HomeMy WebLinkAboutCT 03-02; Carlsbad Ranch PA 5; Hydrology and Hydraulic Study Part 2; 2005-08-23STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINES B-1 TO B-15
STORM DRAIN SYSTE
LINES B-1 TO B-30 S
LEGEND
HrDRAEL OW STORM
[Z3 - SEWER CALCULATION
PIPE NUMBER
B-1 STORM DRAIN PIPE
DESIGNATION
EXIST. 60" RCP
r-EXIST. 18 RO B-22
> = ^
KB-1
SCALE I": 150'
B-2
\2\
V A /B-102^
-1 1
Hydraflow Summary Report Page 1
Line
No.
Line ID
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13
B-14
B-15
Flow
rate
(cfs)
150.5
150.5
150.5
7.85
7.85
7,85
7,85
7,85
7.85
7.85
6.40
1.54
142.7
90.62
65,17
Line Line
size length
(in) (ft)
42 c
42 c
42 c
18 c
18 c
18 c
18 c
18 c
18 c
18 c
12 c
12 c
42 c
36 c
36 c
Invert
ELDn
(ft)
136.8
322.6
322.1
185.4
313.2
313.2
129.7
30,3
69,8
90.8
29.1
8.9
29.3
22.7
10,3
143.47
148,24
157.40
164.87
169.46
176.06
182.66
187.00
188.30
215.55
216.79
216.79
164.87
165.79
165.79
Invert
EL Up
(ft)
147.92
157.08
164.55
169.13
175.72
182.32
186.81
187.97
215.22
216.46
217.08
216,97
165.46
166.24
166.31
Line
slope
(%)
3.253
2.740
2.220
2.298
1.999
1.999
3.200
3.201
38.567
1,002
0.998
2,027
2,011
1.981
5.029
HGL
down
(ft)
HGL
up
(ft)
146.25
151.89
161,05
171,84*
173.01
176.87
183.63
189.88*
191.28
216.82
218.06*
218.06*
171.84*
174.99*
174.99*
Minor
loss
(ft)
151.31
160.47
168.03
172.88*
176.79
183.39
187.88
190.05*
216.29
217.53
219.00*
218.07*
172.43*
175.41*
175.08*
0.58
0.58
3.81
0,14
0.08
0.24
2.00
1.23
0.53
0.53
1.03
0.06
2.56
2.56
1.32
_L
Dns
line
No.
End
1
2
3
4
5
6
7
8
9
10
10
3
13
13
Project File: 04119 LINE B-1 TO B-15.stii-D-F File: carlsbad26.IDF Total No. Lines: 15 Run Date: 07-06-2005
Hydr low Storm Sewer Inventory Report
Line
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Page 1
Dnstr
line
No.
End
1
2
3
4
5
6
7
8
9
10
10
3
13
13
Alignment
Line
length
(ft)
136.8
322.6
322.1
185.4
313.2
313.2
129.7
30.3
69.8
90.8
29.1
8.9
29.3
22.7
10.3
Defl
angle
(deg)
0.0
6.0
0.0
0.0
28.0
0.0
13.0
0.0
-60.0
85.0
-90.0
33.0
-90.0
11.0
38.0
June
type
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
Curb
Curb
MH
MH
MH
Flow Data
Known
Q
(cfs)
150.49
150.49
150.49
7.85
7.85
7.85
7.85
7.85
7.85
7.85
6.40
1.54
142.67
90.62
65.17
Drng
area
(ac)
Project File: 04119 LINE B-1 TO B-15.stm
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Runoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Inlet
time
(min)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Invert
El Dn
(ft)
143.47
148.24
157.40
164.87
169,46
176.06
182.66
187.00
188.30
215,55
216.79
216,79
164.87
165.79
165.79
Line
slope (%)
3.25
2.74
2.22
2.30
2|.00
2.00
3.20
3|.20
I
38.57
1.00
1.00
2.03
2.01
1.98
5.03
Invert
El Up
(ft)
147.92
157.08
164.55
169.13
175.72
182.32
186.81
187.97
215.22
216.46
217.08
216.97
165.46
166.24
166.31
Physical Data
Line
size
(in)
42
42
42
2
2
42
36
36
I-D-F File: carlsbad26.IDF
Line
type
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
N
value
(n)
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
J-loss
coeff
(K)
0.15
0.15
1.00
0.45
0.15
0.45
3.80
4.00
1.00
1.00
1.00
1.00
0.75
1.00
1.00
Inlet/
Rim El
(ft)
Total number of lines: 15
166.00
171.45
178.10
181.83
190.83
194.62
196.81
197.59
226.07
223.90
223.80
223.93
177.60
176.50
176.25
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13
B-14
B-15
Line ID
Date: 07-06-2005
Hydra >w Storm Sewer Tabulation
station
To
Line
End
1
2
3
4
5
6
7
8
9
10
10
3
13
13
Page 1
Len
(ft)
136.8
322.6
322.1
185.4
313.2
313.2
129.7
30.3
69.8
90.8
29.1
8.9
29.3
22.7
10.3
Drng Area
Incr
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0^00
0.00
0.00
0.00
Rnoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0,00
0.00
0.00
0.00
0.00
Area x C
Incr Total
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Project Fiie: 04119 LINE B-1 TO B-15.stm
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Tc
Inlet
(min)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Syst
(min)
4.2
3.9
3.5
2.8
1.8
1.0
0.7
0.6
0.4
0.1
0.0
0.0
0.0
0.0
0.0
Rain
(I)
(in/hr)
Totai
flow
(cfs)
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
150.5
150.5
150.5
7.85
7.85
7.85
7.85
7.85
7.85
7.85
6.40
1.54
142.7
90.62
65.17
Cap
full
(cfs)
181.5
166,5
149.9
15,92
14.85
14.85
18.78
18.79
65.22
10.51
3.56
5.07
142.7
93.86
149.6
Vdl
+
!
17^07
15.71
15.65
4.44
5.14
6.95
6.17
4.44
5.13
5.38
8.15
1.66
I
l4.83
12.82
9.I22
I
Pipe
Size
(in)
42
42
42
18
18
18
18
18
18
18
12
12
42
36
36
Slope
(%)
3.25
2.74
2.22
2.30
2.00
2.00
3.20
3.20
38.57
1.00
1.00
2.03
2.01
1.98
5.03
Invert Elev
Up
(ft)
147,92
157.08
164.55
169.13
175.72
182.32
186.81
187.97
215.22
216.46
217.08
216.97
165.46
166.24
166.31
I-D-F File: carlsbad26.IDF
NOTES: Intensity = 19.61 / (Tc -H 0.10) 0.65; Retum period = 100 Yrs. ; Initial tailwater elevation = 146.25 (ft)
Dn
(ft)
143.47
148.24
157.40
164.87
169.46
176.06
182.66
187.00
188.30
215.55
216.79
216.79
164.87
165.79
165.79
HGL Elev
Up
(ft)
151.31
160.47
168.03
172.88
176.79
183.39
187.88
190.05
216.29
217.53
219.00
218.07
172.43
175.41
175.09
Dn
(ft)
146.25
151.89
161.05
171.84
173.01
176.87
183.63
189.88
191.28
216.82
218.06
218.06
171.84
174.99
174.99
Grnd / Rim Elev
Up
(ft)
166.00
171.45
178.10
181.83
190.83
194.62
196.81
197.59
226.07
223.90
223.80
223.93
177.60
176.50
176.25
Dn
(ft)
Total number of lines: 15
165,10
166.00
171.45
178.10
181.83
190.83
194.62
196.81
197.59
226.07
223.90
223.90
178.10
177.60
177.60
Line ID
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13
B-14
B-15
Run Date: 07-06-2005
Ire Dw Hydraulic Grade Line Computations
Size
(in)
42
42
42
2
2
42
36
36
(cfs)
150.5
150.5
150.5
7.85
7.85
7.85
7.85
7.85
7.85
7.85
6.40
1.54
142.7
90.62
65.17
Page 1
Invert
elev
(ft)
143.47
148.24
157.40
164.87
169.46
176.06
182.66
187.00
188.30
215.55
216.79
216.79
164.87
165.79
165.79
Downstream
HGL
elev
(ft)
146.25
151.89
161.05
171.84
173.01
176.87
183.63
189.88
191.28
216.82
218.06
218.06
171.84
174.99
174.99
Depth
(ft)
2.78
3.50
3.50
1.50
1.50
0.81
0.97
1.50
1.50
1.27
1.00
1.00
3.50
3.00
3.00
Project Fiie: 04119 LINE B-1 TO B-15.stm
Area
(sqft)
8.19
9.62
9.62
1.77
1.77
0.97
1.20
1.77
1.77
1.59
0.79
0.79
9.62
7.07
7.07
Vel
(ft/s)
18.36
15.65
15.65
4.44
4.44
8.08
6.52
4.44
4.44
4.93
8.15
1.96
14.83
12.82
9.22
Vel
head
(ft)
5.24
3.81
3.81
0.31
0.31
1.02
0.66
0.31
0.31
0.38
1.03
0.06
3.42
2.56
1.32
EGL
elev
(ft)
151.49
155,70
164.86
172.15
173.32
177.88
184.29
190.19
191.59
217.20
219.09
218.12
175.26
177.55
176.32
Sf
(%)
2.375
2.239
2.239
0.559
0.559
1.739
1.000
0.559
0.559
0,532
3.233
0.187
2.012
1.847
0.955
Len
(ft)
137
323
322
185
313
313
130
30.3
69.8
90.8
29.1
8.9
29.3
22.7
10.3
Invert
elev
(ft)
147.92
157.08
164.55
leb.is
I
175.72
182.32
18^.81
I
187.97
215.22
216.46
217.08
216.97
165.46
166.24
166.31
HGL
elev
(ft)
151.31
160.47
168.03
172,88
176,79
183.39
187.88
190.05
216.29
217.53
219.00
218.07
172.43
175.41
175.09
Upstream
-D-F File: carlsbad26.IDF
Depth
(ft)
3.39*'
3.39*'
3.48
1.50
1.07-'
1.07*'
1.07*'
1.50
1.07*'
1.07*'
1.00
1.00
3.50
3.00
3.00
J^OTES^janwa^^ ^,p,^ 33^^,^^^^ ^ .^.^^^ ^^^^^ ^^^^^^^
Area
(sqft)
9.53
9.53
9.61
1.77
1.35
1.35
1.35
1.77
1.35
1.35
0.79
0.79
9.62
7.07
7.07
Vel
(ft/s)
15.78
15.78
15.65
4.44
5.83
5.83
5.82
4.44
5.82
5.83
8.15
1.96
14.83
12.82
9.22
Vel
head
(ft)
3.87
3.87
3.81
0.31
0.53
0.53
0.53
0.31
0.53
0.53
1.03
0.06
3.42
2.56
1.32
EGL
elev
(ft)
155.19
164.35
171.84
173.18
177.32
183.92
188.41
190.36
216.82
218.06
220.03
218.13
175.85
177.97
176.41
Sf
(%)
1.968
1.968
2.096
0.559
0.761
0.761
0.760
0.559
0.760
0.761
3.232
0.187
2.011
1.846
0.955
Total number of lines: 15
Check
Ave
Sf
(%)
2.172
2.104
2.167
0.559
0.660
1.250
0.880
0.559
0.660
0.646
3.232
0.187
2.011
1.847
0.955
Enrgy
loss
(ft)
N/A
N/A
6.981
1.037
N/A
N/A
N/A
0.169
N/A
N/A
0.940
0.017
0.590
0.420
0.099
JL
coeff
(K)
0.15
0.15
1.00
0.45
0.15
0.45
3.80
4.00
1.00
1.00
1.00
1.00
0.75
1.00
1.00
Minor
loss
(ft)
0.58
0.58
3.81
0.14
0.08
0.24
2.00
1.23
0.53
0.53
1.03
0.06
2.56
2.56
1.32
Run Date: 07-06-2005
Storai Sewer Profile
Proj. file: 04119 LINE B-1 B-15.stm
Elev. (ft)
230.0
210.0
190.0
170.0
150.0
130.0
400 500 800 1000 1200 1400 1600
Reach(ft)
Storr Sewer Profile
Elev. (ft)
256.0
239.0
222.0
205.0
188.0
171.0
Line: 7
Size: 18 (in)
Proj. file: 04119 LINE B-1 T -15,stm
Line: 9
Size: 18 (in)
Line: 8 / ~Zr'.
Line: 10
Size: 18 (in) Line: 11
Size: 12 (in)
150 200 250 300 350
Reach(ft)
Stor'^ Sewer Profile
Proj. file: 04119 LINE B-1 3-i5.stm
Elev. (ft)
229.0
226.0
223.0
220.0
Line: 12
Size: 12 (in)
217.0 —
214.0
10 40 50 60
Reach (ft)
100
sto ) Sewer Profile
Elev. (ft)
191.0
185.0
179.0
173.0
Proj. file: 04119 LINE B-1 . j B-15.stm
50 60 70
Reach (ft)
80 90 100
stor ^ Sewer Profile
Proj. file: 04119 LINE B-1 BZ5. stm
177.0
172.0
167.0
162.0
50 60 70
Reach (ft) 100
M
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINES B-16 TO B-30
STORM DRAIN SYSTE
LINES B-1 TO B-30 i
LEGEND
UyDRAELCW STORM
0 - SEWER CALCULATION
PIPE NUMBER
. _ STORM DRAIN PIPE
D I DESIGNATION
f—I
VZ
Q
3-2 W
'EXIST. 60" RCP
^EXIST. 18" RCI
W B-1 B-2
B-23
\ /B-10t^
5-C4Zf I": 150'
Hydraflow Summary Report Page 1
Line
No.
Line ID
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-2 5
B-26
B-27
B-28
B-29
B-30
Flow
rate
(cfs)
65.17
59.62
59.62
42.08
20.03
20.03
13.34
5.20
5.97
3.07
14.37
8.05
25,85
24,41
1.08
Project File: 04119 LINE B-16 TO B
Line
size
(in)
Line
length
(ft)
30 c
30 c
30 0
30 c
24 c
24 c
18 c
18 c
18 c
18 c
18 c
18 c
24 c
18 c
12 c
Invert
EL Dn
(ft)
140.9
108.0
112.9
154.0
166.9
260.3
116.4
178.7
8.3
64.0
4.6
116,7
76,9
71,5
166,4
Invert
EL Up
(ft)
Line
slope
(%)
184.00
185.41
186.82
196.78
210.69
212.70
215.63
217.13
185.66
186.69
197.03
197.34
210.69
212.94
215.06
30.,'I-D-F File: Garlsbad26,IDF
185,41
186.49
196.78
j 210.37
I 212.36
215.30
216,79
218,92
186,49
193,09
197,17
204,47
212,61
214,73
218,74
1.001
1.000
8.819
8.823
1.001
0.999
0.996
1.002
10.000
9,994
3.063
6.109
2.497
2.502
2.212
HGL
down
(ft)
HGL
up
(ft)
186.50'
192.80"
196.12
201.54
213.68*
215.28
217.24*
219.87
192.80*
192.91
201,54*
202.08
213,68*
215.16*
221.25*
Minor Dns
loss line
(ft) No,
Total No. Lines: 15
190.06*
195.08*
199.17
212.55
214.99*
217.13
219.12*
220.26
192.83*
193.75
201.62*
205.55
214.69*
219.03*
221.41*
2.74
1.03
2.36
1.14
0.28
0.10
0.75
0.15
0.08
0,25
0,46
0,54
0,47
2.22
0.03
End
Run Date: 05-10-2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
yorr -ow storm Sewer Tabulation
station
Line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
To
Line
End
1
2
3
4
5
6
7
1
9
3
11
4
13
14
Len
(ft)
140.9
108.0
112.9
154.0
166.9
260.3
116.4
178.7
8.3
64.0
4.6
116.7
76.9
71.5
166.4
Drng Area
Incr
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Rnoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Area x C
Incr
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Project File: 04119 LINE B-16 TO B-30.stm
Total
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Tc
Inlet
(min)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Syst
(min)
Rain
(I)
(in/hr)
2.9
2.8
2.6
2,3
1,9
1.2
1.0
0.0
0.4
0.0
0.4
0.0
2.1
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Total
flow
(cfs)
65.17
59.62
59.62
42.08
20.03
20.03
13.34
5.20
5.97
3.07
14.37
8.05
25.85
24.41
1.08
Cap
full
(cfs)
41.03
41.00
121.8
121.8
22.62
22.61
10.48
10.51
33.21
33.20
18.38
25.95
35.74
16.61
5.30
I-D-F File: carlsbad26.IDF
Vel
(ft/s)
13.28
12.15
12.24
8.93
6.38
6.51
7.55
3.03
3.38
2.88
8.13
5.22
8.23
13.81
1.38
Pipe
Size
(in)
30
30
30
30
24
24
18
18
18
18
18
18
24
18
12
Slope
(%)
1.00
1.00
8.82
8.82
1.00
1.00
1.00
1.00
10.00
9.99
3.06
6.11
2.50
2.50
2.21
Invert Elev
Up
(ft)
185.41
186.49
196.78
210.37
212.38
215.30
216.79
218.92
186.49
193.09
197.17
204.47
212.61
214.73
218.74
J^^I^!:^::^^::^^^ 100 Vrs.; mitialtanwaterelevation = 186.50
Dn
(ft)
184.00
185.41
186.82
196.78
210.69
212.70
215.63
217.13
185.66
186.69
197.03
197.34
210.69
212.94
215.06
Up
(ft)
HGL Elev
Dn
190.06
195.08
199.17
212.55
214.99
217.13
219.12
220.26
192.83
193.76
201.62
205.55
214.69
219.03
221.41
(ft)
186.50
192.80
196.12
201.54
213.68
215.28
217.24
219.87
192.80
192.91
201.54
202.08
213.68
215.16
221.25
Page 1
Total number of lines: 15
Grnd / Rim Elev
Up
(ft)
199.84
205.68
210.18
219.48
229.44
234,11
231.77
223.02
199.61
197.00
209.49
209.53
224.27
224.27
223.00
Dn
(ft)
187.00
199.84
205.68
210.18
219.48
229.44
234.11
231.77
199.84
199.61
210.18
209.49
219.48
224.27
224.27
Line ID
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30
Run Date: 05-10-2005
(ft)
nyST-low S?ofm" weTln^TntoTJ R^ort'
Line
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Alignment
Dnstr
line
No.
