Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 13-03; Robertson Ranch West Village Rancho Costera-Part 1; Drainage Study; 2015-07-15
1/ RECORD COPY Initial Date DRAINAGE STUDY FOR RANCHO COSTERA (ROBERTSON RANCH WEST VILLAGE) C.T. 13-03 Job No. 101307-5 Prepared: October 24, 2013 Updated: January 26, 2015 Updated: April 29,2015 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, Califomia 92010 Tel: (760) 931-7700 Fax: (760) 931-8680 George Ojpay RCE 32014 Exp. 12/31/16 Date DRAINAGE STUDY FOR RANCHO COSTERA (ROBERTSON RANCH WEST VILLAGE) C.T. 13-03 Job No. 101307-5 Prepared: October 24, 2013 Updated: January 26, 2015 Updated: April 29,2015 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, California 92010 Tei: (760) 931-7700 Fax: (760) 931-8680 George /JL (^y L/ IJ(^ O'D4 ' J-RCE 32014 Exp. 12/31/16 Declaration of Responsible Charge 1 hereby declare that 1 am the Engineer of Work for this project, that I have exercised responsible charge over the design of this project as defined in section 6703 of the Business and Professions Code, and that the design is consistent with current standards. 1 understand that the check of project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as the Engineer of Work, of my responsibilities for the project design. O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92010 (760)931-7700 George O'Day / R.C.E. No. 32014 Exp. 12/31/16 Date: Q UIH /.f^ ^Q/^ SECTION 1 SECTION 2 SECTION 3 TABLE OF CONTENTS INTRODUCTION Purpose of Study Scope STUDY AREA Soils Groups Land Uses HYDROLOGY Modified Rational Method Description Program Process CONCLUSION Vicinity Map Table 3-1 Runoff Coefficients for Urban Areas (Rational Method) Isopluvial Maps 2-Year, 6-Hour 2-Year, 24-Hour 10-Year, 6-Hour 10-Year, 24-Hour 100-Year, 6-Hour 100-Year, 24-Hour Intensity-Duration Design Chart - Figure 3-1 Overland Time of Flow Nomograph - Figure 3-3 Maximum Overland Flow Length & Initial Time of Concentration - Table 3-2 Nomograph for Determination of Tc for Natural Watersheds - Figure 3-4 San Diego County Soils Interpretation Study Master Plan Land Use Plan Hydrology 100 year Analysis Existing Condition SECTION 4 Hydrology 100 year Analysis Proposed Condition SECTION 5 Exhibit A Existing Condition Drainage Map Exhibit B Proposed Condition Drainage Map SECTION 6 Hydraulic Calculations 100 year Analysis SECTION 7 Curb Inlet Calculations SECTION 8 Hydrology 10 year Analysis Proposed Condition SECTION 9 Curb Opening Calculations SECTION 10 Rip Rap Sizing Calculations SECTION 11 Brow Ditch Calculations SECTION 12 Temporary Desiltation Basin Calculations SECTION 13 Operators Manual, San Diego County Rational-Hydrology Program Package Version 7.4, developed by CivilCADD/CIVILDESIGN Engineering Software ' (1991-2004), -1 7. J- SECTION 1 INTRODUCTION Purpose of Study This drainage study was prepared to determine the existing and proposed runoff quantities for Planning Areas 1-11, 13 & 23 A-C of the Robertson Ranch Master Plan, also known as Rancho Costera. The project is located south of Calavera Hills Unit 1, CT 76-12, west of Tamarack Avenue and to the north of El Camino Real (See Vicinity Map Exhibh A). Scope This study analyzes the 1 OO-year flow for existing and proposed conditions of the site. The proposed conditions have been analyzed for the ultimate built-out condition of the entire site. Proposed Condition Analysis The proposed development for the project site varies by planning area (PA): PA 1 and 23A-C are designated as Open Space; PA 2 is a Community Facility Site; PA 3, 5, 6, 9 and 10 are Single Family Residential; PA 4 is Community Recreation, PA 7 and 8 are Multifamily Residential; and PA 11 is designated Village Center/Commercial. Access to the site will be provided via Glasgow Drive and Edinburgh Drive from the north. The backbone streets Gage Drive, Robertson Road, and West Ranch Street will provide access to the site: Robertson Road will provide access from Tamarack Avenue to PA 3 from the west; West Ranch Street, Gage Drive, and Robertson Road will provide access to the site from the south. The project is located within Drainage Basins 'E-F', 'G' and 'H' of the Drainage Study for Robertson Ranch, MP 02-03, Addendum Rancho Costera Master Tentative Map, prepared by O'Day Consultants on April 29, 2011 with the latest revision dated April 25, 2012. See Section 3 and Exhibit 'A' for the existing 100 year hydrology at the site. Under the proposed development, Basin 'E-F' includes PA 1, 2 and 23A much as it does in the existing condition. The downstream outfall remains at the existing double 8'X4' RCB under El Camino Real at Kelly Drive. Basin 'G' includes PA 3, 7, and 8 along with portions of PA 5 and 6. The basin drains southerly and easterly to the backbone systems in Robertson Road and West Ranch Street and comingles with El Camino Real drainage at the intersection of West Ranch Street and El Camino Real. Basin 'H' encompasses the remainder of the West Ranch site and includes PA 9-11, 23B and C, along with the remaining portions of PA 5 and 6. The storm drain system outlets to the southeast into the open space and existing creek. See Section and Exhibit 'B' for the proposed 100 year hydrology at the site. STUDY AREA Soils Groups The site is characterized mainly by soil group D, per the San Diego County Soils Interpretation Study. Refer to Soils map, Section 2. Land Use The site is currently used for agricultural farming and can be approximated using the runoff coefficient associated with undisturbed natural terrain. Proposed conditions include a variety of land uses with varying densities as noted above. Refer to the Master Plan Land Use Plan in section 2. HYDROLOGY The hydrologic analyses are being performed according to the 2003 San Diego County Hydrology Manual. The overall drainage area is less than one square mile and includes junctions of independent drainage systems; therefore, the Modified Rational Method is being used for the analyses. The Modified Rational Method is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration. In some cases, the 6-hour precipitation must be adjusted based on the ratio of the 6- to 24-hour precipitation. This will be performed where necessary. Modified Rational Method Description The modified rational method, as described in the 2003 San Diego County Flood Control/Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the 1 OO-year design storm, the 6-hour rainfall amount is 2.6 inches and the 24-hour rainfall amount is 4.3 inches. San Diego County Rational-Hydrology Program Package Version 7.4, developed by CivilCADD/CIVILDESIGN Engineering Software © (1991-2004), was used to determine the rainfall amount, times of concentration, corresponding intensities and flows for the various hydrologic basins within this model. (See operators manual, Section 16) The program was then used to route flows through drainage conveyance structures and confluence basins per the modified rational method. Program Process The Rational-Hydrology program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models of each interior watershed and linking these submodels together at confluence points create the node link model. The program has the capability of performing calculations for 11 different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream. 2. Street flow through sub-area, includes sub-area runoff 3. Addition of runoff from sub-area to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. Pipeflow travel time (user-specified pipe size). 7. Improved channel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User-specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main streams. CONCLUSION The results of the analysis are presented below: EXISTING CONDITIONS PROPOSED CONDITIONS ^' 100-YEAR STORM EVENT (FLOW AT EXIST. DOUBLE 8'X4' RCB UNDER EL CAMINO REAL AT KELLY DR.) 100-YEAR 81 (FLOW AT EXIST. DOU EL CAMINO REA 'ORM EVENT BLE 8'X4' RCE L AT KELLY D !UNDER R) BASIN ACREAGE Q EXIST Tc (Min.) BASIN ACREAGE Q PROP Tc (Min.) E-F 729.79 734.00 CFS 35.72 E-F 713.08 728.71 CFS 35.92 EXISTING CONDITIONS PROPOSED CONDITIONS 100-YEAR STORM EVENT (FLOW AT STREET 'Z' AND EL CAMINO REAL - TOWARDS EXIST RCB AT KELLY DR.) 100-YEAR ST (FLOW AT STREET 'ZV TOWARDS EXIST. ORM EVENT vND^ELCAMINOREAL- RCBATKELLYDR) BASIN ACREAGE Q EXIST Tc (Min.) BASIN ACREAGE Q PROP Tc (Min.) G 58.80 60.56 CFS 19.43 G 54.86 100.85 CFS 15.07 EXISTING CONDITIONS PROPOSED CONDITIONS (FLOW CAMI 100-YEAR STORM EVENT 'TOWARDS EXIST. RCB UNC NO REAL WEST OF CANNO^ )ER EL RD) 100-YEARS" (FLOW AT STREET 'Z* / TOWARDS EXIST. rORM EVENT \ND EL CAMINO REAL - RCB AT KELLY DR.) BASIN ACREAGE Q EXIST Tc (MIn.) BASIN ACREAGE Q PROP Tc (Min.) H 251.47 252.45 CFS 31.13 H 261.95 283.34 CFS 29.30 EXISTING CONDITIONS PROPOSED CONDITIONS (FLOW CAMI 100-YEAR STORM EVENT TOWARDS EXIST. RCB UNC ^JO REAL WEST OF CANNON ER EL RD.) 100-YEAR SI (FLOW AT STREET T/ TOWARDS EXIST. 'ORM EVENT vND EL CAMINO REAL - =ICB AT KELLY DR.) BASIN ACREAGE Q EXIST Tc (Min.) BASIN ACREAGE Q PROP Tc (MIn.) PA 13 — — PA 13 2.91 7.11 CFS 10.36 g:\101307\hydrology\b map hyd\2nd submittal\hydrology study-ctl3-03.doc SECTION 2 CITY OF OCEANSIDE HIGHWAY) PACIFIC OCEAN CITY SAN OF MARCOS CITY OF ENCINITAS VICINITY MAP NO SCALE G:\101307\1007BVIC.dwg Oct 25, 2013 11:11am San Diego County Hydrology Manual Date: June 2003 Section: Page: Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS 3 6 of 26 Land Use Runoff CoefFicient "C" Soil Type NRCS Elements County Elements % IMPER A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, LO DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Metfimi Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Comiiiercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited L) Limited Industrial 90 0.83 0.84 0.84 0.85 0.87 Connmercial/Industrial (General L) General hidustrial 95 0.87 0.87 0.87 0.85 0.87 r-r«.m,-i^^ f Zu ',1 \ V ^ , ^"'^"'au™ OI we runon coemcient as descnbed in Sect on 3.1.2 (representine the nervious ninoff DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 32T30' Countyof San Diego Hydrology Manual Rainfall Isopluvials 2 Year RainfaU Event - 24 Hniir« Isopluvial (Inches) Pz. - 1.1 DPW • . *v Ha... s.,.. <:,„;„j.. 3 Miles s 3 0 County of San Diego Hydrology Manual Rainfall Isopluvials 10 Vear Raiufall Event - 6 Hours Isopluvial (Inches) DPW CIS Ss* 3 Miles t County of San Diego Hydrology Manual Rainfall Isopluvials 10 Vear Rainfall Event - 24 Hours Isopluvial (inches) ^7 = 2' ' DPW ^ SafiGIS -3 0 3 Miles • 33r30' County of San Diego Hydrology Manual Rainfall Isopluvials 100 Vear RainfaU Event - 24 Hniir« Isopluvial (Inches) DPW ^Cxis :^a!iGIS 3 0 3 Miles Directions for Applicafion: (1) From precipitation maps detemiine 6 hr and 24 hr amounts fbr the sdected frequency. These maps are included In the Couniy Hydrology Manual (10,50, and 100 yrmaps included In the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that It is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the rtght side of the chart (4) Draw a line through the point parallel to the plotted lines. (5) This line Is the intensity-duration curve for the location being analyzed. Application Fonn: 5 (a) Selected frequency iOO year ^24 (b) Ps= 2-6, In (c) AdjustedPg^^' = ^-6 in. (d) ty^ = min. (e) I a inThr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1 1 li r2 ; 2.5 i 1 iT i ' 3 -3.5 4 [•4J 5 " t S3 i "8 ' 1 " Duration 1 1 li r2 ; 2.5 i 1 iT i ' 1 1 -...._.|.. ... . 5 " t S3 i "8 ' 1 " S iea 3.9515.271 6.S9 /90 9.22 10.54 11.86i 13.17 14.49 15.81 7 2.12 3.18} 4.24 js.») 036 7.42 8.48 9.54 10.60 11.66 12.72 10 1.68 2.53 3.37 4J1 5.05 5.90 074 7.58 8.42 9J!7 10.11 15 1.30 1.95 Z59 3Ji4 5.19 5.84 6.49 7.13 7.78 20 1.08 1.62 Z15 2.69 3.23 3.77 4.31 4.85 5.39 &93 6.46 5.60 25 30 0.93 0.83 T.46TTB7" IJM 1.66~ ^33 2.07 ZBO, 2.49 3^71 2.90 3.32 450 4.67 5.13 6.46 5.60 25 30 0.93 0.83 T.46TTB7" IJM 1.66~ ^33 2.07 ZBO, 2.49 3^71 2.90 3.32 3.73 4.15 4.to 4.98 4.13 40 0.G9 1.03 1.38 1.72 Z07 2.41 2.76 3.10 3.45 are" 4.98 4.13 SO 0.80 oiiomiii 1.49 1.79 2.09 i.88 1,43 2.39 2.69 2.98 3.58 60 90 tua 041 06110.82 1.33 1.02 1.99 1.23 2.09 i.88 1,43 ii12 2.39 2.« 2.S2 3.18 60 90 tua 041 06110.82 1.33 1.02 1.99 1.23 2.09 i.88 1,43 1.63 1.84 2.04 zis 2.45 120 ISO 240 034 O^ 0.26 022 iiil iiii 0.85 6.73 0.8S ~0.5i \xa 0.88 078 0.^' 1.19 1.03 0.91 6.78' O-gg 1.36 1.53 1.70 1.«7 2.04 120 ISO 240 034 O^ 0.26 022 iiil iiii 0.85 6.73 0.8S ~0.5i \xa 0.88 078 0.^' 1.19 1.03 0.91 6.78' O-gg 1.18 6.87 6W 0.671 1.32 1.18 098 0.85 1.47 IJI 1.08 094" 1.62 f.44 i:i9 iW 1.78 1.57 120 ISO 240 034 O^ 0.26 022 iiil iiii 0.85 6.73 0.8S ~0.5i \xa 0.88 078 0.^' 1.19 1.03 0.91 6.78' O-gg 1.18 6.87 6W 0.671 1.32 1.18 098 0.85 1.47 IJI 1.08 094" 1.62 f.44 i:i9 iW 1.30 1.13 300 019 02810.38 0.47 0.56 1.19 1.03 0.91 6.78' O-gg 1.18 6.87 6W 0.671 1.32 1.18 098 0.85 1.47 IJI 1.08 094" 1.62 f.44 i:i9 iW 1.30 1.13 360 0.17 OZsiojB" 0.42 0.50 ose 1.18 6.87 6W 0.671 0.75 0.84 i 0.92 1.00 Intensity-Duration Design Chart - Template F I C V R R, 3-1 EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE: Airport Drainage, Federal Aviation Administration, 1965 j_ 1.8 (1.1-C) VD" FIGURE Rational Formula - Overland Time of Flow Nomograph San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end ofa drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits ofthe length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Tj values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) Element* DU/ Acre .5% 1% 2% 3% 5% 10% Element* DU/ Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com , 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited L 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General L 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 AE Feet .5000 .4000 .3000 -2000 -1000 -900 ^ 800 -TOO - 60(?>^ -500^, -400 -300 -200 • 100 •50 •40 •30 .20 '10 Tc Tc L AE EQUATION " V AE / Time of concentration (hours) Watercourse Distance (miles) Change in elevation along effective siope line (See Rgure 3-5) (feet) Tc Hours — 100 1-90 — 80 — 70 L \, MilM Fe«t \ ^1-\ - \ 0.5- 4000 3000 N -2000 — 1800 — 1600 — 1400 1200 • 1000 ->900 800 700 — 600 -500 400 1—300 • 200 AE SOURCE; California Division of Highways (1941) and Kirpich (1940) Minutes — 240 •180 • 120 -60 -50 •40 • 30 -20 — 10 — 16 — 14 — 12 •10 —9 —8 — 7 — 6 — 4 —3 Tc Nomograpii for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds FIGURE SECTION 3 100 Yr. Existing Hydrologic Calcuiations (See Exhibit 'A') San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2 003 hydrology manual Rational Hydrology Study Date: 01/19/15 Rancho Costera -Existing Double 8'x4' RCB East of Kelly Drive & ECR Existing Condition Study Rancho Costera Basin E-F G:\101307\Hydrology\B MapVelcaminorcb.out ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 502.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A - 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value - 0.52 0 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 324.000(Ft.) Lowest elevation = 320.000(Ft.) Elevation difference = 4.000(Ft.) Slope = 4.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.00 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.58 minutes TC = [1.8* (1.1-C) *distance(Ft. )-^.5) / (% slope" (1/3) ] TC = [1.8* (1.1-0.5200)*( 100.000".5)/{ 4.000^(1/3)]= 6.58 Rainfall intensity (I) = 5.740(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.298(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 320.000(Ft.) End of street segment elevation - 260.000(Ft.) Length of street segment = 1400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 13.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) (v/hz) 0.020 0.0150 0.0150 Slope from curb to property line Gutter width = 1.500(Ft.) Gutter hike from flowline ^ 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.338(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel; Halfstreet flow width = 10.043(Ft.) Flow velocity = 4.62{Ft/s) Travel time = 5.05 min. TC = 11.63 min. Adding area flow to street Rainfall intensity (I) = 3, Decimal fraction soil group A = Decimal fraction soil group B = 0.000 0.000 1.000 10.266(CFS) 4.620(Ft/s) 975(In/Hr) for a 0.000 100.0 year storm Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity = 3.975(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 5.044 Subarea runoff = 19.750(CFS) for 9.600(Ac.) Total runoff = 20.049(CFS) Total area = 9.700(Ac.) Street flow at end of street - 20.049(CFS) Half street flow at end of street = 10.024(CFS) Depth of flow = 0.401(Ft.), Average velocity = 5.417(Ft/s) Flow width (from curb towards crown)= 13.222(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 506.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 266.902(CFS) Depth of flow = 0.521(Ft.), Average velocity = 4.993 (Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 1 2 3 4 Manning's 'N' 'X' coordinate 0.00 60.00 140.00 200.00 friction factor = 'Y' coordinate 30.00 0.00 0.00 30.00 0.035 Sub-Channel flow = 212.606(CFS) flow top width = 82.084(Ft. velocity= 5.035(Ft/s) area = 42.224(Sq.Ft) ' ' Froude number - 1.23 7 Information entered for subchannel number 2 : Point number 1 2 3 4 Manning's 'N' 'X' coordinate 0.00 90.00 110.00 200.00 friction factor = 'Y' coordinate 30.00 0.00 0.00 30.00 0.035 Sub-Channel flow = 54.296(CFS) flow top width = 23.126(Ft. velocity= 4.833(Ft/s) area = 11.235(Sq.Ft) Froude number = 1.222 Upstream point elevation = 260.000(Ft.) Downstream point elevation = 57.720(Ft.) Flow length = 5900.000(Ft.) Travel time = 19.70 min. Time of concentration = 31.32 min. Depth of flow = 0.521(Ft.) Average velocity = 4.993(Ft/s) Total irregular channel flow = 266. Irregular channel normal depth above Average velocity of channel(s) = 4. Adding area flow to channel Rainfall intensity (I) = 2.098(In/Hr) for a User specified 'C value of 0.480 given for subarea Rainfall intensity = 2.098(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q-KCIA) is C = 0.481 CA = 244.900 Subarea runoff = 493.647(CFS) for 499.700(Ac.) . 902(CFS) invert elev. 993 (Ft/s) 0.521 (Ft.) 100.0 year storm Total runoff = Depth of flow : 513.696(CFS) Total area = 0.770(Ft.), Average velocity 509.400(Ac.) 6.423(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 508.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = Downstream point elevation = Channel length thru subarea Channel base width = £ Slope or 'Z' of left channel Slope or 'Z' of right channel Manning's 'N' = 0.013 Maximum depth of channel = Flow(q) thru subarea = 513 Depth of flow = 4.443(Ft.), Channel flow top width = 8 Flow Velocity = 14.45(Ft/s) Travel time = 0.12 min. Time of concentration = 31 Critical depth = 5.063 57.720(Ft.) 57.080(Ft.) 108.000(Ft. .000(Ft.) bank = 0.000 bank -0.000 5.000(Ft.) , 696 (CFS) Average velocity - ,000(Ft.) 45 min. Ft. ) 14.453(Ft/s) ++++++++++++++++++++++++++++++++++++++++4-+++++++++++++++++++++^ Process from Point/Station 506.000 to Point/Station 508.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 509.400(Ac.) Runoff from this stream = 513.696(CFS) Time of concentration = 31.45 min. Rainfall intensity = 2.092(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 190.000(Ft.) Lowest elevation = 180.000(Ft.) 20.000(Ft. Elevation difference = 10.000(Ft.) Slope = 50.000 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*{l.l-0.3500)*( 100.000^.5)/( 30.000^(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 508.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 180.000(Ft.) Downstream point elevation = 57.000(Ft.) Channel length thru subarea = 750.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 23.367(CFS) Manning's 'N' =0.03 5 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 23.367(CFS) Depth of flow = 0.838(Ft.), Average velocity = 10.426(Ft/s) Channel flow top width = 4.3 51(Ft.) Flow Velocity = 10.43(Ft/s) Travel time = 1.2 0 min. Time of concentration = 5.54 min. Critical depth = 1.313(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.409(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6.409(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 7.245 Subarea runoff = 46.194(CFS) for 20.600(Ac.) Total runoff = 46.434(CFS) Total area = 20.700(Ac.) Depth of flow = 1.140(Ft.), Average velocity = 12.412(Ft/s) Critical depth = 1.781(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 508.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 20.700(Ac.) Runoff from this stream = 46.434(CFS) Time of concentration = 5.54 min. Rainfall intensity = 6.409(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2; 513 .696 46 .434 1.000 0.326 1.000 1.000 31.45 5.54 1.000 * 1.000 * 0.176 * 1.000 * 513.696) 46.434) 513.696) 46 .434) 2 .092 6.409 + + = 528.854 136.990 Total of 2 main streams to confluence: Flow rates before confluence point: 513.696 46.434 Maximum flow rates at confluence using above data: 528.854 136.990 Area of streams before confluence: 509.400 20.700 Results of confluence: Total flow rate = 528.854(CFS) Time of concentration = 31.447 min. Effective stream area after confluence = 530.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 510.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.148(Ft.), Average velocity = ******* Irregular Channel Data *********** 4.502(Ft/s) Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 4.00 0.00 3 104.00 0.00 4 108.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 528.855(CFS) flow top width = 104.593(Ft.) velocity= 4.502(Ft/s) area = 117.468(Sq.Ft) Froude nuinber = 0.749 Upstream point elevation = 57.080(Ft.) Downstream point elevation = 50.000(Ft.) Flow length = 730.000(Ft.) Travel time = 2.70 min. Time of concentration = 34.15 min. Depth of flow = 1.148(Ft.) Average velocity = 4.502(Ft/s) Total irregular channel flow = 528.854(CFS) Irregular channel normal depth above invert elev. = 1.148(Ft, Average velocity of channel(s) = 4.502(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 510.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 530.100(Ac.) Runoff from this stream = 528.854(CFS) Time of concentration = 34.15 min. Rainfall intensity = 1.984(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 514.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity (I) = 2.458(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 24.49 min. Rain intensity = 2.46(In/Hr) Total area = 115.070(Ac.) Total runoff = 137.250(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 514.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 115.070(Ac.) Runoff from this stream = 137.250(CFS) Time of concentration = 24.49 min. Rainfall intensity 2.458(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 518.000 to Point/Station 514.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** 0.000 0.000 0 .000 1.000 ] Decimal fraction soil group A = Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Painfall intensity (I) = User specified values are as follows: TC = 14.96 min. Rain intensity = 3.38(In/Hr) Total area = 56.590(Ac.) Total runoff = 98.630(CFS) 3.378(In/Hr) for a 100.0 year storm +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 518.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 56.590(Ac.) Runoff from this stream = 98.630(CFS) Time of concentration = 14.96 min. Rainfall intensity = 3.378(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 137 .250 98 .630 Qmax(1) = 1.000 0.728 Qmax(2) = 1.000 1.000 24.49 14.96 1.000 * 1.000 * 0.611 * 1.000 * 2 .45S 3 .37? 137.250) + 98.630) + 137.250) 98.630) + + 209.020 182.471 Total of 2 streams to confluence: Flow rates before confluence point: 8 137.250 98.630 Maximum flow rates at confluence using above data: 209.020 182.471 Area of streams before confluence: 115.070 56.590 Results of confluence: Total flow rate = 209.020(CFS) Time of concentration = 24.490 min. Effective stream area after confluence = 171.660(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 510.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.721(Ft.), Average velocity = 7.716(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 3.00 2 10.00 0.00 3 20.00 0.00 4 30.00 3.