HomeMy WebLinkAboutCT 13-03; El Camino Real widening Robertson Ranch West; Robertson Ranch West El Camino Real Widening; 2014-11-03Declaration of Responsible Charge
I hereby declare that I am the Engineer of Work for this project, that I have exercised responsible
charge over the design of this project as defined in section 6703 ofthe Business and Professions
Code, and that the design is consistent with current standards.
I understand that the check of project drawings and specifications by the City of Carlsbad is
confined to a review only and does not relieve me, as the Engineer of Work, of my
responsibilities for the project design.
O'Day Consultants, Inc.
2710 Loker Avenue West, Suite 100
Carlsbad, CA 92010
(760)931-7700
Date:
George O'Day
R.C.E. No. 32014 Exp. 12/31/14
TABLE OF CONTENTS
Section Description
Introduction and Project Description
Hydrology
Hydraulics
Appendix 1-100 Year Hydrologic Calculations for Existing Conditions
Appendix 2-100 Year Hydrologic Calculations for Ultimate Conditions
Appendix 3-10 Year Hydrologic Calculations for Ultimate Conditions
Appendix 4- Hydraulic Analysis of Proposed Storm Drains (Main line BFA)
Appendix 5-100 Year Hydrologic Calculations for Existing Conditions at
Kelly Double Box Culvert (Basin E-F, Rancho Costera)
Appendix 6-100 Year Hydrologic & Hydraulic Calculations for Ultimate Conditions at
Kelly Double Box Culvert (Basin E-F, Rancho Costera)
Appendix 7- Curb Inlet Calculations & Hydraulic Analysis of Storm Drain
Laterals, Curb Outiets & Ditches
Appendix 8- Rip-Rap Calculations
Appendix 9- Overflow Calculations for Catch Basins serving Bioretention Areas
Exhibits
Exhibit A Vicinity Map
Exhibit B Table 3-1 Runoff Coefficients for Urban Areas (Rational Method)
Exhibit C Soil Group Map
Exhibit D 100-year 6-hour Precipitation Map
10-year 6-hour Precipitation Map
Exhibit E lOO-year 24-hour Precipitation Map
10-year 24-hour Precipitation Map
Exhibit F Figure 3-3 Urban Areas Overland Time of Flow Nomagraph
Exhibit G Figure 3-1 Intensity Duration Design Chart
Exhibit H Table 3-2 Maximum Overland Flow Length & Initial Time of Concentration
Exhibit I Figure 3-4 Nomograph of Tc for Natural Watersheds
Exhibit J Existing Conditions Hydrologic Map (Map Pocket)
Exhibit L Ultimate Conditions Hydrologic Map (Map Pocket)
Exhibit M Hydraulic Map
Exhibit N Existing & Proposed Drainage Map for Kelly Drive, Double RCB
(Basin E-F, Rancho Costera)
Exhibit O Hec-1 Drainage Basin Work Map for Existing 8'x8' RCB
Excerpts from Chang Consultants Study for Letter of Map Revision Request
Exhibit P for
Robertson Rancli dated November 1, 2008
lOO-year HEC-1 Input for Existing 8'x8' RCB Analysis from Chang
Exhibit Q Consultants
Study for Letter of Map Revision Request for Robertson Ranch
dated November 1, 2008
Exhibit R Cross-sections for Channel Downstream of Double 8' x4' RCB at Kelly Drive
A. INTRODUCTION AND PROJECT DESCRIPTION
This drainage study was prepared to support the Grading Widening of El Camino Real between
Cannon Road and Tamarack Avenue. Exhibit A is Vicinity Map for the project. As part of die
Rancho Costera Development located to the north, also known as Robertson Ranch West
Village, the City of Carlsbad has required tiie developer to improve El Camino Real. The
improvements consist of widening to a right-of-way width of 126 feet, witii appropriate tum
pockets for tiie future development as well as a median in tiie center of tiie street. This
improvement encompasses tiie entire lengtii of the nortiierly side of El Camino Real between
Cannon Road and Tamarack Avenue. The improvements on the soutiierly side of El Camino
Real are limited to two portions: one portion from just west of Crestview Drive to just east of
Lisa Street and anotiier portion west of tiie projection of Julie Place to just east of Kelly Drive.
In addition to tiie surface improvements mentioned above, a sewer line, waterline, reclaimed
waterline, and storm drain will be constmcted to serve the proposed development.
The proposed storm drain will also serve as Drainage Project BFA of the City of Carlsbad
Drainage Master Plan. The Carlsbad Drainage Master Plan dated July 3, 2008 prepared by
Brown and Caldwell identifies Drainage Project BFA (Country Store Storm Drain Project), as a
proposed 42-inch RCP storm drain along El Camino Real, west of Lisa Street, terminating east
of Kelly Drive. The purpose of the facility is to collect onsite mnoff from the residential and
adjacent areas on tiie south side of El Camino Real, to drain storm water mnoff from soutii of El
Camino Real and convey it westward towards the existing earthen channel tiiat originates from
the sedimentation basin BFl and travels southerly to open space.
In conjunction witii tiiis drainage study a Storm Water Management Plan for El Camino Real
Widening was prepared by O'Day Consultants. The SWMP depicts the hydromodification BMP
areas designed based on the Final Hydromodification Plan for tiie County of San Diego, by
Brown and Caldwell, dated January, 13, 2011.
B. HYDROLOGY
Hydrologic calculations were performed utilizing the San Diego County Rational Metiiod as
described in the San Diego County Hydrology Manual, June 2003. Pertinent exhibits from the
San Diego County Hydrology Manual are enclosed for reference, as follows:
Exhibit B - Runoff Coefficients (Table 3-1) & Calculated Coefficients
Exhibit C - Soil Group Map
Exhibit D - 100-year 6-hour Isopluvial Map
10-year 6-hour Isopluvial Map
Exhibit E - 100-year 24-hour Isopluvial Map
Existing Conditions:
Beginning from the intersection of Cannon Road heading west, existing El Camino Real drains
to a low point. An existing 8'x8' reinforced box culvert conveys storm water from tiie nortii to
the south side of the street. Basin ECR-1.
Heading westerly on El Camino Real towards Crestview Drive, an existing 24" storm drain
conveys storm water from the north side to the south side of El Camino Real and outlets east of
Crestview Drive, Basin ECR-2.
Continuing westerly to an existing 48" storm drain near the projection of Julie Place, 58.80 acres
of land to the north drains to an existing 48" storm drain and is conveyed to a channel within
land owned by Hoffman (APN 207-101-27, 28, and 29), Basin ECR-3 and Basin 'G'.
Continuing westerly, storm water from a portion of El Camino Estates mns onto El Camino
Real. That storm water combined with storm water from the high point at El Camino Real drain
to property owned by Marja Acres, LLC (APN 207-101-24 and 25), Basin ECR-4.
Continuing westerly, 11.5 acres of land to the north drains into El Camino Real. Since the street
is superelevated at this location, both sides of the street drain to the low point to the north, west
of Kelly Drive combining with storm water from the Tamarack intersection. The storm water is
conveyed to the south via an existing double 8'x4' reinforced culvert box. Basin ECR-5
A summary Table of the Existing 100 Year Flow rates is shown below:
100 Year Flowrate for Existing Conditions
Basin Description Area 100-Year Flowrate
ECR-1 Drains to N.E. Open Space 0.79 AC 4.3 CFS
ECR-2 Drains to S. E. Open Space
near Crestview Dr.
5.22 AC 12.0 CFS
ECR-3 Drains to Exist. 48" SD
that outlets at Lands owned
by Hoffman
62.30 AC 66.2 CFS
ECR-4 Drains towards Lands
owned by Marja Acres,
LLC.
3.33 AC 10.6 CFS
ECR-5 Drains towards Ex. Double
8'x4' RCB
11.52 AC 20.2 CFS
See Appendix 1 for 100-Year Existing Hydrologic Calculations, See Exhibit J for Hydrologic
Map.
Existing 8'x 8' RCB near Cannon Road
Several engineering analyses and design projects have been performed within Agua Hedionda
and Calaveras Creek watersheds. These watersheds cover over 23 square miles and, as a result,
support a variety of land uses including residential, commercial, industrial, open space, etc.
There were several facilities adjacent to Robertson Ranch, particularly affecting the drainage
tributary to the 8'x8' RCB, which were proposed as part of the City of Carlsbad Master Plan for
Drainage.
Facility BJ - Proposed an 80 foot wide earthen channel along the northem boundary of Rancho
Carlsbad Mobile Home Park.
Facility BJB- Proposed a sedimentation basin northeast of Cannon Road and College Boulevard
that would drain into facility BJ.
Instead of an 80 foot wide channel for Facility BJ, a 10 foot wide channel was constmcted, with
a 5.0 ft. wide masonry wall on the north side of the channel. As part of a regional solution to
the existing flooding that occurs in the Rancho Carlsbad Mobile Home Park, Facility BJB was
built as a 49-acre foot detention basin. Detention Basin BJB and Calavera Creek drain into an
existing 11'x7' culvert. At the outlet of this culvert, a weir/wall was built north of the 10-foot
wide earthen channel. In a lOO-year storm this weir/wall was designed to allow only part of the
flow exiting the existing culvert into the existing lO-foot wide channel. The rest of the flow is
diverted to the west, north of the 5-foot masonry wall along the paved sewer access road, then
through existing culverts under Cannon Road and El Camino Real into the Agua Hedionda
Lagoon. As part of the development of Robertson Ranch East Village an 84" RCP storm drain
was constmcted along the north side of Cannon Road. The 84" storm drain connects to the
11 'x7' culvert. A wall was constmcted within the 11 'x 7' culvert to replace the wall/weir at the
outlet. The stormwater in the 84" RCP storm drain outiets at the low lying areas on the north
west side of the El Camino Real and Cannon Road intersection. The 100-year flow will pond in
these areas before exiting southwesterly through the existing 8'x 8' box culvert in El Camino
Real.
Rick Engineering Company (Rick) prepared analyses to establish the lOO-year inundation in the
Rancho Carlsbad Mobile Home Park to the east and provided a HEC-1 hydrologic analysis to
account for an upcoming improvement to the Lake Calaveras outlet facility. (Rancho Carlsbad
Mobile Home Park Altemative Analysis for Agua Hedionda Channel Maintenance dated Dec.
18, 2004).
In addition, Chang Consultants, prepared a letter of map revision for FEMA, issued on April 22,
2009, the study for the Letter of Map Revision Request for Robertson Ranch is dated November
1, 2008. The drainage area tributary to the 8'x8' box culvert is delineated on the HECl
workmap (Chang and Rick) attached as Exhibit 'O'. Both the Rick and Chang studies account
for a land use consistent with the Robertson Ranch Master Plan. It should be noted that the
ponded water surface elevation at the low lying area at 84" RCP outiet is shown as 35.3 in Table
1 from Chang study, see Exhibit 'P'. According to the Chang study, since Calavera Creek
confluences with Agua Hedionda Creek, the starting water surface elevations were based on the
floodplain (44.0 feet) and floodway elevations (44.7) at the confluence from the Flood Insurance
Study. This will ensure a proper tie-in at the downstream study limit and account for the lOO-
year backwater from Agua Hedionda Creek.
Drainage Area Tributary to Existing 8'x8' Box Culvert
Drainage Basin Area (Sq. Miles)
Cl 0.87
C2 2.72
C3 0.88
C4 1.24
RCCl 0.05
RRC2 0.208
RRCH 0.425
Total 6.393 Sq. Miles
See Exhibit '0' for Drainage Basin De ineation
Under Uhimate Conditions, 9.7 additional acres will drain to the existing box culvert (Basin
RRCH). 9.7 acre is approximately 0.015 square miles, 0.23% of tributary drainage area.
Solely considering the drainage basin's for Robertson Ranch, RRC2 and RRCH:
Drainage Basin for Robertson Ranch
Drainage Basin Existing Area
Sq. Miles
Existing Area
Acres
Proposed Area
Acres
RRC2 0.208 Sq. Miles 133.1 Acres 133.1 Acres
RRCH 0.425 Sq. Miles 272.0 Acres 281.7 Acres
Total 0.633 Sq. Miles 405.1 Acres 414.8 Acres
See Exhibit 'O' for Drainage Basin Delineation.
Under Ultimate Conditions, the proposed drainage area for Robertson Ranch tributary to the
8'x8' Box Culvert increases by approximately 2.3%.
For existing drainage areas, see excerpts from HEC-1 analysis fi-om Chang Study, Exhibit 'Q'.
It should also be noted that Exhibit 'P' shows the QIOO flow rate as 545 cfs at the entrance to the
8' x 8' RCB.
Existing Double Box Culvert at Kellv Drive
The results of the analysis of the existing double 8'x4' RCB east of Kelly Drive crossing under
El Camino Real are presented below:
INLET FOR DOUBLE RCB
EXISTING CONDITIONS ULTIMATE CONDITIONS
1
(FLOV
UNDER
00-YEAR STORM EVENT
/ AT EXIST. DOUBLE 8'X4' RCB
EL CAMINO REAL AT KELLY DR.)
100-YEAR STORM EVENT
(FLOW AT EXIST. DOUBLE 8'X4' RCB
INLET EL CAMINO REAL AT KELLY DR.)
BASIN ACREAGE Q EXIST BASIN ACREAGE 0 ULT
E-F 729.79 734.84 E-F 712.20 729
See Appendix 5 See Appendix 6
In the post-development condition it is anticipated that the tributary area to this drainage facility
will be reduced. The proposed storm drain along El Camino Real intercepts a portion of the
drainage that currentiy outfalls to the north side of El Camino and directs it to outfall to the south
side of El Camino Real. Therefore the Q ultimate is expected to be less than the existing
condition, as displayed above.
OUTLET FOR DOUBLE RCB
EXISTING CONDITIONS ULTIMATE CONDITIONS
(FLOV
UNDER
DO-YEAR STORM EVENT
/AT EXIST. DOUBLE 8'X4' RCB
EL CAMINO REAL AT KELLY DR.)
100-YEAR STORM EVENT
(FLOW AT EXIST. DOUBLE 8'X4" RCB
OUTLET EL CAMINO REAL AT KELLY DR.)
BASIN ACREAGE Q EXIST BASIN ACREAGE Q ULT
E-F 729.79 734.84 E-F 787.86 816.4
See Appendix 5 See Appendix 6
Ultimate Conditions:
Ultimate Conditions represent the Improvements for El Camino Real Widening with the Rancho
Costera (Robertson Ranch West Village) Development in place.
A curb inlet and storm drain is proposed at the southwest comer of the Crestview Drive / ECR
intersection to prevent storm water mnoff from crossing this street that occurs under existing
conditions.
To alleviate runoff to property owned by Hoffman and Marja Acres, a series of storm drains and
curb inlets are proposed. This storm drain will servers as Drainage Project BFA ofthe City of
Carlsbad Drainage Master Plan. Due to restrictions to meet minimum required cover near the
low point of the road as well as impacts on the wetland area to the north of Kelly Drive, a double
barrel 42" storm drain pipe is proposed to outlet on the south side of El Camino Real.
From the intersection with Tamarack Avenue. El Camino Real will drain to an 18" storm drain.
This storm drain will also convey stormwater to an outlet on the south side of El Camino Real.
A summary of the lOO-year storm flowrates for Ultimate Conditions are shown in the table
below:
100 Year Flowrate for Ultimate Conditions
Basin Description Area 100-Year Flowrate
ECR-IU Drains to N.E. Open Space 1.44 AC 6.7 CFS
ECR-2U Drains to storm drain,
ultimately to S. E. Open
Space near Crestview Dr.
4.62 AC 13.2 CFS
ECR-3U Drains to Proposed 48" SD
tiiat outlets S. side of DBL
RCB
70.65 AC 127.5 CFS
ECR-4U Drains towards S. Side of
DBL RCB
4.13 AC 21.7 CFS
See Appendix 2 for Hydrologic Calculations for these Basins.
10
C. HYDRAULICS
Methodology for Storm Drains
Hydraulic calculations were done using the software prepared by Advanced Engineering
Soflware (AES). The soflware is similar to the Los Angeles County Flood Control Water
Surface Profile Gradient program (WSPG); WSPG was used for the analysis of the double 8'x4'
box culvert. The following description of the computation theory is taken from Los Angeles
Coimty Flood Control documentation:
"The computational procedure is based on solving Bernoulli's equation for the total energy at
each section and Manning's formula for friction loss between the sections in a reach. The open
channel flow procedure utilizes the standard step method. Confluences and bridge piers are
analyzed using pressure and momentum theory.
The program uses basic mathematical and hydraulic principles to calculate all such data as cross
sectional area, wetted perimeter, normal depth, critical depth, pressure and momentum."
The hydraulic analysis for Storm Drain BFA is included in Appendix 4. Exhibit M is the
hydraulic map showing the nodes referenced in the analysis.
11
APPENDIX 1
100 Yr. Existing Hydrologic Calculations
(See Exhibit' J')
Calculated Run-off Coefficients
Basin ECR-1
Entire Area is Impervious, C= 0.95
Basin ECR-2
Area= 2.82 AC 1.29 AC (Impervious) 1.53 AC( C=0.35, Natural)
[(0.35* 1.53)-F(0.95* 1.29)/(2.82)]= 0.62
Basin ECR-3
Basin G is Natural, C=0.35
El Camino Estates (ECR-3 and ECR-4): 21 Dwelling Units
4.75 Acres
21/4.75 Acres: 4.4 DU/Acre, Per Exhibit 'B', use MDR 7.3 DU/AC
Basin ECR-4
El Camino Estates (ECR-3 and ECR-4): 21 Dwelling Units
4.75 Acres
21/4.75 Acres: 4.4 DU/Acre, Per Exhibit 'B', use MDR 7.3 DU/AC
Area= 2.08 AC 1.56 AC (Impervious) 0.52 AC( C=0.35, Natural)
[(0.35*0.52)-i-(0.95*1.56)/(2.08)]=0.80
Basin ECR-4
Initial Area
Area= 0.23 AC 0.10 AC (hnpervious) 0.13 AC( C=0.35, Natural)
[(0.35*0.13)-F(0.95*0.10)/(0.23)]=0.61
Area= 9.91 AC 2.44 AC (hnpervious) 7.47 AC( C=0.35, Natural)
[(0.35*7.47)+(0.95*2.44)/(9.91)]=0.50
West Side
Entire Area is Impervious, C= 0.95
#
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/12/11
100 Year Hydrology for Existing Conditions
El Camino Real Basin ECR-1
JN 101307 By NF 7/12/11
•kie-k-k-kic-k-k-k Hydrology Study Control Information *********,
Program License Serial Number 5007
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
r*?nf,i^°f Point/Station 100.000 to Point/Station 101.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Initial subarea total flow distance = 105.000(Ft.)
Highest elevation = 72.200(Ft.)
Lowest elevation = 68.200(Ft.)
Elevation difference = 4.000(Ft.) Slope = 3.810 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80.00 (Ft)
for the top area slope value of 3.81 %, in a development type of
General Industrial
14
area
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.37 minutes
TC = [1.8*(l.l-C)*distance(Ft.)-.5)/(% slope-(l/3)]
TC = [1.8*(l.l-0.8700)*( 80.000-.5)/( 3.810^(1/3)]= 2 37
The initial area total distance of 105.00 (Ft.) entered leaves a
remaining distance of 25.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.33 minutes
for a distance of 25.00 (Ft.) and a slope of 3 81 %
with an elevation difference of 0.95(Ft.) from the end of the top
Tt = [11.9*length(Mi)-3)/(elevation change(Ft.))]-.385 *60(min/hr)
= 0.32 8 Minutes
Tt=[ (11.9*0.0047'^3)/( 0.95)]^.385= 0.33
Total initial area Ti = 2.37 minutes from Figure 3-3 formula plus
0.33 minutes from the Figure 3-4 formula = 2.70 minutes
Rainfall intensity (I) = 10.197(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0 870
Subarea runoff = 0.621(CFS)
Total initial stream area = 0.070(Ac.)
Process from Point/Station 101.000 to Point/Station 102 000
IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 2 499(CFS)
Depth of flow = 0.169(Ft.), Average velocity = 3.499 (Ft/s)
******* Irregular Channel Data ***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'y coordinate
1 0.00 0.50
2 0.25 0.00
3 25.00 0.50
Manning's 'N' friction factor = 0.015
Sub-Channel flow = 2.499(CFS)
flow top width = 8.451(Ft.)
velocity= 3.499(Ft/s)
area = 0.714(Sq.Ft)
' Froude number = 2.121
Upstream point elevation = 68.200(Ft.)
Downstream point elevation = 40.500(Ft.)
Flow length = 810.000(Ft.)
Travel time = 3.86 min.
Time of concentration = 6.56 min.
Depth of flow = 0.169(Ft.)
Average velocity = 3.499(Ft/s)
Total irregular channel flow = 2.499(CFS)
Irregular channel normal depth above invert elev. = 0.169(Ft )
Average velocity of channel(s) = 3.499(Ft/s)
Adding area flow to channel
User specified 'C value of 0.950 given for subarea
Rainfall intensity = 5.751(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.950 CA = 0.750
15
Subarea runoff = 3.695(CFS) for 0.720(Ac )
Total runoff = 4.316(CFS) Total area = ' o 790(Ac )
Depth of flow = 0.207(Ft.), Average velocity = 4.011(Ft/s)
End of computations, total study area = 0.790 (Ac.)
16
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/18/11
100 Year Hydrology for Existing Conditions
El Camino Real Basin ECR-2
JN 101307 By NF 7/12/11
********* Hydrology Study Control Information **********
Program License Serial Number 5007
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Process from Point/Station 200.000 to Point/Station 201 000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL ]
(24.0 DU/A or Less )
Impervious value, Ai = 0.650
Sub-Area C Value = 0.710
Initial subarea total flow distance = 120.000(Ft.)
Highest elevation = 85.100(Ft.)
Lowest elevation = 83.900(Ft.)
Elevation difference = 1.200(Ft.) Slope = 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65.00 (Ft)
17
area
for the top area slope value of 1.00 %, in a development type of
24.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.66 minutes
TC = [1.8*(l.l-C)*distance(Ft.)'^.5)/(% slope-(l/3)]
TC = [1.8*(1.1-0.7100)*( 65.000-.5)/( 1.000^(1/3)]= 5 66
The initial area total distance of 120.00 (Ft.) entered leaves a
remaining distance of 55.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.01 minutes
for a distance of 55.00 (Ft.) and a slope of 1.00 %
with an elevation difference of 0.55(Ft.) from the end of the top
Tt = [11.9*length(Mi) ^^3) / (elevation change (Ft.))]-. 385 *60(min/hr)
1.006 Minutes
Tt=[ (11.9*0.0104^^3) / ( 0.55) ]385= 1.01
Total initial area Ti = 5.66 minutes from Figure 3-3 formula plus
1.01 minutes from the Figure 3-4 formula = 6.67 minutes
Rainfall intensity (I) = 5.691(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0 710
Subarea runoff = 1.374(CFS)
Total initial stream area = 0.340(Ac.)
+ + + + + + + +++++ + + + +++ + + + +++++++++.^. + + + + + + +++ + + .^ + +++^^ + ^.^^.^^_^^^_^_^_^^^_^^_^_^_^_^_^
Process from Point/Station 201.000 to Point/Station 202 000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 83.900(Ft.)
End of street segment elevation = 67.000(Ft.)
Length of street segment = 620.000(Ft.)
Height of curb above gutter flowline = 6.'0(In.)
Width of half street (curb to crown) = 44.000(Ft.).
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.706(CFS)
Depth of flow = 0.311(Ft.), Average velocity = 3.789(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.820(Ft.)
Flow velocity = 3.79 (Ft/s)
Travel time = 2.73 min. TC = 9.39 min.
Adding area flow to street
User specified 'C value of 0.620 given for subarea
Rainfall intensity = 4.561(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.620 CA = 1.748
Subarea runoff = 6.601(CFS) for 2.480(Ac.)
Total runoff = 7.975 (CFS) Total area = 2.820(Ac.)
Street flow at end of street = 7.975(CFS)
18
area
#
Half street flow at end of street = 7.975(CFS)
Depth of flow = 0.362(Ft.), Average velocity = 4.305(Ft/s)
Flow width (from curb towards crown)= 13. 346(Ft.)
+ + +++ + + + + + + + -^ + + + + ++-^-^-^ + + ++-^-^-t--^-^-(--^+-^-l--^-^-^ + + -^-^ + -^^- + -^-^-^ + ++-^-^ +
Process from Point/Station 202.000 to Point/Station 203.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 2.82 0(Ac.)
Runoff from this stream = 7.975(CFS)
Time of concentration = 9.39 min.
Rainfall intensity = 4.561(In/Hr)
Program is now starting with Main Stream No. 2
++-^^--^-^-^-^-^-^-^ + -^-^ + ++-t--^-^-l-^- ++-^ + + -^ + -^+++-^-^-^-t--^-^-^-^-^+-^+-^-^++ + -^-^ +
Process from Point/Station 203.100 to Point/Station 204.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance = 150.000(Ft.)
Highest elevation = 116.500(Ft.)
Lowest elevation = 110.000(Ft.)
Elevation difference = 6.500(Ft.) Slope = 4.333 %
Top of Initial Area Slope adjusted by User to 20.000 %
Bottom of Initial Area Slope adjusted by User to 20.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 20.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4.97 minutes
TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope'^ (1/3 ) ]
TC = [1.8*(1.1-0.3500)*( lOO.OOO'^.S) / ( 20.000^(1/3)]= 4.97
The initial area total distance of 150.00 (Ft.) entered leaves a
remaining distance of 50.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.30 minutes
for a distance of 50.00 (Ft.) and a slope of 20.00 %
with an elevation difference of 10.00(Ft.) from the end of the top
Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]". 385 *60 (min/hr)
0.295 Minutes
Tt=[(11.9*0.0095^3)/( 10.00)385= 0.30
Total initial area Ti = 4.97 minutes from Figure 3-3 formula plus
0.30 minutes from the Figure 3-4 formula = 5.27 minutes
Rainfall intensity (I) = 6.623(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
19
Subarea runoff = 0.487(CFS)
Total initial stream area = 0.210(Ac.)
Process from Point/Station 204.000 to Point/Station 205 000
**** IMPROVED CHANNEL TRAVEL TIME **** ^UD.UUU
Upstream point elevation =110.000(Ft.) ~ ~
Downstream point elevation = 59.500(Ft.)
Channel length thru subarea = 505.000(Ft.)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 7 im in?c:\ Manning's 'N' = 0.025 ^-/u/iLi-b;
Maximum depth of channel = 0.500 (Ft.)
Flow(q) thru subarea = 2.707(CFS)
Depth of flow = 0.456(Ft.), Average velocity = 6.511(Ft/s)
Channel flow top width = 1.824(Ft.)
Flow Velocity = 6.51(Ft/s)
Travel time = 1.29 min.
Time of concentration = 6.56 min.
Critical depth = 0.633(Ft.)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity = 5.749(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.840
Subarea runoff = 4.342(CFS) for 2 190(Ac )
Total runoff = 4.829(CFS) Total area = ' 2 400(Ac )
Depth of flow = 0.555(Ft.), Average velocity = 7.910(Ft/s)
!!Warning: Water is above left or right bank elevations
ERROR - Channel depth exceeds maximum allowable depth
Critical depth = 0.813(Ft.)
Process from Point/Station 205.000 to Point/Station 203 000
PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 54.800(Ft.)
Downstream point/station elevation = 42.000(Ft.)
Pipe length = 265.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.829(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 4.829(CFS)
Normal flow depth in pipe = 6.81(In.)
Flow top width inside pipe = 11.89(In.)
Critical Depth = 10.88(In.)
20
Pipe flow velocity = 10.49(Ft/s)
Travel time through pipe = 0.42 min.
Time of concentration (TC) = 6.98 min.
+ + -H-h-h + -H-H + -H + -h-H + + + + + -H + + + -h-H-h-H + + + -H + + + + -H-|- + -^-(. + -H-f-H + + + + + + + + + + +
Process from Point/Station 205.000 to Point/Station 203.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 2.400(Ac.)
Runoff from this stream = 4.829(CFS)
Time of concentration = 6.98 min.
Rainfall intensity = 5.523(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Qmax{1) =
Qmax(2)
7 .975
4.829
1.000
0.826
1.000
1.000
9.39
6.98
1.000 *
1.000 *
0.743 *
1.000 *
4.561
5.523
7.975) -^
4.829) +
7.975) +
4.829) +
11.963
10.757
Total of 2 main streams to confluence:
Flow rates before confluence point:
7.975 4.829
Maximum flow rates at confluence using above data:
11.963 10.757
Area of streams before confluence:
2.820 2.400
Results of confluence:
Total flow rate = 11.963(CFS)
Time of concentration = 9.3 93 min.
Effective stream area after confluence
End of computations, total study area =
5.220(Ac.)
5.220 (Ac.)
21
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/12/11
100 Year Hydrology for Existing Conditions
El Camino Real Basin ECR-3
JN 101307 By NF 7/12/11
********* Hydrology Study Control Information **********
Program License Serial Number 5007
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.3 00
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
+ + + + + + + + + + + + + + + + + -^ + + + -^-H + -H-H-H-H + -H-H + -H + + + + -H + + + -t- + -H-l- + + + + + + + + -H-|-+ + + +
Process from Point/Station 210.000 to Point/Station 210.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
User specified 'C value of 0.350 given for subarea
Rainfall intensity (I) = 2.854(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 19.43 min. Rain intensity = 2.85(In/Hr)
Total area = 58.800(Ac.) Total runoff = 60.560(CFS)
+ + + + + + + + +++ + + ++ + + + + + + + + +
Process from Point/Station 210.000 to Point/Station 210.400
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 63.290(Ft.)
Downstream point/station elevation = 62.270 (Ft.)
Pipe length = 98.80(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 60.560(CFS)
Given pipe size = 48.00(In.)
22
§
area
Calculated individual pipe flow = 60.560(CFS)
Normal flow depth in pipe = 21.56(In.)
Flow top width inside pipe = 47.75(In.)
Critical Depth = 28.16(In.)
Pipe flow velocity = 11.08(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 19.58 min.
Process from Point/Station 210.000 to Point/Station 210 400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 58.800(Ac.)
Runoff from this stream = 60.560(CFS)
Time of concentration = 19.58 min.
Rainfall intensity = 2.840(In/Hr)
Program is now starting with Main Stream No. 2
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Process from Point/Station 210.100 to Point/Station 210 200
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL ]
(7.3 DU/A or Less )
Impervious value, Ai = 0.4 00
Sub-Area C Value = 0.570
Initial subarea total flow distance = 180.000(Ft.)
Highest elevation = 91.800(Ft.)
Lowest elevation = 90.000(Ft.)
Elevation difference = 1.800(Ft.) Slope = 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65.00 (Ft)
for the top area slope value of 1.00 %, in a development type of
7.3 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 7.69 minutes
TC = [1.8*(l.l-C)*distance(Ft.)'-.5)/(% slope'^ (1/3 ) ]
TC = [1.8*(l.l-0.5700)*( 65.000".5)/( 1.000-^(1/3)]= 7.69
The initial area total distance of 180.00 (Ft.) entered leaves a
remaining distance of 115.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.78 minutes
for a distance of 115.00 (Ft.) and a slope of 1.00 %
with an elevation difference of 1.15(Ft.) from the end of the top
Tt = [11.9*length{Mi)-^3) / (elevation change (Ft.))]. 385 *60 (min/hr)
= 1.776 Minutes
Tt=[ (11.9*0.0218'^3)/( 1.15) ]-".385= 1.78
Total initial area Ti = 7.69 minutes from Figure 3-3 formula plus
1.78 minutes from the Figure 3-4 formula = 9.47 minutes
23
Rainfall intensity (I) = 4.538(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C =0 5^0
Subarea runoff = 0.776 (CFS) ^ •->' u
Total initial stream area = 0.300(Ac.)
Process from Point/Station 210.200 to Point/Station PlT^nn
**** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ^10.300
Estimated mean flow rate at midpoint of channel = 4 3i5(rpci
Depth of flow = 0.242(Ft.), Average velocity = 2.95l'(Ft/s)
******* Irregular Channel Data ***********
Information entered for subchannel number 1 •
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.50
2 0.25 0.00
3 25.00 0.50
Manning's 'N' friction factor = 0.013
Sub-Channel flow = 4.315(CFS)
flow top width = 12.092(Ft.)
velocity= 2.951(Ft/s)
area = 1.462(Sq.Ft)
Froude n\amber = 1.496
Upstream point elevation = 90.000(Ft.)
Downstream point elevation = 84.900(Ft.)
Flow length = 450.000(Ft.)
Travel time = 2.54 min.
Time of concentration = 12.01 min.
Depth of flow = 0.242(Ft.)
Average velocity = 2.951(Ft/s)
Total irregular channel flow = 4.315(CFS)
Irregular channel normal depth above invert elev = 0 242(Ft 1
Average velocity of channel(s) = 2.951(Ft/s)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL ]
(7.3 DU/A or Less )
Impervious value, Ai = 0.400
Sub-Area C Value = 0.57 0
Rainfall intensity = 3.893(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.570 CA = 1.995
Subarea runoff = 6.990 (CFS) for 3 200 (Ac )
Total runoff = 7.766(CFS) Total area = ' 3 500(Ac )
Depth of flow = 0.301(Ft.), Average velocity = 3.418(Ft/s)
Process from Point/Station 210.300 to Point/Station 210 400
* PIPEFLOW TRAVEL TIME (User specified size) ****
24
#
Upstream point/station elevation = 81.400(Ft.)
Downstream point/station elevation = 62.270(Ft.)
Pipe length = 70.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 7.766(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 7.766(CFS)
Normal flow depth in pipe = 4. 57(In.)
Flow top width inside pipe = 15.67(In.)
Critical Depth = 12. 95(In.)
Pipe flow velocity = 21.97(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 12.06 min.
Process from Point/Station 210.300 to Point/Station 210.400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 3.500(Ac.)
Runoff from this stream = 7.766(CFS)
Time of concentration = 12.06 min.
Rainfall intensity = 3.882(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 60.560 19.58 2.840
2 7.766 12.06 3.882
Qmax(1) =
1.000 * 1.000 * 60.560) +
0.732 * 1.000 * 7.766) + = 66.242
1.000 * 0.616 * 60.560) +
1.000 * 1.000 * 7.766) + = 45.075
Qmax(2)
Total of 2 main streams to confluence:
Flow rates before confluence point:
60.560 7.766
Maximum flow rates at confluence using above data:
66.242 45.075
Area of streams before confluence:
58.800 3.500
Results of confluence:
Total flow rate = 66.242(CFS)
Time of concentration = 19.579 min.
Effective stream area after confluence = 62.300(Ac.)
End of computations, total study area = 62.300 (Ac.)
25
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/12/11
100 Year Hydrology for Existing Conditions
El Camino Real Basin ECR-4
JN 101307 By NF 7/12/11
********* Hydrology Study Control Information **********
Program License Serial Number 5007
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
-l--h-(- + + -H-t- + -h+-l--H-^-H-h + -|- + -|- + -|--H + + + + ++ + + + + + + + + + + + + + + + + + + + + + ^^^^_^^_^^^
Process from Point/Station 300.000 to Point/Station 301.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL ]
(7.3 DU/A or Less )
Impervious value, Ai = 0.400
Sub-Area C Value = 0.57 0
Initial subarea total flow distance = 300.000(Ft.)
Highest elevation = 91.700(Ft.)
Lowest elevation = 82.200(Ft.)
Elevation difference = 9.500 (Ft.) Slope = 3.167 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95.00 (Ft)
for the top area slope value of 3.17 %, in a development type of
7.3 DU/A or Less
26
area
In Accordance With Figure 3-3
Initial Area Time of Concentration = 6.33 minutes
TC = [1.8* (1.1-C) *distance(Ft. )-.5) / (% slope-^ (1/3 ) ]
TC = [1.8*{l.l-0.5700)*( 95.000-.5)/( 3.167^(1/3)]= 6 33
The initial area total distance of 300.00 (Ft.) entered leaves a
remaining distance of 205.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1 78 minutes
for a distance of 205.00 (Ft.) and a slope of 3.17 %
with an elevation difference of 6.49(Ft.) from the end of the top
Tt = [11.9*length(Mi)-3)/(elevation change(Ft.))]-.385 *60(min/hr)
1.778 Minutes
Tt=[(11.9*0.0388"3)/( 6.49)]".385= 1.78
Total initial area Ti = 6.33 minutes from Figure 3-3 formula plus
1.78 minutes from the Figure 3-4 formula = 8.11 minutes
Rainfall intensity (I) = 5.015(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0 570
Subarea runoff = 3.573(CFS)
Total initial stream area = 1.250(Ac.)
Process from Point/Station 301.000 to Point/Station 302 000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 7.058(CFS)
Depth of flow = 0.249(Ft.), Average velocity = 4.570(Ft/s)
******* Irregular Channel Data ***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.50
2 0.25 0.00
3 25.00 0.50
Manning's 'N' friction factor = 0.013
Sub-Channel flow = 7.058(CFS)
flow top width = 12.427(Ft.)
velocity= 4.570(Ft/s)
area = 1.544(Sq.Ft)
Froude number = 2.285
Upstream point elevation = 82.200(Ft.)
Downstream point elevation = 57.300(Ft.)
Flow length = 950. 000(Ft.)
Travel time = 3.46 min.
Time of concentration = 11.57 min.
Depth of flow = 0.249(Ft.)
Average velocity = 4.570(Ft/s)
Total irregular channel flow = 7.058(CFS)
Irregular channel normal depth above invert elev. = 0.249(Ft.)
Average velocity of channel(s) = 4.570(Ft/s)
Adding area flow to channel
User specified 'C value of 0.800 given for subarea
Rainfall intensity = 3.987(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 2.664
27
Subarea runoff = 7.047(CFS) for 2.080(Ac )
Total runoff = 10.620(CFS) Total area = 3 330(Ac )
Depth of flow = 0.290(Ft.), Average velocity = 5.062(Ft/s)
End of computations, total study area = 3.330 (Ac )
28
#
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 07/12/11
100 Year Hydrology for Existing Conditions
El Camino Real Basin ECR-5
JN 101307 By NF 7/12/11
********* Hydrology Study Control Information ********v
Program License Serial Number 5007
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
Process from Point/Station 200.000 to Point/Station 400 000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL ]
(14.5 DU/A or Less )
Impervious value, Ai = 0.5 00
Sub-Area C Value = 0.630
Initial subarea total flow distance = 225.000(Ft.)
Highest elevation = 85.100(Ft.)
Lowest elevation = 83.200(Ft.)
Elevation difference = 1.900(Ft.) Slope = 0.844 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65.00 (Ft)
for the top area slope value of 0.84 %, in a development type of
14.5 DU/A or Less
29
area
#
In Accordance With Figure 3-3
Initial Area Time of Concentration = 7.22 minutes
TC = [1.8*(l.l-C)*distance(Ft.)'^.5)/(% slope^^ (1/3 ) ]
TC = [1.8*{l.l-0.6300)*( 65.000-^.5) / ( 0.844^(1/3)]= 7.22
The initial area total distance of 225.00 (Ft.) entered leaves a
remaining distance of 160.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 2.44 minutes
for a distance of 160.00 (Ft.) and a slope of 0.84 %
with an elevation difference of 1.35(Ft.) from the end of the top
Tt = [11.9*length (Mi)'^3) / (elevation change (Ft.))]. 385 *60 (min/hr)
= 2.444 Minutes
Tt=[ (11.9*0.0303-^3) / ( 1.35)1-^.385= 2.44
Total initial area Ti = 7.22 minutes from Figure 3-3 formula plus
2.44 minutes from the Figure 3-4 formula = 9.66 minutes
Rainfall intensity (I) = 4.479(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.630
Subarea runoff = 0.649(CFS)
Total initial stream area = 0.230(Ac.)
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Process from Point/Station 400.000 to Point/Station 401.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 8.381(CFS)
Depth of flow = 0.278(Ft.), Average velocity = 4.346(Ft/s)
******* Irregular Channel Data ***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.50
2 0.25 0.00
3 25.00 0.50
Manning's 'N' friction factor = 0.013
Sub-Channel flow = 8.381(CFS)
flow top width = 13.886(Ft.)
velocity= 4.346(Ft/s)
area = 1.928(Sq.Ft)
Froude number = 2.055
Upstream point elevation = 83.200(Ft.)
Downstream point elevation = 46.400(Ft.)
Flow length = 1800.000(Ft.)
Travel time = 6.90 min.
Time of concentration = 16.56 min.
Depth of flow = 0.278(Ft.)
Average velocity = 4.346(Ft/s)
Total irregular channel flow = 8.381(CFS)
Irregular channel normal depth above invert elev. = 0.278(Ft.)
Average velocity of channel(s) = 4.346(Ft/s)
Adding area flow to channel
User specified 'C value of 0.500 given for subarea
Rainfall intensity = 3.164(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.500 CA = 5.070
30
Subarea runoff
Total runoff =
Depth of flow =
15.391(CFS) for 9.910(Ac.)
16.040(CFS) Total area = 10.140(Ac.)
0.354 (Ft.), Average velocity = 5.112(Ft/s)
+ + + + + + + + + + + + + + + + + + + + + + + + + + ^ +
Process from Point/Station 400.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS **** 401.000
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 10.140(Ac.)
Runoff from this stream = 16.040(CFS)
Time of concentration = 16.56 min.
Rainfall intensity = 3.164(In/Hr)
Program is now starting with Main Stream No. 2
area
Process from Point/Station 402.000 to Point/Station 403 000
**** INITIAL AREA EVALUATION ****
Decimal
Decimal
Decimal
Decimal
fraction soil
fraction soil
fraction soil
fraction soil
]
= 270.000(Ft.)
%
group A = 0.000
group B = 0.000
group C = 0.000
group D = 1.000
[INDUSTRIAL area type
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.87 0
Initial subarea total flow distance
Highest elevation = 74.000(Ft.)
Lowest elevation = 64.000(Ft.)
Elevation difference = 10.000(Ft.) Slope = 3.704
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80.00 (Ft)
for the top area slope value of 3.70 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.39 minutes
TC = [1.8*(l.l-C)*distance(Ft.)''.5)/{% slope-^ (1/3) ]
TC = [1.8*(l.l-0.8700)*( 80.000-^.5) / ( 3.704^(1/3)] =
The initial area total distance of 270.00 (Ft.) entered
remaining distance of 190.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
for a distance of 190.00 (Ft.) and a slope of 3.70 %
with an elevation difference of 7.04(Ft.) from the end
2.39
leaves a
1.58 minutes
'3)/(elevation change(Ft.))]
of the top
.385 *60(min/hr) Tt = [11.9*length(Mil
1.579 Minutes
Tt=[(11.9*0.0360-^3)/( 7.04)]".385= 1.58
Total initial area Ti = 2.39 minutes from Figure 3-3 formula plus
1.58 minutes from the Figure 3-4 formula = 3.97 minutes
Rainfall intensity (I) = 7.947(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.830(CFS)
Total initial stream area = 0.120(Ac.)
31
#
Process from Point/Station 403.000 to Point/Station 401 000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 4 014(CFS)
Depth of flow = 0.205(Ft.), Average velocity = 3.827(Ft/s)
******* Irregular Channel Data ***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.50
2 0.25 0.00
3 25.00 0.50
Manning's 'N' friction factor = 0.013
Sub-Channel flow = 4.014(CFS)
' flow top width = 10.241(Ft.)
velocity= 3.827(Ft/s)
area = 1.049(Sq.Ft)
Froude number = 2.107
Upstream point elevation = 64.000(Ft.)
Downstream point elevation = 46.400(Ft.)
Flow length = 740.000(Ft.)
Travel time = 3.22 min.
Time of concentration = 7.19 min.
Depth of flow = 0.205(Ft.)
Average velocity = 3.827(Ft/s)
Total irregular channel flow = 4.014(CFS)
Irregular channel normal depth above invert elev. = 0 205(Ft )
Average velocity of channel(s) = 3.827(Ft/s)
Adding area flow to channel
User specified 'C value of 0.950 given for subarea
Rainfall intensity = 5.417(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.950 CA = 1.311
Subarea runoff = 6.272(CFS) for 1.260(Ac )
Total runoff = 7.102(CFS) Total area = 1.380(Ac )
Depth of flow = 0.254(Ft.), Average velocity = 4.414(Ft/s)
+ + + + + + + + + + -^ + + + +++ + + + ++++^ ++-, + + + + + + + + + +++++ + .^. + + + + ^^^^_^^_^^_^_^^^^_^_^_^_^_^_^_^^_^
Process from Point/Station 403.000 to Point/Station 401 000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.3 80(Ac.)
Runoff from this stream = 7.102(CFS)
Time of concentration = 7.19 min.
Rainfall intensity = 5.417(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No- (CFS) (min) (In/Hr)
m 32
1 16 040 16 56 3 164
2 7 102 7 19 5 417
Qmax(1) =
1 000 * 1 000 * 16 040) •+
0 584 * 1 000 * 7 102) +
Qmax(2) =
102)
1 000 * 0 434 * 16 040) +
1 000 * 1 000 * 7 102) + =
20.187
14.069
Total of 2 main streams to confluence:
Flow rates before confluence point:
16.040 7.102
Maximum flow rates at confluence using above data-
20.187 14.069
Area of streams before confluence:
10.140 1.380
Results of confluence:
Total flow rate = 20.187(CFS)
Time of concentration = 16.564 min.
Effective stream area after confluence = 11.520(Ac.)
End of computations, total study area = 11.520 (Ac.)
•
33
APPENDIX 2
100 Yr. Ultimate Hydrologic Calculations
(See Exhibit 'L')
ecrlp
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 version 7.7
Rational method hydrology program based on
san Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 12/17/13
100 Year Hydrology for Ultimate Condition
Basin ECRlP JN 101307
Revised by HL 12/17/13
********* Hydrology Study control information *** *******
Program License Serial Number 6218
Rational hydrology study storm event year is
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C' values used
100.0
Process from Point/Station
**** INITIAL AREA EVALUATION
1000.000 to Point/Station
****
1001.000
]
100.000(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL
(43.0 DU/A or Less )
impervious value, Ai = 0.800
Sub-Area C value = 0.790
initial subarea total flow distance =
Highest elevation = 63.000CFt.)
Lowest elevation = 57.800(Ft.)
Elevation difference = 5.200(Ft.) Slope = 5.200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS I
The maximum overland flow distance is 95.00 (Ft)
for the top area slope value of 5.20 %, in a development type of
43.0 DU/A or Less
in Accordance with Figure 3-3
Initial Area Time of Concentration = 3.14 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC = [1.8*(l.l-0.7900)*( 95.000A.5)/( 5.200A(l/3)]= 3.14
The initial area total distance of 100.00 (Ft.) entered leaves a
remaining distance of 5.00 (Ft.)
using Figure 3-4, the travel time for this distance is 0.08 minutes
for a distance of 5.00 (Ft.) and a slope of 5.20 %
with an elevation difference of 0.26(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr)
Page 1
ecrlp
0.084 Minutes
Tt=[(11.9*0.0009A3)/( 0.26)]A.385= 0.08
Total initial area Ti = 3.14 minutes from Figure 3-3 formula plus
0.08 minutes from the Figure 3-4 formula = 3.22 minutes
Calculated TC of 3.223 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.790
subarea runoff = 0.920(CFS)
Total initial stream area = 0.170(Ac.)
Process from Point/Station 1001.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
1002.000
Top of street segment elevation = 57.800(Ft.)
End of street segment elevation = 40.300(Ft.)
Length of street segment = 595.000(Ft.)
Height of curb above gutter flowline = 6.0(in.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break tv/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(ln.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 3.877(CFS)
Depth of flow = 0.242(Ft.), Averaqe velocity = 3.168(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7.354(Ft.)
Flow velocity = 3.17(Ft/s)
TC = 6.35 min.
100.0 year storm
Travel time = 3.13 min
Adding area flow to street
Rainfall intensity (I) = 5.869(in/Hr) for a
user specified 'C' value of 0.790 given for subarea
Rainfall intensity = 5.869(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.790 CA = 1.138
Subarea runoff = 5.757(CFS) for 1.270CAC.)
Total runoff = 6.677(CFS) Total area = 1.440(Ac.)
Street flow at end of street = 6.677(CFS)
Half street flow at end of street = 3.338(CFS)
Depth of flow = 0.280(Ft.), Average velocity = 3.594(Ft/s)
Flow width (from curb towards crown)= 9.261(Ft.)
Process from Point/Station 1002.000 to Point/Station 1003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 34.190(Ft.)
Downstream point/station elevation = 33.800(Ft.)
Pipe length = 35.19(Ft.) Slope = 0.0111 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.677(CFS)
Given pipe size = 18.00(ln.)
Calculated individual pipe flow = 6.677(CFS)
Normal flow depth in pipe = 10.09(ln.)
Page 2
ecrlp
Flow top width inside pipe = 17.87(In.)
Critical Depth = 12.00(ln.)
Pipe flow velocity = 6.55(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 6.44 min.
End of computations, total study area = 1.440 (Ac.)
Page 3
ecr2u
San Diego county Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 version 7.9
Rational method hydrology program based on
San Diego county Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 09/22/14
100 Year Hydrology for Ultimate Condition
Basin ECR2U 3N 101307
Revised by MC
********* Hydrology Study Control Information **********
Program License Serial Number 6324
Rational hydrology study storm event year is
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
san Diego hydrology manual 'C values used
100.0
•f•^+-^-^•f-f4•++•^--f+-^+•f-^++-^++4••^+•^+++•f+-^^••^+•^+-^•^-^•f-f+4•^--^+-^-^+
Process from Point/Station 2000.000 to Point/station 2001.000
**** INITIAL AREA EVALUATION ****
3
297.000(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent open Space )
Impervious value, Ai = 0.000 Sub-Area c value = 0.350
initial subarea total flow distance = Highest elevation = 99.400(Ft.)
Lowest elevation = 77.700(Ft.)
Elevation difference = 21.700(Ft.) Slope = 7.306 % Top of Initial Area Slope adjusted by User to 16.815 %
Bottom of Initial Area slope adjusted by User to 16.815 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS I
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 16.82 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 5.27 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 16.815A(l/3)]=
The initial area total distance of 297.00 (Ft.) entered leaves a
remaining distance of 197.00 (Ft.)
Using Figure 3-4, the travel time for this distance is
for a distance of 197.00 (Ft.) and a slope of 16.82 %
Page 1
5.27
0.91 minutes
ecr2u
with an elevation difference of 33.13(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr)
0.907 Minutes
Tt=[(11.9*0.0373A3)/( 33.13)]A.385= 0.91
Total initial area Ti = 5.27 minutes from Figure 3-3 formula plus
0.91 minutes from the Figure 3-4 formula = 6.18 minutes
Rainfall intensity (I) = 5.978(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0,753(CFS)
Total initial stream area = 0.360(Ac.)
++-f+-f-f-(-+++++++++H--f-f+-f+-f+++-f+++++++-f+-f-f+-f-f+-f+-(--(--f-f++
Process from Point/Station 2001.000 to Point/Station 2002.100
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 77.700(Ft.)
Downstream point elevation = 67.790(Ft.)
Channel length thru subarea = 250.000(Ft.)
Channel base width = 2.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel = 1.627(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 1.627(CFS)
Depth of flow = 0.144(Ft.), Average velocity = 4.926(Ft/s)
Channel flow top width = 2.577(Ft.)
Flow velocity = 4.93(Ft/s)
Travel time = 0.85 min.
Time of concentration = 7.02 min.
Critical depth = 0.250(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 5.503(ln/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent Open space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
Rainfall intensity = 5.503(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.445
Subarea runoff = 1.693(CFS) for 0.910(Ac.)
Total runoff = 2.446(CFS) Total area = 1.270(Ac.)
Depth of flow = 0.183(Ft.), Average velocity = 5.655(Ft/s)
Critical depth = 0.320(Ft.)
Process from Point/Station 2002.100 to Point/Station 2002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 55.740(Ft.)
Downstream point/station elevation = 54,900(Ft.)
Pipe length = 82.57(Ft.) Slope = 0.0102 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 2.446(CFS)
Given pipe size = 24.00(in.)
Calculated individual pipe flow = 2.446(CFS)
Normal flow depth in pipe = 5.31(ln.)
Flow top width inside pipe = 19.92(In.)
Page 2
ecr2u
Critical Depth = 6.52(in.)
Pipe flow velocity = 4.74(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 7.31 min.
++-l-+•f-^+-^-f-l-•f-f+-^+-^+-^+•f+•^++++++-f•4••f+++++-f++++-l-++-(-+•l•++-f-^
Process from Point/Station 2002.000 to Point/Station 2003.000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 54.570(Ft.)
Downstream point/station elevation = 53.830(Ft.)
Pipe length = 73.54(Ft.) slope = 0.0101 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 2.446(CFS)
Given pipe size = 24.00(ln.)
Calculated individual pipe flow = 2.446(CFS)
Normal flow depth in pipe = 5.32(in.)
Flow top width inside pipe = 19.94(in.)
Critical Depth = 6.52(ln.)
Pipe flow velocity = 4.72(Ft/s)
Travel time through pipe = 0.26 min.
Time of concentration (TC) = 7,57 min.
-^-^++•f-l-++•^+-^•-l-++-l-+-^+•f+-^++++•f•^-^•^•++-f+++++•^-•f-l--l-+-^+-^+-^
Process from Point/Station 2003.000 to Point/Station 2003.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.270(Ac.)
Runoff from this stream = 2.446(CFS)
Time of concentration = 7.57 min.
Rainfall intensity = 5.242(In/Hr)
+-H+++++-l-++++++-H-f-(--f+-(--H+-t-++-f-l-+-f-f++++-f-f-f-l--f+-f+-f++
Process from Point/Station 2004.000 to Point/Station 2005.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ]
(General Commercial )
Impervious value, Ai = 0.850
Sub-Area C value = 0.820
Initial subarea total flow distance = 120.000(Ft.)
Highest elevation = 86.100(Ft.)
Lowest elevation = 83.900(Ft.)
Elevation difference = 2.200(Ft.) Slope = 1.833 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of 1.83 %, in a development type of
General commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 3.57 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)]
TC = [1.8*(l.l-0.8200)*( 75.000A.5)/( 1.833A(l/3)]= 3.57
The initial area total distance of 120.00 (Ft.) entered leaves a
remaining distance of 45.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.68 minutes
for a distance of 45.00 (Ft.) and a slope of 1.83 %
Page 3
ecr2u
with an elevation difference of 0.82(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) 0.683 Minutes
Tt=[(11.9*0.0085A3)/( 0.82)]A.385= 0.68
Total initial area Ti = 3.57 minutes from Figure 3-3 formula plus
0.68 minutes from the Figure 3-4 formula = 4.25 minutes
Calculated TC of 4.249 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (l) = 6.850(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.820
Subarea runoff = l.Oll(CFS)
Total initial stream area = 0.180(Ac.)
+++•^-f-^-^+++++-^•f-^-^-^-f-^-l-+++++-(•+-f+++-f•f++-^-^+-^++•^•f-l-+-l--l-++
Process from Point/Station 2005.000 to Point/Station 2005.100
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 83.900(Ft.)
End of street segment elevation = 74.200(Ft.)
Length of street segment = 500.000(Ft.)
Height of curb above gutter flowline = 6.0(ln.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(in.) Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.124(CFS) Depth of flow = 0.291(Ft.), Average velocity = 3.018(Ft/s)
Streetflow hydraulics at midpoint or street travel:
Halfstreet flow width = 9.816(Ft.)
Flow velocity = 3.02(Ft/s)
Travel time = 2.76 min. TC = 7.01 min.
Adding area flow to street
Rainfall intensity (I) = 5.509(in/Hr) for a 100.0 year storm
user specified 'C' value of 0.810 given for subarea
Rainfall intensity = 5.509(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.812 CA = 0.933
Subarea runoff = 4.130(CFS) for 0.970(Ac.)
Total runoff = 5.141(CFS) Total area = 1.150(Ac.)
Street flow at end of street = 5.141(CFS)
Half street flow at end of street = 5.141(CFS)
Depth of flow = 0.335(Ft.), Average velocity = 3.402(Ft/s)
Flow width (from curb towards crown)= 11.999(Ft.)
Process from Point/Station 2005.100 to Point/Station 2005.200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 71.930(Ft.)
Downstream point/station elevation = 69.130(Ft.)
Pipe length = 16.25(Ft.) Slope = 0.1723 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 5.141(CFS)
Given pipe size = 18.00(ln.)
Page 4
ecr2u
Calculated individual pipe flow = 5.141(CFS)
Normal flow depth in pipe = 4.17(in.)
Flow top width inside pipe = 15.19(ln.)
Critical Depth = 10.48(in.)
Pipe flow velocity = 16.55(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 7.03 min.
Process from Point/station 2005.200 to Point/Station 2005.400
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 68.820(Ft.)
Downstream point/station elevation = 66.740(Ft.)
Pipe length = 65.83(Ft.) Slope = 0.0316 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 5.141(CFS)
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 5,141(CFS) Normal flow depth in pipe = 6.46(in.)
Flow top width inside pipe = 17.27(In.)
Critical Depth = 10.48(in.)
Pipe flow velocity = 9.02(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) = 7,15 min,
-l••l•-^++++-^+++•^•(-++++-(•++++-l-+•f-f-l-+•t•++++•^-f+++++++•^++ Process from Point/Station 2005.400 to Point/Station 2005.500 **** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 66.410(Ft,)
Downstream point/station elevation = 64.150(Ft.)
Pipe length = 64,08(Ft.) Slope = 0.0353 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 5,141(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 5.141(CFS)
Normal flow depth in pipe = 6,27(ln,)
Flow top width inside pipe = 17.15(In,)
Critical Depth = 10,48(in.)
Pipe flow velocity = 9.39(Ft/s)
Travel time through pipe = 0,11 min.
Time of concentration (TC) = 7.26 min,
•f+-fH--HH-+4--l-+-l--f++-f-f+-f-(--f++-f-f-f++++-f-f+++++++++++++-f-f+
Process from Point/Station 2005.500 to Point/Station 2003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 63,780(Ft,)
Downstream point/station elevation = 53,440(Ft,)
Pipe length = 40,22(Ft.) Slope = 0.2571 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 5,141(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 5.141(CFS)
Normal flow depth in pipe = 3.78(in,)
Flow top width inside pipe = 14.66(ln.)
Critical Depth = 10.48(in.)
Pipe flow velocity = 19,08(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 7,30 min.
Page 5
ecr2u
++++++-H-(-4--f-f-l-+-l-++-f+++++++-f+-f++-f-4--f++-f+-f++-f-H+-f-f+++-^
Process from Point/Station 2003.000 to Point/Station 2003,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = l,150(Ac,)
Runoff from this stream = 5.141(CFS)
Time of concentration = 7.30 min.
Rainfall intensity = 5,368(ln/Hr)
++-^-l-++-^4•-^-^-^•t--^-l-++++-^++++++-^•^•^-l--^-^+•^+++++-l--^-^•^++++
Process from Point/Station 2005.300 to Point/Station 2005,100
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type 3
(General industrial ) Impervious value, Ai = 0.950
Sub-Area C value = 0.870
Initial subarea total flow distance = 55.000(Ft,)
Highest elevation = 75,400(Ft,)
Lowest elevation = 74.200(Ft,)
Elevation difference = 1.200(Ft.) Slope = 2.182 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70.00 (Ft)
for the top area slope value of 2.18 %, in a development type of
General Industrial
In Accordance with Figure 3-3
Initial Area Time of concentration = 2.67 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(i/3)]
TC = [1.8*(l.l-0.8700)*( 70,OOOA,5)/( 2,180A(l/3)3= 2.67
Calculated TC of 2.671 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (l) = 6,850(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,870
subarea runoff = 0.596(CFS)
Total initial stream area = 0,100(Ac)
4-+++++++-f-f-f-f-f+++-f+++-f-f-f-(-+-f++-f-l-++-(-+++-f+-f++++-f-H-^
Process from Point/Station 2005,100 to Point/station 2006,000
**** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION ****
Top of street segment elevation = 74.200(Ft.)
End of street segment elevation = 64,900(Ft,)
Length of street segment = 240.000(Ft,)
Height of curb above gutter flowline = 6,0(in,)
Width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft.)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = l,500(ln.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Page 6
ecr2u
Estimated mean flow rate at midpoint of street = 1.776(CFS)
Depth of flow = 0,228(Ft,), Average velocity = 3.456(Ft/s)
Streetflow hydraulics at midpoint or street travel:
Halfstreet flow width = 6,652(Ft,)
Flow velocity = 3.46(Ft/s)
Travel time = 1,16 min, TC = 3.83 min.
Adding area flow to street
Calculated TC of 3.829 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(ln/Hr) for a 100,0 year storm
User specified 'c' value of 0,810 given for subarea
Rainfall intensity = 6,850(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.822 CA = 0.419
Subarea runoff = 2.275(CFS) for 0,410(Ac.)
Total runoff = 2,871(CFS) Total area = 0,510(Ac.)
Street flow at end of street = 2,871(CFS)
Half street flow at end of street = 2.871(CFS)
Depth of flow = 0.259(Ft.), Average velocity = 3,855(Ft/s)
Flow width (from curb towards crown)= 8,206(Ft.)
-f-t-+-f-f+++++-(•++-(•-f4-++-t-+-l-H-++-l--f-f-(--f-f4--l-+++-f++-l--f++-f-l-+++^
Process from Point/Station 2006.000 to Point/Station 2003,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 62,130(Ft,)
Downstream point/station elevation = 60.170(Ft,)
Pipe length = 21,ll(Ft,) Slope = 0,0928 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 2.871(CFS)
Given pipe size = 18.00(in,)
Calculated individual pipe flow = 2,871(CFS)
Normal flow depth in pipe = 3.64(in.)
Flow top width inside pipe = 14,47(in,)
Critical Depth = 7,72(In.)
Pipe flow velocity = 11.22(Ft/s)
Travel time through pipe = 0,03 min.
Time of concentration (TC) = 3.86 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 2003,100 to Point/Station 2003,200
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 59,980(Ft,)
Downstream point/station elevation = 56,880(Ft,)
Pipe length = 28.80(Ft,) Slope = 0,1076 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 2.871(CFS)
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 2.871(CFS)
Normal flow depth in pipe = 3.51(ln.)
Flow top width inside pipe = 14.27(ln.)
Critical Depth = 7.72(in.)
Pipe flow velocity = 11.82(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 3,90 min,
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 2003,200 to Point/Station 2003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 56,470(Ft,)
Page 7
ecr2u
Downstream point/station elevation = 54,440(Ft,)
Pipe length = 21,62(Ft,) Slope = 0,0939 Manning's N = 0.013
NO, of pipes = 1 Required pipe flow = 2,871(CFS)
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 2.871(CFS)
Normal flow depth in pipe = 3,63(in,)
Flow top width inside pipe = 14.45(in,)
Critical Depth = 7,72(in,)
Pipe flow velocity = ll,26(Ft/s)
Travel time through pipe = 0,03 min.
Time of concentration (TC) = 3,93 min.
Process from Point/station 2003.000 to Point/Station 2003,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 0.510(AC.)
Runoff from this stream = 2,871(CFS)
Time of concentration = 3,93 min.
Rainfall intensity = 6.850(ln/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2
3
Qmax(l)
Qmax(2) =
Qmax(3) =
2 .446 7 ,57 5 242
5 141 7 ,30 5 368
2 871 3 .93 6 850
1,000 * 1,000 * 2 446) •f
0,976 * 1,000 * 5 141) +
0.765 * 1,000 * 2 871) + = 9. 663
1,000 * 0,964 * 2 446) +
1.000 * 1,000 * 5 141) +
0,784 * 1,000 * 2 871) + = 9. 748
1.000 * 0,519 * 2 446) +
1.000 * 0,539 * 5 141) +
1.000 * 1,000 * 2 871) + = 6. 912
Total of 3 streams to confluence:
Flow rates before confluence point:
2.446 5.141 2.871
Maximum flow rates at confluence using above data:
9.663 9.748 6.912
Area of streams before confluence:
1,270 1,150 0,510
Results of confluence:
Total flow rate = 9,748(CFS)
Time of concentration = 7,297 min.
Effective stream area after confluence = 2,930(Ac,)
Process from Point/Station 2003,000 to Point/Station 2007,000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 53,760(Ft.)
Downstream point/station elevation = 53,520(Ft.
Page 8
)
ecr2u
Pipe length = 24.60(Ft,) Slope = 0,0098 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 9,748(CFS)
Given pipe size = 24.00(ln,)
Calculated individual pipe flow = 9.748(CFS)
Normal flow depth in pipe = 11.09(in,)
Flow top width inside pipe = 23.93(In,)
Critical Depth = 13,41(ln,)
Pipe flow velocity = 6,87(Ft/s)
Travel time through pipe = 0,06 min.
Time of concentration (TC) = 7.36 min.
-l--f-l-++-f-(--f-fH--f++++-f+-f-f-f-f+-f++++++-l-+-f+-f+++++++-l-++-f+-f+
Process from Point/Station 2003,000 to Point/Station 2007.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 2.930(Ac.)
Runoff from this stream = 9.748(CFS)
Time of concentration = 7.36 min.
Rainfall intensity = 5.340(ln/Hr)
Program is now starting with Main Stream No, 2
-(--H-f-f+-f+++-f++++-f-f-f+-f+-f-f-f-hH-+++++++++-f+-f-f+-f-H-H++++^
Process from Point/station 2008.000 to Point/Station 2009,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL 3
(24,0 DU/A or Less )
impervious value, Ai = 0,650
Sub-Area C value = 0,710
Initial subarea total flow distance = 125.000(Ft,)
Highest elevation = 84,000(Ft,)
Lowest elevation = 82,500(Ft.)
Elevation difference = 1.500(Ft,) Slope = 1.200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65,00 (Ft)
for the top area slope value of 1,20 %, in a development type of
24.0 DU/A or Less
in Accordance with Figure 3-3
Initial Area Time of Concentration = 5,33 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(1,1-0.7100)*( 65,OOOA.5)/( 1,200A(l/3)3= 5,33
The initial area total distance of 125,00 (Ft.) entered leaves a
remaining distance of 60,00 (Ft,) Using Figure 3-4, the travel time for this distance is 1.00 minutes
for a distance of 60,00 (Ft,) and a slope of 1,20 %
with an elevation difference of 0,72(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
1,003 Minutes
Tt=[(ll,9*0.0114A3)/( 0.72)3A,385= 1,00
Total initial area Ti = 5.33 minutes from Figure 3-3 formula plus
1,00 minutes from the Figure 3-4 formula = 6,33 minutes
Rainfall intensity (I) = 5,884(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.710
Subarea runoff = 0,627(CFS)
Total initial stream area = 0.150(Ac.)
Page 9
ecr2u
++-l•-^-^-•^•^•-^++•^+4•+-f+++++•l--^^-+-l--^-f++•l--l-++•f-l-++++•f-l--^•f+-f-^+
Process from Point/Station 2009.000 to Point/Station 2010,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 82,500(Ft,) End of street segment elevation = 67,700(Ft.)
Length of street segment = 620.000(Ft,)
Height of curb above gutter flowline = 6.0(ln.)
Width of half street (curb to crown) = 44.000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft.)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft.)
Gutter hike from flowline = l,500(in,)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 2.798(CFS)
Depth of flow = 0.228(Ft.), Averaqe velocity = 2,715(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.664(Ft.)
Flow velocity = 2.71(Ft/s)
Travel time = 3,81 min, TC = 10,14 min.
Adding area flow to street
Rainfall intensity (I) = 4,343(In/Hr) for a 100.0 year storm
user specified 'C' value of 0.650 given for subarea
Rainfall intensity = 4,343(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.655 CA = 1,108
Subarea runoff = 4,183(CFS) for l,540(Ac.)
Total runoff = 4.810(CFS) Total area = 1.690(Ac.)
Street flow at end of street = 4.810(CFS) Half street flow at end of street = 2.405(CFS)
Depth of flow = 0,264(Ft,), Average velocity = 3.072(Ft/s)
Flow width (from curb towards crown)= 8,436(Ft,)
-l--t-+-^+-^^-+++++•f•f+++•f-l--f+•f•f-f-^•f+++•^-f+-^++•l--^+-^-^+++++-^
Process from Point/Station 2010.000 to Point/Station 2007,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 58.640(Ft,)
Downstream point/station elevation = 54.020(Ft,)
Pipe length = 48.09(Ft,) slope = 0,0961 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 4,810(CFS)
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 4,810(CFS)
Normal flow depth in pipe = 4.68(In,)
Flow top width inside pipe = 15.79(In.)
Critical Depth = 10,ll(ln.)
Pipe flow velocity = 13.19(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 10,20 min.
++++++++-l-+-f+-l--f+4--f-l--f+-f+-f-f-f+-f++-l--l-+H-+-f-l--t--f-f-f-(--(--f-f+-l^
process from Point/Station 2010,000 to Point/Station 2007,000
**** CONFLUENCE OF MAIN STREAMS ****
Page 10
ecr2u
The following data inside Main Stream is listed:
in Main stream number: 2
Stream flow area =
Runoff from this stream
Time of concentration =
Rainfall intensity =
Summary of stream data:
Stream
No.
Flow rate
(CFS)
1.690(Ac,)
4,810(CFS)
10.20 min.
4.326(ln/Hr)
TC
(min)
Rainfall Intensity
(in/Hr)
1
2
Qmax(l)
Qmax(2) =
748
810
7.36
10,20
,000
,000
0.810
1.000
1,000
0,722
1.000
1,000
5.340
4.326
9,748) +
4,810) +
9,748) +
4.810) +
13,219
12.708
Total of 2 main streams to confluence:
Flow rates before confluence point:
9,748 4,810
Maximum flow rates at confluence using above data:
13,219 12.708
Area of streams before confluence:
2,930 1,690
Results of confluence:
Total flow rate = 13,219(CFS)
Time of concentration = 7,357 min.
Effective stream area after confluence = 4.620(Ac.)
++++•f-f+++++^-++-^-^+++++•f-^•f-^•f+•f+-^-++•f-^•^-^+-^••^++-^-+++-^+++
Process from Point/Station 2007,000 to Point/Station 2011,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 53.520(Ft,)
Downstream point/station elevation = 52,370(Ft.)
Pipe length = 98.64(Ft,) Slope = 0,0117 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13,219(CFS)
Given pipe size = 24.00(ln,)
Calculated individual pipe flow = 13.219(CFS)
Normal flow depth in pipe = 12,59(ln,)
Flow top width inside pipe = 23,97(in.)
Critical Depth = 15,69(ln,)
Pipe flow velocity = 7,93(Ft/s)
Travel time through pipe = 0,21 min.
Time of concentration (TC) = 7.56 min.
Process from Point/Station 2011,000 to Point/Station 2011,700
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 52,370(Ft.)
Downstream point/station elevation = 42,200(Ft.)
Pipe length = 43.58(Ft.) Slope = 0,2334 Manning's N = 0,015
No, of pipes = 1 Required pipe flow = 13,219(CFS)
Page 11
ecr2u
Given pipe size = 24,00(in.)
Calculated individual pipe flow = 13.219(CFS)
Normal flow depth in pipe = 6,06(in,)
Flow top width inside pipe = 20,85(in,)
Critical Depth = 15,69(ln.)
Pipe flow velocity = 21,24(Ft/s)
Travel time through pipe = 0,03 min.
Time of concentration (TC) = 7.60 min.
End of computations, total study area = 4.620 (Ac.)
Page 12
ecr3u
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering software,(c)1991-2012 version 7,9
Rational method hydrology program based on
san Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/11/14
********* Hydrology Study Control Information **********
Program License serial Number 6324
Rational hydrology study storm event year is 100.0
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2,600
24 hour precipitation(inches) = 4,300
P6/P24 = 60,5%
San Diego hydrology manual 'C values used
Process from Point/Station 2012,000 to Point/Station 2013.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value =0.350
Initial subarea total flow distance = 300.000(Ft,)
Highest elevation = 101,600(Ft,)
Lowest elevation = 83,000(Ft,)
Elevation difference = 18,600(Ft,) Slope = 6,200 %
Top of initial Area Slope adjusted by User to 25,000 %
Bottom of initial Area Slope adjusted by User to 0.500 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 25,00 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
initial Area Time of Concentration = 4,62 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,3500)*( 100,000A,5)/( 25,000A(1/3)3= 4.62
The initial area total distance of 300.00 (Ft.) entered leaves a
remaining distance of 200.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 3,55 minutes
for a distance of 200,00 (Ft,) and a slope of 0.50 %
with an elevation difference of l,00(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
3,550 Minutes
Tt=[(11.9*0,0379A3)/( 1,00)3^.385= 3,55 . ^ -, -,
Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus
3,55 minutes from the Figure 3-4 formula = 8,17 minutes
Page 1
ecr3u
Rainfall intensity (I) = 4,992(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
subarea runoff = 0.716(CFS)
Total initial stream area = 0,410(Ac.)
Process from Point/Station 2013.000 to Point/Station 2013.100
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
Upstream point/station elevation = 77.140(Ft,)
Downstream point/station elevation = 76.330(Ft,)
Pipe length = 32,24(Ft.) Slope = 0,0251 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 0.716(CFS)
Given pipe size = 18.00(ln.)
Calculated individual pipe flow = 0,716(CFS)
Normal flow depth in pipe = 2,54(ln,)
Flow top width inside pipe = 12,54(in.)
Critical depth could not be calculated.
Pipe flow velocity = 4.69(Ft/s)
Travel time through pipe = 0.11 min.
Time of concentration (TC) = 8.28 min,
-f-i-++-f++++-i-++++++-f++-i--(--i-++-f-f+-f+++-f++-f-f+-f-i--f-f-f-i-+-^
Process from Point/Station 2013.100 to Point/Station 3001.000
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
Upstream point/station elevation = 76,000(Ft,)
Downstream point/station elevation = 73.140(Ft,)
Pipe length = 301.23(Ft.) Slope = 0,0095 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0,716(CFS)
Given pipe size = 18.00(ln,)
calculated individual pipe flow = 0,716(CFS)
Normal flow depth in pipe = 3.22(In,)
Flow top width inside pipe = 13.80(in.)
Critical depth could not be calculated.
Pipe flow velocity = 3,33(Ft/s)
Travel time through pipe = 1,51 min.
Time of concentration (TC) = 9,79 min.
Process from Point/Station 2013,100 to Point/Station 2013.100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0,410(Ac)
Runoff from this stream = 0,716(CFS)
Time of concentration = 9,79 min.
Rainfall intensity = 4,442(ln/Hr)
•fH--f+-H-H-f+-f-f-f+-H-f-f-f-f-f-f-f+-f-f-f4-++-H++-»-+-f-f++-(-+-(-++-f-l--l-+^
process from Point/Station 2004.000 to Point/Station 3000,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(24.0 DU/A or Less )
Page 2
ecr3u
impervious value, Ai = 0.650
sub-Area C Value = 0,710
Initial subarea total flow distance
Highest elevation = 86,100(Ft,)
Lowest elevation = 84,100(Ft,)
Elevation difference = 2.000(Ft.) Slope = 1.739 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of
24,0 DU/A or Less
In Accordance With Figure 3-3
initial Area Time of Concentration = 5.06 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1,8*(1.1-0.7100)*( 75.000A,5)/( 1,739A(l/3)3=
The initial area total distance of 115,00
remaining distance of 40.00 (Ft,)
using Figure 3-4, the travel time for this distance is
for a distance of 40.00 (Ft,) and a slope of 1,74 %
with an elevation difference of 0,70(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3''^.385 *60(min/hr)
0.636 Minutes
Tt=[(11.9*0,0076A3)/( 0,70)3A.385= 0,64
Total initial area Ti = 5,06 minutes from Figure 3-3 formula plus
0.64 minutes from the Figure 3-4 formula = 5.69 minutes
Rainfall intensity (i) = 6,301(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,710
Subarea runoff = 1.029(CFS)
Total initial stream area = 0.230(Ac,)
= 115.000(Ft,)
1,74 %, in a development type of
5,06
(Ft,) entered leaves a
0,64 minutes
process from Point/Station 3000,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
3001,000
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 57.17(Ft.) Slope =
NO. of pipes = 1 Required pipe flow
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 1.029(CFS)
Normal flow depth in pipe = 3.22(in,)
Flow top width inside pipe = 13.79(in,)
Critical Depth = 4,53(in.)
Pipe flow velocity = 4.81(Ft/s)
Travel time through pipe = 0,20 min.
Time of concentration (TC) = 5,89 min.
74,270(Ft,)
73,140(Ft,)
0,0198 Manning's N = 0,013
1,029(CFS)
Process from Point/Station 3001.000 to Point/Station 3001,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.230(Ac.)
Runoff from this stream = 1.029(CFS)
Time of concentration = 5.89 min.
Rainfall intensity = 6,163(in/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS)
TC
(mi n)
Rainfall intensity
(in/Hr)
Page 3
ecr3u
1 0.716 9.79 4,442
2 1.029 5.89 6.163
Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 0,716) +
0,721 * 1.000 * 1.029) + = 1.458
1,000 * 0.602 * 0,716) -i-
1,000 * 1.000 * 1,029) + = 1,460
Total of 2 streams to confluence:
Flow rates before confluence point:
0.716 1.029
Maximum flow rates at confluence using above data:
1,458 1.460
Area of streams before confluence:
0,410 0,230
Results of confluence:
Total flow rate = 1.460(CFS)
Time of concentration = 5.890 min.
