Loading...
HomeMy WebLinkAboutCT 13-03; El Camino Real widening Robertson Ranch West; Robertson Ranch West El Camino Real Widening; 2014-11-03Declaration of Responsible Charge I hereby declare that I am the Engineer of Work for this project, that I have exercised responsible charge over the design of this project as defined in section 6703 ofthe Business and Professions Code, and that the design is consistent with current standards. I understand that the check of project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as the Engineer of Work, of my responsibilities for the project design. O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92010 (760)931-7700 Date: George O'Day R.C.E. No. 32014 Exp. 12/31/14 TABLE OF CONTENTS Section Description Introduction and Project Description Hydrology Hydraulics Appendix 1-100 Year Hydrologic Calculations for Existing Conditions Appendix 2-100 Year Hydrologic Calculations for Ultimate Conditions Appendix 3-10 Year Hydrologic Calculations for Ultimate Conditions Appendix 4- Hydraulic Analysis of Proposed Storm Drains (Main line BFA) Appendix 5-100 Year Hydrologic Calculations for Existing Conditions at Kelly Double Box Culvert (Basin E-F, Rancho Costera) Appendix 6-100 Year Hydrologic & Hydraulic Calculations for Ultimate Conditions at Kelly Double Box Culvert (Basin E-F, Rancho Costera) Appendix 7- Curb Inlet Calculations & Hydraulic Analysis of Storm Drain Laterals, Curb Outiets & Ditches Appendix 8- Rip-Rap Calculations Appendix 9- Overflow Calculations for Catch Basins serving Bioretention Areas Exhibits Exhibit A Vicinity Map Exhibit B Table 3-1 Runoff Coefficients for Urban Areas (Rational Method) Exhibit C Soil Group Map Exhibit D 100-year 6-hour Precipitation Map 10-year 6-hour Precipitation Map Exhibit E lOO-year 24-hour Precipitation Map 10-year 24-hour Precipitation Map Exhibit F Figure 3-3 Urban Areas Overland Time of Flow Nomagraph Exhibit G Figure 3-1 Intensity Duration Design Chart Exhibit H Table 3-2 Maximum Overland Flow Length & Initial Time of Concentration Exhibit I Figure 3-4 Nomograph of Tc for Natural Watersheds Exhibit J Existing Conditions Hydrologic Map (Map Pocket) Exhibit L Ultimate Conditions Hydrologic Map (Map Pocket) Exhibit M Hydraulic Map Exhibit N Existing & Proposed Drainage Map for Kelly Drive, Double RCB (Basin E-F, Rancho Costera) Exhibit O Hec-1 Drainage Basin Work Map for Existing 8'x8' RCB Excerpts from Chang Consultants Study for Letter of Map Revision Request Exhibit P for Robertson Rancli dated November 1, 2008 lOO-year HEC-1 Input for Existing 8'x8' RCB Analysis from Chang Exhibit Q Consultants Study for Letter of Map Revision Request for Robertson Ranch dated November 1, 2008 Exhibit R Cross-sections for Channel Downstream of Double 8' x4' RCB at Kelly Drive A. INTRODUCTION AND PROJECT DESCRIPTION This drainage study was prepared to support the Grading Widening of El Camino Real between Cannon Road and Tamarack Avenue. Exhibit A is Vicinity Map for the project. As part of die Rancho Costera Development located to the north, also known as Robertson Ranch West Village, the City of Carlsbad has required tiie developer to improve El Camino Real. The improvements consist of widening to a right-of-way width of 126 feet, witii appropriate tum pockets for tiie future development as well as a median in tiie center of tiie street. This improvement encompasses tiie entire lengtii of the nortiierly side of El Camino Real between Cannon Road and Tamarack Avenue. The improvements on the soutiierly side of El Camino Real are limited to two portions: one portion from just west of Crestview Drive to just east of Lisa Street and anotiier portion west of tiie projection of Julie Place to just east of Kelly Drive. In addition to tiie surface improvements mentioned above, a sewer line, waterline, reclaimed waterline, and storm drain will be constmcted to serve the proposed development. The proposed storm drain will also serve as Drainage Project BFA of the City of Carlsbad Drainage Master Plan. The Carlsbad Drainage Master Plan dated July 3, 2008 prepared by Brown and Caldwell identifies Drainage Project BFA (Country Store Storm Drain Project), as a proposed 42-inch RCP storm drain along El Camino Real, west of Lisa Street, terminating east of Kelly Drive. The purpose of the facility is to collect onsite mnoff from the residential and adjacent areas on tiie south side of El Camino Real, to drain storm water mnoff from soutii of El Camino Real and convey it westward towards the existing earthen channel tiiat originates from the sedimentation basin BFl and travels southerly to open space. In conjunction witii tiiis drainage study a Storm Water Management Plan for El Camino Real Widening was prepared by O'Day Consultants. The SWMP depicts the hydromodification BMP areas designed based on the Final Hydromodification Plan for tiie County of San Diego, by Brown and Caldwell, dated January, 13, 2011. B. HYDROLOGY Hydrologic calculations were performed utilizing the San Diego County Rational Metiiod as described in the San Diego County Hydrology Manual, June 2003. Pertinent exhibits from the San Diego County Hydrology Manual are enclosed for reference, as follows: Exhibit B - Runoff Coefficients (Table 3-1) & Calculated Coefficients Exhibit C - Soil Group Map Exhibit D - 100-year 6-hour Isopluvial Map 10-year 6-hour Isopluvial Map Exhibit E - 100-year 24-hour Isopluvial Map Existing Conditions: Beginning from the intersection of Cannon Road heading west, existing El Camino Real drains to a low point. An existing 8'x8' reinforced box culvert conveys storm water from tiie nortii to the south side of the street. Basin ECR-1. Heading westerly on El Camino Real towards Crestview Drive, an existing 24" storm drain conveys storm water from the north side to the south side of El Camino Real and outlets east of Crestview Drive, Basin ECR-2. Continuing westerly to an existing 48" storm drain near the projection of Julie Place, 58.80 acres of land to the north drains to an existing 48" storm drain and is conveyed to a channel within land owned by Hoffman (APN 207-101-27, 28, and 29), Basin ECR-3 and Basin 'G'. Continuing westerly, storm water from a portion of El Camino Estates mns onto El Camino Real. That storm water combined with storm water from the high point at El Camino Real drain to property owned by Marja Acres, LLC (APN 207-101-24 and 25), Basin ECR-4. Continuing westerly, 11.5 acres of land to the north drains into El Camino Real. Since the street is superelevated at this location, both sides of the street drain to the low point to the north, west of Kelly Drive combining with storm water from the Tamarack intersection. The storm water is conveyed to the south via an existing double 8'x4' reinforced culvert box. Basin ECR-5 A summary Table of the Existing 100 Year Flow rates is shown below: 100 Year Flowrate for Existing Conditions Basin Description Area 100-Year Flowrate ECR-1 Drains to N.E. Open Space 0.79 AC 4.3 CFS ECR-2 Drains to S. E. Open Space near Crestview Dr. 5.22 AC 12.0 CFS ECR-3 Drains to Exist. 48" SD that outlets at Lands owned by Hoffman 62.30 AC 66.2 CFS ECR-4 Drains towards Lands owned by Marja Acres, LLC. 3.33 AC 10.6 CFS ECR-5 Drains towards Ex. Double 8'x4' RCB 11.52 AC 20.2 CFS See Appendix 1 for 100-Year Existing Hydrologic Calculations, See Exhibit J for Hydrologic Map. Existing 8'x 8' RCB near Cannon Road Several engineering analyses and design projects have been performed within Agua Hedionda and Calaveras Creek watersheds. These watersheds cover over 23 square miles and, as a result, support a variety of land uses including residential, commercial, industrial, open space, etc. There were several facilities adjacent to Robertson Ranch, particularly affecting the drainage tributary to the 8'x8' RCB, which were proposed as part of the City of Carlsbad Master Plan for Drainage. Facility BJ - Proposed an 80 foot wide earthen channel along the northem boundary of Rancho Carlsbad Mobile Home Park. Facility BJB- Proposed a sedimentation basin northeast of Cannon Road and College Boulevard that would drain into facility BJ. Instead of an 80 foot wide channel for Facility BJ, a 10 foot wide channel was constmcted, with a 5.0 ft. wide masonry wall on the north side of the channel. As part of a regional solution to the existing flooding that occurs in the Rancho Carlsbad Mobile Home Park, Facility BJB was built as a 49-acre foot detention basin. Detention Basin BJB and Calavera Creek drain into an existing 11'x7' culvert. At the outlet of this culvert, a weir/wall was built north of the 10-foot wide earthen channel. In a lOO-year storm this weir/wall was designed to allow only part of the flow exiting the existing culvert into the existing lO-foot wide channel. The rest of the flow is diverted to the west, north of the 5-foot masonry wall along the paved sewer access road, then through existing culverts under Cannon Road and El Camino Real into the Agua Hedionda Lagoon. As part of the development of Robertson Ranch East Village an 84" RCP storm drain was constmcted along the north side of Cannon Road. The 84" storm drain connects to the 11 'x7' culvert. A wall was constmcted within the 11 'x 7' culvert to replace the wall/weir at the outlet. The stormwater in the 84" RCP storm drain outiets at the low lying areas on the north west side of the El Camino Real and Cannon Road intersection. The 100-year flow will pond in these areas before exiting southwesterly through the existing 8'x 8' box culvert in El Camino Real. Rick Engineering Company (Rick) prepared analyses to establish the lOO-year inundation in the Rancho Carlsbad Mobile Home Park to the east and provided a HEC-1 hydrologic analysis to account for an upcoming improvement to the Lake Calaveras outlet facility. (Rancho Carlsbad Mobile Home Park Altemative Analysis for Agua Hedionda Channel Maintenance dated Dec. 18, 2004). In addition, Chang Consultants, prepared a letter of map revision for FEMA, issued on April 22, 2009, the study for the Letter of Map Revision Request for Robertson Ranch is dated November 1, 2008. The drainage area tributary to the 8'x8' box culvert is delineated on the HECl workmap (Chang and Rick) attached as Exhibit 'O'. Both the Rick and Chang studies account for a land use consistent with the Robertson Ranch Master Plan. It should be noted that the ponded water surface elevation at the low lying area at 84" RCP outiet is shown as 35.3 in Table 1 from Chang study, see Exhibit 'P'. According to the Chang study, since Calavera Creek confluences with Agua Hedionda Creek, the starting water surface elevations were based on the floodplain (44.0 feet) and floodway elevations (44.7) at the confluence from the Flood Insurance Study. This will ensure a proper tie-in at the downstream study limit and account for the lOO- year backwater from Agua Hedionda Creek. Drainage Area Tributary to Existing 8'x8' Box Culvert Drainage Basin Area (Sq. Miles) Cl 0.87 C2 2.72 C3 0.88 C4 1.24 RCCl 0.05 RRC2 0.208 RRCH 0.425 Total 6.393 Sq. Miles See Exhibit '0' for Drainage Basin De ineation Under Uhimate Conditions, 9.7 additional acres will drain to the existing box culvert (Basin RRCH). 9.7 acre is approximately 0.015 square miles, 0.23% of tributary drainage area. Solely considering the drainage basin's for Robertson Ranch, RRC2 and RRCH: Drainage Basin for Robertson Ranch Drainage Basin Existing Area Sq. Miles Existing Area Acres Proposed Area Acres RRC2 0.208 Sq. Miles 133.1 Acres 133.1 Acres RRCH 0.425 Sq. Miles 272.0 Acres 281.7 Acres Total 0.633 Sq. Miles 405.1 Acres 414.8 Acres See Exhibit 'O' for Drainage Basin Delineation. Under Ultimate Conditions, the proposed drainage area for Robertson Ranch tributary to the 8'x8' Box Culvert increases by approximately 2.3%. For existing drainage areas, see excerpts from HEC-1 analysis fi-om Chang Study, Exhibit 'Q'. It should also be noted that Exhibit 'P' shows the QIOO flow rate as 545 cfs at the entrance to the 8' x 8' RCB. Existing Double Box Culvert at Kellv Drive The results of the analysis of the existing double 8'x4' RCB east of Kelly Drive crossing under El Camino Real are presented below: INLET FOR DOUBLE RCB EXISTING CONDITIONS ULTIMATE CONDITIONS 1 (FLOV UNDER 00-YEAR STORM EVENT / AT EXIST. DOUBLE 8'X4' RCB EL CAMINO REAL AT KELLY DR.) 100-YEAR STORM EVENT (FLOW AT EXIST. DOUBLE 8'X4' RCB INLET EL CAMINO REAL AT KELLY DR.) BASIN ACREAGE Q EXIST BASIN ACREAGE 0 ULT E-F 729.79 734.84 E-F 712.20 729 See Appendix 5 See Appendix 6 In the post-development condition it is anticipated that the tributary area to this drainage facility will be reduced. The proposed storm drain along El Camino Real intercepts a portion of the drainage that currentiy outfalls to the north side of El Camino and directs it to outfall to the south side of El Camino Real. Therefore the Q ultimate is expected to be less than the existing condition, as displayed above. OUTLET FOR DOUBLE RCB EXISTING CONDITIONS ULTIMATE CONDITIONS (FLOV UNDER DO-YEAR STORM EVENT /AT EXIST. DOUBLE 8'X4' RCB EL CAMINO REAL AT KELLY DR.) 100-YEAR STORM EVENT (FLOW AT EXIST. DOUBLE 8'X4" RCB OUTLET EL CAMINO REAL AT KELLY DR.) BASIN ACREAGE Q EXIST BASIN ACREAGE Q ULT E-F 729.79 734.84 E-F 787.86 816.4 See Appendix 5 See Appendix 6 Ultimate Conditions: Ultimate Conditions represent the Improvements for El Camino Real Widening with the Rancho Costera (Robertson Ranch West Village) Development in place. A curb inlet and storm drain is proposed at the southwest comer of the Crestview Drive / ECR intersection to prevent storm water mnoff from crossing this street that occurs under existing conditions. To alleviate runoff to property owned by Hoffman and Marja Acres, a series of storm drains and curb inlets are proposed. This storm drain will servers as Drainage Project BFA ofthe City of Carlsbad Drainage Master Plan. Due to restrictions to meet minimum required cover near the low point of the road as well as impacts on the wetland area to the north of Kelly Drive, a double barrel 42" storm drain pipe is proposed to outlet on the south side of El Camino Real. From the intersection with Tamarack Avenue. El Camino Real will drain to an 18" storm drain. This storm drain will also convey stormwater to an outlet on the south side of El Camino Real. A summary of the lOO-year storm flowrates for Ultimate Conditions are shown in the table below: 100 Year Flowrate for Ultimate Conditions Basin Description Area 100-Year Flowrate ECR-IU Drains to N.E. Open Space 1.44 AC 6.7 CFS ECR-2U Drains to storm drain, ultimately to S. E. Open Space near Crestview Dr. 4.62 AC 13.2 CFS ECR-3U Drains to Proposed 48" SD tiiat outlets S. side of DBL RCB 70.65 AC 127.5 CFS ECR-4U Drains towards S. Side of DBL RCB 4.13 AC 21.7 CFS See Appendix 2 for Hydrologic Calculations for these Basins. 10 C. HYDRAULICS Methodology for Storm Drains Hydraulic calculations were done using the software prepared by Advanced Engineering Soflware (AES). The soflware is similar to the Los Angeles County Flood Control Water Surface Profile Gradient program (WSPG); WSPG was used for the analysis of the double 8'x4' box culvert. The following description of the computation theory is taken from Los Angeles Coimty Flood Control documentation: "The computational procedure is based on solving Bernoulli's equation for the total energy at each section and Manning's formula for friction loss between the sections in a reach. The open channel flow procedure utilizes the standard step method. Confluences and bridge piers are analyzed using pressure and momentum theory. The program uses basic mathematical and hydraulic principles to calculate all such data as cross sectional area, wetted perimeter, normal depth, critical depth, pressure and momentum." The hydraulic analysis for Storm Drain BFA is included in Appendix 4. Exhibit M is the hydraulic map showing the nodes referenced in the analysis. 11 APPENDIX 1 100 Yr. Existing Hydrologic Calculations (See Exhibit' J') Calculated Run-off Coefficients Basin ECR-1 Entire Area is Impervious, C= 0.95 Basin ECR-2 Area= 2.82 AC 1.29 AC (Impervious) 1.53 AC( C=0.35, Natural) [(0.35* 1.53)-F(0.95* 1.29)/(2.82)]= 0.62 Basin ECR-3 Basin G is Natural, C=0.35 El Camino Estates (ECR-3 and ECR-4): 21 Dwelling Units 4.75 Acres 21/4.75 Acres: 4.4 DU/Acre, Per Exhibit 'B', use MDR 7.3 DU/AC Basin ECR-4 El Camino Estates (ECR-3 and ECR-4): 21 Dwelling Units 4.75 Acres 21/4.75 Acres: 4.4 DU/Acre, Per Exhibit 'B', use MDR 7.3 DU/AC Area= 2.08 AC 1.56 AC (Impervious) 0.52 AC( C=0.35, Natural) [(0.35*0.52)-i-(0.95*1.56)/(2.08)]=0.80 Basin ECR-4 Initial Area Area= 0.23 AC 0.10 AC (hnpervious) 0.13 AC( C=0.35, Natural) [(0.35*0.13)-F(0.95*0.10)/(0.23)]=0.61 Area= 9.91 AC 2.44 AC (hnpervious) 7.47 AC( C=0.35, Natural) [(0.35*7.47)+(0.95*2.44)/(9.91)]=0.50 West Side Entire Area is Impervious, C= 0.95 # San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/12/11 100 Year Hydrology for Existing Conditions El Camino Real Basin ECR-1 JN 101307 By NF 7/12/11 •kie-k-k-kic-k-k-k Hydrology Study Control Information *********, Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used r*?nf,i^°f Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 105.000(Ft.) Highest elevation = 72.200(Ft.) Lowest elevation = 68.200(Ft.) Elevation difference = 4.000(Ft.) Slope = 3.810 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.81 %, in a development type of General Industrial 14 area In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.37 minutes TC = [1.8*(l.l-C)*distance(Ft.)-.5)/(% slope-(l/3)] TC = [1.8*(l.l-0.8700)*( 80.000-.5)/( 3.810^(1/3)]= 2 37 The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.33 minutes for a distance of 25.00 (Ft.) and a slope of 3 81 % with an elevation difference of 0.95(Ft.) from the end of the top Tt = [11.9*length(Mi)-3)/(elevation change(Ft.))]-.385 *60(min/hr) = 0.32 8 Minutes Tt=[ (11.9*0.0047'^3)/( 0.95)]^.385= 0.33 Total initial area Ti = 2.37 minutes from Figure 3-3 formula plus 0.33 minutes from the Figure 3-4 formula = 2.70 minutes Rainfall intensity (I) = 10.197(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 870 Subarea runoff = 0.621(CFS) Total initial stream area = 0.070(Ac.) Process from Point/Station 101.000 to Point/Station 102 000 IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 2 499(CFS) Depth of flow = 0.169(Ft.), Average velocity = 3.499 (Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'y coordinate 1 0.00 0.50 2 0.25 0.00 3 25.00 0.50 Manning's 'N' friction factor = 0.015 Sub-Channel flow = 2.499(CFS) flow top width = 8.451(Ft.) velocity= 3.499(Ft/s) area = 0.714(Sq.Ft) ' Froude number = 2.121 Upstream point elevation = 68.200(Ft.) Downstream point elevation = 40.500(Ft.) Flow length = 810.000(Ft.) Travel time = 3.86 min. Time of concentration = 6.56 min. Depth of flow = 0.169(Ft.) Average velocity = 3.499(Ft/s) Total irregular channel flow = 2.499(CFS) Irregular channel normal depth above invert elev. = 0.169(Ft ) Average velocity of channel(s) = 3.499(Ft/s) Adding area flow to channel User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.751(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.750 15 Subarea runoff = 3.695(CFS) for 0.720(Ac ) Total runoff = 4.316(CFS) Total area = ' o 790(Ac ) Depth of flow = 0.207(Ft.), Average velocity = 4.011(Ft/s) End of computations, total study area = 0.790 (Ac.) 16 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/18/11 100 Year Hydrology for Existing Conditions El Camino Real Basin ECR-2 JN 101307 By NF 7/12/11 ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 200.000 to Point/Station 201 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 120.000(Ft.) Highest elevation = 85.100(Ft.) Lowest elevation = 83.900(Ft.) Elevation difference = 1.200(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) 17 area for the top area slope value of 1.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.66 minutes TC = [1.8*(l.l-C)*distance(Ft.)'^.5)/(% slope-(l/3)] TC = [1.8*(1.1-0.7100)*( 65.000-.5)/( 1.000^(1/3)]= 5 66 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 55.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.01 minutes for a distance of 55.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.55(Ft.) from the end of the top Tt = [11.9*length(Mi) ^^3) / (elevation change (Ft.))]-. 385 *60(min/hr) 1.006 Minutes Tt=[ (11.9*0.0104^^3) / ( 0.55) ]385= 1.01 Total initial area Ti = 5.66 minutes from Figure 3-3 formula plus 1.01 minutes from the Figure 3-4 formula = 6.67 minutes Rainfall intensity (I) = 5.691(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 710 Subarea runoff = 1.374(CFS) Total initial stream area = 0.340(Ac.) + + + + + + + +++++ + + + +++ + + + +++++++++.^. + + + + + + +++ + + .^ + +++^^ + ^.^^.^^_^^^_^_^_^^^_^^_^_^_^_^_^ Process from Point/Station 201.000 to Point/Station 202 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 83.900(Ft.) End of street segment elevation = 67.000(Ft.) Length of street segment = 620.000(Ft.) Height of curb above gutter flowline = 6.'0(In.) Width of half street (curb to crown) = 44.000(Ft.). Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.706(CFS) Depth of flow = 0.311(Ft.), Average velocity = 3.789(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.820(Ft.) Flow velocity = 3.79 (Ft/s) Travel time = 2.73 min. TC = 9.39 min. Adding area flow to street User specified 'C value of 0.620 given for subarea Rainfall intensity = 4.561(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.620 CA = 1.748 Subarea runoff = 6.601(CFS) for 2.480(Ac.) Total runoff = 7.975 (CFS) Total area = 2.820(Ac.) Street flow at end of street = 7.975(CFS) 18 area # Half street flow at end of street = 7.975(CFS) Depth of flow = 0.362(Ft.), Average velocity = 4.305(Ft/s) Flow width (from curb towards crown)= 13. 346(Ft.) + + +++ + + + + + + + -^ + + + + ++-^-^-^ + + ++-^-^-t--^-^-(--^+-^-l--^-^-^ + + -^-^ + -^^- + -^-^-^ + ++-^-^ + Process from Point/Station 202.000 to Point/Station 203.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.82 0(Ac.) Runoff from this stream = 7.975(CFS) Time of concentration = 9.39 min. Rainfall intensity = 4.561(In/Hr) Program is now starting with Main Stream No. 2 ++-^^--^-^-^-^-^-^-^ + -^-^ + ++-t--^-^-l-^- ++-^ + + -^ + -^+++-^-^-^-t--^-^-^-^-^+-^+-^-^++ + -^-^ + Process from Point/Station 203.100 to Point/Station 204.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 150.000(Ft.) Highest elevation = 116.500(Ft.) Lowest elevation = 110.000(Ft.) Elevation difference = 6.500(Ft.) Slope = 4.333 % Top of Initial Area Slope adjusted by User to 20.000 % Bottom of Initial Area Slope adjusted by User to 20.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 20.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.97 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope'^ (1/3 ) ] TC = [1.8*(1.1-0.3500)*( lOO.OOO'^.S) / ( 20.000^(1/3)]= 4.97 The initial area total distance of 150.00 (Ft.) entered leaves a remaining distance of 50.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.30 minutes for a distance of 50.00 (Ft.) and a slope of 20.00 % with an elevation difference of 10.00(Ft.) from the end of the top Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]". 385 *60 (min/hr) 0.295 Minutes Tt=[(11.9*0.0095^3)/( 10.00)385= 0.30 Total initial area Ti = 4.97 minutes from Figure 3-3 formula plus 0.30 minutes from the Figure 3-4 formula = 5.27 minutes Rainfall intensity (I) = 6.623(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 19 Subarea runoff = 0.487(CFS) Total initial stream area = 0.210(Ac.) Process from Point/Station 204.000 to Point/Station 205 000 **** IMPROVED CHANNEL TRAVEL TIME **** ^UD.UUU Upstream point elevation =110.000(Ft.) ~ ~ Downstream point elevation = 59.500(Ft.) Channel length thru subarea = 505.000(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 7 im in?c:\ Manning's 'N' = 0.025 ^-/u/iLi-b; Maximum depth of channel = 0.500 (Ft.) Flow(q) thru subarea = 2.707(CFS) Depth of flow = 0.456(Ft.), Average velocity = 6.511(Ft/s) Channel flow top width = 1.824(Ft.) Flow Velocity = 6.51(Ft/s) Travel time = 1.29 min. Time of concentration = 6.56 min. Critical depth = 0.633(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 5.749(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.840 Subarea runoff = 4.342(CFS) for 2 190(Ac ) Total runoff = 4.829(CFS) Total area = ' 2 400(Ac ) Depth of flow = 0.555(Ft.), Average velocity = 7.910(Ft/s) !!Warning: Water is above left or right bank elevations ERROR - Channel depth exceeds maximum allowable depth Critical depth = 0.813(Ft.) Process from Point/Station 205.000 to Point/Station 203 000 PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 54.800(Ft.) Downstream point/station elevation = 42.000(Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.829(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.829(CFS) Normal flow depth in pipe = 6.81(In.) Flow top width inside pipe = 11.89(In.) Critical Depth = 10.88(In.) 20 Pipe flow velocity = 10.49(Ft/s) Travel time through pipe = 0.42 min. Time of concentration (TC) = 6.98 min. + + -H-h-h + -H-H + -H + -h-H + + + + + -H + + + -h-H-h-H + + + -H + + + + -H-|- + -^-(. + -H-f-H + + + + + + + + + + + Process from Point/Station 205.000 to Point/Station 203.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.400(Ac.) Runoff from this stream = 4.829(CFS) Time of concentration = 6.98 min. Rainfall intensity = 5.523(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax{1) = Qmax(2) 7 .975 4.829 1.000 0.826 1.000 1.000 9.39 6.98 1.000 * 1.000 * 0.743 * 1.000 * 4.561 5.523 7.975) -^ 4.829) + 7.975) + 4.829) + 11.963 10.757 Total of 2 main streams to confluence: Flow rates before confluence point: 7.975 4.829 Maximum flow rates at confluence using above data: 11.963 10.757 Area of streams before confluence: 2.820 2.400 Results of confluence: Total flow rate = 11.963(CFS) Time of concentration = 9.3 93 min. Effective stream area after confluence End of computations, total study area = 5.220(Ac.) 5.220 (Ac.) 21 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/12/11 100 Year Hydrology for Existing Conditions El Camino Real Basin ECR-3 JN 101307 By NF 7/12/11 ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.3 00 P6/P24 = 60.5% San Diego hydrology manual 'C values used + + + + + + + + + + + + + + + + + -^ + + + -^-H + -H-H-H-H + -H-H + -H + + + + -H + + + -t- + -H-l- + + + + + + + + -H-|-+ + + + Process from Point/Station 210.000 to Point/Station 210.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.350 given for subarea Rainfall intensity (I) = 2.854(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 19.43 min. Rain intensity = 2.85(In/Hr) Total area = 58.800(Ac.) Total runoff = 60.560(CFS) + + + + + + + + +++ + + ++ + + + + + + + + + Process from Point/Station 210.000 to Point/Station 210.400 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.290(Ft.) Downstream point/station elevation = 62.270 (Ft.) Pipe length = 98.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 60.560(CFS) Given pipe size = 48.00(In.) 22 § area Calculated individual pipe flow = 60.560(CFS) Normal flow depth in pipe = 21.56(In.) Flow top width inside pipe = 47.75(In.) Critical Depth = 28.16(In.) Pipe flow velocity = 11.08(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 19.58 min. Process from Point/Station 210.000 to Point/Station 210 400 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 58.800(Ac.) Runoff from this stream = 60.560(CFS) Time of concentration = 19.58 min. Rainfall intensity = 2.840(In/Hr) Program is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 210.100 to Point/Station 210 200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.4 00 Sub-Area C Value = 0.570 Initial subarea total flow distance = 180.000(Ft.) Highest elevation = 91.800(Ft.) Lowest elevation = 90.000(Ft.) Elevation difference = 1.800(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.69 minutes TC = [1.8*(l.l-C)*distance(Ft.)'-.5)/(% slope'^ (1/3 ) ] TC = [1.8*(l.l-0.5700)*( 65.000".5)/( 1.000-^(1/3)]= 7.69 The initial area total distance of 180.00 (Ft.) entered leaves a remaining distance of 115.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.78 minutes for a distance of 115.00 (Ft.) and a slope of 1.00 % with an elevation difference of 1.15(Ft.) from the end of the top Tt = [11.9*length{Mi)-^3) / (elevation change (Ft.))]. 385 *60 (min/hr) = 1.776 Minutes Tt=[ (11.9*0.0218'^3)/( 1.15) ]-".385= 1.78 Total initial area Ti = 7.69 minutes from Figure 3-3 formula plus 1.78 minutes from the Figure 3-4 formula = 9.47 minutes 23 Rainfall intensity (I) = 4.538(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C =0 5^0 Subarea runoff = 0.776 (CFS) ^ •->' u Total initial stream area = 0.300(Ac.) Process from Point/Station 210.200 to Point/Station PlT^nn **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ^10.300 Estimated mean flow rate at midpoint of channel = 4 3i5(rpci Depth of flow = 0.242(Ft.), Average velocity = 2.95l'(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 • Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.25 0.00 3 25.00 0.50 Manning's 'N' friction factor = 0.013 Sub-Channel flow = 4.315(CFS) flow top width = 12.092(Ft.) velocity= 2.951(Ft/s) area = 1.462(Sq.Ft) Froude n\amber = 1.496 Upstream point elevation = 90.000(Ft.) Downstream point elevation = 84.900(Ft.) Flow length = 450.000(Ft.) Travel time = 2.54 min. Time of concentration = 12.01 min. Depth of flow = 0.242(Ft.) Average velocity = 2.951(Ft/s) Total irregular channel flow = 4.315(CFS) Irregular channel normal depth above invert elev = 0 242(Ft 1 Average velocity of channel(s) = 2.951(Ft/s) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Rainfall intensity = 3.893(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.995 Subarea runoff = 6.990 (CFS) for 3 200 (Ac ) Total runoff = 7.766(CFS) Total area = ' 3 500(Ac ) Depth of flow = 0.301(Ft.), Average velocity = 3.418(Ft/s) Process from Point/Station 210.300 to Point/Station 210 400 * PIPEFLOW TRAVEL TIME (User specified size) **** 24 # Upstream point/station elevation = 81.400(Ft.) Downstream point/station elevation = 62.270(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.766(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.766(CFS) Normal flow depth in pipe = 4. 57(In.) Flow top width inside pipe = 15.67(In.) Critical Depth = 12. 95(In.) Pipe flow velocity = 21.97(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.06 min. Process from Point/Station 210.300 to Point/Station 210.400 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.500(Ac.) Runoff from this stream = 7.766(CFS) Time of concentration = 12.06 min. Rainfall intensity = 3.882(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 60.560 19.58 2.840 2 7.766 12.06 3.882 Qmax(1) = 1.000 * 1.000 * 60.560) + 0.732 * 1.000 * 7.766) + = 66.242 1.000 * 0.616 * 60.560) + 1.000 * 1.000 * 7.766) + = 45.075 Qmax(2) Total of 2 main streams to confluence: Flow rates before confluence point: 60.560 7.766 Maximum flow rates at confluence using above data: 66.242 45.075 Area of streams before confluence: 58.800 3.500 Results of confluence: Total flow rate = 66.242(CFS) Time of concentration = 19.579 min. Effective stream area after confluence = 62.300(Ac.) End of computations, total study area = 62.300 (Ac.) 25 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/12/11 100 Year Hydrology for Existing Conditions El Camino Real Basin ECR-4 JN 101307 By NF 7/12/11 ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used -l--h-(- + + -H-t- + -h+-l--H-^-H-h + -|- + -|- + -|--H + + + + ++ + + + + + + + + + + + + + + + + + + + + + ^^^^_^^_^^^ Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 300.000(Ft.) Highest elevation = 91.700(Ft.) Lowest elevation = 82.200(Ft.) Elevation difference = 9.500 (Ft.) Slope = 3.167 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.17 %, in a development type of 7.3 DU/A or Less 26 area In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.33 minutes TC = [1.8* (1.1-C) *distance(Ft. )-.5) / (% slope-^ (1/3 ) ] TC = [1.8*{l.l-0.5700)*( 95.000-.5)/( 3.167^(1/3)]= 6 33 The initial area total distance of 300.00 (Ft.) entered leaves a remaining distance of 205.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1 78 minutes for a distance of 205.00 (Ft.) and a slope of 3.17 % with an elevation difference of 6.49(Ft.) from the end of the top Tt = [11.9*length(Mi)-3)/(elevation change(Ft.))]-.385 *60(min/hr) 1.778 Minutes Tt=[(11.9*0.0388"3)/( 6.49)]".385= 1.78 Total initial area Ti = 6.33 minutes from Figure 3-3 formula plus 1.78 minutes from the Figure 3-4 formula = 8.11 minutes Rainfall intensity (I) = 5.015(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 570 Subarea runoff = 3.573(CFS) Total initial stream area = 1.250(Ac.) Process from Point/Station 301.000 to Point/Station 302 000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 7.058(CFS) Depth of flow = 0.249(Ft.), Average velocity = 4.570(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.25 0.00 3 25.00 0.50 Manning's 'N' friction factor = 0.013 Sub-Channel flow = 7.058(CFS) flow top width = 12.427(Ft.) velocity= 4.570(Ft/s) area = 1.544(Sq.Ft) Froude number = 2.285 Upstream point elevation = 82.200(Ft.) Downstream point elevation = 57.300(Ft.) Flow length = 950. 000(Ft.) Travel time = 3.46 min. Time of concentration = 11.57 min. Depth of flow = 0.249(Ft.) Average velocity = 4.570(Ft/s) Total irregular channel flow = 7.058(CFS) Irregular channel normal depth above invert elev. = 0.249(Ft.) Average velocity of channel(s) = 4.570(Ft/s) Adding area flow to channel User specified 'C value of 0.800 given for subarea Rainfall intensity = 3.987(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.800 CA = 2.664 27 Subarea runoff = 7.047(CFS) for 2.080(Ac ) Total runoff = 10.620(CFS) Total area = 3 330(Ac ) Depth of flow = 0.290(Ft.), Average velocity = 5.062(Ft/s) End of computations, total study area = 3.330 (Ac ) 28 # San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/12/11 100 Year Hydrology for Existing Conditions El Camino Real Basin ECR-5 JN 101307 By NF 7/12/11 ********* Hydrology Study Control Information ********v Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used Process from Point/Station 200.000 to Point/Station 400 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.5 00 Sub-Area C Value = 0.630 Initial subarea total flow distance = 225.000(Ft.) Highest elevation = 85.100(Ft.) Lowest elevation = 83.200(Ft.) Elevation difference = 1.900(Ft.) Slope = 0.844 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.84 %, in a development type of 14.5 DU/A or Less 29 area # In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.22 minutes TC = [1.8*(l.l-C)*distance(Ft.)'^.5)/(% slope^^ (1/3 ) ] TC = [1.8*{l.l-0.6300)*( 65.000-^.5) / ( 0.844^(1/3)]= 7.22 The initial area total distance of 225.00 (Ft.) entered leaves a remaining distance of 160.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.44 minutes for a distance of 160.00 (Ft.) and a slope of 0.84 % with an elevation difference of 1.35(Ft.) from the end of the top Tt = [11.9*length (Mi)'^3) / (elevation change (Ft.))]. 385 *60 (min/hr) = 2.444 Minutes Tt=[ (11.9*0.0303-^3) / ( 1.35)1-^.385= 2.44 Total initial area Ti = 7.22 minutes from Figure 3-3 formula plus 2.44 minutes from the Figure 3-4 formula = 9.66 minutes Rainfall intensity (I) = 4.479(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.649(CFS) Total initial stream area = 0.230(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 400.000 to Point/Station 401.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 8.381(CFS) Depth of flow = 0.278(Ft.), Average velocity = 4.346(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.25 0.00 3 25.00 0.50 Manning's 'N' friction factor = 0.013 Sub-Channel flow = 8.381(CFS) flow top width = 13.886(Ft.) velocity= 4.346(Ft/s) area = 1.928(Sq.Ft) Froude number = 2.055 Upstream point elevation = 83.200(Ft.) Downstream point elevation = 46.400(Ft.) Flow length = 1800.000(Ft.) Travel time = 6.90 min. Time of concentration = 16.56 min. Depth of flow = 0.278(Ft.) Average velocity = 4.346(Ft/s) Total irregular channel flow = 8.381(CFS) Irregular channel normal depth above invert elev. = 0.278(Ft.) Average velocity of channel(s) = 4.346(Ft/s) Adding area flow to channel User specified 'C value of 0.500 given for subarea Rainfall intensity = 3.164(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.500 CA = 5.070 30 Subarea runoff Total runoff = Depth of flow = 15.391(CFS) for 9.910(Ac.) 16.040(CFS) Total area = 10.140(Ac.) 0.354 (Ft.), Average velocity = 5.112(Ft/s) + + + + + + + + + + + + + + + + + + + + + + + + + + ^ + Process from Point/Station 400.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 401.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.140(Ac.) Runoff from this stream = 16.040(CFS) Time of concentration = 16.56 min. Rainfall intensity = 3.164(In/Hr) Program is now starting with Main Stream No. 2 area Process from Point/Station 402.000 to Point/Station 403 000 **** INITIAL AREA EVALUATION **** Decimal Decimal Decimal Decimal fraction soil fraction soil fraction soil fraction soil ] = 270.000(Ft.) % group A = 0.000 group B = 0.000 group C = 0.000 group D = 1.000 [INDUSTRIAL area type (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.87 0 Initial subarea total flow distance Highest elevation = 74.000(Ft.) Lowest elevation = 64.000(Ft.) Elevation difference = 10.000(Ft.) Slope = 3.704 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.70 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.39 minutes TC = [1.8*(l.l-C)*distance(Ft.)''.5)/{% slope-^ (1/3) ] TC = [1.8*(l.l-0.8700)*( 80.000-^.5) / ( 3.704^(1/3)] = The initial area total distance of 270.00 (Ft.) entered remaining distance of 190.00 (Ft.) Using Figure 3-4, the travel time for this distance is for a distance of 190.00 (Ft.) and a slope of 3.70 % with an elevation difference of 7.04(Ft.) from the end 2.39 leaves a 1.58 minutes '3)/(elevation change(Ft.))] of the top .385 *60(min/hr) Tt = [11.9*length(Mil 1.579 Minutes Tt=[(11.9*0.0360-^3)/( 7.04)]".385= 1.58 Total initial area Ti = 2.39 minutes from Figure 3-3 formula plus 1.58 minutes from the Figure 3-4 formula = 3.97 minutes Rainfall intensity (I) = 7.947(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.830(CFS) Total initial stream area = 0.120(Ac.) 31 # Process from Point/Station 403.000 to Point/Station 401 000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 4 014(CFS) Depth of flow = 0.205(Ft.), Average velocity = 3.827(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.25 0.00 3 25.00 0.50 Manning's 'N' friction factor = 0.013 Sub-Channel flow = 4.014(CFS) ' flow top width = 10.241(Ft.) velocity= 3.827(Ft/s) area = 1.049(Sq.Ft) Froude number = 2.107 Upstream point elevation = 64.000(Ft.) Downstream point elevation = 46.400(Ft.) Flow length = 740.000(Ft.) Travel time = 3.22 min. Time of concentration = 7.19 min. Depth of flow = 0.205(Ft.) Average velocity = 3.827(Ft/s) Total irregular channel flow = 4.014(CFS) Irregular channel normal depth above invert elev. = 0 205(Ft ) Average velocity of channel(s) = 3.827(Ft/s) Adding area flow to channel User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.417(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 1.311 Subarea runoff = 6.272(CFS) for 1.260(Ac ) Total runoff = 7.102(CFS) Total area = 1.380(Ac ) Depth of flow = 0.254(Ft.), Average velocity = 4.414(Ft/s) + + + + + + + + + + -^ + + + +++ + + + ++++^ ++-, + + + + + + + + + +++++ + .^. + + + + ^^^^_^^_^^_^_^^^^_^_^_^_^_^_^_^^_^ Process from Point/Station 403.000 to Point/Station 401 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.3 80(Ac.) Runoff from this stream = 7.102(CFS) Time of concentration = 7.19 min. Rainfall intensity = 5.417(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No- (CFS) (min) (In/Hr) m 32 1 16 040 16 56 3 164 2 7 102 7 19 5 417 Qmax(1) = 1 000 * 1 000 * 16 040) •+ 0 584 * 1 000 * 7 102) + Qmax(2) = 102) 1 000 * 0 434 * 16 040) + 1 000 * 1 000 * 7 102) + = 20.187 14.069 Total of 2 main streams to confluence: Flow rates before confluence point: 16.040 7.102 Maximum flow rates at confluence using above data- 20.187 14.069 Area of streams before confluence: 10.140 1.380 Results of confluence: Total flow rate = 20.187(CFS) Time of concentration = 16.564 min. Effective stream area after confluence = 11.520(Ac.) End of computations, total study area = 11.520 (Ac.) • 33 APPENDIX 2 100 Yr. Ultimate Hydrologic Calculations (See Exhibit 'L') ecrlp San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 version 7.7 Rational method hydrology program based on san Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 12/17/13 100 Year Hydrology for Ultimate Condition Basin ECRlP JN 101307 Revised by HL 12/17/13 ********* Hydrology Study control information *** ******* Program License Serial Number 6218 Rational hydrology study storm event year is English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C' values used 100.0 Process from Point/Station **** INITIAL AREA EVALUATION 1000.000 to Point/Station **** 1001.000 ] 100.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL (43.0 DU/A or Less ) impervious value, Ai = 0.800 Sub-Area C value = 0.790 initial subarea total flow distance = Highest elevation = 63.000CFt.) Lowest elevation = 57.800(Ft.) Elevation difference = 5.200(Ft.) Slope = 5.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS I The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 5.20 %, in a development type of 43.0 DU/A or Less in Accordance with Figure 3-3 Initial Area Time of Concentration = 3.14 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC = [1.8*(l.l-0.7900)*( 95.000A.5)/( 5.200A(l/3)]= 3.14 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 5.00 (Ft.) using Figure 3-4, the travel time for this distance is 0.08 minutes for a distance of 5.00 (Ft.) and a slope of 5.20 % with an elevation difference of 0.26(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) Page 1 ecrlp 0.084 Minutes Tt=[(11.9*0.0009A3)/( 0.26)]A.385= 0.08 Total initial area Ti = 3.14 minutes from Figure 3-3 formula plus 0.08 minutes from the Figure 3-4 formula = 3.22 minutes Calculated TC of 3.223 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 subarea runoff = 0.920(CFS) Total initial stream area = 0.170(Ac.) Process from Point/Station 1001.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1002.000 Top of street segment elevation = 57.800(Ft.) End of street segment elevation = 40.300(Ft.) Length of street segment = 595.000(Ft.) Height of curb above gutter flowline = 6.0(in.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break tv/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.877(CFS) Depth of flow = 0.242(Ft.), Averaqe velocity = 3.168(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.354(Ft.) Flow velocity = 3.17(Ft/s) TC = 6.35 min. 100.0 year storm Travel time = 3.13 min Adding area flow to street Rainfall intensity (I) = 5.869(in/Hr) for a user specified 'C' value of 0.790 given for subarea Rainfall intensity = 5.869(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.790 CA = 1.138 Subarea runoff = 5.757(CFS) for 1.270CAC.) Total runoff = 6.677(CFS) Total area = 1.440(Ac.) Street flow at end of street = 6.677(CFS) Half street flow at end of street = 3.338(CFS) Depth of flow = 0.280(Ft.), Average velocity = 3.594(Ft/s) Flow width (from curb towards crown)= 9.261(Ft.) Process from Point/Station 1002.000 to Point/Station 1003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 34.190(Ft.) Downstream point/station elevation = 33.800(Ft.) Pipe length = 35.19(Ft.) Slope = 0.0111 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.677(CFS) Given pipe size = 18.00(ln.) Calculated individual pipe flow = 6.677(CFS) Normal flow depth in pipe = 10.09(ln.) Page 2 ecrlp Flow top width inside pipe = 17.87(In.) Critical Depth = 12.00(ln.) Pipe flow velocity = 6.55(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 6.44 min. End of computations, total study area = 1.440 (Ac.) Page 3 ecr2u San Diego county Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 version 7.9 Rational method hydrology program based on San Diego county Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/22/14 100 Year Hydrology for Ultimate Condition Basin ECR2U 3N 101307 Revised by MC ********* Hydrology Study Control Information ********** Program License Serial Number 6324 Rational hydrology study storm event year is English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% san Diego hydrology manual 'C values used 100.0 •f•^+-^-^•f-f4•++•^--f+-^+•f-^++-^++4••^+•^+++•f+-^^••^+•^+-^•^-^•f-f+4•^--^+-^-^+ Process from Point/Station 2000.000 to Point/station 2001.000 **** INITIAL AREA EVALUATION **** 3 297.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent open Space ) Impervious value, Ai = 0.000 Sub-Area c value = 0.350 initial subarea total flow distance = Highest elevation = 99.400(Ft.) Lowest elevation = 77.700(Ft.) Elevation difference = 21.700(Ft.) Slope = 7.306 % Top of Initial Area Slope adjusted by User to 16.815 % Bottom of Initial Area slope adjusted by User to 16.815 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS I The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 16.82 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of Concentration = 5.27 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 16.815A(l/3)]= The initial area total distance of 297.00 (Ft.) entered leaves a remaining distance of 197.00 (Ft.) Using Figure 3-4, the travel time for this distance is for a distance of 197.00 (Ft.) and a slope of 16.82 % Page 1 5.27 0.91 minutes ecr2u with an elevation difference of 33.13(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) 0.907 Minutes Tt=[(11.9*0.0373A3)/( 33.13)]A.385= 0.91 Total initial area Ti = 5.27 minutes from Figure 3-3 formula plus 0.91 minutes from the Figure 3-4 formula = 6.18 minutes Rainfall intensity (I) = 5.978(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0,753(CFS) Total initial stream area = 0.360(Ac.) ++-f+-f-f-(-+++++++++H--f-f+-f+-f+++-f+++++++-f+-f-f+-f-f+-f+-(--(--f-f++ Process from Point/Station 2001.000 to Point/Station 2002.100 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 77.700(Ft.) Downstream point elevation = 67.790(Ft.) Channel length thru subarea = 250.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.627(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.627(CFS) Depth of flow = 0.144(Ft.), Average velocity = 4.926(Ft/s) Channel flow top width = 2.577(Ft.) Flow velocity = 4.93(Ft/s) Travel time = 0.85 min. Time of concentration = 7.02 min. Critical depth = 0.250(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.503(ln/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 Rainfall intensity = 5.503(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.445 Subarea runoff = 1.693(CFS) for 0.910(Ac.) Total runoff = 2.446(CFS) Total area = 1.270(Ac.) Depth of flow = 0.183(Ft.), Average velocity = 5.655(Ft/s) Critical depth = 0.320(Ft.) Process from Point/Station 2002.100 to Point/Station 2002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 55.740(Ft.) Downstream point/station elevation = 54,900(Ft.) Pipe length = 82.57(Ft.) Slope = 0.0102 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.446(CFS) Given pipe size = 24.00(in.) Calculated individual pipe flow = 2.446(CFS) Normal flow depth in pipe = 5.31(ln.) Flow top width inside pipe = 19.92(In.) Page 2 ecr2u Critical Depth = 6.52(in.) Pipe flow velocity = 4.74(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 7.31 min. ++-l-+•f-^+-^-f-l-•f-f+-^+-^+-^+•f+•^++++++-f•4••f+++++-f++++-l-++-(-+•l•++-f-^ Process from Point/Station 2002.000 to Point/Station 2003.000 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 54.570(Ft.) Downstream point/station elevation = 53.830(Ft.) Pipe length = 73.54(Ft.) slope = 0.0101 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.446(CFS) Given pipe size = 24.00(ln.) Calculated individual pipe flow = 2.446(CFS) Normal flow depth in pipe = 5.32(in.) Flow top width inside pipe = 19.94(in.) Critical Depth = 6.52(ln.) Pipe flow velocity = 4.72(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 7,57 min. -^-^++•f-l-++•^+-^•-l-++-l-+-^+•f+-^++++•f•^-^•^•++-f+++++•^-•f-l--l-+-^+-^+-^ Process from Point/Station 2003.000 to Point/Station 2003.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.270(Ac.) Runoff from this stream = 2.446(CFS) Time of concentration = 7.57 min. Rainfall intensity = 5.242(In/Hr) +-H+++++-l-++++++-H-f-(--f+-(--H+-t-++-f-l-+-f-f++++-f-f-f-l--f+-f+-f++ Process from Point/Station 2004.000 to Point/Station 2005.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (General Commercial ) Impervious value, Ai = 0.850 Sub-Area C value = 0.820 Initial subarea total flow distance = 120.000(Ft.) Highest elevation = 86.100(Ft.) Lowest elevation = 83.900(Ft.) Elevation difference = 2.200(Ft.) Slope = 1.833 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 1.83 %, in a development type of General commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.57 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC = [1.8*(l.l-0.8200)*( 75.000A.5)/( 1.833A(l/3)]= 3.57 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.68 minutes for a distance of 45.00 (Ft.) and a slope of 1.83 % Page 3 ecr2u with an elevation difference of 0.82(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) 0.683 Minutes Tt=[(11.9*0.0085A3)/( 0.82)]A.385= 0.68 Total initial area Ti = 3.57 minutes from Figure 3-3 formula plus 0.68 minutes from the Figure 3-4 formula = 4.25 minutes Calculated TC of 4.249 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (l) = 6.850(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.820 Subarea runoff = l.Oll(CFS) Total initial stream area = 0.180(Ac.) +++•^-f-^-^+++++-^•f-^-^-^-f-^-l-+++++-(•+-f+++-f•f++-^-^+-^++•^•f-l-+-l--l-++ Process from Point/Station 2005.000 to Point/Station 2005.100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 83.900(Ft.) End of street segment elevation = 74.200(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(in.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.124(CFS) Depth of flow = 0.291(Ft.), Average velocity = 3.018(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 9.816(Ft.) Flow velocity = 3.02(Ft/s) Travel time = 2.76 min. TC = 7.01 min. Adding area flow to street Rainfall intensity (I) = 5.509(in/Hr) for a 100.0 year storm user specified 'C' value of 0.810 given for subarea Rainfall intensity = 5.509(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.812 CA = 0.933 Subarea runoff = 4.130(CFS) for 0.970(Ac.) Total runoff = 5.141(CFS) Total area = 1.150(Ac.) Street flow at end of street = 5.141(CFS) Half street flow at end of street = 5.141(CFS) Depth of flow = 0.335(Ft.), Average velocity = 3.402(Ft/s) Flow width (from curb towards crown)= 11.999(Ft.) Process from Point/Station 2005.100 to Point/Station 2005.200 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.930(Ft.) Downstream point/station elevation = 69.130(Ft.) Pipe length = 16.25(Ft.) Slope = 0.1723 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.141(CFS) Given pipe size = 18.00(ln.) Page 4 ecr2u Calculated individual pipe flow = 5.141(CFS) Normal flow depth in pipe = 4.17(in.) Flow top width inside pipe = 15.19(ln.) Critical Depth = 10.48(in.) Pipe flow velocity = 16.55(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.03 min. Process from Point/station 2005.200 to Point/Station 2005.400 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68.820(Ft.) Downstream point/station elevation = 66.740(Ft.) Pipe length = 65.83(Ft.) Slope = 0.0316 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 5.141(CFS) Given pipe size = 18.00(in.) Calculated individual pipe flow = 5,141(CFS) Normal flow depth in pipe = 6.46(in.) Flow top width inside pipe = 17.27(In.) Critical Depth = 10.48(in.) Pipe flow velocity = 9.02(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 7,15 min, -l••l•-^++++-^+++•^•(-++++-(•++++-l-+•f-f-l-+•t•++++•^-f+++++++•^++ Process from Point/Station 2005.400 to Point/Station 2005.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 66.410(Ft,) Downstream point/station elevation = 64.150(Ft.) Pipe length = 64,08(Ft.) Slope = 0.0353 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 5,141(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 5.141(CFS) Normal flow depth in pipe = 6,27(ln,) Flow top width inside pipe = 17.15(In,) Critical Depth = 10,48(in.) Pipe flow velocity = 9.39(Ft/s) Travel time through pipe = 0,11 min. Time of concentration (TC) = 7.26 min, •f+-fH--HH-+4--l-+-l--f++-f-f+-f-(--f++-f-f-f++++-f-f+++++++++++++-f-f+ Process from Point/Station 2005.500 to Point/Station 2003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63,780(Ft,) Downstream point/station elevation = 53,440(Ft,) Pipe length = 40,22(Ft.) Slope = 0.2571 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 5,141(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 5.141(CFS) Normal flow depth in pipe = 3.78(in,) Flow top width inside pipe = 14.66(ln.) Critical Depth = 10.48(in.) Pipe flow velocity = 19,08(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 7,30 min. Page 5 ecr2u ++++++-H-(-4--f-f-l-+-l-++-f+++++++-f+-f++-f-4--f++-f+-f++-f-H+-f-f+++-^ Process from Point/Station 2003.000 to Point/Station 2003,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = l,150(Ac,) Runoff from this stream = 5.141(CFS) Time of concentration = 7.30 min. Rainfall intensity = 5,368(ln/Hr) ++-^-l-++-^4•-^-^-^•t--^-l-++++-^++++++-^•^•^-l--^-^+•^+++++-l--^-^•^++++ Process from Point/Station 2005.300 to Point/Station 2005,100 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type 3 (General industrial ) Impervious value, Ai = 0.950 Sub-Area C value = 0.870 Initial subarea total flow distance = 55.000(Ft,) Highest elevation = 75,400(Ft,) Lowest elevation = 74.200(Ft,) Elevation difference = 1.200(Ft.) Slope = 2.182 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 2.18 %, in a development type of General Industrial In Accordance with Figure 3-3 Initial Area Time of concentration = 2.67 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(i/3)] TC = [1.8*(l.l-0.8700)*( 70,OOOA,5)/( 2,180A(l/3)3= 2.67 Calculated TC of 2.671 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (l) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,870 subarea runoff = 0.596(CFS) Total initial stream area = 0,100(Ac) 4-+++++++-f-f-f-f-f+++-f+++-f-f-f-(-+-f++-f-l-++-(-+++-f+-f++++-f-H-^ Process from Point/Station 2005,100 to Point/station 2006,000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of street segment elevation = 74.200(Ft.) End of street segment elevation = 64,900(Ft,) Length of street segment = 240.000(Ft,) Height of curb above gutter flowline = 6,0(in,) Width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(ln.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Page 6 ecr2u Estimated mean flow rate at midpoint of street = 1.776(CFS) Depth of flow = 0,228(Ft,), Average velocity = 3.456(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 6,652(Ft,) Flow velocity = 3.46(Ft/s) Travel time = 1,16 min, TC = 3.83 min. Adding area flow to street Calculated TC of 3.829 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(ln/Hr) for a 100,0 year storm User specified 'c' value of 0,810 given for subarea Rainfall intensity = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.822 CA = 0.419 Subarea runoff = 2.275(CFS) for 0,410(Ac.) Total runoff = 2,871(CFS) Total area = 0,510(Ac.) Street flow at end of street = 2,871(CFS) Half street flow at end of street = 2.871(CFS) Depth of flow = 0.259(Ft.), Average velocity = 3,855(Ft/s) Flow width (from curb towards crown)= 8,206(Ft.) -f-t-+-f-f+++++-(•++-(•-f4-++-t-+-l-H-++-l--f-f-(--f-f4--l-+++-f++-l--f++-f-l-+++^ Process from Point/Station 2006.000 to Point/Station 2003,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62,130(Ft,) Downstream point/station elevation = 60.170(Ft,) Pipe length = 21,ll(Ft,) Slope = 0,0928 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 2.871(CFS) Given pipe size = 18.00(in,) Calculated individual pipe flow = 2,871(CFS) Normal flow depth in pipe = 3.64(in.) Flow top width inside pipe = 14,47(in,) Critical Depth = 7,72(In.) Pipe flow velocity = 11.22(Ft/s) Travel time through pipe = 0,03 min. Time of concentration (TC) = 3.86 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2003,100 to Point/Station 2003,200 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 59,980(Ft,) Downstream point/station elevation = 56,880(Ft,) Pipe length = 28.80(Ft,) Slope = 0,1076 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 2.871(CFS) Given pipe size = 18.00(in.) Calculated individual pipe flow = 2.871(CFS) Normal flow depth in pipe = 3.51(ln.) Flow top width inside pipe = 14.27(ln.) Critical Depth = 7.72(in.) Pipe flow velocity = 11.82(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 3,90 min, +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2003,200 to Point/Station 2003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 56,470(Ft,) Page 7 ecr2u Downstream point/station elevation = 54,440(Ft,) Pipe length = 21,62(Ft,) Slope = 0,0939 Manning's N = 0.013 NO, of pipes = 1 Required pipe flow = 2,871(CFS) Given pipe size = 18,00(ln,) Calculated individual pipe flow = 2.871(CFS) Normal flow depth in pipe = 3,63(in,) Flow top width inside pipe = 14.45(in,) Critical Depth = 7,72(in,) Pipe flow velocity = ll,26(Ft/s) Travel time through pipe = 0,03 min. Time of concentration (TC) = 3,93 min. Process from Point/station 2003.000 to Point/Station 2003,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.510(AC.) Runoff from this stream = 2,871(CFS) Time of concentration = 3,93 min. Rainfall intensity = 6.850(ln/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 3 Qmax(l) Qmax(2) = Qmax(3) = 2 .446 7 ,57 5 242 5 141 7 ,30 5 368 2 871 3 .93 6 850 1,000 * 1,000 * 2 446) •f 0,976 * 1,000 * 5 141) + 0.765 * 1,000 * 2 871) + = 9. 663 1,000 * 0,964 * 2 446) + 1.000 * 1,000 * 5 141) + 0,784 * 1,000 * 2 871) + = 9. 748 1.000 * 0,519 * 2 446) + 1.000 * 0,539 * 5 141) + 1.000 * 1,000 * 2 871) + = 6. 912 Total of 3 streams to confluence: Flow rates before confluence point: 2.446 5.141 2.871 Maximum flow rates at confluence using above data: 9.663 9.748 6.912 Area of streams before confluence: 1,270 1,150 0,510 Results of confluence: Total flow rate = 9,748(CFS) Time of concentration = 7,297 min. Effective stream area after confluence = 2,930(Ac,) Process from Point/Station 2003,000 to Point/Station 2007,000 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 53,760(Ft.) Downstream point/station elevation = 53,520(Ft. Page 8 ) ecr2u Pipe length = 24.60(Ft,) Slope = 0,0098 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 9,748(CFS) Given pipe size = 24.00(ln,) Calculated individual pipe flow = 9.748(CFS) Normal flow depth in pipe = 11.09(in,) Flow top width inside pipe = 23.93(In,) Critical Depth = 13,41(ln,) Pipe flow velocity = 6,87(Ft/s) Travel time through pipe = 0,06 min. Time of concentration (TC) = 7.36 min. -l--f-l-++-f-(--f-fH--f++++-f+-f-f-f-f+-f++++++-l-+-f+-f+++++++-l-++-f+-f+ Process from Point/Station 2003,000 to Point/Station 2007.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.930(Ac.) Runoff from this stream = 9.748(CFS) Time of concentration = 7.36 min. Rainfall intensity = 5.340(ln/Hr) Program is now starting with Main Stream No, 2 -(--H-f-f+-f+++-f++++-f-f-f+-f+-f-f-f-hH-+++++++++-f+-f-f+-f-H-H++++^ Process from Point/station 2008.000 to Point/Station 2009,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL 3 (24,0 DU/A or Less ) impervious value, Ai = 0,650 Sub-Area C value = 0,710 Initial subarea total flow distance = 125.000(Ft,) Highest elevation = 84,000(Ft,) Lowest elevation = 82,500(Ft.) Elevation difference = 1.500(Ft,) Slope = 1.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65,00 (Ft) for the top area slope value of 1,20 %, in a development type of 24.0 DU/A or Less in Accordance with Figure 3-3 Initial Area Time of Concentration = 5,33 minutes TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(1,1-0.7100)*( 65,OOOA.5)/( 1,200A(l/3)3= 5,33 The initial area total distance of 125,00 (Ft.) entered leaves a remaining distance of 60,00 (Ft,) Using Figure 3-4, the travel time for this distance is 1.00 minutes for a distance of 60,00 (Ft,) and a slope of 1,20 % with an elevation difference of 0,72(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 1,003 Minutes Tt=[(ll,9*0.0114A3)/( 0.72)3A,385= 1,00 Total initial area Ti = 5.33 minutes from Figure 3-3 formula plus 1,00 minutes from the Figure 3-4 formula = 6,33 minutes Rainfall intensity (I) = 5,884(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0,627(CFS) Total initial stream area = 0.150(Ac.) Page 9 ecr2u ++-l•-^-^-•^•^•-^++•^+4•+-f+++++•l--^^-+-l--^-f++•l--l-++•f-l-++++•f-l--^•f+-f-^+ Process from Point/Station 2009.000 to Point/Station 2010,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 82,500(Ft,) End of street segment elevation = 67,700(Ft.) Length of street segment = 620.000(Ft,) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 44.000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = l,500(in,) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 2.798(CFS) Depth of flow = 0.228(Ft.), Averaqe velocity = 2,715(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.664(Ft.) Flow velocity = 2.71(Ft/s) Travel time = 3,81 min, TC = 10,14 min. Adding area flow to street Rainfall intensity (I) = 4,343(In/Hr) for a 100.0 year storm user specified 'C' value of 0.650 given for subarea Rainfall intensity = 4,343(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.655 CA = 1,108 Subarea runoff = 4,183(CFS) for l,540(Ac.) Total runoff = 4.810(CFS) Total area = 1.690(Ac.) Street flow at end of street = 4.810(CFS) Half street flow at end of street = 2.405(CFS) Depth of flow = 0,264(Ft,), Average velocity = 3.072(Ft/s) Flow width (from curb towards crown)= 8,436(Ft,) -l--t-+-^+-^^-+++++•f•f+++•f-l--f+•f•f-f-^•f+++•^-f+-^++•l--^+-^-^+++++-^ Process from Point/Station 2010.000 to Point/Station 2007,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 58.640(Ft,) Downstream point/station elevation = 54.020(Ft,) Pipe length = 48.09(Ft,) slope = 0,0961 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 4,810(CFS) Given pipe size = 18,00(in.) Calculated individual pipe flow = 4,810(CFS) Normal flow depth in pipe = 4.68(In,) Flow top width inside pipe = 15.79(In.) Critical Depth = 10,ll(ln.) Pipe flow velocity = 13.19(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 10,20 min. ++++++++-l-+-f+-l--f+4--f-l--f+-f+-f-f-f+-f++-l--l-+H-+-f-l--t--f-f-f-(--(--f-f+-l^ process from Point/Station 2010,000 to Point/Station 2007,000 **** CONFLUENCE OF MAIN STREAMS **** Page 10 ecr2u The following data inside Main Stream is listed: in Main stream number: 2 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 1.690(Ac,) 4,810(CFS) 10.20 min. 4.326(ln/Hr) TC (min) Rainfall Intensity (in/Hr) 1 2 Qmax(l) Qmax(2) = 748 810 7.36 10,20 ,000 ,000 0.810 1.000 1,000 0,722 1.000 1,000 5.340 4.326 9,748) + 4,810) + 9,748) + 4.810) + 13,219 12.708 Total of 2 main streams to confluence: Flow rates before confluence point: 9,748 4,810 Maximum flow rates at confluence using above data: 13,219 12.708 Area of streams before confluence: 2,930 1,690 Results of confluence: Total flow rate = 13,219(CFS) Time of concentration = 7,357 min. Effective stream area after confluence = 4.620(Ac.) ++++•f-f+++++^-++-^-^+++++•f-^•f-^•f+•f+-^-++•f-^•^-^+-^••^++-^-+++-^+++ Process from Point/Station 2007,000 to Point/Station 2011,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 53.520(Ft,) Downstream point/station elevation = 52,370(Ft.) Pipe length = 98.64(Ft,) Slope = 0,0117 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13,219(CFS) Given pipe size = 24.00(ln,) Calculated individual pipe flow = 13.219(CFS) Normal flow depth in pipe = 12,59(ln,) Flow top width inside pipe = 23,97(in.) Critical Depth = 15,69(ln,) Pipe flow velocity = 7,93(Ft/s) Travel time through pipe = 0,21 min. Time of concentration (TC) = 7.56 min. Process from Point/Station 2011,000 to Point/Station 2011,700 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 52,370(Ft.) Downstream point/station elevation = 42,200(Ft.) Pipe length = 43.58(Ft.) Slope = 0,2334 Manning's N = 0,015 No, of pipes = 1 Required pipe flow = 13,219(CFS) Page 11 ecr2u Given pipe size = 24,00(in.) Calculated individual pipe flow = 13.219(CFS) Normal flow depth in pipe = 6,06(in,) Flow top width inside pipe = 20,85(in,) Critical Depth = 15,69(ln.) Pipe flow velocity = 21,24(Ft/s) Travel time through pipe = 0,03 min. Time of concentration (TC) = 7.60 min. End of computations, total study area = 4.620 (Ac.) Page 12 ecr3u San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering software,(c)1991-2012 version 7,9 Rational method hydrology program based on san Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/11/14 ********* Hydrology Study Control Information ********** Program License serial Number 6324 Rational hydrology study storm event year is 100.0 English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 2,600 24 hour precipitation(inches) = 4,300 P6/P24 = 60,5% San Diego hydrology manual 'C values used Process from Point/Station 2012,000 to Point/Station 2013.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value =0.350 Initial subarea total flow distance = 300.000(Ft,) Highest elevation = 101,600(Ft,) Lowest elevation = 83,000(Ft,) Elevation difference = 18,600(Ft,) Slope = 6,200 % Top of initial Area Slope adjusted by User to 25,000 % Bottom of initial Area Slope adjusted by User to 0.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 25,00 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 initial Area Time of Concentration = 4,62 minutes TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,3500)*( 100,000A,5)/( 25,000A(1/3)3= 4.62 The initial area total distance of 300.00 (Ft.) entered leaves a remaining distance of 200.00 (Ft.) Using Figure 3-4, the travel time for this distance is 3,55 minutes for a distance of 200,00 (Ft,) and a slope of 0.50 % with an elevation difference of l,00(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 3,550 Minutes Tt=[(11.9*0,0379A3)/( 1,00)3^.385= 3,55 . ^ -, -, Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus 3,55 minutes from the Figure 3-4 formula = 8,17 minutes Page 1 ecr3u Rainfall intensity (I) = 4,992(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0.716(CFS) Total initial stream area = 0,410(Ac.) Process from Point/Station 2013.000 to Point/Station 2013.100 **** PIPEFLOW TRAVEL TIME (User Specified size) **** Upstream point/station elevation = 77.140(Ft,) Downstream point/station elevation = 76.330(Ft,) Pipe length = 32,24(Ft.) Slope = 0,0251 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 0.716(CFS) Given pipe size = 18.00(ln.) Calculated individual pipe flow = 0,716(CFS) Normal flow depth in pipe = 2,54(ln,) Flow top width inside pipe = 12,54(in.) Critical depth could not be calculated. Pipe flow velocity = 4.69(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 8.28 min, -f-i-++-f++++-i-++++++-f++-i--(--i-++-f-f+-f+++-f++-f-f+-f-i--f-f-f-i-+-^ Process from Point/Station 2013.100 to Point/Station 3001.000 **** PIPEFLOW TRAVEL TIME (User Specified size) **** Upstream point/station elevation = 76,000(Ft,) Downstream point/station elevation = 73.140(Ft,) Pipe length = 301.23(Ft.) Slope = 0,0095 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0,716(CFS) Given pipe size = 18.00(ln,) calculated individual pipe flow = 0,716(CFS) Normal flow depth in pipe = 3.22(In,) Flow top width inside pipe = 13.80(in.) Critical depth could not be calculated. Pipe flow velocity = 3,33(Ft/s) Travel time through pipe = 1,51 min. Time of concentration (TC) = 9,79 min. Process from Point/Station 2013,100 to Point/Station 2013.