End
1
2
3
4
5
6
7
1
9
3
11
4
13
14
Line
length
(ft)
140.9
108.0
112.9
154.0
166.9
260.3
116.4
178.7
8.3
64.0
4.6
116.7
76.9
71.5
166.4
Defl
angle
(deg)
0.0
0.0
-17.0
0.0
69.0
-29.0
-7.0
-70.0
90.0
-11.0
90.0
31.0
-41.0
30.0
50.0
Juno
type
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
Known
Q
(cfs)
65.17
59.62
59.62
42.08
20.03
20.03
13.34
5.20
5.97
3.07
14.37
8.05
25.85
24.41
1.08
Project File: 04119 LINE B-16 TO B-30.stm
Flow Data
Drng
area
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Runoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Inlet
time
(min)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Invert
El Dn
(ft)
184.00
185.41
186.82
196.78
210.69
212.70
215.63
217.13
185.66
186.69
197.03
197.34
210.69
212.94
215.06
Line
slope
(%)
1.00
1.00
8.82
8.82
1.00
1.00
1.00
1.00
10.00
9.99
3.06
6.11
2.50
2.50
2.21
Invert
El Up
(ft)
185.41
186.49
196.78
210.37
212,36
215.30
216.79
218.92
186.49
193.09
197.17
204.47
212.61
214.73
218.74
I-D-F File: carlsbad26.IDF
Physical Data
Line
size
(in)
30
30
30
30
24
24
18
18
18
18
18
18
24
18
12
Line
type
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
N
value
(n)
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
J-loss
coeff
(K)
1.00
0.45
1.00
0.85
0.45
0.15
0.85
1.00
0.45
1.00
0.45
1.00
0.45
0.75
1.00
Inlet/
Rim El
(ft)
Total numberof lines: 15
199.84
205.68
210.18
219.48
229.44
234.11
231.77
223.02
199:61
197.00
209.49
209.53
224.27
224.27
223.00
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30
Page 1
Line ID
Date: 05-10-2005
'VW^dTrt^uTS GT?deTine7om7uta"ns'
Page 1
Project File: 04119 LINE B-16 TO B-30.stm
NOTES: Initial tailwater elevation = IRR c m\ , ~ '
!'!!!!:!:L_^^6^Mft^^ "Critical depth assumed
•^icfP ^SwerProfne
Proj. file: 04119 LINE B-16 •, 3-30, stm
Elev. (ft)
262.0
244.0
226.0
208.0
190.0
172.0
° 50 100 150 200 350 400 450 500 550 600
Reach (ft)
650 700
tST - SeweTTrofne i
~ ~ ' Proj. file: 04119 LINE B-16 . J-3Q.stm
Elev. (ft)
251.0
242.0
233.0
224.0
215.0
206.0
Line: 6
Size: 24 (in)
50 100 150 200
Line: 7
Size: 18 (in)
250 300 350
Reach(ft)
"•" Line: 8
Size: 18 (in)
400 450 500 550 600
•t8r ~^ eweTTroffe
Proj. file: 04119 LINE B-16 3-3G.stm
Elev. (ft)
211.0
205.0
199.0
193.0
187.0
181.0
100
Reach (ft)
•^x<5P»- 5§!ve!TroTire
Elev. (ft)
223.0
217.0
211.0
205.0
Line: 11
Size: 18 (in) Line: 12
Size: 18 (in)
Proj, file: 04119 LINE B-161 .-30,stm
125
ocSP- ^ewerTrofhe
~ • , Proj. file: 04119 LINE B-16-, _ 3-30.stm
Elev. (ft)
236.0
230.0
224.0
218.0
212.0
206.0
Line: 13
Size: 24 (in) Line: 14
Size: 18 (in)
Line: 15
SizeM2(in)^
100 150 200
Reach (ft)
250 300 350
N
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINES B-31 TO B-35
STORM DRAIN SYSTEM B
LINES B-31 TO B-35
LEGEND
HYDRAFLOW STORM
m - SEWER CALCULATION
PIPE NUMBER
p_irp__ STORM DRAIN PIPE
^ DESIGNATION
SCALE I":60'
Cb
ny tow Storm Sewer inventory Report
Page 1
Hydraflow Summary Report Page 1
LINE B-31
UNE B-32
LINE B-33
LINE B-34
LINE B-35
Line j
No. Line ID Flow Line Line Invert Invert Line HGL Line j
No. rate size length EL Dn EL Up slope down
(cfs) (in) (ft) (ft) (ft) (%) (ft)
HGL
up
(ft)
I Minor Dns
loss line
(ft) I No,
45,05 30 c 440.8 179.00 182.66 0,830 181.50* 186.82* 1.31 End
34,30 30 c 115.7 182.99 184.67 1.452 188.13* 188.94* 0,76 t
3,50 18 c 51.2 J 185.01 185.52 j 0.996 189.70* 189.76* 0.06 2
32.20 18 c 15.9 185.01 185.33 2.013 189.70* 191.20* 5.16 2
14.62 30 c 72.5 182.99 190.00 9.664 188.13 i 191.28 0.52 1
ProjectFile: 04119-LINE 8^31 TO BjSS.sI-D-F File; carlsbad26,IDF j Total No. Unes: 5 Run Date: 05-06-2005
^JOTF.'s' I" = rirr-wlor- a = Q lllr,t;,^n I-
otorm Sewer Tabulation
station
End
1
2
2
1
Len
(ft)
440.8
115.7
51.2
15.9
72.5
Drng Area
Incr
(ac)
0.00
0.00
0.00
0.00
0.00
Total
(ac)
0.00
0.00
0.00
0.00
0.00
Rnoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
Area x C
Incr
0.00
0.00
0.00
0.00
0.00
Project File: 04119-LINE B-31 TO B-35.:
Total
0.00
0.00
0.00
0.00
0.00
Tc
Inlet
(min)
0.0
0.0
0.0
0.0
0.0
Syst
(min)
0.7
0.4
0.0
0.0
0.0
Rain
(I)
(in/hr)
0.0
0.0
0.0
0.0
0.0
Total
flow
(cfs)
45.05
34.30
3.50
32.20
14.62
Cap
full
(cfs)
37.37
49.42
10.48
14.90
127.5
Vel
(ft/s)
9.18
6.99
1,98
18.22
4.39
Pipe
Size
(in)
30
30
18
18
30
Slope
(%)
0.83
1.45
1.00
2.01
9.66
Invert Elev
Up
(ft)
NOTES: Intensity = 19.61 / (Tc -i- 0 im n RI;, D . . ^_JJ^I^^^^'^'^^^T^ 0.65, Return period = 100 Yrs.; In
182.66
184.57
185.52
185.33
190.00
Dn
(ft)
179.00
182.99
185.01
185.01
182.99
HGL Elev
Up
(ft)
186.82
188.94
189.76
191.20
191.28
Dn
(ft)
181.50
188.13
189.70
189.70
188.13
Page 1
Grnd / Rim Elev
Up
(ft)
200.12
194.16
194.26
194.26
199.25
itial tailwater elevation = 181.50 (ft)
Dn
(ft)
181.50
200.12
194.16
194.16
200.12
Line ID
LINE B-31
LINE B-32
t-INE B-33
LINE B-34
LINE B-35
Page 1
Project File: 04119-LINE B-31 TO B-35.stm
NOTES: Initial tailwater elevation = 181.5 (ft), ' Normal depth assumed., *- Critical depth assumed
''"^^•.flP ^^erprofile ••••••••••• ••••••••••••••••••"••'•ii
" ~ ^ ______ProMle: 04119-LINE B-31 , 8-35.stm
Elev. (ft)
218.0
209.0
200.0
191.0
182.0
173.0
50 100
Line: 1
Size: 30 (in)
150 200
Line
-Size
300 350 400 450
Reach (ft)
30 (in)
500 550 600
5to -I Sewer Profile
Elev. (ft)
202.0
198.0
194.0
190.0
186.0
182.0 I
0
Line: 3
Size: 18 (in)
Proj. file: 04119-LINE B-3-, , B-35. stm
10 20
100
ewer Profile
Proj. file: 04119-LINE B-3 , . J B-35.stm
Elev. (ft)
202.0
198.0
i94.0 n
190.0
186.0
182.0
Line: 4
Size: 18 (in)
0 10 20 30 40 50 60
Reach (ft)
70 80 90 100
rroTue
:iev. (ft)
218.0
209.0
200.0
191.0
182.0
173.0
Proj. file: 04119-LINE B-3 j B-35 stm
0 50
Line: 1
Size: 30 (in)
100 150 200 250 300 350
Line: 5
Size: 30 (in)
400 450
Reach (ft)
500 550
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINE B-36
II
Hydraflow Summary Report Page 1
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs,; * Indicates surcharge condition
riyT-^ffow 5toi torm Sewer Tabulation
station
Line To
Line
End
Len
(ft)
76.3
Drng Area
Incr
(ac)
0.00
Total
(ac)
0.00
Rnoff
coeff
(C)
0.00
Area x 0
0.00 0.00
Page 1
Tc
Inlet
(min)
0.0
ProjectFile: 04119-LINE B-36.stm
Syst
(min)
0.0
Rain
(I)
(in/hr)
0.0
Totai
flow
(cfs)
52.53
Cap
full
(cfs)
35.69
Vel
(ft/s)
16.72
Pipe
Size
(in)
24
I-D-F File: carlsbad26.1DF
NOTES: Intensify = 19.61 / (Tc + 0.10) - 0.65; Retum period = 100 Yrs. ; Ini: itial tailwater elevation = 177.10 (ft)
Slope
(%)
2.49
Invert Elev
Up
(ft)
177.00
Dn
(ft)
175.10
HGL Elev
Up
(ft)
181.22
Dn
(ft)
177.10
Grnd / Rim Elev
Up
(ft)
183.69
Total number of lines: 1
Dn
(ft)
179.00
Line ID
LINE B-36
Run Date: 05-11-2005
riy >aflow Storm Sewer Inventory Report
Line
No. Alignment
Dnstr
line
No.
length
(ft)
End 76.3
angle
(deg)
0.0
June
type
MH
Page 1
Flow Data
Known
Q
(cfs)
52.53
Drng
area
(ac)
0.00
ProjectFile: 04119-LINE B-36.stm
Runoff
coeff
(C)
0,00
Inlet
time
(min)
0.0
Physical Data
Invert
El Dn
(ft)
175.10
Line
slope (%)
2.49
Invert
El Up
(ft)
177.00
Line
size
(in)
24
I-D-F File: carlsbad26.IDF
Line
type
Cir
N
value
(n)
0.013
J-loss
coeff
(K)
1.00
Inlet/
Rim El
(ft)
183.69
Line ID
LINE B-36
Total number of lines: 1 Date: 05-11-2005
'ri:5fr iffow flydrauTic GradeLinT^
Line Size
(in)
24
Q
(cfs)
52.53
Page 1
Downstream
Invert
elev
(ft)
175.10
HGL
elev
(ft)
177.10
Depth
(ft)
2.00
Area
(sqft)
3.14
Vel
(ft/s)
16.72
Vel
head
(ft)
4.35
ProjectFile: 04119-UNE B-36.stm
EGL
elev
(ft)
181.45
Sf
(%)
5.396
Len
(ft)
76.3
I-D-F File: carlsbad26.1DF
NOTES: Initial tailwater elevation = 177.1 (ft), * Normal depth assumed., ** Critical depth
Upstream
Invert
elev
(ft)
177.00
HGL
elev
(ft)
181.22
Depth
(ft)
2.00
Area
(sqft)
3.14
Vel
(ft/s)
16.72
Vel
head
(ft)
4.35
Total number of lines: 1
assumed.
EGL
elev
(ft)
185.57
Sf
(%)
5.394
Check
Ave
Sf (%)
5.395
Enrgy
loss
(ft)
4.117
JL
coeff
(K)
1.00
Run Date: 05-11-2005
Elev. (ft)
192.0
188.0
184.0
180.0
176.0
172.0
Proj. file: 041 INE B-36,stm
Line: 1
Size: 24 (in)
0 10 20 30 40 50 60 70 80
Reach(ft)
90 100
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINES C-l TO C-7 & D-1
STORM DRAIN
SYSTEM C & D
LEGEND
HYDRAFLOW SIORM
IZZl - SEWER CALCULATION
PIPE NUMBER
r> r-n_S^ORM DRAIN PIPE
L-OU DESIGNATION
EXIST. 24
RCP TO BE
REMOVED
SCALE 1": 80'
EXIST-18" RCP
EXIST-30" RCP
EXIST-30" RCP
EXIST-CURB INLETI
Hydraflow Summary Report Page 1
Line
No.
Line ID
1 LINE B-31
2 LINE B-32
3 LINE B-33
4 LINE B-34
5 LINE B-35
Flow
rate
(cfs)
45,05
34,30
3,50
32.20
14.62
Line
size
(in)
Line
length
(ft)
Invert
EL Dn
(ft)
Invert
EL Up
(ft)
Line HGL
slope down
(%) (ft)
30 c
30 c
18 c
18 c
30 c
440.8
115.7
51.2
15.9
72.5
179.00
182.99
185.01
185.01
182.99
182.66
184.67
185.52
185.33
190.00
0.830
1.452
0.996
2.013
9.664
HGL
up
(ft)
Minor Dns
loss
(ft)
81.50*
88.13*
89.70*
89.70*
88.13
186.82*
188.94*
189.76*
191.20*
191.28
1.31
0.76
0.06
5.16
0.52
line
No,
End
ProjectFile: 04119-LINE B-31 TOB 35,sl-D-F File: carlsbad26,IDF Total No. Lines: 5 Run Date: 05-06-2005
•^rtP^^StcfflTsfg^erTabXtiSr
station
Line To
Line
End
1
2
2
1
Len
(ft)
440.8
115.7
51.2
15.9
72.5
Drng Area
Incr
(ac)
0.00
0.00
0.00
0.00
0.00
Total
(ac)
0.00
0.00
0.00
0.00
0.00
Rnoff
coeff
Page 1
Project File: 04119-LINE B-31 TO B-35.stm
1-D-F File: carlsbad26.1DF
NOTES. Intensity = 19,61 / (Tc + 0 im ^ n RC^- D^, ~ • MIC + U.1U) 0.65, Return period = 100 Yrs • Initio! . . ^^^^^J^rs^mtal tailwater elevation = 181 50 (ft)
•flTJW' jflffiy&trGSde Line Comput
Line Size
(in)
30
30
18
18
30
(cfs)
45.05
34.30
3.50
32.20
14.62
ations
Invert
elev
(ft)
179.00
182.99
185.01
185.01
182.99
HGL
elev
(ft)
181.50
188.13
189.70
189.70
188.13
Downstream
Depth
(ft)
2.50
2.50
1.50
1.50
2.50
Project File: 04119-LINE B-31 TO B-35.stn
Area
(sqft)
4.91
4.91
1.77
1.77
4.91
Vel
(ft/s)
9.18
6.99
1.98
18.22
2.98
Vel
head
(ft)
1-31
0.76
0.06
5.16
0.14
EGL
elev
(ft)
182.81
188.89
189.76
194.86
188.27
Sf
(%)
1.207
0.700
0.111
9.406
0.127
Len
(ft)
1-D-F File: carlsbad26.1DF
441
116
51.2
15.9
72.5
NOTES: Initial tailwater elevation = 181.5 (ft), "Norm
Invert
elev
(ft)
182.66
184.67
185.52
185.33
190,00
HGL
elev
(ft)
186.82
188.94
189.76
191.20
191.28
Page 1
Upstream
Depth
(ft)
2.50
2.50
1.50
1.50
1.28*
al depth assumed., ** Critical depth assumed.
Area
(sqft)
4.91
4.91
1.77
1.77
2.52
Vel
(ft/s)
9.18
6.99
1.98
18.22
5.79
Vel
head
(ft)
1.31
0.76
0.06
5.16
0.52
Total number of lines: 5
EGL
elev
(ft)
188.13
189.70
189.82
196.36
191.80
Sf
(%)
1.207
0.700
0.111
9.403
0.472
Check
Ave
Sf
(%)
1.207
0.700
0.111
9.405
0.299
Enrgy
loss
(ft)
5.320
0.810
0.057
1.495
N/A
JL
coeff
(K)
1.00
1.00
1.00
1.00
1.00
Run Date: 05-06-2005
Minor
loss
(ft)
1.31
0.76
0.06
5.16
0.52
Sl^RreiTlroflTe
Elev. (ft)
218.0
209.0
200.0
191.0
182.0
173.0
50 100 150
Line: 1
Size: 30 (in)
200 250 300
Proj. file: 04119-LINE B-31 . a-35.stm
Line: 2
- Size: 30 (in)
350 400 450 500 550 600
Reach (ft)
bto -1 Sewer Profile
Elev. (ft)
202.0
198.0
194.0
190.0
186.0
182.0
Line: 3
Size: 18 (in)
0 10 20 30 40 50
Reach (ft)
Proj. file: 04119-LINE B-S', , B-35.stm
60 70 80 90 100
^^^n SeweTFroffli
Elev. (ft)
202.0
198.0
194.0
190.0
186.0
182.0
Line: 4
Size: 18 (in)
0 10 20 30 40
Proj. file: 04119-LlNE B-3 , . J B-35.stm
50 60 70
Reach(ft)
80 90 100
e
Elev. (ft)
218.0
209.0
200.0
191.0
182.0
173.0
0 50
Proj. file: 04119-LINE B-3 J B-35 stm
Line: 1
Size: 30 (in)
100 150 200 250 300 350
Line: 5
Size: 30 (in)
400 450 500 550
Reach(ft)
Q
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINE B-36
Hydraflow Summary Report Page 1
Line
No
Line ID Flow
rate
(cfs)
Line
size
(in)
Line
length
(ft)
Invert
EL On
(ft)
Invert
EL Up
(ft)
Line
slope
(%)
HGL
down
(ft)
HGL
up
(ft)
Minor
loss
(ft)
Dns
line
No,
LINE B-36 52.53 24 c 76.3 175.10 177.00 2.490 177.10* 181.22* 4.35 End
ProjectFile: 04119-LlNE B-36.stm I-D-F File: carlsbad26.IDF Total No. Lines: 1 Run Date: 05-11-2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
riyf^altow SforirTSewer Tabulation
station
Line \ To
Line
End
Len
(ft)
76.3
Drng Area
Incr I Total
(ac)
0.00
(ac)
0.00
Rnoff
coeff
(C)
0.00
Page 1
Area x 0
0.00
Total
0,00
Tc
inlet
(min)
0,0
ProjectFile: 04119-LINE B-36.stm
Syst
(min)
0.0
Rain
(1)
(in/hr)
0.0
Total
flow
(cfs)
52.53
Cap
full
(cfs)
35.69
Vel
(ft/s)
16.72
Pipe
Size
(in)
24
I-D-F File: carlsbad26.1DF
NOTES: Intensity = 19.61/(Tc +0.10)-^ 0.65; Retum period = 100 Yrs.