Effective stream area after confluence = 0,640(Ac)
Process from Point/Station 3001.000 to Point/Station 3002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 72.810(Ft.)
Downstream point/station elevation = 71,020(Ft,)
Pipe length = 91,84(Ft,) slope = 0,0195 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 1.460(CFS)
Given pipe size = 18.00(in.)
calculated individual pipe flow = 1,460(CFS)
Normal flow depth in pipe = 3,84(in.)
Flow top width inside pipe = 14.74(in,)
critical Depth = 5.43(in.)
Pipe flow velocity = 5.30(Ft/s)
Travel time through pipe = 0.29 min.
Time of concentration (TC) = 6,18 min.
-f+-t-++-i--f-f++++++-f++-f+-f+-f-f-f-h+++-f-f++-f++++++-f+-f++-f++^
Process from Point/station 3002.000 to Point/Station 3002,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.640(Ac)
Runoff from this stream = 1,460(CFS)
Time of concentration = 6,18 min.
Rainfall intensity = 5,976(in/Hr)
+++++++++-f+-f-l--f-f+++-h+++++++-f-f++++-l-++-f++-f+-f4--f-f-f+++
Process from Point/Station 3002.000 to Point/Station 3002.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
user specified 'C' value of 0.630 given for subarea
Rainfall intensity (I) = 3,377(in/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 14.97 min. Rain intensity = 3.38(ln/Hr)
Total area = 54,860(AC,) Total runoff = 98.920(CFS)
Page 4
ecr3u
process from Point/Station 3002.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
3002,000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 54,860(AC,)
Runoff from this stream = 98,920(CFS)
Time of concentration = 14,97 min.
Rainfall intensity = 3.377(ln/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(mi n)
Rainfall Intensity
(In/Hr)
1
2
Qmax(l)
1,460
98,920
6.18
14.97
Qmax(2) =
1.000
1,000
0,565
1.000
1,000
0,413
1.000
1.000
5.976
3,377
1,460) +
98,920) -1-
1,460) +
98.920) +
42,289
99,745
Total of 2 streams to confluence:
Flow rates before confluence point:
1.460 98,920
Maximum flow rates at confluence using above data:
42.289 99,745
Area of streams before confluence:
0.640 54,860
Results of confluence:
Total flow rate = 99,745(CFS)
Time of concentration = 14,970 min.
Effective stream area after confluence = 55,500(Ac,)
Process from Point/Station 3002,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (user specified size) ****
3003,000
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 153,96(Ft.) Slope =
No, of pipes = 1 Required pipe flow
Given pipe size = 48,00(ln.)
Calculated individual pipe flow = 99,745(CFS)
Normal flow depth in pipe = 29.48(in,)
Flow top width inside pipe = 46,73(in,)
Critical Depth = 36,34(ln,)
Pipe flow velocity = 12.31(Ft/s)
Travel time through pipe = 0.21 min.
Time of concentration (TC) = 15,18 min.
70,690(Ft,)
69,160(Ft.)
0,0099 Manning's N = 0,013
99,745(CFS)
process from Point/Station 3003,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
3003.000
The following data inside Main Stream is listed:
in Main stream number: 1
Stream flow area = 55,500(Ac,)
Runoff from this stream = 99.745(CFS)
Time of concentration = 15.18 min.
Page 5
ecr3u
Rainfall intensity = 3.347(in/Hr)
Program is now starting with Main stream NO, 2
Process from Point/Station 3004,000 to Point/Station
**** INITIAL AREA EVALUATION ****
3005.000
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL 3
(7.3 DU/A or Less ) Impervious value, Ai = 0,400
Sub-Area C value = 0.570
Initial subarea total flow distance = 300.000(Ft,)
Highest elevation = 91,700(Ft.)
Lowest elevation = 82,200(Ft.)
Elevation difference = 9.500(Ft.) Slope = 3.167 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95,00 (Ft)
for the top area slope value of 3.17 %, in a development type of
7.3 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 6.33 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,5700)*( 95.000A.5)/( 3,167A(l/3)3= 6.33
The initial area total distance of 300.00 (Ft,) entered leaves a
remaining distance of 205,00 (Ft,)
Using Figure 3-4, the travel time for this distance is 1,78 minutes for a distance of 205,00 (Ft,) and a slope of 3,17 %
with an elevation difference of 6.49(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
1,778 Minutes
Tt=[(ll,9*0,0388A3)/( 6,49)3^,385= 1.78
Total initial area Ti = 6.33 minutes from Figure 3-3 formula plus 1.78 minutes from the Figure 3-4 formula = 8,11 minutes
Rainfall intensity (I) = 5,015(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.570
Subarea runoff = 3,573(CFS)
Total initial stream area = 1.250(Ac,)
Process from Point/Station 3005,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
3005,000
Along Main stream number: 2 in normal stream number 1
Stream flow area = 1,250(Ac)
Runoff from this stream = 3.573(CFS)
Time of concentration = 8,11 min.
Rainfall intensity = 5,015(ln/Hr)
Process from Point/Station 3006,000 to Point/Station
**** INITIAL AREA EVALUATION ****
3005.000
Decimal fraction soil
Decimal
Decimal
Decimal
fraction soil
fraction soil
fraction soil
group A = 0.000
group B = 0,000
group C = 0.000
group D = 1.000
Page 6
ecr3u
[INDUSTRIAL area type 3
(General Industrial )
impervious value, Ai = 0,950
Sub-Area C value = 0,870
initial subarea total flow distance = 148,000(Ft,)
Highest elevation = 86,000(Ft.) Lowest elevation = 82.200(Ft,)
Elevation difference = 3,800(Ft,) Slope = 2,568 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80,00 (Ft)
for the top area slope value of 2,57 %, in a development type of
General industrial
In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.70 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,8700)*( 8O,000A,5)/( 2.568A(1/3)3= 2,70
The initial area total distance of 148,00 (Ft,) entered leaves a
remaining distance of 68.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.82 minutes
for a distance of 68.00 (Ft.) and a slope of 2,57 %
with an elevation difference of l,75(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
0.824 Minutes
Tt=[(11.9*0,0129A3)/( 1,75)3^,385= 0.82
Total initial area Ti = 2.70 minutes from Figure 3-3 formula plus
0,82 minutes from the Figure 3-4 formula = 3.53 minutes
Calculated TC of 3.528 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (i) = 6.850(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is c = 0.870 Subarea runoff = 1.371(CFS)
Total initial stream area = 0,230(Ac)
Process from Point/Station 3005.000 to Point/Station 3005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,230(AC)
Runoff from this stream = 1,371(CFS)
Time of concentration = 3.53 min.
Rainfall intensity = 6,850(in/Hr)
Summary of stream data:
stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (in/Hr)
1 3,573 8,11 5,015
2 1.371 3.53 6,850 Qmax(l) =
Qmax(2) =
1.000 * 1.000 * 3,573) +
0.732 * 1.000 * 1,371) + = 4,576
1,000 * 0.435 * 3,573) +
1,000 * 1,000 * 1,371) -f = 2,925
Total of 2 streams to confluence:
Flow rates before confluence point:
3,573 1.371
Maximum flow rates at confluence using above data:
4,576 2.925
Page 7
ecr3u
Area of streams before confluence:
1.250 0.230
Results of confluence:
Total flow rate = 4,576(CFS) Time of concentration = 8.110 min.
Effective stream area after confluence = l,480(Ac,)
Process from Point/Station 3005.000 to Point/Station 3007,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 82,200(Ft,)
End of street segment elevation = 80,200(Ft.)
Length of street segment = 180,000(Ft.) Height of curb above gutter flowline = 6.0(ln,) width of half street (curb to crown) = 44.000(Ft,) Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft.)
Gutter hike from flowline = l,500(ln.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5,159(CFS)
Depth of flow = 0.298(Ft.), Average velocity = 2.332(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10,172(Ft,)
Flow velocity = 2,33(Ft/s)
Travel time = 1,29 min, TC = 9,40 min. Adding area flow to street
Rainfall intensity (I) = 4.560(ln/Hr) for a 100.0 year storm
user specified 'C value of 0,790 given for subarea Rainfall intensity = 4,560(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,654 CA = 1,236
Subarea runoff = 1,063(CFS) for 0.410(Ac,)
Total runoff = 5.639(CFS) Total area = l,890(Ac,)
Street flow at end of street = 5.639(CFS)
Half street flow at end of street = 2.819(CFS)
Depth of flow = 0,306(Ft.), Average velocity = 2.383(Ft/s)
Flow width (from curb towards crown)= 10.546(Ft,)
++++++^-++-(-++-f-^-l-^-+++-l-++-^+-^++-^+•^+++++4•++^-+-f-l-•f+4•-^++
Process from Point/Station 3007.000 to Point/Station 3003,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 73,640(Ft,)
Downstream point/station elevation = 73,050(Ft.)
Pipe length = 58,76(Ft.) Slope = 0.0100 Manning's N = 0,013
NO. of pipes = 1 Required pipe flow = 5,639(CFS)
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 5.639(CFS)
Normal flow depth in pipe = 9,38(in,)
Flow top width inside pipe = 17.98(In,)
Critical Depth = 10.98(in.)
Pipe flow velocity = 6.06(Ft/s)
Travel time through pipe = 0,16 min.
Page 8
Time of concentration (TC) =
ecr3u
9,56 min.
Process from Point/Station 3003.100 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
3003.000
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 37.00(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 5,639(CFS)
Normal flow depth in pipe = 6.46(in,)
Flow top width inside pipe = 17,27(ln,)
critical Depth = 10.98(ln.)
Pipe flow velocity = 9.88(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 9.62 min.
72.720(Ft,)
71,320(Ft,)
0,0378 Manning's N = 0,013
5.639(CFS)
Process from Point/Station 3003,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
in Main Stream number: 2
Stream flow area = 1.890(Ac,)
Runoff from this stream = 5.639(CFS)
Time of concentration = 9,62 min.
Rainfall intensity = 4.492(ln/Hr)
Summary of stream data:
3003.000
Stream
NO.
Flow rate
(CFS)
TC
(mi n)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
99,745
5,639
15.18
9,62
1,000 *
0,745 *
1,000 *
1,000 *
1,000 *
1,000 *
0.634 *
1.000 *
3,347
4,492
99,745) -I-
5,639) -t-
99,745) +
5,639) +
103,947
68,857
Total of 2 main streams to confluence:
Flow rates before confluence point:
99,745 5,639
Maximum flow rates at confluence using above data:
103,947 68,857
Area of streams before confluence:
55,500 1.890
Results of confluence:
Total flow rate = 103.947(CFS)
Time of concentration = 15.178 min.
Effective stream area after confluence = 57.390(Ac,)
++++++++++-f-f++-f+++-f-f-H-f-f+-f+-f+-f++-f++-f-f-f+-^-f-f-f-f++++-t-+
Process from Point/Station 3003,000 to point/station 3010,000
Page 9
ecr3u
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 68.820(Ft,)
Downstream point/station elevation = 65.980(Ft,)
Pipe length = 147,97(Ft,) slope = 0,0192 Manning's N = 0.013
NO. of pipes = 1 Required pipe flow = 103,947(CFS)
Given pipe size = 48,00(ln,)
Calculated individual pipe flow = 103,947(CFS)
Normal flow depth in pipe = 24,63(In,)
Flow top width inside pipe = 47,98(in.)
Critical Depth = 37,05(in,)
Pipe flow velocity = 16.01(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 15.33 min.
Process from Point/Station 3010,000 to Point/Station 3010,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 57,390(Ac,)
Runoff from this stream = 103.947(CFS)
Time of concentration = 15.33 min.
Rainfall intensity = 3.325(ln/Hr)
Process from Point/Station 3008.000 to Point/Station 3009,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[INDUSTRIAL area type 3
(General industrial )
Impervious value, Ai = 0,950
Sub-Area C value = 0,870
Initial subarea total flow distance = 285,000(Ft,)
Highest elevation = 84.200(Ft.)
Lowest elevation = 78.400(Ft,)
Elevation difference = 5,800(Ft,) Slope = 2.035 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70,00 (Ft)
for the top area slope value of 2,04 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Time of concentration = 2,73 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0,8700)*( 70.000A.5)/( 2,035A(l/3)3= 2.73
The initial area total distance of 285,00 (Ft.) entered leaves a
remaining distance of 215,00 (Ft.)
using Figure 3-4, the travel time for this distance is 2,19 minutes
for a distance of 215,00 (Ft.) and a slope of 2,04 %
with an elevation difference of 4.38(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
2,187 Minutes
Tt=[(11.9*0,0407A3)/( 4,38)3^,385= 2.19
Total initial area Ti = 2.73 minutes from Figure 3-3 formula plus
2,19 minutes from the Figure 3-4 formula = 4.92 minutes
calculated TC of 4.920 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Page 10
ecr3u
Rainfall intensity (I) = 6,850(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 2,563(CFS)
Total initial stream area = 0,430(Ac,)
Process from Point/Station 4008,000 to Point/Station 3009,000
**** SUBAREA FLOW ADDITION ****
Calculated TC of 4,920 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
Time of concentration = 4.92 min.
Rainfall intensity = 6.850(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,694 CA = 0,451
Subarea runoff = 0.527(CFS) for 0,220(Ac) Total runoff = 3.090(CFS) Total area = 0.650(Ac,)
Process from Point/Station 3009,000 to Point/Station 3010.000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 61.340(Ft.)
Downstream point/station elevation = 60.650(Ft.)
Pipe length = 34.25(Ft,) Slope = 0.0201 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 3.090(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 3.090(CFS) Normal flow depth in pipe = 5,56(in,)
Flow top width inside pipe = 16,63(in,)
Critical Depth = 8,03(in.)
Pipe flow velocity = 6.65(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 5,01 min.
Process from Point/Station 3010.000 to Point/Station 3010,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,650(Ac.)
Runoff from this stream = 3,090(CFS)
Time of concentration = 5,01 min.
Rainfall intensity = 6,845(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO. (CFS) (min) (in/Hr)
1 103,947 15.33 3.325
Page 11
Qmax(l) =
Qmax(2) =
ecr3u
3,090 5,01 6,845
1,000 * 1.000 * 103,947) +
0.486 * 1,000 * 3,090) + = 105,448
1.000 * 0.326 * 103.947) H-
1.000 * 1,000 * 3,090) + = 37,027
Total of 2 streams to confluence: Flow rates before confluence point:
103.947 3,090
Maximum flow rates at confluence using above data:
105,448 37,027
Area of streams before confluence:
57.390 0,650
Results of confluence:
Total flow rate = 105,448(CFS)
Time of concentration = 15,332 min.
Effective stream area after confluence = 58,040(Ac,)
Process from Point/Station 3010,000 to Point/Station 4000.000 **** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 65.650(Ft,)
Downstream point/station elevation = 61,690(Ft.) Pipe length = 196,00(Ft,) Slope = 0,0202 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 105,448(CFS)
Given pipe size = 48.00(ln,)
Calculated individual pipe flow = 105,448(CFS)
Normal flow depth in pipe = 24,47(in,)
Flow top width inside pipe = 47.99(ln.)
Critical Depth = 37.31(ln,)
Pipe flow velocity = 16,38(Ft/s)
Travel time through pipe = 0.20 min.
Time of concentration (TC) = 15.53 min.
Process from Point/Station 4000,000 to Point/Station 4000,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
in Main Stream number: 1
Stream flow area = 58.040(Ac)
Runoff from this stream = 105,448(CFS)
Time of concentration = 15,53 min.
Rainfall intensity = 3,298(ln/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 4001.000 to Point/Station 4002.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL
(7,3 DU/A or Less )
Impervious value, Ai = 0,400
Page 12
ecr3u
sub-Area C value = 0,570
Initial subarea total flow distance = 180,000(Ft,)
Highest elevation = 91.800(Ft,)
Lowest elevation = 90,000(Ft,)
Elevation difference = l,800(Ft.) Slope = 1,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65,00 (Ft)
for the top area slope value of 1,00 %, ina development type of
7.3 DU/A or Less
In Accordance with Figure 3-3
initial Area Time of Concentration = 7,69 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,57O0)*( 65.000A,5)/( 1.000A(l/3)3= 7.69
The initial area total distance of 180,00 (Ft.) entered leaves a
remaining distance of 115.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 1,78 minutes
for a distance of 115,00 (Ft,) and a slope of 1,00 %
with an elevation difference of 1.15(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
= 1,776 Minutes
Tt=[(ll,9*0,0218A3)/( 1.15)3^.385= 1,78
Total initial area Ti = 7,69 minutes from Figure 3-3 formula plus
1,78 minutes from the Figure 3-4 formula = 9.47 minutes
Rainfall intensity (I) = 4,538(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.570
Subarea runoff = 0,776(CFS)
Total initial stream area = 0,300(Ac,)
Process from Point/Station 4002.000 to Point/Station 4003.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 90.000(Ft.)
End of street segment elevation = 84,900(Ft,)
Length of street segment = 450,000(Ft.)
Height of curb above gutter flowline = 6,0(in,) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 5,500(Ft,)
Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = 2,000(ln.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.170(CFS)
Depth of flow = 0.318(Ft,), Average velocity = 2,250(Ft/s)
Streetflow hydraulics at midpoint or street travel:
Halfstreet flow width = 9.079(Ft,)
Flow velocity = 2,25(Ft/s)
Travel time = 3.33 min, TC = 12,80 min.
Adding area flow to street
Rainfall intensity (l) = 3,736(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000
Decimal fraction soil group c = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL 3
(7,3 DU/A or Less ) Page 13
ecr3u
Impervious value, Ai = 0,400
sub-Area C value =0,570 ^
Rainfall intensity = 3,736(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,570 CA = 1,995
subarea runoff = 6.677(CFS) for 3,200(Ac,)
Total runoff = 7,453(CFS) Total area = 3,500(Ac,)
Street flow at end of street = 7,453(CFS)
Half street flow at end of street = 3,726(CFS)
Depth of flow = 0.368(Ft,), Average velocity = 2,577(Ft/s)
Flow width (from curb towards crown)= ll,591(Ft.)
Process from Point/Station 4003,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
4004,000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 70.00(Ft,) Slope =
NO. of pipes = 1 Required pipe flow =
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 7,453(CFS)
Normal flow depth in pipe = 4.64(ln,)
Flow top width inside pipe = 15,75(In.)
Critical Depth = 12,70(in,)
Pipe flow velocity = 20,66(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 12.86 min.
81,400(Ft,)
64.770(Ft.)
0.2376 Manning's N = 0.013
7,453(CFS)
Process from Point/Station 4003.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
4004.000
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 3,500(Ac,)
Runoff from this stream = 7,453(CFS)
Time of concentration = 12.86 min.
Rainfall intensity = 3,725(ln/Hr)
Process from Point/Station 4005,000 to Point/Station
**** INITIAL AREA EVALUATION ****
4006,000
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(43,0 DU/A or Less )
Impervious value, Ai = 0,800
sub-Area C value = 0,790
Initial subarea total flow distance = 430.000(Ft,)
Highest elevation = 82.600(Ft,)
Lowest elevation = 70,800(Ft.)
Elevation difference = 11.800(Ft,) Slope = 2,744 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft)
for the top area slope value of 2.74 %, in a development type of
43.0 DU/A or Less
In Accordance With Figure 3-3
Page 14
3,67
leaves a
2,81 minutes
ecr3u
initial Area Time of Concentration = 3,67 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(1.1-0.7900)*( 85.000A.5)/( 2.744A(1/3)3= ^
The initial area total distance of 430,00 (Ft.) entered
remaining distance of 345.00 (Ft,)
Using Figure 3-4, the travel time for this distance is
for a distance of 345,00 (Ft.) and a slope of 2,74 %
with an elevation difference of 9,47(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
2,805 Minutes
Tt=[(11.9*0,0653A3)/( 9,47)3^,385= 2,81
Total initial area Ti = 3.67 minutes from Figure 3-3 formula
2,81 minutes from the Figure 3-4 formula = 6,48 minutes
Rainfall intensity (I) = 5,796(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 3.480(CFS)
Total initial stream area = 0,760(Ac)
plus
process from Point/Station 4006,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
4004,000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 8,03(Ft.) Slope =
NO. of pipes = 1 Required pipe flow
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 3.480(CFS)
Normal flow depth in pipe = 6,72(in,)
Flow top width inside pipe = 17.41(in,)
critical Depth = 8.54(in.)
Pipe flow velocity = 5,78(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 6,50 min.
64.890(Ft,)
64.790(Ft,)
0,0125 Manning's N = 0.013
3,480(CFS)
Process from point/Station 4006.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
4004,000
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0.760(Ac)
Runoff from this stream = 3.480(CFS)
Time of concentration = 6.50 min.
Rainfall intensity = 5,782(in/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
7,453
3,480
12,86
6.50
1.000 *
0,644 *
1.000 *
1.000 *
1,000 *
1.000 *
0,506 *
1.000 *
3.725
5.782
7,453) +
3,480) +
7,453)
3.480)
9,694
7.249
Total of 2 streams to confluence:
Flow rates before confluence point:
Page 15
ecr3u
7.453 3.480
Maximum flow rates at confluence using above data:
9.694 7.249
Area of streams before confluence:
3.500 0.760
Results of confluence:
Total flow rate = 9.694(CFS)
Time of concentration = 12.857 min.
Effective stream area after confluence = 4,260(Ac,)
Process from Point/Station 4004.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
4000.000
64.230(Ft,)
63.360(Ft. )
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 86.50(Ft,) Slope = 0,0101 Manning's N = 0.013
NO, of pipes = 1 Required pipe flow = 9.694(CFS)
Given pipe size = 24.00(ln,)
Calculated individual pipe flow = 9.694(CFS)
Normal flow depth in pipe = 10.96(in,)
Flow top width inside pipe = 23,91(ln.)
Critical Depth = 13.37(ln.)
Pipe flow velocity = 6,94(Ft/s)
Travel time through pipe = 0.21 min.
Time of concentration (TC) = 13.07 min.
Process from Point/Station 4000.000 to Point/station
**** CONFLUENCE OF MAIN STREAMS ****
4000.000
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 4,260(Ac)
Runoff from this stream = 9,694(CFS)
Time of concentration = 13.07 min.
Rainfall intensity = 3,687(in/Hr)
Program is now starting with Main Stream No, 3
Process from Point/Station
**** INITIAL AREA EVALUATION
4008,000 to Point/Station 4009,000
****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
sub-Area C Value = 0.350
Initial subarea total flow distance =
Highest elevation = 114,800(Ft,)
Lowest elevation = 100,400(Ft,)
Elevation difference = 14,400(Ft,) Slope = 9.600 %
Top of initial Area Slope adjusted by User to 30,000 %
Bottom of initial Area slope adjusted by user to 2,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 30.00 %, in a development type of
Page 16
3
150.000(Ft,)
ecr3u
Permanent open Space
In Accordance with Figure 3-3
Initial Area Time of concentration = 4.34 minutes
TC = [l,8*(l.l-c)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0.3500)*( 100,000A.5)/( 30.000A(1/3)3= 4.34
The initial area total distance of 150,00 (Ft,) entered leaves a
remaining distance of 50.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 0,72 minutes
for a distance of 50.00 (Ft,) and a slope of 2,00 %
with an elevation difference of 1.00(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
0,716 Minutes
Tt=[(ll,9*0.0095A3)/( 1.00)3A.385= 0,72 ^ ^
Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus
0.72 minutes from the Figure 3-4 formula = 5.06 minutes
Rainfall intensity (I) = 6.797(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
subarea runoff = 0.214(CFS)
Total initial stream area = 0.090(Ac.)
Process from Point/station 4009.000 to Point/Station 4010.000
**** IMPROVED CHANNEL TRAVEL TIME ****
upstream point elevation = 99.400(Ft.)
Downstream point elevation = 89,100(Ft,)
channel length thru subarea = 320,000(Ft,)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 1,500
Slope or 'z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel = 0,575(CFS)
Manning's 'N' = 0,015
Maximum depth of channel = l,000(Ft.)
Flow(q) thru subarea = 0,575(CFS)
Depth of flow = 0.295(Ft.), Average velocity = 4.393(Ft/s)
channel flow top width = 0.886(Ft.)
Flow velocity = 4,39(Ft/s)
Travel time = 1,21 min.
Time of concentration = 6,27 min.
critical depth = 0,391(Ft,)
Adding area flow to channel
Rainfall intensity (l) = 5,917(ln/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group s = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Rainfall intensity = 5.917(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0,147
subarea runoff = 0,656(CFS) for 0,330(Ac,)
Total runoff = 0,870(CFS) Total area = 0,420(Ac)
Depth of flow = 0,345(Ft,), Average velocity = 4,872(Ft/s)
Critical depth = 0.461(Ft,)
Process from Point/Station 4009,000 to Point/Station 4010.000
**** CONFLUENCE OF MINOR STREAMS ****
Page 17
ecr3u
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 0.420(Ac,)
Runoff from this stream = 0.870(CFS)
Time of concentration = 6.27 min.
Rainfall intensity = 5,917(in/Hr)
Process from Point/Station 4011.000 to Point/Station
**** INITIAL AREA EVALUATION ****
4010.000
3
= 290,000(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
initial subarea total flow distance
Highest elevation = 99.000(Ft.)
Lowest elevation = 89,100(Ft,)
Elevation difference = 9,900(Ft.) Slope = 3.414 %
Top of Initial Area Slope adjusted by User to 30,000 %
Bottom of Initial Area Slope adjusted by User to 2,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
initial Area Time of Concentration = 4,34 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0,3500)*( 100.000A.5)/( 30,OOOA(l/3)]= 4,34
The initial area total distance of 290,00 (Ft.) entered leaves a remaining distance of 190,00 (Ft,)
using Figure 3-4, the travel time for this distance is
for a distance of 190,00 (Ft.) and a slope of 2,00 %
with an elevation difference of 3,80(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
2.001 Minutes
Tt=[(11.9*0.0360A3)/( 3,80)3A,385= 2.00
Total initial area Ti = 4,34 minutes from Figure 3-3 formula plus
2.00 minutes from the Figure 3-4 formula = 6.35 minutes
Rainfall intensity (I) = 5,874(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,493(CFS)
Total initial stream area = 0,240(Ac,)
2.00 minutes
Process from Point/Station 4011,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
4010.000
Along Main Stream number: 3 in normal stream number 2
Stream flow area = 0,240(Ac,)
Runoff from this stream = 0,493(CFS)
Time of concentration = 6,35 min.
Rainfall intensity = 5,874(ln/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(mi n) Page 18
Rainfall intensity
(in/Hr)
ecr3u
1
2
Qmax(l)
Qmax(2) =
0.870
0,493
1.000
1,000
6,27
6,35
5.917
5.874
0,993
1,000
1,000
0,989
1,000
1.000
0.870) +
0.493) +
0.870) +
0.493) +
1.358
1,357
Total of 2 streams to confluence:
Flow rates before confluence point:
0,870 0.493
Maximum flow rates at confluence using above data:
1,358 1,357
Area of streams before confluence:
0,420 0,240
Results of confluence:
Total flow rate = 1,358(CFS)
Time of concentration = 6.275 min.
Effective stream area after confluence = 0,660(Ac,)
Process from Point/Station 4010,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (user specified size) ****
4010.100
Upstream point/station elevation = 84,000(Ft.)
Downstream point/station elevation = 65,690(Ft,)
Pipe length = 25,00(Ft,) Slope = 0,7324 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 1,358(CFS)
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 1.358(CFS) Normal flow depth in pipe = l,54(in,)
Flow top width inside pipe = 10,08(in,)
Critical Depth = 5,23(in,) Pipe flow velocity = 18,50(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (TC) = 6,30 min.
#
Process from Point/Station 4010,100 to Point/Station
**** SUBAREA FLOW ADDITION ****
4010,100
.903(ln/Hr) for a
0.000
0,000
0.000
1.000
3
100,0 year storm Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B Decimal fraction soil group c
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
impervious value, Ai = 0,000
sub-Area c value =0,350
Time of concentration = 6,30 min.
Rainfall intensity = 5,903(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,392
subarea runoff = 0,956(CFS) for 0,460(Ac)
Total runoff = 2.314(CFS) Total area = 1,120(AC)
Page 19
ecr3u
Process from Point/Station 4010.100 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
4000,000
Upstream point/station elevation =
Downstream point/station elevation = Pipe length = 30,00(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln.)
Calculated individual pipe flow = 2,314(CFS)
Normal flow depth in pipe = 3.81(in.)
Flow top width inside pipe = 14,71(ln.)
critical Depth = 6,90(in.)
Pipe flow velocity = 8.46(Ft/s)
Travel time through pipe = 0,06 min.
Time of concentration (TC) = 6,36 min.
65,360(Ft,)
63,860(Ft.)
0.0500 Manning's N = 0,013
2,314(CFS)
Process from Point/Station 4000,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
4000.000
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = l,120(Ac.)
Runoff from this stream = 2.314(CFS)
Time of concentration = 6,36 min.
Rainfall intensity = 5.868(ln/Hr)
Summary of stream data:
Stream
NO.
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1 :
2
3
Qmax(l)
Qmax(2) =
Qmax(3) =
448 15 53
694 13 07
314 6 36
1,000 * 1.000 *
0,894 * 1,000 *
0,562 * 1.000 *
1,000 * 0.841 *
1,000 * 1.000 *
0,628 * 1,000 *
1,000 * 0,409 *
1,000 * 0,487 *
1.000 * 1.000 *
3,298
3,687
5,868
105.448) +
9.694) +
2.314) +
105.448) +
9.694) +
2.314) -4-
105,448) +
9,694) +
2,314) + =
115,420
99,850
50,186
Total of 3 main streams to confluence:
Flow rates before confluence point:
105,448 9,694 2,314
Maximum flow rates at confluence using above data:
115.420 99,850 50.186
Area of streams before confluence:
58,040 4.260 1,120
Results of confluence:
Total flow rate = 115.420(CFS)
Time of concentration = 15,532 min.
Effective stream area after confluence =
Page 20
63,420(Ac,)
ecr3u
Process from Point/Station 4000,000 to Point/Station 4011,300
**** PIPEFLOW TRAVEL TIME (user Specified size) ****
Upstream point/station elevation = 61,360(Ft.)
Downstream point/station elevation = 57,990(Ft,)
Pipe length = 90,49(Ft,) Slope = 0,0372 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 115,420(CFS)
Given pipe size = 48,00(in,)
Calculated individual pipe flow = 115.420(CFS)
Normal flow depth in pipe = 21.59(ln,)
Flow top width inside pipe = 47.76(ln.)
Critical Depth = 38.89(ln,)
Pipe flow velocity = 21,05(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 15,60 min.
Process from Point/Station 4011.300 to Point/Station 4011,300
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 63,420(Ac,)
Runoff from this stream = 115,420(CFS)
Time of concentration = 15,60 min.
Rainfall intensity = 3.288(In/Hr)
+-f++-^++•^+-^-+•f•f•^-^++++++++-^-+•f-^-^-(•+-l--^++++++-^++++-^+++
Process from Point/station 4011,100 to Point/Station 4011.200
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0,350
Initial subarea total flow distance = 170.000(Ft,)
Highest elevation = 90,000(Ft,)
Lowest elevation = 67,800(Ft,)
Elevation difference = 22,200(Ft,) Slope = 13,059 %
Top of Initial Area slope adjusted by user to 25.000 %
Bottom of Initial Area slope adjusted by user to 25,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 25,00 %, in a development type of
Permanent open Space
In Accordance With Figure 3-3
Initial Area Time of concentration = 4,62 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0.3500)*( 100,000A.5)/( 25,000A(1/3)3= 4,62
The initial area total distance of 170,00 (Ft,) entered leaves a
remaining distance of 70.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.35 minutes
for a distance of 70,00 (Ft,) and a slope of 25,00 %
with an elevation difference of 17,50(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
Page 21
ecr3u
0,351 Minutes
Tt=[(ll,9*0.0133A3)/( 17,50)3A,385= 0,35
Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus
0.35 minutes from the Figure 3-4 formula = 4,97 minutes
Calculated TC of 4,968 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (l) = 6,850(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0.456(CFS)
Total initial stream area = 0,190(Ac.)
Process from Point/Station 4011,200 to Point/Station 4011.300
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 60,000(Ft,)
Downstream point/station elevation = 59,240(Ft.)
Pipe length = 13,72(Ft,) Slope = 0,0554 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 0.456(CFS)
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 0,456(CFS)
Normal flow depth in pipe = 1.70(ln,)
Flow top width inside pipe = 10,51(ln.)
critical Depth = 3.00(ln,)
Pipe flow velocity = 5,40(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 5,01 min.
-(.+++++-f+++-f++-f-f+-i-++-(--f-f-f-f+++-f+-f-f--t-+++++-f++++++-f++
Process from Point/Station 4011.300 to Point/Station 4011,300
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 2
Stream flow area = 0.190(Ac)
Runoff from this stream = 0,456(CFS)
Time of concentration = 5,01 min.
Rainfall intensity = 6,841(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (In/Hr)
1 115.420 15.60 3.288
2 0.456 5.01 6,841
Qmax(l) =
Qmax(2) =
1,000 * 1,000 * 115,420) +
0.481 * 1.000 * 0,456) + = 115,639
1,000 * 0,321 * 115,420) +
1,000 * 1,000 * 0,456) + = 37,516
Total of 2 streams to confluence:
Flow rates before confluence point:
115,420 0,456
Maximum flow rates at confluence using above data:
115.639 37,516
Area of streams before confluence:
63,420 0.190
Results of confluence:
Total flow rate = 115,639(CFS)
Page 22
ecr3u
Time of concentration = 15,603 min. Effective stream area after confluence = 63.610 (AC)
Process from Point/Station 4011,300 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
5000,000
Upstream point/station elevation = 57,990(Ft,)
Downstream point/station elevation = 47,160(Ft,)
Pipe length = 290,51(Ft,) Slope = 0.0373 Manninq's N = 0.013
NO. of pipes = 1 Required pipe flow = 115,639(CFS)
Given pipe size = 48.00(in,)
Calculated individual pipe flow = 115,639(CFS)
Normal flow depth in pipe = 21,61(in,)
Flow top width inside pipe = 47,76(in,)
critical Depth = 38,93(in.)
Pipe flow velocity = 21.07(Ft/s)
Travel time through pipe = 0.23 min.
Time of concentration (TC) = 15,83 min.
Process from Point/Station 5000,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5000,000
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 63,610(Ac)
Runoff from this stream = 115.639(CFS)
Time of concentration = 15.83 min. Rainfall intensity = 3.257(ln/Hr)
Process from Point/Station
**** INITIAL AREA EVALUATION
5001.000 to Point/Station 5002.000
3
423,000(Ft,)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL
(43.0 DU/A or Less )
impervious value, Ai = 0,800 Sub-Area C value = 0,790
Initial subarea total flow distance = Highest elevation = 73.800(Ft.)
Lowest elevation = 58.400(Ft.)
Elevation difference = 15.400(Ft,) Slope = 3,641 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 3.64 %, in a development type of
43,0 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 3.34 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(1.1-0,7900)*( 85,OOOA,5)/( 3.641A(l/3)3= 3,34
The initial area total distance of 423,00 (Ft,) entered leaves a
remaining distance of 338,00 (Ft,)
using Figure 3-4, the travel time for this distance is
for a distance of 338,00 (Ft.) and a slope of 3,64 %
with an elevation difference of 12,31(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
Page 23
2,48 minutes
ecr3u
2.476 Minutes
Tt=[(11.9*0,0640A3)/( 12.31)]A.385= 2.48
Total initial area Ti = 3.34 minutes from Figure 3-3 formula plus
2.48 minutes from the Figure 3-4 formula = 5.82 minutes
Rainfall intensity (I) = 6.211(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 2,551(CFS)
Total initial stream area = 0,520(Ac,)
+++++4.++++++++++++++++++++++++-t-++-f-f+++++-f+-f++-l-+-f-f+-f+
Process from Point/Station 5002,000 to Point/Station 5000,000
**** PIPEFLOW TRAVEL TIME (user Specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 99.73(Ft,) Slope =
NO. of pipes = 1 Required pipe flow
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 2.551(CFS)
Normal flow depth in pipe = 5,19(in,)
Flow top width inside pipe = 16,31(ln.)
Critical Depth = 7.26(in.)
Pipe flow velocity = 6,05(Ft/s)
Travel time through pipe = 0,27 min.
Time of concentration (TC) = 6,10 min.
48,730(Ft,)
46,940(Ft.)
0.0179 Manning's N = 0.013
2,551(CFS)
++-|-+++++-f-f-f.f-F+++-f+++++++-f+-l-+-f-f++-f++++-f++++++-f+-f-f
Process from Point/Station 5000.000 to Point/Station 5000,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,520(Ac)
Runoff from this stream = 2.551(CFS)
Time of concentration = 6.10 min.
Rainfall intensity = 6,029(ln/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS) TC
(mi n)
Rainfall intensity
(In/Hr)
Qmax(l) =
Qmax(2) =
115.639
2,551
15.83
6.10
1,000 *
0,540 *
1.000 *
1,000 *
1.000 *
1.000 *
0.385 *
1,000 *
3.257
6.029
115.639) -I-
2,551) +
115,639) +
2,551) +
117,017
47,067
Total of 2 streams to confluence:
Flow rates before confluence point:
115,639 2.551
Maximum flow rates at confluence using above data:
117,017 47.067
Area of streams before confluence:
63,610 0,520
Results of confluence:
Total flow rate = 117,017(CFS)
Time of concentration = 15,833 min.
Effective stream area after confluence = 64.130(Ac,)
Page 24
ecr3u
Process from Point/Station 5000,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
5000,200
46,610(Ft,)
46.250(Ft.)
0.0070 Manning's
117,017(CFS)
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 51,56(Ft,) Slope =
NO, of pipes = 1 Required pipe flow =
Given pipe size = 48,00(ln,)
Calculated individual pipe flow = 117,017(CFS)
Normal flow depth in pipe = 38,30(In.)
Flow top width inside pipe = 38,55(in,)
Critical Depth = 39,ll(in.)
Pipe flow velocity = 10,89(Ft/s)
Travel time through pipe = 0,08 min.
Time of concentration (TC) = 15,91 min.
N = 0.013
Process from Point/Station 5000,200 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main stream number: 1
stream flow area = 64,130(Ac)
Runoff from this stream = 117,017(CFS)
Time of concentration = 15.91 min.
Rainfall intensity = 3.247(ln/Hr)
Program is now starting with Main stream No. 2
5000,200
Process from Point/Station 6005,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6006.000
3
100.000(Ft,)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space ) impervious value, Ai = 0,000
sub-Area C value = 0.350
initial subarea total flow distance =
Highest elevation = 133,000(Ft,)
Lowest elevation = 118,900(Ft.) ^ _ ^ Elevation difference = 14,100(Ft,) Slope = 14,100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 14,10 %, in a development type of
Permanent Open Space
in Accordance with Figure 3-3
initial Area Time of concentration = 5.59 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,3500)*( 100.000A,5)/( 14,100A(1/3)3= 5.59
Rainfall intensity (i) = 6,376(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,290(CFS)
Total initial stream area = 0,130(Ac,)
Page 25
ecr3u
+-H+++++-f+-l-+-f+-(--f+-f+-f-H+-f++++-f-f+-f+-f+-f-(-++++++++-f+-f+
Process from Point/Station 6006,000 to Point/Station 6007.000
**** IMPROVED CHANNEL TRAVEL TIME ****
0,919(CFS)
4,714(Ft/s)
Upstream point elevation = 118.900(Ft,)
Downstream point elevation = 110,800(Ft,)
channel length thru subarea = 285,000(Ft,)
Channel base width = 0.000(Ft.)
Slope or 'z' of left channel bank = 1.500
Slope or 'z' of right channel bank = 1,500
Estimated mean flow rate at midpoint of channel =
Manning's 'N' =0,015
Maximum depth of channel = 1.000(Ft,)
Flow(q) thru subarea = 0,919(CFS)
Depth of flow = 0,360(Ft,), Average velocity =
Channel flow top width = l,081(Ft,)
Flow velocity = 4,71(Ft/s)
Travel time = 1.01 min.
Time of concentration = 6,60 min.
Critical depth = 0,473(Ft,)
Adding area flow to channel
Rainfall intensity (i) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
Rainfall intensity = 5.730(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.256
subarea runoff = 1.174(CFS) for 0.600(Ac,)
Total runoff = 1,464(CFS) Total area = 0,730(Ac,)
Depth of flow = 0,429(Ft.), Average velocity = 5,296(Ft/s)
Critical depth = 0.570(Ft.)
5.730(In/Hr)
= 0.000
= 0.000
= 0.000
= 1,000
for a 100.0 year storm
3
Process from Point/Station 6007,000 to Point/Station 6008,000 **** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 103.000(Ft,)
Downstream point/station elevation = 78.000(Ft,)
Pipe length = 68.64(Ft.) slope = 0.3642 Manning's N = 0,013
No. of pipes = 1 Required pipe flow
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 1.
Normal flow depth in pipe = 1.89(In,)
Flow top width inside pipe = 11,03(In.)
Critical Depth = 5,44(in.)
Pipe flow velocity = 14.83(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 6,67 min.
1,464(CFS)
,464(CFS)
++++++•^-f-^++++++•f++++++++++++-^-^++-^+-^-^--^-+-^-f-l-++•^-l-+•f•^+
Process from Point/Station 6007,000 to Point/Station 6008,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 0,730(Ac.)
Page 26
Runoff from this stream =
Time of concentration =
Rainfall intensity = 5
ecr3u
1.464(CFS)
6.67 min.
,687(ln/Hr)
3
= 105,000(Ft,)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 6009,000 to Point/Station 6010,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
impervious value, Ai = 0,000
Sub-Area C value = 0,350
Initial subarea total flow distance
Highest elevation = 110,500(Ft,)
Lowest elevation = 90.000(Ft,)
Elevation difference = 20,500(Ft.) Slope = 19,524 %
Top of Initial Area slope adjusted by user to 19.500 %
Bottom of Initial Area slope adjusted by user to 19,500 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 19.50 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
initial Area Time of concentration = 5,02 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 19.500A(l/3)3=
The initial area total distance of 105,00 (Ft,) entered leaves a
remaining distance of 5,00 (Ft,) Using Figure 3-4, the travel time for this distance is 0,05 minutes
for a distance of 5,00 (Ft.) and a slope of 19,50 %
with an elevation difference of 0,97(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
0,051 Minutes
Tt=[(ll,9*0,0009A3)/( 0,97)3A,385= 0,05
Total initial area Ti = 5.02 minutes from Figure 3-3 formula plus
0.05 minutes from the Figure 3-4 formula = 5,07 minutes
Rainfall intensity (I) = 6.792(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0.262(CFS)
Total initial stream area = 0.110(Ac,)
5,02
-l-+-^-^-•f+•f-^•f-l-•f+•f-^++++-f+-^++^-+•^+-^-^-f•f++-^+-^-^-^-^+++++•^+-^+-^^
Process from Point/Station 6010,000 to Point/Station 6008.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 90,000(Ft,)
Downstream point elevation = 84,000(Ft.)
Channel length thru subarea = 230,000(Ft,)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 1,500
Slope or 'Z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.015
Maximum depth of channel = 1.000(Ft,)
Flow(q) thru subarea = 0.810(CFS)
Depth of flow = 0,349(Ft.), Average velocity =
Channel flow top width = 1,048(Ft.)
Page 27
0.810(CFS)
4.423(Ft/s)
ecr3u
Flow Velocity = 4.42(Ft/s)
Travel time = 0.87 min.
Time of concentration = 5.93 min.
critical depth = 0.449(Ft,)
Adding area flow to channel
Rainfall intensity (I) = 6,135(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Rainfall intensity = 6,135(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.210
subarea runoff = 1.027(CFS) for 0.490(Ac.)
Total runoff = 1.288(CFS) Total area = 0,600(Ac,)
Depth of flow = 0,416(Ft,), Average velocity = 4,968(Ft/s)
Critical depth = 0,539(Ft.)
-^-+-^-f•f-^•f-f-^-^•^--f-^-+•f-(--f-^•^++-(-+-^-f-f+•^•^•f•^-+•l-+-f•f+-l-+++•f++-f++
Process from Point/Station 6010,000 to Point/Station 6008.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,600(Ac)
Runoff from this stream = 1,288(CFS)
Time of concentration = 5.93 min.
Rainfall intensity = 6,135(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
No, (CFS) (min) (in/Hr)
Qmax(l) =
Qmax(2) =
1.464 6,67 5,687
1,288 5,93 6.135
1.000 * 1.000 * 1,464) +
0.927 * 1,000 * 1,288) + = 2,658
1,000 * 0,889 * 1,464) -i-
1,000 * 1.000 * 1,288) + = 2,590
Total of 2 streams to confluence:
Flow rates before confluence point:
1,464 1,288
Maximum flow rates at confluence using above data:
2,658 2.590
Area of streams before confluence:
0,730 0,600
Results of confluence:
Total flow rate = 2,658(CFS)
Time of concentration = 6,673 min.
Effective stream area after confluence = l,330(Ac,)
-^-+•l-•l•+•f•^-^+-^-+-^•^-•f-f+++++-^++-^-^-f-l-+-f+•^-^••^+-^•l-++-^•^+-^-f•f-^
Process from Point/Station 6008,000 to Point/Station 5000,200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Page 28
ecr3u
Upstream point/station elevation = 75.000(Ft.)
Downstream point/station elevation = 47,720(Ft.)
Pipe length = 76,80(Ft,) Slope = 0.3552 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 2,658(CFS)
Given pipe size = 18,00(in.)
calculated individual pipe flow = 2,658(CFS)
Normal flow depth in pipe = 2,53(in.)
Flow top width inside pipe = 12,51(in.)
critical Depth = 7,41(ln,)
Pipe flow velocity = 17,59(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 6,75 min.
+-^+-^+-^-^^-+++-^^--^4••f-^•f-^-^+•f+-l--^-^•^•f•^+-^-•^+-f++-l-+-f+-^•^-^-^-^++
Process from Point/Station 5000,200 to Point/Station 5000,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
in Main Stream number: 2
Stream flow area = l,330(Ac.)
Runoff from this stream = 2.658(CFS)
Time of concentration = 6.75 min.
Rainfall intensity = 5.647(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO. (CFS) (min) (In/Hr)
1 117,017 15,91 3,247
2 2,658 6.75 5,647 Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 117,017) +
0.575 * 1.000 * 2,658) + = 118,545
1,000 * 0,424 * 117,017) +
1,000 * 1,000 * 2,658) + = 52.265
Total of 2 main streams to confluence:
Flow rates before confluence point:
117.017 2.658
Maximum flow rates at confluence using above data:
118.545 52.265
Area of streams before confluence:
64,130 1,330
Results of confluence:
Total flow rate = 118,545(CFS)
Time of concentration = 15,912 min.
Effective stream area after confluence = 65.460(Ac,)
-l--^-^-^-^-(--l-+-^-^--^++-l--^-+-(--^-^•f-^-l--^•f•(-+++-l-+-^+-^-^-^^--^-^•f-l--^-(-+
Process from Point/Station 5000,200 to Point/Station 5000.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 46,250(Ft,)
Downstream point/station elevation = 45,360(Ft,)
Pipe length = 128.90(Ft,) Slope = 0,0069 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 118.545(CFS)
Page 29
•
ecr3u
Given pipe size = 48,00(in.)
calculated individual pipe flow = 118.545(CFS)
Normal flow depth in pipe = 39.05(in,)
Flow top width inside pipe = 37,39(ln.)
critical Depth = 39,34(ln,)
Pipe flow velocity = 10,83(Ft/s)
Travel time through pipe = 0.20 min.
Time of concentration (TC) = 16.11 min.
Process from Point/Station 5000,100 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5000,100
Along Main stream number: 1 in normal stream number 1
Stream flow area = 65,460(Ac,)
Runoff from this stream = 118,545(CFS)
Time of concentration = 16,11 min. Rainfall intensity = 3,221(ln/Hr)
Process from Point/Station 3009,000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group c = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL
(24.0 DU/A or Less )
impervious value, Ai = 0,650
Sub-Area c value = 0.710
Initial subarea total flow distance
Highest elevation = 78.400(Ft.)
Lowest elevation =
Elevation difference
5003,000
= 110.000(Ft.)
74,800(Ft.)
3.600(Ft.) Slope = 3,273 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90,00 (Ft)
for the top area slope value of 3,27 %, in a development type of
24.0 DU/A or Less
In Accordance with Figure 3-3
initial Area Time of concentration = 4,49 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 ^
TC = [1,8*(1,1-0,7100)*( 90,000A.5)/( 3,273A(l/3)]= 4.49
The initial area total distance of 110.00 (Ft,) entered leaves a
remaining distance of 20,00 (Ft,) . „ .
using Figure 3-4, the travel time for this distance is 0,29 minutes
for a distance of 20,00 (Ft,) and a slope of 3,27 %
with an elevation difference of 0,65(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
0,293 Minutes
Tt=[(11.9*0.0038A3)/( 0.65)3A.385= 0,29 .
Total initial area Ti = 4,49 minutes from Figure 3-3 formula plus
0,29 minutes from the Figure 3-4 formula = 4,78 minutes
Calculated TC of 4.778 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (i) = 6,850(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,710
subarea runoff = 0.730(CFS)
Total initial stream area = 0.150(Ac,)
Page 30
ecr3u
+^••f+-l--(-•f+-l-^--f-^-^-^•f-^•f-(-++++-^-^•f-^+-^-f++•f-l-^•-^+++++•t-+•(•-^^
Process from Point/Station 5003,000 to Point/Station 5000,300
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 74.800(Ft,)
End of street segment elevation = 53.800(Ft,)
Length of street segment = 690,000(Ft,)
Height of curb above gutter flowline = 6.0(ln,)
Width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = l,500(in,)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 2,331(CFS)
Depth of flow = 0.211(Ft.), Average velocity = 2.869(Ft/s)
Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.788(Ft.) Flow velocity = 2,87(Ft/s)
Travel time = 4.01 min. TC = 8,79 min.
Adding area flow to street
Rainfall intensity (I) = 4,762(ln/Hr) for a 100,0 year storm
User specified 'C value of 0,670 given for subarea
Rainfall intensity = 4,762(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,675 CA = 0,797
subarea runoff = 3,064(CFS) for l,030(Ac.)
Total runoff = 3,794(CFS) Total area = l,180(Ac,) Street flow at end of street = 3,794(CFS)
Half street flow at end of street = 1,897(CFS)
Depth of flow = 0,240(Ft,), Average velocity = 3,194(Ft/s)
Flow width (from curb towards crown)= 7,229(Ft,)
-f-i-++++-f+++++++-f+-i--f-f+-f-f+-f-f-)-++-f-f+-f++++-f-f+++++++++
Process from Point/Station 5003,000 to Point/Station 5000,300
**** SUBAREA FLOW ADDITION ****
Rainfall intensity (I) = 4,762(ln/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
impervious value, Ai = 0,000
sub-Area C value = 0,350 Time of concentration = 8.79 min. Rainfall intensity = 4,762(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,556 CA = 1,035
subarea runoff = 1.133(CFS) for 0,680(Ac,)
Total runoff = 4,927(CFS) Total area = l,860(Ac)
-^•^^--^-^+•^--^•f+++•^++•^-^+++-^++++-^++•f-^-^-^++-^•f++-^++-^+•f•f-^-^
Process from Point/station 5000,300 to Point/Station 5000,100
Page 31
ecr3u
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 46,490(Ft.)
Downstream point/station elevation = 46,430(Ft,)
Pipe length = 3.17(Ft,) Slope = 0.0189 Manninq's N = 0,013
No. of pipes = 1 Required pipe flow = 4,927(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 4.927(CFS)
Normal flow depth in pipe = 7,24(In.)
Flow top width inside pipe = 17.65(in.)
critical Depth = 10.25(in.)
Pipe flow velocity = 7.40(Ft/s)
Travel time through pipe = 0,01 min.
Time of concentration (TC) = 8,79 min.
.f++-f-f-H-l-+++++-f+++++-f-f++-H-f++++-f+++-f++-t--H-f-f+++++-f++
Process from Point/Station 5000,100 to Point/Station 5000,100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.860(Ac,)
Runoff from this stream = 4.927(CFS)
Time of concentration = 8,79 min.
Rainfall intensity = 4,760(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (in/Hr)
1 118,545 16,11 3.221
2 4.927 8,79 4,760 Qmax(l) =
Qmax(2) =
1.000 * 1.000 * 118.545) +
0,677 * 1.000 * 4,927) -i- = 121,879
1,000 * 0,546 * 118.545) +
1.000 * 1,000 * 4.927) + = 69.627
Total of 2 streams to confluence:
Flow rates before confluence point:
118.545 4.927
Maximum flow rates at confluence using above data:
121,879 69.627
Area of streams before confluence:
65,460 1,860
Results of confluence:
Total flow rate = 121,879(CFS)
Time of concentration = l6,lll min.
Effective stream area after confluence = 67.320(Ac)
Process from Point/station 5000.100 to Point/Station 6000.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 45,360(Ft.)
Downstream point/station elevation = 43,720(Ft.)
Pipe length = 234.39(Ft,) Slope = 0,0070 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 121,879(CFS)
Given pipe size = 48,00(in,)
NOTE: Normal flow is pressure flow in user selected pipe size,
page 32
ecr3u
The approximate hydraulic grade line above the pipe invert
2,238(Ft,) at the headworks or inlet of the pipe(s)
Pipe friction loss = 1.687(Ft,)
Minor friction loss = 2,191(Ft,) K-factor = 1.50
Pipe flow velocity = 9,70(Ft/s)
Travel time through pipe = 0,40 min.
Time of concentration (TC) = 16.51 min.
1 s
Process from Point/Station 6000.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
6000,000
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 67,320(Ac,)
Runoff from this stream = 121.879(CFS)
Time of concentration = 16,51 min.
Rainfall intensity = 3,170(in/Hr)
Process from Point/Station 5002,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6003,000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL
(43.0 DU/A or Less )
Impervious value, Ai = 0,800
Sub-Area C value = 0,790
Initial subarea total flow distance =
Highest elevation = 58,400(Ft,)
Lowest elevation = 56,000(Ft,)
Elevation difference = 2,400(Ft.) Slope = 2.182 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 2.18 %, in a development type of
43,0 DU/A or Less
In Accordance with Figure 3-3
initial Area Time of Concentration = 3,73 minutes
3
110,000(Ft,)
3,73
0,53 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [l,8*(l.l-0,7900)*( 75.000A.5)/( 2,182A(l/3)3=
The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 35.00 (Ft.)
using Figure 3-4, the travel time for this distance is
for a distance of 35.00 (Ft.) and a slope of 2,18 % . , , with an elevation difference of 0.76(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0,526 Minutes
Tt=[(11.9*0,0066A3)/( 0,76)3A,385= 0.53
Total initial area Ti = 3.73 minutes from Figure 3-3 formula plus
0,53 minutes from the Figure 3-4 formula = 4,25 minutes
calculated TC of 4,252 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (l) = 6,850(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 1.191(CFS)
Total initial stream area = 0,220(Ac,)
Page 33
ecr3u
Process from Point/station 6003,000 to Point/Station 6004,000
**** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 56,000(Ft,)
End of street segment elevation = 53.400(Ft,)
Length of street segment = 322.000(Ft,)
Height of curb above gutter flowline = 6,0(ln,)
Width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft,)
Gutter hike from flowline = l,500(ln,)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.149(CFS)
Depth of flow = 0.246(Ft.), Average velocity = l,681(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7,536(Ft,) Flow velocity = 1,68(Ft/s)
Travel time = 3,19 min. TC = 7,44 min.
Adding area flow to street
Rainfall intensity (I) = 5,299(ln/Hr) for a 100,0 year storm
User specified 'C value of 0,760 given for subarea
Rainfall intensity = 5,299(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.769 CA = 0,561
Subarea runoff = 1.785(CFS) for 0,510(Ac,)
Total runoff = 2.975(CFS) Total area = 0.730(Ac)
Street flow at end of street = 2,975(CFS)
Half street flow at end of street = 1.488(CFS)
Depth of flow = 0.268(Ft,), Average velocity = 1.813(Ft/s)
Flow width (from curb towards crown)= 8.657(Ft,)
Process from Point/Station 6004.000 to Point/Station 6000,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 44,140(Ft.)
Downstream point/station elevation = 43,890(Ft,)
Pipe length = 49,83(Ft.) Slope = 0,0050 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 2,975(CFS)
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 2.975(CFS)
Normal flow depth in pipe = 7.92(In,)
Flow top width inside pipe = 17,87(In,)
Critical Depth = 7.86(In,)
Pipe flow velocity = 3,98(Ft/s)
Travel time through pipe = 0.21 min.
Time of concentration (TC) = 7.65 min.
+++++++++++++4-++++^-+•f+-l--^•^-^+•^+-l-+•f++++•^•-^•f-^-^+-^+-^-f++
Process from Point/Station 6000.000 to Point/Station 6000,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,730(Ac.)
Page 34
ecr3u
Runoff from this stream = 2.975(CFS)
Time of concentration = 7,65 min.
Rainfall intensity = 5,206(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (in/Hr)
121,879 16,51 3,170
2,975 7,65 5,206
Qmax(l) =
Qmax(2) =
1.000 * 1.000 * 121,879) -f
0.609 * 1.000 * 2.975) + = 123.691
1.000 * 0.463 * 121.879) -f
1.000 * 1,000 * 2,975) + = 59,459
Total of 2 streams to confluence:
Flow rates before confluence point:
121.879 2.975
Maximum flow rates at confluence using above data:
123.691 59,459
Area of streams before confluence:
67.320 0,730
Results of confluence:
Total flow rate = 123,691(CFS)
Time of concentration = 16.513 min.
Effective stream area after confluence = 68.050(Ac.)
•f•f•^--f-^-^•^-^-^•f+-(--^-^-^+•^•l--^-^+-^+•f-^+•(--f+++-^-f+•l--^-f-^-++-^-^-^•^
Process from Point/Station 6000,000 to Point/station 6000,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43,390(Ft,)
Downstream point/station elevation = 42,550(Ft.)
Pipe length = 169,08(Ft,) Slope = 0,0050 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 123,691(CFS)
Given pipe size = 48,00(ln,)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
2.670(Ft,) at the headworks or inlet of the pipe(s)
Pipe friction loss = l,253(Ft,)
Minor friction loss = 2.257(Ft,) K-factor = 1,50
Pipe flow velocity = 9,84(Ft/s)
Travel time through pipe = 0,29 min.
Time of concentration (TC) = 16,80 min,
+++•^+-^+^--f-f-^-^•f+-^-^+•^4••^-•f+++•f+-^^-•f-^+-^-^+•f-f+-^•l••f+•^+^-+
Process from Point/Station 6000.100 to Point/Station 6000.100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 68.050(Ac)
Runoff from this stream = 123.691(CFS)
Time of concentration = 16.80 min.
Rainfall intensity = 3,135(ln/Hr)
Program is now starting with Main Stream No. 2
Page 35
ecr3u
Process from Point/Station 6015,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6016,000
3
= 180.000(Ft,)
1,556 %
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0,350
Initial subarea total flow distance
Highest elevation = 118,000(Ft,)
Lowest elevation = 115,200(Ft,)
Elevation difference = 2,800(Ft,) Slope =
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft)
for the top area slope value of 1,56 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
initial Area Time of Concentration = 10,73 minutes
TC = [1.8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0.3500)*( 85.000A,5)/( 1.560A(l/3)3= 10.73
The initial area total distance of 180,00 (Ft,) entered leaves a
remaining distance of 95,00 (Ft,)
using Figure 3-4, the travel time for this distance is 1,29 minutes
for a distance of 95,00 (Ft.) and a slope of 1,56 %
with an elevation difference of 1,48(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
1,291 Minutes
Tt=[(11.9*0,0180A3)/( 1.48)3^.385= 1.29
Total initial area Ti = 10,73 minutes from Figure 3-3 formula plus
1,29 minutes from the Figure 3-4 formula = 12,02 minutes
Rainfall intensity (l) = 3,890(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,653(CFS)
Total initial stream area = 0,480(Ac,)
Process from point/Station 6016,000 to Point/Station 6017.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 102,000(Ft,)
Downstream point/station elevation = 76.380(Ft,)
Pipe length = 52,47(Ft.) Slope = 0,4883 Manning's N = 0.013
NO. of pipes = 1 Required pipe flow = 0.653(CFS)
Given pipe size = 18,00(ln,)
calculated individual pipe flow = 0,653(CFS)
Normal flow depth in pipe = 1.20(ln,)
Flow top width inside pipe = 8.99(in,)
Critical Depth = 3,60(in,)
Pipe flow velocity = 12,88(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 12,09 min.
Process from Point/Station 6017,000 to Point/Station
**** SUBAREA FLOW ADDITION ****
6017,000
Rainfall intensity (I) = 3,876(ln/Hr) for a
Page 36
100,0 year storm
ecr3u
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
impervious value, Ai = 0,000
sub-Area C value = 0,350
Time of concentration = 12,09 mm.
Rainfall intensity = 3,876(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.312
subarea runoff = 0,554(CFS) for 0,410(AC,)
Total runoff = 1,207(CFS) Total area = 0,890(Ac)
Process from Point/Station 6017,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
6014,000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 46.55(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 1,207(CFS)
Normal flow depth in pipe = 1,62(in,)
Flow top width inside pipe = 10,30(ln.)
Critical Depth = 4,92(in.)
Pipe flow velocity = 15,34(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 12,14 min.
76,050(Ft,)
54.000(Ft.)
0,4737 Manning's N = 0,013
1,207(CFS)
Process from Point/Station 6014.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
6014,000
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 0,890(Ac)
Runoff from this stream = 1,207(CFS)
Time of concentration = 12,14 min.
Rainfall intensity = 3,865(in/Hr)
process from Point/Station 6013,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6012,000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Initial subarea total flow distance =
Highest elevation = 87,000(Ft,)
Lowest elevation = 64,400(Ft.)
Elevation difference = 22,600(Ft,) Slope = 18,833 %
Top of initial Area slope adjusted by user to 18,800 %
Bottom of initial Area Slope adjusted by user to 18,800
Page 37
3
120,000(Ft.)
ecr3u
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 18.80 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 5,08 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,3500)*( 100,000A.5)/( 18,800A(1/3)3= 5.08
The initial area total distance of 120.00 (Ft.) entered leaves a
remaining distance of 20,00 (Ft,)
using Figure 3-4, the travel time for this distance is 0,15 minutes
for a distance of 20,00 (Ft,) and a slope of 18.80 %
with an elevation difference of 3.76(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
0.149 Minutes
Tt=[(11.9*0,0038A3)/( 3,76)3A,385= 0.15
Total initial area Ti = 5,08 minutes from Figure 3-3 formula plus
0,15 minutes from the Figure 3-4 formula = 5,23 minutes
Rainfall intensity (I) = 6,657(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,350(CFS)
Total initial stream area = 0,150(Ac)
+++++-^+++-^+-^-f-^•^+-^•^--^•f-t•-^-f+++•f++•^-f+-(--f-^-f-^+•f+++-^+++-l-+
Process from Point/Station 6012,000 to Point/Station 6014,000
**** IMPROVED CHANNEL TRAVEL TIME ****
0.766(CFS)
3.579(Ft/s)
Upstream point elevation = 64,400(Ft,)
Downstream point elevation = 61.100(Ft.)
Channel length thru subarea = 170,000(Ft,)
Channel base width = 0,000(Ft,)
Slope or 'Z' of left channel bank = 4,000
Slope or 'Z' of right channel bank = 1,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' =0.015
Maximum depth of channel = l,000(Ft,)
Flow(q) thru subarea = 0,766(CFS)
Depth of flow = 0.293(Ft,), Average velocity =
Channel flow top width = 1.463(Ft,)
Flow velocity = 3.58(Ft/s)
Travel time = 0,79 min.
Time of concentration = 6.02 min.
Critical depth = 0,357(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Rainfall intensity = 6,079(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.185
Subarea runoff = 0.778(CFS) for 0.380(Ac)
Total runoff = 1.128(CFS) Total area = 0,530(Ac,)
Depth of flow = 0,338(Ft,), Average velocity = 3,943(Ft/s)
Critical depth = 0,418(Ft,)
.079(ln/Hr) for a
0.000
0.000
0.000
1,000
3
100,0 year storm
Page 38
ecr3u
Process from Point/Station 6014,000 to Point/Station 6014.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,530(Ac)
Runoff from this stream = 1,128(CFS)
Time of concentration = 6.02 min.
Rainfall intensity = 6,079(ln/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(mi n)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
1,207
1,128
12.14
6.02
1.000
0.636
000
000
1,000 *
1,000 *
0.496 *
1.000 *
1.207)
1.128)
1,207)
1,128)
3.865
6.079
+
+ =
+
•f =
1,924
1.726
Total of 2 streams to confluence:
Flow rates before confluence point:
1.207 1.128
Maximum flow rates at confluence using above data:
1.924 1,726
Area of streams before confluence:
0,890 0.530
Results of confluence:
Total flow rate = 1,924(CFS)
Time of concentration = 12.142 min.
Effective stream area after confluence = l,420(Ac)
-f-fH-+H-++-f+-f++-h+-t--f+-f++++++-f++++++-f-f-f+-f-f-f++-f-f-f+-f+++++
Process from Point/Station 6014,000 to Point/Station 6018,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 53,670(Ft,)
Downstream point/station elevation = 43,040(Ft.)
Pipe length = 20.08(Ft.) Slope = 0.5294 Manning's N = 0.013
NO, of pipes = 1 Required pipe flow = 1,924(CFS)
Given pipe size = 18.00(in,)
calculated individual pipe flow = 1,924(CFS)
Normal flow depth in pipe = 1,97(In,)
Flow top width inside pipe = 11,23(in,)
critical Depth = 6.27(ln,)
Pipe flow velocity = 18.35(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 12,16 min.
+++++-h-H+-f-f-f-f-f-+-f-H+++++-f++-l-+++++-l--f-f-f+-f-f-f+-K-f-l--f4--f4-++-f+
Process from Point/Station 6018,000 to Point/Station 6018.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = l,420(Ac,)
Runoff from this stream = 1,924(CFS)
Time of concentration = 12.16 min.
Page 39
Rainfall intensity =
ecr3u
3,862(ln/Hr)
Process from Point/Station 6011,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6019.000
3
= 110,000(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent open Space )
impervious value, Ai = 0,000
Sub-Area C value = 0.350
Initial subarea total flow distance
Highest elevation = 66,000(Ft,)
Lowest elevation = 52,850(Ft,)
Elevation difference = 13,150(Ft,) Slope = 11,955 %
Top of Initial Area Slope adjusted by User to 12.000 %
Bottom of Initial Area Slope adjusted by user to 12,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 12.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
initial Area Time of concentration = 5,90 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.3500)*( 100,000A,5)/( 12.OOOA(l/3)3= 5,90
The initial area total distance of 110,00 (Ft.) entered leaves a
remaining distance of 10,00 (Ft.)
using Figure 3-4, the travel time for this distance is 0,10 minutes
for a distance of 10,00 (Ft,) and a slope of 12,00 %
with an elevation difference of 1.20(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0,104 Minutes
Tt=[(ll,9*0,0019A3)/( 1,20)3A,385= 0,10
Total initial area Ti = 5.90 minutes from Figure 3-3 formula plus
0,10 minutes from the Figure 3-4 formula = 6.00 minutes
Rainfall intensity (I) = 6,090(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
subarea runoff = 0,171(CFS)
Total initial stream area = 0,080(Ac,)
Process from Point/Station 6019,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
6018,000
.)
Upstream point elevation = 52,850(Ft,)
Downstream point elevation = 52,000(Ft.)
Channel length thru subarea = 170.000(Ft.
Channel base width = 0.000(Ft.)
Slope or 'z' of left channel bank = 4,000
Slope or 'Z' of right channel bank = 1,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.015
Maximum depth of channel = l,000(Ft,)
Flow(q) thru subarea = 0,554(CFS)
Depth of flow = 0,334(Ft,), Average velocity =
Channel flow top width = l,671(Ft.)
Flow velocity = l,99(Ft/s)
Travel time = 1.43 min.
Page 40
0,554(CFS)
l,985(Ft/s)
100,0 year storm
A =
D =
ecr3u
Time of concentration = 7.43 min.
Critical depth = 0,314(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0,350
Rainfall intensity = 5.307(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,164
subarea runoff = 0,702(CFS) for 0,390(Ac)
Total runoff = 0,873(CFS) Total area = 0,470(Ac)
Depth of flow = 0,396(Ft,), Average velocity = 2.224(Ft/s)
Critical depth = 0,377(Ft,)
5,307(ln/Hr) for a
0,000
0,000
0,000
1,000
3
Process from Point/Station 6018,000 to Point/Station 6018,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,470(Ac)
Runoff from this stream = 0,873(CFS)
Time of concentration = 7,43 min.
Rainfall intensity = 5,307(in/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS) TC
(mi n)
Rainfall intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
1,924
0,873
12,16
7,43
1,000 *
0,728 *
1,000 *
1,000 *
1,000 *
1,000 *
0,611 *
1.000 *
3,862
5,307
1.924) +
0.873) +
1,924) +
0,873) +
2,560
2.048
Total of 2 streams to confluence:
Flow rates before confluence point:
1,924 0,873
Maximum flow rates at confluence using above data:
2,560 2,048
Area of streams before confluence:
1,420 0,470
Results of confluence:
Total flow rate = 2,560(CFS)
Time of concentration = 12,160 min.
Effective stream area after confluence = l,890(Ac,)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 6018.000 to Point/Station 6000.100
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 42,710(Ft.)
Page 41
ecr3u
Downstream point/station elevation = 42,550(Ft,)
Pipe length = 32,17(Ft.) Slope = 0,0050 Manning's N = 0.015
NO, of pipes = 1 Required pipe flow = 2.560(CFS)
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 2.560(CFS)
Normal flow depth in pipe = 7,90(in,)
Flow top width inside pipe = 17.86(in.)
critical Depth = 7,27(in,)
Pipe flow velocity = 3,43(Ft/s)
Travel time through pipe = 0,16 min.
Time of concentration (TC) = 12,32 min.
Process from Point/Station 6000,100 to Point/Station 6000.100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main stream number: 2
Stream flow area = 1,890(Ac)
Runoff from this stream = 2.560(CFS) Time of concentration = 12,32 min.
Rainfall intensity = 3,830(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO, (CFS) (min) (in/Hr)
1 123.691 16,80 3,135
2.560 12.32 3,830
Qmax(l) =
Qmax(2) =
1.000 * 1.000 * 123.691) +
0.819 * 1.000 * 2.560) + = 125,786
1,000 * 0,733 * 123,691) +
1,000 * 1,000 * 2,560) + = 93,241
Total of 2 main streams to confluence:
Flow rates before confluence point:
123.691 2,560
Maximum flow rates at confluence using above data:
125,786 93,241 Area of streams before confluence: 68,050 1,890
Results of confluence: Total flow rate = 125.786(CFS)
Time of concentration = 16,800 min.
Effective stream area after confluence = 69,940(Ac,)
+-^+-^-^-^+-^•f•^+++-^-^-•f•^-^-^+-f++•^-^-^+•f•f++-l-++^--^-+-f•-f++++++++
Process from Point/Station 6000.100 to Point/Station 7000,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.220(Ft,)
Downstream point/station elevation = 40,950(Ft.)
Pipe length = 251,88(Ft,) Slope = 0.0050 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 125.786(CFS)
Given pipe size = 48,00(ln,)
NOTE: Normal flow is pressure flow in user selected pipe size.
Page 42
ecr3u
The approximate hydraulic grade line above the pipe invert is
2,995(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = l,931(Ft.)
Minor friction loss = 2.334(Ft.) K-factor = 1.50
Pipe flow velocity = 10,01(Ft/s)
Travel time through pipe = 0,42 min.
Time of concentration (TC) = 17,22 min.
-^^--^-^+-^+-^-^--(--l-•^-^+-^-(-•f-^++•^-^•f-^-^-+-l-+-f-^-^+++-^+-^+-^-^+++-f•^-^
Process from Point/Station 7000.000 to Point/Station 7003,000
**** PIPEFLOW TRAVEL TIME (user Specified size) ****
Upstream point/station elevation = 40,950(Ft.)
Downstream point/station elevation = 40.490(Ft,)
Pipe length = 94,47(Ft,) Slope = 0,0049 Manning's N = 0.013
NO. of pipes = 2 Required pipe flow = 125.786(CFS)
Given pipe size = 42,00(in,)
calculated individual pipe flow = 62,893(CFS)
Normal flow depth in pipe = 31,03(in,)
Flow top width inside pipe = 36.90(ln,)
Critical Depth = 29,83(in.)
Pipe flow velocity = 8.25(Ft/s)
Travel time through pipe = 0,19 min.
Time of concentration (TC) = 17,41 min,
+-f-f--f4-++-4--f+-f-f-f-f++++-H+++H--H++-l--f+-f+++++++++-f-f+-f-f+-|-+^
Process from Point/Station 7003,000 to Point/Station 7003,100
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
upstream point/station elevation = 40,490(Ft,)
Downstream point/station elevation = 40.290(Ft.)
Pipe length = 36,75(Ft,) Slope = 0.0054 Manning's N = 0,013
No, of pipes = 2 Required pipe flow = 125,786(CFS)
Given pipe size = 42,00(in,)
Calculated individual pipe flow = 62,893(CFS)
Normal flow depth in pipe = 29.67(In,)
Flow top width inside pipe = 38.25(in,)
Critical Depth = 29.83(in,)
Pipe flow velocity = 8,66(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 17.48 min,
++++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 7003,100 to Point/Station 7003,100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 69,940(Ac)
Runoff from this stream = 125,786(CFS)
Time of concentration = 17.48 min.
Rainfall intensity = 3,056(in/Hr)
+-^-^••f+++++•^-l•-f-^+-^-++•f+-^-^-+++•t--^+-^+•f++-l-+++++-^•f-^4••f+++^
Process from Point/Station 7004,000 to Point/Station 7005,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Page 43
ecr3u
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(43,0 DU/A or Less )
Impervious value, Ai = 0.800 Sub-Area C value = 0.790
Initial subarea total flow distance = 138.000(Ft,)
Highest elevation = 53,800(Ft.)
Lowest elevation = 51,700(Ft,)
Elevation difference = 2,100(Ft.) Slope = 1,522 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 1,52 %, in a development type of
43,0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4,20 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.7900)*( 75,OOOA,5)/( 1,522A(l/3)3= 4.20
The initial area total distance of 138.00 (Ft,) entered leaves a
remaining distance of 63,00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.95 minutes
for a distance of 63,00 (Ft,) and a slope of 1,52 %
with an elevation difference of 0.96(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0,950 Minutes
Tt=[(ll,9*0.0119A3)/( 0.96)3A,385= 0,95
Total initial area Ti = 4,20 minutes from Figure 3-3 formula plus
0.95 minutes from the Figure 3-4 formula = 5.15 minutes
Rainfall intensity (l) = 6.720(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
subarea runoff = 1,009(CFS)
Total initial stream area = 0,190(Ac)
+-f-f-f-f-f-f-f+-l--f+++++4-++++++H--H-l-++++-f-l--f+++-f+++-f++++++
Process from Point/Station 7005,000 to Point/Station 7006.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 51,700(Ft,)
End of street segment elevation = 48,200(Ft,)
Length of street segment = 353,000(Ft,) Height of curb above gutter flowline = 6,0(in,)
width of half street (curb to crown) = 44.000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = l,500(in.)
Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1,908(CFS)
Depth of flow = 0,232(Ft.), Average velocity = 1,772(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6,836(Ft.)
Flow velocity = 1.77(Ft/s)
Travel time = 3,32 min, TC = 8,47 min.
Adding area flow to street
Rainfall intensity (i) = 4.875(in/Hr) for a 100.0 year storm
user specified 'c' value of 0.760 given for subarea
Rainfall intensity = 4.875(ln/Hr) for a 100,0 year storm
Page 44
ecr3u
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,768 CA = 0,545
subarea runoff = 1.650(CFS) for 0,520(Ac,) Total runoff = 2.659(CFS) Total area = 0,710(Ac,)
Street flow at end of street = 2,659(CFS)
Half street flow at end of street = 1,329(CFS)
Depth of flow = 0,253(Ft,), Average velocity = 1.911(Ft/s)
Flow width (from curb towards crown)= 7.902(Ft,)
+++-^++•^-f-l-++-^+++++++++•(•+-f•^+-f+-l-++-^-^-f•(-++-f•t-+++-f+-^-+
Process from Point/Station 7006,000 to Point/Station 7006.300
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 43.250(Ft.) Downstream point/station elevation = 43,120(Ft,)
Pipe length = 13.55(Ft,) Slope = 0,0096 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 2,659(CFs5
Given pipe size = 18.00(in,)
Calculated individual pipe flow = 2.659(CFS)
Normal flow depth in pipe = 6,24(in.)
Flow top width inside pipe = 17.13(in.)
critical Depth = 7,41(ln,)
Pipe flow velocity = 4,88(Ft/s)
Travel time through pipe = 0,05 min.
Time of concentration (TC) = 8,52 min,
•f++-f+-f-f-H-|-+-H+-f+-f4-+++-f+++++-f++-f+-4-++++-f-f+-f-(-+++-f-f++^
Process from Point/Station 7006,300 to Point/Station 7003,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 42,790(Ft.)