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0,410(Ac) Runoff from this stream = 0,716(CFS) Time of concentration = 9,79 min. Rainfall intensity = 4,442(ln/Hr) •fH--f+-H-H-f+-f-f-f+-H-f-f-f-f-f-f-f+-f-f-f4-++-H++-»-+-f-f++-(-+-(-++-f-l--l-+^ process from Point/Station 2004.000 to Point/Station 3000,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (24.0 DU/A or Less ) Page 2 ecr3u impervious value, Ai = 0.650 sub-Area C Value = 0,710 Initial subarea total flow distance Highest elevation = 86,100(Ft,) Lowest elevation = 84,100(Ft,) Elevation difference = 2.000(Ft.) Slope = 1.739 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 24,0 DU/A or Less In Accordance With Figure 3-3 initial Area Time of Concentration = 5.06 minutes TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1,8*(1.1-0.7100)*( 75.000A,5)/( 1,739A(l/3)3= The initial area total distance of 115,00 remaining distance of 40.00 (Ft,) using Figure 3-4, the travel time for this distance is for a distance of 40.00 (Ft,) and a slope of 1,74 % with an elevation difference of 0,70(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3''^.385 *60(min/hr) 0.636 Minutes Tt=[(11.9*0,0076A3)/( 0,70)3A.385= 0,64 Total initial area Ti = 5,06 minutes from Figure 3-3 formula plus 0.64 minutes from the Figure 3-4 formula = 5.69 minutes Rainfall intensity (i) = 6,301(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,710 Subarea runoff = 1.029(CFS) Total initial stream area = 0.230(Ac,) = 115.000(Ft,) 1,74 %, in a development type of 5,06 (Ft,) entered leaves a 0,64 minutes process from Point/Station 3000,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 3001,000 upstream point/station elevation = Downstream point/station elevation = Pipe length = 57.17(Ft.) Slope = NO. of pipes = 1 Required pipe flow Given pipe size = 18.00(in.) Calculated individual pipe flow = 1.029(CFS) Normal flow depth in pipe = 3.22(in,) Flow top width inside pipe = 13.79(in,) Critical Depth = 4,53(in.) Pipe flow velocity = 4.81(Ft/s) Travel time through pipe = 0,20 min. Time of concentration (TC) = 5,89 min. 74,270(Ft,) 73,140(Ft,) 0,0198 Manning's N = 0,013 1,029(CFS) Process from Point/Station 3001.000 to Point/Station 3001,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.230(Ac.) Runoff from this stream = 1.029(CFS) Time of concentration = 5.89 min. Rainfall intensity = 6,163(in/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (mi n) Rainfall intensity (in/Hr) Page 3 ecr3u 1 0.716 9.79 4,442 2 1.029 5.89 6.163 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 0,716) + 0,721 * 1.000 * 1.029) + = 1.458 1,000 * 0.602 * 0,716) -i- 1,000 * 1.000 * 1,029) + = 1,460 Total of 2 streams to confluence: Flow rates before confluence point: 0.716 1.029 Maximum flow rates at confluence using above data: 1,458 1.460 Area of streams before confluence: 0,410 0,230 Results of confluence: Total flow rate = 1.460(CFS) Time of concentration = 5.890 min. Effective stream area after confluence = 0,640(Ac) Process from Point/Station 3001.000 to Point/Station 3002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 72.810(Ft.) Downstream point/station elevation = 71,020(Ft,) Pipe length = 91,84(Ft,) slope = 0,0195 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 1.460(CFS) Given pipe size = 18.00(in.) calculated individual pipe flow = 1,460(CFS) Normal flow depth in pipe = 3,84(in.) Flow top width inside pipe = 14.74(in,) critical Depth = 5.43(in.) Pipe flow velocity = 5.30(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 6,18 min. -f+-t-++-i--f-f++++++-f++-f+-f+-f-f-f-h+++-f-f++-f++++++-f+-f++-f++^ Process from Point/station 3002.000 to Point/Station 3002,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.640(Ac) Runoff from this stream = 1,460(CFS) Time of concentration = 6,18 min. Rainfall intensity = 5,976(in/Hr) +++++++++-f+-f-l--f-f+++-h+++++++-f-f++++-l-++-f++-f+-f4--f-f-f+++ Process from Point/Station 3002.000 to Point/Station 3002.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** user specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 3,377(in/Hr) for a 100.0 year storm User specified values are as follows: TC = 14.97 min. Rain intensity = 3.38(ln/Hr) Total area = 54,860(AC,) Total runoff = 98.920(CFS) Page 4 ecr3u process from Point/Station 3002.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 3002,000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 54,860(AC,) Runoff from this stream = 98,920(CFS) Time of concentration = 14,97 min. Rainfall intensity = 3.377(ln/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mi n) Rainfall Intensity (In/Hr) 1 2 Qmax(l) 1,460 98,920 6.18 14.97 Qmax(2) = 1.000 1,000 0,565 1.000 1,000 0,413 1.000 1.000 5.976 3,377 1,460) + 98,920) -1- 1,460) + 98.920) + 42,289 99,745 Total of 2 streams to confluence: Flow rates before confluence point: 1.460 98,920 Maximum flow rates at confluence using above data: 42.289 99,745 Area of streams before confluence: 0.640 54,860 Results of confluence: Total flow rate = 99,745(CFS) Time of concentration = 14,970 min. Effective stream area after confluence = 55,500(Ac,) Process from Point/Station 3002,000 to Point/Station **** PIPEFLOW TRAVEL TIME (user specified size) **** 3003,000 upstream point/station elevation = Downstream point/station elevation = Pipe length = 153,96(Ft.) Slope = No, of pipes = 1 Required pipe flow Given pipe size = 48,00(ln.) Calculated individual pipe flow = 99,745(CFS) Normal flow depth in pipe = 29.48(in,) Flow top width inside pipe = 46,73(in,) Critical Depth = 36,34(ln,) Pipe flow velocity = 12.31(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 15,18 min. 70,690(Ft,) 69,160(Ft.) 0,0099 Manning's N = 0,013 99,745(CFS) process from Point/Station 3003,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 3003.000 The following data inside Main Stream is listed: in Main stream number: 1 Stream flow area = 55,500(Ac,) Runoff from this stream = 99.745(CFS) Time of concentration = 15.18 min. Page 5 ecr3u Rainfall intensity = 3.347(in/Hr) Program is now starting with Main stream NO, 2 Process from Point/Station 3004,000 to Point/Station **** INITIAL AREA EVALUATION **** 3005.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL 3 (7.3 DU/A or Less ) Impervious value, Ai = 0,400 Sub-Area C value = 0.570 Initial subarea total flow distance = 300.000(Ft,) Highest elevation = 91,700(Ft.) Lowest elevation = 82,200(Ft.) Elevation difference = 9.500(Ft.) Slope = 3.167 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95,00 (Ft) for the top area slope value of 3.17 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.33 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,5700)*( 95.000A.5)/( 3,167A(l/3)3= 6.33 The initial area total distance of 300.00 (Ft,) entered leaves a remaining distance of 205,00 (Ft,) Using Figure 3-4, the travel time for this distance is 1,78 minutes for a distance of 205,00 (Ft,) and a slope of 3,17 % with an elevation difference of 6.49(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 1,778 Minutes Tt=[(ll,9*0,0388A3)/( 6,49)3^,385= 1.78 Total initial area Ti = 6.33 minutes from Figure 3-3 formula plus 1.78 minutes from the Figure 3-4 formula = 8,11 minutes Rainfall intensity (I) = 5,015(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 3,573(CFS) Total initial stream area = 1.250(Ac,) Process from Point/Station 3005,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 3005,000 Along Main stream number: 2 in normal stream number 1 Stream flow area = 1,250(Ac) Runoff from this stream = 3.573(CFS) Time of concentration = 8,11 min. Rainfall intensity = 5,015(ln/Hr) Process from Point/Station 3006,000 to Point/Station **** INITIAL AREA EVALUATION **** 3005.000 Decimal fraction soil Decimal Decimal Decimal fraction soil fraction soil fraction soil group A = 0.000 group B = 0,000 group C = 0.000 group D = 1.000 Page 6 ecr3u [INDUSTRIAL area type 3 (General Industrial ) impervious value, Ai = 0,950 Sub-Area C value = 0,870 initial subarea total flow distance = 148,000(Ft,) Highest elevation = 86,000(Ft.) Lowest elevation = 82.200(Ft,) Elevation difference = 3,800(Ft,) Slope = 2,568 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80,00 (Ft) for the top area slope value of 2,57 %, in a development type of General industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.70 minutes TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,8700)*( 8O,000A,5)/( 2.568A(1/3)3= 2,70 The initial area total distance of 148,00 (Ft,) entered leaves a remaining distance of 68.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.82 minutes for a distance of 68.00 (Ft.) and a slope of 2,57 % with an elevation difference of l,75(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 0.824 Minutes Tt=[(11.9*0,0129A3)/( 1,75)3^,385= 0.82 Total initial area Ti = 2.70 minutes from Figure 3-3 formula plus 0,82 minutes from the Figure 3-4 formula = 3.53 minutes Calculated TC of 3.528 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (i) = 6.850(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.870 Subarea runoff = 1.371(CFS) Total initial stream area = 0,230(Ac) Process from Point/Station 3005.000 to Point/Station 3005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,230(AC) Runoff from this stream = 1,371(CFS) Time of concentration = 3.53 min. Rainfall intensity = 6,850(in/Hr) Summary of stream data: stream Flow rate TC Rainfall intensity NO, (CFS) (min) (in/Hr) 1 3,573 8,11 5,015 2 1.371 3.53 6,850 Qmax(l) = Qmax(2) = 1.000 * 1.000 * 3,573) + 0.732 * 1.000 * 1,371) + = 4,576 1,000 * 0.435 * 3,573) + 1,000 * 1,000 * 1,371) -f = 2,925 Total of 2 streams to confluence: Flow rates before confluence point: 3,573 1.371 Maximum flow rates at confluence using above data: 4,576 2.925 Page 7 ecr3u Area of streams before confluence: 1.250 0.230 Results of confluence: Total flow rate = 4,576(CFS) Time of concentration = 8.110 min. Effective stream area after confluence = l,480(Ac,) Process from Point/Station 3005.000 to Point/Station 3007,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 82,200(Ft,) End of street segment elevation = 80,200(Ft.) Length of street segment = 180,000(Ft.) Height of curb above gutter flowline = 6.0(ln,) width of half street (curb to crown) = 44.000(Ft,) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = l,500(ln.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5,159(CFS) Depth of flow = 0.298(Ft.), Average velocity = 2.332(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10,172(Ft,) Flow velocity = 2,33(Ft/s) Travel time = 1,29 min, TC = 9,40 min. Adding area flow to street Rainfall intensity (I) = 4.560(ln/Hr) for a 100.0 year storm user specified 'C value of 0,790 given for subarea Rainfall intensity = 4,560(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,654 CA = 1,236 Subarea runoff = 1,063(CFS) for 0.410(Ac,) Total runoff = 5.639(CFS) Total area = l,890(Ac,) Street flow at end of street = 5.639(CFS) Half street flow at end of street = 2.819(CFS) Depth of flow = 0,306(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 10.546(Ft,) ++++++^-++-(-++-f-^-l-^-+++-l-++-^+-^++-^+•^+++++4•++^-+-f-l-•f+4•-^++ Process from Point/Station 3007.000 to Point/Station 3003,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 73,640(Ft,) Downstream point/station elevation = 73,050(Ft.) Pipe length = 58,76(Ft.) Slope = 0.0100 Manning's N = 0,013 NO. of pipes = 1 Required pipe flow = 5,639(CFS) Given pipe size = 18,00(in.) Calculated individual pipe flow = 5.639(CFS) Normal flow depth in pipe = 9,38(in,) Flow top width inside pipe = 17.98(In,) Critical Depth = 10.98(in.) Pipe flow velocity = 6.06(Ft/s) Travel time through pipe = 0,16 min. Page 8 Time of concentration (TC) = ecr3u 9,56 min. Process from Point/Station 3003.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 3003.000 upstream point/station elevation = Downstream point/station elevation = Pipe length = 37.00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(ln,) Calculated individual pipe flow = 5,639(CFS) Normal flow depth in pipe = 6.46(in,) Flow top width inside pipe = 17,27(ln,) critical Depth = 10.98(ln.) Pipe flow velocity = 9.88(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 9.62 min. 72.720(Ft,) 71,320(Ft,) 0,0378 Manning's N = 0,013 5.639(CFS) Process from Point/Station 3003,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: in Main Stream number: 2 Stream flow area = 1.890(Ac,) Runoff from this stream = 5.639(CFS) Time of concentration = 9,62 min. Rainfall intensity = 4.492(ln/Hr) Summary of stream data: 3003.000 Stream NO. Flow rate (CFS) TC (mi n) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 99,745 5,639 15.18 9,62 1,000 * 0,745 * 1,000 * 1,000 * 1,000 * 1,000 * 0.634 * 1.000 * 3,347 4,492 99,745) -I- 5,639) -t- 99,745) + 5,639) + 103,947 68,857 Total of 2 main streams to confluence: Flow rates before confluence point: 99,745 5,639 Maximum flow rates at confluence using above data: 103,947 68,857 Area of streams before confluence: 55,500 1.890 Results of confluence: Total flow rate = 103.947(CFS) Time of concentration = 15.178 min. Effective stream area after confluence = 57.390(Ac,) ++++++++++-f-f++-f+++-f-f-H-f-f+-f+-f+-f++-f++-f-f-f+-^-f-f-f-f++++-t-+ Process from Point/Station 3003,000 to point/station 3010,000 Page 9 ecr3u **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68.820(Ft,) Downstream point/station elevation = 65.980(Ft,) Pipe length = 147,97(Ft,) slope = 0,0192 Manning's N = 0.013 NO. of pipes = 1 Required pipe flow = 103,947(CFS) Given pipe size = 48,00(ln,) Calculated individual pipe flow = 103,947(CFS) Normal flow depth in pipe = 24,63(In,) Flow top width inside pipe = 47,98(in.) Critical Depth = 37,05(in,) Pipe flow velocity = 16.01(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 15.33 min. Process from Point/Station 3010,000 to Point/Station 3010,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 57,390(Ac,) Runoff from this stream = 103.947(CFS) Time of concentration = 15.33 min. Rainfall intensity = 3.325(ln/Hr) Process from Point/Station 3008.000 to Point/Station 3009,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type 3 (General industrial ) Impervious value, Ai = 0,950 Sub-Area C value = 0,870 Initial subarea total flow distance = 285,000(Ft,) Highest elevation = 84.200(Ft.) Lowest elevation = 78.400(Ft,) Elevation difference = 5,800(Ft,) Slope = 2.035 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70,00 (Ft) for the top area slope value of 2,04 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of concentration = 2,73 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0,8700)*( 70.000A.5)/( 2,035A(l/3)3= 2.73 The initial area total distance of 285,00 (Ft.) entered leaves a remaining distance of 215,00 (Ft.) using Figure 3-4, the travel time for this distance is 2,19 minutes for a distance of 215,00 (Ft.) and a slope of 2,04 % with an elevation difference of 4.38(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 2,187 Minutes Tt=[(11.9*0,0407A3)/( 4,38)3^,385= 2.19 Total initial area Ti = 2.73 minutes from Figure 3-3 formula plus 2,19 minutes from the Figure 3-4 formula = 4.92 minutes calculated TC of 4.920 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Page 10 ecr3u Rainfall intensity (I) = 6,850(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 2,563(CFS) Total initial stream area = 0,430(Ac,) Process from Point/Station 4008,000 to Point/Station 3009,000 **** SUBAREA FLOW ADDITION **** Calculated TC of 4,920 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 Time of concentration = 4.92 min. Rainfall intensity = 6.850(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,694 CA = 0,451 Subarea runoff = 0.527(CFS) for 0,220(Ac) Total runoff = 3.090(CFS) Total area = 0.650(Ac,) Process from Point/Station 3009,000 to Point/Station 3010.000 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 61.340(Ft.) Downstream point/station elevation = 60.650(Ft.) Pipe length = 34.25(Ft,) Slope = 0.0201 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 3.090(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 3.090(CFS) Normal flow depth in pipe = 5,56(in,) Flow top width inside pipe = 16,63(in,) Critical Depth = 8,03(in.) Pipe flow velocity = 6.65(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5,01 min. Process from Point/Station 3010.000 to Point/Station 3010,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,650(Ac.) Runoff from this stream = 3,090(CFS) Time of concentration = 5,01 min. Rainfall intensity = 6,845(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO. (CFS) (min) (in/Hr) 1 103,947 15.33 3.325 Page 11 Qmax(l) = Qmax(2) = ecr3u 3,090 5,01 6,845 1,000 * 1.000 * 103,947) + 0.486 * 1,000 * 3,090) + = 105,448 1.000 * 0.326 * 103.947) H- 1.000 * 1,000 * 3,090) + = 37,027 Total of 2 streams to confluence: Flow rates before confluence point: 103.947 3,090 Maximum flow rates at confluence using above data: 105,448 37,027 Area of streams before confluence: 57.390 0,650 Results of confluence: Total flow rate = 105,448(CFS) Time of concentration = 15,332 min. Effective stream area after confluence = 58,040(Ac,) Process from Point/Station 3010,000 to Point/Station 4000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.650(Ft,) Downstream point/station elevation = 61,690(Ft.) Pipe length = 196,00(Ft,) Slope = 0,0202 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 105,448(CFS) Given pipe size = 48.00(ln,) Calculated individual pipe flow = 105,448(CFS) Normal flow depth in pipe = 24,47(in,) Flow top width inside pipe = 47.99(ln.) Critical Depth = 37.31(ln,) Pipe flow velocity = 16,38(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 15.53 min. Process from Point/Station 4000,000 to Point/Station 4000,000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: in Main Stream number: 1 Stream flow area = 58.040(Ac) Runoff from this stream = 105,448(CFS) Time of concentration = 15,53 min. Rainfall intensity = 3,298(ln/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 4001.000 to Point/Station 4002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7,3 DU/A or Less ) Impervious value, Ai = 0,400 Page 12 ecr3u sub-Area C value = 0,570 Initial subarea total flow distance = 180,000(Ft,) Highest elevation = 91.800(Ft,) Lowest elevation = 90,000(Ft,) Elevation difference = l,800(Ft.) Slope = 1,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65,00 (Ft) for the top area slope value of 1,00 %, ina development type of 7.3 DU/A or Less In Accordance with Figure 3-3 initial Area Time of Concentration = 7,69 minutes TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,57O0)*( 65.000A,5)/( 1.000A(l/3)3= 7.69 The initial area total distance of 180,00 (Ft.) entered leaves a remaining distance of 115.00 (Ft,) Using Figure 3-4, the travel time for this distance is 1,78 minutes for a distance of 115,00 (Ft,) and a slope of 1,00 % with an elevation difference of 1.15(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) = 1,776 Minutes Tt=[(ll,9*0,0218A3)/( 1.15)3^.385= 1,78 Total initial area Ti = 7,69 minutes from Figure 3-3 formula plus 1,78 minutes from the Figure 3-4 formula = 9.47 minutes Rainfall intensity (I) = 4,538(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0,776(CFS) Total initial stream area = 0,300(Ac,) Process from Point/Station 4002.000 to Point/Station 4003.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 90.000(Ft.) End of street segment elevation = 84,900(Ft,) Length of street segment = 450,000(Ft.) Height of curb above gutter flowline = 6,0(in,) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 5,500(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = 2,000(ln.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.170(CFS) Depth of flow = 0.318(Ft,), Average velocity = 2,250(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 9.079(Ft,) Flow velocity = 2,25(Ft/s) Travel time = 3.33 min, TC = 12,80 min. Adding area flow to street Rainfall intensity (l) = 3,736(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL 3 (7,3 DU/A or Less ) Page 13 ecr3u Impervious value, Ai = 0,400 sub-Area C value =0,570 ^ Rainfall intensity = 3,736(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,570 CA = 1,995 subarea runoff = 6.677(CFS) for 3,200(Ac,) Total runoff = 7,453(CFS) Total area = 3,500(Ac,) Street flow at end of street = 7,453(CFS) Half street flow at end of street = 3,726(CFS) Depth of flow = 0.368(Ft,), Average velocity = 2,577(Ft/s) Flow width (from curb towards crown)= ll,591(Ft.) Process from Point/Station 4003,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 4004,000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 70.00(Ft,) Slope = NO. of pipes = 1 Required pipe flow = Given pipe size = 18,00(in.) Calculated individual pipe flow = 7,453(CFS) Normal flow depth in pipe = 4.64(ln,) Flow top width inside pipe = 15,75(In.) Critical Depth = 12,70(in,) Pipe flow velocity = 20,66(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 12.86 min. 81,400(Ft,) 64.770(Ft.) 0.2376 Manning's N = 0.013 7,453(CFS) Process from Point/Station 4003.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 4004.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3,500(Ac,) Runoff from this stream = 7,453(CFS) Time of concentration = 12.86 min. Rainfall intensity = 3,725(ln/Hr) Process from Point/Station 4005,000 to Point/Station **** INITIAL AREA EVALUATION **** 4006,000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (43,0 DU/A or Less ) Impervious value, Ai = 0,800 sub-Area C value = 0,790 Initial subarea total flow distance = 430.000(Ft,) Highest elevation = 82.600(Ft,) Lowest elevation = 70,800(Ft.) Elevation difference = 11.800(Ft,) Slope = 2,744 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 2.74 %, in a development type of 43.0 DU/A or Less In Accordance With Figure 3-3 Page 14 3,67 leaves a 2,81 minutes ecr3u initial Area Time of Concentration = 3,67 minutes TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(1.1-0.7900)*( 85.000A.5)/( 2.744A(1/3)3= ^ The initial area total distance of 430,00 (Ft.) entered remaining distance of 345.00 (Ft,) Using Figure 3-4, the travel time for this distance is for a distance of 345,00 (Ft.) and a slope of 2,74 % with an elevation difference of 9,47(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 2,805 Minutes Tt=[(11.9*0,0653A3)/( 9,47)3^,385= 2,81 Total initial area Ti = 3.67 minutes from Figure 3-3 formula 2,81 minutes from the Figure 3-4 formula = 6,48 minutes Rainfall intensity (I) = 5,796(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 3.480(CFS) Total initial stream area = 0,760(Ac) plus process from Point/Station 4006,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 4004,000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 8,03(Ft.) Slope = NO. of pipes = 1 Required pipe flow Given pipe size = 18.00(in.) Calculated individual pipe flow = 3.480(CFS) Normal flow depth in pipe = 6,72(in,) Flow top width inside pipe = 17.41(in,) critical Depth = 8.54(in.) Pipe flow velocity = 5,78(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6,50 min. 64.890(Ft,) 64.790(Ft,) 0,0125 Manning's N = 0.013 3,480(CFS) Process from point/Station 4006.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 4004,000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.760(Ac) Runoff from this stream = 3.480(CFS) Time of concentration = 6.50 min. Rainfall intensity = 5,782(in/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) Qmax(l) = Qmax(2) = 7,453 3,480 12,86 6.50 1.000 * 0,644 * 1.000 * 1.000 * 1,000 * 1.000 * 0,506 * 1.000 * 3.725 5.782 7,453) + 3,480) + 7,453) 3.480) 9,694 7.249 Total of 2 streams to confluence: Flow rates before confluence point: Page 15 ecr3u 7.453 3.480 Maximum flow rates at confluence using above data: 9.694 7.249 Area of streams before confluence: 3.500 0.760 Results of confluence: Total flow rate = 9.694(CFS) Time of concentration = 12.857 min. Effective stream area after confluence = 4,260(Ac,) Process from Point/Station 4004.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 4000.000 64.230(Ft,) 63.360(Ft. ) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 86.50(Ft,) Slope = 0,0101 Manning's N = 0.013 NO, of pipes = 1 Required pipe flow = 9.694(CFS) Given pipe size = 24.00(ln,) Calculated individual pipe flow = 9.694(CFS) Normal flow depth in pipe = 10.96(in,) Flow top width inside pipe = 23,91(ln.) Critical Depth = 13.37(ln.) Pipe flow velocity = 6,94(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 13.07 min. Process from Point/Station 4000.000 to Point/station **** CONFLUENCE OF MAIN STREAMS **** 4000.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4,260(Ac) Runoff from this stream = 9,694(CFS) Time of concentration = 13.07 min. Rainfall intensity = 3,687(in/Hr) Program is now starting with Main Stream No, 3 Process from Point/Station **** INITIAL AREA EVALUATION 4008,000 to Point/Station 4009,000 **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 114,800(Ft,) Lowest elevation = 100,400(Ft,) Elevation difference = 14,400(Ft,) Slope = 9.600 % Top of initial Area Slope adjusted by User to 30,000 % Bottom of initial Area slope adjusted by user to 2,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 30.00 %, in a development type of Page 16 3 150.000(Ft,) ecr3u Permanent open Space In Accordance with Figure 3-3 Initial Area Time of concentration = 4.34 minutes TC = [l,8*(l.l-c)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0.3500)*( 100,000A.5)/( 30.000A(1/3)3= 4.34 The initial area total distance of 150,00 (Ft,) entered leaves a remaining distance of 50.00 (Ft,) Using Figure 3-4, the travel time for this distance is 0,72 minutes for a distance of 50.00 (Ft,) and a slope of 2,00 % with an elevation difference of 1.00(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) 0,716 Minutes Tt=[(ll,9*0.0095A3)/( 1.00)3A.385= 0,72 ^ ^ Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus 0.72 minutes from the Figure 3-4 formula = 5.06 minutes Rainfall intensity (I) = 6.797(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0.214(CFS) Total initial stream area = 0.090(Ac.) Process from Point/station 4009.000 to Point/Station 4010.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 99.400(Ft.) Downstream point elevation = 89,100(Ft,) channel length thru subarea = 320,000(Ft,) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1,500 Slope or 'z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 0,575(CFS) Manning's 'N' = 0,015 Maximum depth of channel = l,000(Ft.) Flow(q) thru subarea = 0,575(CFS) Depth of flow = 0.295(Ft.), Average velocity = 4.393(Ft/s) channel flow top width = 0.886(Ft.) Flow velocity = 4,39(Ft/s) Travel time = 1,21 min. Time of concentration = 6,27 min. critical depth = 0,391(Ft,) Adding area flow to channel Rainfall intensity (l) = 5,917(ln/Hr) for a 100,0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group s = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Rainfall intensity = 5.917(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0,147 subarea runoff = 0,656(CFS) for 0,330(Ac,) Total runoff = 0,870(CFS) Total area = 0,420(Ac) Depth of flow = 0,345(Ft,), Average velocity = 4,872(Ft/s) Critical depth = 0.461(Ft,) Process from Point/Station 4009,000 to Point/Station 4010.000 **** CONFLUENCE OF MINOR STREAMS **** Page 17 ecr3u Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.420(Ac,) Runoff from this stream = 0.870(CFS) Time of concentration = 6.27 min. Rainfall intensity = 5,917(in/Hr) Process from Point/Station 4011.000 to Point/Station **** INITIAL AREA EVALUATION **** 4010.000 3 = 290,000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 initial subarea total flow distance Highest elevation = 99.000(Ft.) Lowest elevation = 89,100(Ft,) Elevation difference = 9,900(Ft.) Slope = 3.414 % Top of Initial Area Slope adjusted by User to 30,000 % Bottom of Initial Area Slope adjusted by User to 2,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 initial Area Time of Concentration = 4,34 minutes TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0,3500)*( 100.000A.5)/( 30,OOOA(l/3)]= 4,34 The initial area total distance of 290,00 (Ft.) entered leaves a remaining distance of 190,00 (Ft,) using Figure 3-4, the travel time for this distance is for a distance of 190,00 (Ft.) and a slope of 2,00 % with an elevation difference of 3,80(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 2.001 Minutes Tt=[(11.9*0.0360A3)/( 3,80)3A,385= 2.00 Total initial area Ti = 4,34 minutes from Figure 3-3 formula plus 2.00 minutes from the Figure 3-4 formula = 6.35 minutes Rainfall intensity (I) = 5,874(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,493(CFS) Total initial stream area = 0,240(Ac,) 2.00 minutes Process from Point/Station 4011,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 4010.000 Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0,240(Ac,) Runoff from this stream = 0,493(CFS) Time of concentration = 6,35 min. Rainfall intensity = 5,874(ln/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (mi n) Page 18 Rainfall intensity (in/Hr) ecr3u 1 2 Qmax(l) Qmax(2) = 0.870 0,493 1.000 1,000 6,27 6,35 5.917 5.874 0,993 1,000 1,000 0,989 1,000 1.000 0.870) + 0.493) + 0.870) + 0.493) + 1.358 1,357 Total of 2 streams to confluence: Flow rates before confluence point: 0,870 0.493 Maximum flow rates at confluence using above data: 1,358 1,357 Area of streams before confluence: 0,420 0,240 Results of confluence: Total flow rate = 1,358(CFS) Time of concentration = 6.275 min. Effective stream area after confluence = 0,660(Ac,) Process from Point/Station 4010,000 to Point/Station **** PIPEFLOW TRAVEL TIME (user specified size) **** 4010.100 Upstream point/station elevation = 84,000(Ft.) Downstream point/station elevation = 65,690(Ft,) Pipe length = 25,00(Ft,) Slope = 0,7324 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 1,358(CFS) Given pipe size = 18,00(in.) Calculated individual pipe flow = 1.358(CFS) Normal flow depth in pipe = l,54(in,) Flow top width inside pipe = 10,08(in,) Critical Depth = 5,23(in,) Pipe flow velocity = 18,50(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (TC) = 6,30 min. # Process from Point/Station 4010,100 to Point/Station **** SUBAREA FLOW ADDITION **** 4010,100 .903(ln/Hr) for a 0.000 0,000 0.000 1.000 3 100,0 year storm Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) impervious value, Ai = 0,000 sub-Area c value =0,350 Time of concentration = 6,30 min. Rainfall intensity = 5,903(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,392 subarea runoff = 0,956(CFS) for 0,460(Ac) Total runoff = 2.314(CFS) Total area = 1,120(AC) Page 19 ecr3u Process from Point/Station 4010.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 4000,000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 30,00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(ln.) Calculated individual pipe flow = 2,314(CFS) Normal flow depth in pipe = 3.81(in.) Flow top width inside pipe = 14,71(ln.) critical Depth = 6,90(in.) Pipe flow velocity = 8.46(Ft/s) Travel time through pipe = 0,06 min. Time of concentration (TC) = 6,36 min. 65,360(Ft,) 63,860(Ft.) 0.0500 Manning's N = 0,013 2,314(CFS) Process from Point/Station 4000,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 4000.000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = l,120(Ac.) Runoff from this stream = 2.314(CFS) Time of concentration = 6,36 min. Rainfall intensity = 5.868(ln/Hr) Summary of stream data: Stream NO. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 : 2 3 Qmax(l) Qmax(2) = Qmax(3) = 448 15 53 694 13 07 314 6 36 1,000 * 1.000 * 0,894 * 1,000 * 0,562 * 1.000 * 1,000 * 0.841 * 1,000 * 1.000 * 0,628 * 1,000 * 1,000 * 0,409 * 1,000 * 0,487 * 1.000 * 1.000 * 3,298 3,687 5,868 105.448) + 9.694) + 2.314) + 105.448) + 9.694) + 2.314) -4- 105,448) + 9,694) + 2,314) + = 115,420 99,850 50,186 Total of 3 main streams to confluence: Flow rates before confluence point: 105,448 9,694 2,314 Maximum flow rates at confluence using above data: 115.420 99,850 50.186 Area of streams before confluence: 58,040 4.260 1,120 Results of confluence: Total flow rate = 115.420(CFS) Time of concentration = 15,532 min. Effective stream area after confluence = Page 20 63,420(Ac,) ecr3u Process from Point/Station 4000,000 to Point/Station 4011,300 **** PIPEFLOW TRAVEL TIME (user Specified size) **** Upstream point/station elevation = 61,360(Ft.) Downstream point/station elevation = 57,990(Ft,) Pipe length = 90,49(Ft,) Slope = 0,0372 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 115,420(CFS) Given pipe size = 48,00(in,) Calculated individual pipe flow = 115.420(CFS) Normal flow depth in pipe = 21.59(ln,) Flow top width inside pipe = 47.76(ln.) Critical Depth = 38.89(ln,) Pipe flow velocity = 21,05(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 15,60 min. Process from Point/Station 4011.300 to Point/Station 4011,300 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 63,420(Ac,) Runoff from this stream = 115,420(CFS) Time of concentration = 15,60 min. Rainfall intensity = 3.288(In/Hr) +-f++-^++•^+-^-+•f•f•^-^++++++++-^-+•f-^-^-(•+-l--^++++++-^++++-^+++ Process from Point/station 4011,100 to Point/Station 4011.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0,350 Initial subarea total flow distance = 170.000(Ft,) Highest elevation = 90,000(Ft,) Lowest elevation = 67,800(Ft,) Elevation difference = 22,200(Ft,) Slope = 13,059 % Top of Initial Area slope adjusted by user to 25.000 % Bottom of Initial Area slope adjusted by user to 25,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 25,00 %, in a development type of Permanent open Space In Accordance With Figure 3-3 Initial Area Time of concentration = 4,62 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0.3500)*( 100,000A.5)/( 25,000A(1/3)3= 4,62 The initial area total distance of 170,00 (Ft,) entered leaves a remaining distance of 70.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 70,00 (Ft,) and a slope of 25,00 % with an elevation difference of 17,50(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) Page 21 ecr3u 0,351 Minutes Tt=[(ll,9*0.0133A3)/( 17,50)3A,385= 0,35 Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 4,97 minutes Calculated TC of 4,968 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (l) = 6,850(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0.456(CFS) Total initial stream area = 0,190(Ac.) Process from Point/Station 4011,200 to Point/Station 4011.300 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 60,000(Ft,) Downstream point/station elevation = 59,240(Ft.) Pipe length = 13,72(Ft,) Slope = 0,0554 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 0.456(CFS) Given pipe size = 18.00(in.) Calculated individual pipe flow = 0,456(CFS) Normal flow depth in pipe = 1.70(ln,) Flow top width inside pipe = 10,51(ln.) critical Depth = 3.00(ln,) Pipe flow velocity = 5,40(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 5,01 min. -(.+++++-f+++-f++-f-f+-i-++-(--f-f-f-f+++-f+-f-f--t-+++++-f++++++-f++ Process from Point/Station 4011.300 to Point/Station 4011,300 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area = 0.190(Ac) Runoff from this stream = 0,456(CFS) Time of concentration = 5,01 min. Rainfall intensity = 6,841(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO, (CFS) (min) (In/Hr) 1 115.420 15.60 3.288 2 0.456 5.01 6,841 Qmax(l) = Qmax(2) = 1,000 * 1,000 * 115,420) + 0.481 * 1.000 * 0,456) + = 115,639 1,000 * 0,321 * 115,420) + 1,000 * 1,000 * 0,456) + = 37,516 Total of 2 streams to confluence: Flow rates before confluence point: 115,420 0,456 Maximum flow rates at confluence using above data: 115.639 37,516 Area of streams before confluence: 63,420 0.190 Results of confluence: Total flow rate = 115,639(CFS) Page 22 ecr3u Time of concentration = 15,603 min. Effective stream area after confluence = 63.610 (AC) Process from Point/Station 4011,300 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 5000,000 Upstream point/station elevation = 57,990(Ft,) Downstream point/station elevation = 47,160(Ft,) Pipe length = 290,51(Ft,) Slope = 0.0373 Manninq's N = 0.013 NO. of pipes = 1 Required pipe flow = 115,639(CFS) Given pipe size = 48.00(in,) Calculated individual pipe flow = 115,639(CFS) Normal flow depth in pipe = 21,61(in,) Flow top width inside pipe = 47,76(in,) critical Depth = 38,93(in.) Pipe flow velocity = 21.07(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 15,83 min. Process from Point/Station 5000,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5000,000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 63,610(Ac) Runoff from this stream = 115.639(CFS) Time of concentration = 15.83 min. Rainfall intensity = 3.257(ln/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 5001.000 to Point/Station 5002.000 3 423,000(Ft,) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL (43.0 DU/A or Less ) impervious value, Ai = 0,800 Sub-Area C value = 0,790 Initial subarea total flow distance = Highest elevation = 73.800(Ft.) Lowest elevation = 58.400(Ft.) Elevation difference = 15.400(Ft,) Slope = 3,641 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 3.64 %, in a development type of 43,0 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 3.34 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(1.1-0,7900)*( 85,OOOA,5)/( 3.641A(l/3)3= 3,34 The initial area total distance of 423,00 (Ft,) entered leaves a remaining distance of 338,00 (Ft,) using Figure 3-4, the travel time for this distance is for a distance of 338,00 (Ft.) and a slope of 3,64 % with an elevation difference of 12,31(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) Page 23 2,48 minutes ecr3u 2.476 Minutes Tt=[(11.9*0,0640A3)/( 12.31)]A.385= 2.48 Total initial area Ti = 3.34 minutes from Figure 3-3 formula plus 2.48 minutes from the Figure 3-4 formula = 5.82 minutes Rainfall intensity (I) = 6.211(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 2,551(CFS) Total initial stream area = 0,520(Ac,) +++++4.++++++++++++++++++++++++-t-++-f-f+++++-f+-f++-l-+-f-f+-f+ Process from Point/Station 5002,000 to Point/Station 5000,000 **** PIPEFLOW TRAVEL TIME (user Specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 99.73(Ft,) Slope = NO. of pipes = 1 Required pipe flow Given pipe size = 18,00(in,) Calculated individual pipe flow = 2.551(CFS) Normal flow depth in pipe = 5,19(in,) Flow top width inside pipe = 16,31(ln.) Critical Depth = 7.26(in.) Pipe flow velocity = 6,05(Ft/s) Travel time through pipe = 0,27 min. Time of concentration (TC) = 6,10 min. 48,730(Ft,) 46,940(Ft.) 0.0179 Manning's N = 0.013 2,551(CFS) ++-|-+++++-f-f-f.f-F+++-f+++++++-f+-l-+-f-f++-f++++-f++++++-f+-f-f Process from Point/Station 5000.000 to Point/Station 5000,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,520(Ac) Runoff from this stream = 2.551(CFS) Time of concentration = 6.10 min. Rainfall intensity = 6,029(ln/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mi n) Rainfall intensity (In/Hr) Qmax(l) = Qmax(2) = 115.639 2,551 15.83 6.10 1,000 * 0,540 * 1.000 * 1,000 * 1.000 * 1.000 * 0.385 * 1,000 * 3.257 6.029 115.639) -I- 2,551) + 115,639) + 2,551) + 117,017 47,067 Total of 2 streams to confluence: Flow rates before confluence point: 115,639 2.551 Maximum flow rates at confluence using above data: 117,017 47.067 Area of streams before confluence: 63,610 0,520 Results of confluence: Total flow rate = 117,017(CFS) Time of concentration = 15,833 min. Effective stream area after confluence = 64.130(Ac,) Page 24 ecr3u Process from Point/Station 5000,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 5000,200 46,610(Ft,) 46.250(Ft.) 0.0070 Manning's 117,017(CFS) upstream point/station elevation = Downstream point/station elevation = Pipe length = 51,56(Ft,) Slope = NO, of pipes = 1 Required pipe flow = Given pipe size = 48,00(ln,) Calculated individual pipe flow = 117,017(CFS) Normal flow depth in pipe = 38,30(In.) Flow top width inside pipe = 38,55(in,) Critical Depth = 39,ll(in.) Pipe flow velocity = 10,89(Ft/s) Travel time through pipe = 0,08 min. Time of concentration (TC) = 15,91 min. N = 0.013 Process from Point/Station 5000,200 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main stream number: 1 stream flow area = 64,130(Ac) Runoff from this stream = 117,017(CFS) Time of concentration = 15.91 min. Rainfall intensity = 3.247(ln/Hr) Program is now starting with Main stream No. 2 5000,200 Process from Point/Station 6005,000 to Point/Station **** INITIAL AREA EVALUATION **** 6006.000 3 100.000(Ft,) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) impervious value, Ai = 0,000 sub-Area C value = 0.350 initial subarea total flow distance = Highest elevation = 133,000(Ft,) Lowest elevation = 118,900(Ft.) ^ _ ^ Elevation difference = 14,100(Ft,) Slope = 14,100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 14,10 %, in a development type of Permanent Open Space in Accordance with Figure 3-3 initial Area Time of concentration = 5.59 minutes TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,3500)*( 100.000A,5)/( 14,100A(1/3)3= 5.59 Rainfall intensity (i) = 6,376(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,290(CFS) Total initial stream area = 0,130(Ac,) Page 25 ecr3u +-H+++++-f+-l-+-f+-(--f+-f+-f-H+-f++++-f-f+-f+-f+-f-(-++++++++-f+-f+ Process from Point/Station 6006,000 to Point/Station 6007.000 **** IMPROVED CHANNEL TRAVEL TIME **** 0,919(CFS) 4,714(Ft/s) Upstream point elevation = 118.900(Ft,) Downstream point elevation = 110,800(Ft,) channel length thru subarea = 285,000(Ft,) Channel base width = 0.000(Ft.) Slope or 'z' of left channel bank = 1.500 Slope or 'z' of right channel bank = 1,500 Estimated mean flow rate at midpoint of channel = Manning's 'N' =0,015 Maximum depth of channel = 1.000(Ft,) Flow(q) thru subarea = 0,919(CFS) Depth of flow = 0,360(Ft,), Average velocity = Channel flow top width = l,081(Ft,) Flow velocity = 4,71(Ft/s) Travel time = 1.01 min. Time of concentration = 6,60 min. Critical depth = 0,473(Ft,) Adding area flow to channel Rainfall intensity (i) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 Rainfall intensity = 5.730(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.256 subarea runoff = 1.174(CFS) for 0.600(Ac,) Total runoff = 1,464(CFS) Total area = 0,730(Ac,) Depth of flow = 0,429(Ft.), Average velocity = 5,296(Ft/s) Critical depth = 0.570(Ft.) 5.730(In/Hr) = 0.000 = 0.000 = 0.000 = 1,000 for a 100.0 year storm 3 Process from Point/Station 6007,000 to Point/Station 6008,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 103.000(Ft,) Downstream point/station elevation = 78.000(Ft,) Pipe length = 68.64(Ft.) slope = 0.3642 Manning's N = 0,013 No. of pipes = 1 Required pipe flow Given pipe size = 18.00(ln,) Calculated individual pipe flow = 1. Normal flow depth in pipe = 1.89(In,) Flow top width inside pipe = 11,03(In.) Critical Depth = 5,44(in.) Pipe flow velocity = 14.83(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 6,67 min. 1,464(CFS) ,464(CFS) ++++++•^-f-^++++++•f++++++++++++-^-^++-^+-^-^--^-+-^-f-l-++•^-l-+•f•^+ Process from Point/Station 6007,000 to Point/Station 6008,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0,730(Ac.) Page 26 Runoff from this stream = Time of concentration = Rainfall intensity = 5 ecr3u 1.464(CFS) 6.67 min. ,687(ln/Hr) 3 = 105,000(Ft,) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 6009,000 to Point/Station 6010,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) impervious value, Ai = 0,000 Sub-Area C value = 0,350 Initial subarea total flow distance Highest elevation = 110,500(Ft,) Lowest elevation = 90.000(Ft,) Elevation difference = 20,500(Ft.) Slope = 19,524 % Top of Initial Area slope adjusted by user to 19.500 % Bottom of Initial Area slope adjusted by user to 19,500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 19.50 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 initial Area Time of concentration = 5,02 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 19.500A(l/3)3= The initial area total distance of 105,00 (Ft,) entered leaves a remaining distance of 5,00 (Ft,) Using Figure 3-4, the travel time for this distance is 0,05 minutes for a distance of 5,00 (Ft.) and a slope of 19,50 % with an elevation difference of 0,97(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) 0,051 Minutes Tt=[(ll,9*0,0009A3)/( 0,97)3A,385= 0,05 Total initial area Ti = 5.02 minutes from Figure 3-3 formula plus 0.05 minutes from the Figure 3-4 formula = 5,07 minutes Rainfall intensity (I) = 6.792(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.262(CFS) Total initial stream area = 0.110(Ac,) 5,02 -l-+-^-^-•f+•f-^•f-l-•f+•f-^++++-f+-^++^-+•^+-^-^-f•f++-^+-^-^-^-^+++++•^+-^+-^^ Process from Point/Station 6010,000 to Point/Station 6008.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 90,000(Ft,) Downstream point elevation = 84,000(Ft.) Channel length thru subarea = 230,000(Ft,) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1,500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft,) Flow(q) thru subarea = 0.810(CFS) Depth of flow = 0,349(Ft.), Average velocity = Channel flow top width = 1,048(Ft.) Page 27 0.810(CFS) 4.423(Ft/s) ecr3u Flow Velocity = 4.42(Ft/s) Travel time = 0.87 min. Time of concentration = 5.93 min. critical depth = 0.449(Ft,) Adding area flow to channel Rainfall intensity (I) = 6,135(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Rainfall intensity = 6,135(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.210 subarea runoff = 1.027(CFS) for 0.490(Ac.) Total runoff = 1.288(CFS) Total area = 0,600(Ac,) Depth of flow = 0,416(Ft,), Average velocity = 4,968(Ft/s) Critical depth = 0,539(Ft.) -^-+-^-f•f-^•f-f-^-^•^--f-^-+•f-(--f-^•^++-(-+-^-f-f+•^•^•f•^-+•l-+-f•f+-l-+++•f++-f++ Process from Point/Station 6010,000 to Point/Station 6008.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,600(Ac) Runoff from this stream = 1,288(CFS) Time of concentration = 5.93 min. Rainfall intensity = 6,135(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity No, (CFS) (min) (in/Hr) Qmax(l) = Qmax(2) = 1.464 6,67 5,687 1,288 5,93 6.135 1.000 * 1.000 * 1,464) + 0.927 * 1,000 * 1,288) + = 2,658 1,000 * 0,889 * 1,464) -i- 1,000 * 1.000 * 1,288) + = 2,590 Total of 2 streams to confluence: Flow rates before confluence point: 1,464 1,288 Maximum flow rates at confluence using above data: 2,658 2.590 Area of streams before confluence: 0,730 0,600 Results of confluence: Total flow rate = 2,658(CFS) Time of concentration = 6,673 min. Effective stream area after confluence = l,330(Ac,) -^-+•l-•l•+•f•^-^+-^-+-^•^-•f-f+++++-^++-^-^-f-l-+-f+•^-^••^+-^•l-++-^•^+-^-f•f-^ Process from Point/Station 6008,000 to Point/Station 5000,200 **** PIPEFLOW TRAVEL TIME (User specified size) **** Page 28 ecr3u Upstream point/station elevation = 75.000(Ft.) Downstream point/station elevation = 47,720(Ft.) Pipe length = 76,80(Ft,) Slope = 0.3552 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 2,658(CFS) Given pipe size = 18,00(in.) calculated individual pipe flow = 2,658(CFS) Normal flow depth in pipe = 2,53(in.) Flow top width inside pipe = 12,51(in.) critical Depth = 7,41(ln,) Pipe flow velocity = 17,59(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 6,75 min. +-^+-^+-^-^^-+++-^^--^4••f-^•f-^-^+•f+-l--^-^•^•f•^+-^-•^+-f++-l-+-f+-^•^-^-^-^++ Process from Point/Station 5000,200 to Point/Station 5000,200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: in Main Stream number: 2 Stream flow area = l,330(Ac.) Runoff from this stream = 2.658(CFS) Time of concentration = 6.75 min. Rainfall intensity = 5.647(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO. (CFS) (min) (In/Hr) 1 117,017 15,91 3,247 2 2,658 6.75 5,647 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 117,017) + 0.575 * 1.000 * 2,658) + = 118,545 1,000 * 0,424 * 117,017) + 1,000 * 1,000 * 2,658) + = 52.265 Total of 2 main streams to confluence: Flow rates before confluence point: 117.017 2.658 Maximum flow rates at confluence using above data: 118.545 52.265 Area of streams before confluence: 64,130 1,330 Results of confluence: Total flow rate = 118,545(CFS) Time of concentration = 15,912 min. Effective stream area after confluence = 65.460(Ac,) -l--^-^-^-^-(--l-+-^-^--^++-l--^-+-(--^-^•f-^-l--^•f•(-+++-l-+-^+-^-^-^^--^-^•f-l--^-(-+ Process from Point/Station 5000,200 to Point/Station 5000.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46,250(Ft,) Downstream point/station elevation = 45,360(Ft,) Pipe length = 128.90(Ft,) Slope = 0,0069 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 118.545(CFS) Page 29 • ecr3u Given pipe size = 48,00(in.) calculated individual pipe flow = 118.545(CFS) Normal flow depth in pipe = 39.05(in,) Flow top width inside pipe = 37,39(ln.) critical Depth = 39,34(ln,) Pipe flow velocity = 10,83(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 16.11 min. Process from Point/Station 5000,100 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5000,100 Along Main stream number: 1 in normal stream number 1 Stream flow area = 65,460(Ac,) Runoff from this stream = 118,545(CFS) Time of concentration = 16,11 min. Rainfall intensity = 3,221(ln/Hr) Process from Point/Station 3009,000 to Point/Station **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group c = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) impervious value, Ai = 0,650 Sub-Area c value = 0.710 Initial subarea total flow distance Highest elevation = 78.400(Ft.) Lowest elevation = Elevation difference 5003,000 = 110.000(Ft.) 74,800(Ft.) 3.600(Ft.) Slope = 3,273 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90,00 (Ft) for the top area slope value of 3,27 %, in a development type of 24.0 DU/A or Less In Accordance with Figure 3-3 initial Area Time of concentration = 4,49 minutes TC = [1.8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 ^ TC = [1,8*(1,1-0,7100)*( 90,000A.5)/( 3,273A(l/3)]= 4.49 The initial area total distance of 110.00 (Ft,) entered leaves a remaining distance of 20,00 (Ft,) . „ . using Figure 3-4, the travel time for this distance is 0,29 minutes for a distance of 20,00 (Ft,) and a slope of 3,27 % with an elevation difference of 0,65(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 0,293 Minutes Tt=[(11.9*0.0038A3)/( 0.65)3A.385= 0,29 . Total initial area Ti = 4,49 minutes from Figure 3-3 formula plus 0,29 minutes from the Figure 3-4 formula = 4,78 minutes Calculated TC of 4.778 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (i) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,710 subarea runoff = 0.730(CFS) Total initial stream area = 0.150(Ac,) Page 30 ecr3u +^••f+-l--(-•f+-l-^--f-^-^-^•f-^•f-(-++++-^-^•f-^+-^-f++•f-l-^•-^+++++•t-+•(•-^^ Process from Point/Station 5003,000 to Point/Station 5000,300 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 74.800(Ft,) End of street segment elevation = 53.800(Ft,) Length of street segment = 690,000(Ft,) Height of curb above gutter flowline = 6.0(ln,) Width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = l,500(in,) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 2,331(CFS) Depth of flow = 0.211(Ft.), Average velocity = 2.869(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.788(Ft.) Flow velocity = 2,87(Ft/s) Travel time = 4.01 min. TC = 8,79 min. Adding area flow to street Rainfall intensity (I) = 4,762(ln/Hr) for a 100,0 year storm User specified 'C value of 0,670 given for subarea Rainfall intensity = 4,762(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,675 CA = 0,797 subarea runoff = 3,064(CFS) for l,030(Ac.) Total runoff = 3,794(CFS) Total area = l,180(Ac,) Street flow at end of street = 3,794(CFS) Half street flow at end of street = 1,897(CFS) Depth of flow = 0,240(Ft,), Average velocity = 3,194(Ft/s) Flow width (from curb towards crown)= 7,229(Ft,) -f-i-++++-f+++++++-f+-i--f-f+-f-f+-f-f-)-++-f-f+-f++++-f-f+++++++++ Process from Point/Station 5003,000 to Point/Station 5000,300 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 4,762(ln/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) impervious value, Ai = 0,000 sub-Area C value = 0,350 Time of concentration = 8.79 min. Rainfall intensity = 4,762(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,556 CA = 1,035 subarea runoff = 1.133(CFS) for 0,680(Ac,) Total runoff = 4,927(CFS) Total area = l,860(Ac) -^•^^--^-^+•^--^•f+++•^++•^-^+++-^++++-^++•f-^-^-^++-^•f++-^++-^+•f•f-^-^ Process from Point/station 5000,300 to Point/Station 5000,100 Page 31 ecr3u **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46,490(Ft.) Downstream point/station elevation = 46,430(Ft,) Pipe length = 3.17(Ft,) Slope = 0.0189 Manninq's N = 0,013 No. of pipes = 1 Required pipe flow = 4,927(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 4.927(CFS) Normal flow depth in pipe = 7,24(In.) Flow top width inside pipe = 17.65(in.) critical Depth = 10.25(in.) Pipe flow velocity = 7.40(Ft/s) Travel time through pipe = 0,01 min. Time of concentration (TC) = 8,79 min. .f++-f-f-H-l-+++++-f+++++-f-f++-H-f++++-f+++-f++-t--H-f-f+++++-f++ Process from Point/Station 5000,100 to Point/Station 5000,100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.860(Ac,) Runoff from this stream = 4.927(CFS) Time of concentration = 8,79 min. Rainfall intensity = 4,760(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO, (CFS) (min) (in/Hr) 1 118,545 16,11 3.221 2 4.927 8,79 4,760 Qmax(l) = Qmax(2) = 1.000 * 1.000 * 118.545) + 0,677 * 1.000 * 4,927) -i- = 121,879 1,000 * 0,546 * 118.545) + 1.000 * 1,000 * 4.927) + = 69.627 Total of 2 streams to confluence: Flow rates before confluence point: 118.545 4.927 Maximum flow rates at confluence using above data: 121,879 69.627 Area of streams before confluence: 65,460 1,860 Results of confluence: Total flow rate = 121,879(CFS) Time of concentration = l6,lll min. Effective stream area after confluence = 67.320(Ac) Process from Point/station 5000.100 to Point/Station 6000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 45,360(Ft.) Downstream point/station elevation = 43,720(Ft.) Pipe length = 234.39(Ft,) Slope = 0,0070 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 121,879(CFS) Given pipe size = 48,00(in,) NOTE: Normal flow is pressure flow in user selected pipe size, page 32 ecr3u The approximate hydraulic grade line above the pipe invert 2,238(Ft,) at the headworks or inlet of the pipe(s) Pipe friction loss = 1.687(Ft,) Minor friction loss = 2,191(Ft,) K-factor = 1.50 Pipe flow velocity = 9,70(Ft/s) Travel time through pipe = 0,40 min. Time of concentration (TC) = 16.51 min. 1 s Process from Point/Station 6000.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 6000,000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 67,320(Ac,) Runoff from this stream = 121.879(CFS) Time of concentration = 16,51 min. Rainfall intensity = 3,170(in/Hr) Process from Point/Station 5002,000 to Point/Station **** INITIAL AREA EVALUATION **** 6003,000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL (43.0 DU/A or Less ) Impervious value, Ai = 0,800 Sub-Area C value = 0,790 Initial subarea total flow distance = Highest elevation = 58,400(Ft,) Lowest elevation = 56,000(Ft,) Elevation difference = 2,400(Ft.) Slope = 2.182 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 2.18 %, in a development type of 43,0 DU/A or Less In Accordance with Figure 3-3 initial Area Time of Concentration = 3,73 minutes 3 110,000(Ft,) 3,73 0,53 minutes TC = [l,8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l.l-0,7900)*( 75.000A.5)/( 2,182A(l/3)3= The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 35.00 (Ft.) using Figure 3-4, the travel time for this distance is for a distance of 35.00 (Ft.) and a slope of 2,18 % . , , with an elevation difference of 0.76(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0,526 Minutes Tt=[(11.9*0,0066A3)/( 0,76)3A,385= 0.53 Total initial area Ti = 3.73 minutes from Figure 3-3 formula plus 0,53 minutes from the Figure 3-4 formula = 4,25 minutes calculated TC of 4,252 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (l) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 1.191(CFS) Total initial stream area = 0,220(Ac,) Page 33 ecr3u Process from Point/station 6003,000 to Point/Station 6004,000 **** STREET FLOW TRAVEL TIME -f SUBAREA FLOW ADDITION **** Top of Street segment elevation = 56,000(Ft,) End of street segment elevation = 53.400(Ft,) Length of street segment = 322.000(Ft,) Height of curb above gutter flowline = 6,0(ln,) Width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft,) Gutter hike from flowline = l,500(ln,) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.149(CFS) Depth of flow = 0.246(Ft.), Average velocity = l,681(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7,536(Ft,) Flow velocity = 1,68(Ft/s) Travel time = 3,19 min. TC = 7,44 min. Adding area flow to street Rainfall intensity (I) = 5,299(ln/Hr) for a 100,0 year storm User specified 'C value of 0,760 given for subarea Rainfall intensity = 5,299(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.769 CA = 0,561 Subarea runoff = 1.785(CFS) for 0,510(Ac,) Total runoff = 2.975(CFS) Total area = 0.730(Ac) Street flow at end of street = 2,975(CFS) Half street flow at end of street = 1.488(CFS) Depth of flow = 0.268(Ft,), Average velocity = 1.813(Ft/s) Flow width (from curb towards crown)= 8.657(Ft,) Process from Point/Station 6004.000 to Point/Station 6000,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 44,140(Ft.) Downstream point/station elevation = 43,890(Ft,) Pipe length = 49,83(Ft.) Slope = 0,0050 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 2,975(CFS) Given pipe size = 18,00(ln,) Calculated individual pipe flow = 2.975(CFS) Normal flow depth in pipe = 7.92(In,) Flow top width inside pipe = 17,87(In,) Critical Depth = 7.86(In,) Pipe flow velocity = 3,98(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 7.65 min. +++++++++++++4-++++^-+•f+-l--^•^-^+•^+-l-+•f++++•^•-^•f-^-^+-^+-^-f++ Process from Point/Station 6000.000 to Point/Station 6000,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,730(Ac.) Page 34 ecr3u Runoff from this stream = 2.975(CFS) Time of concentration = 7,65 min. Rainfall intensity = 5,206(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO, (CFS) (min) (in/Hr) 121,879 16,51 3,170 2,975 7,65 5,206 Qmax(l) = Qmax(2) = 1.000 * 1.000 * 121,879) -f 0.609 * 1.000 * 2.975) + = 123.691 1.000 * 0.463 * 121.879) -f 1.000 * 1,000 * 2,975) + = 59,459 Total of 2 streams to confluence: Flow rates before confluence point: 121.879 2.975 Maximum flow rates at confluence using above data: 123.691 59,459 Area of streams before confluence: 67.320 0,730 Results of confluence: Total flow rate = 123,691(CFS) Time of concentration = 16.513 min. Effective stream area after confluence = 68.050(Ac.) •f•f•^--f-^-^•^-^-^•f+-(--^-^-^+•^•l--^-^+-^+•f-^+•(--f+++-^-f+•l--^-f-^-++-^-^-^•^ Process from Point/Station 6000,000 to Point/station 6000,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43,390(Ft,) Downstream point/station elevation = 42,550(Ft.) Pipe length = 169,08(Ft,) Slope = 0,0050 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 123,691(CFS) Given pipe size = 48,00(ln,) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2.670(Ft,) at the headworks or inlet of the pipe(s) Pipe friction loss = l,253(Ft,) Minor friction loss = 2.257(Ft,) K-factor = 1,50 Pipe flow velocity = 9,84(Ft/s) Travel time through pipe = 0,29 min. Time of concentration (TC) = 16,80 min, +++•^+-^+^--f-f-^-^•f+-^-^+•^4••^-•f+++•f+-^^-•f-^+-^-^+•f-f+-^•l••f+•^+^-+ Process from Point/Station 6000.100 to Point/Station 6000.100 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 68.050(Ac) Runoff from this stream = 123.691(CFS) Time of concentration = 16.80 min. Rainfall intensity = 3,135(ln/Hr) Program is now starting with Main Stream No. 2 Page 35 ecr3u Process from Point/Station 6015,000 to Point/Station **** INITIAL AREA EVALUATION **** 6016,000 3 = 180.000(Ft,) 1,556 % Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0,350 Initial subarea total flow distance Highest elevation = 118,000(Ft,) Lowest elevation = 115,200(Ft,) Elevation difference = 2,800(Ft,) Slope = INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 1,56 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 initial Area Time of Concentration = 10,73 minutes TC = [1.8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0.3500)*( 85.000A,5)/( 1.560A(l/3)3= 10.73 The initial area total distance of 180,00 (Ft,) entered leaves a remaining distance of 95,00 (Ft,) using Figure 3-4, the travel time for this distance is 1,29 minutes for a distance of 95,00 (Ft.) and a slope of 1,56 % with an elevation difference of 1,48(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 1,291 Minutes Tt=[(11.9*0,0180A3)/( 1.48)3^.385= 1.29 Total initial area Ti = 10,73 minutes from Figure 3-3 formula plus 1,29 minutes from the Figure 3-4 formula = 12,02 minutes Rainfall intensity (l) = 3,890(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,653(CFS) Total initial stream area = 0,480(Ac,) Process from point/Station 6016,000 to Point/Station 6017.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 102,000(Ft,) Downstream point/station elevation = 76.380(Ft,) Pipe length = 52,47(Ft.) Slope = 0,4883 Manning's N = 0.013 NO. of pipes = 1 Required pipe flow = 0.653(CFS) Given pipe size = 18,00(ln,) calculated individual pipe flow = 0,653(CFS) Normal flow depth in pipe = 1.20(ln,) Flow top width inside pipe = 8.99(in,) Critical Depth = 3,60(in,) Pipe flow velocity = 12,88(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 12,09 min. Process from Point/Station 6017,000 to Point/Station **** SUBAREA FLOW ADDITION **** 6017,000 Rainfall intensity (I) = 3,876(ln/Hr) for a Page 36 100,0 year storm ecr3u Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) impervious value, Ai = 0,000 sub-Area C value = 0,350 Time of concentration = 12,09 mm. Rainfall intensity = 3,876(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.312 subarea runoff = 0,554(CFS) for 0,410(AC,) Total runoff = 1,207(CFS) Total area = 0,890(Ac) Process from Point/Station 6017,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 6014,000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 46.55(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(in,) Calculated individual pipe flow = 1,207(CFS) Normal flow depth in pipe = 1,62(in,) Flow top width inside pipe = 10,30(ln.) Critical Depth = 4,92(in.) Pipe flow velocity = 15,34(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12,14 min. 76,050(Ft,) 54.000(Ft.) 0,4737 Manning's N = 0,013 1,207(CFS) Process from Point/Station 6014.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 6014,000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0,890(Ac) Runoff from this stream = 1,207(CFS) Time of concentration = 12,14 min. Rainfall intensity = 3,865(in/Hr) process from Point/Station 6013,000 to Point/Station **** INITIAL AREA EVALUATION **** 6012,000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Initial subarea total flow distance = Highest elevation = 87,000(Ft,) Lowest elevation = 64,400(Ft.) Elevation difference = 22,600(Ft,) Slope = 18,833 % Top of initial Area slope adjusted by user to 18,800 % Bottom of initial Area Slope adjusted by user to 18,800 Page 37 3 120,000(Ft.) ecr3u INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 18.80 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of Concentration = 5,08 minutes TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,3500)*( 100,000A.5)/( 18,800A(1/3)3= 5.08 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 20,00 (Ft,) using Figure 3-4, the travel time for this distance is 0,15 minutes for a distance of 20,00 (Ft,) and a slope of 18.80 % with an elevation difference of 3.76(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 0.149 Minutes Tt=[(11.9*0,0038A3)/( 3,76)3A,385= 0.15 Total initial area Ti = 5,08 minutes from Figure 3-3 formula plus 0,15 minutes from the Figure 3-4 formula = 5,23 minutes Rainfall intensity (I) = 6,657(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,350(CFS) Total initial stream area = 0,150(Ac) +++++-^+++-^+-^-f-^•^+-^•^--^•f-t•-^-f+++•f++•^-f+-(--f-^-f-^+•f+++-^+++-l-+ Process from Point/Station 6012,000 to Point/Station 6014,000 **** IMPROVED CHANNEL TRAVEL TIME **** 0.766(CFS) 3.579(Ft/s) Upstream point elevation = 64,400(Ft,) Downstream point elevation = 61.100(Ft.) Channel length thru subarea = 170,000(Ft,) Channel base width = 0,000(Ft,) Slope or 'Z' of left channel bank = 4,000 Slope or 'Z' of right channel bank = 1,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' =0.015 Maximum depth of channel = l,000(Ft,) Flow(q) thru subarea = 0,766(CFS) Depth of flow = 0.293(Ft,), Average velocity = Channel flow top width = 1.463(Ft,) Flow velocity = 3.58(Ft/s) Travel time = 0,79 min. Time of concentration = 6.02 min. Critical depth = 0,357(Ft.) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Rainfall intensity = 6,079(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.185 Subarea runoff = 0.778(CFS) for 0.380(Ac) Total runoff = 1.128(CFS) Total area = 0,530(Ac,) Depth of flow = 0,338(Ft,), Average velocity = 3,943(Ft/s) Critical depth = 0,418(Ft,) .079(ln/Hr) for a 0.000 0.000 0.000 1,000 3 100,0 year storm Page 38 ecr3u Process from Point/Station 6014,000 to Point/Station 6014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,530(Ac) Runoff from this stream = 1,128(CFS) Time of concentration = 6.02 min. Rainfall intensity = 6,079(ln/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (mi n) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 1,207 1,128 12.14 6.02 1.000 0.636 000 000 1,000 * 1,000 * 0.496 * 1.000 * 1.207) 1.128) 1,207) 1,128) 3.865 6.079 + + = + •f = 1,924 1.726 Total of 2 streams to confluence: Flow rates before confluence point: 1.207 1.128 Maximum flow rates at confluence using above data: 1.924 1,726 Area of streams before confluence: 0,890 0.530 Results of confluence: Total flow rate = 1,924(CFS) Time of concentration = 12.142 min. Effective stream area after confluence = l,420(Ac) -f-fH-+H-++-f+-f++-h+-t--f+-f++++++-f++++++-f-f-f+-f-f-f++-f-f-f+-f+++++ Process from Point/Station 6014,000 to Point/Station 6018,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 53,670(Ft,) Downstream point/station elevation = 43,040(Ft.) Pipe length = 20.08(Ft.) Slope = 0.5294 Manning's N = 0.013 NO, of pipes = 1 Required pipe flow = 1,924(CFS) Given pipe size = 18.00(in,) calculated individual pipe flow = 1,924(CFS) Normal flow depth in pipe = 1,97(In,) Flow top width inside pipe = 11,23(in,) critical Depth = 6.27(ln,) Pipe flow velocity = 18.35(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 12,16 min. +++++-h-H+-f-f-f-f-f-+-f-H+++++-f++-l-+++++-l--f-f-f+-f-f-f+-K-f-l--f4--f4-++-f+ Process from Point/Station 6018,000 to Point/Station 6018.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = l,420(Ac,) Runoff from this stream = 1,924(CFS) Time of concentration = 12.16 min. Page 39 Rainfall intensity = ecr3u 3,862(ln/Hr) Process from Point/Station 6011,000 to Point/Station **** INITIAL AREA EVALUATION **** 6019.000 3 = 110,000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent open Space ) impervious value, Ai = 0,000 Sub-Area C value = 0.350 Initial subarea total flow distance Highest elevation = 66,000(Ft,) Lowest elevation = 52,850(Ft,) Elevation difference = 13,150(Ft,) Slope = 11,955 % Top of Initial Area Slope adjusted by User to 12.000 % Bottom of Initial Area Slope adjusted by user to 12,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 12.