Slope
(%)
2.49
Invert Elev
Up
(ft)
177.00
Dn
(ft)
175.10
HGL Elev
Up
(ft)
181.22
Dn
(ft)
177.10
Grnd / Rim Elev
Up
(ft)
183.69
Total number of lines: 1
Dn
(ft)
179.00
Line ID
LINE B-36
Initial tailwater elevation = 177.10 (ft)
Run Date: 05-11-2005
l^^aflowSform^ewer Inventory RepoTt
Line
No. Alignment
Dnstr 1 Lir
line
No.
End
length
(ft)
76.3
Defl
angle
(deg)
0.0
ProjectFile: 04119-LINE B-36.stm
June
type
MH
Flow Data
Known
Q
(cfs)
52.53
Drng
area
(ac)
0.00
Runoff
coeff
(C)
0.00
Inlet
time
(min)
0.0
Invert
El Dn
(ft) I
175 ,1
I-D-F File: carlsbad26.IDF
Physical Data
Line
slope
(%)
2.49
Invert
El Up
(ft)
177.00
Line
size
(in)
24
Line
type
Cir
N
value
(n)
0.013
Total number of lines: 1
Page 1
J-loss
coeff
(K)
1.00
Inlet/
Rim El
(ft)
183.69
Line ID
LINE B-36
Date: 05-11-2005
"IRyf^flow hJyffraiHTcSradeTineComputatronT
Line Size
(in)
24
(cfs)
52.53
Page 1
Downstream
Invert
elev
(ft)
175,10
HGL
elev
(ft)
177.10
Depth
(ft)
2.00
Area
(sqft)
3.14
Vel
(ft/s)
16.72
ProjectFile: 04119-LINE B-36.stm
Vel
head
(ft)
4.35
EGL
elev
(ft)
181.45
Sf
(%)
5.396
Len
(ft)
76.3
Invert
elev
(ft)
177.00
I-D-F File: carIsbad26.1DF
NOTES: Initial tailwater elevafion = 177.1 (ft), * Normal depth assumed., ** Critical depth assumed.
Upstream
HGL
elev
(ft)
181.22
Depth
(ft)
2.00
Area
(sqft)
3,14
Vel
(ft/s)
16,72
Vel
head
(ft)
4.35
EGL
elev
(ft)
185.57
Sf
(%)
5.394
Totai number of lines: 1
Check
Ave
Sf (%)
5.395
Enrgy
loss
(ft)
4.117
JL
coeff
(K)
Minor
loss
(ft)
1.00 4.35
Run Date; 05-11-2005
Proj. file: 041 INE B-36,stm
Elev. (ft)
192.0
188.0
184.0
180.0
176.0
172.0
Line: 1
Size: 24 (in)
0 10 20 30 40 50 60 70
Reach(ft)
80 90 100
STORM DRAIN SYSTEM CALCULATION
STORM DRAIN LINES C-l TO C-7 & D-1
I
I
STORM DRAIN
SYSTEM C & D
LEGEND
HYDRAFLOW SIORM
IZZl - SEWER CALCULATION
PIPE NUMBER
^ r.^ STORM DRAIN PIPE
L-OU DESIGNATION
EXIST. 24
RCP TO BE
REMOVED
0.^
SCALE I":80'
-EXIST-30" RCP
EXIST-18" RCP~^.=^::@fEXIST-CURB INLET|
EXIST-30" RCP-^/0
Hydraflow Summary Report page 1
Line
No,
Line ID
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
EXIST 30 RCP
EXIST, 18 RCP
EXIST. 18 RCP
EXIST. 30 RCP
EXIST 30 RCP
LINE D-1
LINE C-1
LINE C-2
LINE C-3A
LINE C-3B
LINE C-4
LINE C-5A
LINE C-5B
LINE C-5C
LINE C-6
LINE C-7
LINE C-8
LINE C-9
Flow
rate
(cfs)
Line
size
(in)
Line
length
(ft)
Invert
EL Dn
(ft)
35.87
5.45
3.00
27.60
.13.68
6.34
17.16
17.16
17.16
11.06
11.06
11.05
10.77
8.64
8.94
2.99
0,29
2,13
30 c
18 c
18 c
30 c
30 c
12 c
24 c
18 c
18 c
18 c
18 c
18 c
18 c
18 c
18 c
18 c
-t2- c
8 c
196.6
5.2
32.0
54.0
268.4
78.0
214.9
28.3
47.6
249.6
242.2
67.3
38.8
120.1
50.1
96.6
25.4
15,9
Invert
EL Up
(ft)
Line
slope
(%)
147.63
169.78
167.95
164.83
168.51
169.76
175.82
198.80
199.13
199.61
202.42
208.03
211.50
213.50
199.65
200.48
211,50
213,50
164.50
170.28
168.51
168.01
169.76
184,71
193.39
199,08
199.61
202.10
207.69
211.50
213.50
219,69
200,15
202,11
218,00
219.42
8.478
9.542
1.750
HGL
down
(ft)
149.00
170.21*
168.43
HGL
up
(ft)
Minor Dns
loss line
(ft) No,
5,883 167.63
0.466 170.64
19.159
8,176
171,49
176,53
0,990 200.30*
1.008
0.997
2,176
5,159
5.157
5,154
0.978
1,687
25.591
37,233
201.28*
203,65*
206,51
209.71
213,52
215.48
203.65*
204.45*
213T52 -
215,48
166.50
172.99*
169.17
169.77
171.03
185.67
194.86
201.06*
202.55*
206.42*
208.93
( 212.77
214.75
220.81
204.01*
204.53*
21^8T23-
220.06
1.13
0.15
0.24
0.87 I 1
0.47 I 4
5
End
1.04
0.75
0.22
1.10
0.09
0.73
0.75
0,73
0,58
0.44
0.04
-0.07
0,60 13
9
10
11
12
13
9
15
12
Project File: 04119-LINE 01 TO C7 Dl.sl-D-F File: carlsbad26,IDF Total No. Lines: 18 Run Date: 05-06-2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
H^raflow Sto
Line
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
torm Sewer Inventory Report
Dnstr
line
No.
End
1
1
1
4
5
4
7
8
9
10
11
12
13
9
15
12
13
Alignment
L-ine
length
(ft)
196.6
5.2
32.0
54.0
268.4
78.0
214.9
28.3
47.6
249.6
242.2
67.3
38.8
120.1
50.1
96.6
25.4
15.9
Defl
angle
(deg)
0.0
-90.0
90.0
0.0
-90.0
140.0
0.0
-90.0
0.0
8.0
10.0
85.0
8.0
-5.0
-35.0
35.0
-90.0
90.0
June
type
MH
Curb
Curb
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
MH
Curb
MH
Curb
MH
Flow Data
Known
Q
(cfs)
35.87
5.45
3.00
27.60
13.68
6.34
17.16
17.16
17.16
11.06
11.06
11.06
10.77
8.64
8.94
2.99
0.29
2.13
Project File: 04119-LINE Cl TO C7 DLstm
Drng
area
(ac)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Runoff
coeff
(C)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Inlet
time
(min)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Invert
El Dn
(ft)
147.83
169.78
167.95
164.83
168.51
169.76
175.82
198.80
199.13!
199.6l'
202.42j
208.03j
211.50'
213.50
199.66
200.48
211.50
213.50
Line
slope
{%)
8.48
9.54
1.75
5.88
0.47
19.16
8.18
0.99
I.Oi
1.00
2.18
5.16
5.16
5.15
0.98
1,69
25.59
37.23
Invert
El Up
(ft)
164.50
170.28
168.51
168.01
169.76
184.71
193.39
199.08
199.61
202.10
207.69
211.50
213.50
219.69
200.15
202.11
218.00
219.42
Physical Data
Line
size
(in)
30
18
18
30
30
12
24
Line
type
I-D-F File: carlsbad26.IDF
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
Cir
N
value
(n)
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
J-loss
coeff
(K)
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.15
0.75
0.15
1.00
1.00
1.00
1.00
1.10
1.00
1.00
1.00
Inlet/
Rim El
(ft)
Total number of lines: 18
176.28
176.50
176.51
182.57
174.00
195.79
206.45
206.53
207.46
213.69
219.84
222.64
224.64
230.71
204.90
205.49
223.26
226.28
Line ID
EXIST 30 RCP
EXIST. 18 RCP
EXIST. 18 RCP
EXIST. 30 RCP
EXIST 30 RCP
LINE D-1
LINE C-1
LINE C-2
1-1 NE C-3A
LINE C-3B
LINE C-4
LINE C-5A
LINE C-5B
LINE C-5C
LINE C-6
LINE C-7
LINE C-8
LINE C-9
Page 1
Date: 05-06-2005
y^flow Storm Sewer Tabulation
Page 1
Projecl File: 04119-LINE Cl TO C7 Dl.stm
1-D-F File: carlsbacl26.1DF
L!'^:!!^!!':!!^!!^^ mitiaUallwater elevation =149.00 (ft)
Total number of lines: 18 Run Date: 05-06-2005
y "-aflow Hydraulic Grade Line Computa^ns
Line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Size
(in)
30
18
18
30
30
12
24
(cfs)
35.87
5.45
3.00
27.60
13.68
6.34
17.16
17.16
17.16
11.06
11.06
11.06
10.77
8.64
8.94
2.99
0.29
2.13
Downstream
Invert
elev
(ft)
147.83
169.78
167.95
164.83
168.51
169.76
175.82
198.80
199.13
199.61
202.42
208.03
211.50
213.50
199.66
200.48
211.50
213.50
HGL
elev
(ft)
149.00
170.21
168.43
167.53
170.64
171.49
176.53
200.30
201.28
203.65
206.51
209.71
213.52
215.48
203.65
204.45
213.52
215.48
Depth
(ft)
1.17
0.43*
0.48*
2.50
2.13
1.00
0.71*
1.50*
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.00
0.67
Area
(sqft)
2.25
0.41
0.49
4.91
4.45
0.79
1.00
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
0.79
0.35
Vel
(ft/s)
15.91
13.17
6.19
5.62
3.07
8.07
17.23
9.71
9.71
6.26
6.26
6.26
6.10
4.89
5.06
1.69
0.37
6.12
Vel
head
(ft)
Project File: 04119-LINE Cl TO C7 Dl.stm
3.93
2.70
0.59
0.49
0.15
1.01
4.61
1.47
1.47
0.61
0.61
0.61
0.58
0.37
0.40
0.04
0.00
0.58
EGL
elev
(ft)
152.93
172.91
169.02
168.12
170.79
172.51
181.14
201.77
202.74
204.26
207.12
210.32
214.10
215.85
204.04
204.49
213.52
216.06
Sf
(%)
3.842
8.658
1.684
0.453
0.105
3.170
7.957
2.671.
2.671
1.110
1.110
1.110
1.053
0.677
0.725
0.081
0.007
3.126
Len
(ft)
197
5.2
32.0
54.0
268
78.0
215 '
I
28.3 I
47.6 '
I 250 I
242 I
67.3
38.8
120
50.1
96.6
25.4
15.9
Upstrean
Invert
elev
(ft)
164.50
170.28
168.51
168.01
169.76
184.71
193.39
199.08
199.61
202.10
207.69
211.50
213.50
219.69
200.15
202.11
218.00
219.42
'-D-F File; carlsbad2e.lDF
HGL
elev
(ft)
166.50
172.99
169.17
169.77
171.03
185.67
194.86
201.05
202.55
206.42
208.98
212.77
214.75
220.81
204.01
204.53
218.23
220.06
Depth
(ft)
2.00"
1.50
0.66
1.76*'
1.27
0.96"
1.47"
1.50
1.50
1.50
1.29
1.27*
1.25*
1.12*
1.50
1.50
0.23*
0.64*
Area
(sqft)
4.21
1.77
0.76
3.68
2.50
0.78
2.47
1.77
1.77
1.77
1.61
1.59
1.58
1.42
1.77
1.77
0.14
0.34
Vel
(ft/s)
8.51
3.09
3.97
7.49
5.48
8.16
6.95
9.71
9.71
6.25
6.85
6.93
6.83
6.09
5.06
1.69
2.15
6.22
Vel
head
(ft)
1.13
0.15
0.24
0.87
0.47
1.04
0.75
1.47
1.47
0.61
0.73
0.75
0.73
0.58
0.40
0.04
0.07
0.60
EGL
elev
(ft)
167.63
173.14
169.42
170.64
171.49
186.71
195.61
202.52
204.01
207.03
209.71
213.52
215.48
221.39
204.41
204.57
218.30
220.66
Page 1
Sf
(%)
0.799
0.270
0.496
0.640
0.425
2.773
0.730
2.670
2.670
1.109
1.029
1.052
1.019
0.819
0.725
0.081
0.507
2.710
Check
Ave
Sf
(%)
** Cntioa, depth assume^.
Total number ol lines: 16
2.320
4.464
1.090
0.547
0.265
2.971
4.343
2.671
2.671
1.110
1.070
1.081
1.036
0.748
0.725
0.081
0.257
2.918
Enrgy
loss
(ft)
N/A
0.234
0.349
N/A
0.710
N/A
N/A
0.755
1.271
2.770
2.591
N/A
N/A
N/A
0.363
0.079
N/A
N/A
JL
coeff
(K)
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.15
0.75
0.15
1.00
1.00
1.00
1.00
1.10
1.00
1.00
1.00
Minor
loss
(ft)
1.13
0.15
0.24
0.87
0.47
1.04
0.75
0.22
1.10
0.09
0.73
0.75
0.73
0.58
0.44
0.04
0.07
0.60
Run Date: 05-06-2005
wTm SewerProfiTe
Proj. file: 04119-LINE ."OC? Dl.stm
Elev. (ft)
208.0
194.0
180.0
166.0
152.0
Line: 1
-Size: 30 (in)
Line: 4
Size: 30 (in)
100 150 200 250 300 350
Reach (ft)
400 450 500 550
ewer Profile
Elev. (ft)
Proj. file: 04119-LINE TO C7 Dl stm
255.0 ,—
234.0
213.0
192.0
171.0
150.0
-Line:
Size: 24 (in) -Line: gLine: 9
Size: iSize: 18 (in)
Line: 10
Size: 18 (in)
500
Line: 11
Size: 18 (in)
600 700 800
F^bach (ft)
900
rm^wer Profile
Proj. file: 04119-LINE ;o C7 Dl.stm
Eiev. (ft)
246.0
237.0
228.0
219.0
100 125 150 175 200 225 250
Reach (ft)
5> rm Sewer Profile
Elev. (ft)
217.0
213.0
209.0
205.0
201.0
197.0 L
0
Line; 15
Size: 18 (in)
25 50
Proj. file: 04119-LINE ( O C7 Dl.stm
Line: 16
Size: 18 (in)
"^5 j 100
R^ach (ft)
125 150
CURB INLET CALCULATION
1 2 3 456789 10
Discharge (CF.S.)
EXAMPLE:
Given: Q = 10 S = 2,5%
Chart gives: Depth = 0,4, Velocity = 4.4 f,p,s,
SOURCE; San Diego County Department of Special District Services Design Manual
30 40 50
FIGURE
Gutter and Roadway Discharge - Velocity Chart
CURB INLET CALCULATIONS
FORMULAS:
ON GRADE: Q=0.7L(a+
IN A SUMP: Q=3.0Ly'''
Where: Q = Runoff in cfs L = length of opening in feet a=depth of dep: ression in feet y=depth of flow in feet
• . iM_vjwi\i Ljn>vv T )
AT END OF LINE A-3 (H90.69 RIGHT RESORT DRWY^
AT END OF LINE B-11 (25^32.64 LEFT RESORT DRVWY^
AIEND^FUNE_B-12 (25^26.32 RIGHT RESORT DRV^
AT END OF LINE Br33 (5^78.77 RIGHT RESORT DR\;^
AT END OF LINE B-34 (5+78.77 LEFT RF.^OPT DRVWY)
AT END OF LINE C-8 ~
EXIST. 15' INLET (HIDDEN VALLEY -LEFT
EXIST. 15' INLET (HIDDEN VALLEY -RIGHT)
INLET(S) IN A SUMP
AT END OF LINE C-6 (37+75.12 RIGHT RESORT DRWY)
AT END OF LINE B-28 (15+88.14 RIGHT RESORT DR^
[AIENDOFui;^ B-29 (15+90.16 LEFT RESORT DR\;^
TYPE F INLET CALCULATION
I
TYPE F INLET CALCULATIONS
FORMULA:
Use M'cir equation with a coefficient of discharge of 3.0: Q=3.0 L y
Where: Q = Runoff m cfs L = length of opening m feet y=depth of flow in feet
INLET LOCATION
INLET(S) IN A SUMP
^12^2!<OFUNE_B,3^7^^
^I5^2!<oLL!NEl^iIi^
Q(cfs)
30.05C|
10.283
11.066
T
a(ft)
4" for 10"depp.