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 209.020(CFS) flow top width = 21.475(Ft.) velocity= 7.716(Ft/s) area = 27.088(Sq.Ft) ' ' Froude number = 1.211 Upstream point elevation = 70.000(Ft.) Downstream point elevation = 50.000(Ft.) Flow length = 800.000(Ft.) Travel time = 1.73 min. Time of concentration = 2 6.22 min. Depth of flow = 1.721(Ft.) Average velocity = 7.716(Ft/s) Total irregular channel flow = 209.020(CFS) Irregular channel normal depth above invert elev. = 1.721(Ft.) Average velocity of channel(s) = 7.716(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 510.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 171.660(Ac.) Runoff from this stream = 209.020(CFS) Time of concentration = 2 6.22 min. Rainfall intensity = 2.353(In/Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 511.000 to Point/Station 511.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 70.000(Ft.) Highest elevation = 196.600(Ft.) Lowest elevation = 190.000(Ft.) Elevation difference = 6.600(Ft.) Slope = 9.429 % Top of Initial Area Slope adjusted by User to 9.400 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 9.40 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.40 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0 .3500)* { 100.000^.5)/( 9.400" (1/3)]= 6.40 Rainfall intensity (I) = 5.844(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.2 05(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 511.000 to Point/Station 510.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 190.000(Ft.) Downstream point elevation = 50.000(Ft.) Channel length thru subarea = 450.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 10.987(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 10.987(CFS) Depth of flow = 0.504(Ft.), Average velocity = 10.867(Ft/s) Channel flow top width = 3.015(Ft.) Flow Velocity = 10.87(Ft/s) Travel time = 0.69 min. Time of concentration = 7.09 min. Critical depth = 0.914(Ft.) 10 100.0 year storm Adding area flow to channel Rainfall intensity (I) = 5.470(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 5.470(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 3.962 Subarea runoff = 21.468(CFS) for 11.220(Ac.) Total runoff = 21.673(CFS) Total area = 11.320(Ac.) Depth of flow = 0.697(Ft.), Average velocity = 12.974(Ft/s) Critical depth = 1.266(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 511.000 to Point/Station 510.000 i: CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 11.320(Ac.) Runoff from this stream = 21.673(CFS) Time of concentration = 7.09 min. Rainfall intensity = 5.470(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1 Qmax(2) Qmax(3 ] 528.854 209 .020 21.673 1.000 0.843 0 .363 1.000 1.000 0.430 1.000 1.000 1.000 34.15 26.22 7 .09 1.000 * 1.000 * 1.000 * 0.768 * 1.000 * 1.000 * 0.208 * 0.270 * 1.000 * 528.854 209.020 21.673 528.854 209.020 21.673 528.854 209.020 21.673 1.984 2 .353 5.470 + + + = + + + = + + + = 712.973 624.362 187.923 Total of 3 main streams to confluence; Flow rates before confluence point: 528.854 209.020 21.673 11 Maximum flow rates at confluence using above data: 712.973 624.362 187.923 Area of streams before confluence: 530.100 171.660 11.320 Results of confluence: Total flow rate = 712.973(CFS) Time of concentration = 34.150 min. Effective stream area after confluence = 713.080(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 520.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.196(Ft.), Average velocity = 5.822(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 4.00 0.00 3 104.00 0.00 4 108.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 712.973(CFS) flow top width = 104.784(Ft.) velocity= 5.822(Ft/s) area = 122.461(Sq.Ft) Froude number = 0.949 Upstream point elevation = 50.000(Ft.) Downstream point elevation = 42.000(Ft.) Flow length = 520.000(Ft.) Travel time = 1.49 min. Time of concentration = 35.64 min. Depth of flow = 1.196(Ft.) Average velocity = 5.822(Ft/s) Total irregular channel flow = 712.973(CFS) Irregular channel normal depth above invert elev. = 1.196 (Ft.) Average velocity of channel(s) = 5.822 (Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 520.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 713.080(Ac.) Runoff from this stream = 712.973(CFS) Time of concentration = 3 5.64 min. 12 Rainfall intensity = 1.930(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++4-+++++++++++++++++++++++++++^ Process from Point/Station 522.000 to Point/Station 520.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.950 given for subarea Rainfall intensity (I) = 3.164(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 16.56 min. Rain intensity = 3.16(In/Hr) Total area = 11.520(Ac.) Total runoff = 20.200(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 522.000 to Point/Station 520.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11.520(Ac.) Runoff from this stream = 20.200(CFS) Time of concentration = 16.56 min. Rainfall intensity = 3.164(In/Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 524.000 to Point/Station 526.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 236.000(Ft.) Lowest elevation = 225.000(Ft.) Elevation difference = 11.000(Ft.) Slope = 11.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 11.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.07 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.3500)*( 100.000".5)/( 11.000"(1/3)]= 6.07 Rainfall intensity (I) = 6.045{In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 13 Subarea runoff = 0.212(CFS) Total initial stream area = 0.100(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 526.000 to Point/Station 528.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 225.000(Ft.) Downstream point elevation = 50.000(Ft.) Channel length thru subarea = 970.000(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 1.413(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.413(CFS) Depth of flow = 0.068(Ft.), Average velocity = 6.807(Ft/s) Channel flow top width = 3.135(Ft.) Flow Velocity = 6.81(Ft/s) Travel time = 2.38 min. Time of concentration = 8.45 min. Critical depth = 0.188(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.885(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.885(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.518 Subarea runoff = 2.319(CFS) for 1.380(Ac.) Total runoff = 2.531(CPS) Total area = 1.480(Ac.) Depth of flow = 0.096(Ft.), Average velocity = 8.508(Ft/s) Critical depth = 0.273(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 528.000 to Point/Station 528.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 4.885(In/Hr) for a 100.0 year storm User specified 'C value of 0.950 given for subarea Time of concentration = 8.45 min. Rainfall intensity = 4.885(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.779 CA = 4.042 Subarea runoff = 17.218(CFS) for 3.710(Ac.) 14 Total runoff = 19.748(CFS) Total area = 5.190(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 528.000 to Point/Station 530.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 50.000(Ft.) Downstream point/station elevation = 46.000(Ft.) Pipe length = 110.00(Ft.) Slope = 0.0364 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.748(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 19.748(CFS) Normal flow depth in pipe = 9.59(In.) Flow top width inside pipe = 31.82(In.) Critical Depth = 17.11(In.) Pipe flow velocity = 13.07(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 8.59 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 530.000 to Point/Station 520.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.614(Ft.), Average velocity = 3.790(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 4.00 2 8.00 0.00 3 16.00 4.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 19.748(CFS) flow top width = 6.456(Ft.) velocity= 3.790 (Ft/s) area = 5.210(Sq.Ft) Froude number = 0.744 Upstream point elevation = 46.000(Ft.) Downstream point elevation = 42. 000(Ft.) Flow length = 325.000 (Ft.) Travel time = 1.43 min. Time of concentration = 10.01 min. Depth of flow = 1.614(Ft.) Average velocity = 3.790(Ft/s) Total irregular channel flow = 19.748 (CFS) Irregular channel normal depth above invert elev. = 1.614(Ft.) Average velocity of channel(s) = 3.790(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 15 Process from Point/Station 530.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 520.000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.190(Ac.) Runoff from this stream = 19.748(CFS) Time of concentration = 10.01 min. Rainfall intensity = 4.377(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) 712.973 20.200 19.748 1.000 0.610 0 .441 Qmax(2) = Qmax(3; 1.000 1.000 0.723 1.000 1.000 1.000 35.64 16.56 10.01 1.000 * 1.000 * 1.000 * 0.465 * 1.000 * 1.000 * 0.281 * 0.605 * 1.000 * 1.930 3 .164 4.377 712.973 20 .200 19 .748 712.973 20.200 19.748 712 .973 20 .200 19.748 + + + + + + + + + 734.003 365.774 232 .317 Total of 3 main streams to confluence: Flow rates before confluence point: 712.973 20.200 19.748 Maximum flow rates at confluence using above data; 734.003 365.774 232.317 Area of streams before confluence: 713.080 11.520 5.190 Results of confluence: Total flow rate = 734.003(CFS) Time of concentration = 35.638 min. Effective stream area after confluence 729.790(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 523.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = Downstream point elevation = Channel length thru subarea 42.000(Ft.) 40.000(Ft.) 108.000(Ft. 16 Channel base width = 16.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.013 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 734.003(CFS) Depth of flow = 2.100(Ft.), Average velocity = 21.840(Ft/s) Channel flow top width = 16.000(Ft.) Flow Velocity = 21.84(Ft/s) Travel time = 0.08 min. Time of concentration = 3 5.72 min. Critical depth = 4.031(Ft.) End of computations, total study area = 729.790 (Ac.) 17 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Hydrology Study Date: 08/25/55 Robertson Ranch West Drainage Study Existing Conditions - Basin 'G' J.N. 011014 File:RRWESTEXISTG ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year'is " "lo'o'o' English (m-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4 300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Process from Pomt/Station 200.000 to Point/Station ++++++++++++++++++++++++++++++ INITIAL AREA EVA^UAflGN '° Point/Station 202.000 Decimal fraction soil group A = 0.000 ~ " Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1000 [UNDISTURBED NATURAL TERRAIN i (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 2320.000(Ft ) Highest elevation = 211.000(Ft.) Lowest elevation = 72.000(Ft.) Elevation difference = 139.000(Ft.) Slope = 5 991 % °f Initial Area Slope adjusted by User to 3 000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS•' The maximum overland flow distance is 100 00 (Ft) plr^L^'-Opirspl^r °' ^ ^-»l=P-„t type of In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.36 minutes lr ' Ji* <^-^-^'*d^^tance(Ft.)-.5)/(% slope" (1/3)] Jh/'^ ; 100.000".5)/( 3 000" 1/3)J= 9 36 The initial area total distance of 2320.00 (Ft ) entered remaining distance of 2220.00 (Ft.) entered leaves Page 1 of 4 Using Figure 3-4, the travel time for this distance is 8.71 minutes for a distance of 2220.00 (Ft.) and a slope of 5.99 % with an elevation difference of 133.00(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 8.709 Minutes Tt=[(11.9*0.4205"3)/(133.00)]".385= 8.71 Total initial area Ti = 9.36 minutes from Figure 3-3 formula plus 8.71 minutes from the Figure 3-4 formula = 18.07 minutes Rainfall intensity (I) = 2.991(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 39.666(CFS) Total initial stream area = 37.890(Ac.) 4- + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ^ + ^.^.^^^^^^ Process from Point/Station 202.000 to Point/Station 210 000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.648(Ft.), Average velocity = 5.310(Pt/s) ' ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 5.50 0.00 3 11.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 39.666(CFS) - ' ' flow top width = 9.065(Pt.) ' velocity= 5.310(Ft/s) ' ' area = 7.470(Sq.Ft) ' ' Proude number = 1.031 Upstream point elevation = 72.000(Pt.) Downstream point elevation = 62.500(Pt.) Plow length = 432.000(Ft.) Travel time = 1.36 min. Time of concentration = 19.42 min. Depth of flow = 1.648(Pt.) Average velocity = 5.310(Pt/s) Total irregular channel flow = 39.666(CPS) Irregular channel normal depth above invert elev. = 1.648(Ft.) Average velocity of channel(s) = 5.310(Pt/s) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + Process from Point/Station 202.000 to Point/Station 210 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 37.890(Ac.) Runoff from this stream = 39.666(CFS) Time of concentration = 19.42 min. Rainfall intensity = 2.855(In/Hr) + + + + + + + + + ++ + + + + + + + + + + + + ^.^^.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^ Process from Point/Station 212.000 to Point/Station 210 000 **** INITIAL AREA EVALUATION **** Page 2 of 4 Decimal fraction soil group A = 0.000 ~ ~ ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 1770 . 000(Pt.) Highest elevation = 223.000(Ft.) Lowest elevation = 68.000(Ft.) Elevation difference = 155.000(Ft.) Slope = 8.757 % Top of Initial Area Slope adjusted by User to 5.000 % Bottom of Initial Area Slope adjusted by User to 8 867 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100 00 (Ft) for the top area slope value of 5.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.89 minutes TC = [l.a*(l.l-C)*distance(Pt.)".5)/(% 3lope"(l/3)l TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 5 . OOO" (1/3)]= 7 89 The initial area total distance of 1770.00 (Ft.) entered leaves a remaining distance of 1670.00 (Ft ) Using Figure 3-4 the travel time for this distance is 6.01 minutes for a distance of 1670.00 (Ft.) and a slope of 8 87 % mi*r^nathrMff"^w7'^T °' 148.08 (Pt.) from the end of the top area Tt - [11 9*length(Mi) 3)/(elevation change(Ft.))]".385 *60(min/hr) \ j^j^ = 6.014 Minutes Tt=[(11.9*0.3163"3)/{148.08)]".385= 6 01 Total initial area Ti = 7.89 minutes from Figure 3-3 formula plus 6.01 minutes from the Figure 3-4 forraula = 13 91 minutes Rainfall intensity (I) = 3.541(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0 350 Subarea runoff = 25.914(CPS) Total initial stream area = 20.910(Ac.) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Process from Pomt/Station 212.000 to Point/Station 21^ ^^^ CONFLUENCE OP MINOR STREAMS •*** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 20.910(Ac.) Runoff from this stream = 25.914(CPS) Time of concentration = 13.91 min. Rainfall intensity = 3.541(In/Hr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 39.666 19.42 2 25.914 13.91 Qmax(1) Qmax{2) Rainfall Intensity (In/Hr) 2 .855 3 .541 1.000 * 1.000 * 39.666) + 0.806 * 1.000 * 25.914) + = 60.558 Page 3 of 4 1.000 * 0.716 * 39.666) + 1.000 * 1.000 * 25.914) + = 54.317 Total of 2 streams to confluence: Flow rates before confluence point: 39.666 25.914 Maximum flow rates at confluence using above data- 60.558 54.317 Area of streams before confluence: 37.890 20.910 Results of confluence: Total flow rate = 60.558(CPS) Time of concentration = 19.425 min. Effective stream area after confluence = 58.800(Ac.) End of computations, total study area = 58.800 (Ac.) Page 4 of 4 BASIN H EXISTING CONDITION San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 04/03/13 Robertson Ranch West Vesting Tentative Map Existing Condition - Basin H JN 101307 File: G:\l013 07\Hydrology\VestingTM\RRWESTEXISTH.out ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++++++++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.3 50 Initial subarea total flow distance = 740.000(Ft.) Highest elevation = 318.000 (Ft.) Lowest elevation = 198.000(Ft.) Elevation difference = 120.000(Ft.) Slope = 16.216 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)*( 100.000".5)/( 30 . GOO" (1/3)]= 4.34 The initial area total distance of 740.00 (Ft.) entered leaves a remaining distance of 640.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.28 minutes for a distance of 640.00 (Ft.) and a slope of 16.22 % with an elevation difference of 103.78(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 2.278 Minutes Tt=[(11.9*0.1212"3)/{103.78)]".3B5= 2.28 Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus 2.28 minutes from the Figure 3-4 formula = 6.62 minutes Rainfall intensity (I) = 5.715(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 14.541(CFS) Total initial stream area = 7.270(Ac.) 4- + 4- + + 4- + 4- + 4- + + + + 4- + + + 4-4-4-4- + + + 4-4- + 4- + + 4- + 4- + 4- + 4-4- + +4 + + + 4- + + + 4- + 4- + + + + 4-4-4 + + 44 + + + + + + + Process from Point/Station 100.000 to Point/Station 102.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.270(Ac.) Runoff from this streara = 14.541(CFS) Time of concentration = 6.62 min. Rainfall intensity = 5.715(In/Hr) 4- + 44-44-4 + 44- + + 44 + 4 + + + + 4- + + + 4- + + + + + + + + + + +4-444-4 + + 44-4-4 + 4-4- + 4- + 4- + + 4- + 4- + + +4- + + + 4 + + 4 Process from Point/Station 104.000 to Point/Station 104.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.700 given for subarea Rainfall intensity (I) = 3.248(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.90 min. Rain intensity = 3.25(In/Hr) Total area = 22.550(Ac.) Total runoff = 47.400(CFS) + + 4-4- + 4- + 4-+4-4- + 4-4-4- + 4-4-4- + + + + + + 4-4- + 4- + + 4-4- + ++4-4-4-4-4-4- + + + 4- + 4- + + +4- + + ++ + + + +4- + + +4-4-4 + 4 + Process from Point/Station 104.000 to Point/Station 102.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.437(Ft.), Average velocity = 7.093(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 35.00 0.00 Manning's 'N' 70.00 friction factor 1.00 0 . 035 Sub-Channel flow = 47.400(CFS) ' ' flow top width = 30.588(Ft. ' ' velocity= 7.093(Ft/s) ' ' area = 6.683(Sq.Ft) ' ' Froude number = 2.674 Upstream point elevation = 285.000(Ft.) Downstream point elevation = 198.000(Ft.) Flow length = 410.000(Ft.) Travel time = 0.96 min. Time of concentration = 16.86 min. Depth of flow = 0.437(Ft.) Average velocity = 7.093(Ft/s) Total irregular channel flow = 47.400(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 7.093(Ft/s) 0.437(Ft. 4 + + 4-44-444-+ + + + 4- + + + 4- + + + + + 4- + + + 4- + 4-4 + + + + 4- + + 4-4 + + + + + + 4- + + + +4- + + + + + + + + + + + + + + 4 + + 4- Process from Point/Station 104.000 to Point/Station 102.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 2 Stream flow area = 22.550(Ac.) Runoff from this stream = 47.400(CFS) Time of concentration = 16.86 min. Rainfall intensity = 3.127(In/Hr) Summary of streara data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) Qmax(2) 14 .541 47 .400 Qmax(1) = 1. 000 1.000 0 .547 1. 000 6 .62 16 . 86 1.000 * 0.393 * 1.000 * 1.000 * 5 . 715 3 .127 14.541) + 47.400) + = 14.541) 4 47.400) 4- = 33.156 55.357 Total of 2 streams to confluence: Flow rates before confluence point: 14.541 47.400 Maximura flow rates at confluence using above data: 33.156 55.357 Area of streams before confluence: 7.270 22.550 Results of confluence: Total flow rate = 55.357(CFS) Time of concentration = 16.863 min. Effective stream area after confluence 29.820(Ac. + 4-4 + 4-4- + 4-444-4- + + + + 4-4- + 4-4- + + 4-4- + + + 44-4-4- + + 4- + 44-4- + 4- + 44-44 + 44-4-4-4-4-4-4 + 444444-4-44 + 44 + 4- Process from Point/Station 102.000 to Point/Station 106.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = Depth of flow = 0.969(Ft.), Average velocity = ******* Irregular Channel Data *********** Information entered for subchannel number 1 : 58.669(CFS) 8.332(Ft/s) Point number 1 2 3 Manning's 'N' 'X' coordinate 0 .00 15 . 00 30 . 00 friction factor = 'Y' coordinate 2 . 00 0 . 00 2 . 00 0 . 035 Sub-Channel flow = 58.670(CFS) ' ' flow top width = 14.534(Ft.) ' velocity= 8.332 (Ft/s) ' ' area = 7.041(Sq.Ft) ' ' Froude nuraber = 2.110 198.000(Ft. ) 181.000(Ft.) Upstream point elevation = Downstream point elevation Flow length = 166.000(Ft.) Travel time = 0.3 3 rain. Tirae of concentration = 17.20 rain. Depth of flow = 0.969(Ft.) Average velocity = 8.332(Ft/s) Total irregular channel flow = 58.669(CFS) Irregular channel norraal depth above invert elev. Average velocity of channel(s) = 8.332(Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.088(In/Hr) for Effective runoff coefficient used for total area (Q=KCIA) is C = 0.577 CA = 20.044 Subarea runoff = 6.544(CFS) for 4.900(Ac.) Total runoff = 61.901(CFS) Total area = 34.720(Ac.) Depth of flow = 0.989(Ft.), Average velocity = 8.444(Ft/s) 3.088(In/Hr) = 0.000 = 0 . 000 = 0.000 = 1.000 ] 0.969(Ft.) for a 100.0 year storra 100.0 year storra 4-4- + 4-44-44- + + 4 + + 4444-4-44-44-4444-444 + + + 4 + 444-4-+4 + + + + 4-4- + + 444-44-44-4-4444 + 4 + 4 + 44444 Process frora Point/Station 102.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara nuraber 1 Stream flow area = 34.72 0(Ac.) Runoff from this stream = 61.901(CFS) Time of concentration = 17.20 min. Rainfall intensity = 3.088(In/Hr) + 44-4-44-44- + 44-4- + 44-+44-4-+444- + 44-44- + 4-+44 + 4-44444-4 + + 44 + 4-44-4-44-44-44-44-4-444-4444444-4- Process frora Point/Station 108.000 to Point/Station 108.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.700 given for subarea Rainfall intensity (I) = 4.381(In/Hr) for a 100.0 year storra User specified values are as follows: TC = 10.00 min. Rain intensity = 4.38(In/Hr) Total area = 8.200(Ac.) Total runoff = 19.200(CFS) + + + + 4-4-44-44- + + 44-444- + 4-44-4444- + 44-44444-44-4 + 4-4-4 + + 4 + + 4- + + 4 + + 4 + 44-4 + 44-4 + 44 + + 4-4- + + 4 Process from Point/Station 108.000 to Point/Station 106.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.619(Ft.), Average velocity = 6.672(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 15.00 0.00 3 30.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 19.200(CFS) ' ' flow top width = 9.292(Ft.) velocity= 6.672(Ft/s) ' ' area = 2.878(Sq.Ft) ' ' Froude number = 2.113 Upstream point elevation = 212.000(Ft.) Downstream point elevation = 181.000(Ft.) Flow length = 260.000 (Ft.) Travel time = 0.65 min. Time of concentration = 10.65 min. Depth of flow = 0.619 (Ft.) Average velocity = 6.672(Ft/s) Total irregular channel flow = 19.200(CFS) Irregular channel normal depth above invert elev. = 0.619(Ft.) Average velocity of channel(s) = 6.672(Ft/s) 4-444- + 4- + 4-44-4-+44-4-44-4-444-4-4 + 44-4-4 + 4-44-4-444-4-4-4-4-44 + 4444-4-44-44-44-44-444-44444 ++4-444- Process from Point/Station 108.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 106.000 Along Main Streara number: 1 in normal stream nuraber 2 Stream flow area = 8.2 00(Ac.) Runoff from this stream = 19.200(CFS) Time of concentration = 10.65 rain. Rainfall intensity = 4.206(In/Hr) Suraraary of streara data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qraax(1) Qraax(2) 61.901 19.200 1. 000 0 .734 000 000 17 .20 10.65 1.000 * 1.000 * 0.619 * 1.000 * 3 . 088 4 .206 61.901) + 19.200) + 61.901) + 19.200) + 75.997 57.537 Total of 2 strearas to confluence: Flow rates before confluence point: 61.901 19.200 Maximum flow rates at confluence using above data: 75.997 57.537 Area of streams before confluence: 34.720 8.200 Results of confluence: Total flow rate = 75.997(CFS) Time of concentration = 17.195 min. Effective stream area after confluence = 42.920(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 110.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = Depth of flow = 1.039(Ft.), Average velocity = ******* Irregular Channel Data *********** 79.059(CFS) 7.328(Ft/s) Information entered for subchannel number 1 Point nuraber 1 2 3 Manning's 'N' 'X' coordinate 0.00 20.00 40 . 00 friction factor = 'Y' coordinate 2 . 00 0. 00 2 .00 0 . 