = 345.00 CHANNEL SLOPE = 0.0255 CFIANNEL BASE (FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.03 0 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.388 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.59 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.60 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 11.19 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.83 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.65 PEAK FLOW RATE(CFS) = 5.35 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.61 FLOW VELOCITY(FEET/SEC.) = 3.99 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 170.00 = 590.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW F^TE(CFS) 2 5 65 TC(MIN.) 35 = 11.19 END OF FLATIONAL METHOD ANALYSIS **************************************************************************** FIATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STOIRM EVENT * ************************************************************************** FILE NAME: PA-11-06.DAT TIME/DATE OF STUDY: 09:52 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PAFIK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTFIAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 309.90 DOWNSTREAM ELEVATION(FEET) = 308.00 ELEVATION DIFFERENCE(FEET) = 1.90 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.638 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR FIAINFALL INTENSITY(INCH/HOUR) = 4.831 SUBAREA RUNOFF(CFS) = 1.22 TOTAL AREA(ACRES) = 0.55 TOTAL RUNOFF(CFS) = 1.22 **************************************************************************** FLOW PROCESS FROM NODE 180.00 TO NODE 170.00 IS CODE = 51 »»>COMPUTE TFIAPEZOIDAL CHANNEL FLOW««< »»>TI^VELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 303.21 DOWNSTREAM(FEET) = 299.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 433.00 CHANNEL SLOPE = 0.0093 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.034 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TIAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.77 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.32 AVEFU^GE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 3.11 Tc(MIN.) = 12.75 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 3.08 AREA-AVEFIAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.21 PEAK FLOW FlATE(CFS) = 4.10 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.68 FLOW VELOCITY(FEET/SEC.) =2.58 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 170.00 = 623.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.21 TC(MIN.) = 12.75 PEAK FLOW RATE(CFS) = 4.10 END OF FIATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-11-07.DAT TIME/DATE OF STUDY: 10:32 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR FIATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* FIALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 190.00 TO NODE 195.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 320.00 DOWNSTREAM ELEVATION(FEET) = 2 88.00 ELEVATION DIFFERENCE(FEET) = 32.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.348 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.064 SUBAREA RUNOFF(CFS) = 2.73 TOTAL AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) = 2.73 **************************************************************************** FLOW PROCESS FROM NODE 195.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CFIANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 277.75 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 310.00 CFIANNEL SLOPE = 0.0535 CFIANNEL BASE{FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.337 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.27 AVEFIAGE FLOW DEPTH (FEET) = 0.51 TFIAVEL TIME (MIN.) = 0.98 Tc(MIN.) = 6.33 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 5.33 AREA-AVEFIAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) = 7.78 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.61 FLOW VELOCITY(FEET/SEC.) = 5.81 LONGEST FLOWPATH FROM NODE 190 00 TO NODE 215.00 = 505.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2.67 7.78 TC(MIN.) = 6.33 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-11-08.DAT TIME/DATE OF STUDY: 10:37 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDFIAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STOFm EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR FtATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER TFIAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 225.00 UPSTREAM ELEVATION(FEET) = 280.15 DOWNSTREAM ELEVATION(FEET) = 263.00 ELEVATION DIFFERENCE(FEET) = 17.15 SUBAREA OVERLAITO TIME OF FLOW(MIN.) = 5.854 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.664 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 1.04 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.00 DOWNSTREAM(FEET) = 261.16 CFIANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = 0.0167 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.150 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.36 AVEFIAGE FLOW DEPTH (FEET) = 0.33 TFIAVEL TIME (MIN.) = 0.78 Tc(MIN.) = 6.63 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.54 AREA-AVERAGE RUNOFF COEFFICIENT = 0.460 TOTAL AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) = 1.50 END OF SUBAREA CFIANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET/SEC.) = 2.46 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 215.00 = 335.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.53 TC(MIN.) = 6.63 PEAK FLOW RATE(CFS) = 1.50 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-11-09.DAT TIME/DATE OF STUDY: 10:47 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DUFIATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* FIALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER TFIAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 225.00 IS CODE = 21 »»>FlATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 620.00 UPSTREAM ELEVATION(FEET) = 308.74 DOWNSTREAM ELEVATION(FEET) = 263.54 ELEVATION DIFFERENCE(FEET) = 45.20 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.942 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER TFIAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.600 SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 0.29 TOTAL RUNOFF(CFS) = 0.88 **************************************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 230.00 IS CODE = 51 »»>COMPUTE TFIAPEZOIDAL CFIANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 263.54 DOWNSTREAM(FEET) = 261.16 CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00 CHANNEL SLOPE = 0.0227 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.88 FLOW VELOCITY(FEET/SEC.) = 2.36 FLOW DEPTH(FEET) = 0.25 TFAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 6.68 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 230.00 = 725.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.29 TC(MIN.) = 6.68 PEAK FLOW RATE(CFS) = 0.88 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD FrYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH * * PA-11 * * 100-YR STORM EVENT * ************************************************************************** FILE NAME: PA-ll-lO.DAT TIME/DATE OF STUDY: 10:52 05/06/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DUFLATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED FIATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 240.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 305.00 UPSTREAM ELEVATION(FEET) = 280.15 DOWNSTREAM ELEVATION(FEET) = 268.00 ELEVATION DIFFERENCE(FEET) = 12.15 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.267 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVEFILAND FLOW LENGTH = 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.796 SUBAREA RUNOFF(CFS) = 1.63 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 1.63 **************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 230.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CFIANNEL FLOW««< »»>TFIAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CFIANNEL SLOPE = CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.03 0 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.669 RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .4600 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.06 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = Tc(MIN.) = 7.52 SUBAREA AREA(ACRES) = 0.33 AREA-AVERAGE RUNOFF COEFFICIENT = TOTAL AREA(ACRES) = 0.94 0.27 TRAVEL TIME(MIN.) = 90 25 261.16 0.0912 SUBAREA RUNOFF(CFS) = 0.460 PEAK FLOW FtATE (CFS) = 0.86 2.45 END OF SUBAREA CFIANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 5.23 LONGEST FLOWPATH FROM NODE 235.00 TO NODE 230.00 = 380.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0.94 2.45 TC(MIN.) = 7.52 END OF RATIONAL METHOD ANALYSIS APPENDIX 5 ROADSIDE DITCH NORMAL DEPTH CALCULATIONS T.XWater Resources\2407.3-Bressi Residential\PA-l 1 3rd Final SubmittalVReport\Appendix.doc SUMMARY OF ROADSIDE DITCHES 1 Foot Bottom With 2:1 Side Slopes NODE NO. SIDE SLOPES FROM TO LEFT RIGHT FLOW (cfs) SLOPE (ftm) DEPTH (ft) VELOCITY (fps) Width (ft) 105 110 2:1 2:1 8.50 0.010 0.93 3.2 4.72 120 125 2:1 2:1 4.67 0.010 0.71 2.7 3.84 135 140 2:1 2:1 5.67 0.022 0.64 3.9 3.56 150 155 2:1 2:1 7.48 0.032 0.67 4.8 3.68 165 170 2:1 2:1 5.35 0.026 0.61 4.0 3.44 180 170 2:1 2:1 4.10 0.009 0.68 2.6 3.72 195 215 2:1 2:1 7.78 0.054 0.61 5.8 3.44 210 215 2:1 2:1 1.50 0.017 0.36 2.5 2.44 225 230 2:1 2:1 0.88 0.023 0.25 2.4 2.00 240 230 2:1 2:1 2.45 0.091 0.29 5.2 2.16 Note : Data from AES Rational Mettiod Computer Output Note: See Exhibit B for ditch location node numbers. APPENDIX 6 TYPE F CATCH BASIN AND CURB INLET CALCULATIONS T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submiltal\Report\Appendix.doc F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA<2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics: A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location G(cfs) Head, h (feet) Single Opening Number Total Capacity (cfs) Of Openings Capacity (cfs) Node 110 8.50 9 inches 8.5 2 17.0 F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA^2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics: A - Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec'^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location G(cfs) Head, h (feet) Single Opening Number Total Capacity (cfs) Of Openings Capacity (cfs) Node 125 4.67 9 inches 8.5 2 17.0 F Type Catch Basin 4ftx4ftBox The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CAyl2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics: A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location e(cfs) Head, h (feet) Single Opening Number Total Capacity (cfs) Of Openings Capacity (cfs) Node 140 5.67 9 inches 8.5 2 17.0 F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA^lgh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location 2 (cfs) Head, h (feet) Single Opening Number Total Capacity (cfs) Of Openings Capacity (cfs) Node 155 7.48 9 inches 8.5 2 17.0 F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA^2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location e(cfs) Head, h (feet) Single Opening Capacity (cfs) Number Of Openings Total Capacity (cfs) Node 170 9.02 9 inches 8.5 2 17.0 F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA<2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hvdraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in. (Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location e(cfs) Head, h (feet) Single Opening Capacity (cfs) Number Of Openings Total Capacity (cfs) Node 215 9.32 9 inches 8.5 2 17.0 F Type Catch Basin 4 ft X 4 ft Box The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmax = CA<2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.94 ft^ per opening); g - Gravitational acceleration (32.2 ft/sec^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 9 in.