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 initial Area Time of concentration = 5,90 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.3500)*( 100,000A,5)/( 12.OOOA(l/3)3= 5,90 The initial area total distance of 110,00 (Ft.) entered leaves a remaining distance of 10,00 (Ft.) using Figure 3-4, the travel time for this distance is 0,10 minutes for a distance of 10,00 (Ft,) and a slope of 12,00 % with an elevation difference of 1.20(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0,104 Minutes Tt=[(ll,9*0,0019A3)/( 1,20)3A,385= 0,10 Total initial area Ti = 5.90 minutes from Figure 3-3 formula plus 0,10 minutes from the Figure 3-4 formula = 6.00 minutes Rainfall intensity (I) = 6,090(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0,171(CFS) Total initial stream area = 0,080(Ac,) Process from Point/Station 6019,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 6018,000 .) Upstream point elevation = 52,850(Ft,) Downstream point elevation = 52,000(Ft.) Channel length thru subarea = 170.000(Ft. Channel base width = 0.000(Ft.) Slope or 'z' of left channel bank = 4,000 Slope or 'Z' of right channel bank = 1,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = l,000(Ft,) Flow(q) thru subarea = 0,554(CFS) Depth of flow = 0,334(Ft,), Average velocity = Channel flow top width = l,671(Ft.) Flow velocity = l,99(Ft/s) Travel time = 1.43 min. Page 40 0,554(CFS) l,985(Ft/s) 100,0 year storm A = D = ecr3u Time of concentration = 7.43 min. Critical depth = 0,314(Ft.) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0,350 Rainfall intensity = 5.307(in/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,164 subarea runoff = 0,702(CFS) for 0,390(Ac) Total runoff = 0,873(CFS) Total area = 0,470(Ac) Depth of flow = 0,396(Ft,), Average velocity = 2.224(Ft/s) Critical depth = 0,377(Ft,) 5,307(ln/Hr) for a 0,000 0,000 0,000 1,000 3 Process from Point/Station 6018,000 to Point/Station 6018,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,470(Ac) Runoff from this stream = 0,873(CFS) Time of concentration = 7,43 min. Rainfall intensity = 5,307(in/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (mi n) Rainfall intensity (in/Hr) Qmax(l) = Qmax(2) = 1,924 0,873 12,16 7,43 1,000 * 0,728 * 1,000 * 1,000 * 1,000 * 1,000 * 0,611 * 1.000 * 3,862 5,307 1.924) + 0.873) + 1,924) + 0,873) + 2,560 2.048 Total of 2 streams to confluence: Flow rates before confluence point: 1,924 0,873 Maximum flow rates at confluence using above data: 2,560 2,048 Area of streams before confluence: 1,420 0,470 Results of confluence: Total flow rate = 2,560(CFS) Time of concentration = 12,160 min. Effective stream area after confluence = l,890(Ac,) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 6018.000 to Point/Station 6000.100 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 42,710(Ft.) Page 41 ecr3u Downstream point/station elevation = 42,550(Ft,) Pipe length = 32,17(Ft.) Slope = 0,0050 Manning's N = 0.015 NO, of pipes = 1 Required pipe flow = 2.560(CFS) Given pipe size = 18,00(in.) Calculated individual pipe flow = 2.560(CFS) Normal flow depth in pipe = 7,90(in,) Flow top width inside pipe = 17.86(in.) critical Depth = 7,27(in,) Pipe flow velocity = 3,43(Ft/s) Travel time through pipe = 0,16 min. Time of concentration (TC) = 12,32 min. Process from Point/Station 6000,100 to Point/Station 6000.100 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 2 Stream flow area = 1,890(Ac) Runoff from this stream = 2.560(CFS) Time of concentration = 12,32 min. Rainfall intensity = 3,830(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO, (CFS) (min) (in/Hr) 1 123.691 16,80 3,135 2.560 12.32 3,830 Qmax(l) = Qmax(2) = 1.000 * 1.000 * 123.691) + 0.819 * 1.000 * 2.560) + = 125,786 1,000 * 0,733 * 123,691) + 1,000 * 1,000 * 2,560) + = 93,241 Total of 2 main streams to confluence: Flow rates before confluence point: 123.691 2,560 Maximum flow rates at confluence using above data: 125,786 93,241 Area of streams before confluence: 68,050 1,890 Results of confluence: Total flow rate = 125.786(CFS) Time of concentration = 16,800 min. Effective stream area after confluence = 69,940(Ac,) +-^+-^-^-^+-^•f•^+++-^-^-•f•^-^-^+-f++•^-^-^+•f•f++-l-++^--^-+-f•-f++++++++ Process from Point/Station 6000.100 to Point/Station 7000,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.220(Ft,) Downstream point/station elevation = 40,950(Ft.) Pipe length = 251,88(Ft,) Slope = 0.0050 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 125.786(CFS) Given pipe size = 48,00(ln,) NOTE: Normal flow is pressure flow in user selected pipe size. Page 42 ecr3u The approximate hydraulic grade line above the pipe invert is 2,995(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = l,931(Ft.) Minor friction loss = 2.334(Ft.) K-factor = 1.50 Pipe flow velocity = 10,01(Ft/s) Travel time through pipe = 0,42 min. Time of concentration (TC) = 17,22 min. -^^--^-^+-^+-^-^--(--l-•^-^+-^-(-•f-^++•^-^•f-^-^-+-l-+-f-^-^+++-^+-^+-^-^+++-f•^-^ Process from Point/Station 7000.000 to Point/Station 7003,000 **** PIPEFLOW TRAVEL TIME (user Specified size) **** Upstream point/station elevation = 40,950(Ft.) Downstream point/station elevation = 40.490(Ft,) Pipe length = 94,47(Ft,) Slope = 0,0049 Manning's N = 0.013 NO. of pipes = 2 Required pipe flow = 125.786(CFS) Given pipe size = 42,00(in,) calculated individual pipe flow = 62,893(CFS) Normal flow depth in pipe = 31,03(in,) Flow top width inside pipe = 36.90(ln,) Critical Depth = 29,83(in.) Pipe flow velocity = 8.25(Ft/s) Travel time through pipe = 0,19 min. Time of concentration (TC) = 17,41 min, +-f-f--f4-++-4--f+-f-f-f-f++++-H+++H--H++-l--f+-f+++++++++-f-f+-f-f+-|-+^ Process from Point/Station 7003,000 to Point/Station 7003,100 **** PIPEFLOW TRAVEL TIME (User Specified size) **** upstream point/station elevation = 40,490(Ft,) Downstream point/station elevation = 40.290(Ft.) Pipe length = 36,75(Ft,) Slope = 0.0054 Manning's N = 0,013 No, of pipes = 2 Required pipe flow = 125,786(CFS) Given pipe size = 42,00(in,) Calculated individual pipe flow = 62,893(CFS) Normal flow depth in pipe = 29.67(In,) Flow top width inside pipe = 38.25(in,) Critical Depth = 29.83(in,) Pipe flow velocity = 8,66(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 17.48 min, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 7003,100 to Point/Station 7003,100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 69,940(Ac) Runoff from this stream = 125,786(CFS) Time of concentration = 17.48 min. Rainfall intensity = 3,056(in/Hr) +-^-^••f+++++•^-l•-f-^+-^-++•f+-^-^-+++•t--^+-^+•f++-l-+++++-^•f-^4••f+++^ Process from Point/Station 7004,000 to Point/Station 7005,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Page 43 ecr3u Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (43,0 DU/A or Less ) Impervious value, Ai = 0.800 Sub-Area C value = 0.790 Initial subarea total flow distance = 138.000(Ft,) Highest elevation = 53,800(Ft.) Lowest elevation = 51,700(Ft,) Elevation difference = 2,100(Ft.) Slope = 1,522 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 1,52 %, in a development type of 43,0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4,20 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.7900)*( 75,OOOA,5)/( 1,522A(l/3)3= 4.20 The initial area total distance of 138.00 (Ft,) entered leaves a remaining distance of 63,00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.95 minutes for a distance of 63,00 (Ft,) and a slope of 1,52 % with an elevation difference of 0.96(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0,950 Minutes Tt=[(ll,9*0.0119A3)/( 0.96)3A,385= 0,95 Total initial area Ti = 4,20 minutes from Figure 3-3 formula plus 0.95 minutes from the Figure 3-4 formula = 5.15 minutes Rainfall intensity (l) = 6.720(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 subarea runoff = 1,009(CFS) Total initial stream area = 0,190(Ac) +-f-f-f-f-f-f-f+-l--f+++++4-++++++H--H-l-++++-f-l--f+++-f+++-f++++++ Process from Point/Station 7005,000 to Point/Station 7006.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 51,700(Ft,) End of street segment elevation = 48,200(Ft,) Length of street segment = 353,000(Ft,) Height of curb above gutter flowline = 6,0(in,) width of half street (curb to crown) = 44.000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(in.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1,908(CFS) Depth of flow = 0,232(Ft.), Average velocity = 1,772(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6,836(Ft.) Flow velocity = 1.77(Ft/s) Travel time = 3,32 min, TC = 8,47 min. Adding area flow to street Rainfall intensity (i) = 4.875(in/Hr) for a 100.0 year storm user specified 'c' value of 0.760 given for subarea Rainfall intensity = 4.875(ln/Hr) for a 100,0 year storm Page 44 ecr3u Effective runoff coefficient used for total area (Q=KCIA) is C = 0,768 CA = 0,545 subarea runoff = 1.650(CFS) for 0,520(Ac,) Total runoff = 2.659(CFS) Total area = 0,710(Ac,) Street flow at end of street = 2,659(CFS) Half street flow at end of street = 1,329(CFS) Depth of flow = 0,253(Ft,), Average velocity = 1.911(Ft/s) Flow width (from curb towards crown)= 7.902(Ft,) +++-^++•^-f-l-++-^+++++++++•(•+-f•^+-f+-l-++-^-^-f•(-++-f•t-+++-f+-^-+ Process from Point/Station 7006,000 to Point/Station 7006.300 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 43.250(Ft.) Downstream point/station elevation = 43,120(Ft,) Pipe length = 13.55(Ft,) Slope = 0,0096 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 2,659(CFs5 Given pipe size = 18.00(in,) Calculated individual pipe flow = 2.659(CFS) Normal flow depth in pipe = 6,24(in.) Flow top width inside pipe = 17.13(in.) critical Depth = 7,41(ln,) Pipe flow velocity = 4,88(Ft/s) Travel time through pipe = 0,05 min. Time of concentration (TC) = 8,52 min, •f++-f+-f-f-H-|-+-H+-f+-f4-+++-f+++++-f++-f+-4-++++-f-f+-f-(-+++-f-f++^ Process from Point/Station 7006,300 to Point/Station 7003,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 42,790(Ft.) Downstream point/station elevation = 42.160(Ft,) Pipe length = 126,63(Ft,) Slope = 0,0050 Manning's N = 0.013 NO, of pipes = 1 Required pipe flow = 2,659(CFS) Given pipe size = 18.00(ln.) calculated individual pipe flow = 2.659(CFS) Normal flow depth in pipe = 7,45(in.) Flow top width inside pipe = 17,73(in,) critical Depth = 7,41(in.) Pipe flow velocity = 3.85(Ft/s) Travel time through pipe = 0,55 min. Time of concentration (TC) = 9,07 min. Process from Point/Station 7003,100 to Point/station 7003,100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 stream flow area = 0.710(Ac) Runoff from this stream = 2.659(CFS) Time of concentration = 9,07 min. Rainfall intensity = 4.667(ln/Hr) Summary of stream data: stream Flow rate TC Rainfall intensity NO, (CFS) (min) (In/Hr) 1 125,786 17,48 3,056 2 2,659 9,07 4.667 Page 45 Qmax(l) = Qmax(2) = ecr3u 1.000 * 1.000 * 125.786) + 0.655 * 1,000 * 2.659) + = 127,527 1,000 * 0,519 * 125,786) + 1,000 * 1,000 * 2,659) + = 67,899 Total of 2 streams to confluence: Flow rates before confluence point: 125,786 2.659 Maximum flow rates at confluence using above data: 127.527 67,899 Area of streams before confluence: 69,940 0,710 Results of confluence: Total flow rate = 127,527(CFS) Time of concentration = 17.481 min. Effective stream area after confluence = 70,650(Ac) -^-^-^+-^++^--)--^•^-^-f++•^-^-^•f•f•f+-^-l--f•(-++•^++•f•f•f4•+•^-f•^-++-l-++^ Process from Point/Station 7003.100 to Point/Station 7007,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 40.470(Ft.) Downstream point/station elevation = 39,820(Ft,) Pipe length = 84.94(Ft.) Slope = 0.0077 Manninq's N = 0,013 NO, of pipes = 2 Required pipe flow = 127.527(CFS) Given pipe size = 42,00(ln,) Calculated individual pipe flow = 63,763(CFS) Normal flow depth in pipe = 26,48(in,) Flow top width inside pipe = 40,54(In,) critical Depth = 30,02(in,) Pipe flow velocity = 9,97(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 17,62 min. End of computations, total study area = 70,650 (Ac) Page 46 San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 01/22/14 100 YEAR HYDROLOGY FOR ULTIMATE CONDITION BASIN ECRP4 JN 101307 REVISED BY HL ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used -^-^-^-^-^+-^+•^-^-^-^-^-^•f++•f + -^-^-^-^-^-^-l--^-^-^-^-^-^-^-l-+-l--^-^+-^+-^-^-l--^-^-^-^+ Process from Point/Station 8000.000 to Point/Station 8001.000 **** INITIAL AREA EVALUATION **** ] = 204.G00(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (Limited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance Highest elevation = 81.000(Ft.) Lowest elevation = 72.800 (Ft.) Elevation difference = 8.200(Ft.) Slope = 4.020 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.02 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.68 minutes Page 1 of 20 TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope^(l/3)] TC = [1.8*(1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68 The initial area total distance of 204.00 (Ft.) entered leaves a remaining distance of 114.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.03 minutes for a distance of 114.00 (Ft.) and a slope of 4.02 % with an elevation difference of 4.58(Ft.) from the end of the top area Tt = [11. 9*length (Mi) *3) / (elevation change (Ft.))]. 385 *60 (min/hr) 1.032 Minutes Tt= [ (11.9*0.0216^3)/( 4.58)]^.385= 1.03 Total initial area Ti = 2.68 minutes from Figure 3-3 formula plus 1.03 minutes from the Figure 3-4 formula = 3.72 minutes Calculated TC of 3.717 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 2.853(CFS) Total initial stream area = 0.490(Ac.) -f-h-F-F-f-F-H-h-l--l--H-F-h-f-f-l--h-h-F-f + -f + -l--f-h-h-H-H-h-h-F-H-l--h-F-H-H-F-F-h-h-h-f-f + + -l- Process from Point/Station 8001.000 to Point/Station 8002.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 72.800(Ft.) End of street segment elevation = 63.670(Ft.) Length of street segment = 250.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.251(CFS) Depth of flow = 0.241(Ft.), Average velocity = 3.514(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.304 (Ft.) Flow velocity = 3.51(Ft/s) Travel tirae = 1.19 min. TC = 4.90 min. Adding area flow to street Calculated TC of 4.905 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm User specified 'C value of 0.860 given for subarea Rainfall intensity = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.855 CA = 0.829 Page 2 of 20 Subarea runoff = 2.828(CFS) for 0.480(Ac.) Total runoff = 5.681(CFS) Total area = 0.970(Ac.; Street flow at end of street = 5.681(CFS) Half street flow at end of street = 2.840(CFS) Depth of flow = 0.261(Ft.), Average velocity = 3.757(Ft/s) Flow width (frora curb towards crown)= 8.275(Ft.) -l--^-f--^-^-^+4•^-•^-^-^•^^-•^-^-^-^-^•-^-l-+^--^-^•^+•^-^-^-^--l-4•+++-^+-^-^+-^-^+4•-^^• + -^ Process from Point/Station 8002.000 to Point/Station 8002.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 59.240(Ft.) Downstreara point/station elevation = 58.980(Ft.) Pipe length = 5.26(Ft.) Slope = 0.04 94 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.681(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.681(CFS) Norraal flow depth in pipe = 6.05(In.) Flow top width inside pipe = 17.00(In.) Critical Depth = 11.04(In.) Pipe flow velocity = 10.90(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 4.91 min. -^-^+-l-^--^-f-^-^-^-^-^-^-l--^-^-l--^-^-l--^-^-l--^-^-^-^-l--l-+-^--^-^^-^--^-^-^-^-^++-^^--^-^-^+ Process frora Point/Station 8002.100 to Point/Station 8002.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 58.650(Ft.) Downstream point/station elevation = 56.470(Ft.) Pipe length = 51.50(Ft.) Slope = 0.0423 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.681(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.681(CFS) Normal flow depth in pipe = 6.30(In.) Flow top width inside pipe = 17.17(In.) Critical Depth = 11.04(In.) Pipe flow velocity = 10.31(Ft/s) Travel time through pipe = 0.08 min. Tirae of concentration (TC) = 5.00 rain. -l--^-l--l--^-l-+-^•+-^ + -^-^^--^4•4•-l--^+-^-+-^-^-^-^-^-^-^-^•^-^•f-^-^-^-^•^-^-^-^•f-^-^-f-^--l-+ Process frora Point/Station 8002.100 to Point/Station 8002.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Stream nuraber: 1 Stream flow area = 0.970(Ac.) Runoff frora this streara = 5.681(CFS) Time of concentration = 5.00 min. Rainfall intensity = 6.850(In/Hr) Page 3 of 20 Prograra is now starting with Main Stream No. 2 -l-•^-l••f^-4--^^--^^--l-•^-^++-^^•-^+ + ^-^--^-^-l--^-^-^-^-^ ++-^-l--^-^-^-^-^-^-^-l--^-^-^-l--^-^-^ Process frora Point/Station 8002.400 to Point/Station 8002.200 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 82.230(Ft.) Highest elevation = 63.670(Ft.) Lowest elevation = 61.500(Ft.) Elevation difference = 2.170(Ft.) Slope = 2.639 % Top of Initial Area Slope adjusted by User to 4.020 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.02 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.68 minutes TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68 Calculated TC of 2.685 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582 (CFS) Total initial stream area = 0.100(Ac.) -^-^•^-^-^-l-^-^-•^^--l•-l--^+-(--^-l--l--^-^^--^-^-^-^-^-^--^-^++^--^-^-^-+-^-^-^-^-l--^-^-^-^-l-•^ Process frora Point/Station 8002.200 to Point/Station 8002.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 56.730(Ft.) Downstreara point/station elevation = 56.470(Ft.) Pipe length = 5.25(Ft.) Slope = 0.0495 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.582(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.582(CFS) Normal flow depth in pipe = 1.96(In.) Flow top width inside pipe = 11.21(In.) Critical depth could not be calculated. Pipe flow velocity = 5.60(Ft/s) Travel tirae through pipe = 0.02 min. Time of concentration (TC) = 2.70 rain. Page 4 of 20 -^-l--^-^-^-^-^-^-^-^+-^-l--^-^-l--^-^-^-^ ++-^-^-^-^-^^--^-^-^-^-^-^-^^--^-^^--l--^-f•l-+•^-^+-^ Process from Point/Station 8002.200 to Point/Station 8002.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.100(Ac.) Runoff from this stream = 0.582(CFS) Tirae of concentration = 2.70 min. Rainfall intensity = 6.850(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 5.681 0 .582 Qmax(2) = 000 000 000 000 5.00 2 .70 000 000 0.541 * 1.000 * 6.850 6.850 5.681) + 0.582) -I- 5.681) + 0.582) + 6 .263 3 .653 Total of 2 main streams to confluence: Flow rates before confluence point: 5.681 0.582 Maximum flow rates at confluence using above data; 6.263 3.653 Area of streams before confluence: 0.970 0.100 Results of confluence: Total flow rate = 6.263(CFS) Tirae of concentration = 4.996 rain. Effective stream area after confluence 1.070(Ac.) -l--^-^-^ ++-l-4••^-^-^-^^--^-^-l--^-^-^-^-^-^-^-^-^-^-^-l-++-^+-^-^-^-^-^-^-^-^+-^-^-l--^-^-^ Process frora Point/Station 8002.300 to Point/Station 9000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 56.140 (Ft.) 44.090(Ft.) 0.0690 Manning's N 6.263(CFS) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 174.62(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.263(CFS) Normal flow depth in pipe = 5.83(In.) Flow top width inside pipe = 16.85(In.) Critical Depth = 11.60(In.) Pipe flow velocity = 12.63(Ft/s) 0.013 Page 5 of 20 Travel time through pipe = 0.23 rain. Tirae of concentration (TC) = 5.23 rain. -^-^++^-^-+^-+-^^--^-l-+•f-^-^-^-^-^-l--^•f+++-h+-^-i- ++-H-i-+++++++-i-++++++++ + Process from Point/Station 9000.000 to Point/Station 9001.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.760(Ft.) Downstreara point/station elevation = 43.000(Ft.) Pipe length = 152.15(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.263(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.263(CFS) Norraal flow depth in pipe = 12.68(In.) Flow top width inside pipe = 16.43(In.) Critical Depth = 11.60(In.) Pipe flow velocity = 4.71(Ft/s) Travel time through pipe = 0.54 rain. Time of concentration (TC) = 5.76 min. + ^--^-^-^-^-^-^+-^-^•^•^-^+-^-^-^-l-+-^-^-^-^-^-^-^-t--^•^•^-^-^ + -^+++•^-^ + + ++++-^-!--(-+ Process from Point/Station 9001.000 to Point/Station 9002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 42.680(Ft.) Downstream point/station elevation = 42.480(Ft.) Pipe length = 39.65(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.263(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.263(CFS) Normal flow depth in pipe = 12.63(In.) Flow top width inside pipe = 16.47(In.) Critical Depth = 11.60(In.) Pipe flow velocity = 4.73(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 5.90 rain. -^-^+-l--^-^-^ ++-^ + ++-^-^-^-^++++-^-^-^-^-^-f-f-^-^-^-^-^-^-l--^++^--^-^-^-^-^ + -^-^-^ + Process frora Point/Station 9001.000 to Point/Station 9002.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 1 Stream flow area = 1.070(Ac.) Runoff from this streara = 6.263(CFS) Time of concentration = 5.90 min. Rainfall intensity = 6.154(In/Hr) Program is now starting with Main Streara No. 2 Page 6 of 20 Process from Point/Station 9003.100 to Point/Station 9003.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Imper-vious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 67.000(Ft.) Highest elevation = 53.500(Ft.) Lowest elevation = 51.700(Ft.) Elevation difference = 1.800(Ft.) Slope = 2.687 % Top of Initial Area Slope adjusted by User to 4.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.20 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.65 rainutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8*(1.1-0.8500)*( 90.000^.5)/( 4.200^(1/3)]= 2.65 Calculated TC of 2.646 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.4 08(CFS) Total initial streara area = 0.070(Ac.) -^-^-l--^-^-^-^-^^--^ + -^-^-^-^-^-^^-+-^ + ^--^-l--^-^-^-^-^-^-^-^-^•^-^+-^-l•-^•f-l--^-^-^-^-^-^-^ + Process from Point/Station 9003.200 to Point/Station 9003.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 51.700(Ft.) End of street segraent elevation = 49.800(Ft.) Length of street segraent = 58.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 0.564(CFS) Depth of flow = 0.172(Ft.), Average velocity = 2.576(Ft/s) Page 7 of 20 streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.843(Ft.) Flow velocity = 2.58(Ft/s) Travel time = 0.38 min. TC = 3.02 min. Adding area flow to street Calculated TC of 3.021 minutes is less than 5 rainutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Irapervious value, Ai = 0.900 Sub-Area C Value = 0.850 Rainfall intensity = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.850 CA = 0.119 Subarea runoff = 0.408(CFS) for 0.070(Ac.) Total runoff = 0.815(CFS) Total area = 0.140(Ac.) Street flow at end of street = 0.815(CFS) Half street flow at end of street = 0.815 (CFS) Depth of flow = 0.190(Ft.), Average velocity = 2.748(Ft/s) Flow width (frora curb towards crown)= 4.74 7(Ft.) -H-H + + + +-H-h + H-+-H + H-+-f-h-I--1--t--I--h H--H-H-I--t--H H-+-I--I-+-H-^+ +-1--h Process frora Point/Station 9003.000 to Point/Station 9002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.500(Ft.) Downstream point/station elevation = 42.480(Ft.) Pipe length = 18.88(Ft.) Slope = 0.0011 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.815(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.815(CFS) Normal flow depth in pipe = 5.98(In.) Flow top width inside pipe = 16.96(In.) Critical Depth = 4.02(In.) Pipe flow velocity = 1.59(Ft/s) Travel time through pipe = 0.2 0 min. Time of concentration (TC) = 3.22 min. -^-^-^-^-^++-^-^-^-l--^-^++-^-^+-^-^-^-^-^-^-^-^-^-^-^-^-l--^•f-^•^-^-l--^-^+-^-(--l--^-^-^-^ Process frora Point/Station 9003.000 to Point/Station 9002.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Stream number: 2 Stream flow area = 0.140(Ac.) Runoff from this stream = 0.815(CFS) Time of concentration = 3.22 min. Page 8 of 20 Rainfall intensity = 6.850(In/Hr) Summary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.263 5.90 6.154 2 0.815 3.22 6.850 Qmax(1) Qmax(2] 1.000 * 1.000 * 6.263) + 0.898 * 1.000 * 0.815) -i- = 6.996 1.000 * 0.545 * 6.263) -i- 1.000 * 1.000 * 0.815) -I- = 4.230 Total of 2 raain strearas to confluence: Flow rates before confluence point: 6.263 0.815 Maxiraura flow rates at confluence using above data: 6.996 4.230 Area of streams before confluence: 1.070 0.140 Results of confluence: Total flow rate = 6.996(CFS) Time of concentration = 5.904 rain. Effective streara area after confluence = 1.210(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 9002.000 to Point/Station 9004.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 42.280(Ft.) Downstream point/station elevation = 41.610(Ft.) Pipe length = 133.22(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.996(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.996(CFS) Norraal flow depth in pipe = 13.85(In.) Flow top width inside pipe = 15.16(In.) Critical Depth = 12.28(In.) Pipe flow velocity = 4.79(Ft/s) Travel time through pipe = 0.4 6 rain. Time of concentration (TC) = 6.37 min. Process from Point/Station 9004.000 to Point/Station 8003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 41.280(Ft.) Page 9 of 20 Downstream point/station elevation = 40.690(Ft.) Pipe length = 117.44(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.996(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.996(CFS) Normal flow depth in pipe = 13.88(In.) Flow top width inside pipe = 15.13(In.) Critical Depth = 12.28(In.) Pipe flow velocity = 4.79(Ft/s) Travel tirae through pipe = 0.41 min. Time of concentration (TC) = 6.78 min. -^-^-^-^-^-t--^-l--^•f-^•^-^-^-^-^-l--l--^-^-^-^••^-^-^-^-^^-+-^-^-^-l--^-^-^-l--^-^-l--^-^-l--l--^-^ Process frora Point/Station 9004.000 to Point/Station 8003.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.210(Ac.) Runoff from this streara = 6.996(CFS) Time of concentration = 6.78 rain. Rainfall intensity = 5.631(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 8006.000 to Point/Station 8004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 109.000(Ft.) Highest elevation = 61.500(Ft.) Lowest elevation = 57.200(Ft.) Elevation difference = 4.300 (Ft.) Slope = 3.945 % Top of Initial Area Slope adjusted by User to 3.900 % Bottom of Initial Area Slope adjusted by User to 3.900 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 3.90 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.35 rainutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8700)* ( 80.000^.5)/( 3.900^(1/3)]= 2.35 The initial area total distance of 109.00 (Ft.) entered leaves a reraaining distance of 29.00 (Ft.) Page 10 of 20 Using Figure 3-4, the travel time for this distance is 0.36 minutes for a distance of 29.00 (Ft.) and a slope of 3.90 % with an elevation difference of 1.13(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) 0.364 Minutes Tt=[(11.9*0.0055^3)/( 1.13)]^.385= 0.36 Total initial area Ti = 2.35 minutes from Figure 3-3 formula plus 0.36 rainutes from the Figure 3-4 formula = 2.72 minutes Calculated TC of 2.716 minutes is less than 5 rainutes, resetting TC to 5.0 rainutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.954(CFS) Total initial streara area = 0.160(Ac.) Process frora Point/Station 8004.000 to Point/Station 8005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 57.200(Ft.) End of street segment elevation = 46.000(Ft.) Length of street segraent = 525.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.015 0 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpolnt of street = 3.974(CFS) Depth of flow = 0.307(Ft.), Average velocity = 3.315(Ft/s) Streetflow hydraulics at raidpolnt of street travel: Halfstreet flow width = 10.618(Ft.) Flow velocity = 3.31(Ft/s) Travel time = 2.64 min. TC = 5.36 rain. Adding area flow to street Rainfall intensity (I) = 6.553(In/Hr) for a 100.0 year storm User specified 'C value of 0.850 given for subarea Rainfall intensity = 6.553(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.853 CA = 1.057 Subarea runoff = 5.974(CFS) for 1.080(Ac.) Total runoff = 6.928(CFS) Total area = 1.240(Ac.) Street flow at end of street = 6.928(CFS) Half street flow at end of street = 6.928(CFS) Depth of flow = 0.360(Ft.), Average velocity = 3.792(Ft/s) Flow width (from curb towards crown)= 13.250(Ft.) Page 11 of 20 -l--^-^-l--^-l--l--^-^-^-^-^-^-l--^-^-^-^-^-^-^-^-^-^-^-^-^-(--^-^-l-+-l--^-^-^-^-^-f-^-l--l--^-^-^-^ Process from Point/Station 8004.000 to Point/Station 8005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in normal streara number 1 Stream flow area = 1.240(Ac.) Runoff from this streara = 6.928(CFS) Time of concentration = 5.36 rain. Rainfall intensity = 6.553(In/Hr) -^--^-^-^-^-^++-^-^-^-^-^-^-^-^-^-l--^-^-f-f-^-l--^-^-^-^+•^ + -^-^-^-^•f-^-^-^--^-l--^-l--^-^-^-^ Process from Point/Station 7001.000 to Point/Station 7002.000 **** INITIAL AREA EVALUATION **** 0 . 000 0 . 000 0 . 000 1. 000 Deciraal fraction soil group A Deciraal fraction soil group B Deciraal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type (Limited Industrial ) Impervious value, Ai = 0.90 0 Sub-Area C Value = 0.850 Initial subarea total flow distance Highest elevation = 51.300(Ft.) Lowest elevation = 50.500 (Ft.) Elevation difference = 0.800(Ft.) Slope = 0.400 % Top of Initial Area Slope adjusted by User to 2.000 ° INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) ] 200.000 (Ft.) for the top area slope value of Limited Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% TC = [1.8* (1.1-0.8500)* ( 70.000^.5)/( Calculated TC of resetting TC to 5 2.00 %, in a developraent type of 2.99 minutes slope'^ (1/3) ] 2.000^(1/3)]= 2.99 2.988 minutes is less than 5 minutes, 0 rainutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 2.329 (CFS) Total initial streara area = 0.400(Ac.) -^-^-^-(--^-^-^-^-^-^-^•f + -^•^+-^-^-^-^ + ^-•^-^-^-^-^-^-^-^-^-l--^+-^-^-^-^-^-^-^-^-^-^-^-^•f + Process from Point/Station 7002.000 to Point/Station 8005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 50.500(Ft.) End of street segment elevation = 46.370(Ft.) Length of street segraent = 400.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Page 12 of 20 width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.015 0 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.458(CFS) Depth of flow = 0.352(Ft.), Average velocity = 2.588(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.849(Ft.) Flow velocity = 2.59(Ft/s) Travel time = 2.58 min. TC = 5.56 rain. Adding area flow to street Rainfall intensity (I) = 6.394(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Rainfall intensity = 6.394(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.850 CA = 1.020 Subarea runoff = 4.193(CFS) for 0.800(Ac.) Total runoff = 6.522(CFS) Total area = 1.200(Ac.) Street flow at end of street = 6.522(CFS) Half street flow at end of street = 6.522(CFS) Depth of flow = 0.393(Ft.), Average velocity = 2.841(Ft/s) Flow width (from curb towards crown)= 14.916(Ft.) -l--^-^-^-^-^-^^-+-^+-^-^-^++-^-^-^-^-^-^-^-^-^^--^-^-^-l--f-^-^-^-^-^-^-^-^-^-^-^-^-^-l--^-^+ Process from Point/Station 7002.000 to Point/Station 8005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara nuraber 2 Streara flow area = 1.2 00(Ac.) Runoff from this stream = 6.522 (CFS) Time of concentration = 5.56 rain. Rainfall intensity = 6.394(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) Page 13 of 20 1 6.928 5.36 6.553 2 6.522 5.56 6.394 Qraax(1) = 1.000 * 1.000 * 6.928) + 1.000 * 0.963 * 6.522) -i- = 13.206 Qmax(2) 0.976 * 1.000 * 6.928) -i- 1.000 * 1.000 * 6.522) + = 13.282 Total of 2 streams to confluence: Flow rates before confluence point: 6.928 6.522 Maximum flow rates at confluence using above data: 13.206 13.282 Area of streams before confluence: 1.240 1.200 Results of confluence: Total flow rate = 13.282(CFS) Time of concentration = 5.564 min. Effective stream area after confluence = 2.440(Ac.) Process from Point/Station 8005.000 to Point/Station 8003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 41.140(Ft.) Downstream point/station elevation = 40.860(Ft.) Pipe length = 28.15(Ft.) Slope = 0.0099 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.282(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.282(CFS) Norraal flow depth in pipe = 13.24(In.) Flow top width inside pipe = 23.87(In.) Critical Depth = 15.73(In.) Pipe flow velocity = 7.47(Ft/s) Travel time through pipe = 0.06 rain. Tirae of concentration (TC) = 5.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8005.000 to Point/Station 8003.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara nuraber: 2 Streara flow area = 2.440(Ac.) Runoff frora this stream = 13.282(CFS) Time of concentration = 5.63 min. Rainfall intensity = 6.348(In/Hr) Summary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Page 14 of 20 1 6.996 6.78 5.631 2 13.282 5.63 6.348 Qmax(1) = 1.000 * 1.000 * 6.996) + Qmax(2] 0.887 * 1.000 * 13.282) + = 18.777 1.000 * 0.830 * 6.996) -i- 1.000 * 1.000 * 13.282) -i- = 19.091 Total of 2 main streams to confluence: Flow rates before confluence point: 6.996 13.282 Maximum flow rates at confluence using above data: 18.777 19.091 Area of streams before confluence: 1.210 2.440 Results of confluence: Total flow rate = 19.091(CFS) Time of concentration = 5.627 min. Effective streara area after confluence = 3.650(Ac. Process frora Point/Station 8003.000 to Point/Station 9005.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 40.360(Ft.) Downstream point/station elevation = 40.190(Ft.) Pipe length = 34.94(Ft.) Slope = 0.004 9 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.091(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 19.091(CFS) Normal flow depth in pipe = 16.05(In.) Flow top width inside pipe = 35.79(In.) Critical Depth = 16.79(In.) Pipe flow velocity = 6.26(Ft/s) Travel time through pipe = 0.09 rain. Time of concentration (TC) = 5.72 min. + ++-^+-^-^-^+-^-l--^-^-^4•-^-^-^•l--^-^-^-^ ++-^•^+++ +++++++++•^+•^++++++++++++ Process from Point/Station 8003.000 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 1 Streara flow area = 3.650(Ac.) Runoff frora this streara = 19.091(CFS) Time of concentration = 5.72 min. Rainfall intensity = 6.281(In/Hr) Page 15 of 20 •fH--h + -l--h-K-H-h-H-h-H + -h + + + -f-f-h-f-H-H-l--h-H-^-h-h-K-H-l--F-f-f-f-F-H-H + -F-l--l--H-f-H-f-l--f Process from Point/Station 7006.100 to Point/Station 7006.200 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 157.000(Ft.) Highest elevation = 50.000(Ft.) Lowest elevation = 48.400(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.019 % Top of Initial Area Slope adjusted by User to 1.000 % Bottom of Initial Area Slope adjusted by User to 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.00 %, in a developraent type of Liraited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.49 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0 . 8500)* ( 60.000^.5)/( 1.000^(1/3)]= 3.49 The initial area total distance of 157.00 (Ft.) entered leaves a remaining distance of 97.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.56 minutes for a distance of 97.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.97(Ft.) frora the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) 1.557 Minutes Tt=[(11.9*0.0184^3)/( 0.97)]^.385= 1.56 Total initial area Ti = 3.49 minutes from Figure 3-3 formula plus 1.56 rainutes from the Figure 3-4 formula = 5.04 rainutes Rainfall intensity (I) = 6.812(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.811(CFS) Total initial stream area = 0.14 0(Ac.) -^-^-^-^-^-^-^-•f-^-^-^-t-^--^-^-^-^-^-^-^-^-l--^-^-^-^-^-^-^•^-^-l-•^-^-^-^-^•^•^•f-^•^•f^-+-^-^-^ Process from Point/Station 7006.200 to Point/Station 9005.000 **** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION **** Top of street segment elevation = 52.000(Ft.) End of street segment elevation = 47.320(Ft.) Length of street segment = 74.940(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Page 16 of 20 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.155(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.004(Ft.) Flow velocity = 3.41(Ft/s) Travel time = 0.37 min. TC = 5.41 rain. Adding area flow to street Rainfall intensity (I) = 6.511(In/Hr Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ) ,950 1.100(CFS) 3.406(Ft/s) for a 100.0 year storm ] (General Industrial Impervious value, Ai = 0. Sub-Area C Value = 0.870 Rainfall intensity = Effective runoff coefficient used for total area (Q=KCIA) is C = 0.858 CA = 0.206 Subarea runoff = 0.531(CFS) for 0.100(Ac.) Total runoff = 1.341(CFS) Total area = Street flow at end of street = 1.341(CFS) Half street flow at end of street = 0.671(CFS) Depth of flow = 0.165(Ft.), Average velocity = 3.481(Ft/s) Flow width (from curb towards crown)= 3.485(Ft.) 6.511(In/Hr) for a 100.0 year storm 0.24 0(Ac.) -f + + -H-f + -H + H--h-f-h-l--f-h-f-l--h-h-l--f-f-h + -K-h-(--F-t--H-H-H-^-H-l--H-l--F-F-H-F + -F-H-F-F-f-f Process from Point/Station 7006.200 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.24 0(Ac.) Runoff from this stream = 1.341(CFS) Time of concentration = 5.41 min. Rainfall intensity = 6.511(In/Hr) -f-^+•^-^-^-^+-^-^-^-^-^-^-^-^-^-^-^-^-^-^^--^-^++^-+-^•^+-^-^-^-^--^-^-^ + -^-^-^-^-^-^•^-^-^ Process from Point/Station 9007.000 to Point/Station 7006.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Page 17 of 20 • # Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 55.500(Ft.) Highest elevation = 48.500(Ft.) Lowest elevation = 48.200(Ft.) Elevation difference = 0.300(Ft.) Slope = 0.541 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.75 rainutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8700)* ( 70.000".5)/( 2.000^(1/3)]= 2.75 Calculated TC of 2.74 9 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.238(CFS) Total initial streara area = 0.040(Ac.) ^-^--^ + •f-l--^-^--^-^-^-^-^-^-^-^-^-^-^-^-^-^-^--^-^-^-^-l--^-l--^-l-4• + + -^-^^--^-^-^-^+•^-^-^ + Process frora Point/Station 7006.000 to Point/Station 9005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 48.200(Ft.) End of street segment elevation = 47.320(Ft.) Length of street segment = 174.800(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at midpoint of street = 0.792(CFS) Depth of flow = 0.241(Ft.), Average velocity = 1.3 07(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.312(Ft.) Flow velocity = 1.31 (Ft/s) Travel time = 2.23 min. TC = 4.98 rain. Adding area flow to street Calculated TC of 4.979 minutes is less than 5 minutes. Page 18 of 20 resetting TC to 5.0 minutes for rainfall intensity calculations 850(In/Hr) for a 0.000 000 000 000 Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.209 Subarea runoff = 1.192(CFS) for 0.200(Ac. Total runoff = 1.43 0(CFS) Total area = Street flow at end of street = 1.430(CFS) Half street flow at end of street = 1.430(CFS) Depth of flow = 0.283(Ft.), Average velocity = Flow width (frora curb towards crown)= 9.396(Ft.) 100.0 year storra 6.850(In/Hr) for a 100.0 year storra 0.240(Ac.) 1.499(Ft/s) -t--^-(--^-^-^-^-^-^-^-^•4•-^-f-^-^-^-^-f-^-^•f-t--l--^-^-l--^-^-l-+-l--^-^-^++-l--l--^-^-^-^•f-^+•f+ Process from Point/Station 7006.000 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 3 Stream flow area = 0.240(Ac.) Runoff from this stream = 1.430(CFS) Time of concentration = 4.98 min. Rainfall intensity = 6.850(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) Qmax(2) Qmax(3) 19.091 1.341 1.430 1. 000 0 . 965 0 . 917 1. 000 1. 000 0 . 950 1. 000 1. 000 1. 000 5.72 5.41 4 .98 1.000 * 1.000 * 1. 000 * 0.94 6 * 1.000 * 1.000 * 0.870 * 0.920 * 1.000 * 19.091 1.341 1.430 19.091 1.341 1.430 19.091 1.341 1.430 6 .281 6.511 6 .850 •f + + = + + + = + + + = 21.696 20.757 19.282 Total of 3 streams to confluence: Flow rates before confluence point; Page 19 of 20 19.091 1.341 1.430 Maxiraura flow rates at confluence using above data: 21.696 20.757 19.282 Area of streams before confluence: 3.650 0.240 0.240 Results of confluence: Total flow rate = 21.696(CFS) Time of concentration = 5.720 min. Effective stream area after confluence = 4.130(Ac. +++-^-^-^-^•^+-^+^--^•^-^•f•^-^-^-l• + -^ + ^--l--^•f•^-^+-^-^^-^--^-l--l--^-l--^-^-^-^-^•^•^•^+ Process from Point/Station 9005.000 to Point/Station 7007.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 40.190(Ft.) Downstream point/station elevation = 39.820(Ft.) Pipe length = 71.54(Ft.) Slope = 0.0052 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.696(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 21.696(CFS) Normal flow depth in pipe = 16.98(In.) Flow top width inside pipe = 35.94(In.) Critical Depth = 17.97(In.) Pipe flow velocity = 6.62 (Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 5.90 min. End of coraputations, total study area = 4.130 (Ac.) Page 20 of 20 APPENDIX 3 10 Yr. Ultimate Hydrologic Calculations (See Exhibit 'L') ECRlPlO San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering software,(c)1991-2006 Version 7,7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 12/17/13 100 Year Hydrology for ultimate Condition Basin ECRlP JN 101307 Revised by HL 12/17/13 ********* Hydrology study control information ********** Program License serial Number 6218 Rational hydrology study storm event year is English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 1,700 24 hour precipitation(inches) = 3,100 P6/P24 = 54,8% San Diego hydrology manual 'C' values used 10,0 Process from Point/Station 1000,000 to Point/Station **** INITIAL AREA EVALUATION **** 1001,000 3 = 100,000(Ft,) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL (43.0 DU/A or Less ) Impervious value, Ai = 0.800 Sub-Area C value = 0,790 Initial subarea total flow distance Highest elevation = 63,000(Ft,) Lowest elevation = 57,800(Ft,) Elevation difference = 5,200(Ft,) Slope = 5,200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95,00 (Ft) for the top area slope value of 5,20 %, in a development type of 43,0 DU/A or Less In Accordance With Figure 3-3 initial Area Time of Concentration = 3,14 minutes TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,7900)*( 95,OOOA,5)/( 5,200A(l/3)3= The initial area total distance of 100,00 (Ft,) entered leaves a remaining distance of 5,00 (Ft,) Using Figure 3-4, the travel time for this distance is for a distance of 5.00 (Ft,) and a slope of 5,20 % with an elevation difference of 0,26(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) Page 1 3,14 0,08 minutes ECRlPlO 0.084 Minutes Tt=[(ll,9*0,0009A3)/( 0,26)3A,385= 0,08 Total initial area Ti = 3,14 minutes from Figure 3-3 formula plus 0,08 minutes from the Figure 3-4 formula = 3,22 minutes calculated TC of 3,223 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 0,602(CFS) Total initial stream area = 0,170(Ac) ++-f-^+-l-++++++++-h+++-l-+-l--l-++++++-H++++++-H+++++++++-l-+-H++++ Process from Point/Station 1001,000 to Point/Station 1002,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 57,800(Ft,) End of street segment elevation = 40,300(Ft,) Length of street segment = 595,000(Ft.) Height of curb above gutter flowline = 6,0(ln,) width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = 1.500(ln,) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 2,475(CFS) Depth of flow = 0,215(Ft,), Average velocity = 2,868(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6,003(Ft,) Flow velocity = 2,87(Ft/s) Travel time = 3,46 min, TC = 6,68 min. Adding area flow to street Rainfall intensity (I) = 3,715(ln/Hr) for a 10,0 year storm User specified 'C' value of 0,790 given for subarea Rainfall intensity = 3,715(in/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,790 CA = 1.138 Subarea runoff = 3.625(CFS) for l,270(Ac,) Total runoff = 4,226(CFS) Total area = l,440(Ac.) Street flow at end of street = 4,226(CFS) Half street flow at end of street = 2,113(CFS) Depth of flow = 0,248(Ft,), Average velocity = 3,231(Ft/s) Flow width (from curb towards crown)= 7,635(Ft,) Process from Point/Station 1002,000 to Point/Station 1003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 34,190(Ft,) Downstream point/station elevation = 33,800(Ft,) Pipe length = 35,19(Ft,) Slope = 0,0111 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 4.226(CFS) Given pipe size = 18,00(ln,) Calculated individual pipe flow = 4,226(CFS) Normal flow depth in pipe = 7.72(In.) Page 2 ECRlPlO Flow top width inside pipe = 17,82(In.) critical Depth = 9,46(ln,) Pipe flow velocity = 5,84(Ft/s) Travel time through pipe = 0,10 min. Time of concentration (TC) = 6,78 min. End of computations, total study area = 1,440 (Ac.) Page 3 ecr2ulO San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7,9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/10/14 10 Year Hydrology for ultimate Condition Basin ECR2U JN 101307 Revised by MC ********* Hydrology Study Control information ********** Program License Serial Number 6324 Rational hydrology study storm event year is 10,0 English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 1,700 24 hour precipitation(inches) = 3,100 P6/P24 = 54,8% San Diego hydrology manual 'C values used process from Point/Station 2000,000 to Point/Station 2001,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent open space ) Impervious value, Ai = 0.000 sub-Area C value = 0,350 Initial subarea total flow distance = 297,000(Ft,) Highest elevation = 99,400(Ft,) Lowest elevation = 77,700(Ft.) Elevation difference = 21.700(Ft.) Slope = 7,306 % Top of initial Area Slope adjusted by User to 16.815 % Bottom of Initial Area Slope adjusted by User to 16.815 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 16,82 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.27 minutes TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [l,8*(l.l-0.350O)*( 100.000A,5)/( 16,815A(l/3)3= 5,27 The initial area total distance of 297,00 (Ft,) entered leaves a remaining distance of 197.00 (Ft,) Using Figure 3-4, the travel time for this distance is 0.91 minutes for a distance of 197,00 (Ft,) and a slope of 16,82 % Page 1 ecr2ulO with an elevation difference of 33.13(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 0,907 Minutes Tt=[(ll,9*0.0373A3)/( 33,13)3A,385= 0.91 Total initial area Ti = 5,27 minutes from Figure 3-3 formula plus 0,91 minutes from the Figure 3-4 formula = 6.18 minutes Rainfall intensity (I) = 3.908(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,492(CFS) Total initial stream area = 0,360(AC,) Process from Point/Station 2001,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 2002.100 1,076(CFS) 4,267(Ft/s) Upstream point elevation = 77.700(Ft,) Downstream point elevation = 67,790(Ft,) Channel length thru subarea = 250,000(Ft,) Channel base width = 2,000(Ft.) Slope or 'Z' of left channel bank = 2,000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0,015 Maximum depth of channel = l,000(Ft,) Flow(q) thru subarea = 1,076(CFS) Depth of flow = 0,113(Ft,), Average velocity = Channel flow top width = 2,453(Ft,) Flow velocity = 4.27(Ft/s) Travel time = 0.98 min. Time of concentration = 7,15 min. Critical depth = 0,195(Ft,) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open space ) Impervious value, Ai = 0,000 Sub-Area C Value = 0.350 Rainfall intensity = 3,555(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0.445 1,088(CFS) for 0.910(Ac) 1,580(CFS) Total area = l,270(Ac,) 0.142(Ft,), Average velocity = 4,878(Ft/s) 0.246(Ft,) 3.555(ln/Hr) for a 0,000 0,000 0,000 1,000 3 10.0 year storm Subarea runoff = Total runoff = Depth of flow = Critical depth = process from Point/Station 2002.100 to Point/Station 2002,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 82,57(Ft,) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 24.00(in,) Calculated individual pipe flow = 1,580(CFS) Normal flow depth in pipe = 4,28(In.) 18.37(ln.) Page 2 55.740(Ft,) 54,900(Ft.) 0.0102 Manning's N = 0,013 1,580(CFS) Flow top width inside pipe = ecr2ulO Critical Depth = 5.21(ln,) Pipe flow velocity = 4.17(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 7.48 min. Process from Point/Station 2002,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 2003,000 upstream point/station elevation = Downstream point/station elevation = Pipe length = 73.54(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24,00(ln,) Calculated individual pipe flow = 1,580(CFS) Normal flow depth in pipe = 4,29(in,) Flow top width inside pipe = 18,39(ln,) critical Depth = 5,21(in,) Pipe flow velocity = 4,15(Ft/s) Travel time through pipe = 0,30 min. Time of concentration (TC) = 7.78 min. 54.570(Ft,) 53,830(Ft,) 0.0101 Manning's N = 0.013 1.580(CFS) Process from Point/station 2003,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2003,000 Along Main stream number: 1 in normal stream number 1 Stream flow area = l,270(Ac,) Runoff from this stream = 1,580(CFS) Time of concentration = 7,78 min. Rainfall intensity = 3,368(in/Hr) Process from Point/Station 2004,000 to Point/Station **** INITIAL AREA EVALUATION **** 2005,000 3 120,000(Ft,) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type (General commercial ) Impervious value, Ai = 0.850 Sub-Area C value = 0,820 Initial subarea total flow distance = Highest elevation = 86,100(Ft.) Lowest elevation = 83,900(Ft.) Elevation difference = 2,200(Ft,) Slope = 1.833 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 1,83 %, in a development type of General Commercial in Accordance with Figure 3-3 Initial Area Time of Concentration = 3,57 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,8200)*( 75,OOOA.5)/( 1,833A(1/3)3= 3.57 The initial area total distance of 120,00 (Ft,) entered leaves a remaining distance of 45,00 (Ft.) using Figure 3-4, the travel time for this distance is 0,68 minutes for a distance of 45,00 (Ft.) and a slope of 1,83 % Page 3 ecr2ulO with an elevation difference of 0.82(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 0,683 Minutes Tt=[(11.9*0,0085A3)/( 0,82)3A.385= 0.68 . Total initial area Ti = 3.57 minutes from Figure 3-3 formula plus 0.68 minutes from the Figure 3-4 formula = 4.25 minutes Calculated TC of 4,249 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,820 Subarea runoff = 0.661(CFS) Total initial stream area = 0.180(Ac,) Process from Point/Station 2005.000 to Point/Station 2005,100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 83.900(Ft,) End of street segment elevation = 74.200(Ft,) Length of street segment = 500,000(Ft,) Height of curb above gutter flowline = 6,0(ln,) width of half street (curb to crown) = 44.000(Ft,) Distance from crown to crossfall grade break = 42.500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [13 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = 1.500(in,) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 2,000(CFS) Depth of flow = 0,258(Ft,), Averaqe velocity = 2,718(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8,153(Ft.) Flow velocity = 2.72(Ft/s) Travel time = 3,07 min, TC = 7,32 min. Adding area flow to street Rainfall intensity (i) = 3.504(in/Hr) for a 10,0 year storm user specified 'C value of 0,810 given for subarea Rainfall intensity = 3.504(in/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,812 CA = 0,933 Subarea runoff = 2.609(CFS) for 0.970(Ac.) Total runoff = 3,271(CFS) Total area = l,150(Ac,) Street flow at end of street = 3,271(CFS) Half street flow at end of street = 3.271(CFS) Depth of flow = 0.295(Ft.), Averaqe velocity = 3,052(Ft/s) Flow width (from curb towards crown)= 10.002(Ft.) Process from Point/Station 2005,100 to Point/Station 2005,200 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 71,930(Ft,) Downstream point/station elevation = 69.130(Ft,) Pipe length = 16.25(Ft.) Slope = 0.1723 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 3,271(CFS) Given pipe size = 18,00(in,) Page 4 ecr2ulO Calculated individual pipe flow = 3.271(CFS) Normal flow depth in pipe = 3,34(in,) Flow top width inside pipe = 13,99(in.) critical Depth = 8,25(in,) Pipe flow velocity = 14,50(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (TC) = 7.33 min, +++++++-f-f-f+-f-f+-f+-f-f+++++++-H+-f+++++-f-f-l--fH--f-f-t-++-fH-++ Process from Point/Station 2005.200 to Point/Station 2005.400 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68,820(Ft.) Downstream point/station elevation = 66,740(Ft,) Pipe length = 65,83(Ft.) Slope = 0,0316 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 3.271(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 3,271(CFS) Normal flow depth in pipe = 5,10(in.) Flow top width inside pipe = 16.22(in.) Critical Depth = 8,25(in,) Pipe flow velocity = 7.94(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.47 min, ++-f-f+-f-f-f-f+-l-++-h-f-f-f++-(-4-++-f+-f+-f-f++++-f+++++++-l-++-f-f+ Process from Point/Station 2005.400 to Point/Station 2005.500 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 66.410(Ft.) Downstream point/station elevation = 64.150(Ft.) Pipe length = 64,08(Ft,) Slope = 0,0353 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 3.271(CFS) Given pipe size = 18.00(ln,) Calculated individual pipe flow = 3,271(CFS) Normal flow depth in pipe = 4,96(ln,) Flow top width inside pipe = 16.08(in.) Critical Depth = 8.25(in,) Pipe flow velocity = 8,26(Ft/s) Travel time through pipe = 0,13 min. Time of concentration (TC) = 7.60 min, -f++-f++-f-t--f++++-f+-f-f-l--f-f4-+-f+-f-f-(--f+-f-f-f-f-f-f++++++-f-f+-f+ Process from Point/station 2005,500 to Point/Station 2003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 63,780(Ft,) Downstream point/station elevation = 53,440(Ft,) Pipe length = 40,22(Ft.) Slope = 0.2571 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 3.271(CFS) Given pipe size = 18,00(ln.) Calculated individual pipe flow = 3.271(CFS) Normal flow depth in pipe = 3,02(in.) Flow top width inside pipe = 13,46(ln,) Critical Depth = 8,25(in,) Pipe flow velocity = 16,69(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 7,64 min. Page 5 ecr2ulO Process from Point/Station 2003,000 to Point/Station 2003,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = l,150(Ac,) Runoff from this stream = 3,271(CFS) Time of concentration = 7.64 min. Rainfall intensity = 3,407(ln/Hr) +-^-t--l--^-^--t-•^-^-(--^-^-^-^-^-f•f•^+•^+-^+++++-^^-+++-^-f•f++-f-^+•^-+-^-^+ Process from point/Station 2005.300 to Point/Station 2005,100 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group c = 0,000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type (General industrial ) Impervious value, Ai = 0,950 Sub-Area C value = 0,870 Initial subarea total flow distance = Highest elevation = 75.400(Ft.) Lowest elevation = Elevation difference 55.000(Ft.) 74.200(Ft.) 1.200(Ft,) Slope = 2,182 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of General industrial In Accordance With Figure 3-3 initial Area Time of concentration = 2.67 minutes TC = [l,8*(l,l-c)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,8700)*( 70.000A,5)/( 2,180A(l/3)3= 2, calculated TC of 2,671 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4,479(in/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.390(CFS) Total initial stream area = 0,100(Ac) 2,18 %, in a development type of .67 -^-^^•-l--^•^-^-^•^•^+-^^--l-+-^-l-+-^+++-^•^+^-++•f•^-•^•f•^+++++++•^-•l-+++++ Process from point/station 2005.100 to Point/Station 2006.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 74.200(Ft.) End of street segment elevation = 64.900(Ft.) Length of street segment = 240,000(Ft,) Height of curb above gutter flowline = 6.0(in,) Width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [13 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = l,500(ln.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Page 6 ecr2ulO Estimated mean flow rate at midpoint of street = 1.161(CFS) Depth of flow = 0,204(Ft.), Average velocity = 3.154(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5,448(Ft.) Flow velocity = 3.15(Ft/s) Travel time = 1.27 min, TC = 3.94 min. Adding area flow to street Calculated TC of 3,939 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (i) = 4.479(in/Hr) for a 10.0 year storm User specified 'C' value of 0,810 given for subarea Rainfall intensity = 4.479(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.822 CA = 0.419 subarea runoff = 1.487(CFS) for 0,410(Ac,) Total runoff = 1,877(CFS) Total area = 0.510(Ac,) Street flow at end of street = 1.877(CFS) Half street flow at end of street = 1.877(CFS) Depth of flow = 0,231(Ft,), Average velocity = 3.499(Ft/s) Flow width (from curb towards crown)= 6.821(Ft,) Process from Point/Station 2006,000 to Point/Station 2003,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 62.130(Ft,) Downstream point/station elevation = 60,170(Ft.) Pipe length = 21,ll(Ft,) slope = 0,0928 Manning's N = 0,013 NO. of pipes = 1 Required pipe flow = 1,877(CFS) Given pipe size = 18.00(ln,) Calculated individual pipe flow = 1,877(CFS) Normal flow depth in pipe = 2.96(in.) Flow top width inside pipe = 13.34(In,) critical Depth = 6,19(In,) Pipe flow velocity = 9,90(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 3,98 min. Process from Point/Station 2003,100 to Point/Station 2003,200 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 59,980(Ft.) Downstream point/station elevation = 56.880(Ft,) Pipe length = 28,80(Ft,) Slope = 0,1076 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 1,877(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 1,877(CFS) Normal flow depth in pipe = 2,85(in.) Flow top width inside pipe = 13,15(In,) critical Depth = 6,19(ln,) Pipe flow velocity = 10.42(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 4,02 min. Process from Point/Station 2003,200 to Point/Station 2003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 56,470(Ft,) Page 7 ecr2ulO Downstream point/station elevation = Pipe length = 21.62(Ft.) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 18,00(ln,) Calculated individual pipe flow = Normal flow depth in pipe = 2.95(in,) Flow top width inside pipe = 13,32(In,) Critical Depth = 6,19(ln,) Pipe flow velocity = 9,94(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 4,06 min 54,440(Ft,) 0.0939 Manning's N = 0.013 1,877(CFS) 1,877(CFS) Process from Point/Station 2003,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2003.000 Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0,510(Ac.) Runoff from this stream = 1.877(CFS) Time of concentration = 4.06 min. Rainfall intensity = 4,479(in/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 3 Qmax(l) Qmax(2) = Qmax(3) = 1,580 3,271 1,877 1.000 0,989 0,752 1,000 * ,000 ,761 .000 .000 1,000 * 7,78 7.64 4,06 1.000 1.000 1,000 0,982 ,000 .000 0,522 0,531 1.000 3,368 3.407 4,479 1,580) + 3.271) + 1.877) -I- 1.580) + 3,271) -I- 1,877) + 1,580) + 3.271) + 1,877) -f 6.225 6.251 4,438 Total of 3 streams to confluence: Flow rates before confluence point: 1.580 3,271 1.877 Maximum flow rates at confluence using above data: 6,225 6.251 4.438 Area of streams before confluence: 1.270 1,150 0.510 Results of confluence: Total flow rate = 6,251(CFS) Time of concentration = 7,641 min. Effective stream area after confluence = 2,930(Ac,) Process from Point/Station 2003,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 2007.000 Upstream point/station elevation = 53.760(Ft,) Downstream point/station elevation = 53,520(Ft,) Page 8 ecr2ulO Pipe length = 24,60(Ft.) Slope = 0.0098 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 6.251(CFS) Given pipe size = 24,00(in,) ^ N calculated individual pipe flow = 6.251(CFS) Normal flow depth in pipe = 8.68(in.) Flow top width inside pipe = 23,07(in.) critical Depth = 10.61(in,) Pipe flow velocity = 6.10(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 7,71 min. ++ Process from Point/Station 2003,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 2007,000 The following data inside Main stream is listed: In Main Stream number: 1 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = 2.930(Ac,) 6.251(CFS) 7,71 min, 3,388(ln/Hr) Program is now starting with Main stream No, 2 Process from Point/Station 2008,000 to Point/Station **** INITIAL AREA EVALUATION **** 2009,000 0.000 0,000 0.000 1.000 3 125,000(Ft.) Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai = 0,650 Sub-Area C value = 0,710 Initial subarea total flow distance = Highest elevation = 84,000(Ft,) Lowest elevation = 82,500(Ft,) Elevation difference = 1.500(Ft,) Slope = 1,200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65,00 (Ft) for the top area slope value of 1,20 %, in a development type of 24,0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of concentration = 5,33 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(1.1-0.7100)*( 65,000A.5)/( 1.200A(1/3)3= 5,33 The initial area total distance of 125,00 (Ft,) entered leaves a remaining distance of 60.00 (Ft,) . using Figure 3-4, the travel time for this distance is 1.00 minutes for a distance of 60.00 (Ft.) and a slope of 1.20 % with an elevation difference of 0,72(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 1,003 Minutes Tt=[(11.9*0.0114A3)/( 0.72)3A,385= 1,00 . ^ . Total initial area Ti = 5,33 minutes from Figure 3-3 formula plus 1,00 minutes from the Figure 3-4 formula = 6,33 minutes Rainfall intensity (l) = 3,847(ln/Hr) for a Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.410(CFS) Total initial stream area = 0,150(Ac,) Page 9 10.0 year storm is C = 0.710 ecr2ulO Process from Point/station 2009,000 to Point/Station 2010,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 82.500(Ft,) End of street segment elevation = 67,700(Ft.) Length of street segment = 620.000(Ft,) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42,500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(in,) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.795(CFS) Depth of flow = 0.203(Ft,), Average velocity = 2.468(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.408(Ft.) Flow velocity = 2.47(Ft/s) Travel time = 4.19 min. TC = 10.52 min. Adding area flow to street Rainfall intensity (i) = 2.773(in/Hr) for a 10,0 year storm user specified 'C' value of 0.650 given for subarea Rainfall intensity = 2.773(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.655 CA = 1.108 Subarea runoff = 2.661(CFS) for 1.540(Ac,) Total runoff = 3.071(CFS) Total area = l,690(Ac,) Street flow at end of street = 3,071(CFS) Half street flow at end of street = 1,535(CFS) Depth of flow = 0.234(Ft.), Average velocity = 2.772(Ft/s) Flow width (from curb towards crown)= 6,948(Ft,) +++++++++++++++++++++++++-|-++++-(-++-|-4--f-f-f-f+++-f+++-f+++ Process from Point/Station 2010.000 to Point/station 2007.000 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 58.640(Ft,) Downstream point/station elevation = 54.020(Ft,) Pipe length = 48,09(Ft,) slope = 0,0961 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 3,071(CFS) Given pipe size = 18,00(In,) Calculated individual pipe flow = 3,071(CFS) Normal flow depth in pipe = 3.74(in.) Flow top width inside pipe = 14.60(in.) critical Depth = 8.00(in.) Pipe flow velocity = 11.58(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 10,59 min. Process from Point/Station 2010,000 to Point/Station 2007.000 **** CONFLUENCE OF MAIN STREAMS **** Page 10 ecr2ulO Given pipe size = 24.00(ln,) calculated individual pipe flow = 8,487(CFS) Normal flow depth in pipe = 4.85(in,) Flow top width inside pipe = 19,28(in,) critical Depth = 12,47(in.) Pipe flow velocity = 18,67(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 7,98 min. End of computations, total study area = 4.620 (Ac) Page 12 ecr3ulO San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 version 7,9 Rational method hydrology program based on san Diego County Flood control Division 2003 hydrology manual Rational Hydrology Study Date: 10/10/14 10 Year Hydrology for ultimate condition Basin ECR3U JN 101307 Revised by MC ********* Hydrology Study control Information **** ****** Program License serial Number 6324 Rational hydrology study storm event year is 10.0 English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 1,700 24 hour precipitation(inches) = 3,100 P6/P24 = 54,8% San Diego hydrology manual 'C values used +•f+-(--f+-^-^-+-^++-^-^4•+-^--^++++++•f-^+•l--^+-^•^++^-+-f-^-f-^-^-^-t•+-(•++ process from point/Station 2012,000 to Point/Station 2013.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area c value = 0,350 Initial subarea total flow distance = 300.000(Ft.) Highest elevation = 101.600(Ft.) Lowest elevation = 83,000(Ft.) Elevation difference = 18.600(Ft,) Slope = 6,200 % Top of initial Area Slope adjusted by User to 25,000 % Bottom of initial Area Slope adjusted by user to 0,500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 25.00 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of Concentration = 4,62 minutes TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,3500)*( 100,000A.5)/( 25,OOOA(l/3)3= 4,62 The initial area total distance of 300.00 (Ft.) entered leaves a remaining distance of 200.00 (Ft.) Using Figure 3-4, the travel time for this distance is 3.55 minutes for a distance of 200.00 (Ft.) and a slope of 0.50 % Page 1 ecr3ulO with an elevation difference of 1.00(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 3,550 Minutes Tt=[(ll,9*0.0379A3)/( 1.00)3A,385= 3.55 Total initial area Ti = 4,62 minutes from Figure 3-3 formula plus 3,55 minutes from the Figure 3-4 formula = 8,17 minutes Rainfall intensity (I) = 3,264(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,468(CFS) Total initial stream area = 0,410(Ac,) -^-l--^+-t-+•f-l--l--(--f+•^-^-f++-^+-l--^-^-+-f-^^-+-l-++-^-l--f+•f+•f+-^--^-^-^-^^ Process from Point/station 2013,000 to Point/Station 2013,100 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 77.140(Ft.) Downstream point/station elevation = 76,330(Ft,) Pipe length = 32,24(Ft,) Slope = 0,0251 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0,468(CFS) Given pipe size = 18,00(In.) Calculated individual pipe flow = 0.468(CFS) Normal flow depth in pipe = 2,07(in,) Flow top width inside pipe = ll,49(ln,) Critical Depth = 3,04(in,) Pipe flow velocity = 4.13(Ft/s) Travel time through pipe = 0,13 min. Time of concentration (TC) = 8,30 min, +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2013.100 to Point/Station 3001,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 76,000(Ft,) Downstream point/station elevation = 73,140(Ft,) Pipe length = 301,23(Ft,) Slope = 0.0095 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0,468(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 0,468(CFS) Normal flow depth in pipe = 2,62(In,) Flow top width inside pipe = 12,70(in,) critical Depth = 3,04(in,) Pipe flow velocity = 2,94(Ft/s) Travel time through pipe = 1,71 min. Time of concentration (TC) = 10,00 min, +-^-f+-l-+-^•+++++•f+++-^+++++++++-^-l-+++•f^-+•f++•f•f-^-l--^4-+-^-f-f•l•+ Process from Point/Station 2013,100 to Point/Station 2013,100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0,410(Ac) Runoff from this stream = 0,468(CFS) Time of concentration = 10,00 min. Rainfall intensity = 2,863(in/Hr) •^++•^--l-+•^+++^--t•-l-++++++-^+++-^+++•f+-^-^+-^-•^•^-f•^-^-^•f•f-f-f++++ Process from Point/Station 2004,000 to Point/Station 3000,000 **** INITIAL AREA EVALUATION **** Page 2 ecr3ulO Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (24,0 DU/A or Less ) Impervious value, Ai = 0,650 Sub-Area C value = 0,710 Initial subarea total flow distance = 115,000(Ft,) Highest elevation = 86,100(Ft,) Lowest elevation = 84,100(Ft,) Elevation difference = 2,000(Ft,) Slope = 1,739 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 1,74 %, in a development type of 24,0 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 5,06 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [1.8*(1.1-0,7100)*( 75,OOOA.5)/( 1,739A(l/3)3= 5,06 The initial area total distance of 115,00 (Ft,) entered leaves a remaining distance of 40,00 (Ft,) using Figure 3-4, the travel time for this distance is 0,64 minutes for a distance of 40.00 (Ft,) and a slope of 1.74 % with an elevation difference of 0.70(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) = 0.636 Minutes Tt=[(11.9*0,0076A3)/( 0.70)3A.385= 0,64 Total initial area Ti = 5.06 minutes from Figure 3-3 formula plus 0,64 minutes from the Figure 3-4 formula = 5,69 minutes Rainfall intensity (I) = 4,120(in/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.673(CFS) Total initial stream area = 0,230(Ac,) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 3000,000 to Point/Station 3001,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 74,270(Ft,) Downstream point/station elevation = 73,140(Ft.) Pipe length = 57,17(Ft,) Slope = 0.0198 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0.673(CFS) Given pipe size = 18,00(ln,) calculated individual pipe flow = 0.673(CFS) Normal flow depth in pipe = 2,62(in,) Flow top width inside pipe = 12.69(In,) Critical Depth = 3,64(ln,) Pipe flow velocity = 4,24(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 5,92 min, -^-^-^-f-^--^+++-^-^+-^+-^-+-^-++-^+-^+-^-^-f++++•^-++++++^-++-f+++-f-f+ Process from Point/Station 3001,000 to Point/Station 3001.