Downstream point/station elevation = 42.160(Ft,)
Pipe length = 126,63(Ft,) Slope = 0,0050 Manning's N = 0.013
NO, of pipes = 1 Required pipe flow = 2,659(CFS)
Given pipe size = 18.00(ln.)
calculated individual pipe flow = 2.659(CFS)
Normal flow depth in pipe = 7,45(in.)
Flow top width inside pipe = 17,73(in,)
critical Depth = 7,41(in.)
Pipe flow velocity = 3.85(Ft/s) Travel time through pipe = 0,55 min. Time of concentration (TC) = 9,07 min.
Process from Point/Station 7003,100 to Point/station 7003,100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
stream flow area = 0.710(Ac)
Runoff from this stream = 2.659(CFS)
Time of concentration = 9,07 min. Rainfall intensity = 4.667(ln/Hr) Summary of stream data:
stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (In/Hr)
1 125,786 17,48 3,056
2 2,659 9,07 4.667
Page 45
Qmax(l) =
Qmax(2) =
ecr3u
1.000 * 1.000 * 125.786) +
0.655 * 1,000 * 2.659) + = 127,527
1,000 * 0,519 * 125,786) +
1,000 * 1,000 * 2,659) + = 67,899
Total of 2 streams to confluence:
Flow rates before confluence point:
125,786 2.659
Maximum flow rates at confluence using above data:
127.527 67,899
Area of streams before confluence:
69,940 0,710
Results of confluence:
Total flow rate = 127,527(CFS)
Time of concentration = 17.481 min.
Effective stream area after confluence = 70,650(Ac)
-^-^-^+-^++^--)--^•^-^-f++•^-^-^•f•f•f+-^-l--f•(-++•^++•f•f•f4•+•^-f•^-++-l-++^
Process from Point/Station 7003.100 to Point/Station 7007,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 40.470(Ft.)
Downstream point/station elevation = 39,820(Ft,)
Pipe length = 84.94(Ft.) Slope = 0.0077 Manninq's N = 0,013
NO, of pipes = 2 Required pipe flow = 127.527(CFS)
Given pipe size = 42,00(ln,)
Calculated individual pipe flow = 63,763(CFS)
Normal flow depth in pipe = 26,48(in,)
Flow top width inside pipe = 40,54(In,)
critical Depth = 30,02(in,)
Pipe flow velocity = 9,97(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 17,62 min.
End of computations, total study area = 70,650 (Ac)
Page 46
San Diego County Rational Hydrology Prograra
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 01/22/14
100 YEAR HYDROLOGY FOR ULTIMATE CONDITION
BASIN ECRP4 JN 101307
REVISED BY HL
********* Hydrology Study Control Information **********
Program License Serial Number 6218
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
P6/P24 = 60.5%
San Diego hydrology manual 'C values used
-^-^-^-^-^+-^+•^-^-^-^-^-^•f++•f + -^-^-^-^-^-^-l--^-^-^-^-^-^-^-l-+-l--^-^+-^+-^-^-l--^-^-^-^+
Process from Point/Station 8000.000 to Point/Station 8001.000
**** INITIAL AREA EVALUATION ****
]
= 204.G00(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
(Limited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance
Highest elevation = 81.000(Ft.)
Lowest elevation = 72.800 (Ft.)
Elevation difference = 8.200(Ft.) Slope = 4.020 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 4.02 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.68 minutes
Page 1 of 20
TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope^(l/3)]
TC = [1.8*(1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68
The initial area total distance of 204.00 (Ft.) entered leaves a
remaining distance of 114.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.03 minutes
for a distance of 114.00 (Ft.) and a slope of 4.02 %
with an elevation difference of 4.58(Ft.) from the end of the top area
Tt = [11. 9*length (Mi) *3) / (elevation change (Ft.))]. 385 *60 (min/hr)
1.032 Minutes
Tt= [ (11.9*0.0216^3)/( 4.58)]^.385= 1.03
Total initial area Ti = 2.68 minutes from Figure 3-3 formula plus
1.03 minutes from the Figure 3-4 formula = 3.72 minutes
Calculated TC of 3.717 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 2.853(CFS)
Total initial stream area = 0.490(Ac.)
-f-h-F-F-f-F-H-h-l--l--H-F-h-f-f-l--h-h-F-f + -f + -l--f-h-h-H-H-h-h-F-H-l--h-F-H-H-F-F-h-h-h-f-f + + -l-
Process from Point/Station 8001.000 to Point/Station 8002.000
**** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION ****
Top of street segment elevation = 72.800(Ft.)
End of street segment elevation = 63.670(Ft.)
Length of street segment = 250.400(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.251(CFS)
Depth of flow = 0.241(Ft.), Average velocity = 3.514(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7.304 (Ft.)
Flow velocity = 3.51(Ft/s)
Travel tirae = 1.19 min. TC = 4.90 min.
Adding area flow to street
Calculated TC of 4.905 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
User specified 'C value of 0.860 given for subarea
Rainfall intensity = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.855 CA = 0.829
Page 2 of 20
Subarea runoff = 2.828(CFS) for 0.480(Ac.)
Total runoff = 5.681(CFS) Total area = 0.970(Ac.;
Street flow at end of street = 5.681(CFS)
Half street flow at end of street = 2.840(CFS)
Depth of flow = 0.261(Ft.), Average velocity = 3.757(Ft/s)
Flow width (frora curb towards crown)= 8.275(Ft.)
-l--^-f--^-^-^+4•^-•^-^-^•^^-•^-^-^-^-^•-^-l-+^--^-^•^+•^-^-^-^--l-4•+++-^+-^-^+-^-^+4•-^^• + -^
Process from Point/Station 8002.000 to Point/Station 8002.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 59.240(Ft.)
Downstreara point/station elevation = 58.980(Ft.)
Pipe length = 5.26(Ft.) Slope = 0.04 94 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 5.681(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 5.681(CFS)
Norraal flow depth in pipe = 6.05(In.)
Flow top width inside pipe = 17.00(In.)
Critical Depth = 11.04(In.)
Pipe flow velocity = 10.90(Ft/s)
Travel time through pipe = 0.01 min.
Time of concentration (TC) = 4.91 min.
-^-^+-l-^--^-f-^-^-^-^-^-^-l--^-^-l--^-^-l--^-^-l--^-^-^-^-l--l-+-^--^-^^-^--^-^-^-^-^++-^^--^-^-^+
Process frora Point/Station 8002.100 to Point/Station 8002.300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 58.650(Ft.)
Downstream point/station elevation = 56.470(Ft.)
Pipe length = 51.50(Ft.) Slope = 0.0423 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 5.681(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 5.681(CFS)
Normal flow depth in pipe = 6.30(In.)
Flow top width inside pipe = 17.17(In.)
Critical Depth = 11.04(In.)
Pipe flow velocity = 10.31(Ft/s)
Travel time through pipe = 0.08 min.
Tirae of concentration (TC) = 5.00 rain.
-l--^-l--l--^-l-+-^•+-^ + -^-^^--^4•4•-l--^+-^-+-^-^-^-^-^-^-^-^•^-^•f-^-^-^-^•^-^-^-^•f-^-^-f-^--l-+
Process frora Point/Station 8002.100 to Point/Station 8002.300
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Streara is listed:
In Main Stream nuraber: 1
Stream flow area = 0.970(Ac.)
Runoff frora this streara = 5.681(CFS)
Time of concentration = 5.00 min.
Rainfall intensity = 6.850(In/Hr)
Page 3 of 20
Prograra is now starting with Main Stream No. 2
-l-•^-l••f^-4--^^--^^--l-•^-^++-^^•-^+ + ^-^--^-^-l--^-^-^-^-^ ++-^-l--^-^-^-^-^-^-^-l--^-^-^-l--^-^-^
Process frora Point/Station 8002.400 to Point/Station 8002.200
**** INITIAL AREA EVALUATION ****
Deciraal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 82.230(Ft.)
Highest elevation = 63.670(Ft.)
Lowest elevation = 61.500(Ft.)
Elevation difference = 2.170(Ft.) Slope = 2.639 %
Top of Initial Area Slope adjusted by User to 4.020 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 4.02 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration = 2.68 minutes
TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68
Calculated TC of 2.685 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.582 (CFS)
Total initial stream area = 0.100(Ac.)
-^-^•^-^-^-l-^-^-•^^--l•-l--^+-(--^-l--l--^-^^--^-^-^-^-^-^--^-^++^--^-^-^-+-^-^-^-^-l--^-^-^-^-l-•^
Process frora Point/Station 8002.200 to Point/Station 8002.300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 56.730(Ft.)
Downstreara point/station elevation = 56.470(Ft.)
Pipe length = 5.25(Ft.) Slope = 0.0495 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.582(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 0.582(CFS)
Normal flow depth in pipe = 1.96(In.)
Flow top width inside pipe = 11.21(In.)
Critical depth could not be calculated.
Pipe flow velocity = 5.60(Ft/s)
Travel tirae through pipe = 0.02 min.
Time of concentration (TC) = 2.70 rain.
Page 4 of 20
-^-l--^-^-^-^-^-^-^-^+-^-l--^-^-l--^-^-^-^ ++-^-^-^-^-^^--^-^-^-^-^-^-^^--^-^^--l--^-f•l-+•^-^+-^
Process from Point/Station 8002.200 to Point/Station 8002.300
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.100(Ac.)
Runoff from this stream = 0.582(CFS)
Tirae of concentration = 2.70 min.
Rainfall intensity = 6.850(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(rain)
Rainfall Intensity
(In/Hr)
1
2
Qmax(1)
5.681
0 .582
Qmax(2) =
000
000
000
000
5.00
2 .70
000
000
0.541 *
1.000 *
6.850
6.850
5.681) +
0.582) -I-
5.681) +
0.582) +
6 .263
3 .653
Total of 2 main streams to confluence:
Flow rates before confluence point:
5.681 0.582
Maximum flow rates at confluence using above data;
6.263 3.653
Area of streams before confluence:
0.970 0.100
Results of confluence:
Total flow rate = 6.263(CFS)
Tirae of concentration = 4.996 rain.
Effective stream area after confluence 1.070(Ac.)
-l--^-^-^ ++-l-4••^-^-^-^^--^-^-l--^-^-^-^-^-^-^-^-^-^-^-l-++-^+-^-^-^-^-^-^-^-^+-^-^-l--^-^-^
Process frora Point/Station 8002.300 to Point/Station 9000.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
56.140 (Ft.)
44.090(Ft.)
0.0690 Manning's N
6.263(CFS)
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 174.62(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 6.263(CFS)
Normal flow depth in pipe = 5.83(In.)
Flow top width inside pipe = 16.85(In.)
Critical Depth = 11.60(In.)
Pipe flow velocity = 12.63(Ft/s)
0.013
Page 5 of 20
Travel time through pipe = 0.23 rain.
Tirae of concentration (TC) = 5.23 rain.
-^-^++^-^-+^-+-^^--^-l-+•f-^-^-^-^-^-l--^•f+++-h+-^-i- ++-H-i-+++++++-i-++++++++ +
Process from Point/Station 9000.000 to Point/Station 9001.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43.760(Ft.)
Downstreara point/station elevation = 43.000(Ft.)
Pipe length = 152.15(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.263(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 6.263(CFS)
Norraal flow depth in pipe = 12.68(In.)
Flow top width inside pipe = 16.43(In.)
Critical Depth = 11.60(In.)
Pipe flow velocity = 4.71(Ft/s)
Travel time through pipe = 0.54 rain.
Time of concentration (TC) = 5.76 min.
+ ^--^-^-^-^-^-^+-^-^•^•^-^+-^-^-^-l-+-^-^-^-^-^-^-^-t--^•^•^-^-^ + -^+++•^-^ + + ++++-^-!--(-+
Process from Point/Station 9001.000 to Point/Station 9002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstreara point/station elevation = 42.680(Ft.)
Downstream point/station elevation = 42.480(Ft.)
Pipe length = 39.65(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.263(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 6.263(CFS)
Normal flow depth in pipe = 12.63(In.)
Flow top width inside pipe = 16.47(In.)
Critical Depth = 11.60(In.)
Pipe flow velocity = 4.73(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 5.90 rain.
-^-^+-l--^-^-^ ++-^ + ++-^-^-^-^++++-^-^-^-^-^-f-f-^-^-^-^-^-^-l--^++^--^-^-^-^-^ + -^-^-^ +
Process frora Point/Station 9001.000 to Point/Station 9002.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Streara is listed:
In Main Streara number: 1
Stream flow area = 1.070(Ac.)
Runoff from this streara = 6.263(CFS)
Time of concentration = 5.90 min.
Rainfall intensity = 6.154(In/Hr)
Program is now starting with Main Streara No. 2
Page 6 of 20
Process from Point/Station 9003.100 to Point/Station 9003.200
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Deciraal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Imper-vious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 67.000(Ft.)
Highest elevation = 53.500(Ft.)
Lowest elevation = 51.700(Ft.)
Elevation difference = 1.800(Ft.) Slope = 2.687 %
Top of Initial Area Slope adjusted by User to 4.200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 4.20 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.65 rainutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8*(1.1-0.8500)*( 90.000^.5)/( 4.200^(1/3)]= 2.65
Calculated TC of 2.646 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.4 08(CFS)
Total initial streara area = 0.070(Ac.)
-^-^-l--^-^-^-^-^^--^ + -^-^-^-^-^-^^-+-^ + ^--^-l--^-^-^-^-^-^-^-^-^•^-^+-^-l•-^•f-l--^-^-^-^-^-^-^ +
Process from Point/Station 9003.200 to Point/Station 9003.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segraent elevation = 51.700(Ft.)
End of street segraent elevation = 49.800(Ft.)
Length of street segraent = 58.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope frora grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance frora curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estiraated mean flow rate at midpoint of street = 0.564(CFS)
Depth of flow = 0.172(Ft.), Average velocity = 2.576(Ft/s)
Page 7 of 20
streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.843(Ft.)
Flow velocity = 2.58(Ft/s)
Travel time = 0.38 min. TC = 3.02 min.
Adding area flow to street
Calculated TC of 3.021 minutes is less than 5 rainutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Deciraal fraction soil group A = 0.000
Deciraal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Deciraal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Irapervious value, Ai = 0.900
Sub-Area C Value = 0.850
Rainfall intensity = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.850 CA = 0.119
Subarea runoff = 0.408(CFS) for 0.070(Ac.)
Total runoff = 0.815(CFS) Total area = 0.140(Ac.)
Street flow at end of street = 0.815(CFS)
Half street flow at end of street = 0.815 (CFS)
Depth of flow = 0.190(Ft.), Average velocity = 2.748(Ft/s)
Flow width (frora curb towards crown)= 4.74 7(Ft.)
-H-H + + + +-H-h + H-+-H + H-+-f-h-I--1--t--I--h H--H-H-I--t--H H-+-I--I-+-H-^+ +-1--h
Process frora Point/Station 9003.000 to Point/Station 9002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.500(Ft.)
Downstream point/station elevation = 42.480(Ft.)
Pipe length = 18.88(Ft.) Slope = 0.0011 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.815(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 0.815(CFS)
Normal flow depth in pipe = 5.98(In.)
Flow top width inside pipe = 16.96(In.)
Critical Depth = 4.02(In.)
Pipe flow velocity = 1.59(Ft/s)
Travel time through pipe = 0.2 0 min.
Time of concentration (TC) = 3.22 min.
-^-^-^-^-^++-^-^-^-l--^-^++-^-^+-^-^-^-^-^-^-^-^-^-^-^-^-l--^•f-^•^-^-l--^-^+-^-(--l--^-^-^-^
Process frora Point/Station 9003.000 to Point/Station 9002.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Streara is listed:
In Main Stream number: 2
Stream flow area = 0.140(Ac.)
Runoff from this stream = 0.815(CFS)
Time of concentration = 3.22 min.
Page 8 of 20
Rainfall intensity = 6.850(In/Hr)
Summary of streara data:
Streara Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 6.263 5.90 6.154
2 0.815 3.22 6.850
Qmax(1)
Qmax(2]
1.000 * 1.000 * 6.263) +
0.898 * 1.000 * 0.815) -i- = 6.996
1.000 * 0.545 * 6.263) -i-
1.000 * 1.000 * 0.815) -I- = 4.230
Total of 2 raain strearas to confluence:
Flow rates before confluence point:
6.263 0.815
Maxiraura flow rates at confluence using above data:
6.996 4.230
Area of streams before confluence:
1.070 0.140
Results of confluence:
Total flow rate = 6.996(CFS)
Time of concentration = 5.904 rain.
Effective streara area after confluence = 1.210(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process frora Point/Station 9002.000 to Point/Station 9004.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstreara point/station elevation = 42.280(Ft.)
Downstream point/station elevation = 41.610(Ft.)
Pipe length = 133.22(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.996(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 6.996(CFS)
Norraal flow depth in pipe = 13.85(In.)
Flow top width inside pipe = 15.16(In.)
Critical Depth = 12.28(In.)
Pipe flow velocity = 4.79(Ft/s)
Travel time through pipe = 0.4 6 rain.
Time of concentration (TC) = 6.37 min.
Process from Point/Station 9004.000 to Point/Station 8003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstreara point/station elevation = 41.280(Ft.)
Page 9 of 20
Downstream point/station elevation = 40.690(Ft.)
Pipe length = 117.44(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.996(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 6.996(CFS)
Normal flow depth in pipe = 13.88(In.)
Flow top width inside pipe = 15.13(In.)
Critical Depth = 12.28(In.)
Pipe flow velocity = 4.79(Ft/s)
Travel tirae through pipe = 0.41 min.
Time of concentration (TC) = 6.78 min.
-^-^-^-^-^-t--^-l--^•f-^•^-^-^-^-^-l--l--^-^-^-^••^-^-^-^-^^-+-^-^-^-l--^-^-^-l--^-^-l--^-^-l--l--^-^
Process frora Point/Station 9004.000 to Point/Station 8003.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.210(Ac.)
Runoff from this streara = 6.996(CFS)
Time of concentration = 6.78 rain.
Rainfall intensity = 5.631(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 8006.000 to Point/Station 8004.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Initial subarea total flow distance = 109.000(Ft.)
Highest elevation = 61.500(Ft.)
Lowest elevation = 57.200(Ft.)
Elevation difference = 4.300 (Ft.) Slope = 3.945 %
Top of Initial Area Slope adjusted by User to 3.900 %
Bottom of Initial Area Slope adjusted by User to 3.900 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The raaxlraura overland flow distance is 80.00 (Ft)
for the top area slope value of 3.90 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration = 2.35 rainutes
TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8700)* ( 80.000^.5)/( 3.900^(1/3)]= 2.35
The initial area total distance of 109.00 (Ft.) entered leaves a
reraaining distance of 29.00 (Ft.)
Page 10 of 20
Using Figure 3-4, the travel time for this distance is 0.36 minutes
for a distance of 29.00 (Ft.) and a slope of 3.90 %
with an elevation difference of 1.13(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
0.364 Minutes
Tt=[(11.9*0.0055^3)/( 1.13)]^.385= 0.36
Total initial area Ti = 2.35 minutes from Figure 3-3 formula plus
0.36 rainutes from the Figure 3-4 formula = 2.72 minutes
Calculated TC of 2.716 minutes is less than 5 rainutes,
resetting TC to 5.0 rainutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.954(CFS)
Total initial streara area = 0.160(Ac.)
Process frora Point/Station 8004.000 to Point/Station 8005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 57.200(Ft.)
End of street segment elevation = 46.000(Ft.)
Length of street segraent = 525.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope frora curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.015 0
Manning's N frora gutter to grade break = 0.0150
Manning's N frora grade break to crown = 0.0150
Estiraated raean flow rate at raidpolnt of street = 3.974(CFS)
Depth of flow = 0.307(Ft.), Average velocity = 3.315(Ft/s)
Streetflow hydraulics at raidpolnt of street travel:
Halfstreet flow width = 10.618(Ft.)
Flow velocity = 3.31(Ft/s)
Travel time = 2.64 min. TC = 5.36 rain.
Adding area flow to street
Rainfall intensity (I) = 6.553(In/Hr) for a 100.0 year storm
User specified 'C value of 0.850 given for subarea
Rainfall intensity = 6.553(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.853 CA = 1.057
Subarea runoff = 5.974(CFS) for 1.080(Ac.)
Total runoff = 6.928(CFS) Total area = 1.240(Ac.)
Street flow at end of street = 6.928(CFS)
Half street flow at end of street = 6.928(CFS)
Depth of flow = 0.360(Ft.), Average velocity = 3.792(Ft/s)
Flow width (from curb towards crown)= 13.250(Ft.)
Page 11 of 20
-l--^-^-l--^-l--l--^-^-^-^-^-^-l--^-^-^-^-^-^-^-^-^-^-^-^-^-(--^-^-l-+-l--^-^-^-^-^-f-^-l--l--^-^-^-^
Process from Point/Station 8004.000 to Point/Station 8005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Streara nuraber: 2 in normal streara number 1
Stream flow area = 1.240(Ac.)
Runoff from this streara = 6.928(CFS)
Time of concentration = 5.36 rain.
Rainfall intensity = 6.553(In/Hr)
-^--^-^-^-^-^++-^-^-^-^-^-^-^-^-^-l--^-^-f-f-^-l--^-^-^-^+•^ + -^-^-^-^•f-^-^-^--^-l--^-l--^-^-^-^
Process from Point/Station 7001.000 to Point/Station 7002.000
**** INITIAL AREA EVALUATION ****
0 . 000
0 . 000
0 . 000
1. 000
Deciraal fraction soil group A
Deciraal fraction soil group B
Deciraal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
(Limited Industrial )
Impervious value, Ai = 0.90 0
Sub-Area C Value = 0.850
Initial subarea total flow distance
Highest elevation = 51.300(Ft.)
Lowest elevation = 50.500 (Ft.)
Elevation difference = 0.800(Ft.) Slope = 0.400 %
Top of Initial Area Slope adjusted by User to 2.000 °
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70.00 (Ft)
]
200.000 (Ft.)
for the top area slope value of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration =
TC = [1.8*(1.1-C)*distance(Ft.)".5)/(%
TC = [1.8* (1.1-0.8500)* ( 70.000^.5)/(
Calculated TC of
resetting TC to 5
2.00 %, in a developraent type of
2.99 minutes
slope'^ (1/3) ]
2.000^(1/3)]= 2.99
2.988 minutes is less than 5 minutes,
0 rainutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 2.329 (CFS)
Total initial streara area = 0.400(Ac.)
-^-^-^-(--^-^-^-^-^-^-^•f + -^•^+-^-^-^-^ + ^-•^-^-^-^-^-^-^-^-^-l--^+-^-^-^-^-^-^-^-^-^-^-^-^•f +
Process from Point/Station 7002.000 to Point/Station 8005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segraent elevation = 50.500(Ft.)
End of street segment elevation = 46.370(Ft.)
Length of street segraent = 400.000 (Ft.)
Height of curb above gutter flowline = 6.0(In.)
Page 12 of 20
width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope frora gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.02 0
Street flow is on [1] side(s) of the street
Distance frora curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.015 0
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.458(CFS)
Depth of flow = 0.352(Ft.), Average velocity = 2.588(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.849(Ft.)
Flow velocity = 2.59(Ft/s)
Travel time = 2.58 min. TC = 5.56 rain.
Adding area flow to street
Rainfall intensity (I) = 6.394(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Deciraal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Rainfall intensity = 6.394(In/Hr) for a 100.0 year storra
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.850 CA = 1.020
Subarea runoff = 4.193(CFS) for 0.800(Ac.)
Total runoff = 6.522(CFS) Total area = 1.200(Ac.)
Street flow at end of street = 6.522(CFS)
Half street flow at end of street = 6.522(CFS)
Depth of flow = 0.393(Ft.), Average velocity = 2.841(Ft/s)
Flow width (from curb towards crown)= 14.916(Ft.)
-l--^-^-^-^-^-^^-+-^+-^-^-^++-^-^-^-^-^-^-^-^-^^--^-^-^-l--f-^-^-^-^-^-^-^-^-^-^-^-^-^-l--^-^+
Process from Point/Station 7002.000 to Point/Station 8005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal streara nuraber 2
Streara flow area = 1.2 00(Ac.)
Runoff from this stream = 6.522 (CFS)
Time of concentration = 5.56 rain.
Rainfall intensity = 6.394(In/Hr)
Summary of stream data:
Streara Flow rate TC Rainfall Intensity
No. (CFS) (rain) (In/Hr)
Page 13 of 20
1 6.928 5.36 6.553
2 6.522 5.56 6.394
Qraax(1) =
1.000 * 1.000 * 6.928) +
1.000 * 0.963 * 6.522) -i- = 13.206
Qmax(2)
0.976 * 1.000 * 6.928) -i-
1.000 * 1.000 * 6.522) + = 13.282
Total of 2 streams to confluence:
Flow rates before confluence point:
6.928 6.522
Maximum flow rates at confluence using above data:
13.206 13.282
Area of streams before confluence:
1.240 1.200
Results of confluence:
Total flow rate = 13.282(CFS)
Time of concentration = 5.564 min.
Effective stream area after confluence = 2.440(Ac.)
Process from Point/Station 8005.000 to Point/Station 8003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 41.140(Ft.)
Downstream point/station elevation = 40.860(Ft.)
Pipe length = 28.15(Ft.) Slope = 0.0099 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13.282(CFS)
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 13.282(CFS)
Norraal flow depth in pipe = 13.24(In.)
Flow top width inside pipe = 23.87(In.)
Critical Depth = 15.73(In.)
Pipe flow velocity = 7.47(Ft/s)
Travel time through pipe = 0.06 rain.
Tirae of concentration (TC) = 5.63 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8005.000 to Point/Station 8003.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Streara nuraber: 2
Streara flow area = 2.440(Ac.)
Runoff frora this stream = 13.282(CFS)
Time of concentration = 5.63 min.
Rainfall intensity = 6.348(In/Hr)
Summary of streara data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
Page 14 of 20
1 6.996 6.78 5.631
2 13.282 5.63 6.348
Qmax(1) =
1.000 * 1.000 * 6.996) +
Qmax(2]
0.887 * 1.000 * 13.282) + = 18.777
1.000 * 0.830 * 6.996) -i-
1.000 * 1.000 * 13.282) -i- = 19.091
Total of 2 main streams to confluence:
Flow rates before confluence point:
6.996 13.282
Maximum flow rates at confluence using above data:
18.777 19.091
Area of streams before confluence:
1.210 2.440
Results of confluence:
Total flow rate = 19.091(CFS)
Time of concentration = 5.627 min.
Effective streara area after confluence = 3.650(Ac.
Process frora Point/Station 8003.000 to Point/Station 9005.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstreara point/station elevation = 40.360(Ft.)
Downstream point/station elevation = 40.190(Ft.)
Pipe length = 34.94(Ft.) Slope = 0.004 9 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 19.091(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 19.091(CFS)
Normal flow depth in pipe = 16.05(In.)
Flow top width inside pipe = 35.79(In.)
Critical Depth = 16.79(In.)
Pipe flow velocity = 6.26(Ft/s)
Travel time through pipe = 0.09 rain.
Time of concentration (TC) = 5.72 min.
+ ++-^+-^-^-^+-^-l--^-^-^4•-^-^-^•l--^-^-^-^ ++-^•^+++ +++++++++•^+•^++++++++++++
Process from Point/Station 8003.000 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in norraal stream number 1
Streara flow area = 3.650(Ac.)
Runoff frora this streara = 19.091(CFS)
Time of concentration = 5.72 min.
Rainfall intensity = 6.281(In/Hr)
Page 15 of 20
•fH--h + -l--h-K-H-h-H-h-H + -h + + + -f-f-h-f-H-H-l--h-H-^-h-h-K-H-l--F-f-f-f-F-H-H + -F-l--l--H-f-H-f-l--f
Process from Point/Station 7006.100 to Point/Station 7006.200
**** INITIAL AREA EVALUATION ****
Deciraal fraction soil group A = 0.000
Deciraal fraction soil group B = 0.000
Deciraal fraction soil group C = 0.000
Deciraal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 157.000(Ft.)
Highest elevation = 50.000(Ft.)
Lowest elevation = 48.400(Ft.)
Elevation difference = 1.600(Ft.) Slope = 1.019 %
Top of Initial Area Slope adjusted by User to 1.000 %
Bottom of Initial Area Slope adjusted by User to 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.00 %, in a developraent type of
Liraited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 3.49 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0 . 8500)* ( 60.000^.5)/( 1.000^(1/3)]= 3.49
The initial area total distance of 157.00 (Ft.) entered leaves a
remaining distance of 97.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.56 minutes
for a distance of 97.00 (Ft.) and a slope of 1.00 %
with an elevation difference of 0.97(Ft.) frora the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
1.557 Minutes
Tt=[(11.9*0.0184^3)/( 0.97)]^.385= 1.56
Total initial area Ti = 3.49 minutes from Figure 3-3 formula plus
1.56 rainutes from the Figure 3-4 formula = 5.04 rainutes
Rainfall intensity (I) = 6.812(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.811(CFS)
Total initial stream area = 0.14 0(Ac.)
-^-^-^-^-^-^-^-•f-^-^-^-t-^--^-^-^-^-^-^-^-^-l--^-^-^-^-^-^-^•^-^-l-•^-^-^-^-^•^•^•f-^•^•f^-+-^-^-^
Process from Point/Station 7006.200 to Point/Station 9005.000
**** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION ****
Top of street segment elevation = 52.000(Ft.)
End of street segment elevation = 47.320(Ft.)
Length of street segment = 74.940(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Page 16 of 20
Slope frora grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance frora curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.155(Ft.), Average velocity =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.004(Ft.)
Flow velocity = 3.41(Ft/s)
Travel time = 0.37 min. TC = 5.41 rain.
Adding area flow to street
Rainfall intensity (I) = 6.511(In/Hr
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
)
,950
1.100(CFS)
3.406(Ft/s)
for a 100.0 year storm
]
(General Industrial
Impervious value, Ai = 0.
Sub-Area C Value = 0.870
Rainfall intensity =
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.858 CA = 0.206
Subarea runoff = 0.531(CFS) for 0.100(Ac.)
Total runoff = 1.341(CFS) Total area =
Street flow at end of street = 1.341(CFS)
Half street flow at end of street = 0.671(CFS)
Depth of flow = 0.165(Ft.), Average velocity = 3.481(Ft/s)
Flow width (from curb towards crown)= 3.485(Ft.)
6.511(In/Hr) for a 100.0 year storm
0.24 0(Ac.)
-f + + -H-f + -H + H--h-f-h-l--f-h-f-l--h-h-l--f-f-h + -K-h-(--F-t--H-H-H-^-H-l--H-l--F-F-H-F + -F-H-F-F-f-f
Process from Point/Station 7006.200 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.24 0(Ac.)
Runoff from this stream = 1.341(CFS)
Time of concentration = 5.41 min.
Rainfall intensity = 6.511(In/Hr)
-f-^+•^-^-^-^+-^-^-^-^-^-^-^-^-^-^-^-^-^-^^--^-^++^-+-^•^+-^-^-^-^--^-^-^ + -^-^-^-^-^-^•^-^-^
Process from Point/Station 9007.000 to Point/Station 7006.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Page 17 of 20
•
#
Deciraal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Initial subarea total flow distance = 55.500(Ft.)
Highest elevation = 48.500(Ft.)
Lowest elevation = 48.200(Ft.)
Elevation difference = 0.300(Ft.) Slope = 0.541 %
Top of Initial Area Slope adjusted by User to 2.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70.00 (Ft)
for the top area slope value of 2.00 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.75 rainutes
TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8700)* ( 70.000".5)/( 2.000^(1/3)]= 2.75
Calculated TC of 2.74 9 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.238(CFS)
Total initial streara area = 0.040(Ac.)
^-^--^ + •f-l--^-^--^-^-^-^-^-^-^-^-^-^-^-^-^-^-^--^-^-^-^-l--^-l--^-l-4• + + -^-^^--^-^-^-^+•^-^-^ +
Process frora Point/Station 7006.000 to Point/Station 9005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 48.200(Ft.)
End of street segment elevation = 47.320(Ft.)
Length of street segment = 174.800(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.02 0
Slope frora grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated raean flow rate at midpoint of street = 0.792(CFS)
Depth of flow = 0.241(Ft.), Average velocity = 1.3 07(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7.312(Ft.)
Flow velocity = 1.31 (Ft/s)
Travel time = 2.23 min. TC = 4.98 rain.
Adding area flow to street
Calculated TC of 4.979 minutes is less than 5 minutes.
Page 18 of 20
resetting TC to 5.0 minutes for rainfall intensity calculations
850(In/Hr) for a
0.000
000
000
000
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[INDUSTRIAL area type
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Rainfall intensity =
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.870 CA = 0.209
Subarea runoff = 1.192(CFS) for 0.200(Ac.
Total runoff = 1.43 0(CFS) Total area =
Street flow at end of street = 1.430(CFS)
Half street flow at end of street = 1.430(CFS)
Depth of flow = 0.283(Ft.), Average velocity =
Flow width (frora curb towards crown)= 9.396(Ft.)
100.0 year storra
6.850(In/Hr) for a 100.0 year storra
0.240(Ac.)
1.499(Ft/s)
-t--^-(--^-^-^-^-^-^-^-^•4•-^-f-^-^-^-^-f-^-^•f-t--l--^-^-l--^-^-l-+-l--^-^-^++-l--l--^-^-^-^•f-^+•f+
Process from Point/Station 7006.000 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in norraal stream number 3
Stream flow area = 0.240(Ac.)
Runoff from this stream = 1.430(CFS)
Time of concentration = 4.98 min.
Rainfall intensity = 6.850(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
3
Qraax(1)
Qmax(2)
Qmax(3)
19.091
1.341
1.430
1. 000
0 . 965
0 . 917
1. 000
1. 000
0 . 950
1. 000
1. 000
1. 000
5.72
5.41
4 .98
1.000 *
1.000 *
1. 000 *
0.94 6 *
1.000 *
1.000 *
0.870 *
0.920 *
1.000 *
19.091
1.341
1.430
19.091
1.341
1.430
19.091
1.341
1.430
6 .281
6.511
6 .850
•f
+
+ =
+
+
+ =
+
+
+ =
21.696
20.757
19.282
Total of 3 streams to confluence:
Flow rates before confluence point;
Page 19 of 20
19.091 1.341 1.430
Maxiraura flow rates at confluence using above data:
21.696 20.757 19.282
Area of streams before confluence:
3.650 0.240 0.240
Results of confluence:
Total flow rate = 21.696(CFS)
Time of concentration = 5.720 min.
Effective stream area after confluence = 4.130(Ac.
+++-^-^-^-^•^+-^+^--^•^-^•f•^-^-^-l• + -^ + ^--l--^•f•^-^+-^-^^-^--^-l--l--^-l--^-^-^-^-^•^•^•^+
Process from Point/Station 9005.000 to Point/Station 7007.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 40.190(Ft.)
Downstream point/station elevation = 39.820(Ft.)
Pipe length = 71.54(Ft.) Slope = 0.0052 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 21.696(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 21.696(CFS)
Normal flow depth in pipe = 16.98(In.)
Flow top width inside pipe = 35.94(In.)
Critical Depth = 17.97(In.)
Pipe flow velocity = 6.62 (Ft/s)
Travel time through pipe = 0.18 min.
Time of concentration (TC) = 5.90 min.
End of coraputations, total study area = 4.130 (Ac.)
Page 20 of 20
APPENDIX 3
10 Yr. Ultimate Hydrologic Calculations
(See Exhibit 'L')
ECRlPlO
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering software,(c)1991-2006 Version 7,7
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 12/17/13
100 Year Hydrology for ultimate Condition
Basin ECRlP JN 101307
Revised by HL 12/17/13
********* Hydrology study control information **********
Program License serial Number 6218
Rational hydrology study storm event year is
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 1,700
24 hour precipitation(inches) = 3,100
P6/P24 = 54,8%
San Diego hydrology manual 'C' values used
10,0
Process from Point/Station 1000,000 to Point/Station
**** INITIAL AREA EVALUATION ****
1001,000
3
= 100,000(Ft,)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL
(43.0 DU/A or Less )
Impervious value, Ai = 0.800
Sub-Area C value = 0,790
Initial subarea total flow distance
Highest elevation = 63,000(Ft,)
Lowest elevation = 57,800(Ft,)
Elevation difference = 5,200(Ft,) Slope = 5,200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95,00 (Ft)
for the top area slope value of 5,20 %, in a development type of
43,0 DU/A or Less
In Accordance With Figure 3-3
initial Area Time of Concentration = 3,14 minutes
TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,7900)*( 95,OOOA,5)/( 5,200A(l/3)3=
The initial area total distance of 100,00 (Ft,) entered leaves a
remaining distance of 5,00 (Ft,)
Using Figure 3-4, the travel time for this distance is
for a distance of 5.00 (Ft,) and a slope of 5,20 %
with an elevation difference of 0,26(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
Page 1
3,14
0,08 minutes
ECRlPlO
0.084 Minutes
Tt=[(ll,9*0,0009A3)/( 0,26)3A,385= 0,08
Total initial area Ti = 3,14 minutes from Figure 3-3 formula plus
0,08 minutes from the Figure 3-4 formula = 3,22 minutes
calculated TC of 3,223 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 0,602(CFS)
Total initial stream area = 0,170(Ac)
++-f-^+-l-++++++++-h+++-l-+-l--l-++++++-H++++++-H+++++++++-l-+-H++++
Process from Point/Station 1001,000 to Point/Station 1002,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 57,800(Ft,)
End of street segment elevation = 40,300(Ft,)
Length of street segment = 595,000(Ft.)
Height of curb above gutter flowline = 6,0(ln,)
width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = 1.500(ln,)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 2,475(CFS)
Depth of flow = 0,215(Ft,), Average velocity = 2,868(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6,003(Ft,)
Flow velocity = 2,87(Ft/s)
Travel time = 3,46 min, TC = 6,68 min.
Adding area flow to street
Rainfall intensity (I) = 3,715(ln/Hr) for a 10,0 year storm
User specified 'C' value of 0,790 given for subarea
Rainfall intensity = 3,715(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,790 CA = 1.138
Subarea runoff = 3.625(CFS) for l,270(Ac,)
Total runoff = 4,226(CFS) Total area = l,440(Ac.)
Street flow at end of street = 4,226(CFS)
Half street flow at end of street = 2,113(CFS)
Depth of flow = 0,248(Ft,), Average velocity = 3,231(Ft/s)
Flow width (from curb towards crown)= 7,635(Ft,)
Process from Point/Station 1002,000 to Point/Station 1003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 34,190(Ft,)
Downstream point/station elevation = 33,800(Ft,)
Pipe length = 35,19(Ft,) Slope = 0,0111 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 4.226(CFS)
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 4,226(CFS)
Normal flow depth in pipe = 7.72(In.)
Page 2
ECRlPlO
Flow top width inside pipe = 17,82(In.)
critical Depth = 9,46(ln,)
Pipe flow velocity = 5,84(Ft/s)
Travel time through pipe = 0,10 min.
Time of concentration (TC) = 6,78 min.
End of computations, total study area = 1,440 (Ac.)
Page 3
ecr2ulO
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7,9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/10/14
10 Year Hydrology for ultimate Condition
Basin ECR2U JN 101307
Revised by MC
********* Hydrology Study Control information **********
Program License Serial Number 6324
Rational hydrology study storm event year is 10,0
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 1,700
24 hour precipitation(inches) = 3,100
P6/P24 = 54,8%
San Diego hydrology manual 'C values used
process from Point/Station 2000,000 to Point/Station 2001,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent open space )
Impervious value, Ai = 0.000
sub-Area C value = 0,350
Initial subarea total flow distance = 297,000(Ft,)
Highest elevation = 99,400(Ft,)
Lowest elevation = 77,700(Ft.)
Elevation difference = 21.700(Ft.) Slope = 7,306 %
Top of initial Area Slope adjusted by User to 16.815 %
Bottom of Initial Area Slope adjusted by User to 16.815 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 16,82 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.27 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [l,8*(l.l-0.350O)*( 100.000A,5)/( 16,815A(l/3)3= 5,27
The initial area total distance of 297,00 (Ft,) entered leaves a
remaining distance of 197.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 0.91 minutes
for a distance of 197,00 (Ft,) and a slope of 16,82 %
Page 1
ecr2ulO
with an elevation difference of 33.13(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
0,907 Minutes
Tt=[(ll,9*0.0373A3)/( 33,13)3A,385= 0.91
Total initial area Ti = 5,27 minutes from Figure 3-3 formula plus
0,91 minutes from the Figure 3-4 formula = 6.18 minutes
Rainfall intensity (I) = 3.908(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,492(CFS)
Total initial stream area = 0,360(AC,)
Process from Point/Station 2001,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
2002.100
1,076(CFS)
4,267(Ft/s)
Upstream point elevation = 77.700(Ft,)
Downstream point elevation = 67,790(Ft,)
Channel length thru subarea = 250,000(Ft,)
Channel base width = 2,000(Ft.)
Slope or 'Z' of left channel bank = 2,000
Slope or 'Z' of right channel bank = 2.000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0,015
Maximum depth of channel = l,000(Ft,)
Flow(q) thru subarea = 1,076(CFS)
Depth of flow = 0,113(Ft,), Average velocity =
Channel flow top width = 2,453(Ft,)
Flow velocity = 4.27(Ft/s)
Travel time = 0.98 min.
Time of concentration = 7,15 min.
Critical depth = 0,195(Ft,)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open space )
Impervious value, Ai = 0,000
Sub-Area C Value = 0.350
Rainfall intensity = 3,555(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0.445
1,088(CFS) for 0.910(Ac)
1,580(CFS) Total area = l,270(Ac,)
0.142(Ft,), Average velocity = 4,878(Ft/s)
0.246(Ft,)
3.555(ln/Hr) for a
0,000
0,000
0,000
1,000
3
10.0 year storm
Subarea runoff =
Total runoff =
Depth of flow =
Critical depth =
process from Point/Station 2002.100 to Point/Station 2002,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation = Pipe length = 82,57(Ft,) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 24.00(in,)
Calculated individual pipe flow = 1,580(CFS)
Normal flow depth in pipe = 4,28(In.)
18.37(ln.)
Page 2
55.740(Ft,)
54,900(Ft.)
0.0102 Manning's N = 0,013
1,580(CFS)
Flow top width inside pipe =
ecr2ulO
Critical Depth = 5.21(ln,)
Pipe flow velocity = 4.17(Ft/s)
Travel time through pipe = 0.33 min.
Time of concentration (TC) = 7.48 min.
Process from Point/Station 2002,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
2003,000
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 73.54(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 24,00(ln,)
Calculated individual pipe flow = 1,580(CFS)
Normal flow depth in pipe = 4,29(in,)
Flow top width inside pipe = 18,39(ln,)
critical Depth = 5,21(in,)
Pipe flow velocity = 4,15(Ft/s)
Travel time through pipe = 0,30 min.
Time of concentration (TC) = 7.78 min.
54.570(Ft,)
53,830(Ft,)
0.0101 Manning's N = 0.013
1.580(CFS)
Process from Point/station 2003,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
2003,000
Along Main stream number: 1 in normal stream number 1
Stream flow area = l,270(Ac,)
Runoff from this stream = 1,580(CFS)
Time of concentration = 7,78 min.
Rainfall intensity = 3,368(in/Hr)
Process from Point/Station 2004,000 to Point/Station
**** INITIAL AREA EVALUATION ****
2005,000
3
120,000(Ft,)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[COMMERCIAL area type
(General commercial )
Impervious value, Ai = 0.850
Sub-Area C value = 0,820
Initial subarea total flow distance =
Highest elevation = 86,100(Ft.)
Lowest elevation = 83,900(Ft.)
Elevation difference = 2,200(Ft,) Slope = 1.833 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 1,83 %, in a development type of
General Commercial
in Accordance with Figure 3-3
Initial Area Time of Concentration = 3,57 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,8200)*( 75,OOOA.5)/( 1,833A(1/3)3= 3.57
The initial area total distance of 120,00 (Ft,) entered leaves a
remaining distance of 45,00 (Ft.)
using Figure 3-4, the travel time for this distance is 0,68 minutes
for a distance of 45,00 (Ft.) and a slope of 1,83 %
Page 3
ecr2ulO
with an elevation difference of 0.82(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
0,683 Minutes
Tt=[(11.9*0,0085A3)/( 0,82)3A.385= 0.68 .
Total initial area Ti = 3.57 minutes from Figure 3-3 formula plus
0.68 minutes from the Figure 3-4 formula = 4.25 minutes
Calculated TC of 4,249 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,820
Subarea runoff = 0.661(CFS)
Total initial stream area = 0.180(Ac,)
Process from Point/Station 2005.000 to Point/Station 2005,100
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 83.900(Ft,)
End of street segment elevation = 74.200(Ft,)
Length of street segment = 500,000(Ft,)
Height of curb above gutter flowline = 6,0(ln,)
width of half street (curb to crown) = 44.000(Ft,)
Distance from crown to crossfall grade break = 42.500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [13 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft.)
Gutter hike from flowline = 1.500(in,)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 2,000(CFS)
Depth of flow = 0,258(Ft,), Averaqe velocity = 2,718(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8,153(Ft.)
Flow velocity = 2.72(Ft/s)
Travel time = 3,07 min, TC = 7,32 min.
Adding area flow to street
Rainfall intensity (i) = 3.504(in/Hr) for a 10,0 year storm
user specified 'C value of 0,810 given for subarea
Rainfall intensity = 3.504(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,812 CA = 0,933
Subarea runoff = 2.609(CFS) for 0.970(Ac.)
Total runoff = 3,271(CFS) Total area = l,150(Ac,)
Street flow at end of street = 3,271(CFS)
Half street flow at end of street = 3.271(CFS)
Depth of flow = 0.295(Ft.), Averaqe velocity = 3,052(Ft/s)
Flow width (from curb towards crown)= 10.002(Ft.)
Process from Point/Station 2005,100 to Point/Station 2005,200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 71,930(Ft,)
Downstream point/station elevation = 69.130(Ft,)
Pipe length = 16.25(Ft.) Slope = 0.1723 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 3,271(CFS)
Given pipe size = 18,00(in,)
Page 4
ecr2ulO
Calculated individual pipe flow = 3.271(CFS)
Normal flow depth in pipe = 3,34(in,)
Flow top width inside pipe = 13,99(in.)
critical Depth = 8,25(in,)
Pipe flow velocity = 14,50(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (TC) = 7.33 min,
+++++++-f-f-f+-f-f+-f+-f-f+++++++-H+-f+++++-f-f-l--fH--f-f-t-++-fH-++
Process from Point/Station 2005.200 to Point/Station 2005.400
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 68,820(Ft.)
Downstream point/station elevation = 66,740(Ft,)
Pipe length = 65,83(Ft.) Slope = 0,0316 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 3.271(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 3,271(CFS)
Normal flow depth in pipe = 5,10(in.)
Flow top width inside pipe = 16.22(in.)
Critical Depth = 8,25(in,)
Pipe flow velocity = 7.94(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 7.47 min,
++-f-f+-f-f-f-f+-l-++-h-f-f-f++-(-4-++-f+-f+-f-f++++-f+++++++-l-++-f-f+
Process from Point/Station 2005.400 to Point/Station 2005.500
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 66.410(Ft.)
Downstream point/station elevation = 64.150(Ft.)
Pipe length = 64,08(Ft,) Slope = 0,0353 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 3.271(CFS)
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 3,271(CFS)
Normal flow depth in pipe = 4,96(ln,)
Flow top width inside pipe = 16.08(in.)
Critical Depth = 8.25(in,)
Pipe flow velocity = 8,26(Ft/s)
Travel time through pipe = 0,13 min.
Time of concentration (TC) = 7.60 min,
-f++-f++-f-t--f++++-f+-f-f-l--f-f4-+-f+-f-f-(--f+-f-f-f-f-f-f++++++-f-f+-f+
Process from Point/station 2005,500 to Point/Station 2003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 63,780(Ft,)
Downstream point/station elevation = 53,440(Ft,)
Pipe length = 40,22(Ft.) Slope = 0.2571 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 3.271(CFS)
Given pipe size = 18,00(ln.)
Calculated individual pipe flow = 3.271(CFS)
Normal flow depth in pipe = 3,02(in.)
Flow top width inside pipe = 13,46(ln,)
Critical Depth = 8,25(in,)
Pipe flow velocity = 16,69(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 7,64 min.
Page 5
ecr2ulO
Process from Point/Station 2003,000 to Point/Station 2003,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = l,150(Ac,)
Runoff from this stream = 3,271(CFS)
Time of concentration = 7.64 min.
Rainfall intensity = 3,407(ln/Hr)
+-^-t--l--^-^--t-•^-^-(--^-^-^-^-^-f•f•^+•^+-^+++++-^^-+++-^-f•f++-f-^+•^-+-^-^+
Process from point/Station 2005.300 to Point/Station 2005,100
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group c = 0,000
Decimal fraction soil group D = 1,000
[INDUSTRIAL area type
(General industrial )
Impervious value, Ai = 0,950
Sub-Area C value = 0,870
Initial subarea total flow distance =
Highest elevation = 75.400(Ft.)
Lowest elevation =
Elevation difference
55.000(Ft.)
74.200(Ft.)
1.200(Ft,) Slope = 2,182 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70.00 (Ft)
for the top area slope value of
General industrial
In Accordance With Figure 3-3
initial Area Time of concentration = 2.67 minutes
TC = [l,8*(l,l-c)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,8700)*( 70.000A,5)/( 2,180A(l/3)3= 2,
calculated TC of 2,671 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4,479(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.390(CFS)
Total initial stream area = 0,100(Ac)
2,18 %, in a development type of
.67
-^-^^•-l--^•^-^-^•^•^+-^^--l-+-^-l-+-^+++-^•^+^-++•f•^-•^•f•^+++++++•^-•l-+++++
Process from point/station 2005.100 to Point/Station 2006.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 74.200(Ft.)
End of street segment elevation = 64.900(Ft.)
Length of street segment = 240,000(Ft,)
Height of curb above gutter flowline = 6.0(in,)
Width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [13 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft.)
Gutter hike from flowline = l,500(ln.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0.0150
Page 6
ecr2ulO
Estimated mean flow rate at midpoint of street = 1.161(CFS)
Depth of flow = 0,204(Ft.), Average velocity = 3.154(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5,448(Ft.)
Flow velocity = 3.15(Ft/s)
Travel time = 1.27 min, TC = 3.94 min.
Adding area flow to street
Calculated TC of 3,939 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (i) = 4.479(in/Hr) for a 10.0 year storm
User specified 'C' value of 0,810 given for subarea
Rainfall intensity = 4.479(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.822 CA = 0.419
subarea runoff = 1.487(CFS) for 0,410(Ac,)
Total runoff = 1,877(CFS) Total area = 0.510(Ac,)
Street flow at end of street = 1.877(CFS)
Half street flow at end of street = 1.877(CFS)
Depth of flow = 0,231(Ft,), Average velocity = 3.499(Ft/s)
Flow width (from curb towards crown)= 6.821(Ft,)
Process from Point/Station 2006,000 to Point/Station 2003,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 62.130(Ft,)
Downstream point/station elevation = 60,170(Ft.)
Pipe length = 21,ll(Ft,) slope = 0,0928 Manning's N = 0,013
NO. of pipes = 1 Required pipe flow = 1,877(CFS)
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 1,877(CFS)
Normal flow depth in pipe = 2.96(in.)
Flow top width inside pipe = 13.34(In,)
critical Depth = 6,19(In,)
Pipe flow velocity = 9,90(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 3,98 min.
Process from Point/Station 2003,100 to Point/Station 2003,200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 59,980(Ft.)
Downstream point/station elevation = 56.880(Ft,)
Pipe length = 28,80(Ft,) Slope = 0,1076 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 1,877(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 1,877(CFS)
Normal flow depth in pipe = 2,85(in.)
Flow top width inside pipe = 13,15(In,)
critical Depth = 6,19(ln,)
Pipe flow velocity = 10.42(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 4,02 min.
Process from Point/Station 2003,200 to Point/Station 2003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 56,470(Ft,)
Page 7
ecr2ulO
Downstream point/station elevation =
Pipe length = 21.62(Ft.) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln,)
Calculated individual pipe flow =
Normal flow depth in pipe = 2.95(in,)
Flow top width inside pipe = 13,32(In,)
Critical Depth = 6,19(ln,)
Pipe flow velocity = 9,94(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 4,06 min
54,440(Ft,)
0.0939 Manning's N = 0.013
1,877(CFS)
1,877(CFS)
Process from Point/Station 2003,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
2003.000
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 0,510(Ac.)
Runoff from this stream = 1.877(CFS)
Time of concentration = 4.06 min.
Rainfall intensity = 4,479(in/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2
3
Qmax(l)
Qmax(2) =
Qmax(3) =
1,580
3,271
1,877
1.000
0,989
0,752
1,000 *
,000
,761
.000
.000
1,000 *
7,78
7.64
4,06
1.000
1.000
1,000
0,982
,000
.000
0,522
0,531
1.000
3,368
3.407
4,479
1,580) +
3.271) +
1.877) -I-
1.580) +
3,271) -I-
1,877) +
1,580) +
3.271) +
1,877) -f
6.225
6.251
4,438
Total of 3 streams to confluence:
Flow rates before confluence point:
1.580 3,271 1.877
Maximum flow rates at confluence using above data:
6,225 6.251 4.438
Area of streams before confluence:
1.270 1,150 0.510
Results of confluence:
Total flow rate = 6,251(CFS)
Time of concentration = 7,641 min.
Effective stream area after confluence = 2,930(Ac,)
Process from Point/Station 2003,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
2007.000
Upstream point/station elevation = 53.760(Ft,)
Downstream point/station elevation = 53,520(Ft,)
Page 8
ecr2ulO
Pipe length = 24,60(Ft.) Slope = 0.0098 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 6.251(CFS)
Given pipe size = 24,00(in,) ^ N
calculated individual pipe flow = 6.251(CFS)
Normal flow depth in pipe = 8.68(in.)
Flow top width inside pipe = 23,07(in.)
critical Depth = 10.61(in,)
Pipe flow velocity = 6.10(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 7,71 min.
++ Process from Point/Station 2003,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
2007,000
The following data inside Main stream is listed:
In Main Stream number: 1
Stream flow area =
Runoff from this stream
Time of concentration =
Rainfall intensity =
2.930(Ac,)
6.251(CFS)
7,71 min,
3,388(ln/Hr)
Program is now starting with Main stream No, 2
Process from Point/Station 2008,000 to Point/Station
**** INITIAL AREA EVALUATION ****
2009,000
0.000
0,000
0.000
1.000
3
125,000(Ft.)
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[HIGH DENSITY RESIDENTIAL
(24.0 DU/A or Less ) Impervious value, Ai = 0,650
Sub-Area C value = 0,710
Initial subarea total flow distance = Highest elevation = 84,000(Ft,)
Lowest elevation = 82,500(Ft,) Elevation difference = 1.500(Ft,) Slope = 1,200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65,00 (Ft)
for the top area slope value of 1,20 %, in a development type of
24,0 DU/A or Less
In Accordance With Figure 3-3 Initial Area Time of concentration = 5,33 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(1.1-0.7100)*( 65,000A.5)/( 1.200A(1/3)3= 5,33
The initial area total distance of 125,00 (Ft,) entered leaves a
remaining distance of 60.00 (Ft,) .
using Figure 3-4, the travel time for this distance is 1.00 minutes
for a distance of 60.00 (Ft.) and a slope of 1.20 %
with an elevation difference of 0,72(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
1,003 Minutes
Tt=[(11.9*0.0114A3)/( 0.72)3A,385= 1,00 . ^ .
Total initial area Ti = 5,33 minutes from Figure 3-3 formula plus
1,00 minutes from the Figure 3-4 formula = 6,33 minutes
Rainfall intensity (l) = 3,847(ln/Hr) for a
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 0.410(CFS)
Total initial stream area = 0,150(Ac,)
Page 9
10.0 year storm
is C = 0.710
ecr2ulO
Process from Point/station 2009,000 to Point/Station 2010,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 82.500(Ft,)
End of street segment elevation = 67,700(Ft.)
Length of street segment = 620.000(Ft,)
Height of curb above gutter flowline = 6.0(ln.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42,500(Ft.)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = l,500(in,)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.795(CFS)
Depth of flow = 0.203(Ft,), Average velocity = 2.468(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5.408(Ft.)
Flow velocity = 2.47(Ft/s)
Travel time = 4.19 min. TC = 10.52 min.
Adding area flow to street
Rainfall intensity (i) = 2.773(in/Hr) for a 10,0 year storm
user specified 'C' value of 0.650 given for subarea
Rainfall intensity = 2.773(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.655 CA = 1.108
Subarea runoff = 2.661(CFS) for 1.540(Ac,)
Total runoff = 3.071(CFS) Total area = l,690(Ac,)
Street flow at end of street = 3,071(CFS)
Half street flow at end of street = 1,535(CFS)
Depth of flow = 0.234(Ft.), Average velocity = 2.772(Ft/s)
Flow width (from curb towards crown)= 6,948(Ft,)
+++++++++++++++++++++++++-|-++++-(-++-|-4--f-f-f-f+++-f+++-f+++
Process from Point/Station 2010.000 to Point/station 2007.000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 58.640(Ft,)
Downstream point/station elevation = 54.020(Ft,) Pipe length = 48,09(Ft,) slope = 0,0961 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 3,071(CFS)
Given pipe size = 18,00(In,)
Calculated individual pipe flow = 3,071(CFS)
Normal flow depth in pipe = 3.74(in.)
Flow top width inside pipe = 14.60(in.)
critical Depth = 8.00(in.)
Pipe flow velocity = 11.58(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 10,59 min.
Process from Point/Station 2010,000 to Point/Station 2007.000
**** CONFLUENCE OF MAIN STREAMS ****
Page 10
ecr2ulO
Given pipe size = 24.00(ln,)
calculated individual pipe flow = 8,487(CFS)
Normal flow depth in pipe = 4.85(in,)
Flow top width inside pipe = 19,28(in,)
critical Depth = 12,47(in.)
Pipe flow velocity = 18,67(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 7,98 min.
End of computations, total study area = 4.620 (Ac)
Page 12
ecr3ulO
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 version 7,9
Rational method hydrology program based on
san Diego County Flood control Division 2003 hydrology manual
Rational Hydrology Study Date: 10/10/14
10 Year Hydrology for ultimate condition
Basin ECR3U JN 101307
Revised by MC
********* Hydrology Study control Information **** ******
Program License serial Number 6324
Rational hydrology study storm event year is 10.0
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 1,700
24 hour precipitation(inches) = 3,100
P6/P24 = 54,8%
San Diego hydrology manual 'C values used
+•f+-(--f+-^-^-+-^++-^-^4•+-^--^++++++•f-^+•l--^+-^•^++^-+-f-^-f-^-^-^-t•+-(•++
process from point/Station 2012,000 to Point/Station 2013.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area c value = 0,350
Initial subarea total flow distance = 300.000(Ft.)
Highest elevation = 101.600(Ft.)
Lowest elevation = 83,000(Ft.)
Elevation difference = 18.600(Ft,) Slope = 6,200 %
Top of initial Area Slope adjusted by User to 25,000 %
Bottom of initial Area Slope adjusted by user to 0,500 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 25.00 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 4,62 minutes
TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,3500)*( 100,000A.5)/( 25,OOOA(l/3)3= 4,62
The initial area total distance of 300.00 (Ft.) entered leaves a
remaining distance of 200.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 3.55 minutes
for a distance of 200.00 (Ft.) and a slope of 0.50 %
Page 1
ecr3ulO
with an elevation difference of 1.00(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
3,550 Minutes
Tt=[(ll,9*0.0379A3)/( 1.00)3A,385= 3.55
Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus
3,55 minutes from the Figure 3-4 formula = 8,17 minutes
Rainfall intensity (I) = 3,264(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,468(CFS)
Total initial stream area = 0,410(Ac,)
-^-l--^+-t-+•f-l--l--(--f+•^-^-f++-^+-l--^-^-+-f-^^-+-l-++-^-l--f+•f+•f+-^--^-^-^-^^
Process from Point/station 2013,000 to Point/Station 2013,100
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 77.140(Ft.)
Downstream point/station elevation = 76,330(Ft,)
Pipe length = 32,24(Ft,) Slope = 0,0251 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0,468(CFS)
Given pipe size = 18,00(In.)
Calculated individual pipe flow = 0.468(CFS)
Normal flow depth in pipe = 2,07(in,)
Flow top width inside pipe = ll,49(ln,)
Critical Depth = 3,04(in,)
Pipe flow velocity = 4.13(Ft/s)
Travel time through pipe = 0,13 min.
Time of concentration (TC) = 8,30 min,
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 2013.100 to Point/Station 3001,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 76,000(Ft,)
Downstream point/station elevation = 73,140(Ft,)
Pipe length = 301,23(Ft,) Slope = 0.0095 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0,468(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 0,468(CFS)
Normal flow depth in pipe = 2,62(In,)
Flow top width inside pipe = 12,70(in,)
critical Depth = 3,04(in,)
Pipe flow velocity = 2,94(Ft/s)
Travel time through pipe = 1,71 min.
Time of concentration (TC) = 10,00 min,
+-^-f+-l-+-^•+++++•f+++-^+++++++++-^-l-+++•f^-+•f++•f•f-^-l--^4-+-^-f-f•l•+
Process from Point/Station 2013,100 to Point/Station 2013,100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0,410(Ac)
Runoff from this stream = 0,468(CFS)
Time of concentration = 10,00 min.
Rainfall intensity = 2,863(in/Hr)
•^++•^--l-+•^+++^--t•-l-++++++-^+++-^+++•f+-^-^+-^-•^•^-f•^-^-^•f•f-f-f++++
Process from Point/Station 2004,000 to Point/Station 3000,000
**** INITIAL AREA EVALUATION ****
Page 2
ecr3ulO
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(24,0 DU/A or Less )
Impervious value, Ai = 0,650
Sub-Area C value = 0,710
Initial subarea total flow distance = 115,000(Ft,)
Highest elevation = 86,100(Ft,)
Lowest elevation = 84,100(Ft,)
Elevation difference = 2,000(Ft,) Slope = 1,739 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 1,74 %, in a development type of
24,0 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 5,06 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [1.8*(1.1-0,7100)*( 75,OOOA.5)/( 1,739A(l/3)3= 5,06
The initial area total distance of 115,00 (Ft,) entered leaves a
remaining distance of 40,00 (Ft,) using Figure 3-4, the travel time for this distance is 0,64 minutes
for a distance of 40.00 (Ft,) and a slope of 1.74 %
with an elevation difference of 0.70(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
= 0.636 Minutes
Tt=[(11.9*0,0076A3)/( 0.70)3A.385= 0,64
Total initial area Ti = 5.06 minutes from Figure 3-3 formula plus
0,64 minutes from the Figure 3-4 formula = 5,69 minutes
Rainfall intensity (I) = 4,120(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.710
Subarea runoff = 0.673(CFS)
Total initial stream area = 0,230(Ac,)
++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 3000,000 to Point/Station 3001,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 74,270(Ft,)
Downstream point/station elevation = 73,140(Ft.)
Pipe length = 57,17(Ft,) Slope = 0.0198 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0.673(CFS)
Given pipe size = 18,00(ln,)
calculated individual pipe flow = 0.673(CFS)
Normal flow depth in pipe = 2,62(in,) Flow top width inside pipe = 12.69(In,)
Critical Depth = 3,64(ln,)
Pipe flow velocity = 4,24(Ft/s)
Travel time through pipe = 0.22 min.
Time of concentration (TC) = 5,92 min,
-^-^-^-f-^--^+++-^-^+-^+-^-+-^-++-^+-^+-^-^-f++++•^-++++++^-++-f+++-f-f+
Process from Point/Station 3001,000 to Point/Station 3001.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,230(Ac)
Runoff from this stream = 0.673(CFS)
Time of concentration = 5.92 min.
Rainfall intensity = 4.018(ln/Hr)
Page 3
Summary of stream data:
ecr3ulO
Stream
NO,
Flow rate
(CFS) TC
(min)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
0,468
0.673
10.00
5,92
1.000 *
0,713 *
1.000 *
1,000 *
1.000 *
1.000 *
0.591 *
1.000 *
2.863
4.018
0,468) +
0,673) +
0.468) +
0,673) +
0,948
0,950
Total of 2 streams to confluence:
Flow rates before confluence point:
0.468 0,673
Maximum flow rates at confluence using above data:
0,948 0.950
Area of streams before confluence:
0.410 0,230
Results of confluence:
Total flow rate = 0.950(CFS)
Time of concentration = 5.917 min.
Effective stream area after confluence = 0,640(Ac,)
+-(--f-H++-f+++-f+-f+-f-f-f-f+++++++-f+-t--f-f-f-(--f++4-+-t-+++-H-f++++-f++
Process from Point/Station 3001,000 to Point/Station 3002,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 91.84(Ft,) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 18.00(ln,)
Calculated individual pipe flow =
Normal flow depth in pipe = 3,ll(ln,)
Flow top width inside pipe = 13,60(ln,)
Critical Depth = 4,35(In,)
Pipe flow velocity = 4,67(Ft/s)
Travel time through pipe = 0,33 min.
Time of concentration (TC) = 6,24 min
72,810(Ft,)
71.020(Ft.)
0.0195 Manning's N = 0.013
0,950(CFS)
0,950(CFS)
-H-f-f-f-f-l-+-l-+-f++++++-l-++++-l-++++-l-+++++-f+-f+-t--f-f-f-+-f-+-f++^
Process from Point/Station 3002,000 to Point/Station 3002.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0,640(Ac)
Runoff from this stream = 0,950(CFS)
Time of concentration = 6,24 min.
Rainfall intensity = 3,881(ln/Hr)
++-t--l--H++-f-I-•h+++++++++++-f++-l--f-f-f-f-f-f+-f+++++++++++++
Process from Point/Station 3002,000 to Point/Station 3002.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
user specified 'C value of 0.630 given for subarea
Rainfall intensity (l) = 2,208(ln/Hr) for a
Page 4
10,0 year storm
ecr3ulO
user specified values are as follows:
TC = 14,97 min. Rain intensity = 2,21(ln/Hr)
Total area = 54,860(Ac) Total runoff = 98.920(CFS)
-^++-^•^++++++-f•f-^-f+•^+•^++-^+-^-^++++-f+-^•f4•++-f-^+•f+•^+++++-f-^
Process from Point/Station 3002,000 to Point/Station 3002.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 54.860(Ac)
Runoff from this stream = 98.920(CFS)
Time of concentration = 14.97 min.
Rainfall intensity = 2.208(ln/Hr)
Summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
0.950
98.920
6.24
14.97
3.881
2.208
Qmax(l) =
Qmax(2) =
1.000 *
1,000 *
0,569 *
1,000 *
1,000 *
0,417 *
1,000 *
1,000 *
0,950) -f
98,920) +
0,950) +
98,920) +
42,212
99,460
Total of 2 streams to confluence:
Flow rates before confluence point:
0,950 98,920
Maximum flow rates at confluence using above data:
42,212 99.460
Area of streams before confluence:
0.640 54,860
Results of confluence:
Total flow rate = 99.460(CFS)
Time of concentration = 14.970 min.
Effective stream area after confluence = 55.500(Ac,)
++++-t-+++-f+-l--f-H+-f+-H+++-f+-f-»--f+-f-f+-f++++++-(--l-+-t--f-l-4-++-f-f-^
Process from Point/Station 3002.000 to Point/station 3003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 70,690(Ft,)
Downstream point/station elevation = 69,160(Ft,)
Pipe length = 153,96(Ft,) Slope = 0,0099 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 99,460(CFS)
Given pipe size = 48,00(ln,)
Calculated individual pipe flow = 99,460(CFS)
Normal flow depth in pipe = 29.44(ln.)
Flow top width inside pipe = 46,75(In.)
critical Depth = 36,26(ln,)
Pipe flow velocity = 12,31(Ft/s)
Travel time through pipe = 0,21 min.
Time of concentration (TC) = 15,18 min.
•f-f-l-+-f+++++-^-^+•^+-^++^--^+++-l-•^+-^+•^•++-l--^+-^-^•f-(•++-(•-^•f•^-f-f+
Process from Point/station 3003.000 to Point/Station 3003,000
**** CONFLUENCE OF MAIN STREAMS ****
Page 5
ecr3ulO
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 55,500(Ac,)
Runoff from this stream = 99.460(CFS)
Time of concentration = 15.18 min.
Rainfall intensity = 2,188(ln/Hr)
Program is now starting with Main Stream No, 2
^-•^-f+-^-^•f-^•^+-f+•^+•^-l-+-^-++++-t-+-l--l-++•(-•l-+-^--^•(-+-f•(--^-^-^+4•-f-^+^
Process from Point/Station 3004,000 to Point/Station 3005,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL 3
(7.3 DU/A or Less )
Impervious value, Ai = 0,400
Sub-Area C value = 0,570
initial subarea total flow distance = 300,000(Ft,)
Highest elevation = 91,700(Ft,)
Lowest elevation = 82,200(Ft.)
Elevation difference = 9,500(Ft,) Slope = 3,167 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 95,00 (Ft)
for the top area slope value of 3,17 %, in a development type of
7,3 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 6,33 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.5700)*( 95,OOOA.5)/( 3,167A(l/3)3= 6,33
The initial area total distance of 300,00 (Ft.) entered leaves a
remaining distance of 205.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.78 minutes
for a distance of 205.00 (Ft,) and a slope of 3,17 %
with an elevation difference of 6,49(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
1,778 Minutes
Tt=[(ll,9*0.0388A3)/( 6.49)3A.385= 1.78
Total initial area Ti = 6,33 minutes from Figure 3-3 formula plus
1,78 minutes from the Figure 3-4 formula = 8,11 minutes
Rainfall intensity (I) = 3.279(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is c = 0,570
Subarea runoff = 2,336(CFS)
Total initial stream area = l,250(Ac)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 3005.000 to Point/Station 3005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.250(Ac.)
Runoff from this stream = 2.336(CFS)
Time of concentration = 8,11 min.
Rainfall intensity = 3,279(ln/Hr)
-^+++++•f+-^+-^-^-f-^-^+•f++•f+-f+-^-^+•^•^++-^-^•^-^+-l-+-^•^-^-f+•^•^-^+
process from Point/Station 3006,000 to Point/Station 3005,000
Page 6
ecr3ulO
**** INITIAL AREA EVALUATION ****
3
148.000(Ft.)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[INDUSTRIAL area type
(General industrial )
Impervious value, Ai = 0,950
sub-Area C Value = 0,870
initial subarea total flow distance =
Highest elevation = 86.000(Ft.)
Lowest elevation = 82.200(Ft,)
Elevation difference = 3.800(Ft,) Slope = 2,568 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80,00 (Ft)
for the top area slope value of 2,57 %, in a development type of
General industrial
In Accordance with Figure 3-3
Initial Area Time of Concentration = 2.70 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l.l-0,8700)*( 80,OOOA.5)/( 2.568A(1/3)3= 2.70
The initial area total distance of 148.00 (Ft,) entered leaves a
remaining distance of 68.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 0,82 minutes
for a distance of 68,00 (Ft,) and a slope of 2,57 %
with an elevation difference of 1,75(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
0,824 Minutes
Tt=[(11.9*0,0129A3)/( 1,75)3A,385= 0,82
Total initial area Ti = 2,70 minutes from Figure 3-3 formula plus
0.82 minutes from the Figure 3-4 formula = 3.53 minutes
Calculated TC of 3,528 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4,479(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,870 subarea runoff = 0,896(CFS)
Total initial stream area = 0,230(Ac,)
-f+-^--f-^+++++•l--f-t•-l--f-f•f•^-f+-^-^•-^-f-f-^+^-++•^•l-+-^-+^--^+++++++-^+^
Process from Point/station 3005,000 to Point/Station 3005,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 2
Stream flow area = 0,230(Ac,)
Runoff from this stream = 0,896(CFS)
Time of concentration = 3,53 min.
Rainfall intensity = 4.479(ln/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
2,336
0,896
1,000 *
0.732 *
1.000 *
1,000 *
8,11
3,53
1,000 *
1,000 *
0.435 *
1,000 *
3,279
4,479
2,336) +
0,896) +
2,336) +
0.896) +
Page 7
2.992
1,913
ecr3ulO
Total of 2 streams to confluence:
Flow rates before confluence point:
2,336 0,896
Maximum flow rates at confluence using above data:
2,992 1,913
Area of streams before confluence:
1,250 0,230
Results of confluence:
Total flow rate = 2,992(CFS)
Time of concentration = 8,110 min.
Effective stream area after confluence = l,480(Ac,)
-^•^++++-^-+-^+-f•f++•f+-^++•^-+•^-^-^•^•^++-(-++-l-+++•^-^-f-f-^+++•f-f++•f
Process from Point/Station 3005,000 to Point/Station 3007,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
0,0150
0.0150
Top of Street segment elevation = 82.200(Ft,)
End of street segment elevation = 80,200(Ft,)
Length of street segment = 180,000(Ft,)
Height of curb above gutter flowline = 6,0(ln.)
width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = l,500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break =
Manning's N from grade break to crown =
Estimated mean flow rate at midpoint of street
Depth of flow = 0.266(Ft,), Average velocity =
Streetflow hydraulics at midpoint or street travel
Halfstreet flow width = 8,569(Ft.)
Flow velocity = 2,ll(Ft/s)
Travel time = 1,42 min. TC = 9,53 min.
Adding area flow to street
Rainfall intensity (I) = 2,955(in/Hr) for a
user specified 'C value of 0,790 given for subarea
Rainfall intensity = 2,955(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,654 CA = 1,236
Subarea runoff = 0.662(CFS) for 0,410(Ac,)
Total runoff = 3,654(CFS) Total area = l,890(Ac,)
Street flow at end of street = 3,654(CFS)
Half street flow at end of street = 1.827(CFS)
Depth of flow = 0,271(Ft,), Average velocity = 2.149(Ft/s)
Flow width (from curb towards crown)= 8,825(Ft,)
3.407(CFS)
2,114(Ft/s)
10.0 year storm
Process from Point/Station 3007,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) **** 3003.100
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 58.76(Ft,) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln,)
Page 8
73,640(Ft,)
73,050(Ft,)
0.0100 Manning's N = 0,013
3,654(CFS)
ecr3ulO
Calculated individual pipe flow = 3,654(CFS)
Normal flow depth in pipe = 7,32(in,)
Flow top width inside pipe = 17,68(In.)
Critical Depth = 8,76(ln,)
Pipe flow velocity = 5.42(Ft/s)
Travel time through pipe = 0,18 min.
Time of concentration (TC) = 9.71 min.
-f-^+++-^++•l-++•^-^+++++++++-^++-^•^•l-•l•-^-f-^++•^-^-^-f-^-^+++•^•^
Process from Point/Station 3003,100 to Point/Station 3003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 72,720(Ft.)
Downstream point/station elevation = 71.320(Ft,)
Pipe length = 37,00(Ft.) Slope = 0,0378 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 3.654(CFS)
Given pipe size = 18,00(ln.)
Calculated individual pipe flow = 3,654(CFS)
Normal flow depth in pipe = 5,15(in,)
Flow top width inside pipe = 16,27(in,)
Critical Depth = 8,76(ln.)
Pipe flow velocity = 8.75(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 9,78 min,
-f++-f+++++-f-f+++-f+-f+++-f+-f+-f-f-f+-f-f++-f++++-f+-l-+4-4--f++++-H
Process from Point/Station 3003,000 to Point/Station 3003,000 **** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1,890(Ac)
Runoff from this stream = 3.654(CFS)
Time of concentration = 9,78 min.
Rainfall intensity = 2,906(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (in/Hr)
Qmax(l) =
Qmax(2) =
99,460 15.18 2.188
3,654 9.78 2,906
1.000 * 1,000 * 99.460) +
0.753 * 1.000 * 3,654) -i- = 102,212
1,000 * 0,644 * 99,460) +
1,000 * 1,000 * 3.654) + = 67,738
Total of 2 main streams to confluence:
Flow rates before confluence point:
99,460 3.654
Maximum flow rates at confluence using above data:
102,212 67,738
Area of streams before confluence:
55,500 1,890
Results of confluence:
Total flow rate = 102,212(CFS)
Page 9
ecr3ulO
Time of concentration = 15.178 min.
Effective stream area after confluence = 57,390(Ac,)
-f-f+++-f+-(-++-f-f+-f-f+-f4--f+++++++-l-+-f-f-f+++-l-+++-t-++++++++++
Process from Point/Station 3003,000 to Point/Station 3010,000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 68,820(Ft,)
Downstream point/station elevation = 65,980(Ft.)
Pipe length = 147,97(Ft,) Slope = 0,0192 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 102.212(CFS)
Given pipe size = 48,00(ln,)
Calculated individual pipe flow = 102,212(CFS)
Normal flow depth in pipe = 24.38(in,)
Flow top width inside pipe = 47.99(in,)
Critical Depth = 36.75(in,)
Pipe flow velocity = 15.94(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 15,33 min,
-f-f-f-H+-f-f-h-f+-f++++++-f-f-f-f+-f++-f++-t-++++-(--(-+++-l-+-f-f++^
Process from Point/Station 3010,000 to Point/Station 3010.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 57.390(Ac)
Runoff from this stream = 102,212(CFS)
Time of concentration = 15.33 min.