(Top of Opening) Qmax = (0.63)1.94V(2)(32.2)(0.5) = 8.5 cfs per opening. Number of openings: Inlet Location !2(cfs) Head, h (feet) Single Opening Number Total Capacity (cfs) Of Openings Capacity (cfs) Node 230 3.27 9 inches 8.5 2 17.0 CURB INLETS - ULTIMATE 0100 Street Name Street Station Street Side Q % Street Y CALC'D OPEN. NET OPENING CURB INLET BYPASS Street Name Street Station Street Side (CFS) Slope (Feet) L-(FEET) (FEET) SIZE (FT) Q (cfs) Mulrfields Drive 6+70.10 South 0.41 5.00 0.20 1.52 2.00 3.00 0.00 Muirfields Drive 6+70.10 North 2.60 5.00 0.25 8.41 9.00 10.00 0.00 APPENDIX 7 PIPEFLOW COMPUTER OUTPUT T.VWater Resources\2407.3-Bressi ResidentialVPA-11 3rd Final Submittal\Report\Appendix.doc ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACFUD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI I^^NCH PA-11 * * PROPOSED CONDITIONS - OUTLET TO 282 CDS UNIT * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: PIO-IOO.DAT TIME/DATE OF STUDY: 16:07 05/10/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 280.00- 1.79 Dc 624.44 0.64* 1648.05 } FRICTION 280.90- 1.79 Dc 624.44 0.63* 1704.34 } FRICTION 282.00- 1.79*Dc 624.44 1.79*Dc 624.44 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 280.00 FLOWLINE ELEVATION = 209.50 PIPE FLOW = 30.59 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 211.120 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.62 FT.) IS LESS TFIAN CRITICAL DEPTH ( 1.79 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 280.00 : HGL = < 210.144>;EGL= < 221.881>;FLOWLINE= < 209.500> ****************************************************************************** FLOW PROCESS FROM NODE 280.00 TO NODE 280.90 IS CODE = 1 UPSTREAM NODE 280.90 ELEVATION = 209.54 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 30.59 CFS PIPE DIAMETER = 3 6.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.43 CRITICAL DEPTH(FT) 1.79 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 GI^DUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.000 FLOW DEPTH VELOCITY SPECIFIC (FT) (FT/SEC) ENERGY(FT) 0.628 28.452 13.206 0.644 27.485 12.381 PRESSURE+ MOMENTUM(POUNDS) 1704.34 1648.05 NODE 280.90 : HGL = < 210.168>;EGL= < 222.746>;FLOWLINE= < 209.540> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 282.00 280.90 TO NODE 282.00 IS CODE = 1 ELEVATION = 249.71 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 30.59 CFS PIPE DIAMETER 36.00 INCHES PIPE LENGTH = 129.86 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .58 CRITICAL DEPTH(FT) 1.79 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1. 792 6 941 2 541 624. 44 0 009 1. 744 7 174 2 544 625. 15 0 036 1. 696 7 424 2 552 627. 32 0 085 1. 647 7 693 2 567 631. 07 0 159 1. 599 7 984 2 589 636. 52 0 262 1. 550 8 298 2 620 643 . 80 0 398 1. 502 8 638 2 661 653 . 07 0 574 1. 454 9 008 2 714 664. 50 0 797 1. 405 9 410 2 781 678. 30 1 075 1. 357 9 848 2 864 694. 70 1 419 1. 308 10 328 2 966 714. 00 1 842 1. 260 10 855 3 091 736. 50 2 364 1. 212 11 435 3 243 762 . 61 3 004 1. 163 12 076 3 429 792 76 3 .794 1. 115 12 787 3 655 827 52 4 .772 1 066 13 580 3 932 867 53 5 .990 1 018 14 .468 4 271 913 62 7 .525 0 970 15 .469 4 687 966 75 9 .482 0 921 16 .601 5 .203 1028 15 12 .022 0 873 17 .892 5 847 1099 35 15 .399 0 824 19 .375 6 657 1182 29 20 .047 0 776 21 .091 7 687 1279 46 26 .787 0 728 23 .095 9 .015 1394 12 37 .482 0 679 25 .460 10 .751 1530 55 58.136 0.631 28.284 13.061 1694.60 129.860 0.628 28.452 13.206 1704.34 NODE 282.00 : HGL = < 251.502>;EGL= < 252.251>;FLOWLINE= < 249.710> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 282.00 FLOWLINE ELEVATION = 249.71 ASSUMED UPSTREAM CONTROL HGL = 251.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGFIAM PACFCAGE (Reference: LACFCD,LACFID, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI F5ANCH PA-11 * * PROPOSED CONDITIONS - OUTLET TO 288 CDS UNIT * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: Pll-IOO.DAT TIME/DATE OF STUDY: 16:34 05/10/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 295.00- 1.68 260.73 0.45* 630.06 } FRICTION 295.90- 1.69 262.08 0.43* 668.77 } FRICTION 290.00- 1.31*Dc 233.11 1.31*Dc 233.11 } JUNCTION 290.90- 1.81 274.54 0.69* 364.86 } FRICTION 288.00- 1.31*Dc 233.11 1.31*Dc 233.11 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDIUVULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACI^D,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 295.00 FLOWLINE ELEVATION = 193.10 PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.780 FEET NODE 295.00 : HGL = < 193.551>;EGL= < 204.744>;FLOWLINE= < 193.100> ****************************************************************************** FLOW PROCESS FROM NODE 295.00 TO NODE 295.90 IS CODE = 1 UPSTREAM NODE 295.90 ELEVATION = 193.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) 1.50 CRITICAL DEPTH(FT) 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.000 FLOW DEPTH VELOCITY (FT) (FT/SEC) 0.432 28.525 0.451 26.840 SPECIFIC ENERGY(FT) 13.074 11.644 PRESSURE+ MOMENTUM (POUNDS) 668.77 630.06 NODE 295.90 : HGL = < 193.572>;EGL= < 206.214>;FLOWLINE= < 193.140> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 290.00 295.90 TO NODE 290.00 IS CODE = 1 ELEVATION = 233.18 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 100.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.43 CRITICAL DEPTH(FT) = 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.31 GIU^UALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.007 0.028 0.065 0.119 0.194 0.291 0.415 0.570 0.762 0.997 1.284 1.633 2 .060 2.583 3.227 4.025 5.024 6.293 7.932 10.103 13.081 17.385 FLOW DEPTH (FT) 1.314 1.279 1.244 1.209 1.173 1.138 1.103 1.067 1.032 0.997 0.961 0.926 0.891 0.855 0.820 0.785 0.750 0.714 0.679 0.644 0.608 0.573 0.538 VELOCITY (FT/SEC) 7.314 7.479 7.664 7.869 8.096 8.347 8.623 8.927 9.261 9.629 10.035 10.484 10.980 11.531 12.144 12.830 13.599 14.467 15.450 16.572 17.860 19.349 21.087 SPECIFIC ENERGY(FT) 2.146 2.148 2.156 2.171 2.192 2 .221 2.258 ,306 .365 .437 .526 2.634 2.764 2.921 3.112 3.342 3.623 3 .966 4.388 4.911 5.564 6.390 7.447 PRESSURE+ MOMENTUM(POUNDS) 233.11 233 .37 234.18 235.56 237.53 240.15 243 .46 247.52 252.39 258.16 264.92 272.77 281.86 292.34 304.38 318.22 334.13 352.45 373 .57 398.03 426.47 459.72 498.87 24.197 37 .323 100.000 0.502 0.467 0.432 23 .135 25.577 28.525 8. 819 10.631 13.074 545.36 601.11 668.77 NODE 290.00 HGL = < 234.494>;EGL= < 235.326>;FLOWLINE= < 233.180> ****************************************************************************** FLOW PROCESS FROM NODE 290.00 TO NODE 290.90 IS CODE = 5 UPSTREAM NODE 290.90 ELEVATION = 234.34 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 12.01 12.01 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 90.00 234.34 1.31 15.051 18.00 - 233.18 1.31 7.316 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.000 :=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06874 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01182 AVEFIAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04028 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.161 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.225)+( 0.000) = 3.225 NODE 290.90 HGL = < 235.033>;EGL= < 23 8.551>;FLOWLINE= < 234.340> ****************************************************************************** FLOW PROCESS FROM NODE 290.90 TO NODE 288.00 IS CODE = 1 UPSTREAM NODE 288.00 ELEVATION = 243.01 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 110.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.67 CRITICAL DEPTH(FT) = 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.021 0.087 0.200 0.365 0.588 0.874 1.232 FLOW DEPTH VELOCITY (FT) 1.314 1.289 1.263 1.237 211 185 159 133 (FT/SEC) 7.314 433 562 703 854 8.017 8.193 8.381 SPECIFIC ENERGY(FT) 2.146 2.147 2.151 2.159 2.169 2.184 2.202 2.225 PRESSURE+ MOMENTUM(POUNDS) 233.11 233.25 233 .68 234.41 235.44 236.80 238.49 240.54 1.672 1 108 8.583 2 252 242.96 2.204 1 082 8.800 2 285 245.77 2.842 1 056 9.033 2 323 249.01 3.603 1 030 9.282 2 369 252.70 4.508 1 004 9.550 2 421 256.88 5.584 0 978 9.837 2 482 261.57 6.865 0 952 10.146 2 552 266.82 8.393 0 926 10.479 2 633 272.69 10.228 0 901 10.837 2 725 279.20 12.448 0 875 11.223 2 832 286.44 15.166 0 849 11.641 2 954 294.47 18.545 0 823 12.093 3 095 303.35 22.842 0 797 12 .583 3 257 313.19 28.486 0 771 13.116 3 444 324.09 36.286 0 745 13.696 3 660 336.16 48.058 0 719 14.330 3 910 349.54 69.638 0 694 15.025 4 201 364.39 110.760 0 693 15.047 4 211 364.86 288.00 HGL = < 244 324>;EGL= < 245.156>;FLOWLINE= < 243.010: ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 288.00 FLOWLINE ELEVATION = 243.01 ASSUMED UPSTREAM CONTROL HGL = 244.32 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ************************************************************************^*J^.^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACF^GE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - CDS UNIT AT 282 UPSTREAM * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P12-100.DAT TIME/DATE OF STUDY: 07:56 05/12/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 282.90- } 285.00- } 285.90- } 284.00- ) 284.90- } 283.00-} 283.90- } 110.00- } 110.90- } 275.00- } 275.90- } 273.00-} 272.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 3 .3E 1043.78 } FIYDRAULIC JUMP 1.87*Dc 764.42 4.35* 957.14 } HYDRAULIC JUMP 1.68 Dc 1.68 Dc 1.68*Dc 471.91 471.91 471. 91 499.19 2.01* } HYDRAULIC JUMP 1.68*Dc 471.91 2 . 58* 2.44* 2.74* 457.93 431.55 432.17 332.03 2 .22* FRICTION+BEND } HYDRAULIC JUMP 209.85 } FRICTION 270.00- 1.26 Dc 1.26 Dc DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 1025.43 209.85 1.15 1.87*Dc 0.73 0.66* 0.62* 1.67*Dc 1.60 1.68*Dc 1.26 1.42 Dc 0.88 0.89 0.90* 0.93* 764.42 930.36 1069.76 1162.92 471.91 473 .48 471.91 295.76 289.54 246.60 246.19 242.83 236.62 ) FRICTION+BEND 270.90- 1.26*Dc ) JUNCTION 270.30- 1.85* } FRICTION 155.00- 1.71* } CATCH BASIN 155.00- 2.04* 209.85 182.35 167.03 142.48 1.26*Dc 0.95 1.06 Dc 1.06 Dc 209.85 122 .20 120.29 39.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDFIAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 282.90 FLOWLINE ELEVATION = 250.04 PIPE FLOW = 30.59 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 253.420 FEET NODE 282.90 HGL < 253.420>;EGL= < 254.892>;FLOWLINE= < 250.040> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 285.00 282.90 TO NODE 285.00 IS CODE = 1 ELEVATION = 252.11 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3 0.59 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 6.58 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1 .87 DISTANCE FROM CONTROL(FT) 0.000 0.018 0.071 0.160 0.288 0.459 0.677 0.949 1.284 1.691 2 .183 2 .776 3 .490 4.352 5.394 6 .580 FLOW DEPTH (FT) 1. 870 1.822 1.774 1.726 1.678 .630 ,582 ,534 .486 .438 .390 .341 1.293 1.245 1.197 1.152 VELOCITY (FT/SEC) 10.010 10.180 10.380 10.609 10.867 11.155 11.475 11.829 12.220 12.651 13 .126 13.650 14.229 14.870 15.580 16.315 SPECIFIC ENERGY(FT) 3 .427 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 432 448 475 513 563 628 708 806 924 067 237 439 681 969 288 PRESSURE+ MOMENTUM(POUNDS) 764.42 765.44 768.38 773 .20 779.96 788.72 799.59 812.71 828.26 846.44 867.49 891.72 919.47 951.14 987.21 1025.43 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 .3{ PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .380 9 737 4 852 1043 .78 4 .657 2 .000 9 737 3 472 773 25 ASSUMED DOWNSTREAM PRESSURE HEAD(FT = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 4 .657 2 .000 9 734 3 472 773 25 4 .673 1 .995 9 736 3 468 772 37 4 .686 1 .990 9 740 3 464 771 59 4 .698 1 .985 9 745 3 460 770 89 4 .709 1 .979 9 751 3 457 770 24 4 .720 1 .974 9 758 3 454 769 63 4 .729 1 .969 9 766 3 451 769 08 4 .738 1 .964 9 774 3 448 768 56 4 .746 1 .959 9 783 3 446 768 08 4 .754 1 .954 9 792 3 444 767 64 4 .761 1 .948 9 802 3 441 767 22 4 .767 1 .943 9 813 3 439 766 85 4 .773 1 .938 9 824 3 438 766 50 4 .779 1 .933 9 835 3 436 766 18 4 .784 1 .928 9 847 3 435 765 89 4 .789 1 .923 9 860 3 433 765 63 4 .793 1 .918 9 873 3 432 765 39 4 .796 1 .912 9 886 3 431 765 18 4 .799 1 .907 9 900 3 430 765 00 4 .802 1 .902 9 914 3 429 764 85 4 .804 1 .897 9 928 3 428 764 71 4 .806 1 .892 9 943 3 428 764 61 4 .808 1 .887 9 958 3 427 764 52 4 . 809 1 . 881 9 974 3 427 764 46 4 .809 1 .876 9 990 3 427 764 43 4 .810 1 .871 10 007 3 427 764 42 6 .580 1 .871 10 007 3 427 764 42 -END OF HYDFIAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 0.71 FEET UPSTREAM OF NODE 282.90 DOWNSTREAM DEPTH = 3.170 FEET, UPSTREAM CONJUGATE DEPTH = 1.179 FEET NODE 285.00 : HGL = < 253.980>;EGL= < 255.537>;FLOWLINE= < 252.110> ****************************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 285.90 IS CODE = 5 UPSTREAM NODE 285.90 ELEVATION = 252.44 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 22.10 24.00 81.00 252.44 DOWNSTREAM 30.59 24.00 - 252.11 LATERAL #1 8.49 24.00 72.00 252.44 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FOFMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: DOWNSTREAM: MANNING'S MANNING'S = 0.01300; = 0.01300; FRICTION SLOPE = 0. FRICTION SLOPE = 0. ASSUMED AS 0.01267 AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.051 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.017)+( 0.000) = 2.017 1.68 1.87 1.04 0.00 00954 01580 7.035 10.010 2.702 0.000 ENTRANCE LOSSES = 0.000 FEET NODE 285.90 HGL < 256.786>;EGL= < 257.554>;FLOWLINE= < 252.