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,230(Ac) Runoff from this stream = 0.673(CFS) Time of concentration = 5.92 min. Rainfall intensity = 4.018(ln/Hr) Page 3 Summary of stream data: ecr3ulO Stream NO, Flow rate (CFS) TC (min) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 0,468 0.673 10.00 5,92 1.000 * 0,713 * 1.000 * 1,000 * 1.000 * 1.000 * 0.591 * 1.000 * 2.863 4.018 0,468) + 0,673) + 0.468) + 0,673) + 0,948 0,950 Total of 2 streams to confluence: Flow rates before confluence point: 0.468 0,673 Maximum flow rates at confluence using above data: 0,948 0.950 Area of streams before confluence: 0.410 0,230 Results of confluence: Total flow rate = 0.950(CFS) Time of concentration = 5.917 min. Effective stream area after confluence = 0,640(Ac,) +-(--f-H++-f+++-f+-f+-f-f-f-f+++++++-f+-t--f-f-f-(--f++4-+-t-+++-H-f++++-f++ Process from Point/Station 3001,000 to Point/Station 3002,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = Downstream point/station elevation = Pipe length = 91.84(Ft,) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 18.00(ln,) Calculated individual pipe flow = Normal flow depth in pipe = 3,ll(ln,) Flow top width inside pipe = 13,60(ln,) Critical Depth = 4,35(In,) Pipe flow velocity = 4,67(Ft/s) Travel time through pipe = 0,33 min. Time of concentration (TC) = 6,24 min 72,810(Ft,) 71.020(Ft.) 0.0195 Manning's N = 0.013 0,950(CFS) 0,950(CFS) -H-f-f-f-f-l-+-l-+-f++++++-l-++++-l-++++-l-+++++-f+-f+-t--f-f-f-+-f-+-f++^ Process from Point/Station 3002,000 to Point/Station 3002.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0,640(Ac) Runoff from this stream = 0,950(CFS) Time of concentration = 6,24 min. Rainfall intensity = 3,881(ln/Hr) ++-t--l--H++-f-I-•h+++++++++++-f++-l--f-f-f-f-f-f+-f+++++++++++++ Process from Point/Station 3002,000 to Point/Station 3002.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** user specified 'C value of 0.630 given for subarea Rainfall intensity (l) = 2,208(ln/Hr) for a Page 4 10,0 year storm ecr3ulO user specified values are as follows: TC = 14,97 min. Rain intensity = 2,21(ln/Hr) Total area = 54,860(Ac) Total runoff = 98.920(CFS) -^++-^•^++++++-f•f-^-f+•^+•^++-^+-^-^++++-f+-^•f4•++-f-^+•f+•^+++++-f-^ Process from Point/Station 3002,000 to Point/Station 3002.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 54.860(Ac) Runoff from this stream = 98.920(CFS) Time of concentration = 14.97 min. Rainfall intensity = 2.208(ln/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 0.950 98.920 6.24 14.97 3.881 2.208 Qmax(l) = Qmax(2) = 1.000 * 1,000 * 0,569 * 1,000 * 1,000 * 0,417 * 1,000 * 1,000 * 0,950) -f 98,920) + 0,950) + 98,920) + 42,212 99,460 Total of 2 streams to confluence: Flow rates before confluence point: 0,950 98,920 Maximum flow rates at confluence using above data: 42,212 99.460 Area of streams before confluence: 0.640 54,860 Results of confluence: Total flow rate = 99.460(CFS) Time of concentration = 14.970 min. Effective stream area after confluence = 55.500(Ac,) ++++-t-+++-f+-l--f-H+-f+-H+++-f+-f-»--f+-f-f+-f++++++-(--l-+-t--f-l-4-++-f-f-^ Process from Point/Station 3002.000 to Point/station 3003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 70,690(Ft,) Downstream point/station elevation = 69,160(Ft,) Pipe length = 153,96(Ft,) Slope = 0,0099 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 99,460(CFS) Given pipe size = 48,00(ln,) Calculated individual pipe flow = 99,460(CFS) Normal flow depth in pipe = 29.44(ln.) Flow top width inside pipe = 46,75(In.) critical Depth = 36,26(ln,) Pipe flow velocity = 12,31(Ft/s) Travel time through pipe = 0,21 min. Time of concentration (TC) = 15,18 min. •f-f-l-+-f+++++-^-^+•^+-^++^--^+++-l-•^+-^+•^•++-l--^+-^-^•f-(•++-(•-^•f•^-f-f+ Process from Point/station 3003.000 to Point/Station 3003,000 **** CONFLUENCE OF MAIN STREAMS **** Page 5 ecr3ulO The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 55,500(Ac,) Runoff from this stream = 99.460(CFS) Time of concentration = 15.18 min. Rainfall intensity = 2,188(ln/Hr) Program is now starting with Main Stream No, 2 ^-•^-f+-^-^•f-^•^+-f+•^+•^-l-+-^-++++-t-+-l--l-++•(-•l-+-^--^•(-+-f•(--^-^-^+4•-f-^+^ Process from Point/Station 3004,000 to Point/Station 3005,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL 3 (7.3 DU/A or Less ) Impervious value, Ai = 0,400 Sub-Area C value = 0,570 initial subarea total flow distance = 300,000(Ft,) Highest elevation = 91,700(Ft,) Lowest elevation = 82,200(Ft.) Elevation difference = 9,500(Ft,) Slope = 3,167 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95,00 (Ft) for the top area slope value of 3,17 %, in a development type of 7,3 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 6,33 minutes TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.5700)*( 95,OOOA.5)/( 3,167A(l/3)3= 6,33 The initial area total distance of 300,00 (Ft.) entered leaves a remaining distance of 205.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.78 minutes for a distance of 205.00 (Ft,) and a slope of 3,17 % with an elevation difference of 6,49(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 1,778 Minutes Tt=[(ll,9*0.0388A3)/( 6.49)3A.385= 1.78 Total initial area Ti = 6,33 minutes from Figure 3-3 formula plus 1,78 minutes from the Figure 3-4 formula = 8,11 minutes Rainfall intensity (I) = 3.279(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0,570 Subarea runoff = 2,336(CFS) Total initial stream area = l,250(Ac) +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 3005.000 to Point/Station 3005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.250(Ac.) Runoff from this stream = 2.336(CFS) Time of concentration = 8,11 min. Rainfall intensity = 3,279(ln/Hr) -^+++++•f+-^+-^-^-f-^-^+•f++•f+-f+-^-^+•^•^++-^-^•^-^+-l-+-^•^-^-f+•^•^-^+ process from Point/Station 3006,000 to Point/Station 3005,000 Page 6 ecr3ulO **** INITIAL AREA EVALUATION **** 3 148.000(Ft.) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type (General industrial ) Impervious value, Ai = 0,950 sub-Area C Value = 0,870 initial subarea total flow distance = Highest elevation = 86.000(Ft.) Lowest elevation = 82.200(Ft,) Elevation difference = 3.800(Ft,) Slope = 2,568 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80,00 (Ft) for the top area slope value of 2,57 %, in a development type of General industrial In Accordance with Figure 3-3 Initial Area Time of Concentration = 2.70 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l.l-0,8700)*( 80,OOOA.5)/( 2.568A(1/3)3= 2.70 The initial area total distance of 148.00 (Ft,) entered leaves a remaining distance of 68.00 (Ft,) Using Figure 3-4, the travel time for this distance is 0,82 minutes for a distance of 68,00 (Ft,) and a slope of 2,57 % with an elevation difference of 1,75(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) 0,824 Minutes Tt=[(11.9*0,0129A3)/( 1,75)3A,385= 0,82 Total initial area Ti = 2,70 minutes from Figure 3-3 formula plus 0.82 minutes from the Figure 3-4 formula = 3.53 minutes Calculated TC of 3,528 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4,479(in/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,870 subarea runoff = 0,896(CFS) Total initial stream area = 0,230(Ac,) -f+-^--f-^+++++•l--f-t•-l--f-f•f•^-f+-^-^•-^-f-f-^+^-++•^•l-+-^-+^--^+++++++-^+^ Process from Point/station 3005,000 to Point/Station 3005,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 2 Stream flow area = 0,230(Ac,) Runoff from this stream = 0,896(CFS) Time of concentration = 3,53 min. Rainfall intensity = 4.479(ln/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 2,336 0,896 1,000 * 0.732 * 1.000 * 1,000 * 8,11 3,53 1,000 * 1,000 * 0.435 * 1,000 * 3,279 4,479 2,336) + 0,896) + 2,336) + 0.896) + Page 7 2.992 1,913 ecr3ulO Total of 2 streams to confluence: Flow rates before confluence point: 2,336 0,896 Maximum flow rates at confluence using above data: 2,992 1,913 Area of streams before confluence: 1,250 0,230 Results of confluence: Total flow rate = 2,992(CFS) Time of concentration = 8,110 min. Effective stream area after confluence = l,480(Ac,) -^•^++++-^-+-^+-f•f++•f+-^++•^-+•^-^-^•^•^++-(-++-l-+++•^-^-f-f-^+++•f-f++•f Process from Point/Station 3005,000 to Point/Station 3007,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 0,0150 0.0150 Top of Street segment elevation = 82.200(Ft,) End of street segment elevation = 80,200(Ft,) Length of street segment = 180,000(Ft,) Height of curb above gutter flowline = 6,0(ln.) width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street Depth of flow = 0.266(Ft,), Average velocity = Streetflow hydraulics at midpoint or street travel Halfstreet flow width = 8,569(Ft.) Flow velocity = 2,ll(Ft/s) Travel time = 1,42 min. TC = 9,53 min. Adding area flow to street Rainfall intensity (I) = 2,955(in/Hr) for a user specified 'C value of 0,790 given for subarea Rainfall intensity = 2,955(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,654 CA = 1,236 Subarea runoff = 0.662(CFS) for 0,410(Ac,) Total runoff = 3,654(CFS) Total area = l,890(Ac,) Street flow at end of street = 3,654(CFS) Half street flow at end of street = 1.827(CFS) Depth of flow = 0,271(Ft,), Average velocity = 2.149(Ft/s) Flow width (from curb towards crown)= 8,825(Ft,) 3.407(CFS) 2,114(Ft/s) 10.0 year storm Process from Point/Station 3007,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 3003.100 upstream point/station elevation = Downstream point/station elevation = Pipe length = 58.76(Ft,) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 18,00(ln,) Page 8 73,640(Ft,) 73,050(Ft,) 0.0100 Manning's N = 0,013 3,654(CFS) ecr3ulO Calculated individual pipe flow = 3,654(CFS) Normal flow depth in pipe = 7,32(in,) Flow top width inside pipe = 17,68(In.) Critical Depth = 8,76(ln,) Pipe flow velocity = 5.42(Ft/s) Travel time through pipe = 0,18 min. Time of concentration (TC) = 9.71 min. -f-^+++-^++•l-++•^-^+++++++++-^++-^•^•l-•l•-^-f-^++•^-^-^-f-^-^+++•^•^ Process from Point/Station 3003,100 to Point/Station 3003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 72,720(Ft.) Downstream point/station elevation = 71.320(Ft,) Pipe length = 37,00(Ft.) Slope = 0,0378 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 3.654(CFS) Given pipe size = 18,00(ln.) Calculated individual pipe flow = 3,654(CFS) Normal flow depth in pipe = 5,15(in,) Flow top width inside pipe = 16,27(in,) Critical Depth = 8,76(ln.) Pipe flow velocity = 8.75(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 9,78 min, -f++-f+++++-f-f+++-f+-f+++-f+-f+-f-f-f+-f-f++-f++++-f+-l-+4-4--f++++-H Process from Point/Station 3003,000 to Point/Station 3003,000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1,890(Ac) Runoff from this stream = 3.654(CFS) Time of concentration = 9,78 min. Rainfall intensity = 2,906(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO, (CFS) (min) (in/Hr) Qmax(l) = Qmax(2) = 99,460 15.18 2.188 3,654 9.78 2,906 1.000 * 1,000 * 99.460) + 0.753 * 1.000 * 3,654) -i- = 102,212 1,000 * 0,644 * 99,460) + 1,000 * 1,000 * 3.654) + = 67,738 Total of 2 main streams to confluence: Flow rates before confluence point: 99,460 3.654 Maximum flow rates at confluence using above data: 102,212 67,738 Area of streams before confluence: 55,500 1,890 Results of confluence: Total flow rate = 102,212(CFS) Page 9 ecr3ulO Time of concentration = 15.178 min. Effective stream area after confluence = 57,390(Ac,) -f-f+++-f+-(-++-f-f+-f-f+-f4--f+++++++-l-+-f-f-f+++-l-+++-t-++++++++++ Process from Point/Station 3003,000 to Point/Station 3010,000 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 68,820(Ft,) Downstream point/station elevation = 65,980(Ft.) Pipe length = 147,97(Ft,) Slope = 0,0192 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 102.212(CFS) Given pipe size = 48,00(ln,) Calculated individual pipe flow = 102,212(CFS) Normal flow depth in pipe = 24.38(in,) Flow top width inside pipe = 47.99(in,) Critical Depth = 36.75(in,) Pipe flow velocity = 15.94(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 15,33 min, -f-f-f-H+-f-f-h-f+-f++++++-f-f-f-f+-f++-f++-t-++++-(--(-+++-l-+-f-f++^ Process from Point/Station 3010,000 to Point/Station 3010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 57.390(Ac) Runoff from this stream = 102,212(CFS) Time of concentration = 15.33 min. Rainfall intensity = 2.174(in/Hr) ++-^+•^++-^+++-^+-l-+•f-^+-^•f•f-^•^•^++++-^+-f-l-•^-^-f-^-f-f•f+-l-+-f+-f++ Process from Point/Station 3008.000 to Point/Station 3009.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type 3 (General industrial ) Impervious value, Ai = 0,950 Sub-Area c value = 0.870 Initial subarea total flow distance = 285.000(Ft,) Highest elevation = 84,200(Ft.) Lowest elevation = 78,400(Ft,) Elevation difference = 5,800(Ft,) Slope = 2,035 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 2.04 %, in a development type of General Industrial In Accordance with Figure 3-3 Initial Area Time of concentration = 2,73 minutes TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,8700)*( 70,OOOA,5)/( 2,035A(l/3)3= 2,73 The initial area total distance of 285,00 (Ft,) entered leaves a remaining distance of 215,00 (Ft,) Using Figure 3-4, the travel time for this distance is 2,19 minutes for a distance of 215,00 (Ft.) and a slope of 2,04 % with an elevation difference of 4,38(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) Page 10 ecr3ulO 2,187 Minutes Tt=[(ll,9*0,0407A3)/( 4,38)3A,385= 2.19 . Total initial area Ti = 2,73 minutes from Figure 3-3 formula plus 2,19 minutes from the Figure 3-4 formula = 4,92 minutes Calculated TC of 4,920 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,870 Subarea runoff = 1.676(CFS) Total initial stream area = 0.430(Ac) Process from Point/Station **** SUBAREA FLOW ADDITION **** 4008,000 to Point/Station 3009,000 Calculated TC of 4,920 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations 4.479(in/Hr) for a 0.000 0,000 0,000 1,000 3 Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) impervious value, Ai = 0,000 Sub-Area C value =0,350 Time of concentration = 4,92 min. Rainfall intensity = 4,479(in/Hr) for a Effective runoff coefficient used for total area (Q=KCIA) is C = 0,694 CA = 0,451 subarea runoff = 0.345(CFS) for 0.220(Ac) 10,0 year storm 10,0 year storm Total runoff = 2,021(CFS) Total area = 0,650(Ac,) Process from point/station 3009,000 to Point/Station **** PIPEFLOW TRAVEL TIME (user specified size) **** 3010,000 61.340(Ft,) 60,650(Ft,) 0,0201 Manning's 2,021(CFS) upstream point/station elevation = Downstream point/station elevation = Pipe length = 34,25(Ft,) Slope = No, of pipes = 1 Required pipe flow = Given pipe size = 18,00(in.) calculated individual pipe flow = 2.021(CFS) Normal flow depth in pipe = 4,48(in,) Flow top width inside pipe = 15,56(in,) critical Depth = 6,43(in,) Pipe flow velocity = 5,89(Ft/s) Travel time through pipe = 0,10 min. Time of concentration (TC) = 5,02 min. N = 0.013 Process from Point/Station 3010.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 3010.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,650(Ac,) Runoff from this stream = 2,021(CFS) Time of concentration = 5.02 min. Rainfall intensity = 4,469(ln/Hr) Summary of stream data: Page ll ecr3ulO Stream NO. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 2 Qmax(l) = 102.212 021 15.33 5,02 Qmax(2) = 1.000 * 0.486 * 1,000 * 1,000 * 000 000 0,327 * 1.000 * 2,174 4,469 102.212) -I- 2.021) + 102.212) + 2.021) + 103.195 35.463 Total of 2 streams to confluence: Flow rates before confluence point: 102.212 2.021 Maximum flow rates at confluence using above data: 103.195 35.463 Area of streams before confluence: 57.390 0.650 Results of confluence: Total flow rate = 103,195(CFS) Time of concentration = 15,333 min. Effective stream area after confluence = 58.040(Ac,) Process from Point/Station 3010,000 to Point/Station **** PIPEFLOW TRAVEL TIME (user specified size) **** 4000,000 upstream point/station elevation = Downstream point/station elevation = Pipe length = 196.00(Ft.) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 48,00(ln,) calculated individual pipe flow = Normal flow depth in pipe = 24,14(in,) Flow top width inside pipe = 48.00(ln,) critical Depth = 36.94(ln,) Pipe flow velocity = 16,29(Ft/s) Travel time through pipe = 0,20 min. Time of concentration (TC) = 15,53 min 65,650(Ft,) 61.690(Ft.) 0.0202 Manning's N = 0.013 = 103,195(CFS) 103,195(CFS) Process from Point/Station 4000,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 4000,000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 58,040(Ac) Runoff from this stream = 103.195(CFS) Time of concentration = 15,53 min. Rainfall intensity = 2,156(ln/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 4001,000 to Point/Station **** INITIAL AREA EVALUATION **** 4002.000 Decimal fraction soil group A = 0,000 Page 12 ecr3ulO Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL 3 (7,3 DU/A or Less ) Impervious value, Ai = 0,400 Sub-Area C value = 0,570 initial subarea total flow distance = 180,000(Ft,) Highest elevation = 91,800(Ft,) Lowest elevation = 90,000(Ft,) Elevation difference = l,800(Ft,) Slope = 1,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65,00 (Ft) for the top area slope value of 1,00 %, in a development type of 7,3 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of concentration = 7,69 minutes TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [l,8*(l.l-0,5700)*( 65,OOOA.5)/( l,OOOA(l/3)3= 7,69 The initial area total distance of 180.00 (Ft.) entered leaves a remaining distance of 115.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.78 minutes for a distance of 115.00 (Ft.) and a slope of 1.00 % with an elevation difference of 1.15(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 1.776 Minutes Tt=[(ll,9*0,0218A3)/( 1.15)3A,385= 1.78 Total initial area Ti = 7,69 minutes from Figure 3-3 formula plus 1,78 minutes from the Figure 3-4 formula = 9.47 minutes Rainfall intensity (i) = 2,967(in/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,570 Subarea runoff = 0,507(CFS) Total initial stream area = 0,300(Ac,) ++-^++-^+++-l--^•+++-f++•f+-^+-(--f^•+•^+-^-f++•f+-f-^-++•l-+•f+-f++++^--^ Process from Point/Station 4002,000 to Point/Station 4003,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 90,000(Ft,) End of street segment elevation = 84,900(Ft,) Length of street segment = 450.000(Ft.) Height of curb above gutter flowline = 6.0(in,) Width of half street (curb to crown) = 16.000(Ft,) Distance from crown to crossfall grade break = 14.500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 5,500(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = 2,000(ln,) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0,287(Ft,), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7,510(Ft.) Flow velocity = 2,04(Ft/s) Travel time = 3.67 min, TC = 13,13 min. Adding area flow to street Rainfall intensity (I) = 2,402(in/Hr) for a 10,0 year storm Page 13 2,725(CFS) 2,045(Ft/s) Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil qroup D ecr3ulO = 0,000 = 0.000 = 0.000 = 1,000 group _ [MEDIUM DENSITY RESIDENTIAL 3 (7,3 DU/A or Less ) Impervious value, Ai = 0,400 Sub-Area C value = 0.570 ^ ^ ^ Rainfall intensity = 2.402(in/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,570 CA = 1.995 subarea runoff = 4.285(CFS) for 3.200(Ac.) Total runoff = 4,793(CFS) Total area = 3.500(Ac,) Street flow at end of street = 4.793(CFS) Half street flow at end of street = 2,396(CFS) Depth of flow = 0,329(Ft,), Average velocity = 2,323(Ft/s) Flow width (from curb towards crown)= 9.639(Ft,) Process from Point/Station 4003,000 to Point/Station 4004,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 70,00(Ft,) Slope = No, of pipes = 1 Required pipe flow = Given pipe size = 18,00(in,) Calculated individual pipe flow = 4,793(CFS) Normal flow depth in pipe = 3,72(in,) Flow top width inside pipe = 14,58(in,) critical Depth = 10,10(in.) Pipe flow velocity = 18,17(Ft/s) Travel time through pipe = 0,06 min. Time of concentration (TC) = 13,20 min. 81,400(Ft,) 64,770(Ft,) 0,2376 Manning's N = 0,013 4,793(CFS) Process from Point/Station 4003,000 to Point/Station 4004,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3,500(Ac) Runoff from this stream = 4,793(CFS) Time of concentration = 13,20 min. Rainfall intensity = 2.395(in/Hr) Process from Point/Station 4005,000 to Point/Station **** INITIAL AREA EVALUATION **** 4006,000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL (43.0 DU/A or Less ) Impervious value, Ai = 0.800 Sub-Area C Value = 0,790 initial subarea total flow distance = Highest elevation = 82,600(Ft,) Lowest elevation = 70,800(Ft,) Page 14 430,000(Ft.) ecr3ulO Elevation difference = 11.800(Ft.) Slope = 2.744 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 2,74 %, in a development type of 43,0 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 3,67 minutes TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,7900)*( 85.000A.5)/( 2,744A(l/3)3= 3,67 The initial area total distance of 430,00 (Ft,) entered leaves a remaining distance of 345.00 (Ft,) Using Figure 3-4, the travel time for this distance is 2,81 minutes for a distance of 345.00 (Ft.) and a slope of 2,74 % with an elevation difference of 9.47(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 2,805 Minutes Tt=[(ll,9*0,0653A3)/( 9,47)3A.385= 2,81 Total initial area Ti = 3.67 minutes from Figure 3-3 formula plus 2.81 minutes from the Figure 3-4 formula = 6,48 minutes Rainfall intensity (I) = 3,789(in/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 2.275(CFS) Total initial stream area = 0,760(Ac,) ^-•f+-^-f-^-^-^-^-+-f-^-++-^++-^-^++-^-^-^-^-^-^•f+-^+-l-•f+•^•f•f•^-^•^++•f+++ Process from point/Station 4006,000 to Point/Station 4004,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 8,03(Ft,) Slope = No, of pipes = 1 Required pipe flow = Given pipe size = 18,00(ln,) Calculated individual pipe flow = 2,275(CFS) Normal flow depth in pipe = 5,37(in,) Flow top width inside pipe = 16.47(in,) critical Depth = 6,83(ln,) Pipe flow velocity = 5,13(Ft/s) Travel time through pipe = 0,03 min. Time of concentration (TC) = 6.51 min. 64,890(Ft,) 64,790(Ft,) 0.0125 Manning's N = 0.013 2.275(CFS) ++++•(-+-^+-l--^•-l-+-l-+-f++-^-l•+-^+•f•f-f•^+++-l--^•f++-^-^+-f+-f•f•^+++ Process from Point/Station 4006,000 to Point/Station 4004,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,760(Ac,) Runoff from this stream = 2.275(CFS) Time of concentration = 6.51 min. Rainfall intensity = 3.780(in/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (mi n) Rainfall intensity (in/Hr) 1 2 Qmax(l) 4.793 2.275 1.000 * 0.634 * 13.20 6,51 1,000 * 1,000 * 4.793) 2,275) Page 15 2. 3. + + 395 780 6.234 ecr3ulO Qmax(2) = 1,000 * 0,493 * 4,793) -f 1,000 * 1.000 * 2,275) + = 4,637 Total of 2 streams to confluence: Flow rates before confluence point: 4,793 2.275 Maximum flow rates at confluence using above data: 6,234 4,637 Area of streams before confluence: 3.500 0.760 Results of confluence: Total flow rate = 6.234(CFS) Time of concentration = 13,199 min. Effective stream area after confluence = 4,260(Ac) ++-^•f+-^•f-f+-^+-^•f+-^+++-^++-^-l-++-^-^•f-^•+++++-^•f+++++•^-f++++-f Process from Point/Station 4004,000 to Point/Station 4000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64,230(Ft,) Downstream point/station elevation = 63.360(Ft,) Pipe length = 86,50(Ft,) Slope = 0.0101 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6,234(CFS) Given pipe size = 24,00(ln,) Calculated individual pipe flow = 6,234(CFS) Normal flow depth in pipe = 8,60(in,) Flow top width inside pipe = 23,02(in,) Critical Depth = 10.59(ln,) Pipe flow velocity = 6,16(Ft/s) Travel time through pipe = 0,23 min. Time of concentration (TC) = 13.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 4000.000 to Point/Station 4000,000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: in Main Stream number: 2 Stream flow area = 4,260(Ac,) Runoff from this stream = 6,234(CFS) Time of concentration = 13,43 min. Rainfall intensity = 2,368(ln/Hr) Program is now starting with Main stream No, 3 +-f-f-f-f4--t--h+++-(-+-|-+++-h-f-l--l--l-++-f-f+++++-l--f+++-f++-f-f+++-f+ Process from Point/Station 4008,000 to Point/Station 4009,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Initial subarea total flow distance = 150.000(Ft,) Highest elevation = 114,800(Ft.) Lowest elevation = 100.400(Ft.) Page 16 ecr3ulO Elevation difference = 14,400(Ft,) Slope = 9.600 % Top of initial Area slope adjusted by user to 30.000 % Bottom of Initial Area slope adjusted by user to 2,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4,34 minutes TC = [1.8*(l.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.3500)*( 100,000A,5)/( 30,OOOA(l/3)3= 4.34 The initial area total distance of 150.00 (Ft.) entered leaves a remaining distance of 50.00 (Ft.) using Figure 3-4, the travel time for this distance is 0,72 minutes for a distance of 50,00 (Ft,) and a slope of 2,00 % with an elevation difference of l,00(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0,716 Minutes Tt=[(ll,9*0,0095A3)/( 1,00)3A,385= 0,72 Total initial area Ti = 4,34 minutes from Figure 3-3 formula plus 0.72 minutes from the Figure 3-4 formula = 5,06 minutes Rainfall intensity (l) = 4,444(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0,140(CFS) Total initial stream area = 0,090(Ac) -f+-f-l--f4--f+-(--f++++++-l-+++-f-f-+-f-f-l-+++-f+++-f++-f+4-+-t-++-f-f-l-+ Process from Point/Station 4009.000 to Point/Station 4010.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 99.400(Ft.) Downstream point elevation = 89.100(Ft,) Channel length thru subarea = 320.000(Ft,) Channel base width = 0,000(Ft,) Slope or 'z' of left channel bank = 1,500 Slope or 'Z' of right channel bank = 1,500 Estimated mean flow rate at midpoint of channel = 0,397(CFS) Manning's 'N' = 0,015 Maximum depth of channel = l,000(Ft.) Flow(q) thru subarea = 0.397(CFS) Depth of flow = 0,257(Ft.), Average velocity = 4.004(Ft/s) Channel flow top width = 0.771(Ft,) Flow velocity = 4,00(Ft/s) Travel time = 1.33 min. Time of concentration = 6,39 min, critical depth = 0.336(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.823(ln/Hr) for a 10,0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 Rainfall intensity = 3,823(In/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,147 Subarea runoff = 0.422(CFS) for 0.330(Ac,) Total runoff = 0,562(CFS) Total area = 0,420(Ac.) Depth of flow = 0.293(Ft.), Average velocity = 4,368(Ft/s) Page 17 ecr3ulO critical depth = 0.387(Ft.) Process from Point/Station 4009.000 to Point/Station 4010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.420(Ac) Runoff from this stream = 0,562(CFS) Time of concentration = 6,39 min. Rainfall intensity = 3.823(ln/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 4011,000 to Point/Station 4010,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) impervious value, Ai = 0,000 Sub-Area C value = 0.350 Initial subarea total flow distance = 290,000(Ft.) Highest elevation = 99,000(Ft,) Lowest elevation = 89,100(Ft,) Elevation difference = 9,900(Ft,) Slope = 3,414 % Top of initial Area Slope adjusted by user to 30,000 % Bottom of Initial Area Slope adjusted by user to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open space In Accordance with Figure 3-3 Initial Area Time of Concentration = 4,34 minutes TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,3500)*( 100,000A.5)/( 30.000A(l/3)]= 4.34 The initial area total distance of 290,00 (Ft,) entered leaves a remaining distance of 190.00 (Ft,) Using Figure 3-4, the travel time for this distance is 2,00 minutes for a distance of 190.00 (Ft.) and a slope of 2.00 % with an elevation difference of 3,80(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 2,001 Minutes Tt=[(11.9*0.0360A3)/( 3.80)3A,385= 2,00 Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus 2.00 minutes from the Figure 3-4 formula = 6.35 minutes Rainfall intensity (I) = 3,841(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,323(CFS) Total initial stream area = 0,240(Ac,) -^--f•f+•f-^++-^++•f-^--l-+-l--f-^-f--f+-f•f-f-^+•^+-^-^+•f•f•f++-l--f++-^+•^++ Process from Point/Station 4011.000 to Point/Station 4010,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.240(Ac.) Runoff from this stream = 0,323(CFS) Page 18 ecr3ulO Time of concentration = 6.35 min. Rainfall intensity = 3,841(ln/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity NO, (CFS) (min) (in/Hr) 1 0,562 6,39 3,823 2 0,323 6,35 3,841 Qmax(l) Qmax(2) = 1,000 * 1.000 * 0,562) + 0,995 * 1,000 * 0,323) + = 0,883 1,000 * 0,993 * 0,562) -i- 1,000 * 1,000 * 0,323) + = 0,880 Total of 2 streams to confluence: Flow rates before confluence point: 0.562 0,323 Maximum flow rates at confluence using above data: 0.883 0,880 Area of streams before confluence: 0.420 0.240 Results of confluence: Total flow rate = 0,883(CFS) Time of concentration = 6,393 min. Effective stream area after confluence = 0,660(Ac,) Process from Point/Station 4010,000 to Point/Station 4010.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 84.000(Ft,) Downstream point/station elevation = 65,690(Ft,) Pipe length = 25,00(Ft,) Slope = 0,7324 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0,883(CFS) Given pipe size = 18.00(ln,) Calculated individual pipe flow = 0,883(CFS) Normal flow depth in pipe = 1,26(in,) Flow top width inside pipe = 9.19(In,) Critical Depth = 4,19(in,) Pipe flow velocity = 16,25(Ft/s) Travel time through pipe = 0,03 min. Time of concentration (TC) = 6.42 min, +-f-f+-f-»-++-H+-f+-f+-H+++++++++4-+-f-l--f-l-++++++++++-f-l-+++-H-f Process from Point/Station 4010.100 to Point/Station 4010,100 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 3.813(in/Hr) for a 10.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent open Space ) Impervious value, Ai = 0,000 Sub-Area C Value = 0,350 Time of concentration = 6.42 min. Rainfall intensity = 3,813(In/Hr) for a 10.0 year storm Page 19 ecr3ulO Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,392 subarea runoff = 0,612(CFS) for 0,460(Ac,) Total runoff = 1,495(CFS) Total area = l,120(Ac,) Process from Point/Station 4010,100 to Point/Station 4000.000 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = Downstream point/station elevation = Pipe length = 30,00(Ft,) Slope = No, of pipes = 1 Required pipe flow Given pipe size = 18.00(in.) calculated individual pipe flow = 1.495(CFS) Normal flow depth in pipe = 3.08(in,) Flow top width inside pipe = 13,55(in,) Critical Depth = 5,50(ln,) Pipe flow velocity = 7,44(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 6,49 min. 65,360(Ft,) 63.860(Ft,) 0,0500 Manning's N = 0,013 1,495(CFS) Process from Point/Station 4000,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 4000,000 The following data inside Main Stream is listed: In Main stream number: 3 Stream flow area = l,120(Ac,) Runoff from this stream = 1.495(CFS) Time of concentration = 6.49 min. Rainfall intensity = 3.787(in/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 3 1 Qmax(l) = 103,195 6,234 Qmax(2) = Qmax(3) = 495 15,53 13.43 6,49 1 000 * 1.000 * 0 911 * 1.000 * 0 569 * 1.000 * 1 000 * 0,865 * 1 000 * 1,000 * 0 625 * 1,000 * 1 000 * 0,418 * 1 000 * 0.483 * 1 000 * 1.000 * 2,156 2,368 3,787 103,195) -I- 6.234) -I- 1.495) + 103,195) + 6,234) + 1,495) + 103,195) -f 6,234) + 1,495) + 109,722 96,408 47,591 Total of 3 main streams to confluence: Flow rates before confluence point: 103,195 6,234 1,495 Maximum flow rates at confluence using above data: 109,722 96.408 47.591 Area of streams before confluence: 58,040 4,260 1.120 Page 20 ecr3ulO Results of confluence: Total flow rate = 109.722(CFS) Time of concentration = 15,534 min. Effective stream area after confluence 63,420(Ac,) Process from Point/Station 4000.000 to Point/Station 4011,300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 90.49(Ft.) Slope = No, of pipes = 1 Required pipe flow Given pipe size = 48.00(in,) Calculated individual pipe flow = Normal flow depth in pipe = 21,00(ln,) Flow top width inside pipe = 47,62(In,) critical Depth = 37.99(ln,) Pipe flow velocity = 20,78(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 15,61 min. 61.360(Ft.) 57,990(Ft.) 0,0372 Manning's N = 0,013 = 109,722(CFS) 109,722(CFS) +++++++++++++++++++++++4.++++++++-l--^++-f-^-^-f+.f+++++^•-^^•+-f+-^++ Process from Point/Station 4011.300 to Point/Station 4011,300 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 63.420(Ac) Runoff from this stream = 109.722(CFS) Time of concentration = 15.61 min. Rainfall intensity = 2.150(in/Hr) 3 170.000(Ft,) +++++++++-l-•^-^4--^-^•f•f++++-^+•f+++++-^+-f+++4•++-l-++++++-f-^-^+ Process from Point/Station 4011.100 to Point/Station 4011.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Initial subarea total flow distance = Highest elevation = 90,000(Ft.) Lowest elevation = 67,800(Ft,) Elevation difference = 22,200(Ft.) Slope = 13,059 % Top of initial Area Slope adjusted by User to 25,000 % Bottom of initial Area Slope adjusted by user to 25.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 25.00 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of concentration = 4.62 minutes TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0,350O)*( 100.000A,5)/( 25,000A(1/3)3= 4,62 Page 21 ecr3ulO The initial area total distance of 170.00 (Ft,) entered leaves a remaining distance of 70.00 (Ft.) using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 70.00 (Ft.) and a slope of 25.00 % with an elevation difference of 17.50(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A.385 *60(min/hr) 0.351 Minutes Tt=[(11.9*0.0133A3)/( 17.50)3A.385= 0,35 Total initial area Ti = 4.62 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 4.97 minutes Calculated TC of 4.968 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(in/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.298(CFS) Total initial stream area = 0,190(Ac,) +++++++++++++++++++-(.+-^-t.4--t--fH-+-f+-f++++++-(--|--f++H-++-f-f-^^ Process from Point/Station 4011,200 to Point/Station 4011,300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60,000(Ft.) Downstream point/station elevation = 59.240(Ft.) Pipe length = 13.72(Ft.) Slope = 0,0554 Manninq's N = 0.013 NO. of pipes = 1 Required pipe flow = 0,298(CFS) Given pipe size = 18,00(in,) Calculated individual pipe flow = 0,298(CFS) Normal flow depth in pipe = 1.39(ln,) Flow top width inside pipe = 9,60(ln,) Critical Depth = 2,40(ln.) Pipe flow velocity = 4.75(Ft/s) Travel time through pipe = 0,05 min. Time of concentration (TC) = 5,02 min. Process from Point/Station 4011,300 to Point/Station 4011,300 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,190(Ac) Runoff from this stream = 0,298(CFS) Time of concentration = 5.02 min. Rainfall intensity = 4,470(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO. (CFS) (min) (In/Hr) 109,722 15,61 2,150 0.298 5,02 4,470 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 109.722) H- 0,481 * 1,000 * 0,298) + = 109.866 1.000 * 0.321 * 109,722) + 1,000 * 1,000 * 0,298) + = 35,563 Total of 2 streams to confluence: Flow rates before confluence point: 109,722 0,298 Page 22 ecr3ulO Maximum flow rates at confluence using above data: 109,866 35,563 Area of streams before confluence: 63,420 0,190 Results of confluence: Total flow rate = 109,866(CFS) Time of concentration = 15.606 min. Effective stream area after confluence = 63,610(Ac) +++-f++++++-f4--f++-f+-f+-f-f+-l-+-f-f+++-f+++-f-H+-l--f-f-f+-f++-l--l--f+ Process from Point/Station 4011.300 to Point/Station 5000,000 **** PIPEFLOW TRAN/EL TIME (User specified size) **** Upstream point/station elevation = 57,990(Ft,) Downstream point/station elevation = 47.160(Ft,) Pipe length = 290,51(Ft,) Slope = 0.0373 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 109,866(CFS) Given pipe size = 48,00(in,) Calculated individual pipe flow = 109,866(CFS) Normal flow depth in pipe = 21,00(ln,) Flow top width inside pipe = 47.62(In,) Critical Depth = 38,03(in.) Pipe flow velocity = 20,79(Ft/s) Travel time through pipe = 0,23 min. Time of concentration (TC) = 15,84 min, •f-^-t-•^+-l-++-l--^-^-^-^-^-l-++-^--f+-^-^•^++++^••^+•f-^-^-f+-^+•^•f++++++-^ Process from Point/station 5000,000 to Point/Station 5000,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 1 Stream i^low area = 63,610(Ac) Runoff from this stream = 109,866(CFS) Time of concentration = 15,84 min. Rainfall intensity = 2,129(in/Hr) Process from Point/Station 5001,000 to Point/Station 5002,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL 3 (43,0 DU/A or Less ) Impervious value, Ai = 0,800 Sub-Area C value = 0.790 Initial subarea total flow distance = 423.000(Ft,) Highest elevation = 73,800(Ft,) Lowest elevation = 58.400(Ft.) Elevation difference = 15.400(Ft,) Slope = 3,641 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 3,64 %, in a development type of 43,0 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 3,34 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l.l-0,7900)*( 85,OOOA.5)/( 3,641A(l/3)3= 3,34 Page 23 ecr3ulO The initial area total distance of 423,00 (Ft,) entered leaves a remaining distance of 338,00 (Ft,) Using Figure 3-4, the travel time for this distance is 2,48 minutes for a distance of 338,00 (Ft,) and a slope of 3,64 % with an elevation difference of 12,31(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 2.476 Minutes Tt=[(ll,9*0,0640A3)/( 12,31)3A,385= 2.48 Total initial area Ti = 3.34 minutes from Figure 3-3 formula plus 2,48 minutes from the Figure 3-4 formula = 5,82 minutes Rainfall intensity (l) = 4,061(in/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 Subarea runoff = 1.668(CFS) Total initial stream area = 0.520(Ac,) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 5002,000 to Point/Station 5000,000 **** PIPEFLOW TRAVEL TIME (User Specified size) **** upstream point/station elevation = 48.730(Ft.) Downstream point/station elevation = 46.940(Ft.) Pipe length = 99,73(Ft,) Slope = 0,0179 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 1,668(CFS) Given pipe size = 18,00(ln.) Calculated individual pipe flow = 1.668(CFS) Normal flow depth in pipe = 4.18(In,) Flow top width inside pipe = 15,21(ln,) Critical Depth = 5,82(in.) Pipe flow velocity = 5.35(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 6,13 min, -|-++-f-K4--f+-H+-f+-h-l--f+-f-f-f+++++-f+++++-f+-f-f-f-f-f-f-f-f-l-+++-f++-^ Process from Point/Station 5000,000 to Point/Station 5000.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,520(Ac.) Runoff from this stream = 1,668(CFS) Time of concentration = 6,13 min. Rainfall intensity = 3,927(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity No. (CFS) (min) (in/Hr) 1 109,866 15.84 2,129 2 1,668 6,13 3,927 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 109,866) + 0,542 * 1.000 * 1,668) + = 110,770 1.000 * 0.387 * 109,866) + 1,000 * 1,000 * 1,668) + = 44,194 Total of 2 streams to confluence: Flow rates before confluence point: 109,866 1,668 Maximum flow rates at confluence using above data: 110,770 44,194 Page 24 ecr3ulO Area of streams before confluence: 63,610 0.520 Results of confluence: Total flow rate = 110.770(CFS) Time of concentration = 15,839 min. Effective stream area after confluence = 64,130(Ac,) Process from Point/Station 5000.000 to Point/Station 5000,200 **** PIPEFLOW TRAVEL TIME (user specified size) **** upstream point/station elevation = 46,610(Ft.) Downstream point/station elevation = 46,250(Ft.) Pipe length = 51,56(Ft.) slope = 0.0070 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 110.770(CFS) Given pipe size = 48.00(ln,) Calculated individual pipe flow = 110,770(CFS) Normal flow depth in pipe = 36,38(In,) Flow top width inside pipe = 41.13(In.) Critical Depth = 38,18(in.) Pipe flow velocity = 10.84(Ft/s) Travel time through pipe = 0,08 min. Time of concentration (TC) = 15,92 min. Process from Point/Station 5000,200 to Point/Station 5000,200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: in Main stream number: 1 Stream flow area = 64,130(AC,) Runoff from this stream = 110,770(CFS) Time of concentration = 15,92 min. Rainfall intensity = 2,122(ln/Hr) Program is now starting with Main Stream NO, 2 Process from Point/Station 6005,000 to Point/Station 6006,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) impervious value, Ai = 0,000 sub-Area C value = 0,350 initial subarea total flow distance = 100,000(Ft.) Highest elevation = 133.000(Ft.) Lowest elevation = 118.900(Ft,) Elevation difference = 14,100(Ft.) Slope = 14.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 14,10 %, in a development type of Permanent Open Space in Accordance With Figure 3-3 Initial Area Time of concentration = 5.59 minutes TC = [1.8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [1.8*(l,l-0.3500)*( 100.000A.5)/( 14,100A(l/3)3= 5,59 Page 25 ecr3ulO Rainfall intensity (I) = 4.169(in/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0,190(CFS) Total initial stream area = 0,130(AC,) Process from Point/Station 6006.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 6007,000 0,598(CFS) 4.234(Ft/s) upstream point elevation = 118.900(Ft.) Downstream point elevation = 110,800(Ft,) Channel length thru subarea = 285,000(Ft,) Channel base width = 0.000(Ft,) Slope or 'Z' of left channel bank = 1,500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = l,000(Ft,) Flow(q) thru subarea = 0,598(CFS) Depth of flow = 0,307(Ft.), Average velocity = Channel flow top width = 0,921(Ft,) Flow velocity = 4,23(Ft/s) Travel time = 1.12 min. Time of concentration = 6.71 min. critical depth = 0,398(Ft,) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open space ) Impervious value, Ai = 0,000 sub-Area C value = 0,350 , , . . ^ Rainfall intensity = 3.705(in/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,256 „ , , subarea runoff = 0,757(CFS) for 0,600(Ac,) Total runoff = 0,947(CFS) Total area = 0,730(Ac.) Depth of flow = 0.365(Ft,), Average velocity = 4,749(Ft/s) Critical depth = 0,477(Ft,) 3,705(in/Hr) for a 0.000 0,000 0,000 ,000 3 10,0 year storm = 1, Process from Point/Station 6007,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 6008,000 Upstream point/station elevation = 103.000(Ft.) Downstream point/station elevation = 78,000(Ft.) Pipe length = 68.64(Ft.) Slope = 0.3642 Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 0,947(CFS) Given pipe size = 18,00(ln,) Calculated individual pipe flow = 0.947(CFS) Normal flow depth in pipe = l,54(in,) Flow top width inside pipe = 10,06(In.) Critical Depth = 4,35(In,) Pipe flow velocity = 13,01(Ft/s) Travel time through pipe = 0,09 min. Time of concentration (TC) = 6,80 min. Page 26 ecr3ulO process from Point/Station 6007.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0,730(Ac,) Runoff from this stream = 0.947(CFS) Time of concentration = 6.80 min. Rainfall intensity = 3,674(in/Hr) Process from Point/Station 6009.000 to Point/Station **** INITIAL AREA EVALUATION **** 6010,000 3 105.000(Ft,) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 110.500(Ft.) Lowest elevation = 90.000(Ft.) Elevation difference = 20,500(Ft,) Slope = 19,524 % Top of initial Area Slope adjusted by User to 19,500 % Bottom of initial Area Slope adjusted by user to 19,500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 19,50 %, in a development type of Permanent Open space in Accordance With Figure 3-3 initial Area Time of concentration = 5,02 minutes TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.3500)*( 100.000A,5)/( 19,500A(l/3)3= 5.02 The initial area total distance of 105,00 (Ft.) entered leaves a remaining distance of 5,00 (Ft,) Using Figure 3-4, the travel time for this distance is 0,05 minutes for a distance of 5.00 (Ft.) and a slope of 19.50 % with an elevation difference of 0.97(Ft.) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0.051 Minutes Tt=[(ll,9*0.0009A3)/( 0,97)3A.385= 0.05 Total initial area Ti = 5,02 minutes from Figure 3-3 formula plus 0,05 minutes from the Figure 3-4 formula = 5,07 minutes Rainfall intensity (I) = 4,441(in/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0,171(CFS) Total initial stream area = 0.110(Ac) Process from Point/Station 6010,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 6008.000 Upstream point elevation = 90,000(Ft,) Downstream point elevation = 84,000(Ft,) Channel length thru subarea = 230,000(Ft,) channel base width = 0,000(Ft,) Slope or 'Z' of left channel bank = 1,500 Slope or 'Z' of right channel bank = 1.500 Page 27 ecr3ulO Estimated mean flow rate at midpoint of channel = 0.552(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.552(CFS) Depth of flow = 0.303(Ft.), Average velocity = 4,019(Ft/s) Channel flow top width = 0.908(Ft,) Flow velocity = 4,02(Ft/s) Travel time = 0,95 min. Time of concentration = 6.02 min. Critical depth = 0.385(Ft.) Adding area flow to channel 3 A B C D .974(ln/Hr) for a 0.000 0.000 0,000 1,000 3 10,0 year storm Rainfall intensity (I) = Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0.350 Rainfall intensity = 3.974(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.210 subarea runoff = 0,663(CFS) for 0.490(Ac.) Total runoff = 0,834(CFS) Total area = 0,600(Ac,) Depth of flow = 0.353(Ft.), Average velocity = 4.456(Ft/s) critical depth = 0.453(Ft.) Process from Point/Station 6010,000 to Point/Station 6008.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.600(Ac) Runoff from this stream = 0,834(CFS) Time of concentration = 6.02 min. Rainfall intensity = 3,974(in/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) Qmax(2) = 0.947 0,834 1,000 0,925 1,000 1,000 .80 .02 1 1 .000 .000 0.886 * 1,000 * 3,674 3,974 0.947) + 0.834) -t- 0,947) + 0,834) + 1,718 1,673 Total of 2 streams to confluence: Flow rates before confluence point: 0.947 0,834 Maximum flow rates at confluence using above data: 1,718 1.673 Area of streams before confluence: 0.730 0,600 Results of confluence: Total flow rate = 1,718(CFS) Time of concentration = 6.798 min. Page 28 ecr3ulO Effective stream area after confluence = l,330(Ac,) Process from Point/Station 6008.000 to Point/Station 5000,200 **** PIPEFLOW TRAVEL TIME (user specified size) **** Upstream point/station elevation = 75,000(Ft,) Downstream point/station elevation = 47,720(Ft,) Pipe length = 76.80(Ft.) Slope = 0,3552 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1,718(CFS) Given pipe size = 18.00(ln,) Calculated individual pipe flow = 1,718(CFS) Normal flow depth in pipe = 2.05(In,) Flow top width inside pipe = 11,44(In,) critical Depth = 5,91(ln,) Pipe flow velocity = 15.43(Ft/s) Travel time through pipe = 0,08 min. Time of concentration (TC) = 6,88 min. Process from Point/Station 5000,200 to Point/Station 5000,200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: in Main Stream number: 2 stream flow area = l,330(Ac,) Runoff from this stream = 1,718(CFS) Time of concentration = 6.88 min. Rainfall intensity = 3,645(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO, (CFS) (min) (in/Hr) 1 110.770 15.92 2,122 2 1,718 6,88 3,645 Qmax(l) = Qmax(2) = 1,000 * 1,000 * 110,770) + 0,582 * 1,000 * 1,718) + = 111,770 1,000 * 0,432 * 110.770) + 1,000 * 1,000 * 1,718) + = 49,598 Total of 2 main streams to confluence: Flow rates before confluence point: 110.770 1.718 Maximum flow rates at confluence using above data: 111,770 49,598 Area of streams before confluence: 64,130 1.330 Results of confluence: Total flow rate = 111.770(CFS) Time of concentration = 15,918 min. Effective stream area after confluence = 65,460(Ac,) process from Point/Station 5000.200 to Point/Station 5000,100 Page 29 ecr3ulO **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 46,250(Ft.) Downstream point/station elevation = 45,360(Ft.) Pipe length = 128,90(Ft,) Slope = 0,0069 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 111,770(CFS) Given pipe size = 48.00(in,) Calculated individual pipe flow = 111,770(CFS) Normal flow depth in pipe = 36,84(ln.) Flow top width inside pipe = 40,55(In,) critical Depth = 38,33(in,) Pipe flow velocity = 10.80(Ft/s) Travel time through pipe = 0,20 min. Time of concentration (TC) = 16.12 min. -f-f-f-f--f-f+-f+-f-|-+-f+-(-+-f++-(--f-l--f-f-t--f++-H-(-+-f-f+-f+++-f-f+-f++-f-f^^ Process from Point/Station 5000,100 to Point/Station 5000.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 65,460(Ac,) Runoff from this stream = 111,770(CFS) Time of concentration = 16,12 min. Rainfall intensity = 2.105(ln/Hr) -^-^++-l--^-f-^-^-^-^+•f-^•f+-^+•^+++•f•^+-^-•f-^+•^+•t-++-l-++-f-^-f++•^+•^++-f Process from Point/Station 3009.000 to Point/Station 5003,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (24,0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area c value = 0,710 Initial subarea total flow distance = 110,000(Ft,) Highest elevation = 78,400(Ft,) Lowest elevation = 74.800(Ft,) Elevation difference = 3,600(Ft,) Slope = 3,273 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 3,27 %, in a development type of 24,0 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of Concentration = 4,49 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(1.1-0.7100)*( 90,000A,5)/( 3,273A(l/3)3= 4,49 The initial area total distance of 110,00 (Ft.) entered leaves a remaining distance of 20.00 (Ft,) using Figure 3-4, the travel time for this distance is 0.29 minutes for a distance of 20.00 (Ft,) and a slope of 3.27 % with an elevation difference of 0.65(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) 0,293 Minutes Tt=[(ll,9*0.0038A3)/( 0,65)3A,385= 0,29 Total initial area Ti = 4,49 minutes from Figure 3-3 formula plus 0.29 minutes from the Figure 3-4 formula = 4,78 minutes Calculated TC of 4,778 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Page 30 ecr3ulO Rainfall intensity (I) = 4,479(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.477(CFS) Total initial stream area = 0,150(Ac,) +-|-+++-r-rTT^T I ..... Process from Point/Station 5003,000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 74,800(Ft,) End of street segment elevation = 53,800(Ft,) Length of street segment = 690,000(Ft.) Height of curb above gutter flowline = 6.0(ln,) Width of half street (curb to crown) = 44,000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft,) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(in,) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.189(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 4.694(Ft,) Flow velocity = 2.64(Ft/s) 1,539(CFS) 2,638(Ft/s) TC = 9,14 mi n. 10,0 year storm Travel time = 4,36 min Adding area flow to street Rainfall intensity (I) = user specified 'C value of Rainfall intensity = 3 _ Effective runoff coefficient used for total area (Q=KCIA) is C = 0,675 CA = 0,797 Subarea runoff = 1.941(CFS) for Total runoff = 2,419(CFS) Total Street flow at end of street = 2 Half street flow at end of street = , . - , ^ Depth of flow = 0.213(Ft,), Averaqe velocity = 2.892(Ft/s) Flow width (from curb towards crown)= 5,890(Ft.) 3.036(ln/Hr) for a 0,670 given for subarea 036(in/Hr) for a 10,0 year storm 1.030(Ac.) area = 1.180(Ac.) .419(CFS) 1,209(CFS) Process from Point/Station 5003,000 to Point/Station **** SUBAREA FLOW ADDITION **** 5000,300 C D .036(in/Hr) for a 0,000 0,000 0.000 1.000 3 10.0 year storm Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group Decimal fraction soil group [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value =0,350 Time of concentration = 9,14 min. Rainfall intensity = 3,036(in/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,556 CA = 1.035 Page 31 Subarea runoff = Total runoff = ecr3ulO 0,723(CFS) for 3,141(CFS) Total area = 0.680(Ac) 1.860(AC,) Process from Point/Station 5000,300 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 5000,100 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 3.17(Ft,) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(in.) Calculated individual pipe flow = 3,141(CFS) Normal flow depth in pipe = 5,70(ln,) Flow top width inside pipe = 16,75(In.) Critical Depth = 8.11(ln.) Pipe flow velocity = 6.54(Ft/s) Travel time through pipe = 0,01 min. Time of concentration (TC) = 9.14 min. 46.490(Ft.) 46.430(Ft.) 0.0189 Manning's N = 0.013 3.141(CFS) Process from Point/Station 5000.100 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5000.100 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.860(Ac) Runoff from this stream = 3,141(CFS) Time of concentration = 9.14 min. Rainfall intensity = 3.034(in/Hr) Summary of stream data: Stream NO. Flow rate (CFS) TC (mi n) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 111,770 3.141 16,12 9.14 1,000 * 0.694 * 1,000 * 1,000 * ,000 * ,000 * 0.567 * 1,000 * 2.105 3,034 111.770) + 3,141) + 111,770) -f 3,141) + 113,950 66,559 Total of 2 streams to confluence: Flow rates before confluence point: 111,770 3.141 Maximum flow rates at confluence using above data: 113,950 66.559 Area of streams before confluence: 65,460 1,860 Results of confluence: Total flow rate = 113,950(CFS) Time of concentration = 16,118 min. Effective stream area after confluence = 67,320(Ac) Process from Point/Station 5000.100 to Point/Station **** PIPEFLOW TRAVEL TIME (user Specified size) **** 6000.000 Page 32 ecr3ulO upstream point/station elevation = 45,360(Ft,) Downstream point/station elevation = 43,720(Ft.) Pipe length = 234,39(Ft,) Slope = 0.0070 Manning's N = 0,013 NO. of pipes = 1 Required pipe flow = 113.950(CFS) Given pipe size = 48,00(ln.) calculated individual pipe flow = 113,950(CFS) Normal flow depth in pipe = 37.31(in,) Flow top width inside pipe = 39.94(ln.) critical Depth = 38.66(ln,) Pipe flow velocity = 10,88(Ft/s) Travel time through pipe = 0,36 min. Time of concentration (TC) = 16,48 min. Process from Point/Station 6000,000 to Point/Station 6000,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 67.320(Ac.) Runoff from this stream = 113.950(CFS) Time of concentration = 16,48 min. Rainfall intensity = 2,076(in/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from point/Station 5002,000 to Point/Station 6003.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [HIGH DENSITY RESIDENTIAL 3 (43,0 DU/A or Less ) impervious value, Ai = 0,800 Sub-Area C value = 0,790 Initial subarea total flow distance = 110.000(Ft,) Highest elevation = 58.400(Ft,) Lowest elevation = 56,000(Ft.) Elevation difference = 2,400(Ft.) Slope = 2,182 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 2.18 %, in a development type of 43.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3,73 minutes TC = [l,8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.7900)*( 75,OOOA.5)/( 2,182A(l/3)3= 3.73 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 35.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.53 minutes for a distance of 35,00 (Ft,) and a slope of 2,18 % with an elevation difference of 0,76(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 0.526 Minutes Tt=[(ll,9*0.0066A3)/( 0,76)3A,385= 0,53 Total initial area Ti = 3,73 minutes from Figure 3-3 formula plus 0.53 minutes from the Figure 3-4 formula = 4.25 minutes Calculated TC of 4.252 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (i) = 4.479(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Page 33 ecr3ulO Subarea runoff = 0,778(CFS) Total initial stream area = 0,220(Ac) Process from Point/Station 6003.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 6004,000 Top of Street segment elevation = 56,000(Ft,) End of street segment elevation = 53.400(Ft.) Length of street segment = 322.000(Ft.) Height of curb above gutter flowline = 6.0(in,) width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = l,500(in,) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0,221(Ft,), Averaqe velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6,276(Ft,) Flow velocity = l,53(Ft/s) Travel time = 3.50 min. TC = 7,75 mm. Adding area flow to street Rainfall intensity (i) = 3.376(ln/Hr) for a user specified 'C value of 0,760 given for subarea Rainfall intensity = 3,376(in/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.769 CA = 0.561 ^ ^ Subarea runoff = 1,117(CFS) for 0,510(Ac) Total runoff = 1,895(CFS) Total area = 0,730(Ac.) Street flow at end of street = 1.895(CFS) Half street flow at end of street = 0,948(CFS) Depth of flow = 0.238(Ft.), Average velocity = 1.634(Ft/s) Flow width (from curb towards crown)= 7.133(Ft.) 1.427(CFS) l,534(Ft/s) 10,0 year storm Process from Point/station 6004,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) 6000,000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 49,83(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(ln,) Calculated individual pipe flow = 1,895(CFS) Normal flow depth in pipe = 6,19(In.) Flow top width inside pipe = 17.10(ln.) Critical Depth = 6.22(in,) Pipe flow velocity = 3,52(Ft/s) Travel time through pipe = 0,24 min. Time of concentration (TC) = 7,99 min. 44,140(Ft,) 43.890(Ft,) 0,0050 Manning's N = 0,013 1,895(CFS) Page 34 ecr3ulO Process from Point/Station 6000,000 to Point/Station 6000,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,730(Ac,) Runoff from this stream = 1,895(CFS) Time of concentration = 7,99 min. Rainfall intensity = 3.311(ln/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity NO, (CFS) (min) (in/Hr) 1 113.950 16,48 2,076 2 1,895 7,99 3.311 Qmax(l) = Qmax(2) = 1,000 * 1,000 * 113,950) + 0.627 * 1,000 * 1,895) -i- = 115,138 1,000 * 0.485 * 113,950) -f 1,000 * 1,000 * 1,895) + = 57,129 Total of 2 streams to confluence: Flow rates before confluence point: 113,950 1,895 Maximum flow rates at confluence using above data: 115,138 57,129 Area of streams before confluence: 67,320 0.730 Results of confluence: Total flow rate = 115.138(CFS) Time of concentration = 16,477 min. Effective stream area after confluence = 68.050(Ac,) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 6000,000 to Point/Station 6000,100 **** PIPEFLOW TRAVEL TIME (User Specified size) **** Upstream point/station elevation = 43,390(Ft.) Downstream point/station elevation = 42,550(Ft,) Pipe length = 169,08(Ft,) Slope = 0.0050 Manning's N = 0,013 NO, of pipes = 1 Required pipe flow = 115.138(CFS) Given pipe size = 48,00(in,) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2,201(Ft,) at the headworks or inlet of the pipe(s) Pipe friction loss = l,086(Ft,) Minor friction loss = l,955(Ft,) K-factor = 1,50 Pipe flow velocity = 9,16(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 16,78 min, +-f-f-f+-f-i--f+++++++++++++++-h-f-f-f-f-f-f++++++-i-+++-f-f+-f-f+ Process from Point/Station 6000,100 to Point/Station 6000,100 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 1 Stream flow area = 68,050(Ac,) Runoff from this stream = 115,138(CFS) Page 35 ecr3ulO Time of concentration = 16.78 min. Rainfall intensity = 2.051(ln/Hr) Program is now starting with Main Stream No, 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 6015,000 to Point/Station 6016,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0.350 Initial subarea total flow distance = 180.000(Ft.) Highest elevation = 118,000(Ft,) Lowest elevation = 115.200(Ft,) Elevation difference = 2.800(Ft.) Slope = 1,556 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85,00 (Ft) for the top area slope value of 1,56 %, in a development type of Permanent Open space In Accordance with Figure 3-3 Initial Area Time of Concentration = 10.73 minutes TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,3500)*( 85.000A,5)/( 1,560A(l/3)3= 10.73 The initial area total distance of 180,00 (Ft,) entered leaves a remaining distance of 95.00 (Ft.) using Figure 3-4, the travel time for this distance is 1,29 minutes for a distance of 95,00 (Ft.) and a slope of 1.56 % with an elevation difference of 1,48(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A.385 *60(min/hr) 1.291 Minutes Tt=[(ll,9*0,0180A3)/( 1,48)3A.385= 1,29 Total initial area Ti = 10,73 minutes from Figure 3-3 formula plus 1.29 minutes from the Figure 3-4 formula = 12,02 minutes Rainfall intensity (I) = 2,543(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0,427(CFS) Total initial stream area = 0,480(Ac,) Process from Point/Station 6016.000 to Point/Station 6017.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 102.000(Ft,) Downstream point/station elevation = 76,380(Ft.) Pipe length = 52.47(Ft,) Slope = 0.4883 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0,427(CFS) Given pipe size = 18.00(in,) Calculated individual pipe flow = 0,427(CFS) Normal flow depth in pipe = 0,98(In,) Flow top width inside pipe = 8,19(ln,) Critical depth could not be calculated. Pipe flow velocity = 11.31(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 12.10 min. Page 36 ecr3ulO process from Point/Station 6017.000 to Point/Station **** SUBAREA FLOW ADDITION **** 6017.000 . 533(ln/Hr) for a 0.000 10.0 year storm 0.000 0.000 1,000 3 Rainfall intensity (i) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open space ) Impervious value, Ai = 0.000 sub-Area C value = 0,350 Time of concentration = 12,10 min. Rainfall intensity = 2,533(in/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.312 subarea runoff = 0,362(CFS) for 0,410(Ac,) Total runoff = 0.789(CFS) Total area = 0,890(Ac,) Process from Point/station 6017,000 to Point/Station 6014,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 76.050(Ft,) Downstream point/station elevation = 54.000(Ft,) Pipe length = 46,55(Ft,) Slope = 0,4737 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 0.789(CFSJ Given pipe size = 18.00(in.) Calculated individual pipe flow = 0,789(CFS) Normal flow depth in pipe = 1,32(in,) Flow top width inside pipe = 9,39(in,) critical Depth = 3.95(ln,) Pipe flow velocity = 13,48(Ft/s) Travel time through pipe = 0,06 min. Time of concentration (TC) = 12,16 min. Process from Point/station 6014,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 6014,000 Along Main Stream number: 2 in normal stream number 1 stream flow area = 0.890(Ac) Runoff from this stream = 0,789(CFS) Time of concentration = 12,16 min. Rainfall intensity = 2,525(in/Hr) Process from Point/Station 6013,000 to Point/Station **** INITIAL AREA EVALUATION **** 6012.000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 sub-Area C value = 0.350 Initial subarea total flow distance = Page 37 120,000(Ft,) ecr3ulO Highest elevation = 87,000(Ft,) Lowest elevation = 64,400(Ft,) Elevation difference = 22,600(Ft.) Slope = 18,833 % Top of Initial Area Slope adjusted by user to 18,800 % Bottom of Initial Area slope adjusted by User to 18,800 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 18,80 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of Concentration = 5,08 minutes TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0.3500)*( 100.000A.5)/( 18.800A(l/3)3= 5.08 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0,15 minutes for a distance of 20,00 (Ft,) and a slope of 18,80 % with an elevation difference of 3,76(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))3A,385 *60(min/hr) 0,149 Minutes Tt=[(ll,9*0,0038A3)/( 3.76)3A,385= 0,15 Total initial area Ti = 5.08 minutes from Figure 3-3 formula plus 0,15 minutes from the Figure 3-4 formula = 5.23 minutes Rainfall intensity (l) = 4.353(in/Hr) for a Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.229(CFS) Total initial stream area = 0,150(Ac) 10,0 year storm is C = 0,350 ^-++++•^+•f++++•f-f+++-^-^++++-^•^+-f•t-+•f•^++++•^-^-t-+•f-^•^++•^++++^ Process from Point/Station 6012.000 to Point/Station 6014,000 **** IMPROVED CHANNEL TRAVEL TIME **** .) 0,518(CFS) 3.246(Ft/s) upstream point elevation = 64,400(Ft,) Downstream point elevation = 61,100(Ft.) Channel length thru subarea = 170,000(Ft. Channel base width = 0.000(Ft,) Slope or 'Z' of left channel bank = 4,000 Slope or 'Z' of right channel bank = 1,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0,518(CFS) Depth of flow = 0.253(Ft.), Average velocity = channel flow top width = 1,263(Ft,) Flow velocity = 3,25(Ft/s) Travel time = 0.87 min. Time of concentration = 6,10 min, critical depth = 0.305(Ft.) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent open space ) impervious value, Ai = 0.000 sub-Area C value = 0,350 Rainfall intensity = 3,940(ln/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.185 Subarea runoff = 0,502(CFS) for 0.380(Ac) Page 38 3.940(ln/Hr) for a 0.000 0,000 0,000 1.000 3 10.0 year storm Total runoff = Depth of flow = Critical depth = ecr3ulO 0,731(CFS) Total area = 0.530(Ac,) 0,287(Ft.), Average velocity = 3.538(Ft/s) 0.352(Ft,) -^•^-(--^-^-^-^-^•^-^-l--^•^+-l--^++-l-•f+•^•-l-+++-^-l-4•+++++-^+++•t--^-f•^-^-^+ Process from Point/Station 6014.000 to Point/Station 6014,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0,530(Ac,) Runoff from this stream = 0,731(CFS) Time of concentration = 6,10 min. Rainfall intensity = 3.940(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No, (CFS) (min) (in/Hr) 1 0,789 12 16 2,525 2 0,731 6 10 3.940 Qmax(l) : 0.789) -f 1,000 * 1,000 * 0.789) -f 0,641 * 1,000 * 0,731) + = 1,257 Qmax(2) = 0.789) + 1,000 * 0,502 * 0.789) + 1,000 * 1.000 * 0,731) + = 1,127 Total of 2 streams to confluence: Flow rates before confluence point: 0,789 0.731 Maximum flow rates at confluence using above data: 1,257 1.127 Area of streams before confluence: 0.530 0,890 Results of confluence Total flow rate = Time of concentration = 1,257(CFS) 12.158 min. Effective stream area after confluence = l,420(Ac,) +-^-^+•f-^-^•f•f-^++•^•f++++-l-+-^•f+++•f++++•f++-^--f++-^++-l--^++++^ Process from Point/Station 6014.000 to Point/Station 6018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = Downstream point/station elevation = Pipe length = 20,08(Ft,) slope = NO, of pipes = 1 Required pipe flow Given pipe size = 18.00(ln,) Calculated individual pipe flow = 1.257(CFS) Normal flow depth in pipe = 1.61(ln.) Flow top width inside pipe = 10.27(in.) critical Depth = 5,03(in.) Pipe flow velocity = 16,15(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (TC) = 12.18 min. 53.670(Ft,) 43,040(Ft.) 0.5294 Manning's N = 0,013 1,257(CFS) -(-•f++++-f-f+++++-f-f-f+H-+-H+-l-+-t-++-l-++++-f4-+-f4--f+-h-f++-f--f+-f-f+ Process from point/Station 6018,000 to Point/Station 6018.000 **** CONFLUENCE OF MINOR STREAMS **** Page 39 ecrSulO Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.420(Ac.) Runoff from this stream = 1,257(CFS) Time of concentration = 12,18 min. Rainfall intensity = 2,522(ln/Hr) Process from Point/Station 6011,000 to Point/Station **** INITIAL AREA EVALUATION **** 6019,000 3 = 110.