Rainfall intensity = 2.174(in/Hr)
++-^+•^++-^+++-^+-l-+•f-^+-^•f•f-^•^•^++++-^+-f-l-•^-^-f-^-f-f•f+-l-+-f+-f++
Process from Point/Station 3008.000 to Point/Station 3009.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[INDUSTRIAL area type 3
(General industrial )
Impervious value, Ai = 0,950
Sub-Area c value = 0.870
Initial subarea total flow distance = 285.000(Ft,) Highest elevation = 84,200(Ft.)
Lowest elevation = 78,400(Ft,)
Elevation difference = 5,800(Ft,) Slope = 2,035 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 70.00 (Ft)
for the top area slope value of 2.04 %, in a development type of
General Industrial
In Accordance with Figure 3-3
Initial Area Time of concentration = 2,73 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,8700)*( 70,OOOA,5)/( 2,035A(l/3)3= 2,73
The initial area total distance of 285,00 (Ft,) entered leaves a
remaining distance of 215,00 (Ft,)
Using Figure 3-4, the travel time for this distance is 2,19 minutes
for a distance of 215,00 (Ft.) and a slope of 2,04 %
with an elevation difference of 4,38(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
Page 10
ecr3ulO
2,187 Minutes
Tt=[(ll,9*0,0407A3)/( 4,38)3A,385= 2.19 .
Total initial area Ti = 2,73 minutes from Figure 3-3 formula plus
2,19 minutes from the Figure 3-4 formula = 4,92 minutes
Calculated TC of 4,920 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,870
Subarea runoff = 1.676(CFS)
Total initial stream area = 0.430(Ac)
Process from Point/Station
**** SUBAREA FLOW ADDITION ****
4008,000 to Point/Station 3009,000
Calculated TC of 4,920 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations
4.479(in/Hr) for a
0.000
0,000
0,000
1,000
3
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
impervious value, Ai = 0,000
Sub-Area C value =0,350
Time of concentration = 4,92 min.
Rainfall intensity = 4,479(in/Hr) for a
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,694 CA = 0,451
subarea runoff = 0.345(CFS) for 0.220(Ac)
10,0 year storm
10,0 year storm
Total runoff = 2,021(CFS) Total area = 0,650(Ac,)
Process from point/station 3009,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (user specified size) ****
3010,000
61.340(Ft,)
60,650(Ft,)
0,0201 Manning's
2,021(CFS)
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 34,25(Ft,) Slope =
No, of pipes = 1 Required pipe flow =
Given pipe size = 18,00(in.)
calculated individual pipe flow = 2.021(CFS)
Normal flow depth in pipe = 4,48(in,)
Flow top width inside pipe = 15,56(in,)
critical Depth = 6,43(in,)
Pipe flow velocity = 5,89(Ft/s)
Travel time through pipe = 0,10 min. Time of concentration (TC) = 5,02 min.
N = 0.013
Process from Point/Station 3010.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
3010.000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,650(Ac,)
Runoff from this stream = 2,021(CFS)
Time of concentration = 5.02 min.
Rainfall intensity = 4,469(ln/Hr)
Summary of stream data:
Page ll
ecr3ulO
Stream
NO.
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2 2
Qmax(l) =
102.212
021
15.33
5,02
Qmax(2) =
1.000 *
0.486 *
1,000 *
1,000 *
000
000
0,327 *
1.000 *
2,174
4,469
102.212) -I-
2.021) +
102.212) +
2.021) +
103.195
35.463
Total of 2 streams to confluence:
Flow rates before confluence point:
102.212 2.021
Maximum flow rates at confluence using above data:
103.195 35.463
Area of streams before confluence:
57.390 0.650
Results of confluence:
Total flow rate = 103,195(CFS)
Time of concentration = 15,333 min.
Effective stream area after confluence = 58.040(Ac,)
Process from Point/Station 3010,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (user specified size) ****
4000,000
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 196.00(Ft.) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 48,00(ln,)
calculated individual pipe flow =
Normal flow depth in pipe = 24,14(in,)
Flow top width inside pipe = 48.00(ln,)
critical Depth = 36.94(ln,)
Pipe flow velocity = 16,29(Ft/s)
Travel time through pipe = 0,20 min.
Time of concentration (TC) = 15,53 min
65,650(Ft,)
61.690(Ft.)
0.0202 Manning's N = 0.013
= 103,195(CFS)
103,195(CFS)
Process from Point/Station 4000,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
4000,000
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 58,040(Ac)
Runoff from this stream = 103.195(CFS)
Time of concentration = 15,53 min.
Rainfall intensity = 2,156(ln/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 4001,000 to Point/Station
**** INITIAL AREA EVALUATION ****
4002.000
Decimal fraction soil group A = 0,000
Page 12
ecr3ulO
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL 3
(7,3 DU/A or Less )
Impervious value, Ai = 0,400
Sub-Area C value = 0,570
initial subarea total flow distance = 180,000(Ft,)
Highest elevation = 91,800(Ft,)
Lowest elevation = 90,000(Ft,)
Elevation difference = l,800(Ft,) Slope = 1,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65,00 (Ft)
for the top area slope value of 1,00 %, in a development type of
7,3 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of concentration = 7,69 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [l,8*(l.l-0,5700)*( 65,OOOA.5)/( l,OOOA(l/3)3= 7,69
The initial area total distance of 180.00 (Ft.) entered leaves a
remaining distance of 115.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.78 minutes
for a distance of 115.00 (Ft.) and a slope of 1.00 %
with an elevation difference of 1.15(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
1.776 Minutes
Tt=[(ll,9*0,0218A3)/( 1.15)3A,385= 1.78
Total initial area Ti = 7,69 minutes from Figure 3-3 formula plus
1,78 minutes from the Figure 3-4 formula = 9.47 minutes
Rainfall intensity (i) = 2,967(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,570
Subarea runoff = 0,507(CFS)
Total initial stream area = 0,300(Ac,)
++-^++-^+++-l--^•+++-f++•f+-^+-(--f^•+•^+-^-f++•f+-f-^-++•l-+•f+-f++++^--^
Process from Point/Station 4002,000 to Point/Station 4003,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 90,000(Ft,)
End of street segment elevation = 84,900(Ft,)
Length of street segment = 450.000(Ft.)
Height of curb above gutter flowline = 6.0(in,)
Width of half street (curb to crown) = 16.000(Ft,)
Distance from crown to crossfall grade break = 14.500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 5,500(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = 2,000(ln,)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0,287(Ft,), Average velocity =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7,510(Ft.)
Flow velocity = 2,04(Ft/s)
Travel time = 3.67 min, TC = 13,13 min.
Adding area flow to street
Rainfall intensity (I) = 2,402(in/Hr) for a 10,0 year storm
Page 13
2,725(CFS)
2,045(Ft/s)
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil qroup D
ecr3ulO
= 0,000
= 0.000
= 0.000
= 1,000 group _
[MEDIUM DENSITY RESIDENTIAL 3
(7,3 DU/A or Less )
Impervious value, Ai = 0,400
Sub-Area C value = 0.570 ^ ^ ^
Rainfall intensity = 2.402(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,570 CA = 1.995
subarea runoff = 4.285(CFS) for 3.200(Ac.)
Total runoff = 4,793(CFS) Total area = 3.500(Ac,)
Street flow at end of street = 4.793(CFS)
Half street flow at end of street = 2,396(CFS)
Depth of flow = 0,329(Ft,), Average velocity = 2,323(Ft/s)
Flow width (from curb towards crown)= 9.639(Ft,)
Process from Point/Station 4003,000 to Point/Station 4004,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 70,00(Ft,) Slope =
No, of pipes = 1 Required pipe flow =
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 4,793(CFS)
Normal flow depth in pipe = 3,72(in,)
Flow top width inside pipe = 14,58(in,)
critical Depth = 10,10(in.)
Pipe flow velocity = 18,17(Ft/s)
Travel time through pipe = 0,06 min.
Time of concentration (TC) = 13,20 min.
81,400(Ft,)
64,770(Ft,)
0,2376 Manning's N = 0,013
4,793(CFS)
Process from Point/Station 4003,000 to Point/Station 4004,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 3,500(Ac)
Runoff from this stream = 4,793(CFS)
Time of concentration = 13,20 min.
Rainfall intensity = 2.395(in/Hr)
Process from Point/Station 4005,000 to Point/Station
**** INITIAL AREA EVALUATION ****
4006,000
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL
(43.0 DU/A or Less )
Impervious value, Ai = 0.800
Sub-Area C Value = 0,790
initial subarea total flow distance =
Highest elevation = 82,600(Ft,)
Lowest elevation = 70,800(Ft,)
Page 14
430,000(Ft.)
ecr3ulO
Elevation difference = 11.800(Ft.) Slope = 2.744 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft)
for the top area slope value of 2,74 %, in a development type of
43,0 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 3,67 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,7900)*( 85.000A.5)/( 2,744A(l/3)3= 3,67
The initial area total distance of 430,00 (Ft,) entered leaves a
remaining distance of 345.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 2,81 minutes
for a distance of 345.00 (Ft.) and a slope of 2,74 %
with an elevation difference of 9.47(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
2,805 Minutes
Tt=[(ll,9*0,0653A3)/( 9,47)3A.385= 2,81
Total initial area Ti = 3.67 minutes from Figure 3-3 formula plus
2.81 minutes from the Figure 3-4 formula = 6,48 minutes
Rainfall intensity (I) = 3,789(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 2.275(CFS)
Total initial stream area = 0,760(Ac,)
^-•f+-^-f-^-^-^-^-+-f-^-++-^++-^-^++-^-^-^-^-^-^•f+-^+-l-•f+•^•f•f•^-^•^++•f+++
Process from point/Station 4006,000 to Point/Station 4004,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 8,03(Ft,) Slope =
No, of pipes = 1 Required pipe flow =
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 2,275(CFS)
Normal flow depth in pipe = 5,37(in,)
Flow top width inside pipe = 16.47(in,)
critical Depth = 6,83(ln,)
Pipe flow velocity = 5,13(Ft/s)
Travel time through pipe = 0,03 min.
Time of concentration (TC) = 6.51 min.
64,890(Ft,)
64,790(Ft,)
0.0125 Manning's N = 0.013
2.275(CFS)
++++•(-+-^+-l--^•-l-+-l-+-f++-^-l•+-^+•f•f-f•^+++-l--^•f++-^-^+-f+-f•f•^+++
Process from Point/Station 4006,000 to Point/Station 4004,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,760(Ac,)
Runoff from this stream = 2.275(CFS)
Time of concentration = 6.51 min.
Rainfall intensity = 3.780(in/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS) TC
(mi n)
Rainfall intensity
(in/Hr)
1
2
Qmax(l)
4.793
2.275
1.000 *
0.634 *
13.20
6,51
1,000 *
1,000 *
4.793)
2,275)
Page 15
2.
3.
+
+
395
780
6.234
ecr3ulO
Qmax(2) = 1,000 * 0,493 * 4,793) -f
1,000 * 1.000 * 2,275) + = 4,637
Total of 2 streams to confluence:
Flow rates before confluence point:
4,793 2.275
Maximum flow rates at confluence using above data:
6,234 4,637
Area of streams before confluence:
3.500 0.760
Results of confluence:
Total flow rate = 6.234(CFS)
Time of concentration = 13,199 min.
Effective stream area after confluence = 4,260(Ac)
++-^•f+-^•f-f+-^+-^•f+-^+++-^++-^-l-++-^-^•f-^•+++++-^•f+++++•^-f++++-f
Process from Point/Station 4004,000 to Point/Station 4000.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 64,230(Ft,)
Downstream point/station elevation = 63.360(Ft,)
Pipe length = 86,50(Ft,) Slope = 0.0101 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6,234(CFS)
Given pipe size = 24,00(ln,)
Calculated individual pipe flow = 6,234(CFS)
Normal flow depth in pipe = 8,60(in,)
Flow top width inside pipe = 23,02(in,)
Critical Depth = 10.59(ln,)
Pipe flow velocity = 6,16(Ft/s)
Travel time through pipe = 0,23 min.
Time of concentration (TC) = 13.43 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 4000.000 to Point/Station 4000,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
in Main Stream number: 2
Stream flow area = 4,260(Ac,)
Runoff from this stream = 6,234(CFS)
Time of concentration = 13,43 min.
Rainfall intensity = 2,368(ln/Hr)
Program is now starting with Main stream No, 3
+-f-f-f-f4--t--h+++-(-+-|-+++-h-f-l--l--l-++-f-f+++++-l--f+++-f++-f-f+++-f+
Process from Point/Station 4008,000 to Point/Station 4009,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Initial subarea total flow distance = 150.000(Ft,)
Highest elevation = 114,800(Ft.)
Lowest elevation = 100.400(Ft.)
Page 16
ecr3ulO
Elevation difference = 14,400(Ft,) Slope = 9.600 %
Top of initial Area slope adjusted by user to 30.000 %
Bottom of Initial Area slope adjusted by user to 2,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4,34 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.3500)*( 100,000A,5)/( 30,OOOA(l/3)3= 4.34
The initial area total distance of 150.00 (Ft.) entered leaves a
remaining distance of 50.00 (Ft.)
using Figure 3-4, the travel time for this distance is 0,72 minutes
for a distance of 50,00 (Ft,) and a slope of 2,00 %
with an elevation difference of l,00(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0,716 Minutes
Tt=[(ll,9*0,0095A3)/( 1,00)3A,385= 0,72 Total initial area Ti = 4,34 minutes from Figure 3-3 formula plus
0.72 minutes from the Figure 3-4 formula = 5,06 minutes
Rainfall intensity (l) = 4,444(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0,140(CFS)
Total initial stream area = 0,090(Ac)
-f+-f-l--f4--f+-(--f++++++-l-+++-f-f-+-f-f-l-+++-f+++-f++-f+4-+-t-++-f-f-l-+
Process from Point/Station 4009.000 to Point/Station 4010.000
**** IMPROVED CHANNEL TRAVEL TIME ****
upstream point elevation = 99.400(Ft.)
Downstream point elevation = 89.100(Ft,)
Channel length thru subarea = 320.000(Ft,)
Channel base width = 0,000(Ft,)
Slope or 'z' of left channel bank = 1,500
Slope or 'Z' of right channel bank = 1,500
Estimated mean flow rate at midpoint of channel = 0,397(CFS)
Manning's 'N' = 0,015
Maximum depth of channel = l,000(Ft.)
Flow(q) thru subarea = 0.397(CFS)
Depth of flow = 0,257(Ft.), Average velocity = 4.004(Ft/s)
Channel flow top width = 0.771(Ft,) Flow velocity = 4,00(Ft/s)
Travel time = 1.33 min.
Time of concentration = 6,39 min,
critical depth = 0.336(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 3.823(ln/Hr) for a 10,0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
Rainfall intensity = 3,823(In/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,147
Subarea runoff = 0.422(CFS) for 0.330(Ac,)
Total runoff = 0,562(CFS) Total area = 0,420(Ac.)
Depth of flow = 0.293(Ft.), Average velocity = 4,368(Ft/s)
Page 17
ecr3ulO
critical depth = 0.387(Ft.)
Process from Point/Station 4009.000 to Point/Station 4010.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 0.420(Ac)
Runoff from this stream = 0,562(CFS)
Time of concentration = 6,39 min.
Rainfall intensity = 3.823(ln/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 4011,000 to Point/Station 4010,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
impervious value, Ai = 0,000
Sub-Area C value = 0.350
Initial subarea total flow distance = 290,000(Ft.)
Highest elevation = 99,000(Ft,)
Lowest elevation = 89,100(Ft,)
Elevation difference = 9,900(Ft,) Slope = 3,414 %
Top of initial Area Slope adjusted by user to 30,000 %
Bottom of Initial Area Slope adjusted by user to 2.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 4,34 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,3500)*( 100,000A.5)/( 30.000A(l/3)]= 4.34
The initial area total distance of 290,00 (Ft,) entered leaves a
remaining distance of 190.00 (Ft,)
Using Figure 3-4, the travel time for this distance is 2,00 minutes
for a distance of 190.00 (Ft.) and a slope of 2.00 %
with an elevation difference of 3,80(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
2,001 Minutes
Tt=[(11.9*0.0360A3)/( 3.80)3A,385= 2,00
Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus
2.00 minutes from the Figure 3-4 formula = 6.35 minutes
Rainfall intensity (I) = 3,841(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,323(CFS)
Total initial stream area = 0,240(Ac,)
-^--f•f+•f-^++-^++•f-^--l-+-l--f-^-f--f+-f•f-f-^+•^+-^-^+•f•f•f++-l--f++-^+•^++
Process from Point/Station 4011.000 to Point/Station 4010,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 2
Stream flow area = 0.240(Ac.)
Runoff from this stream = 0,323(CFS)
Page 18
ecr3ulO
Time of concentration = 6.35 min. Rainfall intensity = 3,841(ln/Hr)
summary of stream data:
Stream Flow rate TC Rainfall Intensity NO, (CFS) (min) (in/Hr)
1 0,562 6,39 3,823
2 0,323 6,35 3,841 Qmax(l)
Qmax(2) =
1,000 * 1.000 * 0,562) +
0,995 * 1,000 * 0,323) + = 0,883
1,000 * 0,993 * 0,562) -i-
1,000 * 1,000 * 0,323) + = 0,880
Total of 2 streams to confluence: Flow rates before confluence point:
0.562 0,323 Maximum flow rates at confluence using above data:
0.883 0,880
Area of streams before confluence:
0.420 0.240
Results of confluence:
Total flow rate = 0,883(CFS)
Time of concentration = 6,393 min. Effective stream area after confluence = 0,660(Ac,)
Process from Point/Station 4010,000 to Point/Station 4010.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 84.000(Ft,)
Downstream point/station elevation = 65,690(Ft,)
Pipe length = 25,00(Ft,) Slope = 0,7324 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0,883(CFS)
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 0,883(CFS)
Normal flow depth in pipe = 1,26(in,)
Flow top width inside pipe = 9.19(In,)
Critical Depth = 4,19(in,)
Pipe flow velocity = 16,25(Ft/s)
Travel time through pipe = 0,03 min.
Time of concentration (TC) = 6.42 min,
+-f-f+-f-»-++-H+-f+-f+-H+++++++++4-+-f-l--f-l-++++++++++-f-l-+++-H-f
Process from Point/Station 4010.100 to Point/Station 4010,100
**** SUBAREA FLOW ADDITION ****
Rainfall intensity (I) = 3.813(in/Hr) for a 10.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent open Space )
Impervious value, Ai = 0,000
Sub-Area C Value = 0,350
Time of concentration = 6.42 min.
Rainfall intensity = 3,813(In/Hr) for a 10.0 year storm
Page 19
ecr3ulO
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,392
subarea runoff = 0,612(CFS) for 0,460(Ac,)
Total runoff = 1,495(CFS) Total area = l,120(Ac,)
Process from Point/Station 4010,100 to Point/Station 4000.000
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation =
Downstream point/station elevation = Pipe length = 30,00(Ft,) Slope =
No, of pipes = 1 Required pipe flow
Given pipe size = 18.00(in.)
calculated individual pipe flow = 1.495(CFS)
Normal flow depth in pipe = 3.08(in,)
Flow top width inside pipe = 13,55(in,)
Critical Depth = 5,50(ln,)
Pipe flow velocity = 7,44(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 6,49 min.
65,360(Ft,)
63.860(Ft,)
0,0500 Manning's N = 0,013
1,495(CFS)
Process from Point/Station 4000,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
4000,000
The following data inside Main Stream is listed:
In Main stream number: 3
Stream flow area = l,120(Ac,)
Runoff from this stream = 1.495(CFS)
Time of concentration = 6.49 min.
Rainfall intensity = 3.787(in/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2
3 1
Qmax(l) =
103,195
6,234
Qmax(2) =
Qmax(3) =
495
15,53
13.43
6,49
1 000 * 1.000 *
0 911 * 1.000 *
0 569 * 1.000 *
1 000 * 0,865 *
1 000 * 1,000 *
0 625 * 1,000 *
1 000 * 0,418 *
1 000 * 0.483 *
1 000 * 1.000 *
2,156
2,368
3,787
103,195) -I-
6.234) -I-
1.495) +
103,195) +
6,234) +
1,495) +
103,195) -f
6,234) +
1,495) +
109,722
96,408
47,591
Total of 3 main streams to confluence:
Flow rates before confluence point:
103,195 6,234 1,495
Maximum flow rates at confluence using above data:
109,722 96.408 47.591
Area of streams before confluence:
58,040 4,260 1.120
Page 20
ecr3ulO
Results of confluence:
Total flow rate = 109.722(CFS)
Time of concentration = 15,534 min.
Effective stream area after confluence 63,420(Ac,)
Process from Point/Station 4000.000 to Point/Station 4011,300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 90.49(Ft.) Slope =
No, of pipes = 1 Required pipe flow
Given pipe size = 48.00(in,)
Calculated individual pipe flow =
Normal flow depth in pipe = 21,00(ln,)
Flow top width inside pipe = 47,62(In,)
critical Depth = 37.99(ln,)
Pipe flow velocity = 20,78(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 15,61 min.
61.360(Ft.)
57,990(Ft.)
0,0372 Manning's N = 0,013
= 109,722(CFS)
109,722(CFS)
+++++++++++++++++++++++4.++++++++-l--^++-f-^-^-f+.f+++++^•-^^•+-f+-^++
Process from Point/Station 4011.300 to Point/Station 4011,300
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 63.420(Ac)
Runoff from this stream = 109.722(CFS)
Time of concentration = 15.61 min.
Rainfall intensity = 2.150(in/Hr)
3
170.000(Ft,)
+++++++++-l-•^-^4--^-^•f•f++++-^+•f+++++-^+-f+++4•++-l-++++++-f-^-^+
Process from Point/Station 4011.100 to Point/Station 4011.200
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350
Initial subarea total flow distance =
Highest elevation = 90,000(Ft.)
Lowest elevation = 67,800(Ft,)
Elevation difference = 22,200(Ft.) Slope = 13,059 %
Top of initial Area Slope adjusted by User to 25,000 %
Bottom of initial Area Slope adjusted by user to 25.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 25.00 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of concentration = 4.62 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0,350O)*( 100.000A,5)/( 25,000A(1/3)3= 4,62
Page 21
ecr3ulO
The initial area total distance of 170.00 (Ft,) entered leaves a
remaining distance of 70.00 (Ft.)
using Figure 3-4, the travel time for this distance is 0.35 minutes
for a distance of 70.00 (Ft.) and a slope of 25.00 %
with an elevation difference of 17.50(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr)
0.351 Minutes
Tt=[(11.9*0.0133A3)/( 17.50)3A.385= 0,35
Total initial area Ti = 4.62 minutes from Figure 3-3 formula plus
0.35 minutes from the Figure 3-4 formula = 4.97 minutes
Calculated TC of 4.968 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0.298(CFS)
Total initial stream area = 0,190(Ac,)
+++++++++++++++++++-(.+-^-t.4--t--fH-+-f+-f++++++-(--|--f++H-++-f-f-^^
Process from Point/Station 4011,200 to Point/Station 4011,300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 60,000(Ft.)
Downstream point/station elevation = 59.240(Ft.)
Pipe length = 13.72(Ft.) Slope = 0,0554 Manninq's N = 0.013
NO. of pipes = 1 Required pipe flow = 0,298(CFS)
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 0,298(CFS)
Normal flow depth in pipe = 1.39(ln,)
Flow top width inside pipe = 9,60(ln,)
Critical Depth = 2,40(ln.)
Pipe flow velocity = 4.75(Ft/s)
Travel time through pipe = 0,05 min.
Time of concentration (TC) = 5,02 min.
Process from Point/Station 4011,300 to Point/Station 4011,300
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,190(Ac)
Runoff from this stream = 0,298(CFS)
Time of concentration = 5.02 min.
Rainfall intensity = 4,470(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO. (CFS) (min) (In/Hr)
109,722 15,61 2,150
0.298 5,02 4,470
Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 109.722) H-
0,481 * 1,000 * 0,298) + = 109.866
1.000 * 0.321 * 109,722) +
1,000 * 1,000 * 0,298) + = 35,563
Total of 2 streams to confluence:
Flow rates before confluence point:
109,722 0,298
Page 22
ecr3ulO
Maximum flow rates at confluence using above data:
109,866 35,563
Area of streams before confluence:
63,420 0,190
Results of confluence:
Total flow rate = 109,866(CFS)
Time of concentration = 15.606 min.
Effective stream area after confluence = 63,610(Ac)
+++-f++++++-f4--f++-f+-f+-f-f+-l-+-f-f+++-f+++-f-H+-l--f-f-f+-f++-l--l--f+
Process from Point/Station 4011.300 to Point/Station 5000,000
**** PIPEFLOW TRAN/EL TIME (User specified size) ****
Upstream point/station elevation = 57,990(Ft,)
Downstream point/station elevation = 47.160(Ft,)
Pipe length = 290,51(Ft,) Slope = 0.0373 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 109,866(CFS)
Given pipe size = 48,00(in,)
Calculated individual pipe flow = 109,866(CFS)
Normal flow depth in pipe = 21,00(ln,)
Flow top width inside pipe = 47.62(In,)
Critical Depth = 38,03(in.)
Pipe flow velocity = 20,79(Ft/s)
Travel time through pipe = 0,23 min.
Time of concentration (TC) = 15,84 min,
•f-^-t-•^+-l-++-l--^-^-^-^-^-l-++-^--f+-^-^•^++++^••^+•f-^-^-f+-^+•^•f++++++-^
Process from Point/station 5000,000 to Point/Station 5000,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 1
Stream i^low area = 63,610(Ac)
Runoff from this stream = 109,866(CFS)
Time of concentration = 15,84 min.
Rainfall intensity = 2,129(in/Hr)
Process from Point/Station 5001,000 to Point/Station 5002,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL 3
(43,0 DU/A or Less )
Impervious value, Ai = 0,800
Sub-Area C value = 0.790
Initial subarea total flow distance = 423.000(Ft,)
Highest elevation = 73,800(Ft,)
Lowest elevation = 58.400(Ft.)
Elevation difference = 15.400(Ft,) Slope = 3,641 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft)
for the top area slope value of 3,64 %, in a development type of
43,0 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 3,34 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l.l-0,7900)*( 85,OOOA.5)/( 3,641A(l/3)3= 3,34
Page 23
ecr3ulO
The initial area total distance of 423,00 (Ft,) entered leaves a
remaining distance of 338,00 (Ft,)
Using Figure 3-4, the travel time for this distance is 2,48 minutes
for a distance of 338,00 (Ft,) and a slope of 3,64 %
with an elevation difference of 12,31(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
2.476 Minutes
Tt=[(ll,9*0,0640A3)/( 12,31)3A,385= 2.48
Total initial area Ti = 3.34 minutes from Figure 3-3 formula plus
2,48 minutes from the Figure 3-4 formula = 5,82 minutes
Rainfall intensity (l) = 4,061(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
Subarea runoff = 1.668(CFS)
Total initial stream area = 0.520(Ac,)
++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 5002,000 to Point/Station 5000,000
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
upstream point/station elevation = 48.730(Ft.)
Downstream point/station elevation = 46.940(Ft.)
Pipe length = 99,73(Ft,) Slope = 0,0179 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 1,668(CFS)
Given pipe size = 18,00(ln.)
Calculated individual pipe flow = 1.668(CFS)
Normal flow depth in pipe = 4.18(In,)
Flow top width inside pipe = 15,21(ln,)
Critical Depth = 5,82(in.)
Pipe flow velocity = 5.35(Ft/s)
Travel time through pipe = 0.31 min.
Time of concentration (TC) = 6,13 min,
-|-++-f-K4--f+-H+-f+-h-l--f+-f-f-f+++++-f+++++-f+-f-f-f-f-f-f-f-f-l-+++-f++-^
Process from Point/Station 5000,000 to Point/Station 5000.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,520(Ac.)
Runoff from this stream = 1,668(CFS)
Time of concentration = 6,13 min.
Rainfall intensity = 3,927(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
No. (CFS) (min) (in/Hr)
1 109,866 15.84 2,129
2 1,668 6,13 3,927 Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 109,866) +
0,542 * 1.000 * 1,668) + = 110,770
1.000 * 0.387 * 109,866) +
1,000 * 1,000 * 1,668) + = 44,194
Total of 2 streams to confluence:
Flow rates before confluence point:
109,866 1,668
Maximum flow rates at confluence using above data:
110,770 44,194
Page 24
ecr3ulO
Area of streams before confluence:
63,610 0.520
Results of confluence:
Total flow rate = 110.770(CFS)
Time of concentration = 15,839 min.
Effective stream area after confluence = 64,130(Ac,)
Process from Point/Station 5000.000 to Point/Station 5000,200
**** PIPEFLOW TRAVEL TIME (user specified size) ****
upstream point/station elevation = 46,610(Ft.)
Downstream point/station elevation = 46,250(Ft.)
Pipe length = 51,56(Ft.) slope = 0.0070 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 110.770(CFS)
Given pipe size = 48.00(ln,)
Calculated individual pipe flow = 110,770(CFS)
Normal flow depth in pipe = 36,38(In,)
Flow top width inside pipe = 41.13(In.)
Critical Depth = 38,18(in.)
Pipe flow velocity = 10.84(Ft/s)
Travel time through pipe = 0,08 min.
Time of concentration (TC) = 15,92 min.
Process from Point/Station 5000,200 to Point/Station 5000,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
in Main stream number: 1
Stream flow area = 64,130(AC,)
Runoff from this stream = 110,770(CFS)
Time of concentration = 15,92 min.
Rainfall intensity = 2,122(ln/Hr)
Program is now starting with Main Stream NO, 2
Process from Point/Station 6005,000 to Point/Station 6006,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent Open Space )
impervious value, Ai = 0,000
sub-Area C value = 0,350
initial subarea total flow distance = 100,000(Ft.)
Highest elevation = 133.000(Ft.)
Lowest elevation = 118.900(Ft,)
Elevation difference = 14,100(Ft.) Slope = 14.100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 14,10 %, in a development type of
Permanent Open Space
in Accordance With Figure 3-3
Initial Area Time of concentration = 5.59 minutes
TC = [1.8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [1.8*(l,l-0.3500)*( 100.000A.5)/( 14,100A(l/3)3= 5,59
Page 25
ecr3ulO
Rainfall intensity (I) = 4.169(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0,190(CFS)
Total initial stream area = 0,130(AC,)
Process from Point/Station 6006.000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
6007,000
0,598(CFS)
4.234(Ft/s)
upstream point elevation = 118.900(Ft.)
Downstream point elevation = 110,800(Ft,)
Channel length thru subarea = 285,000(Ft,)
Channel base width = 0.000(Ft,)
Slope or 'Z' of left channel bank = 1,500
Slope or 'Z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.015
Maximum depth of channel = l,000(Ft,)
Flow(q) thru subarea = 0,598(CFS)
Depth of flow = 0,307(Ft.), Average velocity =
Channel flow top width = 0,921(Ft,)
Flow velocity = 4,23(Ft/s)
Travel time = 1.12 min.
Time of concentration = 6.71 min.
critical depth = 0,398(Ft,)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open space )
Impervious value, Ai = 0,000
sub-Area C value = 0,350 , , . . ^
Rainfall intensity = 3.705(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,256 „ , ,
subarea runoff = 0,757(CFS) for 0,600(Ac,)
Total runoff = 0,947(CFS) Total area = 0,730(Ac.)
Depth of flow = 0.365(Ft,), Average velocity = 4,749(Ft/s)
Critical depth = 0,477(Ft,)
3,705(in/Hr) for a
0.000
0,000
0,000
,000 3
10,0 year storm
= 1,
Process from Point/Station 6007,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
6008,000
Upstream point/station elevation = 103.000(Ft.)
Downstream point/station elevation = 78,000(Ft.)
Pipe length = 68.64(Ft.) Slope = 0.3642 Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 0,947(CFS)
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 0.947(CFS)
Normal flow depth in pipe = l,54(in,)
Flow top width inside pipe = 10,06(In.)
Critical Depth = 4,35(In,)
Pipe flow velocity = 13,01(Ft/s)
Travel time through pipe = 0,09 min.
Time of concentration (TC) = 6,80 min.
Page 26
ecr3ulO
process from Point/Station 6007.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 0,730(Ac,)
Runoff from this stream = 0.947(CFS)
Time of concentration = 6.80 min.
Rainfall intensity = 3,674(in/Hr)
Process from Point/Station 6009.000 to Point/Station
**** INITIAL AREA EVALUATION ****
6010,000
3
105.000(Ft,)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Initial subarea total flow distance =
Highest elevation = 110.500(Ft.)
Lowest elevation = 90.000(Ft.)
Elevation difference = 20,500(Ft,) Slope = 19,524 %
Top of initial Area Slope adjusted by User to 19,500 %
Bottom of initial Area Slope adjusted by user to 19,500 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 19,50 %, in a development type of
Permanent Open space
in Accordance With Figure 3-3
initial Area Time of concentration = 5,02 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.3500)*( 100.000A,5)/( 19,500A(l/3)3= 5.02
The initial area total distance of 105,00 (Ft.) entered leaves a
remaining distance of 5,00 (Ft,)
Using Figure 3-4, the travel time for this distance is 0,05 minutes
for a distance of 5.00 (Ft.) and a slope of 19.50 %
with an elevation difference of 0.97(Ft.) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0.051 Minutes Tt=[(ll,9*0.0009A3)/( 0,97)3A.385= 0.05
Total initial area Ti = 5,02 minutes from Figure 3-3 formula plus
0,05 minutes from the Figure 3-4 formula = 5,07 minutes Rainfall intensity (I) = 4,441(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0,171(CFS)
Total initial stream area = 0.110(Ac)
Process from Point/Station 6010,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
6008.000
Upstream point elevation = 90,000(Ft,)
Downstream point elevation = 84,000(Ft,)
Channel length thru subarea = 230,000(Ft,)
channel base width = 0,000(Ft,)
Slope or 'Z' of left channel bank = 1,500
Slope or 'Z' of right channel bank = 1.500
Page 27
ecr3ulO
Estimated mean flow rate at midpoint of channel = 0.552(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 0.552(CFS)
Depth of flow = 0.303(Ft.), Average velocity = 4,019(Ft/s)
Channel flow top width = 0.908(Ft,)
Flow velocity = 4,02(Ft/s)
Travel time = 0,95 min.
Time of concentration = 6.02 min.
Critical depth = 0.385(Ft.)
Adding area flow to channel
3 A
B
C
D
.974(ln/Hr) for a
0.000
0.000
0,000
1,000
3
10,0 year storm Rainfall intensity (I) =
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0.350
Rainfall intensity = 3.974(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.210
subarea runoff = 0,663(CFS) for 0.490(Ac.)
Total runoff = 0,834(CFS) Total area = 0,600(Ac,)
Depth of flow = 0.353(Ft.), Average velocity = 4.456(Ft/s)
critical depth = 0.453(Ft.)
Process from Point/Station 6010,000 to Point/Station 6008.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0.600(Ac)
Runoff from this stream = 0,834(CFS)
Time of concentration = 6.02 min.
Rainfall intensity = 3,974(in/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Qmax(l)
Qmax(2) =
0.947
0,834
1,000
0,925
1,000
1,000
.80
.02
1
1
.000
.000
0.886 *
1,000 *
3,674
3,974
0.947) +
0.834) -t-
0,947) +
0,834) +
1,718
1,673
Total of 2 streams to confluence:
Flow rates before confluence point:
0.947 0,834
Maximum flow rates at confluence using above data:
1,718 1.673
Area of streams before confluence:
0.730 0,600
Results of confluence:
Total flow rate = 1,718(CFS)
Time of concentration = 6.798 min.
Page 28
ecr3ulO
Effective stream area after confluence = l,330(Ac,)
Process from Point/Station 6008.000 to Point/Station 5000,200
**** PIPEFLOW TRAVEL TIME (user specified size) ****
Upstream point/station elevation = 75,000(Ft,)
Downstream point/station elevation = 47,720(Ft,)
Pipe length = 76.80(Ft.) Slope = 0,3552 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1,718(CFS)
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 1,718(CFS)
Normal flow depth in pipe = 2.05(In,)
Flow top width inside pipe = 11,44(In,)
critical Depth = 5,91(ln,)
Pipe flow velocity = 15.43(Ft/s)
Travel time through pipe = 0,08 min.
Time of concentration (TC) = 6,88 min.
Process from Point/Station 5000,200 to Point/Station 5000,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
in Main Stream number: 2
stream flow area = l,330(Ac,)
Runoff from this stream = 1,718(CFS)
Time of concentration = 6.88 min.
Rainfall intensity = 3,645(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO, (CFS) (min) (in/Hr)
1 110.770 15.92 2,122
2 1,718 6,88 3,645 Qmax(l) =
Qmax(2) =
1,000 * 1,000 * 110,770) +
0,582 * 1,000 * 1,718) + = 111,770
1,000 * 0,432 * 110.770) +
1,000 * 1,000 * 1,718) + = 49,598
Total of 2 main streams to confluence:
Flow rates before confluence point:
110.770 1.718
Maximum flow rates at confluence using above data:
111,770 49,598
Area of streams before confluence:
64,130 1.330
Results of confluence:
Total flow rate = 111.770(CFS)
Time of concentration = 15,918 min.
Effective stream area after confluence = 65,460(Ac,)
process from Point/Station 5000.200 to Point/Station 5000,100
Page 29
ecr3ulO
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 46,250(Ft.)
Downstream point/station elevation = 45,360(Ft.)
Pipe length = 128,90(Ft,) Slope = 0,0069 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 111,770(CFS)
Given pipe size = 48.00(in,)
Calculated individual pipe flow = 111,770(CFS)
Normal flow depth in pipe = 36,84(ln.)
Flow top width inside pipe = 40,55(In,)
critical Depth = 38,33(in,)
Pipe flow velocity = 10.80(Ft/s)
Travel time through pipe = 0,20 min.
Time of concentration (TC) = 16.12 min.
-f-f-f-f--f-f+-f+-f-|-+-f+-(-+-f++-(--f-l--f-f-t--f++-H-(-+-f-f+-f+++-f-f+-f++-f-f^^
Process from Point/Station 5000,100 to Point/Station 5000.100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 65,460(Ac,)
Runoff from this stream = 111,770(CFS)
Time of concentration = 16,12 min.
Rainfall intensity = 2.105(ln/Hr)
-^-^++-l--^-f-^-^-^-^+•f-^•f+-^+•^+++•f•^+-^-•f-^+•^+•t-++-l-++-f-^-f++•^+•^++-f
Process from Point/Station 3009.000 to Point/Station 5003,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(24,0 DU/A or Less )
Impervious value, Ai = 0.650
Sub-Area c value = 0,710
Initial subarea total flow distance = 110,000(Ft,)
Highest elevation = 78,400(Ft,)
Lowest elevation = 74.800(Ft,) Elevation difference = 3,600(Ft,) Slope = 3,273 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 3,27 %, in a development type of
24,0 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of Concentration = 4,49 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(1.1-0.7100)*( 90,000A,5)/( 3,273A(l/3)3= 4,49
The initial area total distance of 110,00 (Ft.) entered leaves a
remaining distance of 20.00 (Ft,)
using Figure 3-4, the travel time for this distance is 0.29 minutes
for a distance of 20.00 (Ft,) and a slope of 3.27 %
with an elevation difference of 0.65(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
0,293 Minutes
Tt=[(ll,9*0.0038A3)/( 0,65)3A,385= 0,29
Total initial area Ti = 4,49 minutes from Figure 3-3 formula plus
0.29 minutes from the Figure 3-4 formula = 4,78 minutes
Calculated TC of 4,778 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Page 30
ecr3ulO
Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.710
Subarea runoff = 0.477(CFS)
Total initial stream area = 0,150(Ac,)
+-|-+++-r-rTT^T I .....
Process from Point/Station 5003,000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 74,800(Ft,)
End of street segment elevation = 53,800(Ft,)
Length of street segment = 690,000(Ft.)
Height of curb above gutter flowline = 6.0(ln,)
Width of half street (curb to crown) = 44,000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft,)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(in,)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.189(Ft.), Average velocity =
Streetflow hydraulics at midpoint of street travel
Halfstreet flow width = 4.694(Ft,)
Flow velocity = 2.64(Ft/s)
1,539(CFS)
2,638(Ft/s)
TC = 9,14 mi n.
10,0 year storm
Travel time = 4,36 min
Adding area flow to street
Rainfall intensity (I) =
user specified 'C value of
Rainfall intensity = 3 _
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,675 CA = 0,797
Subarea runoff = 1.941(CFS) for
Total runoff = 2,419(CFS) Total
Street flow at end of street = 2
Half street flow at end of street = , . - , ^
Depth of flow = 0.213(Ft,), Averaqe velocity = 2.892(Ft/s)
Flow width (from curb towards crown)= 5,890(Ft.)
3.036(ln/Hr) for a
0,670 given for subarea
036(in/Hr) for a 10,0 year storm
1.030(Ac.)
area = 1.180(Ac.)
.419(CFS)
1,209(CFS)
Process from Point/Station 5003,000 to Point/Station
**** SUBAREA FLOW ADDITION ****
5000,300
C
D
.036(in/Hr) for a
0,000
0,000
0.000
1.000
3
10.0 year storm Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group
Decimal fraction soil group
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value =0,350
Time of concentration = 9,14 min.
Rainfall intensity = 3,036(in/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,556 CA = 1.035
Page 31
Subarea runoff =
Total runoff =
ecr3ulO
0,723(CFS) for
3,141(CFS) Total area =
0.680(Ac)
1.860(AC,)
Process from Point/Station 5000,300 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
5000,100
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 3.17(Ft,) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(in.)
Calculated individual pipe flow = 3,141(CFS)
Normal flow depth in pipe = 5,70(ln,)
Flow top width inside pipe = 16,75(In.)
Critical Depth = 8.11(ln.)
Pipe flow velocity = 6.54(Ft/s)
Travel time through pipe = 0,01 min.
Time of concentration (TC) = 9.14 min.
46.490(Ft.)
46.430(Ft.)
0.0189 Manning's N = 0.013
3.141(CFS)
Process from Point/Station 5000.100 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5000.100
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.860(Ac)
Runoff from this stream = 3,141(CFS)
Time of concentration = 9.14 min.
Rainfall intensity = 3.034(in/Hr)
Summary of stream data:
Stream
NO.
Flow rate
(CFS)
TC
(mi n)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
111,770
3.141
16,12
9.14
1,000 *
0.694 *
1,000 *
1,000 *
,000 *
,000 *
0.567 *
1,000 *
2.105
3,034
111.770) +
3,141) +
111,770) -f
3,141) +
113,950
66,559
Total of 2 streams to confluence:
Flow rates before confluence point:
111,770 3.141
Maximum flow rates at confluence using above data:
113,950 66.559
Area of streams before confluence:
65,460 1,860
Results of confluence:
Total flow rate = 113,950(CFS)
Time of concentration = 16,118 min.
Effective stream area after confluence = 67,320(Ac)
Process from Point/Station 5000.100 to Point/Station
**** PIPEFLOW TRAVEL TIME (user Specified size) ****
6000.000
Page 32
ecr3ulO
upstream point/station elevation = 45,360(Ft,)
Downstream point/station elevation = 43,720(Ft.)
Pipe length = 234,39(Ft,) Slope = 0.0070 Manning's N = 0,013
NO. of pipes = 1 Required pipe flow = 113.950(CFS)
Given pipe size = 48,00(ln.)
calculated individual pipe flow = 113,950(CFS)
Normal flow depth in pipe = 37.31(in,)
Flow top width inside pipe = 39.94(ln.)
critical Depth = 38.66(ln,)
Pipe flow velocity = 10,88(Ft/s)
Travel time through pipe = 0,36 min.
Time of concentration (TC) = 16,48 min.
Process from Point/Station 6000,000 to Point/Station 6000,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 67.320(Ac.)
Runoff from this stream = 113.950(CFS)
Time of concentration = 16,48 min.
Rainfall intensity = 2,076(in/Hr)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from point/Station 5002,000 to Point/Station 6003.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[HIGH DENSITY RESIDENTIAL 3
(43,0 DU/A or Less )
impervious value, Ai = 0,800
Sub-Area C value = 0,790
Initial subarea total flow distance = 110.000(Ft,)
Highest elevation = 58.400(Ft,)
Lowest elevation = 56,000(Ft.)
Elevation difference = 2,400(Ft.) Slope = 2,182 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 2.18 %, in a development type of
43.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 3,73 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0.7900)*( 75,OOOA.5)/( 2,182A(l/3)3= 3.73
The initial area total distance of 110.00 (Ft.) entered leaves a
remaining distance of 35.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0.53 minutes
for a distance of 35,00 (Ft,) and a slope of 2,18 %
with an elevation difference of 0,76(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
0.526 Minutes
Tt=[(ll,9*0.0066A3)/( 0,76)3A,385= 0,53
Total initial area Ti = 3,73 minutes from Figure 3-3 formula plus
0.53 minutes from the Figure 3-4 formula = 4.25 minutes
Calculated TC of 4.252 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (i) = 4.479(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.790
Page 33
ecr3ulO
Subarea runoff = 0,778(CFS)
Total initial stream area = 0,220(Ac)
Process from Point/Station 6003.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
6004,000
Top of Street segment elevation = 56,000(Ft,) End of street segment elevation = 53.400(Ft.)
Length of street segment = 322.000(Ft.)
Height of curb above gutter flowline = 6.0(in,)
width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(in,) Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0,221(Ft,), Averaqe velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6,276(Ft,)
Flow velocity = l,53(Ft/s)
Travel time = 3.50 min. TC = 7,75 mm. Adding area flow to street
Rainfall intensity (i) = 3.376(ln/Hr) for a user specified 'C value of 0,760 given for subarea Rainfall intensity = 3,376(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.769 CA = 0.561 ^ ^ Subarea runoff = 1,117(CFS) for 0,510(Ac) Total runoff = 1,895(CFS) Total area = 0,730(Ac.)
Street flow at end of street = 1.895(CFS)
Half street flow at end of street = 0,948(CFS)
Depth of flow = 0.238(Ft.), Average velocity = 1.634(Ft/s) Flow width (from curb towards crown)= 7.133(Ft.)
1.427(CFS)
l,534(Ft/s)
10,0 year storm
Process from Point/station 6004,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size)
6000,000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 49,83(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 1,895(CFS)
Normal flow depth in pipe = 6,19(In.)
Flow top width inside pipe = 17.10(ln.)
Critical Depth = 6.22(in,)
Pipe flow velocity = 3,52(Ft/s)
Travel time through pipe = 0,24 min.
Time of concentration (TC) = 7,99 min.
44,140(Ft,)
43.890(Ft,)
0,0050 Manning's N = 0,013
1,895(CFS)
Page 34
ecr3ulO
Process from Point/Station 6000,000 to Point/Station 6000,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,730(Ac,)
Runoff from this stream = 1,895(CFS)
Time of concentration = 7,99 min.
Rainfall intensity = 3.311(ln/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
NO, (CFS) (min) (in/Hr)
1 113.950 16,48 2,076
2 1,895 7,99 3.311 Qmax(l) =
Qmax(2) =
1,000 * 1,000 * 113,950) +
0.627 * 1,000 * 1,895) -i- = 115,138
1,000 * 0.485 * 113,950) -f
1,000 * 1,000 * 1,895) + = 57,129
Total of 2 streams to confluence:
Flow rates before confluence point:
113,950 1,895
Maximum flow rates at confluence using above data:
115,138 57,129
Area of streams before confluence:
67,320 0.730
Results of confluence:
Total flow rate = 115.138(CFS)
Time of concentration = 16,477 min.
Effective stream area after confluence = 68.050(Ac,)
++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 6000,000 to Point/Station 6000,100
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
Upstream point/station elevation = 43,390(Ft.)
Downstream point/station elevation = 42,550(Ft,)
Pipe length = 169,08(Ft,) Slope = 0.0050 Manning's N = 0,013
NO, of pipes = 1 Required pipe flow = 115.138(CFS)
Given pipe size = 48,00(in,)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
2,201(Ft,) at the headworks or inlet of the pipe(s)
Pipe friction loss = l,086(Ft,)
Minor friction loss = l,955(Ft,) K-factor = 1,50
Pipe flow velocity = 9,16(Ft/s)
Travel time through pipe = 0.31 min.
Time of concentration (TC) = 16,78 min,
+-f-f-f+-f-i--f+++++++++++++++-h-f-f-f-f-f-f++++++-i-+++-f-f+-f-f+
Process from Point/Station 6000,100 to Point/Station 6000,100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main stream number: 1
Stream flow area = 68,050(Ac,)
Runoff from this stream = 115,138(CFS)
Page 35
ecr3ulO
Time of concentration = 16.78 min.
Rainfall intensity = 2.051(ln/Hr)
Program is now starting with Main Stream No, 2
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 6015,000 to Point/Station 6016,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0.350
Initial subarea total flow distance = 180.000(Ft.)
Highest elevation = 118,000(Ft,)
Lowest elevation = 115.200(Ft,)
Elevation difference = 2.800(Ft.) Slope = 1,556 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85,00 (Ft)
for the top area slope value of 1,56 %, in a development type of
Permanent Open space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 10.73 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,3500)*( 85.000A,5)/( 1,560A(l/3)3= 10.73
The initial area total distance of 180,00 (Ft,) entered leaves a
remaining distance of 95.00 (Ft.)
using Figure 3-4, the travel time for this distance is 1,29 minutes
for a distance of 95,00 (Ft.) and a slope of 1.56 %
with an elevation difference of 1,48(Ft.) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr)
1.291 Minutes
Tt=[(ll,9*0,0180A3)/( 1,48)3A.385= 1,29
Total initial area Ti = 10,73 minutes from Figure 3-3 formula plus
1.29 minutes from the Figure 3-4 formula = 12,02 minutes
Rainfall intensity (I) = 2,543(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
subarea runoff = 0,427(CFS)
Total initial stream area = 0,480(Ac,)
Process from Point/Station 6016.000 to Point/Station 6017.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 102.000(Ft,)
Downstream point/station elevation = 76,380(Ft.)
Pipe length = 52.47(Ft,) Slope = 0.4883 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0,427(CFS)
Given pipe size = 18.00(in,)
Calculated individual pipe flow = 0,427(CFS)
Normal flow depth in pipe = 0,98(In,)
Flow top width inside pipe = 8,19(ln,)
Critical depth could not be calculated.
Pipe flow velocity = 11.31(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 12.10 min.
Page 36
ecr3ulO
process from Point/Station 6017.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
6017.000
. 533(ln/Hr) for a
0.000
10.0 year storm
0.000
0.000
1,000
3
Rainfall intensity (i) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open space )
Impervious value, Ai = 0.000
sub-Area C value = 0,350
Time of concentration = 12,10 min.
Rainfall intensity = 2,533(in/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.312
subarea runoff = 0,362(CFS) for 0,410(Ac,)
Total runoff = 0.789(CFS) Total area = 0,890(Ac,)
Process from Point/station 6017,000 to Point/Station 6014,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 76.050(Ft,)
Downstream point/station elevation = 54.000(Ft,)
Pipe length = 46,55(Ft,) Slope = 0,4737 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 0.789(CFSJ
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 0,789(CFS)
Normal flow depth in pipe = 1,32(in,)
Flow top width inside pipe = 9,39(in,)
critical Depth = 3.95(ln,)
Pipe flow velocity = 13,48(Ft/s)
Travel time through pipe = 0,06 min.
Time of concentration (TC) = 12,16 min.
Process from Point/station 6014,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
6014,000
Along Main Stream number: 2 in normal stream number 1
stream flow area = 0.890(Ac)
Runoff from this stream = 0,789(CFS)
Time of concentration = 12,16 min.
Rainfall intensity = 2,525(in/Hr)
Process from Point/Station 6013,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6012.000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
sub-Area C value = 0.350
Initial subarea total flow distance =
Page 37
120,000(Ft,)
ecr3ulO
Highest elevation = 87,000(Ft,)
Lowest elevation = 64,400(Ft,)
Elevation difference = 22,600(Ft.) Slope = 18,833 %
Top of Initial Area Slope adjusted by user to 18,800 %
Bottom of Initial Area slope adjusted by User to 18,800 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 18,80 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of Concentration = 5,08 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 18.800A(l/3)3= 5.08
The initial area total distance of 120.00 (Ft.) entered leaves a
remaining distance of 20.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 0,15 minutes
for a distance of 20,00 (Ft,) and a slope of 18,80 %
with an elevation difference of 3,76(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr)
0,149 Minutes
Tt=[(ll,9*0,0038A3)/( 3.76)3A,385= 0,15
Total initial area Ti = 5.08 minutes from Figure 3-3 formula plus
0,15 minutes from the Figure 3-4 formula = 5.23 minutes
Rainfall intensity (l) = 4.353(in/Hr) for a
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 0.229(CFS)
Total initial stream area = 0,150(Ac)
10,0 year storm
is C = 0,350
^-++++•^+•f++++•f-f+++-^-^++++-^•^+-f•t-+•f•^++++•^-^-t-+•f-^•^++•^++++^
Process from Point/Station 6012.000 to Point/Station 6014,000
**** IMPROVED CHANNEL TRAVEL TIME ****
.)
0,518(CFS)
3.246(Ft/s)
upstream point elevation = 64,400(Ft,)
Downstream point elevation = 61,100(Ft.)
Channel length thru subarea = 170,000(Ft.
Channel base width = 0.000(Ft,)
Slope or 'Z' of left channel bank = 4,000
Slope or 'Z' of right channel bank = 1,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.015
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 0,518(CFS)
Depth of flow = 0.253(Ft.), Average velocity =
channel flow top width = 1,263(Ft,)
Flow velocity = 3,25(Ft/s)
Travel time = 0.87 min.
Time of concentration = 6,10 min,
critical depth = 0.305(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent open space )
impervious value, Ai = 0.000
sub-Area C value = 0,350
Rainfall intensity = 3,940(ln/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.185
Subarea runoff = 0,502(CFS) for 0.380(Ac)
Page 38
3.940(ln/Hr) for a
0.000
0,000
0,000
1.000
3
10.0 year storm
Total runoff =
Depth of flow =
Critical depth =
ecr3ulO
0,731(CFS) Total area = 0.530(Ac,)
0,287(Ft.), Average velocity = 3.538(Ft/s)
0.352(Ft,)
-^•^-(--^-^-^-^-^•^-^-l--^•^+-l--^++-l-•f+•^•-l-+++-^-l-4•+++++-^+++•t--^-f•^-^-^+
Process from Point/Station 6014.000 to Point/Station 6014,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0,530(Ac,)
Runoff from this stream = 0,731(CFS)
Time of concentration = 6,10 min.
Rainfall intensity = 3.940(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No, (CFS) (min) (in/Hr)
1 0,789 12 16 2,525
2 0,731 6 10 3.940
Qmax(l) : 0.789) -f 1,000 * 1,000 * 0.789) -f
0,641 * 1,000 * 0,731) + = 1,257
Qmax(2) = 0.789) + 1,000 * 0,502 * 0.789) +
1,000 * 1.000 * 0,731) + = 1,127
Total of 2 streams to confluence:
Flow rates before confluence point:
0,789 0.731
Maximum flow rates at confluence using above data:
1,257 1.127
Area of streams before confluence:
0.530 0,890
Results of confluence
Total flow rate =
Time of concentration =
1,257(CFS)
12.158 min. Effective stream area after confluence = l,420(Ac,)
+-^-^+•f-^-^•f•f-^++•^•f++++-l-+-^•f+++•f++++•f++-^--f++-^++-l--^++++^
Process from Point/Station 6014.000 to Point/Station 6018.000 **** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 20,08(Ft,) slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 18.00(ln,)
Calculated individual pipe flow = 1.257(CFS)
Normal flow depth in pipe = 1.61(ln.)
Flow top width inside pipe = 10.27(in.)
critical Depth = 5,03(in.)
Pipe flow velocity = 16,15(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (TC) = 12.18 min.
53.670(Ft,)
43,040(Ft.)
0.5294 Manning's N = 0,013
1,257(CFS)
-(-•f++++-f-f+++++-f-f-f+H-+-H+-l-+-t-++-l-++++-f4-+-f4--f+-h-f++-f--f+-f-f+
Process from point/Station 6018,000 to Point/Station 6018.000
**** CONFLUENCE OF MINOR STREAMS ****
Page 39
ecrSulO
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.420(Ac.)
Runoff from this stream = 1,257(CFS)
Time of concentration = 12,18 min.
Rainfall intensity = 2,522(ln/Hr)
Process from Point/Station 6011,000 to Point/Station
**** INITIAL AREA EVALUATION ****
6019,000
3
= 110.000(Ft.)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0,350 Initial subarea total flow distance
Highest elevation = 66.000(Ft.)
Lowest elevation = 52.850(Ft,)
Elevation difference = 13.150(Ft,) Slope = 11,955 %
Top of Initial Area Slope adjusted by User to 12,000 %
Bottom of Initial Area slope adjusted by user to 12,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 12.00 %, in a development type of
Permanent Open space In Accordance with Figure 3-3
initial Area Time of Concentration = 5.90 minutes
TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3
TC = [1.8*(l.l-0.3500)*( 100,000A.5)/( 12,000A(1/3)3= 5,90
The initial area total distance of 110,00 (Ft,) entered leaves a
remaining distance of 10,00 (Ft,) _ „ .
using Figure 3-4, the travel time for this distance is 0.10 minutes
for a distance of 10,00 (Ft.) and a slope of 12.00 %
with an elevation difference of l,20(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr)
0.104 Minutes
Tt=[(11.9*0.0019A3)/( 1.20)3A.385= 0.10
Total initial area Ti = 5.90 minutes from Figure 3-3 formula plus
0,10 minutes from the Figure 3-4 formula = 6,00 minutes
Rainfall intensity (l) = 3.982(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is c = 0.350
Subarea runoff = 0,111(CFS)
Total initial stream area = 0,080(Ac)
Process from Point/Station 6019,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
6018,000
upstream point elevation = 52,850(Ft.)
Downstream point elevation = 52,000(Ft,)
Channel length thru subarea = 170,000(Ft,)
Channel base width = 0.000(Ft,)
Slope or 'Z' of left channel bank = 4,000
Slope or 'Z' of right channel bank = 1,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.015
Maximum depth of channel = 1,000(Ft,)
Page 40
0.383(CFS)
10,0 year storm
ecr3ulO
Flow(q) thru subarea = 0,383(CFS)
Depth of flow = 0.291(Ft.), Average velocity = l,810(Ft/s)
Channel flow top width = 1.455(Ft,)
Flow velocity = 1.81(Ft/s)
Travel time = 1,57 min.
Time of concentration = 7,57 min.
Critical depth = 0,271(Ft,)
Adding area flow to channel
Rainfall intensity (I) = 3.429(in/Hr) for a
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open space )
Impervious value, Ai = 0,000
Sub-Area C Value = 0,350
Rainfall intensity = 3,429(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,164
Subarea runoff = 0,453(CFS) for 0,390(Ac,)
Total runoff = 0.564(CFS) Total area = 0,470(Ac,)
Depth of flow = 0.336(Ft.), Average velocity = 1.994(Ft/s)
critical depth = 0,316(Ft,)
-l--l-+•l--^++++-f-f+-^-^++++-f-l--^+-f•f++-^+++++-^+•f-f•l-•f•(-+•^-f•f+++•^--f+
Process from Point/station 6018,000 to Point/station 6018,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0.470(Ac,)
Runoff from this stream = 0,564(CFS)
Time of concentration = 7.57 min.
Rainfall intensity = 3,429(ln/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(mi n)
Rainfall Intensity
(In/Hr)
Qmax(l) =
Qmax(2) =
1,257
0.564
12,18
7,57
1,000 *
0,736 *
1,000 *
1,000 *
,000 *
,000 *
0,621 *
1.000 *
2,522
3,429
1,257) +
0.564) +
1,257) +
0.564) -t-
1,672
1.345
Total of 2 streams to confluence:
Flow rates before confluence point:
1.257 0,564
Maximum flow rates at confluence using above data:
1,672 1,345
Area of streams before confluence:
1.420 0.470
Results of confluence
Total flow rate =
Time of concentration =
1.672(CFS)
12,179 min. Effective stream area after confluence = l,890(Ac)
Page 41
ecr3ulO
Process from Point/Station 6018,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User Specified size) ****
6000.100
42.710(Ft,)
42,550(Ft,)
0,0050 Manning's
1,672(CFS)
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 32,17(Ft,) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 1,672(CFS)
Normal flow depth in pipe = 6,27(in,)
Flow top width inside pipe = 17,15(in.)
Critical Depth = 5.82(in.)
Pipe flow velocity = 3.05(Ft/s)
Travel time through pipe = 0,18 min.
Time of concentration (TC) = 12,35 min.
N = 0,015
Process from Point/Station 6000,100 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
6000,100
The following data inside Main stream is listed:
in Main stream number: 2
Stream flow area = 1.890(AC,)
Runoff from this stream = 1,672(CFS)
Time of concentration = 12,35 min.
Rainfall intensity = 2,499(ln/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS) TC
(min)
Rainfall intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
115.138
1,672
16,78
12,35
1.000 *
0.821 *
1,000 *
1.000 *
000
000
0,736 *
1,000 *
2,051
2.499
115.138) +
1,672) +
115,138) +
1.672) +
116.510
86,422
Total of 2 main streams to confluence:
Flow rates before confluence point:
115.138 1.672
Maximum flow rates at confluence using above data:
116,510 86,422
Area of streams before confluence:
68,050 1.890
Results of confluence:
Total flow rate = 116,510(CFS)
Time of concentration = 16,784 min.
Effective stream area after confluence = 69,940 (Ac)
Process from Point/Station 6000,100 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
7000.000
upstream point/station elevation = 42,220(Ft,)
Page 42
ecr3ulO
Downstream point/station elevation = 40,950(Ft,)
Pipe length = 251,88(Ft,) Slope = 0,0050 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 116,510(CFS)
Given pipe size = 48,00(in,)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
2,389(Ft,) at the headworks or inlet of the pipe(s)
Pipe friction loss = l,657(Ft,)
Minor friction loss = 2.002(Ft,) K-factor = 1,50
Pipe flow velocity = 9.27(Ft/s)
Travel time through pipe = 0.45 min.
Time of concentration (TC) = 17,24 min.
-f-(--f+-f++-f++-f-f++-(--t--f-)-++++-f+-f+++-f+-f+4-++-l--f-f++++-f+-f+
Process from Point/Station 7000,000 to Point/Station 7003,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 40,950(Ft,)
Downstream point/station elevation = 40.490(Ft,)
Pipe length = 94,47(Ft.) Slope = 0.0049 Manning's N = 0,013
NO. of pipes = 3 Required pipe flow = 116.510(CFS)
Given pipe size = 36,00(in,)
Calculated individual pipe flow = 38,837(CFS)
Normal flow depth in pipe = 25,13(in,)
Flow top width inside pipe = 33,06(ln.)
Critical Depth = 24,33(in,)
Pipe flow velocity = 7.37(Ft/s)
Travel time through pipe = 0,21 min.
Time of concentration (TC) = 17,45 min,
^--^--^-l--(-•f-^-^-t--^++++-^-^+-l--^+-^-+•^•f4-++++-f-^++++++-l-+++-^•^
Process from Point/Station 7003,000 to Point/Station 7003,100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 40,490(Ft,)
Downstream point/station elevation = 40,290(Ft.)
Pipe length = 36,75(Ft,) Slope = 0,0054 Manninq's N = 0,013
NO. of pipes = 3 Required pipe flow = 116.510(CFS)
Given pipe size = 36.00(ln.)
Calculated individual pipe flow = 38.837(CFS)
Normal flow depth in pipe = 24,12(in,)
Flow top width inside pipe = 33.86(ln,)
critical Depth = 24.33(in,)
Pipe flow velocity = 7.71(Ft/s)
Travel time through pipe = 0,08 min.
Time of concentration (TC) = 17,53 min.
•f-^-^•f•^++++++-l--f+-^•f-f•f-^-+-f+•f+•^-++4-+•f-^+•l--^•f+-l-++++-l-+-l-+++^
Process from Point/Station 7003.100 to Point/Station 7003.100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 69,940(Ac)
Runoff from this stream = 116.510(CFS)
Time of concentration = 17,53 min.
Rainfall intensity = l,994(ln/Hr)
-^+-t--f--^-++-^+•^+-f•f+-l-+•f++++-l-•f++-^-^++•f-^-^•l--f+++-^^-+•^•^-f+•f
Process from Point/Station 7004,000 to Point/Station 7005,000
Page 43
ecr3ulO
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[HIGH DENSITY RESIDENTIAL J
(43,0 DU/A or Less )
Impervious value, Ai = 0,800
sub-Area C value = 0,790
initial subarea total flow distance = 138,000(Ft.)
Highest elevation = 53,800(Ft,) Lowest elevation = 51.700(Ft,) , r-.-, „/ Elevation difference = 2.100(Ft,) Slope = 1.522 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75,00 (Ft)
for the top area slope value of 1,52 %, in a development type of
43.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4,20 minutes
TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3^^ ^ TC = [1.8*(l.l-0.7900)*( 75,OOOA,5)/( 1,522A(1/3)3= 4,20
The initial area total distance of 138.00 (Ft,) entered leaves a
remaining distance of 63,00 (Ft.) , . « nr • *
using Figure 3-4, the travel time for this distance is 0.95 minutes
for a distance of 63.00 (Ft.) and a slope of 1,52 % ^ ^ ^
with an elevation difference of 0,96(Ft,) from the end of the top area
Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(mm/hr)
0,950 Minutes
Tt=[(11.9*0,0119A3)/( 0.96)3A.385= 0,95 .
Total initial area Ti = 4,20 minutes from Figure 3-3 formula plus
0,95 minutes from the Figure 3-4 formula = 5,15 minutes
Rainfall intensity (I) = 4.394(ln/Hr) for a 10,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,790
subarea runoff = 0,659(CFS)
Total initial stream area = 0.190(Ac,)
Proces^from^Point/Station7005^00 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 51,700(Ft.)
End of street segment elevation = 48.200(Ft,)
Length of street segment = 353,000(Ft,)
Height of curb above gutter flowline = 6.0(ln.)
width of half street (curb to crown) = 44,000(Ft,)
Distance from crown to crossfall grade break = 42,500(Ft,)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [23 side(s) of the street
Distance from curb to property line = 10,000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = l,500(Ft.)
Gutter hike from flowline = 1.500(ln,)
Manning's N in gutter = 0.0150 „
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 1.279(CFS)
Depth of flow = 0.209(Ft,), Averaqe velocity = l,624(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5,679(Ft,)
Flow velocity = 1,62(Ft/s)
Page 44
ecr3ulO
TC = 8,77 min. Travel time = 3,62 min.
Adding area flow to street , , . ^ «
Rainfall intensity (I) = 3,117(ln/Hr) for a 10.0 year storm
user specified 'C value of 0,760 given for subarea
Rainfall intensity = 3,117(In/Hr) for a 10,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.768 CA = 0,545
subarea runoff = 1,040(CFS) for 0,520(Ac,)
Total runoff = 1,699(CFS) Total area = 0,710(Ac.)
Street flow at end of street = 1,699(CFS)
Half street flow at end of street = 0,850(CFS)
Depth of flow = 0,225(Ft.), Average velocity = l,727(Ft/s)
Flow width (from curb towards crown)= 6,487(Ft,)
process from Point/Station 7006,000 to Point/Station 7006,300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 43,250(Ft,)
Downstream point/station elevation = 43.120(Ft,)
Pipe length = 13.55(Ft.) Slope = 0.0096 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.699(CFS)
Given pipe size = 18.00(in,)
Calculated individual pipe flow = 1.699(CFS)
Normal flow depth in pipe = 4,95(In,)
Flow top width inside pipe = 16,07(In.)
critical Depth = 5,88(ln,)
Pipe flow velocity = 4,31(Ft/s)
Travel time through pipe = 0,05 min.
Time of concentration (TC) = 8.83 min.
process from Point/Station 7006,300 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
7003,100
Upstream point/station elevation = 42.790(Ft.)
Downstream point/station elevation = 42,160(Ft.)
Pipe length = 126,63(Ft,) Slope = 0,0050 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 1,699(CFS)
Given pipe size = 18.00(in,)
calculated individual pipe flow = 1,699(CFS)
Normal flow depth in pipe = 5,87(In,)
Flow top width inside pipe = 16.87(In,)
Critical Depth = 5,88(In,)
Pipe flow velocity = 3,40(Ft/s)
Travel time through pipe = 0,62 min.
Time of concentration (TC) = 9.45 min.
process from Point/Station 7003.100 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
7003,100
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.710(Ac,)
Runoff from this stream = 1,699(CFS)
Time of concentration = 9.45 min.
Rainfall intensity = 2.972(ln/Hr)
Summary of stream data:
Stream Flow rate TC page 45
Rainfall Intensity
ecr3ulO
NO, (CFS) (min) (in/Hr)
116,510 17,53 1,994
1,699 9.45 2.972
Qmax(l) =
Qmax(2) =
1,000 * 1,000 * 116,510) +
0,671 * 1,000 * 1,699) + = 117.651
1,000 * 0.539 * 116.510) +
1,000 * 1.000 * 1,699) + = 64.482
Total of 2 streams to confluence:
Flow rates before confluence point:
116.510 1,699
Maximum flow rates at confluence using above data:
117.651 64.482
Area of streams before confluence:
69.940 0.710 Results of confluence:
Total flow rate = 117.651(CFS)
Time of concentration = 17.530 min.
Effective stream area after confluence = 70.650(Ac.)
Process from Point/Station 7003.100 to Point/Station 7007.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 40.470(Ft.)
Downstream point/station elevation = 39,820(Ft.)
Pipe length = 84,94(Ft,) Slope = 0,0077 Manning's N = 0,013
No. of pipes = 3 Required pipe flow = 117,651(CFSj
Given pipe size = 36,00(ln,)
Calculated individual pipe flow = 39,217(CFS)
Normal flow depth in pipe = 21.61(ln,)
Flow top width inside pipe = 35,27(ln,)
Critical Depth = 24.44(ln,)
Pipe flow velocity = 8,85(Ft/s)
Travel time through pipe = 0,16 min.
Time of concentration (TC) = 17.69 min.
End of computations, total study area = 70,650 (Ac)
Page 46
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7
Rational method hydrology prograra based on
San Diego County Flood Control Division 2003 hydrology manual
Rational Hydrology Study Date: 01/22/14
10 YEAR HYDROLOGY STUDY FOR ULTIMATE CONDITION
BASIN ECRP410
REVISED BY HL
********* Hydrology Study Control Inforraation **********
Program License Serial Nuraber 6218
Rational hydrology study storra event year is 10.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 1.700
24 hour precipitation(inches) = 3.100
P6/P24 = 54.8%
San Diego hydrology raanual 'C values used
-^-f•f++^-++-^^--^-^-^-^-^•^^--^-^-^-^-^-^-^-^-l--^-^-^-l--^-^•^+4•-l•+-^^-•^-^-^-^-l--l-•f+-^-^
Process from Point/Station 8000.000 to Point/Station 8001.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Deciraal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Irapervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 204.000(Ft.)
Highest elevation = 81.000(Ft.)
Lowest elevation = 72.800(Ft.)
Elevation difference = 8.200(Ft.) Slope = 4.020 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The raaximum overland flow distance is 90.00 (Ft)
for the top area slope value of 4.02 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.68 minutes
Page 1 of 20
TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8*(1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68
The initial area total distance of 204.00 (Ft.) entered leaves a
remaining distance of 114.00 (Ft.)
Using Figure 3-4, the travel tirae for this distance is 1.03 minutes
for a distance of 114.00 (Ft.) and a slope of 4.02 %
with an elevation difference of 4.58(Ft.) from the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]".385 *60(min/hr)
1.032 Minutes
Tt=[(11.9*0.0216^3)/( 4.58)]^.385= 1.03
Total initial area Ti = 2.68 minutes from Figure 3-3 formula plus
1.03 minutes from the Figure 3-4 formula = 3.72 minutes
Calculated TC of 3.717 rainutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 1.866(CFS)
Total initial stream area = 0.490(Ac.)
+++++++++++++^-+++-^-^-^-^ + -^-^-^-^+-^-^-^-(--^-^-^-^-l--^-^-4•+-l--^-^-+ + -^-^-^-l-•^++
Process from Point/Station 8001.000 to Point/Station 8002.000
**** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION ****
Top of street segment elevation = 72.800(Ft.)
End of street segment elevation = 63.670(Ft.)
Length of street segment = 250.400(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance frora crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.02 0
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.779(CFS)
Depth of flow = 0.216(Ft.), Average velocity = 3.199(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.027(Ft.)
Flow velocity = 3.20(Ft/s)
Travel tirae = 1.3 0 rain. TC = 5.02 rain.
Adding area flow to street
Rainfall intensity (I) = 4.466(In/Hr) for a 10.0 year storm
User specified 'C value of 0.860 given for subarea
Rainfall intensity = 4.466(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.855 CA = 0.829
Subarea runoff = 1.839(CFS) for 0.480(Ac.)
Total runoff = 3.704(CFS) Total area = 0.970(Ac.)
Page 2 of 20
street flow at end of street = 3.704(CFS)
Half street flow at end of street = 1.852(CFS)
Depth of flow = 0.232(Ft.), Average velocity = 3.407(Ft/s)
Flow width (from curb towards crown)= 6.873(Ft.)
-l--l--^-^+•l-^-^•^-^-^-^•++-^-^+-^-^^-+-^-^-^^--^+^--^+++•^-^-^++-^+-^-^--l--l--^-^-t- +
Process from Point/Station 8002.000 to Point/Station 8002.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 59.240(Ft.)
Downstreara point/station elevation = 58.980(Ft.)
Pipe length = 5.26(Ft.) Slope = 0.0494 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.704(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 3.704(CFS)
Norraal flow depth in pipe = 4.85(In.)
Flow top width inside pipe = 15.97(In.)
Critical Depth = 8.82(In.)
Pipe flow velocity = 9.66(Ft/s)
Travel tirae through pipe = 0.01 min.
Time of concentration (TC) = 5.03 rain.
++-^-^-^-^-^-^-^-^-^-^-^-^•^-^-^-^+-^-^-^-^-^-^-^-^-^-^•^•f•f^--^-l--l--^-^-^-^-^-^-^-^-^+-^+
Process from Point/Station 8002.100 to Point/Station 8002.300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 58.650(Ft.)
Downstream point/station elevation = 56.470(Ft.)
Pipe length = 51.50(Ft.) Slope = 0.0423 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.704(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 3.704(CFS)
Norraal flow depth in pipe = 5.04(In.)
Flow top width inside pipe = 16.17(In.)
Critical Depth = 8.82(In.)
Pipe flow velocity = 9.14(Ft/s)
Travel tirae through pipe = 0.09 rain.
Time of concentration (TC) = 5.12 min.
-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-l--(-•^-^•^-^-^-^•^•f•^-^•^-^-^-^-l-+•f•^-^-^-^-^-^-^-^+-^-^
Process from Point/Station 8002.100 to Point/Station 8002.300
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Streara number: 1
Stream flow area = 0.970(Ac.)
Runoff from this stream = 3.704(CFS)
Time of concentration = 5.12 min.
Rainfall intensity = 4.408(In/Hr)
Program is now starting with Main Stream No. 2
Page 3 of 20
-^ + -^-^-^-^-^-+^--^+-^-l--^-^+-^-l--^••^+-^-t--^-^+-^+-l--^-^+++++-^++++++•^-++++ +
Process from Point/Station 8002.400 to Point/Station 8002.200
**** INITIAL AREA EVALUATION ****
Deciraal fraction soil group A = 0.000
Deciraal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Limited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 82.230(Ft.)
Highest elevation = 63.670(Ft.)
Lowest elevation = 61.500(Ft.)
Elevation difference = 2.170(Ft.) Slope = 2.639 %
Top of Initial Area Slope adjusted by User to 4.020 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maxiraura overland flow distance is 90.00 (Ft)
for the top area slope value of 4.02 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.68 minutes
TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8500)*( 90.000^.5)/( 4.020^(1/3)]= 2.68
Calculated TC of 2.685 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storra
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.381(CFS)
Total initial stream area = 0.100(Ac.)
Process from Point/Station 8002.200 to Point/Station 8002.300
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 56.730(Ft.)
Downstreara point/station elevation = 56.470(Ft.)
Pipe length = 5.25(Ft.) Slope = 0.0495 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.381(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 0.381(CFS)
Norraal flow depth in pipe = 1.60(In.)
Flow top width inside pipe = 10.24(In.)
Critical depth could not be calculated.
Pipe flow velocity = 4.92(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 2.70 min.
+ +-h-^+-^-(-+-h-h-^+-h-1--^-f-H--h-t--h-h-h-H•^-f-H-I-+ •^+-^-h-f-I--1-+++
Process frora Point/Station 8002.200 to Point/Station 8002.300
Page 4 of 20
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Streara is listed:
In Main Streara number: 2
Streara flow area = 0.100(Ac.)
Runoff from this stream = 0.381(CFS)
Time of concentration = 2.70 min.