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 284.00 285.90 TO NODE ELEVATION = 284.00 IS CODE = 1 257.41 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 52.08 FEET MANNING'S N = 0.013 00 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NOBMAL DEPTH(FT) = 0.77 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.68 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 0 .656 24 615 10 071 1069 76 2 .250 0 .661 24 378 9 895 1059 84 4 .576 0 .666 24 144 9 723 1050 11 6 .982 0 .670 23 915 9 557 1040 55 9 .477 0 .675 23 690 9 395 1031 16 12 .071 0 .680 23 468 9 237 1021 94 14 .772 0 .684 23 250 9 084 1012 88 17 .594 0 .689 23 036 8 934 1003 98 20 .550 0 .694 22 825 8 789 995 24 23 .656 0 .698 22 618 8 647 986 64 26 .932 0 .703 22 414 8 509 978 20 30 .403 0 .708 22 214 8 375 969 91 34 .096 0 .712 22 017 8 244 961 75 38 .048 0 .717 21 823 8 117 953 74 42 .304 0 .722 21 632 7 992 945 86 46 .923 0 .726 21 444 7 871 938 11 51 .982 0 .731 21 260 7 754 930 49 52 .080 0 .731 21 256 7 751 930 36 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 4.35 DISTANCE FROM CONTROL(FT) 0.000 27.311 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 4.346 7.035 2.000 7.035 SPECIFIC ENERGY(FT) 5.114 2 .768 PRESSURE+ MOMENTUM(POUNDS) 957.14 497.31 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 27 311 2. 000 7 032 2 768 497 31 27 445 1. 987 7 039 2 757 495 05 27 566 1. 974 7 050 2 746 493 01 27 677 1. 961 7 064 2 737 491 12 27 781 1 949 7 082 2 728 489 36 27 880 1 936 7 101 2 719 487 69 27 972 1 923 7 123 2 711 486 13 28 059 1 910 7 147 2 704 484 66 28 142 1 897 7 173 2 696 483 28 28 219 1 884 7 200 2 690 481 98 28 292 1 871 7 229 2 683 480 77 28 361 1 858 7 260 2 677 479 63 28 425 1 846 7 292 2 672 478 58 28 484 1 833 7 326 2 667 477 60 28 539 1 820 7 361 2 662 476 70 28 590 1 807 7 398 2 657 475 88 28 636 1 794 7 437 2 653 475 13 28 677 1 781 7 476 2 650 474 46 28 715 1 768 7 518 2 646 473 87 28 747 1 755 7 561 2 644 473 35 28 775 1 743 7 .605 2 641 472 91 28 798 1 730 7 .651 2 639 472 55 28 816 1 717 7 .698 2 638 472 27 28 .829 1 704 7 .747 2 .637 472 .07 28 .837 1 691 7 .798 2 .636 471 95 28 .840 1 678 7 .850 2 .636 471 .91 52 .080 1 678 7 .850 2 .636 471 .91 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 1.46 FEET UPSTREAM OF NODE 285.90 DOWNSTREAM DEPTH = 4.220 FEET, UPSTREAM CONJUGATE DEPTH = 0.73 0 FEET NODE 284.00 HGL = < 258.066>;EGL= < 267 .481>;FLOWLINE= < 257.410> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 284.90 284.00 TO NODE ELEVATION = 284.90 IS CODE = 5 257.74 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 22.10 24.00 15.00 257.74 CRITICAL DEPTH(FT.) 1.68 VELOCITY (FT/SEC) 26.848 DOWNSTREAM 22.10 24.00 - 257.41 1.68 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATEFIAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 24.623 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.22402 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.17609 AVEI^GED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.20006 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.800 FEET ENTFiANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIVl-FrV2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.069)+( 0.000) = 2.069 NODE 284.90 : HGL = < 258.357>;EGL= < 269.550>;FLOWLINE= < 257.740> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 283.00 284.90 TO NODE ELEVATION = 283.00 IS CODE = 1 288.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 22.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 105.36 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .57 CRITICAL DEPTH(FT) 1.6£ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1. 675 7 863 2 636 471. 91 0 Oil 1. 631 8 054 2 639 472 47 0 044 1. 587 8 265 2 648 474 04 0 101 1. 543 8 495 2 664 476 69 0 184 1. 499 8 748 2 .688 480 48 0 298 1. 455 9 025 2 .720 485 49 0 448 1. 411 9 327 2 .763 491 83 0 638 1. 367 9 .658 2 .816 499 60 0 .876 1. 323 10 .020 2 .883 508 94 1 171 1. 279 10 .417 2 .965 520 00 1 .532 1. 235 10 .852 3 .065 532 94 1 .973 1. 191 11 .331 3 .186 547 98 2 .510 1 147 11 .859 3 .332 565 36 3 .165 1 103 12 .442 3 .508 585 35 3 .966 1 059 13 .089 3 .721 608 31 4 .949 1 015 13 . 809 3 .978 634 64 6 .166 0 971 14 .614 4 .289 664 .82 7 .685 0 926 15 .516 4 .667 699 45 9 .608 0 882 16 .534 5 .130 739 26 12 .083 0 838 17 .688 5 .700 785 .15 15 .348 0 794 19 .005 6 .406 838 26 19 .804 0 750 20 .518 7 .292 900 .02 26 .214 0 706 22 .271 8 .413 972 .26 36.302 55.626 105.360 0.662 0.618 0.617 24.319 26.737 26.840 9.852 11.726 11.810 1057.39 1158.60 1162.92 NODE 283.00 : HGL = < 290.505>;EGL= < 291.466>;FLOWLINE= < 288.830> ****************************************************************************** FLOW PROCESS FROM NODE 283.00 TO NODE 283.90 IS CODE = 5 UPSTFIEAM NODE 283.90 ELEVATION = 289.16 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 22.10 22.10 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 43.00 289.16 1.68 24.00 - 288.83 1.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 7.035 7.852 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00954 DOWNSTFIEAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00936 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.037 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.472) +( 0.000) = 0.472 NODE 283.90 : HGL = < 291.170>;EGL= < 291.938>;FLOWLINE= < 289.160> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 283.90 TO NODE 110.00 IS CODE = 1 ELEVATION = 291.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 215.50 FEET MANNING'S N = 0.013 00 HYDFIAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.60 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFOiyyiATION: 1.6E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.678 7.850 2.636 471.91 0.018 1.675 7.863 2.636 471.91 0.073 1.672 7.877 2.636 471.92 0.169 1.668 7.890 2.636 471.93 0.309 1.665 7.904 2.636 471.95 0.497 1.662 7.918 2.636 471.97 0.737 1.659 7.931 2.636 472.00 1 036 1 655 7 .945 2 636 472 .04 1 399 1 652 7 .959 2 637 472 .07 1 835 1 .649 7 .973 2 637 472 .12 2 351 1 .646 7 .988 2 637 472 .17 2 960 1 .643 8 .002 2 637 472 .23 3 674 1 .639 8 .016 2 638 472 .29 4 510 1 .636 8 .031 2 638 472 .35 5 488 1 .633 8 .046 2 639 472 .42 6 636 1 .630 8 .060 2 639 472 .50 7 989 1 .626 8 .075 2 .640 472 .59 9 .595 1 .623 8 .090 2 .640 472 .67 11 .521 1 .620 8 .105 2 .641 472 .77 13 .865 1 .617 8 .120 2 .641 472 .87 16 .780 1 .613 8 .136 2 .642 472 .97 20 .522 1 .610 8 .151 2 .642 473 .08 25 .570 1 .607 8 .167 2 .643 473 .20 33 .002 1 .604 8 .182 2 .644 473 .32 46 .273 1 .600 8 .198 2 .645 473 .45 215 .500 1 .600 8 .202 2 .645 473 .48 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.01 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 010 7. 035 2. 778 499. 19 19 939 2 000 7. 035 2. 768 497 . 31 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 19 .939 2 000 7. 032 2 768 497 31 34 .281 1 987 7. 039 2 757 495 05 42 .867 1 974 7 . 050 2 746 493 01 49 .812 1 .961 7. 064 2 737 491 12 55 .792 1 .949 7 . 082 2 728 489 36 61 .107 1 .936 7. 101 2 719 487 69 65 .924 1 .923 7 . 123 2 711 486 13 70 .348 1 .910 7 . 147 2 704 484 66 74 .447 1 .897 7. 173 2 696 483 28 78 .269 1 .884 7. 200 2 690 481 98 81 .850 1 . 871 7. 229 2 683 480 77 85 .215 1 .858 7 . 260 2 677 479 .63 88 .383 1 .846 7. 292 2 .672 478 .58 91 .367 1 .833 7 326 2 .667 477 .60 94 .177 1 .820 7 361 2 .662 476 .70 96 .817 1 .807 7 398 2 .657 475 .88 99 .291 1 .794 7 437 2 .653 475 .13 101 .596 1 .781 7 476 2 .650 474 .46 103 .729 1 .768 7 518 2 .646 473 .87 105 .679 1 .755 7 561 2 .644 473 .35 107.434 108.974 110.271 111.285 111.960 112.210 215.500 1.743 1.730 1.717 1.704 1.691 1.678 1.678 7.605 7.651 698 747 798 850 850 641 639 638 637 636 636 636 472.91 472.55 472.27 472.07 471.95 471.91 471.91 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 105.27 FEET UPSTREAM OF NODE 283.90 I DOWNSTREAM DEPTH = 1.758 FEET, UPSTREAM CONJUGATE DEPTH = 1.600 FEET NODE 110.00 HGL < 292.998>;EGL= < 293.956>;FLOWLINE= < 291.320> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.90 110.00 TO NODE ELEVATION = 110.90 IS CODE = 5 291.65 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15.53 22.10 0.00 0.00 6.57 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 2.00 291.65 1.42 24.00 - 291.32 1.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 4.943 7.852 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00471 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00917 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00694 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.028 FEET ENTRANCE LOSSES = 0.191 FEET JUNCTION LOSSES = (DY+FIV1-HV2) + (ENTFIANCE LOSSES) JUNCTION LOSSES = ( 0.459)+( 0.191) = 0.651 NODE 110.90 : HGL = < 294.227>;EGL= < 294.606>;FLOWLINE= < 291.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 275.00 110.90 TO NODE 275.00 IS CODE = 1 ELEVATION = 291.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.53 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 24.50 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 15.53)/( 226.236))**2 = 0.00471 HF=L*SF = ( 24.50)*(0.00471) = 0.115 NODE 275.00 HGL < 294.342>;EGL= < 294.722>;FLOWLINE= < 291.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 275.90 275.00 TO NODE 275.90 IS CODE = 5 ELEVATION = 292.23 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 12 .21 15.53 3 .32 0.00 0.00= (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 79.00 292.23 1.26 24.00 - 291.90 1.42 18.00 0.00 292.73 0.69 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 3.886 4.943 1.879 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00291 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00471 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00381 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2) +(ENTF^ANCE LOSSES) JUNCTION LOSSES = ( 0.478)+( 0.000) = 0.478 NODE 275.90 : HGL = < 294.965>;EGL= < 295.200>;FLOWLINE= < 292.230> ****************************************************************************** FLOW PROCESS FROM NODE 275.90 TO NODE 273.00 IS CODE = 1 UPSTREAM NODE 273.00 ELEVATION = 292.84 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.21 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 34.03 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 12.21)/( 226.202))**2 = 0.00291 HF=L*SF = ( 34.03)*(0.00291) = 0.099 NODE 273.00 : HGL = < 295.065>;EGL= < 295.299>;FLOWLINE= < 292.840> ****************************************************************************** FLOW PROCESS FROM NODE 273.00 TO NODE 272.00 IS CODE = 3 UPSTREAM NODE 272.00 ELEVATION = 295.05 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 12.21 CFS CENTIAL ANGLE = 35.650 DEGREES PIPE LENGTH = 124.45 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 HYDFIAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 GF^UALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.26 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.901 8.885 2.128 242.83 1.528 0.901 8.893 2.129 242.97 3.125 0.900 8.901 2.131 243.10 4.796 0.900 8.909 2.133 243.24 6.548 0.899 8.917 2.134 243.38 8.389 0.898 8.925 2.136 243.51 10.329 0. 898 8. 933 2 137 243 65 12.378 0. 897 8. 941 2 139 243 79 14.548 0 896 8 949 2 141 243 93 16.854 0 896 8 957 2 142 244 07 19.314 0 895 8 965 2 144 244 .21 21.949 0 895 8 973 2 146 244 .35 24.784 0 894 8 981 2 147 244 .49 27.853 0 893 8 990 2 149 244 .63 31.196 0 893 8 998 2 151 244 .77 34.865 0 892 9 006 2 152 244 .91 38.929 0 891 9 014 2 154 245 .05 43.480 0 891 9 022 2 156 245 .19 48.651 0 890 9 031 2 157 245 .33 54.631 0 890 9 039 2 159 245 .48 61.719 0 889 9 047 2 161 245 .62 70.410 0 888 9 055 2 .162 245 .76 81.638 0 888 9 .064 2 .164 245 .91 97.497 0 .887 9 .072 2 .166 246 .05 124.450 0 .886 9 .080 2 .168 246 .19 FIYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.22 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 0 000 2. 