035 Sub-Channel flow = 79.059(CFS) ' flow top width = 20.774(Ft. velocity= 7.328(Ft/s) area = 10.789(Sq.Ft) Froude number = 1.792 Upstream point elevation = 181.000(Ft.) Downstream point elevation = 155.500(Ft.) Flow length = 355.000(Ft.) Travel time = 0.81 min. Time of concentration = 18.00 min. Depth of flow = 1.039 (Ft.) Average velocity = 7.328(Ft/s) Total irregular channel flow = 79.059(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 7.328 (Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.998(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.998(In/Hr) for a Effective runoff coefficient used for total area (Q=KCIA) is C = 0.577 CA = 27.370 Subarea runoff = 6.062(CFS) for 4.530(Ac.) Total runoff = 82.059 (CFS) Total area = Depth of flow = 1.053(Ft.), Average velocity 1.039(Ft.) 100.0 year storm 100.0 year storm 47.450(Ac. 7.396(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 47.450(Ac.) Runoff from this stream = 82.059(CFS) Time of concentration = 18.00 min. Rainfall intensity = 2.998(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.550 given for subarea Rainfall intensity (I) = 3.373(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 3.37(In/Hr) Total area = 5.990(Ac.) Total runoff = 9.550(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 110.000 Depth of flow = 0.549(Ft.), Average velocity = 6.338(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 1 2 3 'X' coordinate 0 .00 10 .00 20 . 00 Manning's 'N' friction factor = 'Y' coordinate 2 . 00 0. 00 2 . 00 0 . 035 Sub-Channel flow = 9.550(CFS) ' ' flow top width = 5.489(Ft ' ' velocity= 6.338(Ft/s) area = 1.507(Sq.Ft) ' ' Froude number = 2.132 185.000(Ft.) 155.500(Ft.) Upstreara point elevation = Downstream point elevation = Flow length = 230.000(Ft.) Travel time = 0.60 min. Time of concentration = 15.60 min. Depth of flow = 0.549(Ft.) Average velocity = 6.338(Ft/s) Total irregular channel flow = 9.550(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 6.338(Ft/s) 0.549(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 2 Stream flow area = 5.990(Ac.) Runoff frora this stream = 9.550(CFS) Time of concentration = 15.60 min. Rainfall intensity = 3.288(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 82.059 9.550 1. 000 0 . 912 1. 1. 000 000 18 . 00 15.60 1.000 * 1.000 * 0.867 * 1.000 * 82 . 059) 9 . 550) 82 . 059) 9.550) 2 . 99f 3 .285 + + = 90.768 80.678 Total of 2 streams to confluence: Flow rates before confluence point: 82.059 9.550 Maximum flow rates at confluence using above data: 90.768 80.678 Area of streams before confluence: 47.450 5.990 Results of confluence: Total flow rate = 90.768(CFS) Time of concentration = 18.003 rain. Effective stream area after confluence = 53.440(Ac.) + + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + 4.4. + + ++4. + + + + + + + Process from Point/Station 110.000 to Point/Station 114.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 92.178(CFS) Depth of flow = 1.114(Ft.), Average velocity = 5.944(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 25.00 0.00 3 50.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 92.178(CFS) ' ' flow top width = 27.846(Ft.) ' ' velocity= 5.944 (Ft/s) area = 15.508(Sq.Ft) ' ' Froude number = 1.4 04 Upstream point elevation = 155.500(Ft.) Downstream point elevation = 125.000(Ft.) Flow length = 710.000 (Ft.) Travel time = 1.99 min. Time of concentration = 19.99 min. Depth of flow = 1.114(Ft.) Average velocity = 5.944(Ft/s) Total irregular channel flow = 92.178(CFS) Irregular channel normal depth above invert elev. = 1.114 (Ft.) Average velocity of channel(s) = 5.944(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.802(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.802(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.546 CA = 33.370 Subarea runoff = 2.736(CFS) for 7.730(Ac.) Total runoff = 93.503(CFS) Total area = 61.170(Ac.) Depth of flow = 1.120(Ft.), Average velocity = 5.965(Ft/s) 4+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream nuraber 1 Stream flow area = 61.170(Ac.) Runoff from this stream = 93.503(CFS) Time of concentration = 19.99 min. Rainfall intensity = 2.802(In/Hr) 4-44 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -(- + -)- + + + + + + + + + + + + + + + + + + + + + + + + + + + -,. Process frora Point/Station 116.000 to Point/Station 118.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 1175.000(Ft.) Highest elevation = 345.000(Ft.) Lowest elevation = 259.000(Ft.) Elevation difference = 86.000(Ft.) Slope = 7.319 % Top of Initial Area Slope adjusted by User to 5.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.00 %, in a developraent type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.89 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.3500)*( 100.000".5)/( 5 . OOO" (1/3)]= 7.89 The initial area total distance of 1175.00 (Ft.) entered leaves a remaining distance of 1075.00 (Ft.) Using Figure 3-4, the travel time for this distance is 4.61 minutes for a distance of 1075.00 (Ft.) and a slope of 7.32 % with an elevation difference of 78.68(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 4.613 Minutes Tt=[(11.9*0.2036"3)/( 78 . 68)]" . 385= 4.61 Total initial area Ti = 7.89 minutes frora Figure 3-3 forraula plus 10 4.61 rainutes frora the Figure 3-4 formula = 12.51 minutes Rainfall intensity (I) = 3.792(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.840(CFS) Total initial streara area = 2.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 114.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel Depth of flow = 0.570(Ft.), Average velocity = ******* Irregular Channel Data *********** 9.874(CFS) 6.068(Ft/s) Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 2 3 Manning's 'N' 0 . 00 10 . 00 20 . 00 friction factor = 2 .00 0.00 2 . 00 0 . 035 Sub-Channel flow = 9.874(CFS) ' ' flow top width = 5.705(Ft.) ' ' velocity= 6.068(Ft/s) area = 1.627(Sq.Ft) ' ' Froude number = 2.002 Upstream point elevation = 259.000(Ft.) Downstreara point elevation = 125.000(Ft.) Flow length = 1200.000(Ft.) Travel time = 3.3 0 min. Time of concentration = 15.80 rain. Depth of flow = 0.570(Ft.) Average velocity = 6.068(Ft/s) Total irregular channel flow = 9.874(CFS) Irregular channel norraal depth above invert elev. = 0.570(Ft.) Average velocity of channel(s) = 6.068 (Ft/s) Adding area flow to channel Rainfall intensity (I) = 3.261(In/Hr) for a 100.0 year storra Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.261(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 5.155 Subarea runoff = 13.972(CFS) for 12.590(Ac.) Total runoff = 16.812(CFS) Total area = 14.730(Ac.) Depth of flow = 0.696(Ft.), Average velocity = 6.931(Ft/s) 11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-+ Process from Point/Station 118.000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 2 Stream flow area = 14.73 0(Ac.) Runoff from this stream = 16.812(CFS) Time of concentration = 15.80 min. Rainfall intensity = 3.261(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qraax(1) 93 16 Qmax(2) = 503 812 1.000 * 0.859 * 000 000 19 . 99 15 .80 1.000 * 1.000 * 0.790 * 1.000 * 2 .802 3 .261 93.503) + 16.812) + 93.503) + 16.812) + 107 . 949 90 .720 Total of 2 streams to confluence: Flow rates before confluence point: 93 .503 16.812 Maximura flow rates at confluence using above data: 107.949 90.720 Area of strearas before confluence: 61.170 14.730 Results of confluence: Total flow rate = 107.949(CFS) Time of concentration = 19.994 min. Effective stream area after confluence = 75.900(Ac.) -f + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4444 + Process from Point/Station 114.000 to Point/Station 120.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 109.234(CFS) Depth of flow = 1.853(Ft.), Average velocity = 10.606(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 Point number 1 2 3 Manning's 'N' 'X' coordinate 0 .00 6 .00 12 .00 friction factor = 'Y' coordinate 2 . 00 0. 00 2 . 00 0 . 035 12 Sub-Channel flow = 109.234(CFS) ' ' flow top width = 11.117(Ft.) ' velocity= 10.606(Ft/s) area = 10.300(Sq.Ft) ' ' Froude number = 1.942 Upstream point elevation = 125.000(Ft.) Downstream point elevation = 93.500(Ft.) Flow length = 425.000 (Ft.) Travel time = 0.67 min. Time of concentration = 2 0.66 min. Depth of flow = 1.853(Ft.) Average velocity = 10.606(Ft/s) Total irregular channel flow = 109.234(CFS) Irregular channel normal depth above invert elev. = 1.853(Ft.) Average velocity of channel(s) = 10.606 (Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.743(In/Hr) for a 100.0 year storra Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.743(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.498 CA = 40.261 Subarea runoff = 2.499(CFS) for 4.960(Ac.) Total runoff = 110.447(CFS) Total area = 80.860(Ac.) Depth of flow = 1.861(Ft.), Average velocity = 10.635 (Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 80.860(Ac.) Runoff from this streara = 110.447(CFS) Tirae of concentration = 20.66 min. Rainfall intensity = 2.743(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 122.000 to Point/Station 122.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.550 given for subarea Rainfall intensity (I) = 4.726(In/Hr) for a 100.0 year storra User specified values are as follows: TC = 8.89 rain. Rain intensity = 4.73(In/Hr) Total area = 15.080(Ac.) Total runoff = 29.060(CFS) 13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 120.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.643(Ft.), Average velocity = 10.825 (Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 Point number 1 2 3 Manning's 'N' 'X' coordinate 0 .00 13 . 00 26 . 00 friction factor = 'Y' coordinate 2 . 00 0. 00 2 . 00 0 . 035 Sub-Channel flow = 29.060(CFS) ' flow top width = 8.355(Ft. ' ' velocity= 10.825(Ft/s) ' ' area = 2.685(Sq.Ft) ' ' Froude nuraber = 3.365 Upstream point elevation = 164.000(Ft.) Downstreara point elevation = 93.500(Ft.) Flow length = 235.000(Ft.) Travel time = 0.3 6 min. Time of concentration = 9.25 min. Depth of flow = 0.643(Ft.) Average velocity = 10.825(Ft/s) Total irregular channel flow = 29.060(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 10.825 (Ft/s) 0 . 643 (Ft. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 15.080(Ac.) Runoff from this stream = 29.060(CFS) Time of concentration = 9.25 min. Rainfall intensity = 4.606(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 110.447 20.66 2 29.060 9.25 Qmax(1) = 1.000 * 1.000 0.596 * 1.000 2 . 743 4 .606 110.447) + 29.060) + = 127.755 14 Qmax(2) = 1.000 * 0.448 * 110.447) + 1.000 * 1.000 * 29.060) + = 78.516 Total of 2 streams to confluence: Flow rates before confluence point: 110.447 29.060 Maximum flow rates at confluence using above data: 127.755 78.516 Area of streams before confluence: 80.860 15.080 Results of confluence: Total flow rate = 127.755(CFS) Time of concentration = 20.662 min. Effective stream area after confluence = 95.940(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+ Process from Point/Station 120.000 to Point/Station 124.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 137.047(CFS) Depth of flow = 2.577(Ft.), Average velocity = 8.254(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point nuraber 'X' coordinate 'Y' coordinate 1 0.00 4.00 2 10.00 0.00 3 20.00 4.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 137.047(CFS) flow top width = 12.885(Ft.) velocity= 8.254(Ft/s) area = 16.603(Sq.Ft) ' ' Froude number = 1.281 Upstream point elevation = 93.500(Ft.) Downstream point elevation = 68.500(Ft.) Flow length = 840.000 (Ft.) Travel time = 1.70 min. Time of concentration = 22.36 min. Depth of flow = 2.577(Ft.) Average velocity = 8.254(Ft/s) Total irregular channel flow = 137.047(CFS) Irregular channel normal depth above invert elev. = 2.577(Ft.) Average velocity of channel(s) = 8.254(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.607(In/Hr) for a 100.0 year storm Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 15 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.607(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.477 CA = 56.098 Subarea runoff = 18.501(CFS) for 21.550(Ac.) Total runoff = 146.256(CFS) Total area = 117.490(Ac.) Depth of flow = 2.641(Ft.), Average velocity = 8.390(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 124.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 117.490(Ac.) Runoff from this stream = 146.256(CFS) Time of concentration = 22.36 rain. Rainfall intensity = 2.607(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 126.000 to Point/Station 126.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.550 given for subarea Rainfall intensity (I) = 3.373(In/Hr) for a 100.0 year storra User specified values are as follows: TC = 15.00 min. Rain intensity = 3.37(In/Hr) Total area = 23.490(Ac.) Total runoff = 19.100(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 124.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.554(Ft.), Average velocity = 4.971(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 25.00 0.00 3 50.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 19.100(CFS) flow top width = 13.860(Ft.) velocity= 4.971(Ft/s) ' ' area = 3.842(Sq.Ft) ' ' Froude number = 1.664 16 Upstream point elevation = 150.000(Ft.) Downstream point elevation = 68.500(Ft.) Flow length = 1070.000 (Ft.) Travel time = 3.5 9 min. Time of concentration = 18.59 min. Depth of flow = 0.554(Ft.) Average velocity = 4.971(Ft/s) Total irregular channel flow = 19.100(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 4.971(Ft/s) 0.554(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 124.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 23.490(Ac.) Runoff from this stream = 19.100(CFS) Time of concentration = 18.59 rain. Rainfall intensity = 2.937(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 146 .256 19.100 Qraax(1) = Qraax(2) 1. 000 0 .888 1. 000 1. 000 22 .36 18 . 59 1.000 * 1.000 * 0.831 * 1.000 * 2 . 607 2 . 937 146.256) + 19.100) + 146.256) + 19.100) + 163 .211 140 .692 Total of 2 streams to confluence: Flow rates before confluence point: 146.256 19.100 Maximum flow rates at confluence using above data: 163.211 140.692 Area of streams before confluence: 117.490 23.490 Results of confluence: Total flow rate = 163.211(CFS) Time of concentration = 22.358 min. Effective stream area after confluence = 140.980(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 128.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated raean flow rate at midpoint of channel 169.152(CFS) 17 Depth of flow = 1.561(Ft.), Average velocity = ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 'X' coordinate 'Y' coordinate 4.627(Ft/s) 1 2 3 Manning's 'N' 0 .00 30 .00 60 . 00 friction factor = 2 .00 0.00 2 . 00 0 . 035 Sub-Channel flow = 169.152(CFS) ' ' flow top width = 46.837(Ft.) ' ' velocity= 4.627(Ft/s) area = 36.561(Sq.Ft) ' ' Froude nuraber = 0.923 68.500(Ft.) 40.000(Ft.) .227(In/Hr) for 0 . 000 0 . 000 0 . 000 1. 000 ] 1.561(Ft.) 100.0 year storm Upstream point elevation = Downstream point elevation = Flow length = 1720.000(Ft.) Travel time = 6.2 0 min. Tirae of concentration = 2 8.55 min. Depth of flow = 1.561(Ft.) Average velocity = 4.627(Ft/s) Total irregular channel flow = 169.152(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 4.627 (Ft/s) Adding area flow to channel Rainfall intensity (I) = Deciraal fraction soil group A Deciraal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.227(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.467 CA = 78.597 Subarea runoff = 11.793(CFS) for 27.370(Ac.) Total runoff = 175.004(CFS) Total area = 168.350(Ac.) Depth of flow = 1.581(Ft.), Average velocity = 4.666(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 128.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 168.350(Ac.) Runoff frora this stream = 175.004(CFS) Time of concentration = 28.55 min. Rainfall intensity = 2.227(In/Hr) 18 Program is now starting with Main Streara No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION **** = 1 0 . 000 0.000 0 . 000 000 Decimal fraction soil group A = Decimal fraction soil group B = Decimal fraction soil group C = Deciraal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.00 0 Sub-Area C Value = 0.350 Initial subarea total flow distance Highest elevation = 192.000(Ft.) Lowest elevation = 144.000(Ft.) Elevation difference = 48.000 (Ft.) Top of Initial Area Slope adjusted by User to 8.000 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) 280.000(Ft.) Slope = 17.143 8 . 00 in a development type of 6.75 minutes slope"(1/3)] 8.000" (1/3) 6 . 75 for the top area slope value of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( The initial area total distance of 280.00 (Ft.) entered leaves a remaining distance of 180.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.84 rainutes for a distance of 180.00 (Ft.) and a slope of 17.14 % with an elevation difference of 30.86(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.84 0 Minutes Tt=: [ (11. 9*0 . 0341"3) / ( 30 . 86) ] " . 385= 0.84 Total initial area Ti = 6.75 minutes from Figure 3-3 formula plus 0.84 rainutes frora the Figure 3-4 forraula = 7.59 minutes Rainfall intensity (I) = 5.234(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.081(CFS) Total initial stream area = 0.590(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara nuraber 1 Stream flow area = 0.590(Ac.) Runoff from this stream = 1.081(CFS) Time of concentration = 7.59 min. Rainfall intensity = 5.234(In/Hr) 19 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-++++++++++ Process from Point/Station 132.000 to Point/Station 132.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.550 given for subarea Rainfall intensity (I) = 2.801(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 20.00 min. Rain intensity = 2.80(In/Hr) Total area = 26.600(Ac.) Total runoff = 38.400(CFS) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4++ Process from Point/Station 132.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara number 2 Stream flow area = 26.600(Ac.) Runoff from this stream = 38.400 (CFS) Tirae of concentration = 2 0.00 rain. Rainfall intensity = 2.801(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 1. 081 38.400 1.000 1. 000 0 .535 1. 000 7 .59 20 . 00 1.000 * 0.379 * 1.000 * 1.000 * 5 .234 2 .801 1.081) + 38.400) + 1.081) + 38.400) + 15.653 38.978 Total of 2 streams to confluence: Flow rates before confluence point: 1.081 38.400 Maximura flow rates at confluence using above data: 15.653 38.978 Area of streams before confluence: 0.590 26.600 Results of confluence: Total flow rate = 38.978(CFS) Time of concentration = 20.000 min. Effective stream area after confluence = 27.190(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+++++++++ Process from Point/Station 132.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 20 stream flow area = 27.190(Ac.) Runoff from this streara = 38.978(CFS) Time of concentration = 20.00 min. Rainfall intensity = 2.801(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++4++++++++++++ Process from Point/Station 134.000 to Point/Station 132.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.550 given for subarea Rainfall intensity (I) = 3.610(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 13.50 min. Rain intensity = 3.61(In/Hr) Total area = 1.840(Ac.) Total runoff = 3.000(CFS) + + -(- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 44 + + Process frora Point/Station 134.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nuraber 2 Stream flow area = 1.840(Ac.) Runoff from this stream = 3.000(CFS) Time of concentration = 13.50 rain. Rainfall intensity = 3.610(In/Hr) Suraraary of streara data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qraax(1) 38 , 3 , 1 0 Qmax(2) = 1 1 978 000 , 000 ,776 , 000 , 000 20.00 13 .50 1.000 * 1.000 * 0.675 * 1.000 * 2 .801 3 .610 38.978) + 3.000) + 38.978) + 3.000) + 41.307 29.310 Total of 2 strearas to confluence: Flow rates before confluence point: 38.978 3.000 Maximura flow rates at confluence using above data: 41.307 29.310 Area of streams before confluence: 27.190 1.840 Results of confluence: Total flow rate = 41.307(CFS) Time of concentration = 20.000 min. Effective stream area after confluence = 29.030(Ac, 21 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 128.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 55.942(CFS) Depth of flow = 1.725(Ft.), Average velocity = 7.520(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 4.00 2 10.00 0.00 3 20.00 4.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 55.942(CFS) ' ' flow top width = 8.625(Ft.) ' ' velocity= 7.520(Ft/s) area = 7.439(Sq.Ft) ' ' Froude number = 1.42 7 Upstream point elevation = 144.000(Ft.) Downstream point elevation = 40.000(Ft.) Flow length = 2465.000(Ft.) Travel time = 5.4 6 min. Time of concentration = 25.46 min. Depth of flow = 1.725(Ft.) Average velocity = 7.520(Ft/s) Total irregular channel flow = 55.942(CFS) Irregular channel normal depth above invert elev. = 1.725(Ft.) Average velocity of channel(s) = 7.520(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.397(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.00 0 Sub-Area C Value = 0.350 Rainfall intensity = 2.397(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.434 CA = 29.415 Subarea runoff = 29.211(CFS) for 38.760(Ac.) Total runoff = 70.517(CFS) Total area = 67.790(Ac.) Depth of flow = 1.881(Ft.), Average velocity = 7.969 (Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 128.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: 22 In Main Stream number: 2 Stream flow area = 67.790(Ac.) Runoff from this stream = 70.517(CFS) Time of concentration = 25.46 rain. Rainfall intensity = 2.397(In/Hr) Summary of streara data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qraax(1) 175.004 70.517 1. 000 0 . 929 Qraax(2) 000 000 28 . 55 25.46 1.000 * 1.000 * 0.892 * 1.000 * 2 .227 2 .397 175.004) + 70.517) + 175.004) + 70.517) + 240 .499 226 . 578 Total of 2 main streams to confluence: Flow rates before confluence point: 175.004 70.517 Maximum flow rates at confluence using above data: 240.499 226.578 Area of streams before confluence: 168.350 67.790 Results of confluence: Total flow rate = 240.499(CFS) Time of concentration = 28.554 min. Effective streara area after confluence 236.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 140.000 **** SUBAREA FLOW ADDITION **** .227(In/Hr) for a 0 . 000 100.0 year storm Rainfall intensity (I) = 2 Decimal fraction soil group A = Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Tirae of concentration = 28.55 rain. Rainfall intensity = 2.227(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.451 CA = 113.377 Subarea runoff = 11.947(CFS) for 15.330(Ac.) Total runoff = 252.446 (CFS) Total area = 251.470 (Ac.) 23 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 140.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.303(Ft.), Average velocity = 2.975(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 100.00 0.00 3 200.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 252.446(CFS) ' flow top width = 130.280(Ft.) ' velocity= 2.975 (Ft/s) ' ' area = 84.865(Sq.Ft) ' ' Froude number = 0.65 0 Upstream point elevation = 40.000(Ft.) Downstreara point elevation = 36.000(Ft.) Flow length = 460.000(Ft.) Travel time = 2.5 8 min. Time of concentration = 31.13 min. Depth of flow = 1.303(Ft.) Average velocity = 2.975(Ft/s) Total irregular channel flow = 252.446(CFS) Irregular channel normal depth above invert elev. = 1.303(Ft.) Average velocity of channel(s) = 2.975(Ft/s) End of coraputations, total study area = 251.470 (Ac.) 24 SECTION 4 100 Yr. Proposed Hydrologic Calculations (See Exhibit 'B') San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 01/19/15 Rancho Costera Basin E-F Final B Map Design G:\101307\Hydrology\B MapXRCBasinEF.out JST ********* Hydrology Study Control Information *****•• Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5000.000 to Point/Station 5000.