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0,350 Initial subarea total flow distance Highest elevation = 66.000(Ft.) Lowest elevation = 52.850(Ft,) Elevation difference = 13.150(Ft,) Slope = 11,955 % Top of Initial Area Slope adjusted by User to 12,000 % Bottom of Initial Area slope adjusted by user to 12,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 12.00 %, in a development type of Permanent Open space In Accordance with Figure 3-3 initial Area Time of Concentration = 5.90 minutes TC = [l,8*(l,l-C)*distance(Ft.)A,5)/(% slopeA(l/3)3 TC = [1.8*(l.l-0.3500)*( 100,000A.5)/( 12,000A(1/3)3= 5,90 The initial area total distance of 110,00 (Ft,) entered leaves a remaining distance of 10,00 (Ft,) _ „ . using Figure 3-4, the travel time for this distance is 0.10 minutes for a distance of 10,00 (Ft.) and a slope of 12.00 % with an elevation difference of l,20(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(min/hr) 0.104 Minutes Tt=[(11.9*0.0019A3)/( 1.20)3A.385= 0.10 Total initial area Ti = 5.90 minutes from Figure 3-3 formula plus 0,10 minutes from the Figure 3-4 formula = 6,00 minutes Rainfall intensity (l) = 3.982(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.350 Subarea runoff = 0,111(CFS) Total initial stream area = 0,080(Ac) Process from Point/Station 6019,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 6018,000 upstream point elevation = 52,850(Ft.) Downstream point elevation = 52,000(Ft,) Channel length thru subarea = 170,000(Ft,) Channel base width = 0.000(Ft,) Slope or 'Z' of left channel bank = 4,000 Slope or 'Z' of right channel bank = 1,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1,000(Ft,) Page 40 0.383(CFS) 10,0 year storm ecr3ulO Flow(q) thru subarea = 0,383(CFS) Depth of flow = 0.291(Ft.), Average velocity = l,810(Ft/s) Channel flow top width = 1.455(Ft,) Flow velocity = 1.81(Ft/s) Travel time = 1,57 min. Time of concentration = 7,57 min. Critical depth = 0,271(Ft,) Adding area flow to channel Rainfall intensity (I) = 3.429(in/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open space ) Impervious value, Ai = 0,000 Sub-Area C Value = 0,350 Rainfall intensity = 3,429(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,164 Subarea runoff = 0,453(CFS) for 0,390(Ac,) Total runoff = 0.564(CFS) Total area = 0,470(Ac,) Depth of flow = 0.336(Ft.), Average velocity = 1.994(Ft/s) critical depth = 0,316(Ft,) -l--l-+•l--^++++-f-f+-^-^++++-f-l--^+-f•f++-^+++++-^+•f-f•l-•f•(-+•^-f•f+++•^--f+ Process from Point/station 6018,000 to Point/station 6018,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.470(Ac,) Runoff from this stream = 0,564(CFS) Time of concentration = 7.57 min. Rainfall intensity = 3,429(ln/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mi n) Rainfall Intensity (In/Hr) Qmax(l) = Qmax(2) = 1,257 0.564 12,18 7,57 1,000 * 0,736 * 1,000 * 1,000 * ,000 * ,000 * 0,621 * 1.000 * 2,522 3,429 1,257) + 0.564) + 1,257) + 0.564) -t- 1,672 1.345 Total of 2 streams to confluence: Flow rates before confluence point: 1.257 0,564 Maximum flow rates at confluence using above data: 1,672 1,345 Area of streams before confluence: 1.420 0.470 Results of confluence Total flow rate = Time of concentration = 1.672(CFS) 12,179 min. Effective stream area after confluence = l,890(Ac) Page 41 ecr3ulO Process from Point/Station 6018,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User Specified size) **** 6000.100 42.710(Ft,) 42,550(Ft,) 0,0050 Manning's 1,672(CFS) upstream point/station elevation = Downstream point/station elevation = Pipe length = 32,17(Ft,) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(in,) Calculated individual pipe flow = 1,672(CFS) Normal flow depth in pipe = 6,27(in,) Flow top width inside pipe = 17,15(in.) Critical Depth = 5.82(in.) Pipe flow velocity = 3.05(Ft/s) Travel time through pipe = 0,18 min. Time of concentration (TC) = 12,35 min. N = 0,015 Process from Point/Station 6000,100 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 6000,100 The following data inside Main stream is listed: in Main stream number: 2 Stream flow area = 1.890(AC,) Runoff from this stream = 1,672(CFS) Time of concentration = 12,35 min. Rainfall intensity = 2,499(ln/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) Qmax(l) = Qmax(2) = 115.138 1,672 16,78 12,35 1.000 * 0.821 * 1,000 * 1.000 * 000 000 0,736 * 1,000 * 2,051 2.499 115.138) + 1,672) + 115,138) + 1.672) + 116.510 86,422 Total of 2 main streams to confluence: Flow rates before confluence point: 115.138 1.672 Maximum flow rates at confluence using above data: 116,510 86,422 Area of streams before confluence: 68,050 1.890 Results of confluence: Total flow rate = 116,510(CFS) Time of concentration = 16,784 min. Effective stream area after confluence = 69,940 (Ac) Process from Point/Station 6000,100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 7000.000 upstream point/station elevation = 42,220(Ft,) Page 42 ecr3ulO Downstream point/station elevation = 40,950(Ft,) Pipe length = 251,88(Ft,) Slope = 0,0050 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 116,510(CFS) Given pipe size = 48,00(in,) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2,389(Ft,) at the headworks or inlet of the pipe(s) Pipe friction loss = l,657(Ft,) Minor friction loss = 2.002(Ft,) K-factor = 1,50 Pipe flow velocity = 9.27(Ft/s) Travel time through pipe = 0.45 min. Time of concentration (TC) = 17,24 min. -f-(--f+-f++-f++-f-f++-(--t--f-)-++++-f+-f+++-f+-f+4-++-l--f-f++++-f+-f+ Process from Point/Station 7000,000 to Point/Station 7003,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 40,950(Ft,) Downstream point/station elevation = 40.490(Ft,) Pipe length = 94,47(Ft.) Slope = 0.0049 Manning's N = 0,013 NO. of pipes = 3 Required pipe flow = 116.510(CFS) Given pipe size = 36,00(in,) Calculated individual pipe flow = 38,837(CFS) Normal flow depth in pipe = 25,13(in,) Flow top width inside pipe = 33,06(ln.) Critical Depth = 24,33(in,) Pipe flow velocity = 7.37(Ft/s) Travel time through pipe = 0,21 min. Time of concentration (TC) = 17,45 min, ^--^--^-l--(-•f-^-^-t--^++++-^-^+-l--^+-^-+•^•f4-++++-f-^++++++-l-+++-^•^ Process from Point/Station 7003,000 to Point/Station 7003,100 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 40,490(Ft,) Downstream point/station elevation = 40,290(Ft.) Pipe length = 36,75(Ft,) Slope = 0,0054 Manninq's N = 0,013 NO. of pipes = 3 Required pipe flow = 116.510(CFS) Given pipe size = 36.00(ln.) Calculated individual pipe flow = 38.837(CFS) Normal flow depth in pipe = 24,12(in,) Flow top width inside pipe = 33.86(ln,) critical Depth = 24.33(in,) Pipe flow velocity = 7.71(Ft/s) Travel time through pipe = 0,08 min. Time of concentration (TC) = 17,53 min. •f-^-^•f•^++++++-l--f+-^•f-f•f-^-+-f+•f+•^-++4-+•f-^+•l--^•f+-l-++++-l-+-l-+++^ Process from Point/Station 7003.100 to Point/Station 7003.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 69,940(Ac) Runoff from this stream = 116.510(CFS) Time of concentration = 17,53 min. Rainfall intensity = l,994(ln/Hr) -^+-t--f--^-++-^+•^+-f•f+-l-+•f++++-l-•f++-^-^++•f-^-^•l--f+++-^^-+•^•^-f+•f Process from Point/Station 7004,000 to Point/Station 7005,000 Page 43 ecr3ulO **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL J (43,0 DU/A or Less ) Impervious value, Ai = 0,800 sub-Area C value = 0,790 initial subarea total flow distance = 138,000(Ft.) Highest elevation = 53,800(Ft,) Lowest elevation = 51.700(Ft,) , r-.-, „/ Elevation difference = 2.100(Ft,) Slope = 1.522 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75,00 (Ft) for the top area slope value of 1,52 %, in a development type of 43.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4,20 minutes TC = [1.8*(l.l-C)*distance(Ft,)A.5)/(% slopeA(l/3)3^^ ^ TC = [1.8*(l.l-0.7900)*( 75,OOOA,5)/( 1,522A(1/3)3= 4,20 The initial area total distance of 138.00 (Ft,) entered leaves a remaining distance of 63,00 (Ft.) , . « nr • * using Figure 3-4, the travel time for this distance is 0.95 minutes for a distance of 63.00 (Ft.) and a slope of 1,52 % ^ ^ ^ with an elevation difference of 0,96(Ft,) from the end of the top area Tt = [ll,9*length(Mi)A3)/(elevation change(Ft,))3A,385 *60(mm/hr) 0,950 Minutes Tt=[(11.9*0,0119A3)/( 0.96)3A.385= 0,95 . Total initial area Ti = 4,20 minutes from Figure 3-3 formula plus 0,95 minutes from the Figure 3-4 formula = 5,15 minutes Rainfall intensity (I) = 4.394(ln/Hr) for a 10,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,790 subarea runoff = 0,659(CFS) Total initial stream area = 0.190(Ac,) Proces^from^Point/Station7005^00 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 51,700(Ft.) End of street segment elevation = 48.200(Ft,) Length of street segment = 353,000(Ft,) Height of curb above gutter flowline = 6.0(ln.) width of half street (curb to crown) = 44,000(Ft,) Distance from crown to crossfall grade break = 42,500(Ft,) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [23 side(s) of the street Distance from curb to property line = 10,000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = l,500(Ft.) Gutter hike from flowline = 1.500(ln,) Manning's N in gutter = 0.0150 „ Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 1.279(CFS) Depth of flow = 0.209(Ft,), Averaqe velocity = l,624(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5,679(Ft,) Flow velocity = 1,62(Ft/s) Page 44 ecr3ulO TC = 8,77 min. Travel time = 3,62 min. Adding area flow to street , , . ^ « Rainfall intensity (I) = 3,117(ln/Hr) for a 10.0 year storm user specified 'C value of 0,760 given for subarea Rainfall intensity = 3,117(In/Hr) for a 10,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.768 CA = 0,545 subarea runoff = 1,040(CFS) for 0,520(Ac,) Total runoff = 1,699(CFS) Total area = 0,710(Ac.) Street flow at end of street = 1,699(CFS) Half street flow at end of street = 0,850(CFS) Depth of flow = 0,225(Ft.), Average velocity = l,727(Ft/s) Flow width (from curb towards crown)= 6,487(Ft,) process from Point/Station 7006,000 to Point/Station 7006,300 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 43,250(Ft,) Downstream point/station elevation = 43.120(Ft,) Pipe length = 13.55(Ft.) Slope = 0.0096 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.699(CFS) Given pipe size = 18.00(in,) Calculated individual pipe flow = 1.699(CFS) Normal flow depth in pipe = 4,95(In,) Flow top width inside pipe = 16,07(In.) critical Depth = 5,88(ln,) Pipe flow velocity = 4,31(Ft/s) Travel time through pipe = 0,05 min. Time of concentration (TC) = 8.83 min. process from Point/Station 7006,300 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 7003,100 Upstream point/station elevation = 42.790(Ft.) Downstream point/station elevation = 42,160(Ft.) Pipe length = 126,63(Ft,) Slope = 0,0050 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 1,699(CFS) Given pipe size = 18.00(in,) calculated individual pipe flow = 1,699(CFS) Normal flow depth in pipe = 5,87(In,) Flow top width inside pipe = 16.87(In,) Critical Depth = 5,88(In,) Pipe flow velocity = 3,40(Ft/s) Travel time through pipe = 0,62 min. Time of concentration (TC) = 9.45 min. process from Point/Station 7003.100 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 7003,100 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.710(Ac,) Runoff from this stream = 1,699(CFS) Time of concentration = 9.45 min. Rainfall intensity = 2.972(ln/Hr) Summary of stream data: Stream Flow rate TC page 45 Rainfall Intensity ecr3ulO NO, (CFS) (min) (in/Hr) 116,510 17,53 1,994 1,699 9.45 2.972 Qmax(l) = Qmax(2) = 1,000 * 1,000 * 116,510) + 0,671 * 1,000 * 1,699) + = 117.651 1,000 * 0.539 * 116.510) + 1,000 * 1.000 * 1,699) + = 64.482 Total of 2 streams to confluence: Flow rates before confluence point: 116.510 1,699 Maximum flow rates at confluence using above data: 117.651 64.482 Area of streams before confluence: 69.940 0.710 Results of confluence: Total flow rate = 117.651(CFS) Time of concentration = 17.530 min. Effective stream area after confluence = 70.650(Ac.) Process from Point/Station 7003.100 to Point/Station 7007.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 40.470(Ft.) Downstream point/station elevation = 39,820(Ft.) Pipe length = 84,94(Ft,) Slope = 0,0077 Manning's N = 0,013 No. of pipes = 3 Required pipe flow = 117,651(CFSj Given pipe size = 36,00(ln,) Calculated individual pipe flow = 39,217(CFS) Normal flow depth in pipe = 21.61(ln,) Flow top width inside pipe = 35,27(ln,) Critical Depth = 24.44(ln,) Pipe flow velocity = 8,85(Ft/s) Travel time through pipe = 0,16 min. Time of concentration (TC) = 17.69 min. End of computations, total study area = 70,650 (Ac) Page 46 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology prograra based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 01/22/14 10 YEAR HYDROLOGY STUDY FOR ULTIMATE CONDITION BASIN ECRP410 REVISED BY HL ********* Hydrology Study Control Inforraation ********** Program License Serial Nuraber 6218 Rational hydrology study storra event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 1.700 24 hour precipitation(inches) = 3.100 P6/P24 = 54.8% San Diego hydrology raanual 'C values used -^-f•f++^-++-^^--^-^-^-^-^•^^--^-^-^-^-^-^-^-^-l--^-^-^-l--^-^•^+4•-l•+-^^-•^-^-^-^-l--l-•f+-^-^ Process from Point/Station 8000.000 to Point/Station 8001.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Irapervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 204.000(Ft.) Highest elevation = 81.000(Ft.) Lowest elevation = 72.800(Ft.) Elevation difference = 8.200(Ft.) Slope = 4.020 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.02 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.68 minutes Page 1 of 20 TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8*(1.1-0.8500)* ( 90.000^.5)/( 4.020^(1/3)]= 2.68 The initial area total distance of 204.00 (Ft.) entered leaves a remaining distance of 114.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 1.03 minutes for a distance of 114.00 (Ft.) and a slope of 4.02 % with an elevation difference of 4.58(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]".385 *60(min/hr) 1.032 Minutes Tt=[(11.9*0.0216^3)/( 4.58)]^.385= 1.03 Total initial area Ti = 2.68 minutes from Figure 3-3 formula plus 1.03 minutes from the Figure 3-4 formula = 3.72 minutes Calculated TC of 3.717 rainutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 1.866(CFS) Total initial stream area = 0.490(Ac.) +++++++++++++^-+++-^-^-^-^ + -^-^-^-^+-^-^-^-(--^-^-^-^-l--^-^-4•+-l--^-^-+ + -^-^-^-l-•^++ Process from Point/Station 8001.000 to Point/Station 8002.000 **** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION **** Top of street segment elevation = 72.800(Ft.) End of street segment elevation = 63.670(Ft.) Length of street segment = 250.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance frora crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.779(CFS) Depth of flow = 0.216(Ft.), Average velocity = 3.199(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.027(Ft.) Flow velocity = 3.20(Ft/s) Travel tirae = 1.3 0 rain. TC = 5.02 rain. Adding area flow to street Rainfall intensity (I) = 4.466(In/Hr) for a 10.0 year storm User specified 'C value of 0.860 given for subarea Rainfall intensity = 4.466(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.855 CA = 0.829 Subarea runoff = 1.839(CFS) for 0.480(Ac.) Total runoff = 3.704(CFS) Total area = 0.970(Ac.) Page 2 of 20 street flow at end of street = 3.704(CFS) Half street flow at end of street = 1.852(CFS) Depth of flow = 0.232(Ft.), Average velocity = 3.407(Ft/s) Flow width (from curb towards crown)= 6.873(Ft.) -l--l--^-^+•l-^-^•^-^-^-^•++-^-^+-^-^^-+-^-^-^^--^+^--^+++•^-^-^++-^+-^-^--l--l--^-^-t- + Process from Point/Station 8002.000 to Point/Station 8002.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 59.240(Ft.) Downstreara point/station elevation = 58.980(Ft.) Pipe length = 5.26(Ft.) Slope = 0.0494 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.704(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.704(CFS) Norraal flow depth in pipe = 4.85(In.) Flow top width inside pipe = 15.97(In.) Critical Depth = 8.82(In.) Pipe flow velocity = 9.66(Ft/s) Travel tirae through pipe = 0.01 min. Time of concentration (TC) = 5.03 rain. ++-^-^-^-^-^-^-^-^-^-^-^-^•^-^-^-^+-^-^-^-^-^-^-^-^-^-^•^•f•f^--^-l--l--^-^-^-^-^-^-^-^-^+-^+ Process from Point/Station 8002.100 to Point/Station 8002.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 58.650(Ft.) Downstream point/station elevation = 56.470(Ft.) Pipe length = 51.50(Ft.) Slope = 0.0423 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.704(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.704(CFS) Norraal flow depth in pipe = 5.04(In.) Flow top width inside pipe = 16.17(In.) Critical Depth = 8.82(In.) Pipe flow velocity = 9.14(Ft/s) Travel tirae through pipe = 0.09 rain. Time of concentration (TC) = 5.12 min. -^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-l--(-•^-^•^-^-^-^•^•f•^-^•^-^-^-^-l-+•f•^-^-^-^-^-^-^-^+-^-^ Process from Point/Station 8002.100 to Point/Station 8002.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara number: 1 Stream flow area = 0.970(Ac.) Runoff from this stream = 3.704(CFS) Time of concentration = 5.12 min. Rainfall intensity = 4.408(In/Hr) Program is now starting with Main Stream No. 2 Page 3 of 20 -^ + -^-^-^-^-^-+^--^+-^-l--^-^+-^-l--^••^+-^-t--^-^+-^+-l--^-^+++++-^++++++•^-++++ + Process from Point/Station 8002.400 to Point/Station 8002.200 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Limited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 82.230(Ft.) Highest elevation = 63.670(Ft.) Lowest elevation = 61.500(Ft.) Elevation difference = 2.170(Ft.) Slope = 2.639 % Top of Initial Area Slope adjusted by User to 4.020 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 90.00 (Ft) for the top area slope value of 4.02 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.68 minutes TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8500)*( 90.000^.5)/( 4.020^(1/3)]= 2.68 Calculated TC of 2.685 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.381(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 8002.200 to Point/Station 8002.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 56.730(Ft.) Downstreara point/station elevation = 56.470(Ft.) Pipe length = 5.25(Ft.) Slope = 0.0495 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.381(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.381(CFS) Norraal flow depth in pipe = 1.60(In.) Flow top width inside pipe = 10.24(In.) Critical depth could not be calculated. Pipe flow velocity = 4.92(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 2.70 min. + +-h-^+-^-(-+-h-h-^+-h-1--^-f-H--h-t--h-h-h-H•^-f-H-I-+ •^+-^-h-f-I--1-+++ Process frora Point/Station 8002.200 to Point/Station 8002.300 Page 4 of 20 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 2 Streara flow area = 0.100(Ac.) Runoff from this stream = 0.381(CFS) Time of concentration = 2.70 min. Rainfall intensity = 4.479(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2; 704 381 1. 000 0 . 984 000 000 5 .12 2 .70 1.000 * 1.000 * 0.527 * 1.000 * 4 .408 4 .479 3.704) -I- 0.381) -I- 3.704) + 0.381) -I- 4 . 079 2 .334 Total of 2 main streams to confluence: Flow rates before confluence point: 3.704 0.381 Maximum flow rates at confluence using above data: 4.079 2.334 Area of streams before confluence: 0.970 0.100 Results of confluence: Total flow rate = 4.079(CFS) Tirae of concentration = 5.125 rain. Effective stream area after confluence 1.070 (Ac. Process from Point/Station 8002.300 to Point/Station 9000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 174.62(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.079(CFS) Normal flow depth in pipe = 4.68(In.) Flow top width inside pipe = 15.79(In.) Critical Depth = 9.27(In.) Pipe flow velocity = 11.18(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 5.39 min. 56.140(Ft.) 44.090(Ft.) 0.0690 Manning's N = 0.013 4.079(CFS) Page 5 of 20 -l--^-l-•f-^-^•^•f•^-^-l--^-^-^-^-^-^-^-^-^-l-+-l--^ + -^-^-l--^-^-^-^-^-^-l-+-^-l--^-^-^-(--^-^-^-^-^ Process from Point/Station 9000.000 to Point/Station 9001.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.760(Ft.) Downstreara point/station elevation = 43.000(Ft.) Pipe length = 152.15(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.079(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.079(CFS) Normal flow depth in pipe = 9.52(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 9.27(In.) Pipe flow velocity = 4.30(Ft/s) Travel time through pipe = 0.59 min. Time of concentration (TC) = 5.97 min. Process from Point/Station 9001.000 to Point/Station 9002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.680(Ft.) Downstream point/station elevation = 42.480(Ft.) Pipe length = 39.65(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.079(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.079(CFS) Normal flow depth in pipe = 9.49(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 9.27(In.) Pipe flow velocity = 4.32(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 6.13 min. -^•^-f-^-^•^•^-^-^-^^--l•-^-^^•^-•^-^-^•^-^-^-^-^-^-^-^+•f-l--^-l--l--^-^-^-^+-^-f-^+-^^-•^^-^--^ Process from Point/Station 9001.000 to Point/Station 9002.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Streara flow area = 1.070(Ac.) Runoff from this stream = 4.079(CFS) Time of concentration = 6.13 min. Rainfall intensity = 3.928(In/Hr) Program is now starting with Main Streara No. 2 -^•^-^-^ + -^-^•f-^-^-^-^+-^-^-^-^-^-^-l--l-+^--^-++-^-^-^-^-^-^-^•-^-^-l-•^•f-^-^ + ++-^-^-^-^4• + Process frora Point/Station 9003.100 to Point/Station 9003.200 **** INITIAL AREA EVALUATION **** Page 6 of 20 Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Liraited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 67.000(Ft.) Highest elevation = 53.500(Ft.) Lowest elevation = 51.700(Ft.) Elevation difference = 1.800(Ft.) Slope = 2.687 % Top of Initial Area Slope adjusted by User to 4.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.20 %, in a developraent type of Liraited Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.65 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8500)* ( 90.000*.5)/( 4.200^(1/3)]= 2.65 Calculated TC of 2.646 minutes is less than 5 rainutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.267(CFS) Total initial stream area = 0.070(Ac.) + +-f + H-+-h-H-H-^-F-h++-H-H +-f-^ H--h-F-H 4-H--H-H-I--f +-I--h-h-1--h-1--H-I-+ + Process from Point/Station 9003.200 to Point/Station 9003.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 51.700(Ft.) End of street segment elevation = 49.800(Ft.) Length of street segment = 58.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.369(CFS) Depth of flow = 0.151(Ft.), Average velocity = 2.454(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.811(Ft.) Page 7 of 20 • Flow velocity = 2.45 (Ft/s) Travel time = 0.3 9 min. TC = 3.04 min. Adding area flow to street Calculated TC of 3.040 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storra Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Liraited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Rainfall intensity = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.850 CA = 0.119 Subarea runoff = 0.267(CFS) for 0.070(Ac.) Total runoff = 0.533(CFS) Total area = 0.140(Ac.) Street flow at end of street = 0.533(CFS) Half street flow at end of street = 0.533(CFS) Depth of flow = 0.169(Ft.), Average velocity = 2.554(Ft/s) Flow width (from curb towards crown)= 3.707(Ft.) Process frora Point/Station 9003.000 to Point/Station 9002.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 42.500(Ft.) Downstream point/station elevation = 42.480(Ft.) Pipe length = 18.88(Ft.) Slope = 0.0011 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.533(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.533(CFS) Normal flow depth in pipe = 4.80(In.) Flow top width inside pipe = 15.92(In.) Critical Depth = 3.23(In.) Pipe flow velocity = 1.41(Ft/s) Travel tirae through pipe = 0.22 min. Time of concentration (TC) = 3.26 min. + +++++-^-^+-^-^-^-^+ + + -^-^++-^+4•-^-^•^-^-^-l--^-^-^-^-^•f + + Process frora Point/Station 9003.000 to Point/Station 9002.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 2 Stream flow area = 0.140(Ac.) Runoff frora this stream = 0.533(CFS) Time of concentration = 3.26 min. Rainfall intensity = 4.479(In/Hr) Suraraary of stream data: Page 8 of 20 Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.079 6.13 3.928 2 0.533 3.26 4.479 Qraax(1) = 1.000 * 1.000 * 4.079) -I- 0.877 * 1.000 * 0.533) + = 4.546 Qmax(2) = 1.000 * 0.533 * 4.079) + 1.000 * 1.000 * 0.533) + = 2.705 Total of 2 raain strearas to confluence: Flow rates before confluence point: 4.079 0.533 Maximum flow rates at confluence using above data: 4.546 2.705 Area of streams before confluence: 1.070 0.140 Results of confluence: Total flow rate = 4.546(CFS) Time of concentration = 6.128 min. Effective stream area after confluence = 1.210(Ac.) + +-f. 4-+-1-+ + + + +-H-I-+-h-I--H-H-f-I--h-I--1--I--I-+ +-H-I--I-+ + Process from Point/Station 9002.000 to Point/Station 9004.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.280(Ft.) Downstream point/station elevation = 41.610(Ft.) Pipe length = 133.22(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.546(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.546(CFS) Normal flow depth in pipe = 10.16(In.) Flow top width inside pipe = 17.85(In.) Critical Depth = 9.83(In.) Pipe flow velocity = 4.42(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 6.63 min. + ++++++++^-+-^+++^.+-^-(--l-4.+-^-^-^++-^-^-^+-^-^-^++-^-^-^-f-^+^-+-^-l--^-^-^-^-^+ Process from Point/Station 9004.000 to Point/Station 8003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 41.280(Ft.) Downstream point/station elevation = 40.690(Ft.) Pipe length = 117.44(Ft.) Slope = 0.0050 Manning's N = 0.013 Page 9 of 20 No. of pipes = 1 Required pipe flow = 4.546(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.546(CFS) Normal flow depth in pipe = 10.16(In.) Flow top width inside pipe = 17.85(In.) Critical Depth = 9.83(In.) Pipe flow velocity = 4.42(Ft/s) Travel time through pipe = 0.44 min. Time of concentration (TC) = 7.07 rain. Process from Point/Station 9004.000 to Point/Station 8003.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.210(Ac.) Runoff frora this streara = 4.546(CFS) Tirae of concentration = 7.07 min. Rainfall intensity = 3.581(In/Hr) Program is now starting with Main Stream No. 2 + -(--(--f.+-^-^-^-^ ++-^-^-^++-^+-^-^++-^-t-++-^-l-++++++++++-^--^++++++ ++++ + + + Process frora Point/Station 8006.000 to Point/Station 8004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 109.000(Ft.) Highest elevation = 61.500(Ft.) Lowest elevation = 57.200(Ft.) Elevation difference = 4.300(Ft.) Slope = 3.945 % Top of Initial Area Slope adjusted by User to 3.900 % Bottom of Initial Area Slope adjusted by User to 3.900 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.90 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.35 minutes TC = [1.8*(l.l-C)*distance(Ft.)^.5)/(% slope^(l/3)] TC = [1.8* (1.1-0.8700)* ( 80.000^.5)/( 3.900^(1/3)]= 2.35 The initial area total distance of 109.00 (Ft.) entered leaves a remaining distance of 29.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.36 minutes for a distance of 29.00 (Ft.) and a slope of 3.90 % Page 10 of 20 with an elevation difference of 1.13(Ft.) frora the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) 0.364 Minutes Tt=[(11.9*0.0055^3)/( 1.13)]".385= 0.36 Total initial area Ti = 2.35 minutes frora Figure 3-3 formula plus 0.36 minutes frora the Figure 3-4 forraula = 2.72 rainutes Calculated TC of 2.716 rainutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.623(CFS) Total initial stream area = 0.160(Ac.) 4-+-H-I--I--H +-H+ +-H + +-I--H-H-t-+-h +-H-H-H-H-h-H-h-f-I--I--H-h-H-H-H-(-+ + + + Process frora Point/Station 8004.000 to Point/Station 8005.000 **** STREET FLOW TRAVEL TIME -i- SUBAREA FLOW ADDITION **** Top of street segment elevation = 57.200(Ft.) End of street segraent elevation = 46.000(Ft.) Length of street segment = 525.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance frora crown to crossfall grade break = 42.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 2.532(CFS) Depth of flow = 0.271(Ft.), Average velocity = 2.978(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.825(Ft.) Flow velocity = 2.98(Ft/s) Travel time = 2.94 min. TC = 5.65 rain. Adding area flow to street Rainfall intensity (I) = 4.137(In/Hr) for a 10.0 year storm User specified 'C value of 0.850 given for subarea Rainfall intensity = 4.137(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.853 CA = 1.057 Subarea runoff = 3.751(CFS) for 1.080(Ac.) Total runoff = 4.374 (CFS) Total area = 1.240(Ac.) Street flow at end of street = 4.374(CFS) Half street flow at end of street = 4.374(CFS) Depth of flow = 0.316(Ft.), Average velocity = 3.392(Ft/s) Flow width (from curb towards crown)= 11.037(Ft.) Page 11 of 20 + -^-^-^-l--l--^-^-^+-^-^-l•-^^-+-^-^-t--^-^•^-^-f-^+-^-^-^-^-^+-^++•t--^+ + ++++-^-^-^•^+-^+ Process frora Point/Station 8004.000 to Point/Station 8005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal stream nuraber 1 Stream flow area = 1.240(Ac.) Runoff from this streara = 4.374(CFS) Tirae of concentration = 5.65 min. Rainfall intensity = 4.137(In/Hr) -^-^-^-^-^-^-^•^-^•^•^-^-+-^•f•^•^-^•^+•^-^ + -^•^-^-^ + ++-^-^-^-^-^-^-^-^-^-f•f-^•f•^-^-^-^++-^ Process from Point/Station 7001.000 to Point/Station 7002.000 **** INITIAL AREA EVALUATION **** ] = 200.000(Ft.) 0.400 % 000 % Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (Limited Industrial ) Irapervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance Highest elevation = 51.300(Ft.) Lowest elevation = 50.500(Ft.) Elevation difference = 0.800(Ft.) Slope = Top of Initial Area Slope adjusted by User to 2 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxiraum overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of Limited Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.99 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.8500)* ( 70.000".5)/( 2.OOO"(1/3)]= 2.99 Calculated TC of 2.988 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 1.523(CFS) Total initial stream area = 0.400(Ac.) Process from Point/Station 7002.000 to Point/Station 8005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 50.500(Ft.) End of street segment elevation = 46.370 (Ft.) Length of street segment = 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 42.500(Ft.) Page 12 of 20 Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.310(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.758(Ft.) Flow velocity = 2.32(Ft/s) Travel time = 2.87 min. TC = 5.86 rain. Adding area flow to street Rainfall intensity (I) = 4.045(In/Hr) for a group group group group 2.855(CFS) 2.324(Ft/s) soil soil soil soil type 4 . 045(In/Hr) = 0.000 = 0.000 = 0.000 = 1.000 10.0 year storm Decimal fraction Decimal fraction Decimal fraction Deciraal fraction [INDUSTRIAL area type ] (Liraited Industrial ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Rainfall intensity = 4.045(In/Hr) for a 10.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.850 CA = 1.020 Subarea runoff = 2.603(CFS) for 0.800(Ac.) Total runoff = 4.125(CFS) Total area = Street flow at end of street = 4.125(CFS) Half street flow at end of street = 4.125(CFS) Depth of flow = 0.344(Ft.), Average velocity = Flow width (from curb towards crown)= 12.462(Ft.) 1.2 00(Ac.) 2.540(Ft/s) -H-H-I--^ ++ + +-I--H-t--f +-t--I-+ 4--h-f-H +-t--f-H +-f-f H--H-H H-+ + +-f H--^-f +-I-+ 4--H H-++-H-H Process from Point/Station 7002.000 to Point/Station 8005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara nuraber 2 Streara flow area = 1.2 00(Ac.) Runoff frora this stream = 4.125(CFS) Tirae of concentration = 5.86 rain. Rainfall intensity = 4.045(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 4 .374 4 .125 5 .65 5.86 4 .137 4 . 045 Page 13 of 20 Qraax(1) = 1.000 * 1.000 * 4.374) + 1.000 * 0.965 * 4.125) + = 8.357 Qraax(2) = 0.978 * 1.000 * 4.374) + 1.000 * 1.000 * 4.125) + = 8.401 Total of 2 strearas to confluence: Flow rates before confluence point: 4.374 4.125 Maximum flow rates at confluence using above data: 8.357 8.401 Area of streams before confluence: 1.240 1.200 Results of confluence: Total flow rate = 8.401(CFS) Time of concentration = 5.857 min. Effective streara area after confluence = 2.44 0(Ac.) + + + + + + + + + + + + + 4 + + + + + + + + + + + + 4 + + + + + + + 4 + + + + + 4- + 44- + + 4 + 4 + + + + + 4- + + + -H + 4--H + + + + + 4 + + Process from Point/Station 8005.000 to Point/Station 8003.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 41.140(Ft.) Downstream point/station elevation = 40.860(Ft.) Pipe length = 28.15(Ft.) Slope = 0.0099 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.401(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 8.401(CFS) Normal flow depth in pipe = 10.14(In.) Flow top width inside pipe = 23. 71(In.) Critical Depth = 12.39(In.) Pipe flow velocity = 6.65(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 5.93 rain. + 4- + + + + + + + -f + + + + + + + 4 + + + 4- + + + + + + + + 4 + 4- + + + + + + -f + + 4- + + + 4- + -H-4- + -H- + + + 4-4 + + + 4- + -H- + -l- + + Process frora Point/Station 8005.000 to Point/Station 8003.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 2 Stream flow area = 2.440(Ac.) Runoff frora this streara = 8.401 (CFS) Tirae of concentration = 5.93 min. Rainfall intensity = 4.014(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Page 14 of 20 1 4 .546 7 .07 3 .581 2 8 .401 5 . 93 4 .014 Qmax(1) = 1 000 * 1 000 * 4 546) + 0 892 * 1 000 * 8 401) + = 12 043 Qmax(2) = .546) 1 000 * 0 838 * 4 .546) 4 1 000 * 1 000 * 8 .401) + = 12 212 Total of 2 raain streams to confluence: Flow rates before confluence point: 4.546 8.401 Maxiraura flow rates at confluence using above data: 12.043 12.212 Area of streams before confluence: 1.210 2.440 Results of confluence: Total flow rate = 12.212(CFS) Time of concentration = 5.927 min. Effective stream area after confluence = 3.650(Ac, + + + + + + + + + + -H. + -H.4- + 4-h + 4 + + + 4- + 4 + + H- + + + 4 + + 44 + + 44 + 4 +4-F4 + 4-4 + + + 4-H4-4- + 44-4 + + + + 4-4 + + Process from Point/Station 8003.000 to Point/Station 9005.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 40.360(Ft.) Downstream point/station elevation = 40.190(Ft.) Pipe length = 34.94(Ft.) Slope = 0.0049 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.212(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 12.212(CFS) Normal flow depth in pipe = 12.59(In.) Flow top width inside pipe = 34.33(In.) Critical Depth = 13.30(In.) Pipe flow velocity = 5.55(Ft/s) Travel time through pipe = 0.11 rain. Time of concentration (TC) = 6.03 rain. + ++++++++^-++-l-l-++44^-+4-^-+++4+++++4+-^+4-4+-^+++4-+4++4•+++++4++4^-l-++44++-^-^4 + -^- Process frora Point/Station 8003.000 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara number 1 Stream flow area = 3.650(Ac.) Runoff frora this stream = 12.212(CFS) Time of concentration = 6.03 min. Rainfall intensity = 3.968(In/Hr) + + + + + + + + + + H-H- + + + + 44- + -H-4 + + 44 + + 444444-44 + 4 + 4 + 44- + + + + + + 4-l- + + + + + + -H- + -t- + + + + + + + + Page 15 of 20 Process from Point/Station 7006.100 to Point/Station 7006.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (Liraited Industrial ) Irapervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 157.000(Ft.) Highest elevation = 50.000(Ft.) Lowest elevation = 48.400(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.019 % Top of Initial Area Slope adjusted by User to 1.000 % Bottom of Initial Area Slope adjusted by User to 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.00 %, in a developraent type of Limited Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 3.49 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.8500)*( 60.000".5)/( 1.000^(1/3)]= 3.49 The initial area total distance of 157.00 (Ft.) entered leaves a remaining distance of 97.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.56 rainutes for a distance of 97.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.97(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 1.557 Minutes Tt=[(11.9*0.0184"3)/( 0.97)]".385= 1.56 Total initial area Ti = 3.49 minutes from Figure 3-3 formula plus 1.56 rainutes frora the Figure 3-4 forraula = 5.04 rainutes Rainfall intensity (I) = 4.454(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.530(CFS) Total initial stream area = 0.140(Ac.) + + + 4 + + 4 + 4 + + + 444 + + + + + + + -F + + + + + + -I- + + + + + 444444 + 4 + + + + + -I--I- + -I- + + + + 4444 + 4 + + + + 44 + + Process from Point/Station 7006.200 to Point/Station 9005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 52.000(Ft.) End of street segraent elevation = 47.320(Ft.) Length of street segraent = 74.940(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Page 16 of 20 Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.719(CFS) Depth of flow = 0.130(Ft.), Average velocity = 3.543(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.740(Ft.) Flow velocity = 3.54(Ft/s) Travel tirae = 0.35 rain. TC = 5.4 0 min. Adding area flow to street Rainfall intensity (I) = 4.264(In/Hr) for a 10.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.264(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.858 CA = 0.206 Subarea runoff = 0.348(CFS) for 0.100(Ac.) Total runoff = 0.878(CFS) Total area = 0.240(Ac.) Street flow at end of street = 0.878(CFS) Half street flow at end of street = 0.439(CFS) Depth of flow = 0.143(Ft.), Average velocity = 3.384(Ft/s) Flow width (frora curb towards crown)= 2.420(Ft.) 4 + 44 + 44 + + -K + + + + + + 4 + + -F-H + 4 + + 4 + + + + + 4 + 4--F + + + + + + + 4 + + -H4-4 + + 4- + + + + 4-I- + + + + 44 + + + + + + + Process frora Point/Station 7006.200 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal streara number 2 Stream flow area = 0.240(Ac.) Runoff from this stream = 0.878(CFS) Tirae of concentration = 5.4 0 rain. Rainfall intensity = 4.264(In/Hr) -^ + 4 + -t- + 44 + -^ + + -l- + + + + 44-^+ + 4 + + 4 + 4•4 + 4 + + + + + + + + + + + + 4-l- + + 44^- + + 4-^ + + + + -l- + 44 + + 44^- + + + Process frora Point/Station 9007.000 to Point/Station 7006.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Page 17 of 20 (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 55.500(Ft.) Highest elevation = 48.500(Ft.) Lowest elevation = 48.200(Ft.) Elevation difference = 0.300(Ft.) Slope = 0.541 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.75 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.8700)* ( 70.000".5)/( 2.OOO"(1/3)]= 2.75 Calculated TC of 2.749 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 4.479(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.156(CFS) Total initial stream area = 0.040(Ac.) + + + + + + + + + -|--l- + -H--(- + + 4-4--h + 4 + H-H- + + + + -F4 + + + 4-l- + 44 + + + + 4 + + + 4 + 4 + -H444- + + + + + + 4-l- + 4 + 44 + 4 Process from Point/Station 7006.000 to Point/Station 9005.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 48.200(Ft.) End of street segraent elevation = 47.320(Ft.) Length of street segraent = 174.800(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.505(CFS) Depth of flow = 0.214(Ft.), Average velocity = 1.183(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.967(Ft.) Flow velocity = 1.18(Ft/s) Travel time = 2.46 min. TC = 5.21 min. Adding area flow to street Rainfall intensity (I) = 4.361(In/Hr) for a 10.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Page 18 of 20 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.361(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.209 Subarea runoff = 0.755(CFS) for 0.200(Ac.) Total runoff = 0.911(CFS) Total area = 0.240(Ac.) Street flow at end of street = 0.911(CFS) Half street flow at end of street = 0.911(CFS) Depth of flow = 0.250(Ft.), Average velocity = 1.349(Ft/s) Flow width (frora curb towards crown)= 7.770(Ft.) -H- + + 4 + 4-4- + + + + + + 4 + 4 + 44 + + + -F + 44 + 44 + 44 + + + + 4 + + 4444 + + 4- + -I- + + + + 4 + + + 4- + + + 4 + -1- + 4 + + 4- + Process frora Point/Station 7006.000 to Point/Station 9005.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.24 0(Ac.) Runoff from this stream = 0.911(CFS) Time of concentration = 5.21 min. Rainfall intensity = 4.361(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12 .212 6 . 03 3 .968 2 0 .878 5 .40 4 .264 3 0 . 911 5 .21 4 .361 Qraax(1) = 1 .000 * 1 . 000 * 12 .212) + 0 .931 * 1 .000 * 0 .878) 4 0 .910 * 1 . 000 * 0 .911) 4 = 13.858 Qraax(2) = 1 .000 * 0 . 894 * 12 .212) 4 1 .000 * 1 . 000 * 0 .878) 4 0 .978 * 1 . 000 * 0 .911) 4 = 12.691 Qmax(3) = 1 .000 * 0 . 864 * 12 .212) 4 1 .000 * 0 . 966 * 0 .878) 4 1 .000 * 1 . 000 * 0 . 911) 4 = 12.309 Total of 3 streams to confluence: Flow rates before confluence point: 12 .212 0. 878 0. 911 Maximum flow rates at confluence using above data: 13 . 858 12.691 12.309 Area of strearas before confluence: Page 19 of 20 3.650 0.240 0.240 Results of confluence: Total flow rate = 13.858(CFS) Tirae of concentration = 6.032 min. Effective streara area after confluence = 4.130(Ac. -(--(--I- + + + + -H44 + + 44 + 4 + 4 + 444-44444 + 4 + + 44 + + 4444444 + + 4-444 + 44444444444444-4444 + 44 Process from Point/Station 9005.000 to Point/Station 7007.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 40.190(Ft.) Downstreara point/station elevation = 39.820(Ft.) Pipe length = 71.54(Ft.) Slope = 0.0052 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.858(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 13.858(CFS) Normal flow depth in pipe = 13.24(In.) Flow top width inside pipe = 34.72(In.) Critical Depth = 14.20(In.) Pipe flow velocity = 5.87(Ft/s) Travel time through pipe = 0.20 rain. Time of concentration (TC) = 6.24 min. End of computations, total study area = 4.13 0 (Ac.) Page 20 of 20 APPENDIX 4 Hydraulic Calculations for Storm Drain BFA (See Exhibit 'M') ECR3U ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE, WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC CALCULATION * * MAIN STORM DRAIN LINE FOR EL CAMINO REAL W/ 100 YEAR ULTIMATE HYDROLOGY * * REVISED BY MC * ************************************************************************** FILE NAME: ECR3U,DAT TIME/DATE OF STUDY: 09:49 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) 3.58* MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS!) 1,00- PROCESS HEAD(FT) 3.58* 1917,24 2.50 DC 1579,66 } PIPE ENLARGEMENT 1.00-3.58* 1917,24 2.50 DC 1579.66 } FRICTION 1,10-3.54* 1890,89 2,50 DC 1579,66 } FRICTION+BEND 1.20-3,67* 1973,26 2.50 DC 1579,66 } FRICTION 1.30-3,67* 1970,89 2,50 DC 1579.66 } FRICTION-fBEND 2.00-3.75* 2017,42 2,50 DC 1579.66 } JUNCTION 2,10-3,78* 2013,68 2,49 DC 1551,21 } FRICTION 3,00-3,68* 1956,47 2,49 DC 1551,21 } MANHOL E/IN L ET/OUTLET 3.75* 3,10- MANHOL E/IN L ET/OUTLET 3.75* 1998,22 2.49 DC 1551.21 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 39,82 PIPE FLOW = 63,75 CFS PIPE DIAMETER = 42,00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 43,400 FEET NODE 1,00 : HGL = < 43.400>;EGL= < 44,082>;FLOWLINE= < 39,820> ****************************************************************************** FLOW PROCESS FROM NODE 1,00 TO NODE 1,00 IS CODE = 4 Page 1 ECR3U UPSTREAM NODE 1.00 ELEVATION = 39.82 (FLOW IS UNDER PRESSURE) CALCULATE SUDDEN PIPE ENLARGEMENT LOSSES(LACRD): PIPE FLOW = 63.75 CFS PIPE DIAMETER: UPSTREAM = 42,00 INCHES; DOWNSTREAM = 42,00 INCHES FLOW VELOCITY: UPSTREAM = 6,63 FEET/SEC; DOWNSTREAM = 6,63 FEET/SEC, SUDDEN PIPE-FLOW ENLARGEMENT LOSSES = ((Vl-v2)**2)/64,4 = (( 6,626- 6,626)**2)/64.4 = 0,000 NODE 1,00 : HGL = < 43,400>;EGL= < 44,082>;FL0WLINE= < 39,820> ****************************************************************************** FLOW PROCESS FROM NODE 1,00 TO NODE 1.10 IS CODE = 1 UPSTREAM NODE 1,10 ELEVATION = 40,16 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42,00 INCHES PIPE LENGTH = 73.75 FEET MANNING'S N = 0,01300 SF=(Q/K)**2 = (( 63,75)/( 1006,101))**2 = 0,00401 HF=L*SF = ( 73,75)*(0,00401) = 0,296 NODE 1.10 : HGL = < 43.696>;EGL= < 44,378>;FLOWLINE= < 40.160> ****************************************************************************** FLOW PROCESS FROM NODE 1.10 TO NODE 1,20 IS CODE = 3 UPSTREAM NODE 1,20 ELEVATION = 40,39 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42.00 INCHES CENTRAL ANGLE = 90,000 DEGREES MANNING'S N = 0,01300 PIPE LENGTH = 49,01 FEET BEND COEFFICIENT(KB) = 0,25000 FLOW VELOCITY = 6,63 FEET/SEC, VELOCITY HEAD = 0.682 FEET HB=KB*(VELOCITY HEAD) = ( 0,250)*( 0.682) = 0.170 SF=(Q/K)**2 = (( 63.75)/( 1006.103))**2 = 0,00401 HF=L*SF = ( 49,01)*(0.00401) = 0.197 TOTAL HEAD LOSSES = HB + HF = ( 0,170)+( 0.197) = 0,367 NODE 1,20 : HGL = < 44,063>;EGL= < 44,745>;FLOWLINE= < 40,390> ****************************************************************************** FLOW PROCESS FROM NODE 1.20 TO NODE 1.30 IS CODE = 1 UPSTREAM NODE 1,30 ELEVATION = 40,41 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 4,00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 63.75)/( 1006,095))**2 = 0,00401 HF=L*SF = ( 4.00)*(0.00401) = 0,016 NODE 1,30 : HGL = < 44,079>;EGL= < 44,761>;FLOWLINE= < 40,410> ****************************************************************************** FLOW PROCESS FROM NODE 1,30 TO NODE 2.00 IS CODE = 3 UPSTREAM NODE 2,00 ELEVATION = 40,46 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 63.75 CFS PIPE DIAMETER = 42,00 INCHES CENTRAL ANGLE = 21.000 DEGREES MANNING'S N = 0,01300 PIPE LENGTH = 11.25 FEET BEND COEFFICIENT(KB) = 0,12076 FLOW VELOCITY = 6,63 FEET/SEC, VELOCITY HEAD = 0.682 FEET HB=KB*(VELOCITY HEAD) = ( 0,121)*( 0,682) = 0,082 SF=(Q/K)**2 = (( 63.75)/( 1006,112))**2 = 0,00401 HF=L*SF = ( 11,25)*(0.00401) = 0,045 Page 2 ECR3U TOTAL HEAD LOSSES = HB + HF = ( 0,082)-H( 0,045) = 0.127 NODE 2,00 : HGL = < 44,207>;EGL= < 44,889>;FLOWLINE= < 40,460> ****************************************************************************** FLOW PROCESS FROM NODE 2,00 TO NODE 2,10 IS CODE = 5 UPSTREAM NODE 2,10 ELEVATION = 40,49 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC) UPSTREAM 62,90 42,00 0,00 40,49 2,49 6,538 DOWNSTREAM 63.75 42,00 - 40.46 2,50 6,626 LATERAL #1 0.85 18,00 90.00 41,95 0,34 0,481 LATERAL #2 0,00 0,00 0,00 0,00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al4-A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00391 DOWNSTREAM: MANNING'S N = 0-01300; FRICTION SLOPE = 0.00401 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00396 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0,024 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY+HVl-HV2)-f(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,042)+( 0.000) = 0,042 NODE 2,10 : HGL = < 44,267>;EGL= < 44,930>;FLOWLINE= < 40,490> ****************************************************************************** FLOW PROCESS FROM NODE 2.10 TO NODE 3,00 IS CODE = 1 UPSTREAM NODE 3.00 ELEVATION = 40,95 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 62,90 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 93.31 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 62,90)/( 1006.102))**2 = 0,00391 HF=L*SF = ( 93,31)*(0.00391) = 0.365 NODE 3,00 : HGL = < 44,631>;EGL= < 45,295>;FLOWLINE= < 40.950> ****************************************************************************** FLOW PROCESS FROM NODE 3,00 TO NODE 3,10 IS CODE = 2 UPSTREAM NODE 3,10 ELEVATION = 40,98 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 62,90 CFS PIPE DIAMETER = 42,00 INCHES USER SPECIFIED LOSS COEFFICIENT =0,15 FLOW VELOCITY = 6,54 FEET/SEC, VELOCITY HEAD = 0,664 FEET HMN = 0,15*(VELOCITY HEAD) = 0.15*( 0,664) = 0,100 NODE 3.10 : HGL = < 44,731>;EGL= < 45.395>;FLOWLINE= < 40,980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3,10 FLOWLINE ELEVATION = 40,98 ASSUMED UPSTREAM CONTROL HGL = 43,47 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 ECR3UALT ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ver, 21,0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC, 2710 LOKER AVE, WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC CALCULATION * * MAIN STORM DRAIN LINE FOR EL CAMINO REAL W/ 100 YEAR ULTIMATE HYDROLOGY * * REVISED BY MC * ************************************************************************** FILE NAME: ECR3UALT.DAT TIME/DATE OF STUDY: 09:48 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used,) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) 3.75* MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3,10-FRICTION HEAD(FT) 3.75* 3879,61 3.37 DC 3808,61 4.00-JUNCTION 4.23* 4190,84 2.97 3895,15 4,10- FRICTION 4.04* 3955,73 3,34 DC 3718,35 5,00- JUNCTION 4,45* 4284,30 3,34 DC 3718,35 5.10-FRICTION 4,53* 4271,61 3,32 DC 3641,32 6.00-JUNCTION 4.58* 4312.42 2,67 3882.09 6,10-4.74* 4312.82 2,46 3894.04 } FRICTION } HYDRAULIC JUMP 7,00-JUNCTION 4.71 4292.42 1,87* 5012.85 7.10-FRICTION 4,32 3881,99 1.83* 4904,65 8,00- JUNCTION 3,24 DC 3381,06 2.44* 3760,23 8,10- FRICTION 3.83 3174,83 2,06* 3659,46 9,00-JUNCTION 3,11 DC 2973,20 2,15* 3520,07 9,10-FRICTION 3,09 DC 2914,91 2,16* 3428.51 10.00- JUNCTION 3,09 DC 2914,91 2,61* 3031,42 10.lo-FRICTION 3,03 DC 2754,01 2,50* 2891.11 ll. 00- JUNCTION 3.03*Dc 2754.01 3,03*DC 2754,01 11.10-5,38* 4161,46 Page 1 1.97 3395,14 ECR3UALT } FRICTION } HYDRAULIC JUMP 3,01*DC 2722.61 11.20- 3.01*Dc 2722.61 3,01*DC 2722,61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3.10 FLOWLINE ELEVATION = 40,98 PIPE FLOW = 125,79 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 44,730 FEET NODE 3,10 : HGL = < 44,730>;EGL= < 46,370>;FLOWLINE= < 40.980> ****************************************************************************** FLOW PROCESS FROM NODE 3,10 TO NODE 4.00 IS CODE = 1 UPSTREAM NODE 4.00 ELEVATION = 42,22 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 125,79 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 226,87 FEET MANNING'S N = 0,01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 4,00 CRITICAL DEPTH(FT) = 3,37 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 3,750 10,274 5.390 3879,61 4,193 3,760 10,258 5.395 3883,34 8.488 3,770 10.243 5.400 3887,16 12,880 3.780 10.227 5.405 3891.08 17.367 3,790 10.212 5.410 3895,11 21.941 3.800 10,198 5,416 3899,23 26,599 3.810 10,183 5,421 3903,47 31,334 3,820 10,170 5.427 3907,80 36.140 3,830 10,156 5.433 3912.25 41,012 3,840 10,143 5.439 3916.80 45,942 3,850 10,130 5.445 3921.46 50,923 3,860 10,118 5.451 3926.24 55.949 3,870 10.106 5,457 3931,14 61,011 3,880 10,095 5,463 3936,15 66,102 3,890 10.084 5,470 3941.29 71.213 3,900 10.074 5,477 3946,56 76,336 3,910 10,064 5.484 3951.96 81.463 3,920 10,055 5.491 3957.49 86.583 3,930 10,046 5.498 3963.18 91.688 3,940 10,038 5.506 3969.01 96,767 3.950 10,031 5.513 3975.01 101.808 3.960 10,024 5,521 3981.20 106,800 3,970 10,018 5,529 3987.58 111,725 3,980 10.013 5,538 3994.19 116,562 3,990 10,009 5,547 4001.08 121,256 4,000 10,007 5.556 4008,36 ===> FLOW IS UNDER PRESSURE 226,870 4,233 10,010 5,789 4190,84 NODE 4.00 : HGL = < 46,453>;EGL= < 48,009>;FLOWLINE= < 42,220> Page 2 ECR3UALT ****************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4,10 IS CODE = 5 UPSTREAM NODE 4,10 ELEVATION = 42,55 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC) UPSTREAM 123,69 48,00 0.00 42.55 3.34 9.843 DOWNSTREAM 125.79 48.00 - 42.22 3,37 10,010 LATERAL #1 2.10 18.00 90.00 42,55 0,55 1,188 LATERAL #2 0.00 0,00 0,00 0,00 0,00 0,000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*C0S(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*COS (DELTA4) )/ ( (Al-fA2) *16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00741 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,00767 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00754 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,082)+( 0.000) = 0,082 NODE 4,10 : HGL = < 46.586>;EGL= < 48.090>;FLOWLINE= < 42,550> ****************************************************************************** FLOW PROCESS FROM NODE 4,10 TO NODE 5.00 IS CODE = 1 UPSTREAM NODE 5,00 ELEVATION = 43.39 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 123,69 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 169,80 FEET MANNING'S N = 0,01300 SF=(Q/K)**2 = (( 123,69)/( 1436,438))**2 = 0,00741 HF=L*SF = ( 169.80)*(0,00741) = 1.259 NODE 5,00 : HGL = < 47,845>;EGL= < 49,349>;FLOWLINE= < 43,390> ****************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 5.10 IS CODE = 5 UPSTREAM NODE 5.10 ELEVATION = 43.72 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC) UPSTREAM 121,88 48,00 25.50 43,72 3.32 9.699 DOWNSTREAM 123,69 48,00 - 43.39 3,34 9,843 LATERAL #1 1.81 18,00 90,00 45,20 0.51 1,024 LATERAL #2 0.00 0,00 0,00 0,00 0.00 0,000 Q5 0,00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*C0S(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS (DELTA4) )/( (Al-fA2) * 16,1)-hFRICTION LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00720 DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00741 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00731 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0,029 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY-l-HVl-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,358)+( 0,000) = 0,358 Page 3 ECR3UALT NODE 5,10 : HGL = < 48,246>;EGL= < 49,707>;FLOWLINE= < 43.720> ****************************************************************************** FLOW PROCESS FROM NODE 5,10 TO NODE 6.00 IS CODE = 1 UPSTREAM NODE 6.00 ELEVATION = 45.35 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 121.88 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 233,64 FEET MANNING'S N = 0,01300 SF=(Q/K)**2 = (( 121.88)/( 1436.438))**2 = 0.00720 HF=L*SF = ( 233,64)*(0,00720) = 1.682 NODE 6.00 : HGL = < 49,928>;EGL= < 51,389>;FLOWLINE= < 45,350> ****************************************************************************** FLOW PROCESS FROM NODE 6,00 TO NODE 6,10 IS CODE = 5 UPSTREAM NODE 6,10 ELEVATION = 45.36 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 118.55 48.00 0,00 45,36 3.28 9,434 DOWNSTREAM 121,88 48,00 - 45,35 3.32 9,699 LATERAL #1 3,33 18,00 90,00 46,61 0.70 1.884 LATERAL #2 0,00 0,00 0,00 0,00 0,00 0,000 Q5 0,00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16, D-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00681 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00720 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00700 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0,011 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY-fHVl-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,089)+( 0,000) = 0,089 NODE 6.10 : HGL = < 50,096>;EGL= < 51,478>;FLOWLINE= < 45.360> ****************************************************************************** FLOW PROCESS FROM NODE 6,10 TO NODE 7,00 IS CODE = 1 UPSTREAM NODE 7,00 ELEVATION = 46,61 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 118,55 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 179.70 FEET MANNING'S N = 0,01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3,24 CRITICAL DEPTH(FT) = 3,28 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1,87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.869 20,580 8.449 5012,85 16.256 1,924 19.825 8.030 4859.47 32,554 1.979 19,122 7,660 4718.96 48,897 2.033 18,468 7,333 4590,20 65,292 2.088 17.857 7.043 4472.21 Page 4 ECR3UALT 81,745 2.143 17,286 6,786 4364,10 98.265 2.198 16,752 6,558 4265.12 114,861 2,253 16,251 6,356 4174.55 131.543 2.308 15,780 6,177 4091.80 148.323 2,363 15,338 6,018 4016,30 165.215 2,418 14,922 5.878 3947,56 179,700 2,464 14,587 5,771 3894,04 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.74 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0,000 4,736 9,434 6,118 4312,82 179,700 4.710 9,434 6.092 4292.42 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 87.73 FEET UPSTREAM OF NODE 6,10 I DOWNSTREAM DEPTH = 4,723 FEET, UPSTREAM CONJUGATE DEPTH = 2,177 FEET NODE 7.00 : HGL = < 48.479>;EGL= < 55,059>;FLOWLINE= < 46,610> ****************************************************************************** FLOW PROCESS FROM NODE 7,00 TO NODE 7.10 IS CODE = 5 UPSTREAM NODE 7.10 ELEVATION = 47.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 115,64 48,00 0.00 47,16 3,24 20,688 DOWNSTREAM 118,55 48,00 - 46,61 3,28 20.586 LATERAL #1 1,51 18,00 90.00 46,94 0,46 0.854 LATERAL #2 1,40 18,00 90.00 46,94 0,44 0,792 Q5 0,00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) )/( (A1-I-A2) *16.1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03549 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,03441 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,03495 JUNCTION LENGTH = 4,00 FEET FRICTION LOSSES = 0,140 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,573)+( 0,000) = 0,573 NODE 7,10 : HGL = < 48,986>;EGL= < 55,632>;FLOWLINE= < 47,160> ****************************************************************************** FLOW PROCESS FROM NODE 7,10 TO NODE 8.00 IS CODE = 1 UPSTREAM NODE 8.00 ELEVATION = 61.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 115.64 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 381,00 FEET MANNING'S N = 0,01300 NORMAL DEPTH(FT) = 1.80 CRITICAL DEPTH(FT) = 3,24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2,44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: Page 5 ECR3UALT DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) M0MENTUM(POUND 0,000 2,437 14,419 5.668 3760,23 2,408 2,412 14,600 5.724 3788,17 5,011 2,386 14.787 5,783 3817,42 7,828 2.361 14,978 5.846 3848,01 10,880 2.335 15,175 5.913 3880,00 14.192 2,310 15,378 5.984 3913,42 17.792 2,284 15,586 6,059 3948,33 21,713 2,259 15,801 6,138 3984,77 25,994 2,234 16,022 6,222 4022,80 30.680 2.208 16.250 6,311 4062,48 35,827 2.183 16.484 6,405 4103,86 41,501 2,157 16,726 6,504 4147,01 47,782 2,132 16,975 6,609 4191.99 54,771 2,106 17,232 6,720 4238,87 62,595 2,081 17,498 6,838 4287,73 71,418 2,056 17,771 6,962 4338,63 81,453 2,030 18,053 7.094 4391,66 92,994 2,005 18,345 7.234 4446,92 106,448 1,979 18,646 7.381 4504,47 122,415 1,954 18,957 7,537 4564.44 141,824 1,928 19,278 7,703 4626,91 166,230 1.903 19.611 7,878 4691,99 198,553 1.877 19.955 8,064 4759,80 245,350 1.852 20,310 8,262 4830.45 327,663 1.827 20.679 8,471 4904,09 381,000 1,826 20,682 8,472 4904,65 NODE 8,00 : HGL = < 63, 797>;EGL= < 67,028>;FLOWLINE= < 61,360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 8.10 8,00 TO NODE ELEVATION = 8,10 IS CODE = 5 61,69 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 105.45 115,64 8.25 1,94 DIAMETER ANGLE (INCHES) 48,00 48,00 24,00 18,00 (DEGREES) 0,00 90.00 90.00 FLOWLINE CRITICAL VELOCITY ELEVATION 61,69 61,36 63,36 63.86 DEPTH(FT.) 3.11 3,24 1,02 0,52 (FT/SEC) 16,161 14,424 5,103 3,521 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)-hFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01950 DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,01370 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,01660 JUNCTION LENGTH = 4,00 FEET FRICTION LOSSES = 0,066 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY+HV1-HV2)4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.778)-f( 0.000) = 0,778 NODE 8,10 : HGL = < 63,750>;EGL= < 67,806>;FLOWLINE= < 61.690> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 9,00 8,10 TO NODE ELEVATION = 9.00 IS CODE = 1 65,65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): Page 6 PIPE FLOW PIPE LENGTH = 105,45 CFS 196,00 FEET ECR3UALT PIPE DIAMETER = 48,00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2,04 CRITICAL DEPTH(FT) = 3.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2,15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0,000 2,154 15,283 5,783 3520.07 4,469 2,149 15,324 5,798 3526.43 9,155 2,145 15,365 5,813 3532.84 14,078 2,140 15,406 5.828 3539.30 19.258 2,135 15,447 5.843 3545,82 24.722 2,131 15.489 5,858 3552,38 30,499 2,126 15,531 5.874 3559,00 36,622 2,122 15,573 5.890 3565,68 43,131 2,117 15,616 5,906 3572,40 50,073 2,112 15,658 5.922 3579,18 57,505 2,108 15,701 5.938 3586.02 65,493 2,103 15.744 5.955 3592.91 74,121 2,099 15.788 5,971 3599,85 83,491 2,094 15,831 5,988 3606,85 93.733 2,089 15,875 6,005 3613,90 105,012 2,085 15,919 6,022 3621,01 117,549 2,080 15,963 6,040 3628,18 131,640 2,076 16,008 6,057 3635,40 147,701 2,071 16,053 6.075 3642.68 166,342 2,066 16,098 6.093 3650,02 188.508 2,062 16.143 6.111 3657.42 196,000 2,060 16,156 6,116 3659.46 NODE 9,00 : HGL = < 67,804>;EGL= < 71,433>;FL0WLINE= < 65,650> ****************************************************************************** 9,00 TO NODE 9,10 IS CODE = 5 ELEVATION = 65,98 (FLOW IS SUPERCRITICAL) FLOW PROCESS FROM NODE UPSTREAM NODE 9,10 CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES 103,95 48,00 O.OC 105,45 48,00 1,50 18,00 0,00 0,00 FLOWLINE CRITICAL VELOCITY (DEGREES) ELEVATION 0,00 90,00 0.00 65,98 65,65 65.98 0.00 DEPTH(FT,) 3.09 3.11 0,46 0,00 (FT/SEC) 15,048 15,288 0,849 0,000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) )/( (Al-fA2) *16,1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,01630 DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0.01683 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01657 JUNCTION LENGTH = 4,00 FEET FRICTION LOSSES = 0,066 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY-fHVl-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,220)+( 0,000) = 0,220 NODE 9,10 : HGL = < 68,136>;EGL= < 71,653>;FLOWLINE= < 65,980> ****************************************************************************** Page 7 FLOW PROCESS FROM NODE UPSTREAM NODE 10.00 ECR3UALT 9,10 TO NODE 10,00 IS CODE = 1 ELEVATION = 68,82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 103,95 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 147,97 FEET MANNING'S N = 0,01300 NORMAL DEPTH(FT) = 2,05 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2,61 3,09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0,000 2.606 11.989 4,839 3031.42 2,210 2,583 12,107 4.861 3043.30 4,624 2,561 12,227 4.884 3055,84 7.261 2,539 12,351 4.909 3069,09 10.144 2,517 12,478 4.936 3083.04 13.297 2,495 12,607 4.965 3097,71 16,749 2,473 12,740 4.995 3113,14 20,533 2,451 12,876 5.027 3129,32 24,689 2,429 13,015 5.061 3146,29 29.263 2,406 13,158 5,096 3164,07 34.311 2.384 13.304 5,134 3182,67 39.899 2.362 13,454 5,175 3202,12 46,110 2,340 13,607 5,217 3222,44 53,045 2,318 13,764 5.262 3243,66 60,833 2,296 13,926 5,309 3265.80 69,638 2,274 14,091 5,359 3288.89 79,679 2,252 14,261 5,411 3312.95 91,250 2.230 14.435 5,467 3338,02 104,764 2.207 14.613 5,525 3364.12 120.827 2,185 14,796 5,587 3391,29 140.377 2,163 14,985 5.652 3419,56 147.970 2.156 15,044 5.673 3428,51 NODE 10,00 : HGL = < 71,426>;EGL= < 73,659>;FL0WLINE= < 68.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 10,10 10,00 TO NODE ELEVATION = 10.10 IS CODE = 5 69,15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE (CFS) (INCHES) 99,75 48,00 103.95 48,00 4,20 18,00 0.00 0,00 FLOWLINE CRITICAL VELOCITY (DEGREES) ELEVATION 0,00 90.00 0,00 69,15 68,82 71,65 0,00 DEPTH(FT,) 3,03 3.09 0,79 0,00 (FT/SEC) 12.048 11,992 4,486 0,000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S (DELTA4) )/( (A1+A2) * 16,1)-(-FRICTION LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00940 DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00910 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00925 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0,037 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-L-HVL-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,250)-(-( 0,000) = 0,250 Page 8 ECR3UALT NODE 10.10 : HGL = < 71,654>;EGL= < 73.908>;FLOWLINE= < 69.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 11.00 10,10 TO NODE ELEVATION = 11,00 IS CODE = 1 70,69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 99.75 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 153.49 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2,45 CRITICAL DEPTH(FT) = 3.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 3.026 9,777 4,511 2754,01 0,085 3.003 9,854 4.512 2754,24 0.350 2.980 9,932 4,513 2754,94 0.810 2,957 10.013 4,515 2756.11 1.484 2,934 10,095 4,517 2757.77 2.393 2,911 10,179 4,521 2759,92 3.560 2,888 10,265 4,525 2762,57 5,014 2,865 10,354 4,530 2765,74 6.787 2,842 10.444 4,537 2769,43 8,919 2.819 10.537 4,544 2773,65 11,455 2.796 10.631 4,552 2778,42 14.454 2.773 10.728 4,561 2783,74 17.982 2.750 10,827 4,571 2789.63 22.127 2.727 10.929 4,582 2796,11 26.996 2.704 11,033 4,595 2803,17 32,728 2.680 11.140 4,609 2810,85 39,506 2,657 11,249 4,624 2819,14 47,580 2,634 11,361 4,640 2828.07 57,296 2,611 11,475 4,657 2837,65 69,166 2,588 11.592 4,676 2847,89 83.981 2,565 11,712 4,697 2858,82 103,066 2,542 11,835 4.719 2870,44 128,907 2,519 11.962 4.742 2882,78 153,490 2,504 12,044 4,758 2891,11 NODE 11,00 : HGL = < 73, 716>;EGL= < 75,201>;FLOWLINE= < 70,690> ****************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11,10 IS CODE = 5 UPSTREAM NODE 11,10 ELEVATION = 71,02 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 98,92 99,75 0,83 0,00 DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) 48,00 48,00 18,00 0.00 (DEGREES) 90.00 0,00 0,00 ELEVATION 71,02 70,69 71,02 0,00 DEPTH(FT,) 3,01 3.03 0.34 0.00 (FT/SEC) 7.872 9,780 0,470 0,000 0,00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) )/( (A1-(-A2) * 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0,00474 Page 9 ECR3UALT DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,00569 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00521 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (DY-HHVl-HV2)-f(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2,164)-I-( 0,000) = 2,164 NODE 11,10 : HGL = < 76,403>;EGL= < 77,365>;FLOWLINE= < 71,020> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 11,20 11,10 TO NODE ELEVATION = 11.20 IS CODE = 1 73.08 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 98,92 CFS PIPE DIAMETER = 48,00 INCHES PIPE LENGTH = 41,08 FEET MANNING'S N = 0,01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1,52 CRITICAL DEPTH(FT) = 3,01 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3,01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-i- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0,000 3.014 9.736 4,487 2722,61 0,056 2,954 9.939 4,489 2724,17 0.233 2,894 10,155 4,497 2728,94 0,543 2,835 10,385 4,510 2737,09 1,003 2,775 10,629 4,530 2748,80 1,630 2,715 10,888 4,557 2764,26 2,446 2,656 11,163 4,592 2783,69 3,476 2.596 11.456 4,635 2807,34 4.750 2,536 11,768 4,688 2835,45 6.305 2,477 12,101 4,752 2868.34 8.184 2,417 12,455 4.827 2906,32 10.440 2,358 12,833 4,916 2949,75 13,139 2,298 13.238 5,021 2999,04 16,365 2,238 13.670 5,142 3054,65 20,222 2.179 14,134 5.283 3117,07 24,847 2,119 14,632 5.445 3186,89 30.421 2,059 15,167 5.633 3264.74 37,191 2.000 15.743 5,850 3351,37 41,080 1,972 16.027 5.963 3395,14 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5,38 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY CONTROL(FT) HEAD(FT) (FT/SEC) 0,000 5.383 7,872 30,452 4,000 7.872 SPECIFIC ENERGY(FT) 6.345 4,962 PRESSURE-f MOMENTUM(POUNDS) 4161,46 3077,28 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Page 10 ECR3UALT L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 30,452 4,000 7,869 4,962 3077,28 31.249 3,961 7.882 4,926 3048,87 31.982 3,921 7,906 4,892 3022,61 32,675 3,882 7,937 4,861 2997.82 33.335 3,842 7,974 4.830 2974.28 33.965 3,803 8,016 4.801 2951.89 34.569 3,763 8.063 4,773 2930.56 35,146 3,724 8.114 4,747 2910.26 35,699 3,684 8,169 4.721 2890,98 36.227 3.645 8,229 4.697 2872,68 36,731 3.605 8.292 4.674 2855,38 37,210 3.566 8.360 4.652 2839.06 37,664 3.527 8.431 4.631 2823.74 38.092 3.487 8.506 4.611 2809.42 38.494 3,448 8,585 4.593 2796.12 38.870 3.408 8.669 4.576 2783.84 39.217 3.369 8.756 4.560 2772,61 39,535 3,329 8.847 4,545 2762,45 39,822 3,290 8,942 4,532 2753.38 40,078 3,250 9,042 4,521 2745.41 40,300 3,211 9,146 4,511 2738.59 40,487 3.172 9,255 4.502 2732.93 40,636 3.132 9,368 4.496 2728,47 40,746 3,093 9,486 4,491 2725,24 40,814 3,053 9,608 4,488 2723,28 40,837 3,014 9,736 4,487 2722,61 41,080 3,014 9,736 4,487 2722,61 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 39.57 FEET UPSTREAM OF NODE 11,10 I DOWNSTREAM DEPTH = 3,324 FEET, UPSTREAM CONJUGATE DEPTH = 2,727 FEET NODE 11,20 : HGL = < 76,094>;EGL= < 77,567>;FLOWLINE= < 73.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 11,20 FLOWLINE ELEVATION = 73.08 ASSUMED UPSTREAM CONTROL HGL = 76,09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 11 APPENDIX 5 100 Year Existing Hydrologic Calculations for Kelly Drive Double 8'x4' RCB Basin E-F, Rancho Costera (See Exhibit 'N' Sheets 1 & 2) san Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7 4 Rational method hydrology program based on San Diego County Flood Control Division 2003 h. ^ i Rational_Hydrology study Sate iS/^/n"^ "^""""^ Rancho Costera -Existing Double 8'x4' RPR ^ . Preliminary Existing Condition studj °' ^^'^^ ^^^^^ ^ ^CR g \m307\H'f Drainage'^Study g.