225 3 . 887 2 459 332 03 16 022 2 000 3 . 887 2 235 288 00 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 16 022 2 000 3 . 885 2 235 288 00 17 .912 1 970 3. 897 2 206 282 45 19 .701 1 940 3 . 919 2 179 277 17 21 .429 1 911 3 . 948 2 153 272 07 23 .108 1 881 3. 982 2 127 267 16 24 .743 1 851 4. 021 2 .102 262 42 26 .338 1 821 4. 065 2 .078 257 .84 27 .894 1 792 4. 113 2 .054 253 .43 29 .411 1 762 4. 165 2 .031 249 .20 30 .889 1 .732 4. 222 2 .009 245 .14 32 .327 1 .702 4. 284 1 .987 241 .26 33 .723 1 .672 4. 350 1 .966 237 .57 35 .075 1 .643 4. 421 1 .946 234 .07 36 .380 1 .613 4 496 1 .927 230 .77 37 .634 1 .583 4 577 1 .909 227 .68 38 .833 1 .553 4 662 1 .891 224 .79 39 .971 1 .524 4 753 1 .875 222 .13 41 .043 1 .494 4 850 1 .859 219 .70 42 .041 1 .464 4 953 1 .845 217 .51 42 .956 1 .434 5 062 1 .832 215 .56 43.778 44.494 45.090 45.547 45.843 45.949 124.450 1.404 1.375 1.345 1.315 1.285 1.256 1.256 5.178 5.302 5.433 5.572 5.721 5.879 5.879 1.821 1.811 1.804 1.798 1.794 1.793 1.793 213.88 212.47 211.35 210.53 210.02 209.85 209.85 END OF FIYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 30.57 FEET UPSTREAM OF NODE 273.00 | DOWNSTREAM DEPTH = 1.73 8 FEET, UPSTREAM CONJUGATE DEPTH = 0.887 FEET j NODE 272.00 : HGL = < 295.951>;EGL= < 297.178>;FLOWLINE= < 295.050> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 270.00 272.00 TO NODE ELEVATION = 270.00 IS CODE = 1 295.75 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH 12.21 CFS PIPE DIAMETER = 24.00 INCHES 39.46 FEET MANNING'S N = 0.01300 NOimAL DEPTH (FT) = 0.89 CRITICAL DEPTH(FT) 1.26 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.384 2.837 4.363 5.971 7.668 9.463 11.366 13 .391 15.552 17.866 20.356 23.046 25.969 29.165 32.687 36.604 39.460 FLOW DEPTH (FT) 0.932 0.930 0.928 0.926 0.924 0.923 0.921 0.919 0.917 0.915 0.913 0.912 0.910 0.908 0.906 0.904 0.903 0.901 VELOCITY (FT/SEC) 8.510 8.531 8.553 8.575 8.597 8.619 8.641 8.664 8.686 8.709 8.731 8.754 8 .777 8.800 8.823 8.846 8.870 8.885 SPECIFIC ENERGY(FT) 2.057 061 065 069 073 077 2.081 2.085 089 094 098 102 2.107 2.111 2.116 2.120 2.125 2.128 PRESSURE+ MOMENTUM(POUNDS) 236.62 236.97 237.32 237.67 238.03 238.39 238.76 239.13 239.50 239.87 240.25 240.63 241.01 241.39 241.78 242.18 242.57 242.83 NODE 270.00 : HGL = < 296.682>;EGL= < 297.807>;FLOWLINE= < 295.750> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 270.90 270.00 TO NODE ELEVATION = 270.90 IS CODE = 3 296.53 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 12.21 CFS CENTRAL ANGLE = 54.920 DEGREES PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH 43.13 FEET NORMAL DEPTH(FT) 0.88 CRITICAL DEPTH(FT) = 1.26 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.26 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1. 256 5.879 1. 793 209 .85 0 028 1. 241 5.962 1. 793 209 .89 0 117 1. 226 6.048 1. 794 210 .03 0 273 1. 211 6.137 1. 796 210 .26 0 501 1. 196 6.228 1. 798 210 .59 0 810 1. 181 6.323 1 802 211 .02 1 209 1. 166 6.421 1 806 211 .55 1 709 1. 151 6.523 1 812 212 .19 2 321 1 . 136 6.628 1 818 212 .94 3 061 1. 121 6.736 1 826 213 .80 3 945 1. 106 6.849 1 835 214 .79 4 .995 1. 091 6.965 1 845 215 .89 6 236 1 . 076 7.086 1 856 217 .12 7 .701 1. 061 7.211 1 869 218 .49 9 .431 1. 046 7.341 1 883 219 .99 11 .477 1. 031 7.475 1 899 221 .63 13 .908 1. 016 7.615 1 917 223 .43 16 .817 1 001 7.760 1 937 225 .37 20 .335 0 986 7.910 1 958 227 .48 24 .654 0 971 8.067 1 982 229 .76 30 .070 0 956 8.230 2 008 232 .21 37 .081 0 941 8.399 2 037 234 .85 43 .130 0 932 8.510 2 057 236 .62 NODE 270.90 : HGL = < 297. 786>;EGL= < 2 9 8.3 2 3 >;FLOWLINE= < 296. 530> ****************************************************************************** FLOW PROCESS FROM NODE 270.90 TO NODE 270.30 IS CODE = 5 UPSTREAM NODE 270.30 ELEVATION = 297.03 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: FLOWLINE PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 7.48 18.00 90.00 297.03 DOWNSTREAM 12.21 24.00 - 296.53 LATERAL #1 4.73 18.00 63.90 297.03 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.06 1.26 0.84 0.00 4.233 5.880 2.904 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00507 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00563 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00535 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.021 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIV1-HV2 ) + (ENTF^CE LOSSES) JUNCTION LOSSES = ( 0.833)+( 0.000) = 0.833 NODE 270.30 : HGL = < 298.877>;EGL= < 299.155>;FLOWLINE= < 297.030> ****************************************************************************** FLOW PROCESS FROM NODE 270.30 TO NODE 155.00 IS CODE = 1 UPSTREAM NODE 155.00 ELEVATION = 297.32 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.48 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.78 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.48)/( 105.045))**2 = 0.00507 HF=L*SF = ( 29.78)*(0.00507) = 0.151 NODE 155.00 : HGL = < 299.028>;EGL= < 299.3 06>;FLOWLINE= < 297.320> ****************************************************************************** FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 8 UPSTREAM NODE 155.00 ELEVATION = 297.32 (FLOW IS UNDER PRESSUIIE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 7.48 CFS PIPE DIAMETER = li 3.00 INCHES FLOW VELOCITY = 4.23 FEET/SEC. VELOCITY HEAD = 0 278 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 278) = 0.056 NODE 155.00 : HGL = < 299.362>;EGL= < 299.362>;FLOWLINE= < 297.320> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 155.00 FLOWLINE ELEVATION = 297.32 ASSUMED UPSTREAM CONTROL HGL = 298.3 8 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - 275.1 LATERAL * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P13-100.DAT TIME/DATE OF STUDY: 10:49 05/11/2004 ****************************************************************************** GFIADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUIODS) 275.10- 2.24* 188.22 0.44 102.60 } FRICTION } HYDRAULIC JUMP 125.00- 0.83*Dc 64.38 0.83*Dc 64.38 } CATCH BASIN 125.00- 1.23* 35.34 0.83 Dc 22.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 275.10 FLOWLINE ELEVATION = 292.73 PIPE FLOW = 4.67 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 294.970 FEET NODE 275.10 : HGL = < 294.970>;EGL= < 295.078>;FLOWLINE= < 292.730> ****************************************************************************** FLOW PROCESS FROM NODE 275.10 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 294.03 (HYDFIAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.67 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 6.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0 .32 CRITICAL DEPTH(FT) 0.83 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.83 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0. 830 4 653 1 166 64. 38 0 005 0. 810 4 799 1 167 64. 44 0 022 0. 789 4 954 1 171 64. 63 0 051 0. 769 5 121 1 176 64. 96 0 .094 0. 748 5 299 1 185 65. 43 0 .155 0. 728 5 490 1 196 66. 05 0 .234 0. 707 5 695 1 211 66. 84 0 .336 0. 687 5 915 1 231 67. 81 0 .464 0. 667 6 153 1 255 68. 98 0 .623 0. 646 6 409 1 285 70. 35 0 .817 0. 626 6 687 1 321 71. 96 1 .054 0. 605 6 989 1 364 73. 82 1 .343 0. 585 7 318 1 417 75. 96 1 .694 0. 565 7 676 1 480 78. 41 2 .122 0. 544 8 068 1 556 81. 21 2 .645 0. 524 8 499 1 646 84. 39 3 .288 0. 503 8 .974 1 755 88. 01 4 .085 0. 483 9 500 1 885 92. 12 5 .086 0. 462 10 .084 2 042 96. 80 6 .363 0 442 10 .735 2 233 102. 13 6 .500 0 440 10 .792 2 .250 102. 60 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFOFMATION: 2.24 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .240 2.643 2 .348 188.22 3 .737 1.500 2.643 1.608 106.62 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GFIADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .737 1.500 2.642 1.608 106.62 3.868 1.473 2.653 1.583 103.76 3.995 1.446 2.672 1.557 101.01 4.119 1.420 2.698 1.533 98.33 4.241 1.393 2.728 1.508 95.73 4.361 1.366 2.764 1.485 93.21 4.479 1.339 2.803 1.461 90.76 4.595 1.312 2.847 1.438 88.40 4 708 1 286 2 896 1 416 86 12 4 819 1 259 2 949 1 394 83 92 4 928 1 232 3 006 1 372 81 82 5 034 1 205 3 068 1 351 79 81 5 137 1 178 3 135 1 331 77 90 5 236 1 152 3 207 1 311 76 09 5 332 1 125 3 284 1 292 74 38 5 424 1 098 3 368 1 274 72 79 5 512 1 071 3 458 1 257 71 31 5 594 1 044 3 554 1 241 69 96 5 671 1 018 3 658 1 226 68 73 5 742 0 991 3 770 1 212 67 64 5 805 0 964 3 890 1 199 66 69 5 861 0 937 4 020 1 188 65 89 5 907 0 910 4 160 1 179 65 25 5 942 0 884 4 311 1 172 64 78 5 965 0 857 4 475 1 168 64 48 5 973 0 830 4 653 1 166 64 38 6 500 0 830 4 .653 1 166 64 38 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 5.31 FEET UPSTREAM OF NODE 275.10 | I DOWNSTREAM DEPTH = 1.132 FEET, UPSTREAM CONJUGATE DEPTH = 0.595 FEET j NODE 125.00 : HGL = < 294.860>;EGL= < 295.196>;FLOWLINE= < 294.030> ****************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 8 UPSTREAM NODE 125.00 ELEVATION = 294.03 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.67 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.65 FEET/SEC. VELOCITY HEAD = 0.336 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.336) = 0.067 NODE 125.00 : HGL = < 295.264>;EGL= < 295.264>;FLOWLINE= < 294.030> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 125.00 FLOWLINE ELEVATION = 294.03 ASSUMED UPSTREAM CONTROL HGL = 294.86 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACFU3, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI I^ANCH PA-11 * * PROPOSED CONDITIONS - 270.3 LATEFIAL * * 1OO-YEAR STORM EVENT * ************************************************************************** FILE NAME: P14-100.DAT TIME/DATE OF STUDY: 11:05 05/11/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 270.30- 1.85* 156.55 0.48 132.95 } FRICTION } HYDFU^ULIC JUMP 140.00- 0.92*Dc 83.09 0.92*Dc 83.09 } CATCH BASIN 140.00- 1.38* 46.66 0.92 Dc 28.17 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFID,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 270.30 FLOWLINE ELEVATION = 297.03 PIPE FLOW = 5.67 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 298.880 FEET NODE 270.30 : HGL = < 298.880>;EGL= < 299.040>;FLOWLINE= < 297.030> ****************************************************************************** FLOW PROCESS FROM NODE 270.30 TO NODE 140.00 IS CODE = 1 UPSTREAM NODE 140.00 ELEVATION = 298.54 (HYDFIAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.67 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.55 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0 .35 CRITICAL DEPTH(FT) 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 • GFIADUALLY VARIED FLOW PROFILE COMPUTED INFOI-MATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0. 919 4 997 1 3 07 83 . 09 0 006 0. 896 5 148 1 308 83 . 17 0 024 0. 873 5 309 1 311 83 . 41 0 057 0. 851 5 482 1 318 83. 82 0 106 0. 828 5 667 1 327 84. 42 0 173 0. 805 5 866 1 340 85. 21 0 262 0. 783 6 079 1 357 86. 21 0 376 0. 760 6 309 1 378 87. 45 0 519 0. 737 6 557 1 405 88. 93 0 697 0. 715 6 826 1 438 90. 68 0 914 0. 692 7 116 1 479 92. 72 1 180 0. 669 7 432 1 528 95. 09 1 503 0. 647 7 776 1 586 97 . 82 1 895 0. 624 8 152 1 656 100. 94 2 .374 0. 601 8 564 1 741 104. 51 2 .958 0. 579 9 016 1 842 108. 57 3 .678 0 556 9 515 1 963 113 . 19 4 .570 0 533 10 068 2 108 118. 44 5 .689 0 511 10 683 2 284 124. 42 7 .119 0 488 11 369 2 .496 131. 24 7 .550 0 483 11 .539 2 .552 132. 95 HYDI^ULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1 .85 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.850 3 .209 2 . 010 156.55 1.776 1.500 3 .209 1.660 117.96 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 1.776 1.889 1.997 2.102 2.204 2.304 2.401 2.