L (ft min)
4.000
4.000
4.000
y(ft)
1.844
Y(ft)
Specified
0.902
0.947
2.000
2.000
2.000
(*/Or TO SCXLE-J
u
BROOKS BOX GRATED INLET CALCULATIONS
I
I
I
I
BROOKS BOX GRATED INLETS
Analyze the capacity of a 3'x3' Brooks Box
Determine ttie flow capacity in cubic feet per second for a 36"X36"Brooks Box grated type inlet using the
following orifice equation of grated inlets in a sump. There are tiiree proposed 36"X36" Brooks Boxes
proposed for the site. (Nodes 214, 216 and 301)
Q{cap) = 4.82Ay'
\ [I
This equation is derived fi-om the standard grated inlet formula from Seelye's Data Book for Civil _ \ Z-
Engineers book page 18-27, c=0,6. Also, consider a 2/3 factor to account for clogging of the grates, ^y,'*'
Q{cap) = cA^ilgy)
Given; 3'x3'box We have: •y
A= 9,000 sf Q(cap) = 14,53 cfs 1 V /• - ,, . .
y= 0,25 ft .tjr
'J
w
W^ere A = Area of opening in square feet
y = Depth of flow at inlet or head of sump in feet
Recall fi-om the hydrology study that the maximuin runoff that goes to a Brooks Box is only 8,64 cfs (Node
301), Node 214 is 6,32 cfs and Node 216 is 8,05 cfs. Therefore the proposed boxes are adequate to handle
the QIOO runoff
V
BROW DITCH & CHANNEL
HYDRAULICCALCULATION
I
Dim ^ \\oi:e CIRCULAR CHANNEL ANALYSIS
RATING CU.RVE COMPUTATION
May 9, 2005
PROGRAM INPUT DATA
DESCRIPTION VALUE
Channel Bottorn Slope (ft/ft) O'Ol
Manning's Roughness Coefficient (n-value) 0,013
Channel Diameter (ft)
Minimum Flow Depth (ft) O'l
Maximum Flow Depth (ft) 1-5
Incremental Head (ft) 0-1
COMPUT.ATION RESULTS
Flow Flow Flow Froude Velocity Energy Flow Top
Dep th Ra te Veloci ty t^iuiTibe r .Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0.1 0,13 1.86 1.265 0, 054 0. 154 0,07 1.08
0.2 0.59 2 . 92 1.4 0,133 0,333 0,2 1.5
0.3 1,39 3 . 79 1,476 0, 223 0.523 0, 37 1.8
0.4 2.54 4 .53 1. 525 0.319 0.719 0.56 2. 04
0.5 4.03 5.2 1. 558 0,42 0. 92 0,77 2,24
0, 6 5.84 5.8 1. 58 0.523 1.123 1.01 2.4
0.7 7.96 6.35 1.594 0. 627 1. 327 1.25 2.54
0.8 10. 38 6.86 1. 601 0.731 1.531 1, 51 2. 65
0. 9 13, 06 7.32 1, 603 0,833 1.733 1, 78 2. 75
1. 0 15, 99 7 . 75 1.6 0. 934 1. 934 2.06 2 , 83
-1,1 19,14 8. 15 1.594 1. 0-32-_ -2-. 132 2.35 2.89
1 . 2 22, 48 8. 51 1. 583 1.126 2. 326 2. 64 2, 94
1 , 3 25, 98 8. 85 1. 57 1,216 2.516 2. 94 2 . 97
1. 4 29, 61 9.16 1. 553 1.302 2. 702 3.23 2. 99
1. 5 33. 35 9.44 1.533 1. 383 2, 883 3.53 3.0
___„__.______ =========== ======== ============ ========= ========== ========
HYDROCALC Hydraulics for Windows, Version 1,1 Copyright (c) 1996
Dodson S Associates, Inc, 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone: (281 ) 440-3787, Fax: (281)4 4 0-4 74 2, Email:softwaregdodson-hydro,com
All Rights Reserved,
I
CIRCUL.a.R CH.ANNEL ANALYSIS
RATING CURVE COMPUTATION
May 9, 2 005
PROGRAM INPUT DATA
DESCRIPTION VALUE
Channel Bottom Slope (ft/ft) 0,01
Manning's Roughness Coefficient (n-value) 0,013
Channel Diameter (ft) 3,0
Minimum Flow Depth (ft) 0,1
Maximum Flow Depth (ft) 1.0
I.ncremental Head (ft) , 0,1
COMPUTATION RESULTS
Flow Flow Flow Froude Velocity Energy Flow Top
Depth Rate Velocity Number Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0. 1 0,13 1,86 1,265 0, 054 0.154 0. 07 1. 08
0.2 0,59 2 . 92 1 . 4 0, 133 0, 333 0.2 1. 5
0, .3 1 ,39 3,79 1.476 0 , 223 0. 323 0. 37 1 , 8
0.4 2.54 4 . 53 1, 525 0. 319 0.719 0,56 2.04
0. 5 4 , 03 5.2 1, 558 0,42 0, 92 0 , 77 2,24
0. 6 5.84 5.8 1 , 58 0 , 523 1. 123 1 , 01 2 . 4
0.7 7. 96 6.35 1 ,594 0. 627 1.327 1 .25 2 . 54
0.8 10.38 6.86 1. 601 0. 731 1 .531 1.51 2 . 65
0.9 13.06 7 . 32 1, 603 0.833 1. 733 1.78 2.75
1.0 15. 99 7, 75 1.6 0. 934 1. 934 2.06 2.83
======= ========== ============= ======== ============ ======== =========== ________
HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996
Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone: (281)440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro. com
All Rights Reserved,
3.00'
CIRCULAR CHANNEL ANALYSIS
RA.TING CURVE COMPUTATION
May 9, 2005 T(fE P
PROGRA^l INPUT DATA
DESCRIPTION VALUE
Channel Bottom Slope (ft/ft) 0.01
Manning's Roughness Coefficient (n-value) 0,013
Channel Diameter (ft) 3,5
Minimu.m Flow Depth (ft) 0.1
Maximum Flow Depth (ft) 1,7
Incremental Head (ft) 0,1
COMPUTATION RESULTS
Flow Flow Flow Froude Velocity Energy Flow Top
Depth Rate Velocity Number Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0,1 0, 15 1,86 1,268 0, 054 0,154 0, 08 1,17
0.2 0, 64 2 . 93 1,406 0.133 0.333 0,22 1. 62
0 , 3 1, 52 3.8 1.486 0,225 0. 525 0.4 1. 96
0.4 2.78 4 ,56 1, 539 0. 324 0.724 0, 61 2.23
0.5 4.42 5,24 1, 576 0.427 0. 927 0, 84 2,45
0.6 6.44 5.86 1. 602 0,534 1, 134 1.1 2, 64
0.7 8.31 6.43 1, 621 0. 643 1.343 1,37 2,8
0.8 11.53 6.96 1. 63 4 0. 752 1. 552 1. 66 2. 94
0.9 14 , 57 7 .45 1, 641 0. 8 61 1. 761 1, 96 3. 06
1, 0 17, 92 7 . 9 1. 644 0. 97 1. 97 2.27 3.16
1.1 21, 55 8.32 1. 644 1.077 2. 177 2.59 3.25
1.2 25. 44 8.72 ' TTTE 2 2. 382 2. 92 3.32
1.3 29,57 9.09 1. 634 1.284 2, 584 3.25 3.38
1. 4 33 , 9 9,43 1. 625 1.383 2. 783 3 . 59 3.43
1.5 38, 42 9, 75 1. 613 1.479 2. 979 3. 94 3.46
1.6 43.08 10. 05 1.598 1.57 3, 17 4 ,29 3.49
1. 7 47 , 87 10.33 1.582 1. 657 3,357 4 . 64 3.5
======== ============= ========= =========== ========== „========= =======
HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996
Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone:(281) 440-3787, Fax: (281) 4 4 0-4 742, Email:software(?dodson-hydro,com
All Rights Reserved.
3.50'
TRAPEZOIDAL CHANNEL ANALYSIS
RATING CURVE COMPUTATION
May 9, 2005
PROGRAM INPUT DATA
DESCRIPTION VALOE
Channel Bottom Slope (ft/ft) 0.01
Manning's Roughness Coefficient (n-value) 0,022
Channel Left Side Slope (horizontal/vertical) 0.5
Channel Right Side Slope (horizontal/vertical) 0,5
Channel Bottom Width (ft) 6,0
Minimum Flow Depth (ft) 0,1
Maximum Flow Depth (ft) 1,8
Incremental Head (ft) 0.1
•JPUTATION RESULTS
Flow Flow Flow Froude Velocity Energy Flow Top
Depth Rate Velocity Number Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0,1" 0,36 1,43 0. 799 0, 032 0 . 132 0. 61 6.1
0.2 2 . 72 2.23 0, 885 0.077 0.277 1,22 6.2
0,3 5.29 2 , 87 0. 934 0.128 0.428 1 . 85 6.3
0,4 8,47 3 . 42 0. 967 0.181 0. 581 2,48 6.4
0,5 12, 19 3 , 9 0, 992 0,237 0,737 3 . 13 6.5
0. 5 16.4 4 , 34 1, Oil 0.293 0.893 3 . 78 6. 6
0 , 7 21. 06 4 .74 1. 02 6 0.349 1.049 4.44 6.7
0.8 26, 14 5.11 1. 037 0. 405 1. 205 5.12 6.3
0.9 31. 63 5.45 1. 047 0. 461 1.361 5.81 6,9
1.0 37. 49 ""5.77 1.055 0.517 1. 517 " 6.5 7.0
1, 1 43,72 6,07 1. 062 0. 572 1. 672 7.21 7,1
1. 2 50.31 6.35 1.068 0. 627 1. 827 7. 92 7.2
1 , 3 57.24 6. 62 1. 073 0. 681 1. 981 8. 65 7.3
1.4 54 .5 6.38 1., 077 0. 735 2. 135 9.38 7 . A
1 . 5 72.09 7 .12 1, 08 0,788 2.288 10, 13 7 . 5
1.6 80,0 7 .35 1, 083 0, 84 2,44 10, 88 7 , 6
1. 7 88.23 7.58 1, 085 0. 892 2.592 11, 65 7 , 7
1 . 8 96.77 7.79 1. 088 0. 943 2, 743 12. 42 7 , 8
========= =========== ========^^ ========= =========== ========== =========
HYDROCALC Hj'draulics for Windows, Version 1.1 Copyright (c) 1996
Dodson & .Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone:(281)4 40-3787, Fax:(281)440-4742, Email:software@dodson-hydro,com
All Rights Reserved,
TPJ',PZ7.,Q1DAL CH.ANNEL .AN.ALYSIS
RATING CURVE COMPUT.ATION
May 2005
PROGRAiM INPUT DATA
DESCRIPTION VALUE
Channel Bottom Slope (ft/ft) 0.01
Manning's Roughness Coefficient (n-value) 0,022
Channel Left Side Slope (horizontal/vertical) 0,5
Channel Right Side Slope (horizontal/vertical) 0.5
Channel Bottom Width (ft) 5,0
Minimium Flow Depth (ft) 0,1
Maximum Flow Depth (ft) 2,0
Incremental Head (ft) 0,1
COMPUT.ATION RESULTS
Flow Flow Flow Froude Velocity Energy Flow Top
Deoth Rate Velocity Number Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0.1 0, 72 1. 42 0 , 797 0.031 0.131 0.51 5.1
0.2 2.25 2 , 21 0, 88 0, 075 0.276 1.02 5.2
0,3 4 , 39 2 , 84 0 , 927 0, 125 0. 425 1. 55 5.3
0.4 7.02 3 , 37 0. 958 0, 177 0. 577 2.08 5.4
0.5 10, 09 3 .84 0, 98 0. 229 0.729 2. 63 5. 5
0,6 13. 56 4.26 0, 997 0, 232 0, 882 3. 18 5,6
0.7 17.4 4 . 65 1.01 0. 335 1, 035 3.74 5.7
0.8 21.59 5,0 1, 021 0. 388 1. 188 4 . 32 5.8
0,9 26.11 5.32 1.029 0.44 1. 34 4 , 91 5. 9
1.0 30. 94 5. 63 1. 036 0.492 1. 4 92 5.5 6.0
1.1 36,08 5. 91 1. 041 0.543 1. 643 6.11 6.1
1. 2 41.51 6,18 1. 046 0.593 1. 793 6. 72 6.2
1. 3 47.23 6.43 1. 05 0. 643 1. 943 7.35 6,3
1. 4 53.23 6. 67 1 , 053 0.691 2 , 091 7. 98 5.4
1. 5 59.51 6 , 9 1.056 0.74 2 ,24 8. 53 6,5
1. 6 66. 05 7,12 1.058 0.737 2, 387 9. 28 6,6
1. 7 72 , 87 7 .33 1 , 06 0 , 83 4 2,534 9. 95 6, 7
1. 8 79, 95 7 ,53 1, 062 0.881 2. 681 10. 62 6.8
1 . 9 87 ,29 7 . 72 1.063 0. 927 2, 827 11. 3 5.9
2.0 94 , 89 7 . 91 1 ,055 0. 972 2 , 972 12. 0 7.0
========= ========== =========== ========= =========== ========= ========== ========
HYDROCALC Hydraulics for Windows, Version 1,1 Copyright (c) 1996
Dodson & Associates, Inc., 5629 FM 1960 West,. Suite 314, Houston, TX 77069
Phone: (281) 4 4 0-3787, Fax: (281)i40-4142, Email:software(3dodson-hydro , com
All Rights .Reserved..
5.00'
T.RAPEZOIDAL CHANNEL ANALYSIS
R.WING CURVE COMPUTATION
May 9, ?005
PROGRAM INPUT DATA
DESCRIPTION VALUE
Channel Bottom Slope (ft/ft) 0.04
Manning's Roughness Coefficient (n-value) 0,022
Channel Left Side Slope (horizontal/vertical) 0,1
Channel Right Side Slope (horizontal/vertical) 0,25
Channel Bottom Width (ft) 4,0
Minimum Flow Depth (ft) 0,1
Maximum Flow Depth (ft)
Incremental Head (ft) 0.1
COMPUT.ATION RESULTS
Fiow Flow Flow Froude Velocity Energy Flow Top
Depth Rate Velocity Number Head Head Area Width
(ft) (cfs) (fps) (ft) (ft) (sq ft) (ft)
0, 1 1 .13 2 , 82 1,578 0 . 124 0 . 224 0.4 4 , 04
0.2 3 . 52 4,36 1.725 0,295 0. 495 0,81 4 . 07
0. 3 6,75 5, 55 1 , 799 0.479 0.779 1. 22 4 , 11
0, 4 10. 67 6,56 1, 843 0. 568 1. 068 1, 63 4 . 14
0.5 15 ,17 7,42 1.87 0. 856 1 , 356 2,04 4 . 18
0.6 20.16 8.19 1, 837 1,041 1 . 541 2.46 4 .21
0.7 25.59 8.87 1.896 1, 222 1. 922 2.89 4.25
0.8 31. 42 9.49 1. 901 1.398 2.198 3.31 4.28
-0. 9 " 37T& 10. 05 1.902 1.569 2^ 46 9 --3^-4-4 .32
1.0 44 .11 10 , 57 1. 901 1. 735 2,735 4 . 18 4 . 35
1.1 50. 93 11,04 1.898 1 ,895 2 , 995 4 . 61 4.39
1.2 58.03 ' 11.49 1.894 2 . 05 3.25 5.05 4 . 42
1.3 65,4 11 . 9 1.889 2,201 3.501 5.5 4.46
_______ =========== ======== ============ ======== =========== =======
HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996
Dodson £ Associates, Inc, 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone:(281) 4 40-3737, Fax: (281) 440-4742, Email:software@dodson-hydro,com
All Rights Reserved.
^^•i2iliIlSL0PC
4.00'
w
ROCK RIP RAP SIZING CALCULATIONS
2003 REGIONAL SUPPLEMENT B -/^
I
!
t
I
I
I
I
i
I
I
200-L6.3 Quality Requirements
Page 45 - First paragraph, second sentence change "60 days" to "30 days".
200-1.7 Selection of Riprap and Filter Blanket Material
Table 200-1.7
Velocity
Meters/Sec
(Ft/Sec)
(1)
Rock Class
(2)
Rip
Rap
Thie
k-
Nes
s
Filter Blanket Upper Layer(s)
(3) Velocity
Meters/Sec
(Ft/Sec)
(1)
Rock Class
(2)
Rip
Rap
Thie
k-
Nes
s
Option 1
Sect, 200
(4)
Optio
n2
Sect,4
00
(4)
Option 3
(5)
Lower
Layer
(6)
2 (6-7) No. 3 Backing 0.6 5 mm (3/16") C2 D.G.
2.2 (7-8) No, 2 Backing 1.0 6 mm (1/4") B3 D.G.
2.6 (8-9.5) Facing 1,4 9,5 mm (3/8") D.G, „
3 (9.5-11) Light 2.0 12,5 mm ('/j") 25mm (3/4"- 1-1/2")
220 kg (1/4 Ton) 2.7 ' 25mm (3/4"- 1-1/2") SAND 3.5(11-13) 220 kg (1/4 Ton) 2.7 ' 19 mm (3/4") 25mm (3/4"- 1-1/2") SAND
4(13-15) 450 kg CA Ton) 3.4 25mm(l") 25mm (3/4"- 1-1/2") SAND
4.5 (15-17) 900 kg (1 Ton) 4.3 37.5 mm (1-1/2") TYPEB SAND
5,5 (17-20) 1.8Tonne (2 Ton) 5.4 50 mm (2") TYPEB SAND
See Section 200-1,6. see also Table 200-1.6 (A)
Practical use of this table is limited to situations where "T" is less than inside diameter,
(1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater.
(2) If desired rip rap and filter blanket class is not available, use next larger class,
(3) Filter blanket tiiickness = 0,3 Meter (I Foot) or "T", whichever is less,
(4) Standard Specifications for Public Works Constmction,
(5) D,G, = Disintegrated Granite, 1mm to 10mm,
P,B, = Processed Miscellaneous Base,
yrh£ZL D/Z^Ai^'
This drowing is NOT In contormance with latest UBC ond should be used wilh core and judgment.
2D OR 2 W (min.)
7
U6t A- -^^ivni of
OizYuex
D = Pipe Diometer
W = Bollom Width of Chonnel
•#15 (#4) Bors Flow
Filter Blanket
3 (min.)
152mm (6")^ Sill, Class
249kg/M^-C-13Mpo (420-C-2000)
Concrete
SECTION A-A
Plans sholl specify:
A) Rock Class ond thickness (T).
B) Filter moteriol, number of layers ond thickness.
Rip rop shall be either quorry stone or broken
concrete (if shown on the plons.) Cobbles
ore not occeptoble.
Rip rop shall be placed over filter blonket which moy
be either gronulor material or filter fobric.
See Regional Supplement Amendments for selection
of rip rap ond filler blonket.
Rip rop energy dissipators shll be designated os either
Type 1 or Type 2. Type 1 shall be wilh concrete sill;
Type 2 sholl be without sill.
Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING
RECOMMtNDEO BY THE SAN OIEGO
REGIONAL STANDARDS COMMITTEE
^ ''^^^^I^T 3l0tl2003
ORIGItNJAL Kerchevol 12/75
SAN DIEGO REGIONAL STANDARD DRAWING
RECOMMtNDEO BY THE SAN OIEGO
REGIONAL STANDARDS COMMITTEE
^ ''^^^^I^T 3l0tl2003 Wd Metric T. Stonlon 03/03 RIP RAP
ENERGY DISSIPATOR
RECOMMtNDEO BY THE SAN OIEGO
REGIONAL STANDARDS COMMITTEE
^ ''^^^^I^T 3l0tl2003 RIP RAP
ENERGY DISSIPATOR
Ctroirperson R,C,E. 19246 Dote RIP RAP
ENERGY DISSIPATOR DRAWING n 40
NUMBER ^
RIP RAP
ENERGY DISSIPATOR DRAWING n 40
NUMBER ^
I
I
2003 REGIONAL SUPPLEMENT
^•Toe^ pyCZ\ 1.^'
200-1.6.3 Quality Requirements
Page 45 - First paragraph, second sentence change "60 days" to "30 days".
200-L7 Selection of Riprap and Filter Blanket iMatenal
/ X - //. -7 ? -|Cp5
Table 200-1,7
Velocity
Meters/Sec
(Ft/Sec)
Rock Class
(2)
Rip
Rap
Thie
k-
Nes
s
Filter Blanket Upper LaYer(s)
(3) Velocity
Meters/Sec
(Ft/Sec)
Rock Class
(2)
Rip
Rap
Thie
k-
Nes
s
Option 1
Sect, 200
(4)
Optio
n2
Sect,4
00
(4)
Option 3
(5)
Lower
Layer
(6)
2 (6-7) No. 3 Backing 0,6 5 mm (3/16") C2 D,G.
2,2 (7-8) No. 2 Backing 1,0 6 mra (1/4") B3 D.G,
2.6 (8-9.5) Facing 1.4 9,5 mm (3/8") D.G.
3 (9.5-11) Light 2.0 12,5 mm QA") 25mm (3/4"- 1-1/2")
3,5(11-13) 220 kg (1/4 Ton) 2.f-- -l-97mmi:3/4") 25mm (3/4"- 1-1/2") -SAND
4(13-15) 450 kg ('/2 Ton) 3,4 25mm(r') 25mm (3/4"- 1-1/2") | SAND
4,5(15-17) 900 kg (1 Ton) 4,3 37,5 mm (1-1/2") TYPEB SAND
5.5(17-20) 1.8Tonne (2 Ton) 5,4 50 mm (2") TYPEB SAND
See Section 200-1,6, see also Table 200-1.6 (A)
Practical use of this table is limited to situations where "T" is less than inside diameter
(1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater,
(2) If desired rip rap and filter blanket class is not available, use next larger class,
(3) Filter blanket thickness = 0.3 Meter (1 Foot) or "T", whichever is less,
(4) Standard Specifications for Public Works Constmction,
(5) D,G, = Disintegrated Granite, Imm to 10mm,
P,B, = Processed Miscellaneous Base,
2^
^.-fh/Z-Zi \)rZ.A(zJ
This drowing is NOT in conformonce with latest UBC and should be used with care and judgment.
PLAN
Concrete
Channel'
1/2D min.
J (min.)
SECTION B-B
Endwoll (lypicol)
U5c:
D = 2
To CoMCfL
D = Pipe Diometer
W = Bottom Width of Channel
I 0 I
ry?e ^-
Filter Blonket
-152mm (6")\Sill, Closs
249kg/M^-C-13Mpa (42O-C-2O00)
Concrete
SECTION A-A
NOTES
1. Plons sholl specify:
A) Rock Class ond thickness (T),
B) Filter material, number of layers ond thickness.
2. Rip rop sholl be either quorry stone or broken
concrete (if shown on the plons.) Cobbles
ore not occeptoble.
3. Rip rop shall be ploced over filter blonket which may
be either gronulor moteriol or filter fabric.
4. See Regional Supplement Amendments for selection
of rip rap ond filter blonket,
5. Rip rop energy dissipators shll be designoted as either
Type 1 or Type 2, Type 1 shall be with concrete sill;
Type 2 sholl be withoul sill.
I
Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY THE SAN DIEGO
REGIONAL STANDARDS COWWITTEE
M^f^ffClfJO 3lot12003 ORIGINAL Kerchevol 12/75
SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY THE SAN DIEGO
REGIONAL STANDARDS COWWITTEE
M^f^ffClfJO 3lot12003 Add Metric T. Stanton 03/03 RIP RAP
ENERGY DISSIPATOR
RECOMMENDED BY THE SAN DIEGO
REGIONAL STANDARDS COWWITTEE
M^f^ffClfJO 3lot12003 RIP RAP
ENERGY DISSIPATOR
Chairperson R.C.E. 19246 Dote RIP RAP
ENERGY DISSIPATOR DRAWING n /in
NUMBER ^
RIP RAP
ENERGY DISSIPATOR DRAWING n /in
NUMBER ^
TEMPORARY DESILTING BASINS &
RISER CALCULATIONS
j
ll
i
WIDTH, LENGTH, RIP-RAP SIZE
AND FILTER ROCK SIZE PER PLAN
STANDPIPE-18"0 PIPE.MINIMUM
WITH NO PERFORATIONS
#6 REBAR.SPACED
6"0,C, AROUND
RISER CIRCUMFERENCE
4" RED PAINT ^TEEL PLATE
STRIPE ALL
AROUND RISER
PLAN VIEW
NTS
SLOPE FACES SHALL
BE HYDROSEEDED
SIMILAR TO
SDRS D-70
2:1 OR FLATTER IF SO
SPECIFIED ON PLANS
TYPICAL THROUGHOUT
SEE SECTION 300-6
STD, SPECS,
SLOPE PER PLAN,
2% MINIMUM-7
:J ^
BASIN CAPACITY TABLE
CUBIC YARDS)
DETAIL B
NTS
l/2"x 2" A
I LOCATIONS
1/2"0 MB w/ NUT cSc WASHER
NOTES:
1) DESILTATION BASINS BUILT
ON LOTS ADJACENT TO
DWELLINGS SHALL BE
COMPLETELY LINED WITH
3" GUNITE,
2) ALL STEEL PIPE AND
HARDWARE TO BE HOT
DIP GALVANIZED AFTER
FABRICATION,
TRACT AREA (ACRES)
AVERAGE SLOPES TRACT AREA (ACRES) 2% 5% 8% 10% 12%-15%
10 270 350 370 400 450 500
15 400 420 460 600 675 750
20 540 700 740 800 900 1000
40 1080 1400 1480 1600 1800 2000
80 2160 2800 2960 3200 3600 4000
100 2700 3500 3700 4000 4500 5000
150 4000 4200 4600 6000 6750 7500
200 5400 7000 1 7400 8000 1 9000 10000
IREV. APPROVED DATE CITY OF CARLSBAD
/O^'^i^-vi-,. Lz ^-s—c: r\A 1
TEMPORARY
DESILTATION BASIN OUTLET
AND CAPACITY TABLE
CITY ENGINEER DATE 1 TEMPORARY
DESILTATION BASIN OUTLET
AND CAPACITY TABLE SUPPLEMENTAL HQ Q 1 STANDARD NO, L^O-O 1
TEMPORARY
DESILTATION BASIN OUTLET
AND CAPACITY TABLE SUPPLEMENTAL HQ Q 1 STANDARD NO, L^O-O 1
Steps taken in designing desilting basins and risers
2.
3.
4.
QIOO storm hydrologic Rational Method information were gathered at each node
where a proposed desilting basin is proposed.
Rational method information where converted into a hydrograph using procedure
as outline in the 2003 San Diego County Hydrology Manual. County provided
software was used in this step (Rathydro by Rick Engineering).
Hydrograph was then manually entered into routing software. Software used here
is Hydraflow^" version 6.01 by Intelisolve.
Hydrograph was then routed to a pond with a riser. Base areas of ponds were
initially sized using City of Carlsbad Supplemental Standard Drawing DS-3 as a
guide. Ratio and proportion was applied to get target capacity for a basin that has
an average slope of 2%).
Summary of calculation results
Basin QIOO Area C T P6 Target Capacity Design • side depth of Riser Provided basin
location cfs acres mins in by ratio & prop. base area slope pond Diameter capacity
cy sf Hto V ft cy
node 101 2,57 0,58 0.77 6.55 2.60 27.00 400.00 4 to 1 4.00 18.00 210.96
node 236 14,62 3,22 0,77 6.31 2,60 108.00 1,225.00 4 to 1 4.00 36.00 404,30
node 241 52,53 10,30 0,77 5.27 2,60 297.00 3,025.00 4 to 1 4.00 36.00 765,78
node 313 6,34 1.63 0.77 7.08 2,60 54.00 900.00 4 to 1 4.00 24.00 332,44
For details of the calculations please the printouts attached as part of this section.
Legend
• Runoff
^ Combined
H Channel Reach
1^ Diversion
JL Pond Route
i
Project: DETPOND.GPW IDF: carlsbad26.IDF 8 hyd's 07-05-2005
ydrograph Summary Report
I Hyd.
No.
Hydrograph
type
(origin)
Peal<
fiow
(cfs)
Time
intervai
(min)
Time to
peal<
(min)
Volume
(cuft)
Inflow
hyd(s)
Maximum
elevation
(ft)
IVlaximum
storage
(cuft)
Hydrograph
description
Manual
Reservoir
Manual
Reservoir
Manual
Reservoir
Manual
Reservoir
14,62
10,29
52,53
30,54
2,57
0,38
6,34
2,94
246
246
245
250
245
252
245
252
23,263
23,257
74,469
74,465
4,271
4,269
11,735
11,730
199,71 8,591
183,89 19,859
189,48 1,899
196.02 6,238
HYD AT NODE 236
AT NODE 236
HYD AT NODE 241
AT NODE 241
HYD AT NODE 101
AT NODE 101
HYD AT NODE 313
AT NODE 313
DETPOND.GPW Return Period: 100 Year Wednesday, Aug 24 2005, 2:54 PM
Hydraflow Hydrographs by Intelisolve
1
i
WIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/5/2005
HYDROGRAPH FILE NAME Textl
1ME OF CONCENTRATION 6 MIN.
[o HOUR RAINFALL 2.6 INCHES
'^'^IN AREA 3.22 ACRES
DFF COEFFICIENT 0.77
.,K DISCHARGE 14.622 CFS
•TlfVIE (MIN) =
"riME (MIN) =
I "IME (M1N) =
• "IME (MIN) =
•"IME (MIN) = 24
•"IME (MIN)= 30
I "IME (MIN) = 36
LIME (MIN)= 42
• IME (MIN) = 48
PIME(MIN) =
i"IME (MIN) =
IME (M1N) =
IME (MIN) =
IME (MIN)= 78
IME (M1N)= 84
I IME (MIN) =
IIME (MIN) =
IME (MIN) =
IME (MIN) =
, "'ME (MIN) =
LME (MIN) =
•ME (MIN) =
•ME (MIN) = 132
~ME(MIN)= 138
kME(MIN) =
ME (MIN) =
ME (MIN) =
ME (MIN) =
j'ME(MIN) =
yviE (M1N) =
•viE^(MiN)^ -tse
•/IE (MIN) = 186
IME (MIN) = 192
I VIE (MIN)= 198
•4E (MIN) = 204
•/IE (MIN) = 210
^E(M1N)= 216
i^E(MlN)= 222
AE (MIN) = 228
ilE (MIN) = 234
4E (MIN)
JME (MIN)
ME (MIN)
54
60
66
72
90
96
102
108
114
120
126
144
150
156
162
168
174
240
246
252
flE (MIN)= 258
{IE (MIN)
*IE (MiN)
I IE (MIN)
i
264
270
276
(E (MIN) = 282
IE (MIN) •
IE (MIN) :
IE (MIN) :
JE (MIN)=
288
294
300
306
(MIN) = 312
(MIN) = 318
(MIN)= 324
(MIN)= 330
(MIN)= 336
(MIN)= 342
(M1N)= 348
j £ (MIN) = 354
^ (MIN)= 360
H (MIN)= 366
DISCHARGE (CFS) •
DISCHARGE (CFS) ••
DISCHARGE (CFS) •
0
0,4
0.4
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.4
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.6
0.6
0.6
0.6
DISCHARGE (CFS)
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) = 0.7
DISCHARGE (CFS) = 0.7
DISCHARGE (CFS) = 0.7
DISCHARGE (CFS) = 0.8
DISCHARGE (CFS) = 0.8
DISCHARGE (CFS) = 0.8
- -DISCHARGE (CFS) = 0.9
DISCHARGE (CFS) = 1
DISCHARGE (CFS) = 1
DISCHARGE (CFS) = 1.1
DISCHARGE (CFS) = 1.2
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.5
DISCHARGE (CFS) = 1.8
DISCHARGE (CFS) = 2
DISCHARGE (CFS) = 3
DISCHARGE (CFS) = 4.7
DISCHARGE (CFS) = 14.622
DISCHARGE (CFS) = 2.4
DISCHARGE (CFS) = 1.6
DISCHARGE (CFS) = 1.3
DISCHARGE (CFS) = 1.1
DISCHARGE (CFS) = 0.9
DISCHARGE (CFS) = 0.8
DISCHARGE (CFS) = 0.7
DISCHARGE (CFS) = 0.7
DISCHARGE (CFS) = 0.6
DISCHARGE (CFS) = 0.6
DISCHARGE (CFS) = 0.6
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0
MCOE 23^
i
i
I
I
i
I
i
i
I
k
k
I
k
I
I
I
I
k
I
k
f k
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 1
HYD AT NODE 236
Hydrograph type = Manual
Storm frequency = 100 yrs
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge = 14.62 cfs
Time interval = 6 min
Q (cfs)
15.00
12.00
9.00
6,00
3,00
0,00
0.0 1.0
Hyd No. 1
2.0
Hydrograph Volume = 23,263 cuft
HYD AT NODE 236
Hyd, No. 1 - 100 Yr
3,0 4,0 5,0 6.0
Q (cfs)
15.00
12.00
9,00
6,00
3,00
0,00
7,0
Time (hrs)
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 2
AT NODE 236
Hydrograph type = Reservoir
Storm frequency = 100 yrs
inflow hyd. No. = 1
Reservoir name = POND AT NODE 236
storage Indication method used.
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge
Time interval
Max. Elevation
Max. Storage
= 10.29 cfs
= 6 min
= 199.71 ft
= 8,591 cuft
Hydrograph Volume = 23,257 cuft
k
k
k
k
AT NODE 236
Hyd. No, 2-100 Yr
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9,0 10.0 11.0
Hyd No, 2 Hyd No. 1
Q (cfs)
15.00
12.00
9.00
6,00
3.00
0.00
12.0
Time (hrs)
I
i
k
1
I
I
I
k
k
k
I
I
f
I
k
k
k
•i
k
k
I
Pond Report
Hydraflow Hydrographs by Intelisolve Wednesday, Aug 24 2005, 2:54 PM
Pond No. 1 - POND AT NODE 236
Pond Data
Bottom LxW = 35.0 x35,0 ft Side slope = 4,0:1 Bottom elev. = 196.25 ft Depth = 4,00 ft
Stage / Storage Table
stage (ft) Elevation (ft) Contour area (sqft) Incr. storage (cuft) Totai storage (cuft)
0,00 196,25 1,225 0 0
0,40 196,65 1,459 536 536
0,80 197,05 1,714 635 1,171
1,20 197,45 1,989 743 1,915
1,60 197,85 2,285 860 2,775
2.00 198,25 2,601 987 3,762
2,40 198,65 2,938 1,123 4,885
2.80 199,05 3,295 1,267 6,152
3.20 199,45 3,672 1,422 7,574
3.60 199,85 4,070 1,585 9,159
4,00 200,25 4,489 1,757 10,916
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [D] [A] [B] [C] [D]
Rise (in) = 30,00 1,00 1,00 1.00 Crest Len (ft) = 9,42 0,00 0,00 0,00
Span (in) = 30,00 1,00 1.00 1.00 Crest Ei. (ft) = 199,25 0,00 0,00 0,00
No. Barrels = 1 5 5 5 Weir Coeff. = 3,33 0,00 0,00 0,00
invert El. (ft) = 190,00 196,25 197,25 198,25 Weir Type = Riser ... ...
Length (ft) = 73,54 0,00 0,00 0,00 Multi-Stage = Yes No No No
Slope (%) = 9,53 0.00 0,00 0,00
N-Vaiue = ,013 .013 ,013 ,013
Orif. Coeff. = 0,60 0.60 0,60 0,60
Muiti-Stage -= Tl/r Yes-Yes Yes Exfiltration = 0,000 In/hr (Wet-area)^ Tailwater Elev, = 0,00 ft
Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checl<ed for orifice conditions.
Stage / Discharge
2.00
1,00
0.00
Stage (ft)
4,00
3,00
0.00 3.00
Total Q
6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00
2,00
1,00
0.00
30.00 33.00
Discharge (cfs)
I
I
i
.-<AI lUNAL IVIt I liUU MYUKUUKAKH KKUUKAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/5/2005
HYDROGRAPH FILE NAME Textl
TIME OF CONCENTRATION 5 MIN.