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.3 00 Sub-Area C Value = 0.52 0 Rainfall intensity (I) = 2.092(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 31.46 min. Rain intensity = 2.09(In/Hr) Total area = 509.400(Ac.) Total runoff = 512.740(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5000.000 to Point/Station 5000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 509.400(Ac.) Runoff from this stream = 512.740(CFS) Time of concentration = 31.46 min. Rainfall intensity = 2.092(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5001.000 to Point/Station 5002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 170.000(Ft.) Lowest elevation = 120.000(Ft.) Elevation difference = 50.000(Ft.) Slope = 50.000 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)*( 100.000".5)/( 30 . 000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5002.000 to Point/Station 5003.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 120.000(Ft.) Downstream point elevation = 63.000(Ft.) Channel length thru subarea = 470.000(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 3.259(CFS) Manning's 'N' =0.03 5 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 3.259(CFS) Depth of flow = 0.101(Ft.), Average velocity = 3.158(Ft/s) Channel flow top width = 10.405(Ft.) Flow Velocity = 3.16(Ft/s) Travel time = 2.48 min. Time of concentration = 6.83 min. Critical depth = 0.146(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.605(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.3 50 Rainfall intensity = 5.605(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 1.109 Subarea runoff = 5.979(CFS) for 3.070(Ac.) Totf'l runoff = 6.218 (CFS) Total area = 3.170 (Ac.) Depth of flow = 0.149(Ft.), Average velocity = 4.057(Ft/s) Critical depth = 0.227(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5003.000 to Point/Station 5004.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.000(Ft.) Downstream point/station elevation = 62.820(Ft.) Pipe length = 29.15(Ft.) Slope = 0.0062 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.218(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.218(CFS) Normal flow depth in pipe = 11.67(In.) Flow top width inside pipe = 17.19(In.) Critical Depth = 11.57(In.) Pipe flow velocity = 5.13(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 6.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5003.000 to Point/Station 5004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.170(Ac.) Runoff from this stream = 6.218(CFS) Time of concentration = 6.92 min. Rainfall intensity = 5.555(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+++++++ Process from Point/Station 5005.000 to Point/Station 5006.000 **** INITIAL AREA EVALUATION **** ] 100.000(Ft. Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = Highest elevation = 147.100(Ft.) Lowest elevation = 145.000(Ft.) Elevation difference = 2.100(Ft.) Slope = 2.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.66 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)*( 80.000".5)/( 2 .100" (1/3)]= 6.66 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 2 0.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 20.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.42(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.347 Minutes Tt=[(11.9*0.0038"3)/( 0.42)]".385= 0.35 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7.01 minutes Rainfall intensity (I) = 5.509(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.314 (CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5006.000 to Point/Station 5004.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 145.000(Ft.) End of street segment elevation = 70.730(Ft.) Length of street segment = 1010.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.500(Ft. Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 1.578(CFS) 4.446(Ft/s) for a 100.0 year storm Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft. Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.237(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 5. 024 (Ft.) Flow velocity = 4.45(Ft/s) Travel time = 3.79 min. TC = 10.80 min. Adding area flow to street Rainfall intensity (I) = 4.170(In/Hr) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Rainfall intensity = 4.170(In/Hr) for a Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.667 Subarea runoff = 2.467(CFS) for 1.070(Ac.) Total runoff = 2.781(CFS) Total area = Street flow at end of street = 2.781(CFS) Half street flow at end of street = 2.781(CFS) Depth of flow = 0.272(Ft.), Average velocity = 4.966(Ft/s Flow width (from curb towards crown)= 6.764(Ft.) 100.0 year storm 1.170(Ac.) +++++++++++++++++++++++++++++++++++++++++++++4+++++++++++++++4-++++++++ Process from Point/Station 5006.000 to Point/Station 5004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nimiber 2 Stream flow area = 1.170(Ac.) Runoff from this stream = 2.781(CFS) Time of concentration = 10.80 min. Rainfall intensity = 4.17 0(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1] 6.218 2 .781 1.000 * 6 .92 10.80 1.000 * 5.555 4.170 6.218) + 1.000 * 0.641 * 2.781) + = 8.001 Qmax(2) = 0.751 * 1.000 * 6.218) + 1.000 * 1.000 * 2.781) + = 7.448 Total of 2 streams to confluence: Flow rates before confluence point: 6.218 2.781 Maximum flow rates at confluence using above data: 8.001 7.448 Area of streams before confluence: 3.170 1.170 Results of confluence: Total flow rate = 8.001(CFS) Time of concentration = 6.92 0 min. Effective stream area after confluence = 4.340(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5004.000 to Point/Station 5007.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 62.490(Ft.) Downstream point/station elevation = 62.300(Ft.) Pipe length = 28.34(Ft.) Slope = 0.0067 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.001(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 8.001(CFS) Normal flow depth in pipe = 13.73(In.) Flow top width inside pipe = 15.31(In.) Critical Depth = 13.15(In.) Pipe flow velocity = 5.53(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 7.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5004.000 to Point/Station 5007.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 4.340(Ac.) Runoff from this stream = 8.001(CFS) Time of concentration = 7.01 min. Rainfall intensity = 5.511(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5009.000 to Point/Station 5011.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 147.100(Ft.) Lowest elevation = 145.000 (Ft.) Elevation difference = 2.100(Ft.) Slope = 2.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.66 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)*( 80.000".5)/( 2 .100" (1/3)]= 6.66 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 20.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.42(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.347 Minutes Tt=[(11.9*0.0038"3)/{ 0.42)]".385= 0.35 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7.01 minutes Rainfall intensity (I) = 5.509(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.314(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5011.000 to Point/Station 5007.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 145.000(Ft.) End of street segment elevation = 70.730 (Ft.) Length of street segment = 1010.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 1.500(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.32 8 (CFS) 10.91 min. for a 100.0 year storm Depth of flow = 0.227(Ft.), Average velocity = 4.322(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.525 (Ft.) Flow velocity = 4.32(Ft/s) Travel time = 3.90 min. TC = Adding area flow to street Rainfall intensity (I) = 4.143(In/Hr) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Rainfall intensity = 4.143(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.541 Subarea runoff = 1.929(CFS) for 0.850(Ac.) Total runoff = 2.243(CFS) Total area = 0.950(Ac.) Street flow at end of street = 2.243(CFS) Half street flow at end of street = 2.243 (CFS) Depth of flow = 0.258(Ft.), Average velocity = 4.751(Ft/s) Flow width (from curb towards crown)= 6.080(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5011.000 to Point/Station 5007.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.950(Ac.) Runoff from this stream = 2.243(CFS) Time of concentration = 10.91 min. Rainfall intensity = 4.143(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1; Qmax(2) 8 .001 2 .243 1.000 1.000 0.752 1.000 7 .01 10.91 1.000 * 0.642 * 1.000 * 1.000 * 8.001) 2 .243) 8.001) 2 .243) 5.511 4.143 + + = 9 .441 8.257 Total of 2 streams to confluence: Flow rates before confluence point: 8.001 2.243 Maximum flow rates at confluence using above data: 8 9.441 8.257 Area of streams before confluence: 4.340 0.950 Results of confluence: Total flow rate = 9.441(CFS) Time of concentration = 7.005 min. Effective stream area after confluence = 5.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5007.000 to Point/Station 5008.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.970(Ft.) Downstream point/station elevation = 61.800(Ft.) Pipe length = 25.56(Ft.) Slope = 0.0067 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.441(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.441(CFS) Normal flow depth in pipe = 12.16(In.) Flow top width inside pipe = 24.00(In.) Critical Depth = 13.18(In.) Pipe flow velocity = 5.91(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 7.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5008.000 to Point/Station 5000.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 61.800(Ft.) Downstream point elevation = 57.000(Ft.) Channel length thru subarea = 300.000{Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Manning's 'N' =0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 9.441(CFS) Depth of flow = 0.349(Ft.), Average velocity = 2.528(Ft/s) Channel flow top width = 11.396(Ft.) Flow Velocity = 2.53(Ft/s) Travel time = 1.98 min. Time of concentration = 9.05 min. Critical depth = 0.297(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5008.000 to Point/Station 5000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 stream flow area = 5.290(Ac.) Runoff from this stream = 9.441(CFS) Time of concentration = 9.05 min. Rainfall intensity = 4.670(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 512.740 9 .441 1.000 0 .448 Qmax(2) = 1.000 1.000 31.46 9 .05 1.000 * 1.000 * 0.288 * 1.000 * 512.7401 9.4411 2 .092 4 . 670 + + = 512.740) + 9.441) + 516 .968 157.021 Total of 2 main streams to confluence: Flow rates before confluence point: 512.740 9.441 Maxiraum flow rates at confluence using above data: 516.968 157.021 Area of streams before confluence: 509.400 5.290 Results of confluence: Total flow rate = 516.968(CFS) Time of concentration = 31.460 min. Effective stream area after confluence 514.690(Ac. ++++++++++++++++++++++++++++++++4-4++++++++++++++++++++++++++++++++++++ Process from Point/Station 5000.000 to Point/Station 5010.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = Depth of flow = 1.203(Ft.), Average velocity = ******* Irregular Channel Data *********** 526.194(CFS) 4.271(Ft/s) Information entered for subchannel number 1 Point number 1 2 3 4 Manning's 'N' 'X' coordinate 0 .00 4.00 104.00 108.00 friction factor = 'Y' coordinate 2.00 0.00 0.00 2.00 0 .035 Sub-Channel flow = 52 6.193(CFS) flow top width = 104.812(Ft. velocity= 4.271(Ft/s) area = 123.189(Sq.Ft) 10 Froude number = 0.694 Upstream point elevation = 57.000(Ft.) Downstream point elevation = 51.000(Ft.) Flow length = 730.000(Ft.) Travel time = 2.85 min. Time of concentration = 34.31 min. Depth of flow = 1.203(Ft.) Average velocity = 4.271(Ft/s) Total irregular channel flow = 52 6.194(CFS) Irregular channel normal depth above invert elev Average velocity of channel(s) = 4.271(Ft/s) Adding area flow to channel Rainfall intensity (I) = 1 group group group group 1.203(Ft.) A B C D 978(In/Hr) 0.000 0.000 0.000 1.000 for a 100.0 year storm Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 1.978(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.516 CA = 270.730 Subarea runoff = 18.520(CFS) for 10.070(Ac.) Total runoff = 535.489(CFS) Total area = 524.760(Ac.) Depth of flow = 1.216(Ft.), Average velocity = 4.301(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5000.000 to Point/Station 5010.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 524.760(Ac.) Runoff from this stream = 535.489(CFS) Time of concentration = 34.31 min. Rainfall intensity = 1.978(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5011.000 to Point/Station 5012.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 11 Sub-Area C Value = 0.350 Initial subarea total flow distance = 95.000(Ft.) Highest elevation = 169.500(Ft.) Lowest elevation = 140.000(Ft.) Elevation difference = 29.500(Ft.) Slope = 31.053 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 30.000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5012.000 to Point/Station 5013.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 140.000(Ft.) Downstream point elevation = 86.000(Ft.) Channel length thru subarea = 265.000(Ft.) Channel base width = 30.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.909(CFS) Manning's 'N' =0.03 5 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 1.909(CFS) Depth of flow = 0.033(Ft.), Average velocity = 1.951(Ft/s) Channel flow top width = 30.130(Ft.) Flow Velocity = 1.95(Ft/s) Travel time = 2.2 6 min. Time of concentration = 6.61 min. Critical depth = 0.050(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.722(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 5.722(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 12 (Q=KCIA) is C = 0.350 CA = 0.616 Subarea runoff = Total runoff = Depth of flow = Critical depth = 3.285{CFS) for 1.660(Ac.) 3.525 (CFS) Total area = 1.760(Ac.) 0.047(Ft.), Average velocity = 2.491(Ft/s) 0.075(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5013.000 to Point/Station 5017.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 102.56(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.525(CFS) Normal flow depth in pipe = 3.51(In.) Flow top width inside pipe = 14.26(In.) Critical Depth = 8.59(In.) Pipe flow velocity = 14.52(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 6.73 min. 1.000(Ft.) 64 .330(Ft.) 0.1625 Manning's N = 0.013 3.525(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5013.000 to Point/Station 5017.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.760(Ac.) Runoff from this stream = 3.525(CFS) Time of concentration = 6.73 min. Rainfall intensity = 5.657(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5015.000 to Point/Station 5016.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ] 56.000(Ft.) [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 120.000(Ft.) Lowest elevation = 92.000(Ft.) Elevation difference = 28.000(Ft.) Slope = 50.000 h Top of Initial Area Slope adjusted by User to 30.000 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: 13 The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.3500)*( 100.000".5)/( 30.000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++4-++++++++++++ Process from Point/Station 5016.000 to Point/Station 5017.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 92.000(Ft.) Downstream point elevation = 71.000(Ft.) Channel length thru subarea = 220.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of channel = 0.420(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.420(CFS) Depth of flow = 0.029(Ft.), Average velocity = 2.854(Ft/s) Channel flow top width = 5.145(Ft.) Flow Velocity = 2.85(Ft/s) Travel time = 1.2 8 min. Time of concentration = 5.63 min. Critical depth = 0.060 (Ft.) Adding area flow to channel Rainfall intensity (I) = 6.346(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6.346(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.087 Subarea runoff = 0.316(CFS) for 0.150(Ac.) Total runoff = 0.555 (CFS) Total area = 0.250(Ac.) Depth of flow = 0.034(Ft.), Average velocity = 3.186(Ft/s) Critical depth = 0.071 (Ft.) 14 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5016.000 to Point/Station 5017.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.250(Ac.) Runoff from this stream = 0.555(CFS) Time of concentration = 5.63 min. Rainfall intensity = 6.346(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax{11 Qmax(2) 3.525 0.555 1.000 0.891 000 000 6.73 5.63 1.000 * 1.000 * 0.837 * 1.000 * 5.657 6 .346 3.525) + 0.555) + = 3.525) + 0.555) 4 = 4.020 3.505 Total of 2 streams to confluence: Flow rates before confluence point: 3.525 0.555 Maximum flow rates at confluence using above data: 4.020 3.505 Area of streams before confluence: 1.760 0.250 Results of confluence: Total flow rate = 4.020(CFS) Time of concentration = 6.727 min. Effective stream area after confluence = 2.010(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5017.000 to Point/Station 5018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.000(Ft.) Downstream point/station elevation = 59.030(Ft.) Pipe length = 18.70(Ft.) Slope = 0.2 658 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.020(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.020(CFS) Normal flow depth in pipe = 3.32(In.) Flow top width inside pipe = 13.96(In.) Critical Depth = 9.21(In.) Pipe flow velocity = 17.96(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6.74 min. 15 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5018.000 to Point/Station 5010.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 60.000(Ft.) Downstream point elevation = 51.000(Ft.) Channel length thru subarea = 460.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 4.020(CFS) Depth of flow = 0.605(Ft.), Average velocity = 3.009(Ft/s) Channel flow top width = 3.419(Ft.) Flow Velocity = 3.01(Ft/s) Travel time = 2.55 min. Time of concentration = 9.2 9 min. Critical depth = 0.555(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5018.000 to Point/Station 5010.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 2 Stream flow area = 2.010(Ac.) Runoff from this stream = 4.020(CFS) Time of concentration = 9.2 9 min. Rainfall intensity = 4.593(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5020.000 to Point/Station 5022.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 PiO\^^ H-- Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity (I) = 2.458(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 24.49 min. Rain intensity = 2.46(In/Hr) Total area = 115.070(Ac.) Total runoff = 137.250(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 16 Process from Point/Station 5020.000 to Point/Station 5022.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 115.070(Ac.) Runoff from this stream = 137.250(CFS) Time of concentration = 24.49 min. Rainfall intensity = 2.458(In/Hr) ++++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5024.000 to Point/Station 5022.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 .r \ -r- Decimal fraction soil group B = 0.000 i^Oc^eL^ O Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.3 00 Sub-Area C Value = 0.52 0 Rainfall intensity (I) = 3.378(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 14.96 min. Rain intensity = 3.38(In/Hr) Total area = 56.590(Ac.) Total runoff = 98.630(CFS) ++++++++++++++++++++++++++4-+4+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5024.000 to Point/Station 5022.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 56.590(Ac.) Runoff from this stream = 98.630(CFS) Time of concentration = 14.96 min. Rainfall intensity = 3.378(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 137.250 24.49 2.458 2 98.630 14.96 3.378 Qmax(1) Qmax(2) 1.000 * 1.000 * 137.250) + 0.728 * 1.000 * 98.630) + = 209.020 1.000 * 0.611 * 137.250) + 1.000 * 1.000 * 98.630) + = 182.471 Total of 2 streams to confluence: Flow rates before confluence point: 17 137.250 98.630 Maximum flow rates at confluence using above data: 209.020 182.471 Area of streams before confluence: 115.070 56.590 Results of confluence: Total flow rate = 209.020(CFS) Time of concentration = 24.490 min. Effective stream area after confluence = 171.660(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++^.++++++^^^^^^^^^^^_^_^_^_^_i_ Process from Point/Station 5022.000 to Point/Station 5010.000 **** IRREGULAR CfiANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 210.107(CFS) Depth of flow = 1.788(Ft.), Average velocity = 7.363(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel nuraber 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 3.00 2 10.00 0.00 3 20.00 0.00 4 30.00 3.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 210.107(CFS) flow top width = 21.919(Ft.) velocity= 7.363(Ft/s) area = 28.534(Sq.Ft) ' ' Froude number = 1.137 Upstream point elevation = 70.000(Ft.) Downstream point elevation = 51.000(Ft.) Flow length = 870.000(Ft.) Travel time = 1.97 min. Time of concentration = 2 6.46 min. Depth of flow = 1.788(Ft.) Average velocity = 7.363(Ft/s) Total irregular channel flow = 210.107(CFS) Irregular channel normal depth above invert elev. = 1.788(Ft.) Average velocity of channel(s) = 7.363(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.339(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.339(In/Hr) for a 100.0 year storm 18 Effective runoff coefficient used for total area (Q=KCIA) is C = 0.517 CA = 90.264 Subarea runoff = 2.086(CFS) for 2.860(Ac.) Total runoff = 211.106(CFS) Total area = 174.520(Ac.) Depth of flow = 1.792(Ft.), Average velocity = 7.373(Ft/s) +++++++++++++++++++4++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5022.000 to Point/Station 5010.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 174.520(Ac.) Runoff from this stream = 211.106(CFS) Time of concentration = 26.46 min. Rainfall intensity = 2.339(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax{1) Qmax(2] Qmax(3] 535.489 4 .020 211.106 1.000 0 .431 0.846 1.000 1.000 1.000 1.000 0.509 1.000 34 .31 9.29 26.46 1.000 * 1.000 * 1.000 * 0.271 * 1.000 * 0.351 * 0.771 * 1.000 * 1.000 * 1.978 4.593 2 .339 535.489) + 4.020) + 211.106) + 535.489) + 4.020) + 211.106) + 535.489) + 4.020) + 211.106) + 715.757 223 .183 626.130 Total of 3 main streams to confluence: Flow rates before confluence point: 535.489 4.020 211.106 Maximum flow rates at confluence using above data: 715.757 223.183 626.130 Area of streams before confluence: 524.760 2.010 174.520 Results of confluence: Total flow rate = 715.757(CFS) Time of concentration = 34.308 min. Effective stream area after confluence = 701.290(Ac. 19 +++++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5010.000 to Point/Station 5010.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 1.978(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Time of concentration = 34.31 min. Rainfall intensity = 1.978(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.515 CA = 363.511 Subarea runoff = 3.246(CFS) for 5.180(Ac.) Total runoff = 719.003(CFS) Total area = 706.470(Ac.) +++++++++++++++++++++++4++++++++++++++++++++++++++++++++++++++++++++^+ Process from Point/Station 5010.000 to Point/Station 5034.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.160(Ft.), Average velocity = 6.055(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 4.00 0.00 3 104.00 0.00 4 108.00 2.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 719.004(CFS) flow top width = 104.642(Ft.) velocity= 6.055(Ft/s) area = 118.737(Sq.Ft) Froude number = 1.002 Upstream point elevation = 51.000(Ft.) Downstream point elevation = 42.000(Ft.) Flow length = 520.000(Ft.) Travel time = 1.43 min. Time of concentration = 35.74 min. Depth of flow = 1.160(Ft.) Average velocity = 6.055(Ft/s) Total irregular channel flow = 719.003(CFS) Irregular channel normal depth above invert elev. = 1.160(Ft.) Average velocity of channel(s) = 6.055(Ft/s) 20 ++++++4+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5010.000 to Point/Station 5034.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 706.470(Ac.) Runoff from this stream = 719.003(CFS) Time of concentration = 35.74 min. Rainfall intensity = 1.926(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5036.000 to Point/Station 5038.