-^97 FLOW DEPTH VELOCITY (FT) 500 477 453 430 407 1.384 1.360 1.337 (FT/SEC) 3 .208 3 .218 237 262 292 327 365 408 SPECIFIC ENERGY(FT) 1.660 1.638 1.616 1.596 1.575 1.556 1.536 1.518 PRESSURE+ MOMENTUM(POUNDS) 117.96 115.51 113.17 110.92 108.74 106.63 104.59 102.63 2 589 1 314 3 454 1 499 100 74 2 680 1 291 3 504 1 481 98 93 2 767 1 267 3 559 1 464 97 20 2 852 1 244 3 617 1 447 95 55 2 934 1 221 3 680 1 431 93 98 3 013 1 198 3 747 1 416 92 50 3 088 1 174 3 819 1 401 91 12 3 160 1 151 3 895 1 387 89 82 3 227 1 128 3 977 1 374 88 63 3 291 1 105 4 063 1 361 87 54 3 349 1 081 4 156 1 350 86 55 3 402 1 058 4 254 1 339 85 68 3 449 1 035 4 359 1 330 84 92 3 490 1 012 4 471 1 322 84 28 3 523 0 988 4 590 1 .316 83 77 3 548 0 965 4 717 1 311 83 40 3 564 0 942 4 852 1 .308 83 17 3 570 0 919 4 997 1 .307 83 09 7 .550 0 919 4 997 1 .307 83 09 END OF FIYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 1.37 FEET UPSTREAM OF NODE 270.30 | I DOWNSTREAM DEPTH = 1.580 FEET, UPSTREAM CONJUGATE DEPTH = 0.503 FEET j NODE 140.00 : HGL = < 299.459>;EGL= < 299.847>;FLOWLINE= < 298.540> ****************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 8 UPSTREAM NODE 140.00 ELEVATION = 298.54 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.67 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.00 FEET/SEC. VELOCITY HEAD = 0.388 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.388) = 0.078 NODE 140.00 : HGL = < 299.924>;EGL= < 299.924>;FLOWLINE= < 298.540> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.00 FLOWLINE ELEVATION = 298.54 ASSUMED UPSTREAM CONTROL HGL = 299.46 FOR DOWNSTREAM RUN ANALYSIS END OF GFUUDUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACFWLGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - MAIN LINE FROM JUNCTION AT 285.8 * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P15-100.DAT TIME/DATE OF STUDY: 08:10 05/12/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 403.51 } } } NODE NUMBER 285.80- } 171.00- 171.90- 172.00- 172.90- ) 173.00- } 173.90- } 262.00- } 262.90- } 263.00- } 260.00- } 260.90- } 267.00- } 267.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 4.35* 736.46 } HYDRAULIC JUMP 190.96 1.21 DC 1.21 DC 1.21 Dc 1.21 Dc 1.21*Dc FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 0.64 Dc FRICTION+BEND 0.64*Dc JUNCTION 0.77* FRICTION 0.51* CATCH BASIN 0.52* 190.96 190.96 190.96 190.96 1.80* 124.50 } HYDF^ULIC JUMP 33 .94 0.64 Dc 0.64 Dc 33 .94 33.94 33.94 18.83 7.72 7.27 0.51 0.50* 0.46* 0.90* 1.17* 1.21*Dc 0.43 0.37* 0.37* 0.39* 0.64*Dc 0.20 0.24 Dc 0.24 Dc 419.43 469.56 215.29 191.27 190.96 42.34 50.05 49.32 47.12 33.94 3 .00 2.89 1.07 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 285.80 FLOWLINE ELEVATION = 252.44 PIPE FLOW = 11.37 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 256.790 FEET NODE 285.80 : HGL = < 256.790>;EGL= < 256.993>;FLOWLINE= < 252.440> ****************************************************************************** FLOW PROCESS FROM NODE 285.80 TO NODE 171.00 IS CODE = 1 UPSTREAM NODE 171.00 ELEVATION = 256.75 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.37 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 36.59 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 1.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.218 2.485 3 .804 5.182 6.624 8.136 9.727 11.404 13 .178 15.063 17.073 19.227 21.548 24.065 26.815 29.849 33.232 36.590 FLOW DEPTH (FT) 0.497 0.498 0.498 0.499 0.500 0.501 0.502 0.502 0.503 0.504 0.505 0.506 0.507 0.507 0.508 0.509 0.510 0.511 0.511 VELOCITY (FT/SEC) 18.679 18.636 18.592 18.550 18.507 18.464 18.422 18.380 18.338 18.296 18.254 18.212 18.171 18.130 18.089 18.048 18.007 17.967 17 .931 SPECIFIC ENERGY(FT) 5.918 894 869 845 822 798 775 751 728 5.705 5.682 5.659 637 614 592 570 548 526 507 PRESSURE+ MOMENTUM(POUNDS) 419.43 418.50 417.59 416.67 415.76 414.85 413.95 413.05 412.16 411.26 410.38 409.49 408.61 407.74 406.86 405.99 405.13 404.27 403.51 HYDFIAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFOI^IATION: 4.35 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 4. 350 3 . 619 4. 553 736. 46 20. 388 2. 000 3 . 619 2 . 203 275 . 78 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 2 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 20 388 2 000 3 . 618 2 203 275 78 20 650 1 968 3 . 630 2 173 269 86 20 902 1 937 3. 653 2 144 264 20 21 147 1 905 3 . 682 2 116 258 72 21 385 1 874 3 . 716 2 088 253 43 21 619 1 842 3 . 756 2 061 248 31 21 847 1 810 3. 801 2 035 243 36 22 069 1 779 3 . 850 2 009 238 59 22 .287 1 747 3 . 904 1 984 234 00 22 .498 1 .716 3 . 963 1 960 229 59 22 .704 1 .684 4. 026 1 936 225 38 22 .903 1 .652 4. 095 1 913 221 36 23 .096 1 .621 4. 168 1 891 217 55 23 .281 1 .589 4 246 1 869 213 94 23 .459 1 .558 4 330 1 849 210 56 23 .628 1 .526 4 419 1 829 207 41 23 .788 1 .494 4 515 1 811 204 49 23 .938 1 .463 4 617 1 794 201 83 24 . 076 1 .431 4 725 1 778 199 42 24 .202 1 .400 4 841 1 .764 197 28 24 .315 1 .368 4 964 1 .751 195 43 24 .412 1 .336 5 096 1 .740 193 87 24 .491 1 .305 5 236 1 .731 192 .63 24 .551 1 .273 5 387 1 .724 191 .72 24 .590 1 .242 5 547 1 .720 191 .16 24 .603 1 .210 5 719 1 .718 190 .96 36 .590 1 .210 5 719 1 .718 190 .96 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 14.56 FEET UPSTREAM OF NODE 285.80 I DOWNSTREAM DEPTH = 2.672 FEET, UPSTREAM CONJUGATE DEPTH = 0.508 FEET NODE 171.00 HGL < 257.247>;EGL= < 262.668>;FLOWLINE= < 256.750> ****************************************************************************** FLOW PROCESS FROM NODE 171.00 TO NODE 171.90 IS CODE = 5 UPSTREAM NODE 171.90 ELEVATION = 257.08 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.37 11.37 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 18.20 257.08 1.21 21.025 24.00 - 256.75 1.21 18.685 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.000 :=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.19267 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.13819 AVEFIAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.16543 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.662 FEET ENTFIANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIV1-HV2 ) + (ENTFIANCE LOSSES) JUNCTION LOSSES = ( 1.733)+( 0.000) = 1.733 NODE 171.90 : HGL = < 257.537>;EGL= < 264.401>;FLOWLINE= < 257.080> ****************************************************************************** FLOW PROCESS FROM NODE 171.90 TO NODE 172.00 IS CODE = 1 UPSTREAM NODE 172.00 ELEVATION = 288.96 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 11.37 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH = 142.93 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .44 CRITICAL DEPTH(FT) 1.21 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 GWUDUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0. 899 8 300 1 970 215. 29 0 197 0. 881 8 527 2 Oil 218. 75 0 420 0. 862 8 766 2 057 222 . 52 0 670 0. 844 9 019 2 108 226. 62 0 952 0. 826 9 285 2 165 231. 07 1 269 0. 807 9 567 2 230 235. 90 1 .627 0 . 789 9 866 2 301 241. 14 2 030 0. 771 10 182 2 382 246. 81 2 487 0. 752 10 518 2 471 252 . 95 3 004 0. 734 10 874 2 571 259. 60 3 .591 0. 716 11 254 2 684 266. 79 4 .261 0. 697 11 659 2 809 274. 58 5 .029 0. 679 12 091 2 951 283 . 01 5 .911 0. 661 12 554 3 109 292 . 14 6 .933 0. 642 13 049 3 288 302. 05 8 .124 0. 624 13 581 3 490 312. 80 9 .526 0. 606 14 154 3 718 324. 48 11 . 192 0. 587 14 771 3 977 337 . 19 13 .201 0. 569 15 438 4 272 351. 03 15 .668 0. 551 16 161 4 609 366. 15 18 .769 0. 532 16 947 4 995 382. 67 22 .803 0. 514 17 803 5 438 400. 79 28 .333 0. 496 18 738 5 951 420. 69 36 .619 0 477 19 764 6 546 442. 62 51 .713 0 459 20 892 7 .241 466 . 85 142 .930 0 457 21 018 7 321 469. 56 NODE 172.00 : HGL = < 289.859>;EGL= < 290.930>;FLOWLINE= < 288.960> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 172.90 172.00 TO NODE 172.90 IS CODE = 5 ELEVATION = 289.29 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.37 11.37 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 7.00 289.29 1.21 24.00 - 288.96 1.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 5.951 8.303 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00604 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01461 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01033 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.041 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIV1-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.081)+( 0.000) = 0.081 NODE 172.90 : HGL = < 290.461>;EGL= < 291.011>;FLOWLINE= < 289.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 173.00 172.90 TO NODE ELEVATION = 173.00 IS CODE = 1 290.28 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.37 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 163.53 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) 1 .17 CRITICAL DEPTH(FT) 1.21 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 210 5 719 1 718 190. 96 0 . 007 1. 208 5 728 1 718 190. 96 0 .029 1. 207 5 737 1 718 190. 97 0 .067 1 . 205 5 746 1 718 190. 97 0 .122 1. 203 5 755 1 718 190. 97 0 .197 1. 202 5 764 1 718 190. 98 0 .294 1. 200 5 774 1 718 190. 98 0 .414 1. 199 5 783 1 718 190. 99 0 .560 1. 197 5 792 1 718 191. 00 0 .736 1. 195 5 801 1 718 191. 00 0 .945 1. 194 5 811 1 719 191. 01 1 .192 1. 192 5 820 1 719 191. 03 1 .483 1. 191 5 .829 1 719 191. 04 1 825 1 189 5 839 1 719 191 05 2 226 1 187 5 848 1 719 191 06 2 698 1 186 5 858 1 719 191 08 3 255 1 184 5 867 1 719 191 09 3 918 1 183 5 877 1 719 191 11 4 716 1 181 5 886 1 719 191 13 5 690 1 179 5 896 1 720 191 15 6 904 1 178 5 906 1 720 191 17 8 466 1 176 5 915 1 720 191 19 10 580 1 175 5 925 1 720 191 21 13 698 1 173 5 935 1 720 191 24 19 281 1 171 5 945 1 721 191 26 163 530 1 171 5 949 1 721 191 27 NODE 173.00 : HGL = < 291.490>;EGL= < 291.998>;FLOWLINE= < 290.280> ****************************************************************************** FLOW PROCESS FROM NODE 173.00 TO NODE 173.90 IS CODE = 5 UPSTREAM NODE 173.90 ELEVATION = 290.78 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.85 18.00 90.00 290.78 0.64 1.613 DOWNSTREAM 11.37 24.00 - 290.28 1.21 5.721 LATERAL #1 8.52 18.00 90.00 290.78 1.13 5.399 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00074 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00546 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00310 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTFIANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.621)+( 0.000) = 0.621 NODE 173.90 : HGL = < 292.578>;EGL= < 292.619>;FLOWLINE= < 290.780> ****************************************************************************** FLOW PROCESS FROM NODE 173.90 TO NODE 262.00 IS CODE = 1 UPSTREAM NODE 262.00 ELEVATION = 296.34 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.85 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 244.28 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.43 CRITICAL DEPTH(FT) = 0.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.367 8. 489 1.487 50.05 0.987 0.370 8. 407 1.468 49.65 2.005 0.372 8. 327 1.450 49.26 3 .055 0.375 8. 247 1.432 48.88 4.141 0.378 8. 170 1.415 48.50 5.267 0.380 8. 093 1.398 48.14 6.437 0.383 8 018 1.381 47.78 7.655 0.385 7 944 1.366 47.42 8.927 0.388 7 871 1.350 47.08 10.260 0.390 7 799 1.335 46.74 11.661 0.393 7 728 1.321 46.41 13.140 0.395 7 659 1.307 46.08 14.709 0.398 7 591 1.293 45.76 16.383 0.400 7 .523 1.280 45.45 18.179 0.403 7 .457 1.267 45.14 20.121 0.405 7 .392 1.254 44.85 22.240 0.408 7 .328 1.242 44.55 24.578 0.410 7 .265 1.230 44.26 27.194 0.413 7 .202 1.219 43 .98 30.173 0.415 7 .141 1.208 43 .71 33.649 0.418 7 .081 1.197 43.44 37.846 0.421 7 .021 1.186 43 .17 43.183 0.423 6 .963 1.176 42.91 50.602 0.426 6 .905 1.166 42.66 63 .124 0.428 6 .848 1.157 42.41 244.280 0.429 6 .832 1.154 42.34 HYDF^ULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.80 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.798 1.613 1. 839 124. 50 13.545 1.500 1.613 1. 540 91. 61 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 13.545 1.500 1.612 1 540 91 61 15.080 1.466 1.622 1 507 87 88 16.594 1.431 1.639 1 473 84 23 18.094 1.397 1.662 1 .440 80 66 19.582 1.363 1.690 1 .407 77 .16 21.059 1.328 1.722 1 .374 73 .76 22.526 1.294 1.758 1 .342 70 .44 23.981 1.259 1.799 1 .310 67 .23 25.423 1.225 1.844 1 .278 64 .13 26.853 1.191 1.894 1 .247 61 .14 28 268 1.156 1 949 1. 