Rainfall intensity = 4.479(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Qmax(1)
Qmax(2;
704
381
1. 000
0 . 984
000
000
5 .12
2 .70
1.000 *
1.000 *
0.527 *
1.000 *
4 .408
4 .479
3.704) -I-
0.381) -I-
3.704) +
0.381) -I-
4 . 079
2 .334
Total of 2 main streams to confluence:
Flow rates before confluence point:
3.704 0.381
Maximum flow rates at confluence using above data:
4.079 2.334
Area of streams before confluence:
0.970 0.100
Results of confluence:
Total flow rate = 4.079(CFS)
Tirae of concentration = 5.125 rain.
Effective stream area after confluence 1.070 (Ac.
Process from Point/Station 8002.300 to Point/Station 9000.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 174.62(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.079(CFS)
Normal flow depth in pipe = 4.68(In.)
Flow top width inside pipe = 15.79(In.)
Critical Depth = 9.27(In.)
Pipe flow velocity = 11.18(Ft/s)
Travel time through pipe = 0.26 min.
Time of concentration (TC) = 5.39 min.
56.140(Ft.)
44.090(Ft.)
0.0690 Manning's N = 0.013
4.079(CFS)
Page 5 of 20
-l--^-l-•f-^-^•^•f•^-^-l--^-^-^-^-^-^-^-^-^-l-+-l--^ + -^-^-l--^-^-^-^-^-^-l-+-^-l--^-^-^-(--^-^-^-^-^
Process from Point/Station 9000.000 to Point/Station 9001.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 43.760(Ft.)
Downstreara point/station elevation = 43.000(Ft.)
Pipe length = 152.15(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.079(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.079(CFS)
Normal flow depth in pipe = 9.52(In.)
Flow top width inside pipe = 17.97(In.)
Critical Depth = 9.27(In.)
Pipe flow velocity = 4.30(Ft/s)
Travel time through pipe = 0.59 min.
Time of concentration (TC) = 5.97 min.
Process from Point/Station 9001.000 to Point/Station 9002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.680(Ft.)
Downstream point/station elevation = 42.480(Ft.)
Pipe length = 39.65(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.079(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.079(CFS)
Normal flow depth in pipe = 9.49(In.)
Flow top width inside pipe = 17.97(In.)
Critical Depth = 9.27(In.)
Pipe flow velocity = 4.32(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 6.13 min.
-^•^-f-^-^•^•^-^-^-^^--l•-^-^^•^-•^-^-^•^-^-^-^-^-^-^-^+•f-l--^-l--l--^-^-^-^+-^-f-^+-^^-•^^-^--^
Process from Point/Station 9001.000 to Point/Station 9002.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Streara flow area = 1.070(Ac.)
Runoff from this stream = 4.079(CFS)
Time of concentration = 6.13 min.
Rainfall intensity = 3.928(In/Hr)
Program is now starting with Main Streara No. 2
-^•^-^-^ + -^-^•f-^-^-^-^+-^-^-^-^-^-^-l--l-+^--^-++-^-^-^-^-^-^-^•-^-^-l-•^•f-^-^ + ++-^-^-^-^4• +
Process frora Point/Station 9003.100 to Point/Station 9003.200
**** INITIAL AREA EVALUATION ****
Page 6 of 20
Deciraal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Deciraal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Liraited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 67.000(Ft.)
Highest elevation = 53.500(Ft.)
Lowest elevation = 51.700(Ft.)
Elevation difference = 1.800(Ft.) Slope = 2.687 %
Top of Initial Area Slope adjusted by User to 4.200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 4.20 %, in a developraent type of
Liraited Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration = 2.65 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8500)* ( 90.000*.5)/( 4.200^(1/3)]= 2.65
Calculated TC of 2.646 minutes is less than 5 rainutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.267(CFS)
Total initial stream area = 0.070(Ac.)
+ +-f + H-+-h-H-H-^-F-h++-H-H +-f-^ H--h-F-H 4-H--H-H-I--f +-I--h-h-1--h-1--H-I-+ +
Process from Point/Station 9003.200 to Point/Station 9003.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 51.700(Ft.)
End of street segment elevation = 49.800(Ft.)
Length of street segment = 58.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance frora curb to property line = 10.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike frora flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 0.369(CFS)
Depth of flow = 0.151(Ft.), Average velocity = 2.454(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.811(Ft.)
Page 7 of 20
•
Flow velocity = 2.45 (Ft/s)
Travel time = 0.3 9 min. TC = 3.04 min.
Adding area flow to street
Calculated TC of 3.040 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storra
Deciraal fraction soil group A = 0.000
Deciraal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Liraited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Rainfall intensity = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.850 CA = 0.119
Subarea runoff = 0.267(CFS) for 0.070(Ac.)
Total runoff = 0.533(CFS) Total area = 0.140(Ac.)
Street flow at end of street = 0.533(CFS)
Half street flow at end of street = 0.533(CFS)
Depth of flow = 0.169(Ft.), Average velocity = 2.554(Ft/s)
Flow width (from curb towards crown)= 3.707(Ft.)
Process frora Point/Station 9003.000 to Point/Station 9002.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstreara point/station elevation = 42.500(Ft.)
Downstream point/station elevation = 42.480(Ft.)
Pipe length = 18.88(Ft.) Slope = 0.0011 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.533(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 0.533(CFS)
Normal flow depth in pipe = 4.80(In.)
Flow top width inside pipe = 15.92(In.)
Critical Depth = 3.23(In.)
Pipe flow velocity = 1.41(Ft/s)
Travel tirae through pipe = 0.22 min.
Time of concentration (TC) = 3.26 min.
+ +++++-^-^+-^-^-^-^+ + + -^-^++-^+4•-^-^•^-^-^-l--^-^-^-^-^•f + +
Process frora Point/Station 9003.000 to Point/Station 9002.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream nuraber: 2
Stream flow area = 0.140(Ac.)
Runoff frora this stream = 0.533(CFS)
Time of concentration = 3.26 min.
Rainfall intensity = 4.479(In/Hr)
Suraraary of stream data:
Page 8 of 20
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 4.079 6.13 3.928
2 0.533 3.26 4.479
Qraax(1) =
1.000 * 1.000 * 4.079) -I-
0.877 * 1.000 * 0.533) + = 4.546
Qmax(2) =
1.000 * 0.533 * 4.079) +
1.000 * 1.000 * 0.533) + = 2.705
Total of 2 raain strearas to confluence:
Flow rates before confluence point:
4.079 0.533
Maximum flow rates at confluence using above data:
4.546 2.705
Area of streams before confluence:
1.070 0.140
Results of confluence:
Total flow rate = 4.546(CFS)
Time of concentration = 6.128 min.
Effective stream area after confluence = 1.210(Ac.)
+ +-f. 4-+-1-+ + + + +-H-I-+-h-I--H-H-f-I--h-I--1--I--I-+ +-H-I--I-+ +
Process from Point/Station 9002.000 to Point/Station 9004.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 42.280(Ft.)
Downstream point/station elevation = 41.610(Ft.)
Pipe length = 133.22(Ft.) Slope = 0.0050 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.546(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.546(CFS)
Normal flow depth in pipe = 10.16(In.)
Flow top width inside pipe = 17.85(In.)
Critical Depth = 9.83(In.)
Pipe flow velocity = 4.42(Ft/s)
Travel time through pipe = 0.50 min.
Time of concentration (TC) = 6.63 min.
+ ++++++++^-+-^+++^.+-^-(--l-4.+-^-^-^++-^-^-^+-^-^-^++-^-^-^-f-^+^-+-^-l--^-^-^-^-^+
Process from Point/Station 9004.000 to Point/Station 8003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 41.280(Ft.)
Downstream point/station elevation = 40.690(Ft.)
Pipe length = 117.44(Ft.) Slope = 0.0050 Manning's N = 0.013
Page 9 of 20
No. of pipes = 1 Required pipe flow = 4.546(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.546(CFS)
Normal flow depth in pipe = 10.16(In.)
Flow top width inside pipe = 17.85(In.)
Critical Depth = 9.83(In.)
Pipe flow velocity = 4.42(Ft/s)
Travel time through pipe = 0.44 min.
Time of concentration (TC) = 7.07 rain.
Process from Point/Station 9004.000 to Point/Station 8003.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.210(Ac.)
Runoff frora this streara = 4.546(CFS)
Tirae of concentration = 7.07 min.
Rainfall intensity = 3.581(In/Hr)
Program is now starting with Main Stream No. 2
+ -(--(--f.+-^-^-^-^ ++-^-^-^++-^+-^-^++-^-t-++-^-l-++++++++++-^--^++++++ ++++ + + +
Process frora Point/Station 8006.000 to Point/Station 8004.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Deciraal fraction soil group B = 0.000
Deciraal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Initial subarea total flow distance = 109.000(Ft.)
Highest elevation = 61.500(Ft.)
Lowest elevation = 57.200(Ft.)
Elevation difference = 4.300(Ft.) Slope = 3.945 %
Top of Initial Area Slope adjusted by User to 3.900 %
Bottom of Initial Area Slope adjusted by User to 3.900 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80.00 (Ft)
for the top area slope value of 3.90 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.35 minutes
TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)]
TC = [1.8* (1.1-0.8700)* ( 80.000^.5)/( 3.900^(1/3)]= 2.35
The initial area total distance of 109.00 (Ft.) entered leaves a
remaining distance of 29.00 (Ft.)
Using Figure 3-4, the travel tirae for this distance is 0.36 minutes
for a distance of 29.00 (Ft.) and a slope of 3.90 %
Page 10 of 20
with an elevation difference of 1.13(Ft.) frora the end of the top area
Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr)
0.364 Minutes
Tt=[(11.9*0.0055^3)/( 1.13)]".385= 0.36
Total initial area Ti = 2.35 minutes frora Figure 3-3 formula plus
0.36 minutes frora the Figure 3-4 forraula = 2.72 rainutes
Calculated TC of 2.716 rainutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.623(CFS)
Total initial stream area = 0.160(Ac.)
4-+-H-I--I--H +-H+ +-H + +-I--H-H-t-+-h +-H-H-H-H-h-H-h-f-I--I--H-h-H-H-H-(-+ + + +
Process frora Point/Station 8004.000 to Point/Station 8005.000
**** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION ****
Top of street segment elevation = 57.200(Ft.)
End of street segraent elevation = 46.000(Ft.)
Length of street segment = 525.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance frora crown to crossfall grade break = 42.500(Ft.)
Slope frora gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N frora grade break to crown = 0.0150
Estiraated raean flow rate at midpoint of street = 2.532(CFS)
Depth of flow = 0.271(Ft.), Average velocity = 2.978(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.825(Ft.)
Flow velocity = 2.98(Ft/s)
Travel time = 2.94 min. TC = 5.65 rain.
Adding area flow to street
Rainfall intensity (I) = 4.137(In/Hr) for a 10.0 year storm
User specified 'C value of 0.850 given for subarea
Rainfall intensity = 4.137(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.853 CA = 1.057
Subarea runoff = 3.751(CFS) for 1.080(Ac.)
Total runoff = 4.374 (CFS) Total area = 1.240(Ac.)
Street flow at end of street = 4.374(CFS)
Half street flow at end of street = 4.374(CFS)
Depth of flow = 0.316(Ft.), Average velocity = 3.392(Ft/s)
Flow width (from curb towards crown)= 11.037(Ft.)
Page 11 of 20
+ -^-^-^-l--l--^-^-^+-^-^-l•-^^-+-^-^-t--^-^•^-^-f-^+-^-^-^-^-^+-^++•t--^+ + ++++-^-^-^•^+-^+
Process frora Point/Station 8004.000 to Point/Station 8005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Streara number: 2 in normal stream nuraber 1
Stream flow area = 1.240(Ac.)
Runoff from this streara = 4.374(CFS)
Tirae of concentration = 5.65 min.
Rainfall intensity = 4.137(In/Hr)
-^-^-^-^-^-^-^•^-^•^•^-^-+-^•f•^•^-^•^+•^-^ + -^•^-^-^ + ++-^-^-^-^-^-^-^-^-^-f•f-^•f•^-^-^-^++-^
Process from Point/Station 7001.000 to Point/Station 7002.000
**** INITIAL AREA EVALUATION ****
]
= 200.000(Ft.)
0.400 %
000 %
Deciraal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
(Limited Industrial )
Irapervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance
Highest elevation = 51.300(Ft.)
Lowest elevation = 50.500(Ft.)
Elevation difference = 0.800(Ft.) Slope =
Top of Initial Area Slope adjusted by User to 2
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The raaxiraum overland flow distance is 70.00 (Ft)
for the top area slope value of 2.00 %, in a development type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 2.99 minutes
TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)]
TC = [1.8*(1.1-0.8500)* ( 70.000".5)/( 2.OOO"(1/3)]= 2.99
Calculated TC of 2.988 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 1.523(CFS)
Total initial stream area = 0.400(Ac.)
Process from Point/Station 7002.000 to Point/Station 8005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 50.500(Ft.)
End of street segment elevation = 46.370 (Ft.)
Length of street segment = 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 44.000(Ft.)
Distance from crown to crossfall grade break = 42.500(Ft.)
Page 12 of 20
Slope frora gutter to grade break (v/hz) = 0.020
Slope frora grade break to crown (v/hz) = 0.02 0
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N frora grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.310(Ft.), Average velocity =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.758(Ft.)
Flow velocity = 2.32(Ft/s)
Travel time = 2.87 min. TC = 5.86 rain.
Adding area flow to street
Rainfall intensity (I) = 4.045(In/Hr) for a
group
group
group
group
2.855(CFS)
2.324(Ft/s)
soil
soil
soil
soil
type
4 . 045(In/Hr)
= 0.000
= 0.000
= 0.000
= 1.000
10.0 year storm
Decimal fraction
Decimal fraction
Decimal fraction
Deciraal fraction
[INDUSTRIAL area type ]
(Liraited Industrial )
Impervious value, Ai = 0.900
Sub-Area C Value = 0.850
Rainfall intensity = 4.045(In/Hr) for a 10.0 year storra
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.850 CA = 1.020
Subarea runoff = 2.603(CFS) for 0.800(Ac.)
Total runoff = 4.125(CFS) Total area =
Street flow at end of street = 4.125(CFS)
Half street flow at end of street = 4.125(CFS)
Depth of flow = 0.344(Ft.), Average velocity =
Flow width (from curb towards crown)= 12.462(Ft.)
1.2 00(Ac.)
2.540(Ft/s)
-H-H-I--^ ++ + +-I--H-t--f +-t--I-+ 4--h-f-H +-t--f-H +-f-f H--H-H H-+ + +-f H--^-f +-I-+ 4--H H-++-H-H
Process from Point/Station 7002.000 to Point/Station 8005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal streara nuraber 2
Streara flow area = 1.2 00(Ac.)
Runoff frora this stream = 4.125(CFS)
Tirae of concentration = 5.86 rain.
Rainfall intensity = 4.045(In/Hr)
Summary of stream data:
Streara
No.
Flow rate
(CFS)
TC
(rain)
Rainfall Intensity
(In/Hr)
1
2
4 .374
4 .125
5 .65
5.86
4 .137
4 . 045
Page 13 of 20
Qraax(1) =
1.000 * 1.000 * 4.374) +
1.000 * 0.965 * 4.125) + = 8.357
Qraax(2) =
0.978 * 1.000 * 4.374) +
1.000 * 1.000 * 4.125) + = 8.401
Total of 2 strearas to confluence:
Flow rates before confluence point:
4.374 4.125
Maximum flow rates at confluence using above data:
8.357 8.401
Area of streams before confluence:
1.240 1.200
Results of confluence:
Total flow rate = 8.401(CFS)
Time of concentration = 5.857 min.
Effective streara area after confluence = 2.44 0(Ac.)
+ + + + + + + + + + + + + 4 + + + + + + + + + + + + 4 + + + + + + + 4 + + + + + 4- + 44- + + 4 + 4 + + + + + 4- + + + -H + 4--H + + + + + 4 + +
Process from Point/Station 8005.000 to Point/Station 8003.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 41.140(Ft.)
Downstream point/station elevation = 40.860(Ft.)
Pipe length = 28.15(Ft.) Slope = 0.0099 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 8.401(CFS)
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 8.401(CFS)
Normal flow depth in pipe = 10.14(In.)
Flow top width inside pipe = 23. 71(In.)
Critical Depth = 12.39(In.)
Pipe flow velocity = 6.65(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 5.93 rain.
+ 4- + + + + + + + -f + + + + + + + 4 + + + 4- + + + + + + + + 4 + 4- + + + + + + -f + + 4- + + + 4- + -H-4- + -H- + + + 4-4 + + + 4- + -H- + -l- + +
Process frora Point/Station 8005.000 to Point/Station 8003.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Streara is listed:
In Main Streara number: 2
Stream flow area = 2.440(Ac.)
Runoff frora this streara = 8.401 (CFS)
Tirae of concentration = 5.93 min.
Rainfall intensity = 4.014(In/Hr)
Summary of stream data:
Streara Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
Page 14 of 20
1 4 .546 7 .07 3 .581
2 8 .401 5 . 93 4 .014
Qmax(1) =
1 000 * 1 000 * 4 546) +
0 892 * 1 000 * 8 401) + = 12 043
Qmax(2) =
.546) 1 000 * 0 838 * 4 .546) 4
1 000 * 1 000 * 8 .401) + = 12 212
Total of 2 raain streams to confluence:
Flow rates before confluence point:
4.546 8.401
Maxiraura flow rates at confluence using above data:
12.043 12.212
Area of streams before confluence:
1.210 2.440
Results of confluence:
Total flow rate = 12.212(CFS)
Time of concentration = 5.927 min.
Effective stream area after confluence = 3.650(Ac,
+ + + + + + + + + + -H. + -H.4- + 4-h + 4 + + + 4- + 4 + + H- + + + 4 + + 44 + + 44 + 4 +4-F4 + 4-4 + + + 4-H4-4- + 44-4 + + + + 4-4 + +
Process from Point/Station 8003.000 to Point/Station 9005.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 40.360(Ft.)
Downstream point/station elevation = 40.190(Ft.)
Pipe length = 34.94(Ft.) Slope = 0.0049 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 12.212(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 12.212(CFS)
Normal flow depth in pipe = 12.59(In.)
Flow top width inside pipe = 34.33(In.)
Critical Depth = 13.30(In.)
Pipe flow velocity = 5.55(Ft/s)
Travel time through pipe = 0.11 rain.
Time of concentration (TC) = 6.03 rain.
+ ++++++++^-++-l-l-++44^-+4-^-+++4+++++4+-^+4-4+-^+++4-+4++4•+++++4++4^-l-++44++-^-^4 + -^-
Process frora Point/Station 8003.000 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal streara number 1
Stream flow area = 3.650(Ac.)
Runoff frora this stream = 12.212(CFS)
Time of concentration = 6.03 min.
Rainfall intensity = 3.968(In/Hr)
+ + + + + + + + + + H-H- + + + + 44- + -H-4 + + 44 + + 444444-44 + 4 + 4 + 44- + + + + + + 4-l- + + + + + + -H- + -t- + + + + + + + +
Page 15 of 20
Process from Point/Station 7006.100 to Point/Station 7006.200
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(Liraited Industrial )
Irapervious value, Ai = 0.900
Sub-Area C Value = 0.850
Initial subarea total flow distance = 157.000(Ft.)
Highest elevation = 50.000(Ft.)
Lowest elevation = 48.400(Ft.)
Elevation difference = 1.600(Ft.) Slope = 1.019 %
Top of Initial Area Slope adjusted by User to 1.000 %
Bottom of Initial Area Slope adjusted by User to 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.00 %, in a developraent type of
Limited Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration = 3.49 minutes
TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)]
TC = [1.8*(1.1-0.8500)*( 60.000".5)/( 1.000^(1/3)]= 3.49
The initial area total distance of 157.00 (Ft.) entered leaves a
remaining distance of 97.00 (Ft.)
Using Figure 3-4, the travel time for this distance is 1.56 rainutes
for a distance of 97.00 (Ft.) and a slope of 1.00 %
with an elevation difference of 0.97(Ft.) from the end of the top area
Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr)
1.557 Minutes
Tt=[(11.9*0.0184"3)/( 0.97)]".385= 1.56
Total initial area Ti = 3.49 minutes from Figure 3-3 formula plus
1.56 rainutes frora the Figure 3-4 forraula = 5.04 rainutes
Rainfall intensity (I) = 4.454(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff = 0.530(CFS)
Total initial stream area = 0.140(Ac.)
+ + + 4 + + 4 + 4 + + + 444 + + + + + + + -F + + + + + + -I- + + + + + 444444 + 4 + + + + + -I--I- + -I- + + + + 4444 + 4 + + + + 44 + +
Process from Point/Station 7006.200 to Point/Station 9005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segraent elevation = 52.000(Ft.)
End of street segraent elevation = 47.320(Ft.)
Length of street segraent = 74.940(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Page 16 of 20
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 0.719(CFS)
Depth of flow = 0.130(Ft.), Average velocity = 3.543(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 1.740(Ft.)
Flow velocity = 3.54(Ft/s)
Travel tirae = 0.35 rain. TC = 5.4 0 min.
Adding area flow to street
Rainfall intensity (I) = 4.264(In/Hr) for a 10.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Rainfall intensity = 4.264(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.858 CA = 0.206
Subarea runoff = 0.348(CFS) for 0.100(Ac.)
Total runoff = 0.878(CFS) Total area = 0.240(Ac.)
Street flow at end of street = 0.878(CFS)
Half street flow at end of street = 0.439(CFS)
Depth of flow = 0.143(Ft.), Average velocity = 3.384(Ft/s)
Flow width (frora curb towards crown)= 2.420(Ft.)
4 + 44 + 44 + + -K + + + + + + 4 + + -F-H + 4 + + 4 + + + + + 4 + 4--F + + + + + + + 4 + + -H4-4 + + 4- + + + + 4-I- + + + + 44 + + + + + + +
Process frora Point/Station 7006.200 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in norraal streara number 2
Stream flow area = 0.240(Ac.)
Runoff from this stream = 0.878(CFS)
Tirae of concentration = 5.4 0 rain.
Rainfall intensity = 4.264(In/Hr)
-^ + 4 + -t- + 44 + -^ + + -l- + + + + 44-^+ + 4 + + 4 + 4•4 + 4 + + + + + + + + + + + + 4-l- + + 44^- + + 4-^ + + + + -l- + 44 + + 44^- + + +
Process frora Point/Station 9007.000 to Point/Station 7006.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[INDUSTRIAL area type
Page 17 of 20
(General Industrial )
Irapervious value, Ai = 0.950
Sub-Area C Value = 0.870
Initial subarea total flow distance = 55.500(Ft.)
Highest elevation = 48.500(Ft.)
Lowest elevation = 48.200(Ft.)
Elevation difference = 0.300(Ft.) Slope = 0.541 %
Top of Initial Area Slope adjusted by User to 2.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maxiraura overland flow distance is 70.00 (Ft)
for the top area slope value of 2.00 %, in a development type of
General Industrial
In Accordance With Figure 3-3
Initial Area Tirae of Concentration = 2.75 minutes
TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)]
TC = [1.8*(1.1-0.8700)* ( 70.000".5)/( 2.OOO"(1/3)]= 2.75
Calculated TC of 2.749 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 0.156(CFS)
Total initial stream area = 0.040(Ac.)
+ + + + + + + + + -|--l- + -H--(- + + 4-4--h + 4 + H-H- + + + + -F4 + + + 4-l- + 44 + + + + 4 + + + 4 + 4 + -H444- + + + + + + 4-l- + 4 + 44 + 4
Process from Point/Station 7006.000 to Point/Station 9005.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 48.200(Ft.)
End of street segraent elevation = 47.320(Ft.)
Length of street segraent = 174.800(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N frora gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 0.505(CFS)
Depth of flow = 0.214(Ft.), Average velocity = 1.183(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5.967(Ft.)
Flow velocity = 1.18(Ft/s)
Travel time = 2.46 min. TC = 5.21 min.
Adding area flow to street
Rainfall intensity (I) = 4.361(In/Hr) for a 10.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Page 18 of 20
Deciraal fraction soil group C = 0.000
Deciraal fraction soil group D = 1.000
[INDUSTRIAL area type ]
(General Industrial )
Impervious value, Ai = 0.950
Sub-Area C Value = 0.870
Rainfall intensity = 4.361(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.870 CA = 0.209
Subarea runoff = 0.755(CFS) for 0.200(Ac.)
Total runoff = 0.911(CFS) Total area = 0.240(Ac.)
Street flow at end of street = 0.911(CFS)
Half street flow at end of street = 0.911(CFS)
Depth of flow = 0.250(Ft.), Average velocity = 1.349(Ft/s)
Flow width (frora curb towards crown)= 7.770(Ft.)
-H- + + 4 + 4-4- + + + + + + 4 + 4 + 44 + + + -F + 44 + 44 + 44 + + + + 4 + + 4444 + + 4- + -I- + + + + 4 + + + 4- + + + 4 + -1- + 4 + + 4- +
Process frora Point/Station 7006.000 to Point/Station 9005.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 0.24 0(Ac.)
Runoff from this stream = 0.911(CFS)
Time of concentration = 5.21 min.
Rainfall intensity = 4.361(In/Hr)
Summary of stream data:
Streara Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 12 .212 6 . 03 3 .968
2 0 .878 5 .40 4 .264
3 0 . 911 5 .21 4 .361
Qraax(1) =
1 .000 * 1 . 000 * 12 .212) +
0 .931 * 1 .000 * 0 .878) 4
0 .910 * 1 . 000 * 0 .911) 4 = 13.858
Qraax(2) =
1 .000 * 0 . 894 * 12 .212) 4
1 .000 * 1 . 000 * 0 .878) 4
0 .978 * 1 . 000 * 0 .911) 4 = 12.691
Qmax(3) =
1 .000 * 0 . 864 * 12 .212) 4
1 .000 * 0 . 966 * 0 .878) 4
1 .000 * 1 . 000 * 0 . 911) 4 = 12.309
Total of 3 streams to confluence:
Flow rates before confluence point:
12 .212 0. 878 0. 911
Maximum flow rates at confluence using above data:
13 . 858 12.691 12.309
Area of strearas before confluence:
Page 19 of 20
3.650 0.240 0.240
Results of confluence:
Total flow rate = 13.858(CFS)
Tirae of concentration = 6.032 min.
Effective streara area after confluence = 4.130(Ac.
-(--(--I- + + + + -H44 + + 44 + 4 + 4 + 444-44444 + 4 + + 44 + + 4444444 + + 4-444 + 44444444444444-4444 + 44
Process from Point/Station 9005.000 to Point/Station 7007.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 40.190(Ft.)
Downstreara point/station elevation = 39.820(Ft.)
Pipe length = 71.54(Ft.) Slope = 0.0052 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13.858(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 13.858(CFS)
Normal flow depth in pipe = 13.24(In.)
Flow top width inside pipe = 34.72(In.)
Critical Depth = 14.20(In.)
Pipe flow velocity = 5.87(Ft/s)
Travel time through pipe = 0.20 rain.
Time of concentration (TC) = 6.24 min.
End of computations, total study area = 4.13 0 (Ac.)
Page 20 of 20
APPENDIX 4
Hydraulic Calculations for Storm Drain BFA
(See Exhibit 'M')
ECR3U
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE, WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC CALCULATION *
* MAIN STORM DRAIN LINE FOR EL CAMINO REAL W/ 100 YEAR ULTIMATE HYDROLOGY *
* REVISED BY MC *
**************************************************************************
FILE NAME: ECR3U,DAT
TIME/DATE OF STUDY: 09:49 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE+
NUMBER PROCESS HEAD(FT)
3.58*
MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS!)
1,00-
PROCESS HEAD(FT)
3.58* 1917,24 2.50 DC 1579,66
} PIPE ENLARGEMENT
1.00-3.58* 1917,24 2.50 DC 1579.66
} FRICTION
1,10-3.54* 1890,89 2,50 DC 1579,66
} FRICTION+BEND
1.20-3,67* 1973,26 2.50 DC 1579,66
} FRICTION
1.30-3,67* 1970,89 2,50 DC 1579.66
} FRICTION-fBEND
2.00-3.75* 2017,42 2,50 DC 1579.66
} JUNCTION
2,10-3,78* 2013,68 2,49 DC 1551,21
} FRICTION
3,00-3,68* 1956,47 2,49 DC 1551,21
} MANHOL E/IN L ET/OUTLET
3.75* 3,10-
MANHOL E/IN L ET/OUTLET
3.75* 1998,22 2.49 DC 1551.21
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1.00 FLOWLINE ELEVATION = 39,82
PIPE FLOW = 63,75 CFS PIPE DIAMETER = 42,00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 43,400 FEET
NODE 1,00 : HGL = < 43.400>;EGL= < 44,082>;FLOWLINE= < 39,820>
******************************************************************************
FLOW PROCESS FROM NODE 1,00 TO NODE 1,00 IS CODE = 4
Page 1
ECR3U
UPSTREAM NODE 1.00 ELEVATION = 39.82 (FLOW IS UNDER PRESSURE)
CALCULATE SUDDEN PIPE ENLARGEMENT LOSSES(LACRD):
PIPE FLOW = 63.75 CFS
PIPE DIAMETER: UPSTREAM = 42,00 INCHES; DOWNSTREAM = 42,00 INCHES
FLOW VELOCITY: UPSTREAM = 6,63 FEET/SEC; DOWNSTREAM = 6,63 FEET/SEC,
SUDDEN PIPE-FLOW ENLARGEMENT LOSSES =
((Vl-v2)**2)/64,4 = (( 6,626- 6,626)**2)/64.4 = 0,000
NODE 1,00 : HGL = < 43,400>;EGL= < 44,082>;FL0WLINE= < 39,820>
******************************************************************************
FLOW PROCESS FROM NODE 1,00 TO NODE 1.10 IS CODE = 1
UPSTREAM NODE 1,10 ELEVATION = 40,16 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42,00 INCHES
PIPE LENGTH = 73.75 FEET MANNING'S N = 0,01300
SF=(Q/K)**2 = (( 63,75)/( 1006,101))**2 = 0,00401
HF=L*SF = ( 73,75)*(0,00401) = 0,296
NODE 1.10 : HGL = < 43.696>;EGL= < 44,378>;FLOWLINE= < 40.160>
******************************************************************************
FLOW PROCESS FROM NODE 1.10 TO NODE 1,20 IS CODE = 3
UPSTREAM NODE 1,20 ELEVATION = 40,39 (FLOW IS UNDER PRESSURE)
CALCULATE PIPE-BEND LOSSES(OCEMA):
PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42.00 INCHES
CENTRAL ANGLE = 90,000 DEGREES MANNING'S N = 0,01300
PIPE LENGTH = 49,01 FEET BEND COEFFICIENT(KB) = 0,25000
FLOW VELOCITY = 6,63 FEET/SEC, VELOCITY HEAD = 0.682 FEET
HB=KB*(VELOCITY HEAD) = ( 0,250)*( 0.682) = 0.170
SF=(Q/K)**2 = (( 63.75)/( 1006.103))**2 = 0,00401
HF=L*SF = ( 49,01)*(0.00401) = 0.197
TOTAL HEAD LOSSES = HB + HF = ( 0,170)+( 0.197) = 0,367
NODE 1,20 : HGL = < 44,063>;EGL= < 44,745>;FLOWLINE= < 40,390>
******************************************************************************
FLOW PROCESS FROM NODE 1.20 TO NODE 1.30 IS CODE = 1
UPSTREAM NODE 1,30 ELEVATION = 40,41 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42.00 INCHES
PIPE LENGTH = 4,00 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 63.75)/( 1006,095))**2 = 0,00401
HF=L*SF = ( 4.00)*(0.00401) = 0,016
NODE 1,30 : HGL = < 44,079>;EGL= < 44,761>;FLOWLINE= < 40,410>
******************************************************************************
FLOW PROCESS FROM NODE 1,30 TO NODE 2.00 IS CODE = 3
UPSTREAM NODE 2,00 ELEVATION = 40,46 (FLOW IS UNDER PRESSURE)
CALCULATE PIPE-BEND LOSSES(OCEMA):
PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42,00 INCHES
CENTRAL ANGLE = 21.000 DEGREES MANNING'S N = 0,01300
PIPE LENGTH = 11.25 FEET BEND COEFFICIENT(KB) = 0,12076
FLOW VELOCITY = 6,63 FEET/SEC, VELOCITY HEAD = 0.682 FEET
HB=KB*(VELOCITY HEAD) = ( 0,121)*( 0,682) = 0,082
SF=(Q/K)**2 = (( 63.75)/( 1006,112))**2 = 0,00401
HF=L*SF = ( 11,25)*(0.00401) = 0,045
Page 2
ECR3U
TOTAL HEAD LOSSES = HB + HF = ( 0,082)-H( 0,045) = 0.127
NODE 2,00 : HGL = < 44,207>;EGL= < 44,889>;FLOWLINE= < 40,460>
******************************************************************************
FLOW PROCESS FROM NODE 2,00 TO NODE 2,10 IS CODE = 5
UPSTREAM NODE 2,10 ELEVATION = 40,49 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC)
UPSTREAM 62,90 42,00 0,00 40,49 2,49 6,538
DOWNSTREAM 63.75 42,00 - 40.46 2,50 6,626
LATERAL #1 0.85 18,00 90.00 41,95 0,34 0,481
LATERAL #2 0,00 0,00 0,00 0,00 0.00 0.000
Q5 0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al4-A2)*16.1)+FRICTI0N LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00391
DOWNSTREAM: MANNING'S N = 0-01300; FRICTION SLOPE = 0.00401
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00396
JUNCTION LENGTH = 6.00 FEET
FRICTION LOSSES = 0,024 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)-f(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,042)+( 0.000) = 0,042
NODE 2,10 : HGL = < 44,267>;EGL= < 44,930>;FLOWLINE= < 40,490>
******************************************************************************
FLOW PROCESS FROM NODE 2.10 TO NODE 3,00 IS CODE = 1
UPSTREAM NODE 3.00 ELEVATION = 40,95 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 62,90 CFS PIPE DIAMETER = 42.00 INCHES
PIPE LENGTH = 93.31 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 62,90)/( 1006.102))**2 = 0,00391
HF=L*SF = ( 93,31)*(0.00391) = 0.365
NODE 3,00 : HGL = < 44,631>;EGL= < 45,295>;FLOWLINE= < 40.950>
******************************************************************************
FLOW PROCESS FROM NODE 3,00 TO NODE 3,10 IS CODE = 2
UPSTREAM NODE 3,10 ELEVATION = 40,98 (FLOW IS UNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 62,90 CFS PIPE DIAMETER = 42,00 INCHES
USER SPECIFIED LOSS COEFFICIENT =0,15
FLOW VELOCITY = 6,54 FEET/SEC, VELOCITY HEAD = 0,664 FEET
HMN = 0,15*(VELOCITY HEAD) = 0.15*( 0,664) = 0,100
NODE 3.10 : HGL = < 44,731>;EGL= < 45.395>;FLOWLINE= < 40,980>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3,10 FLOWLINE ELEVATION = 40,98
ASSUMED UPSTREAM CONTROL HGL = 43,47 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 3
ECR3UALT
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ver, 21,0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC,
2710 LOKER AVE, WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC CALCULATION *
* MAIN STORM DRAIN LINE FOR EL CAMINO REAL W/ 100 YEAR ULTIMATE HYDROLOGY *
* REVISED BY MC *
**************************************************************************
FILE NAME: ECR3UALT.DAT
TIME/DATE OF STUDY: 09:48 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used,) UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT)
3.75* MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
3,10-FRICTION
HEAD(FT)
3.75* 3879,61 3.37 DC 3808,61
4.00-JUNCTION 4.23* 4190,84 2.97 3895,15
4,10-
FRICTION
4.04* 3955,73 3,34 DC 3718,35
5,00-
JUNCTION
4,45* 4284,30 3,34 DC 3718,35
5.10-FRICTION 4,53* 4271,61 3,32 DC 3641,32
6.00-JUNCTION 4.58* 4312.42 2,67 3882.09
6,10-4.74* 4312.82 2,46 3894.04
} FRICTION } HYDRAULIC JUMP
7,00-JUNCTION 4.71 4292.42 1,87* 5012.85
7.10-FRICTION 4,32 3881,99 1.83* 4904,65
8,00-
JUNCTION
3,24 DC 3381,06 2.44* 3760,23
8,10-
FRICTION
3.83 3174,83 2,06* 3659,46
9,00-JUNCTION 3,11 DC 2973,20 2,15* 3520,07
9,10-FRICTION 3,09 DC 2914,91 2,16* 3428.51
10.00-
JUNCTION
3,09 DC 2914,91 2,61* 3031,42
10.lo-FRICTION
3,03 DC 2754,01 2,50* 2891.11
ll. 00-
JUNCTION
3.03*Dc 2754.01 3,03*DC 2754,01
11.10-5,38* 4161,46
Page 1 1.97 3395,14
ECR3UALT
} FRICTION } HYDRAULIC JUMP
3,01*DC 2722.61 11.20- 3.01*Dc 2722.61 3,01*DC 2722,61
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3.10 FLOWLINE ELEVATION = 40,98
PIPE FLOW = 125,79 CFS PIPE DIAMETER = 48.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 44,730 FEET
NODE 3,10 : HGL = < 44,730>;EGL= < 46,370>;FLOWLINE= < 40.980>
******************************************************************************
FLOW PROCESS FROM NODE 3,10 TO NODE 4.00 IS CODE = 1
UPSTREAM NODE 4.00 ELEVATION = 42,22 (FLOW UNSEALS IN REACH)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 125,79 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 226,87 FEET MANNING'S N = 0,01300
===> NORMAL PIPEFLOW IS PRESSURE FLOW
NORMAL DEPTH(FT) = 4,00 CRITICAL DEPTH(FT) = 3,37
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,75
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND
0.000 3,750 10,274 5.390 3879,61
4,193 3,760 10,258 5.395 3883,34
8.488 3,770 10.243 5.400 3887,16
12,880 3.780 10.227 5.405 3891.08
17.367 3,790 10.212 5.410 3895,11
21.941 3.800 10,198 5,416 3899,23
26,599 3.810 10,183 5,421 3903,47
31,334 3,820 10,170 5.427 3907,80
36.140 3,830 10,156 5.433 3912.25
41,012 3,840 10,143 5.439 3916.80
45,942 3,850 10,130 5.445 3921.46
50,923 3,860 10,118 5.451 3926.24
55.949 3,870 10.106 5,457 3931,14
61,011 3,880 10,095 5,463 3936,15
66,102 3,890 10.084 5,470 3941.29
71.213 3,900 10.074 5,477 3946,56
76,336 3,910 10,064 5.484 3951.96
81.463 3,920 10,055 5.491 3957.49
86.583 3,930 10,046 5.498 3963.18
91.688 3,940 10,038 5.506 3969.01
96,767 3.950 10,031 5.513 3975.01
101.808 3.960 10,024 5,521 3981.20
106,800 3,970 10,018 5,529 3987.58
111,725 3,980 10.013 5,538 3994.19
116,562 3,990 10,009 5,547 4001.08
121,256 4,000 10,007 5.556 4008,36
===> FLOW IS UNDER PRESSURE
226,870 4,233 10,010 5,789 4190,84
NODE 4.00 : HGL = < 46,453>;EGL= < 48,009>;FLOWLINE= < 42,220>
Page 2
ECR3UALT
******************************************************************************
FLOW PROCESS FROM NODE 4.00 TO NODE 4,10 IS CODE = 5
UPSTREAM NODE 4,10 ELEVATION = 42,55 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC)
UPSTREAM 123,69 48,00 0.00 42.55 3.34 9.843
DOWNSTREAM 125.79 48.00 - 42.22 3,37 10,010
LATERAL #1 2.10 18.00 90.00 42,55 0,55 1,188
LATERAL #2 0.00 0,00 0,00 0,00 0,00 0,000
Q5 0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*C0S(DELTAl)-Q3*V3*C0S(DELTA3)-
Q4*V4*COS (DELTA4) )/ ( (Al-fA2) *16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00741
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,00767
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00754
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,082)+( 0.000) = 0,082
NODE 4,10 : HGL = < 46.586>;EGL= < 48.090>;FLOWLINE= < 42,550>
******************************************************************************
FLOW PROCESS FROM NODE 4,10 TO NODE 5.00 IS CODE = 1
UPSTREAM NODE 5,00 ELEVATION = 43.39 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 123,69 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 169,80 FEET MANNING'S N = 0,01300
SF=(Q/K)**2 = (( 123,69)/( 1436,438))**2 = 0,00741
HF=L*SF = ( 169.80)*(0,00741) = 1.259
NODE 5,00 : HGL = < 47,845>;EGL= < 49,349>;FLOWLINE= < 43,390>
******************************************************************************
FLOW PROCESS FROM NODE 5.00 TO NODE 5.10 IS CODE = 5
UPSTREAM NODE 5.10 ELEVATION = 43.72 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC)
UPSTREAM 121,88 48,00 25.50 43,72 3.32 9.699
DOWNSTREAM 123,69 48,00 - 43.39 3,34 9,843
LATERAL #1 1.81 18,00 90,00 45,20 0.51 1,024
LATERAL #2 0.00 0,00 0,00 0,00 0.00 0,000
Q5 0,00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2 *V2-Q1*V1*C0S(DELTAl)-Q3 *V3 *COS(DELTA3)-
Q4*V4*COS (DELTA4) )/( (Al-fA2) * 16,1)-hFRICTION LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00720
DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00741
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00731
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0,029 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY-l-HVl-HV2) +(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,358)+( 0,000) = 0,358
Page 3
ECR3UALT
NODE 5,10 : HGL = < 48,246>;EGL= < 49,707>;FLOWLINE= < 43.720>
******************************************************************************
FLOW PROCESS FROM NODE 5,10 TO NODE 6.00 IS CODE = 1
UPSTREAM NODE 6.00 ELEVATION = 45.35 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 121.88 CFS PIPE DIAMETER = 48.00 INCHES
PIPE LENGTH = 233,64 FEET MANNING'S N = 0,01300
SF=(Q/K)**2 = (( 121.88)/( 1436.438))**2 = 0.00720
HF=L*SF = ( 233,64)*(0,00720) = 1.682
NODE 6.00 : HGL = < 49,928>;EGL= < 51,389>;FLOWLINE= < 45,350>
******************************************************************************
FLOW PROCESS FROM NODE 6,00 TO NODE 6,10 IS CODE = 5
UPSTREAM NODE 6,10 ELEVATION = 45.36 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 118.55 48.00 0,00 45,36 3.28 9,434
DOWNSTREAM 121,88 48,00 - 45,35 3.32 9,699
LATERAL #1 3,33 18,00 90,00 46,61 0.70 1.884
LATERAL #2 0,00 0,00 0,00 0,00 0,00 0,000
Q5 0,00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16, D-fFRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00681
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00720
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00700
JUNCTION LENGTH = 1.50 FEET
FRICTION LOSSES = 0,011 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY-fHVl-HV2) + (ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,089)+( 0,000) = 0,089
NODE 6.10 : HGL = < 50,096>;EGL= < 51,478>;FLOWLINE= < 45.360>
******************************************************************************
FLOW PROCESS FROM NODE 6,10 TO NODE 7,00 IS CODE = 1
UPSTREAM NODE 7,00 ELEVATION = 46,61 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 118,55 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 179.70 FEET MANNING'S N = 0,01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL DEPTH(FT) = 3,24 CRITICAL DEPTH(FT) = 3,28
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1,87
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 1.869 20,580 8.449 5012,85
16.256 1,924 19.825 8.030 4859.47
32,554 1.979 19,122 7,660 4718.96
48,897 2.033 18,468 7,333 4590,20
65,292 2.088 17.857 7.043 4472.21
Page 4
ECR3UALT
81,745 2.143 17,286 6,786 4364,10
98.265 2.198 16,752 6,558 4265.12
114,861 2,253 16,251 6,356 4174.55
131.543 2.308 15,780 6,177 4091.80
148.323 2,363 15,338 6,018 4016,30
165.215 2,418 14,922 5.878 3947,56
179,700 2,464 14,587 5,771 3894,04
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.74
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0,000 4,736 9,434 6,118 4312,82
179,700 4.710 9,434 6.092 4292.42
END OF HYDRAULIC JUMP ANALYSIS
I PRESSURE-fMOMENTUM BALANCE OCCURS AT 87.73 FEET UPSTREAM OF NODE 6,10
I DOWNSTREAM DEPTH = 4,723 FEET, UPSTREAM CONJUGATE DEPTH = 2,177 FEET
NODE 7.00 : HGL = < 48.479>;EGL= < 55,059>;FLOWLINE= < 46,610>
******************************************************************************
FLOW PROCESS FROM NODE 7,00 TO NODE 7.10 IS CODE = 5
UPSTREAM NODE 7.10 ELEVATION = 47.16 (FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 115,64 48,00 0.00 47,16 3,24 20,688
DOWNSTREAM 118,55 48,00 - 46,61 3,28 20.586
LATERAL #1 1,51 18,00 90.00 46,94 0,46 0.854
LATERAL #2 1,40 18,00 90.00 46,94 0,44 0,792
Q5 0,00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS (DELTA4) )/( (A1-I-A2) *16.1)-fFRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03549
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,03441
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,03495
JUNCTION LENGTH = 4,00 FEET
FRICTION LOSSES = 0,140 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,573)+( 0,000) = 0,573
NODE 7,10 : HGL = < 48,986>;EGL= < 55,632>;FLOWLINE= < 47,160>
******************************************************************************
FLOW PROCESS FROM NODE 7,10 TO NODE 8.00 IS CODE = 1
UPSTREAM NODE 8.00 ELEVATION = 61.36 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 115.64 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 381,00 FEET MANNING'S N = 0,01300
NORMAL DEPTH(FT) = 1.80 CRITICAL DEPTH(FT) = 3,24
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2,44
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
Page 5
ECR3UALT
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) M0MENTUM(POUND
0,000 2,437 14,419 5.668 3760,23
2,408 2,412 14,600 5.724 3788,17
5,011 2,386 14.787 5,783 3817,42
7,828 2.361 14,978 5.846 3848,01
10,880 2.335 15,175 5.913 3880,00
14.192 2,310 15,378 5.984 3913,42
17.792 2,284 15,586 6,059 3948,33
21,713 2,259 15,801 6,138 3984,77
25,994 2,234 16,022 6,222 4022,80
30.680 2.208 16.250 6,311 4062,48
35,827 2.183 16.484 6,405 4103,86
41,501 2,157 16,726 6,504 4147,01
47,782 2,132 16,975 6,609 4191.99
54,771 2,106 17,232 6,720 4238,87
62,595 2,081 17,498 6,838 4287,73
71,418 2,056 17,771 6,962 4338,63
81,453 2,030 18,053 7.094 4391,66
92,994 2,005 18,345 7.234 4446,92
106,448 1,979 18,646 7.381 4504,47
122,415 1,954 18,957 7,537 4564.44
141,824 1,928 19,278 7,703 4626,91
166,230 1.903 19.611 7,878 4691,99
198,553 1.877 19.955 8,064 4759,80
245,350 1.852 20,310 8,262 4830.45
327,663 1.827 20.679 8,471 4904,09
381,000 1,826 20,682 8,472 4904,65
NODE 8,00 : HGL = < 63, 797>;EGL= < 67,028>;FLOWLINE= < 61,360>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 8.10
8,00 TO NODE
ELEVATION =
8,10 IS CODE = 5
61,69 (FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
105.45
115,64
8.25
1,94
DIAMETER ANGLE
(INCHES)
48,00
48,00
24,00
18,00
(DEGREES)
0,00
90.00
90.00
FLOWLINE CRITICAL VELOCITY
ELEVATION
61,69
61,36
63,36
63.86
DEPTH(FT.)
3.11
3,24
1,02
0,52
(FT/SEC)
16,161
14,424
5,103
3,521
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)-hFRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01950
DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,01370
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,01660
JUNCTION LENGTH = 4,00 FEET
FRICTION LOSSES = 0,066 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY+HV1-HV2)4-(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.778)-f( 0.000) = 0,778
NODE 8,10 : HGL = < 63,750>;EGL= < 67,806>;FLOWLINE= < 61.690>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 9,00
8,10 TO NODE
ELEVATION =
9.00 IS CODE = 1
65,65 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
Page 6
PIPE FLOW
PIPE LENGTH =
105,45 CFS
196,00 FEET
ECR3UALT
PIPE DIAMETER = 48,00 INCHES
MANNING'S N = 0.01300
NORMAL DEPTH(FT) 2,04 CRITICAL DEPTH(FT) = 3.11
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2,15
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0,000 2,154 15,283 5,783 3520.07
4,469 2,149 15,324 5,798 3526.43
9,155 2,145 15,365 5,813 3532.84
14,078 2,140 15,406 5.828 3539.30
19.258 2,135 15,447 5.843 3545,82
24.722 2,131 15.489 5,858 3552,38
30,499 2,126 15,531 5.874 3559,00
36,622 2,122 15,573 5.890 3565,68
43,131 2,117 15,616 5,906 3572,40
50,073 2,112 15,658 5.922 3579,18
57,505 2,108 15,701 5.938 3586.02
65,493 2,103 15.744 5.955 3592.91
74,121 2,099 15.788 5,971 3599,85
83,491 2,094 15,831 5,988 3606,85
93.733 2,089 15,875 6,005 3613,90
105,012 2,085 15,919 6,022 3621,01
117,549 2,080 15,963 6,040 3628,18
131,640 2,076 16,008 6,057 3635,40
147,701 2,071 16,053 6.075 3642.68
166,342 2,066 16,098 6.093 3650,02
188.508 2,062 16.143 6.111 3657.42
196,000 2,060 16,156 6,116 3659.46
NODE 9,00 : HGL = < 67,804>;EGL= < 71,433>;FL0WLINE= < 65,650>
******************************************************************************
9,00 TO NODE 9,10 IS CODE = 5
ELEVATION = 65,98 (FLOW IS SUPERCRITICAL)
FLOW PROCESS FROM NODE
UPSTREAM NODE 9,10
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW DIAMETER ANGLE
(CFS) (INCHES) (DEGREES
103,95 48,00 O.OC
105,45 48,00
1,50 18,00
0,00 0,00
FLOWLINE CRITICAL VELOCITY
(DEGREES) ELEVATION
0,00
90,00
0.00
65,98
65,65
65.98
0.00
DEPTH(FT,)
3.09
3.11
0,46
0,00
(FT/SEC)
15,048
15,288
0,849
0,000
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS (DELTA4) )/( (Al-fA2) *16,1)+FRICTI0N LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,01630
DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0.01683
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01657
JUNCTION LENGTH = 4,00 FEET
FRICTION LOSSES = 0,066 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY-fHVl-HV2) + (ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,220)+( 0,000) = 0,220
NODE 9,10 : HGL = < 68,136>;EGL= < 71,653>;FLOWLINE= < 65,980>
******************************************************************************
Page 7
FLOW PROCESS FROM NODE
UPSTREAM NODE 10.00
ECR3UALT
9,10 TO NODE 10,00 IS CODE = 1
ELEVATION = 68,82 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 103,95 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 147,97 FEET MANNING'S N = 0,01300
NORMAL DEPTH(FT) = 2,05 CRITICAL DEPTH(FT) =
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2,61
3,09
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I-
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS)
0,000 2.606 11.989 4,839 3031.42
2,210 2,583 12,107 4.861 3043.30
4,624 2,561 12,227 4.884 3055,84
7.261 2,539 12,351 4.909 3069,09
10.144 2,517 12,478 4.936 3083.04
13.297 2,495 12,607 4.965 3097,71
16,749 2,473 12,740 4.995 3113,14
20,533 2,451 12,876 5.027 3129,32
24,689 2,429 13,015 5.061 3146,29
29.263 2,406 13,158 5,096 3164,07
34.311 2.384 13.304 5,134 3182,67
39.899 2.362 13,454 5,175 3202,12
46,110 2,340 13,607 5,217 3222,44
53,045 2,318 13,764 5.262 3243,66
60,833 2,296 13,926 5,309 3265.80
69,638 2,274 14,091 5,359 3288.89
79,679 2,252 14,261 5,411 3312.95
91,250 2.230 14.435 5,467 3338,02
104,764 2.207 14.613 5,525 3364.12
120.827 2,185 14,796 5,587 3391,29
140.377 2,163 14,985 5.652 3419,56
147.970 2.156 15,044 5.673 3428,51
NODE 10,00 : HGL = < 71,426>;EGL= < 73,659>;FL0WLINE= < 68.820>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 10,10
10,00 TO NODE
ELEVATION =
10.10 IS CODE = 5
69,15 (FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW DIAMETER ANGLE
(CFS) (INCHES)
99,75 48,00
103.95 48,00
4,20 18,00
0.00 0,00
FLOWLINE CRITICAL VELOCITY
(DEGREES) ELEVATION
0,00
90.00 0,00
69,15
68,82
71,65
0,00
DEPTH(FT,)
3,03
3.09
0,79
0,00
(FT/SEC)
12.048
11,992
4,486
0,000
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*C0S (DELTA4) )/( (A1+A2) * 16,1)-(-FRICTION LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00940
DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00910
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00925
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0,037 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY-L-HVL-HV2) +(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0,250)-(-( 0,000) = 0,250
Page 8
ECR3UALT
NODE 10.10 : HGL = < 71,654>;EGL= < 73.908>;FLOWLINE= < 69.150>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 11.00
10,10 TO NODE
ELEVATION =
11,00 IS CODE = 1
70,69 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 99.75 CFS PIPE DIAMETER = 48.00 INCHES
PIPE LENGTH = 153.49 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 2,45 CRITICAL DEPTH(FT) = 3.03
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,03
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND
0.000 3.026 9,777 4,511 2754,01
0,085 3.003 9,854 4.512 2754,24
0.350 2.980 9,932 4,513 2754,94
0.810 2,957 10.013 4,515 2756.11
1.484 2,934 10,095 4,517 2757.77
2.393 2,911 10,179 4,521 2759,92
3.560 2,888 10,265 4,525 2762,57
5,014 2,865 10,354 4,530 2765,74
6.787 2,842 10.444 4,537 2769,43
8,919 2.819 10.537 4,544 2773,65
11,455 2.796 10.631 4,552 2778,42
14.454 2.773 10.728 4,561 2783,74
17.982 2.750 10,827 4,571 2789.63
22.127 2.727 10.929 4,582 2796,11
26.996 2.704 11,033 4,595 2803,17
32,728 2.680 11.140 4,609 2810,85
39,506 2,657 11,249 4,624 2819,14
47,580 2,634 11,361 4,640 2828.07
57,296 2,611 11,475 4,657 2837,65
69,166 2,588 11.592 4,676 2847,89
83.981 2,565 11,712 4,697 2858,82
103,066 2,542 11,835 4.719 2870,44
128,907 2,519 11.962 4.742 2882,78
153,490 2,504 12,044 4,758 2891,11
NODE 11,00 : HGL = < 73, 716>;EGL= < 75,201>;FLOWLINE= < 70,690>
******************************************************************************
FLOW PROCESS FROM NODE 11.00 TO NODE 11,10 IS CODE = 5
UPSTREAM NODE 11,10 ELEVATION = 71,02 (FLOW UNSEALS IN REACH)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
98,92
99,75
0,83
0,00
DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(INCHES)
48,00
48,00
18,00
0.00
(DEGREES)
90.00
0,00
0,00
ELEVATION
71,02
70,69
71,02
0,00
DEPTH(FT,)
3,01
3.03
0.34
0.00
(FT/SEC)
7.872
9,780
0,470
0,000
0,00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4) )/( (A1-(-A2) * 16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00474
Page 9
ECR3UALT
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,00569
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00521
JUNCTION LENGTH = 5.00 FEET
FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0,000 FEET
JUNCTION LOSSES = (DY-HHVl-HV2)-f(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 2,164)-I-( 0,000) = 2,164
NODE 11,10 : HGL = < 76,403>;EGL= < 77,365>;FLOWLINE= < 71,020>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 11,20
11,10 TO NODE
ELEVATION =
11.20 IS CODE = 1
73.08 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 98,92 CFS PIPE DIAMETER = 48,00 INCHES
PIPE LENGTH = 41,08 FEET MANNING'S N = 0,01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL DEPTH(FT) = 1,52 CRITICAL DEPTH(FT) = 3,01
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,01
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-i-
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN
0,000 3.014 9.736 4,487 2722,61
0,056 2,954 9.939 4,489 2724,17
0.233 2,894 10,155 4,497 2728,94
0,543 2,835 10,385 4,510 2737,09
1,003 2,775 10,629 4,530 2748,80
1,630 2,715 10,888 4,557 2764,26
2,446 2,656 11,163 4,592 2783,69
3,476 2.596 11.456 4,635 2807,34
4.750 2,536 11,768 4,688 2835,45
6.305 2,477 12,101 4,752 2868.34
8.184 2,417 12,455 4.827 2906,32
10.440 2,358 12,833 4,916 2949,75
13,139 2,298 13.238 5,021 2999,04
16,365 2,238 13.670 5,142 3054,65
20,222 2.179 14,134 5.283 3117,07
24,847 2,119 14,632 5.445 3186,89
30.421 2,059 15,167 5.633 3264.74
37,191 2.000 15.743 5,850 3351,37
41,080 1,972 16.027 5.963 3395,14
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5,38
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY
CONTROL(FT) HEAD(FT) (FT/SEC)
0,000 5.383 7,872
30,452 4,000 7.872
SPECIFIC
ENERGY(FT)
6.345
4,962
PRESSURE-f
MOMENTUM(POUNDS)
4161,46
3077,28
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4.00
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
Page 10
ECR3UALT
L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN
30,452 4,000 7,869 4,962 3077,28
31.249 3,961 7.882 4,926 3048,87
31.982 3,921 7,906 4,892 3022,61
32,675 3,882 7,937 4,861 2997.82
33.335 3,842 7,974 4.830 2974.28
33.965 3,803 8,016 4.801 2951.89
34.569 3,763 8.063 4,773 2930.56
35,146 3,724 8.114 4,747 2910.26
35,699 3,684 8,169 4.721 2890,98
36.227 3.645 8,229 4.697 2872,68
36,731 3.605 8.292 4.674 2855,38
37,210 3.566 8.360 4.652 2839.06
37,664 3.527 8.431 4.631 2823.74
38.092 3.487 8.506 4.611 2809.42
38.494 3,448 8,585 4.593 2796.12
38.870 3.408 8.669 4.576 2783.84
39.217 3.369 8.756 4.560 2772,61
39,535 3,329 8.847 4,545 2762,45
39,822 3,290 8,942 4,532 2753.38
40,078 3,250 9,042 4,521 2745.41
40,300 3,211 9,146 4,511 2738.59
40,487 3.172 9,255 4.502 2732.93
40,636 3.132 9,368 4.496 2728,47
40,746 3,093 9,486 4,491 2725,24
40,814 3,053 9,608 4,488 2723,28
40,837 3,014 9,736 4,487 2722,61
41,080 3,014 9,736 4,487 2722,61
END OF HYDRAULIC JUMP ANALYSIS
I PRESSURE+MOMENTUM BALANCE OCCURS AT 39.57 FEET UPSTREAM OF NODE 11,10
I DOWNSTREAM DEPTH = 3,324 FEET, UPSTREAM CONJUGATE DEPTH = 2,727 FEET
NODE 11,20 : HGL = < 76,094>;EGL= < 77,567>;FLOWLINE= < 73.080>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 11,20 FLOWLINE ELEVATION = 73.08
ASSUMED UPSTREAM CONTROL HGL = 76,09 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 11
APPENDIX 5
100 Year Existing Hydrologic Calculations for Kelly Drive Double 8'x4' RCB
Basin E-F, Rancho Costera
(See Exhibit 'N' Sheets 1 & 2)
san Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7 4
Rational method hydrology program based on
San Diego County Flood Control Division 2003 h. ^ i
Rational_Hydrology study Sate iS/^/n"^ "^""""^
Rancho Costera -Existing Double 8'x4' RPR ^ .
Preliminary Existing Condition studj °' ^^'^^ ^^^^^ ^ ^CR
g \m307\H'f Drainage'^Study
g.\101307\Hydrology\ElCaminoRCB.out
********* tj, J -I
Hydrology Study Control Informati on *********<
Program License Serial Number 5 007
Map data precipitation entered-
6 hour, precipitation(inches) = 2 600
P6/P2T=~5T'°"^'"^^^^^ =
San Diego hydrology manual 'C values used
**** INITIAL AREA EVALUATION **** °° ^° Point/Station 502.000
-.....^^.^^.i ^^jj.x group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = i.ooo
[MEDIUM DENSITY RESIDENTIAL
(4.3 DU/A or Less ) ^
Impervious value, Ai = 0.300
Sub-Area C Value = 0.520
Initial subarea total flow distance = ion nnn^,.^ ^
Highest elevation = 324.000(Ftr 100-000(Ft.)
Lowest elevation = 320.000(Ft )
Elevation difference = 4 000 (Ft \ Qi^r,^ . .
INITIAL AREA TIME OF CONCENTr^ON-^Af SSTION .-^^^ '
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 4 nn st • I
4.3 DU/A or Less 4.00 %, m a development type of
In Accordance with Figure 3-3
initial Area Time of Concentration = 6.58 minutes
Rainfall intensity (i - ? ..n 4.000-^(1/3)]= 6.58
Effective runoff coefficient uLd f ^ ^^^^ storm
Subarea runoff = S 298^CFsf ^ = 0.520
Total initial stream area = 0.100(Ac.)
Pro^lirfrom'poln^/stltlo^
STREET FLOW TRAVEL TIME 4 SUBfREA'FL'ow'^^Dl'il'orJ***
End nf
Height of curb above gutter flnwn„.
width of half street lcurhf„f ° 6-0(In.)
Distance fro™ cro^ to crossLn"""^ \ "-"""I"-)
Slope fro„ gutter to ^ra^r^^: J/h^V"'^ ^,„"
Gutter width = l.?oO(Ft f '"'^'^ = °-°20
Gutter hike from flowline = 2. 000(In )
Manning's N in gutter = 0.0150
Manning's N from gutter to aT-;,H« K ,
Manning's N from grade b^eafto cr"' ^
Estimated mean flow rate 3^^^^ =
Depth of flow = 0 338!Ft ) f°' "'""^^ = 10-266(CFS)
Streetflow hydraulics ft ^idpoJnt'f T'^^''^ = 4. 620 (Ft sf
Halfstreet flow width = 10 S^s^Ft '""^^^=
Flow velocity = 4.62(Ft/s)
Travel time = 5.05 min. TC - n a. •
Adding area flow to street
SSm^^ f^^ction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
TM^n""^^ fraction soil group D = 1 000
[MEDIUM DENSITY RESIDENTIAL
(4.3 DU/A or Less ) ^
Impervious value, Ai = o 300
Sub-Area C Value = 0.520
Rainfall intensity = r, qTv,n„,„ , ^
^S^rir?°."„^?I„"^T" "-v"-otal\rer°-°
SLTruh'sjr: ^ .„'„'.^=?^r'
street flow at end of-atrieri Jl^s'.c'psr
now Width (fro. curb^^Srk ~ -J-i,'^^; ^
Process"ror^oI«/sJItlor*"**5i;rm
IRREGULAR CHMNEt, FLOW TRAVEL TIME ."L!""'''"""'' 506.000
Estimated mean flow
Depth of flow = 0
******* 5^U(Ft.), Average velocitv -
Irregular Channel Data ***********
266.423(CFS)
4.989(Ft/s)
Informat
Point number
1
2
3
4
Manning's 'N'
ion entered for subchannel";;,;;;^;
•X coordinate
0. 00
60. 00
140.00
200.00
r 1
'Y' coordinate
30.00
0.00
0.00
f-r^r.^-- ^ 30.00 friction factor = 0.035
Sub-Channel flow =
flow top
velocity;
area =
Froude number =
212.226(CFS)
width = 82.082(Ft )
5.032(Ft/s)
42.178(Sq.Ft)
1.237
X coordinate .y. coordinate 1
2
3
4
Manning's 'N'
0.00
90.00
110.00
200.00
friction factor =
30.00
0.00
0.00
30.00
0.035
sub-Channel flow = "~~"54:i"9"8";c;s;
flow top width = 23.123(Ft )
velocity= 4.830(Ft/s)
^rea = 11.222(Sq.Ft)
i'roude number = 1.222
260.000(Ft.)
57.720(Ft.)
Upstream point elevation =
Downstream point elevation =
Flow length = 5900.000(Ft )
Travel time = 19.71 min
Time of concentration = 31 74
Depth of flow = 0.520(Ft f
Average velocity = 4.989;Ft/s)
Sr\iuLT?h^^—
Average velorit-,, r.^= ^ invert elev.
Addlh^g :^L°%\^1o1h™lr' ^
Depth Of flow. 0.76„Rt.,,'Averagr::Lu'J; 6.1x1;^™^^-'
0.520(Ft.)
4444444444444 44444444444
Process from Point/Stati
44444444444 44444444444 4444444444 '^uxui./SCatlOn 506 nnn r, • ^, -^ + 44444444444
IMPROVED CHANNEL TRAVEL TIME **** P°^"t/Station 5O8.OOO
4444
i
Covered channel
Upstream point elevation = 57 720(Ft l
Downstream point elevation = 57 080^Ft )
Channel length thru subarea = 108 0(^O^FJ S
Channel base width = 8. 000 Ft^^'''' •
Slope or 'Z' of left channel bank = o oon
Slope or 'Z' of right channel b^k = o 000
Manning's 'N' = o 013 0-000
Maximum depth of channel = 5 000(Ft 1
Flow(q) thru subarea = 512 738?CFif
Depth of flow = 4 437(Ft 1
Channel flow top width i " ' 8 000 (^f, = 14.446(Ft/s)
Flow velocity = 14.45 (Ft/s) ^ ^ ^'
Travel time = o.l2 min
Critical depth = 5.063(Ft.)
Prc^IIs^'^orPoII^/S^I^I^^
**** CONFLUENCE OF MAIN STREAMS **** P°^nt/Station 5O8.OOO S^SF^S^ ^
Stream flow area = 509.400(Ac )
Runoff from this stream = 512 738(PPC:.
R^L'fall = 31. 46 .1^'
Proar^ -'"''""''^ = 2.092 (In/Hr)
Program is now starting with Main Stream No 2
ProceirjrorPoInt/StIJi;r'''^'"5S9^;;:\^''r.^^^
**** INITIAL AREA EVALUATION **** °° '° Pomt/Station 509.000
°^''^"'^1 f^a^ion soil grou^^r^Tooo
uTc^:', f"^''°"^ = 0-00
Decimal fraction soil group C = 0 000
Decimal fraction soil Jroup D = 1 ooO
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space ) '
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
I'ini^^l ^V^^^^^ total flow distance = 20 000 fFt 1
Highest elevation = 190.000(Ft ) ^U-000(Ft.)
Lowest elevation = 180.000(Ft )
Elevation difference = 10 000(Ph \ ci
for ?he'Z ^^^"^^"^ - 100.00 (Ft) tor the top area slope value of 30 00 % in 1^ n
Permanent Open Space ' " ^ development type of
In Accordance With Figure 3-3
ic'l'fl 8* a rcr*d' = 4.34 minutes TC - }-l-^\f^stance(Ft.)-.5)/(% slope-(l/3)]
R" nfiii\^ieLitj^ ;ri "°-T;oo^;iV?-r-^i/3)]= 4.34
^•500(In/Hr) for a 100.0 year storm
•
Effective runoff coefficient used for area (Q=KCIA) is C - 0 35n
Subarea runoff = 0.263(CFS) ~
Total initial stream area = 0.100(Ac.)
44444444444444444+44444444444444444
Process from Point/StationSOg'SSrtTp^tlt'^Stlt 1"""''::"'""^" **** IMPROVED CHANNEL TRAVEL TIME **** P°^^t/Station 508.000
Upstream point elevation = 180.000(Ft ) ' ~
Downstream point elevation = 57.000(Ft )
Channel length thru subarea = 750 000(Ft )
Channel base width = i 000(Ft )
Slope or 'Z' of left channel bank = "2 000
Slope or 'Z' of right channel bank = 2 000
Estimated mean flow rate at midpoint of channel = 23 387(CFSl Manning's 'N' = 0.035 ''J-Jo/(CFS)
Maximum depth of channel = 2.000(Ft )
Flow(q) thru subarea = 23 387 (CFS)
?hanLffi"°''/ 0.838(Ft.), Average velocity = 10.428(Ft/s) Channel flow top width = 4.352 (Ft ) "•^^o\i:'c/s)
Flow Velocity = 10.43 (Ft/s)
Travel time = 1.20 min.
Time of concentration = 5.54 min
Critical depth = 1.313(Ft.)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0 000
Decimal fraction soil group c = 0.000
Decimal fraction soil group D = 1 000
[UNDISTURBED NATURAL TERRAIN 1
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity = 6 4n9(Tn/HT> , -1 ^
(Q=KCIA) is C = 0.350 CA = 7 245
subarea runoff = 46.173(CFS) for 20.600(Ac.)
Total runoff = 45 436(rFqi -r^t-^n
sSc:fSth== --vEl-^^^"^ --i-^r-'
;:::::r;::;-;-;;-:;r;;----;*;;;^;;^;;^;;;..^ 44
**** CONFLUENCE OF MAIN STREAMS **** Po^nt/Station 508.000
The following data inside Main Stream is listed-
In Main Stream number: 2
Stream flow area = 20.700(Ac.)
Runoff from this stream = 46.436(CFS)
Time of concentration = 5.54 min.
Rainfall intensity = 6.409(In/Hr)
Summary of stream data:
Stream Flow rate TP n • T -. Mn ,^.of ^. , Rainfall Intensity No. (CFS) (min) (In/Hr)
#
•
2 'll'lll 2.092 2 46.436 5.54 g 409 Qmax(l) = ''•^"^
1-000 * 1.000 * 512.738) 4
0.326 * 1.000 * 46.436) 4 = 507 RQI Qmax(2) = , b2/.891
1-000 * 0.176 * 512.738) 4
1.000 * 1.000 * 46.436) 4 = 136.779
Total of 2 main streams to confluence-
Flow rates before confluence point-
512.738 46.436
Maximum flow rates at confluence using above data:
527.891 136.779
Area of streams before confluence-
509.400 20.700
Results of confluence:
Total flow rate = 527.891(CFS)
Time of concentration = 31.461 min
Effective stream area after confluence = 530.100(Ac.)
R;::::r;;:r;:i;;;;::;r"; ;;r;;r;r;;i:;;s::;-
**** TRRprTTT AD ,^TT,>»-™-,T,^ -juo.uuu CO Point/station sin nnn IRREGULAR CHANNEL FLOW TRAVEL TIME **** 3XU.UU0
Irregular Channel Data *********** '
Information entered for subchannel numberT"
Point number .x' coordinate 'Y' coordinate
I 0-00 2.00
, 4.00 0.00
3 104.00 0.00
„ . 4 108.00 2.00
Manning's 'N' friction factor = 0.035
Sub-Channel flow = 527.891(CFS)
j ' flow top width = 104.588(Ft.)
velocity= 4.499(Ft/s)
area = 117.337(Sq.Ft)
Froude number = 0.749
Upstream point elevation = 57.080 (Ft )
Downstream point elevation = 50.000(Ft )
Flow length = 730.000(Ft.)
Travel time = 2.70 min.
Time of concentration = 34.17 min.
Depth of flow = 1.147(Ft.)
Average velocity = 4.499 (Ft/s)
Total irregular channel flow = 527 891(CFS)
irregular channel normal depth above invert elev. = l 147(pt ,
Average velocity of channel(s) = 4 499(Ft/s) ^-i^/l^t.)
#
#
;:::::r;;r;;i;;;;;:;r----;;;----^.:...444
*-* CONFLUENCE OF MAIN SSREAMS **** P-^t/Station 510.000
The followi"^data i";;^ide Main St^^^^^TiTli^^. ^ ^
In Main Stream number: 1 listed.
Stream flow area = 53 0.100(Ac )
Runoff from this stream = 527 891(CFS)
Time of concentration = 34 17 min
Rainfall intensity = 1.983(In/Hr)
Program is now starting with Main Stream No. 2
p:::::rf;:r;:i;;;;;:;r:; iiriiirr-
**** USER DEFINED FLOW INFORMATION A^A POIN?'*^*'f
Decimal fraction soil group A = 0 000 ^ •
Decimal fraction soil group B = 0 000
Decimal fraction soil group c = 0.000
Decimal fraction soil group D = 1 oOO
[MEDIUM DENSITY RESIDENTIAL
(4.3 DU/A or Less ) '
Impervious value, Ai = 0.300
Sub-Area C Value = 0.52 0
Rainfall intensity (i) = o asRrTr^/u , ^
user specified vaLes are as foilo!i"^ " ^^^^ ^^orm
TC - 24.49 min. Rain intensity = 2 idi jr.,u ^
Total area , ns.OVO.Ac, ^otal ruhof r^-'L'! .„0 ,CES,
CONFLUENCE OF MINOR STREAMS "- ° fornt/Station 514.000
FireL"??!^''"™ ' ^" "r;;;;ri;ij;7T:
btream flow area = 115.070(Ac )
??mf '^'^ ^^^^^ = 137.250 (CFS) Time of concentration = 24.49 min
Rainfall intensity = 2.458(In/Hr)
USER OEFINEO FLOw'^FORMATION'A?"A pSlN^'^-'f
Decimal fraction soil group A = 0 000 " '
Decimal fraction soil group B = 0 000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1 oOO
[MEDIUM DENSITY RESIDENTIAL
(4.3 DU/A or Less ) ^
Impervious value, Ai = 0.300
Sub-Area C Value = 0.520
Rainfall intensity (I) = -? 77o/T„/rr > r
y 3.378(In/Hr) for a 100.0 year storm
#
User specified values are as follows-
TC - 14.96 min. Rain intensity = 3 38(in/Hrl
56.590(Ac.) Total runoff'I'^'^gS.630(CFS)
44444+44444444444444+444+44444
Process from Point/Station
CONFLUENCE OF MINOR STREAMS *-*°° '° P^^^t/Station 514.000
Stream flow area = 56.590 (Ac ) ^""tJx ^
Runoff from this stream = 98.'630(CFS)
Time of concentration = 14.96 min
Rainfall intensity = 3.378(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min) Rainfall Intensity
(In/Hr)
#
1
2
137.250
98.630
Qmax(1) =
Qmax(2) =
1.000
0.728
1.000
1.000
24.49
14.96
1.000 *
1.000 *
0.611 *
1.000 *
2.458
3.378
137.250) +
98.630) +
137.250) +
98.630) 4
209.020
182.471
Total of 2 streams to confluence-
Flow rates before confluence point-
137.250 98.630
Maxl™ fIo„^,.,,3 at^confluence using above data.
Area of streams before confluence-
115.070 56.590
Results of confluence:
Total flow rate = 209.020(CFS)
Time of concentration = 24.490 min
Effective stream area after confluence = 171.660(Ac.)
+ + + -H-H- + + + + + + + + + ^^^^^_^_^^_^^^_^_^^_^^^^
It/Station 51
IRREGULAR CHANNEL FLOW TRAVEL TIME Process fro„ Point/Station =i::o"r;r;;i„*;;s;:;i:; m::::'
Depth of fl ******! ' 1-721(Ft.), Average velocity =
Irregular Channel Data *********** 7.716(Ft/s)
Information entered for subchannel number 1
Point number -x- coordinate
1
2
3
4
Manning's 'N'
0.00
10.00
20.00
30.00
friction factor =
'Y' coordinate
3.00
0.00
0.00
3.00
0.035
#
Sub-Channel flow = 209.020(CFS)
flow top width = 21.475(Ft )
velocity= 7.716(Ft/s)
area = 27.088(Sq.Ft)
Froude number = 1.211
Upstream point elevation = 70.000(Ft )
Downstream point elevation = 50.000(Ft )
Flow length = 800.000(Ft )
Travel time = 1.73 min.
Time of concentration = 2 6.22 min
Depth of flow = 1.721(Ft )
Average velocity = 7.716 (Ft/s)
Total irregular channel flow = 209 020(PFc:i
Irregular channel normal depth above invlrtii
Average velocity of channels) I.IIGTFI/I] ^ 1-721 (Ft.)
**** CONFLUENCE OF MAIN STREAMS **** P°int/Station 510.000
The following data inside Main "^^^^^^jTmil^ "
In Mam Stream number: 2 -listed.
Stream flow area = 171.660(Ac )
Runoff from this stream = 209.020(CFS)
Time of concentration = 26.22 min
Rainfall intensity = 2.353(In/Hr)
Program is now starting with Main Stream No. 3
**** INITIAL AREA EVALUATION **** '° Pomt/Station 511.000
Decimal fraction soil group A = 0.000 •
Decimal fraction soil group B = 0 000
Decimal fraction soil group C = 0 000
Decimal fraction soil group D = l oOO
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.3 50
Initial subarea total flow distance = 70 000(Ft l
Highest elevation = 196.600(Ft.) /u.uuo(Ft.)