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISl'URBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 236.000(Ft.) Lowest elevation = 225.000(Ft.) Elevation difference = 11.000(Ft.) Slope = 11.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 11.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.07 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 11.000" (1/3)]= 6.07 Rainfall intensity (I) = 6.045(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.350 Subarea runoff = 0.212 (CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5038.000 to Point/Station 5040.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 225.000(Ft.) Downstream point elevation = 50.000(Ft.) Channel length thru subarea = 970.000(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 1.413(CFS) 21 Manning's 'N' =0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.413(CFS) Depth of flow = 0.068(Ft.), Average velocity = 6.807(Ft/s) Channel flow top width = 3.135(Ft.) Flow Velocity = 6.81(Ft/s) Travel time = 2.38 min. Time of concentration = 8.45 min. Critical depth = 0.188 (Ft.) Adding area flow to channel Rainfall intensity (I) = 4.885(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.885(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.518 Subarea runoff = 2.319(CFS) for 1.380(Ac.) Total runoff = 2.531(CFS) Total area = 1.480(Ac.) Depth of flow = 0.096(Ft.), Average velocity = 8.508(Ft/s) Critical depth = 0.273(Ft.) +++++++++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5040.000 to Point/Station 5040.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 4.885(In/Hr) for a 100.0 year storm User specified 'C value of 0.950 given for subarea Time of concentration = 8.45 min. Rainfall intensity = 4.885(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.763 CA = 3.615 Subarea runoff = 15.129(CFS) for 3.260(Ac.) Total runoff = 17.660(CFS) Total area = 4.740(Ac.) +++++++++++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5040.000 to Point/Station 5042 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46.400(Ft.) Downstream point/station elevation = 44.790(Ft.) Pipe length = 146.00(Ft.) Slope = 0.0110 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.660(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 17.660(CFS) Normal flow depth in pipe = 12.33(In.) Flow top width inside pipe = 34.17(In.) 22 Critical Depth = 16.12(In.) Pipe flow velocity = 8.26(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 8.74 min. ++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5040.000 to Point/Station 5042.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 4.740(Ac.) Runoff from this stream = 17.660(CFS) Time of concentration = 8.74 min. Rainfall intensity = 4.778(In/Hr) +++++++++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5044.000 to Point/Station 5046.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 71.000(Ft.) Lowest elevation = 66.000(Ft.) Elevation difference = 5.000(Ft.) Slope = 5.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.58 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 100.000".5)/( 5.000" (1/3)]= 5.58 Rainfall intensity (I) = 6.383(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.364(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5046.000 to Point/Station 5048.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 66.000(Ft.) Downstream point elevation = 56.000(Ft.) Channel length thru subarea = 430.000(Ft.) 23 Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 2.902(CFS) Manning's 'N' =0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.902(CFS) Depth of flow = 0.495(Ft.), Average velocity = 2.944(Ft/s) Channel flow top width = 2.981(Ft.) Flow Velocity = 2.94 (Ft/s) Travel time = 2.43 min. Time of concentration = 8.01 min. Critical depth = 0.469(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.053(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.053(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.066 Subarea runoff = 5.023(CFS) for 1.770(Ac.) Total runoff = 5.386(CFS) Total area = 1.870(Ac.) Depth of flow = 0.667(Ft.), Average velocity = 3.461(Ft/s) Critical depth = 0.648(Ft.) ++++++++ + +++++ + + + +++ +++++++ + +++++++ + + + +++ +++ + ++^ + _^^^_^^^_^^_i__^_i__^_^_i__^_^_^_^_^_^_^ Process from Point/Station 5048.000 to Point/Station 5048 100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 45.890(Ft.) Downstream point/station elevation = 45.340(Ft.) Pipe length = 54.78(Ft.) Slope = 0.0100 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 5.386(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.386(CFS) Normal flow depth in pipe = 8.29(In.) Flow top width inside pipe = 17.94(In.) Critical Depth = 10.73(In.) Pipe flow velocity = 6.79(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 8.15 min. + +++++++++ + +++++++++++ ++++++++++++++ +++ + + +++++^^^^^^^^^^^^_^_^_^_^_^_i__i__i__^_^_^_^ Process from Point/Station 5048.100 to Point/Station 5042 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 24 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 21.94(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 8.29(In.) Flow top width inside pipe = 17.94(In.) Critical Depth = 10.73(In.) Pipe flow velocity = 6.78(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 8.20 min 45.010(Ft.) 44.790(Ft.) 0.0100 Manning's N 5.386(CFS) 5.386(CFS) 0.011 ++++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5048.100 to Point/Station 5042.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.870(Ac.) Runoff from this stream = 5.386(CFS) Time of concentration = 8.2 0 min. Rainfall intensity = 4.978(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensi No. (CFS) (min) (In/Hr) 1 17 . 660 8 .74 4.778 2 5 .386 8 .20 4.978 Qmaxd) = 1. 000 * 1 000 * 17 660) + 0. 960 * 1 000 * 5 386) + = 22.830 Qmax(2) = 1. 000 * 0. 938 * 17 660) + 1. 000 * 1. 000 * 5 386) + = 21.959 Total of 2 streams to confluence: Flow rates before confluence point: 17.660 5.386 Maximum flow rates at confluence using above data: 22.830 21.959 Area of streams before confluence: 4.740 1.870 Results of confluence: Total flow rate = 22.830(CFS) Time of concentration = 8.740 min. Effective stream area after confluence = 6.610(Ac.) ++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5042.000 to Point/Station 5050.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 25 Upstream point/station elevation = 44.460(Ft.) Downstream point/station elevation = 43.780(Ft.) Pipe length = 137.19(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.830(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 22.830(CFS) Normal flow depth in pipe = 17.71(In.) Flow top width inside pipe = 3 6.00(In.) Critical Depth = 18.45(In.) Pipe flow velocity = 6.60(Ft/s) Travel time through pipe = • 0.3 5 min. Time of concentration (TC) = 9.09 min. +++++++++4++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5050.000 to Point/Station 5034.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 43.780 (Ft.) Downstream point elevation = 41.020(Ft.) Channel length thru subarea = 180.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.015 Maximum depth of channel = 2.500(Ft.) Flow(q) thru subarea = 22.83 0(CFS) Depth of flow = 0.603(Ft.), Average velocity = 7.578(Ft/s) Channel flow top width = 5.000(Ft.) Flow Velocity = 7.58(Ft/s) Travel time = 0.40 min. Time of concentration = 9.48 min. Critical depth = 0.867(Ft.) +++++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5050.000 to Point/Station 5034.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 6.610(Ac.) Runoff from this stream = 22.830(CFS) Time of concentration = 9.48 min. Rainfall intensity = 4.533(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 719.003 35.74 1.926 2 22.830 9.48 4.533 26 Qmax(1) = 1.000 * 1.000 * 719.003) + 0.425 * 1.000 * 22.830) + = 728.705 Qmax(2) = 1.000 * 0.265 * 719.003) + 1.000 * 1.000 * 22.830) + = 213.597 Total of 2 main streams to confluence: Flow rates before confluence point: 719.003 22.830 Maximum flow rates at confluence using above data: 728.705 213.597 Area of streams before confluence: 706.470 6.610 Results of confluence: Total flow rate = 728.705(CFS) Time of concentration = 35.740 min. Effective stream area after confluence = 713.080(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 5034.000 to Point/Station 5052.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = 40.980(Ft.) Downstream point elevation = 39.820(Ft.) Channel length thru subarea = 157.580(Ft.) Channel base width = 16.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.015 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 728.705(CFS) Depth of flow = 3.124(Ft.), Average velocity = 14.580(Ft/s) Channel flow top width = 16.000(Ft.) Flow Velocity = 14.58(Ft/s) Travel time = 0.18 min. Time of concentration = 3 5.92 min. Critical depth = 4.000(Ft.) ++++++++++++ + +++++++++++++++++ + + +++++ + +++ + + +++ + +++++++++++^^^^_i__i__i__i__i_^_^_i_ Process from Point/Station 5034.000 to Point/Station 5052.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 713.080(Ac.) Runoff from this stream = 728.705(CFS) Time of concentration = 35.92 min. Rainfall intensity = 1.920(In/Hr) 27 Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7003.100 to Point/Station 7007.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.700 given for subarea Rainfall intensity (I) = 3.040(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 17.62 min. Rain intensity = 3.04(In/Hr) Total area = 70.650(Ac.) Total runoff = 127.530(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7003.100 to Point/Station 7007.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 70.650(Ac.) Runoff from this stream = 127.530(CFS) Time of concentration = 17.62 min. Rainfall intensity = 3.040(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9005.000 to Point/Station 7007.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.900 given for subarea Rainfall intensity (I) = 6.157(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.90 min. Rain intensity = 6.16(In/Hr) Total area = 4.130(Ac.) Total runoff = 21.700(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9005.000 to Point/Station 7007.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.130(Ac.) Runoff from this stream = 21.700(CFS) Time of concentration = 5.90 min. Rainfall intensity = 6.157(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 28 Qmax(3) 1 728.705 35.92 1.920 2 127.530 17.62 3.040 3 21.700 5.90 6.157 Qmax(1) = 1.000 * 1.000 * 728.705) + 0.632 * 1.000 * 127.530) + 0.312 * 1.000 * 21.700) + = 816.029 Qmax(2) = 1.000 * 0.491 * 728.705) + 1.000 * 1.000 * 127.530) + 0.494 * 1.000 * 21.700) + = 495.702 1.000 * 0.164 * 728.705) + 1.000 * 0.335 * 127.530) + 1.000 * 1.000 * 21.700) + = 184.097 Total of 3 main streams to confluence: Flow rates before confluence point: 728.705 127.530 21.700 Maximum, flow rates at confluence using above data: 816.029 495.702 184.097 Area of streams before confluence: 713.080 70.650 4.130 Results of confluence: Total flow rate = 816.029(CFS) Time of concentration = 35.920 min. Effective stream area after confluence = 787.860(Ac.) End of computations, total study area = 7 87.860 (Ac 29 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 01/22/15 Rancho Costera Basin G Final B Map Design g:\101307\Hydrology\B MapXRCbasinG.out JST ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3000.000 to Point/Station 3002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 206.200(Ft.) Lowest elevation = 203.500(Ft.) Elevation difference = 2.700(Ft.) Slope = 2.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.46 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.92 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"{l/3)] TC = [1.8* (1.1-0.5200)* ( 80.000".5)/( 2.455"(1/3)]= 6.92 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.45 minutes for a distance of 30.00 (Ft.) and a slope of 2.46 % with an elevation difference of 0.74(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.446 Minutes Tt=[(11.9*0.0057"3)/( 0.74)]".385= 0.45 Total initial area Ti = 6.92 minutes from Figure 3-3 formula plus 0.45 minutes from the Figure 3-4 formula = 7.37 minutes Rainfall intensity (I) = 5.334(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.277(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3002.000 to Point/Station 3004.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 203.500(Ft.) End of street segment elevation = 168.100(Ft.) Length of street segment = 890.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.766(CFS) Depth of flow = 0.292(Ft.), Average velocity = 3.899(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.791(Ft.) Flow velocity = 3.90(Ft/s) Travel time = 3.80 min. TC = 11.17 min. Adding area flow to street Rainfall intensity (I) = 4.078(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity = 4.078(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.274 Subarea runoff = 4.918(CFS) for 2.350(Ac.) Total runoff = 5.196(CFS) Total area = 2.450(Ac.) Street flow at end of street = 5.196(CFS) Half street flow at end of street = 5.196(CFS) Depth of flow = 0.342(Ft.), Average velocity = 4.503(Ft/s) Flow width (from curb towards crown)= 10.254(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3004.000 to Point/Station 3006.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 156.310(Ft.) Downstream point/station elevation = 155.500(Ft.) Pipe length = 32.02(Ft.) Slope = 0.0253 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.196(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.196(CFS) Normal flow depth in pipe = 6.16(In.) Flow top width inside pipe = 20.97(In.) Critical Depth = 9.64(In.) Pipe flow velocity = 8.15(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 11.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3006.000 to Point/Station 30i2T6-e^ * * * * PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 155.170(Ft.) Downstream point/station elevation = 154.500(Ft.) Pipe length = 24.72(Ft.) Slope = 0.0271 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.196(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.196(CFS) Normal flow depth in pipe = 6.06(In.) Flow top width inside pipe = 20.85(In.) Critical Depth = 9.64(In.) Pipe flow velocity = 8.35(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 11.29 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3006.000 to Point/Station 3012.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.450(Ac.) Runoff from this stream = 5.196(CFS) Time of concentration = 11.2 9 min. Rainfall intensity = 4.051(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3008.000 to Point/Station 3010.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 206.200(Ft.) Lowest elevation = 203.500(Ft.) Elevation difference = 2.700(Ft.) Slope = 2.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.46 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.92 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5200)* ( 80.000".5)/( 2.455" (1/3)]= 6.92 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 3 0.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.45 rainutes for a distance of 30.00 (Ft.) and a slope of 2.46 % with an elevation difference of 0.74(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.446 Minutes Tt=[(11.9*0.0057"3)/( 0.74)]".385= 0.45 Total initial area Ti = 6.92 minutes from Figure 3-3 formula plus 0.45 minutes from the Figure 3-4 formula = 7.37 minutes Rainfall intensity (I) = 5.334(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.277(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3010.000 to Point/Station 3012.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 203.500(Ft.) End of street segment elevation = 167.800(Ft.) Length of street segment = 910.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.012(CFS) Depth of flow = 0.321(Ft.), Average velocity = 4.218(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.212 (Ft.) Flow velocity = 4.22(Ft/s) Travel time = 3.60 min. TC = 10.96 min. Adding area flow to street Rainfall intensity (I) = 4.128(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.52 0 Rainfall intensity = 4.128(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.856 Subarea runoff = 7.386(CFS) for 3.470(Ac.) Total runoff = 7.664(CFS) Total area = 3.570(Ac.) Street flow at end of street = 7.664(CFS) Half street flow at end of street = 7.664(CFS) Depth of flow = 0.378(Ft.), Average velocity = 4.911(Ft/s) Flow width (from curb towards crown)= 12.075(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3012.000 to Point/Station 3012.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 160.500(Ft.) Downstream point/station elevation = 154.500(Ft.) Pipe length = 17.60(Ft.) Slope = 0.3409 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.664(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.664(CFS) Normal flow depth in pipe = 4.29(In.) Flow top width inside pipe = 15.34(In.) Critical Depth = 12.87(In.) Pipe flow velocity = 23.67(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3012.000 to Point/Station 3012.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.570(Ac.) Runoff from this stream = 7.664(CFS) Time of concentration = 10.98 min. Rainfall intensity = 4.125(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 5.196 7.664 1.000 0.982 1.000 1.000 11.29 10.98 1.000 * 1.000 * 0.972 * 1.000 * 4.051 4 .125 5.196) + 7.664) + 5.196) + 7.664) + 12 .722 12.716 Total of 2 streams to confluence: Flow rates before confluence point: 5.196 7.664 Maximum flow rates at confluence using above data: 12.722 12.716 Area of streams before confluence: 2.450 3.570 Results of confluence: Total flow rate = 12.722(CFS) Time of concentration = 11.288 min. Effective stream area after confluence = 6.020(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3012.100 to Point/Station 3012.200 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 64.22(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 8.77(In.) Flow top width inside pipe = 23.11(In.) Critical Depth = 15.39(In.) Pipe flow velocity = 12.24(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 11.38 min 153.670(Ft.) 151.170(Ft.) 0.0389 Manning's N = 0.013 12.722(CFS) 12.722(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3012.200 to Point/Station 3014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 150.840(Ft.) Downstream point/station elevation = 141.530(Ft.) Pipe length = 213.79(Ft.) Slope = 0.0435 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.722(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 12.722(CFS) Normal flow depth in pipe = 8.51(In.) Flow top width inside pipe = 22.96(In.) Critical Depth = 15.39(In.) Pipe flow velocity = 12.75(Ft/s) Travel time through pipe = 0.2 8 min. Time of concentration (TC) = 11.65 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ .Process from Point/Station 3012.200 to Point/Station 3014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.020(Ac.) Runoff from this stream = 12.722(CFS) Time of concentration = 11.65 min. Rainfall intensity = 3.969(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3008.000 to Point/Station 3016.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 20.000(Ft.) Highest elevation = 206.200(Ft.) Lowest elevation = 202.000(Ft.) Elevation difference = 4.200(Ft.) Slope = 21.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 21.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.89 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.3500)*( 100.000".5)/( 21. 000" (1/3)]= 4.89 Calculated TC of 4.893 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3016.000 to Point/Station 3018.000 **** IMPROVED CHANNEL TRAVEL TIME **** 1.000(Ft.) .087(CFS) Average velocity = .256(Ft.) 1.087(CFS) 3 .994 (Ft/s) Upstream point elevation = 202.000(Ft.) Downstream point elevation = 166.100(Ft.) Channel length thru subarea = 1238.000 (Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel = Flow(q) thru subarea = Depth of flow = 0.128(Ft. Channel flow top width = Flow Velocity = 3.99(Ft/s) Travel time = 5.17 min. Time of concentration = 10.06 min. Critical depth = 0.203(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.364(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.364(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.423 Subarea runoff = 1.608(CFS) for 1.110(Ac.) Total runoff = 1.848(CFS) Total area = 1.210(Ac.) Depth of flow = 0.176(Ft.), Average velocity = 4.830(Ft/s) Critical depth = 0.285(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3018.000 to Point/Station 3020.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = End of street segment elevation = 166.100(Ft.) 153.000(Ft.) Length of street segment = 482.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) (v/hz) 0.020 0.0150 0.0150 Slope from curb to property line Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.337(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.041(Ft.) Flow velocity = 3.68(Ft/s) Travel time = 2.18 min. TC = 12.24 min. Adding area flow to street Rainfall intensity (I) = 3 Decimal fraction soil group A = 4.086(CFSl 3.679(Ft/s) .845(In/Hr) 0.000 for a 100.0 year storm Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.845(In/Hr) for a Effective runoff coefficient used for total area (Q=KCIA) is C = 0.491 CA = 1.666 Subarea runoff = 4.557(CFS) for 2.180(Ac.) Total runoff = 6.406 (CPS) Total area = Street flow at end of street = 6.406(CFS) Half street flow at end of street = 6.406(CFS) Depth of flow = 0.379(Ft.), Average velocity = 4.091(Ft/s) Flow width (from curb towards crown)= 12.096(Ft.) 100.0 year storm 3.390(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3020.000 to Point/Station 3014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 4.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 4.17(In.) Flow top width inside pipe = 15.19(In.) Critical Depth = 11.74(In.) 142 .950(Ft.) 141.700(Ft.) 0.2677 Manning's N 6.406(CFS) 6.406(CFS) 0.013 Pipe flow velocity = 20.63(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.25 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3020.000 to Point/Station 3014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.390(Ac.) Runoff from this stream = 6.406(CFS) Time of concentration = 12.2 5 min. Rainfall intensity = 3.844(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax{1) Qmax(2) 12.722 6.406 000 000 0.969 1.000 11.65 12 .25 1.000 * 0.952 * 1.000 * 1.000 * 12 .722) 6.406) 12 .722) 6.406) 3 .969 3 .844 I + + = + + 18.818 18.728 Total of 2 streams to confluence: Flow rates before confluence point: 12.722 6.406 Maximum flow rates at confluence using above data: 18.818 18.728 Area of streams before confluence: 6.020 3.390 Results of confluence: Total flow rate = 18.818(CFS) Time of concentration = 11.655 min. Effective stream area after confluence = 9.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3014.000 to Point/Station 3022.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 141.200 (Ft.) 134.940(Ft.) 0.0254 Manning's N 18.818(CFS) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 246.19(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = 18.818(CFS) Normal flow depth in pipe = 12.30(In.) Flow top width inside pipe = 23.99(In.) 0.013 10 Critical Depth = 18.73(In.) Pipe flow velocity = 11.60(Ft/s) Travel time through pipe = 0.3 5 min. Time of concentration (TC) = 12.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3014.000 to Point/Station 3022.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.410(Ac.) Runoff from this stream = 18.818(CFS) Time of concentration = 12.01 min. Rainfall intensity = 3.893(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3024.000 to Point/Station 3026.000 **** INITIAL AREA EVALUATION **** ] 275.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 166.500(Ft.) Lowest elevation = 157.440(Ft.) Elevation difference = 9.060(Ft.) Slope = 3.295 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 3.29 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.07 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.3500)* ( 100.000".5)/( 3.295"(1/3)]= 9.07 The initial area total distance of 275.00 (Ft.) entered leaves a remaining distance of 175.