6 HOUR RAINFALL 2.6 INCHES
BASIN AREA 10.3 ACRES
OFF COEFFICIENT 0.77
DISCHARGE 52.53 CFS
ITIME (MIN) =
TIME (MIN) =
1 riME (MIN) =
• riME (M1N) =
• riME (MIN) =
^IME (MIN) =
I "IME (MIN) =
||"IME(MIN) =
• ,"IME (MIN) =
•TIME (MIN) =
, "IME (MIN) =
^ "IME (MIN) =
• "IME (MiN) =
•"IME (MIN) =
"^1ME(M1N) =
j IME (MIN) =
• •1ME(M1N) =
• iME (M1N) =
^IME (MIN) =
i IME (MIN) =
^1ME(MIN) =
• IME (MIN) =
•IME (MIN) =
"'IME (MIN) =
i IME (MIN) =
• IME (MIN) =
•iME (MIN) =
"IME (MIN) =
I !ME (MIN) =
|b;ME (MIN) =
^•:METMIN) =
•ME (MIN) =
, IME (MIN) =
LME(MIN) =
• ME (MIN) =
•ME (MIN) =
~ME (MIN) =
iME (MIN) =
ME (MIN) =
ME (MIN) =
ME (MIN) =
, 'ME (MiN) =
L.VIE (MIN) =
•VIE (MIN) =
•ME (MIN) =
HME (MIN) =
iVlE (MIN) =
vIE (MIN) =
>J\E (MIN) =
i/IE (MIN) =
f-AE (MIN) =
^E (MIN) =
WAE (MIN) =
VE (MIN) =
IME (MIN) =
L/IE (MIN) =
•lE (MIN) =
•ME (MIN) =
"TME (MIN) =
I IE (MIN) =
ipE (MIN) = TBIE (MIN) = THE (MIN) = SE (MIN) = m] = E (MIN) = JME (MIN) = JE (M1N) = (1V1IN) = IE (MIN)= (MIN) =
0 DISCHARGE (CFS) = 0
5 DISCHARGE (CFS) = 1.2
10 DISCHARGE (CFS) = 1.2
15 DISCHARGE (CFS) = 1.3
20 DISCHARGE (CFS) = 1.3
25 DISCHARGE (CFS) = 1.3
30 DISCHARGE (CFS) = 1.3
35 DISCHARGE (CFS) = 1.3
40 DISCHARGE (CFS) = 1.4
45 DISCHARGE (CFS) = 1.4
50 DISCHARGE (CFS) = 1.4
55 DISCHARGE (CFS) = 1.4
60 DISCHARGE (CFS) = 1.4
65 DISCHARGE (CFS) = 1.5
70 DISCHARGE (CFS) = 1.5
75 DISCHARGE (CFS) = 1.5
80 DISCHARGE (CFS) = 1.6
85 DISCHARGE (CFS) = 1.6
90 DISCHARGE (CFS) = 1.6
95 DISCHARGE (CFS) = 1.7
100 DISCHARGE (CFS) = 1.7
105 DISCHARGE (CFS) = 1,7
110 DISCHARGE (CFS) = 1,8
115 DISCHARGE (CFS) = 1.8
120 DISCHARGE (CFS) = 1.9
125 DISCHARGE (CFS) = 1.9
130 DISCHARGE (CFS) = 2
135 DISCHARGE (CFS) = 2
140 DISCHARGE (CFS) = 2.1
145 DISCHARGE (CFS) = 2.2
150 DISCHARGE (CFS) = 2.2 -
155 DISCHARGE (CFS) = 2.3
160 DISCHARGE (CFS) = 2.4
165 DISCHARGE (CFS) = 2.5
170 DISCHARGE (CFS) = 2.6
175 DISCHARGE (CFS) = 2.7
180 DISCHARGE (CFS) = 2.8
185 DISCHARGE (CFS) = 3
190 DISCHARGE (CFS) = 3.2
195 DISCHARGE (CFS) = 3,4
200 DISCHARGE (CFS) = 3.6
205 DISCHARGE (CFS) = 4
210 DISCHARGE (CFS) = 4.2
215 DISCHARGE (CFS) = 4.9
220 DISCHARGE (CFS) = 5.3
225 DISCHARGE (CFS) = 6.4
230 DISCHARGE (CFS) = 7.3
235 DISCHARGE (CFS) = 10.8
240 DISCHARGE (CFS) = 17
245 DISCHARGE (CFS) = 52.53
250 DISCHARGE (CFS) = 8.6
255 DISCHARGE (CFS) = 5.8
260 DISCHARGE (CFS) = 4.5
265 DISCHARGE (CFS) = 3.8
270 DISCHARGE (CFS) = 3.3
275 DISCHARGE (CFS) = 2.9
280 DISCHARGE (CFS) = 2.7
285 DISCHARGE (CFS) = 2.5
290 DISCHARGE (CFS) = 2.3
295 DISCHARGE (CFS) = 2.1
300 DISCHARGE (CFS) = 2
305 DISCHARGE (CFS) = 1.9
310 DISCHARGE (CFS) = 1.8
315 DISCHARGE (CFS) = 1.7
320 DISCHARGE (CFS) = 1.6
325 DISCHARGE (CFS) = 1.6
330 DISCHARGE (CFS) = 1.5
335 DISCHARGE (CFS) = 1.5
340 DISCHARGE (CFS) = 1.4
345 DISCHARGE (CFS) = 1.4
350 DISCHARGE (CFS) = 1.3
355 DISCHARGE (CFS) = 1.3
TIME (MIN) = 360 DISCHARGE (CFS) = 1.3
TIME (MIN) = 365 DISCHARGE (CFS) = 0
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 3
HYD AT NODE 241
Hydrograph type = Manual
Storm frequency = 100 yrs
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge = 52.53 cfs
Time interval = 5 min
Hydrograph Volume = 74,469 cuft
ll
Q (cfs)
60.00 •
~^0.00 -
40.00 -
30,00 -
HYD AT NODE 241
Hyd, No. 3- 100 Yr
i
k
I
20,00
10,00
0,00
0,0 0,8
Hyd No. 3
1.7 2,5
T 1
Q (cfs)
60.00
40.00
30,00
20.00
10,00
0.00
3,3 4,2 5,0 5,8 6,7
Time (hrs)
k Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 4
AT NODE 241
Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 3
Reservoir name = POND AT NODE 241
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge
Time interval
Max. Elevation
Max. Storage
= 30.54 cfs
= 5 min
= 183.89 ft
= 19,859 cuft
storage Indication method used. Hydrograph Volume = 74,465 cuft
i
i
I
I
I
I
Q (cfs)
60,00 -
50.00 -
AT NODE 241
Hyd. No. 4- 100 Yr
40.00
30.00
20.00
10,00
0.00
Hyd No, 4 Hyd No. 3
l> 1 "
Q (cfs)
60.00
50,00
40.00
30,00
20,00
10.00
0,00
0,0 0,8 1,7 2.5 3,3 4.2 5,0 5.8 6.7 7.5 8.3
Time (hrs)
I
i
i
KM I lUNML IVItl nUU liYUKUGKAPM PKUGKAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/5/2005
HYDROGRAPH FILE NAME Textl
TIME OF CONCENTRATION 7 MIN.
6 HOUR RAINFALL 2.6 INCHES
B'^'^IN AREA 0.58 ACRES
I DFF COEFFICIENT 0.77
PL^K DISCHARGE 2.57
TIME (M1N)= 0
TIME (MIN) = 7
riME(MlN)= 14
riME(MIN)= 21
•TIME (MIN)
TIME (MIN) =
i TIME (MIN) =
§|riME(MlN) =
TIME (MiN) =
TIME (MIN) =
i''lME(MIN) =
"IME (MIN) =
"IME (MIN) =
"IME (MIN) =
TIME (MIN) =
I 'IME (MIN) =
• •|ME(MIN) =
•i1ME(MIN) =
^IME(MIN) =
j "IME (MIN) =
i IME (MIN) =
• IME (MIN) =
•lME(MlN) =
*
"'IME (MIN) =
IME (MIN) =
IME (MIN) =
IME (MIN) =
IME (MIN) =
I :ME(M1N) =
»;ME (MIN)_=_
• ,ME (MiN) = 210
•IME (MIN) = 217
. 'ME (MIN)= 224
LME (M1N)= 231
• ME (M1N)= 238
UME (MIN) = 245
"^IME (MIN) = 252
lME(MIN) =
•ME (MIN) =
•ME (MIN) =
^ME(M1N) =
1 'ME (MIN) =
^ME (MIN) =
•.VIE (MIN) =
QME (MIN) =
71ME (MIN) =
VIE (MIN) = ri/lE (MIN) =
/IE (MIN) =
/IE (MIN) =
i/E (MIN) =
/IE (MIN) =
;IE (MIN) =
28
35
42
49
56
63
70
77
84
91
98
105
112
119
126
133
140
147
154
161
168
175
182
189
196
203
CFS
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.5
0,6
259
266
273
280
287
294
301
308
315
322
329
336
343
350
357
364
DISCHARGE (CFS)
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) =
DISCHARGE (CFS) = 2.57
DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.3
DISCHARGE (CFS) = 0.2
DISCHARGE (CFS) = 0.2
DISCHARGE (CFS) = 0,1
DISCHARGE (CFS) = 0,1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0.1
DISCHARGE (CFS) = 0
k
k
k
k
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 5
HYD AT NODE 101
Hydrograph type = Manual
Storm frequency = 100 yrs
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge = 2.57 cfs
Time interval = 7 min
Hydrograph Volume = 4,271 cuft
Q (cfs)
3.00
HYD AT NODE 101
Hyd, No. 5-100 Yr
2.00
1.00
0,00
--
/ \ \
\
Q (cfs)
3,00
2,00
1,00
0,00
0,0 0,6 1.2
Hyd No, 5
1,8 2,3 2.9 3.5 4.1 4.7 5,3 5.8 6.4
Time (hrs)
k Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 6
AT NODE 101
Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 5
Reservoir name = POND AT NODE 101
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge
Time interval
Max. Elevation
Max. Storage
= 0.38 cfs
= 7 min
= 189.48 ft
= 1,899 cuft
10
Storage Indication method used. Hydrograph Volume = 4,269 cuft
Q (Cfs)
3,00
AT NODE 101
Hyd. No, 6- 100 Yr
k
I
1
k
k
k
i
Q (Cfs)
3,00
Pond Report 11
Hydraflow Hydrographs by Intelisolve
Pond No. 3 - POND AT NODE 101
Pond Data
Bottom LxW = 20.0 x 20.0 ft Side slope = 4.0:1
Wednesday, Aug 24 2005, 2:54 PM
Bottom elev. = 187.30 ft Depth = 4.00 ft
Stage / Storage Table
stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft)
0.00 187,30 400 0 0
0,40 187,70 538 187 187
0.80 188,10 697 248 435
1.20 188.50 876 317 752
1.60 188.90 1,076 396 1,148
2.00 189.30 1,296 484 1,632
2.40 189.70 1,537 581 2,213
2.80 190,10 1,798 688 2,901
3.20 190,50 2,079 804 3,705
3,60 190,90 2,381 929 4,633
4,00 191,30 2,704 1,063 5,696
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [D] [A] [B] [C] [D]
Rise (in) = 18,00 1,00 1.00 1,00 Crest Len (ft) = 4.71 0.00 0,00 0,00
Span (in) = 18,00 1,00 1,00 1,00 Crest El. (ft) = 190.30 0,00 0,00 0,00
No. Barrels = 1 5 5 5 Weir Coeff. = 3.33 0.00 0,00 0,00
Invert El. (ft) = 184,30 187,30 188,30 189.30 Weir Type = Riser ...
Length (ft) = 77,37 0,00 0.00 0.00 Multi-stage = Yes No No No
Slope (%) = 26,83 0,00 0.00 0.00
N-Value = ,013 ,013 .013 .013
Orif. Coeff. = 0,60 0,60 0,60 0.60
Multi-stage = n/a -Yes "Yes— -^es Exfiltration = 0.000 in/hr (Wet area) Tailwater £lev,-=-0:QO ft
Note; Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checked for orifice conditions.
Stage / Discharge Stage (ft)
4.00
Total Q
I
i
.-^Al lUINML IVIC:l nuU MYUKUUKAKM PKUGKAA/I
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 7/5/2005
^YDROGRAPH FILE NAME Textl
TIME OF CONCENTRATION 7 MIN.
6 HOUR RAINFALL 2.6 INCHES
P'^SINAREA 1.63 ACRES
OFF COEFFICIENT 0.77
^AK DISCHARGE 6.339 CFS
n"IME(MlN)= 0 DISCHARGE (CFS) = 0
, TIME (MIN) = 7 DISCHARGE (CFS) = 0.2
1 "IME (MIN) = 14 DISCHARGE (CFS) = 0.2
• "IME (MIN) = 21 DISCHARGE (CFS) = 0.2
if, /IE (MIN) = 28 DISCHARGE (CFS) = 0.2
riME(MIN)= 35 DISCHARGE (CFS) = 0.2
1 "IME (MIN) = 42 DISCHARGE (CFS) = 0.2
I;iME(MlN)= 49 DISCHARGE (CFS) = 0.2
, IME (MIN) = 56 DISCHARGE (CFS) = 0.2
TIME (MIN) = 63 DISCHARGE (CFS) = 0,2
f "IME (MIN) = 70 DISCHARGE (CFS) = 0.2
i IME (MIN) = 77 DISCHARGE (CFS) = 0.2
• IME (MIN) = 84 DISCHARGE (CFS) = 0.3
^IME(MIN)= 91 DISCHARGE (CFS) = 0.3
TIME (MIN) = 98 DISCHARGE (CFS) = 0.3
IME (MIN) = 105 DISCHARGE (CFS) = 0.3
IME (MIN) = 112 DISCHARGE (CFS) = 0.3
IME (MIN) = 119 DISCHARGE (CFS) = 0.3
IME (MIN) = 126 DISCHARGE (CFS) = 0.3
ME (MIN) = 133 DISCHARGE (CFS) = 0.3
ME (MIN) = 140 DISCHARGE (CFS) = 0.3
,;ME(MIN)= 147 DISCHARGE (CFS) = 0.4
I
I ME (MIN) = 154 DISCHARGE (CFS) = 0.4
pME (MIN) = 161 DISCHARGE (CFS) = 0.4
1 ME (MIN) = 168 DISCHARGE (CFS) = 0,4
• ME (MIN) = 175 DISCHARGE (CFS) = 0.4
•ME (MIN) = 182 DISCHARGE (CFS) = 0.5
T(ME(MIN)= 189 DISCHARGE (CFS) = 0.5
iME (MIN) = 196 DISCHARGE (CFS) = 0.5
ME (MIN) = 203 DISCHARGE (CFS) = 0.6
m(Mm)=~m DISCHARGE (CFS)= 0.7
ME (MIN) = 217 DISCHARGE (CFS) = 0.8
jME (MIN) = 224 DISCHARGE (CFS) = 0.9
ME (MIN) = 231 DISCHARGE (CFS) = 1.4
ME (MIN) = 238 DISCHARGE (CFS) = 2.5
ME (MIN) = 245 DISCHARGE (CFS) = 6.339
ME (MIN) = 252 DISCHARGE (CFS) = 1.1
f \/!E(MlN)= 259 DISCHARGE (CFS) = 0.7
•VIE (MIN) = 266 DISCHARGE (CFS) = 0.6
ME (MIN) = 273 DISCHARGE (CFS) = 0.5
m^t\E (MIN) = 280 DISCHARGE (CFS) = 0.4
I 'ME (MIN) = 287 DISCHARGE (CFS) = 0.4
LyiE (MIN) = 294 DISCHARGE (CFS) = 0.3
MAE (MIN) = 301 DISCHARGE (CFS) = 0.3
•^E (MIN) = 308 DISCHARGE (CFS) = 0.3
-IME (MIN) = 315 DISCHARGE (CFS) = 0.3
! /IE (MIN) = 322 DISCHARGE (CFS) = 0.3
•/IE (MIN) = 329 DISCHARGE (CFS) = 0.2
MAE (MIN) = 336 DISCHARGE (CFS) = 0.2
^E (MIN) = 343 DISCHARGE (CFS) = 0.2 t1E(MlN)= 350 DISCHARGE (CFS) = 0.2
IE (MIN) = 357 DISCHARGE (CFS) = 0.2
IE (MIN) = 364 DISCHARGE (CFS) = 0
k
f
I
k k
1t> (^roP-oeHf^^H
(00O£ 3fS
k Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 7
HYD AT NODE 313
Hydrograph type = Manual
Storm frequency = 100 yrs
Q (Cfs)
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0,00
12
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge = 6.34 cfs
Time interval = 7 min
Hydrograph Volume = 11,735 cuft
HYD AT NODE 313
Hyd, No, 7- 100 Yr
0.0 0,6 1,2 1.8 2,3 2,9 3.5 4.1
Hyd No, 7
\
/ 1 \
Q (cfs)
7.00
6,00
5.00
4,00
3.00
2.00
1.00
0.00
4,7 5.3 5.8 6,4
Time (hrs)
Hydrograph Plot 13
Hydraflow Hydrographs by Intelisolve
Hyd. No. 8
AT NODE 313
Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 7
Reservoir name = POND AT NODE 313
Wednesday, Aug 24 2005, 2:54 PM
Peak discharge
Time interval
Max. Elevation
Max. Storage
= 2.94 cfs
- 7 min
= 196.02 ft
= 6,238 cuft
storage Indication method used. Hydrograph Volume = 11,730 cuft
Q (Cfs)
7.00
6.00 -
5.00
4.00
3.00
AT NODE 313
Hyd. No, 8- 100 Yr Q (Cfs)
7.00
6.00_
5,00
4,00
3,00
Hyd No, 8 Hyd No. 7
k
i
i
t
i
k
k
k
I
k
t
I
k
I
Pond Report 14
Hydraflow Hydrographs by Intelisolve
Pond No. 4 - POND AT NODE 313
Pond Data
Bottom LxW = 30.0x30.0 ft Side slope = 4,0:1
Stage / Storage Table
Wednesday, Aug 24 2005, 2:54 PM
Bottom elev, = 192.79 ft Depth = 4,00 ft
stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage
0,00 192.79 900 0 0
0,40 193.19 1,102 400 400
0,80 193.59 1,325 486 886
1.20 193,99 1,568 581 1,467
1,60 194,39 1,832 686 2,153
2.00 194,79 2,116 799 2,952
2.40 195,19 2,421 922 3,874
2.80 195,59 2,746 1,054 4,928
3.20 195,99 3,091 1,196 6,124
3.60 196,39 3,457 1,346 7,470
4.00 196,79 3,844 1,506 8,976
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [D] [A] [B [C] [D]
Rise (in)
Span (in)
No. Barrels
Invert El. (ft)
Length (ft)
Slope (%)
N-Value
Orif. Coeff.
Multi-stage
12,00
12,00
1
184,71
117,67
12,71
,013
0.60
n/a
1,00
1,00
5
192,79
0,00
0,00
,013
0.60
Yes
1,00
1,00
5
193.79
0.00
0.00
,013
0,60
Yes
1,00
1,00
5
194,79
0.00
0.00
.013
0.60
Yes
Crest Len (ft)
Crest Ei. (ft)
Weir Coeff.