\101307\Hydrology\ElCaminoRCB.out ********* tj, J -I Hydrology Study Control Informati on *********< Program License Serial Number 5 007 Map data precipitation entered- 6 hour, precipitation(inches) = 2 600 P6/P2T=~5T'°"^'"^^^^^ = San Diego hydrology manual 'C values used **** INITIAL AREA EVALUATION **** °° ^° Point/Station 502.000 -.....^^.^^.i ^^jj.x group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = i.ooo [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) ^ Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance = ion nnn^,.^ ^ Highest elevation = 324.000(Ftr 100-000(Ft.) Lowest elevation = 320.000(Ft ) Elevation difference = 4 000 (Ft \ Qi^r,^ . . INITIAL AREA TIME OF CONCENTr^ON-^Af SSTION .-^^^ ' The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4 nn st • I 4.3 DU/A or Less 4.00 %, m a development type of In Accordance with Figure 3-3 initial Area Time of Concentration = 6.58 minutes Rainfall intensity (i - ? ..n 4.000-^(1/3)]= 6.58 Effective runoff coefficient uLd f ^ ^^^^ storm Subarea runoff = S 298^CFsf ^ = 0.520 Total initial stream area = 0.100(Ac.) Pro^lirfrom'poln^/stltlo^ STREET FLOW TRAVEL TIME 4 SUBfREA'FL'ow'^^Dl'il'orJ*** End nf Height of curb above gutter flnwn„. width of half street lcurhf„f ° 6-0(In.) Distance fro™ cro^ to crossLn"""^ \ "-"""I"-) Slope fro„ gutter to ^ra^r^^: J/h^V"'^ ^,„" Gutter width = l.?oO(Ft f '"'^'^ = °-°20 Gutter hike from flowline = 2. 000(In ) Manning's N in gutter = 0.0150 Manning's N from gutter to aT-;,H« K , Manning's N from grade b^eafto cr"' ^ Estimated mean flow rate 3^^^^ = Depth of flow = 0 338!Ft ) f°' "'""^^ = 10-266(CFS) Streetflow hydraulics ft ^idpoJnt'f T'^^''^ = 4. 620 (Ft sf Halfstreet flow width = 10 S^s^Ft '""^^^= Flow velocity = 4.62(Ft/s) Travel time = 5.05 min. TC - n a. • Adding area flow to street SSm^^ f^^ction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 TM^n""^^ fraction soil group D = 1 000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) ^ Impervious value, Ai = o 300 Sub-Area C Value = 0.520 Rainfall intensity = r, qTv,n„,„ , ^ ^S^rir?°."„^?I„"^T" "-v"-otal\rer°-° SLTruh'sjr: ^ .„'„'.^=?^r' street flow at end of-atrieri Jl^s'.c'psr now Width (fro. curb^^Srk ~ -J-i,'^^; ^ Process"ror^oI«/sJItlor*"**5i;rm IRREGULAR CHMNEt, FLOW TRAVEL TIME ."L!""'''"""'' 506.000 Estimated mean flow Depth of flow = 0 ******* 5^U(Ft.), Average velocitv - Irregular Channel Data *********** 266.423(CFS) 4.989(Ft/s) Informat Point number 1 2 3 4 Manning's 'N' ion entered for subchannel";;,;;;^; •X coordinate 0. 00 60. 00 140.00 200.00 r 1 'Y' coordinate 30.00 0.00 0.00 f-r^r.^-- ^ 30.00 friction factor = 0.035 Sub-Channel flow = flow top velocity; area = Froude number = 212.226(CFS) width = 82.082(Ft ) 5.032(Ft/s) 42.178(Sq.Ft) 1.237 X coordinate .y. coordinate 1 2 3 4 Manning's 'N' 0.00 90.00 110.00 200.00 friction factor = 30.00 0.00 0.00 30.00 0.035 sub-Channel flow = "~~"54:i"9"8";c;s; flow top width = 23.123(Ft ) velocity= 4.830(Ft/s) ^rea = 11.222(Sq.Ft) i'roude number = 1.222 260.000(Ft.) 57.720(Ft.) Upstream point elevation = Downstream point elevation = Flow length = 5900.000(Ft ) Travel time = 19.71 min Time of concentration = 31 74 Depth of flow = 0.520(Ft f Average velocity = 4.989;Ft/s) Sr\iuLT?h^^— Average velorit-,, r.^= ^ invert elev. Addlh^g :^L°%\^1o1h™lr' ^ Depth Of flow. 0.76„Rt.,,'Averagr::Lu'J; 6.1x1;^™^^-' 0.520(Ft.) 4444444444444 44444444444 Process from Point/Stati 44444444444 44444444444 4444444444 '^uxui./SCatlOn 506 nnn r, • ^, -^ + 44444444444 IMPROVED CHANNEL TRAVEL TIME **** P°^"t/Station 5O8.OOO 4444 i Covered channel Upstream point elevation = 57 720(Ft l Downstream point elevation = 57 080^Ft ) Channel length thru subarea = 108 0(^O^FJ S Channel base width = 8. 000 Ft^^'''' • Slope or 'Z' of left channel bank = o oon Slope or 'Z' of right channel b^k = o 000 Manning's 'N' = o 013 0-000 Maximum depth of channel = 5 000(Ft 1 Flow(q) thru subarea = 512 738?CFif Depth of flow = 4 437(Ft 1 Channel flow top width i " ' 8 000 (^f, = 14.446(Ft/s) Flow velocity = 14.45 (Ft/s) ^ ^ ^' Travel time = o.l2 min Critical depth = 5.063(Ft.) Prc^IIs^'^orPoII^/S^I^I^^ **** CONFLUENCE OF MAIN STREAMS **** P°^nt/Station 5O8.OOO S^SF^S^ ^ Stream flow area = 509.400(Ac ) Runoff from this stream = 512 738(PPC:. R^L'fall = 31. 46 .1^' Proar^ -'"''""''^ = 2.092 (In/Hr) Program is now starting with Main Stream No 2 ProceirjrorPoInt/StIJi;r'''^'"5S9^;;:\^''r.^^^ **** INITIAL AREA EVALUATION **** °° '° Pomt/Station 509.000 °^''^"'^1 f^a^ion soil grou^^r^Tooo uTc^:', f"^''°"^ = 0-00 Decimal fraction soil group C = 0 000 Decimal fraction soil Jroup D = 1 ooO [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) ' Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 I'ini^^l ^V^^^^^ total flow distance = 20 000 fFt 1 Highest elevation = 190.000(Ft ) ^U-000(Ft.) Lowest elevation = 180.000(Ft ) Elevation difference = 10 000(Ph \ ci for ?he'Z ^^^"^^"^ - 100.00 (Ft) tor the top area slope value of 30 00 % in 1^ n Permanent Open Space ' " ^ development type of In Accordance With Figure 3-3 ic'l'fl 8* a rcr*d' = 4.34 minutes TC - }-l-^\f^stance(Ft.)-.5)/(% slope-(l/3)] R" nfiii\^ieLitj^ ;ri "°-T;oo^;iV?-r-^i/3)]= 4.34 ^•500(In/Hr) for a 100.0 year storm • Effective runoff coefficient used for area (Q=KCIA) is C - 0 35n Subarea runoff = 0.263(CFS) ~ Total initial stream area = 0.100(Ac.) 44444444444444444+44444444444444444 Process from Point/StationSOg'SSrtTp^tlt'^Stlt 1"""''::"'""^" **** IMPROVED CHANNEL TRAVEL TIME **** P°^^t/Station 508.000 Upstream point elevation = 180.000(Ft ) ' ~ Downstream point elevation = 57.000(Ft ) Channel length thru subarea = 750 000(Ft ) Channel base width = i 000(Ft ) Slope or 'Z' of left channel bank = "2 000 Slope or 'Z' of right channel bank = 2 000 Estimated mean flow rate at midpoint of channel = 23 387(CFSl Manning's 'N' = 0.035 ''J-Jo/(CFS) Maximum depth of channel = 2.000(Ft ) Flow(q) thru subarea = 23 387 (CFS) ?hanLffi"°''/ 0.838(Ft.), Average velocity = 10.428(Ft/s) Channel flow top width = 4.352 (Ft ) "•^^o\i:'c/s) Flow Velocity = 10.43 (Ft/s) Travel time = 1.20 min. Time of concentration = 5.54 min Critical depth = 1.313(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0 000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1 000 [UNDISTURBED NATURAL TERRAIN 1 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6 4n9(Tn/HT> , -1 ^ (Q=KCIA) is C = 0.350 CA = 7 245 subarea runoff = 46.173(CFS) for 20.600(Ac.) Total runoff = 45 436(rFqi -r^t-^n sSc:fSth== --vEl-^^^"^ --i-^r-' ;:::::r;::;-;-;;-:;r;;----;*;;;^;;^;;^;;;..^ 44 **** CONFLUENCE OF MAIN STREAMS **** Po^nt/Station 508.000 The following data inside Main Stream is listed- In Main Stream number: 2 Stream flow area = 20.700(Ac.) Runoff from this stream = 46.436(CFS) Time of concentration = 5.54 min. Rainfall intensity = 6.409(In/Hr) Summary of stream data: Stream Flow rate TP n • T -. Mn ,^.of ^. , Rainfall Intensity No. (CFS) (min) (In/Hr) # • 2 'll'lll 2.092 2 46.436 5.54 g 409 Qmax(l) = ''•^"^ 1-000 * 1.000 * 512.738) 4 0.326 * 1.000 * 46.436) 4 = 507 RQI Qmax(2) = , b2/.891 1-000 * 0.176 * 512.738) 4 1.000 * 1.000 * 46.436) 4 = 136.779 Total of 2 main streams to confluence- Flow rates before confluence point- 512.738 46.436 Maximum flow rates at confluence using above data: 527.891 136.779 Area of streams before confluence- 509.400 20.700 Results of confluence: Total flow rate = 527.891(CFS) Time of concentration = 31.461 min Effective stream area after confluence = 530.100(Ac.) R;::::r;;:r;:i;;;;::;r"; ;;r;;r;r;;i:;;s::;- **** TRRprTTT AD ,^TT,>»-™-,T,^ -juo.uuu CO Point/station sin nnn IRREGULAR CHANNEL FLOW TRAVEL TIME **** 3XU.UU0 Irregular Channel Data *********** ' Information entered for subchannel numberT" Point number .x' coordinate 'Y' coordinate I 0-00 2.00 , 4.00 0.00 3 104.00 0.00 „ . 4 108.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 527.891(CFS) j ' flow top width = 104.588(Ft.) velocity= 4.499(Ft/s) area = 117.337(Sq.Ft) Froude number = 0.749 Upstream point elevation = 57.080 (Ft ) Downstream point elevation = 50.000(Ft ) Flow length = 730.000(Ft.) Travel time = 2.70 min. Time of concentration = 34.17 min. Depth of flow = 1.147(Ft.) Average velocity = 4.499 (Ft/s) Total irregular channel flow = 527 891(CFS) irregular channel normal depth above invert elev. = l 147(pt , Average velocity of channel(s) = 4 499(Ft/s) ^-i^/l^t.) # # ;:::::r;;r;;i;;;;;:;r----;;;----^.:...444 *-* CONFLUENCE OF MAIN SSREAMS **** P-^t/Station 510.000 The followi"^data i";;^ide Main St^^^^^TiTli^^. ^ ^ In Main Stream number: 1 listed. Stream flow area = 53 0.100(Ac ) Runoff from this stream = 527 891(CFS) Time of concentration = 34 17 min Rainfall intensity = 1.983(In/Hr) Program is now starting with Main Stream No. 2 p:::::rf;:r;:i;;;;;:;r:; iiriiirr- **** USER DEFINED FLOW INFORMATION A^A POIN?'*^*'f Decimal fraction soil group A = 0 000 ^ • Decimal fraction soil group B = 0 000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1 oOO [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) ' Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity (i) = o asRrTr^/u , ^ user specified vaLes are as foilo!i"^ " ^^^^ ^^orm TC - 24.49 min. Rain intensity = 2 idi jr.,u ^ Total area , ns.OVO.Ac, ^otal ruhof r^-'L'! .„0 ,CES, CONFLUENCE OF MINOR STREAMS "- ° fornt/Station 514.000 FireL"??!^''"™ ' ^" "r;;;;ri;ij;7T: btream flow area = 115.070(Ac ) ??mf '^'^ ^^^^^ = 137.250 (CFS) Time of concentration = 24.49 min Rainfall intensity = 2.458(In/Hr) USER OEFINEO FLOw'^FORMATION'A?"A pSlN^'^-'f Decimal fraction soil group A = 0 000 " ' Decimal fraction soil group B = 0 000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1 oOO [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) ^ Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = -? 77o/T„/rr > r y 3.378(In/Hr) for a 100.0 year storm # User specified values are as follows- TC - 14.96 min. Rain intensity = 3 38(in/Hrl 56.590(Ac.) Total runoff'I'^'^gS.630(CFS) 44444+44444444444444+444+44444 Process from Point/Station CONFLUENCE OF MINOR STREAMS *-*°° '° P^^^t/Station 514.000 Stream flow area = 56.590 (Ac ) ^""tJx ^ Runoff from this stream = 98.'630(CFS) Time of concentration = 14.96 min Rainfall intensity = 3.378(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) # 1 2 137.250 98.630 Qmax(1) = Qmax(2) = 1.000 0.728 1.000 1.000 24.49 14.96 1.000 * 1.000 * 0.611 * 1.000 * 2.458 3.378 137.250) + 98.630) + 137.250) + 98.630) 4 209.020 182.471 Total of 2 streams to confluence- Flow rates before confluence point- 137.250 98.630 Maxl™ fIo„^,.,,3 at^confluence using above data. Area of streams before confluence- 115.070 56.590 Results of confluence: Total flow rate = 209.020(CFS) Time of concentration = 24.490 min Effective stream area after confluence = 171.660(Ac.) + + + -H-H- + + + + + + + + + ^^^^^_^_^^_^^^_^_^^_^^^^ It/Station 51 IRREGULAR CHANNEL FLOW TRAVEL TIME Process fro„ Point/Station =i::o"r;r;;i„*;;s;:;i:; m::::' Depth of fl ******! ' 1-721(Ft.), Average velocity = Irregular Channel Data *********** 7.716(Ft/s) Information entered for subchannel number 1 Point number -x- coordinate 1 2 3 4 Manning's 'N' 0.00 10.00 20.00 30.00 friction factor = 'Y' coordinate 3.00 0.00 0.00 3.00 0.035 # Sub-Channel flow = 209.020(CFS) flow top width = 21.475(Ft ) velocity= 7.716(Ft/s) area = 27.088(Sq.Ft) Froude number = 1.211 Upstream point elevation = 70.000(Ft ) Downstream point elevation = 50.000(Ft ) Flow length = 800.000(Ft ) Travel time = 1.73 min. Time of concentration = 2 6.22 min Depth of flow = 1.721(Ft ) Average velocity = 7.716 (Ft/s) Total irregular channel flow = 209 020(PFc:i Irregular channel normal depth above invlrtii Average velocity of channels) I.IIGTFI/I] ^ 1-721 (Ft.) **** CONFLUENCE OF MAIN STREAMS **** P°int/Station 510.000 The following data inside Main "^^^^^^jTmil^ " In Mam Stream number: 2 -listed. Stream flow area = 171.660(Ac ) Runoff from this stream = 209.020(CFS) Time of concentration = 26.22 min Rainfall intensity = 2.353(In/Hr) Program is now starting with Main Stream No. 3 **** INITIAL AREA EVALUATION **** '° Pomt/Station 511.000 Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 0 000 Decimal fraction soil group C = 0 000 Decimal fraction soil group D = l oOO [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.3 50 Initial subarea total flow distance = 70 000(Ft l Highest elevation = 196.600(Ft.) /u.uuo(Ft.) Lowest elevation = 190 000(Ft ) Elevation difference = 6.600(Ft.) Slope = 9 429 % ST?L """^ ^1°P^ adjusted by User to 9 400 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS The maximum overland flow distance is 100.00 (Ft) tor the top area slope value of 9 40 % in = ^ i Permanent Open Space ' ^ development type of In Accordance With Figure 3-3 ?c-^fl 8*n Tpf*^' concentration = 6.40 minutes TC - [1.8*(l.l-c)*distance(Ft.)^.5)/(% slooe^d/^n TC = [1.8*(l.l-0.3500)*( 100.000^.5 ( 9 Io(^' n 3,1 , Rainfall intensity (i) = 5 f,AAiTr,/u ^ t (1/3)]= 6.40 ^ ^ ' 5.844(In/Hr) for a 100.0 year storm ^^If f Effective runoff coefficient i]c5(=H fnv- , subarea runoff = 0 20?(CFsf (Q=KCIA) is C = 0.350 Total initial stream area = 0.100(Ac.) p::;::r;::r;:t:;;;;:;i;:-^^^^;ir;;rr^r- -** IMPROVED CHANNEL TRAVEL TIME -** ^^^^^/Station 510.000 Upstream point elevation = igoToooTFTl Downstream point elevation = 50 000(FI ) Ch^Zti'""'"-'^"^^^^^^^^^ = 450°S^p , Channel base width = 1.000(Ft ) Slope or 'Z' of left channel bank = 2 000 Slope or 'Z' of right channel bank = 2 000 SnS • s "ro:?3^^ - ~ - - . 987 (CFS) Maximum depth of channel = 2 000(Ft \ Flow(q) thru subarea = 10.987(CFS) Depth of flow = 0 504 (Fh i a-„^v- Channel flow top width f '3 015,^^'°'''^^ = 10.867(Ft/s) Flow Velocity = 10.87{Ft/s) Travel time = 0.69 min. Time of concentration = 7.09 min Critical depth = 0.914(Ft ) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0 000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l oOO [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350' Rainfall intensity = 5 47o^Tn/H^^ ^ ^^'-Tl'^t^^^T -"v»^>".Varer°-° Subarea runoff = ?i /ifio,nce\ ^ Total runoff = 21 673(CFSr \ . 11-220 (Ac.) Depth of flow = 0 697(Ft T Averaaf ? """" = 11-320 (Ac.) Critical depth = 1 266 ^tT ^^l°^^ty = 12.974 (Ft/s) 4444 + + + + -n- + + + + + + + ^.^.^^^^^^_l__^^_^ lint/Station CONFLUENCE OF MAIN STREAMS Process fro„ Point.station''' ""n::;o";r;:i;:;;;;;i:; iiroii' MQ **** 31U.UUU In Mam Stream number: 3 nscea. Stream flow area = n 320(Ac ) Runoff from this stream = 21."673 (CFS) Time of concentration = 7.09 min Rainfall intensity = 5.470(In/Hr) Summary of stream data: Stream Flow rate TC U • J= -, ,eFS, ,J„, """fall^lntensity 10 # 1 , . . 1 / 1 2 209.020 26.22 3 21.673 7.09 54" Qmax(l) = 5.470 527.891) + 209.020) 4 Qmax(2) = 21.673) 4 = 711.955 527.891) 4 209.020) 4 u.fiju " 1.000 * 91 <;T3\ Qmax(3) = 21.673) 4 = 623.437 527.891) 4 209.020) 4 21.673) 4 = 187.673 Total of 3 main streams to confluence- Flow rates before confluence point- 527.891 209.020 21 673 Maximum flow rates at confluence"using above data: /11.955 623.437 187.673 Area of streams before confluence- 530.100 171.660 11.320 Results of confluence: Total flow rate = 711.955(CFS) Time of concentration = 34.165 min. Effective stream area after confluence 527 .891 34 .17 209 . 020 26 .22 21 .673 7 .09 1 .000 * 1 .000 * 0 843 * 1 .000 * 0 363 * 1 000 * 1 000 * 0 767 * 1. 000 * 1. 000 * 0. 430 * 1. 000 * 1. 000 * 0. 207 * 1. 000 * 0. 270 * 1. 000 * 1. 000 * 713.080(Ac.) **** IRREGULAR CHANNEL FLSW TRAVE^ TIME ^°.!°-^/^tation 520.000 -.-^^.^ V. , , /average velocity = 5 819(Fh/ai Irregular Channel Data *********** ^•«iy(Ft/s) Information entered for subchannel numb^rT- Pomt nuxr^er • x' coordinate • y • coo;dinate 0 0-00 2.00 , 4.00 0.00 1 104.00 0.00 4 108.00 o nn Manning's 'N' friction factor = 0.035 Sub-Channel flow = 711.956(CFS) flow top width = 104.780(Ft ) velocity= 5.819(Ft/s) area = 122.354(Sq.Ft) Froude number = 0.949 Upstream point elevation = 50. 000(Ft ) Downstream point elevation = 42 000(Ft ) Flow length = 520.000(Ft.) # Travel time = 1.49 min. Time of concentration = 35 65 min Depth of flow = 1.195(Ft ) Average velocity = 5.819(Ft/s) Total irregular channel flow = 711 955(CFqi 5-819(Ft/s) ' l-195(Ft.) **** CONFLUENCE OF MAIN STREAMS **** P°int/Station 520.000 Stream flow area = 713.080(Ac ) Runoff from this stream = 711 955(CFS) Sfa°f 1 ^°"^-^-tion = 35.65 min ProSram i """"'^ = 1-929 (In/Hr) Program is now starting with Main Stream No. 2 USER DEFINED FLOW INFORMATION AJ A POIN^**^f H^^sSSJ^^ User specified values are as follows ^""^ ^ ^^^^ ^^orm Jotll aref^-"''^- ^ij%20^rf'^ = ' 3.16(ln/Hr) 11.520(Ac.) Total runoff = 20.200(CFS) Process frorPoIntJstItior^^^^^52rj^r+rr • **** CONFLUENCE OF MAIN STREAMS **** P°int/Station 520.000 following data inside Main Stream i « T^T~1 —— In Main Stream number: 2 listed: Stream flow area = 11.520(Ac ) ?ime nf'"°" "'""^ = 20:200(CFS) Time of concentration = 16.56 min. Ramfall intensity = 3.164 (In/Hr) Program is now starting with Main Stream No. 3 Procesrf^orPoinUsJIuor^^^^*52r(^Jr!'"h^^r^^^^^^^ **** INITIAL AREA EVALu™ **** '° Pomt/Station 526.000 Decimal fraction soil group A = 0 000 Decimal fraction soil group B = 0 000 Decimal fraction soil group C = 0 000 Decimal fraction soil group D = l oOO [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 # Sub-Area C Value = 0 350 ssisJ - "o.ooo.Ft., Lowest elevation = 225.000 (Ft ) Elevation difference = n 000(Ft ) QI INITIAL AREA TIME OF CONCENTRATION'CAL'CSL'TIONS' The maximum overland flow distance is 100 oo (Ft) for the top area slope value of 11 00 % in i Permanent Open Space ' " ^ development type of In Accordance With Figure 3-3 S^''t^.t*a I-cr*dLt°"^^r^^''°" = --tes = ll.S*n:lo]3Too^^^^^^^ slope^(l/3)] Rainfall intensity (i = g 04^ i ^ 11-000-^(1/3)]= 6.07 Effective runoff Coefficient used fo " storm Subarea runoff = J 2r2^CFsf ^""^^ (Q=KCIA) is c = 0.350 Total initial stream area = 0.100(Ac.) ProcesI'frorPo^n;/!;!;.;;^""""";";^;;^^;^ **** IMPROVED CHANNEL TRAVEL TIME ***S P°int/Station 528.000 Upstream7oi^^r"iI^^;^^I^i7T J^TooOrFT] Downstream point elevation = 50 OOO^F! , Channel length thru subarea = 97^ 2(^O^F! i Channel base width = 3 OOn P; ? ' Einlh """-^^^ channel bank = i ooo ^^r„^oi1 " - = l.«3,CFS, Depth of flow = 0 068 (Ft /-^^^'^^S) Channel flow top width i ^ ^ 3 S(?r/''°"''^ = 6.807 (Pt/s) Flow velocity = 6.81(Ft/s) Travel time = 2.38 min. Time of concentration = 8 45 min critical depth = 0.188(Ft ) Adding area flow to channel iTa^] ^"^-^^ .roup A =0.000 . yxoup a = 0.000 Decimal fraction soil group C = 0 000 Decimal fraction soil grouj D = 1 oSo [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) ^ Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4 fiRR/Tr,/^ 1 ^ ?r-t'Li 5^pth\ "-"^v^-^^-"^' 3.3oei^t^?ir-' # Process fromlllll^Zlll^''^'"^^*^^^^^^ **** SUBAREA FLOW ADDITION **** ^""-"^^ "o Pomt/Station 528.000 User specified 'C value of n o^n ^ 7 —^— Time Of concentration = 8 45 min"^ Rainfall intensity = 4 885(Tn)»\ . ^'-TV^^'^^^ "ef ^o-r'tJSl^ref ^ iotal area = 5.190(Ac.) Process TrZ^lllnl%llllll''^^^*^l^^^^^ **** PIPEFLOW TRAVEL TIME (User specified°sizer****''°" —i^^^FTTT^—•— Downstream point/station elevation - ni. ' Pipe length = no 00(Ft r M • 46.000 (Ft.) No. of pipes - 1 RL, - ' ^^ Manning's N = 0.013 Given p?pe size = ^^3^00 (iT) = ' '^^^^ Calculated individual pipe flow - 0/1 Normal flow depth in p^e = To 6"2(ln f' ^^^'^ Flow top width inside pipe = 32 UnS Critical Depth = 18.98(In ) TrJ^e^h'' velocity = 13.83 (Ft/s) liZ nf P^P^ = 0-13 min. Time of concentration (TC) = 8.58 min. Process from^Point/stltior^^^^^siri;^!^'"^^:^^^^ -** IRREGULAR CHANNEL FLOW TRAVEL TI^ to^Pomt/Station 520.000 Depth of flow ^ 1 730,p,. , — ____ ____j-y_**_.r^^^^^^^ PoSr^^Zr^"^^^^^^"^ 1 n nn coordinate 0 "-"0 4.00 , 8.00 0.00 16.00 A nn Manning's 'N' friction factor = 0.035 Sub-Channel flow = 24y086 (CFS;^ flow top width = 6.955(Ft ) velocity= 3.983(Ft/s) area = 6.047(Sq.Ft) Froude number = 0.753 Upstream point elevation = 46. 000 (Ft ) Downstream point elevation = 42.000(Ft ) Flow length = 325.000(Ft ) Travel time = 1.36 min. Time of concentration = 9 94 min Depth of flow = 1.739(Ft.)' "4 Average velocity = 3.983(Ft/s) Total irregular channel flow = 24 086(PFQ. l-739(Ft.) Proceir^rom"poIntJs^ItIor"""'^^'rjjrh^ — CONFLUENCE OF MAIN STREAMS **** Po-^/c+ = ..„„ to Point/Station 520.000 stream flow area = 5.190(Ac ) Runoff from this stream = '24.' 86 (CFS) Ra?;faH'°"r"'"''°" - ' Ramfall intensity = 4 -^qan^,^ , Summary of stream data: '-'"''l"/"^' Stream No. 1 2 3 Qmax(l) Qmax(2) Qmax(3) = Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 711 .955 35 .65 20 .200 16 .56 24 .086 9 .94 1 . 000 * 1 .000 * 0 . 610 * 1 .000 * 0 439 * 1 000 * 1. 000 * 0 464 * 1. 000 * 1. 000 * 0. 719 * 1. 000 * 1. 000 * 0. 279 * 1. 000 * 0. 600 * 1. 000 * 1. 000 * 1.929 3.164 4.398 711.955) 20.200) 24.086) 711.955) 20.200) 24.086) 711.955) 20.200) 24.086) 4 4 4 + + + + + + : 734.839 368.198 Total of 3 main streams to confluence- Flow rates before confluence point: . 711.955 20.200 24.086 Maximum flow ratec? 3+ r.r^^^=^ 734.839^^^^^ 3l8^198"^^"^^3:^6L^'°^^ = Area of streams before confluence 713.080 11.520 -5.190 234.645 Results of confluence: Total flow rate = 734.839(CFS) Time of concentration = 35.655 min. Effective stream area after confluence -729.790(Ac.) — IMPROVED CHANNEL TRAVEL TIME -** P°^"t/Station 532.000 IS' Covered channel Upstream point elevation = 42 000(Ft i Downstream point elevation = 40 O o^pi , Channel length thru subarea = 108 OOO^FJ ) Channel base width = 16.000 (FtT Slope or 'Z' of left channel bank = 'o 000 Slope or 'Z' of right channel bank = o OOQ Manning's 'N' = 0.013 u.uuu Maximum depth of channel = 4 000(Ft > Flow(q) thru subarea = 734 839(CFsr' Depth of flow = 2 102(Ft la Channel flow top width i ''is ToTiT^'''''''^ = 21-849(Ft/s) Flow Velocity = 21.85(Ft/s)' Travel time = 0.08 min Time of concentration = 35.74 min. Critical depth = 4.031(Ft ) End Of computations, total study area = 729.790 (Ac.) APPENDIX 6 100 Year Proposed Hydrologic & Hydraulic Calculations for Kelly Drive Double 8'x4' RCB Basin E-F, Rancho Costera (See Exhibit'N' Sheet 3) rcbasinef san Diego county Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7,9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual •)na1 Hydrology Study Date: 10/11/14 Hydrology Study Control information ********** ********* Program License serial Number 6324 Rational hydrology study storm event year is English (in-lb) input data units used Map data precipitation entered: 6 hour, precipitation(inches) = 2,600 24 hour precipitation(inches) = 4,300 P6/P24 =60.5% San Diego hydrology manual 'C values used 100,0 Process from point/Station 5000,000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 5000,000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4,3 DU/A or Less ) impervious value, Ai = 0.300 Sub-Area C value = 0,520 Rainfall intensity (I) = User specified values are as follows: TC = 31,46 min. Rain intensity = 2.09(in/Hr) Total area = 509.400(Ac.) Total runoff = 512.740(CFS) ] 2,092(in/Hr) for a 100,0 year storm process from Point/Station 5000,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 5000.000 The following data inside Main stream is listed: In Main stream number: 1 Stream flow area = 509,400(Ac,) Runoff from this stream = 512,740(CFS) Time of concentration = 31,46 min. Rainfall intensity = 2.092(in/Hr) Program is now starting with Main Stream No. 2 process from Point/Station 5001,000 to Point/Station **** INITIAL AREA EVALUATION **** 5002,000 Decimal fraction soil group A = 0,000 D3no 1 Page 1 rcbasinef Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN ] (Permanent open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0,350 initial subarea total flow distance = 100.000(Ft,) Highest elevation = 170.000(Ft,) Lowest elevation = 120,000(Ft,) Elevation difference = 50,000(Ft,) Slope = 50,000 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open Space in Accordance with Figure 3-3 initial Area Time of concentration = 4,34 minutes TC = [l,8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)] TC = [l,8*(l.l-0.3500)*( 100.000A.5)/( 30,OOOA(l/3)]= 4,34 Calculated TC of 4,345 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 subarea runoff = 0.240(CFS) Total initial stream area = 0,100(Ac,) Process from Point/Station 5002,000 to Point/Station 5003.000 **** IMPROVED CHANNEL TRAVEL TIME **** 3,259(CFS) 3,158(Ft/s) upstream point elevation = 120,000(Ft,) Downstream point elevation = 63.000(Ft,) Channel length thru subarea = 470.000(Ft,) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 2,000 Slope or 'Z' of right channel bank = 2,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0,035 Maximum depth of channel = 2.000(Ft,) Flow(q) thru subarea = 3,259(CFS) Depth of flow = 0,101(Ft,), Average velocity = Channel flow top width = 10,405(Ft,) Flow velocity = 3.16(Ft/s) Travel time = 2.48 min. Time of concentration = 6,83 min. Critical depth = 0,146(Ft,) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0.350 Rainfall intensity = 5,605(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 1.109 Subarea runoff = 5.979(CFS) for 3,070(Ac,) Total runoff = 6.218(CFS) Total area = 3,170(Ac,) Page 2 5,605(ln/Hr) for a 0,000 0.000 0.000 1.000 ] 100.0 year storm Depth of flow = critical depth = rcbasinef 0,149(Ft,), Average velocity = 0.227(Ft,) 4.057(Ft/s) Process from Point/Station 5003,000 to Point/Station 5004,000 **** PIPEFLOW TRAVEL TIME (user Specified size) **** upstream point/station elevation = Downstream point/station elevation = Pipe length = 28,00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18,00(in,) Calculated individual pipe flow = 6.218(CFS) Normal flow depth in pipe = 11,51(in,) Flow top width inside pipe = 17,29(in,) critical Depth = 11,57(in,) Pipe flow velocity = 5,21(Ft/s) Travel time through pipe = 0,09 min. Time of concentration (TC) = 6,91 min. 63,000(Ft,) 62.820(Ft,) 0.0064 Manning's N = 0.013 6.218(CFS) process from Point/station 5003,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5004,000 Along Main stream number: 2 in normal stream number 1 Stream flow area = 3,170(Ac,) Runoff from this stream = 6,218(CFS) Time of concentration = 6.91 min. Rainfall intensity = 5.558(ln/Hr) Process from point/Station 5005.000 to Point/Station **** INITIAL AREA EVALUATION **** 5006,000 ] 100,000(Ft.) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) impervious value, Ai = 0,400 sub-Area C value = 0,570 Initial subarea total flow distance = Highest elevation = 147,100(Ft,) Lowest elevation = 145,000(Ft.) Elevation difference = 2.100(Ft.) Slope = 2,100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80,00 (Ft) for the top area slope value of 2,10 %, in a development type of 7,3 DU/A or Less in Accordance with Figure 3-3 Initial Area Time of Concentration = 6,66 minutes TC = [1.8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)] TC = [1.8*(l.l-0,5700)*( 80,OOOA,5)/( 2.100A(l/3)]= 6,66 The initial area total distance of 100,00 (Ft,) entered leaves a remaining distance of 20,00 (Ft,) using Figure 3-4, the travel time for this distance is 0,35 minutes for a distance of 20.00 (Ft.) and a slope of 2,10 % with an elevation difference of 0.42(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))]A.385 *60(min/hr) Page 3 rcbasinef 0.347 Minutes Tt=[(ll,9*0,0038A3)/( 0.42)]A.385= 0,35 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0,35 minutes from the Figure 3-4 formula = 7,01 minutes Rainfall intensity (I) = 5,509(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,570 Subarea runoff = 0.314(CFS) Total initial stream area = 0.100(Ac,) Process from Point/Station 5006,000 to Point/Station 5004,000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 145,000(Ft.) End of street segment elevation = 70,730(Ft,) Length of street segment = 1010.000(Ft.) Height of curb above gutter flowline = 6,0(ln,) Width of half street (curb to crown) = 14,000(Ft,) Distance from crown to crossfall grade break = 12,500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft.) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft,) Gutter hike from flowline = 2,000(in,) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 1,578(CFS) Depth of flow = 0,237(Ft.), Average velocity = 4.446(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 5,024(Ft,) Flow velocity = 4,45(Ft/s) Travel time = 3,79 min, TC = 10.80 min. Adding area flow to street Rainfall intensity (i) = 4,170(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group a = 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7,3 DU/A or Less ) Impervious value, Ai = 0,400 sub-Area C value = 0,570 Rainfall intensity = 4.170(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,570 CA = 0,667 Subarea runoff = 2,467(CFS) for l,070(Ac,) Total runoff = 2,781(CFS) Total area = l,170(Ac,) Street flow at end of street = 2.781(CFS) Half street flow at end of street = 2.781(CFS) Depth of flow = 0,272(Ft,), Average velocity = 4.966(Ft/s) Flow width (from curb towards crown)= 6,764(Ft,) Process from Point/Station 5006,000 to Point/Station 5004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1,170(Ac) Page 4 rcbasinef Runoff from this stream = 2,781(CFS) Time of concentration = 10,80 min. Rainfall intensity = 4,170(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO, (CFS) (min) (In/Hr) 1 6,218 6,91 5,558 2 2,781 10,80 4,170 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 6.218) -I- 1,000 * 0.640 * 2,781) + = 7,999 0,750 * 1,000 * 6,218) + 1,000 * 1,000 * 2,781) + = 7,446 Total of 2 streams to confluence: Flow rates before confluence point: 6,218 2.781 Maximum flow rates at confluence using above data: 7,999 7,446 Area of streams before confluence: 3,170 1.170 Results of confluence: Total flow rate = 7,999(CFS) Time of concentration = 6.915 min. Effective stream area after confluence = 4,340(Ac,) Process from Point/Station 5004,000 to Point/Station 5007,000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 62,490(Ft,) Downstream point/station elevation = 62,300(Ft,) Pipe length = 28,35(Ft,) Slope = 0,0067 Manning's N = 0,013 No, of pipes = 1 Required pipe flow = 7,999(CFS) Nearest computed pipe diameter = 18,00(in.) Calculated individual pipe flow = 7.999(CFS) Normal flow depth in pipe = 13,73(in,) Flow top width inside pipe = 15.31(ln.) Critical Depth = 13,15(in.) Pipe flow velocity = 5.53(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 7,00 min. Process from Point/Station 5004.000 to Point/Station 5007,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 Stream flow area = 4.340(Ac.) Runoff from this stream = 7.999(CFS) Time of concentration = 7,00 min. Rainfall intensity = 5,514(ln/Hr) process from Point/Station 5009,000 to Point/Station 5011,000 **** INITIAL AREA EVALUATION **** Page 5 rcbasinef Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C value = 0,570 Initial subarea total flow distance = 100,000(Ft.) Highest elevation = 147.100(Ft.) Lowest elevation = 145.000(Ft,) Elevation difference = 2.100(Ft,) Slope = 2.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 %, in a development type of 7.3 DU/A or Less In Accordance with Figure 3-3 Initial Area Time of concentration = 6,66 minutes TC = [l,8*(l,l-C)*distance(Ft,)A.5)/(% slopeA(l/3)] TC = [l,8*(l,l-0,5700)*( 80,OOOA,5)/( 2.100A(l/3)]= 6.66 The initial area total distance of 100.00 (Ft,) entered leaves a remaining distance of 20,00 (Ft,) using Figure 3-4, the travel time for this distance is 0,35 minutes for a distance of 20,00 (Ft,) and a slope of 2,10 % with an elevation difference of 0,42(Ft,) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft,))]A.385 *60(min/hr) 0,347 Minutes Tt=[(11.9*0,0038A3)/( 0,42)]A.385= 0,35 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7,01 minutes Rainfall intensity (I) = 5,509(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0,314(CFS) Total initial stream area = 0,100(AC,) +-H-f-f-l--f-(--f-f-f-f-f-f-f+-f--f+-h+-f+-f+++-t--f-f+++-l--l--l--l--l--(--t-4-++++++++-t--|-+-H+++++-(-++-(--^ Process from Point/Station 5011,000 to Point/Station 5007,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 145,000(Ft,) End of street segment elevation = 70,730(Ft,) Length of street segment = 1010,000(Ft,) Height of curb above gutter flowline = 6.0(ln,) Width of half street (curb to crown) = 14,000(Ft,) Distance from crown to crossfall grade break = 12,500(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [1] side(s) of the street Distance from curb to property line = l,500(Ft,) Slope from curb to property line (v/hz) = 0,020 Gutter width = l,500(Ft.) Gutter hike from flowline = 2,000(ln.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1,328(CFS) Depth of flow = 0,227(Ft,), Average velocity = 4,322(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 4,525(Ft,) Flow velocity = 4,32(Ft/s) Travel time = 3,90 min, TC = 10.91 min. Page 6 rcbasinef Adding area flow to street Rainfall intensity (I) = 4.143(in/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL ] (7,3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C value = 0,570 Rainfall intensity = 4.143(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,570 CA = 0,541 Subarea runoff = 1,929(CFS) for 0.850(Ac,) Total runoff = 2,243(CFS) Total area = 0,950(Ac,) Street flow at end of street = 2,243(CFS) Half street flow at end of street = 2,243(CFS) Depth of flow = 0,258(Ft,), Average velocity = 4.751(Ft/s) Flow width (from curb towards crown)= 6.080(Ft,) +-f+-^-^+-^-^+++++++-l-^++++++++++++•^++++++++++++++++++-^++•l-+++++++-^-^+++++++-l-^ Process from Point/Station 5011,000 to Point/Station 5007,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 2 Stream flow area = 0,950(Ac,) Runoff from this stream = 2,243(CFS) Time of concentration = 10.91 min. Rainfall intensity = 4,143(in/Hr) Summary of stream data: Stream Flow rate TC Rainfall intensity NO. (CFS) (min) (in/Hr) 1 7.999 7.00 5.514 2 2,243 10,91 4,143 Qmax(l) = Qmax(2) = 1,000 * 1.000 * 7,999) + 1.000 * 0.642 * 2,243) + = 9,439 0,751 * 1,000 * 7.999) -i- 1,000 * 1,000 * 2.243) -i- = 8,253 Total of 2 streams to confluence: Flow rates before confluence point: 7.999 2,243 Maximum flow rates at confluence using above data: 9.439 8.253 Area of streams before confluence: 4.340 0,950 Results of confluence: Total flow rate = 9,439(CFS) Time of concentration = 7,000 min. Effective stream area after confluence = 5,290(Ac,) +++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 5007,000 to Point/Station 5008,000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 61,970(Ft.) page 7 rcbasinef Downstream point/station elevation = Pipe length = 25,52(Ft,) Slope = NO, of pipes = 1 Required pipe flow Nearest computed pipe diameter = Calculated individual pipe flow = Normal flow depth in pipe = 13,31(ln.) Flow top width inside pipe = 20,23(In,) Critical Depth = 13,72(In,) Pipe flow velocity = 5,87(Ft/s) Travel time through pipe = 0,07 min. Time of concentration (TC) = 7.07 min 61,800(Ft,) 0.0067 Manning's N = 0,013 9,439(CFS) 21.00(ln,) 9,439(CFS) Process from Point/Station 5008.000 to Point/Station 5000.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 61,800(Ft,) Downstream point elevation = 57,000(Ft,) Channel length thru subarea = 300,000(Ft,) Channel base width = 10.000(Ft,) Slope or 'Z' of left channel bank = 2,000 Slope or 'z' of right channel bank = 2.000 Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft,) Flow(q) thru subarea = 9,439(CFS) Depth of flow = 0,349(Ft.), Average velocity = 2.528(Ft/s) Channel flow top width = ll,396(Ft,) Flow velocity = 2.53(Ft/s) Travel time = 1.98 min. Time of concentration = 9,05 min. Critical depth = 0,297(Ft.) ++-^-l--l-+++-l-+•f-^4•-^•+-(-•^•f-^--l--^•-l-^-•l--l-•^4•+4-•(-++++++•l--f-^-^-^-f•f-^-^•^-^+-^-^-^^ Process from Point/Station 5008.000 to Point/Station 5000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main Stream number: 2 Stream flow area = 5,290(AC,) Runoff from this stream = 9,439(CFS) Time of concentration = 9,05 min. Rainfall intensity = 4,672(ln/Hr) Summary of stream data: Stream NO. Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) Qmax(l) = Qmax(2) = 512.740 9.439 31,46 9.05 1,000 * 0.448 * 1.000 * 1.000 * 1,000 * 1,000 * 0.288 * 1,000 * 2,092 4,672 512,740) -I-9.439) -I- 512,740) + 9.439) + 516.966 156.943 Total of 2 main streams to confluence: Flow rates before confluence point: 512.740 9,439 Maximum flow rates at confluence using above data: Page 8 rcbasinef 516.966 156.943 Area of streams before confluence: 509.400 5.290 Results of confluence: Total flow rate = 516.966(CFS) Time of concentration = 31,460 min. Effective stream area after confluence = 514,690(Ac,) Process from Point/Station 5000.000 to Point/Station 5010.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 526.192(CFS) Depth of flow = 1,203(Ft,), Average velocity = 4,271(Ft/s) ******* irregular channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2,00 2 4.00 0,00 3 104,00 0,00 4 108,00 2,00 Manning's 'N' friction factor = 0,035 sub-Channel flow = 526.193(CFS) flow top width = 104.812(Ft.) velocity= 4,271(Ft/s) area = 123,189(Sq.Ft) ' ' Froude number = 0.694 Upstream point elevation = 57,000(Ft,) Downstream point elevation = 51,000(Ft.) Flow length = 730.000(Ft,) Travel time = 2,85 min. Time of concentration = 34,31 min. Depth of flow = 1,203(Ft,) Average velocity = 4.271(Ft/s) Total irregular channel flow = 526,192(CFS) Irregular channel normal depth above invert elev, = 1.203(Ft.) Average velocity of channel(s) = 4,271(Ft/s) Adding area flow to channel Rainfall intensity (I) = 1,978(In/Hr) for a 100,0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0.000 sub-Area C value = 0,350 Rainfall intensity = l,978(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.516 CA = 270,730 Subarea runoff = 18.523(CFS) for 10,070(Ac,) Total runoff = 535,489(CFS) Total area = 524,760(Ac,) Depth of flow = l,216(Ft,), Average velocity = 4,301(Ft/s) Process from Point/Station 5000,000 to Point/station 5010.000 Page 9 rcbasinef **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 524,760(Ac,) Runoff from this stream = 535.489(CFS) Time of concentration = 34.31 min. Rainfall intensity = l,978(ln/Hr) Program is now starting with Main Stream No, 2 Process from Point/Station 5011,000 to Point/Station **** INITIAL AREA EVALUATION **** 5012,000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN ] (Permanent open space ) Impervious value, Ai = 0,000 Sub-Area C value = 0.350 initial subarea total flow distance = 95,000(Ft,) Highest elevation = 169.500(Ft,) Lowest elevation = 140.000(Ft.) Elevation difference = 29,500(Ft,) Slope = 31,053 % Top of Initial Area Slope adjusted by user to 30,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open Space in Accordance with Figure 3-3 Initial Area Time of concentration = 4.34 minutes TC = [1.8*(l.l-C)*distance(Ft.)A,5)/(% slopeA(i/3)] TC = [1.8*(l.l-0.3500)*( 100,000A,5)/( 30,OOOA(l/3)]= 4,34 Calculated TC of 4,345 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (i) = 6,850(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0,240(CFS) Total initial stream area = 0,100(Ac) Process from Point/Station 5012,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 5013,000 upstream point elevation = 140,000(Ft,) Downstream point elevation = 86,000(Ft,) Channel length thru subarea = 265.000(Ft,) Channel base width = 30,000(Ft.) Slope or 'z' of left channel bank = 2,000 Slope or 'Z' of right channel bank = 2,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.035 Maximum depth of channel = 2,000(Ft.) Flow(q) thru subarea = 1.909(CFS) Depth of flow = 0,033(Ft,), Average velocity = Channel flow top width = 30,130(Ft,) Flow velocity = 1,95(Ft/s) Travel time = 2,26 min. Time of concentration = 6.61 min. Page 10 1.909(CFS) 1.951(Ft/S) • 5.722(ln/Hr) for a 0.000 0.000 0,000 1,000 ] 100,0 year storm rcbasinef critical depth = 0,050(Ft.) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent open space ) Impervious value, Ai = 0.000 sub-Area c value = 0.350 Rainfall intensity = 5.722(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0,616 Subarea runoff = 3,285(CFS) for 1.660(Ac,) Total runoff = 3,525(CFS) Total area = l,760(Ac,) Depth of flow = 0.047(Ft,), Average velocity = 2,491(Ft/s) Critical depth = 0,075(Ft,) Process from Point/Station 5013,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 5014.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 99,52(Ft.) Slope = NO, of pipes = 1 Required pipe flow = Given pipe size = 18,00(in,) Calculated individual pipe flow = 3,525(CFS) Normal flow depth in pipe = 3.49(in,) Flow top width inside pipe = 14,23(In,) Critical Depth = 8.59(in.) Pipe flow velocity = 14.68(Ft/s) Travel time through pipe = 0,11 min. Time of concentration (TC) = 6,72 min. 81.000(Ft,) 64,330(Ft,) 0.1675 Manning's N = 0,013 3,525(CFS) Process from Point/Station 5013,000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5014,000 Along Main stream number: 2 in normal stream number 1 Stream flow area = 1.760(Ac) Runoff from this stream = 3,525(CFS) Time of concentration = 6,72 min. Rainfall intensity = 5,660(ln/Hr) Process from Point/Station 5015,000 to Point/Station **** INITIAL AREA EVALUATION **** 5016,000 Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 Sub-Area C value = 0.350 Initial subarea total flow distance = Highest elevation = 120.000(Ft.) page 11 56,000(Ft.) rcbasinef Lowest elevation = 92,000(Ft,) Elevation difference = 28,000(Ft,) Slope = 50.000 % Top of Initial Area slope adjusted by user to 30,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 30,00 %, in a development type of Permanent Open Space In Accordance with Figure 3-3 Initial Area Time of concentration = 4,34 minutes TC = [l,8*(l.l-C)*distance(Ft,)A,5)/(% slopeA(l/3)] TC = [1.8*(l,l-0,3500)*( 100,000A,5)/( 30.000A(l/3)]= 4,34 Calculated TC of 4,345 minutes is less than 5 minutes, resetting TC to 5,0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6,850(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,240(CFS) Total initial stream area = 0,100(Ac,) Process from Point/station 5016.000 to Point/Station 5017,000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 92.000(Ft.) Downstream point elevation = 71,000(Ft.) Channel length thru subarea = 220,000(Ft.) Channel base width = 5.000(Ft.) Slope or 'z' of left channel bank = 1,000 Slope or 'z' of right channel bank = 4,000 Estimated mean flow rate at midpoint of channel = 0.420(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0,420(CFS) Depth of flow = 0,029(Ft,), Average velocity = 2,854(Ft/s) Channel flow top width = 5,145(Ft,) Flow velocity = 2.85(Ft/s) Travel time = 1,28 min. Time of concentration = 5,63 min. Critical depth = 0,060(Ft,) Adding area flow to channel Rainfall intensity (I) = 6,346(ln/Hr) for a 100.0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN ] (Permanent open Space ) Impervious value, Ai = 0.000 Sub-Area C value = 0.350 Rainfall intensity = 6,346(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.087 subarea runoff = 0,316(CFS) for 0,150(Ac,) Total runoff = 0,555(CFS) Total area = 0,250(Ac.) Depth of flow = 0,034(Ft,), Average velocity = 3.186(Ft/s) critical depth = 0.071(Ft,) Process from Point/Station 5016,000 to Point/Station 5017,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Page 12 rcbasinef Stream flow area = 0.250(Ac) Runoff from this stream = 0,555(CFS) Time of concentration = 5,63 min. Rainfall intensity = 6,346(ln/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (in/Hr) Qmax(l) = Qmax(2) = 3.525 0.555 1.000 * 0.892 * 1,000 * 1,000 * 6,72 5,63 1,000 * 1,000 * 0,837 * 1,000 * 5.660 6,346 3,525) 4- 0,555) -I- 3,525) -I- 0,555) 4- 4.020 3,507 Total of 2 streams to confluence: Flow rates before confluence point: 3,525 0.555 Maximum flow rates at confluence using above data: 4.020 3,507 Area of streams before confluence: 1,760 0,250 Results of confluence: Total flow rate = 4,020(CFS) Time of concentration = 6.722 min. Effective stream area after confluence = 2,010(Ac,) -^-l-4•-^-^•f4•+-f•f^--^-f•^-^-(-•^•f•^-(-^--t••^•^4-^-+4•+^-^-^--l•-^-f•f-f•^•-l--l-•^-•^-l--l-•^-^-l•-^ Process from Point/Station 5017.000 to Point/Station 5018,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 17.41(Ft.) Slope = NO, of pipes = 1 Required pipe flow Given pipe size = 18.00(in.) Calculated individual pipe flow = 4,020(CFS) Normal flow depth in pipe = 3.69(ln,) Flow top width inside pipe = 14.54(in,) critical Depth = 9,21(ln,) Pipe flow velocity = 15,40(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (TC) = 6,74 min. 64,000(Ft.) 61.000(Ft,) 0,1723 Manning's N = 0,013 4,020(CFS) +4-+++•^-++++++++-l-+++++++++++++++-^-+++-^++++++-l-^-l-^-(-++•^+++++-l•+++++++-^+++-^+++ Process from Point/Station 5018.000 to Point/Station 5010,000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 60,000(Ft,) Downstream point elevation = 51,000(Ft,) Channel length thru subarea = 460,000(Ft,) Channel base width = 1.000(Ft,) Slope or 'z' of left channel bank = 2,000 Slope or 'Z' of right channel bank = 2,000 Manning's 'N' = 0,035 Maximum depth of channel = 2,000(Ft,) Flow(q) thru subarea = 4,020(CFS) Page 13 rcbasinef Depth of flow = 0.605(Ft,), Average velocity = Channel flow top width = 3.419(Ft.) Flow velocity = 3.01(Ft/s) Travel time = 2,55 min. Time of concentration = 9.29 min, critical depth = 0.555(Ft,) 3,009(Ft/s) process from Point/Station 5018,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 5010,000 The following data inside Main Stream is listed; in Main Stream number: 2 Stream flow area = 2,010(Ac,) Runoff from this stream = 4,020(CFS) Time of concentration = 9,29 min. Rainfall intensity = 4,594(in/Hr) Program is now starting with Main Stream No, 3 Process from Point/Station 5020,000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 5022,000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL (4,3 DU/A or Less ) impervious value, Ai = 0,300 sub-Area C Value = 0,520 Rainfall intensity (i) = , user specified values are as follows: TC = 24.49 min. Rain intensity = 2.46(in/Hr) Total area = 115,070(Ac,) Total runoff = 137,250(CFS) 3 2,458(ln/Hr) for a 100,0 year storm Process from Point/Station 5020.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 stream flow area = 115,070(Ac,) Runoff from this stream = 137,250(CFS) Time of concentration = 24,49 min. Rainfall intensity = 2,458(ln/Hr) 5022.000 Process from Point/Station 5024,000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL (4,3 DU/A or Less ) Impervious value, Ai = 0,300 sub-Area C Value = 0,520 Rainfall intensity (I) = 0.000 0,000 0,000 1,000 3,378(ln/Hr) for a 100,0 year storm Page 14 rcbasinef user specified values are as follows: TC = 14,96 min. Rain intensity = 3,38(ln/Hr) Total area = 56,590(Ac,) Total runoff = 98,630(CFS) Process from Point/station 5024.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5022,000 Along Main Stream number: 3 in normal stream number 2 Stream flow area = 56,590(Ac,) Runoff from this stream = 98,630(CFS) Time of concentration = 14,96 min. Rainfall intensity = 3,378(ln/Hr) Summary of stream data: Stream No, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 137,250 98.630 24,49 14,96 Qmax(l) = Qmax(2) = 1,000 * 0,728 * 1,000 * 1.000 * 1,000 * 1.000 * 0,611 * 1,000 * 2,458 3.378 137.250) + 98.630) -1- 137,250) -1- 98,630) -1- 209,020 182,471 Total of 2 streams to confluence: Flow rates before confluence point: 137,250 98,630 Maximum flow rates at confluence using above data: 209.020 182.471 Area of streams before confluence: 115.070 56,590 Results of confluence: Total flow rate = 209,020(CFS) Time of concentration = 24.490 min. Effective stream area after confluence = 171,660(Ac,) Process from Point/Station 5022.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 5010,000 Estimated mean flow rate at midpoint of channel = Depth of flow = 1,788(Ft,), Average velocity = ******* irregular channel Data *********** 210.107(CFS) 7,363(Ft/s) information entered for subchannel number 1 Point number 1 2 3 4 coordinate 0,00 10,00 20,00 30,00 Manning's 'N' friction factor 'Y" 0,035 coordinate 3,00 0,00 0,00 3,00 sub-Channel flow = 210,107(CFS) flow top width = 21,919(Ft,) velocity= 7.363(Ft/s) area = 28.534(Sq,Ft) ' ' Froude number = 1.137 Page 15 rcbasinef 2.339(ln/Hr) for a 0,000 0,000 0,000 1,000 3 l,788(Ft,) 100,0 year storm Upstream point elevation = 70,000(Ft,) Downstream point elevation = 51,000(Ft,) Flow length = 870.000(Ft.) Travel time = 1.97 min. Time of concentration = 26,46 min. Depth of flow = 1,788(Ft,) Average velocity = 7,363(Ft/s) Total irregular channel flow = 210,107(CFS) Irregular channel normal depth above invert elev, = Average velocity of channel(s) = 7,363(Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0,000 sub-Area C value = 0.350 Rainfall intensity = 2.339(in/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.517 CA = 90.264 subarea runoff = 2.086(CFS) for 2,860(Ac,) Total runoff = 211,106(CFS) Total area = 174,520(Ac,) Depth of flow = 1,792(Ft,), Average velocity = 7,373(Ft/s) • Process from Point/Station 5022,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 5010,000 The following data inside Main Stream is listed: In Main stream number: 3 Stream flow area = 174,520(Ac,) Runoff from this stream = 211.106(CFS) Time of concentration = 26,46 min. Rainfall intensity = 2,339(in/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 3 Qmax(l) 535,489 4.020 211.106 34.31 9,29 26,46 1.978 4,594 2,339 Qmax(2) = Qmax(3) = 1,000 * 1.000 * 535,489) + 0.431 * 1.000 * 4,020) + 0,846 * 1,000 * 211,106) + = 1.000 * 0,271 * 535,489) -4- 1.000 * 1,000 * 4,020) + 1,000 * 0,351 * 211,106) + = 1,000 * 0,771 * 535.489) + 0,509 * 1,000 * 4,020) + 1,000 * 1.000 * 211,106) + = 715.756 223.105 626.130 Total of 3 main streams to confluence: Flow rates before confluence point: Page 16 • rcbasinef 535,489 4,020 211,106 Maximum flow rates at confluence using above data: 715,756 223,105 626,130 Area of streams before confluence: 524,760 2,010 174,520 Results of confluence: Total flow rate = 715,756(CFS) Time of concentration = 34.308 min. Effective stream area after confluence = 701,290(Ac,) Process from Point/station 5010.000 to Point/Station 5010.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (l) = 1.978(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) impervious value, Ai = 0.000 Sub-Area C value = 0,350 Time of concentration = 34,31 min. Rainfall intensity = l,978(in/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,515 CA = 363,511 subarea runoff = 3,247(CFS) for 5,180(Ac,) Total runoff = 719,003(CFS) Total area = 706,470(Ac,) +++-l-++^-+-^++-^++-^+-^-^-^-^+++-l•+4•-l-•^+-^••f-^++^-•^•t•++•f++++•l-++-l--^+•^-++-^+-^++•(•++-^•+-l--^•^-++-^ Process from Point/Station 5010,000 to Point/Station 5034,000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = l,160(Ft,), Average velocity = 6.055(Ft/s) ******* irregular channel Data *********** information entered for subchannel number 1 : Point number 'x' coordinate 'Y' coordinate 1 0,00 2,00 2 4,00 0,00 3 104,00 0,00 4 108.00 2,00 Manning's 'N' friction factor = 0,035 sub-Channel flow = 719.004(CFS) flow top width = 104,642(Ft,) velocity= 6.055(Ft/s) area = 118,737(Sq,Ft) ' ' Froude number = 1,002 Upstream point elevation = 51,000(Ft,) Downstream point elevation = 42,000(Ft,) Flow length = 520,000(Ft,) Travel time = 1,43 min. Time of concentration = 35,74 min. Depth of flow = 1.160(Ft.) Average velocity = 6.055(Ft/s) Total irregular channel flow = 719,003(CFS) Page 17 rcbasinef irregular channel normal depth above invert elev, Average velocity of channel(s) = 6.055(Ft/s) l,160(Ft,) Process from Point/Station 5010,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 5034,000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 706.470(Ac) Runoff from this stream = 719.003(CFS) Time of concentration = 35,74 min. Rainfall intensity = 1.926(ln/Hr) Program is now starting with Main stream No, 2 Process from Point/station 5036,000 to Point/Station **** INITIAL AREA EVALUATION **** 5038.000 3 100.000(Ft.) Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent open Space ) impervious value, Ai = 0,000 sub-Area C value = 0.350 initial subarea total flow distance = Highest elevation = 236.000(Ft,) Lowest elevation = 225.000(Ft,) Elevation difference = ll,000(Ft,) slope = 11,000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100,00 (Ft) for the top area slope value of 11,00 %, in a development type of Permanent Open space In Accordance With Figure 3-3 initial Area Time of concentration = 6.07 minutes TC = [1.8*(l,l-C)*distance(Ft.)A.5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0.3500)*( 100,000A.5)/( 11,000A(1/3)3= 6.07 Rainfall intensity (l) = 6,045(in/Hr) for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,350 Subarea runoff = 0,212(CFS) Total initial stream area = 0,100(Ac.) Process from Point/Station 5038,000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 5040,000 upstream point elevation = 225.000(Ft,) Downstream point elevation = 50,000(Ft,) Channel length thru subarea = 970,000(Ft,) Channel base width = 3,000(Ft.) Slope or 'Z' of left channel bank = 1,000 Slope or 'Z' of right channel bank = 1,000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0,015 Maximum depth of channel = l,000(Ft,) Flow(q) thru subarea = 1,413(CFS) Depth of flow = 0.068(Ft.), Average velocity = Channel flow top width = 3,135(Ft,) Page 18 1,413(CFS) 6,807(Ft/s) rcbasinef Flow velocity = 6.81(Ft/s) Travel time = 2.38 min. Time of concentration = 8.45 min. Critical depth = 0.188(Ft,) Adding area flow to channel Rainfall intensity (I) = 4,885(ln/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [UNDISTURBED NATURAL TERRAIN 3 (Permanent Open Space ) Impervious value, Ai = 0,000 sub-Area C Value = 0.350 Rainfall intensity = 4.885(ln/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,350 CA = 0.518 Subarea runoff = 2,319(CFS) for l,380(Ac,) Total runoff = 2,531(CFS) Total area = 1.480(Ac,) Depth of flow = 0,096(Ft,), Average velocity = 8,508(Ft/s) critical depth = 0,273(Ft,) process from Point/Station 5040,000 to Point/Station 5040,000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 4,885(in/Hr) for a 100,0 year storm User specified 'C' value of 0,950 given for subarea Time of concentration = 8,45 min. Rainfall intensity = 4.885(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.763 CA = 3.615 Subarea runoff = 15.129(CFS) for 3.260(Ac.) Total runoff = 17,660(CFS) Total area = 4,740(Ac,) Process from Point/Station 5040,000 to Point/Station 5042,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 50,000(Ft,) Downstream point/station elevation = 44,790(Ft,) Pipe length = 148,00(Ft,) Slope = 0.0352 Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 17.660(CFS) Given pipe size = 36.00(ln.) Calculated individual pipe flow = 17,660(CFS) Normal flow depth in pipe = 9,14(ln,) Flow top width inside pipe = 31,34(in,) Critical Depth = 16,12(In,) Pipe flow velocity = 12,52(Ft/s) Travel time through pipe = 0,20 min. Time of concentration (TC) = 8,64 min. Process from Point/Station 5040,000 to Point/Station 5042,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 Stream flow area = 4,740(Ac) Runoff from this stream = 17,660(CFS) Time of concentration = 8.64 min. Page 19 rcbasinef Rainfall intensity = 4,813(ln/Hr) Process from Point/Station 5044,000 to Point/Station 5046,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL 3 (7.3 DU/A or Less ) Impervious value, Ai = 0,400 sub-Area C value = 0,570 Initial subarea total flow distance = 100,000(Ft,) Highest elevation = 71,000(Ft,) Lowest elevation = 66,000(Ft,) Elevation difference = 5,000(Ft.) Slope = 5.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5,00 %, in a development type of 7.3 DU/A or Less In Accordance with Figure 3-3 initial Area Time of Concentration = 5,58 minutes TC = [1.8*(l,l-C)*distance(Ft,)A,5)/(% slopeA(l/3)3 TC = [l,8*(l,l-0,5700)*( 100,000A,5)/( 5,OOOA(l/3)3= 5,58 Rainfall intensity (I) = 6,383(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,570 Subarea runoff = 0.364(CFS) Total initial stream area = 0,100(Ac,) Process from Point/Station 5046,000 to Point/Station 5048,000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 66.000(Ft,) Downstream point elevation = 56,000(Ft,) Channel length thru subarea = 430.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'z' of right channel bank = 2,000 Estimated mean flow rate at midpoint of channel = 2,902(CFS) Manning's 'N' = 0,035 Maximum depth of channel = 2,000(Ft,) Flow(q) thru subarea = 2,902(CFS) Depth of flow = 0,495(Ft,), Average velocity = 2,944(Ft/s) Channel flow top width = 2,981(Ft,) Flow velocity = 2,94(Ft/s) Travel time = 2,43 min. Time of concentration = 8,01 min, critical depth = 0.469(Ft,) Adding area flow to channel Rainfall intensity (I) = 5,053(in/Hr) for a 100,0 year storm Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [MEDIUM DENSITY RESIDENTIAL 3 (7,3 DU/A or Less ) Impervious value, Ai = 0.400 sub-Area C value = 0.570 Page 20 rcbasinef Rainfall intensity = 5.053(in/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0,570 CA = 1.066 subarea runoff = 5,023(CFS) for l,770(Ac,) Total runoff = 5,386(CFS) Total area = l,870(Ac,) Depth of flow = 0.667(Ft,), Average velocity = 3.461(Ft/s) Critical depth = 0.648(Ft.) Process from Point/Station 5048,000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 5042.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 36.00(Ft.) Slope = NO. of pipes = 1 Required pipe flow Given pipe size = 18,00(ln,) Calculated individual pipe flow = 5,386(CFS) Normal flow depth in pipe = 4.27(in.) Flow top width inside pipe = 15,32(in,) Critical Depth = 10,73(In.) Pipe flow velocity = 16.79(Ft/s) Travel time through pipe = 0,04 min. Time of concentration (TC) = 8.05 min. 51,000(Ft.) 44.790(Ft,) 0,1725 Manning's N = 0,013 5,386(CFS) Process from Point/Station 5048.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 5042,000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1,870(Ac) Runoff from this stream = 5,386(CFS) Time of concentration = 8,05 min. Rainfall intensity = 5.039(in/Hr) Summary of stream data: Stream NO, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(l) = Qmax(2) = 17,660 5.386 1,000 * 0,955 * 1,000 * 1,000 * 8.64 8,05 1,000 1.000 0,931 * 1,000 * 4.813 5,039 17,660) + 5,386) -I- 17.660) H- 5.386) 4- 22,805 21,834 Total of 2 streams to confluence: Flow rates before confluence point: 17.660 5,386 Maximum flow rates at confluence using above data: 22,805 21,834 Area of streams before confluence: 4,740 1,870 Results of confluence: Total flow rate = 22,805(CFS) Time of concentration = 8,642 min. Effective stream area after confluence = 6.610(Ac) Page 21 rcbasinef Process from PO"! nt/Stati on 5042,000 to Poi nt/Stati on 5050,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 44,460(Ft,) Downstream point/station elevation = 43,620(Ft.) Pipe length = 168,26(Ft,) Slope = 0,0050 Manning's N = 0.013 NO, of pipes = 1 Required pipe flow = 22,805(CFS) Given pipe size = 36.00(ln,) Calculated individual pipe flow = 22,805(CFS) Normal flow depth in pipe = 17.65(in.) Flow top width inside pipe = 35,99(in.) critical Depth = 18,42(In,) Pipe flow velocity = 6,61(Ft/s) Travel time through pipe = 0,42 min. Time of concentration (TC) = 9.07 min. 4--f-H++++-H-H+-f-f++++-l-4--f4--f-f-f-H4--H-l--H-f-l-+-f-f-f-t--H++-t--(--)--f-f-l--H-t--H+-^ Process from Point/station 5050,000 to Point/Station 5034,000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = l,807(Ft.), Average velocity = 3.494(Ft/s) ******* Irregular channel Data *********** Information entered for subchannel number 1 : Point number 'x' coordinate 'Y' coordinate 1 0,00 4.00 2 8,00 0.00 3 16.00 4.00 Manning's 'N' friction factor = 0,035 sub-channel flow = 22.805(CFS) flow top width = 7.226(Ft,) velocity= 3,494(Ft/s) area = 6.527(sq,Ft) ' ' Froude number = 0,648 Upstream point elevation = 43,620(Ft,) Downstream point elevation = 42,000(Ft,) Flow length = 180,000(Ft,) Travel time = 0,86 min. Time of concentration = 9.93 min. Depth of flow = 1.807(Ft.) Average velocity = 3.494(Ft/s) Total irregular channel flow = 22,805(CFS) Irregular channel normal depth above invert elev, = 1.807(Ft.) Average velocity of channel(s) = 3,494(Ft/s) +++++-t-++-H+-H++-(-++-f-(-4-+-f-f-H+-(-+-l--t--l-+4-4--H-f-l-4-++++-(--f-H4--f-H++4--H-f-(-4-4-++-f-H++-H-f-(--H Process from Point/Station 5050,000 to Point/Station 5034,000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 6.610(Ac) Runoff from this stream = 22.805(CFS) Time of concentration = 9.93 min. Rainfall intensity = 4.402(ln/Hr) Summary of stream data: Page 22 rcbasinef Stream Flow rate TC Rainfall intensity No. (CFS) (min) (in/Hr) 1 719.003 35.74 1.926 2 22,805 9,93 4,402 Qmax(l) = <:^ax(2) = 1,000 * 1,000 * 719,003) 4- 0,438 * 1.000 * 22,805) + = 728,983 1,000 * 0,278 * 719,003) + 1,000 * 1,000 * 22.805) + = 222,479 Total of 2 main streams to confluence: Flow rates before confluence point: 719,003 22,805 Maximum flow rates at confluence using above data: 728,983 222,479 Area of streams before confluence: 706,470 6,610 Results of confluence: Total flow rate = 728.983(CFS) Time of concentration = 35.740 min. Effective stream area after confluence = 713,080(Ac,) •f^-^-+++-^-^--^-+^-•f•(--l•+++•^-^--^-^-^-4•-^•^-+^•-^^-4•+^-^--l-•^^-^-^-^•^•-l-•^•f•^-f4--(•-^^--^^- Process from Point/Station 5034.000 to Point/Station 5052.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel upstream point elevation = 42,000(Ft,) Downstream point elevation = 40,000(Ft.) Channel length thru subarea = 108,000(Ft,) Channel base width = 16,000(Ft,) Slope or 'Z' of left channel bank = 0,000 Slope or 'Z' of right channel bank = 0,000 Manning's 'N' = 0,015 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 728,983(CFS) Depth of flow = 2.297(Ft,), Average velocity = 19,835(Ft/s) Channel flow top width = 16,000(Ft,) Flow velocity = 19.83(Ft/s) Travel time = 0,09 min. Time of concentration = 35,83 min. Critical depth = 4,000(Ft,) Process from Point/Station 5034,000 to Point/Station 5052.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: in Main Stream number: 1 Stream flow area = 713,080(Ac,) Runoff from this stream = 728,983(CFS) Time of concentration = 35,83 min. Rainfall intensity = l,923(ln/Hr) Program is now starting with Main Stream No, 2 Page 23 Process from Point/Station 7000.000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** user specified 'C value of 0,700 given for subarea Rainfall intensity (i) = 3,040(in/Hr) for a 100,0 year storm user specified values are as follows: TC = 17,62 min. Rain intensity = 3.04(ln/Hr) Total area = 70,650(Ac,) Total runoff = 127,530(CFS) process from Point/Station 7000,000 to point/Station 7007.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main Stream number: 2 Stream flow area = 70,650(Ac,) Runoff from this stream = 127,530(CFS) Time of concentration = 17.62 min. Rainfall intensity = 3,040(in/Hr) Program is now starting with Main stream No, 3 Process -from Point/Station 8003,000 to Point/Station 7007,000 **** USER DEFINED FLOW INFORMATION AT A POINT **** user specified 'C value of 0,900 given for subarea Rainfall intensity (I) = 6,157(ln/Hr) for a 100,0 year storm User specified values are as follows: TC = 5,90 min. Rain intensity = 6.16(ln/Hr) Total area = 4,130(AC,) Total runoff = 21,700(CFS) Process from Point/Station 8003,000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 7007,000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = summary of stream data: 4,130(Ac,) 21.700(CFS) 5.90 min. 6,157(ln/Hr) Stream NO, Flow rate (CFS) TC (min) Rainfall intensity (in/Hr) 1 2 3 Qmax(l) 728.983 127.530 21,700 Qmax(2) = Qmax(3) = 35,83 17,62 5.90 1.000 0,633 0,312 1.000 1.000 0,494 1,000 * 1,000 * 1,000 * 0,492 * 1,000 * 1.000 * 728,983) 127.530) 21,700) 728,983) 127.530) 21,700) Page 24 1,923 3.040 6,157 + + + = + + + = 816,448 496,731 rcbasinef 1,000 * 0.165 * 728,983) 4- 1,000 * 0.335 * 127.530) + 1.000 * 1,000 * 21.700) + = 184,441 Total of 3 main streams to confluence: Flow rates before confluence point: 728,983 127,530 21,700 Maximum flow rates at confluence using above data: 816,448 496,731 184,441 Area of streams before confluence: 713,080 70,650 4,130 Results of confluence: Total flow rate = 816,448(CFS) Time of concentration = 35,830 min. Effective stream area after confluence = 787,860(Ac,) End of computations, total study area = 787,860 (Ac) Page 25 ECR-boxcul Tl ANALYSIS for double 8' x 4' box culvert T2 El Camino Real T3 100-yr storm SO 0.000 39.82 3 43,4 R 33,26 40,08 1 ,013 R 133.62 40,80 1 ,013 R 157,58 40,98 1 ,013 WE 157,58 40.98 2 ,500 SH 157.58 40.98 2 CD 1 3 1 0,5 4.0 16,5 CD 2 1 8.000 18.1 2, 2, CD 3 1 8.000 42,0 2, 2. Q 729,0 Page 1 FILE: ecr^oxcul .WSW \GE 1 Date:10-28-2014 Time:10:50:55 WSPGW- CIVILDESlCrr Version 14.07 Prograra Package Serial Nuinber: 7061 WATER SURFACE PROFILE LISTING ANALYSIS for double 8' x 4' box culvert El Camino Real 100-yr storm ************************************************************************************************************************** ******** Station L/Elem ********* .000 .000 33.260 33.260 52.768 86.028 47.592 133.620 3.022 136.642 16.248 152.890 4.690 Invert Elev Ch Slope ********* 39.820 39.820 .0078 40.080 .0072 40.459 .0072 40.800 .0075 40.823 .0075 40.945 .0075 Depth (FT) •tr-k-k-k-k-k-k-k 3.580 3.299 3.358 3.447 3.615 3.635 3.813 Water Elev ********* 43.400 43.119 43.438 43.905 44.415 44.458 44.758 Q (CFS) Vel (FPS) Vel Head I SF Ave ********* j ******* j ******* I 729.00 4.14 .27 -I- -I- 729.00 13.81 2.96 -I- -I- .0065 I 729.00 13.57 2.86 -I- -I- .0061 1 729.00 13.22 2.71 -I- -I- .0055 I 729.00 12.60 2.47 -i- -I- .0051 — WARNING - Flow depth I 729.00 12.53 2.44 •I-•I- .0048 WARNING - Flow depth 729.00 11.95 2.22 Energy Grd.El. HF ********* 43.67 46.08 .22 46.30 .32 46.62 .26 46.88 .02 near top 46.90 .08 near top 46. 97 -I- -I- .0042 WARNING - Flow depth Super I Critical I Flow Top Elev I Depth I Width SE DpthIFroude N|Norm Dp ******* I ******** j ******** I I .00 2.04 50.15 ,00 4.00 16.50 •I- 3.30 1.36 3.11 I i .00 4.00 16.50 3.36 1.33 3.20 I I .00 4.00 16.50 3.45 1.27 3.20 I I .00 4.00 16.50 •I-•I- 3.62 1.19 of box conduit — 3.15 .00 4 .00 16.50 3.64 1.18 3.15 of box conduit I I .00 4.00 16.50 I- Height/ Dia.-FT "N" ******* 8.000 4.000 .013 4.000 .013 4.000 .013 4.000 .013 4.000 .013 .02 3.81 1.10 near top of box conduit — 3.15 4.000 .013 Base Wt or I.D. X-Fall ******* 42.000 16.500 .00 16.500 .00 16.500 .00 16.500 .00 16.500 ,00 16.500 ZL ZR ***** 2.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 No Wth Prs/Pip Type Ch ******* 0 .00 .00 BOX .0 1 .5 BOX 1 .5 BOX 1 .5 BOX 1 .5 BOX 1 .5 BOX FILE: ecr*boxcul.WSW WSPGW- CIVILDESIW Version 14.07 Program Package Serial Number: 7061 WATER SURFACE PROFILE LISTING ANALYSIS for double 8' x 4' box culvert El Camino Real 100-yr storm ***********k*****k***-kkk**k************kk*kk*-k**k-kk*k****k*k*******kk***k**k***k*k*k***-kki**k*k**k*kkk**kk******k**kk*k* .GE Date:10-28-2014 Time:10: 50 : 55 ** ******** I Invert | Depth | Water | Q | Vel Station I Elev | (FT) | Elev | (CFS) | (FPS) •I-•I- Vel I Energy | Super I Critical|Flow Top|Height/I Base Wt| |No Wth Head I Grd.El.I Elev | Depth | Width |Dia.