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.55 minutes for a distance of 175.00 (Ft.) and a slope of 3.29 % with an elevation difference of 5.77(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 1.550 Minutes Tt=[(11.9*0.0331"3)/( 5.77)]".385= 1.55 Total initial area Ti = 9.07 minutes from Figure 3-3 formula plus 1.55 minutes from the Figure 3-4 formula = 10.62 minutes Rainfall intensity (I) = 4.213(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.2 51(CFS) 11 Total initial stream area = 0.170(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3026.000 to Point/Station 3028.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 157.440(Ft.) End of street segment elevation = 144.560(Ft.) Length of street segment = 640.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.684(CFS) Depth of flow = 0.316(Ft.), Average velocity = 2.974(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.944(Ft.) Flow velocity = 2.97(Ft/s) Travel time = 3.59 min. TC = 14.21 min. Adding area flow to street Rainfall intensity (I) = 3.493(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.493(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.556 CA = 1.490 Subarea runoff = 4.954(CFS) for 2.510(Ac.) Total runoff = 5.205(CFS) Total area = 2.680(Ac.) Street flow at end of street = 5.205(CFS) Half street flow at end of street = 5.205(CFS) Depth of flow = 0.373(Ft.), Average velocity = 3.473 (Ft/s) Flow width (from curb towards crown)= 11.816(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3028.000 to Point/Station 3022.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 12 Upstream point/station elevation = 135.530(Ft.) Downstream point/station elevation = 135.440(Ft.) Pipe length = 4.67(Ft.) Slope = 0.0193 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.205(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.2 05(CFS) Normal flow depth in pipe = 7.43(In.) Flow top width inside pipe = 17.72(In.) Critical Depth = 10.53(In.) Pipe flow velocity = 7.56(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 14.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3028.000 to Point/Station 3022.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.680(Ac.) Runoff from this stream = 5.2 05(CFS) Time of concentration = 14.22 min. Rainfall intensity = 3.491(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 18.818 12.01 3.893 2 5.205 14.22 3.491 Qmax(1) = 1.000 * 1.000 * 18.818) + 1.000 * 0.845 * 5.205) + = 23.214 Qmax(2) = 0.897 * 1.000 * 18.818) + 1.000 * 1.000 * 5.205) + = 22.080 Total of 2 streams to confluence: Flow rates before confluence point: 18.818 5.205 Maximum flow rates at confluence using above data: 23.214 22.080 Area of streams before confluence: 9.410 2.680 Results of confluence: Total flow rate = 23.214(CFS) Time of concentration = 12.008 min. Effective stream area after confluence = 12.090(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3022.000 to Point/Station 3030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 13 Upstream point/station elevation = 134.610(Ft.) Downstream point/station elevation = 133.460(Ft.) Pipe length = 38.19(Ft.) Slope = 0.0301 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.214(CFS) Given pipe size = 2 4.00(In.) Calculated individual pipe flow = 23.214(CFS) Normal flow depth in pipe = 13.28(In.) Flow top width inside pipe = 23.86(In.) Critical Depth = 20.55(In.) Pipe flow velocity = 13.02(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3022.000 to Point/Station 3030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.090(Ac.) Runoff from this stream = 23.214(CFS) Time of concentration = 12.06 min. Rainfall intensity = 3.883(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3032.000 to Point/Station 3034.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 148.300(Ft.) Lowest elevation = 146.200(Ft.) Elevation difference = 2.100(Ft.) Slope = 2.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.66 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 80.000".5)/( 2 .100" (1/3)]= 6.66 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 20.00 (Ft.) and a slope of 2.10 % 14 with an elevation difference of 0.42(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.347 Minutes Tt=[(11.9*0.0038"3)/( 0.42)]".385= 0.35 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7.01 minutes Rainfall intensity (I) = 5.509(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.314(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3034.000 to Point/Station 3036.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 146.200(Ft.) End of street segment elevation = 143.860(Ft.) Length of street segment = 163.100(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000 (Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.946(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.079(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.937(Ft.) Flow velocity = 2.08(Ft/s) Travel time = 1.31 min. TC = 8.32 min. Adding area flow to street Rainfall intensity (I) = 4.933(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.933(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.302 Subarea runoff = 1.176(CFS) for 0.430(Ac.) Total runoff = 1.490(CFS) Total area = 0.530(Ac.) Street flow at end of street = 1.490(CFS) 15 Half street flow at end of street = 1.490(CFS) Depth of flow = 0.285(Ft.), Average velocity = 2.286(Ft/s) Flow width (from curb towards crown)= 7.412(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3036.000 to Point/Station 3030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 0518 Manning's N 1.490 (CFS) Upstream point/station elevation = 136.500(Ft.) Downstream point/station elevation = 133.960(Ft.) Pipe length = 49.00(Ft.) Slope = 0 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.490(CFS Normal flow depth in pipe = 3.05(In.) Flow top width inside pipe = 13.50(In.) Critical Depth = 5.48(In.) Pipe flow velocity = 7.53(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 8.43 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3036.000 to Point/Station 3030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.530(Ac.) Runoff from this stream = 1.490(CFS) Time of concentration = 8.43 min. Rainfall intensity = 4.892(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1; 23 .214 1.490 1.000 0.794 Qmax(2) = 1.000 1. 000 12.06 8 .43 1.000 * 1.000 * 0.699 * 1.000 * 3 .883 4.892 23.214) + 1.490) + 23.214) + 1.490) + 24.397 17 .713 Total of 2 streams to confluence: Flow rates before confluence point: 23.214 1.490 Maximum flow rates at confluence using above data: 24.397 17.713 Area of streams before confluence: 12.090 0.530 16 Results of confluence: Total flow rate = 24.397(CFS) Time of concentration = 12.057 min. Effective stream area after confluence = 12.620(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^_^_^_i__i__i__i__^ Process from Point/Station 3030.000 to Point/Station 3038 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 132.460(Ft.) Downstream point/station elevation = 120.890(Ft.) Pipe length = 261.50(Ft.) Slope = 0.0442 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.397(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 24.397(CFS) Normal flow depth in pipe = 10.16(In.) Flow top width inside pipe = 32.41(In.) Critical Depth = 19.10(In.) Pipe flow velocity = 14.89(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 12.35 min. + + + +++ +++ ++++++ +++++ +++++++++++++++++ + + ++++++++++++++++++^^^^_^_^_^_i__i__^_i__i__^ Process from Point/Station 3030.000 to Point/Station 3038 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.620(Ac.) Runoff from this stream = 24.397(CFS) Time of concentration = 12.35 min. Rainfall intensity = 3.823(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^^_^_^_^_i__i__i__^^_^_^_^ Process from Point/Station 3040.000 to Point/Station 3042 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 35.000(Ft.) Highest elevation = 151.620(Ft.) Lowest elevation = 150.200(Ft.) Elevation difference = 1.420(Ft.) Slope = 4.057 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.06 %, in a development type of 17 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.98 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* { 100.000".5)/( 4.057"(1/3)]= 5.98 Rainfall intensity (I) = 6.102(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.348(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3042.000 to Point/Station 3044.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** (Ft.) (Ft. ) .0(ln.) 000(Ft.) = 15.500 020 Top of street segment elevation = 150.200 End of street segment elevation = 135.630 Length of street segment = 416.000(Ft.) Height of curb above gutter flowline = Width of half street (curb to crown) = 17. Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft. Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.2 57(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 6.007(Ft.) Flow velocity = 3.26(Ft/s) Travel time = 2.12 min. TC = Adding area flow to street Rainfall intensity (I) = group A group B group C group D Ft. ) 1.512(CFS; 3 .263(Ft/s) 8.11 min. .016(In/Hr) 0.000 0.000 0.000 1.000 ] Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.016. Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.519 Subarea runoff = 2.254(CFS) for 0.810(Ac. Total runoff = 2.602(CFS) Total area = Street flow at end of street = 2.602(CFS) Half street flow at end of street = 2.602(CFS) for a 100.0 year storm (In/Hr) for a 100.0 year storm ) 0.910(Ac, 18 Depth of flow = 0.293(Ft.), Average velocity = 3.660(Ft/s) Flow width (from curb towards crown)= 7.799(Ft.) + ++++++++++++++++++++++++++++++++++++++ +++++++++ +++++++++^^^^_^^_i__^_j__i__i__^_i_ Process from Point/Station 3044.000 to Point/Station 3046 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 135.630 (Ft.) End of street segment elevation = 135.210(Ft.) Length of street segment = 30.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft. Distance from crown to crossfall grade break = 15 Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.32 8(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 9.543(Ft.) Flow velocity = 2.57(Ft/s) Travel time = 0.19 min. TC = 8.30 min. Adding area flow to street Rainfall intensity (I) = 4.940(In/Hr) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (10.9 DU/A or Less ) Impervious value, Ai = 0.450 Sub-Area C Value = 0.600 The area added to the existing stream causes a lower flow rate of Q = 2.562(CFS) therefore the upstream flow rate of Q = Rainfall intensity = 4.940(In/Hr) for a Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.519 Subarea runoff = 0.000(CFS) for 0.000(Ac.) Total runoff = 2.602(CFS) Total area = Street flow at end of street = 2.602(CFS) Half street flow at end of street = 2.602(CFS) Depth of flow = 0.328(Ft.), Average velocity = 2 Flow width (from curb towards crown)= 9.543(Ft.) ,500(Ft.) 2.602(CFSl 2.568(Ft/s) for a 100.0 year storm 602 (CFS) is being used 100.0 year storm 0.910(Ac.) 568(Ft/s; 19 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3046.000 to Point/Station 3038.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 4.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 2.76(In.) Flow top width inside pipe = 12.97(In.) Critical Depth = 7.33(In.) Pipe flow velocity = 15.18(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.31 min. 123 .480 (Ft.) 122 .370(Ft.) 0.2 377 Manning's N = 0.013 2.602 (CFS) 2.602(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3046.000 to Point/Station 3038.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.910(Ac.) Runoff from this stream = 2.602(CFS) Time of concentration = 8.31 min. Rainfall intensity = 4.938(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1; 24.397 2 .602 1.000 0 .774 Qmax(2) = 000 000 12 .35 8.31 1.000 * 1.000 * 0.673 * 1.000 * 3 .823 4.938 24.397) 2 .602) 24.397) 2 .602) 26.411 19.010 Total of 2 streams to confluence: Flow rates before confluence point: 24.397 2.602 Maximum flow rates at confluence using above data: 26.411 19.010 Area of streams before confluence: 12.620 0.910 Results of confluence: Total flow rate = 26.411(CFS) Time of concentration = 12.350 min. Effective stream area after confluence = 13.530(Ac.) 20 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^_^_^_^ Process from Point/Station 3038.000 to Point/Station 3048.000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 120.560(Ft.) Downstream point/station elevation = 118.450(Ft.) Pipe length = 48.19(Ft.) Slope = 0.0438 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 26.411(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 26.411(CFS) Normal flow depth in pipe = 10.61(In.) Flow top width inside pipe = 32.82(In.) Critical Depth = 19.94(In.) Pipe flow velocity = 15.17(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.40 min. + + + +++++++++++ + +++ + + + ++++++++++++++ + +++ ++++ +++++++++++ ++++^^^^^^^^_i__i__^_i_ Process from Point/Station 3038.000 to Point/Station 3048.000 ^*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 13.530(Ac.) Runoff from this stream = 26.411(CFS) Time of concentration = 12.40 min. Rainfall intensity = 3.813(In/Hr) Program is now starting with Main Stream No. 2 + +++ + +++++++ + +++++ + + + + +++++++++++++++++ +++++ + +++++ + +++++++ + ^^^^^_j._^_i__^ Process from Point/Station 3050.000 to Point/Station 3052.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 52.000(Ft.) Highest elevation = 205.700(Ft.) Lowest elevation = 180.000(Ft.) Elevation difference = 25.700(Ft.) Slope = 49.423 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 21 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance{Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 30.000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3052.000 to Point/Station 3054.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 179.000(Ft.) Downstream point elevation = 161.800(Ft.) Channel length thru subarea = 942.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 1.050(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.050(CFS) Depth of flow = 0.144(Ft.), Average velocity = 3.404(Ft/s) Channel flow top width = 2.288(Ft.) Flow Velocity = 3.40(Ft/s) Travel time = 4.61 min. Time of concentration = 8.96 min. Critical depth = 0.197(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.703(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.703(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.381 Subarea runoff = 1.554(CFS) for 0.990(Ac.) Total runoff = 1.794(CFS) Total area = 1.090(Ac.) Depth of flow = 0.198(Ft.), Average velocity = 4.113(Ft/s) Critical depth = 0.277(Ft.) + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^_j,_^_^_i__i__i__^_^ Process from Point/Station 3054.000 to Point/Station 3056 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 22 Upstream point/station elevation = 155.000{Ft.) Downstream point/station elevation = 150.000 (Ft.) Pipe length = 109.75 (Ft.) Slope = 0.0456 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.794(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.794(CFS) Normal flow depth in pipe = 3.44(In.) Flow top width inside pipe = 14.16(In.) Critical Depth = 6.05(In.) Pipe flow velocity = 7.60(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 9.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3056.000 to Point/Station 3058.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 148.850(Ft.) Downstream point/station elevation = 141.910(Ft.) Pipe length = 90.73(Ft.) Slope = 0.0765 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.794(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.794(CFS) Normal flow depth in pipe = 3.03(In.) Flow top width inside pipe = 13.47(In.) Critical Depth = 6.05(In.) Pipe flow velocity = 9.12(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 9.3 6 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3056.000 to Point/Station 3058.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in normal stream number 1 Stream flow area = 1.090(Ac.) Runoff from this stream = 1.794(CFS) Time of concentration = 9.36 min. Rainfall intensity = 4.570(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3060.000 to Point/Station 3062.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 23 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 175.900(Ft.) Lowest elevation = 174.570(Ft.) Elevation difference = 1.330(Ft.) Slope = 1.209 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.21 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.22 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5700)*( 65.000".5)/( 1.209" (1/3)]= 7.22 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.80 minutes for a distance of 45.00 (Ft.) and a slope of 1.21 % with an elevation difference of 0.54(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.801 Minutes Tt=[(11.9*0.0085"3)/( 0.54)]".385= 0.80 Total initial area Ti = 7.22 minutes from Figure 3-3 formula plus 0.80 minutes from the Figure 3-4 formula = 8.02 minutes Rainfall intensity (I) = 5.050(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.288(CFS) Total initial stream area = 0.100(Ac.) + +++ + +++ + ++++ +++++ + + + +++ +++ + +++ + +++ + +++ +++++++++++^^^^^_^_j_^_^_i__i__^_^_^_^^_i__^_^_^ Process from Point/Station 3062.000 to Point/Station 3064.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** * * * * Top of street segment elevation = 174.570(Ft.) End of street segment elevation = 149.900(Ft.) Length of street segment = 1008.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.621(CFS) Depth of flow = 0.324(Ft.), Average velocity = 3.365(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.387(Ft.) Flow velocity = 3.37(Ft/s) 24 Travel time = 4.99 min. TC = 13.01 min. Adding area flow to street Rainfall intensity (I) = 3.696(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (10.9 DU/A or Less ) Impervious value, Ai = 0.450 Sub-Area C Value = 0.600 Rainfall intensity = 3.696(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.599 CA = 3.465 Subarea runoff = 12.520(CFS) for 5.680(Ac.) Total runoff = 12. 808(CFS) Total area = 5.780(Ac.) Street flow at end of street = 12.808(CFS) Half street flow at end of street = 6.404 (CFS) Depth of flow = 0.384(Ft.), Average velocity = 3.931(Ft/s) Flow width (from curb towards crown)= 12.355(Ft.) + +++++++ + +++++++ +++ + +++++++ +++ ++++ + + +++++++ +++++++++^.^^^^_^_i__j__i__i__^_i__^_i__^_^_^_^ Process from Point/Station 3064.000 to Point/Station 3058 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 142.450(Ft.) Downstream point/station elevation = 141.790(Ft.) Pipe length = 26.67 (Ft.) Slope = 0.0247 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.808(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 12.808(CFS) Normal flow depth in pipe = 9.95(In.) Flow top width inside pipe = 23.65(In.) Critical Depth = 15.43(In.) Pipe flow velocity = 10.40(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.06 min. + + + ++++++++++++++++++ +++++++ ++++++++++ + ++++++++++++++^^^^_^_^_^_i__^_i__i__^_^_i__^_i__^ Process from Point/Station 3064.000 to Point/Station 3058 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 5.780(Ac.) Runoff from this stream = 12.808(CFS) Time of concentration = 13.06 min. Rainfall intensity = 3.688(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 25 1 1.794 9.36 4.570 2 12.808 13.06 3.688 Qmax(1) = 1.000 * 1.000 * 1.794) + 1.000 * 0.717 * 12.808) + = 10.980 Qmax(2) = 0.807 * 1.000 * 1.794) + 1.000 * 1.000 * 12.808) + = 14.256 Total of 2 streams to confluence: Flow rates before confluence point: 1.794 12.808 Maximum flow rates at confluence using above data: 10.980 14.256 Area of streams before confluence: 1.090 5.780 Results of confluence: Total flow rate = 14.256(CFS) Tirae of concentration = 13.056 min. Effective streara area after confluence = 6.870(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3058.000 to Point/Station 3066.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 141.410(Ft.) Downstream point/station elevation = 136.750(Ft.) Pipe length = 125.27(Ft.) Slope = 0.0372 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.256(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 14.256(CFS) Normal flow depth in pipe = 9.44(In.) Flow top width inside pipe = 23.45(In.) Critical Depth = 16.33(In.) Pipe flow velocity = 12.43(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 13.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3058.000 to Point/Station 3066.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.870(Ac.) Runoff from this stream = 14.256(CFS) Time of concentration = 13.22 min. Rainfall intensity = 3.658(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3068.000 to Point/Station 3070.000 26 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 145.000(Ft.) Highest elevation = 162.200(Ft.) Lowest elevation = 160.280(Ft.) Elevation difference = 1.920(Ft.) Slope = 1.324 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.32 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.00 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5700)* ( 65.000".5)/( 1.324"(1/3)]= 7.00 The initial area total distance of 145.00 (Ft.) entered leaves a remaining distance of 80.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.21 minutes for a distance of 80.00 (Ft.) and a slope of 1.32 % with an elevation difference of 1.06(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 1.2 05 Minutes Tt=[ (11.9*0.0152"3)/( 1.06)]".385= 1.21 Total initial area Ti = 7.00 minutes frora Figure 3-3 formula plus 1.21 minutes from the Figure 3-4 formula = 8.21 minutes Rainfall intensity (I) = 4.975(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.2 84(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3070.000 to Point/Station 3072.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 160.280(Ft.) End of street segment elevation = 144.480(Ft.) Length of street segment = 420.000(Ft.) Height of curb above gutter flowline = 6.0{In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) 27 Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.979(CFS) Depth of flow = 0.272(Ft.), Average velocity = 3.548(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.747(Ft.) Flow velocity = 3.55(Ft/s) Travel time = 1.97 min. TC = 10.18 min. Adding area flow to street Rainfall intensity (I) = 4.330(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Rainfall intensity = 4.330(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.832 Subarea runoff = 3.320(CFS) for 1.360(Ac.) Total runoff = 3.603 (CFS) Total area = 1.460(Ac.) Street flow at end of street = 3.603(CFS) Half street flow at end of street = 3.603(CFS) Depth of flow = 0.314(Ft.), Average velocity = 4.049(Ft/s) Flow width (from curb towards crown)= 8.873(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3072.000 to Point/Station 3066.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 137.520(Ft.) Downstream point/station elevation = 137.250(Ft.) Pipe length = 2.67(Ft.) Slope = 0.1011 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.603(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.603(CFS) Normal flow depth in pipe = 3.99(In.) Flow top width inside pipe = 14.95(In.) Critical Depth = 8.70(In.) Pipe flow velocity = 12.35(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 10.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3072.000 to Point/Station 3066.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 28 stream flow area = 1.460(Ac.) Runoff from this stream = 3.603(CFS) Time of concentration = 10.19 min. Rainfall intensity = 4.329(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1; 14.256 3.603 1.000 0.845 Qmax(2) = 1.000 1.000 13 .22 10.19 1.000 * 1.000 * 0.770 * 1.000 * 3.658 4.329 14.256) + 3.603) + = 14.256) + 3.603) + = 17.301 14.584 Total of 2 streams to confluence: Flow rates before confluence point: 14.256 3.603 Maximum flow rates at confluence using above data: 17.301 14.584 Area of streams before confluence: 6.870 1.460 Results of confluence: Total flow rate = 17.301(CFS) Time of concentration = 13.224 min. Effective stream area after confluence = 8.330(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3066.000 to Point/Station 3074.