215 58 26 29 667 1.122 2 009 1 185 55 51 31 047 1.088 2 076 1 155 52 .88 32 406 1.053 2 149 1 125 50 .39 33 740 1.019 2 229 1 096 48 .04 35 045 0.985 2 317 1 068 45 .84 36 315 0.950 2 414 1 041 43 .79 37 544 0.916 2 520 1 015 41 .91 38 724 0.882 2 638 0 990 40 .19 39 842 0.847 2 769 0 966 38 .65 40 885 0.813 2 914 0 945 37 .30 41 834 0.778 3 076 0 925 36 .15 42 662 0.744 3 257 0 909 35 .22 43 333 0.710 3 461 0 896 34 .53 43 .796 0.675 3 .691 0 887 34 .09 43 .974 0.641 3 .953 0 884 33 .94 244 .280 0.641 3 .953 0 884 33 .94 END OF HYDFIAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 37.25 FEET UPSTREAM OF DOWNSTREAM DEPTH = 0.924 FEET, UPSTREAM CONJUGATE DEPTH NODE 173.90 = 0.429 FEET NODE 262.00 HGL < 296.707>;EGL= < 297.827>;FLOWLINE= < 296.340> ****************************************************************************** FLOW PROCESS FROM NODE 262.00 TO NODE 262.90 IS CODE = 5 UPSTREAM NODE 262.90 ELEVATION = 296.67 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 2.85 2.85 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 18.00 0.00 296.67 0.64 18.00 - 296.34 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 8.342 8.492 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04048 DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.04256 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04152 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 4.00 FEET 0.166 FEET ENTRANCE LOSSES = (DY+FIV1-HV2) + (ENTRANCE LOSSES) ( 0.295)+( 0.000) = 0.295 0.000 FEET NODE 262.90 : HGL = < 297.042>;EGL= < 298.123>;FLOWLINE= < 296.670> r**************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 263.00 262.90 TO NODE ELEVATION = 263.00 IS CODE = 1 304.89 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.85 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 202.07 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.64 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ lOL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 0 387 7 880 1 .352 47 12 0. 627 0 387 7 898 1 .356 47 21 1. 284 0 386 7 916 1 .360 47 29 1. 971 0 385 7 934 1 .364 47 38 2. 693 0 385 7 953 1 .367 47 47 3. 453 0 384 7 971 1 .371 47 55 4. 255 0 384 7 989 1 .375 47 64 5. 102 0 383 8 008 1 .379 47 73 6. 001 0 382 8 026 1 .383 47 82 6. 958 0 382 8 045 1 .387 47 91 7. 980 0 381 8 064 1 .391 48 00 9. 076 0 380 8 083 1 .395 48 09 10. 257 0 380 8 101 1 .400 48 18 11. 537 0 379 8 120 1 .404 48 27 12. 933 0 379 8 139 1 .408 48 36 14. 467 0 378 8 159 1 .412 48 45 16. 168 0 377 8 178 1 .416 48 54 18. 077 0 377 8 197 1 .421 48 64 20. 247 0 376 8 216 1 .425 48 73 22. 761 0 375 8 236 1 .429 48 82 25. 744 0 375 8 255 1 .434 48 92 29. 406 0 374 8 275 1 .438 49 01 34. 143 0 373 8 294 1 .442 49 11 40. 843 0 373 8 314 1 .447 49 20 52. 354 0 372 8 334 1 .451 49 30 202. 070 0 372 8 339 1 .453 49 32 263 .00 HGL = < 305 277>;EGL= < 306.242>;FLOWLINE= < 304.f 390 ****************************************************************************** FLOW PROCESS FROM NODE 263.00 TO NODE 260.00 IS CODE = 3 UPSTREAM NODE 260.00 ELEVATION = 306.10 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 2.85 CFS CENTRAL ANGLE = 2.780 DEGREES PIPE LENGTH = 29.55 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.013 00 NORMAL DEPTH(FT) 0.37 CRITICAL DEPTH(FT) 0.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.010 0.042 FLOW DEPTH (FT) 0.641 0.630 0.619 VELOCITY (FT/SEC) 3.953 4.043 4.137 SPECIFIC ENERGY(FT) 0.884 0.884 0.885 PRESSURE+ MOMENTUM(POUNDS) 33.94 33.95 34.00 0.097 0 609 4 235 0 887 34 .08 0.179 0 598 4 337 0 890 34 .20 0.291 0 587 4 444 0 894 34 .36 0.437 0 576 4 557 0 899 34 .55 0.620 0 565 4 674 0 905 34 .78 0.846 0 555 4 798 0 912 35 .06 1.120 0 544 4 927 0 921 35 .38 1.451 0 533 5 063 0 931 35 .75 1.846 0 522 5 207 0 943 36 .16 2.316 0 511 5 357 0 957 36 .63 2.876 0 501 5 .516 0 973 37 .16 3.541 0 490 5 684 0 992 37 .74 4.334 0 479 5 .861 1 013 38 .39 5.283 0 468 6 .049 1 037 39 .10 6.428 0 457 6 .247 1 064 39 .89 7.824 0 447 6 .458 1 095 40 .75 9.551 0 436 6 .681 1 129 41 .69 11.735 0 425 6 .919 1 169 42 .72 14.586 0 414 7 .173 1 214 43 .85 18.499 0 403 7 .443 1 264 45 .08 24.360 0 .393 7 .732 1 .321 46 .42 29.550 0 .387 7 .880 1 .352 47 .12 260.00 HGL = < 306 741>;EGL= < 306.984>;FLOWLINE= < 306. 100 NODE ****************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 260.90 IS CODE = 5 UPSTREAM NODE 260.90 ELEVATION = 306.43 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.41 18.00 90.00 306.43 0.24 0.452 DOWNSTREAM 2.85 18.00 - 306.10 0.64 3.954 LATERAL #1 2.44 18.00 90.00 306.43 0.59 3.770 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00006 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00510 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00258 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTFIANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.216)+( 0.000) = 0.216 NODE 260.90 : HGL = < 307.197>;EGL= < 307.200>;FLOWLINE= < 306.430> ****************************************************************************** FLOW PROCESS FROM NODE 260.90 TO NODE 267.00 IS CODE = 1 UPSTREAM NODE 267.00 ELEVATION = 306.68 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.41 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 25.25 FEET NORMAL DEPTH(FT) = 0.20 MANNING'S N = 0.01300 CRITICAL DEPTH(FT) = 0.24 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .767 0 451 0 770 18 83 2 .130 0 .745 0 468 0 749 17 67 4 .259 0 .724 0 485 0 728 16 54 6 .387 0 .703 0 504 0 707 15 46 8 .512 0 .682 0 525 0 686 14 42 10 .635 0 .661 0 547 0 665 13 43 12 .756 0 .639 0 571 0 644 12 47 14 .874 0 .618 0 597 0 624 11 57 16 .988 0 .597 0 625 0 603 10 70 19 .098 0 .576 0 656 0 582 9 88 21 .203 0 .555 0 690 0 562 9 10 23 .301 0 .533 0 728 0 542 8 36 25 .250 0 .514 0 766 0 523 7 72 NODE 267.00 : HGL = < 307.194>;EGL= < 307.203>;FLOWLINE= < 306.680> ****************************************************************************** FLOW PROCESS FROM NODE 267.00 TO NODE 267.00 IS CODE = 8 UPSTREAM NODE 267.00 ELEVATION = 306.68 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.41 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 0.77 FEET/SEC. VELOCITY HEAD = 0.009 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.009) = 0.002 NODE 267.00 : HGL = < 307.205>;EGL= < 307.205>;FLOWLINE= < 306.680> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 267.00 FLOWLINE ELEVATION = 306.68 ASSUMED UPSTREAM CONTROL HGL = 306.92 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACFLAGE (Reference: LACFCD,LACFCD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - 265.9 LATERAL * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: P16-100.DAT TIME/DATE OF STUDY: 14:29 05/11/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 265.90- 0.77 32.90 0.32* 49.50 } FRICTION 265.00- 0.61*Dc 30.01 0.61*Dc 30.01 } CATCH BASIN 265.00- 0.88* 16.06 0.61 Dc 10.74 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDFIAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFUD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 265.90 FLOWLINE ELEVATION = 306.43 PIPE FLOW = 2.59 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 307.200 FEET NODE 265.90 : HGL = < 306.749>;EGL= < 308.126>;FLOWLINE= < 306.430> ****************************************************************************** FLOW PROCESS FROM NODE 265.90 TO NODE 265.00 IS CODE = 1 UPSTREAM NODE 265.00 ELEVATION = 307.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.59 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.24 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 GRADUALLY VARIED FLOW PROFILE COMPUTED INFOFIMATION: 0.61 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 0. 610 3.838 0. 839 30 .01 0. 004 0. 595 3.966 0. 839 30 .04 0. 015 0 580 4.103 0. 842 30 .13 0. 036 0 565 4.248 0. 846 30 .29 0 068 0 551 4.404 0. 852 30 .51 0 111 0 536 4.570 0. 860 30 .81 0 168 0 521 4.748 0. 871 31 .19 0 242 0 506 4.939 0. 885 31 .66 0 333 0 491 5.145 0. 902 32 .22 0 447 0 476 5.366 0. 924 32 . 87 0 587 0 462 5.606 0. 950 33 .64 0 757 0 447 5.866 0. 981 34 .52 0 964 0 432 6.147 1. 019 35 .54 1 216 0 417 6.455 1. 064 36 .70 1 522 0 402 6.790 1. 119 38 .02 1 896 0 .387 7.158 1 183 39 .53 2 355 0 373 7.562 1 261 41 .23 2 .924 0 .358 8.009 1 354 43 .16 3 636 0 .343 8.504 1 467 45 .36 4 .545 0 .328 9.055 1 602 47 .85 5 .250 0 .319 9.414 1 696 49 .50 >65 .00 HGL = < 308 090>;EGL= < 308.319>;FLOWLINE= < 307. 480 NODE ****************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 8 UPSTREAM NODE 265.00 ELEVATION = 307.48 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTFiANCE LOSSES (LACFCD) : PIPE FLOW = 2.59 CFS PIPE DIAMETER = 1? 3.00 INCHES FLOW VELOCITY = 3.84 FEET/SEC. VELOCITY HEAD = 0 229 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 229) = 0.046 NODE 265.00 : HGL = < 308.365>;EGL= < 308.365>;FLOWLINE= < 307.480> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2 65.00 FLOWLINE ELEVATION = 3 07.48 ASSUMED UPSTREAM CONTROL HGL = 3 08.09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD, LACFU3, AND OCEMA HYDFLAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - 173.8 LATERAL * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: P17-100.DAT TIME/DATE OF STUDY: 14:38 05/11/2004 ****************************************************************************** GFIADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 173.80- 1.80* 205.00 1.07 156.74 } FRICTION 170.00- 1.47* 168.81 1.16 Dc 155.34 } CATCH BASIN 170.00- 1.96* 133.22 1.16 Dc 47.98 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FOiy^LAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 173.80 FLOWLINE ELEVATION = 290.78 PIPE FLOW = 9.02 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 292.580 FEET NODE 173.80 : HGL = < 292.580>;EGL= < 292.985>;FLOWLINE= < 290.780> ****************************************************************************** FLOW PROCESS FROM NODE 173.80 TO NODE 170.00 IS CODE = 1 UPSTREAM NODE 170.00 ELEVATION = 292.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.02 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 121.58 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.80 DISTANCE FROM CONTROL(FT) 0.000 112.734 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 1.800 5.104 1.500 5.104 SPECIFIC ENERGY(FT) 2 .205 1.905 PRESSURE+ MOMENTUM(POUNDS) 205.00 171.92 NORMAL DEPTH(FT) = 1.07 CRITICAL DEPTH(FT) = ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.1{ DISTANCE FROM CONTROL(FT) 112.734 116.860 120.290 121.580 DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.500 5.103 1.905 171.92 1.486 5.110 1.892 170.56 1.473 5.124 1.881 169.31 1.467 5.131 1.876 168.81 NODE 170.00 : HGL = < 293.467>;EGL= < 293.876>;FLOWLINE= < 292.000> ****************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 8 UPSTREAM NODE 170.00 ELEVATION = 292.00 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.02 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.13 FEET/SEC. VELOCITY HEAD = 0.409 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.409) = 0.082 NODE 170.00 : HGL = < 293.958>;EGL= < 293.958>;FLOWLINE= < 292.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 170.00 FLOWLINE ELEVATION = 292.00 ASSUMED UPSTREAM CONTROL HGL = 293.16 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDI^ULICS COMPUTER PROGFIAM PACICAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - CDS AT 288.9 UPSTREAM * * 1OO-YEAR STORM EVENT * ************************************************************************** FILE NAME: P18-100.DAT TIME/DATE OF STUDY: 08:21 05/12/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 288.90- 2.98* 404.08 0.81 306.54 } FRICTION } HYDRAULIC JUMP 287.00- 1.31 DC 233.11 0.85* 292.69 } FRICTION+BEND 286.00- 1.31 DC 233.11 1.00* 258.33 } FRICTION 285.00- 1.31*Dc 233.11 1.31*Dc 233.11 } JUNCTION 285.90- 2.64* 366.06 1.31 Dc 233.11 } FRICTION 200.00- 3.62* 474.43 1.31 Dc 233.11 } JUNCTION 200.90- 4.13* 384.26 0.58 42.31 } FRICTION 230.00- 3.86* 354.39 0.69 Dc 40.52 } CATCH BASIN 230.00- 3.92* 349.70 0.69 Dc 14.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FOI^MULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 288.90 FLOWLINE ELEVATION = 243.34 PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 246.320 FEET NODE 288.90 : HGL = < 246.320>;EGL= < 247.037>;FLOWLINE= < 243.340> ***************************** ************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 287.00 288.90 TO NODE 287.00 IS CODE = 1 ELEVATION = 250.13 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 169.69 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.81 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.410 2.887 4.436 6.064 7 .779 9.590 11.507 13.542 15.711 18.029 20.518 23 .203 26.116 29.295 32.793 36.677 41.036 46.000 51.754 58.589 66.990 77.867 93.265 119.744 169.690 FLOW DEPTH (FT) 0.854 0.853 0.851 0.849 0.848 0.846 0.844 0.843 0.841 0.839 0.838 0.836 0. 834 0.833 0.831 0.829 0.828 0. 826 0.824 0 . 