Weir Type
Multi-stage
6.28
195.79
3.33
Riser
Yes
0.00
0.00
0.00
No
0.00
0.00
0.00
No
0.00
0.00
0.00
No
Exfiltration = 0.000 in/hr (Wet area) Tailwater Elev. = 0.00 ft
Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checl<ed for orifice conditions.
Stage / Discharge Stage (ft)
4.00
3.00
2.00
1.00
0.00
11.00 12.00 13.00
Discharge (cfs)
REGIONAL QUALITY CONTROL BOARD REQUIREMENTS
+
Calculate O's to treat using the State Water Resource Control Board Requirements
Per the California Regional Water Quality Control Board, San Diego Region, order no.
2001-01 pages 18 & 19, in order to get the required flow to be treated, we can either use :
i. The maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of
rainfall per hour; or
ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall
intensity, as determined from the local historical rainfall record, multiplied by a factor of
two; or
iii. The maximum flow rate of runoff, as determined from the local historical rainfall
record, that achieves approximately the same reduction in pollutant loads and flows as
achieved by mitigation ofthe 85th percentile hourly rainfall intensity multiplied by a
factor of two.
For this project we are going to use the maximum flow rate of runoff produced from a
rainfall intensity of 0.2 inch of rainfall per hour.
Please see the Post-development Hydrology Basin Map to see locations ofthe nodes. C
values where derived using the formula Q=CIA. Values of Q, I and A are from the
confluence results of the node junction.
SYSTEM NODE (A)AREA Tc C / Q=CIA
(Acres) (Mins) (In/Hr) cfs
LINE A-1 102 3.29 7.13 0.78 0.20 0,51
UNE B-7 226 2.06 4.90 0.78 0.20 0.32
LINE C-2 304 5.88 7.62 0.80 0.20 0.94
SYSTEM Required CDS Treated Remarlis SYSTEM
Q MODEL flow
LINE A-1 0.51 PMSU20_15 0.70 Exceeds requirement
LINE B-7 0.32 PMSU20 15 0.70 Exceeds requirement
LINE C-2 0.94 PMSU20 20 1.10 Exceeds requirement
CDS OFFERS BOTH OFFLINE AND INLINE
TREATMENT CONFIGURATIONS TO MEET THE
HYDRAULIC & WATER QUALITY NEEDS OF
LARGE & SMALL PROJECTS
CDS Technologies is an innovative best manage practice (BMP) that is well suited to
treat a large range of storm water Tlows and conditions to include discharges from
. combined sewer overflows (CSOs)., CDS Technologies offers a solid separation unit to
, treat storm water runoff, the runoff from vehicle parking and other areas subject to the
buildup of oil, grease, sediment, trash and debris as well as CSOs. CDS units are also
well-suited to treat the effluent from wash racks or as a pretreatment for oil/water sepa-
rators or pump stations.
HOW CDS SYSTEM WORKS
CDS technology uses the available energy of the storm flow to create a balanced
hydraulic system to cause a natural separation of solids from fluids. In addition to its
intemal swirl concentrating process, the continuous circulating flow over the perforated
separation screen keeps it from blocking. Pollutants are captured inside the separation
,chamber while the water passes through the separation screen. CDS provides a unique,
rion-blocking screening systerp with no moving parts.
Inline Small CDS Systems '•'
Inline PMSIJ niodels-arevervicost effective
Offline Small & LargeXDS Byftlms
Offline PSW models'allow-.for highflow bypass
Balanced Hydraulics:
Strong rotational velocities
ensure that ttie screen is
continually washed.
I
•ml'
'i'^-l" I
When CDS Technologies intro(iuced continuous deflective
separation BMPs to the United States in 1996, it revolu-
tionized the treatment of storm water and
combined sewer overflows. Since this time, CDS has
continued to evolve its methods of water treatment with
products distinguished not only by engineering innovation,
but by an untarnished record of dependability.
How is this possible? It begins with a conscientious
commitment to customer service.
CDS engineers partner with customers to ensure
optimized designs and equipment performance for both offiinsUnit / 01
urban sewer and storm drainage systems. From the begin-
ning, we evaluate the very specific nature of inline Unit / 02
your project plan so that we can design and specify equip-
ment accordingly; our goal is to provide treatment systems
that are the right fit and that will provide value over time. Drdpinietunit / 04
With more professional water quality engineers on staff
than any other treatment provider, our ability to respond
and resolve planning design and construction issues is
unparalleled. Our engineers can also help guide you
through Phase I and Phase II NPDES permitted projects.
The following descriptions of CDS Technologies'storm
water treatment BIVIPs will provide you with a basic
understanding of our equipment and what you can
expect from an operational perspective. When you have
questions, know that professional engineering support
is available to you. We look forward to the prospect of
working with you now and over the long term.
Media Filtration Systefn—/ 03
OFFLINE UNIT
Untreated storm water is a recogntzBd concern, both
locally and nationally. As the sources of storm water
pollution grow, so do the ways and requirmenls for
t resting and managing storm water. Storm water ranoff
contains sediments, carcinogenic metals, pathogens,
herbicides, pesticides, nutrients, debris, oils, trash -
everything washed off of urbanized watersheds.
Process
Offline Units from CDS Technologies are designed to
treat storm water flow ranges fronn 1 to 300 cubic
feet per second (cfs) and higher. Treatment flow is
diverted from a storm channel or pipeline into the
Offline Unit.
1. Storm water enters the Offline Unit's diversion
chamber.
2. A diversion weir guides the flow into the unifs
separation chamber where a vortex is formed.
3. The vortex separates most suspended solids in
the separation chamber.
4. Suspended solids settle into a sump where they
remain until they are removed.
5. Floatable and neutrally buoyant debris are
retained in the separation chamber.
6. The stationary separation screen of the separa-
tion chamber doesn't become bloclted because
of the washing vortex, so liquid moves through
the stationary screen cylinder,
7. Cleaned storm water moves out of the separation
chamber and passes beneath an oil baffle.
8. Treated flow exits the unit into the diversion
chamber downstream from the diversion weir,
re-entering the storm water drain system.
With patented continuous deflective separation (CDS)
lechnalogy. the Offline Unit uses the hydraulic energy of
water to concentrate, screen and trap many of these
stormwater pollutants. The Offline Unit removes 8D% of
total suspended solids aSS) as well as 1P0% of floata-
hies and neufrally buoyant material, plus oil and grease.
Advantages
The Offline Units are self-operating. Since they
have no moving parts and are entirely gravity driv-
en, maintenance is low. The screens and hard-
ware are stainless steel, and resist corrosion.
These units have large sump storage capacities
ranging from 424-1,396 gallons, depending
upon the model used.
The diversion weir is designed to bypass exces-
sive flows without affecting the operation of the
unit or storm drain system. Bypass flows don't
wash out any of the captured pollutants.
The unit's oil retention baffle effectively controls
oil and grease. When sorbents are added, the per-
manent capture efficiency increases to 80-90
percent.
Capable of treating peak storm flows up to
300-cfs, the Offline Unit removes 100 percent of
floatables.
This type of storm water treatment can be placed
offline anywhere on the network with minimum
retrcfitting costs.
Since the units are compact and easy to place in
confined areas, space requiranents are minimal.
Precast and Cast-in-place Offline Units
To meet different site lequirements, the units are
available in a variety of models, and configured
either precast or cast-in-place. Fifteen precast mod-
els are readily available to treat flows from as little as
0.7-cfs up to flows of 64-cfs. Cast-in-place rein-
forced concrete units, using conventional construc-
tion techniques, can be built to treat flows up to
300-cfs. CDS units can also be placed in parallel or
series to treat larger flows.
Maintenance
Depending on the site's pollutant loading charac-
teristics, seasonal sump cleanout and annual
inspection of the screen surface are the only
requirements necessary to promote successful and
efficient operation of the CDS Offline Unit. Since
the units have large sump capacities, the sump
can be cleaned out with a standard vactor truck,
sump basket or clamshell one to four times per
year. The CDS screen and sump can be visually
mspected for any remaining debris. There is no
need for manned entry into the unit, which pre-
vents any direct contact with captured pollutants.
INLINE UNIT
Polluted storm water runoff comes under control with the
CDS Inline Unit. Placed on the main storm drain within
one manhole, its unique configuralion meets multiple
enginesring obiectives by combining both treatment and
bypa$s capabilities in one structure. By utilizing CDS'
patented non-blocking screening technology, the Inline
Unit ensures removal of both fine and suspended solids
along with oil, grease, trash and debris.
Process
Developed to complement CDS' offline storm water
treatment systems, the Inline Unit also uses
continuous deflective separation (CDS) technology.
1. A channeling weir collects the flow for entrance
into the separation chamber.
2. Storm water enters the diversion chamber.
3. The natural vortex in the separation chamber
separates suspended and fine sediments to the
center of the chamber for eventual settling in
the sump.
4. Because of the washing vortex, the patented
separation screen will not become blocked and
screened liquid passes through.
5. After flowing beneath the oil baffle, screened
flow discharges from the unit.
Advantages
One structure meets multiple engineering
objectives.
The sump is an important design feature of all
CDS units. Sumps prevent scour because
deposited material is not stored within the
treatment flow path.
Handles treatment flows greater than 20-cfs.
Capable of bypassing flows in excess of 50-cfs.
Offering a remarkably small footprint, the Inline Unit can
be incorporated into new development projects or retro-
fitted into existing storm water collection systems. The
unit is totally underground, has no moving parts and
requires no supporting infrastructure.
CDS can customize design for larger treatment
and bypass flow events.
The Inline Unit removes 80% of total suspending
solids (TSS) as well as 100% of floatables and
neutrally buoyant material, plus oil and grease.
Due to its non-blocking screen and non-
mechanical function, the Inline Unit is a low
maintenance treatment option.
Maintenance
As a general rule, CDS recommends removing
solids with a standard vactor truck once a year.
Depending on each site's pollutant loading charac-
teristics, more cleanouts may be necessary
Seasonal sump cleanout and annual inspection of
the screen surface are typically the only require-
ments necessary to promote successful and effi-
cient operation of the CDS Inline Unit.
Once the access hatch into the CDS unit is
opened, the maintenance crew will remove the
contents of the sump and separation chamber
using a vactor truck as the best cleaning method.
The CDS screen and sump can then be visually
inspected for any remaining debris. At this point
the procedure is complete. There is no need for
manned entry into the unit, which prevents any
direct contact with captured materials.
CASE 1° STUDY
MliQu's tar^ris^ COS
imittrustscl trsat TS-c^'s
o! Caiifoniia highway runo'l
ll; .CaJitornia, : sxcccted w no ft from a '-Ix-mlle
st^ch of lntprr,.atc 210 -r, e/ght •p^e 'rrcvay
bounding north em Los Angp.lp^ wa^ T nu ' w ^rr/
'or fi3 Ca ' C-cart^ - t a* Tran^oTta'oi
(Calfrans/. Tne sunKeir concreis roadwav runs
thnxighaa area of many-homes and soar.e was'tight
for installation of storm watpr unit'^ Titi<; .d^d- not'
favor installing runoff catch units that hold large
volumes of water-in which pollutants separate over
time.. By contrast, the CDS technology was chosen
for Its ability to quicklvand effectively sepamte pol-
lutants and. debns from storm v/ater njnrft Five
separate CDS'units were installed for this cmject,
including tha nation's largest Offline Unit 'built to
filter a water quality runoff event ot 1 75-c's
CDS' screening technalagv prevent'^ p
California's 1-210 trom entering the Paahc Ocean.
MEDIA
FILTRATION
SYSTEM
'if-
For hundreds of years, filtering water through media
has been widely recognized as one of the most effec-
tive methods for treatment of public water supply and
industrial sites. For storm water applications, media
filtration products are simple direct filtering systems,
whereby the water needs enough energy to push
through the porous media. The basics of water treat-
Process
The CDS Media Filtration System provides more
fine media filtration per plan view square foot area
than any storm water filter product available today.
The System is composed of rechargeable media-
filled cartridges to target and remove specific pol-
lutants, such as heavy metals, oils, greases and
fine gradations of suspended solids. The CDS
media filtration cartridge is designed to accept var-
ious types of media that can be easily replaced or
exchanged at any time.
The single float control assembly that activates fil-
tration of all cartridges is a proven technology con-
structed of high quality stainless steel, and is the
only moving part in the treatment system. The
assembly is isolated from the treatment area to
protect the mechanism from any potential obstruc-
tions including fouling pollutants.
A series of media-filled cartridges and a sedi-
mentation bay below the cartridges is used to
capture and settle out larger particles.
Higher quality water reaches the cartridges for
filtration, because a large portion of pollutants
are pre-settled and held below the cartridges.
Sediment bay stores pollutants up to IS inches
thick.
ment using media filtration require that pollutants or
solids precipitate, adsorb or absorb themselves to
the media, and CDS has designed its system to do just
that. When regulations call for higher removal of a
finer gradation of fine and suspended particles, the
CDS Media Filtration System can he relied on to meet
the challenge.
Single float valve ensures that treatment flow
matches inflow, which provides the lowest possi-
ble hydraulic loading rate on each cartridge and
translates to higher removal efficiencies than
siphon-activated systems.
Cartridges designed to variably handle 7.5 - 18
gallons per minute.
System treats flow rates ranging from less than
1 cubic foot per second (cfs) to flows in excess
of 10-cfs.
Configurations
Its
The Media Filtration System can be configured
inside either precast or cast-in-place concrete
vaults or simple precast manhole structures. ..
scalability ranges from small developments using
round or square catch basins, manholes and pre-
cast vaults, to larger developments requiring cast-
in-place concrete structures.
When combined with a standard CDS unit upfront for
pretreatment, the two systems serve as a teatment
train to more thoroughly and efficiently remove a
wide range of pollutants from the water column.
UNIQUE DESIGN FEATURES Zi''•''..'
The hydraulic operation activates jP car-
tridges simultaneously, ensuring even,
hydraulic loading through the entire bed of
filter cartridges for more efficient pollutant
•'removal.
j;; /jf!<?:ij!9at tontroj a^ is visible from
the surface, rattier than concealed wit.nin
the cartridge, allowmg operators to assess,
functionality and make adjustments for
ii Rrppersoperation.
The 5ysten),,::!s:designed .with storage -for the
accumulation of solids below the cartridges
to prevent build-up of material on the car-
tridges themselves. This pre-sedimentation
increases the runtime and life cycle of the ^
filter cartridges.
The system is flexibly designedlo drain to ;
levels below the cartridges" following storm
events or completely dram the entire vault.
^ ensures tfiat the cartridges are not siib-
merged during Um flow events or due to
nuisance flows. These conditions lead to
; biological growths that have plagued other
systems. Completely draining the vault
eli.minates vector concerns.
MEDIA FILTRATION SYSTEM
•Is..
tli
.p.
t$i-
IVIaintenance
Maintenance of the CDS Media Filtration System
can be performed by any qualified personnel and
does not require specialized or proprietary equip-
ment or media. Since maintenance intervals of any
storm water BMP are highly site-specific, CDS rec-
ommends the cleaning and inspection schedule
below to ensure successful operation of the Media
Filtration System. Detailed Operations and
Maintenance Guidelines are available from CDS
Technologies Inc.
ANNUAL MAINTENANCE:
Inspect system prior to rainy season. Observe
floatable accumulation; check inlet and outlet
pipes for obstructions.
If possible, observe system during a storm
event to determine whether or not water is in
bypass due to clogging of the media. Measure
depth of material in the sediment bay below
the cartridges.
In the dry season, recharge or replace media
and cartridges as necessary, and remove float-
able trash and debris.
TWO-THREE YEAR MAINTENANCE:
Replace filter cartridges and clean sediment stor-
age area below cartridges.
CDS' cartridges
vjere designed to
accept vanous types of
Tiedia to target and remove
, site-specific pollutants. Media
can be easily replaced or exchanged
at any time.
MEDIA SELECTION:
iPeriite • •
Zeolite
• Granular Activated Carbon
. Ionic Exchange Media
•;Peat
JARGET AND REMOVE:
Suspended Solids
Heavy Metals
Nutrients
Oil and Grease
CASE ll STUDY
CDS prov;ties :r5,at;..'o
•fmm '//ater traalifienJ.
:^o!«ti.ifi fcr bielro-AtSsnla
The Lindbergh City Center mass transit station
redevelopment, near the heart of Atianta. was
aesigned to serve more than 20,000 commiute^s
each day The conwlex has 4.g million square feet
of development, including 2.2 million square feet
cf-office space, 250.000 square feet of retaH, a-d
ready 600 resioential units. Engineers noted party
on that the property contributed -a significant
amoijct uf untreated runof; to the Atianta storm
water collection system, and after researching sev-
eral options, they recommended using cos'-ef'ec-
tive CDS units. Nine precast-Inhile Uttits'were
.n^tai.ed at tns ne,v Linabergh City-Center site to
cean runoff from the development Now, 95 per-
cent of d'l the storm water flow is filtered before
continuing downstream •' ^
PfB-a^r Cts Inline Units are compact and easily installed
below ground, so space lequiimients are modas'
DROP INLET
UNIT
Although catch basins are readily used across fhe U.S.,
few are ideally designed for sediment and pollutant
capture like the Drop Inlet Unit from CDS,
The Drop Inlet Unit, or Precast Manhole Insert Unit,
removes suspended solids, sediments, trash, debris,
oil and grease along with floatable materials from
storm water flows. The Drop Inlet Unit provides the
Process
Using patented continuous deflective separation
(CDS) technology, the Drop Inlet Unit effectively
and efficiently separates solids from liquids.
1. Storm water flow enters the inlet grate or curb
inlet and is channeled into the separation
chamber.
2. It passes over a specially perforated separation
screen in a hydraulically balanced condition,
creating vortex solid separation.
3. Solids are then captured and retained within
the central chamber. The fluid dynamics along
the surface of the screen and the deflective
characteristics of the screen prevent blocking.
4. Fluid passes through the screen and beneath
an oil baffle before it exits via the storm drain
outlet pipe.