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 42.50(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 6.73(In.) Flow top width inside pipe = 21.56(In.) Critical Depth = 17.98(In.) Pipe flow velocity = 23.97(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.25 min 136.420(Ft.) 128.000(Ft.) 0.1981 Manning's N = 0.013 17.301(CFS) 17.301(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3066.000 to Point/Station 3074.000 **** CONFLUENCE OF MINOR STREAMS **** 29 Along Main Stream number: 2 in normal stream nvimber 1 Stream flow area = 8.330(Ac.) Runoff from this stream = 17.301(CFS) Time of concentration = 13.25 min. Rainfall intensity = 3.653(In/Hr) ++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++^^^^_^_^_j__^_^_i__i__^ Process from Point/Station 3076.000 to Point/Station 3078.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 20.000(Ft.) Highest elevation = 168.690(Ft.) Lowest elevation = 168.160(Ft.) Elevation difference = 0.530 (Ft.) Slope = 2.650 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 2.65 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.72 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 95.000".5)/( 2.650" {1/3)]= 6.72 Rainfall intensity (I) = 5.661(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.323(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3078.000 to Point/Station 3080 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 168.160(Ft.) End of street segment elevation = 141.910(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) 30 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.644(CFS) Depth of flow = 0.255(Ft.), Average velocity = 3.627(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.921 (Ft.) Flow velocity = 3.63(Ft/s) Travel time = 2.7 6 min. TC = 9.48 min. Adding area flow to street Rainfall intensity (I) = 4.535(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.535(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.633 Subarea runoff = 2.547(CFS) for 1.010(Ac.) Total runoff = 2.870 (CFS) Total area = 1.110(Ac.) Street flow at end of street = 2.870(CFS) Half street flow at end of street = 2.870(CFS) Depth of flow = 0.292(Ft.), Average velocity = 4.079(Ft/s) Flow width (from curb towards crown)= 7.752(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3080.000 to Point/Station 3082.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 135.840(Ft.) Downstream point/station elevation = 135.740(Ft.) Pipe length = 5.17(Ft.) Slope = 0.0193 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.87 0(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.870(CFS) Normal flow depth in pipe = 5.41(In.) Flow top width inside pipe = 16.50(In.) Critical Depth = 7.72(In.) Pipe flow velocity = 6.42(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.49 min. + + ++++++ + ++++++++ +++ +++++++++++ +++++++++++++++++++++++++++ +++^.^^^^_i__^_i__j_ Process from Point/Station 3082.000 to Point/Station 3074.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 135.410(Ft.) Downstream point/station elevation = 128.500(Ft. 31 Pipe length = 47.50(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.870(CFS Normal flow depth in pipe = 3.26(In.) Flow top width inside pipe = 13.87(In.) Critical Depth = 7.72(In.) Pipe flow velocity = 13.14(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 9.55 min. 0.1455 Manning's N = 0.013 2.870(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3082.000 to Point/Station 3074.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.110(Ac.) Runoff from this stream = 2.870(CFS) Time of concentration = 9.55 min. Rainfall intensity = 4.513(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1; Qmax(2; 17 .301 2 .870 1.000 0.809 000 000 13 .25 9 .55 1.000 * 1.000 * 0.721 * 1.000 * 17.3011 2.8701 3.653 4.513 I + + = 17.301) + 2.870) + 19.623 15.335 Total of 2 streams to confluence: Flow rates before confluence point: 17.301 2.870 Maximum flow rates at confluence using above data: 19.623 15.335 Area of streams before confluence: 8.330 1.110 Results of confluence: Total flow rate = 19.623(CFS) Time of concentration = 13.2 54 min. Effective stream area after confluence = 9.440(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3074.000 to Point/Station 3084.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation 127.000(Ft.) 32 Downstream point/station elevation = 119.870(Ft.) Pipe length = 195.87(Ft.) Slope = 0.0364 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.623(CFS) Given pipe size = 3 6.00(In.) Calculated individual pipe flow = 19.623(CFS) Normal flow depth in pipe = 9.56(In.) Flow top width inside pipe = 31.79(In.) Critical Depth = 17.06(In.) Pipe flow velocity = 13.05(Ft/s) Travel time through pipe = 0.2 5 min. Time of concentration (TC) = 13.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3074.000 to Point/Station 3084.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 9.440(Ac.) Runoff from this stream = 19.623(CFS) Time of concentration = 13.50 min. Rainfall intensity = 3.609(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3040.000 to Point/Station 3042.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 35.000(Ft.) Highest elevation = 151.620(Ft.) Lowest elevation = 150.200(Ft.) Elevation difference = 1.420(Ft.) Slope = 4.057 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.06 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.98 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5700)*( 100.000".5)/( 4.057"(1/3)]= 5.98 Rainfall intensity (I) = 6.102(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.348(CFS) Total initial stream area = 0.100(Ac.) 33 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3042.000 to Point/Station 3086.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 150.200(Ft.) End of street segment elevation = 135.100(Ft.) Length of street segment = 435.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.353(CFS) Depth of flow = 0.250(Ft.), Average velocity = 3.182(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5. 681(Ft.) Flow velocity = 3.18(Ft/s) Travel tirae = 2.2 8 min. TC = 8.2 6 min. Adding area flow to street Rainfall intensity (I) = 4.956(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.956(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.462 Subarea runoff = 1.940(CFS) for 0.710(Ac.) Total runoff = 2.288(CFS) Total area = 0.810(Ac.) Street flow at end of street = 2.288(CFS) Half street flow at end of street = 2.288(CFS) Depth of flow = 0.284(Ft.), Average velocity = 3.546(Ft/s) Flow width (from curb towards crown)= 7.367(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3086.000 to Point/Station 3084.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 122.700(Ft.) Downstream point/station elevation = 121.370(Ft.) Pipe length = 2.67(Ft.) Slope = 0.4981 Manning's N = 0.013 34 No. of pipes = 1 Required pipe flow = 2.288(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.288(CFS) Normal flow depth in pipe = 2.17(In.) Flow top width inside pipe = 11.72(In.) Critical Depth = 6.86(In.) Pipe flow velocity = 18.93(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 8.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3086.000 to Point/Station 3084.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.810(Ac.) Runoff from this stream = 2.288(CFS) Time of concentration = 8.2 6 min. Rainfall intensity = 4.955(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3088.000 to Point/Station 3090.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 150.340(Ft.) Lowest elevation = 149.900(Ft.) Elevation difference = 0.440(Ft.) Slope = 2.588 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 2.59 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.77 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 95.000".5)/( 2 . 588" (1/3)]= 6.77 Rainfall intensity (I) = 5.633(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.570 Subarea runoff = 0.321(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3090.000 to Point/Station 3092.000 35 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 149.900(Ft.) End of street segment elevation = 135.200(Ft.) Length of street segment = 365.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.747(CFS) Depth of flow = 0.261(Ft.), Average velocity = 3.552(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.239(Ft.) Flow velocity = 3.55(Ft/s) Travel time = 1.71 min. TC = 8.49 min. Adding area flow to street Rainfall intensity (I) = 4.870(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.870(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.638 Subarea runoff = 2.788(CFS) for 1.020(Ac.) Total runoff = 3.109(CFS) Total area = 1.120(Ac.) Street flow at end of street = 3.109(CFS) Half street flow at end of street = 3.109(CFS) Depth of flow = 0.300(Ft.), Average velocity = 4.021(Ft/s) Flow width (from curb towards crown)= 8.190(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3092.000 to Point/Station 3084 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 121.910(Ft.) Downstream point/station elevation = 121.370(Ft.) Pipe length = 27.53(Ft.) Slope = 0.0196 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.109(CFS) Given pipe size = 18.00(In.) 36 Calculated individual pipe flow = 3.109(CFS) Normal flow depth in pipe = 5.62(In.) Flow top width inside pipe = 16.68(In.) Critical Depth = 8.04(In.) Pipe flow velocity = 6.60(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 8.55 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 3092.000 to Point/Station 3084.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.120(Ac.) Runoff from this stream = 3.109(CFS) Time of concentration = 8.55 min. Rainfall intensity = 4.845(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 19 .623 13 .50 3.609 2 2 .288 8 .26 4.955 3 3 .109 8 .55 4 .845 Qmax(1) = 1 000 * 1 000 * 19 .623) + 0 728 * 1 000 * 2 .288) + 0 745 * 1. 000 * 3 .109) + = Qmax(2) = 1. 000 * 0. 612 * 19 623) + 1. 000 * 1. 000 * 2 288) + 1. 000 * 0. 966 * 3 109) + = Qmax(3) = 1. 000 * 0. 633 * 19 623) + 0. 978 * 1. 000 * 2 288) + 1. 000 * 1. 000 * 3 109) + = 23.606 17 .298 17.77! Total of 3 streams to confluence: Flow rates before confluence point: 19.623 2.288 3.109 Maximum flow rates at confluence using above data: 23.606 17.298 17.778 Area of streams before confluence: 9.440 0.810 1.120 Results of confluence: Total flow rate = 23.606(CFS) Time of concentration = 13.504 min. Effective stream area after confluence = 11.370(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++ 37 Process from Point/Station 3084.000 to Point/Station 3048.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 119.540(Ft.) Downstream point/station elevation = 118.450(Ft.) Pipe length = 33.23(Ft.) Slope = 0.0328 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.606(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 23.606(CFS) Normal flow depth in pipe = 10.79(In.) Flow top width inside pipe = 32.99(In.) Critical Depth = 18.76(In.) Pipe flow velocity = 13.26(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3084.000 to Point/Station 3048.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11.370(Ac.) Runoff from this stream = 23.606(CFS) Time of concentration = 13.55 min. Rainfall intensity = 3.602(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3094.000 to Point/Station 3096.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 33.000(Ft.) Highest elevation = 143.170(Ft.) Lowest elevation = 141.790(Ft.) Elevation difference = 1.380(Ft.) Slope = 4.182 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.18 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.92 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"{l/3)] TC = [1.8*(1.1-0.5700)*( 100.000".5)/( 4.182" (1/3)]= 5.92 38 Rainfall intensity (I) = 6.142(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.350(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3096.000 to Point/Station 3098.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 141.790(Ft.) End of street segment elevation = 130.170(Ft.) Length of street segment = 510.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.794(CFS) Depth of flow = 0.314(Ft.), Average velocity = 3.149(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.859(Ft.) Flow velocity = 3.15(Ft/s) Travel time = 2.7 0 min. TC = 8.62 min. Adding area flow to street Rainfall intensity (I) = 4.821(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.821(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.066 Subarea runoff = 4.788(CFS) for 1.770(Ac.) Total runoff = 5.138(CFS) Total area = 1.870(Ac.) Street flow at end of street = 5.138(CFS) Half street flow at end of street = 5.138(CFS) Depth of flow = 0.366(Ft.), Average velocity = 3.630(Ft/s) Flow width (from curb towards crown)= 11.459(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H 39 Process from Point/Station 3098.000 to Point/Station 3100 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 122.080(Ft.) Downstream point/station elevation = 120.500(Ft.) Pipe length = 3.17(Ft.) Slope = 0.4984 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.138(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.138(CFS) Normal flow depth in pipe = 3.21(In.) Flow top width inside pipe = 13.78(In.) Critical Depth = 10.48(In.) Pipe flow velocity = 24.09(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 8.62 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3098.000 to Point/Station 3100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.870(Ac.) Runoff from this stream = 5.138(CFS) Time of concentration = 8.62 min. Rainfall intensity = 4.820(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3102.000 to Point/Station 3104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 144.000(Ft.) Lowest elevation = 138.870(Ft.) Elevation difference = 5.130(Ft.) Slope = 4.664 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.66 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.08 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 4.664"(1/3)]= 8.08 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 10.00 (Ft.) 40 Using Figure 3-4, the travel time for this distance is 0.15 minutes for a distance of 10.00 (Ft.) and a slope of 4.66 % with an elevation difference of 0.47(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.150 Minutes Tt=[ (11.9*0.0019"3)/( 0.47)]".385= 0.15 Total initial area Ti = 8.08 minutes from Figure 3-3 formula plus 0.15 minutes from the Figure 3-4 formula = 8.2 3 minutes Rainfall intensity (I) = 4.967(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.539(CFS) Total initial stream area = 0.310(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3104.000 to Point/Station 3106.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** * * * * Top of street segment elevation = 138.870(Ft.) End of street segment elevation = 129.460(Ft.) Length of street segment = 822.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.967(CFS) Depth of flow = 0.397(Ft.), Average velocity = 2.771(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.999(Ft.) Flow velocity = 2.77(Ft/s) Travel time = 4.94 min. TC = 13.17 min. Adding area flow to street Rainfall intensity (I) = 3.667(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.667(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.555 CA = 2.577 Subarea runoff = 8.910(CFS) for 4.330(Ac.) 41 Total runoff = 9.449(CFS) Total area = 4.640(Ac, Street flow at end of street = 9.449(CFS) Half street flow at end of street = 9.449(CFS) Depth of flow = 0.472(Ft.), Average velocity = 3.240 (Ft/s) Flow width (from curb towards crown)= 16.775(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3106.000 to Point/Station 3100.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 120.870(Ft.) Downstream point/station elevation = 120.500(Ft.) Pipe length = 61.95(Ft.) Slope = 0.0060 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.449(CFS) Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 0.797(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.501(Ft.) Minor friction loss = 0.666(Ft.) K-factor = 1.50 Pipe flow velocity = 5.35(Ft/s) Travel tim.e through pipe = 0.19 min. Time of concentration (TC) = 13.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3106.000 to Point/Station 3100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 4.640(Ac.) Runoff from this stream = 9.449(CFS) Time of concentration = 13.37 min. Rainfall intensity = 3.633(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 5 .138 8 .62 4.820 2 9 .449 13 .37 3 .633 Qmax(1) = 1. 000 * 1. 000 * 5 .138) + 1. 000 * 0. 645 * 9 .449) + = 11 .234 Qmax(2) = 0. 754 * 1. 000 * 5 138) + 1. 000 * 1. 000 * 9 449) + = 13 .322 Total of 2 streams to confluence: Flow rates before confluence point: 5.138 9.449 Maximum flow rates at confluence using above data: 42 11.234 13.322 Area of streams before confluence: 1.870 4.640 Results of confluence: Total flow rate = 13.322(CFS) Time of concentration = 13.3 67 min. Effective stream area after confluence = 6.510(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^_^_i_ Process from Point/Station 3100.000 to Point/Station 3048.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 120.000(Ft.) Downstream point/station elevation = 118.450(Ft.) Pipe length = 199.78 (Ft.) Slope = 0.0078 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.322(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 13.322(CFS) Normal flow depth in pipe = 11.66(In.) Flow top width inside pipe = 33.69(In.) Critical Depth = 13.92(In.) Pipe flow velocity = 6.72(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 13.86 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3100.000 to Point/Station 3048.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 6.510(Ac.) Runoff from this stream = 13.322(CFS) Time of concentration = 13.86 min. Rainfall intensity = 3.549(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 26 .411 12 .40 3 .813 2 23 .606 13 .55 3.602 3 13 .322 13 .86 3 .549 Qmax (1) = 1. 000 * 1. 000 * 26 .411) + 1. 000 * 0. 916 * 23 606) + 1. 000 * 0. 895 * 13 322) + = Qmax 2) = 0. 945 * 1. 000 * .2 6 411) + 1. 000 * 1. 000 * 23 606) + 1. 000 * 0. 977 * 13 322) + = 59.946 61.576 43 Qmax(3) = 0.931 * 1.000 * 26.411) + 0.985 * 1.000 * 23.606) + 1.000 * 1.000 * 13.322) + = 61.163 Total of 3 main streams to confluence: Flow rates before confluence point: 26.411 23.606 13.322 Maximum flow rates at confluence using above data: 59.946 61.576 61.163 Area of streams before confluence: 13.530 11.370 6.510 Results of confluence: Total flow rate = 61.163(CFS) Time of concentration = 13.862 min. Effective stream area after confluence = 31.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3048.000 to Point/Station 3108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 118.120(Ft.) Downstream point/station elevation = 115.430(Ft.) Pipe length = 244.30(Ft.) Slope = 0.0110 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61.163(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 61.163(CFS) Normal flow depth in pipe = 2 6.06(In.) Flow top width inside pipe = 32.19(In.) Critical Depth = 30.26(In.) Pipe flow velocity = 11.16(Ft/s) Travel time through pipe = 0.3 6 min. Time of concentration (TC) = 14.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3108.000 to Point/Station 3110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 115.100(Ft.) Downstream point/station elevation = 109.830(Ft.) Pipe length = 246.00(Ft.) Slope = 0.0214 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61.163(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 61.163(CFS) Normal flow depth in pipe = 20.65(In.) Flow top width inside pipe = 35.61(In.) Critical Depth = 30.26(In.) Pipe flow velocity = 14.58(Ft/s) Travel time through pipe = 0.2 8 min. Time of concentration (TC) = 14.51 min. 44 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3110.000 to Point/Station 328.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 109.500(Ft.) Downstream point/station elevation = 95.500(Ft.) Pipe length = 242.06(Ft.) Slope = 0.0578 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61.163(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 61.163(CFS) Normal flow depth in pipe = 15.42(In.) Flow top width inside pipe = 35.63(In.) Critical Depth = 30.26(In.) Pipe flow velocity = 21.16(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 14.70 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3110.000 to Point/Station 328.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 31.410(Ac.) Runoff from this stream = 61.163(CFS) Time of concentration = 14.70 min. Rainfall intensity = 3.417(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3112.000 to Point/Station 3092.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.57 0 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 135.640(Ft.) Lowest elevation = 135.200(Ft.) Elevation difference = 0.440(Ft.) Slope = 2.588 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 2.59 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.77 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] 45 TC = [1.8* (1.1-0.5700)* ( 95.000".5)/( 2.588"(1/3)]= 6.77 Rainfall intensity (I) = 5.633(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.321(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3092.000 to Point/Station 3114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 135.200(Ft.) End of street segment elevation = 104.880(Ft.) Length of street segment = 737.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.578(CFS) Depth of flow = 0.254(Ft.), Average velocity = 3. 511 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.892(Ft.) Flow velocity = 3.51(Ft/s) Travel time = 3.50 min. TC = 10.27 min. Adding area flow to street Rainfall intensity (I) = 4.306(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 4.306(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.695 CA = 0.646 Subarea runoff = 2.462(CFS) for 0.830(Ac.) Total runoff = 2.783(CFS) Total area = 0.930(Ac.) Street flow at end of street = 2.783(CFS) Half street flow at end of street = 2.783(CFS) Depth of flow = 0.292(Ft.), Average velocity = 3.955 (Ft/s) Flow width (from curb towards crown)= 7.753(Ft.) 46 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3114.000 to Point/Station 328.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 97.370(Ft.) Downstream point/station elevation = 97.000(Ft.) Pipe length = 4.02(Ft.) Slope = 0.0920 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.783(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.783(CFS) Normal flow depth in pipe = 3.59(In.) Flow top width inside pipe = 14.39(In.) Critical Depth = 7.59(In.) Pipe flow velocity = 11.08(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3114.000 to Point/Station 328.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.930(Ac.) Runoff from this stream = 2.783(CFS) Time of concentration = 10.28 min. Rainfall intensity = 4.304(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3116.000 to Point/Station 3118.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 36.000(Ft.) Highest elevation = 134.550(Ft.) Lowest elevation = 133.730(Ft.) Elevation difference = 0.820(Ft.) Slope = 2.278 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 2.28 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.62 minutes TC = [1.8*(l.l-C)*distance{Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.7100)*( 75.000".5)/( 2.278"(1/3)]= 4.62 Calculated TC of 4.62 0 minutes is less than 5 minutes, 47 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.486(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3118.000 to Point/Station 3120.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * * * Top of street segment elevation = 133.730(Ft.) End of street segment elevation = 105.030(Ft.) Length of street segment = 707.