Lowest elevation = 190 000(Ft )
Elevation difference = 6.600(Ft.) Slope = 9 429 %
ST?L """^ ^1°P^ adjusted by User to 9 400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS
The maximum overland flow distance is 100.00 (Ft)
tor the top area slope value of 9 40 % in = ^ i
Permanent Open Space ' ^ development type of
In Accordance With Figure 3-3
?c-^fl 8*n Tpf*^' concentration = 6.40 minutes
TC - [1.8*(l.l-c)*distance(Ft.)^.5)/(% slooe^d/^n
TC = [1.8*(l.l-0.3500)*( 100.000^.5 ( 9 Io(^' n 3,1 ,
Rainfall intensity (i) = 5 f,AAiTr,/u ^ t (1/3)]= 6.40
^ ^ ' 5.844(In/Hr) for a 100.0 year storm
^^If
f
Effective runoff coefficient i]c5(=H fnv- ,
subarea runoff = 0 20?(CFsf (Q=KCIA) is C = 0.350
Total initial stream area = 0.100(Ac.)
p::;::r;::r;:t:;;;;:;i;:-^^^^;ir;;rr^r-
-** IMPROVED CHANNEL TRAVEL TIME -** ^^^^^/Station 510.000
Upstream point elevation = igoToooTFTl
Downstream point elevation = 50 000(FI )
Ch^Zti'""'"-'^"^^^^^^^^^ = 450°S^p ,
Channel base width = 1.000(Ft )
Slope or 'Z' of left channel bank = 2 000
Slope or 'Z' of right channel bank = 2 000
SnS • s "ro:?3^^ - ~ - - . 987 (CFS)
Maximum depth of channel = 2 000(Ft \
Flow(q) thru subarea = 10.987(CFS)
Depth of flow = 0 504 (Fh i a-„^v-
Channel flow top width f '3 015,^^'°'''^^ = 10.867(Ft/s)
Flow Velocity = 10.87{Ft/s)
Travel time = 0.69 min.
Time of concentration = 7.09 min
Critical depth = 0.914(Ft )
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0 000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = l oOO
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350'
Rainfall intensity = 5 47o^Tn/H^^ ^
^^'-Tl'^t^^^T -"v»^>".Varer°-°
Subarea runoff = ?i /ifio,nce\ ^
Total runoff = 21 673(CFSr \ . 11-220 (Ac.)
Depth of flow = 0 697(Ft T Averaaf ? """" = 11-320 (Ac.)
Critical depth = 1 266 ^tT ^^l°^^ty = 12.974 (Ft/s)
4444 + + + + -n- + + + + + + + ^.^.^^^^^^_l__^^_^
lint/Station
CONFLUENCE OF MAIN STREAMS Process fro„ Point.station''' ""n::;o";r;:i;:;;;;;i:; iiroii'
MQ **** 31U.UUU
In Mam Stream number: 3 nscea.
Stream flow area = n 320(Ac )
Runoff from this stream = 21."673 (CFS)
Time of concentration = 7.09 min
Rainfall intensity = 5.470(In/Hr)
Summary of stream data:
Stream Flow rate TC U • J= -,
,eFS, ,J„, """fall^lntensity
10
#
1 , . . 1 / 1
2 209.020 26.22
3 21.673 7.09 54" Qmax(l) = 5.470
527.891) +
209.020) 4
Qmax(2) = 21.673) 4 = 711.955
527.891) 4
209.020) 4
u.fiju " 1.000 * 91 <;T3\ Qmax(3) = 21.673) 4 = 623.437
527.891) 4
209.020) 4
21.673) 4 = 187.673
Total of 3 main streams to confluence-
Flow rates before confluence point-
527.891 209.020 21 673
Maximum flow rates at confluence"using above data:
/11.955 623.437 187.673
Area of streams before confluence-
530.100 171.660 11.320
Results of confluence:
Total flow rate = 711.955(CFS)
Time of concentration = 34.165 min.
Effective stream area after confluence
527 .891 34 .17
209 . 020 26 .22
21 .673 7 .09
1 .000 * 1 .000 *
0 843 * 1 .000 *
0 363 * 1 000 *
1 000 * 0 767 *
1. 000 * 1. 000 *
0. 430 * 1. 000 *
1. 000 * 0. 207 *
1. 000 * 0. 270 *
1. 000 * 1. 000 *
713.080(Ac.)
**** IRREGULAR CHANNEL FLSW TRAVE^ TIME ^°.!°-^/^tation 520.000
-.-^^.^ V. , , /average velocity = 5 819(Fh/ai
Irregular Channel Data *********** ^•«iy(Ft/s)
Information entered for subchannel numb^rT-
Pomt nuxr^er • x' coordinate • y • coo;dinate
0 0-00 2.00
, 4.00 0.00
1 104.00 0.00
4 108.00 o nn
Manning's 'N' friction factor = 0.035
Sub-Channel flow = 711.956(CFS)
flow top width = 104.780(Ft )
velocity= 5.819(Ft/s)
area = 122.354(Sq.Ft)
Froude number = 0.949
Upstream point elevation = 50. 000(Ft )
Downstream point elevation = 42 000(Ft )
Flow length = 520.000(Ft.)
#
Travel time = 1.49 min.
Time of concentration = 35 65 min
Depth of flow = 1.195(Ft )
Average velocity = 5.819(Ft/s)
Total irregular channel flow = 711 955(CFqi
5-819(Ft/s) ' l-195(Ft.)
**** CONFLUENCE OF MAIN STREAMS **** P°int/Station 520.000
Stream flow area = 713.080(Ac )
Runoff from this stream = 711 955(CFS)
Sfa°f 1 ^°"^-^-tion = 35.65 min
ProSram i """"'^ = 1-929 (In/Hr)
Program is now starting with Main Stream No. 2
USER DEFINED FLOW INFORMATION AJ A POIN^**^f
H^^sSSJ^^
User specified values are as follows ^""^ ^ ^^^^ ^^orm
Jotll aref^-"''^- ^ij%20^rf'^ = ' 3.16(ln/Hr)
11.520(Ac.) Total runoff = 20.200(CFS)
Process frorPoIntJstItior^^^^^52rj^r+rr •
**** CONFLUENCE OF MAIN STREAMS **** P°int/Station 520.000
following data inside Main Stream i « T^T~1 ——
In Main Stream number: 2 listed:
Stream flow area = 11.520(Ac )
?ime nf'"°" "'""^ = 20:200(CFS) Time of concentration = 16.56 min.
Ramfall intensity = 3.164 (In/Hr)
Program is now starting with Main Stream No. 3
Procesrf^orPoinUsJIuor^^^^*52r(^Jr!'"h^^r^^^^^^^
**** INITIAL AREA EVALu™ **** '° Pomt/Station 526.000
Decimal fraction soil group A = 0 000
Decimal fraction soil group B = 0 000
Decimal fraction soil group C = 0 000
Decimal fraction soil group D = l oOO
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
#
Sub-Area C Value = 0 350
ssisJ - "o.ooo.Ft.,
Lowest elevation = 225.000 (Ft )
Elevation difference = n 000(Ft ) QI
INITIAL AREA TIME OF CONCENTRATION'CAL'CSL'TIONS'
The maximum overland flow distance is 100 oo (Ft)
for the top area slope value of 11 00 % in i
Permanent Open Space ' " ^ development type of
In Accordance With Figure 3-3
S^''t^.t*a I-cr*dLt°"^^r^^''°" = --tes
= ll.S*n:lo]3Too^^^^^^^ slope^(l/3)]
Rainfall intensity (i = g 04^ i ^ 11-000-^(1/3)]= 6.07
Effective runoff Coefficient used fo " storm
Subarea runoff = J 2r2^CFsf ^""^^ (Q=KCIA) is c = 0.350
Total initial stream area = 0.100(Ac.)
ProcesI'frorPo^n;/!;!;.;;^""""";";^;;^^;^
**** IMPROVED CHANNEL TRAVEL TIME ***S P°int/Station 528.000
Upstream7oi^^r"iI^^;^^I^i7T J^TooOrFT]
Downstream point elevation = 50 OOO^F! ,
Channel length thru subarea = 97^ 2(^O^F! i
Channel base width = 3 OOn P; ? '
Einlh """-^^^ channel bank = i ooo
^^r„^oi1 " - = l.«3,CFS,
Depth of flow = 0 068 (Ft /-^^^'^^S)
Channel flow top width i ^ ^ 3 S(?r/''°"''^ = 6.807 (Pt/s)
Flow velocity = 6.81(Ft/s)
Travel time = 2.38 min.
Time of concentration = 8 45 min
critical depth = 0.188(Ft )
Adding area flow to channel
iTa^] ^"^-^^ .roup A =0.000
. yxoup a = 0.000
Decimal fraction soil group C = 0 000
Decimal fraction soil grouj D = 1 oSo
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space ) ^
Impervious value, Ai = 0.000
Sub-Area C Value = 0.350
Rainfall intensity = 4 fiRR/Tr,/^ 1 ^
?r-t'Li 5^pth\ "-"^v^-^^-"^' 3.3oei^t^?ir-'
#
Process fromlllll^Zlll^''^'"^^*^^^^^^
**** SUBAREA FLOW ADDITION **** ^""-"^^ "o Pomt/Station 528.000
User specified 'C value of n o^n ^ 7 —^—
Time Of concentration = 8 45 min"^
Rainfall intensity = 4 885(Tn)»\ .
^'-TV^^'^^^ "ef ^o-r'tJSl^ref ^
iotal area = 5.190(Ac.)
Process TrZ^lllnl%llllll''^^^*^l^^^^^
**** PIPEFLOW TRAVEL TIME (User specified°sizer****''°"
—i^^^FTTT^—•—
Downstream point/station elevation - ni. '
Pipe length = no 00(Ft r M • 46.000 (Ft.)
No. of pipes - 1 RL, - ' ^^ Manning's N = 0.013
Given p?pe size = ^^3^00 (iT) = ' '^^^^
Calculated individual pipe flow - 0/1
Normal flow depth in p^e = To 6"2(ln f' ^^^'^
Flow top width inside pipe = 32 UnS
Critical Depth = 18.98(In )
TrJ^e^h'' velocity = 13.83 (Ft/s)
liZ nf P^P^ = 0-13 min. Time of concentration (TC) = 8.58 min.
Process from^Point/stltior^^^^^siri;^!^'"^^:^^^^
-** IRREGULAR CHANNEL FLOW TRAVEL TI^ to^Pomt/Station 520.000
Depth of flow ^ 1 730,p,. , — ____
____j-y_**_.r^^^^^^^
PoSr^^Zr^"^^^^^^"^
1 n nn coordinate
0 "-"0 4.00
, 8.00 0.00
16.00 A nn
Manning's 'N' friction factor = 0.035
Sub-Channel flow = 24y086 (CFS;^
flow top width = 6.955(Ft )
velocity= 3.983(Ft/s)
area = 6.047(Sq.Ft)
Froude number = 0.753
Upstream point elevation = 46. 000 (Ft )
Downstream point elevation = 42.000(Ft )
Flow length = 325.000(Ft )
Travel time = 1.36 min.
Time of concentration = 9 94 min
Depth of flow = 1.739(Ft.)'
"4
Average velocity = 3.983(Ft/s)
Total irregular channel flow = 24 086(PFQ.
l-739(Ft.)
Proceir^rom"poIntJs^ItIor"""'^^'rjjrh^ — CONFLUENCE OF MAIN STREAMS **** Po-^/c+ = ..„„ to Point/Station 520.000
stream flow area = 5.190(Ac )
Runoff from this stream = '24.' 86 (CFS)
Ra?;faH'°"r"'"''°" - ' Ramfall intensity = 4 -^qan^,^ ,
Summary of stream data: '-'"''l"/"^'
Stream
No.
1
2
3
Qmax(l)
Qmax(2)
Qmax(3) =
Flow rate
(CFS)
TC
(min) Rainfall Intensity
(In/Hr)
711 .955 35 .65
20 .200 16 .56
24 .086 9 .94
1 . 000 * 1 .000 *
0 . 610 * 1 .000 *
0 439 * 1 000 *
1. 000 * 0 464 *
1. 000 * 1. 000 *
0. 719 * 1. 000 *
1. 000 * 0. 279 *
1. 000 * 0. 600 *
1. 000 * 1. 000 *
1.929
3.164
4.398
711.955)
20.200)
24.086)
711.955)
20.200)
24.086)
711.955)
20.200)
24.086)
4
4
4
+
+
+
+
+
+ :
734.839
368.198
Total of 3 main streams to confluence-
Flow rates before confluence point:
. 711.955 20.200 24.086
Maximum flow ratec? 3+ r.r^^^=^
734.839^^^^^ 3l8^198"^^"^^3:^6L^'°^^ =
Area of streams before confluence
713.080 11.520 -5.190
234.645
Results of confluence:
Total flow rate = 734.839(CFS)
Time of concentration = 35.655 min.
Effective stream area after confluence -729.790(Ac.)
— IMPROVED CHANNEL TRAVEL TIME -** P°^"t/Station 532.000
IS'
Covered channel
Upstream point elevation = 42 000(Ft i
Downstream point elevation = 40 O o^pi ,
Channel length thru subarea = 108 OOO^FJ )
Channel base width = 16.000 (FtT
Slope or 'Z' of left channel bank = 'o 000
Slope or 'Z' of right channel bank = o OOQ
Manning's 'N' = 0.013 u.uuu
Maximum depth of channel = 4 000(Ft >
Flow(q) thru subarea = 734 839(CFsr'
Depth of flow = 2 102(Ft la
Channel flow top width i ''is ToTiT^'''''''^ = 21-849(Ft/s)
Flow Velocity = 21.85(Ft/s)'
Travel time = 0.08 min
Time of concentration = 35.74 min.
Critical depth = 4.031(Ft )
End Of computations, total study area = 729.790 (Ac.)
APPENDIX 6
100 Year Proposed Hydrologic & Hydraulic Calculations for
Kelly Drive Double 8'x4' RCB
Basin E-F, Rancho Costera
(See Exhibit'N' Sheet 3)
rcbasinef
san Diego county Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7,9
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
•)na1 Hydrology Study Date: 10/11/14
Hydrology Study Control information ********** *********
Program License serial Number 6324
Rational hydrology study storm event year is
English (in-lb) input data units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2,600
24 hour precipitation(inches) = 4,300
P6/P24 =60.5%
San Diego hydrology manual 'C values used
100,0
Process from point/Station 5000,000 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT ****
5000,000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL
(4,3 DU/A or Less )
impervious value, Ai = 0.300
Sub-Area C value = 0,520
Rainfall intensity (I) =
User specified values are as follows:
TC = 31,46 min. Rain intensity = 2.09(in/Hr)
Total area = 509.400(Ac.) Total runoff = 512.740(CFS)
]
2,092(in/Hr) for a 100,0 year storm
process from Point/Station 5000,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
5000.000
The following data inside Main stream is listed:
In Main stream number: 1
Stream flow area = 509,400(Ac,)
Runoff from this stream = 512,740(CFS)
Time of concentration = 31,46 min.
Rainfall intensity = 2.092(in/Hr)
Program is now starting with Main Stream No. 2
process from Point/Station 5001,000 to Point/Station
**** INITIAL AREA EVALUATION ****
5002,000
Decimal fraction soil group A = 0,000
D3no 1 Page 1
rcbasinef
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0,350
initial subarea total flow distance = 100.000(Ft,)
Highest elevation = 170.000(Ft,)
Lowest elevation = 120,000(Ft,)
Elevation difference = 50,000(Ft,) Slope = 50,000 %
Top of Initial Area Slope adjusted by User to 30.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open Space
in Accordance with Figure 3-3
initial Area Time of concentration = 4,34 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)]
TC = [l,8*(l.l-0.3500)*( 100.000A.5)/( 30,OOOA(l/3)]= 4,34
Calculated TC of 4,345 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
subarea runoff = 0.240(CFS)
Total initial stream area = 0,100(Ac,)
Process from Point/Station 5002,000 to Point/Station 5003.000
**** IMPROVED CHANNEL TRAVEL TIME ****
3,259(CFS)
3,158(Ft/s)
upstream point elevation = 120,000(Ft,)
Downstream point elevation = 63.000(Ft,)
Channel length thru subarea = 470.000(Ft,) Channel base width = 10.000(Ft.)
Slope or 'Z' of left channel bank = 2,000
Slope or 'Z' of right channel bank = 2,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0,035
Maximum depth of channel = 2.000(Ft,)
Flow(q) thru subarea = 3,259(CFS)
Depth of flow = 0,101(Ft,), Average velocity =
Channel flow top width = 10,405(Ft,)
Flow velocity = 3.16(Ft/s)
Travel time = 2.48 min.
Time of concentration = 6,83 min.
Critical depth = 0,146(Ft,)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0.350
Rainfall intensity = 5,605(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 1.109
Subarea runoff = 5.979(CFS) for 3,070(Ac,)
Total runoff = 6.218(CFS) Total area = 3,170(Ac,)
Page 2
5,605(ln/Hr) for a
0,000
0.000
0.000
1.000
]
100.0 year storm
Depth of flow =
critical depth =
rcbasinef
0,149(Ft,), Average velocity =
0.227(Ft,)
4.057(Ft/s)
Process from Point/Station 5003,000 to Point/Station 5004,000
**** PIPEFLOW TRAVEL TIME (user Specified size) ****
upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 28,00(Ft.) Slope =
No. of pipes = 1 Required pipe flow
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 6.218(CFS)
Normal flow depth in pipe = 11,51(in,)
Flow top width inside pipe = 17,29(in,)
critical Depth = 11,57(in,)
Pipe flow velocity = 5,21(Ft/s)
Travel time through pipe = 0,09 min.
Time of concentration (TC) = 6,91 min.
63,000(Ft,)
62.820(Ft,)
0.0064 Manning's N = 0.013
6.218(CFS)
process from Point/station 5003,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5004,000
Along Main stream number: 2 in normal stream number 1 Stream flow area = 3,170(Ac,)
Runoff from this stream = 6,218(CFS)
Time of concentration = 6.91 min.
Rainfall intensity = 5.558(ln/Hr)
Process from point/Station 5005.000 to Point/Station
**** INITIAL AREA EVALUATION ****
5006,000
]
100,000(Ft.)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL
(7.3 DU/A or Less )
impervious value, Ai = 0,400
sub-Area C value = 0,570 Initial subarea total flow distance =
Highest elevation = 147,100(Ft,)
Lowest elevation = 145,000(Ft.)
Elevation difference = 2.100(Ft.) Slope = 2,100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80,00 (Ft)
for the top area slope value of 2,10 %, in a development type of
7,3 DU/A or Less
in Accordance with Figure 3-3
Initial Area Time of Concentration = 6,66 minutes
TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)]
TC = [1.8*(l.l-0,5700)*( 80,OOOA,5)/( 2.100A(l/3)]= 6,66
The initial area total distance of 100,00 (Ft,) entered leaves a
remaining distance of 20,00 (Ft,)
using Figure 3-4, the travel time for this distance is 0,35 minutes
for a distance of 20.00 (Ft.) and a slope of 2,10 %
with an elevation difference of 0.42(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))]A.385 *60(min/hr)
Page 3
rcbasinef
0.347 Minutes
Tt=[(ll,9*0,0038A3)/( 0.42)]A.385= 0,35
Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus
0,35 minutes from the Figure 3-4 formula = 7,01 minutes
Rainfall intensity (I) = 5,509(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,570
Subarea runoff = 0.314(CFS)
Total initial stream area = 0.100(Ac,)
Process from Point/Station 5006,000 to Point/Station 5004,000
**** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 145,000(Ft.)
End of street segment elevation = 70,730(Ft,)
Length of street segment = 1010.000(Ft.)
Height of curb above gutter flowline = 6,0(ln,)
Width of half street (curb to crown) = 14,000(Ft,)
Distance from crown to crossfall grade break = 12,500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 8.000(Ft.)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft,)
Gutter hike from flowline = 2,000(in,)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 1,578(CFS)
Depth of flow = 0,237(Ft.), Average velocity = 4.446(Ft/s)
Streetflow hydraulics at midpoint or street travel:
Halfstreet flow width = 5,024(Ft,)
Flow velocity = 4,45(Ft/s)
Travel time = 3,79 min, TC = 10.80 min.
Adding area flow to street
Rainfall intensity (i) = 4,170(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group a = 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL ]
(7,3 DU/A or Less )
Impervious value, Ai = 0,400
sub-Area C value = 0,570
Rainfall intensity = 4.170(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,570 CA = 0,667
Subarea runoff = 2,467(CFS) for l,070(Ac,)
Total runoff = 2,781(CFS) Total area = l,170(Ac,)
Street flow at end of street = 2.781(CFS)
Half street flow at end of street = 2.781(CFS)
Depth of flow = 0,272(Ft,), Average velocity = 4.966(Ft/s)
Flow width (from curb towards crown)= 6,764(Ft,)
Process from Point/Station 5006,000 to Point/Station 5004.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 1,170(Ac)
Page 4
rcbasinef
Runoff from this stream = 2,781(CFS)
Time of concentration = 10,80 min.
Rainfall intensity = 4,170(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO, (CFS) (min) (In/Hr)
1 6,218 6,91 5,558
2 2,781 10,80 4,170 Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 6.218) -I-
1,000 * 0.640 * 2,781) + = 7,999
0,750 * 1,000 * 6,218) +
1,000 * 1,000 * 2,781) + = 7,446
Total of 2 streams to confluence:
Flow rates before confluence point:
6,218 2.781
Maximum flow rates at confluence using above data:
7,999 7,446
Area of streams before confluence:
3,170 1.170
Results of confluence:
Total flow rate = 7,999(CFS)
Time of concentration = 6.915 min.
Effective stream area after confluence = 4,340(Ac,)
Process from Point/Station 5004,000 to Point/Station 5007,000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 62,490(Ft,)
Downstream point/station elevation = 62,300(Ft,)
Pipe length = 28,35(Ft,) Slope = 0,0067 Manning's N = 0,013
No, of pipes = 1 Required pipe flow = 7,999(CFS)
Nearest computed pipe diameter = 18,00(in.)
Calculated individual pipe flow = 7.999(CFS)
Normal flow depth in pipe = 13,73(in,)
Flow top width inside pipe = 15.31(ln.)
Critical Depth = 13,15(in.)
Pipe flow velocity = 5.53(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 7,00 min.
Process from Point/Station 5004.000 to Point/Station 5007,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 1
Stream flow area = 4.340(Ac.)
Runoff from this stream = 7.999(CFS)
Time of concentration = 7,00 min.
Rainfall intensity = 5,514(ln/Hr)
process from Point/Station 5009,000 to Point/Station 5011,000
**** INITIAL AREA EVALUATION ****
Page 5
rcbasinef
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL ]
(7.3 DU/A or Less )
Impervious value, Ai = 0.400
Sub-Area C value = 0,570
Initial subarea total flow distance = 100,000(Ft.) Highest elevation = 147.100(Ft.)
Lowest elevation = 145.000(Ft,)
Elevation difference = 2.100(Ft,) Slope = 2.100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 80.00 (Ft)
for the top area slope value of 2.10 %, in a development type of
7.3 DU/A or Less
In Accordance with Figure 3-3
Initial Area Time of concentration = 6,66 minutes
TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)]
TC = [l,8*(l,l-0,5700)*( 80,OOOA,5)/( 2.100A(l/3)]= 6.66
The initial area total distance of 100.00 (Ft,) entered leaves a
remaining distance of 20,00 (Ft,)
using Figure 3-4, the travel time for this distance is 0,35 minutes
for a distance of 20,00 (Ft,) and a slope of 2,10 %
with an elevation difference of 0,42(Ft,) from the end of the top area
Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))]A.385 *60(min/hr)
0,347 Minutes
Tt=[(11.9*0,0038A3)/( 0,42)]A.385= 0,35
Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus
0.35 minutes from the Figure 3-4 formula = 7,01 minutes
Rainfall intensity (I) = 5,509(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.570
Subarea runoff = 0,314(CFS) Total initial stream area = 0,100(AC,)
+-H-f-f-l--f-(--f-f-f-f-f-f-f+-f--f+-h+-f+-f+++-t--f-f+++-l--l--l--l--l--(--t-4-++++++++-t--|-+-H+++++-(-++-(--^
Process from Point/Station 5011,000 to Point/Station 5007,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of Street segment elevation = 145,000(Ft,)
End of street segment elevation = 70,730(Ft,)
Length of street segment = 1010,000(Ft,)
Height of curb above gutter flowline = 6.0(ln,)
Width of half street (curb to crown) = 14,000(Ft,)
Distance from crown to crossfall grade break = 12,500(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) = 0,020
Street flow is on [1] side(s) of the street
Distance from curb to property line = l,500(Ft,)
Slope from curb to property line (v/hz) = 0,020
Gutter width = l,500(Ft.)
Gutter hike from flowline = 2,000(ln.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1,328(CFS)
Depth of flow = 0,227(Ft,), Average velocity = 4,322(Ft/s)
Streetflow hydraulics at midpoint or street travel:
Halfstreet flow width = 4,525(Ft,)
Flow velocity = 4,32(Ft/s)
Travel time = 3,90 min, TC = 10.91 min.
Page 6
rcbasinef
Adding area flow to street
Rainfall intensity (I) = 4.143(in/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL ]
(7,3 DU/A or Less )
Impervious value, Ai = 0.400
Sub-Area C value = 0,570
Rainfall intensity = 4.143(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,570 CA = 0,541
Subarea runoff = 1,929(CFS) for 0.850(Ac,)
Total runoff = 2,243(CFS) Total area = 0,950(Ac,)
Street flow at end of street = 2,243(CFS)
Half street flow at end of street = 2,243(CFS)
Depth of flow = 0,258(Ft,), Average velocity = 4.751(Ft/s)
Flow width (from curb towards crown)= 6.080(Ft,)
+-f+-^-^+-^-^+++++++-l-^++++++++++++•^++++++++++++++++++-^++•l-+++++++-^-^+++++++-l-^
Process from Point/Station 5011,000 to Point/Station 5007,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 2
Stream flow area = 0,950(Ac,)
Runoff from this stream = 2,243(CFS)
Time of concentration = 10.91 min.
Rainfall intensity = 4,143(in/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall intensity
NO. (CFS) (min) (in/Hr)
1 7.999 7.00 5.514
2 2,243 10,91 4,143 Qmax(l) =
Qmax(2) =
1,000 * 1.000 * 7,999) +
1.000 * 0.642 * 2,243) + = 9,439
0,751 * 1,000 * 7.999) -i-
1,000 * 1,000 * 2.243) -i- = 8,253
Total of 2 streams to confluence:
Flow rates before confluence point:
7.999 2,243
Maximum flow rates at confluence using above data:
9.439 8.253
Area of streams before confluence:
4.340 0,950
Results of confluence:
Total flow rate = 9,439(CFS)
Time of concentration = 7,000 min.
Effective stream area after confluence = 5,290(Ac,)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++^
Process from Point/Station 5007,000 to Point/Station 5008,000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 61,970(Ft.)
page 7
rcbasinef
Downstream point/station elevation =
Pipe length = 25,52(Ft,) Slope =
NO, of pipes = 1 Required pipe flow
Nearest computed pipe diameter =
Calculated individual pipe flow =
Normal flow depth in pipe = 13,31(ln.)
Flow top width inside pipe = 20,23(In,)
Critical Depth = 13,72(In,)
Pipe flow velocity = 5,87(Ft/s)
Travel time through pipe = 0,07 min.
Time of concentration (TC) = 7.07 min
61,800(Ft,)
0.0067 Manning's N = 0,013
9,439(CFS)
21.00(ln,)
9,439(CFS)
Process from Point/Station 5008.000 to Point/Station 5000.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 61,800(Ft,) Downstream point elevation = 57,000(Ft,)
Channel length thru subarea = 300,000(Ft,)
Channel base width = 10.000(Ft,)
Slope or 'Z' of left channel bank = 2,000
Slope or 'z' of right channel bank = 2.000
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft,)
Flow(q) thru subarea = 9,439(CFS)
Depth of flow = 0,349(Ft.), Average velocity = 2.528(Ft/s)
Channel flow top width = ll,396(Ft,)
Flow velocity = 2.53(Ft/s)
Travel time = 1.98 min.
Time of concentration = 9,05 min.
Critical depth = 0,297(Ft.)
++-^-l--l-+++-l-+•f-^4•-^•+-(-•^•f-^--l--^•-l-^-•l--l-•^4•+4-•(-++++++•l--f-^-^-^-f•f-^-^•^-^+-^-^-^^
Process from Point/Station 5008.000 to Point/Station 5000.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main Stream number: 2
Stream flow area = 5,290(AC,)
Runoff from this stream = 9,439(CFS)
Time of concentration = 9,05 min.
Rainfall intensity = 4,672(ln/Hr)
Summary of stream data:
Stream
NO.
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
512.740
9.439
31,46
9.05
1,000 *
0.448 *
1.000 *
1.000 *
1,000 *
1,000 *
0.288 *
1,000 *
2,092 4,672
512,740) -I-9.439) -I-
512,740) +
9.439) +
516.966
156.943
Total of 2 main streams to confluence:
Flow rates before confluence point:
512.740 9,439
Maximum flow rates at confluence using above data:
Page 8
rcbasinef
516.966 156.943
Area of streams before confluence:
509.400 5.290
Results of confluence:
Total flow rate = 516.966(CFS)
Time of concentration = 31,460 min.
Effective stream area after confluence = 514,690(Ac,)
Process from Point/Station 5000.000 to Point/Station 5010.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 526.192(CFS)
Depth of flow = 1,203(Ft,), Average velocity = 4,271(Ft/s)
******* irregular channel Data ***********
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 2,00
2 4.00 0,00
3 104,00 0,00
4 108,00 2,00
Manning's 'N' friction factor = 0,035
sub-Channel flow = 526.193(CFS)
flow top width = 104.812(Ft.)
velocity= 4,271(Ft/s)
area = 123,189(Sq.Ft)
' ' Froude number = 0.694
Upstream point elevation = 57,000(Ft,)
Downstream point elevation = 51,000(Ft.)
Flow length = 730.000(Ft,)
Travel time = 2,85 min.
Time of concentration = 34,31 min.
Depth of flow = 1,203(Ft,)
Average velocity = 4.271(Ft/s)
Total irregular channel flow = 526,192(CFS)
Irregular channel normal depth above invert elev, = 1.203(Ft.)
Average velocity of channel(s) = 4,271(Ft/s)
Adding area flow to channel
Rainfall intensity (I) = 1,978(In/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
Impervious value, Ai = 0.000
sub-Area C value = 0,350
Rainfall intensity = l,978(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.516 CA = 270,730
Subarea runoff = 18.523(CFS) for 10,070(Ac,)
Total runoff = 535,489(CFS) Total area = 524,760(Ac,)
Depth of flow = l,216(Ft,), Average velocity = 4,301(Ft/s)
Process from Point/Station 5000,000 to Point/station 5010.000
Page 9
rcbasinef
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 524,760(Ac,)
Runoff from this stream = 535.489(CFS)
Time of concentration = 34.31 min.
Rainfall intensity = l,978(ln/Hr)
Program is now starting with Main Stream No, 2
Process from Point/Station 5011,000 to Point/Station
**** INITIAL AREA EVALUATION ****
5012,000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent open space )
Impervious value, Ai = 0,000
Sub-Area C value = 0.350
initial subarea total flow distance = 95,000(Ft,)
Highest elevation = 169.500(Ft,) Lowest elevation = 140.000(Ft.)
Elevation difference = 29,500(Ft,) Slope = 31,053 %
Top of Initial Area Slope adjusted by user to 30,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open Space
in Accordance with Figure 3-3
Initial Area Time of concentration = 4.34 minutes
TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(i/3)]
TC = [1.8*(l.l-0.3500)*( 100,000A,5)/( 30,OOOA(l/3)]= 4,34
Calculated TC of 4,345 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (i) = 6,850(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.350
Subarea runoff = 0,240(CFS)
Total initial stream area = 0,100(Ac)
Process from Point/Station 5012,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
5013,000
upstream point elevation = 140,000(Ft,)
Downstream point elevation = 86,000(Ft,)
Channel length thru subarea = 265.000(Ft,)
Channel base width = 30,000(Ft.)
Slope or 'z' of left channel bank = 2,000
Slope or 'Z' of right channel bank = 2,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0.035
Maximum depth of channel = 2,000(Ft.)
Flow(q) thru subarea = 1.909(CFS)
Depth of flow = 0,033(Ft,), Average velocity =
Channel flow top width = 30,130(Ft,)
Flow velocity = 1,95(Ft/s)
Travel time = 2,26 min.
Time of concentration = 6.61 min.
Page 10
1.909(CFS)
1.951(Ft/S)
• 5.722(ln/Hr) for a
0.000
0.000
0,000
1,000
]
100,0 year storm
rcbasinef
critical depth = 0,050(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group c
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent open space )
Impervious value, Ai = 0.000
sub-Area c value = 0.350
Rainfall intensity = 5.722(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0,616
Subarea runoff = 3,285(CFS) for 1.660(Ac,)
Total runoff = 3,525(CFS) Total area = l,760(Ac,)
Depth of flow = 0.047(Ft,), Average velocity = 2,491(Ft/s)
Critical depth = 0,075(Ft,)
Process from Point/Station 5013,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
5014.000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 99,52(Ft.) Slope =
NO, of pipes = 1 Required pipe flow =
Given pipe size = 18,00(in,)
Calculated individual pipe flow = 3,525(CFS)
Normal flow depth in pipe = 3.49(in,)
Flow top width inside pipe = 14,23(In,)
Critical Depth = 8.59(in.)
Pipe flow velocity = 14.68(Ft/s)
Travel time through pipe = 0,11 min.
Time of concentration (TC) = 6,72 min.
81.000(Ft,)
64,330(Ft,)
0.1675 Manning's N = 0,013
3,525(CFS)
Process from Point/Station 5013,000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5014,000
Along Main stream number: 2 in normal stream number 1
Stream flow area = 1.760(Ac)
Runoff from this stream = 3,525(CFS)
Time of concentration = 6,72 min.
Rainfall intensity = 5,660(ln/Hr)
Process from Point/Station 5015,000 to Point/Station
**** INITIAL AREA EVALUATION ****
5016,000
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
Sub-Area C value = 0.350
Initial subarea total flow distance =
Highest elevation = 120.000(Ft.)
page 11
56,000(Ft.)
rcbasinef
Lowest elevation = 92,000(Ft,)
Elevation difference = 28,000(Ft,) Slope = 50.000 %
Top of Initial Area slope adjusted by user to 30,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 30,00 %, in a development type of
Permanent Open Space
In Accordance with Figure 3-3
Initial Area Time of concentration = 4,34 minutes
TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)]
TC = [1.8*(l,l-0,3500)*( 100,000A,5)/( 30.000A(l/3)]= 4,34
Calculated TC of 4,345 minutes is less than 5 minutes,
resetting TC to 5,0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,240(CFS)
Total initial stream area = 0,100(Ac,)
Process from Point/station 5016.000 to Point/Station 5017,000
**** IMPROVED CHANNEL TRAVEL TIME ****
upstream point elevation = 92.000(Ft.)
Downstream point elevation = 71,000(Ft.)
Channel length thru subarea = 220,000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'z' of left channel bank = 1,000
Slope or 'z' of right channel bank = 4,000
Estimated mean flow rate at midpoint of channel = 0.420(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 0,420(CFS)
Depth of flow = 0,029(Ft,), Average velocity = 2,854(Ft/s)
Channel flow top width = 5,145(Ft,)
Flow velocity = 2.85(Ft/s)
Travel time = 1,28 min.
Time of concentration = 5,63 min.
Critical depth = 0,060(Ft,)
Adding area flow to channel
Rainfall intensity (I) = 6,346(ln/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN ]
(Permanent open Space )
Impervious value, Ai = 0.000
Sub-Area C value = 0.350
Rainfall intensity = 6,346(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.350 CA = 0.087
subarea runoff = 0,316(CFS) for 0,150(Ac,)
Total runoff = 0,555(CFS) Total area = 0,250(Ac.)
Depth of flow = 0,034(Ft,), Average velocity = 3.186(Ft/s)
critical depth = 0.071(Ft,)
Process from Point/Station 5016,000 to Point/Station 5017,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Page 12
rcbasinef
Stream flow area = 0.250(Ac)
Runoff from this stream = 0,555(CFS)
Time of concentration = 5,63 min.
Rainfall intensity = 6,346(ln/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(in/Hr)
Qmax(l) =
Qmax(2) =
3.525
0.555
1.000 *
0.892 *
1,000 *
1,000 *
6,72
5,63
1,000 *
1,000 *
0,837 *
1,000 *
5.660
6,346
3,525) 4-
0,555) -I-
3,525) -I-
0,555) 4-
4.020
3,507
Total of 2 streams to confluence:
Flow rates before confluence point:
3,525 0.555
Maximum flow rates at confluence using above data:
4.020 3,507
Area of streams before confluence:
1,760 0,250
Results of confluence:
Total flow rate = 4,020(CFS)
Time of concentration = 6.722 min.
Effective stream area after confluence = 2,010(Ac,)
-^-l-4•-^-^•f4•+-f•f^--^-f•^-^-(-•^•f•^-(-^--t••^•^4-^-+4•+^-^-^--l•-^-f•f-f•^•-l--l-•^-•^-l--l-•^-^-l•-^
Process from Point/Station 5017.000 to Point/Station 5018,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 17.41(Ft.) Slope =
NO, of pipes = 1 Required pipe flow
Given pipe size = 18.00(in.)
Calculated individual pipe flow = 4,020(CFS)
Normal flow depth in pipe = 3.69(ln,)
Flow top width inside pipe = 14.54(in,)
critical Depth = 9,21(ln,)
Pipe flow velocity = 15,40(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (TC) = 6,74 min.
64,000(Ft.)
61.000(Ft,)
0,1723 Manning's N = 0,013
4,020(CFS)
+4-+++•^-++++++++-l-+++++++++++++++-^-+++-^++++++-l-^-l-^-(-++•^+++++-l•+++++++-^+++-^+++
Process from Point/Station 5018.000 to Point/Station 5010,000
**** IMPROVED CHANNEL TRAVEL TIME ****
upstream point elevation = 60,000(Ft,)
Downstream point elevation = 51,000(Ft,)
Channel length thru subarea = 460,000(Ft,)
Channel base width = 1.000(Ft,)
Slope or 'z' of left channel bank = 2,000
Slope or 'Z' of right channel bank = 2,000
Manning's 'N' = 0,035
Maximum depth of channel = 2,000(Ft,)
Flow(q) thru subarea = 4,020(CFS)
Page 13
rcbasinef
Depth of flow = 0.605(Ft,), Average velocity =
Channel flow top width = 3.419(Ft.)
Flow velocity = 3.01(Ft/s)
Travel time = 2,55 min.
Time of concentration = 9.29 min,
critical depth = 0.555(Ft,)
3,009(Ft/s)
process from Point/Station 5018,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
5010,000
The following data inside Main Stream is listed;
in Main Stream number: 2
Stream flow area = 2,010(Ac,)
Runoff from this stream = 4,020(CFS)
Time of concentration = 9,29 min.
Rainfall intensity = 4,594(in/Hr)
Program is now starting with Main Stream No, 3
Process from Point/Station 5020,000 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT ****
5022,000
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL
(4,3 DU/A or Less ) impervious value, Ai = 0,300
sub-Area C Value = 0,520
Rainfall intensity (i) = ,
user specified values are as follows:
TC = 24.49 min. Rain intensity = 2.46(in/Hr) Total area = 115,070(Ac,) Total runoff = 137,250(CFS)
3
2,458(ln/Hr) for a 100,0 year storm
Process from Point/Station 5020.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 3 in normal stream number 1
stream flow area = 115,070(Ac,)
Runoff from this stream = 137,250(CFS)
Time of concentration = 24,49 min.
Rainfall intensity = 2,458(ln/Hr)
5022.000
Process from Point/Station 5024,000 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[MEDIUM DENSITY RESIDENTIAL
(4,3 DU/A or Less )
Impervious value, Ai = 0,300
sub-Area C Value = 0,520
Rainfall intensity (I) =
0.000
0,000
0,000
1,000
3,378(ln/Hr) for a 100,0 year storm
Page 14
rcbasinef
user specified values are as follows:
TC = 14,96 min. Rain intensity = 3,38(ln/Hr)
Total area = 56,590(Ac,) Total runoff = 98,630(CFS)
Process from Point/station 5024.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5022,000
Along Main Stream number: 3 in normal stream number 2
Stream flow area = 56,590(Ac,)
Runoff from this stream = 98,630(CFS)
Time of concentration = 14,96 min.
Rainfall intensity = 3,378(ln/Hr)
Summary of stream data:
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
137,250
98.630
24,49
14,96
Qmax(l) =
Qmax(2) =
1,000 *
0,728 *
1,000 *
1.000 *
1,000 *
1.000 *
0,611 *
1,000 *
2,458
3.378
137.250) +
98.630) -1-
137,250) -1-
98,630) -1-
209,020
182,471
Total of 2 streams to confluence:
Flow rates before confluence point:
137,250 98,630
Maximum flow rates at confluence using above data:
209.020 182.471
Area of streams before confluence:
115.070 56,590
Results of confluence:
Total flow rate = 209,020(CFS)
Time of concentration = 24.490 min.
Effective stream area after confluence = 171,660(Ac,)
Process from Point/Station 5022.000 to Point/Station
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
5010,000
Estimated mean flow rate at midpoint of channel =
Depth of flow = 1,788(Ft,), Average velocity =
******* irregular channel Data ***********
210.107(CFS)
7,363(Ft/s)
information entered for subchannel number 1
Point number
1
2
3
4
coordinate
0,00
10,00
20,00
30,00
Manning's 'N' friction factor
'Y"
0,035
coordinate
3,00
0,00
0,00
3,00
sub-Channel flow = 210,107(CFS)
flow top width = 21,919(Ft,)
velocity= 7.363(Ft/s)
area = 28.534(Sq,Ft)
' ' Froude number = 1.137
Page 15
rcbasinef
2.339(ln/Hr) for a
0,000
0,000
0,000
1,000
3
l,788(Ft,)
100,0 year storm
Upstream point elevation = 70,000(Ft,)
Downstream point elevation = 51,000(Ft,)
Flow length = 870.000(Ft.)
Travel time = 1.97 min.
Time of concentration = 26,46 min.
Depth of flow = 1,788(Ft,)
Average velocity = 7,363(Ft/s)
Total irregular channel flow = 210,107(CFS)
Irregular channel normal depth above invert elev, =
Average velocity of channel(s) = 7,363(Ft/s) Adding area flow to channel
Rainfall intensity (I) =
Decimal fraction soil group A
Decimal fraction soil group B
Decimal fraction soil group C
Decimal fraction soil group D
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0,000
sub-Area C value = 0.350
Rainfall intensity = 2.339(in/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.517 CA = 90.264
subarea runoff = 2.086(CFS) for 2,860(Ac,)
Total runoff = 211,106(CFS) Total area = 174,520(Ac,)
Depth of flow = 1,792(Ft,), Average velocity = 7,373(Ft/s)
•
Process from Point/Station 5022,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
5010,000
The following data inside Main Stream is listed:
In Main stream number: 3
Stream flow area = 174,520(Ac,) Runoff from this stream = 211.106(CFS)
Time of concentration = 26,46 min.
Rainfall intensity = 2,339(in/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2
3
Qmax(l)
535,489
4.020
211.106
34.31
9,29
26,46
1.978
4,594
2,339
Qmax(2) =
Qmax(3) =
1,000 * 1.000 * 535,489) +
0.431 * 1.000 * 4,020) +
0,846 * 1,000 * 211,106) + =
1.000 * 0,271 * 535,489) -4-
1.000 * 1,000 * 4,020) +
1,000 * 0,351 * 211,106) + =
1,000 * 0,771 * 535.489) +
0,509 * 1,000 * 4,020) +
1,000 * 1.000 * 211,106) + =
715.756
223.105
626.130
Total of 3 main streams to confluence:
Flow rates before confluence point:
Page 16
•
rcbasinef
535,489 4,020 211,106
Maximum flow rates at confluence using above data:
715,756 223,105 626,130
Area of streams before confluence:
524,760 2,010 174,520
Results of confluence:
Total flow rate = 715,756(CFS)
Time of concentration = 34.308 min.
Effective stream area after confluence = 701,290(Ac,)
Process from Point/station 5010.000 to Point/Station 5010.000
**** SUBAREA FLOW ADDITION ****
Rainfall intensity (l) = 1.978(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space )
impervious value, Ai = 0.000
Sub-Area C value = 0,350
Time of concentration = 34,31 min.
Rainfall intensity = l,978(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,515 CA = 363,511
subarea runoff = 3,247(CFS) for 5,180(Ac,)
Total runoff = 719,003(CFS) Total area = 706,470(Ac,)
+++-l-++^-+-^++-^++-^+-^-^-^-^+++-l•+4•-l-•^+-^••f-^++^-•^•t•++•f++++•l-++-l--^+•^-++-^+-^++•(•++-^•+-l--^•^-++-^
Process from Point/Station 5010,000 to Point/Station 5034,000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Depth of flow = l,160(Ft,), Average velocity = 6.055(Ft/s) ******* irregular channel Data ***********
information entered for subchannel number 1 :
Point number 'x' coordinate 'Y' coordinate
1 0,00 2,00
2 4,00 0,00
3 104,00 0,00
4 108.00 2,00
Manning's 'N' friction factor = 0,035
sub-Channel flow = 719.004(CFS)
flow top width = 104,642(Ft,)
velocity= 6.055(Ft/s)
area = 118,737(Sq,Ft)
' ' Froude number = 1,002
Upstream point elevation = 51,000(Ft,)
Downstream point elevation = 42,000(Ft,)
Flow length = 520,000(Ft,)
Travel time = 1,43 min.
Time of concentration = 35,74 min.
Depth of flow = 1.160(Ft.)
Average velocity = 6.055(Ft/s)
Total irregular channel flow = 719,003(CFS)
Page 17
rcbasinef
irregular channel normal depth above invert elev,
Average velocity of channel(s) = 6.055(Ft/s)
l,160(Ft,)
Process from Point/Station 5010,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
5034,000
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 706.470(Ac) Runoff from this stream = 719.003(CFS) Time of concentration = 35,74 min.
Rainfall intensity = 1.926(ln/Hr) Program is now starting with Main stream No, 2
Process from Point/station 5036,000 to Point/Station
**** INITIAL AREA EVALUATION ****
5038.000
3
100.000(Ft.)
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[UNDISTURBED NATURAL TERRAIN
(Permanent open Space )
impervious value, Ai = 0,000
sub-Area C value = 0.350
initial subarea total flow distance =
Highest elevation = 236.000(Ft,)
Lowest elevation = 225.000(Ft,)
Elevation difference = ll,000(Ft,) slope = 11,000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100,00 (Ft)
for the top area slope value of 11,00 %, in a development type of
Permanent Open space
In Accordance With Figure 3-3 initial Area Time of concentration = 6.07 minutes
TC = [1.8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.3500)*( 100,000A.5)/( 11,000A(1/3)3= 6.07
Rainfall intensity (l) = 6,045(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350
Subarea runoff = 0,212(CFS)
Total initial stream area = 0,100(Ac.)
Process from Point/Station 5038,000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
5040,000
upstream point elevation = 225.000(Ft,)
Downstream point elevation = 50,000(Ft,)
Channel length thru subarea = 970,000(Ft,)
Channel base width = 3,000(Ft.)
Slope or 'Z' of left channel bank = 1,000
Slope or 'Z' of right channel bank = 1,000
Estimated mean flow rate at midpoint of channel =
Manning's 'N' = 0,015
Maximum depth of channel = l,000(Ft,)
Flow(q) thru subarea = 1,413(CFS)
Depth of flow = 0.068(Ft.), Average velocity =
Channel flow top width = 3,135(Ft,)
Page 18
1,413(CFS)
6,807(Ft/s)
rcbasinef
Flow velocity = 6.81(Ft/s)
Travel time = 2.38 min.
Time of concentration = 8.45 min.
Critical depth = 0.188(Ft,)
Adding area flow to channel
Rainfall intensity (I) = 4,885(ln/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[UNDISTURBED NATURAL TERRAIN 3
(Permanent Open Space ) Impervious value, Ai = 0,000
sub-Area C Value = 0.350
Rainfall intensity = 4.885(ln/Hr) for a 100,0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,350 CA = 0.518 Subarea runoff = 2,319(CFS) for l,380(Ac,) Total runoff = 2,531(CFS) Total area = 1.480(Ac,)
Depth of flow = 0,096(Ft,), Average velocity = 8,508(Ft/s)
critical depth = 0,273(Ft,)
process from Point/Station 5040,000 to Point/Station 5040,000
**** SUBAREA FLOW ADDITION ****
Rainfall intensity (I) = 4,885(in/Hr) for a 100,0 year storm
User specified 'C' value of 0,950 given for subarea
Time of concentration = 8,45 min.
Rainfall intensity = 4.885(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.763 CA = 3.615
Subarea runoff = 15.129(CFS) for 3.260(Ac.)
Total runoff = 17,660(CFS) Total area = 4,740(Ac,)
Process from Point/Station 5040,000 to Point/Station 5042,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 50,000(Ft,)
Downstream point/station elevation = 44,790(Ft,)
Pipe length = 148,00(Ft,) Slope = 0.0352 Manning's N = 0,013
No. of pipes = 1 Required pipe flow = 17.660(CFS)
Given pipe size = 36.00(ln.)
Calculated individual pipe flow = 17,660(CFS)
Normal flow depth in pipe = 9,14(ln,)
Flow top width inside pipe = 31,34(in,)
Critical Depth = 16,12(In,)
Pipe flow velocity = 12,52(Ft/s)
Travel time through pipe = 0,20 min.
Time of concentration (TC) = 8,64 min.
Process from Point/Station 5040,000 to Point/Station 5042,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 1
Stream flow area = 4,740(Ac)
Runoff from this stream = 17,660(CFS)
Time of concentration = 8.64 min.
Page 19
rcbasinef
Rainfall intensity = 4,813(ln/Hr)
Process from Point/Station 5044,000 to Point/Station 5046,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL 3
(7.3 DU/A or Less )
Impervious value, Ai = 0,400
sub-Area C value = 0,570
Initial subarea total flow distance = 100,000(Ft,)
Highest elevation = 71,000(Ft,)
Lowest elevation = 66,000(Ft,)
Elevation difference = 5,000(Ft.) Slope = 5.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 5,00 %, in a development type of
7.3 DU/A or Less
In Accordance with Figure 3-3
initial Area Time of Concentration = 5,58 minutes
TC = [1.8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3
TC = [l,8*(l,l-0,5700)*( 100,000A,5)/( 5,OOOA(l/3)3= 5,58
Rainfall intensity (I) = 6,383(ln/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0,570
Subarea runoff = 0.364(CFS)
Total initial stream area = 0,100(Ac,)
Process from Point/Station 5046,000 to Point/Station 5048,000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 66.000(Ft,)
Downstream point elevation = 56,000(Ft,)
Channel length thru subarea = 430.000(Ft.)
Channel base width = 1.000(Ft.)
Slope or 'Z' of left channel bank = 2.000
Slope or 'z' of right channel bank = 2,000
Estimated mean flow rate at midpoint of channel = 2,902(CFS)
Manning's 'N' = 0,035
Maximum depth of channel = 2,000(Ft,)
Flow(q) thru subarea = 2,902(CFS)
Depth of flow = 0,495(Ft,), Average velocity = 2,944(Ft/s)
Channel flow top width = 2,981(Ft,)
Flow velocity = 2,94(Ft/s)
Travel time = 2,43 min. Time of concentration = 8,01 min,
critical depth = 0.469(Ft,)
Adding area flow to channel
Rainfall intensity (I) = 5,053(in/Hr) for a 100,0 year storm
Decimal fraction soil group A = 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 0,000
Decimal fraction soil group D = 1,000
[MEDIUM DENSITY RESIDENTIAL 3
(7,3 DU/A or Less )
Impervious value, Ai = 0.400
sub-Area C value = 0.570
Page 20
rcbasinef
Rainfall intensity = 5.053(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0,570 CA = 1.066
subarea runoff = 5,023(CFS) for l,770(Ac,)
Total runoff = 5,386(CFS) Total area = l,870(Ac,)
Depth of flow = 0.667(Ft,), Average velocity = 3.461(Ft/s)
Critical depth = 0.648(Ft.)
Process from Point/Station 5048,000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
5042.000
Upstream point/station elevation =
Downstream point/station elevation =
Pipe length = 36.00(Ft.) Slope =
NO. of pipes = 1 Required pipe flow
Given pipe size = 18,00(ln,)
Calculated individual pipe flow = 5,386(CFS)
Normal flow depth in pipe = 4.27(in.)
Flow top width inside pipe = 15,32(in,) Critical Depth = 10,73(In.)
Pipe flow velocity = 16.79(Ft/s)
Travel time through pipe = 0,04 min.
Time of concentration (TC) = 8.05 min.
51,000(Ft.)
44.790(Ft,)
0,1725 Manning's N = 0,013
5,386(CFS)
Process from Point/Station 5048.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
5042,000
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 1,870(Ac)
Runoff from this stream = 5,386(CFS)
Time of concentration = 8,05 min.
Rainfall intensity = 5.039(in/Hr)
Summary of stream data:
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
Qmax(l) =
Qmax(2) =
17,660
5.386
1,000 *
0,955 *
1,000 *
1,000 *
8.64
8,05
1,000
1.000
0,931 *
1,000 *
4.813
5,039
17,660) +
5,386) -I-
17.660) H-
5.386) 4-
22,805
21,834
Total of 2 streams to confluence:
Flow rates before confluence point:
17.660 5,386
Maximum flow rates at confluence using above data:
22,805 21,834
Area of streams before confluence:
4,740 1,870
Results of confluence:
Total flow rate = 22,805(CFS)
Time of concentration = 8,642 min.
Effective stream area after confluence = 6.610(Ac)
Page 21
rcbasinef
Process from PO"! nt/Stati on 5042,000 to Poi nt/Stati on 5050,000 **** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 44,460(Ft,)
Downstream point/station elevation = 43,620(Ft.)
Pipe length = 168,26(Ft,) Slope = 0,0050 Manning's N = 0.013
NO, of pipes = 1 Required pipe flow = 22,805(CFS)
Given pipe size = 36.00(ln,)
Calculated individual pipe flow = 22,805(CFS)
Normal flow depth in pipe = 17.65(in.)
Flow top width inside pipe = 35,99(in.)
critical Depth = 18,42(In,)
Pipe flow velocity = 6,61(Ft/s)
Travel time through pipe = 0,42 min.
Time of concentration (TC) = 9.07 min.
4--f-H++++-H-H+-f-f++++-l-4--f4--f-f-f-H4--H-l--H-f-l-+-f-f-f-t--H++-t--(--)--f-f-l--H-t--H+-^
Process from Point/station 5050,000 to Point/Station 5034,000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Depth of flow = l,807(Ft.), Average velocity = 3.494(Ft/s) ******* Irregular channel Data ***********
Information entered for subchannel number 1 :
Point number 'x' coordinate 'Y' coordinate
1 0,00 4.00
2 8,00 0.00
3 16.00 4.00
Manning's 'N' friction factor = 0,035
sub-channel flow = 22.805(CFS)
flow top width = 7.226(Ft,)
velocity= 3,494(Ft/s)
area = 6.527(sq,Ft)
' ' Froude number = 0,648
Upstream point elevation = 43,620(Ft,)
Downstream point elevation = 42,000(Ft,)
Flow length = 180,000(Ft,)
Travel time = 0,86 min.
Time of concentration = 9.93 min.
Depth of flow = 1.807(Ft.)
Average velocity = 3.494(Ft/s)
Total irregular channel flow = 22,805(CFS)
Irregular channel normal depth above invert elev, = 1.807(Ft.)
Average velocity of channel(s) = 3,494(Ft/s)
+++++-t-++-H+-H++-(-++-f-(-4-+-f-f-H+-(-+-l--t--l-+4-4--H-f-l-4-++++-(--f-H4--f-H++4--H-f-(-4-4-++-f-H++-H-f-(--H
Process from Point/Station 5050,000 to Point/Station 5034,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 6.610(Ac)
Runoff from this stream = 22.805(CFS)
Time of concentration = 9.93 min.
Rainfall intensity = 4.402(ln/Hr)
Summary of stream data:
Page 22
rcbasinef
Stream Flow rate TC Rainfall intensity
No. (CFS) (min) (in/Hr)
1 719.003 35.74 1.926
2 22,805 9,93 4,402 Qmax(l) =
<:^ax(2) =
1,000 * 1,000 * 719,003) 4-
0,438 * 1.000 * 22,805) + = 728,983
1,000 * 0,278 * 719,003) +
1,000 * 1,000 * 22.805) + = 222,479
Total of 2 main streams to confluence:
Flow rates before confluence point:
719,003 22,805
Maximum flow rates at confluence using above data:
728,983 222,479
Area of streams before confluence:
706,470 6,610
Results of confluence:
Total flow rate = 728.983(CFS)
Time of concentration = 35.740 min.
Effective stream area after confluence = 713,080(Ac,)
•f^-^-+++-^-^--^-+^-•f•(--l•+++•^-^--^-^-^-4•-^•^-+^•-^^-4•+^-^--l-•^^-^-^-^•^•-l-•^•f•^-f4--(•-^^--^^-
Process from Point/Station 5034.000 to Point/Station 5052.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel
upstream point elevation = 42,000(Ft,)
Downstream point elevation = 40,000(Ft.)
Channel length thru subarea = 108,000(Ft,)
Channel base width = 16,000(Ft,)
Slope or 'Z' of left channel bank = 0,000
Slope or 'Z' of right channel bank = 0,000
Manning's 'N' = 0,015
Maximum depth of channel = 4.000(Ft.)
Flow(q) thru subarea = 728,983(CFS)
Depth of flow = 2.297(Ft,), Average velocity = 19,835(Ft/s)
Channel flow top width = 16,000(Ft,)
Flow velocity = 19.83(Ft/s)
Travel time = 0,09 min.
Time of concentration = 35,83 min.
Critical depth = 4,000(Ft,)
Process from Point/Station 5034,000 to Point/Station 5052.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
in Main Stream number: 1
Stream flow area = 713,080(Ac,)
Runoff from this stream = 728,983(CFS)
Time of concentration = 35,83 min.
Rainfall intensity = l,923(ln/Hr)
Program is now starting with Main Stream No, 2
Page 23
Process from Point/Station 7000.000 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT ****
user specified 'C value of 0,700 given for subarea
Rainfall intensity (i) = 3,040(in/Hr) for a 100,0 year storm
user specified values are as follows: TC = 17,62 min. Rain intensity = 3.04(ln/Hr)
Total area = 70,650(Ac,) Total runoff = 127,530(CFS)
process from Point/Station 7000,000 to point/Station 7007.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main Stream number: 2
Stream flow area = 70,650(Ac,)
Runoff from this stream = 127,530(CFS)
Time of concentration = 17.62 min.
Rainfall intensity = 3,040(in/Hr)
Program is now starting with Main stream No, 3
Process -from Point/Station 8003,000 to Point/Station 7007,000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
user specified 'C value of 0,900 given for subarea
Rainfall intensity (I) = 6,157(ln/Hr) for a 100,0 year storm
User specified values are as follows:
TC = 5,90 min. Rain intensity = 6.16(ln/Hr)
Total area = 4,130(AC,) Total runoff = 21,700(CFS)
Process from Point/Station 8003,000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
7007,000
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area =
Runoff from this stream
Time of concentration =
Rainfall intensity =
summary of stream data:
4,130(Ac,)
21.700(CFS)
5.90 min.
6,157(ln/Hr)
Stream
NO,
Flow rate
(CFS)
TC
(min)
Rainfall intensity
(in/Hr)
1
2
3
Qmax(l)
728.983
127.530
21,700
Qmax(2) =
Qmax(3) =
35,83
17,62
5.90
1.000
0,633
0,312
1.000
1.000
0,494
1,000 *
1,000 *
1,000 *
0,492 *
1,000 *
1.000 *
728,983)
127.530)
21,700)
728,983)
127.530)
21,700)
Page 24
1,923
3.040
6,157
+
+
+ =
+
+
+ =
816,448
496,731
rcbasinef
1,000 * 0.165 * 728,983) 4-
1,000 * 0.335 * 127.530) +
1.000 * 1,000 * 21.700) + = 184,441
Total of 3 main streams to confluence:
Flow rates before confluence point:
728,983 127,530 21,700
Maximum flow rates at confluence using above data:
816,448 496,731 184,441
Area of streams before confluence:
713,080 70,650 4,130
Results of confluence:
Total flow rate = 816,448(CFS)
Time of concentration = 35,830 min.
Effective stream area after confluence = 787,860(Ac,)
End of computations, total study area = 787,860 (Ac)
Page 25
ECR-boxcul
Tl ANALYSIS for double 8' x 4' box culvert
T2 El Camino Real
T3 100-yr storm
SO 0.000 39.82 3 43,4
R 33,26 40,08 1 ,013
R 133.62 40,80 1 ,013
R 157,58 40,98 1 ,013
WE 157,58 40.98 2 ,500
SH 157.58 40.98 2
CD 1 3 1 0,5 4.0 16,5
CD 2 1 8.000 18.1 2, 2,
CD 3 1 8.000 42,0 2, 2.
Q 729,0
Page 1
FILE: ecr^oxcul .WSW \GE 1
Date:10-28-2014 Time:10:50:55
WSPGW- CIVILDESlCrr Version 14.07
Prograra Package Serial Nuinber: 7061
WATER SURFACE PROFILE LISTING
ANALYSIS for double 8' x 4' box culvert
El Camino Real
100-yr storm
************************************************************************************************************************** ********
Station
L/Elem
*********
.000
.000
33.260
33.260
52.768
86.028
47.592
133.620
3.022
136.642
16.248
152.890
4.690
Invert
Elev
Ch Slope
*********
39.820
39.820
.0078
40.080
.0072
40.459
.0072
40.800
.0075
40.823
.0075
40.945
.0075
Depth
(FT)
•tr-k-k-k-k-k-k-k
3.580
3.299
3.358
3.447
3.615
3.635
3.813
Water
Elev
*********
43.400
43.119
43.438
43.905
44.415
44.458
44.758
Q
(CFS)
Vel
(FPS)
Vel
Head
I SF Ave
********* j ******* j *******
I
729.00 4.14 .27
-I- -I-
729.00 13.81 2.96
-I- -I-
.0065
I
729.00 13.57 2.86
-I- -I-
.0061
1
729.00 13.22 2.71
-I- -I-
.0055
I
729.00 12.60 2.47
-i- -I-
.0051
— WARNING - Flow depth
I
729.00 12.53 2.44 •I-•I-
.0048
WARNING - Flow depth
729.00 11.95 2.22
Energy
Grd.El.
HF
*********
43.67
46.08
.22
46.30
.32
46.62
.26
46.88
.02
near top
46.90
.08
near top
46. 97 -I- -I-
.0042
WARNING - Flow depth
Super I Critical I Flow Top
Elev I Depth I Width
SE DpthIFroude N|Norm Dp
******* I ******** j ********
I I
.00 2.04 50.15
,00 4.00 16.50
•I-
3.30 1.36 3.11
I i
.00 4.00 16.50
3.36 1.33 3.20
I I
.00 4.00 16.50
3.45 1.27 3.20
I I
.00 4.00 16.50
•I-•I-
3.62 1.19
of box conduit —
3.15
.00 4 .00 16.50
3.64 1.18 3.15
of box conduit
I I
.00 4.00 16.50
I-
Height/
Dia.-FT
"N"
*******
8.000
4.000
.013
4.000
.013
4.000
.013
4.000
.013
4.000
.013
.02 3.81 1.10
near top of box conduit —
3.15
4.000
.013
Base Wt
or I.D.
X-Fall
*******
42.000
16.500
.00
16.500
.00
16.500
.00
16.500
.00
16.500
,00
16.500
ZL
ZR
*****
2.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
No Wth
Prs/Pip
Type Ch
*******
0
.00 .00 BOX
.0
1 .5
BOX
1 .5
BOX
1 .5
BOX
1 .5
BOX
1 .5
BOX
FILE: ecr*boxcul.WSW WSPGW- CIVILDESIW Version 14.07
Program Package Serial Number: 7061
WATER SURFACE PROFILE LISTING
ANALYSIS for double 8' x 4' box culvert
El Camino Real
100-yr storm
***********k*****k***-kkk**k************kk*kk*-k**k-kk*k****k*k*******kk***k**k***k*k*k***-kki**k*k**k*kkk**kk******k**kk*k*
.GE
Date:10-28-2014 Time:10: 50 : 55
** ********
I Invert | Depth | Water | Q | Vel
Station I Elev | (FT) | Elev | (CFS) | (FPS)
•I-•I-
Vel I Energy | Super I Critical|Flow Top|Height/I Base Wt| |No Wth
Head I Grd.El.I Elev | Depth | Width |Dia.-FT|or I.D.I ZL |Prs/Pip
•I-I-•I-•I L/Elem |Ch Slope | | | | SF Ave| HF |SE DpthlFroude N|Norm Dp | "N" | X-FallI ZR IType Ch
********* I ********* I ******** I ********* I ********* I ******* I ******* I ********* I ******* I ******** I ******** I ******* I ******* I ***** I *******
Illll IIIIIIII
157.580 40.980 4.000 44.980 729.00 11.39 2.01 46.99 .00 4.00 16.50 4.000 16.500 .00 1 .5
•I-•I-•I-•I-WALL ENTRANCE
I I
157.580 40.980
WARNING - Flow depth near top of box conduit
III IIIIIIII
7.790 48.770 729.00 2.78 .12 48.89 .00 3.25 49.26 8.000 18.100 2.00 0 .0
-I- -I- -I- -I- -I- -I- -I- -I- _|_ _|_ _|_ |_
Per nomograph from County of San Diego Drainage Manual (attached), WS = 48.6 ok. Use 48,
CHART 8B
- 6
X -o
CD
u.
o
1-1-3
X w I
- 2
o o
u.
a:
Ui
a.
tf) u. a
v.. O
O
i
o
o
<
EC
{!) (2) (3)
EXAMPLE
5'« t Bo. 0 « T5 c«»
0/8 = I5cf»/M.
MW
0 fftt
e
-7-
6
h 5 1.79 3.5
l.»0 3.6
2J09 4.1
- 100
- 60
- 60
- 50 -
- 40
50
- 10
- 8
6
5
4
3
- .8
- .6
.5
Wingacll
KW SCALE
ID
(Z)
(3!
WINGWALL
FLARE
JO* to ?»•
SO'Ond IS*
0* («Kt*nfiont
of tidift)
Te utl tcali (2) «r (}) ;rs|«ct
horixofireiljr le «ee)« (f). th«A
u»« elroigh' iflclinvd line l^irou^h
0 ontf Q tcel«t,or r«vfrs« e(
iMutlrDlvd.
- 7
- 6
-5
- 4
- 3
1.5
- 1.5
1.0
'ZT'
- .8
- .5
— .4
- 4
- 3
- 2
1.5
1.0
.9
h .g
- .7
- .6
- .4
10
1.0
.9
- .7
- .8
- .4
-.30 '
HEADWATER DEPTH
FOR BOX CULVERTS
WITH INLET CONTROL
.S9
SUBEAU or PUBLIC ROAOS JA.H. I«*S
Double 8' x 4' box culvert in El Camino Real
239
APPENDIX 7
Curb Inlet Calculations (Qioo Ultimate)
Modified D-02 Calculations (Qio Ultimate)
Curb Inlets & Laterals Hydraulic Calculations
Ditch Calculations
(See Exhibit 'L')
Inlet Calculations for El Camino Real Widening Date: 10/9/2014
Street Inlet Continuous Grade: L = Qioo / 0.7(a-fy)
L = length of clear opening in feet (S'min, 20' max)
doo = flow CFS
a = depth of depression of flowline at inlet in feet = 0.33' or 0.17' typical
y = depth of flow in gutter approach
Street Inlet Sump Condition: L = Qioo / 2
L = length of clear opening in feet (5' min, 20' max)
doo = flow in CFS
Bypa ss Calcul ation
# STATION street Location
Continous
Grade (CG)
or Sump
Condition
(Sump) If a (ft) Y (ft)
Opening
(ft)
L
(OPENING +1'
ROUND UP)
(ft)
Inlet
Ratio
Effi-
ciency
Q
Bypass
(cfs)
Imp.
Plan
Sheet
1 446+73.94 SIDE CI. SUMP 6.7 --3.40 5.00 16
2 453-1-80.81* Cl. IN MEDIAN CG 2.87 0.17 0.26 14.54 16.00 17
CG 2.91 0.17 0.26 14.73 16,00
3 456-I-33.75 CI. IN IVIEDIAN CG 5.14 0.17 0.32 21.41 23.00 0.93 0.99 0.04 18
CG 5.10 --20.00 21.00
4 454+99.83 SIDE Cl. CG 4.8 0.33 0.26 15.13 17.00 17
5 463+02.00 CI. IN MEDIAN CG 1 0.17 0.27 4.89 6.00 19
6 465+49.18 SIDE CI. CG 5.6 0.33 0.31 15.63 17.00 19
7 467+00.00 Cl. IN MEDIAN CG 3.1 0.17 0.29 14.19 16.00 19
8 469+00.00 SIDE CI. CG 3.48 0.33 0.27 10.70 12.00 20
9 472+75.80 SIDE CI. CG 2.55 0.33 0.3 7.29 9.00 20
10 474+70.79 SIDE Cl. CG 3.79 0.33 0.24 12.58 14.00 21
11 477+15.00 SIDE C.l. CG 2.98 0.33 0.27 9.16 11.00 21
12 481+24.89 c.l. IN MEDIAN CG 2.66 0.17 0.25 13.96 15.00 22
13 483+25.24 CI IN CURB SUMP 6.7 --3.35 5.00 22
14 485+76.85 Cl. IN MEDIAN CG 0.82 0.17 0.11 7.91 9.00 22
IS 489+52.14** Cl. IN MEDIAN CG 0.58 0.17 0.2 3.68 5.00 23
0.72 0.17 0.2 4.58 6.00
16 490+06.01 c.l. IN MEDIAN CG 5.68 0.17 0.33 22.95 24.00 0.87 0.98 0.14 23
5.54 --20.00 21.00
17 482+97.19 C.l. IN MEDIAN SUMP 2.91 --1.45 3.00 22
NOTES:
1. Figure 2-2 from the San Diego Drainage Design Manual was used to determine the depth of flow,
in the gutter approach (y) when not provided in the Qioo Hydrology in Appendix of this report.
* This includes 2.87 cfs (for 100 year flow rate) and 0.04 bypass from upstream inlet #3.
** This includes 0.58 cfs (for 100 year flowrate) and 0.14 bypass from upstream inlet #16.
File: ECR Curb Inlet Length
Curb Opening Calculations for El Camino Real
Modified SDRSD D-02
Date: 10/21/2014
Curb Opening Continuous Grade: L = Q,o/0.7(a+Y)"'
L = length of clear opening in feet (S'min, 20' max)
Qio = flow in CFS
a = depth of depression of flowline at inlet in feet = 0.17' or 0.33' as noted on plans
y = depth of flow in gutter approach
STATION Qio (cfs) a (ft) Y(ft)
opening
(ft)
L (Opening +1'
Round Up)
(ft)
Imp. Plan
Sheets
446+59.70 0.48 0.17 0.24 2.61 1-4 16,25
446+90 2.1 0.33 0.25 6.79 1-7.8 16,25
454+35.01
455+28.97
455+99.95
1.9 0.17 0.23 10.73 3-4,6
17,35
18,36
18,36
456+69.79
457+40.07
458+79.65
459+50.37
460+30
3.3 0.17 0.23 18.63
7-3.5'
5 to be built
See Note 3
18,36
18,36
18,36
18,36
36
See Note 4 1.7 0.17 0.23 9.60 2 - 5.80'
See Note 4 N/A
473+74.81
474+29.85 2.4 0.33 0.21 8.64 2 - 5.30 21,30
21,30
476+33.90 1.9 0.17 0.24 10.34 1-11.34 39
479+17.45
480+57.99 1.7 0.17 0.27 8.32 2-5.20 39
40
480+80
482+15 4 0.33 0.34 10.42 2-6.20 22,31
22,31
484+00 4.9 0.33 0.33 13.06 1 ~ 14.06 22,31
489+69.42 0.53 0.17 0.11 5.11 1-6.10 41
490+36.62 4.8 0.17 0.33 19.39 1-19.40 23,41
See Note 5 0.91 0.17 0.25 4.78 2-3"
See Note 5 N/A
See Note 5 0.87 0.17 0.14 7.20 4-3"
See Note 5 N/A
455+31.98 3.1 0.33 0.23 10.57 1 ~ 11.6' 17,27
Notes:
1. Curb Openings having a Sump Condition will not occur on this site. The Mod, D-02 Curb Opening will always have a Curb Inlet,
on the downstream side, intercepting the Qioo. Where the inlet is a Sump Condition there will be two Curb Openings. Where
the inlet is a Continuous Grade there will be one Curb Opening - exceptions noted.
2. Figure 2-2 from the San Diego Drainage Design Manual was used to determine the depth of flow in the gutter approach (y),
when not provided in the Qio Hydrology in Appendix of this report.
3. Two additional curb inlets (Sta. 461+15 & 462+88) had been planned. Treatment areas in narrow median areas, however, were
omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate.
For 5 inlets, QIO = 3.3 X 5 / 7 = 2.4 cfs.
4. Two curb inlets (Sta. 465+00 8i 466+09) had been planned. Treatment areas in narrow median areas, however, were
omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate.
5. Series of underdrain pipes (Sta. 482+90 & 483+06) had been planned. Treatment areas in narrow median areas, however, were
omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate.
File: ECR Curb Opening Calcs
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesl<, Inc.
3 INCH PIPE ANALYSIS FOR MOD 27 @ DEPTH = 0.14
Thursday, Feb 20 2014
Circular Highlighted
Diameter (ft) = 0.25 Depth (ft) = 0.14 Diameter (ft)
Q (Cfs) = 0.227
Area (sqft) = 0.03
Invert Elev (ft) = 100.00 Velocity (ft/s) = 8.00
Slope (%) = 18.00 Wetted Perim (ft) — 0.42
N-Value = 0013 Crit Depth, Yc (ft) — 0.24
Top Width (ft) = 0.25
Calculations EGL (ft) = 1.13
Compute by: Known Depth
Known Depth (ft) = 014
Elev (ft)
101.00 -
Section
100.75
100.50
100.25
100.00
99.75
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.
3 INCH PIPE ANALYSIS FOR MOD 27
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Depth (ft)
Known Depth
= 0.25
Thursday, Feb 20 2014
Highlighted
= 0.25 Depth (ft) = 0.25
Q (Cfs) = 0.537
Area (sqft) = 0.05
= 100.00 Velocity (ft/s) = 10.94
= 37.00 Wetted Perim (ft) = 0.79
= 0.013 Crit Depth, Yc (ft) = 0.24
Top Width (ft) = 0.00
EGL (ft) = 2.11
Section
100.25
100.00
99.75
Figure 2-3
Discharge (ft Is)
Figure 2-3 8-inch Gutter and Roadway Discharge-Velocity Chart
30 40 50
San Diego County Drainage Design Manual (May 2005;
Page 2-74
Al
***********************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ver, 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** OESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN FROM STA 446-f73.94 AND CI, #1 *
* 100 YEAR STORM DRAIN ULTIMATE CONDITION *
* REVISED BY MC *
**************************************************************************
FILE NAME: Al,DAT
TIME/DATE OF STUDY: 10:09 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used,)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-+ FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
1002,00- 1,00 DC 103,74 0.86* 107,42
} FRICTION
1003.00- 1.00*Dc 103.74 1.00*Dc 103.74
} CATCH BASIN
1003.00- 1.53* 86.42 1.00 Dc 34.35
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1002.00 FLOWLINE ELEVATION = 33.80
PIPE FLOW = 6.70 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 33,800 FEET
*N0TE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0,00 FT,)
IS LESS THAN CRITICAL DEPTH( 1.00 FT.)
===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
FOR UPSTREAM RUN ANALYSIS
NODE 1002.00 : HGL = < 34.656>;EGL= < 35.298>;FLOWLINE= < 33.800>
******************************************************************************
FLOW PROCESS FROM NODE 1002.00 TO NODE 1003.00 IS CODE = 1
UPSTREAM NODE 1003.00 ELEVATION = 34.19 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW 6.70 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 35.19 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH(FT) = 1.00
Page 1
Al
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION
SPECIFIC PRESSURE-i-
ENERGY(FT) M0MENTUM(POUNDS)
1.445 103,74
1.445 103,75
1.445 103,77
1.446 103,80
1.446 103,84
1.447 103,90
1.448 103.97
1.449 104.05
1.450 104.15
1.452 104.26
1.454 104.39
1.456 104.53
1.458 104.68
1.460 104.85
1.463 105.04
1,466 105.24
1.469 105.46
1.472 105.69
1.476 105.94
1,480 106.21
1,484 106.49
1.489 106.79
1,493 107.11
1,498 107.42
35,635>;FLOWLINE= < 34,190>
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 1,001 0.018 0,995
0.074 0.989
0.172 0.982
0.315 0.976
0.507 0.970
0.755 0.963
1.065 0.957
1.442 0.951
1.896 0.944
2.437 0.938
3.077 0.932
3.830 0.925
4.716 0.919
5.756 0.912
6.981 0.906
8.431 0.900
10.158 0.893
12.237 0.887
14.777 0.881
17.947 0.874
22.032 0.868
27.564 0.862
35.190 0.856
NODE 1003.00 . HGL = < 35.