5. Suspended solids, sediments and other solid
pollutants, including oil and grease, trash and
debris, are retained in a centrally located solids
catchment chamber. The heavier solids settle
into the sump.
lowest cost per cfs processed when compared to other
structural Best Management Practices. Its patented
non-blocking screen and non-mechanical function
make it a low maintenance storm water treatment
solution for very small developments.
Advantages
The Drop Inlet Unit is an effective fine solid
separator, and no other BMP comes close to its
assured removal of gross solids and neutrally
buoyant material.
Installed underground, the Drop Inlet Unit is
ideal for new construction sites as well as urban
retrofit situations where space is limited and
the drainage area is small.
This unit, like all CDS units, is entirely gravity
driven with no moving parts or power require-
ments.
Its non-blocking screen overcomes the clogging
and reduced efficiency experienced by direct
filtration systems.
Independent tests show that in addition to 80%
suspended solids removal, the units trap virtu-
ally 100% of gross particulate material half the
aperture size of the screen and more than 90°/o
of the particulates one-third the aperture size.
A conventional oil baffle in the unit effectively
controls oil and grease in the storm water flow.
With the addition of sorbents, the permanent
capture efficiency is increased to 80-90%.
Tfie Drop Inlet Unit can be strategically located in small
areas to serve as both a drain inlet and a curb inlet.
(NOTE: All CDS Units can be configured with grated
or curb inlets.)
Specifications
Footprint diameter: 4.8 ft.
Variable Sump Capacity: 0.5 to 1.5 cubic yards
Treatment Capacity Range: 0.7-2.8 cubic feet
per second
Maintenance
With its corrosion-resistant stainless steel screens
and inert fiberglass inlet, the Drop Inlet Unit
requires very little maintenance. As a general rule,
CDS recommends removing solids with a standard
vactor truck one to four times a year, depending on
each site's pollutant loading characteristics.
i
CASE STUDY
I mem Filtration ^ptsro earns Wasfiirigti
late Departiiieiil of [CIJIOCJV illP approval
mi
• si-
ne first CDS Media FUtration Svstem was installed
and tested at a concrete facilitv in Portlana, Oregon.
Renewal of National Pollution Discharge
Elimination System (NPDES) Phase I permits
and Phase II regulations in effect and under
development have exacerbated the need for
storm v/ater treatment equipment v/ith higher
pollutant removal capabilities. To provide engi-
neers, municipalities and contractors with a solu-
tion to meet these NPDES requiravents, CDS
developed its Media Filtration System.
Composed of rechargeable media-filled car-
tridges configured inside either precast or cast-
in-place concrete vaults, the system exceeds the
rigorous testing requirements of Washington
State's Technology Assessment Protocol -
Ecology (TAPE).
In early July 2004, the CDS Media Filtration
System received approval under the Conditional
Use Designation as a BMP from Washington State
Departrent of Ecology (WSDOE). Jurisdictions
outside' the Pacific Northwest and across the
nation look to WSDOE to set the standard for
emeigng storm water treatment technologies.
CDS IS-currently testing additional media options
to earn an enhanced designation for removing
phosphonB, nitrogen and heavy metals.
1
Stormwater Concentric (PSWC), Precast
CDS Technologic can custorDize units to meet specific design flowi and sump ^^^^^
Sump Capacities and Depth Below Pipe Invert can vary due to specific sitef;^^
I'A-'M'
http://www.cdstech.com/dnlds/docs/CDS_POL_REMOVAL_PHT_INLINE.jpg 5/11/2005
PORTIONS OF THE
"HYDROLOGY STUDY FOR LEGO DRIVE STORM DRAIN AND
TEMPORARY CHANNEL"
DONE BY NOLTE & ASSOCIATES, INC.
DATED SEPTEMBER 12,1996
:!5?34
-.:y-:%:rmM^^m
mm
TABLE OF CONTENTS
SECTION I PAGE
1,0
2,0
3.0
4,0
5,0
Introduction ^
1.1 Purpose of Study ^
1.2 Scope 1
Study Area ^
2.1 Soil Groups 2
2.2 Land Uses 2
Hydrology i • ^
Hydraulics ^
Conclusions ; 2
5.1 Line A 2
5.2 Existing 60" ^ 3
SECTION n
Interim Condition Hydrology Calculations
Ultimate Condition Hydrology Calculations
SECTION m
Precipitation Maps - 10,50,100-year 6 hour Isopluvials
Precipitation Maps - 10,50,100-year 24 hour Isopluvials
Soil Map
Runoff Coefficients
SECTION rv
Lego Drive (line A) Storm Drain HGL Calculations sta^ 4+07.50 to 39+53.50
Lego Drive (line A) Storm Drain HGL Calculations sta,: 1+82.60 to 4+07,50
Ex, 60" Culvert Under Palomar Airport Rd, HGL Calculations
Temporary Channel Hydraulics
Temporary 18" RCP Hydraulics .
Line A Interim Q Hydraulics @ outfell
Line Al (36" @ 14+00) Hydraulics ^
LineA2(30"@ 22+50) Hydraulics i
Line A3 (30" @ 28+50) HydrauHcs
Line A4 (48" @ 33+50) Hydraulics
Line A5 (24" @ 4+10) Hydmiics
SECTION V
Map Pockets
Line A Interim Hydrology Map (1 "=200')
Line A Ultimate Hydrology Map (1 "=200')
HYDROLOGY STUDY FOR
LEGO DRIVE STORM DRAIN AND
TEMPORARY CHANNEL
Prepared By:
Nolte and Associates, Inc.
5469 Keamy Villa Road, Suite 305
SanDiego, CA 92123
Project Number: SD0301
September 12, 1996
HYDROLOGY STUDY FOR
LEGO DRIVE STORM DRAIN AND TEMPORARY CHANNEL
1.0 INTRODUCTION
1.1 Purpose of Study
This Hydrology Study is the basis for the ultimate design of the main storm drain in Lego Drive
and the stub outs for future storm drains from the resort site and Legoland, The study is also
the basis of design for the temporary earthen channel connecting the interim termination of this
storm drain to the existing natural channel located within Legoland, This storm drain,
stubouts, and temporary channel are shown on the Hydrology Maps in the map pocket of
Section V, ^
1.2 Scope
This study analyzes the 100 year flow for both the interim and ultimate drainage conditions for
the proposed storm drain m Lego Drive, The ultimate flow will be used to determine the
required size of pipe in Lego Drive and the appropriate stubouts for future development ofthe
resort site and Legoland, The interim flow will be used to design the temporary earthen
channel and to determine the adequacy of the existing 60" culvert under Palomar Airport Road
at approximate station 43+00, ;
2.0 STUDY AREA
The existing 60" culvert at sta, 43+00 Palomar Airport Road currently drains approximately
123 acres undeveloped and cultivated land. The development of Carlsbad Ranch will occur in
phases and will ultimately drain to directly to the existing 60" culvert or into a
desiltiag/detention basin located along Palomar Airport Road as shown on CT, 94-09, This
basin wiH drain to the series of existing 18", 24", 60", and 72" culverts under Palomar Airport
Road from sta. 43+00 (60" locadon) to sta. 56+44 (72" location). Because the plans have not
yet been prepared for the ukimate development of the majority of this basin, certain storm drain
alignments were assumed to construct a reasonable hydrology model to ascertain the ultimate
flows for the proposed storm drain system.
In the initial phase (currently being graded), only lots 5 & 6 of Map 13078 (G.I.A.), a portion
of lot 9 of Map 13215, and portions of Armada and Lego Drives will be developed within this
basin. The remaining areas wiH be undisturbed or used as a spoil site, as shown on the Interim
Hydrology Map in Section V. The interim hydrology calculations reflect this scenario. The
stormwater from this basin will be conveyed through the site by a 66" and 72" RCP system to a
temporary termination point (sta. 13+00), and then by a graded earthen channel to the natural
channel that flows to the existing 60" culvert passing under Palomar Airport Road.
Digital topography for the hydrology maps was provided by San-Lo Aerial, flown in 1989.
1 n:\sd0186\0O\wp51\hydro.doc
2.1 Soil Groups
The County/USGS Soil Map in Section IE indicates that this basin consist of approximately 70
% type A soils, 20% type C soils, and 10% type D so'ils. For purposes of this study, type B
soils was used 'as a conservative average soil type for generating the mnoff coeflBcient for the
various types of development.
2.2 Land Uses
The proposed development of this basin is based on CT. 94-09 and consist pnmarily of
commercial type development (ofiice space, resort, theme park) and a golf course.
3.0 HYDROLOGY
To develop flows for mnoff from design stonns, the Rational Method was used according to
the County of San Diego Hydrology Manual and Design and Procedure Manual. The AES
San Diego County Rational Method Computer Program was used to model flie basins and the
resultant calculations are provided in Sectioii U.
4,0 HYDRAULICS
Hydraulic calculations were prepared using the AES Pipe-How Hydraulics computer program.
Pipe-Eow calculates the hydraulic grade line for pressure flow and the flow depth for nonnal
and gradually varied flow conditions. Pipe-Eow wiD calculate the losses occurring in fl:e pipe
due to friction, angle, junction confluence, manhole, catch basin entrance, and sudden
contraction or expansion losses.
Pipe-Eow calculations are included in Section IV.
5.0 CONCLUSIONS
5.1 Line "A"
The 100 year storm is in a gradually varied flow state for the majority ofthe system . The
reaches of pressure flow are caused by the losses occurring at flie various junctions and the
mild design slope ofthe pipe. At the junctibns, the hydraulic grade line jumps up to account
for the junction losses and then continues upstream at the friction slope (which is slightiy less
than the design slope) until flie pipe seals (hydraulic grade line does below the pipe sofBt), In
these reaches, water tight joints per the City of Carlsbad standards have been specified on the
pipe profile.
n:\sdO 186\(X)\wp5 l\hydio,doc
5.2 Ex. 60" Under PaJomar Airport Road
For the hydraulic calculations of this existing 60" culvert, the interim 100 year flow was
calculated by combining the flows from the O'Day Engineenng study (for improvement plans
333-2J) v/ifli flows conveyed through Legoland, The existing flow lines of this culvert were
field surveyed and are shown on a xerox portion of City drawing 333-2J, sheet 4, The
resulting ponded water surface is at 79,3, well below the top of flie exisitng berm at 83±.
n :\£dO 186\0O\wp51 Vhydro. doc
I
I
I
I
I
I
I
I
I
I
I
I
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY, FLOOD CONTROL DISTRICT
1985,1981 HYDROLOGY MANUAL
(c) Copyright: 1982 -94 Advanced Engineering Software (aes.)
Ver. 1.5A Release Dat:e: 3/16/94 License ID 1415
Analysis prepared by:
Nolte and Associates, Inc.
5469 Kearny Villa Road, Suite 305
San Diego, CA 92123
DESCRIPTION OF STUDY **************************
CARLSBAD RANCH/LEGOLAND *
ULTIMATE CONDITION 100 YR ANALYSIS *
PROPOSED 66" RCP AND EX. 60 " RCP @ 43+00 PALOMAR AIRPORT RD *
**********-******************************
FILE NAME: ULTLINEA.DAT
TIME/DATE OF STUDY: 17:41 9/ 4/1996
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
I _
19 8 5 SAN DIEGO r4AI'IUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.60 0
SPECIFIED MINIMUM PIPE SIZE(INCH) =' 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED
NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED
IJFLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
iJsOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500
•
INITIAL SUBAREA FLOW-LENGTH = 500.00 ,
UPSTREAM ELEVATION = 245.00
DOWNSTREAM ELEVATION = 202.00
ELEVATION DIFFERENCE = 43.00 IURBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.8 76
*CAUTION: SUBAREA SLOPE EXCEEDS COUNTY ^TOMOGRAPH
DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED.
I IOO YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.578
SUBAREA RUNOFF(CFS) = 2 0.92
TOTAL AREA(ACRES) = 5.00 TOTAL RUNOFF(CFS) = 20.92
I
t
FLOW PROCESS FROM NODE 4.10 TO NODE 4.20 IS CODE = 4
>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
>>>>>USING USER-SPECIFIED PIPESIZE<<<<<
PIPEFLOW VELOCITY(FEET/SEC.) = 11.8
UPSTREAM NODE ELEVATION = 186.00
DOWNSTREAM NODE ELEVATION = 17 8.00
FLOWLENGTH(FEET) = 3 8 0.00 MANNING'S N = .013
GIVEN FIPE DIAMETER(INCH) = 18.00 , NUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 20.92
TRAVEL TIME(MIN.) = .54 TC(MIN.) = 7.41
FLOW PROCESS FROM NODE 4.2 0 TO NODE 4.2 0 IS CODE = 8
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
10 0 YEAR RAINFALL INTENSITY(INCH/HOUR) =5.314
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500
SUBAREA AREA(ACRES) = 7.3 0 SUBAREA RUNOFF(CFS) = 2 9.10
TOTAL AREA(ACRES) = 12.3 0 TOTAL RUNOFF(CFS) = 50.01
TC(MIN) = 7.41
+ ******************
FLOW PROCESS FROM NODE 4.20 TO NODE 5.00 IS CODE = 4
>>>>>COMPUTE PIPEFLOW TRAVELTIME THRU! SUBAREA<<<<<
»>>>USING USER-SPECIFIED PIPESIZE<<<<<
PIPEFLOW VELOCITY(FEET/SEC.) = 10.2
UPSTREAM NODE ELEVATION = 178.00
DOWNSTREAM NODE ELEVATION = 172.00
FLOWLENGTH(FEET) = 750.00 MANNING'S N = .013
GIVEN PIPE DIAMETER(INCH) = 3 0.00 NUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 50.01
TRAVEL TIME(MIN.) = 1.23 TC(MIN.) = 8.64
***************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 8
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.814
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500
SUBAREA AREA(ACRES) = 28.50 SUBAREA RUNOFF(CFS) = 102.91
TOTAL AREA(ACRES) = 4 0.80 TOTAL RUNOFF(CFS) = 152.92
TC(MIN) = 8.64
t
***************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 6.10 IS CODE = 4
:>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
>>>>USING USER-SPECIFIED PIPESIZE<<<<<
fDEPTH OF FLOW IN 42.0 INCH PIPE IS 28.1 INCHES
- PIPEFLOW VELOCITY(FEET/SEC.) = 22.3
I
I
I
I
I
I
I
li-
ll
I
II
11
tl
II
II
II
II
II
UPSTREAM NODE ELEVATION = 172.00
DOWNSTREAM NODE ELEVATION = 142.30
FLOWLENGTH (FEET) = 800.00 MANNING'S N = .013
GIVEN PIPE DIAMETER(INCH) = 42.00 ' NUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 152.92
TRAVEL TIME (MIN.) = .60 TC(MIN.) = 9.24
******************************************* *****************
FLOW PROCESS FROM NODE 6.10 TO NODE 6.10 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN. ) = 9.24
RAINFALL INTENSITY(INCH/HR) =4.61
TOTAL STREAM AREA (ACRES) =40.80
PEAK FLOW RATE (CFS) AT CONFLUENCE = 152.92
***************************************************************************
FLOW PROCESS FROM NODE 6.0 0 TO'NODE 6.0 0 IS CODE = 7
>>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
USER-SPECIFIED VALUES ARE AS FOLLOWS:
TC(MIN) = 11.0 0 RAIN INTENSITY(INCH/HOUR) = 4.12
TOTAL AREA (ACRES) = 59.90 TOTAL I^UNOFF{ CFS) = 118.00
^***************.* ************************************************* **********
FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 4
>>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE<<<<<
DEPTH OF FLOW IN 66.0 INCH PIPE IS 33.6 INCHES
PIPEFLOW VELOCITY(FEET/SEC.) = 9.7
UPSTREAM NODE ELEVATION = 144.50
DOWNSTREAM NODE ELEVATION = 141.80
FLOWLENGTH(FEET) = 580.00 MANNING'S N = .013
GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 118.00
TRAVEL TIME(MIN.) = 1.00 TC(MIN.) = 12.00
***************************************************************************
FLOW PROCESS FROM NODE 6.10 TO NODE 6.10 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>MD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
'IME OF CONCENTRATION(MIN.) = 12.00
.<AINFALL INTENS ITY (INCH/HR) = 3.9 0
TOTAL STREAM AREA (ACRES) = 5 9.90
PEAK FLOW RATE (CFS) AT CONFLUENCE = 118.00
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.)- (INCH/HOUR) (ACRE)
1 152.92 9.24 4.611 40.80
2 118.00 12.00 3.8 9'6 59.90
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK FLOW RATE TABLE **
STREAM RUNOFF " Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 252.61 9.24 4.611
2 247.19 12.00 3.896
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 252.61 Tc(MIN.) = 9.24
TOTAL AREA (ACRES) = 10 0.70
**************************************************************,^.*,l.*,^.,^.^^,^.
FLOW PROCESS FROM NODE 6.10 TO NODE 7.20 IS CODE = 4
>>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE<<<<<
DEPTH OF FLOW IN 66.0 II^CH PIPE IS 48.6 INCHES
PIPEFLOW VELOCITY(FEET/SEC. ) = 13.5
UPSTREAM NODE ELEVATION = 141.80
•DOWNSTREAM NODE ELEVATION = 13 7.90
FLOWLENGTH (FEET) = 550.00 MANNING^S N = .013
GIVEN PIPE DIAMETER(INCH) = 66.00 INUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 252.61
TRAVEL TIME(MIN.) = .68 TC(MIN.)= 9.92
************************************** ***********^,^.^,^^,^,^^,^.,^.^,^.,^,^^^,^^^^^^^^^^^^
FLOW PROCESS FROM NODE 7.2 0 TO NODE 7.2 0 IS CODE = 1
^DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < < <
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: '
TIME OF CONCENTRATION(MIN. ) = 9.92
RAINFALL INTENSITY(INCH/HR) =4.40
TOTAL STREAM AREA(ACRES) = 10 0.70
PEAK FLOW RATE(CFS) AT CONFLUENCE = 252.61
************************************.*.**.*,********,^,^,;^^,^.,^.,^,^.,^.,^^^^^^^^^^^^^^^^^
FLOW PROCESS FROM NODE 7.00 TO NODE 7.10 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
SOIL CLASSIFICATION IS "B"
DMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500
INITIAL SUBAREA FLOW-LENGTH = 500,00
UPSTREAM ELEVATION = 183.00
DOWNSTREAM ELEVATION = 168.00
ELEVATION DIFFERENCE = 15.00