-FT|or I.D.I ZL |Prs/Pip •I-I-•I-•I L/Elem |Ch Slope | | | | SF Ave| HF |SE DpthlFroude N|Norm Dp | "N" | X-FallI ZR IType Ch ********* I ********* I ******** I ********* I ********* I ******* I ******* I ********* I ******* I ******** I ******** I ******* I ******* I ***** I ******* Illll IIIIIIII 157.580 40.980 4.000 44.980 729.00 11.39 2.01 46.99 .00 4.00 16.50 4.000 16.500 .00 1 .5 •I-•I-•I-•I-WALL ENTRANCE I I 157.580 40.980 WARNING - Flow depth near top of box conduit III IIIIIIII 7.790 48.770 729.00 2.78 .12 48.89 .00 3.25 49.26 8.000 18.100 2.00 0 .0 -I- -I- -I- -I- -I- -I- -I- -I- _|_ _|_ _|_ |_ Per nomograph from County of San Diego Drainage Manual (attached), WS = 48.6 ok. Use 48, CHART 8B - 6 X -o CD u. o 1-1-3 X w I - 2 o o u. a: Ui a. tf) u. a v.. O O i o o < EC {!) (2) (3) EXAMPLE 5'« t Bo. 0 « T5 c«» 0/8 = I5cf»/M. MW 0 fftt e -7- 6 h 5 1.79 3.5 l.»0 3.6 2J09 4.1 - 100 - 60 - 60 - 50 - - 40 50 - 10 - 8 6 5 4 3 - .8 - .6 .5 Wingacll KW SCALE ID (Z) (3! WINGWALL FLARE JO* to ?»• SO'Ond IS* 0* («Kt*nfiont of tidift) Te utl tcali (2) «r (}) ;rs|«ct horixofireiljr le «ee)« (f). th«A u»« elroigh' iflclinvd line l^irou^h 0 ontf Q tcel«t,or r«vfrs« e( iMutlrDlvd. - 7 - 6 -5 - 4 - 3 1.5 - 1.5 1.0 'ZT' - .8 - .5 — .4 - 4 - 3 - 2 1.5 1.0 .9 h .g - .7 - .6 - .4 10 1.0 .9 - .7 - .8 - .4 -.30 ' HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL .S9 SUBEAU or PUBLIC ROAOS JA.H. I«*S Double 8' x 4' box culvert in El Camino Real 239 APPENDIX 7 Curb Inlet Calculations (Qioo Ultimate) Modified D-02 Calculations (Qio Ultimate) Curb Inlets & Laterals Hydraulic Calculations Ditch Calculations (See Exhibit 'L') Inlet Calculations for El Camino Real Widening Date: 10/9/2014 Street Inlet Continuous Grade: L = Qioo / 0.7(a-fy) L = length of clear opening in feet (S'min, 20' max) doo = flow CFS a = depth of depression of flowline at inlet in feet = 0.33' or 0.17' typical y = depth of flow in gutter approach Street Inlet Sump Condition: L = Qioo / 2 L = length of clear opening in feet (5' min, 20' max) doo = flow in CFS Bypa ss Calcul ation # STATION street Location Continous Grade (CG) or Sump Condition (Sump) If a (ft) Y (ft) Opening (ft) L (OPENING +1' ROUND UP) (ft) Inlet Ratio Effi- ciency Q Bypass (cfs) Imp. Plan Sheet 1 446+73.94 SIDE CI. SUMP 6.7 --3.40 5.00 16 2 453-1-80.81* Cl. IN MEDIAN CG 2.87 0.17 0.26 14.54 16.00 17 CG 2.91 0.17 0.26 14.73 16,00 3 456-I-33.75 CI. IN IVIEDIAN CG 5.14 0.17 0.32 21.41 23.00 0.93 0.99 0.04 18 CG 5.10 --20.00 21.00 4 454+99.83 SIDE Cl. CG 4.8 0.33 0.26 15.13 17.00 17 5 463+02.00 CI. IN MEDIAN CG 1 0.17 0.27 4.89 6.00 19 6 465+49.18 SIDE CI. CG 5.6 0.33 0.31 15.63 17.00 19 7 467+00.00 Cl. IN MEDIAN CG 3.1 0.17 0.29 14.19 16.00 19 8 469+00.00 SIDE CI. CG 3.48 0.33 0.27 10.70 12.00 20 9 472+75.80 SIDE CI. CG 2.55 0.33 0.3 7.29 9.00 20 10 474+70.79 SIDE Cl. CG 3.79 0.33 0.24 12.58 14.00 21 11 477+15.00 SIDE C.l. CG 2.98 0.33 0.27 9.16 11.00 21 12 481+24.89 c.l. IN MEDIAN CG 2.66 0.17 0.25 13.96 15.00 22 13 483+25.24 CI IN CURB SUMP 6.7 --3.35 5.00 22 14 485+76.85 Cl. IN MEDIAN CG 0.82 0.17 0.11 7.91 9.00 22 IS 489+52.14** Cl. IN MEDIAN CG 0.58 0.17 0.2 3.68 5.00 23 0.72 0.17 0.2 4.58 6.00 16 490+06.01 c.l. IN MEDIAN CG 5.68 0.17 0.33 22.95 24.00 0.87 0.98 0.14 23 5.54 --20.00 21.00 17 482+97.19 C.l. IN MEDIAN SUMP 2.91 --1.45 3.00 22 NOTES: 1. Figure 2-2 from the San Diego Drainage Design Manual was used to determine the depth of flow, in the gutter approach (y) when not provided in the Qioo Hydrology in Appendix of this report. * This includes 2.87 cfs (for 100 year flow rate) and 0.04 bypass from upstream inlet #3. ** This includes 0.58 cfs (for 100 year flowrate) and 0.14 bypass from upstream inlet #16. File: ECR Curb Inlet Length Curb Opening Calculations for El Camino Real Modified SDRSD D-02 Date: 10/21/2014 Curb Opening Continuous Grade: L = Q,o/0.7(a+Y)"' L = length of clear opening in feet (S'min, 20' max) Qio = flow in CFS a = depth of depression of flowline at inlet in feet = 0.17' or 0.33' as noted on plans y = depth of flow in gutter approach STATION Qio (cfs) a (ft) Y(ft) opening (ft) L (Opening +1' Round Up) (ft) Imp. Plan Sheets 446+59.70 0.48 0.17 0.24 2.61 1-4 16,25 446+90 2.1 0.33 0.25 6.79 1-7.8 16,25 454+35.01 455+28.97 455+99.95 1.9 0.17 0.23 10.73 3-4,6 17,35 18,36 18,36 456+69.79 457+40.07 458+79.65 459+50.37 460+30 3.3 0.17 0.23 18.63 7-3.5' 5 to be built See Note 3 18,36 18,36 18,36 18,36 36 See Note 4 1.7 0.17 0.23 9.60 2 - 5.80' See Note 4 N/A 473+74.81 474+29.85 2.4 0.33 0.21 8.64 2 - 5.30 21,30 21,30 476+33.90 1.9 0.17 0.24 10.34 1-11.34 39 479+17.45 480+57.99 1.7 0.17 0.27 8.32 2-5.20 39 40 480+80 482+15 4 0.33 0.34 10.42 2-6.20 22,31 22,31 484+00 4.9 0.33 0.33 13.06 1 ~ 14.06 22,31 489+69.42 0.53 0.17 0.11 5.11 1-6.10 41 490+36.62 4.8 0.17 0.33 19.39 1-19.40 23,41 See Note 5 0.91 0.17 0.25 4.78 2-3" See Note 5 N/A See Note 5 0.87 0.17 0.14 7.20 4-3" See Note 5 N/A 455+31.98 3.1 0.33 0.23 10.57 1 ~ 11.6' 17,27 Notes: 1. Curb Openings having a Sump Condition will not occur on this site. The Mod, D-02 Curb Opening will always have a Curb Inlet, on the downstream side, intercepting the Qioo. Where the inlet is a Sump Condition there will be two Curb Openings. Where the inlet is a Continuous Grade there will be one Curb Opening - exceptions noted. 2. Figure 2-2 from the San Diego Drainage Design Manual was used to determine the depth of flow in the gutter approach (y), when not provided in the Qio Hydrology in Appendix of this report. 3. Two additional curb inlets (Sta. 461+15 & 462+88) had been planned. Treatment areas in narrow median areas, however, were omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate. For 5 inlets, QIO = 3.3 X 5 / 7 = 2.4 cfs. 4. Two curb inlets (Sta. 465+00 8i 466+09) had been planned. Treatment areas in narrow median areas, however, were omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate. 5. Series of underdrain pipes (Sta. 482+90 & 483+06) had been planned. Treatment areas in narrow median areas, however, were omitted due to possible issues with safety of maintenance personnel. Areas in adjacent basins were increased to compensate. File: ECR Curb Opening Calcs Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesl<, Inc. 3 INCH PIPE ANALYSIS FOR MOD 27 @ DEPTH = 0.14 Thursday, Feb 20 2014 Circular Highlighted Diameter (ft) = 0.25 Depth (ft) = 0.14 Diameter (ft) Q (Cfs) = 0.227 Area (sqft) = 0.03 Invert Elev (ft) = 100.00 Velocity (ft/s) = 8.00 Slope (%) = 18.00 Wetted Perim (ft) — 0.42 N-Value = 0013 Crit Depth, Yc (ft) — 0.24 Top Width (ft) = 0.25 Calculations EGL (ft) = 1.13 Compute by: Known Depth Known Depth (ft) = 014 Elev (ft) 101.00 - Section 100.75 100.50 100.25 100.00 99.75 Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. 3 INCH PIPE ANALYSIS FOR MOD 27 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Depth (ft) Known Depth = 0.25 Thursday, Feb 20 2014 Highlighted = 0.25 Depth (ft) = 0.25 Q (Cfs) = 0.537 Area (sqft) = 0.05 = 100.00 Velocity (ft/s) = 10.94 = 37.00 Wetted Perim (ft) = 0.79 = 0.013 Crit Depth, Yc (ft) = 0.24 Top Width (ft) = 0.00 EGL (ft) = 2.11 Section 100.25 100.00 99.75 Figure 2-3 Discharge (ft Is) Figure 2-3 8-inch Gutter and Roadway Discharge-Velocity Chart 30 40 50 San Diego County Drainage Design Manual (May 2005; Page 2-74 Al *********************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ver, 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** OESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN FROM STA 446-f73.94 AND CI, #1 * * 100 YEAR STORM DRAIN ULTIMATE CONDITION * * REVISED BY MC * ************************************************************************** FILE NAME: Al,DAT TIME/DATE OF STUDY: 10:09 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used,) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-+ FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1002,00- 1,00 DC 103,74 0.86* 107,42 } FRICTION 1003.00- 1.00*Dc 103.74 1.00*Dc 103.74 } CATCH BASIN 1003.00- 1.53* 86.42 1.00 Dc 34.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1002.00 FLOWLINE ELEVATION = 33.80 PIPE FLOW = 6.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 33,800 FEET *N0TE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0,00 FT,) IS LESS THAN CRITICAL DEPTH( 1.00 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1002.00 : HGL = < 34.656>;EGL= < 35.298>;FLOWLINE= < 33.800> ****************************************************************************** FLOW PROCESS FROM NODE 1002.00 TO NODE 1003.00 IS CODE = 1 UPSTREAM NODE 1003.00 ELEVATION = 34.19 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 6.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 35.19 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH(FT) = 1.00 Page 1 Al UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION SPECIFIC PRESSURE-i- ENERGY(FT) M0MENTUM(POUNDS) 1.445 103,74 1.445 103,75 1.445 103,77 1.446 103,80 1.446 103,84 1.447 103,90 1.448 103.97 1.449 104.05 1.450 104.15 1.452 104.26 1.454 104.39 1.456 104.53 1.458 104.68 1.460 104.85 1.463 105.04 1,466 105.24 1.469 105.46 1.472 105.69 1.476 105.94 1,480 106.21 1,484 106.49 1.489 106.79 1,493 107.11 1,498 107.42 35,635>;FLOWLINE= < 34,190> DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 1,001 0.018 0,995 0.074 0.989 0.172 0.982 0.315 0.976 0.507 0.970 0.755 0.963 1.065 0.957 1.442 0.951 1.896 0.944 2.437 0.938 3.077 0.932 3.830 0.925 4.716 0.919 5.756 0.912 6.981 0.906 8.431 0.900 10.158 0.893 12.237 0.887 14.777 0.881 17.947 0.874 22.032 0.868 27.564 0.862 35.190 0.856 NODE 1003.00 . HGL = < 35. VELOCITY (FT/SEC) 5.343 5.382 5.421 5.461 5.502 5.543 5.585 5.628 5.672 5.717 5.762 5.808 5.855 5.903 5.952 6.002 6.052 6.104 6.156 6.210 6.264 6.320 6.377 6.431 35.191>;EGL= < ^^***************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.00 IS CODE = 8 UPSTREAM NODE 1003.00 ELEVATION = 34.19 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.70 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.34 FEET/SEC. VELOCITY HEAD = 0-444 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.444) = 0.089 "NODE"l003"00~rHGL = < 35.724>;EGL= < 35 .724>; FLOWLINE= < 34.190> ^^^^^jtit*********************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1003.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 34.19 35.19 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 A2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATIONS FOR EX. 24" STORM DRAIN ECR STA 454-f48,99 * * 100 YEAR STORM ULTIMATE CONDITION * * REVISED BY MC * ************************************************************************** FILE NAME: A2,DAT TIME/DATE OF STUDY: 10:22 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) 0.51* MOMENTUM(POUNDS) 2012,00-2,00 303.84 DEPTH(FT) 0.51* 551 23 } FRICTION 2011,00-1,31*DC 233.24 1.31*DC 233 24 } MANHOLE/INLET/OUTLET 2,02* 2011,10- MANHOLE/INLET/OUTLET 2,02* 307.63 1.06 247 86 } FRICTION } HYDRAULIC JUMP 2007.00-1,31*DC 233.24 1.31*DC 233. 24 } JUNCTION 2007.10-2,11* 275.47 0.96 161 58 } FRICTION 2003.00-1.90* 236.92 1.12 DC 156. 02 } JUNCTION 2003.10-2.12* 224.24 0.44 28. 40 } FRICTION 2002.00-1.39* 93.58 0.45 28. 02 } MANHOLE/INLET/OUTLET 1.07* 2002,11- MANHOLE/INLET/OUTLET 1.07* 55.12 0.45 28. 20 } FRICTION } HYDRAULIC JUMP 2002,10-0.54*DC 26.47 0.54*Dc 26. 47 } CATCH BASIN 2002,10-0.78* 14.02 0.54 DC 9, 67 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS, ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2012,00 FLOWLINE ELEVATION = 42,20 PIPE FLOW = 13,22 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 44.200 FEET Page 1 A2 NODE 2012.00 : HGL = < 42.705>;EGL= < 49.685>;FLOWLINE= < 42.200> ****************************************************************************** FLOW PROCESS FROM NODE 2012.00 TO NODE 2011.00 IS CODE = 1 UPSTREAM NODE 2011.00 ELEVATION = 52.37 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 43.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 1.308 6.069 1.881 233.24 0.008 1.275 6.253 1.882 233.47 0.032 1.241 6.451 1.888 234.19 0.075 1.208 6.664 1.898 235.42 0.140 1.174 6.893 1.912 237.20 0.230 1.141 7.140 1.933 239.58 0.349 1.107 7.406 1.959 242.60 0.501 1.073 7.694 1.993 246.32 0.693 1.040 8.007 2.036 250.80 0.931 1.006 8.346 2.089 256.10 1.224 0.973 8.715 2.153 262.32 1.583 0.939 9.118 2.231 269.55 2.021 0.906 9.560 2.326 277.89 2.556 0.872 10.044 2.440 287.48 3.210 0.839 10.578 2.577 298.48 4.013 0.805 11.168 2.743 311.06 5.007 0.771 11.823 2.944 325.44 6.245 0.738 12.554 3.187 341.89 7.809 0.704 13.373 3.483 360.74 9.818 0.671 14.295 3.846 382.36 12.458 0.637 15.339 4.293 407.26 16.049 0.604 16.531 4,850 436.05 21.190 0.570 17.899 5.548 469.51 29.240 0.537 19.483 6.435 508.62 43.500 0.505 21.195 7.485 551.23 NODE 2011.00 : HGL = < 53. 678>;EGL= < 54.251>;FLOWLINE= < 52.370> ****************************************************************************** FLOW PROCESS FROM NODE 2011.00 TO NODE 2011.10 IS CODE = 2 UPSTREAM NODE 2011.10 ELEVATION = 52.38 (FLOW UNSEALS IN REACH) 24.00 INCHES 0.699 CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 13.22 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =1,65 AVERAGED VELOCITY HEAD = 0.424 FEET HMN = 1.65*(AVERAGED VELOCITY HEAD) = 1.65*( 0.424) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 2011.10 : HGL = < 54.399>;EGL= < 54.674>;FL0WLINE= < 52.380> ****************************************************************************** FLOW PROCESS FROM NODE 2011.10 TO NODE 2007.00 IS CODE = Page 2 A2 UPSTREAM NODE 2007.00 ELEVATION = 53.52 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : ^.,^urc PIPE FLOW = 13.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 98.64 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS "NORMAL"DEPTH(FT)'='"" 1-05 CRITICAL DEPTH(FT) = 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 1,308 0.028 1.298 0.117 1.288 0.270 1.277 0.496 1.267 0.801 1.257 1.193 1.247 1.682 1.236 2.280 1.226 2.999 1.216 3.857 1.205 4.872 1.195 6.069 1.185 7.476 1.175 9.132 1.164 11.083 1.154 13.393 1.144 16.148 1.133 19.468 1.123 23.528 1.113 28.600 1.103 35.141 1.092 44.007 1.082 57.119 1.072 80,647 1.061 98,640 1.061 VELOCITY (FT/SEC) 6.069 6.124 6.181 6.238 6.297 6.357 6.419 6.482 6.546 6.612 6.679 6.748 6,818 890 964 039 116 195 276 359 7,444 7,531 7,620 7.711 7.804 7.805 SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUND 1.881 233.24 1.881 233.26 1.881 233.33 1.882 233.44 1.883 233.59 1.885 233.79 1.887 234.04 1.889 234.33 1.892 234.68 1.895 235.07 1.899 235.52 1.903 236.02 1.907 236.57 1.912 237.17 1.918 237.84 1.924 238.56 1.931 239.33 1.938 240.17 1,946 241.07 1,954 242.03 1,963 243.06 1.973 244.15 1,984 245.32 1.995 246.55 2.008 247.85 2.008 247.86 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.02 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.373 PRESSURE HEAD(FT) 2.019 2.000 VELOCITY (FT/SEC) 4.208 4.208 SPECIFIC ENERGY(FT) 2.294 2.275 PRESSURE-f MOMENTUM(POUNDS) 307.63 303,84 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2,00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 2,373 5.515 8.441 FLOW DEPTH (FT) 2.000 1.972 1.945 VELOCITY (FT/SEC) 4.207 4.218 4.240 Page 3 SPECIFIC ENERGY(FT) 2,275 2,249 2,224 PRESSURE-f MOMENTUM(POUNDS) 303,84 298,72 293,87 A2 11.244 13.952 16.579 19.133 21.618 24.038 26.394 28.685 30.909 33.065 35.149 37.155 39.078 40.910 42.642 44.262 45.757 47.110 48.299 49.298 50.074 50.582 50,768 98,640 1,917 4. 267 1,889 4. 300 1,862 4. 338 1,834 4. 380 1,806 4. 426 1,779 4. 477 1,751 4. 532 1,723 4. 591 1,696 4. 654 1,668 4 721 1,640 4 793 1,613 4 869 1.585 4 949 1.557 5 035 1.530 5 126 1.502 5 .222 1.474 5 ,323 1.447 5 ,431 1.419 5 ,544 1.391 5 ,665 1.364 5 ,792 1.336 5 ,926 1.308 6 ,069 1.308 6 ,069 2,200 2.177 2.154 2,132 2,111 2,090 2,070 2,051 2,032 2,014 1,997 1.981 1,966 1.951 1,938 926 915 905 897 890 1,885 1.882 1,881 1,881 289,21 284,73 280.41 276.26 272.27 268.44 264.78 261.28 257.96 254.82 251.86 249.08 246.51 244.13 241.96 240.01 238.29 236.80 235.55 234.56 233.84 233.39 233.24 233.24 PRESSURE-fMOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 38.94 FEET UPSTREAM OF DEPTH = 1.587 FEET, UPSTREAM CONJUGATE DEPTH NODE 2011.10 I = 1.070 FEET I ""NODE""2007:00"rHGr='<" 54.828>;EGL= < 55.401>;FLOWLINE= < 53.520> *************************************************************T************** FLOW PROCESS FROM NODE 2007.00 TO NODE 2007 10 IS CODE =5 UPSTREAM NODE 2007.10 ELEVATION = 53.52 (FLOW UNSEALS IN KLACH; CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.75 13.22 3.47 0.00 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 24.00 64.00 53.52 24.00 - 53.52 18.00 90.00 54.02 0.00 0.00 0.00 CRITICAL DEPTH(FT.) 1.12 1.31 0.71 0.00 VELOCITY (FT/SEC) 3.104 6.071 2.277 0.000 O!OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=CQ2*V2-Ql*Vl*COSCDELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al-fA2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00186 DSSTR^AM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.005^ AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00386 JUNCTION LENGTH = 4.00 FEET ^TKI-TDAK./-C I nccFC - n nOO FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES - O.UUU FEET JUNCTION LOSSES = (DY-fHVl-Hy2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.375)-f( 0.000) = 0.375 "NODri007"l0"rHGL'='r"r5'626>;E^^^^ < 53.520> ****************************************************************************** FLOW PROCESS FROM NODE 2007.10 TO NODE 2003.00 CODE = 1 UPSTREAM NODE 2003.00 ELEVATION = 53.76 (FLOW SEALS IN REACHJ CALCULATE FRICTION LOSSES(LACFCD):^^^ ^^^^^^^^ ^ ^^^^^^ 24.10 FEET MANNING'S N = 0.01300 Page 4 PIPE FLOW PIPE LENGTH = A2 'DWNSTREAM~CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: i?:gE§ l-itt 3:104 2^ 2^4:67__ "NORMAL"DEPTH(S'= O"92 CRITICAL DEPTH(FT) = __1A2 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 ~ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:^ 2-0»0 3.103 2150 254b/ : I .082 241.54 24.100 1.903 3.159 2.058 ___„_ ""NODri003'00"rHGL'="r'ir663>;E^^^^ 55.818>; FL0WLINE= < 53.760> ****************************************************************************** FLOW PROCESS FROM NODE 2003.00 TO NODE 2003.10 IS CODE =5 UPSTREAM NODE 2003.10 ELEVATION =^ 53.83 _^^LOW UNSEALS IN RtAL^ "C^^CULATE-JUNCTION^^^^ ANGLE ^ FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.45 24.00 0.00 3.83 0.54 0.780 DOWNSTREAM 9.75 24.00 - 53.76 1.12 i-lbU I ATFRAi #1 4 94 18.00 90.00 53.94 0.8i i'inc LATI^L #2 2 36 18.00 90.00 54.44 0.58 1.395 LATtKAL ff/ o.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=f02*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((AH-A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00012 DSSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00161 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00086 JUNCTION LENGTH = 4.00 FEET inccPQ - O 000 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES - O.UUU FEET jCicTioN LOSSES = CDY-fHVl-Hy2) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.146)-f( 0.000) = 0.146 ~"HODETOO17IOT~^^^^^^ < ",830> ^*^*************************************************************************** FLOW PROCESS FROM NODE 2003,10 TO NODE 2002 00 IS CODE = 1 UPSTREAM NODE 2002,00 ELEVATION = 54.57 _(FLOW_SEALS_IN_REACH^ "lfpSfS"''-'^'°'''^^^ DIAMETER = 24.00 INCHES PIPE L^GTH = 7i:63 FEIT MANNING'S N = 0.01300 'DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2^^2 _ PRESSURE FLOW PROFILE COMPUTED INFORMATION^ Page 5 .O-OOO I'lll 2.009 199.74 12'.236 2.000 0.780 "NORMArDEPTHrFT)"=^^^^^^0:4r^^^ ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2^00 ============ 'GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION 29 231 1.825 0.814 1.836 166.25 34 875 1.767 0.834 1.778 155.54 40 511 1.709 0.857 1.720 145.12 46 138 1.651 0.883 1.663 135.01 c? 7CH 1 "^q? 0.913 1,605 125.^3 i;i Ull ""NODri002:00"rH6i:'=';""55:956>;EGL= < 55.973>;FL0WLINE= < 54,570> **************************************************************!*************** FLOW PROCESS FROM NODE 2002.00 TO NODE 2002 11 fS ^'^Is^sJcRITICAL) UPSTREAM NODE 2002.11 ELEVATION =_ ^4^90 JFLOW IS SUBCRITIC^^^ 'l^P^'ptS'^'^^'''''^'^^^^^^^ '°''''>IPE DIAMETER = 24.00 INCHES USER SPECIFIED LOSS COEFFICIENT =1-00 AVERAGED VELOCITY HEAD = 0.025 FEET . . ^ HMN = 1.00*(AVERAGED VELOCITY HEAD) = l-00*(_0.025)_=__0.025 ""NODr"2oo2:irrHGr;"7""r5:965>;E^^^^ < 54.9oo> **************************************************************!*************** IS^'pfS Tif CF^'^''^PIPE DIAMETER = 24.00 INCHES PIPE [ESSTH = 82.70 FEIT MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS "NORMArDEPTH(S'= 0^44 CRITICAL DEPTH(FT) = 0.54^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 'GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0-540 0:79 26:47 S'if? o:lll l.lli 0.740 26.51 Page 6 A2 0,302 0.524 3.732 0.741 26.54 0.450 0.520 3.773 0.741 26.57 0.635 0.516 3,815 0.742 26.60 0.860 0.512 3,857 0.743 26.64 1.131 0.508 3,901 0.744 26.69 1.454 0.504 3,946 0.746 26.74 1.837 0.500 3.991 0.747 26.80 2.287 0.496 4.037 0.749 26.87 2.817 0.492 4.085 0.751 26.94 3.440 0.488 4.133 0.753 27.01 4.174 0,483 4.182 0.755 27.10 5.042 0,479 4.232 0.758 27.19 6.077 0,475 4.284 0.760 27.29 7.323 0.471 4.336 0.763 27.39 8.846 0.467 4.390 0.767 27.51 10.748 0.463 4.445 0.770 27.62 13.199 0.459 4.501 0.774 27.75 16.519 0.455 4.558 0.778 27.89 21.425 0.451 4.617 0,782 28.03 30.221 0.447 4.676 0.787 28.18 82.700 0.446 4.683 0,787 28.20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0.000 1.065 1.439 1.098 55.12 1.967 1.045 1.475 1.078 53.11 3.926 1.024 1.513 1.059 51.16 5.876 1.003 1.553 1.040 49.27 7.816 0.982 1.596 1.022 47.45 9.746 0.961 1.640 1.003 45.69 11.664 0.940 1.687 0.985 44.00 13.568 0.920 1.737 0.966 42.37 15.457 0.899 1.789 0.949 40.82 17.328 0.878 1.845 0.931 39.33 19.181 0.857 1.905 0.913 37.91 21.010 0.836 1.968 0.896 36.56 22.815 0.815 2.035 0.880 35.29 24.590 0.795 2.106 0.864 34.09 26.331 0.774 2.183 0.848 32.97 28.033 0.753 2.264 0.833 31.92 29.688 0.732 2.352 0.818 30.96 31.288 0.711 2.446 0.804 30.08 32.822 0.690 2.547 0.791 29.28 34.277 0.670 2.656 0.779 28.58 35.634 0.649 2.774 0.768 27.96 36.871 0.628 2.902 0.759 27.45 37.953 0.607 3.040 0.751 27.03 38.836 0.586 3.191 0.744 26.73 39.450 0.565 3.357 0.740 26.54 39.689 0.545 3.537 0.739 26.47 82.700 0.545 3.537 0.739 26.47 END OF HYDRAULIC JUMP ANALYSIS PRESSURE-fMOMENTUM BALANCE OCCURS AT 35.14 FEET UPSTREAM OF NODE 2002.11 j DOWNSTREAM DEPTH = 0.656 FEET, UPSTREAM CONJUGATE DEPTH = 0.447 FEET | NODE 2002.10 : HGL = < 56.285>;EGL= < 56.479>;FLOWLINE= < 55.740> Page 7 A2 ***************************************************************** FLOW PROCESS FROM NODE 2002.10 TO NODE 2002.10 IS CODE = 8 UPSTREAM NODE 2002.10 ELEVATION = 55.74 (FLOW IS SUBCRITICAL)^^ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.45 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 3.54 FEET/SEC. VELOCITY HEAD = 0.194 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.194) = 0^039 "NODE 2002.10 : HGL = < 56.518>;EGL= < 56.518>;FLOWLINE= < 55.740> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2002.10 FLOWLINE ELEVATION = 55.74 ASSUMED UPSTREAM CONTROL HGL = 56,28 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 8 A3 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ver. 21,0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATIONS FOR STORM DRAIN LATERAL FROM EX. 24 /MED. CI #2 ^ * EL CAMINO REAL STA. 454-f48.99 * \iss*r^^*fi?^i^^i^^i^*^?^**™^ FILE NAME: A3.DAT , TIME/DATE OF STUDY: 11:47 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note- "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN PS^^S S?f «>MKUNO« o.^^,rn «»^S?5Sr« 2003.00- 1.16 58.71 0.32* 60.UU } FRICTION -,. -,A n yic* 4n RR 2003.20- 0.64 DC 34.24 0.45* 4U.8» } MANHOLE/INLET/OUTLET g, 2003.21- 0.64 DC 34.24 0.32* bU.bi } FRICTION OA -,A n Kn* ^7 63 2003 10- 0.64 DC 34.24 0.50* :5/.b:J } MANHOLE/INLET/OUTLET 2003.11- 0.77 36.22 0.31* bi.bu } FRICTION OA -iA n aA*nr- ^4 74 2006.00- 0.64*DC 34.24 0.64*Dc 34.^4 } CATCH BASIN ,00-7 A c/i r.^ 17 70 2006.00- 0.94* 18.37 -i::-- "MAXIMUMNUMBER OF ENERGY BALANCES USED IN ^ACH PROFILE =J5 'NOTE'STEADY'FLOW'H^^ HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ****fl***^****fi************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: SSSE NUMBERS 2003.00 ^!;^'S;LiTPr'''°?8^00 INCHE^ PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 55^600 FEET ""NODr"200r00'rHGr='r"l4"760>;EG^^^ 56.434>; FLOWLINE= < 54.440> ****************************************************************************** FLOW PROCESS FROM NODE 2003.00 TO NODE 2003.20 IS CODE =1 UPSTREAM NODE 2003.20 ELEVATION = 56.47 CFLOWISSUPERCRITICA^ " CALCULATE FRICTION LOSSES(LACFCD): Page 1 PIPE FLOW PIPE LENGTH = A3 2.87 CFS PIPE DIAMETER = 18.00 INCHES 21.62 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = 0.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = O^f^. "GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.243 0.507 0.794 1.106 1.447 1.819 2.226 2.672 3.164 3.706 4.306 4.974 5.722 6.562 7.515 8.605 9.864 11.340 13.100 15.251 17.970 21.589 21.620 FLOW DEPTH (FT) 0.451 0.445 0.439 0.433 0.427 0.421 0.415 0.409 0.404 0.398 0.392 0.386 0.380 0.374 0.368 0.362 0.356 0.350 0.344 0.338 0.332 0.326 0.320 0.320 VELOCITY (FT/SEC) 6.415 6.534 6.657 6.784 6.916 7.052 7.193 7.339 7.491 7.648 7, 7, .811 .981 8.157 8.340 8.530 8.728 8.935 9.150 9.375 9.609 9.854 10.109 10.377 10.379 SPECIFIC ENERGY(FT) 1.090 1.108 1.128 1.148 1.170 1.194 1.219 1.246 1.275 1.306 1.340 1.375 1.414 1.455 1.499 1.546 1.596 1.651 1.710 1.773 1.841 1.914 1.994 1.994 PRESSURE-f MOMENTUM(POUNDS) 40.88 41.38 41.90 42.45 43.03 43.64 44.27 44.94 45.64 46.37 47.14 47.95 48.80 49.69 50.62 51.60 52.63 53.71 54.84 56.04 57.29 58.60 59.99 60.00 "NODE""2003"20"rHGL = < 56.921>;EGL= < 57. 560>; FLOWLINE= < 56.470> ^***************************************************************************** FLOW PROCESS FROM NODE 2003.20 TO NODE 2003.21 IS CODE =2 ^^^^^ UPSTREAM NODE 2003.21 ELEVATION = 56.88 (FLOW IS SUPERCRITICAU 18.00 INCHES 0.176 CALCULATE MANHOLE/INLET/OUTLET LOSSES: ^^.„p-rpp _ PIPE FLOW = 2.87 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 0.15 AVERAGED VELOCITY HEAD = 1.176 FEET _ HMN = 0.15*(AVERAGED VELOCITY HEAD) = 0.15*(1.176) - NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLCW LINE ELEVATIONS ^ ~"^^VT00172ITHGL~^~7~T77I^^^^^^ < 56.880> ****************************************************************************** FLOW PROCESS FROM NODE 2003.21 TO NODE 2003.10 IS CODE = 1 UPSTREAM NODE 2003.10 ELEVATION = _ ^9.98 JFLOW IS SUPERCRITI^^ CALCULATE FRICTION LOSSES (LACFCD) : i a nn rwruP^ PIPE FLOW = 2.87 CFS PIPE DIAMETER = l^lOO INCHES PIPE LENGTH = 36.48 FEET MANNING S N = O.OliUU NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) = 0.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 Page 2 A3 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND! 0.000 0.500 5.566 0.981 37.63 0.182 0.492 5.684 0.994 38.04 0.385 0.485 5.807 1.009 38.49 0.609 0.477 5.935 1.024 38.97 0.858 0.470 6.067 1.042 39.48 1.134 0.462 6.206 1.060 40.03 1.441 0.454 6.349 1.081 40.61 1.782 0.447 6.499 1.103 41.23 2.162 0.439 6.656 1.128 41.90 2.585 0.432 6.819 1.154 42.61 3.059 0.424 6.990 1.183 43.36 3.591 0.416 7.168 1.215 44.16 4.191 0.409 7.355 1.249 45.01 4.869 0.401 7.551 1.287 45.92 5.641 0.394 7.756 1.328 46.88 6.525 0.386 7.971 1.373 47.90 7.547 0.379 8.197 1.422 48.99 8.741 0.371 8.434 1.476 50.15 10.154 0.363 8.684 1.535 51.38 11.856 0.356 8.947 1.599 52.69 13.956 0.348 9.224 1.670 54.08 16.635 0.341 9.517 1.748 55.57 20.235 0.333 9.826 1.833 57.15 25.520 0.325 10.154 1.927 58.83 34.949 0.318 10.501 2.031 60.63 36.480 0.318 10.500 2.031 60.63 NODE 2003.10 : HGL = < 60.480>;EGL= < 60.961>;FLOWLINE= < 59.980> ****************************************************************************** FLOW PROCESS FROM NODE 2003.10 TO NODE 2003.11 IS CODE = 2 UPSTREAM NODE 2003.11 ELEVATION = 60.17 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 2.87 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 1.15 AVERAGED VELOCITY HEAD = 1.127 FEET HMN = 1.15*(AVERAGED VELOCITY HEAD) = 1.15*( 1.127) = 18.00 INCHES 1.297 NODE 2003.11 : HGL = < 60.484>;EGL= < 62.257>;FLOWLINE= < 60.170> ****************************************************************************** FLOW PROCESS FROM NODE 2003.11 TO NODE 2006.00 IS CODE = 1 UPSTREAM NODE 2006.00 ELEVATION = 62.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 17.91 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 0.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH (FT) 0.643 VELOCITY (FT/SEC) 3.962 Page SPECIFIC ENERGY(FT) 0.887 PRESSURE-f MOMENTUM(POUNDS) 34.24 A3 0.006 0.629 4.081 0.888 34.27 0.023 0.615 4.207 0.890 34.36 0.055 0.601 4.341 0.893 34.50 0.102 0.586 4.483 0.899 34.72 0.167 0.572 4.634 0.906 34.99 0.252 0.558 4.795 0.915 35.35 0.360 0.543 4.966 0.927 35.78 0.495 0.529 5.149 0.941 36.29 0.661 0.515 5.345 0.959 36.89 0.863 0.501 5.554 0.980 37.59 1.108 0.486 5.779 1.005 38.39 1.404 0.472 6.022 1.035 39.30 1.760 0.458 6.283 1,071 40.34 2.190 0.444 6.565 1,113 41.51 2.710 0.429 6.871 1.163 42.83 3.343 0.415 7.203 1.221 44.32 4.119 0.401 7.565 1.290 45.98 5.081 0.386 7.960 1.371 47.85 6.293 0.372 8.393 1.467 49.95 7.854 0.358 8.870 1.580 52.31 9.931 0.344 9.397 1.716 54.96 12.838 0.329 9.980 1.877 57.94 17.281 0.315 10.631 2.071 61.31 17.910 0.314 10.683 2.087 61.58 NODE 2006.00 : HGL = < 62. 913>;EGL= < 63.157>;FLOWLINE= < 62.270> ****************************************************************************** FLOW PROCESS FROM NODE 2006.00 TO NODE 2006.00 IS CODE = 8 UPSTREAM NODE 2006.00 ELEVATION = 62.27 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.96 FEET/SEC. VELOCITY HEAD = 0.244 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.244) = 0.049 NODE 2006.00 : HGL = < 63.206>;EGL= < 63.206>;FLOWLINE= < 62.270> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2006.00 FLOWLINE ELEVATION = 62.27 ASSUMED UPSTREAM CONTROL HGL = 62.91 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 30 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) CODvriqht 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY **************************^ * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #3 * * EL CAMINO REAL STA 456-f33.75 ^ * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC ..... *t*********************************************************************** FILE NAME: 30.DAT , ^ , TIME/DATE OF STUDY: 10:59 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2003.00- 1.66 129.32 0.32* 189.17 } FRICTION _ -jo m 2005 50- 0.87*Dc 73.01 0.87*Dc 73.01 } MANHOLE/INLET/OUTLET 2005.51- 1.11 79.68 0.54* 97.51 2005 40- ^^^"^^^^ 0.87*DC 72.99 0.87*Dc 72.99 } MANHOLE/INLET/OUTLET 2005.41- 1.11 79.64 0.55* 95.43 2005 20^ o.87*Dc 72.98 0.87*Dc 72.98 } MANHOLE/INLET/OUTLET 2005.21- 1.11 79.60 0.58* 91.22 } FRICTION ^ g., 2005 22- 0.87 DC 73.01 0.71* 77.81 } MANHOLE/INLET/OUTLET 2005.23- 0.87 Dc 73.01 0.45* 120.94 2005.10^ 0.87*DC 73.01 0.87*Dc 73.01 } CATCH BASIN ^ -ic AT 2005.10- 1.31* 40.45 0.87 DC 25.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA **5*f********t*f;************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2003.00 FLOWLINE ELEVATION = 53.94 PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 55.600 FEET Page 1 30 NODE 2003.00 : HGL = < 54.258>;EGL= < ****************************************************************************** FLOW PROCESS FROM NODE 2003.00 TO NODE 2005.50 IS CODE = 1 UPSTREAM NODE 2005.50 59.728>;FLOWLINE= < 53.940> ELEVATION = 63.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 40.22 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = 0.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.873 4.817 0.005 0.851 4.970 0.020 0.828 5.134 0.046 0.806 5.310 0.086 0.784 5.498 0.141 0.762 5.701 0.215 0.740 5.919 0.308 0.717 6.155 0.426 0.695 6.410 0.573 0.673 6.686 0.753 0.651 6.987 0.974 0.629 7.314 1.244 0.607 7.671 1.572 0.584 8.063 1.974 0.562 8.494 2.467 0.540 8.970 3.076 0.518 9.497 3.835 0.496 10.083 4.792 0.474 10.738 6.019 0.451 11.475 7.629 0.429 12.308 9.815 0.407 13.255 12.940 0.385 14.339 17.823 0.363 15.591 27.101 0.341 17.049 40.220 0.318 18.763 NODE 2005.50 : HGL = < 64. 693>;EGL= < PRESSURE-f ENERGY(FT) MOMENTUM(POUNDS) 1.233 73.01 1.234 73.08 1.238 73.31 1.244 73.70 1.254 74.26 1.267 75.01 1.284 75.96 1.306 77.14 1.334 78.54 1.368 80.21 1.409 82.16 1.460 84.43 1.521 87.04 1.595 90.04 1.683 93.47 1.790 97.40 1.919 101.88 2.075 106.99 2.265 112.84 2.497 119.54 2.783 127.24 3.137 136.11 3.580 146.40 4.140 158.40 4.857 172.49 5.788 189.17 65.053>;FLOWLINE= < 63.820> ****************************************************************************** FLOW PROCESS FROM NODE 2005.50 TO NODE 2005.51 IS CODE = 2 UPSTREAM NODE 2005.51 ELEVATION = 64.15 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 5.14 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =0.15 AVERAGED VELOCITY HEAD = 0.807 FEET HMN = 0.15*(AVERAGED VELOCITY HEAD) = 0.15*( 0.807) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS 18.00 INCHES 0.121 NODE 2005.51 : HGL = < 64.690>;EGL= < 65.943>;FLOWLINE= < 64.150> ****************************************************************************** Page 2 30 FLOW PROCESS FROM NODE 2005.51 TO NODE 2005.40 IS CODE = 1 UPSTREAM NODE 2005.40 ELEVATION = 66.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.01 INCHES PIPE LENGTH = 65.73 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.872 4.815 1.233 72.99 0.015 0.859 4.910 1.233 73.02 0.063 0.845 5.008 1.234 73.11 0.147 0.831 5.111 1.237 73.26 0.271 0.817 5.219 1.240 73.47 0.440 0.803 5.331 1.245 73.74 0.659 0.789 5.449 1.251 74.09 0.934 0.775 5.572 1.258 74.51 1.272 0.762 5.700 1.266 75.00 1.684 0.748 5.835 1.277 75.57 2.178 0.734 5.976 1.289 76.22 2.768 0.720 6.124 1.303 76.97 3.469 0.706 6.280 1.319 77.80 4.301 0.692 6.444 1.337 78.73 5.289 0.678 6.616 1.358 79.76 6.464 0.664 6.797 1.382 80.91 7.869 0.651 6.988 1.409 82.16 9.560 0.637 7.189 1.440 83.54 11.618 0.623 7.402 1.474 85.05 14.159 0.609 7.627 1.513 86.70 17.368 0.595 7.865 1.556 88.50 21.548 0.581 8.118 1.605 90.46 27.274 0.567 8.386 1.660 92.59 35.835 0.554 8.671 1.722 94.91 51.367 0.540 8.974 1.791 97.43 65.730 0.540 8.978 1.792 97.46 NODE 2005.40 : HGL = < 67.282>;EGL= < 67.643>;FLOWLINE= < 66.410> ****************************************************************************** FLOW PROCESS FROM NODE 2005.40 TO NODE 2005.41 IS CODE = 2 UPSTREAM NODE 2005.41 ELEVATION = 66.74 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) 18.00 INCHES 0.232 CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 5.14 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 0.30 AVERAGED VELOCITY HEAD = 0.773 FEET HMN = 0.30*(AVERAGED VELOCITY HEAD) = 0.30*( 0.773) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS "NODE 2005.41 : HGL = < 67.291>;EGL= < 68.476>;FLOWLINE= < 66.740> ****************************************************************************** FLOW PROCESS FROM NODE 2005.41 TO NODE UPSTREAM NODE 2005.20 ELEVATION = 2005.20 IS CODE = 1 68.82 (FLOW IS SUPERCRITICAL) Page 3 30 CALCULATE FRICTION LOSSES (LACFCD) : ^..^..^^ PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.03 INCHES PIPE LENGTH = 65.83 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.54 CRITICAL DEPTH(FT) = 0.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.872 4,813 0.016 0.859 4.905 0.065 0.845 5.000 0.152 0.832 5.099 0.280 0.819 5.202 0.453 0.805 5.310 0.678 0.792 5.422 0.961 0.779 5.540 1.309 0.765 5,663 1.732 0.752 5.791 2,238 0.738 5.925 2,843 0.725 6.066 3,561 0.712 6.213 4,413 0.698 6.368 5,423 0.685 6.530 6,623 0.671 6.701 8,056 0.658 6.880 9,780 0.645 7.069 11,875 0.631 7.267 14,460 0.618 7.477 17,720 0.605 7.698 21.963 0.591 7.932 27.767 0.578 8.180 36.435 0.564 8.443 52.142 0,551 8.721 65.830 0,551 8.724 NODE 2005.20 • HGL = < 69, 692>;EGL= < SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUND: 1.232 72.98 1.233 73.00 1.234 73.08 1.236 73.22 1.239 73.42 1.243 73.67 1.249 73.99 1.255 74.38 1.263 74.84 1.273 75.37 1.284 75.97 1.297 76.66 1.311 77.43 1.328 78.29 1.347 79.24 1.369 80.29 1.394 81.44 1.421 82.70 1.452 84.09 1.487 85.59 1.525 87.23 1.569 89.01 1.617 90.95 1.672 93.05 1.733 95.32 1.733 95.35 70.052>;FLOWLINE= < 68.820> ****************************************************************************** FLOW PROCESS FROM NODE 2005.20 TO NODE 2005.21 IS CODE = 2 UPSTREAM NODE 2005.21 ELEVATION = 69.15 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) 18.00 INCHES 0.916 CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 5.14 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 1.30 AVERAGED VELOCITY HEAD = 0.705 FEET HMN = 1.30*(AVERAGED VELOCITY HEAD) = 1.30*( 0.705) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS "NODE '2005.21 : HGL = < 69.726>;EGL= < 70.775>;FLOWLINE= < 69.150> ****************************************************************************** FLOW PROCESS FROM NODE 2005.21 TO NODE 2005.22 IS CODE = 1 UPSTREAM NODE 2005.22 ELEVATION = 69.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.77 FEET MANNING'S N = 0.01300 Page 4 30 NORMAL DEPTH(FT) 0.46 CRITICAL DEPTH(FT) = 0.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.282 0.595 0.945 1.333 1.764 2.244 2.778 3.374 4.039 4.782 5.617 6.557 7.621 7.770 FLOW DEPTH (FT) 0.706 0.697 0.687 0.677 0.667 0.657 0.647 0.637 0.627 0.617 0.607 0.597 0.588 0.578 0.576 VELOCITY (FT/SEC) 6.280 6.396 6.516 6.640 6.770 6.904 7.043 7.188 7.339 7.495 7.658 7.828 8.006 8.190 8.214 SPECIFIC ENERGY(FT) 1.319 1.332 1.346 1.362 1.379 1.397 1.418 1.440 1.464 1.490 1.519 1.550 1.583 1.620 1.625 PRESSURE-f MOMENTUM(POUNDS) 77.81 78.46 79.17 79.92 80.74 81.61 82.54 83.54 84.60 85.74 86.94 88.23 89.59 91.04 91.22 NODE 2005.22 : HGL = < 70.306>;EGL= < 70.919>;FLOWLINE= < 69.600> ******************************************************************************* FLOW PROCESS FROM NODE 2005.22 TO NODE 2005.23 IS CODE = 2 UPSTREAM NODE 2005.23 ELEVATION = 70.34 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 5.14 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 1.45 AVERAGED VELOCITY HEAD = 1.357 FEET HMN = 1.45*(AVERAGED VELOCITY HEAD) = 1.45*( 1.357) = 18.00 INCHES 1.967 NODE 2005.23 : HGL 70.787>;EGL= < 72,888>;FLOWLINE= < 70,340> ****************************************************************************** FLOW PROCESS FROM NODE 2005,23 TO NODE 2005,10 IS CODE = 1 UPSTREAM NODE 2005,10 ELEVATION = 71,93 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5,14 CFS PIPE DIAMETER = 18,00 INCHES PIPE LENGTH = 7.15 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.005 0.021 0.050 0.092 0.152 0.230 0.330 FLOW DEPTH (FT) 0.873 0.851 0.829 0.807 0.785 0.763 0.742 0.720 VELOCITY (FT/SEC) 4.817 4.968 5.129 5.302 5.487 5.686 5.900 6.131 Page 5 SPECIFIC ENERGY(FT) 1.233 1.234 1. 1. 1. 1. 1. 1. 238 244 253 266 282 304 PRESSURE-f MOMENTUM(POUNDS) 73.01 73.08 73.30 73.68 74.22 74.95 75.87 77.01 30 „ 0-457 0.698 6.380 1.330 78.37 0.613 0.676 6.649 1.363 79.98 0 805 0.654 6.942 1.403 81,86 1^040 0,632 7,260 1.451 84.05 1 326 0.610 7.607 1.510 86.56 1^675 0.589 7.987 1.580 89.45 2 101 0.567 8.404 1.664 92.75 7 fi77 0 545 8.863 1.765 9b.bi 3:264 0.523 9.370 1.887 100.79 4.063 0.501 9.934 2.034 105.68 5.068 0.479 10.561 2.212 111.25 fi 0 457 11.265 2.429 117.62 7:i50 0:447 11.628 2.548 120.94 "'NODr'2005'irrHGL~='7"'72"803>^ < 73.163>; FLOWLINE= < 71.930> ****************************************************************************** FLOW PROCESS FROM NODE 2005.10 TO NODE 2005 10 IS CODE =8 UPSTREAM NODE 2005.10 ELEVATION = 71^93^ (FLOW ISSUBCRITICAL) '"CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.82 FEET/SEC. VELOCITY HEAD = 0.360 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = - 2*C__0.360)_=__0.072 ''NODr'2005'l0'rHGL"='7''7r235>;E^^^ < 73.235>; FLOWLINE= < 71.930> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2005.10 FLOWLINE ELEVATION = 71.93 ASSUMED UPSTREAM CONTROL HGL = 72.80 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 6 103 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN ECR STA 454-f99.83 AND CI #4 * 100 YEAR STORM ULTIMATE CONDITION * REVISED BY MC ************************************************************************** FILE NAME: 103.DAT TIME/DATE OF STUDY: 11:13 10/16/2014 *********V******************************************************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2007.00- 0.84 DC 66.92 0.41* 119.52 } FRICTION „ cr n.-^ 2010.00- 0.84*DC 66.92 0.84*Dc 66.92 } CATCH BASIN „ „^ 2010.00- 1.26* 36.83 0.84 Dc _ 23.08_ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ^ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ****f****^****fi************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2007.00 FLOWLINE ELEVATION = 54.02 PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 54.400 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.38 FT.) IS LESS THAN CRITICAL DEPTH( 0.84 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS "NODE"2007.00 : HGL = < 54.428>;EGL= < 56.810>; FLOWLINE= < 54.02O> ****************************************************************************** FLOW PROCESS FROM NODE 2007.00 TO NODE 2010.00 IS CODE = 1 UPSTREAM NODE 2010.00 ELEVATION = 58.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 47.98 FEET MANNING'S N = 0.01300 'NORMAL DEPTH (FT) = 0.39 *^'^^I^E^!:_^!!™^!^lL: Page 1 103 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.843 4.702 0.009 0.825 4.830 0.036 0.807 4.965 0.083 0.789 5.108 0.155 0.770 5.260 0.253 0.752 5.422 0.381 0.734 5.593 0.543 0.716 5.776 0.746 0.698 5.971 0.995 0.680 6.179 1.297 0.662 6.401 1.662 0,643 6.640 2.102 0,625 6.896 2.631 0,607 7.171 3.268 0,589 7.468 4.036 0,571 7.789 4.969 0,553 8.136 6.109 0.535 8.513 7.518 0.516 8.923 9.289 0.498 9.371 11.563 0.480 9.861 14.579 0.462 10.400 18.787 0.444 10.994 25.198 0.426 11.652 37.062 0.408 12.383 47.980 0.408 12.383 NODE 2010.00 : HGL = < 59.483>;EGL= < PRESSURE+ ENERGY(FT) MOMENTUM(POUND; 1.186 66.92 1.187 66.97 1.190 67.12 1.194 67.37 1.200 67.74 1.209 68.22 1.220 68.84 1.234 69.58 1.252 70.47 1.273 71.52 1.298 72.73 1.328 74.11 1.364 75.70 1.406 77.49 1.456 79.51 1.513 81.79 1.581 84.34 1.661 87.20 1.753 90.40 1.863 93.98 1.991 97.99 2.142 102.47 2.322 107.50 2.535 113.16 2.790 119.52 2.790 119.52 59.826>;FL0WLINE= < 58.640> ****************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 8 UPSTREAM NODE 2010.00 ELEVATION = 58.64 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.81 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.70 FEET/SEC. VELOCITY HEAD = 0.344 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.344) = 0.069^ " NODE 2010.00 : HGL = < 59.895>;EGL= < 59.895>;FLOWLINE= < 58.640> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2010.00 FLOWLINE ELEVATION = 58.64 ASSUMED UPSTREAM CONTROL HGL = 59.48 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 40 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #5 * * EL CAMINO REAL STA 463-f02 * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC * ************************************************************************** FILE NAME: 40.DAT TIME/DATE OF STUDY: 11:17 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3001.00- 3.26* 277.87 0.27 10.52 } FRICTION 3000.00- 2.14* 153.84 0.37 Dc 8.92 } CATCH BASIN 3000.00- 2.14* 153.40 0.37 Dc 3.27 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3001.00 FLOWLINE ELEVATION = 73.14 PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 76.400 FEET NODE 3001.00 : HGL = < 76.400>;EGL= < 76.405>;FLOWLINE= < 73.140> ****************************************************************************** FLOW PROCESS FROM NODE 3001.00 TO NODE 3000.00 IS CODE = 1 UPSTREAM NODE 3000.00 ELEVATION = 74.27 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.67 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.00)/( 105.057))**2 = 0.00009 HF=L*SF = ( 56.67)*(0.00009) = 0.005 NODE 3000.00 : HGL = < 76.405>;EGL= < 76,410>;FLOWLINE= < 74.270> ****************************************************************************** Page 1 40 FLOW PROCESS FROM NODE 3000.00 TO NODE 3000.00 IS CODE = 8 UPSTREAM NODE 3000.00 ELEVATION = 74.27 (FLOW IS UNDER PRESSURE)^ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 0.57 FEET/SEC. VELOCITY HEAD = 0.005 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.005) =0.001 NODE 3000.00 : HGL = < 76.411>;EGL= < 76.411>;FLOWLINE= < 74.270> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3000.00 FLOWLINE ELEVATION = 74.27 ASSUMED UPSTREAM CONTROL HGL = 74.64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 50 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #6 * * EL CAMINO REAL STA 465-f49.18 * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC * ************************************************************************** FILE NAME: 50.DAT TIME/DATE OF STUDY: 11:23 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 3003.00- MODEL PROCESS PRESSURE HEAD(FT) 0.92 DC PRESSURE-f MOMENTUM(POUNDS) 82.51 FLOW DEPTH(FT) 0.64* PRESSURE-f MOMENTUM(POUNDS) 97.89 } 3003.10- FRICTION 0.92 DC 82.51 0.72* 89.12 } 3003.11- FRICTION 0.92*DC 82.51 0.90*DC 82.56 } 3007.00- FRICTION 0.92*DC 82.51 0.92*DC 82.51 } 3007.00- CATCH BASIN 1.38* 46.30 0.92 DC 27.99 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3003.00 FLOWLINE ELEVATION = 71.65 PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 71.700 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.05 FT.) IS LESS THAN CRITICAL DEPTH( 0.92 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3003.00 : HGL = < 72.289>;EGL= < 73.248>;FLOWLINE= < 71.650> ****************************************************************************** FLOW PROCESS FROM NODE 3003.00 TO NODE 3003.10 IS CODE = 1 UPSTREAM NODE 3003.10 ELEVATION = 72.38 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.54 FEET MANNING'S N = 0.01300 Page 1 50 NORMAL DEPTH(FT) 0.62 CRITICAL DEPTH(FT) = 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 0.724 6.673 1.416 89.12 0.645 0.720 6.725 1.423 89.46 1.335 0.715 6.778 1.429 89.81 2.073 0.711 6.832 1.436 90.17 2.864 0.707 6.886 1.444 90.54 3.713 0.702 6.941 1.451 90.92 4.627 0.698 6.997 1.459 91.32 5.612 0.694 7.054 1.467 91.72 6.676 0.689 7.112 1.475 92.14 7.831 0.685 7.171 1.484 92.57 9.086 0.681 7.231 1.493 93.01 10.457 0.676 7.292 1.502 93.46 11.961 0.672 7.354 1.512 93.93 13.619 0.668 7.416 1.522 94.41 15.459 0.663 7.480 1.533 94.90 17.514 0.659 7.545 1.543 95.41 19.832 0.655 7.611 1.555 95.93 22.473 0.650 7.678 1.566 96.46 25.526 0.646 7.746 1.578 97.01 29.118 0.642 7.816 1.591 97.57 31.540 0.639 7.855 1.598 97.89 NODE 3003.10 : HGL = < 73. 104>;EGL= < 73.796>;FL0WLINE= < 72.380> ****************************************************************************** FLOW PROCESS FROM NODE 3003.10 TO NODE 3003.11 IS CODE = 1 UPSTREAM NODE 3003.11 ELEVATION = 72.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.74 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.70 CRITICAL DEPTH(FT) 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.898 5.104 1.303 82.56 0.093 0.890 5.159 1.304 82.61 0.227 0.882 5.216 1.305 82.69 0.405 0.874 5.274 1.306 82.78 0.631 0.866 5.333 1.308 82.90 0.910 0.858 5.394 1.310 83.03 1.249 0.850 5.456 1.313 83.19 1.653 0.842 5.520 1.316 83.38 2.131 0.834 5.585 1.319 83.58 2.692 0.826 5.652 1.322 83.81 3.347 0.818 5.721 1.327 84.07 4.108 0.810 5.791 1.331 84.35 4.994 0.802 5.864 1.336 84.65 6.023 0.794 5.938 1.342 84.99 Page 2 50 7,221 0.786 6.014 8,621 0.778 6.092 10,267 0.770 6.172 12.216 0.762 6.255 14.552 0.754 6.340 17.395 0.746 6.427 20.931 0.738 6.516 25.473 0.730 6.608 29.740 0.724 6.673 1.348 1.355 1.362 1.370 1.378 1.388 1.398 1.408 1.416 85.35 85.73 86.15 86.60 87.08 87.58 88.13 88.70 89.12 NODE 3003.11 : HGL = < 73.718>;EGL= < 74.123>;FLOWLINE= < 72.820> ****************************************************************************** FLOW PROCESS FROM NODE 3003.11 TO NODE 3007.00 IS CODE = 1 UPSTREAM NODE 3007.00 ELEVATION = 73.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.916 4.987 0.003 0.915 4.992 0.012 0.915 4.997 0.029 0.914 5.001 0.052 0.913 5.006 0.084 0.912 5.011 0.125 0.912 5.015 0.177 0.911 5.020 0.239 0.910 5.025 0.314 0.909 5.030 0.404 0.909 5.035 0.509 0.908 5.039 0.634 0.907 5.044 0.779 0.907 5.049 0.951 0.906 5.054 1.152 0.905 5.059 1.390 0.904 5.064 1.673 0.904 5.068 2.014 0.903 5.073 2.430 0.902 5.078 2.948 0.901 5.083 3.615 0.901 5.088 4.518 0.900 5.093 5.849 0.899 5.098 8.233 0.899 5.103 37.300 0.898 5.104 NODE 3007.00 HGL = < 73. 976>;EGL= < SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUND; 1.302 82.51 1.302 82.51 1.302 82.51 1.302 82.51 1.302 82.51 1.302 82.52 1.303 82.52 1.303 82.52 1.303 82,52 1.303 82,52 1.303 82.52 1.303 82.52 1.303 82.52 1.303 82.53 1.303 82.53 1.303 82.53 1.303 82.53 1.303 82.54 1.303 82.54 1.303 82.54 1.303 82.54 1.303 82.55 1.303 82.55 1.303 82.56 1.303 82.56 1.303 82.56 74.362>;FL0WLINE= < 73.060> ****************************************************************************** FLOW PROCESS FROM NODE 3007.00 TO NODE 3007.00 IS CODE = 8 UPSTREAM NODE 3007.00 ELEVATION = 73.06 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES Page 3 50 FLOW VELOCITY = 4.99 FEET/SEC. VELOCITY HEAD = 0.386 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = •2*C _0-386)_= _0.077 "'NODE'"3007'00'rHGL'='<'' 74.440>;EGL= < 74.440>;FLOWLINE= < 73.060> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: ^.,*-rxAK, 73 NODE NUMBER = 3007.00 FLOWLINE ELEVATION = 73.06 ASSUMED UPSTREAM CONTROL HGL = 73.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 60 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN AND CI #7 * * EL CAMINO REAL STA 467-fOO * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC * ************************************************************************** FILE NAME: 60.DAT TIME/DATE OF STUDY: 11:27 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3010.00- 2.12* 161.54 0.48 44.08 } FRICTION 3009.00- 1.44* 86.75 0.67 Dc 37.66 } CATCH BASIN 3009.00- 1.50* 81.46 0.67 Dc 13.38 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3010.00 FLOWLINE ELEVATION = 65.98 PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 68.100 FEET NODE 3010.00 : HGL = < 68.100>;EGL= < 68.147>;FL0WLINE= < 65.980> ****************************************************************************** FLOW PROCESS FROM NODE 3010.00 TO NODE 3009.00 IS CODE = 1 UPSTREAM NODE 3009.00 ELEVATION = 66.69 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.67 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.12 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-f Page 1 60 CONTROL(FT) 0.000 33.520 HEAD(FT) 2.120 1.500 (FT/SEC) 1.749 1.749 ENERGY(FT) 2.167 1.547 MOMENTUM(POUNDS) 161.54 93.17 NORMAL DEPTH(FT) 0.47 CRITICAL DEPTH(FT) 0.67 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 33.520 35.284 36.670 FLOW DEPTH (FT) 1.500 1.467 1.440 VELOCITY (FT/SEC) 1.748 1.758 1.772 SPECIFIC ENERGY(FT) 1.547 1.515 1.489 PRESSURE-f MOMENTUM(POUNDS) 93.17 89.57 86.75 NODE 3009.00 : HGL = < 68.130>;EGL= < 68.179>;FL0WLINE= < 66.690> ****************************************************************************** FLOW PROCESS FROM NODE 3009.00 TO NODE 3009.00 IS CODE = 8 UPSTREAM NODE 3009.00 ELEVATION = 66.69 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.09 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.77 FEET/SEC. VELOCITY HEAD = 0.049 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.049) = 0.010 NODE 3009.00 : HGL = < 68.189>;EGL= < 68.189>;FLOWLINE= < 66.690> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3009.00 FLOWLINE ELEVATION = 66.69 ASSUMED UPSTREAM CONTROL HGL = 67.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 • 70 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #8 * * EL CAMINO REAL STA 469-fOO * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC * ************************************************************************** FILE NAME: 70.DAT TIME/DATE OF STUDY: 11:32 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 4000.00- MODEL PROCESS PRESSURE HEAD(FT) 1.11 DC PRESSURE-f MOMENTUM(POUNDS) 154.98 FLOW DEPTH(FT) 0.92* PRESSURE-f MOMENTUM(POUNDS) 163.27 } 4004.00- FRICTION 1.11*DC 154.98 1.11*DC 154.98 } 4004.10- JUNCTION 1.05* 56.12 0.57 47.78 } 4006.00- FRICTION 0.82* 45.70 0.71 DC 44.24 } 4006.00- CATCH BASIN 1.05* 28.81 0.71 DC 15.61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4000.00 FLOWLINE ELEVATION = 63.36 PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 63.800 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.44 FT.) IS LESS THAN CRITICAL DEPTH( 1.11 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 4000.00 : HGL = < 64.281>;EGL= < 65.013>;FLOWLINE= < 63.360> ****************************************************************************** FLOW PROCESS FROM NODE 4000.00 TO NODE 4004.00 IS CODE = 1 UPSTREAM NODE 4004.00 ELEVATION = 64.23 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): Page 1 PIPE FLOW PIPE LENGTH = 70 9.70 CFS PIPE DIAMETER = 24.00 INCHES 86.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = 1.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(Fr) MOMENTUM(POUNDS) 0.000 1.112 5.403 1.566 154.98 0.030 1.104 5.451 1.566 154.99 0.109 1.096 5.500 1.566 155.04 0.242 1.088 5.550 1.567 155.10 0.433 1.080 5.600 1.568 155.19 0.688 1.072 5.652 1.569 155.31 1.014 1.065 5.705 1.570 155.46 1.420 1.057 5.759 1.572 155.63 1.914 1.049 5.814 1.574 155.83 2.506 1.041 5.870 1.576 156.06 3.212 1.033 5.927 1.578 156.31 4.045 1.025 5.985 1.581 156.60 5.026 1.017 6.044 1.584 156.91 6.178 1.009 6.105 1.588 157.26 7.531 1.001 6.166 1.592 157.63 9.125 0.993 6.229 1.596 158.04 11.010 0.985 6.294 1.600 158.48 13.257 0.977 6.359 1,605 158.96 15.961 0.969 6.426 1,611 159.46 19.266 0.961 6.495 1,617 160.00 23.391 0.953 6.564 1,623 160.58 28.708 0.945 6.636 1,629 161.19 35.909 0.937 6.709 1,637 161.84 46.552 0.929 6.783 1.644 162.53 65.635 0.921 6.859 1.652 163.26 86.500 0.921 6.860 1.653 163.27 NODE 4004.00 : HGL = < 65.342>;EGL= < 65.796>;FLOWLINE= < 64.230> ****************************************************************************** FLOW PROCESS FROM NODE 4004.00 TO NODE 4004.10 IS CODE = 5 UPSTREAM NODE 4004.10 ELEVATION = 64.73 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.50 9.70 6.20 0.00 DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) 18.00 24.00 18.00 0.00 (DEGREES) 0.00 45.00 0.00 ELEVATION 64.73 64.23 64.77 0.00 DEPTH(FT.) 0.71 1.11 0.96 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) )/((Al-fA2) * 16.1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00159 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00515 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00337 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = (DY+HVl-HV2)-f(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.092)-f( 0.000) = 0.092 Page 2 VELOCITY (FT/SEC) 2.653 5.397 5.177 0.000 FEET 70 "NODE" 4004.10 : HGL = < 65.779>;EGL= < 65.888>;FLOWLINE= < 64.730> ****************************************************************************** FLOW PROCESS FROM NODE 4004.10 TO NODE 4006.00 IS CODE = 1 UPSTREAM NODE 4006.00 ELEVATION = 64.89 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.93 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = 0.71 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.049 2.652 1.158 56.12 0.553 1.035 2.690 1.148 55.28 1.099 1.022 2.729 1.137 54.47 1.637 1.008 2.770 1.128 53.68 2.167 0.995 2.812 1.118 52.92 2.689 0.982 2.855 1.108 52.18 3.201 0.968 2.901 1.099 51.47 3.703 0.955 2.948 1.090 50.79 4.194 0.941 2.997 1.081 50.14 4.673 0.928 3.048 1.072 49.52 5.140 0.915 3.101 1.064 48.93 5.593 0.901 3.155 1.056 48.36 6.031 0.888 3.213 1.048 47.83 6.453 0.874 3.272 1.041 47.33 6.858 0.861 3.334 1.034 46.87 7.243 0.848 3.398 1.027 46.44 7.607 0.834 3.465 1.021 46.04 7.930 0.822 3.532 1.015 45.70 NODE 4006.00 : HGL = < 65.712>;EGL= < 65.905>;FLOWLINE= < 64.890> ****************************************************************************** FLOW PROCESS FROM NODE 4006.00 TO NODE 4006.00 IS CODE = 8 UPSTREAM NODE 4006.00 ELEVATION = 64.89 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.53 FEET/SEC. VELOCITY HEAD = 0.194 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.194) = 0.039 NODE 4006.00 : HGL = < 65.944>;EGL= < 65.944>;FLOWLINE= < 64.890> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4006.00 FLOWLINE ELEVATION = 64.89 ASSUMED UPSTREAM CONTROL HGL = 65.60 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 80 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #9 * * EL CAMINO REAL STA 472-f85 * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC ************************************************************************** FILE NAME: 80.DAT TIME/DATE OF STUDY: 11:53 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5000.00- 2.06* 151.58 0.45 33.18 } FRICTION } HYDRAULIC JUMP 5002.00- 0.60*DC 29.42 0.60*Dc 29.42 } CATCH BASIN 5002.00- 0.88* 15.74 0.60 Dc 10.53 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5000.00 FLOWLINE ELEVATION = 46.94 PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 49.000 FEET NODE 5000.00 : HGL = < 49.000>;EGL= < 49.032>;FLOWLINE= < 46.940> ****************************************************************************** FLOW PROCESS FROM NODE 5000.00 TO NODE 5002.00 IS CODE = 1 UPSTREAM NODE 5002.00 ELEVATION = 48.49 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 99.73 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) = 0.60 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60 Page 1 80 GRADUALLY VARIED FLOW PROFILE DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 0.605 0.012 0.599 0.050 0.592 0.116 0.586 0.214 0.580 0.345 0.574 0.515 0.567 0.727 0.561 0.987 0.555 1.300 0.549 1.674 0.542 2.117 0.536 2.641 0.530 3.258 0.524 3.985 0.517 4.843 0.511 5.861 0.505 7.077 0.499 8.545 0.492 10.343 0.486 12.594 0.480 15.502 0.474 19.450 0.467 25.299 0.461 35.812 0.455 99.730 0.454 VELOCITY (FT/SEC) 820 873 928 984 042 101 4.162 4.225 289 356 424 494 566 4.641 4.717 4.796 4.878 4.962 5.048 5.138 5.230 5.326 5.424 5.526 5.632 5.643 3, 3. 3. 3. 4. 4. SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUND 0.832 29.42 0.832 29.42 0.832 29.44 0.833 29.46 0.834 29.50 0.835 29.55 0.837 29.61 0.839 29.68 0.841 29.77 0.843 29.87 0.847 29.98 0.850 30.10 0.854 30.24 0.858 30.39 0.863 30.56 0.869 30.74 0.875 30.94 0.881 31.15 0.888 31.38 0.896 31.62 0.905 31.89 0.914 32.17 0.925 32.48 0.936 32.80 0.948 33,14 0.949 33.18 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.06 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE CONTROL(FT) H EAD(FT) 0.000 2.060 37.452 1.500 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 1.443 2.092 1.443 1.532 PRESSURE-f MOMENTUM(POUNDS) 151.58 89.83 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 37.452 1.500 39.813 1.464 42.146 1.428 44.461 1.393 46.761 1.357 49.048 1.321 51.322 1.285 53.582 1.249 55.827 1.214 58.057 1.178 60.269 1.142 62.462 1.106 64.632 1.070 66.776 1.035 68.889 0.999 VELOCITY (FT/SEC) 1.443 1.452 1.468 1.490 ,516 ,547 ,582 .621 .664 .713 .766 .825 .890 .961 .040 Page SPECIFIC ENERGY(FT) 1.532 1.497 1.462 1.427 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2, 393 358 324 290 257 223 190 158 ,126 ,094 1.063 PRESSURE-f MOMENTUM(POUNDS) 89.83 85.94 82.12 78.38 74.72 71.15 67.68 64.31 61.06 57.92 54.91 52.03 49.28 46.68 44.22 80 70.966 0.963 2.127 1.033 41.91 72.999 0.927 2.223 1.004 39.77 74.979 0.891 2.329 0,976 37.79 76.893 0.856 2.448 0,949 35.99 78.726 0.820 2.580 0,923 34.38 80.454 0.784 2.728 0,900 32.96 82.048 0.748 2.894 0,878 31.75 83.465 0.712 3.082 0,860 30.78 84.640 0.677 3.295 0.845 30.04 85.476 0.641 3.539 0.835 29.58 85.808 0.605 3.820 0.832 29.42 99.730 0.605 3.820 0.832 29.42 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-fMOMENTUM BALANCE OCCURS AT 81.19 FEET UPSTREAM OF NODE 5000.00 I DOWNSTREAM DEPTH = 0.767 FEET, UPSTREAM CONJUGATE DEPTH = 0.469 FEET NODE 5002.00 : HGL = < 49.095>;EGL= < 49.322>;FL0WLINE= < 48.490> ****************************************************************************** FLOW PROCESS FROM NODE 5002.00 TO NODE 5002.00 IS CODE = 8 UPSTREAM NODE 5002.00 ELEVATION = 48.49 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.55 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.82 FEET/SEC. VELOCITY HEAD = 0.227 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.227) = 0.045 NODE 5002.00 : HGL = < 49.367>;EGL= < 49.367>;FLOWLINE= < 48.490> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5002.00 FLOWLINE ELEVATION = 48.49 ASSUMED UPSTREAM CONTROL HGL = 49.09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 90 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #10 * * EL CAMINO REAL STA. 474-f70.79 * 100 YEAR ULTIMATE CONDITIONS REVISED BY MC ************************************************************************** FILE NAME: 90.DAT TIME/DATE OF STUDY: 12:01 10/16/2014 *-***************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5000.30- 3.49* 328.47 0.43 116.30 } FRICTION ^ ^ ,-,n CD 91 00- 3.44* 322.61 0.42 120.63 } MANHOLE/INLET/OUTLET ^ _ 91 00- 3.29* 307.30 0.40 125.69 } FRICTION } HYDRAULIC JUMP 100.40- 0.85*Dc 68.55 0.85*Dc 68.55 } CATCH BASIN ^ „^ -,o cn 100.40- 1.27* 37.78 0.85 DC MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25^^ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5000.30 FLOWLINE ELEVATION = 46.61 PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 50.100 FEET "NODE "5000'30"rHGL = < 50.100>;EGL= < 50.219>; FLOWLINE= < 46.610> ****************************************************************************** FLOW PROCESS FROM NODE 5003.00 TO NODE 91.00 IS CODE = 1 UPSTREAM NODE 91.00 ELEVATION = 46.67 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.17 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 4.90)/( 105.050))**2 = 0.00218 HF=L*SF = ( 3.17)*(0.00218) =0.007 Page 1 90 50.107>;EGL= < 50.226>;FLOWLINE= < 46.670> NODE 91.00 : HGL = < ****************************************************************************** FLOW PROCESS FROM NODE 91.00 TO NODE 91.00 IS CODE = 2 UPSTREAM NODE 91.00 ELEVATION = 46.83 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 4.90 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =0.15 FLOW VELOCITY = 2.77 FEET/SEC. VELOCITY HEAD = HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.119) = 0.018 18.00 INCHES 0.119 FEET NODE 91.00 : HGL = < 50.125>;EGL= < 50.244>;FLOWLINE= < 46.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 100.40 100.30 TO NODE ELEVATION = 100.40 IS CODE = 1 49.20 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.01 INCHES PIPE LENGTH = 11.94 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL'DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.85 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.851 4.732 0.005 0.830 4.879 0.022 0.809 5,036 0.052 0.788 5,204 0.097 0.767 5.383 0.160 0.746 5.576 0.242 0.725 5.782 0.347 0.704 6.005 0.479 0.684 6.245 0.643 0.663 6.504 0.844 0.642 6.785 1.089 0.621 7.089 1.387 0.600 7.421 1.749 0.579 7.782 2.191 0.558 8.178 2.731 0.537 8.613 3.394 0.516 9.093 4.217 0.495 9.623 5.249 0.474 10.213 6.566 0.453 10.871 8.286 0.432 11.609 10.606 0.411 12.442 11.940 0.403 12.810 SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUNC 1.199 68.55 1.200 68.62 1.203 68.82 1.209 69.16 1.217 69.66 1.229 70.32 1.245 71.15 1.265 72.18 1.289 73.41 1.320 74.87 1.357 76.57 1.402 78.54 1.455 80.81 1.520 83.40 1.597 86.36 1.690 89.73 1.801 93.56 1.934 97.92 2.095 102.87 2.289 108.52 2.526 114.96 2.817 122.34 2.953 125.63 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.29 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC Page 2 PRESSURE-f CONTROL(FT) 0.000 9.136 HEAD(FT) 3.295 1.501 (FT/SEC) 2.768 2.768 90 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = ENERGY(FT) 3.414 1.620 MOMENTUM(POUNDS) 307.30 109.20 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 9.136 1.501 2.767 1.620 109.20 9.263 1.475 2.778 1.595 106.43 9.387 1.449 2.798 1.571 103.76 9.508 1.423 2.823 1.547 101.18 9.627 1.397 2.854 1.524 98.67 9.743 1.371 2.889 1.501 96.23 9.857 1.345 2.929 1.478 93.87 9.969 1.319 2.973 1.456 91.59 10.079 1.293 3.021 1.435 89.40 10.186 1.267 3.073 1.414 87.29 10.290 1.241 3.130 1.393 85.26 10.392 1.215 3.191 1.373 83.33 10.491 1.189 3.258 1.354 81.49 10.586 1.163 3.329 1.335 79.75 10.678 1.137 3.405 1.317 78.12 10.766 1.111 3.488 1.300 76.59 10.849 1.085 3.576 1.284 75.18 10.928 1.059 3.670 1.268 73.88 11.001 1.033 3.772 1.254 72.71 11.068 1.007 3.880 1.241 71.66 11.128 0.981 3.997 1.229 70.75 11.180 0.955 4.123 1.219 69.99 11.223 0.929 4.259 1.211 69.38 11.256 0.903 4.404 1.204 68.93 11.277 0.877 4.562 1.200 68.65 11.285 0.851 4.732 1.199 68.55 11.940 0.851 4.732 1.199 68.55 END OF HYDRAULIC JUMP ANALYSIS PRESSURE-fMOMENTUM BALANCE OCCURS AT 10.51 FEET UPSTREAM OF NODE 100.30 DOWNSTREAM DEPTH = 1.183 FEET, UPSTREAM CONJUGATE DEPTH = 0.597 FEET NODE 100.40 : HGL = < 50.051>;EGL= < 50.399>;FLOWLINE= < 49.200> ****************************************************************************** FLOW PROCESS FROM NODE 100.40 TO NODE 100.40 IS CODE = 8 UPSTREAM NODE 100.40 ELEVATION = 49.20 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.90 CFS PIPE DIAMETER = 18.01 INCHES FLOW VELOCITY = 4.73 FEET/SEC. VELOCITY HEAD = 0.348 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.348) = 0.070 NODE 100.40 : HGL = < 50.468>;EGL= < 50.468>;FL0WLINE= < 49.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.40 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 49.20 50.05 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 cm ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI#11 * * EL CAMINO REAL STA 477-fl5 * * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC * ************************************************************************** FILE NAME: CIll.DAT TIME/DATE OF STUDY: 12:13 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) 3.00* MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 6004.00- HEAD(FT) 3.00* 257.85 0.35 57.63 } FRICTION 6000.00-2.61* 214.43 0.35 58.62 } FRICTION 6000.10-1.63* 106.41 0.39 51.52 } FRICTION 6000.20-1.11* 55.35 0.43 45.69 } FRICTION } HYDRAULIC JUMP 6000.00-0.66*Dc 35.94 0.66*Dc 35.94 } CATCH BASIN 6000.00-0.96* 19.30 0.66 DC 12.79 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6004.00 FLOWLINE ELEVATION = 45.20 PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 48.200 FEET NODE 6004,00 : HGL = < 48.200>;EGL= < 48.244>;FLOWLINE= < 45.200> ****************************************************************************** FLOW PROCESS FROM NODE 6004.00 TO NODE 6000.00 IS CODE = 1 UPSTREAM NODE 6000.00 ELEVATION = 45.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.83 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.98)/( 105.042))**2 = 0.00080 Page 1 HF=L*SF = ( NODE 6000.00 7.83)*(0.00080) = 48.206>;EGL= < cm 0.006 HGL = < 48.250>;FLOWLINE= < 45.600> ****************************************************************************** FLOW PROCESS FROM NODE 6000.00 TO NODE 6000.10 IS CODE = 1 UPSTREAM NODE 6000.10 ELEVATION = 46.59 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.87 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.98)/( 105.029))**2 = 0.00081 HF=L*SF = ( 12.87)*(0.00081) = 0.010 "NODE"'6000.10 : HGL = < 48.217>;EGL= < 48.261>;FLOWLINE= < 46.590> ****************************************************************************** FLOW PROCESS FROM NODE 6000.10 TO NODE 6000.20 IS CODE = 1 UPSTREAM NODE 6000.20 ELEVATION = 47.09 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.63 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 1.627 2.053 1.500 VELOCITY SPECIFIC PRESSURE-f (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.686 1.671 106.41 1.686 1.544 92.44 NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.66 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 2.053 1.500 1.686 2.592 1.466 1.695 3.123 1.432 1.713 3.649 1.399 1.736 4.170 1.365 1.764 4.687 1.331 1.797 5.200 1.297 1.834 5.708 1.264 1.875 6.211 1.230 1.921 6.709 1.196 1.972 7.201 1.162 2.027 7.685 1.129 2.088 8.000 1.106 2.132 NODE 6000.20 • HGL = < 48. 196>;EGL= < SPECIFIC ENERGY(FT) 1.544 1.511 1.478 1.446 1.413 1.381 1.350 1.318 1.287 1.257 1.226 1.196 1.177 PRESSURE-f MOMENTUM(POUNDS) 92.44 88.78 85.20 81.70 78.27 74.94 71.69 68.55 65.51 62.57 59.76 57.06 55.35 48.267>;FLOWLINE= < 47.090> ****************************************************************************** FLOW PROCESS FROM NODE 6000.20 TO NODE 6000.00 IS CODE = 1 UPSTREAM NODE 6000.00 ELEVATION = 47.