VELOCITY
(FT/SEC)
5.343
5.382
5.421
5.461
5.502
5.543
5.585
5.628
5.672
5.717
5.762
5.808
5.855
5.903
5.952
6.002
6.052
6.104
6.156
6.210
6.264
6.320
6.377
6.431
35.191>;EGL= <
^^*****************************************************************************
FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.00 IS CODE = 8
UPSTREAM NODE 1003.00 ELEVATION = 34.19 (FLOW UNSEALS IN REACH)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 6.70 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 5.34 FEET/SEC. VELOCITY HEAD = 0-444 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.444) = 0.089
"NODE"l003"00~rHGL = < 35.724>;EGL= < 35 .724>; FLOWLINE= < 34.190>
^^^^^jtit***********************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1003.00
ASSUMED UPSTREAM CONTROL HGL =
FLOWLINE ELEVATION = 34.19
35.19 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
A2
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATIONS FOR EX. 24" STORM DRAIN ECR STA 454-f48,99 *
* 100 YEAR STORM ULTIMATE CONDITION *
* REVISED BY MC *
**************************************************************************
FILE NAME: A2,DAT
TIME/DATE OF STUDY: 10:22 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT)
0.51*
MOMENTUM(POUNDS)
2012,00-2,00 303.84
DEPTH(FT)
0.51* 551 23
} FRICTION
2011,00-1,31*DC 233.24 1.31*DC 233 24
} MANHOLE/INLET/OUTLET
2,02* 2011,10-
MANHOLE/INLET/OUTLET
2,02* 307.63 1.06 247 86
} FRICTION } HYDRAULIC JUMP
2007.00-1,31*DC 233.24 1.31*DC 233. 24
} JUNCTION
2007.10-2,11* 275.47 0.96 161 58
} FRICTION
2003.00-1.90* 236.92 1.12 DC 156. 02
} JUNCTION
2003.10-2.12* 224.24 0.44 28. 40
} FRICTION
2002.00-1.39* 93.58 0.45 28. 02
} MANHOLE/INLET/OUTLET
1.07* 2002,11-
MANHOLE/INLET/OUTLET
1.07* 55.12 0.45 28. 20
} FRICTION } HYDRAULIC JUMP
2002,10-0.54*DC 26.47 0.54*Dc 26. 47
} CATCH BASIN
2002,10-0.78* 14.02 0.54 DC 9, 67
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS,
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2012,00 FLOWLINE ELEVATION = 42,20
PIPE FLOW = 13,22 CFS PIPE DIAMETER = 24.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 44.200 FEET
Page 1
A2
NODE 2012.00 : HGL = < 42.705>;EGL= < 49.685>;FLOWLINE= < 42.200>
******************************************************************************
FLOW PROCESS FROM NODE 2012.00 TO NODE 2011.00 IS CODE = 1
UPSTREAM NODE 2011.00 ELEVATION = 52.37 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 13.22 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH = 43.50 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) =
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31
1.31
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND
0.000 1.308 6.069 1.881 233.24
0.008 1.275 6.253 1.882 233.47
0.032 1.241 6.451 1.888 234.19
0.075 1.208 6.664 1.898 235.42
0.140 1.174 6.893 1.912 237.20
0.230 1.141 7.140 1.933 239.58
0.349 1.107 7.406 1.959 242.60
0.501 1.073 7.694 1.993 246.32
0.693 1.040 8.007 2.036 250.80
0.931 1.006 8.346 2.089 256.10
1.224 0.973 8.715 2.153 262.32
1.583 0.939 9.118 2.231 269.55
2.021 0.906 9.560 2.326 277.89
2.556 0.872 10.044 2.440 287.48
3.210 0.839 10.578 2.577 298.48
4.013 0.805 11.168 2.743 311.06
5.007 0.771 11.823 2.944 325.44
6.245 0.738 12.554 3.187 341.89
7.809 0.704 13.373 3.483 360.74
9.818 0.671 14.295 3.846 382.36
12.458 0.637 15.339 4.293 407.26
16.049 0.604 16.531 4,850 436.05
21.190 0.570 17.899 5.548 469.51
29.240 0.537 19.483 6.435 508.62
43.500 0.505 21.195 7.485 551.23
NODE 2011.00 : HGL = < 53. 678>;EGL= < 54.251>;FLOWLINE= < 52.370>
******************************************************************************
FLOW PROCESS FROM NODE 2011.00 TO NODE 2011.10 IS CODE = 2
UPSTREAM NODE 2011.10 ELEVATION = 52.38 (FLOW UNSEALS IN REACH)
24.00 INCHES
0.699
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 13.22 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =1,65
AVERAGED VELOCITY HEAD = 0.424 FEET
HMN = 1.65*(AVERAGED VELOCITY HEAD) = 1.65*( 0.424) =
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
NODE 2011.10 : HGL = < 54.399>;EGL= < 54.674>;FL0WLINE= < 52.380>
******************************************************************************
FLOW PROCESS FROM NODE 2011.10 TO NODE 2007.00 IS CODE =
Page 2
A2
UPSTREAM NODE 2007.00 ELEVATION = 53.52 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES (LACFCD) : ^.,^urc
PIPE FLOW = 13.22 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH = 98.64 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
"NORMAL"DEPTH(FT)'='"" 1-05 CRITICAL DEPTH(FT) = 1.31
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 1,308
0.028 1.298
0.117 1.288
0.270 1.277
0.496 1.267
0.801 1.257
1.193 1.247
1.682 1.236
2.280 1.226
2.999 1.216
3.857 1.205
4.872 1.195
6.069 1.185
7.476 1.175
9.132 1.164
11.083 1.154
13.393 1.144
16.148 1.133
19.468 1.123
23.528 1.113
28.600 1.103
35.141 1.092
44.007 1.082
57.119 1.072
80,647 1.061
98,640 1.061
VELOCITY
(FT/SEC)
6.069
6.124
6.181
6.238
6.297
6.357
6.419
6.482
6.546
6.612
6.679
6.748
6,818
890
964
039
116
195
276
359
7,444
7,531
7,620
7.711
7.804
7.805
SPECIFIC PRESSURE-f
ENERGY(FT) MOMENTUM(POUND
1.881 233.24
1.881 233.26
1.881 233.33
1.882 233.44
1.883 233.59
1.885 233.79
1.887 234.04
1.889 234.33
1.892 234.68
1.895 235.07
1.899 235.52
1.903 236.02
1.907 236.57
1.912 237.17
1.918 237.84
1.924 238.56
1.931 239.33
1.938 240.17
1,946 241.07
1,954 242.03
1,963 243.06
1.973 244.15
1,984 245.32
1.995 246.55
2.008 247.85
2.008 247.86
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.02
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
2.373
PRESSURE
HEAD(FT)
2.019
2.000
VELOCITY
(FT/SEC)
4.208
4.208
SPECIFIC
ENERGY(FT)
2.294
2.275
PRESSURE-f
MOMENTUM(POUNDS)
307.63
303,84
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2,00
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
2,373
5.515
8.441
FLOW DEPTH
(FT)
2.000
1.972
1.945
VELOCITY
(FT/SEC)
4.207
4.218
4.240
Page 3
SPECIFIC
ENERGY(FT)
2,275
2,249
2,224
PRESSURE-f
MOMENTUM(POUNDS)
303,84
298,72
293,87
A2
11.244
13.952
16.579
19.133
21.618
24.038
26.394
28.685
30.909
33.065
35.149
37.155
39.078
40.910
42.642
44.262
45.757
47.110
48.299
49.298
50.074
50.582
50,768
98,640
1,917 4. 267
1,889 4. 300
1,862 4. 338
1,834 4. 380
1,806 4. 426
1,779 4. 477
1,751 4. 532
1,723 4. 591
1,696 4. 654
1,668 4 721
1,640 4 793
1,613 4 869
1.585 4 949
1.557 5 035
1.530 5 126
1.502 5 .222
1.474 5 ,323
1.447 5 ,431
1.419 5 ,544
1.391 5 ,665
1.364 5 ,792
1.336 5 ,926
1.308 6 ,069
1.308 6 ,069
2,200
2.177
2.154
2,132
2,111
2,090
2,070
2,051
2,032
2,014
1,997
1.981
1,966
1.951
1,938
926
915
905
897
890
1,885
1.882
1,881
1,881
289,21
284,73
280.41
276.26
272.27
268.44
264.78
261.28
257.96
254.82
251.86
249.08
246.51
244.13
241.96
240.01
238.29
236.80
235.55
234.56
233.84
233.39
233.24
233.24
PRESSURE-fMOMENTUM
DOWNSTREAM
END OF HYDRAULIC JUMP ANALYSIS
BALANCE OCCURS AT 38.94 FEET UPSTREAM OF
DEPTH = 1.587 FEET, UPSTREAM CONJUGATE DEPTH
NODE 2011.10 I
= 1.070 FEET I
""NODE""2007:00"rHGr='<" 54.828>;EGL= < 55.401>;FLOWLINE= < 53.520>
*************************************************************T**************
FLOW PROCESS FROM NODE 2007.00 TO NODE 2007 10 IS CODE =5
UPSTREAM NODE 2007.10 ELEVATION = 53.52 (FLOW UNSEALS IN KLACH;
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
9.75
13.22
3.47
0.00
DIAMETER ANGLE FLOWLINE
(INCHES) (DEGREES) ELEVATION
24.00 64.00 53.52
24.00 - 53.52
18.00 90.00 54.02
0.00 0.00 0.00
CRITICAL
DEPTH(FT.)
1.12
1.31
0.71
0.00
VELOCITY
(FT/SEC)
3.104
6.071
2.277
0.000
O!OO===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=CQ2*V2-Ql*Vl*COSCDELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al-fA2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00186
DSSTR^AM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.005^
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00386
JUNCTION LENGTH = 4.00 FEET ^TKI-TDAK./-C I nccFC - n nOO FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES - O.UUU FEET JUNCTION LOSSES = (DY-fHVl-Hy2) + (ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.375)-f( 0.000) = 0.375
"NODri007"l0"rHGL'='r"r5'626>;E^^^^ < 53.520>
******************************************************************************
FLOW PROCESS FROM NODE 2007.10 TO NODE 2003.00 CODE = 1
UPSTREAM NODE 2003.00 ELEVATION = 53.76 (FLOW SEALS IN REACHJ
CALCULATE FRICTION LOSSES(LACFCD):^^^ ^^^^^^^^ ^ ^^^^^^
24.10 FEET MANNING'S N = 0.01300
Page 4
PIPE FLOW
PIPE LENGTH =
A2
'DWNSTREAM~CONTROL ASSUMED PRESSURE HEAD(FT) =
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
i?:gE§ l-itt 3:104 2^ 2^4:67__
"NORMAL"DEPTH(S'= O"92 CRITICAL DEPTH(FT) = __1A2
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00
~ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:^
2-0»0 3.103 2150 254b/
: I .082 241.54
24.100 1.903 3.159 2.058 ___„_
""NODri003'00"rHGL'="r'ir663>;E^^^^ 55.818>; FL0WLINE= < 53.760>
******************************************************************************
FLOW PROCESS FROM NODE 2003.00 TO NODE 2003.10 IS CODE =5
UPSTREAM NODE 2003.10 ELEVATION =^ 53.83 _^^LOW UNSEALS IN RtAL^
"C^^CULATE-JUNCTION^^^^ ANGLE ^ FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 2.45 24.00 0.00 3.83 0.54 0.780
DOWNSTREAM 9.75 24.00 - 53.76 1.12 i-lbU
I ATFRAi #1 4 94 18.00 90.00 53.94 0.8i i'inc
LATI^L #2 2 36 18.00 90.00 54.44 0.58 1.395
LATtKAL ff/ o.OO===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=f02*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((AH-A2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00012
DSSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00161
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00086
JUNCTION LENGTH = 4.00 FEET inccPQ - O 000 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES - O.UUU FEET jCicTioN LOSSES = CDY-fHVl-Hy2) + (ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.146)-f( 0.000) = 0.146
~"HODETOO17IOT~^^^^^^ < ",830>
^*^***************************************************************************
FLOW PROCESS FROM NODE 2003,10 TO NODE 2002 00 IS CODE = 1
UPSTREAM NODE 2002,00 ELEVATION = 54.57 _(FLOW_SEALS_IN_REACH^
"lfpSfS"''-'^'°'''^^^ DIAMETER = 24.00 INCHES
PIPE L^GTH = 7i:63 FEIT MANNING'S N = 0.01300
'DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2^^2 _
PRESSURE FLOW PROFILE COMPUTED INFORMATION^
Page 5
.O-OOO I'lll 2.009 199.74 12'.236 2.000 0.780
"NORMArDEPTHrFT)"=^^^^^^0:4r^^^
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2^00 ============
'GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION
29 231 1.825 0.814 1.836 166.25
34 875 1.767 0.834 1.778 155.54
40 511 1.709 0.857 1.720 145.12
46 138 1.651 0.883 1.663 135.01
c? 7CH 1 "^q? 0.913 1,605 125.^3
i;i Ull
""NODri002:00"rH6i:'=';""55:956>;EGL= < 55.973>;FL0WLINE= < 54,570>
**************************************************************!***************
FLOW PROCESS FROM NODE 2002.00 TO NODE 2002 11 fS ^'^Is^sJcRITICAL) UPSTREAM NODE 2002.11 ELEVATION =_ ^4^90 JFLOW IS SUBCRITIC^^^
'l^P^'ptS'^'^^'''''^'^^^^^^^ '°''''>IPE DIAMETER = 24.00 INCHES
USER SPECIFIED LOSS COEFFICIENT =1-00
AVERAGED VELOCITY HEAD = 0.025 FEET . . ^
HMN = 1.00*(AVERAGED VELOCITY HEAD) = l-00*(_0.025)_=__0.025
""NODr"2oo2:irrHGr;"7""r5:965>;E^^^^ < 54.9oo>
**************************************************************!***************
IS^'pfS Tif CF^'^''^PIPE DIAMETER = 24.00 INCHES
PIPE [ESSTH = 82.70 FEIT MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
"NORMArDEPTH(S'= 0^44 CRITICAL DEPTH(FT) = 0.54^
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54
'GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
0-540 0:79 26:47
S'if? o:lll l.lli 0.740 26.51
Page 6
A2
0,302 0.524 3.732 0.741 26.54
0.450 0.520 3.773 0.741 26.57
0.635 0.516 3,815 0.742 26.60
0.860 0.512 3,857 0.743 26.64
1.131 0.508 3,901 0.744 26.69
1.454 0.504 3,946 0.746 26.74
1.837 0.500 3.991 0.747 26.80
2.287 0.496 4.037 0.749 26.87
2.817 0.492 4.085 0.751 26.94
3.440 0.488 4.133 0.753 27.01
4.174 0,483 4.182 0.755 27.10
5.042 0,479 4.232 0.758 27.19
6.077 0,475 4.284 0.760 27.29
7.323 0.471 4.336 0.763 27.39
8.846 0.467 4.390 0.767 27.51
10.748 0.463 4.445 0.770 27.62
13.199 0.459 4.501 0.774 27.75
16.519 0.455 4.558 0.778 27.89
21.425 0.451 4.617 0,782 28.03
30.221 0.447 4.676 0.787 28.18
82.700 0.446 4.683 0,787 28.20
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI
0.000 1.065 1.439 1.098 55.12
1.967 1.045 1.475 1.078 53.11
3.926 1.024 1.513 1.059 51.16
5.876 1.003 1.553 1.040 49.27
7.816 0.982 1.596 1.022 47.45
9.746 0.961 1.640 1.003 45.69
11.664 0.940 1.687 0.985 44.00
13.568 0.920 1.737 0.966 42.37
15.457 0.899 1.789 0.949 40.82
17.328 0.878 1.845 0.931 39.33
19.181 0.857 1.905 0.913 37.91
21.010 0.836 1.968 0.896 36.56
22.815 0.815 2.035 0.880 35.29
24.590 0.795 2.106 0.864 34.09
26.331 0.774 2.183 0.848 32.97
28.033 0.753 2.264 0.833 31.92
29.688 0.732 2.352 0.818 30.96
31.288 0.711 2.446 0.804 30.08
32.822 0.690 2.547 0.791 29.28
34.277 0.670 2.656 0.779 28.58
35.634 0.649 2.774 0.768 27.96
36.871 0.628 2.902 0.759 27.45
37.953 0.607 3.040 0.751 27.03
38.836 0.586 3.191 0.744 26.73
39.450 0.565 3.357 0.740 26.54
39.689 0.545 3.537 0.739 26.47
82.700 0.545 3.537 0.739 26.47
END OF HYDRAULIC JUMP ANALYSIS
PRESSURE-fMOMENTUM BALANCE OCCURS AT 35.14 FEET UPSTREAM OF NODE 2002.11 j
DOWNSTREAM DEPTH = 0.656 FEET, UPSTREAM CONJUGATE DEPTH = 0.447 FEET |
NODE 2002.10 : HGL = < 56.285>;EGL= < 56.479>;FLOWLINE= < 55.740>
Page 7
A2
*****************************************************************
FLOW PROCESS FROM NODE 2002.10 TO NODE 2002.10 IS CODE = 8
UPSTREAM NODE 2002.10 ELEVATION = 55.74 (FLOW IS SUBCRITICAL)^^
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 2.45 CFS PIPE DIAMETER = 24.00 INCHES
FLOW VELOCITY = 3.54 FEET/SEC. VELOCITY HEAD = 0.194 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.194) = 0^039
"NODE 2002.10 : HGL = < 56.518>;EGL= < 56.518>;FLOWLINE= < 55.740>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2002.10 FLOWLINE ELEVATION = 55.74
ASSUMED UPSTREAM CONTROL HGL = 56,28 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 8
A3
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ver. 21,0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATIONS FOR STORM DRAIN LATERAL FROM EX. 24 /MED. CI #2 ^
* EL CAMINO REAL STA. 454-f48.99 *
\iss*r^^*fi?^i^^i^^i^*^?^**™^
FILE NAME: A3.DAT ,
TIME/DATE OF STUDY: 11:47 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note- "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
PS^^S S?f «>MKUNO« o.^^,rn «»^S?5Sr«
2003.00- 1.16 58.71 0.32* 60.UU
} FRICTION -,. -,A n yic* 4n RR
2003.20- 0.64 DC 34.24 0.45* 4U.8»
} MANHOLE/INLET/OUTLET g,
2003.21- 0.64 DC 34.24 0.32* bU.bi } FRICTION OA -,A n Kn* ^7 63 2003 10- 0.64 DC 34.24 0.50* :5/.b:J } MANHOLE/INLET/OUTLET 2003.11- 0.77 36.22 0.31* bi.bu } FRICTION OA -iA n aA*nr- ^4 74 2006.00- 0.64*DC 34.24 0.64*Dc 34.^4
} CATCH BASIN ,00-7 A c/i r.^ 17 70 2006.00- 0.94* 18.37 -i::--
"MAXIMUMNUMBER OF ENERGY BALANCES USED IN ^ACH PROFILE =J5
'NOTE'STEADY'FLOW'H^^ HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
****fl***^****fi*************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
SSSE NUMBERS 2003.00 ^!;^'S;LiTPr'''°?8^00 INCHE^ PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 55^600 FEET
""NODr"200r00'rHGr='r"l4"760>;EG^^^ 56.434>; FLOWLINE= < 54.440>
******************************************************************************
FLOW PROCESS FROM NODE 2003.00 TO NODE 2003.20 IS CODE =1
UPSTREAM NODE 2003.20 ELEVATION = 56.47 CFLOWISSUPERCRITICA^
" CALCULATE FRICTION LOSSES(LACFCD):
Page 1
PIPE FLOW
PIPE LENGTH =
A3
2.87 CFS PIPE DIAMETER = 18.00 INCHES
21.62 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = 0.64
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = O^f^.
"GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
0.243
0.507
0.794
1.106
1.447
1.819
2.226
2.672
3.164
3.706
4.306
4.974
5.722
6.562
7.515
8.605
9.864
11.340
13.100
15.251
17.970
21.589
21.620
FLOW DEPTH
(FT)
0.451
0.445
0.439
0.433
0.427
0.421
0.415
0.409
0.404
0.398
0.392
0.386
0.380
0.374
0.368
0.362
0.356
0.350
0.344
0.338
0.332
0.326
0.320
0.320
VELOCITY
(FT/SEC)
6.415
6.534
6.657
6.784
6.916
7.052
7.193
7.339
7.491
7.648
7,
7,
.811
.981
8.157
8.340
8.530
8.728
8.935
9.150
9.375
9.609
9.854
10.109
10.377
10.379
SPECIFIC
ENERGY(FT)
1.090
1.108
1.128
1.148
1.170
1.194
1.219
1.246
1.275
1.306
1.340
1.375
1.414
1.455
1.499
1.546
1.596
1.651
1.710
1.773
1.841
1.914
1.994
1.994
PRESSURE-f
MOMENTUM(POUNDS)
40.88
41.38
41.90
42.45
43.03
43.64
44.27
44.94
45.64
46.37
47.14
47.95
48.80
49.69
50.62
51.60
52.63
53.71
54.84
56.04
57.29
58.60
59.99
60.00
"NODE""2003"20"rHGL = < 56.921>;EGL= < 57. 560>; FLOWLINE= < 56.470>
^*****************************************************************************
FLOW PROCESS FROM NODE 2003.20 TO NODE 2003.21 IS CODE =2 ^^^^^
UPSTREAM NODE 2003.21 ELEVATION = 56.88 (FLOW IS SUPERCRITICAU
18.00 INCHES
0.176
CALCULATE MANHOLE/INLET/OUTLET LOSSES: ^^.„p-rpp _
PIPE FLOW = 2.87 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 0.15
AVERAGED VELOCITY HEAD = 1.176 FEET _
HMN = 0.15*(AVERAGED VELOCITY HEAD) = 0.15*(1.176) -
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLCW LINE ELEVATIONS ^
~"^^VT00172ITHGL~^~7~T77I^^^^^^ < 56.880>
******************************************************************************
FLOW PROCESS FROM NODE 2003.21 TO NODE 2003.10 IS CODE = 1
UPSTREAM NODE 2003.10 ELEVATION = _ ^9.98 JFLOW IS SUPERCRITI^^
CALCULATE FRICTION LOSSES (LACFCD) : i a nn rwruP^ PIPE FLOW = 2.87 CFS PIPE DIAMETER = l^lOO INCHES PIPE LENGTH = 36.48 FEET MANNING S N = O.OliUU
NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) = 0.64
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50
Page 2
A3
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND!
0.000 0.500 5.566 0.981 37.63
0.182 0.492 5.684 0.994 38.04
0.385 0.485 5.807 1.009 38.49
0.609 0.477 5.935 1.024 38.97
0.858 0.470 6.067 1.042 39.48
1.134 0.462 6.206 1.060 40.03
1.441 0.454 6.349 1.081 40.61
1.782 0.447 6.499 1.103 41.23
2.162 0.439 6.656 1.128 41.90
2.585 0.432 6.819 1.154 42.61
3.059 0.424 6.990 1.183 43.36
3.591 0.416 7.168 1.215 44.16
4.191 0.409 7.355 1.249 45.01
4.869 0.401 7.551 1.287 45.92
5.641 0.394 7.756 1.328 46.88
6.525 0.386 7.971 1.373 47.90
7.547 0.379 8.197 1.422 48.99
8.741 0.371 8.434 1.476 50.15
10.154 0.363 8.684 1.535 51.38
11.856 0.356 8.947 1.599 52.69
13.956 0.348 9.224 1.670 54.08
16.635 0.341 9.517 1.748 55.57
20.235 0.333 9.826 1.833 57.15
25.520 0.325 10.154 1.927 58.83
34.949 0.318 10.501 2.031 60.63
36.480 0.318 10.500 2.031 60.63
NODE 2003.10 : HGL = < 60.480>;EGL= < 60.961>;FLOWLINE= < 59.980>
******************************************************************************
FLOW PROCESS FROM NODE 2003.10 TO NODE 2003.11 IS CODE = 2
UPSTREAM NODE 2003.11 ELEVATION = 60.17 (FLOW IS SUPERCRITICAL)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 2.87 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 1.15
AVERAGED VELOCITY HEAD = 1.127 FEET
HMN = 1.15*(AVERAGED VELOCITY HEAD) = 1.15*( 1.127) =
18.00 INCHES
1.297
NODE 2003.11 : HGL = < 60.484>;EGL= < 62.257>;FLOWLINE= < 60.170>
******************************************************************************
FLOW PROCESS FROM NODE 2003.11 TO NODE 2006.00 IS CODE = 1
UPSTREAM NODE 2006.00 ELEVATION = 62.27 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 17.91 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) =
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64
0.64
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
FLOW DEPTH
(FT)
0.643
VELOCITY
(FT/SEC)
3.962
Page
SPECIFIC
ENERGY(FT)
0.887
PRESSURE-f
MOMENTUM(POUNDS)
34.24
A3
0.006 0.629 4.081 0.888 34.27
0.023 0.615 4.207 0.890 34.36
0.055 0.601 4.341 0.893 34.50
0.102 0.586 4.483 0.899 34.72
0.167 0.572 4.634 0.906 34.99
0.252 0.558 4.795 0.915 35.35
0.360 0.543 4.966 0.927 35.78
0.495 0.529 5.149 0.941 36.29
0.661 0.515 5.345 0.959 36.89
0.863 0.501 5.554 0.980 37.59
1.108 0.486 5.779 1.005 38.39
1.404 0.472 6.022 1.035 39.30
1.760 0.458 6.283 1,071 40.34
2.190 0.444 6.565 1,113 41.51
2.710 0.429 6.871 1.163 42.83
3.343 0.415 7.203 1.221 44.32
4.119 0.401 7.565 1.290 45.98
5.081 0.386 7.960 1.371 47.85
6.293 0.372 8.393 1.467 49.95
7.854 0.358 8.870 1.580 52.31
9.931 0.344 9.397 1.716 54.96
12.838 0.329 9.980 1.877 57.94
17.281 0.315 10.631 2.071 61.31
17.910 0.314 10.683 2.087 61.58
NODE 2006.00 : HGL = < 62. 913>;EGL= < 63.157>;FLOWLINE= < 62.270>
******************************************************************************
FLOW PROCESS FROM NODE 2006.00 TO NODE 2006.00 IS CODE = 8
UPSTREAM NODE 2006.00 ELEVATION = 62.27 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 3.96 FEET/SEC. VELOCITY HEAD = 0.244 FEET
CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.244) = 0.049
NODE 2006.00 : HGL = < 63.206>;EGL= < 63.206>;FLOWLINE= < 62.270>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2006.00 FLOWLINE ELEVATION = 62.27
ASSUMED UPSTREAM CONTROL HGL = 62.91 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 4
30
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) CODvriqht 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************^
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #3 *
* EL CAMINO REAL STA 456-f33.75 ^
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC ..... *t***********************************************************************
FILE NAME: 30.DAT , ^ ,
TIME/DATE OF STUDY: 10:59 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
2003.00- 1.66 129.32 0.32* 189.17
} FRICTION _ -jo m
2005 50- 0.87*Dc 73.01 0.87*Dc 73.01
} MANHOLE/INLET/OUTLET
2005.51- 1.11 79.68 0.54* 97.51
2005 40- ^^^"^^^^ 0.87*DC 72.99 0.87*Dc 72.99
} MANHOLE/INLET/OUTLET
2005.41- 1.11 79.64 0.55* 95.43
2005 20^ o.87*Dc 72.98 0.87*Dc 72.98
} MANHOLE/INLET/OUTLET
2005.21- 1.11 79.60 0.58* 91.22
} FRICTION ^ g., 2005 22- 0.87 DC 73.01 0.71* 77.81
} MANHOLE/INLET/OUTLET
2005.23- 0.87 Dc 73.01 0.45* 120.94
2005.10^ 0.87*DC 73.01 0.87*Dc 73.01
} CATCH BASIN ^ -ic AT
2005.10- 1.31* 40.45 0.87 DC 25.02
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
**5*f********t*f;*************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2003.00 FLOWLINE ELEVATION = 53.94
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 55.600 FEET
Page 1
30
NODE 2003.00 : HGL = < 54.258>;EGL= <
******************************************************************************
FLOW PROCESS FROM NODE 2003.00 TO NODE 2005.50 IS CODE = 1
UPSTREAM NODE 2005.50
59.728>;FLOWLINE= < 53.940>
ELEVATION = 63.82 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 40.22 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = 0.87
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.873 4.817
0.005 0.851 4.970
0.020 0.828 5.134
0.046 0.806 5.310
0.086 0.784 5.498
0.141 0.762 5.701
0.215 0.740 5.919
0.308 0.717 6.155
0.426 0.695 6.410
0.573 0.673 6.686
0.753 0.651 6.987
0.974 0.629 7.314
1.244 0.607 7.671
1.572 0.584 8.063
1.974 0.562 8.494
2.467 0.540 8.970
3.076 0.518 9.497
3.835 0.496 10.083
4.792 0.474 10.738
6.019 0.451 11.475
7.629 0.429 12.308
9.815 0.407 13.255
12.940 0.385 14.339
17.823 0.363 15.591
27.101 0.341 17.049
40.220 0.318 18.763
NODE 2005.50 : HGL = < 64. 693>;EGL= <
PRESSURE-f
ENERGY(FT) MOMENTUM(POUNDS)
1.233 73.01
1.234 73.08
1.238 73.31
1.244 73.70
1.254 74.26
1.267 75.01
1.284 75.96
1.306 77.14
1.334 78.54
1.368 80.21
1.409 82.16
1.460 84.43
1.521 87.04
1.595 90.04
1.683 93.47
1.790 97.40
1.919 101.88
2.075 106.99
2.265 112.84
2.497 119.54
2.783 127.24
3.137 136.11
3.580 146.40
4.140 158.40
4.857 172.49
5.788 189.17
65.053>;FLOWLINE= < 63.820>
******************************************************************************
FLOW PROCESS FROM NODE 2005.50 TO NODE 2005.51 IS CODE = 2
UPSTREAM NODE 2005.51 ELEVATION = 64.15 (FLOW IS SUBCRITICAL)
(NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 5.14 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =0.15
AVERAGED VELOCITY HEAD = 0.807 FEET
HMN = 0.15*(AVERAGED VELOCITY HEAD) = 0.15*( 0.807) =
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
18.00 INCHES
0.121
NODE 2005.51 : HGL = < 64.690>;EGL= < 65.943>;FLOWLINE= < 64.150>
******************************************************************************
Page 2
30
FLOW PROCESS FROM NODE 2005.51 TO NODE 2005.40 IS CODE = 1
UPSTREAM NODE 2005.40 ELEVATION = 66.41 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.01 INCHES
PIPE LENGTH = 65.73 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.87
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 0.872 4.815 1.233 72.99
0.015 0.859 4.910 1.233 73.02
0.063 0.845 5.008 1.234 73.11
0.147 0.831 5.111 1.237 73.26
0.271 0.817 5.219 1.240 73.47
0.440 0.803 5.331 1.245 73.74
0.659 0.789 5.449 1.251 74.09
0.934 0.775 5.572 1.258 74.51
1.272 0.762 5.700 1.266 75.00
1.684 0.748 5.835 1.277 75.57
2.178 0.734 5.976 1.289 76.22
2.768 0.720 6.124 1.303 76.97
3.469 0.706 6.280 1.319 77.80
4.301 0.692 6.444 1.337 78.73
5.289 0.678 6.616 1.358 79.76
6.464 0.664 6.797 1.382 80.91
7.869 0.651 6.988 1.409 82.16
9.560 0.637 7.189 1.440 83.54
11.618 0.623 7.402 1.474 85.05
14.159 0.609 7.627 1.513 86.70
17.368 0.595 7.865 1.556 88.50
21.548 0.581 8.118 1.605 90.46
27.274 0.567 8.386 1.660 92.59
35.835 0.554 8.671 1.722 94.91
51.367 0.540 8.974 1.791 97.43
65.730 0.540 8.978 1.792 97.46
NODE 2005.40 : HGL = < 67.282>;EGL= < 67.643>;FLOWLINE= < 66.410>
******************************************************************************
FLOW PROCESS FROM NODE 2005.40 TO NODE 2005.41 IS CODE = 2
UPSTREAM NODE 2005.41 ELEVATION = 66.74 (FLOW IS SUBCRITICAL)
(NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE)
18.00 INCHES
0.232
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 5.14 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 0.30
AVERAGED VELOCITY HEAD = 0.773 FEET
HMN = 0.30*(AVERAGED VELOCITY HEAD) = 0.30*( 0.773) =
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
"NODE 2005.41 : HGL = < 67.291>;EGL= < 68.476>;FLOWLINE= < 66.740>
******************************************************************************
FLOW PROCESS FROM NODE 2005.41 TO NODE
UPSTREAM NODE 2005.20 ELEVATION =
2005.20 IS CODE = 1
68.82 (FLOW IS SUPERCRITICAL)
Page 3
30
CALCULATE FRICTION LOSSES (LACFCD) : ^..^..^^
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.03 INCHES
PIPE LENGTH = 65.83 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) 0.54 CRITICAL DEPTH(FT) = 0.87
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.87
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.872 4,813
0.016 0.859 4.905
0.065 0.845 5.000
0.152 0.832 5.099
0.280 0.819 5.202
0.453 0.805 5.310
0.678 0.792 5.422
0.961 0.779 5.540
1.309 0.765 5,663
1.732 0.752 5.791
2,238 0.738 5.925
2,843 0.725 6.066
3,561 0.712 6.213
4,413 0.698 6.368
5,423 0.685 6.530
6,623 0.671 6.701
8,056 0.658 6.880
9,780 0.645 7.069
11,875 0.631 7.267
14,460 0.618 7.477
17,720 0.605 7.698
21.963 0.591 7.932
27.767 0.578 8.180
36.435 0.564 8.443
52.142 0,551 8.721
65.830 0,551 8.724
NODE 2005.20 • HGL = < 69, 692>;EGL= <
SPECIFIC PRESSURE+
ENERGY(FT) MOMENTUM(POUND:
1.232 72.98
1.233 73.00
1.234 73.08
1.236 73.22
1.239 73.42
1.243 73.67
1.249 73.99
1.255 74.38
1.263 74.84
1.273 75.37
1.284 75.97
1.297 76.66
1.311 77.43
1.328 78.29
1.347 79.24
1.369 80.29
1.394 81.44
1.421 82.70
1.452 84.09
1.487 85.59
1.525 87.23
1.569 89.01
1.617 90.95
1.672 93.05
1.733 95.32
1.733 95.35
70.052>;FLOWLINE= < 68.820>
******************************************************************************
FLOW PROCESS FROM NODE 2005.20 TO NODE 2005.21 IS CODE = 2
UPSTREAM NODE 2005.21 ELEVATION = 69.15 (FLOW IS SUBCRITICAL)
(NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE)
18.00 INCHES
0.916
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 5.14 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 1.30
AVERAGED VELOCITY HEAD = 0.705 FEET
HMN = 1.30*(AVERAGED VELOCITY HEAD) = 1.30*( 0.705) =
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
"NODE '2005.21 : HGL = < 69.726>;EGL= < 70.775>;FLOWLINE= < 69.150>
******************************************************************************
FLOW PROCESS FROM NODE 2005.21 TO NODE 2005.22 IS CODE = 1
UPSTREAM NODE 2005.22 ELEVATION = 69.60 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 7.77 FEET MANNING'S N = 0.01300
Page 4
30
NORMAL DEPTH(FT) 0.46 CRITICAL DEPTH(FT) = 0.87
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.71
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
0.282
0.595
0.945
1.333
1.764
2.244
2.778
3.374
4.039
4.782
5.617
6.557
7.621
7.770
FLOW DEPTH
(FT)
0.706
0.697
0.687
0.677
0.667
0.657
0.647
0.637
0.627
0.617
0.607
0.597
0.588
0.578
0.576
VELOCITY
(FT/SEC)
6.280
6.396
6.516
6.640
6.770
6.904
7.043
7.188
7.339
7.495
7.658
7.828
8.006
8.190
8.214
SPECIFIC
ENERGY(FT)
1.319
1.332
1.346
1.362
1.379
1.397
1.418
1.440
1.464
1.490
1.519
1.550
1.583
1.620
1.625
PRESSURE-f
MOMENTUM(POUNDS)
77.81
78.46
79.17
79.92
80.74
81.61
82.54
83.54
84.60
85.74
86.94
88.23
89.59
91.04
91.22
NODE 2005.22 : HGL = < 70.306>;EGL= < 70.919>;FLOWLINE= < 69.600>
*******************************************************************************
FLOW PROCESS FROM NODE 2005.22 TO NODE 2005.23 IS CODE = 2
UPSTREAM NODE 2005.23 ELEVATION = 70.34 (FLOW IS SUPERCRITICAL)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 5.14 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 1.45
AVERAGED VELOCITY HEAD = 1.357 FEET
HMN = 1.45*(AVERAGED VELOCITY HEAD) = 1.45*( 1.357) =
18.00 INCHES
1.967
NODE 2005.23 : HGL 70.787>;EGL= < 72,888>;FLOWLINE= < 70,340>
******************************************************************************
FLOW PROCESS FROM NODE 2005,23 TO NODE 2005,10 IS CODE = 1
UPSTREAM NODE 2005,10 ELEVATION = 71,93 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5,14 CFS PIPE DIAMETER = 18,00 INCHES
PIPE LENGTH = 7.15 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.87
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.87
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
0.005
0.021
0.050
0.092
0.152
0.230
0.330
FLOW DEPTH
(FT)
0.873
0.851
0.829
0.807
0.785
0.763
0.742
0.720
VELOCITY
(FT/SEC)
4.817
4.968
5.129
5.302
5.487
5.686
5.900
6.131
Page 5
SPECIFIC
ENERGY(FT)
1.233
1.234
1.
1.
1.
1.
1.
1.
238
244
253
266
282
304
PRESSURE-f
MOMENTUM(POUNDS)
73.01
73.08
73.30
73.68
74.22
74.95
75.87
77.01
30 „
0-457 0.698 6.380 1.330 78.37
0.613 0.676 6.649 1.363 79.98
0 805 0.654 6.942 1.403 81,86
1^040 0,632 7,260 1.451 84.05
1 326 0.610 7.607 1.510 86.56
1^675 0.589 7.987 1.580 89.45
2 101 0.567 8.404 1.664 92.75
7 fi77 0 545 8.863 1.765 9b.bi
3:264 0.523 9.370 1.887 100.79
4.063 0.501 9.934 2.034 105.68
5.068 0.479 10.561 2.212 111.25
fi 0 457 11.265 2.429 117.62
7:i50 0:447 11.628 2.548 120.94
"'NODr'2005'irrHGL~='7"'72"803>^ < 73.163>; FLOWLINE= < 71.930>
******************************************************************************
FLOW PROCESS FROM NODE 2005.10 TO NODE 2005 10 IS CODE =8
UPSTREAM NODE 2005.10 ELEVATION = 71^93^ (FLOW ISSUBCRITICAL)
'"CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 4.82 FEET/SEC. VELOCITY HEAD = 0.360 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = - 2*C__0.360)_=__0.072
''NODr'2005'l0'rHGL"='7''7r235>;E^^^ < 73.235>; FLOWLINE= < 71.930>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2005.10 FLOWLINE ELEVATION = 71.93
ASSUMED UPSTREAM CONTROL HGL = 72.80 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 6
103
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN ECR STA 454-f99.83 AND CI #4
* 100 YEAR STORM ULTIMATE CONDITION
* REVISED BY MC
**************************************************************************
FILE NAME: 103.DAT
TIME/DATE OF STUDY: 11:13 10/16/2014 *********V*******************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
2007.00- 0.84 DC 66.92 0.41* 119.52
} FRICTION „ cr n.-^
2010.00- 0.84*DC 66.92 0.84*Dc 66.92
} CATCH BASIN „ „^
2010.00- 1.26* 36.83 0.84 Dc _ 23.08_
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ^
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
****f****^****fi*************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2007.00 FLOWLINE ELEVATION = 54.02
PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 54.400 FEET
*NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.38 FT.)
IS LESS THAN CRITICAL DEPTH( 0.84 FT.)
===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
FOR UPSTREAM RUN ANALYSIS
"NODE"2007.00 : HGL = < 54.428>;EGL= < 56.810>; FLOWLINE= < 54.02O>
******************************************************************************
FLOW PROCESS FROM NODE 2007.00 TO NODE 2010.00 IS CODE = 1
UPSTREAM NODE 2010.00 ELEVATION = 58.64 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 47.98 FEET MANNING'S N = 0.01300
'NORMAL DEPTH (FT) = 0.39 *^'^^I^E^!:_^!!™^!^lL:
Page 1
103
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.843 4.702
0.009 0.825 4.830
0.036 0.807 4.965
0.083 0.789 5.108
0.155 0.770 5.260
0.253 0.752 5.422
0.381 0.734 5.593
0.543 0.716 5.776
0.746 0.698 5.971
0.995 0.680 6.179
1.297 0.662 6.401
1.662 0,643 6.640
2.102 0,625 6.896
2.631 0,607 7.171
3.268 0,589 7.468
4.036 0,571 7.789
4.969 0,553 8.136
6.109 0.535 8.513
7.518 0.516 8.923
9.289 0.498 9.371
11.563 0.480 9.861
14.579 0.462 10.400
18.787 0.444 10.994
25.198 0.426 11.652
37.062 0.408 12.383
47.980 0.408 12.383
NODE 2010.00 : HGL = < 59.483>;EGL= <
PRESSURE+ ENERGY(FT) MOMENTUM(POUND;
1.186 66.92
1.187 66.97
1.190 67.12
1.194 67.37
1.200 67.74
1.209 68.22
1.220 68.84
1.234 69.58
1.252 70.47
1.273 71.52
1.298 72.73
1.328 74.11
1.364 75.70
1.406 77.49
1.456 79.51
1.513 81.79
1.581 84.34
1.661 87.20
1.753 90.40
1.863 93.98
1.991 97.99
2.142 102.47
2.322 107.50
2.535 113.16
2.790 119.52
2.790 119.52
59.826>;FL0WLINE= < 58.640>
******************************************************************************
FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 8
UPSTREAM NODE 2010.00 ELEVATION = 58.64 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 4.70 FEET/SEC. VELOCITY HEAD = 0.344 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.344) = 0.069^
" NODE 2010.00 : HGL = < 59.895>;EGL= < 59.895>;FLOWLINE= < 58.640>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 2010.00 FLOWLINE ELEVATION = 58.64
ASSUMED UPSTREAM CONTROL HGL = 59.48 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
40
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #5 *
* EL CAMINO REAL STA 463-f02 *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *
**************************************************************************
FILE NAME: 40.DAT
TIME/DATE OF STUDY: 11:17 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
3001.00- 3.26* 277.87 0.27 10.52
} FRICTION
3000.00- 2.14* 153.84 0.37 Dc 8.92
} CATCH BASIN
3000.00- 2.14* 153.40 0.37 Dc 3.27
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3001.00 FLOWLINE ELEVATION = 73.14
PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 76.400 FEET
NODE 3001.00 : HGL = < 76.400>;EGL= < 76.405>;FLOWLINE= < 73.140>
******************************************************************************
FLOW PROCESS FROM NODE 3001.00 TO NODE 3000.00 IS CODE = 1
UPSTREAM NODE 3000.00 ELEVATION = 74.27 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 56.67 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 1.00)/( 105.057))**2 = 0.00009
HF=L*SF = ( 56.67)*(0.00009) = 0.005
NODE 3000.00 : HGL = < 76.405>;EGL= < 76,410>;FLOWLINE= < 74.270>
******************************************************************************
Page 1
40
FLOW PROCESS FROM NODE 3000.00 TO NODE 3000.00 IS CODE = 8
UPSTREAM NODE 3000.00 ELEVATION = 74.27 (FLOW IS UNDER PRESSURE)^
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 0.57 FEET/SEC. VELOCITY HEAD = 0.005 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.005) =0.001
NODE 3000.00 : HGL = < 76.411>;EGL= < 76.411>;FLOWLINE= < 74.270>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3000.00 FLOWLINE ELEVATION = 74.27
ASSUMED UPSTREAM CONTROL HGL = 74.64 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
50
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #6 *
* EL CAMINO REAL STA 465-f49.18 *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *
**************************************************************************
FILE NAME: 50.DAT
TIME/DATE OF STUDY: 11:23 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN NODE
NUMBER
3003.00-
MODEL
PROCESS
PRESSURE
HEAD(FT)
0.92 DC
PRESSURE-f
MOMENTUM(POUNDS)
82.51
FLOW
DEPTH(FT)
0.64*
PRESSURE-f
MOMENTUM(POUNDS)
97.89
}
3003.10-
FRICTION
0.92 DC 82.51 0.72* 89.12
}
3003.11-
FRICTION
0.92*DC 82.51 0.90*DC 82.56
}
3007.00-
FRICTION
0.92*DC 82.51 0.92*DC 82.51
}
3007.00-
CATCH BASIN
1.38* 46.30 0.92 DC 27.99
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3003.00 FLOWLINE ELEVATION = 71.65
PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 71.700 FEET
*NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.05 FT.)
IS LESS THAN CRITICAL DEPTH( 0.92 FT.)
===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
FOR UPSTREAM RUN ANALYSIS
NODE 3003.00 : HGL = < 72.289>;EGL= < 73.248>;FLOWLINE= < 71.650>
******************************************************************************
FLOW PROCESS FROM NODE 3003.00 TO NODE 3003.10 IS CODE = 1
UPSTREAM NODE 3003.10 ELEVATION = 72.38 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 31.54 FEET MANNING'S N = 0.01300
Page 1
50
NORMAL DEPTH(FT) 0.62 CRITICAL DEPTH(FT) = 0.92
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.72
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND
0.000 0.724 6.673 1.416 89.12
0.645 0.720 6.725 1.423 89.46
1.335 0.715 6.778 1.429 89.81
2.073 0.711 6.832 1.436 90.17
2.864 0.707 6.886 1.444 90.54
3.713 0.702 6.941 1.451 90.92
4.627 0.698 6.997 1.459 91.32
5.612 0.694 7.054 1.467 91.72
6.676 0.689 7.112 1.475 92.14
7.831 0.685 7.171 1.484 92.57
9.086 0.681 7.231 1.493 93.01
10.457 0.676 7.292 1.502 93.46
11.961 0.672 7.354 1.512 93.93
13.619 0.668 7.416 1.522 94.41
15.459 0.663 7.480 1.533 94.90
17.514 0.659 7.545 1.543 95.41
19.832 0.655 7.611 1.555 95.93
22.473 0.650 7.678 1.566 96.46
25.526 0.646 7.746 1.578 97.01
29.118 0.642 7.816 1.591 97.57
31.540 0.639 7.855 1.598 97.89
NODE 3003.10 : HGL = < 73. 104>;EGL= < 73.796>;FL0WLINE= < 72.380>
******************************************************************************
FLOW PROCESS FROM NODE 3003.10 TO NODE 3003.11 IS CODE = 1
UPSTREAM NODE 3003.11 ELEVATION = 72.82 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 29.74 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) 0.70 CRITICAL DEPTH(FT) 0.92
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 0.898 5.104 1.303 82.56
0.093 0.890 5.159 1.304 82.61
0.227 0.882 5.216 1.305 82.69
0.405 0.874 5.274 1.306 82.78
0.631 0.866 5.333 1.308 82.90
0.910 0.858 5.394 1.310 83.03
1.249 0.850 5.456 1.313 83.19
1.653 0.842 5.520 1.316 83.38
2.131 0.834 5.585 1.319 83.58
2.692 0.826 5.652 1.322 83.81
3.347 0.818 5.721 1.327 84.07
4.108 0.810 5.791 1.331 84.35
4.994 0.802 5.864 1.336 84.65
6.023 0.794 5.938 1.342 84.99
Page 2
50
7,221 0.786 6.014
8,621 0.778 6.092
10,267 0.770 6.172
12.216 0.762 6.255
14.552 0.754 6.340
17.395 0.746 6.427
20.931 0.738 6.516
25.473 0.730 6.608
29.740 0.724 6.673
1.348
1.355
1.362
1.370
1.378
1.388
1.398
1.408
1.416
85.35
85.73
86.15
86.60
87.08
87.58
88.13
88.70
89.12
NODE 3003.11 : HGL = < 73.718>;EGL= < 74.123>;FLOWLINE= < 72.820>
******************************************************************************
FLOW PROCESS FROM NODE 3003.11 TO NODE 3007.00 IS CODE = 1
UPSTREAM NODE 3007.00 ELEVATION = 73.06 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 37.30 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 0.92
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.916 4.987
0.003 0.915 4.992
0.012 0.915 4.997
0.029 0.914 5.001
0.052 0.913 5.006
0.084 0.912 5.011
0.125 0.912 5.015
0.177 0.911 5.020
0.239 0.910 5.025
0.314 0.909 5.030
0.404 0.909 5.035
0.509 0.908 5.039
0.634 0.907 5.044
0.779 0.907 5.049
0.951 0.906 5.054
1.152 0.905 5.059
1.390 0.904 5.064
1.673 0.904 5.068
2.014 0.903 5.073
2.430 0.902 5.078
2.948 0.901 5.083
3.615 0.901 5.088
4.518 0.900 5.093
5.849 0.899 5.098
8.233 0.899 5.103
37.300 0.898 5.104
NODE 3007.00 HGL = < 73. 976>;EGL= <
SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUND;
1.302 82.51
1.302 82.51
1.302 82.51
1.302 82.51
1.302 82.51
1.302 82.52
1.303 82.52
1.303 82.52
1.303 82,52
1.303 82,52
1.303 82.52
1.303 82.52
1.303 82.52
1.303 82.53
1.303 82.53
1.303 82.53
1.303 82.53
1.303 82.54
1.303 82.54
1.303 82.54
1.303 82.54
1.303 82.55
1.303 82.55
1.303 82.56
1.303 82.56
1.303 82.56
74.362>;FL0WLINE= < 73.060>
******************************************************************************
FLOW PROCESS FROM NODE 3007.00 TO NODE 3007.00 IS CODE = 8
UPSTREAM NODE 3007.00 ELEVATION = 73.06 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES
Page 3
50
FLOW VELOCITY = 4.99 FEET/SEC. VELOCITY HEAD = 0.386 FEET
CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = •2*C _0-386)_= _0.077
"'NODE'"3007'00'rHGL'='<'' 74.440>;EGL= < 74.440>;FLOWLINE= < 73.060>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA: ^.,*-rxAK, 73
NODE NUMBER = 3007.00 FLOWLINE ELEVATION = 73.06
ASSUMED UPSTREAM CONTROL HGL = 73.98 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 4
60
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN AND CI #7 *
* EL CAMINO REAL STA 467-fOO *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *
**************************************************************************
FILE NAME: 60.DAT
TIME/DATE OF STUDY: 11:27 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
3010.00- 2.12* 161.54 0.48 44.08
} FRICTION
3009.00- 1.44* 86.75 0.67 Dc 37.66
} CATCH BASIN
3009.00- 1.50* 81.46 0.67 Dc 13.38
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3010.00 FLOWLINE ELEVATION = 65.98
PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 68.100 FEET
NODE 3010.00 : HGL = < 68.100>;EGL= < 68.147>;FL0WLINE= < 65.980>
******************************************************************************
FLOW PROCESS FROM NODE 3010.00 TO NODE 3009.00 IS CODE = 1
UPSTREAM NODE 3009.00 ELEVATION = 66.69 (FLOW SEALS IN REACH)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 36.67 FEET MANNING'S N = 0.01300
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.12
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f
Page 1
60
CONTROL(FT)
0.000
33.520
HEAD(FT)
2.120
1.500
(FT/SEC)
1.749
1.749
ENERGY(FT)
2.167
1.547
MOMENTUM(POUNDS)
161.54
93.17
NORMAL DEPTH(FT) 0.47 CRITICAL DEPTH(FT) 0.67
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
33.520
35.284
36.670
FLOW DEPTH
(FT)
1.500
1.467
1.440
VELOCITY
(FT/SEC)
1.748
1.758
1.772
SPECIFIC
ENERGY(FT)
1.547
1.515
1.489
PRESSURE-f
MOMENTUM(POUNDS)
93.17
89.57
86.75
NODE 3009.00 : HGL = < 68.130>;EGL= < 68.179>;FL0WLINE= < 66.690>
******************************************************************************
FLOW PROCESS FROM NODE 3009.00 TO NODE 3009.00 IS CODE = 8
UPSTREAM NODE 3009.00 ELEVATION = 66.69 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 1.77 FEET/SEC. VELOCITY HEAD = 0.049 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.049) = 0.010
NODE 3009.00 : HGL = < 68.189>;EGL= < 68.189>;FLOWLINE= < 66.690>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 3009.00 FLOWLINE ELEVATION = 66.69
ASSUMED UPSTREAM CONTROL HGL = 67.36 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
•
70
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #8 *
* EL CAMINO REAL STA 469-fOO *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *
**************************************************************************
FILE NAME: 70.DAT
TIME/DATE OF STUDY: 11:32 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN NODE
NUMBER
4000.00-
MODEL
PROCESS
PRESSURE
HEAD(FT)
1.11 DC
PRESSURE-f
MOMENTUM(POUNDS)
154.98
FLOW
DEPTH(FT)
0.92*
PRESSURE-f
MOMENTUM(POUNDS)
163.27
}
4004.00-
FRICTION
1.11*DC 154.98 1.11*DC 154.98
}
4004.10-
JUNCTION
1.05* 56.12 0.57 47.78
}
4006.00-
FRICTION
0.82* 45.70 0.71 DC 44.24
}
4006.00-
CATCH BASIN
1.05* 28.81 0.71 DC 15.61
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 4000.00 FLOWLINE ELEVATION = 63.36
PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 63.800 FEET
*NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.44 FT.)
IS LESS THAN CRITICAL DEPTH( 1.11 FT.)
===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
FOR UPSTREAM RUN ANALYSIS
NODE 4000.00 : HGL = < 64.281>;EGL= < 65.013>;FLOWLINE= < 63.360>
******************************************************************************
FLOW PROCESS FROM NODE 4000.00 TO NODE 4004.00 IS CODE = 1
UPSTREAM NODE 4004.00 ELEVATION = 64.23 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
Page 1
PIPE FLOW
PIPE LENGTH =
70
9.70 CFS PIPE DIAMETER = 24.00 INCHES
86.50 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = 1.11
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.11
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(Fr) MOMENTUM(POUNDS)
0.000 1.112 5.403 1.566 154.98
0.030 1.104 5.451 1.566 154.99
0.109 1.096 5.500 1.566 155.04
0.242 1.088 5.550 1.567 155.10
0.433 1.080 5.600 1.568 155.19
0.688 1.072 5.652 1.569 155.31
1.014 1.065 5.705 1.570 155.46
1.420 1.057 5.759 1.572 155.63
1.914 1.049 5.814 1.574 155.83
2.506 1.041 5.870 1.576 156.06
3.212 1.033 5.927 1.578 156.31
4.045 1.025 5.985 1.581 156.60
5.026 1.017 6.044 1.584 156.91
6.178 1.009 6.105 1.588 157.26
7.531 1.001 6.166 1.592 157.63
9.125 0.993 6.229 1.596 158.04
11.010 0.985 6.294 1.600 158.48
13.257 0.977 6.359 1,605 158.96
15.961 0.969 6.426 1,611 159.46
19.266 0.961 6.495 1,617 160.00
23.391 0.953 6.564 1,623 160.58
28.708 0.945 6.636 1,629 161.19
35.909 0.937 6.709 1,637 161.84
46.552 0.929 6.783 1.644 162.53
65.635 0.921 6.859 1.652 163.26
86.500 0.921 6.860 1.653 163.27
NODE 4004.00 : HGL = < 65.342>;EGL= < 65.796>;FLOWLINE= < 64.230>
******************************************************************************
FLOW PROCESS FROM NODE 4004.00 TO NODE 4004.10 IS CODE = 5
UPSTREAM NODE 4004.10 ELEVATION = 64.73 (FLOW IS SUBCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
3.50
9.70
6.20
0.00
DIAMETER ANGLE FLOWLINE CRITICAL
(INCHES)
18.00
24.00
18.00
0.00
(DEGREES)
0.00
45.00
0.00
ELEVATION
64.73
64.23
64.77
0.00
DEPTH(FT.)
0.71
1.11
0.96
0.00
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS (DELTA4) )/((Al-fA2) * 16.1)-fFRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00159
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00515
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00337
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000
JUNCTION LOSSES = (DY+HVl-HV2)-f(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.092)-f( 0.000) = 0.092
Page 2
VELOCITY
(FT/SEC)
2.653
5.397
5.177
0.000
FEET
70
"NODE" 4004.10 : HGL = < 65.779>;EGL= < 65.888>;FLOWLINE= < 64.730>
******************************************************************************
FLOW PROCESS FROM NODE 4004.10 TO NODE 4006.00 IS CODE = 1
UPSTREAM NODE 4006.00 ELEVATION = 64.89 (FLOW IS SUBCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 7.93 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = 0.71
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 1.049 2.652 1.158 56.12
0.553 1.035 2.690 1.148 55.28
1.099 1.022 2.729 1.137 54.47
1.637 1.008 2.770 1.128 53.68
2.167 0.995 2.812 1.118 52.92
2.689 0.982 2.855 1.108 52.18
3.201 0.968 2.901 1.099 51.47
3.703 0.955 2.948 1.090 50.79
4.194 0.941 2.997 1.081 50.14
4.673 0.928 3.048 1.072 49.52
5.140 0.915 3.101 1.064 48.93
5.593 0.901 3.155 1.056 48.36
6.031 0.888 3.213 1.048 47.83
6.453 0.874 3.272 1.041 47.33
6.858 0.861 3.334 1.034 46.87
7.243 0.848 3.398 1.027 46.44
7.607 0.834 3.465 1.021 46.04
7.930 0.822 3.532 1.015 45.70
NODE 4006.00 : HGL = < 65.712>;EGL= < 65.905>;FLOWLINE= < 64.890>
******************************************************************************
FLOW PROCESS FROM NODE 4006.00 TO NODE 4006.00 IS CODE = 8
UPSTREAM NODE 4006.00 ELEVATION = 64.89 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 3.53 FEET/SEC. VELOCITY HEAD = 0.194 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.194) = 0.039
NODE 4006.00 : HGL = < 65.944>;EGL= < 65.944>;FLOWLINE= < 64.890>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 4006.00 FLOWLINE ELEVATION = 64.89
ASSUMED UPSTREAM CONTROL HGL = 65.60 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 3
80
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #9 *
* EL CAMINO REAL STA 472-f85 *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC
**************************************************************************
FILE NAME: 80.DAT
TIME/DATE OF STUDY: 11:53 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
5000.00- 2.06* 151.58 0.45 33.18
} FRICTION } HYDRAULIC JUMP
5002.00- 0.60*DC 29.42 0.60*Dc 29.42
} CATCH BASIN
5002.00- 0.88* 15.74 0.60 Dc 10.53
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 5000.00 FLOWLINE ELEVATION = 46.94
PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 49.000 FEET
NODE 5000.00 : HGL = < 49.000>;EGL= < 49.032>;FLOWLINE= < 46.940>
******************************************************************************
FLOW PROCESS FROM NODE 5000.00 TO NODE 5002.00 IS CODE = 1
UPSTREAM NODE 5002.00 ELEVATION = 48.49 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 99.73 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) = 0.60
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60
Page 1
80
GRADUALLY VARIED FLOW PROFILE
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 0.605
0.012 0.599
0.050 0.592
0.116 0.586
0.214 0.580
0.345 0.574
0.515 0.567
0.727 0.561
0.987 0.555
1.300 0.549
1.674 0.542
2.117 0.536
2.641 0.530
3.258 0.524
3.985 0.517
4.843 0.511
5.861 0.505
7.077 0.499
8.545 0.492
10.343 0.486
12.594 0.480
15.502 0.474
19.450 0.467
25.299 0.461
35.812 0.455
99.730 0.454
VELOCITY
(FT/SEC)
820
873
928
984
042
101
4.162
4.225
289
356
424
494
566
4.641
4.717
4.796
4.878
4.962
5.048
5.138
5.230
5.326
5.424
5.526
5.632
5.643
3,
3.
3.
3.
4.
4.
SPECIFIC PRESSURE-f
ENERGY(FT) MOMENTUM(POUND
0.832 29.42
0.832 29.42
0.832 29.44
0.833 29.46
0.834 29.50
0.835 29.55
0.837 29.61
0.839 29.68
0.841 29.77
0.843 29.87
0.847 29.98
0.850 30.10
0.854 30.24
0.858 30.39
0.863 30.56
0.869 30.74
0.875 30.94
0.881 31.15
0.888 31.38
0.896 31.62
0.905 31.89
0.914 32.17
0.925 32.48
0.936 32.80
0.948 33,14
0.949 33.18
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.06
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE
CONTROL(FT) H EAD(FT)
0.000 2.060
37.452 1.500
VELOCITY SPECIFIC
(FT/SEC) ENERGY(FT)
1.443 2.092
1.443 1.532
PRESSURE-f
MOMENTUM(POUNDS)
151.58
89.83
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
37.452 1.500
39.813 1.464
42.146 1.428
44.461 1.393
46.761 1.357
49.048 1.321
51.322 1.285
53.582 1.249
55.827 1.214
58.057 1.178
60.269 1.142
62.462 1.106
64.632 1.070
66.776 1.035
68.889 0.999
VELOCITY
(FT/SEC)
1.443
1.452
1.468
1.490
,516
,547
,582
.621
.664
.713
.766
.825
.890
.961
.040
Page
SPECIFIC
ENERGY(FT)
1.532
1.497
1.462
1.427
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2,
393
358
324
290
257
223
190
158
,126
,094
1.063
PRESSURE-f
MOMENTUM(POUNDS)
89.83
85.94
82.12
78.38
74.72
71.15
67.68
64.31
61.06
57.92
54.91
52.03
49.28
46.68
44.22
80
70.966 0.963 2.127 1.033 41.91
72.999 0.927 2.223 1.004 39.77
74.979 0.891 2.329 0,976 37.79
76.893 0.856 2.448 0,949 35.99
78.726 0.820 2.580 0,923 34.38
80.454 0.784 2.728 0,900 32.96
82.048 0.748 2.894 0,878 31.75
83.465 0.712 3.082 0,860 30.78
84.640 0.677 3.295 0.845 30.04
85.476 0.641 3.539 0.835 29.58
85.808 0.605 3.820 0.832 29.42
99.730 0.605 3.820 0.832 29.42
END OF HYDRAULIC JUMP ANALYSIS
I PRESSURE-fMOMENTUM BALANCE OCCURS AT 81.19 FEET UPSTREAM OF NODE 5000.00
I DOWNSTREAM DEPTH = 0.767 FEET, UPSTREAM CONJUGATE DEPTH = 0.469 FEET
NODE 5002.00 : HGL = < 49.095>;EGL= < 49.322>;FL0WLINE= < 48.490>
******************************************************************************
FLOW PROCESS FROM NODE 5002.00 TO NODE 5002.00 IS CODE = 8
UPSTREAM NODE 5002.00 ELEVATION = 48.49 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 3.82 FEET/SEC. VELOCITY HEAD = 0.227 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.227) = 0.045
NODE 5002.00 : HGL = < 49.367>;EGL= < 49.367>;FLOWLINE= < 48.490>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 5002.00 FLOWLINE ELEVATION = 48.49
ASSUMED UPSTREAM CONTROL HGL = 49.09 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 3
90
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #10 *
* EL CAMINO REAL STA. 474-f70.79
* 100 YEAR ULTIMATE CONDITIONS REVISED BY MC
**************************************************************************
FILE NAME: 90.DAT
TIME/DATE OF STUDY: 12:01 10/16/2014
*-*****************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
5000.30- 3.49* 328.47 0.43 116.30
} FRICTION ^ ^ ,-,n CD
91 00- 3.44* 322.61 0.42 120.63
} MANHOLE/INLET/OUTLET ^ _
91 00- 3.29* 307.30 0.40 125.69
} FRICTION } HYDRAULIC JUMP
100.40- 0.85*Dc 68.55 0.85*Dc 68.55
} CATCH BASIN ^ „^ -,o cn
100.40- 1.27* 37.78 0.85 DC
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25^^
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 5000.30 FLOWLINE ELEVATION = 46.61
PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 50.100 FEET
"NODE "5000'30"rHGL = < 50.100>;EGL= < 50.219>; FLOWLINE= < 46.610>
******************************************************************************
FLOW PROCESS FROM NODE 5003.00 TO NODE 91.00 IS CODE = 1
UPSTREAM NODE 91.00 ELEVATION = 46.67 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 3.17 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 4.90)/( 105.050))**2 = 0.00218
HF=L*SF = ( 3.17)*(0.00218) =0.007
Page 1
90
50.107>;EGL= < 50.226>;FLOWLINE= < 46.670> NODE 91.00 : HGL = <
******************************************************************************
FLOW PROCESS FROM NODE 91.00 TO NODE 91.00 IS CODE = 2
UPSTREAM NODE 91.00 ELEVATION = 46.83 (FLOW IS UNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 4.90 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =0.15
FLOW VELOCITY = 2.77 FEET/SEC. VELOCITY HEAD =
HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.119) = 0.018
18.00 INCHES
0.119 FEET
NODE 91.00 : HGL = < 50.125>;EGL= < 50.244>;FLOWLINE= < 46.830>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 100.40
100.30 TO NODE
ELEVATION =
100.40 IS CODE = 1
49.20 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.01 INCHES
PIPE LENGTH = 11.94 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL'DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.85
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.851 4.732
0.005 0.830 4.879
0.022 0.809 5,036
0.052 0.788 5,204
0.097 0.767 5.383
0.160 0.746 5.576
0.242 0.725 5.782
0.347 0.704 6.005
0.479 0.684 6.245
0.643 0.663 6.504
0.844 0.642 6.785
1.089 0.621 7.089
1.387 0.600 7.421
1.749 0.579 7.782
2.191 0.558 8.178
2.731 0.537 8.613
3.394 0.516 9.093
4.217 0.495 9.623
5.249 0.474 10.213
6.566 0.453 10.871
8.286 0.432 11.609
10.606 0.411 12.442
11.940 0.403 12.810
SPECIFIC PRESSURE-f
ENERGY(FT) MOMENTUM(POUNC
1.199 68.55
1.200 68.62
1.203 68.82
1.209 69.16
1.217 69.66
1.229 70.32
1.245 71.15
1.265 72.18
1.289 73.41
1.320 74.87
1.357 76.57
1.402 78.54
1.455 80.81
1.520 83.40
1.597 86.36
1.690 89.73
1.801 93.56
1.934 97.92
2.095 102.87
2.289 108.52
2.526 114.96
2.817 122.34
2.953 125.63
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.29
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC
Page 2
PRESSURE-f
CONTROL(FT)
0.000
9.136
HEAD(FT)
3.295
1.501
(FT/SEC)
2.768
2.768
90
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) =
ENERGY(FT)
3.414
1.620
MOMENTUM(POUNDS)
307.30
109.20
1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN
9.136 1.501 2.767 1.620 109.20
9.263 1.475 2.778 1.595 106.43
9.387 1.449 2.798 1.571 103.76
9.508 1.423 2.823 1.547 101.18
9.627 1.397 2.854 1.524 98.67
9.743 1.371 2.889 1.501 96.23
9.857 1.345 2.929 1.478 93.87
9.969 1.319 2.973 1.456 91.59
10.079 1.293 3.021 1.435 89.40
10.186 1.267 3.073 1.414 87.29
10.290 1.241 3.130 1.393 85.26
10.392 1.215 3.191 1.373 83.33
10.491 1.189 3.258 1.354 81.49
10.586 1.163 3.329 1.335 79.75
10.678 1.137 3.405 1.317 78.12
10.766 1.111 3.488 1.300 76.59
10.849 1.085 3.576 1.284 75.18
10.928 1.059 3.670 1.268 73.88
11.001 1.033 3.772 1.254 72.71
11.068 1.007 3.880 1.241 71.66
11.128 0.981 3.997 1.229 70.75
11.180 0.955 4.123 1.219 69.99
11.223 0.929 4.259 1.211 69.38
11.256 0.903 4.404 1.204 68.93
11.277 0.877 4.562 1.200 68.65
11.285 0.851 4.732 1.199 68.55
11.940 0.851 4.732 1.199 68.55
END OF HYDRAULIC JUMP ANALYSIS
PRESSURE-fMOMENTUM BALANCE OCCURS AT 10.51 FEET UPSTREAM OF NODE 100.30
DOWNSTREAM DEPTH = 1.183 FEET, UPSTREAM CONJUGATE DEPTH = 0.597 FEET
NODE 100.40 : HGL = < 50.051>;EGL= < 50.399>;FLOWLINE= < 49.200>
******************************************************************************
FLOW PROCESS FROM NODE 100.40 TO NODE 100.40 IS CODE = 8
UPSTREAM NODE 100.40 ELEVATION = 49.20 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.01 INCHES
FLOW VELOCITY = 4.73 FEET/SEC. VELOCITY HEAD = 0.348 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.348) = 0.070
NODE 100.40 : HGL = < 50.468>;EGL= < 50.468>;FL0WLINE= < 49.200>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 100.40
ASSUMED UPSTREAM CONTROL HGL =
FLOWLINE ELEVATION = 49.20
50.05 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 3
cm
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI#11 *
* EL CAMINO REAL STA 477-fl5 *
* 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *
**************************************************************************
FILE NAME: CIll.DAT
TIME/DATE OF STUDY: 12:13 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT)
3.00*
MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
6004.00-
HEAD(FT)
3.00* 257.85 0.35 57.63
} FRICTION
6000.00-2.61* 214.43 0.35 58.62
} FRICTION
6000.10-1.63* 106.41 0.39 51.52
} FRICTION
6000.20-1.11* 55.35 0.43 45.69
} FRICTION } HYDRAULIC JUMP
6000.00-0.66*Dc 35.94 0.66*Dc 35.94
} CATCH BASIN
6000.00-0.96* 19.30 0.66 DC 12.79
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 6004.00 FLOWLINE ELEVATION = 45.20
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 48.200 FEET
NODE 6004,00 : HGL = < 48.200>;EGL= < 48.244>;FLOWLINE= < 45.200>
******************************************************************************
FLOW PROCESS FROM NODE 6004.00 TO NODE 6000.00 IS CODE = 1
UPSTREAM NODE 6000.00 ELEVATION = 45.60 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 7.83 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 2.98)/( 105.042))**2 = 0.00080
Page 1
HF=L*SF = (
NODE 6000.00
7.83)*(0.00080) =
48.206>;EGL= <
cm
0.006
HGL = < 48.250>;FLOWLINE= < 45.600>
******************************************************************************
FLOW PROCESS FROM NODE 6000.00 TO NODE 6000.10 IS CODE = 1
UPSTREAM NODE 6000.10 ELEVATION = 46.59 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 12.87 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 2.98)/( 105.029))**2 = 0.00081
HF=L*SF = ( 12.87)*(0.00081) = 0.010
"NODE"'6000.10 : HGL = < 48.217>;EGL= < 48.261>;FLOWLINE= < 46.590>
******************************************************************************
FLOW PROCESS FROM NODE 6000.10 TO NODE 6000.20 IS CODE = 1
UPSTREAM NODE 6000.20 ELEVATION = 47.09 (FLOW SEALS IN REACH)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 8.00 FEET MANNING'S N = 0.01300
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.63
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE
CONTROL(FT) HEAD(FT)
0.000 1.627
2.053 1.500
VELOCITY SPECIFIC PRESSURE-f
(FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
1.686 1.671 106.41
1.686 1.544 92.44
NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.66
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
2.053 1.500 1.686
2.592 1.466 1.695
3.123 1.432 1.713
3.649 1.399 1.736
4.170 1.365 1.764
4.687 1.331 1.797
5.200 1.297 1.834
5.708 1.264 1.875
6.211 1.230 1.921
6.709 1.196 1.972
7.201 1.162 2.027
7.685 1.129 2.088
8.000 1.106 2.132
NODE 6000.20 • HGL = < 48. 196>;EGL= <
SPECIFIC
ENERGY(FT)
1.544
1.511
1.478
1.446
1.413
1.381
1.350
1.318
1.287
1.257
1.226
1.196
1.177
PRESSURE-f
MOMENTUM(POUNDS)
92.44
88.78
85.20
81.70
78.27
74.94
71.69
68.55
65.51
62.57
59.76
57.06
55.35
48.267>;FLOWLINE= < 47.090>
******************************************************************************
FLOW PROCESS FROM NODE 6000.20 TO NODE 6000.00 IS CODE = 1
UPSTREAM NODE 6000.00 ELEVATION = 47.77 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES Page 2
cm
PIPE LENGTH = 20.63 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS^
'NORMAL"DEPTH(FT)'= 0.40 CRITICAL DEPTH(FT) = 0.66
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
VELOCITY
(FT/SEC)
4.009
4.092
4.179
4.270
4.364
4.463
4.565
4.672
4.784
4.901
5.024
5.152
5.286
5.427
5.575
5.731
5.894
6.067
6.248
6.440
6.642
6.856
7.083
7.106
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 0.656
0.011 0.646
0.047 0.636
0.109 0.626
0.201 0.615
0.326 0.605
0.487 0.595
0.691 0.585
0,941 0.574
1.245 0.564
1.610 0.554
2.045 0.544
2.563 0.534
3.176 0.523
3.904 0.513
4.770 0.503
5.803 0.493
7.046 0.483
8.558 0.472
10.424 0.462
12.776 0.452
15.839 0.442
20.029 0.431
20.630 0.431
SPECIFIC PRESSURE-f
ENERGY(FT) MOMENTUM(POUNC
0.906 35.94
0.906 35.96
0.907 36.00
0.909 36.08
0.911 36.18
0.915 36.32
0.919 36.49
0.924 36.70
0.930 36.94
0.938 37.23
0.946 37.55
0.956 37.92
0.968 38.33
0.981 38.79
0.996 39.30
1.013 39.86
1.033 40.48
1.054 41.16
1.079 41.90
1.106 42.71
1.137 43.59
1.172 44.54
1.211 45.58
1.215 45.69
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.11
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
VELOCITY
(FT/SEC)
2.132
2.169
2.208
2.249
2.292
2.337
2.385
2.435
2.487
2.542
2.600
2.662
2.726
2.794
2.866
2.942
3.022
3.107
Page
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 1.106
0.486 1.088
0.968 1.070
1.444 1.052
1.915 1.034
2.380 1.016
2.839 0.998
3.291 0.980
3.734 0.962
4.170 0.944
4.596 0.926
5.012 0.908
5.417 0.890
5.809 0.872
6.187 0.854
6.549 0.836
6.895 0.818
7.221 0.800
SPECIFIC PRESSURE-f
ENERGY(FT) MOMENTUM(POUNC
1,177 55.35 1,162 54.01
1.146 52.70
1.131 51.44
1.116 50.21
1.101 49.02
1.087 47.88
1.072 46.78
1.058 45.72
1.045 44.71
1.031 43.74
1.018 42.82
1.006 41.95
0.994 41.13
0.982 40.36
0.971 39.65
0.960 38.99
0.950 38.39
cm 7.525 0.782 3.197 0.941 37.84
7.804 0.764 3.292 0.933 37.36
8.055 0.746 3.394 0.925 36.94
8.274 0.728 3.501 0.919 36.60
8.456 0.710 3.616 0.913 36.32
8.596 0.692 3.738 0.909 36.11
8.686 0.674 3.869 0.907 35.99
8.718 0.656 4.009 0.906 35.94
20.630 0.656 4.009 0.906 35.94
END OF HYDRAULIC JUMP ANALYSIS
PRESSURE-fMOMENTUM BALANCE OCCURS AT 4.18 FEET UPSTREAM OF NODE 6000.20
DOWNSTREAM DEPTH = 0.944 FEET, UPSTREAM CONJUGATE DEPTH = 0.440 FEET
NODE 6000.00 : HGL = < 48.426>;EGL= < 48.676>;FLOWLINE= < 47.770>
******************************************************************************
FLOW PROCESS FROM NODE 6000.00 TO NODE 6000.00 IS CODE = 8
UPSTREAM NODE 6000.00 ELEVATION = 47.77 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 4.01 FEET/SEC. VELOCITY HEAD = 0.250 FEET
CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.250) = 0.050
NODE 6000.00 : HGL = < 48.726>;EGL= < 48.726>;FL0WLINE= < 47.770>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 6000.00 FLOWLINE ELEVATION = 47.77
ASSUMED UPSTREAM CONTROL HGL = 48.43 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 4
100
fl^ ******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ve? 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************^
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #12 ^
* EL CAMINO REAL STA 481-f24.89 ^
FILE NAME: 100. DAT „ „ ^ .