823 0.821 0.819 0.818 0.816 0.814 0.814 VELOCITY (FT/SEC) 11.549 11.577 11.604 11.632 11.660 11.688 11.717 11.745 11.774 11.802 11.831 11.860 11.889 11.919 11.948 11.978 12.008 12.037 12.068 12.098 12.128 12.159 12.190 12.220 12.252 12.253 SPECIFIC ENERGY(FT) 2.927 2.935 2.943 2.952 2.960 2.969 2.977 2.986 2.995 3 .004 3 .013 3.022 3.031 3 .040 3 .049 3.058 3 .068 3.077 3 . 087 .097 ,107 ,116 ,126 .136 .147 .147 PRESSURE+ MOMENTUM(POUNDS) 292.69 293 .22 293.76 294.30 294.84 295.39 295.94 296.50 297.06 297.62 298.19 298.76 299.33 299.91 300.49 301.08 301.67 302.26 302.86 303.46 304.06 304.67 305.28 305.90 306.52 306.54 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.98 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE VELOCITY HEAD(FT) (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0.000 54.933 2.980 1. 500 6.796 6.796 3.697 2 .217 404.05 240.8E ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 .50 GF^DUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 54.933 55.174 55.385 55.578 55.757 55.923 56.078 56.223 56.358 56.485 56.604 56.714 56.816 56.911 56.998 57.077 57.149 57.214 57.271 57.321 57.363 57.398 57.426 57.445 57.457 57.461 169.690 FLOW DEPTH (FT) ,500 ,493 ,485 ,478 .470 1.463 1.455 1.448 1.441 1.433 1.426 1.418 1.411 1.404 VELOCITY (FT/SEC) 6.794 6 6 6 6 6 6 6 6 6 6 6 6 6 798 805 815 826 839 853 869 885 903 922 941 962 984 7.006 7.030 1.396 1.389 1.381 7.054 1.374 7.080 1.366 7.106 1.359 7.133 1.352 7.161 1.344 7.190 1.337 7.220 1.329 7.250 1.322 7.281 1.314 7.314 1.314 7.314 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 32.84 FEET UPSTREAM OF NODE 288.90 DOWNSTREAM DEPTH = 2.095 FEET, UPSTREAM CONJUGATE DEPTH = 0.814 FEET SPECIFIC ENERGY(FT) 2 .217 2 .211 2 .205 2.199 2 .194 2 .190 2.185 2.181 2 .177 2 .174 2 .170 2.167 2.164 2 .161 2.159 2 .157 2.154 2 .153 ,151 ,150 ,148 .147 2 .147 2.146 2.146 2.146 2 .146 PRESSURE+ MOMENTUM(POUNDS) 240.88 240.15 239.51 238.91 238.36 237.84 237.36 236.91 236.48 236.09 235.72 235.38 235.06 234.77 234.50 234.26 234. 233 . 233. 233 , 233 , 233 . 233 , 233 . 233 . 233 , 233 . ,04 ,84 .67 .52 .39 .29 .21 .15 ,12 ,11 ,11 NODE 287.00 : HGL = < 250.984>;EGL= < 253.057>;FLOWLINE= < 250.130> ****************************************************************************** FLOW PROCESS FROM NODE 287.00 TO NODE 286.00 IS CODE = 3 UPSTREAM NODE 286.00 ELEVATION = 251.91 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 12.01 CFS CENTRAL ANGLE = 12.160 DEGREES PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.013 00 PIPE LENGTH = 44.56 FEET NORMAL DEPTH(FT) 0.81 CRITICAL DEPTH(FT) = 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.937 1.938 3 .009 4 .157 5.389 6.715 8.144 9.689 11.365 13.187 15.178 17.362 19.771 22.444 25.433 28.804 32.648 37.094 42.328 44.560 FLOW DEPTH (FT) 0.996 0.988 0.981 0.974 0.967 0.959 0.952 0.945 0.937 0.930 0.923 0.915 0.908 0.901 0.893 0.886 0.879 0.872 0.864 0.857 0.854 VELOCITY (FT/SEC) 9.640 9 9 9 9 721 804 888 974 10.062 10.151 10.243 10.336 10.432 10.529 10.629 10.730 10.834 10.940 11.049 11.159 11.272 11.388 11.506 11.549 SPECIFIC ENERGY(FT) 2 .440 2.457 2.474 2.493 2.512 2.532 2.553 2.575 2 .597 2.621 2.645 2.671 2.697 2 .725 2.753 2.783 2.814 2.846 2.879 2.914 2.927 PRESSURE+ MOMENTUM(POUNDS) 258.33 259.65 261.01 262.42 263.87 265.37 266.91 268.51 270.15 271.85 273.59 275.39 277.24 279.15 281.12 283.15 285.23 287.38 289.59 291.87 292.69 NODE 286.00 : HGL = < 252.906>;EGL= < 254.350>;FLOWLINE= < 251.910> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 285.00 286.00 TO NODE ELEVATION = 285.00 IS CODE = 1 252.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.70 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .84 CRITICAL DEPTH(FT) 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 GFIADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 314 7 314 2 146 233. 11 0 .032 1. 296 7 399 2 146 233. 18 0 .129 1. 277 7 490 2 149 233 . 41 0 .296 1. 258 7 587 2 152 233. 79 0 .538 1. 239 7 689 2 158 234. 32 0 .863 1 . 221 7 797 2 165 235. 02 1 .279 1. 202 7 911 2 174 235. 89 1 .794 1. 183 8 032 2 185 236. 93 2 .420 1. 164 8 159 2 198 238. 15 3 .170 1. 145 8 293 2 214 239. 55 4 .063 1. 127 8 433 2 232 241. 14 5 .117 1 108 8 582 2 252 242. 94 6 .357 1 089 8 737 2 275 244. 94 7 .815 1 070 8 .901 2 301 247. 16 9 .529 1 051 9 .074 2 331 249. 61 11.552 13.950 16.700 1.033 1.014 0.996 9.256 9.447 9.640 2 .364 2.400 2.440 252 .31 255.25 258.33 NODE 285.00 : HGL = < 253.814>;EGL= < 254.646>;FLOWLINE= < 252.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 285.90 285.00 TO NODE 285.90 IS CODE = 5 ELEVATION = 252.83 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 12.01 12.01 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 90.00 252.83 1.31 18.00 - 252.50 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 6.796 7.316 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01307 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01182 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01245 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.050 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+FIVl-HV2 ) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.537)+{ 0.000) = 1.537 NODE 285.90 : HGL = < 255.465>;EGL= < 256.182>;FLOWLINE= < 252.830> ****************************************************************************** FLOW PROCESS FROM NODE 285.90 TO NODE 200.00 IS CODE = 1 UPSTREAM NODE 200.00 ELEVATION = 253.44 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 121.84 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 12.01)/( 105.044))**2 = 0.01307 HF=L*SF = ( 121.84)*(0.01307) = 1.593 NODE 200.00 HGL < 257.058>;EGL= < 257.775>;FLOWLINE= < 253.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 200.90 200.00 TO NODE ELEVATION = 200.90 IS CODE = 5 253.77 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.27 12 .01 8.74 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 68.69 253.77 0.69 18.00 - 253.44 1.31 18.00 39.82 253.77 1.14 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 1.850 6.796 4.946 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00097 DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.01307 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00702 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.028 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-FIV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.176)+( 0.000) = 0.176 NODE 200.90 : HGL = < 257.898>;EGL= < 257.952>;FLOWLINE= < 253.770> ****************************************************************************** FLOW PROCESS FROM NODE 200.90 TO NODE 230.00 IS CODE = 1 UPSTREAM NODE 230.00 ELEVATION = 254.07 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.27 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 30.05 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.27)/( 105.056))**2 = 0.00097 HF=L*SF = ( 30.05)*(0.00097) = 0.029 NODE 230.00 : HGL = < 257.928>;EGL= < 257.981>;FLOWLINE= < 254.070> ****************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 8 UPSTREAM NODE 230.00 ELEVATION = 254.07 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.27 CFS PIPE DIAMETER = 11 3.00 INCHES FLOW VELOCITY = 1.85 FEET/SEC. VELOCITY HEAD = 0 053 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 053) = 0.011 NODE 230.00 : HGL = < 257.991>;EGL= < 257.991>;FLOWLINE= < 254.070> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.00 FLOWLINE ELEVATION = 254.07 ASSUMED UPSTREAM CONTROL HGL = 254.76 FOR DOWNSTREAM RUN ANALYSIS END OF GFIADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACFCAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407 - BRESSI RANCH PA-11 * * PROPOSED CONDITIONS - 200.1 LATEFIAL * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P19-100.DAT TIME/DATE OF STUDY: 15:43 05/11/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 200.10- 4.46* 504.36 0.60 265.38 } FRICTION 215.00- 2.20* 255.07 1.18 Dc 162.54 } CATCH BASIN 215.00- 2.72* 216.97 1.18 Dc 49.66 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON TFIE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.10 FLOWLINE ELEVATION = 253.44 PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 257.900 FEET NODE 200.10 : HGL = < 257.900>;EGL= < 258.332>;FLOWLINE= < 253.440> ****************************************************************************** FLOW PROCESS FROM NODE 200.10 TO NODE 215.00 IS CODE = 1 UPSTREAM NODE 215.00 ELEVATION = 255.78 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 10.08 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.32)/( 105.047))**2 = 0.00787 HF=L*SF = ( 10.08)*(0.00787) = 0.079 NODE 215.00 : HGL = < 257.979>;EGL= < 258.411>;FLOWLINE= < 255.780> ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 8 UPSTREAM NODE 215.00 ELEVATION = 255.78 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.27 FEET/SEC. VELOCITY HEAD = 0.432 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.432) = 0.086 NODE 215.00 : HGL = < 258.498>;EGL= < 258.498>;FLOWLINE= < 255.780> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.00 FLOWLINE ELEVATION = 255.78 ASSUMED UPSTREAM CONTROL HGL = 256.96 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 8 PIPE VELOCITIES (2-YEAR) T:\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subnijttal\Report\Appendix.doc 2-Year Pipe Velocities Pipe Node Number Discharge Diameter Channel Mannings Depth Velocity Pipe Node Number (cfs) (in) Slope Coefficient (ft) (ft/s) (cfs) (ft/ft) 110 to 283.9 10.34 24.0 0.010000 0.013 0.95 7.04 125 to 275.1 2.16 18.0 0.200000 0.013 0.22 13.51 140 to 270.4 2.65 18.0 0.200000 0.013 0.24 14.36 155 to 270.3 3.50 18.0 0.010000 0.013 0.60 5.35 170 to 173.8 4.21 18.0 0.010000 0.013 0.66 5.62 171 to 285.8 5.26 24.0 0.117800 0.013 0.35 14.09 172 to 171.9 5.26 24.0 0,223000 0.013 0.30 17.64 173 to 172.9 5,26 24.0 0.006000 0.013 0.75 4.88 200 to 285.9 5.74 18.0 0.005000 0.013 0.99 4.64 215 to 200.1 4.42 18.0 0.204500 0.013 0.31 16.83 230 to 200.9 1.57 18.0 0.010000 0.013 0.39 4.27 260 to 262.9 1.32 18.0 0.040700 0.013 0.25 6.67 262 to 173.9 1.32 18.0 0.022700 0.013 0.29 5.43 265 to 265.9 1.20 18.0 0.010000 0.013 0.34 3.95 267 to 260.9 0.20 18.0 0.010000 0.013 0.14 2.32 270.9 to 275.9 5.71 24.0 0.017800 0.013 0.59 7.38 275 to 110.9 7.24 24.0 0.010000 0.013 0.78 6.41 283 to 284.9 10.34 24.0 0.295000 0.013 0.39 23.77 284 to 285.9 10.34 24.0 0.095300 0.013 0.52 15.93 285 to 282.9 14.28 24.0 0.314500 0.013 0.45 26.73 285 to 288.9 5,74 18.0 0.040000 0.013 0.54 10.13 288 to 290.9 5.74 18.0 0.070300 0.013 0.46 12.41 t:\...\2yr pipe velocities-new.fm2 06/17/04 02:12:56 PM © Haestad Methods, inc. PROJECTDESIGN CONSULTANTS 37 Brookside Road Waterbury, CT 06708 USA +1 -203-755-1666 Project Engineer; PDC FlowMaster v7.0 [7.0005] Page 1 of 1 APPENDIX 9 CDS CALCULATIONS T.NWater Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Submittal\Report\Appendix.doc REQUIRED MITIGATION FLOWRATE AND VOLUME CALCULATIONS CDS UNIT CALCULATIONS SYSTEM 282 Location Land Use AREA (Ac) C 1 Qm (cfs) Vm (ft^) Vm (cv) CDS Device No. CDS Cost 280 Residential 18.85 0.45 0.2 1.70 41055 1521 PMSU30_20 $25,650 OR PRECAST OFFLINE Location Land Use AREA (Ac) 0 1 Qm (cfs) Vm (ft') Vm (cy) CDS Device No. CDS Cost 280 Residentlal 18.85 0.45 0.2 1.70 41055 1521 PSW30_30 $32,730 NOTES: 1. Qm = A X C X I = Peak discharge to be mitigated 2. Vm = O.Sin x A = Volume of runoff to be mitigated 3. Area does not Include dedicated open space areas. 