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES Page 2 cm PIPE LENGTH = 20.63 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS^ 'NORMAL"DEPTH(FT)'= 0.40 CRITICAL DEPTH(FT) = 0.66 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: VELOCITY (FT/SEC) 4.009 4.092 4.179 4.270 4.364 4.463 4.565 4.672 4.784 4.901 5.024 5.152 5.286 5.427 5.575 5.731 5.894 6.067 6.248 6.440 6.642 6.856 7.083 7.106 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 0.656 0.011 0.646 0.047 0.636 0.109 0.626 0.201 0.615 0.326 0.605 0.487 0.595 0.691 0.585 0,941 0.574 1.245 0.564 1.610 0.554 2.045 0.544 2.563 0.534 3.176 0.523 3.904 0.513 4.770 0.503 5.803 0.493 7.046 0.483 8.558 0.472 10.424 0.462 12.776 0.452 15.839 0.442 20.029 0.431 20.630 0.431 SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUNC 0.906 35.94 0.906 35.96 0.907 36.00 0.909 36.08 0.911 36.18 0.915 36.32 0.919 36.49 0.924 36.70 0.930 36.94 0.938 37.23 0.946 37.55 0.956 37.92 0.968 38.33 0.981 38.79 0.996 39.30 1.013 39.86 1.033 40.48 1.054 41.16 1.079 41.90 1.106 42.71 1.137 43.59 1.172 44.54 1.211 45.58 1.215 45.69 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: VELOCITY (FT/SEC) 2.132 2.169 2.208 2.249 2.292 2.337 2.385 2.435 2.487 2.542 2.600 2.662 2.726 2.794 2.866 2.942 3.022 3.107 Page DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 1.106 0.486 1.088 0.968 1.070 1.444 1.052 1.915 1.034 2.380 1.016 2.839 0.998 3.291 0.980 3.734 0.962 4.170 0.944 4.596 0.926 5.012 0.908 5.417 0.890 5.809 0.872 6.187 0.854 6.549 0.836 6.895 0.818 7.221 0.800 SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUNC 1,177 55.35 1,162 54.01 1.146 52.70 1.131 51.44 1.116 50.21 1.101 49.02 1.087 47.88 1.072 46.78 1.058 45.72 1.045 44.71 1.031 43.74 1.018 42.82 1.006 41.95 0.994 41.13 0.982 40.36 0.971 39.65 0.960 38.99 0.950 38.39 cm 7.525 0.782 3.197 0.941 37.84 7.804 0.764 3.292 0.933 37.36 8.055 0.746 3.394 0.925 36.94 8.274 0.728 3.501 0.919 36.60 8.456 0.710 3.616 0.913 36.32 8.596 0.692 3.738 0.909 36.11 8.686 0.674 3.869 0.907 35.99 8.718 0.656 4.009 0.906 35.94 20.630 0.656 4.009 0.906 35.94 END OF HYDRAULIC JUMP ANALYSIS PRESSURE-fMOMENTUM BALANCE OCCURS AT 4.18 FEET UPSTREAM OF NODE 6000.20 DOWNSTREAM DEPTH = 0.944 FEET, UPSTREAM CONJUGATE DEPTH = 0.440 FEET NODE 6000.00 : HGL = < 48.426>;EGL= < 48.676>;FLOWLINE= < 47.770> ****************************************************************************** FLOW PROCESS FROM NODE 6000.00 TO NODE 6000.00 IS CODE = 8 UPSTREAM NODE 6000.00 ELEVATION = 47.77 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.98 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.01 FEET/SEC. VELOCITY HEAD = 0.250 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.250) = 0.050 NODE 6000.00 : HGL = < 48.726>;EGL= < 48.726>;FL0WLINE= < 47.770> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6000.00 FLOWLINE ELEVATION = 47.77 ASSUMED UPSTREAM CONTROL HGL = 48.43 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 100 fl^ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ve? 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY **************************^ * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #12 ^ * EL CAMINO REAL STA 481-f24.89 ^ FILE NAME: 100. DAT „ „ ^ . TIME/DATE OF STUDY: 13:37 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7003.10- 2.35* 184.19 0.62 Dc 31.06 } FRICTION n r^.. ai nfi 7003 20- 2.23* 170.88 0.62 DC 31.06 } MANHOLE/INLET/OUTLET n ^7 7003.30- 1-97* 141.86 0.52 32.39 } FRICTION ^„ ^„ n CT 31 nfi 7006.00- 1.06* 49.58 0.62 Dc 31.06 } MANHOLE/INLET/OUTLET « c-i 31 nfi 7006.10- 0.85* 36.68 0.62 DC 31.06 } FRICTION « c-1 „ 31 nfi 7006.20- 0,72* 32,37 0,62 Dc 31,06 } MANHOLE/INLET/OUTLET 7006,30- 1.00* 45,24 0,56 31.51 } FRICTION } HYDRAULIC JUMP 7006.40- 0.62*Dc 31.06 0.62*Dc 31.06_ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ***************fi************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: A-, QC NODE NUMBER = 7003.10 FLOWLINE ELEVATION = 41.95 PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 44.300 FEET ""NODr"7003'l0"rHGL'='<"''44.300>;EGL= < 44.335>; FLOWLINE= < 41.950> ****************************************************************************** FLOW PROCESS FROM NODE 7003.10 TO NODE 7003.20 IS CODE = 1 EPSTREAM NODE 7003.20 ELEVATION = 42.09 (FLOW IS UNDER PRESSURE) Page 1 100 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 30.02 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.66)/( 105.047))**2 = 0.00064 HF=L*SF = ( 30.02)*(0.00064) = 0.019 'NODE''7003'20 : HGL = < 44.319>;EGL= < 44.354>;FL0WLINE= < 42.090> ****************************************************************************** FLOW PROCESS FROM NODE 7003.20 TO NODE 7003.30 IS CODE = 2 UPSTREAM NODE 7003.30 ELEVATION = 42.42 (FLOW ISUNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES USER SPECIFIED LOSS COEFFICIENT =1.00 FLOW VELOCITY = 1.51 FEET/SEC. VELOCITY HEAD = 0.035 FEET HMN = 1.00*(VELOCITY HEAD) = 1.00*( 0.035) = 0.035 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 7003.30 : HGL = < 44.386>;EGL= < 44.421>;FLOWLINE= < 42.420> ****************************************************************************** FLOW PROCESS FROM NODE 7003.30 TO NODE 7006.00 IS CODE = 1 UPSTREAM NODE 7006.00 ELEVATION = 43.36 (FLOW SEALS IN REACH) CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES(LACFCD): 2.66 CFS PIPE DIAMETER = 18.00 INCHES 98.46 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.97 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 52.337 PRESSURE HEAD(FT) 1.966 1.500 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 1.505 2.001 1.505 1.535 PRESSURE-f MOMENTUM(POUNDS) 141.86 90.46 NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) 0.62 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW CONTROL(FT) 52.337 56.229 60.065 63.868 67.646 71.401 75.136 78.850 82.544 86.216 89.865 93.488 97.081 98.460 DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN[ 1.500 1.505 1,535 90.46 1.465 1.514 1,500 86.63 1.429 1.531 1,466 82.87 1.394 1.553 1,432 79.19 1.359 1.580 1,398 75.59 1.324 1.611 1.364 72.09 1.288 1.646 1.331 68.67 1.253 1.686 1.297 65.37 1.218 1.730 1.264 62.17 1.183 1.779 1.232 59.08 1.147 1.833 1.200 56.12 1.112 1.893 1.168 53.29 1.077 1.958 1.136 50.59 1.063 1,986 1.124 49.58 Page 2 NODE 7006.00 HGL = < 100 44.423>;EGL= < 44.484>;FLOWLINE= < 43.360> ****************************************************************************** FLOW PROCESS FROM NODE 7006.00 TO NODE 7006.10 IS CODE = 2 UPSTREAM NODE 7006.10 ELEVATION = 43.69 (FLOW IS SUBCRITICAL) 18.00 INCHES 0.120 CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 2.66 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =1.45 AVERAGED VELOCITY HEAD = 0.082 FEET HMN = 1.45*(AVERAGED VELOCITY HEAD) = 1.45*( 0.082) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 7006.10 : HGL = < 44.537>;EGL= < 44.641>;FL0WLINE= < 43.690> ****************************************************************************** FLOW PROCESS FROM NODE 7006.10 TO NODE 7006.20 IS CODE = 1 UPSTREAM NODE 7006.20 ELEVATION = 43.83 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.77 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.62 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 0.847 2.584 0.951 36.68 2.031 0.839 2.617 0.945 36.30 4.065 0.830 2.650 0.939 35.93 6.105 0.821 2.685 0.933 35.57 8.150 0.813 2.720 0.928 35.22 10.201 0.804 2.757 0.922 34.88 12.258 0.795 2.794 0.917 34.56 14.323 0.787 2.833 0.911 34.25 16.396 0.778 2.873 0.906 33.95 18.478 0.769 2.913 0.901 33.66 20.570 0.761 2.955 0.897 33.39 22.674 0.752 2.999 0.892 33.13 24.791 0.743 3.043 0.887 32.88 26.925 0.735 3.089 0.883 32.65 29.077 0.726 3.136 0.879 32.44 29.770 0.723 3.152 0.878 32.37 NODE 7006.20 : HGL = < 44. 553>;EGL= < 44.708>;FLOWLINE= < 43.830> ****************************************************************************** FLOW PROCESS FROM NODE 7006.20 TO NODE 7006.30 IS CODE = 2 UPSTREAM NODE 7006.30 ELEVATION = 43.85 (FLOW IS SUBCRITICAL) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES USER SPECIFIED LOSS COEFFICIENT =1.90 AVERAGED VELOCITY HEAD = 0.112 FEET HMN = 1.90*(AVERAGED VELOCITY HEAD) = 1.90*( 0.112) = 0.213 NODE 7006.30 : HGL = < 44.851>;EGL= < 44.921>;FLOWLINE= < Page 3 43.850> 100 ****************************************************************************** FLOW PROCESS FROM NODE 7006.30 TO NODE 7006.40 IS CODE = 1 UPSTREAM NODE 7006.40 ELEVATION = 44.85 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 137.92 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 0.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.618 3.870 0.851 31.06 0.008 0.616 3.889 0.851 31.06 0.032 0.614 3.908 0.851 31.06 0.074 0.611 3.928 0.851 31.06 0.135 0.609 3.948 0.851 31.07 0.218 0.607 3.968 0.851 31.07 0.325 0.605 3.988 0.852 31.08 0.458 0.602 4.009 0.852 31.09 0.620 0.600 4.029 0.852 31.10 0.815 0.598 4.050 0.852 31.11 1.047 0.595 4.071 0.853 31.13 1.322 0.593 4.092 0.853 31.14 1.645 0.591 4.114 0.854 31.16 2.024 0.588 4.135 0.854 31.18 2.469 0.586 4.157 0.855 31.20 2.993 0.584 4.179 0.855 31.22 3.613 0.581 4.202 0.856 31.25 4.350 0.579 4.224 0.856 31.27 5.238 0.577 4.247 0.857 31.30 6.321 0.575 4.270 0.858 31.33 7.672 0.572 4.293 0.859 31.36 9.411 0.570 4.316 0.859 31.39 11.764 0.568 4.340 0.860 31.42 15.237 0.565 4.364 0.861 31.46 21.458 0.563 4.388 0.862 31.49 137.920 0.562 4.397 0.863 31.51 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.070 4.130 6.181 8.221 10.249 12.264 14.264 16.249 18.215 FLOW DEPTH (FT) 1.001 0.985 0.970 0.955 0.940 0.924 0.909 0.894 0.878 0.863 VELOCITY (FT/SEC) 2.123 2 2 2 2 2 2 2 2 2 160 199 240 283 327 374 422 473 526 Page SPECIFIC ENERGY(FT) 1.071 1.058 1.045 1.033 1.021 1.008 0.997 0.985 0.973 0.962 PRESSURE+ MOMENTUM(POUNDS) 45.24 44.25 43.28 42.35 41.45 40.58 39.74 38.93 38.15 37.41 100 20.162 0.848 2.582 0.951 36.70 22.085 0.833 2.640 0.941 36.03 23.984 0.817 2.702 0.931 35.40 25.853 0.802 2.766 0.921 34.80 27.688 0.787 2.833 0.911 34.24 29.485 0.771 2.904 0.902 33.72 31.236 0.756 2.979 0.894 33.25 32.934 0.741 3.058 0.886 32.81 34.569 0.725 3.140 0.879 32.42 36.126 0.710 3.228 0.872 32.07 37.589 0.695 3.320 0.866 31.77 38.933 0.680 3.418 0.861 31.52 40.124 0.664 3.521 0.857 31.32 41.111 0.649 3.630 0.854 31.18 41.814 0.634 3.746 0.852 31.09 42.096 0.618 3.870 0.851 31.06 137.920 0.618 3.870 0.851 31.06 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 39.04 FEET UPSTREAM OF NODE 7006.30 DOWNSTREAM DEPTH = 0.678 FEET, UPSTREAM CONJUGATE DEPTH = 0.562 FEET NODE 7006.40 : HGL = < 45.468>;EGL= < 45.701>;FLOWLINE= < 44.850> f***************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7006.40 FLOWLINE ELEVATION = 44.85 ASSUMED UPSTREAM CONTROL HGL = 45.47 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 5 A12.dat has been omitted. For hydraulic analysis of 48" stub from Rancho Costera, please see ECR3UALT in Section 4. A9 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATIONS FOR ULTIMATE CONDITION STA 478-f89.15 * * EL CAMINO REAL WIDENING JN 101307 * * REVISED BY MC * ************************************************************************** FILE NAME: A9.DAT TIME/DATE OF STUDY: 13:56 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) NODE MODEL PRESSURE PRESSURE-f NUMBER PROCESS HEAD(FT) 3.95* MOMENTUM(POUNDS) 6000.10- HEAD(FT) 3.95* 360.05 } FRICTION 6018.00-3.81* 344.52 } JUNCTION 6018.10-3.52* 309.06 } FRICTION } HYDRAULIC JUMP 6014.00-0.52 DC 20.46 } JUNCTION 6014.10-0.52 12.62 } FRICTION 11.36 6017.00-0.41*DC 11.36 0.48 32.11 0.32 48.22 0.17 64.62 0.37* 24.11 0.14* 33.23 0.41*Dc 11.36 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6000.10 FLOWLINE ELEVATION = 42.55 PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 46.500 FEET NODE 6000.10 : HGL = < 46.500>;EGL= < 46.533>;FLOWLINE= < 42.550> ****************************************************************************** FLOW PROCESS FROM NODE 6000.10 TO NODE 6018.00 IS CODE = 1 UPSTREAM NODE 6018.00 ELEVATION = 42.71 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 32.32 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.56)/( 105.045))**2 = 0.00059 Page 1 A9 HF=L*SF = ( 32.32)*(0.00059) = 0.019 '"NODr'6018'00"rHG['='7""46"5i9>;^ < 42.710> ****************************************************************************** FLOW PROCESS FROM NODE 6018.00 TO NODE 6018.10 IS CODE =5 UPSTREAM NODE 6018.10 ELEVATION = _ ^^"l^^.^^.^^:-.--------- —- ""^LCULATE"JUNCTION LOSSES: ^^^^^ ^^^^^^^ (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.92 18.00 0.00 43.04 0.52 1.086 DOWNSTREAM 2.56 18.00 - 42.71 0.61 1-449 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 u.uuu Q5 0.64===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)-fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00033 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE =0.00059 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00046 ^FS to^sls : O'bl'2 FIIT ENTRANCE LOSSES = 0.007 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.016)+( 0.007) = 0.023 ""NODr"6018"l0'rHGL"='7""46"556>;^ < 46.574>;FLOWLINE= < 43.040> ****************************************************************************** FLOW PROCESS FROM NODE 6018.10 TO NODE 6014 00 IS CODE = 1 UPSTREAM NODE 6014.00 ELEVATION = 53.67 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): TM^UCC PTPF FLOW = 1.92 CFS PIPE DIAMETER = 18.00 INCHES P^PI LETGTH = 19:50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS^^ 'NORMAL"DEPTH(FT)'= o'le"" CRITICAL DEPTH(FT) = 0.52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 0.373 0.046 0.365 0.097 0.356 0.155 0.348 0.221 0.339 0.296 0.331 0.381 0.323 0.477 0.314 0.587 0.306 0.712 0.297 0.855 0.289 1.019 0.280 1.209 0.272 1.429 0.264 1.687 0.255 VELOCITY SPECIFIC PRESSURE+ (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.597 0.860 24.11 5.781 0.884 24.61 5.975 0.911 25.16 6.180 0.941 25.76 6.399 0.976 26.41 6.631 1.014 27.12 6.879 1.058 27.90 7.143 1.107 28.74 7.426 1.162 29.65 7.728 1.225 30.64 8.052 1.296 31.72 8.401 1.377 32.90 8.777 1.469 34.18 9.183 1.574 35.58 9.623 1.694 37.11 Page 2 A9 1.990 0.247 10.100 1.832 38.78 2.350 0.238 10.619 1.990 40.61 2.782 0.230 11.186 2.174 42.63 3.309 0.222 11.807 2.388 44.86 3.962 0.213 12.489 2.637 47.31 4.793 0.205 13.243 2.929 50.04 5.887 0.196 14.077 3.275 53.07 7.403 0.188 15.005 3.686 56.45 9.703 0.180 16.043 4.178 60.25 13.943 0.171 17.209 4.773 64.53 19.500 0.171 17.232 4.785 64.62 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.52 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.516 1.086 3.534 309.06 3.701 1.500 1.086 1.518 86.75 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3.701 1.500 1.086 1.518 86.75 3.772 1.461 1.094 1.479 82.47 3.843 1.422 1.108 1.441 78.27 3.913 1.383 1.127 1.402 74.15 3.984 1.344 1.150 1.364 70.11 4.054 1.304 1.176 1.326 66.18 4.124 1.265 1.207 1.288 62.36 4.193 1.226 1.241 1.250 58.66 4.262 1.187 1.280 1.212 55.09 4.331 1.148 1.323 1.175 51.64 4.399 1.109 1.371 1.138 48.34 4.466 1.070 1.424 1.101 45.18 4.533 1.031 1.483 1.065 42.18 4.599 0.991 1.549 1.029 39.33 4.665 0.952 1.622 0.993 36.65 4.729 0.913 1.704 0.958 34.13 4.791 0.874 1.796 0.924 31.79 4.852 0.835 1.899 0.891 29.64 4.911 0.796 2.016 0.859 27.68 4.967 0.757 2.148 0.828 25.92 5.020 0.718 2.299 0.800 24.37 5.069 0.678 2.472 0.773 23.05 5.111 0.639 2.672 0.750 21.97 5.146 0.600 2.906 0.731 21.16 5.170 0.561 3.182 0.718 20.64 5.179 0.522 3.509 0.713 20.46 19.500 0.522 3.509 0.713 20.46 I PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 4.08 FEET UPSTREAM OF NODE 6018.10 | DEPTH = 1.288 FEET, UPSTREAM CONJUGATE DEPTH = 0.171 FEET j NODE 6014.00 : HGL = < 54.043>;EGL= < 54.530>;FLOWLINE= < 53.670> Page 3 A9 FLOW PROCESS FROM NODE UPSTREAM NODE 6014.10 6014.00 TO NODE ELEVATION = 6014.10 IS CODE = 5 54.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER (CFS) (INCHES) 1.21 18.00 1.92 18.00 0.00 0.00 0.00 0.00 ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 54.00 53.67 0.00 0.00 CRITICAL DEPTH(FT.) 0.41 0.52 0.00 0.00 VELOCITY (FT/SEC) 14.037 5.599 0.000 0.000 0.71===Q5 EQUALS BASIN INPUT=== JUNCTION LENGTH = FRICTION LOSSES = LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.36650 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01818 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.19234 4.00 FEET 0.769 FEET ENTRANCE LOSSES = 0.097 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.576)+( 0.097) = 2.673 NODE 6014.10 : HGL = < 54.144>;EGL= < 57.203>;FLOWLINE= < 54.000> ****************************************************************************** FLOW PROCESS FROM NODE 6014.10 TO NODE 6017.00 IS CODE = 1 UPSTREAM NODE 6017.00 ELEVATION = 76.05 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.21 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 45.97 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.13 CRITICAL DEPTH(FT) = 0.41 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0.411 3.075 0.558 11.36 0.001 0.400 3.195 0.559 11.38 0.005 0.389 3.323 0.561 11.42 0.013 0.378 3.461 0.564 11.50 0.024 0.367 3.609 0.569 11.61 0.039 0.356 3.769 0.577 11.76 0.059 0.345 3.941 0.586 11.95 0.086 0.334 4.128 0.599 12.18 0.119 0.323 4.331 0.614 12.46 0.161 0.312 4.552 0.634 12.79 0.213 0.301 4.793 0.658 13.17 0.276 0.290 5.058 0.687 13.62 0.355 0.278 5.349 0.723 14.15 0.452 0.267 5.670 0.767 14.75 0.571 0.256 6.026 0.821 15.44 0.719 0.245 6.422 0.886 16.23 0.903 0.234 6.866 0.967 17.15 1.136 0.223 7.364 1.066 18.20 1.432 0.212 7.929 1.189 19.42 1.817 0.201 8.571 1.343 20.82 2.330 0.190 9.309 1.536 22.46 3.034 0.179 10.161 1.783 24.37 Page 4 A9 4.056 0.168 11.155 2.101 26.62 5.675 0.157 12.328 2.518 29.30 8.799 0.146 13.726 3.073 32.52 45.970 0.144 14.033 3.203 33.23 NODE 6017.00 : HGL = < 76.461>;EGL= < 76.608>;FLOWLINE= < 76.05O> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6017.00 FLOWLINE ELEVATION = 76.05 ASSUMED UPSTREAM CONTROL HGL = 76.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 5 A12B ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR 18" STA 460+05.37 TO 463+94.93 * * 100 YEAR ULTIMATE CONDITION * * REVISED BY MC ..............* ************************************************************************** FILE NAME: A12B.DAT TIME/DATE OF STUDY: 14:02 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 11.10- } 12.00- } 12.10- } 13.00- } 13.10- } 14.00- } 14.00- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 11.10 FLOWLINE ELEVATION = 71.02 PIPE FLOW = 1.46 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 76.400 FEET NODE 11.10 : HGL = < 76.400>;EGL= < 76.411>;FLOWLINE= < 71.020> ****************************************************************************** FLOW PROCESS FROM NODE 11.10 TO NODE 12.00 IS CODE = 1 UPSTREAM NODE 12.00 ELEVATION = 72.81 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): Page 1 5.38* 512 89 0. 32 17.04 FRICTION 3.61* 317 45 0. 45 DC 14.43 JUNCTION 3.29* 281 12 0. 27 6.13 FRICTION } HYDRAULIC 0.42 JUMP 6 86 0. 21* 7.41 MANHOLE/INLET/OUTLET 0.32 DC 5 89 0. 20* 7.79 FRICTION 0.32*DC 5 89 0. 32*Dc 5.89 CATCH BASIN 0.45* 3 11 0. 32 DC 2.17 PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( A12B 1,46 CFS PIPE DIAMETER = 18,00 INCHES 91,31 FEET MANNING'S N = 0,01300 (( 1.46)/( 105.044))**2 = 0.00019 91.31)*(0.00019) = 0.018 NODE 12.00 : HGL = < 76.418>;EGL= < 76.428>;FLOWLINE= < 72.810> ********** Vf ************** ****Vf ******* Vc **************** ************************* FLOW PROCESS FROM NODE UPSTREAM NODE 12.10 12.00 TO NODE ELEVATION = 12.10 IS CODE = 5 73.14 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 0.72 1.46 0.74 0.00 DIAMETER (INCHES) 18.00 18.00 18.00 0.00 ANGLE (DEGREES) 8.00 90.00 0.00 FLOWLINE ELEVATION 73.14 72.81 73.14 0.00 CRITICAL DEPTH(FT.) 0.32 0.45 0.32 0.00 VELOCITY (FT/SEC) 0.408 0.826 0.419 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00005 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00019 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00012 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.000 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.009)+( 0.000) = 0.009 NODE 12.10 : HGL = < 76.434>;EGL= < 76.437>;FLOWLINE= < 73.140> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 13.00 12.10 TO NODE ELEVATION = 13.00 IS CODE = 1 76.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 301.23 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.32 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.545 ,100 ,666 ,245 ,837 .443 .066 4.707 5.369 6.053 6.764 1. 1. 2. 2. 3. 4. FLOW DEPTH (FT) 0.212 0.214 0.217 0.219 0.221 0.223 0.226 0.228 0.230 0.233 0.235 0.237 VELOCITY (FT/SEC) 4.724 4.650 4.579 4.509 4.441 4.375 4.311 4.248 4.187 4.127 4.069 4.012 Page SPECIFIC ENERGY(FT) 0.559 0.550 0.542 0.535 0.528 0.521 0.514 0.508 0.503 0.497 0.492 0.487 PRESSURE+ MOMENTUM(POUNDS) 7.41 7.33 7.25 7.18 7.11 7.04 6.97 91 85 79 73 6.68 A12B 7.505 0.239 3.956 0.483 6.63 8.280 0.242 3.902 0.478 6.58 9.097 0.244 3.849 0.474 6.53 9.963 0.246 3.797 0.470 6.48 10.888 0.249 3.747 0.467 6.44 11.886 0.251 3.697 0.463 6.40 12.978 0.253 3.649 0.460 6.36 14.190 0.256 3.602 0.457 6.32 15.570 0.258 3.555 0.454 6.29 17.190 0.260 3.510 0.452 6.25 19.192 0.262 3.466 0.449 6.22 21.890 0.265 3.423 0.447 6.19 26.295 0.267 3.380 0.445 6.16 231.251 0.269 3.339 0.443 6.13 301.230 0.269 3.339 0.443 6.13 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.29 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.294 0.407 3.297 281.12 189.916 1.500 0.407 1.503 83.27 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 189.916 1.500 0.407 1.503 83.27 194.925 1.453 0.411 1.455 78.07 199.929 1.405 0.418 1.408 72.95 204.929 1.358 0.428 1.361 67.93 209.926 1.310 0.440 1.313 63.03 214.921 1.263 0.453 1.266 58.28 219.913 1.216 0.469 1.219 53.68 224.902 1.168 0.487 1.172 49.26 229.888 1.121 0.508 1.125 45.01 234.871 1.073 0.532 1.078 40.95 239.850 1.026 0.559 1.031 37.08 244.824 0.979 0.589 0.984 33.41 249.792 0.931 0.624 0.937 29.95 254.753 0.884 0.664 0.891 26.70 259.703 0.836 0.711 0.844 23.66 264.641 0.789 0.764 0.798 20.84 269.562 0.742 0.826 0.752 18.25 274.459 0.694 0.900 0.707 15.88 279.324 0.647 0.987 0.662 13.74 284.143 0.600 1.092 0.618 11.83 288.893 0.552 1.219 0.575 10.16 293.537 0.505 1.378 0.534 8.74 298.008 0.457 1.578 0.496 7.57 301.230 0.421 1.773 0.470 6.86 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 299.71 FEET UPSTREAM OF NODE 12.10 DOWNSTREAM DEPTH = 0.438 FEET, UPSTREAM CONJUGATE DEPTH = 0.218 FEET NODE 13.00 : HGL = < 76.212>;EGL= < 76.559>;FLOWLINE= < 76.000> Page 3 A12B ****************************************************************************** 13.00 TO NODE 13.10 IS CODE = 2 ELEVATION = 76.33 (FLOW IS SUPERCRITICAL) FLOW PROCESS FROM NODE UPSTREAM NODE 13.10 CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 0.72 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =1.00 AVERAGED VELOCITY HEAD = 0.372 FEET HMN = 1.00*(AVERAGED VELOCITY HEAD) = 1.00*( 0.372) = 18.00 INCHES 0.372 NODE 13.10 : HGL = < 76.532>;EGL= < 76.930>;FLOWLINE= < 76.330> **********Vt ************************* Vf ******* ***V{**Vj*-****Vf *•>*************•****** FLOW PROCESS FROM NODE 13.10 TO NODE 14.00 IS CODE = 1 UPSTREAM NODE 14.00 ELEVATION = 77.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.75 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) 0.32 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.32 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.315 2.666 0.426 5.89 0.005 0.310 2.724 0.426 5.89 0.020 0.306 2.784 0.426 5.90 0.047 0.301 2.846 0.427 5.91 0.087 0.296 2.911 0.428 5.93 0.140 0.292 2.979 0.430 5.95 0.210 0.287 3.049 0.431 5.98 0.297 0.282 3.122 0.434 6.01 0.405 0.278 3.198 0.436 6.05 0.535 0.273 3.278 0.440 6.10 0.692 0.268 3.361 0.444 6.15 0.878 0.263 3.447 0.448 6.21 1.099 0.259 3.538 0.453 6.27 1.361 0.254 3.633 0.459 6.35 1.671 0.249 3.732 0.466 6.43 2.039 0.245 3.836 0.473 6.52 2.478 0.240 3.945 0.482 6.62 3.005 0.235 4.060 0.491 6.72 3.645 0.231 4.180 0.502 6.84 4.433 0.226 4.307 0.514 6.97 5.426 0.221 4.440 0.527 7.10 6.715 0.216 4.581 0.542 7.25 8.475 0.212 4.729 0.559 7.42 11.099 0.207 4.886 0.578 7.59 15.844 0.202 5.052 0.599 7.78 31.750 0.202 5.062 0.600 7.79 NODE 14.00 : HGL = < 77.725>;EGL= < 77.836>;FLOWLINE= < 77.410> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 14.00 14.00 TO NODE ELEVATION = 14.00 IS CODE = 8 77.41 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.72 CFS PIPE DIAMETER = 18.00 INCHES Page 4 A12B FLOW VELOCITY = 2.67 FEET/SEC. VELOCITY HEAD = 0.110 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.110) = 0^022^ "NODE ' 14.00 : HGL = < 77.858>;EGL= < 77.858>;FLOWLINE= < 77.410> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 14.00 FLOWLINE ELEVATION = 77.41 ASSUMED UPSTREAM CONTROL HGL = 77.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 5 WESTLAT ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering Software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #13 & 17 * * EL CAMINO REAL STA 482+60.83 * * 100 YEAR ULTIMATE CONDITION REVISED BY MC * ************************************************************************** FILE NAME: WESTLAT.DAT TIME/DATE OF STUDY: 14:13 10/16/2014 ******************************************************** Vf ********************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7007.00-3.58* 1033.79 1.39 373.98 } FRICTION 7007.10-3.48* 990.75 1.46 DC 372.58 } MANHOLE/INLET/OUTLET 7007.20-3.48* 990.66 1.39 373.70 } FRICTION 9005.00-3.28* 901.72 1.46 DC 372.58 } JUNCTION 9005.10-3.04* 778.18 1.32 339.83 } FRICTION 8003.00-2.89* 714.33 1.40 DC 337.85 } JUNCTION 8003.10-2.66* 433.50 1.31 DC 232.77 } FRICTION 8005.00-2.62* 424.84 1.31 DC 232.77 } CATCH BASIN 8005.00-2.95* 381.85 1.31 DC 77.57 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7007.00 FLOWLINE ELEVATION = 39.82 PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 43.400 FEET NODE 7007.00 : HGL = < 43.400>;EGL= < 43.532>;FL0WLINE= < 39.820> ****************************************************************************** Page 1 WESTLAT FLOW PROCESS FROM NODE 7007.00 TO NODE 7007.10 IS CODE = 1 UPSTREAM NODE 7007.10 ELEVATION = 39.94 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.52 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 20.60)/( 667.007))**2 = 0.00095 HF=L*SF = ( 23.52)*(0.00095) = 0.022 NODE 7007.10 : HGL = < 43.422>;EGL= < 43.554>;FLOWLINE= < 39.940> ****************************************************************************** FLOW PROCESS FROM NODE 7007.10 TO NODE 7007.20 IS CODE = 2 UPSTREAM NODE 7007.20 ELEVATION = 39.96 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES USER SPECIFIED LOSS COEFFICIENT =0.15 FLOW VELOCITY = 2.91 FEET/SEC. VELOCITY HEAD = 0.132 FEET HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.132) = 0.020 NODE 7007.20 : HGL = < 43.442>;EGL= < 43.574>;FLOWLINE= < 39.960> ****************************************************************************** FLOW PROCESS FROM NODE 7007.20 TO NODE 9005.00 IS CODE = 1 UPSTREAM NODE 9005.00 ELEVATION = 40.21 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 50.70 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 20.60)/( 666.985))**2 = 0.00095 HF=L*SF = ( 50.70)*(0.00095) = 0.048 NODE 9005.00 : HGL = < 43.491>;EGL= < 43.622>;FLOWLINE= < 40.210> ****************************************************************************** FLOW PROCESS FROM NODE 9005.00 TO NODE 9005.10 IS CODE = 5 UPSTREAM NODE 9005.10 ELEVATION = 40.52 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 19.10 36.00 0.00 40.52 1.40 2.702 DOWNSTREAM 20.60 36.00 - 40.21 1.46 2.914 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.50===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00082 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00095 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00089 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.026 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.022)+( 0.026) = 0.048 NODE 9005.10 : HGL = < 43.558>;EGL= < 43.671>;FLOWLINE= < 40.520> ****************************************************************************** FLOW PROCESS FROM NODE 9005.10 TO NODE 8003.00 IS CODE = 1 Page 2 WESTLAT UPSTREAM NODE 8003.00 ELEVATION = 40.69 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 32.39 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.04 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.038 2.702 3.151 778.18 8.472 3.000 2.702 3.113 761.63 NORMAL DEPTH(FT) 1.31 CRITICAL DEPTH(FT) 1.40 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 8.472 3.000 2.701 3.113 761.63 22.472 2.936 2.716 3.051 734.01 32.390 2.890 2.734 3.006 714.33 NODE 8003.00 : HGL = < 43.580>;EGL= < 43.696>;FLOWLINE= < 40.690> ****************************************************************************** FLOW PROCESS FROM NODE 8003.00 TO NODE 8003.10 IS CODE = 5 UPSTREAM NODE 8003.10 ELEVATION = 40.85 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 13.20 24.00 0.00 40.85 1.31 4.202 DOWNSTREAM 19.10 36.00 - 40.69 1.40 2.735 LATERAL #1 5.90 18.00 63.00 40.75 0.94 3.339 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3*V3 *C0S(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00340 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00072 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00206 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.092)+( 0.000) = 0.092 NODE 8003.10 : HGL = < 43.513>;EGL= < 43.787>;FLOWLINE= < 40.850> ****************************************************************************** FLOW PROCESS FROM NODE 8003.10 TO NODE 8005.00 IS CODE = 1 UPSTREAM NODE 8005.00 ELEVATION = 40.99 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 28.15 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 13.20)/( 226.229))**2 = 0.00340 Page 3 WESTLAT HF=L*SF = ( 28.15)*(0.00340) = 0.096 NODE 8005.00 : HGL = < 43.609>;EGL= < 43.883>;FLOWLINE= < 40.990> ****************************************************************************** FLOW PROCESS FROM NODE 8005.00 TO NODE 8005.00 IS CODE = 8 UPSTREAM NODE 8005.00 ELEVATION = 40.99 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 13.20 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 4.20 FEET/SEC. VELOCITY HEAD = 0.274 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.274) = 0.055 NODE 8005.00 : HGL = < 43.938>;EGL= < 43.938>;FLOWLINE= < 40.990> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 8005.00 FLOWLINE ELEVATION = 40.99 ASSUMED UPSTREAM CONTROL HGL = 42.30 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 ECRWEST ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2014 Advanced Engineering software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 Carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATIONS FOR 18" PIPE WEST ECR * * 100 YEAR FLOW FOR ULTIMATE CONDITIONS * * REVISED BY MC * ************************************************************************** FILE NAME: ECRWEST.DAT TIME/DATE OF STUDY: 14:41 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) f 2.85* i40MENTUM( POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 8003.00- PROCESS HEAD(FT) f 2.85* 285.30 1.02 DC 110.01 } FRICTION 110.01 9004.00-2.84* 284.03 1.02 DC 110.01 } MANHOLE/INLET/OUTLET 2.75* 110.01 9004.10- MANHOLE/INLET/OUTLET 2.75* 274.51 1.02 DC 110.01 } FRICTION 9002.00-2.68* 266.92 1.02 DC 110.01 } JUNCTION 110.01 9002.10-2.61* 248.12 0.97 DC 95.56 } FRICTION 95.56 9001.00-2.54* 241.04 0.97 DC 95.56 } MANHOLE/INLET/OUTLET 2.42* 95.56 9001.10- MANHOLE/INLET/OUTLET 2.42* 227.51 0.97 DC 95.56 } FRICTION 95.56 9000.00-2.38* 223.17 0.97 DC 95.56 } FRICTION 95.56 9000.10-2.21* 204.06 0.73 106.09 } MANHOLE/INLET/OUTLET 2.07* 0.73 106.09 9000.20- MANHOLE/INLET/OUTLET 2.07* 189.43 0.50 155.41 } FRICTION } HYDRAULIC JUMP 155.41 8002.30-0.97 DC 95.56 0.65* 117.08 } JUNCTION 117.08 8002.31-0.92 DC 83.68 0.57* 110.74 } FRICTION 8002.10-0.92*DC 83.68 0.92*Dc 83.68 } MANHOLE/INLET/OUTLET 0.92*Dc 83.68 8002.20-1.02 85.07 0.63* 100.35 } FRICTION 100.35 8002.00-0.92*DC 83.68 0.92*DC 83.68 } CATCH BASIN 83.68 8002.00-1.39* 47.03 0.92 DC 28.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 Page 1 ECRWEST NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 8003.00 FLOWLINE ELEVATION = 40.75 PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 43.600 FEET NODE 8003.00 : HGL = < 43.600>;EGL= < 43.844>;FLOWLINE= < 40.750> ********* Vf A ***l!f*******'iV**^*-/f**7V FLOW PROCESS FROM NODE 8003.00 TO NODE 9004.00 IS CODE = 1 UPSTREAM NODE 9004.00 ELEVATION = 41.28 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 116.76 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.00)/( 105.043))**2 = 0.00444 HF=L*SF = ( 116.76)*(0.00444) = 0.519 NODE 9004.00 : HGL = < 44.119>;EGL= < 44.362>;FLOWLINE= < 41.280> ******************************** Vf ********************************************* FLOW PROCESS FROM NODE 9004.00 TO NODE 9004.10 IS CODE = 2 UPSTREAM NODE 9004.10 ELEVATION = 41.61 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES USER SPECIFIED LOSS COEFFICIENT = 0.15 FLOW VELOCITY = 3.96 FEET/SEC. VELOCITY HEAD = 0.244 FEET HMN = 0.15*(VELOCITY HEAD) = 0.15*( 0.244) = 0.037 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 9004.10 : HGL = < 44.362>;EGL= < 44.606>;FLOWLINE= < 41.610> ************************************************** Vf ******** Vf ***** Vf *********** * FLOW PROCESS FROM NODE 9004.10 TO NODE 9002.00 IS CODE = 1 UPSTREAM NODE 9002.00 ELEVATION = 42.28 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 135.37 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.00)/( 105.043))**2 = 0.00444 HF=L*SF = ( 135.37)*(0.00444) = 0.601 NODE 9002.00 : HGL = < 44.963>;EGL= < 45.207>;FLOWLINE= < 42.280> ***************************************** Vr ****************** Vf ***************** FLOW PROCESS FROM NODE 9002.00 TO NODE 9002.10 IS CODE = 5 UPSTREAM NODE 9002.10 ELEVATION = 42.48 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.30 18.00 15.00 42.48 0.97 3.565 DOWNSTREAM 7.00 18.00 - 42.28 1.02 3.961 LATERAL #1 0.70 18.00 90.00 42.48 0.31 0.396 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== Page 2 ECRWEST LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00360 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00444 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00402 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.076)+( 0.000) = 0.076 ""NODE"'9002"IO THGL = < 45.085>;EGL= < 45.283>;FLOWLINE= < 42.480> ****************************************************************************** FLOW PROCESS FROM NODE 9002.10 TO NODE 9001.00 IS CODE = 1 UPSTREAM NODE 9001.00 ELEVATION = 42.68 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.74 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.30)/( 105.044))**2 = 0.00360 HF=L*SF = ( 37.74)*(0.00360) = 0.136 "NODE 9001.00 : HGL = < 45.221>;EGL= < 45.419>;FLOWLINE= < 42.680> ****************************************************************************** FLOW PROCESS FROM NODE 9001.00 TO NODE 9001.10 IS CODE = 2 UPSTREAM NODE 9001.10 ELEVATION = 43.00 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES USER SPECIFIED LOSS COEFFICIENT =0.45 FLOW VELOCITY = 3.57 FEET/SEC. VELOCITY HEAD = 0.197 FEET HMN = 0.45*(VELOCITY HEAD) = 0.45*( 0.197) = 0.089 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS "NODE" 9001.10 : HGL = < 45.419>;EGL= < 45.616>;FLOWLINE= < 43.000> ****************************************************************************** FLOW PROCESS FROM NODE 9001.10 TO NODE 9000.00 IS CODE = 1 UPSTREAM NODE 9000.00 ELEVATION = 43.15 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 30.75 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.30)/( 105.042))**2 = 0.00360 HF=L*SF = ( 30.75)*(0.00360) = 0.111 "NODE"~9000.00 : HGL = < 45.529>;EGL= < 45.726>;FLOWLINE= < 43.150> ****************************************************************************** FLOW PROCESS FROM NODE 9000.00 TO NODE 9000.10 IS CODE = 1 UPSTREAM NODE 9000.10 ELEVATION = 43.76 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 121.40 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.30)/( 105.044))**2 = 0.00360 HF=L*SF = ( 121.40)*(0.00360) = 0.437 NODE 9000.10 : HGL = < 45.966>;EGL= < 46.163>;FLOWLINE= < 43.760> Page 3 ***************************************^*^*'^^*^*^^^^ FLOW PROCESS FROM NODE 9000.10 TO NODE 9000.20 JS CODE = 2 . UPSTREAM NODE 9000.20 ELEVATION = 44.09 (FLOW IS UNDER PRESSURE; 18.00 INCHES 0.197 FEET CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 6.30 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT = 0.15 FLOW VELOCITY = 3.57 FEET/SEC. VELOCITY HEAD = HMN =0.15*(VELOCITY HEAD) = 0.15*( 0.197) = 0.030 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS '"NODr"9000'20"rHGr="7""46"l63>;^ < 46.361>; FLOWLINE= < 44.090> ****************************************************************************** FLOW PROCESS FROM NODE 9000.20 TO NODE 8002 30 IS CODE = 1 UPSTREAM NODE 8002.30 ELEVATION = 55.39^ CALCULATE FRICTION LOSSES (LACFCD) : ia Tiurupc: PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 174.62 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 'NORMAL"DEPTH(FTr= ' ' 0.50 CRITICAL DEPTH(FT) = 0.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 0.000 0.651 0.563 0.645 1.165 0.639 1.811 0.633 2.503 0.626 3.249 0.620 4.052 0.614 4.920 0.608 5.860 0.601 6.881 0.595 7.995 0.589 9.214 0.583 10.555 0.577 12.037 0.570 13.686 0.564 15.535 0.558 17.625 0.552 20.015 0.545 22.786 0.539 26.057 0.533 30.013 0.527 34.962 0.521 41.484 0.514 50.881 0.508 67.329 0.502 174.620 0.501 VELOCITY (FT/SEC) 8.558 8.667 8.779 8.893 9.011 9.131 9.254 9.381 9.510 9.644 9.780 9.921 10.065 10.213 10.365 10.522 10.683 10.848 11.018 11.194 11.374 11.560 11.751 11.949 12.152 12.177 SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUND 1.789 117.08 1.812 118.13 1.836 119.21 1.861 120.33 1.888 121.49 1.916 122.69 1.945 123.93 1.975 125.21 2.007 126.54 2.040 127.91 2.075 129.32 2.112 130.79 2.151 132.31 2.191 133.87 2.233 135.49 2.278 137.17 2.325 138.90 2.374 140.70 2.426 142.55 2.480 144.47 2.537 146.46 2.597 148.52 2.660 150.65 2.726 152.85 2.796 155.13 2.805 155.41 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAp(FT)= 2^07 Page 4 ECRWEST PRESSURE FLOW PROFILE COMPUTED INFORMATION: • DISTANCE FROM CONTROL(FT) 0.000 9.378 PRESSURE HEAD(FT) 2.073 1.500 VELOCITY (FT/SEC) 3.565 3.565 SPECIFIC ENERGY(FT) 2.271 1.697 PRESSURE+ MOMENTUM(POUNDS) 189.43 126.23 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: VELOCITY (FT/SEC) 3.564 3.574 3.593 3.617 3.646 3.679 3.716 3.756 3.801 3.849 3.900 3.956 4.015 4.078 4.145 4.216 4.292 4.372 4.456 4.546 4.641 4.742 4.849 4.962 5.082 5.209 5.209 HYDRAULIC JL ^^^^ _^ , PRESSURE+MOMENTUM BALANCE OCCURS AT 5.05 FEET UPSTREAM OF NODE 9000 20 DOWNSTREAM DEPTH = 1.765 FEET, UPSTREAM CONJUGATE DEPTH = 0.501 FEET | DISTANCE FROM FLOW DEPTH CONTROL(FT) (FT) 9.378 1.500 9.706 1.479 10.017 1.458 10.318 1.436 10.609 1.415 10.892 1.394 11.167 1.373 11.435 1.352 11.694 1.330 11.946 1.309 12.190 1.288 12.426 1.267 12.652 1.246 12.869 1.225 13.076 1.203 13.272 1.182 13.457 1.161 13.628 1.140 13.787 1.119 13.930 1.097 14.057 1.076 14.165 1.055 14.254 1.034 14.321 1.013 14.363 0.991 14.378 0.970 174.620 0.970 SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUNDS) 1.697 126.23 1.677 124.02 1.658 121.92 1.640 119.90 1.622 117.96 1.604 116.09 1.587 114.29 1.571 112.56 1.555 110.89 1.539 109.30 1.524 107.78 1.510 106.34 1.496 104.97 1.483 103.68 1.470 102.47 1.458 101.35 1.447 100.31 1.437 99.37 1.427 98.52 1.418 97.77 1.411 97.11 1.404 96.57 1.399 96.14 1.395 95.82 1.393 95.63 1.392 95.56 1.392 95.56 56.041>;EGL= < 57.179>;FLOWLINE= < 55.390> NODE 8002.30 : HGL = < ****************************************************************************** FLOW PROCESS FROM NODE 8002.30 TO NODE 8002.31 IS CODE = 5 UPSTREAM NODE 8002.31 ELEVATION = 55.72 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.70 6.30 0.60 0.00 DIAMETER (INCHES) 18.00 18.00 18.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 0.00 55.72 55.39 55.72 0.00 CRITICAL DEPTH(FT.) 0.92 0.97 0.29 0.00 VELOCITY (FT/SEC) 9.189 8.561 1.358 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*C0S(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03075 Page 5 ECRWEST DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE =0.02355 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02715 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.109 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.425)+( 0.000) = 0.425 "NODE "8002"3l'rHGL'= < 56.293>;EGL= < 57.604>;FLOWLINE= < 55.720> ^***************************************************************************** FLOW PROCESS FROM NODE 8002.31 TO NODE 8002.10 IS CODE =1 UPSTREAM NODE 8002.10 ELEVATION = 57.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 51.73 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.921 5.007 0.016 0.906 5.103 0.067 0.892 5.203 0.157 0.877 5.308 0.288 0.863 5.417 0.468 0.848 5.531 0.701 0.833 5.651 0.993 0.819 5.776 1.353 0.804 5.906 1.790 0.790 6.043 2.315 0.775 6.187 2.942 0.760 6.338 3.687 0.746 6.496 4.571 0.731 6.663 5.620 0.716 6.838 6.869 0.702 7.022 8.360 0.687 7.217 10.156 0.673 7.422 12.341 0.658 7.639 15.040 0.643 7.868 18.447 0.629 8.111 22.886 0.614 8.368 28.965 0.600 8.641 38.054 0.585 8.931 51.730 0.573 9.186 NODE 8002.10 : HGL = < 58. 421>;EGL= < PRESSURE+ ENERGY(FT) MOMENTUM(POUND 1.311 83.68 1.311 83.71 1.313 83.81 1.315 83.97 1.319 84.21 1.323 84.52 1.330 84.91 1.337 85.38 1.346 85.94 1.357 86.58 1.370 87.32 1.384 88.15 1.401 89.10 1.421 90.14 1.443 91.31 1.468 92.60 1.497 94.02 1.529 95.57 1.565 97.28 1.605 99.14 1.651 101.17 1.702 103.38 1.760 105.79 1.824 108.40 1.884 110.74 58.811>;FLOWLINE= < 57.500> ****************************************************************************** FLOW PROCESS FROM NODE 8002.10 TO NODE 8002.20 IS CODE = 2 UPSTREAM NODE 8002.20 ELEVATION = 57.83 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE MANHOLE/INLET/OUTLET LOSSES: PIPE FLOW = 5.70 CFS PIPE DIAMETER = USER SPECIFIED LOSS COEFFICIENT =1.00 AVERAGED VELOCITY HEAD = 0.694 FEET HMN = 1.00*(AVERAGED VELOCITY HEAD) = 1.00*( 0.694) = Page 6 18.00 INCHES 0.694 ECRWEST NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 8002.20 : HGL = < 58.465>;EGL= < 59.462>;FLOWLINE= < 57.830> ****************************************************************************** FLOW PROCESS FROM NODE 8002.20 TO NODE 8002.00 IS CODE = 1 UPSTREAM NODE 8002.00 ELEVATION = 58.23 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.17 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.921 5.007 1.311 83.68 0.011 0.902 5.132 1.311 83.73 0.045 0.883 5.264 1.314 83.89 0.105 0.864 5.403 1.318 84.18 0.195 0.846 5.551 1.324 84.58 0.317 0.827 5.707 1.333 85.12 0.478 0.808 5.873 1.344 85.79 0.681 0.789 6.049 1.358 86.61 0.933 0.770 6.237 1.374 87.59 1.241 0.751 6.436 1.395 88.73 1.615 0.732 6.649 1.419 90.05 2.066 0.713 6.876 1.448 91.57 2.607 0.695 7.119 1.482 93.29 3.255 0.676 7.379 1.522 95.24 4.033 0.657 7.658 1.568 97.43 4.968 0.638 7.958 1.622 99.89 5.170 0.635 8.014 1.632 100.35 NODE 8002.00 : HGL = < 59.151>;EGL= < 59.541>;FLOWLINE= < 58.230> ****************************************************************************** FLOW PROCESS FROM NODE 8002.00 TO NODE 8002.00 IS CODE = 8 UPSTREAM NODE 8002.00 ELEVATION = 58.23 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.70 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.01 FEET/SEC. VELOCITY HEAD = 0.390 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.390) = 0.078 NODE 8002.00 : HGL = < 59.619>;EGL= < 59.619>;FLOWLINE= < 58.230> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 8002.00 FLOWLINE ELEVATION = 58.23 ASSUMED UPSTREAM CONTROL HGL = 59.15 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 7 CI14 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering Software (aes) ve? 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY **************************^ * HYDRAULIC CALCULATION FOR STORM DRAIN LATERAL AND CI #14 ^ * EL CAMINO REAL STA 485+76.85 ^ * 100 YEAR STORM ULTIMATE CONDITIONS REVISED BY MC *;UUJEAR^^I^O;jM^UL^^|viAic^^^ FILE NAME: CI14.DAT ^ . TIME/DATE OF STUDY: 14:45 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note* "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 9002.00- 2.42* 184.89 0.28 7.27 9003.00? ^^^"^^^^ 2.23* 164.06 0.34 Dc 6.94 } CATCH BASIN n OA -) KK 9003.00- 2.24* 163.77 0.34 Dc 2.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 'NOTE- STEADY'FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ****l**********f******************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: r:,.-r^n., AT AQ NODE NUMBER = 9002.00 FLOWLINE ELEVATION = 42.48 PIPE FLOW = 0:82 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 44.900 FEET^ "'NODE""9002'00"rHGL"="<"" 44.900>;EGL= < 44.903>; FLOWLINE= < 42.480> ****************************************************************************** FLOW PROCESS FROM NODE 9002.00 TO NODE 9003.00 IS CODE =1 UPSTREAM NODE 9003.00 ELEVATION = 42.67 (FLOW IS UNDER_PRESSURE)__ CALCULATE FRICTION LOSSES (LACFCD): AA TM^UCC PIPE FLOW = 0.82 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 18.83 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.82)/( 105.009))**2 = 0.00006 HF=L*SF = ( 18.83)*(0.00006) = 0.001 "NODE'"9003'00'rHGL'= < 44.901>;EGL= < 44.904>;FLOWLINE= < 42.670> ****************************************************************************** Page 1 CI14 FLOW PROCESS FROM NODE 9003.00 TO NODE 9003.00 IS CODE =8 CPSTREAM NODE 9003 00 ELEVATION = 42.67 (FLOW IS UNDERPRESSURE)___ CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : ....^^^c PIPE FLOW = 0.82 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 0.46 FEET/SEC. VELOCITY HEAD = 0.003 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.003) = ^0^001 "NODE "9003'oo"^ HGL = < 44.905>;EGL= < 44.905>;FLOWLINE= < 42.670> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 9003.00 FLOWLINE ELEVATION = 42.67 ASSUMED UPSTREAM CONTROL HGL = 43.01 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 102 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: ODAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 ************************** DESCRIPTION OF STUDY ************************** * HYDRAULIC CALCULATION FOR STORM DRAIN STA 489+52.01 AND C.I. #15 * * 100 YEAR STORM DRAIN ULTIMATE CONDITION ^ **^|*******I*************************************************************** FILE NAME: 102.DAT TIME/DATE OF STUDY: 14:50 10/16/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 8002.20- 0.58* 10.63 0.25 4.81 8006.00? 0.53* 8.85 0.29 DC 4.68 } CATCH BASIN ^ n -,n 17-7 8006.00- 0.55* 7.93 0.29 Dc 1.72 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE- STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA **5^fJ^********f;************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 8002.20 FLOWLINE ELEVATION = 55.72 PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.300 FEET^^^ "NODE"8002'20 THGL ^ < 56.300>;EGL= < 56. 314>; FLOWLINE= < 55.720> ****************************************************************************** FLOW PROCESS FROM NODE 8002.20 TO NODE 8006.00 IS CODE = 1 . UPSTREAM NODE 8006.00 ELEVATION = 55.77 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : ^„^.„-c. PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.17 FEET MANNING'S N = 0.01300 "NORMAL'DEPTH(FT)'= O'25 CRITICAL DEPTH(FT) = 0.29 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: Page 1 102 DISTANCE FROM CONTROL(FT) 0.000 1.170 2.337 3.499 4.657 5.170 FLOW DEPTH (FT) 0.580 0.568 0.557 0.545 0.533 0.528 VELOCITY (FT/SEC) 0.951 0.977 1.005 1.035 1.066 1.080 SPECIFIC ENERGY(FT) 0.594 0.583 0.572 0.561 0.551 0.546 PRESSURE+ MOMENTUM(POUNDS) 10.63 10.21 9.80 9.40 9.02 8.85 " NODE 8006.00 : HGL = < 56.298>;EGL= < 56.316>;FLOWLINE= < 55.770> ****************************************************************************** FLOW PROCESS FROM NODE 8006.00 TO NODE 8006.00 IS CODE = 8 UPSTREAM NODE 8006.00 ELEVATION = 55.77 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.08 FEET/SEC. VELOCITY HEAD = 0.018 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*(^ 0.018) = 0.004 "NODE""8006'OO': HGL = < 56.320>;EGL= < 56.320>;FLOWLINE= < 55.770> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 8006.00 FLOWLINE ELEVATION = 55.77 ASSUMED UPSTREAM CONTROL HGL = 56.06 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 lOl.dat has been omitted. For hydraulic analysis of 18" lateral at Sta. 490+07.86, see ECRWEST in this section. Aio ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2014 Advanced Engineering software (aes) ver. 21.0 Release Date: 06/01/2014 License ID 1650 Analysis prepared by: O'DAY CONSULTANTS, INC. 2710 LOKER AVE. WEST SUITE 100 carlsbad, CA 92010 FILE NAME: AlO.DAT TIME/DATE OF STUDY: 17:18 10/28/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5050.00- 5.02* 1695.12 1.47 426.29 } FRICTION 5042.00- 4.50* 1465.06 1.54 Dc 425.04 } JUNCTION 5042.10- 4.43* 1378.52 1.07 330.50 } FRICTION 5040.00- 3.96* 1171.78 1.35 Dc 306.21 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS, ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5050,00 FLOWLINE ELEVATION = 43,78 PIPE FLOW = 22,80 CFS PIPE DIAMETER = 36,00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 48,800 FEET NODE 5050,00 : HGL = < 48.800>;EGL= < 48,962>;FL0WLINE= < 43,780> ****************************************************************************** FLOW PROCESS FROM NODE 5050,00 TO NODE 5042,00 IS CODE = 1 UPSTREAM NODE 5042,00 ELEVATION = 44,46 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22,80 CFS PIPE DIAMETER = 36,00 INCHES PIPE LENGTH = 135.57 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 22.80)/( 666.985))**2 = 0.00117 HF=L*SF = ( 135.57)*(0.00117) = 0.158 NODE 5042.00 : HGL = < 48.958>;EGL= < 49.120>;FLOWLINE= < 44.460> ****************************************************************************** FLOW PROCESS FROM NODE 5042.00 TO NODE 5042.10 IS CODE = 5 UPSTREAM NODE 5042.10 ELEVATION = 44.79 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY Page 1 Aio (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 17.70 36.00 90.00 44.79 1.35 2.504 DOWNSTREAM 22.80 36.00 - 44.46 1.54 3.226 LATERAL #1 5.10 18.00 0.00 46.29 0.87 2.886 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00070 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00117 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00094 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.198)+( 0.000) = 0.198 NODE 5042.10 : HGL = < 49.221>;EGL= < 49.318>;FLOWLINE= < 44.790> ****************************************************************************** FLOW PROCESS FROM NODE 5042.10 TO NODE 5040.00 IS CODE = 1 UPSTREAM NODE 5040.00 ELEVATION = 45.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 44.44 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 17.70)/( 666.987))**2 = 0.00070 HF=L*SF = ( 44.44)*(0.00070) = 0.031 NODE 5040.00 : HGL = < 49.252>;EGL= < 49.349>;FLOWLINE= < 45.290> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5040.00 FLOWLINE ELEVATION = 45.29 ASSUMED UPSTREAM CONTROL HGL = 46.64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 Capacity for 18" Storm Drain @ 0.50% Inside Diameter ( 18.00 in.) * Water * * ( 16.88 in.) ( 1.407 ft.) * v_ Circular Channel Section Flowrate 7.990 CFS Velocity 4.641 fps Pipe Diameter 18.000 inches Depth of Flow 16.884 inches Depth of Flow 1.407 feet Critical Depth 1.097 feet Depth/Diameter (D/d) 0.93 8 Slope of Pipe 0.500 % X-Sectional Area 1.722 sq. ft. Wetted Perimeter 3.957 feet ARN2/3) 0.989 Mannings 'n' 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.579 % Capacity for 18" Storm Drain @ 1.0% Inside Diameter ( 18.00 in.) Water * ( 16.88 in.) ( 1.407 ft.) * v_ Circular Channel Section Flowrate 11.300 CFS Velocity 6.563 fps Pipe Diameter 18.000 inches Depth of Flow 16.884 inches Depth of Flow 1.407 feet Critical Depth 1.282 feet Depth/Diameter (D/d) 0.938 Slope of Pipe 1.000 % X-Sectional Area 1.722 sq. ft. Wetted Perimeter 3.957 feet AR-(2/3) 0.989 Mannings 'n' 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full 1.157 % Capacity for 18" Storm Drain @ 2.0% Inside Diameter ( 18.00 in.) Water * ( 16.88 in.) ( 1.407 ft.) * * I * v_ Circular Channel Section Flowrate 15.980 CFS Velocity 9.282 fps Pipe Diameter 18.000 inches Depth of Flow 16.884 inches Depth of Flow 1.407 feet Critical Depth 1.427 feet Depth/Diameter (D/d) 0.93 8 Slope of Pipe 2.000 % X-Sectional Area 1.722 sg. ft. Wetted Perimeter 3.957 feet AR'^(2/3) 0.989 Mannings 'n' 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full 2.314 % Channel Report Hydraflow Express Extenston for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. diameter ditch for 36 inch offsite storm drain Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfe) = 5.00 = 43.15 = 0.50 = 0019 Known Q = 22.80 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Tuesday, Oct 28 2014 1.44 22.80 4.70 4.85 5.67 1.32 4.53 1.81 46.00 45.00 44.00 43.00 42.00 -1.15 Reach(ft) APPENDIX 8 Rip-rap Calculations JN 101307 - El Camino Real Rip-rap calculation Revised 10/21/2014 El Camino Real Rip-Rap Calculation 446+73.94 (Northerly Storm Drain - Sht. 16 of improvement plans) QIOO = 6.7 cfs VlOO = 6.4 fps 18" RCP Per SDRSD D-40: Type 2, W = 4.5' (Say 5'), L = 10', Rock Classification = No. 2 backing, T = 1.1' Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = J4" aggregate 12" thick. 453+16.56 (Existing 24" storm drain near Crestview Dr. - Sht. 17 of improvement plans) QIOO = 13.2 cfs VlOO = 21.2 fps Per SDRSD D-40, V > 20 fps is special design. Also, rip rap is existing per Dwg. 369-7 Sheet 8 and specified as 2-ton with T=5.4', width = 10' and length = 20'. Using Erosion and Sediment Control Handbook (last page of this section), 2-ton rock and length is adequate. The average width would be (6' + 13')/2 = 9.5' -> 10' ok. 482+48.49 (Existing RCB DBL Kelly - Sht. 22 of improvement plans) QIOO = 20.6 cfs, 127.5 cfs, 729.0 cfs VlOO =13.8 fps (worst case) 2 ~8'x4' RCB 1~ 36" RCP 2~ 42" RCP Due to environmental constraints, dimension for rip rap is W = 47' and L = 43'. Per SDRSD D-40: W at downstream end = 16' x 3' = 48' ~ 47' -> ok L = 16' X 4' = 64' > 43'. To compensate for shorter length, larger rock will be specified: For 13.8 fps, 1 ton rock with T= 4.4' is adequate -> Use 2 ton rock instead, T=5.4' Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = 2" aggregate 12" thick over 12' sand. G:\101307\Hydrology\ECR\Submittal #3 October 2014 JN 101307-El Camino Real Rip-rap calculation Revised 10/21/2014 484+86.00 (Offsite Storm drain located in North west of Kelly Drive - Sht. 23 of improvement plans) 36" RCP draining to 5' wide D-7S ditch at 0.5% QIOO = 22.8 cfs VlOO = 6.6 fps in pipe and 4.9 fps in ditch (see calculation in Appendix 7) Per SDRSD D-40: Type 2, W = 15', L = 20', Rock Classification = No. 2 backing, T = 1.1'. Per Table 200-1.7 in San Diego Regional Supplement to Greenbook (see attached): filter blanket = V aggregate 12" thick. Note: ditch will drain to larger rip rap field as part of head works to 8' x 4' double box culvert. G:\101307\Hydrology\ECR\Submittal #3 October 2014 JN 101307 - El Camino Real Rip-rap calculation Revised 10/21/2014 Rip-rap Calculations for QIC STATIONS PIPE SIZE QIC QIC per pipe or inlet VIO DESCRIPTION NOTES / Imp. Plan Sheet 446+59.70 6" 0.5 0.5 4.2 Per SDRSD D-40 Modified: Type 2, W = 1.5' L = 2', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick North Curb Sheet 16 446+90 10" 2.1 2.1 6.0 Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick North Curb Sheet 16 454+35.01 455+28.97 455+99.95 8" 1.9 0.6 4,3 Per SDRSD D-40 Modified: Type 2, W = 2', L = 2.7', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick Median Sheets 17 and 18 456+69.79 457+40.07 458+79.65 459+50.37 460+30 10" (No pipe at 460+30) 2.4 (for 5 inlets) 0.5 4.1 1) All stations except 460+30 Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock Classification No. 2 backing, T= 1.1 ft. Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick. 2) Station 460+30. Same specifications as 1) above except W and L = 2'+ (width of channel bottom). Median Sheet 18 473+74.81 474+29.85 10" 2.4 1.2 5.3 Per SDRSD D-40 Modified: Type 2, W = 2.5', L = 3.3', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick North Curb Sheet 21 476+33.90 No pipe 1.9 .9 Per SDRSD D-40 Modified: Type 2, W = 5', L = 5', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick Median Sheet 21 479+17.45 480+57.99 No pipe 1.7 .9 Per SDRSD D-40 Modified: Type 2, W = 5', L = 5', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick Median Sheets 21 and 22 480+80 482+15 12" 4.0 2.0 6.0 Per SDRSD D-40 Modified: Type 2, W = 3', L = 4', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = %" aggregate 12" thick North Curb Sheet 22 G:\101307\Hydrology\ECR\Submittal #3 October 2014 JN 101307-El Camino Real Rip-rap calculation Revised 10/21/2014 STATIONS PIPE SIZE QIO QIC per pipe or inlet VIO DESCRIPTION NOTES 484+00 12" 4.9 4.9 7.3 Per SDRSD D-40 Modified: Type 2, W = 3', L =4, Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = Vi" aggregate 12" thick North Curb Sheet 22 489+69.42 No pipe 0.5 0.5 Per SDRSD D-40 Modified: Type 2, W = 5' L = 10', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = K" aggregate 12" thick Median Sheet 23 490+36.62 No pipe 4.8 4.8 Per SDRSD D-40 Modified: Type 2, W = 5', L = 10', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 In San Diego Regional Supplement Green book (see attached): filter blanket = )4" aggregate 12" thick Median Sheet 23 455+31.98 18" 3.1 3.1 9.1 Per SDRSD D-40: Type 2, W = 4.5' (Say 5'), L = 10', Rock Classification No. 2 backing, T= 1.1 ft Per table 200-1.7 in San Diego Regional Supplement Green book (see attached): filter blanket = Yu" aggregate 12" thick South Curb Sheet 17 G:\101307\HydrologY\ECR\Submittal #3 October 2014 Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 446+59.70 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) 0.50 = 100.00 = 2.00 = 0.013 Known Q = 0.50 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.29 0.500 0.12 4.22 0.87 0.36 0.49 0.57 Elev (ft) 0,0 Section 100.75 100.50 100.25 100.00 99.75 Reach(ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCMyS) Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 446+90 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 0.83 = 100.00 = 2.00 = 0.013 Known Q = 2.10 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.51 2.100 0.35 6.00 1.50 0.65 0.81 1.07 Elev (ft) 101.00 - 100.75 100.50 100.25 100.00 99.75 Section Reach(ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 '454+36.01 456+28.97 455+99.95 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 0.67 = 100.00 = 2.00 = 0.013 Known Q = 0.60 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.28 0.600 0.14 4.27 0.94 0.37 0.66 0.56 Elev (ft) 101.00 - Section 100.75 100.50 100.25 100.00 99.75 Reach(ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 456+69.79 457+40.07 458+79.65 459+50.37 460+30 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 0.83 = 100.00 = 2.00 = 0.013 Known Q = 0.50 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.23 0.500 0.12 4.08 0.92 0.31 0.74 0.49 Section 100.50 100.25 100.00 99.75 Reach(ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 473+74.81 474+29.85 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) 0.83 = 100.00 = 2.00 = 0.013 Known Q = 1.20 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.36 1.200 0.23 5.32 1.20 0.49 0.82 0.80 Elev (ft) 101.00 - Section 100.75 100.50 100.25 100.00 99.75 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 480+80 482+15 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 1.00 = 100.00 = 2.00 = 0.013 Known Q = 2.00 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Wdth (ft) EGL (ft) 0.44 2.000 0.34 5.97 1.45 0.61 0.99 0.99 100.50 100.00 99.50 0.50 Reach(ft) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 21 2014 484+00 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 1.00 = 100.00 = 2.00 = 0.013 Known Q = 4.90 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.80 4.900 0.67 7.27 2.22 0.92 0.80 1.62 100.50 100.00 99.50 0.50 Reach (ft) Channel Report Hydraflow Express Extenston for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Tuesday, Oct 28 2014 155+31.98 Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs) = 1.50 = 100.00 = 5.34 = 0.013 Known Q = 3.10 Highlighted Depth (ft) Q (cfe) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) 0.37 3.100 0.34 9.13 1.56 0.67 1.29 1.67 Section 101.00 100.50 100.00 99.50 Reach(ft) 2D OR gW fmin ) Endwon (lypicol) PLAN Concrete Choni 0 mtn. Dev 8ho.... on plans SECTION B-B Design Velocity h/itc* 6-10 10-12 Rock Ooss Rp-Rop Thickness T (min) No. 2 booking j ijft 1/4 ton 2.7fl 12-14 14-16 16-18 1/2 ton 3.5fl 1 ton 4.4ft 2 ton 5.4ft W 20 fl/sec requfres spedol design D - Pipe Diameter W - Bottom Width of Channel .RHer Blanket _Moieriol(s) 2 3. 4. 5. 1 Revision py Approved Dote LQSIfflNAV 1 *M Metric Kerchevifl 1 ^. - -. 12/79 f M m Ho* 1. atonton S. Brady 03/03 04/06 {Edited 1T. Stonton 02/09 1 Edited S.SjT. Regelle 03/11 SAN DIEGO REGIONAL STANDARD DRAWING U- '^X siii. aoss 426-^-2000 Concrete SECTION A-A NOTES Pjonj thon specrty: WJ<oek Doss ond rip-rap thickness m T •lu.ii k. ^ ^/iiS^J^p^^'''''^ i RIP RAP ENERGY DISSIPATER DRAWING NUMBER D-40 PART 2 CONSTOUCTION MATERIALS SECTION 200 . ROCK MATERIALS 200-1 ROCK PRODUCTS. 200-1.6 Stone for Riprap. '^^^"'^t^.Slrtt^rli.^^ ~" -"^ '« TABLE 20«.,.*(A,. Rock Sizes 1 2 Ton 4 Ton 0-5 2 Ton 50-100 ITon 1 95-100 J<Ton 1 1/4 Ton 1 2001b. j 76 r 25 lb. 1 51b. 1 lib. 1 TABLE 200-1.6 (A) Pertientafle Larger Than CLA SSg a ITon %Ton I 1/4 Ton I J^^-^ Backinc 95-100 weight basis. Compliance with Sc^nSitS^R • " ^^^'^ determined on a individual pieces of any class of ^T^'ri^H^^^^ other sizes ofthe number of individual pLT^aJj^'^S^ ^^^^^^^^^^^^ ^'"T^^ °f the pertaining to this Grt«nbook S^plen^nt Sub^^^o^i ^'l"! ^ Blanket Material." ^"PP'cmcnt Subsection 200-1.7, "Selection of Riprap Filter 1 200-1.6J Qualily Requirements. J^f.^- following n,w .ubwctloa- 200-1.7 Selection of Riprap and Filter fli^n ket MateriaL TABLE 200-1.7 ^1^"TfXLl:^?'.S;«'P."l'-" '^•'»TABLE20.-, .,A, r-Ight Rock 2001b. j Class 2001b. j 1 hadng j Rock 751b. 1 1 1 Class 751b. 1 / No. 2 Backing /Rock 5 lb. 1 1 ' Class 5 lb. 1 l^J^^-^'^^w'::^^:^^'^ of T.b.. 400^.3(0 of Mlsc.ll.."„.7K,fI^"'?^ Subnotion 200.2J Troc«,^ (5) (6) to Avg.=(6+13)/2 = 9,5' ->10' ok 0.1 100 200 Discharge, ft^/sec 1 I I I II M 1 1 > llllli 1 h-f- 0.2 0.30.4 0.6 0.8 1 2 3 4 5 6 7 8 10 15 2025 Discharge, m^/sec 2.6', ok 2 ton = 3.6' See next page 1000 Discharge, ft^/sec I Mill! -f-I Illll 1 1—f- .3 .4 .5.6.7.8.91 2 3 45678 10 Discharge, mVsec 15 20 25 Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full; maximum tailwater conditions. (6,14) to find the nprap size and apron length. The apron width at the pipe end should be 3 times the pipe diameter. Where there is a weU-defined channel immediately downstream from the apron, the width of the downstream end of the apron should be equal to the width of the channel. Where there is no weU-defined chan- nel immediately downstream from the apron, minimum tailwater conditions apply and the width of the downstream end of the apron should be equal to the pipe diameter plus the length ofthe apron. EXAMPLE 7.4 Riprap Outlet Protection Design Calculation for Minimum Tailwater Condition Given: A flow of 6 ftVsec (0.17 mVsec) discharges from a 12-in (30-cm) pipe onto a 2 percent grassy slope with no defined channel. Find; The required length, width, and median stone size dso for a riprap apron. Solution: Since the pipe discharges onto a flat area with no defined channel, a mini- mum tailwater condition can be assumed. By Fig. 7.45, the apron length Lo and median stone size dso are 10 ft (3 m) and 0.3 ft (9 cm), respectively. The upstream apron width equals 3 times the pipe diameter D„: W„ = 3 X D„ = 3(1 ft) = 3 ft [3(0.3 m) = 0.9 m] The downstream apron width Wj equals the apron length plus the pipe diameter: = 1 ft + 10 ft - 11 ft (0.3 m + 3.0 m = 3.3 m) Note: When a concentrated flow is discharged onto a slope (as in this example), gul- lying can occur downhill from the outlet protection. The spreading of concentrated flow Existing 10' x 20' 2-ton rip rap at 24" storm drain Chapter 5. Open Channels 5.7.1 Longitudinal Channel Slope The longitudinal slope of riprap-lined channels shall be dictated by maximum permissible velocity requirements. Table 5-2 summarizes the maximum permissible velocity for standard riprap gradations. Where topography is steeper than desirable, drop structures may be used to maintain design velocities (see Section 5.12). Table 5-2 Channel Bottom Riprap Protection Design Velocity Rock Gradation 6-10 10-12 12-14 14-16 16-18 > 18 No. 2 Backing % ton % ton 1 ton 2 ton Special Design 5.7.2 Roughness Coefficients The Manning roughness coefficient (n) for hydraulic computations shall be estimated for loose rock riprap using the Manning-Strickler equation (Equation 5-5). Equation 5-5 (Chang, 1992) does not apply to grouted rock riprap or to very shallow flow. Table 5-3 provides Manning roughness coefficients for standard rock riprap classifications based on the Manning-Strickler method. n = 0.0395d. 1/6 50 (5-5; where n = Manning roughness coefficient (dimensionless); and dso - median stone diameter (feet). Table 5-3 Standard Rock Riprap Gradations Rock Gradation •Median Stone Weight Median Stone Diameter (dso)' Manning n No. 3 Backing 51b 0.4 ft 0.034 No. 2 Backing 25 Ib 0.7 ft 0.037 No. 1 Backing 75 Ib 1.0ft 0.039 Light 200 Ib 1.3 ft 0.041 74 Ton 500 Ib 1.8ft 0.044 V2 Ton 1000 Ib 2.3 ft 0.045 1 Ton 2000 Ib 2.9 ft 0.047 2 Ton 4000 Ib > 3.6 ft >2.6' ok 0.049 (a) Except for 2 ton rock, classification is based upon Caltrans Method B Placement, which allows dumping ofthe rock and spreading by mechanical equipment. Local surface inegulahtles shall not vary from the planned grade by more than 1 foot, measured perpendicular to the slope. Two-ton rock requires special placement, see Caltrans (2002) or Greenbook for more infonvation. (b) No. 1 Backing has same gradation as Facing Riprap, (c) per Caltrans (2002). (d) Assumes specific weight of 165 Ib/ftS. The designer shall take care to apply a unit weight that is applicable to the type of riprap specified for the project, and adjust their calculations when necessary, (e) Based on Manning-Strickler relationship (Chang, 1988). San Diego County Drainage Design Manual July 2005 Page 5-16 APPENDIX 9 Overflow Calculations for Catch Basins serving Bioretention Areas Overflow Calculations for El Camino Real Widening Per 2005 San Diego County Drainage Design Manual Section 6.4.3 Orifice Flow Qio = Co Ao [2g(Ho)] " 3/2 QIC Co Ao g Ho Orifice flow discharge for 10 year storm (cfs) Orifice discharge coefficient (per table 6-1 orifice coeffificient for different edge conditons) use sharp clean edge = 0.60 Cross-sectional area of flow through orrifice (ft'^2) Gravitational acceleration (32.2 ft/s'^2) Effective head above orifice (ft) BMP ID # STA. QIO Co Ho Ao 1 445+62.33 0.48 0.6 0.17 0.045 2 447+96.74 2.1 0.6 0.17 0.198 3 454+23.37 1.9 0.6 0.17 0.179 4 454+93.30 1.9 0.6 0.17 0.179 5 455+63.65 1.9 0.6 0.17 0.179 6 456+33.75 3.3 0.6 0.17 0.311 7 457+03.63 3.3 0.6 0.17 0.311 8 458+43.68 3.3 0.6 0.17 0.311 9 459+13.68 3.3 0.6 0.17 0.311 10 459+83.81 3.3 0.6 0.17 0.311 11 454+53.40 3.1 0.6 0.17 0.292 14 476+71.81 1.9 0.6 0.17 0.179 15 479+52.79 1.7 0.6 0.17 0.160 16 480+92.44 1.7 0.6 0.17 0.160 18 474+70.81 2.4 0.6 0.17 0.226 19 481+24.02 4 0.6 0.17 0.377 20 482+26.87 4 0.6 0.17 0.377 21 484+36.40 4.9 0.6 0.17 0.462 22 489+42.07 0.53 0.6 0.17 0.050 23 490+08.09 4.8 0.6 0.17 0.453