TIME/DATE OF STUDY: 13:37 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
7003.10- 2.35* 184.19 0.62 Dc 31.06
} FRICTION n r^.. ai nfi 7003 20- 2.23* 170.88 0.62 DC 31.06
} MANHOLE/INLET/OUTLET n ^7
7003.30- 1-97* 141.86 0.52 32.39
} FRICTION ^„ ^„ n CT 31 nfi
7006.00- 1.06* 49.58 0.62 Dc 31.06
} MANHOLE/INLET/OUTLET « c-i 31 nfi
7006.10- 0.85* 36.68 0.62 DC 31.06
} FRICTION « c-1 „ 31 nfi 7006.20- 0,72* 32,37 0,62 Dc 31,06
} MANHOLE/INLET/OUTLET
7006,30- 1.00* 45,24 0,56 31.51
} FRICTION } HYDRAULIC JUMP
7006.40- 0.62*Dc 31.06 0.62*Dc 31.06_
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
***************fi*************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA: A-, QC
NODE NUMBER = 7003.10 FLOWLINE ELEVATION = 41.95
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 44.300 FEET
""NODr"7003'l0"rHGL'='<"''44.300>;EGL= < 44.335>; FLOWLINE= < 41.950>
******************************************************************************
FLOW PROCESS FROM NODE 7003.10 TO NODE 7003.20 IS CODE = 1
EPSTREAM NODE 7003.20 ELEVATION = 42.09 (FLOW IS UNDER PRESSURE)
Page 1
100
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 30.02 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 2.66)/( 105.047))**2 = 0.00064
HF=L*SF = ( 30.02)*(0.00064) = 0.019
'NODE''7003'20 : HGL = < 44.319>;EGL= < 44.354>;FL0WLINE= < 42.090>
******************************************************************************
FLOW PROCESS FROM NODE 7003.20 TO NODE 7003.30 IS CODE = 2
UPSTREAM NODE 7003.30 ELEVATION = 42.42 (FLOW ISUNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
USER SPECIFIED LOSS COEFFICIENT =1.00
FLOW VELOCITY = 1.51 FEET/SEC. VELOCITY HEAD = 0.035 FEET
HMN = 1.00*(VELOCITY HEAD) = 1.00*( 0.035) = 0.035
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
NODE 7003.30 : HGL = < 44.386>;EGL= < 44.421>;FLOWLINE= < 42.420>
******************************************************************************
FLOW PROCESS FROM NODE 7003.30 TO NODE 7006.00 IS CODE = 1
UPSTREAM NODE 7006.00 ELEVATION = 43.36 (FLOW SEALS IN REACH)
CALCULATE FRICTION
PIPE FLOW
PIPE LENGTH =
LOSSES(LACFCD):
2.66 CFS PIPE DIAMETER = 18.00 INCHES
98.46 FEET MANNING'S N = 0.01300
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.97
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
52.337
PRESSURE
HEAD(FT)
1.966
1.500
VELOCITY SPECIFIC
(FT/SEC) ENERGY(FT)
1.505 2.001
1.505 1.535
PRESSURE-f
MOMENTUM(POUNDS)
141.86
90.46
NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) 0.62
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW
CONTROL(FT)
52.337
56.229
60.065
63.868
67.646
71.401
75.136
78.850
82.544
86.216
89.865
93.488
97.081
98.460
DEPTH VELOCITY SPECIFIC PRESSURE+
(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN[
1.500 1.505 1,535 90.46 1.465 1.514 1,500 86.63
1.429 1.531 1,466 82.87
1.394 1.553 1,432 79.19
1.359 1.580 1,398 75.59
1.324 1.611 1.364 72.09
1.288 1.646 1.331 68.67
1.253 1.686 1.297 65.37
1.218 1.730 1.264 62.17
1.183 1.779 1.232 59.08
1.147 1.833 1.200 56.12
1.112 1.893 1.168 53.29
1.077 1.958 1.136 50.59
1.063 1,986 1.124 49.58
Page 2
NODE 7006.00 HGL = <
100
44.423>;EGL= < 44.484>;FLOWLINE= < 43.360>
******************************************************************************
FLOW PROCESS FROM NODE 7006.00 TO NODE 7006.10 IS CODE = 2
UPSTREAM NODE 7006.10 ELEVATION = 43.69 (FLOW IS SUBCRITICAL)
18.00 INCHES
0.120
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 2.66 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =1.45
AVERAGED VELOCITY HEAD = 0.082 FEET
HMN = 1.45*(AVERAGED VELOCITY HEAD) = 1.45*( 0.082) =
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
NODE 7006.10 : HGL = < 44.537>;EGL= < 44.641>;FL0WLINE= < 43.690>
******************************************************************************
FLOW PROCESS FROM NODE 7006.10 TO NODE 7006.20 IS CODE = 1
UPSTREAM NODE 7006.20 ELEVATION = 43.83 (FLOW IS SUBCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 29.77 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.62
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND
0.000 0.847 2.584 0.951 36.68
2.031 0.839 2.617 0.945 36.30
4.065 0.830 2.650 0.939 35.93
6.105 0.821 2.685 0.933 35.57
8.150 0.813 2.720 0.928 35.22
10.201 0.804 2.757 0.922 34.88
12.258 0.795 2.794 0.917 34.56
14.323 0.787 2.833 0.911 34.25
16.396 0.778 2.873 0.906 33.95
18.478 0.769 2.913 0.901 33.66
20.570 0.761 2.955 0.897 33.39
22.674 0.752 2.999 0.892 33.13
24.791 0.743 3.043 0.887 32.88
26.925 0.735 3.089 0.883 32.65
29.077 0.726 3.136 0.879 32.44
29.770 0.723 3.152 0.878 32.37
NODE 7006.20 : HGL = < 44. 553>;EGL= < 44.708>;FLOWLINE= < 43.830>
******************************************************************************
FLOW PROCESS FROM NODE 7006.20 TO NODE 7006.30 IS CODE = 2
UPSTREAM NODE 7006.30 ELEVATION = 43.85 (FLOW IS SUBCRITICAL)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
USER SPECIFIED LOSS COEFFICIENT =1.90
AVERAGED VELOCITY HEAD = 0.112 FEET
HMN = 1.90*(AVERAGED VELOCITY HEAD) = 1.90*( 0.112) = 0.213
NODE 7006.30 : HGL = < 44.851>;EGL= < 44.921>;FLOWLINE= <
Page 3
43.850>
100
******************************************************************************
FLOW PROCESS FROM NODE 7006.30 TO NODE 7006.40 IS CODE = 1
UPSTREAM NODE 7006.40 ELEVATION = 44.85 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 137.92 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 0.62
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 0.618 3.870 0.851 31.06
0.008 0.616 3.889 0.851 31.06
0.032 0.614 3.908 0.851 31.06
0.074 0.611 3.928 0.851 31.06
0.135 0.609 3.948 0.851 31.07
0.218 0.607 3.968 0.851 31.07
0.325 0.605 3.988 0.852 31.08
0.458 0.602 4.009 0.852 31.09
0.620 0.600 4.029 0.852 31.10
0.815 0.598 4.050 0.852 31.11
1.047 0.595 4.071 0.853 31.13
1.322 0.593 4.092 0.853 31.14
1.645 0.591 4.114 0.854 31.16
2.024 0.588 4.135 0.854 31.18
2.469 0.586 4.157 0.855 31.20
2.993 0.584 4.179 0.855 31.22
3.613 0.581 4.202 0.856 31.25
4.350 0.579 4.224 0.856 31.27
5.238 0.577 4.247 0.857 31.30
6.321 0.575 4.270 0.858 31.33
7.672 0.572 4.293 0.859 31.36
9.411 0.570 4.316 0.859 31.39
11.764 0.568 4.340 0.860 31.42
15.237 0.565 4.364 0.861 31.46
21.458 0.563 4.388 0.862 31.49
137.920 0.562 4.397 0.863 31.51
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
2.070
4.130
6.181
8.221
10.249
12.264
14.264
16.249
18.215
FLOW DEPTH
(FT)
1.001
0.985
0.970
0.955
0.940
0.924
0.909
0.894
0.878
0.863
VELOCITY
(FT/SEC)
2.123
2
2
2
2
2
2
2
2
2
160
199
240
283
327
374
422
473
526
Page
SPECIFIC
ENERGY(FT)
1.071
1.058
1.045
1.033
1.021
1.008
0.997
0.985
0.973
0.962
PRESSURE+
MOMENTUM(POUNDS)
45.24
44.25
43.28
42.35
41.45
40.58
39.74
38.93
38.15
37.41
100
20.162 0.848 2.582 0.951 36.70
22.085 0.833 2.640 0.941 36.03
23.984 0.817 2.702 0.931 35.40
25.853 0.802 2.766 0.921 34.80
27.688 0.787 2.833 0.911 34.24
29.485 0.771 2.904 0.902 33.72
31.236 0.756 2.979 0.894 33.25
32.934 0.741 3.058 0.886 32.81
34.569 0.725 3.140 0.879 32.42
36.126 0.710 3.228 0.872 32.07
37.589 0.695 3.320 0.866 31.77
38.933 0.680 3.418 0.861 31.52
40.124 0.664 3.521 0.857 31.32
41.111 0.649 3.630 0.854 31.18
41.814 0.634 3.746 0.852 31.09
42.096 0.618 3.870 0.851 31.06
137.920 0.618 3.870 0.851 31.06 END OF HYDRAULIC JUMP ANALYSIS
PRESSURE+MOMENTUM BALANCE OCCURS AT 39.04 FEET UPSTREAM OF NODE 7006.30
DOWNSTREAM DEPTH = 0.678 FEET, UPSTREAM CONJUGATE DEPTH = 0.562 FEET
NODE 7006.40 : HGL = < 45.468>;EGL= < 45.701>;FLOWLINE= < 44.850>
f*****************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 7006.40 FLOWLINE ELEVATION = 44.85
ASSUMED UPSTREAM CONTROL HGL = 45.47 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 5
A12.dat has been omitted.
For hydraulic analysis of 48" stub from Rancho Costera, please see ECR3UALT in Section 4.
A9
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATIONS FOR ULTIMATE CONDITION STA 478-f89.15 *
* EL CAMINO REAL WIDENING JN 101307 *
* REVISED BY MC *
**************************************************************************
FILE NAME: A9.DAT
TIME/DATE OF STUDY: 13:56 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
FLOW PRESSURE+
DEPTH(FT) MOMENTUM(POUNDS)
NODE MODEL PRESSURE PRESSURE-f
NUMBER PROCESS HEAD(FT)
3.95*
MOMENTUM(POUNDS)
6000.10-
HEAD(FT)
3.95* 360.05
} FRICTION
6018.00-3.81* 344.52
} JUNCTION
6018.10-3.52* 309.06
} FRICTION } HYDRAULIC JUMP
6014.00-0.52 DC 20.46
} JUNCTION
6014.10-0.52 12.62
} FRICTION 11.36 6017.00-0.41*DC 11.36
0.48 32.11
0.32 48.22
0.17 64.62
0.37* 24.11
0.14* 33.23
0.41*Dc 11.36
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 6000.10 FLOWLINE ELEVATION = 42.55
PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 46.500 FEET
NODE 6000.10 : HGL = < 46.500>;EGL= < 46.533>;FLOWLINE= < 42.550>
******************************************************************************
FLOW PROCESS FROM NODE 6000.10 TO NODE 6018.00 IS CODE = 1
UPSTREAM NODE 6018.00 ELEVATION = 42.71 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 32.32 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 2.56)/( 105.045))**2 = 0.00059
Page 1
A9
HF=L*SF = ( 32.32)*(0.00059) = 0.019
'"NODr'6018'00"rHG['='7""46"5i9>;^ < 42.710>
******************************************************************************
FLOW PROCESS FROM NODE 6018.00 TO NODE 6018.10 IS CODE =5
UPSTREAM NODE 6018.10 ELEVATION = _ ^^"l^^.^^.^^:-.--------- —-
""^LCULATE"JUNCTION LOSSES: ^^^^^ ^^^^^^^
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 1.92 18.00 0.00 43.04 0.52 1.086
DOWNSTREAM 2.56 18.00 - 42.71 0.61 1-449
LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000
LATERAL #2 0.00 0.00 0.00 0.00 0.00 u.uuu
Q5 0.64===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)-fFRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00033
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE =0.00059
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00046
^FS to^sls : O'bl'2 FIIT ENTRANCE LOSSES = 0.007 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.016)+( 0.007) = 0.023
""NODr"6018"l0'rHGL"='7""46"556>;^ < 46.574>;FLOWLINE= < 43.040>
******************************************************************************
FLOW PROCESS FROM NODE 6018.10 TO NODE 6014 00 IS CODE = 1
UPSTREAM NODE 6014.00 ELEVATION = 53.67 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD): TM^UCC PTPF FLOW = 1.92 CFS PIPE DIAMETER = 18.00 INCHES
P^PI LETGTH = 19:50 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS^^
'NORMAL"DEPTH(FT)'= o'le"" CRITICAL DEPTH(FT) = 0.52
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.37
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 0.373
0.046 0.365
0.097 0.356
0.155 0.348
0.221 0.339
0.296 0.331
0.381 0.323
0.477 0.314
0.587 0.306
0.712 0.297
0.855 0.289
1.019 0.280
1.209 0.272
1.429 0.264
1.687 0.255
VELOCITY SPECIFIC PRESSURE+
(FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
5.597 0.860 24.11
5.781 0.884 24.61
5.975 0.911 25.16
6.180 0.941 25.76
6.399 0.976 26.41
6.631 1.014 27.12
6.879 1.058 27.90
7.143 1.107 28.74
7.426 1.162 29.65
7.728 1.225 30.64
8.052 1.296 31.72
8.401 1.377 32.90
8.777 1.469 34.18
9.183 1.574 35.58
9.623 1.694 37.11
Page 2
A9
1.990 0.247 10.100 1.832 38.78
2.350 0.238 10.619 1.990 40.61
2.782 0.230 11.186 2.174 42.63
3.309 0.222 11.807 2.388 44.86
3.962 0.213 12.489 2.637 47.31
4.793 0.205 13.243 2.929 50.04
5.887 0.196 14.077 3.275 53.07
7.403 0.188 15.005 3.686 56.45
9.703 0.180 16.043 4.178 60.25
13.943 0.171 17.209 4.773 64.53
19.500 0.171 17.232 4.785 64.62
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.52
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 3.516 1.086 3.534 309.06
3.701 1.500 1.086 1.518 86.75
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 .50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
3.701 1.500 1.086 1.518 86.75
3.772 1.461 1.094 1.479 82.47
3.843 1.422 1.108 1.441 78.27
3.913 1.383 1.127 1.402 74.15
3.984 1.344 1.150 1.364 70.11
4.054 1.304 1.176 1.326 66.18
4.124 1.265 1.207 1.288 62.36
4.193 1.226 1.241 1.250 58.66
4.262 1.187 1.280 1.212 55.09
4.331 1.148 1.323 1.175 51.64
4.399 1.109 1.371 1.138 48.34
4.466 1.070 1.424 1.101 45.18
4.533 1.031 1.483 1.065 42.18
4.599 0.991 1.549 1.029 39.33
4.665 0.952 1.622 0.993 36.65
4.729 0.913 1.704 0.958 34.13
4.791 0.874 1.796 0.924 31.79
4.852 0.835 1.899 0.891 29.64
4.911 0.796 2.016 0.859 27.68
4.967 0.757 2.148 0.828 25.92
5.020 0.718 2.299 0.800 24.37
5.069 0.678 2.472 0.773 23.05
5.111 0.639 2.672 0.750 21.97
5.146 0.600 2.906 0.731 21.16
5.170 0.561 3.182 0.718 20.64
5.179 0.522 3.509 0.713 20.46
19.500 0.522 3.509 0.713 20.46
I PRESSURE+MOMENTUM
DOWNSTREAM
END OF HYDRAULIC JUMP ANALYSIS
BALANCE OCCURS AT 4.08 FEET UPSTREAM OF NODE 6018.10 |
DEPTH = 1.288 FEET, UPSTREAM CONJUGATE DEPTH = 0.171 FEET j
NODE 6014.00 : HGL = < 54.043>;EGL= < 54.530>;FLOWLINE= < 53.670>
Page 3
A9
FLOW PROCESS FROM NODE
UPSTREAM NODE 6014.10
6014.00 TO NODE
ELEVATION =
6014.10 IS CODE = 5
54.00 (FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW DIAMETER
(CFS) (INCHES)
1.21 18.00
1.92 18.00
0.00 0.00
0.00 0.00
ANGLE
(DEGREES)
0.00
0.00
0.00
FLOWLINE
ELEVATION
54.00
53.67
0.00
0.00
CRITICAL
DEPTH(FT.)
0.41
0.52
0.00
0.00
VELOCITY
(FT/SEC)
14.037
5.599
0.000
0.000
0.71===Q5 EQUALS BASIN INPUT===
JUNCTION LENGTH =
FRICTION LOSSES =
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.36650
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01818
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.19234
4.00 FEET
0.769 FEET ENTRANCE LOSSES = 0.097 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 2.576)+( 0.097) = 2.673
NODE 6014.10 : HGL = < 54.144>;EGL= < 57.203>;FLOWLINE= < 54.000>
******************************************************************************
FLOW PROCESS FROM NODE 6014.10 TO NODE 6017.00 IS CODE = 1
UPSTREAM NODE 6017.00 ELEVATION = 76.05 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 1.21 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 45.97 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.13 CRITICAL DEPTH(FT) = 0.41
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.41
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN
0.000 0.411 3.075 0.558 11.36
0.001 0.400 3.195 0.559 11.38
0.005 0.389 3.323 0.561 11.42
0.013 0.378 3.461 0.564 11.50
0.024 0.367 3.609 0.569 11.61
0.039 0.356 3.769 0.577 11.76
0.059 0.345 3.941 0.586 11.95
0.086 0.334 4.128 0.599 12.18
0.119 0.323 4.331 0.614 12.46
0.161 0.312 4.552 0.634 12.79
0.213 0.301 4.793 0.658 13.17
0.276 0.290 5.058 0.687 13.62
0.355 0.278 5.349 0.723 14.15
0.452 0.267 5.670 0.767 14.75
0.571 0.256 6.026 0.821 15.44
0.719 0.245 6.422 0.886 16.23
0.903 0.234 6.866 0.967 17.15
1.136 0.223 7.364 1.066 18.20
1.432 0.212 7.929 1.189 19.42
1.817 0.201 8.571 1.343 20.82
2.330 0.190 9.309 1.536 22.46
3.034 0.179 10.161 1.783 24.37
Page 4
A9
4.056 0.168 11.155 2.101 26.62
5.675 0.157 12.328 2.518 29.30
8.799 0.146 13.726 3.073 32.52
45.970 0.144 14.033 3.203 33.23
NODE 6017.00 : HGL = < 76.461>;EGL= < 76.608>;FLOWLINE= < 76.05O>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 6017.00 FLOWLINE ELEVATION = 76.05
ASSUMED UPSTREAM CONTROL HGL = 76.46 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 5
A12B
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR 18" STA 460+05.37 TO 463+94.93 *
* 100 YEAR ULTIMATE CONDITION *
* REVISED BY MC ..............*
**************************************************************************
FILE NAME: A12B.DAT
TIME/DATE OF STUDY: 14:02 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
11.10-
}
12.00-
}
12.10-
}
13.00-
}
13.10-
}
14.00-
}
14.00-
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 11.10 FLOWLINE ELEVATION = 71.02
PIPE FLOW = 1.46 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 76.400 FEET
NODE 11.10 : HGL = < 76.400>;EGL= < 76.411>;FLOWLINE= < 71.020>
******************************************************************************
FLOW PROCESS FROM NODE 11.10 TO NODE 12.00 IS CODE = 1
UPSTREAM NODE 12.00 ELEVATION = 72.81 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
Page 1
5.38* 512 89 0. 32 17.04
FRICTION
3.61* 317 45 0. 45 DC 14.43
JUNCTION
3.29* 281 12 0. 27 6.13
FRICTION } HYDRAULIC
0.42
JUMP
6 86 0. 21* 7.41
MANHOLE/INLET/OUTLET
0.32 DC 5 89 0. 20* 7.79
FRICTION
0.32*DC 5 89 0. 32*Dc 5.89
CATCH BASIN
0.45* 3 11 0. 32 DC 2.17
PIPE FLOW
PIPE LENGTH
SF=(Q/K)**2
HF=L*SF = (
A12B
1,46 CFS PIPE DIAMETER = 18,00 INCHES
91,31 FEET MANNING'S N = 0,01300
(( 1.46)/( 105.044))**2 = 0.00019
91.31)*(0.00019) = 0.018
NODE 12.00 : HGL = < 76.418>;EGL= < 76.428>;FLOWLINE= < 72.810>
********** Vf ************** ****Vf ******* Vc **************** *************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 12.10
12.00 TO NODE
ELEVATION =
12.10 IS CODE = 5
73.14 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
0.72
1.46
0.74
0.00
DIAMETER
(INCHES)
18.00
18.00
18.00
0.00
ANGLE
(DEGREES)
8.00
90.00
0.00
FLOWLINE
ELEVATION
73.14
72.81
73.14
0.00
CRITICAL
DEPTH(FT.)
0.32
0.45
0.32
0.00
VELOCITY
(FT/SEC)
0.408
0.826
0.419
0.000
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3 *V3 *COS(DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00005
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00019
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00012
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.000 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.009)+( 0.000) = 0.009
NODE 12.10 : HGL = < 76.434>;EGL= < 76.437>;FLOWLINE= < 73.140>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 13.00
12.10 TO NODE
ELEVATION =
13.00 IS CODE = 1
76.00 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 301.23 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.32
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.21
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
CONTROL(FT)
0.000
0.545
,100
,666
,245
,837
.443
.066
4.707
5.369
6.053
6.764
1.
1.
2.
2.
3.
4.
FLOW DEPTH
(FT)
0.212
0.214
0.217
0.219
0.221
0.223
0.226
0.228
0.230
0.233
0.235
0.237
VELOCITY
(FT/SEC)
4.724
4.650
4.579
4.509
4.441
4.375
4.311
4.248
4.187
4.127
4.069
4.012
Page
SPECIFIC
ENERGY(FT)
0.559
0.550
0.542
0.535
0.528
0.521
0.514
0.508
0.503
0.497
0.492
0.487
PRESSURE+
MOMENTUM(POUNDS)
7.41
7.33
7.25
7.18
7.11
7.04
6.97
91
85
79
73
6.68
A12B
7.505 0.239 3.956 0.483 6.63
8.280 0.242 3.902 0.478 6.58
9.097 0.244 3.849 0.474 6.53
9.963 0.246 3.797 0.470 6.48
10.888 0.249 3.747 0.467 6.44
11.886 0.251 3.697 0.463 6.40
12.978 0.253 3.649 0.460 6.36
14.190 0.256 3.602 0.457 6.32
15.570 0.258 3.555 0.454 6.29
17.190 0.260 3.510 0.452 6.25
19.192 0.262 3.466 0.449 6.22
21.890 0.265 3.423 0.447 6.19
26.295 0.267 3.380 0.445 6.16
231.251 0.269 3.339 0.443 6.13
301.230 0.269 3.339 0.443 6.13
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.29
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 3.294 0.407 3.297 281.12
189.916 1.500 0.407 1.503 83.27
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN
189.916 1.500 0.407 1.503 83.27
194.925 1.453 0.411 1.455 78.07
199.929 1.405 0.418 1.408 72.95
204.929 1.358 0.428 1.361 67.93
209.926 1.310 0.440 1.313 63.03
214.921 1.263 0.453 1.266 58.28
219.913 1.216 0.469 1.219 53.68
224.902 1.168 0.487 1.172 49.26
229.888 1.121 0.508 1.125 45.01
234.871 1.073 0.532 1.078 40.95
239.850 1.026 0.559 1.031 37.08
244.824 0.979 0.589 0.984 33.41
249.792 0.931 0.624 0.937 29.95
254.753 0.884 0.664 0.891 26.70
259.703 0.836 0.711 0.844 23.66
264.641 0.789 0.764 0.798 20.84
269.562 0.742 0.826 0.752 18.25
274.459 0.694 0.900 0.707 15.88
279.324 0.647 0.987 0.662 13.74
284.143 0.600 1.092 0.618 11.83
288.893 0.552 1.219 0.575 10.16
293.537 0.505 1.378 0.534 8.74
298.008 0.457 1.578 0.496 7.57
301.230 0.421 1.773 0.470 6.86
END OF HYDRAULIC JUMP ANALYSIS
PRESSURE+MOMENTUM BALANCE OCCURS AT 299.71 FEET UPSTREAM OF NODE 12.10
DOWNSTREAM DEPTH = 0.438 FEET, UPSTREAM CONJUGATE DEPTH = 0.218 FEET
NODE 13.00 : HGL = < 76.212>;EGL= < 76.559>;FLOWLINE= < 76.000>
Page 3
A12B
******************************************************************************
13.00 TO NODE 13.10 IS CODE = 2
ELEVATION = 76.33 (FLOW IS SUPERCRITICAL)
FLOW PROCESS FROM NODE
UPSTREAM NODE 13.10
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 0.72 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =1.00
AVERAGED VELOCITY HEAD = 0.372 FEET
HMN = 1.00*(AVERAGED VELOCITY HEAD) = 1.00*( 0.372) =
18.00 INCHES
0.372
NODE 13.10 : HGL = < 76.532>;EGL= < 76.930>;FLOWLINE= < 76.330>
**********Vt ************************* Vf ******* ***V{**Vj*-****Vf *•>*************•******
FLOW PROCESS FROM NODE 13.10 TO NODE 14.00 IS CODE = 1
UPSTREAM NODE 14.00 ELEVATION = 77.41 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 31.75 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) 0.32
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.32
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 0.315 2.666 0.426 5.89
0.005 0.310 2.724 0.426 5.89
0.020 0.306 2.784 0.426 5.90
0.047 0.301 2.846 0.427 5.91
0.087 0.296 2.911 0.428 5.93
0.140 0.292 2.979 0.430 5.95
0.210 0.287 3.049 0.431 5.98
0.297 0.282 3.122 0.434 6.01
0.405 0.278 3.198 0.436 6.05
0.535 0.273 3.278 0.440 6.10
0.692 0.268 3.361 0.444 6.15
0.878 0.263 3.447 0.448 6.21
1.099 0.259 3.538 0.453 6.27
1.361 0.254 3.633 0.459 6.35
1.671 0.249 3.732 0.466 6.43
2.039 0.245 3.836 0.473 6.52
2.478 0.240 3.945 0.482 6.62
3.005 0.235 4.060 0.491 6.72
3.645 0.231 4.180 0.502 6.84
4.433 0.226 4.307 0.514 6.97
5.426 0.221 4.440 0.527 7.10
6.715 0.216 4.581 0.542 7.25
8.475 0.212 4.729 0.559 7.42
11.099 0.207 4.886 0.578 7.59
15.844 0.202 5.052 0.599 7.78
31.750 0.202 5.062 0.600 7.79
NODE 14.00 : HGL = < 77.725>;EGL= < 77.836>;FLOWLINE= < 77.410>
******************************************************************************
FLOW PROCESS FROM NODE
UPSTREAM NODE 14.00
14.00 TO NODE
ELEVATION =
14.00 IS CODE = 8
77.41 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES
Page 4
A12B
FLOW VELOCITY = 2.67 FEET/SEC. VELOCITY HEAD = 0.110 FEET
CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.110) = 0^022^
"NODE ' 14.00 : HGL = < 77.858>;EGL= < 77.858>;FLOWLINE= < 77.410>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 14.00 FLOWLINE ELEVATION = 77.41
ASSUMED UPSTREAM CONTROL HGL = 77.73 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 5
WESTLAT
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #13 & 17 *
* EL CAMINO REAL STA 482+60.83 *
* 100 YEAR ULTIMATE CONDITION REVISED BY MC *
**************************************************************************
FILE NAME: WESTLAT.DAT
TIME/DATE OF STUDY: 14:13 10/16/2014
******************************************************** Vf *********************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
7007.00-3.58* 1033.79 1.39 373.98
} FRICTION
7007.10-3.48* 990.75 1.46 DC 372.58
} MANHOLE/INLET/OUTLET
7007.20-3.48* 990.66 1.39 373.70
} FRICTION
9005.00-3.28* 901.72 1.46 DC 372.58
} JUNCTION
9005.10-3.04* 778.18 1.32 339.83
} FRICTION
8003.00-2.89* 714.33 1.40 DC 337.85
} JUNCTION
8003.10-2.66* 433.50 1.31 DC 232.77
} FRICTION
8005.00-2.62* 424.84 1.31 DC 232.77
} CATCH BASIN
8005.00-2.95* 381.85 1.31 DC 77.57
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 7007.00 FLOWLINE ELEVATION = 39.82
PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 43.400 FEET
NODE 7007.00 : HGL = < 43.400>;EGL= < 43.532>;FL0WLINE= < 39.820>
******************************************************************************
Page 1
WESTLAT
FLOW PROCESS FROM NODE 7007.00 TO NODE 7007.10 IS CODE = 1
UPSTREAM NODE 7007.10 ELEVATION = 39.94 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 23.52 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 20.60)/( 667.007))**2 = 0.00095
HF=L*SF = ( 23.52)*(0.00095) = 0.022
NODE 7007.10 : HGL = < 43.422>;EGL= < 43.554>;FLOWLINE= < 39.940>
******************************************************************************
FLOW PROCESS FROM NODE 7007.10 TO NODE 7007.20 IS CODE = 2
UPSTREAM NODE 7007.20 ELEVATION = 39.96 (FLOW IS UNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES
USER SPECIFIED LOSS COEFFICIENT =0.15
FLOW VELOCITY = 2.91 FEET/SEC. VELOCITY HEAD = 0.132 FEET
HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.132) = 0.020
NODE 7007.20 : HGL = < 43.442>;EGL= < 43.574>;FLOWLINE= < 39.960>
******************************************************************************
FLOW PROCESS FROM NODE 7007.20 TO NODE 9005.00 IS CODE = 1
UPSTREAM NODE 9005.00 ELEVATION = 40.21 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 50.70 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 20.60)/( 666.985))**2 = 0.00095
HF=L*SF = ( 50.70)*(0.00095) = 0.048
NODE 9005.00 : HGL = < 43.491>;EGL= < 43.622>;FLOWLINE= < 40.210>
******************************************************************************
FLOW PROCESS FROM NODE 9005.00 TO NODE 9005.10 IS CODE = 5
UPSTREAM NODE 9005.10 ELEVATION = 40.52 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 19.10 36.00 0.00 40.52 1.40 2.702
DOWNSTREAM 20.60 36.00 - 40.21 1.46 2.914
LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000
LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000
Q5 1.50===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00082
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00095
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00089
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.026 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.022)+( 0.026) = 0.048
NODE 9005.10 : HGL = < 43.558>;EGL= < 43.671>;FLOWLINE= < 40.520>
******************************************************************************
FLOW PROCESS FROM NODE 9005.10 TO NODE 8003.00 IS CODE = 1
Page 2
WESTLAT
UPSTREAM NODE 8003.00 ELEVATION = 40.69 (FLOW SEALS IN REACH)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 19.10 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 32.39 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.04
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 3.038 2.702 3.151 778.18
8.472 3.000 2.702 3.113 761.63
NORMAL DEPTH(FT) 1.31 CRITICAL DEPTH(FT) 1.40
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
8.472 3.000 2.701 3.113 761.63
22.472 2.936 2.716 3.051 734.01
32.390 2.890 2.734 3.006 714.33
NODE 8003.00 : HGL = < 43.580>;EGL= < 43.696>;FLOWLINE= < 40.690>
******************************************************************************
FLOW PROCESS FROM NODE 8003.00 TO NODE 8003.10 IS CODE = 5
UPSTREAM NODE 8003.10 ELEVATION = 40.85 (FLOW UNSEALS IN REACH)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 13.20 24.00 0.00 40.85 1.31 4.202
DOWNSTREAM 19.10 36.00 - 40.69 1.40 2.735
LATERAL #1 5.90 18.00 63.00 40.75 0.94 3.339
LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000
Q5 0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3*V3 *C0S(DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00340
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00072
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00206
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.092)+( 0.000) = 0.092
NODE 8003.10 : HGL = < 43.513>;EGL= < 43.787>;FLOWLINE= < 40.850>
******************************************************************************
FLOW PROCESS FROM NODE 8003.10 TO NODE 8005.00 IS CODE = 1
UPSTREAM NODE 8005.00 ELEVATION = 40.99 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 13.20 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH = 28.15 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 13.20)/( 226.229))**2 = 0.00340
Page 3
WESTLAT
HF=L*SF = ( 28.15)*(0.00340) = 0.096
NODE 8005.00 : HGL = < 43.609>;EGL= < 43.883>;FLOWLINE= < 40.990>
******************************************************************************
FLOW PROCESS FROM NODE 8005.00 TO NODE 8005.00 IS CODE = 8
UPSTREAM NODE 8005.00 ELEVATION = 40.99 (FLOW IS UNDER PRESSURE)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 13.20 CFS PIPE DIAMETER = 24.00 INCHES
FLOW VELOCITY = 4.20 FEET/SEC. VELOCITY HEAD = 0.274 FEET
CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.274) = 0.055
NODE 8005.00 : HGL = < 43.938>;EGL= < 43.938>;FLOWLINE= < 40.990>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 8005.00 FLOWLINE ELEVATION = 40.99
ASSUMED UPSTREAM CONTROL HGL = 42.30 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 4
ECRWEST
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2014 Advanced Engineering software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
Carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATIONS FOR 18" PIPE WEST ECR *
* 100 YEAR FLOW FOR ULTIMATE CONDITIONS *
* REVISED BY MC *
**************************************************************************
FILE NAME: ECRWEST.DAT
TIME/DATE OF STUDY: 14:41 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) f
2.85*
i40MENTUM( POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
8003.00-
PROCESS HEAD(FT) f
2.85* 285.30 1.02 DC 110.01
} FRICTION
110.01
9004.00-2.84* 284.03 1.02 DC 110.01
} MANHOLE/INLET/OUTLET
2.75*
110.01
9004.10-
MANHOLE/INLET/OUTLET
2.75* 274.51 1.02 DC 110.01
} FRICTION
9002.00-2.68* 266.92 1.02 DC 110.01
} JUNCTION
110.01
9002.10-2.61* 248.12 0.97 DC 95.56
} FRICTION
95.56
9001.00-2.54* 241.04 0.97 DC 95.56
} MANHOLE/INLET/OUTLET
2.42*
95.56
9001.10-
MANHOLE/INLET/OUTLET
2.42* 227.51 0.97 DC 95.56
} FRICTION
95.56
9000.00-2.38* 223.17 0.97 DC 95.56
} FRICTION
95.56
9000.10-2.21* 204.06 0.73 106.09
} MANHOLE/INLET/OUTLET
2.07*
0.73 106.09
9000.20-
MANHOLE/INLET/OUTLET
2.07* 189.43 0.50 155.41
} FRICTION } HYDRAULIC JUMP
155.41
8002.30-0.97 DC 95.56 0.65* 117.08
} JUNCTION
117.08
8002.31-0.92 DC 83.68 0.57* 110.74
} FRICTION
8002.10-0.92*DC 83.68 0.92*Dc 83.68
} MANHOLE/INLET/OUTLET
0.92*Dc 83.68
8002.20-1.02 85.07 0.63* 100.35
} FRICTION
100.35
8002.00-0.92*DC 83.68 0.92*DC 83.68
} CATCH BASIN
83.68
8002.00-1.39* 47.03 0.92 DC 28.35
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
Page 1
ECRWEST
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 8003.00 FLOWLINE ELEVATION = 40.75
PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 43.600 FEET
NODE 8003.00 : HGL = < 43.600>;EGL= < 43.844>;FLOWLINE= < 40.750>
********* Vf A ***l!f*******'iV**^*-/f**7V
FLOW PROCESS FROM NODE 8003.00 TO NODE 9004.00 IS CODE = 1
UPSTREAM NODE 9004.00 ELEVATION = 41.28 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 116.76 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 7.00)/( 105.043))**2 = 0.00444
HF=L*SF = ( 116.76)*(0.00444) = 0.519
NODE 9004.00 : HGL = < 44.119>;EGL= < 44.362>;FLOWLINE= < 41.280>
******************************** Vf *********************************************
FLOW PROCESS FROM NODE 9004.00 TO NODE 9004.10 IS CODE = 2
UPSTREAM NODE 9004.10 ELEVATION = 41.61 (FLOW IS UNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES
USER SPECIFIED LOSS COEFFICIENT = 0.15
FLOW VELOCITY = 3.96 FEET/SEC. VELOCITY HEAD = 0.244 FEET
HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.244) = 0.037
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
NODE 9004.10 : HGL = < 44.362>;EGL= < 44.606>;FLOWLINE= < 41.610>
************************************************** Vf ******** Vf ***** Vf *********** *
FLOW PROCESS FROM NODE 9004.10 TO NODE 9002.00 IS CODE = 1
UPSTREAM NODE 9002.00 ELEVATION = 42.28 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 135.37 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 7.00)/( 105.043))**2 = 0.00444
HF=L*SF = ( 135.37)*(0.00444) = 0.601
NODE 9002.00 : HGL = < 44.963>;EGL= < 45.207>;FLOWLINE= < 42.280>
***************************************** Vr ****************** Vf *****************
FLOW PROCESS FROM NODE 9002.00 TO NODE 9002.10 IS CODE = 5
UPSTREAM NODE 9002.10 ELEVATION = 42.48 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 6.30 18.00 15.00 42.48 0.97 3.565
DOWNSTREAM 7.00 18.00 - 42.28 1.02 3.961
LATERAL #1 0.70 18.00 90.00 42.48 0.31 0.396
LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000
Q5 0.00===Q5 EQUALS BASIN INPUT===
Page 2
ECRWEST
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*C0S(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00360
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00444
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00402
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.076)+( 0.000) = 0.076
""NODE"'9002"IO THGL = < 45.085>;EGL= < 45.283>;FLOWLINE= < 42.480>
******************************************************************************
FLOW PROCESS FROM NODE 9002.10 TO NODE 9001.00 IS CODE = 1
UPSTREAM NODE 9001.00 ELEVATION = 42.68 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 37.74 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 6.30)/( 105.044))**2 = 0.00360
HF=L*SF = ( 37.74)*(0.00360) = 0.136
"NODE 9001.00 : HGL = < 45.221>;EGL= < 45.419>;FLOWLINE= < 42.680>
******************************************************************************
FLOW PROCESS FROM NODE 9001.00 TO NODE 9001.10 IS CODE = 2
UPSTREAM NODE 9001.10 ELEVATION = 43.00 (FLOW IS UNDER PRESSURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES
USER SPECIFIED LOSS COEFFICIENT =0.45
FLOW VELOCITY = 3.57 FEET/SEC. VELOCITY HEAD = 0.197 FEET
HMN = 0.45*(VELOCITY HEAD) = 0.45*( 0.197) = 0.089
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
"NODE" 9001.10 : HGL = < 45.419>;EGL= < 45.616>;FLOWLINE= < 43.000>
******************************************************************************
FLOW PROCESS FROM NODE 9001.10 TO NODE 9000.00 IS CODE = 1
UPSTREAM NODE 9000.00 ELEVATION = 43.15 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 30.75 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 6.30)/( 105.042))**2 = 0.00360
HF=L*SF = ( 30.75)*(0.00360) = 0.111
"NODE"~9000.00 : HGL = < 45.529>;EGL= < 45.726>;FLOWLINE= < 43.150>
******************************************************************************
FLOW PROCESS FROM NODE 9000.00 TO NODE 9000.10 IS CODE = 1
UPSTREAM NODE 9000.10 ELEVATION = 43.76 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 121.40 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 6.30)/( 105.044))**2 = 0.00360
HF=L*SF = ( 121.40)*(0.00360) = 0.437
NODE 9000.10 : HGL = < 45.966>;EGL= < 46.163>;FLOWLINE= < 43.760>
Page 3
***************************************^*^*'^^*^*^^^^
FLOW PROCESS FROM NODE 9000.10 TO NODE 9000.20 JS CODE = 2 . UPSTREAM NODE 9000.20 ELEVATION = 44.09 (FLOW IS UNDER PRESSURE;
18.00 INCHES
0.197 FEET
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 6.30 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT = 0.15
FLOW VELOCITY = 3.57 FEET/SEC. VELOCITY HEAD =
HMN =0.15*(VELOCITY HEAD) = 0.15*( 0.197) = 0.030
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
'"NODr"9000'20"rHGr="7""46"l63>;^ < 46.361>; FLOWLINE= < 44.090>
******************************************************************************
FLOW PROCESS FROM NODE 9000.20 TO NODE 8002 30 IS CODE = 1
UPSTREAM NODE 8002.30 ELEVATION = 55.39^
CALCULATE FRICTION LOSSES (LACFCD) : ia Tiurupc:
PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 174.62 FEET MANNING'S N = 0.01300
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
'NORMAL"DEPTH(FTr= ' ' 0.50 CRITICAL DEPTH(FT) = 0.97
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
0.000 0.651 0.563 0.645
1.165 0.639
1.811 0.633
2.503 0.626
3.249 0.620
4.052 0.614
4.920 0.608
5.860 0.601
6.881 0.595
7.995 0.589
9.214 0.583
10.555 0.577
12.037 0.570
13.686 0.564
15.535 0.558
17.625 0.552
20.015 0.545
22.786 0.539
26.057 0.533
30.013 0.527
34.962 0.521
41.484 0.514
50.881 0.508
67.329 0.502
174.620 0.501
VELOCITY
(FT/SEC)
8.558
8.667
8.779
8.893
9.011
9.131
9.254
9.381
9.510
9.644
9.780
9.921
10.065
10.213
10.365
10.522
10.683
10.848
11.018
11.194
11.374
11.560
11.751
11.949
12.152
12.177
SPECIFIC PRESSURE+
ENERGY(FT) MOMENTUM(POUND
1.789 117.08
1.812 118.13
1.836 119.21
1.861 120.33
1.888 121.49
1.916 122.69
1.945 123.93
1.975 125.21
2.007 126.54
2.040 127.91
2.075 129.32
2.112 130.79
2.151 132.31
2.191 133.87
2.233 135.49
2.278 137.17
2.325 138.90
2.374 140.70
2.426 142.55
2.480 144.47
2.537 146.46
2.597 148.52
2.660 150.65
2.726 152.85
2.796 155.13
2.805 155.41
HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS
DOWNSTREAM CONTROL ASSUMED PRESSURE HEAp(FT)= 2^07
Page 4
ECRWEST
PRESSURE FLOW PROFILE COMPUTED INFORMATION:
•
DISTANCE FROM
CONTROL(FT)
0.000
9.378
PRESSURE
HEAD(FT)
2.073
1.500
VELOCITY
(FT/SEC)
3.565
3.565
SPECIFIC
ENERGY(FT)
2.271
1.697
PRESSURE+
MOMENTUM(POUNDS)
189.43
126.23
ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
VELOCITY
(FT/SEC)
3.564
3.574
3.593
3.617
3.646
3.679
3.716
3.756
3.801
3.849
3.900
3.956
4.015
4.078
4.145
4.216
4.292
4.372
4.456
4.546
4.641
4.742
4.849
4.962
5.082
5.209
5.209
HYDRAULIC JL ^^^^ _^ ,
PRESSURE+MOMENTUM BALANCE OCCURS AT 5.05 FEET UPSTREAM OF NODE 9000 20
DOWNSTREAM DEPTH = 1.765 FEET, UPSTREAM CONJUGATE DEPTH = 0.501 FEET |
DISTANCE FROM FLOW DEPTH
CONTROL(FT) (FT)
9.378 1.500
9.706 1.479
10.017 1.458
10.318 1.436
10.609 1.415
10.892 1.394
11.167 1.373
11.435 1.352
11.694 1.330
11.946 1.309
12.190 1.288
12.426 1.267
12.652 1.246
12.869 1.225
13.076 1.203
13.272 1.182
13.457 1.161
13.628 1.140
13.787 1.119
13.930 1.097
14.057 1.076
14.165 1.055
14.254 1.034
14.321 1.013
14.363 0.991
14.378 0.970
174.620 0.970
SPECIFIC PRESSURE+
ENERGY(FT) MOMENTUM(POUNDS)
1.697 126.23
1.677 124.02
1.658 121.92
1.640 119.90
1.622 117.96
1.604 116.09
1.587 114.29
1.571 112.56
1.555 110.89
1.539 109.30
1.524 107.78
1.510 106.34
1.496 104.97
1.483 103.68
1.470 102.47
1.458 101.35
1.447 100.31
1.437 99.37
1.427 98.52
1.418 97.77
1.411 97.11
1.404 96.57
1.399 96.14
1.395 95.82
1.393 95.63
1.392 95.56
1.392 95.56
56.041>;EGL= < 57.179>;FLOWLINE= < 55.390> NODE 8002.30 : HGL = <
******************************************************************************
FLOW PROCESS FROM NODE 8002.30 TO NODE 8002.31 IS CODE = 5
UPSTREAM NODE 8002.31 ELEVATION = 55.72 (FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION LOSSES:
PIPE
UPSTREAM
DOWNSTREAM
LATERAL #1
LATERAL #2
Q5
FLOW
(CFS)
5.70
6.30
0.60
0.00
DIAMETER
(INCHES)
18.00
18.00
18.00
0.00
ANGLE FLOWLINE
(DEGREES) ELEVATION
0.00
90.00
0.00
55.72
55.39
55.72
0.00
CRITICAL
DEPTH(FT.)
0.92
0.97
0.29
0.00
VELOCITY
(FT/SEC)
9.189
8.561
1.358
0.000
0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*C0S(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03075
Page 5
ECRWEST
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE =0.02355
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02715
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.109 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.425)+( 0.000) = 0.425
"NODE "8002"3l'rHGL'= < 56.293>;EGL= < 57.604>;FLOWLINE= < 55.720>
^*****************************************************************************
FLOW PROCESS FROM NODE 8002.31 TO NODE 8002.10 IS CODE =1
UPSTREAM NODE 8002.10 ELEVATION = 57.50 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 51.73 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 0.92
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY
CONTROL(FT) (FT) (FT/SEC)
0.000 0.921 5.007
0.016 0.906 5.103
0.067 0.892 5.203
0.157 0.877 5.308
0.288 0.863 5.417
0.468 0.848 5.531
0.701 0.833 5.651
0.993 0.819 5.776
1.353 0.804 5.906
1.790 0.790 6.043
2.315 0.775 6.187
2.942 0.760 6.338
3.687 0.746 6.496
4.571 0.731 6.663
5.620 0.716 6.838
6.869 0.702 7.022
8.360 0.687 7.217
10.156 0.673 7.422
12.341 0.658 7.639
15.040 0.643 7.868
18.447 0.629 8.111
22.886 0.614 8.368
28.965 0.600 8.641
38.054 0.585 8.931
51.730 0.573 9.186
NODE 8002.10 : HGL = < 58. 421>;EGL= <
PRESSURE+
ENERGY(FT) MOMENTUM(POUND
1.311 83.68
1.311 83.71
1.313 83.81
1.315 83.97
1.319 84.21
1.323 84.52
1.330 84.91
1.337 85.38
1.346 85.94
1.357 86.58
1.370 87.32
1.384 88.15
1.401 89.10
1.421 90.14
1.443 91.31
1.468 92.60
1.497 94.02
1.529 95.57
1.565 97.28
1.605 99.14
1.651 101.17
1.702 103.38
1.760 105.79
1.824 108.40
1.884 110.74
58.811>;FLOWLINE= < 57.500>
******************************************************************************
FLOW PROCESS FROM NODE 8002.10 TO NODE 8002.20 IS CODE = 2
UPSTREAM NODE 8002.20 ELEVATION = 57.83 (FLOW IS SUBCRITICAL)
(NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE)
CALCULATE MANHOLE/INLET/OUTLET LOSSES:
PIPE FLOW = 5.70 CFS PIPE DIAMETER =
USER SPECIFIED LOSS COEFFICIENT =1.00
AVERAGED VELOCITY HEAD = 0.694 FEET
HMN = 1.00*(AVERAGED VELOCITY HEAD) = 1.00*( 0.694) =
Page 6
18.00 INCHES
0.694
ECRWEST
NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO
CHANGING IN FLOW LINE ELEVATIONS
NODE 8002.20 : HGL = < 58.465>;EGL= < 59.462>;FLOWLINE= < 57.830>
******************************************************************************
FLOW PROCESS FROM NODE 8002.20 TO NODE 8002.00 IS CODE = 1
UPSTREAM NODE 8002.00 ELEVATION = 58.23 (FLOW IS SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 5.17 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) 0.92
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 0.921 5.007 1.311 83.68
0.011 0.902 5.132 1.311 83.73
0.045 0.883 5.264 1.314 83.89
0.105 0.864 5.403 1.318 84.18
0.195 0.846 5.551 1.324 84.58
0.317 0.827 5.707 1.333 85.12
0.478 0.808 5.873 1.344 85.79
0.681 0.789 6.049 1.358 86.61
0.933 0.770 6.237 1.374 87.59
1.241 0.751 6.436 1.395 88.73
1.615 0.732 6.649 1.419 90.05
2.066 0.713 6.876 1.448 91.57
2.607 0.695 7.119 1.482 93.29
3.255 0.676 7.379 1.522 95.24
4.033 0.657 7.658 1.568 97.43
4.968 0.638 7.958 1.622 99.89
5.170 0.635 8.014 1.632 100.35
NODE 8002.00 : HGL = < 59.151>;EGL= < 59.541>;FLOWLINE= < 58.230>
******************************************************************************
FLOW PROCESS FROM NODE 8002.00 TO NODE 8002.00 IS CODE = 8
UPSTREAM NODE 8002.00 ELEVATION = 58.23 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 5.01 FEET/SEC. VELOCITY HEAD = 0.390 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.390) = 0.078
NODE 8002.00 : HGL = < 59.619>;EGL= < 59.619>;FLOWLINE= < 58.230>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 8002.00 FLOWLINE ELEVATION = 58.23
ASSUMED UPSTREAM CONTROL HGL = 59.15 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 7
CI14
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering Software (aes)
ve? 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************^
* HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #14 ^
* EL CAMINO REAL STA 485+76.85 ^ * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *;UUJEAR^^I^O;jM^UL^^|viAic^^^
FILE NAME: CI14.DAT ^ .
TIME/DATE OF STUDY: 14:45 10/16/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note* "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
9002.00- 2.42* 184.89 0.28 7.27
9003.00? ^^^"^^^^ 2.23* 164.06 0.34 Dc 6.94
} CATCH BASIN n OA -) KK 9003.00- 2.24* 163.77 0.34 Dc 2.55
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
'NOTE- STEADY'FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
****l**********f********************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA: r:,.-r^n., AT AQ
NODE NUMBER = 9002.00 FLOWLINE ELEVATION = 42.48
PIPE FLOW = 0:82 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 44.900 FEET^
"'NODE""9002'00"rHGL"="<"" 44.900>;EGL= < 44.903>; FLOWLINE= < 42.480>
******************************************************************************
FLOW PROCESS FROM NODE 9002.00 TO NODE 9003.00 IS CODE =1
UPSTREAM NODE 9003.00 ELEVATION = 42.67 (FLOW IS UNDER_PRESSURE)__
CALCULATE FRICTION LOSSES (LACFCD): AA TM^UCC
PIPE FLOW = 0.82 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 18.83 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 0.82)/( 105.009))**2 = 0.00006
HF=L*SF = ( 18.83)*(0.00006) = 0.001
"NODE'"9003'00'rHGL'= < 44.901>;EGL= < 44.904>;FLOWLINE= < 42.670>
******************************************************************************
Page 1
CI14
FLOW PROCESS FROM NODE 9003.00 TO NODE 9003.00 IS CODE =8
CPSTREAM NODE 9003 00 ELEVATION = 42.67 (FLOW IS UNDERPRESSURE)___
CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : ....^^^c
PIPE FLOW = 0.82 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 0.46 FEET/SEC. VELOCITY HEAD = 0.003 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.003) = ^0^001
"NODE "9003'oo"^ HGL = < 44.905>;EGL= < 44.905>;FLOWLINE= < 42.670>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 9003.00 FLOWLINE ELEVATION = 42.67
ASSUMED UPSTREAM CONTROL HGL = 43.01 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
102
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
ODAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
************************** DESCRIPTION OF STUDY **************************
* HYDRAULIC CALCULATION FOR STORM DRAIN STA 489+52.01 AND C.I. #15 *
* 100 YEAR STORM DRAIN ULTIMATE CONDITION ^
**^|*******I***************************************************************
FILE NAME: 102.DAT
TIME/DATE OF STUDY: 14:50 10/16/2014 ******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
8002.20- 0.58* 10.63 0.25 4.81
8006.00? 0.53* 8.85 0.29 DC 4.68
} CATCH BASIN ^ n -,n 17-7
8006.00- 0.55* 7.93 0.29 Dc 1.72
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
**5^fJ^********f;*************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 8002.20 FLOWLINE ELEVATION = 55.72
PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 56.300 FEET^^^
"NODE"8002'20 THGL ^ < 56.300>;EGL= < 56. 314>; FLOWLINE= < 55.720>
******************************************************************************
FLOW PROCESS FROM NODE 8002.20 TO NODE 8006.00 IS CODE = 1 .
UPSTREAM NODE 8006.00 ELEVATION = 55.77 (FLOW IS SUBCRITICAL)
CALCULATE FRICTION LOSSES (LACFCD) : ^„^.„-c.
PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 5.17 FEET MANNING'S N = 0.01300
"NORMAL'DEPTH(FT)'= O'25 CRITICAL DEPTH(FT) = 0.29
DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
Page 1
102
DISTANCE FROM
CONTROL(FT)
0.000
1.170
2.337
3.499
4.657
5.170
FLOW DEPTH
(FT)
0.580
0.568
0.557
0.545
0.533
0.528
VELOCITY
(FT/SEC)
0.951
0.977
1.005
1.035
1.066
1.080
SPECIFIC
ENERGY(FT)
0.594
0.583
0.572
0.561
0.551
0.546
PRESSURE+
MOMENTUM(POUNDS)
10.63
10.21
9.80
9.40
9.02
8.85
" NODE 8006.00 : HGL = < 56.298>;EGL= < 56.316>;FLOWLINE= < 55.770>
******************************************************************************
FLOW PROCESS FROM NODE 8006.00 TO NODE 8006.00 IS CODE = 8
UPSTREAM NODE 8006.00 ELEVATION = 55.77 (FLOW IS SUBCRITICAL)
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 1.08 FEET/SEC. VELOCITY HEAD = 0.018 FEET
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*(^ 0.018) = 0.004
"NODE""8006'OO': HGL = < 56.320>;EGL= < 56.320>;FLOWLINE= < 55.770>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 8006.00 FLOWLINE ELEVATION = 55.77
ASSUMED UPSTREAM CONTROL HGL = 56.06 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
lOl.dat has been omitted.
For hydraulic analysis of 18" lateral at Sta. 490+07.86, see ECRWEST in this section.
Aio
******************************************************************************
PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) copyright 1982-2014 Advanced Engineering software (aes)
ver. 21.0 Release Date: 06/01/2014 License ID 1650
Analysis prepared by:
O'DAY CONSULTANTS, INC.
2710 LOKER AVE. WEST SUITE 100
carlsbad, CA 92010
FILE NAME: AlO.DAT
TIME/DATE OF STUDY: 17:18 10/28/2014
******************************************************************************
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "*" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
5050.00- 5.02* 1695.12 1.47 426.29
} FRICTION
5042.00- 4.50* 1465.06 1.54 Dc 425.04
} JUNCTION
5042.10- 4.43* 1378.52 1.07 330.50
} FRICTION 5040.00- 3.96* 1171.78 1.35 Dc 306.21
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS,
******************************************************************************
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 5050,00 FLOWLINE ELEVATION = 43,78
PIPE FLOW = 22,80 CFS PIPE DIAMETER = 36,00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 48,800 FEET
NODE 5050,00 : HGL = < 48.800>;EGL= < 48,962>;FL0WLINE= < 43,780>
******************************************************************************
FLOW PROCESS FROM NODE 5050,00 TO NODE 5042,00 IS CODE = 1
UPSTREAM NODE 5042,00 ELEVATION = 44,46 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 22,80 CFS PIPE DIAMETER = 36,00 INCHES
PIPE LENGTH = 135.57 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 22.80)/( 666.985))**2 = 0.00117
HF=L*SF = ( 135.57)*(0.00117) = 0.158
NODE 5042.00 : HGL = < 48.958>;EGL= < 49.120>;FLOWLINE= < 44.460>
******************************************************************************
FLOW PROCESS FROM NODE 5042.00 TO NODE 5042.10 IS CODE = 5
UPSTREAM NODE 5042.10 ELEVATION = 44.79 (FLOW IS UNDER PRESSURE)
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
Page 1
Aio
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC)
UPSTREAM 17.70 36.00 90.00 44.79 1.35 2.504
DOWNSTREAM 22.80 36.00 - 44.46 1.54 3.226
LATERAL #1 5.10 18.00 0.00 46.29 0.87 2.886
LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000
Q5 0.00===Q5 EQUALS BASIN INPUT===
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3 *V3 *COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00070
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00117
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00094
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.198)+( 0.000) = 0.198
NODE 5042.10 : HGL = < 49.221>;EGL= < 49.318>;FLOWLINE= < 44.790>
******************************************************************************
FLOW PROCESS FROM NODE 5042.10 TO NODE 5040.00 IS CODE = 1
UPSTREAM NODE 5040.00 ELEVATION = 45.29 (FLOW IS UNDER PRESSURE)
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 17.70 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 44.44 FEET MANNING'S N = 0.01300
SF=(Q/K)**2 = (( 17.70)/( 666.987))**2 = 0.00070
HF=L*SF = ( 44.44)*(0.00070) = 0.031
NODE 5040.00 : HGL = < 49.252>;EGL= < 49.349>;FLOWLINE= < 45.290>
******************************************************************************
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 5040.00 FLOWLINE ELEVATION = 45.29
ASSUMED UPSTREAM CONTROL HGL = 46.64 FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY VARIED FLOW ANALYSIS
Page 2
Capacity for 18" Storm Drain @ 0.50%
Inside Diameter
( 18.00 in.)
* Water *
* ( 16.88 in.)
( 1.407 ft.)
* v_
Circular Channel Section
Flowrate 7.990 CFS
Velocity 4.641 fps
Pipe Diameter 18.000 inches
Depth of Flow 16.884 inches
Depth of Flow 1.407 feet
Critical Depth 1.097 feet
Depth/Diameter (D/d) 0.93 8
Slope of Pipe 0.500 %
X-Sectional Area 1.722 sq. ft.
Wetted Perimeter 3.957 feet
ARN2/3) 0.989
Mannings 'n' 0.013
Min. Fric. Slope, 18 inch
Pipe Flowing Full 0.579 %
Capacity for 18" Storm Drain @ 1.0%
Inside Diameter
( 18.00 in.)
Water
* ( 16.88 in.)
( 1.407 ft.)
* v_
Circular Channel Section
Flowrate 11.300 CFS
Velocity 6.563 fps
Pipe Diameter 18.000 inches
Depth of Flow 16.884 inches
Depth of Flow 1.407 feet
Critical Depth 1.282 feet
Depth/Diameter (D/d) 0.938
Slope of Pipe 1.000 %
X-Sectional Area 1.722 sq. ft.
Wetted Perimeter 3.957 feet
AR-(2/3) 0.989
Mannings 'n' 0.013
Min. Fric. Slope, 18 inch
Pipe Flowing Full 1.157 %
Capacity for 18" Storm Drain @ 2.0%
Inside Diameter
( 18.00 in.)
Water
* ( 16.88 in.)
( 1.407 ft.)
* * I
* v_
Circular Channel Section
Flowrate 15.980 CFS
Velocity 9.282 fps
Pipe Diameter 18.000 inches
Depth of Flow 16.884 inches
Depth of Flow 1.407 feet
Critical Depth 1.427 feet
Depth/Diameter (D/d) 0.93 8
Slope of Pipe 2.000 %
X-Sectional Area 1.722 sg. ft.
Wetted Perimeter 3.957 feet
AR'^(2/3) 0.989
Mannings 'n' 0.013
Min. Fric. Slope, 18 inch
Pipe Flowing Full 2.314 %
Channel Report
Hydraflow Express Extenston for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.
diameter ditch for 36 inch offsite storm drain
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfe)
= 5.00
= 43.15
= 0.50
= 0019
Known Q
= 22.80
Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
Tuesday, Oct 28 2014
1.44
22.80
4.70
4.85
5.67
1.32
4.53
1.81
46.00
45.00
44.00
43.00
42.00 -1.15
Reach(ft)
APPENDIX 8
Rip-rap Calculations
JN 101307 - El Camino Real
Rip-rap calculation
Revised 10/21/2014
El Camino Real Rip-Rap Calculation
446+73.94 (Northerly Storm Drain - Sht. 16 of improvement plans)
QIOO = 6.7 cfs
VlOO = 6.4 fps
18" RCP
Per SDRSD D-40: Type 2, W = 4.5' (Say 5'), L = 10', Rock Classification = No. 2 backing, T = 1.1'
Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = J4"
aggregate 12" thick.
453+16.56 (Existing 24" storm drain near Crestview Dr. - Sht. 17 of improvement plans)
QIOO = 13.2 cfs
VlOO = 21.2 fps
Per SDRSD D-40, V > 20 fps is special design. Also, rip rap is existing per Dwg. 369-7 Sheet 8 and specified
as 2-ton with T=5.4', width = 10' and length = 20'.
Using Erosion and Sediment Control Handbook (last page of this section), 2-ton rock and length is
adequate. The average width would be (6' + 13')/2 = 9.5' -> 10' ok.
482+48.49 (Existing RCB DBL Kelly - Sht. 22 of improvement plans)
QIOO = 20.6 cfs, 127.5 cfs, 729.0 cfs
VlOO =13.8 fps (worst case)
2 ~8'x4' RCB
1~ 36" RCP
2~ 42" RCP
Due to environmental constraints, dimension for rip rap is W = 47' and L = 43'.
Per SDRSD D-40:
W at downstream end = 16' x 3' = 48' ~ 47' -> ok
L = 16' X 4' = 64' > 43'. To compensate for shorter length, larger rock will be specified:
For 13.8 fps, 1 ton rock with T= 4.4' is adequate -> Use 2 ton rock instead, T=5.4'
Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = 2"
aggregate 12" thick over 12' sand.
G:\101307\Hydrology\ECR\Submittal #3 October 2014
JN 101307-El Camino Real
Rip-rap calculation
Revised 10/21/2014
484+86.00 (Offsite Storm drain located in North west of Kelly Drive - Sht. 23 of improvement plans)
36" RCP draining to 5' wide D-7S ditch at 0.5%
QIOO = 22.8 cfs
VlOO = 6.6 fps in pipe and 4.9 fps in ditch (see calculation in Appendix 7)
Per SDRSD D-40: Type 2, W = 15', L = 20', Rock Classification = No. 2 backing, T = 1.1'.
Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = V
aggregate 12" thick.
Note: ditch will drain to larger rip rap field as part of head works to 8' x 4' double box culvert.
G:\101307\Hydrology\ECR\Submittal #3 October 2014
JN 101307 - El Camino Real
Rip-rap calculation
Revised 10/21/2014
Rip-rap Calculations for QIC
STATIONS PIPE SIZE QIC QIC
per
pipe
or
inlet
VIO DESCRIPTION NOTES /
Imp. Plan
Sheet
446+59.70 6" 0.5 0.5 4.2 Per SDRSD D-40 Modified: Type 2, W = 1.5' L = 2', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
North Curb
Sheet 16
446+90 10" 2.1 2.1 6.0 Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
North Curb
Sheet 16
454+35.01
455+28.97
455+99.95
8" 1.9 0.6 4,3 Per SDRSD D-40 Modified: Type 2, W = 2', L = 2.7', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
Median
Sheets 17
and 18
456+69.79
457+40.07
458+79.65
459+50.37
460+30
10"
(No pipe
at
460+30)
2.4
(for 5
inlets)
0.5 4.1 1) All stations except 460+30
Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock
Classification No. 2 backing, T= 1.1 ft.
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick.
2) Station 460+30. Same specifications as 1) above except W
and L = 2'+ (width of channel bottom).
Median
Sheet 18
473+74.81
474+29.85
10" 2.4 1.2 5.3 Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
North Curb
Sheet 21
476+33.90 No pipe 1.9 .9 Per SDRSD D-40 Modified: Type 2, W = 5', L = 5', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
Median
Sheet 21
479+17.45
480+57.99
No pipe 1.7 .9 Per SDRSD D-40 Modified: Type 2, W = 5', L = 5', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
Median
Sheets 21
and 22
480+80
482+15
12" 4.0 2.0 6.0 Per SDRSD D-40 Modified: Type 2, W = 3', L = 4', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = %" aggregate 12" thick
North Curb
Sheet 22
G:\101307\Hydrology\ECR\Submittal #3 October 2014
JN 101307-El Camino Real
Rip-rap calculation
Revised 10/21/2014
STATIONS PIPE SIZE QIO QIC
per
pipe
or
inlet
VIO DESCRIPTION NOTES
484+00 12" 4.9 4.9 7.3 Per SDRSD D-40 Modified: Type 2, W = 3', L =4, Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = Vi" aggregate 12" thick
North Curb
Sheet 22
489+69.42 No pipe 0.5 0.5 Per SDRSD D-40 Modified: Type 2, W = 5' L = 10', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = K" aggregate 12" thick
Median
Sheet 23
490+36.62 No pipe 4.8 4.8 Per SDRSD D-40 Modified: Type 2, W = 5', L = 10', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 In San Diego Regional Supplement Green
book (see attached): filter blanket = )4" aggregate 12" thick
Median
Sheet 23
455+31.98 18" 3.1 3.1 9.1 Per SDRSD D-40: Type 2, W = 4.5' (Say 5'), L = 10', Rock
Classification No. 2 backing, T= 1.1 ft
Per table 200-1.7 in San Diego Regional Supplement Green
book (see attached): filter blanket = Yu" aggregate 12" thick
South Curb
Sheet 17
G:\101307\HydrologY\ECR\Submittal #3 October 2014
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
446+59.70
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
0.50
= 100.00
= 2.00
= 0.013
Known Q
= 0.50
Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.29
0.500
0.12
4.22
0.87
0.36
0.49
0.57
Elev (ft)
0,0
Section
100.75
100.50
100.25
100.00
99.75
Reach(ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCMyS) Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
446+90
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 0.83
= 100.00
= 2.00
= 0.013
Known Q
= 2.10
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.51
2.100
0.35
6.00
1.50
0.65
0.81
1.07
Elev (ft)
101.00 -
100.75
100.50
100.25
100.00
99.75
Section
Reach(ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
'454+36.01 456+28.97 455+99.95
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 0.67
= 100.00
= 2.00
= 0.013
Known Q
= 0.60
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.28
0.600
0.14
4.27
0.94
0.37
0.66
0.56
Elev (ft)
101.00 -
Section
100.75
100.50
100.25
100.00
99.75
Reach(ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
456+69.79 457+40.07 458+79.65 459+50.37 460+30
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 0.83
= 100.00
= 2.00
= 0.013
Known Q
= 0.50
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.23
0.500
0.12
4.08
0.92
0.31
0.74
0.49
Section
100.50
100.25
100.00
99.75
Reach(ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
473+74.81 474+29.85
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
0.83
= 100.00
= 2.00
= 0.013
Known Q
= 1.20
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.36
1.200
0.23
5.32
1.20
0.49
0.82
0.80
Elev (ft)
101.00 -
Section
100.75
100.50
100.25
100.00
99.75
Reach (ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
480+80 482+15
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 1.00
= 100.00
= 2.00
= 0.013
Known Q
= 2.00
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Wdth (ft)
EGL (ft)
0.44
2.000
0.34
5.97
1.45
0.61
0.99
0.99
100.50
100.00
99.50 0.50
Reach(ft)
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014
484+00
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 1.00
= 100.00
= 2.00
= 0.013
Known Q
= 4.90
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.80
4.900
0.67
7.27
2.22
0.92
0.80
1.62
100.50
100.00
99.50 0.50
Reach (ft)
Channel Report
Hydraflow Express Extenston for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 28 2014
155+31.98
Circular
Diameter (ft)
Invert Elev (ft)
Slope (%)
N-Value
Calculations
Compute by:
Known Q (cfs)
= 1.50
= 100.00
= 5.34
= 0.013
Known Q
= 3.10
Highlighted
Depth (ft)
Q (cfe)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
0.37
3.100
0.34
9.13
1.56
0.67
1.29
1.67
Section
101.00
100.50
100.00
99.50
Reach(ft)
2D OR gW fmin )
Endwon (lypicol)
PLAN
Concrete
Choni
0 mtn.
Dev 8ho....
on plans
SECTION B-B
Design Velocity
h/itc*
6-10
10-12
Rock
Ooss
Rp-Rop
Thickness
T (min)
No. 2 booking j ijft
1/4 ton 2.7fl
12-14
14-16
16-18
1/2 ton 3.5fl
1 ton 4.4ft
2 ton 5.4ft
W 20 fl/sec requfres spedol design
D - Pipe Diameter
W - Bottom Width of Channel
.RHer Blanket _Moieriol(s)
2
3.
4.
5.
1 Revision py Approved Dote
LQSIfflNAV
1 *M Metric
Kerchevifl
1 ^. - -. 12/79
f M m Ho* 1. atonton
S. Brady
03/03
04/06 {Edited 1T. Stonton 02/09
1 Edited S.SjT. Regelle 03/11
SAN DIEGO REGIONAL STANDARD DRAWING
U- '^X siii. aoss
426-^-2000
Concrete
SECTION A-A
NOTES
Pjonj thon specrty:
WJ<oek Doss ond rip-rap thickness m T •lu.ii k. ^
^/iiS^J^p^^'''''^ i
RIP RAP
ENERGY DISSIPATER DRAWING
NUMBER D-40
PART 2
CONSTOUCTION MATERIALS
SECTION 200 . ROCK MATERIALS
200-1 ROCK PRODUCTS.
200-1.6 Stone for Riprap.
'^^^"'^t^.Slrtt^rli.^^ ~" -"^ '« TABLE 20«.,.*(A,.
Rock
Sizes
1 2 Ton
4 Ton 0-5
2 Ton 50-100
ITon 1 95-100
J<Ton 1
1/4 Ton 1
2001b. j
76 r
25 lb. 1
51b. 1
lib. 1
TABLE 200-1.6 (A)
Pertientafle Larger Than
CLA SSg a
ITon %Ton I 1/4 Ton I J^^-^ Backinc
95-100
weight basis. Compliance with Sc^nSitS^R • " ^^^'^ determined on a
individual pieces of any class of ^T^'ri^H^^^^ other sizes ofthe
number of individual pLT^aJj^'^S^ ^^^^^^^^^^^^ ^'"T^^ °f the pertaining to this Grt«nbook S^plen^nt Sub^^^o^i ^'l"! ^ Blanket Material." ^"PP'cmcnt Subsection 200-1.7, "Selection of Riprap Filter
1
200-1.6J Qualily Requirements.
J^f.^- following n,w .ubwctloa-
200-1.7 Selection of Riprap and Filter fli^n ket MateriaL
TABLE 200-1.7
^1^"TfXLl:^?'.S;«'P."l'-" '^•'»TABLE20.-, .,A,
r-Ight Rock 2001b. j
Class
2001b. j
1 hadng j Rock 751b. 1
1 1 Class 751b. 1
/ No. 2 Backing /Rock 5 lb. 1 1 ' Class 5 lb. 1
l^J^^-^'^^w'::^^:^^'^ of T.b.. 400^.3(0 of
Mlsc.ll.."„.7K,fI^"'?^ Subnotion 200.2J Troc«,^
(5)
(6)
to
Avg.=(6+13)/2 = 9,5'
->10' ok
0.1
100 200
Discharge, ft^/sec
1 I I I II M 1 1 > llllli 1 h-f-
0.2 0.30.4 0.6 0.8 1 2 3 4 5 6 7 8 10 15 2025
Discharge, m^/sec
2.6', ok
2 ton = 3.6'
See next page
1000
Discharge, ft^/sec
I Mill! -f-I Illll 1 1—f-
.3 .4 .5.6.7.8.91 2 3 45678 10
Discharge, mVsec
15 20 25
Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full; maximum
tailwater conditions. (6,14)
to find the nprap size and apron length. The apron width at the pipe end should
be 3 times the pipe diameter. Where there is a weU-defined channel immediately
downstream from the apron, the width of the downstream end of the apron
should be equal to the width of the channel. Where there is no weU-defined chan-
nel immediately downstream from the apron, minimum tailwater conditions
apply and the width of the downstream end of the apron should be equal to the
pipe diameter plus the length ofthe apron.
EXAMPLE 7.4 Riprap Outlet Protection Design Calculation for Minimum Tailwater Condition
Given: A flow of 6 ftVsec (0.17 mVsec) discharges from a 12-in (30-cm) pipe onto a 2
percent grassy slope with no defined channel.
Find; The required length, width, and median stone size dso for a riprap apron.
Solution: Since the pipe discharges onto a flat area with no defined channel, a mini-
mum tailwater condition can be assumed.
By Fig. 7.45, the apron length Lo and median stone size dso are 10 ft (3 m) and 0.3 ft
(9 cm), respectively. The upstream apron width equals 3 times the pipe diameter D„:
W„ = 3 X D„
= 3(1 ft) = 3 ft [3(0.3 m) = 0.9 m]
The downstream apron width Wj equals the apron length plus the pipe diameter:
= 1 ft + 10 ft - 11 ft (0.3 m + 3.0 m = 3.3 m)
Note: When a concentrated flow is discharged onto a slope (as in this example), gul-
lying can occur downhill from the outlet protection. The spreading of concentrated flow
Existing 10' x 20' 2-ton rip rap at
24" storm drain
Chapter 5. Open Channels
5.7.1 Longitudinal Channel Slope
The longitudinal slope of riprap-lined channels shall be dictated by maximum permissible
velocity requirements. Table 5-2 summarizes the maximum permissible velocity for standard
riprap gradations. Where topography is steeper than desirable, drop structures may be used to
maintain design velocities (see Section 5.12).
Table 5-2 Channel Bottom Riprap Protection
Design Velocity Rock Gradation
6-10
10-12
12-14
14-16
16-18
> 18
No. 2 Backing
% ton
% ton
1 ton
2 ton
Special Design
5.7.2 Roughness Coefficients
The Manning roughness coefficient (n) for hydraulic computations shall be estimated for loose
rock riprap using the Manning-Strickler equation (Equation 5-5). Equation 5-5 (Chang, 1992)
does not apply to grouted rock riprap or to very shallow flow. Table 5-3 provides Manning
roughness coefficients for standard rock riprap classifications based on the Manning-Strickler
method.
n = 0.0395d. 1/6
50 (5-5;
where
n = Manning roughness coefficient (dimensionless); and
dso - median stone diameter (feet).
Table 5-3 Standard Rock Riprap Gradations
Rock Gradation •Median Stone Weight Median Stone
Diameter (dso)'
Manning n
No. 3 Backing 51b 0.4 ft 0.034
No. 2 Backing 25 Ib 0.7 ft 0.037
No. 1 Backing 75 Ib 1.0ft 0.039
Light 200 Ib 1.3 ft 0.041
74 Ton 500 Ib 1.8ft 0.044
V2 Ton 1000 Ib 2.3 ft 0.045
1 Ton 2000 Ib 2.9 ft 0.047
2 Ton 4000 Ib > 3.6 ft >2.6' ok 0.049
(a) Except for 2 ton rock, classification is based upon Caltrans Method B Placement, which allows dumping ofthe rock
and spreading by mechanical equipment. Local surface inegulahtles shall not vary from the planned grade by more than
1 foot, measured perpendicular to the slope. Two-ton rock requires special placement, see Caltrans (2002) or Greenbook
for more infonvation. (b) No. 1 Backing has same gradation as Facing Riprap, (c) per Caltrans (2002). (d) Assumes
specific weight of 165 Ib/ftS. The designer shall take care to apply a unit weight that is applicable to the type of riprap
specified for the project, and adjust their calculations when necessary, (e) Based on Manning-Strickler relationship
(Chang, 1988).
San Diego County Drainage Design Manual
July 2005
Page 5-16
APPENDIX 9
Overflow Calculations for Catch Basins serving Bioretention Areas
Overflow Calculations for El Camino Real Widening
Per 2005 San Diego County Drainage Design Manual Section 6.4.3
Orifice Flow
Qio = Co Ao [2g(Ho)] " 3/2
QIC
Co
Ao
g
Ho
Orifice flow discharge for 10 year storm (cfs)
Orifice discharge coefficient (per table 6-1 orifice
coeffificient for different edge conditons)
use sharp clean edge = 0.60
Cross-sectional area of flow through orrifice (ft'^2)
Gravitational acceleration (32.2 ft/s'^2)
Effective head above orifice (ft)
BMP ID # STA. QIO Co Ho Ao
1 445+62.33 0.48 0.6 0.17 0.045
2 447+96.74 2.1 0.6 0.17 0.198
3 454+23.37 1.9 0.6 0.17 0.179
4 454+93.30 1.9 0.6 0.17 0.179
5 455+63.65 1.9 0.6 0.17 0.179
6 456+33.75 3.3 0.6 0.17 0.311
7 457+03.63 3.3 0.6 0.17 0.311
8 458+43.68 3.3 0.6 0.17 0.311
9 459+13.68 3.3 0.6 0.17 0.311
10 459+83.81 3.3 0.6 0.17 0.311
11 454+53.40 3.1 0.6 0.17 0.292
14 476+71.81 1.9 0.6 0.17 0.179
15 479+52.79 1.7 0.6 0.17 0.160
16 480+92.44 1.7 0.6 0.17 0.160
18 474+70.81 2.4 0.6 0.17 0.226
19 481+24.02 4 0.6 0.17 0.377
20 482+26.87 4 0.6 0.17 0.377
21 484+36.40 4.9 0.6 0.17 0.462
22 489+42.07 0.53 0.6 0.17 0.050
23 490+08.09 4.8 0.6 0.17 0.453