05/11/2004 12:23 5B24248336 CDS TECH PAGE 02/05 BRESSI RANCH - PLANNING AREA 11 CDS UNIT AT NODE 282 CARLSBAD, CA MAY 11, 2004 k PROJECT PARAMETERS .t CDS Model PMSU30 20 Q treat 2 cfs Q system 30.59 cfs Total Flow in Storm Drain Hcds 0.65 ft Required Head Difference to Process Q treat D/S Pipe Size 3-0 ft DIS Pip« Slope 0.3145 m U/S Pipe Size 3.0 n U/S Pipe Slope 0.3145 m -PMSU WEIR SUMMARY PMSU Weir Height 1.42 ft PMSU Weir Lenqth 4.83 ft s. 1^ .iHYErRAUUeiMPACTrOFCDS;UNITATSYSTEM.FLOW SD Station D/S of CDS x+xx 1 pipe Invert El d/s of CDS 249.71 2 Finished Grade El @ CDS 261.43 3 EGL El d/s of CDS 252.25 3 HGL El d/s of CDS 251.51 Critical Depth in d/s Pipe 4 Hcont 0.05 ft Contraction Loss from CDS ti/lanhole to d/s Pipe 5 EGL El d/s of Baffle 252.30 5 HGL El d/s of Baffle 251-96 6 Baffle Loss 0.96 ft Loss Through Baffle Orifice 7 EGL El d/s of Weir 253.26 7 HGL El d/s of Weir 253.22 8 Hweir 0.34 fl Loss From Flow Over Submerged Weir 9 EGL El u/s of Weir 253.67 9 HGL El u/s of Weir 253.56 10 Hexp 0.05 ft Expansion Loss from u/s Pipe to CDS Manhole 11 EGL u/s of CDS Unit 253.72 11 HGL El u/s of CDS Unit 253.43 SD Station U/S of CDS X+XX Increase in HGL 1.92 ft Freeboard U/S of CDS Unit 8.00 ft -^ii -UPSimEAMSGONVEYANCE SYSTEM CHECK AT SYSTEM FLOW! * Length lo U/S Manhole/CB 6.58 ft Rim Bevation al U/S Manhole/CB 261.32 Friction Loss to U/S Manhole/CB 0.01 ft HGL El at U/S Manhole/CB 253.44 Freeboard at U/S Manhole/CB 7.88 fl NO FLOODING OCCURS AT U/S MANHOLE/CB Loss of Head Dua to Contractions For Higher Velocities with H > 1.0 foot: For Lower Velocities w/fth H < 1.0 foot tosg of Head Due to Baffle For Baffle/Orifice (pressure): Loss of Head Pue to Weir For Weir (free discharge): For Submerged Weir. Hcont = (1/C - 1)' ' [v^/2g] c = 0.582 + 0.0418/(1,1 - r) r = ratio of pipe diameters Hcont = 0.7-(v1 - v2)^ / 2g Hbaffle = [Q / c Aorf / 2g c = 0.6 Hweir = [Q / cL] • Z.OB Loss of Head Due to Expanslon/Enlargainant: For All Silualions: Hweir = Hu/s - Hd/s Hu/s=IQ/Ks*cLr" 0 = 3.08 Ks = [(1 - (Hd/s / Hu/s)^-Y "* Hexp = 1.098 [(v1 -v2)'-^"']/2g SHEET 1 OF 2 05/11/2004 12:23 5624248336 CDS TECH PAGE 03/05 TOTAL HEAD LOSSES nished Grade EL EGL AND HGL QSYS PMSU CDS UNIT STORM TOER TREATMENT UNIT BRESSI RANCH PA-11 CARLSBAD, CA 5/11/04 SCALE NTS BRESSI RANCH PA-11 CARLSBAD, CA DRAWN TJ SHEET 2 OF 2 BRESSI RANCH PA-11 CARLSBAD, CA APPROV. SHEET 2 OF 2 PATENTED FOR USE ON PIPES < 12"0 INLET FRAME & GRATE C SEPARATION SCREEN & SUMP ACCESS MH RISER STACK SECTIONED VIEW (36"0 OUTER TANK WALL CUT AWAY TO REVEAL 25"0 SEPARATION CHAMBER) CLEANOUT FRAME Sc GRATE TOP CAP APPROX. WT.=1,800# (TYPICAL) 4" ID MH RISER SECTIONS APPROX. WT.=870#/FT. 25'0 FIBERGLASS SEPARATION 'CHAMBER <5C 36"0 OUTER COLLECTION TANK FIBERGLASS OIL BAFFLE 25"0 SEPARATION SCREEN SEPARATION CHAMBER (RISER AND INTEGRAL SEPARATION SLAB), APPROX. WT.= 2.400# (TYPICAL. SEE NOTE) OUTLET PIPE SPOOL SUMP & BASE APPROX. WT.= S.OOOjjl (TYPICAL, SEE NOTE) EXPLODED VIEW NOTE: SECTION SIZES VARY ACCORDING TO LOCAL PRECASTER SPECIFICATIONS. CDS' TECHNOLOGIES PATENTED CDS MODEL PMIU20_15 TYPICAL ASSEMBLY DATE 10/15/01 DRAWN J.S.F. APPROV. SCALE N.T.S. SHEET PLAN VIEW CDS MODEL PMIU20_15, 0.7 CFS CAPACITY CLEAN OUT FRAME & COVER. ELEV. VIEW SEE SHEET 4 48"0 MANHOLE, (4-10" O.D.) 20"X24" INLET FRAME Sc GRATE. XX"0 PIPE PRE GROUTED BY C.D.S. MH XX 0 OUTLET PIPE & COUPUNG BY OTHERS ELEV. VIEW SEE SHEET 4 PROJECT/DEVELOPMENT NAME DATE 03/06/02 SCALE 1"=2' ^^^^ TECHNOLOGIES PATENTED PROJECT/DEVELOPMENT NAME DRAWN M.B. SHEET (~\ ^^^^ TECHNOLOGIES PATENTED CITY Sc STATE APPROV. W. STEIN 2 SECTION VIEW CDS MODEL PMIU20_15, 0.7 CFS CAPACITY 36" 0 OUTER FIBERGLASS RISER W/ FLAT SIDE 25" 0 (FIBERGLASS) SEPARATION CHAMBER RISER. WITH LID. 48"0 MANHOLE, (4-10" O.D.) CENTER OF SEPARATION CYLINDER & 2r0 SUMP ACCESS HOLE CENTER OF MH RISER HIGH FLOW WEIR 6" X 13.5" XX"0 PIPE PRE GROUTED BY C.D.S. MH XX 0 OUTLET PIPE & COUPLING BY OTHERS OIL BAFFLE (FIBERGLASS) SEPARATION CYLINDER LID. (FIBERGLASS) CDS TECHNOLOGIES PATENTED PROJECT/DEVELOPMENT NAME CITY &: STATE DATE 03/06/02 DRAWN M.B. APPROV. W. STEIN SCALE r=2' SHEET I I ELEVATION VIEW CDS MODEL PMIU20_15, 0.7 CFS CAPACITY FORM AND CAST COLLAR IN RELD OR USE BRICK OR GRADE RINGS SECT. CUT SEE SHEET 3 36 0 FIBERGLASS CYUNDER 25" 0 FIBERGLASS- CYLINDER GUTTER FLOWUNE 25"0 SEPARATION SCREEN 24" RIM EL=XX.XX VARIES XX 0 PIPE STUB PRE GROUTED BY C.D.S. 6": -^ > 19.75" 6 CONTIRACTOR TO AHACH XX "0 OUTLET PIPE & COUPUNG TO PIPE STUB IN FIELD. SECT. CUT SEE SHEET 3 INV EL=XX.XX' 55.75" EXTERNAL SUMP -4-0 -4'-10' INV EL=XX.XX PROJECT/DEVELOPMENT NAME ""^^ 03/06/02 SCALE 1"=2' CDS" TECHNOLOGIES PATENTED PROJECT/DEVELOPMENT NAME ^'^^^ M.B. SHEET 4 CDS" TECHNOLOGIES PATENTED CITY &c STATE W. STEIN SHEET 4 DRAINAGE GRATE & FRAME, TYP 36" 0 FIBERGLASS CYUNDER 25" 0 FIBERGLASS CYUNDER SEPARATION CHAMBER, APPROX WT = 7,000# (TYPICAL) CONSTRUCTION NOTES: 1. APPLY BUTYL MASTIC AND/OR GROUT TO SEAL JOINTS OF MANHOLE STRUCTURE. APPLY LOAD TO MASTIC SEAL IN JOINTS OF MH SECTIONS TO COMPRESS SEALANT IF NECESSARY. UNIT MUST BE WATER TIGHT, HOLDING WATER UP TO FLOWUNE INVERT (MINIMUM). 2. BEFORE PLACING MORE PRECAST COMPONENTS OR BACKFILUNG, ENSURE FIBERGLASS OUTLET AND PIPE OUTLET INVERT ELEVATIONS MATCH. 3. ATTACH OUTLET PIPE TO PRE-GROUTED PIPE STUB SUPPLIED BY CDS. 4. USE GRADE RINGS, BLOCKS AND/OR GROUT TO ENSURE COVER RIM MATCHES RNISHED GRADE SEAL AS REQ'D. GENERAL NOTES: 1. CDS UNIT COMES COMPLETE WfTH FIBERGLASS INLET/DIVERSION STRUCTURE. OIL BAFFLE AND SCREEN CYUNDER PRE-INSTALLED. 2. INSTALL CDS UNIT PER CDS INSTALLATION SPECIFICATIONS. 3. CONTRACTOR TO BE EQUIPPED TO HANDLE THE HEAVIEST PICK SECTION AS NOTED ON DRAWING. —'y TECHNOLOGIES PATE NTED CONSTRUCTION NOTES MODEL PMIU20_15 DATE 8/14/01 DRAWN J.S.F. APPROV. SCALE N.T.S. SHEET REQUIRED MITIGATION FLOWRATE AND VOLUME CALCULATIONS CDS UNIT CALCULATIONS SYSTEM 288 Location Land Use AREA (Ac) C 1 Qm (cfs) Vm (ft') Vm (cy) CDS Device No. CDS Cost 290 Residenlial 4.43 0.45 0.2 0.40 9648 357 PMSU20_15 $12,250 OR PRECAST OFFUNE Localion Land Use AREA (Ac) C 1 Qm (cfs) Vm (ft^) Vm (cy) CDS Device No. CDS Cost 290 Residenlial 4.43 0.45 0.2 0.40 9648 357 PSW30_30 $32,730 NOTES: 1. Qm = A X C X I = Peak discharge to be mitigated 2. Vm = O.Sin x A = Volume of runoff to be mitigated 3. Area does not include dedicated open space areas. 05/11/2004 12:23 5624248336 CDS TECH PAGE 04/05 BRESSI RANCH - PLANNING AREA 11 CDS UNIT AT NODE 288 CARLSBAD, CA MAY 11, 2004 PROJECT PARAMETERS CDS Model PMSU20 15 Qtreat 0.7 cfs Q system 12.01 cfs Total F^low in Stonn Drain Hcds 0.35 ft Required Head Difference to Process Q treat D/5 Pipe Size 1.5 ft D/S Pipe Slope 0.0400 ft/ft U/S Pipe Size 1.5 fl U/S Pipe Slope 0.0400 m PMSU WEIR SUMMARY " ? ^ :.i PMSU Weir Heioht 1.00 ft PMSU Weir Lenoth 3.5 ft Tia. HYDRAULIC IMPACT OF CDS :UNrr AT SYSTEM FKW =! ,tf SD Station D/S of CDS X+XX 1 Pipe Invert El d/s of CDS 243.01 2 Finished Grade El ^ CDS 248.00 EGL El d/s of CDS 245.16 3 HGL El d/s of CDS 244.33 Critical Depth in d/s Pipe 4 Hcont 0.03 ft Contraction Loss from CDS Manhole to d/s Pipe EGL El d/s of Baffle 245.19 5 HGL El d/s of Baffle 244.70 6 Baffle Loss 1.35 ft Loss Through Baffle Orifice EGL El d/s of Weir 246.53 7 HGL El d/s of Weir 246.52 8 Hweir 0.06 ft Loss From Flow Over Submerqed Weir EGL El u/s of Weir 246.61 9 HGL El u/s of Weir 246.58 10 Hexp 0.44 ft Expansion Loss from u/s Pipe to CDS Manhole 11 EGL u/s of CDS Unit 247.05 11 HGL El U/s of CDS Unit 246.33 SC Station U/S of CDS X+XX Increase in HGL 2.00 fl Freeboard U/S of CDS Unit 1.67 ft it. t^.-- «HPSTRE«SMRCONV:EYANCESYSTEM CHECK AT SYSTEM FLOWg Length lo U/S Manhole/CB Q.OO ft Rim Elevation at U/S Manhole/CB 0 FrlcOon Loss to U/S Manhole/CB 0.00 ft HGL El at U/S Manhole/CB 246-33 Freeboard al U/S Manhole/CB -246.33 ft FLOODING OCCURS AT U/S MANHOLE/CB Loss of Head Due to Contractions For Higher Velocities wilh H > 1.0 foot: For Lowar Velocities with H < 1.0 foot Loss of Head Due to Baffle For Baffle/Orifice (pressure): Loss of Head Du« to Weir For Weir (free discharge); For Submerged Weir. Loss of Head Due to Expansion/Enlargement: For All Situations: Hcont = {1/c-1)^-[v'-/2g] c = 0.582 +0.0418/(1.1 - r) r = ratio of pipe diameters Hcont = 0.7*(v1 - v2)^ / 2g Hbafflc = (Q / C Aorf / 2g C = 0.6 Hweir = [Q / cLr Hweir = Hu/s - Hd/s 3.08 Hu/s = [Q / Ks ' cLT c = 3.08 Ks = [(1-(Hd/s/Hu/s)^T^ Hexp = 1.098 Uv1 - v2)^-"^ / 2g SHEET 1 OF 2 05/11/2004 12:23 5624248336 CDS TECH PAGE 05/05 r TOTAL HEAD LOSSES EGL AND HGL QSYS Finished Grade EL T) D/S INV EL PMSU CDS UNIT STORM WATER TREATMENT UNIT PATENTED. TECHNOIJOGIES BRESSI RANCH PA-11 CARLSBAD, CA DATE 5/11/04 TJ APPROV. SCALE NTS SHEET 2 OF 2 Seporotion Screen ic Sunnp Access MH Riser Stock Top Cop Approx. Wt. = 5800 # 6'0 Manhole Riser Section (Barrel Section) Approx. Wt. = 4000 § (2 ft. riser section) 6000 § (3 ft. riser section) Rberglass Inlet/Outlet Seporotion Chomber Component 6'0 MH (Barrel) Riser Section Approx. Wt. = 2,000 #/ft Inlet Pipe Type 316, Stoinless Steel Seporotion Screen Assembly Seporotion Slob Approx. Wt. = 5,000 # Sump Component 6'0 MH Riser Section Approx. Wt.= 4000# (2 ft. Section), 6000# (3 ft. Section) Bose Slob Approx. Wt. 6,300 # SECTION WEIGHTS VARY ACCORDING TO LOCAL STANDARDS AND MANUFACTURER 1 1 SPECIRCATIONS. CDS MODEL PMSU30 DATE 01/10/02 SCALE N.T.S. ^Sli|ai|.([iiiiii-CDS MODEL PMSU30 DRAWN J.S.F. SHEET CODS ASSEMBLY DRAWN J.S.F. .4 ^^^^p^ TECHNOLOGIES PATENTED ASSEMBLY APPROV R. HOWARD 1 TYPICAL / GENERIC INSTALLATION CONCRETE MH CAP XXV INLET PIPE OIL BAFFLE XX"0 PIPE OUTLET FLOW ELEVATION VIEW (SEE SHEET 4) 4 i FIBERGLASS INLET 72"0 ID MANHOLE RISER. (88"0D) 24"0 MH COVER AND FRAME (TYPICAL OF 2). ALTERNATIVE ACCESS HATCH SYSTEMS ALSO AVAILABLE NOTE: THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION- THESE COMPONENTS MAY BE FURNISHED IN MIRROR IMAGE TO THAT SHOWN (LEFT-HANDED ORIENTATION). CDS MODEL PMSU30_20 2.0 CFS CAPACITY STORM WATER TREATMENT UNIT "" "'^ TECHNOLOGIES PATENTED PROJECT NAME CITY, STATE DATE 12/3/01 DRAWN J.S.F. APPROV. SCALE 1"=2' SHEET TYPICAL / GENERIC INSTALLATION ROTATE SEPARATION SLAB TO MATCH REOUIRED OFFSET DISTANCES. FIBERGLASS INLET INLET AND OUTLET CORES PROVIDED BY PRECASTER; GROUT SEAL CONNECTIONS CENTER MANHOLE RISER SECTIONS CENTER OF SCREEN & 21"* SLAB OPENING OIL BAFFLE XX 0 PIPE INLET ATTACH SIDE AND BOHOM FLANGES TO WALL OF MH RISER USING /^CHOR BOLTS (6 MIN), SUPPUED BY CDS. 36"0 SEPARATION SCREEN, SEE NOTE 2 BELOW. NOTES: 1. THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION-THESE COMPONENTS MAY BE FURNISHED IN THE MIRROR IMAGE TO THAT SHOWN (LEFT-HAND CONRGURATION). 2. FOR PROPER INSTALLATION. GREEN FLANGE ON SCREEN FACES UP FOR RIGHT-HAND INSTALLATIONS; RED FLANGE FACES UP FOR LEFT- HAND ORIENTED UNITS. 18 0 PIPE OUTLET AHACH SCREEN TO SLAB USING 4 ANCHOR BOLTS, (SUPPUED BY CDS). CONCRETE MH RISER, 6'-0" ID. 7-4'' OD CDS MODEL PMSU30_20, 2.0 CFS CAPACITY STORM WATER TREATMENT UNIT TECHNOLOGIES PATENTED DATE 12/3/01 SCALE PROJECT NAME DATE 12/3/01 1"=2' PROJECT NAME DRAWN SHEET CITY, STATE DRAWN J.S.F. o CITY, STATE APPROV. 3 TYPICAL / GENERIC INSTALLATION RNISHED GRADE EL-XXJa"± SECTION CUT (at swET st 30"# MH COVER * FRAME. ALTERNATIVE HATCH SYSTEMS READILY AVAILABLE GROUT AND/OR GRADE RINGS AS NECESSARY SECTION CUT (SE S»ET 3) XX"# PIPE OUtlXT INV a=xx.xx' PIPE INV. EL=XX.XX' 6-2' DEPTH BELOW PIPE INVERT (TYPICAL) SUMP EXTERIOR INV EL=XXJCX' CDS MODEL PMSU30_20 2.0 CFS CAPACITY STORM WATER TREATMENT UNIT TECHNOLOGIES PATENTED PROJECT NAME CITY, STATE DATE 12/3/01 DRAWN J.S.F. APPROV. SCALE 1''=3' SHEET 4 CONSTRUCTION NOTES: 1. APPLY BUTYL MASTIC TO SEAL RISER JOINTS-APPLY LOAD TO MH SECTIONS TO COMPRESS SEALANT IF NECESSARY. 2. IF SEPARATION SLAB IS NON-INTEGRAL TO THE SEPARATION SECTION OF THE UNIT, SET AND VERIFY TOP ELEVATION BEFORE PLACING MORE PRECAST COMPONENTS OR BACKRLLING. ENSURE 31" FROM TOP OF SEPARATION SLAB TO PIPE INVERT. 3. ROTO-HAMMER OR SAW-CUT OPENINGS FOR PIPE INLET AND OUTLET AS NECESSARY; GROUT PIPE CONNECTIONS TO SEAL JOINT. 4. SET BOTTOM OF OIL BAFFLE 18" ABOVE SEPARATION SLAB FLOOR; DRILL AND INSERT A MINIMUM OF FOURTEEN (14) g" X 3 J" SS EXPANSION BOLTS ® 12 O.C. EQUALLY SPACED TO SECURE BAFFLE FLANGE TO RISER WALL- (HARDWARE SUPPUED BY CDS TECHNOLOGIES). 5. FASTEN RBERGLASS CYUNDER/INLET TO SCREEN ASSEMBLY USING FOUR (4) SETS OF g" x 1 J" SS HEX HEAD BOLTS W/ NUTS AND WASHERS. EQUALLY SPACED-(HARDWARE SUPPUED BY CDS TECHNOLOGIES). RED FLANGE ON SCREEN FACES UP FOR LEFT HAND CONRGURATIONS; GREEN FLANGE ON SCREEN FACES UP FOR RIGHT HAND CONRGURATOINS. 6. CENTER SEPARATION SCREEN WITH ATTACHED INLET ASSEMBLY OVER 21" DIAMETER SUMP OPENING AND POSmON INLET AGAINST MANHOLE WAH; DRILL AND INSERT A MINIMUM OF SIX (6) g" x 3 j" SS EXPANSION BOLTS EQUALLY SPACED TO SECURE INLET FLANGE TO RISER WALL-(HARDWARE SUPPUED BY CDS TECHNOLOGIES). 7. VERIFY THAT THE SEPARATION SCREEN IS CENTERED OVER 21" DIAMETER SUMP OPENING AND ADJUST IF NECESSARY; DRILL AND INSERT FOUR (4) g" x 3 J" SS EXPANSION BOLTS TO FASTEN SCREEN ASSEMBLY TO SEPARATION SLAB- (HARDWARE SUPPUED BY CDS TECHNOLOGIES). BLOCK AND GROUT SEAL TO MATCH GRADE AS REQUIRED. 8 PMSU30_20 DATE , , 12/3/01 SCALE N.T.S. CONSTRUCTION DRAWN J.S.F. SHEET 5 ^^^^ TECHNOLOGIES PATENTED NOTES APPROV. SHEET 5 EXHIBIT A EXISTING CONDITIONS HYDROLOGY MAP T.\Water Resources\2407.3-Bressi Residential\PA-l 1 3rd Final Subniittal\Report\Appendix.doc