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side{s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.530(CFS) Depth of flow = 0.253(Ft.), Average velocity = 3.471(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.817 (Ft.) Flow velocity = 3.47(Ft/s) Travel time = 3.39 min. TC = 8.02 min. Adding area flow to street Rainfall intensity (I) = 5.053(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 5.053(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 0.497 Subarea runoff = 2.025(CFS) for 0.600(Ac.) Total runoff = 2.511 (CFS) Total area = 0.700(Ac.) Street flow at end of street = 2.511(CFS) Half street flow at end of street = 2.511(CFS) Depth of flow = 0.285(Ft.), Average velocity = 3.847(Ft/s) Flow width (from curb towards crown)= 7.418(Ft.) 48 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3120.000 to Point/Station 328.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 32.82(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 4.08(In.) Flow top width inside pipe = 15.08(In.) Critical Depth = 7.20(In.) Pipe flow velocity = 8.33(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 8.08 min 98.470(Ft.) 97.000(Ft.) 0.0448 Manning's N 2.511(CFS) 2.511(CFS) 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3120.000 to Point/Station 328.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.700(Ac.) Runoff from this stream = 2.511(CFS) Time of concentration = 8.08 min. Rainfall intensity = 5.026(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 61 .163 14 .70 3 .417 2 2 .783 10 .28 4.304 3 2 .511 8 .08 5.026 Qmax(1) = 1 000 * 1. 000 * 61 .163) + 0. 794 * 1. 000 * 2 .783) + 0. 680 * 1. 000 * 2 511) + = Qmax(2) = 1. 000 * 0. 699 * 61 163) + 1. 000 * 1. 000 * 2 783) + 0. 856 * 1. 000 * 2 511) + = Qmax(3) = 1. 000 * 0. 550 * 61 163) + 1. 000 * 0. 786 * 2 783) + 1. 000 * 1. 000 * 2 511) + = 65.079 47.700 38.326 Total of 3 streams to confluence: Flow rates before confluence point: 61.163 2.783 2.511 Maximum flow rates at confluence using above data; 65.079 47.700 38.326 49 Area of streams before confluence: 31.410 0.930 0.700 Results of confluence: Total flow rate = 65.079(CFS) Time of concentration = 14.698 min. Effective stream area after confluence = 33.040(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 328.000 to Point/Station 334.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 94.500(Ft.) Downstream point/station elevation = 91.530(Ft.) Pipe length = 41.37(Ft.) Slope = 0.0718 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 65.079(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 65.079(CFS) Normal flow depth in pipe = 13.36(In.) Flow top width inside pipe = 43.02(In.) Critical Depth = 29.21(In.) Pipe flow velocity = 22.80(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 14.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 328.000 to Point/Station 334.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 33.040(Ac.) Runoff from this stream = 65.079(CFS) Time of concentration = 14.73 min. Rainfall intensity = 3.413(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3122.000 to Point/Station 3124.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 174.700(Ft.) Lowest elevation = 157.000(Ft.) 50 Elevation difference = 17.700(Ft.) Slope = 29.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 29.50 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.37 minutes TC = [1.8*{l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 29.500"(1/3)]= 4.37 Calculated TC of 4.369 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3124.000 to Point/Station 3126.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 157.000(Ft.) Downstream point elevation = 153.000(Ft.) Channel length thru subarea = 200.000(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of channel = 0.683(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.683(CFS) Depth of flow = 0.279(Ft.), Average velocity = 3.518(Ft/s) Channel flow top width = 1.394(Ft.) Flow Velocity = 3.52(Ft/s) Travel time = 0.95 rain. Time of concentration = 5.32 min. Critical depth = 0.342(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.584(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6.584(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.165 Subarea runoff = 0.843(CFS) for 0.370(Ac.) Total runoff = 1.083(CFS) Total area = 0.470(Ac.) Depth of flow = 0.331(Ft.), Average velocity = 3.948(Ft/s) Critical depth = 0.410(Ft.) 51 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + _j._^_^_l__l__l__^_^ Process from Point/Station 3126.000 to Point/Station 3128 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 146.000(Ft.) Downstream point/station elevation = 132.600(Ft.) Pipe length = 42.30(Ft.) Slope = 0.3168 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.083(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.083(CFS) Normal flow depth in pipe = 1.75(In.) Flow top width inside pipe = 8.47(In.) Critical Depth = 5.25(In.) Pipe flow velocity = 15.31(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.36 min. + +++++++ + +++ + +++++++ + ++++++ + +++++ + +++ + ++++++++ + + + ++++++ + ^^^^_^_^_i__i__i__i__i__i__i__^ Process from Point/Station 3128.000 to Point/Station 3130.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 132.600(Ft.) Downstream point elevation = 128.500(Ft.) Channel length thru subarea = 553.000(Ft.) Channel base width = 350.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 6.501(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 6.501(CFS) Depth of flow = 0.025(Ft.), Average velocity = 0.735(Ft/s) Channel flow top width = 350.051(Ft.) Flow Velocity = 0.73(Ft/s) Travel time = 12.55 min. Time of concentration = 17.91 min. Critical depth = 0.022(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.008(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 3.008(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.681 CA = 3.935 Subarea runoff = 10.754(CFS) for 5.310(Ac.) 52 Total runoff = 11.837(CFS) Total area = 5.780(Ac.) Depth of flow = 0.036(Ft.), Average velocity = 0.934 (Ft/s) Critical depth = 0.033(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3130.000 to Point/Station 3130.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 117.700(Ft.) Downstream point/station elevation = 116.890(Ft.) Pipe length = 47.86(Ft.) Slope = 0.0169 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 11.837(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.837(CFS) Normal flow depth in pipe = 9.66(In.) Flow top width inside pipe = 23.54(In.) Critical Depth = 14.83(In.) Pipe flow velocity = 10.02(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 17.99 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3130.100 to Point/Station 3132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 116.560(Ft.) Downstream point/station elevation = 115.840(Ft.) Pipe length = 57.51(Ft.) Slope = 0.0125 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 11.837(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.837(CFS) Normal flow depth in pipe = 10.49(In.) Flow top width inside pipe = 23.81(In.) Critical Depth = 14.83(In.) Pipe flow velocity = 8.96(Ft/s) Travel time through pipe = 0.11 min. Tirae of concentration (TC) = 18.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3132.000 to Point/Station 3134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 115.510(Ft.) Downstream point/station elevation = 111.370(Ft.) Pipe length = 207.07(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.837(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.837(CFS) Normal flow depth in pipe = 10.11(In.) Flow top width inside pipe = 23.70(In.) Critical Depth = 14.83(In.) 53 Pipe flow velocity = 9.42(Ft/s) Travel time through pipe = 0.37 min. Time of concentration (TC) = 18.46 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3134.000 to Point/Station 3136.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 111.040(Ft.) Downstream point/station elevation = 108.300(Ft.) Pipe length = 85.72(Ft.) Slope = 0.0320 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.837(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.837(CFS) Normal flow depth in pipe = 8.89(In.) Flow top width inside pipe = 23.18(In.) Critical Depth = 14.83(In.) Pipe flow velocity = 11.18(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 18.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3134.000 to Point/Station 3136.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 5.780(Ac.) Runoff from this stream = 11.837(CFS) Time of concentration = 18.59 min. Rainfall intensity = 2.937(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3140.000 to Point/Station 3142.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 30.000(Ft.) Highest elevation = 172.300(Ft.) Lowest elevation = 157.000(Ft.) Elevation difference = 15.300(Ft.) Slope = 51.000 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of 54 Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 30.000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++_^^^_^_^_^^_i_ Process from Point/Station 3142.000 to Point/Station 3144.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 157.000(Ft.) Downstream point elevation = 151.000(Ft.) Channel length thru subarea = 300.000(Ft.) Channel base width = 0.000 (Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of cnannel = 0.444(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.444(CFS) Depth of flow = 0.237(Ft.), Average velocity = 3.158(Ft/s) Channel flow top width = 1.185(Ft.) Flow Velocity = 3.16(Ft/s) Travel time = 1.58 min. Time of concentration = 5.93 min. Critical depth = 0.287(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.138(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6.138(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.095 Subarea runoff = 0.340(CFS) for 0.170(Ac.) Total runoff = 0.580(CFS) Total area = 0.270(Ac.) Depth of flow = 0.262(Ft.), Average velocity = 3.377(Ft/s) Critical depth = 0.320(Ft.) + ++++++++++++++++++++++ +++++++++++++++++++ +++++++++++++++^_j.^^.^_i__i_^_i__i__^_i__^ Process from Point/Station 3144.000 to Point/Station 3146.000 55 * * * * PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 146.000(Ft.) Downstream point/station elevation = 132.700(Ft.) Pipe length = 37.95(Ft.) Slope = 0.3505 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.580(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.580(CFS) Normal flow depth in pipe = 1.26(In.) Flow top width inside pipe = 7.37(In.) Critical Depth = 3.80(In.) Pipe flow velocity = 13.16(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.98 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^^_^_^_^_i__^_j_^_^^_^_^_^ Process from Point/Station 3146.000 to Point/Station 3148.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 132.700(Ft.) Downstream point elevation = 130.200(Ft.) Channel length thru subarea = 325.000 (Ft.) Channel base width = 300.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 6.925(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 6.925(CFS) Depth of flow = 0.028(Ft.), Average velocity = 0.810(Ft/s) Channel flow top width = 300.057(Ft.) Flow Velocity = 0.81(Ft/s) Travel time = 6.69 min. Time of concentration = 12.66 min. Critical depth = 0.025(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.762(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 3.762(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.691 CA = 3.545 Subarea runoff = 12.758(CFS) for 4.860(Ac.) Total runoff = 13.338(CFS) Total area = 5.130(Ac.) Depth of flow = 0.042(Ft.), Average velocity = 1.053(Ft/s) Critical depth = 0.040(Ft.) 56 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^_^_^_l__l__l__l__l__^ Process from Point/Station 3148.000 to Point/Station 3148.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 113.310(Ft.) Downstream point/station elevation = 111.520(Ft.) Pipe length = 37.73(Ft.) Slope = 0.0474 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 13.338 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 13.338(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 16.35(In.) Pipe flow velocity = 15.25(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.70 min. ++++++++ + + + ++++++ + + + +++ + + + + +++ +++ + +++++ +++++++^^^^^^^_^_i__^_^_^^_^_i__^_^_^_^_^_^_^^_^ Process from Point/Station 3148.100 to Point/Station 3136 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 111.190(Ft.) Downstream point/station elevation = 108.800(Ft.) Pipe length = 82.40(Ft.) Slope = 0.0290 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 13.338(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 13.338(CFS) Normal flow depth in pipe = 10.37(In.) Flow top width inside pipe = 17.79(In.) Critical Depth = 16.35(In.) Pipe flow velocity = 12.65(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 12.81 min. + + + +++++++ + +++ + ++++++++++++ + ^^^^^^^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^^_^_^_^_^^_^^_^_^_^_^_^_^_^_^_^ Process from Point/Station 3148.100 to Point/Station 3136.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 5.130(Ac.) Runoff from this stream = 13.338(CFS) Time of concentration = 12.81 min. Rainfall intensity = 3.734(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS (mm) (In/Hr) 1 11.837 18.59 2.937 2 13.338 12.81 3.734 57 Qmax(1; Qmax(2) 1.000 * 1.000 * 11.837) + 0.787 * 1.000 * 13.338) + = 22.328 1.000 * 0.689 * 11.837) + 1.000 * 1.000 * 13.338) + = 21.495 Total of 2 streams to confluence: Flow rates before confluence point: 11.837 13.338 Maximum flow rates at confluence using above data: 22.328 21.495 Area of streams before confluence: 5.780 5.130 Results of confluence: Total flow rate = 22.328(CFS) Time of concentration = 18.588 min. Effective stream area after confluence = 10.910(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3136.000 to Point/Station 3152.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 107.300(Ft.) Downstream point/station elevation = 99.700(Ft.) Pipe length..„..= ^r9-&T&2 {Ft. ) Slope = 0.026f: Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.328(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 22.328(CFS) Normal flow depth in pipe = 11.11(In.) Flow top width inside pipe = 33.26(In.) Critical Depth = 18.25(In.) Pipe flow velocity = 12.04(Ft/s) Travel time through pipe = 0.40 rain. Time of concentration (TC) = 18.99 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3150.000 to Point/Station 3152.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 10.910(Ac.) Runoff from this stream = 22.328(CFS) Time of concentration = 18.99 min. Rainfall intensity = 2.897(In/Hr) +++ +++++++++++++++++++++++++ + +++++++++++++++++ ++++++++ + + ++^^^_^_^_i__i__i__^_i__i__j_ Process from Point/Station 3154.000 to Point/Station 3156.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 58 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 133.000(Ft.) Lowest elevation = 132.000(Ft.) Elevation difference = 1.000(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.66 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.7100)* ( 65.000".5)/( 1.000"(1/3)]= 5.66 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 3 5.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.71 minutes for a distance of 35.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.35(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.710 Minutes Tt=[(11.9*0.0066"3)/( 0.35)]".385= 0.71 Total initial area Ti = 5.66 minutes from Figure 3-3 formula plus 0.71 minutes from the Figure 3-4 formula = 6.37 minutes Rainfall intensity (I) = 5.860(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.416(CFS) Total initial stream area = 0.100(Ac.) + + + +++++++++++++++ + + + + +++++++ + +++ + ++++ + +++ + +++++++++^^.^_^_^_^_i_^_i__i__^_i__^_^_^_^_^_^ Process from Point/Station 3156.000 to Point/Station 3158 000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 132.000(Ft.) Downstream point elevation = 128.500(Ft.) Channel length thru subarea = 465.000(Ft.) Channel base width = 2 00.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 4.780(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 4.780(CFS) Depth of flow = 0.029(Ft.), Average velocity = 0.816(Ft/s) Channel flow top width = 2 00.059(Ft.) Flow Velocity = 0.82(Ft/s) Travel time = 9.50 min. Time of concentration = 15.87 min. 59 Critical depth = 0.026(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.253(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 3.253(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 2.790 Subarea runoff = 8.660(CFS) for 3.830(Ac.) Total runoff = 9.076(CFS) Total area = 3.930(Ac.) Depth of flow = 0.043(Ft.), Average velocity = 1.055(Ft/s) Critical depth = 0.040(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^.^._^^^^_i__i__^_j__j__i_ Process from Point/Station 3158.000 to Point/Station 3158 100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 106.500(Ft.) Downstream point/station elevation = 104.800(Ft.) Pipe length = 43.51(Ft.) Slope = 0.0391 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 9.076(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.076(CFS) Normal flow depth in pipe = 7.58(In.) Flow top width inside pipe = 17.78(In.) Critical Depth = 13.99(In.) Pipe flow velocity = 12.85(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.92 min. + +++++++++++++++++++ +++++++ + +++++++ + ++++++++ +++++++ +++++++++++^^^^^_^_j__^ Process from Point/Station 3158.100 to Point/Station 3152.000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 104.470(Ft.) Downstream point/station elevation = 102.200(Ft.) Pipe length = 65.31(Ft.) Slope = 0.0348 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.07 6(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.076(CFS) Normal flow depth in pipe = 8.61(In.) Flow top width inside pipe = 17.98(In.) Critical Depth = 13.99(In.) Pipe flow velocity = 10.87(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 16.02 min. 60 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3158.000 to Point/Station 3152.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.930(Ac.) Runoff from this stream = 9.076(CFS) Time of concentration = 16.02 min. Rainfall intensity = 3.232(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 22 .328 18 .99 2 .897 2 9 .076 16 .02 3 .232 Qmax(1) - 1. 000 * 1 000 * 22 .328) + 0 . 896 * 1 000 * 9 076) + = Qmax(2) = 1. 000 * 0 844 * 22 328) + 1. 000 * 1 000 * 9 076) + = 30.462 27.914 Total of 2 streams to confluence: Flow rates before confluence point: 22.328 9.076 Maximum flow rates at confluence using above data: 30.462 27.914 Area of streams before confluence: 10.910 3.930 Results of confluence: Total flow rate = 30.462(CFS) Time of concentration = 18.990 min. Effective stream area after confluence = 14.840(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3152.000 to Point/Station 334 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 80.56(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow = 30.462(CFS) Normal flow depth in pipe = 9.63(In.) Flow top width inside pipe = 31.87(In.) Critical Depth = 21.46(In.) Pipe flow velocity = 20.02(Ft/s) Travel time through pipe = 0.07 min. 99.370(Ft.) 92.530(Ft.) 0.0849 Manning's N = 0.013 30.462(CFS) 61 Time of concentration (TC) 19.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^^_i__i__i__i__i__^_^_^_^ Process from Point/Station 3152.000 to Point/Station 334.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 14.840(Ac.) Runoff from this stream = 30.462(CFS) Time of concentration = 19.06 min. Rainfall intensity = 2.890(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2; 65.079 30.462 1.000 1.000 0.847 1.000 14.73 19.06 1.000 * 0.773 * 1.000 * 1.000 * 3.413 2 .890 65.079) + 30.462) + = 65.079) + 30.462) + = 88.622 15.517 Total of 2 main streams to confluence: Flow rates before confluence point: 65.079 30.462 Maximum flow rates at confluence using above data: 88.622 85.577 Area of streams before confluence: 33.040 14.840 Results of confluence: Total flow rate = 88.622(CFS) Time of concentration = 14.729 min. Effective stream area after confluence = 47.880(Ac.) + +++++++++++ ++++ + + +++++++ + +++ ++++++ + + + + +++ +++ +++^^^^^^^_i._^_j__^_^_^_^_^_^_^_^^_^_^^ Process from Point/Station 334.000 to Point/Station 344 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 91.200(Ft.) Downstream point/station elevation = 80.830(Ft.) Pipe length = 311.57(Ft.) Slope = 0.0333 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 88.622(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 88.622(CFS) Normal flow depth in pipe = 19.24(In.) 62 Flow top width inside pipe = 47.05(In.) Critical Depth = 34.24(In.) Pipe flow velocity = 18.83(Ft/s) Travel time through pipe = 0.2 8 min. Time of concentration (TC) = 15.00 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 334.000 to Point/Station 344.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 47.880(Ac.) Runoff from this stream = 88.622(CFS) Time of concentration = 15.00 min. Rainfall intensity = 3.372(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 346.000 to Point/Station 348.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 119.000(Ft.) Lowest elevation = 118.000 (Ft.) Elevation difference = 1.000(Ft.) Slope = 1.000 % Bottom of Initial Area Slope adjusted by User to 0.710 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 11.29 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)*( 70.000".5)/( 1.000" (1/3)]= 11.29 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.72 minutes for a distance of 30.00 (Ft.) and a slope of 0.71 % with an elevation difference of 0.21(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.72 0 Minutes Tt=[(11.9*0.0057"3)/( 0.21)]".385= 0.72 Total initial area Ti = 11.2 9 minutes from Figure 3-3 formula plus 0.72 minutes from the Figure 3-4 formula = 12.01 minutes Rainfall intensity (I) = 3.892(In/Hr) for a 100.0 year storm 63 Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.136(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 348.000 to Point/Station 350.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 118.000(Ft.) Downstream point elevation = 114.000(Ft.) Channel length thru subarea = 470.000(Ft.) Channel base width = 200.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 3.959(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 3.959(CFS) Depth of flow = 0.025(Ft.), Average velocity = 0.785 (Ft/s) Channel flow top width = 200.050(Ft.) Flow Velocity = 0.19{Ft/s) Travel time = 9.97 min. Time of concentration = 21.99 min. Critical depth = 0.023(Ft.) Adding area flow to channel Rainfall intensity (I) = 2.635(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 2.635(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.702 CA = 2.974 Subarea runoff = 7.702 (CFS) for 4.140(Ac.) Total runoff = 7.838(CFS) Total area = 4.240(Ac.) Depth of flow = 0.038(Ft.), Average velocity = 1.032(Ft/s) Critical depth = 0.036(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.000 to Point/Station 350.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 94.000 (Ft.) Downstream point/station elevation = 90.720(Ft.) Pipe length = 37.93(Ft.) Slope = 0.0865 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.838(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.838(CFS) 64 Normal flow depth in pipe = 6.18(In.) Flow top width inside pipe = 17.09(In.) Critical Depth = 13.01(In.) Pipe flow velocity = 14.59(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 22.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.100 to Point/Station 344.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 84.78(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 6.25(In.) Flow top width inside pipe = 17.14(In.) Critical Depth = 13.01(In.) Pipe flow velocity = 14.40(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 22.13 min 90.390(Ft.) 83.330(Ft.) 0.0833 Manning's N 7.838(CFS) 7.838(CFS) 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.100 to Point/Station 344.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.240(Ac.) Runoff from this stream = 7.838(CFS) Time of concentration = 22.13 min. Rainfall intensity = 2.624(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(11 Qmax(2; 88.622 7.838 1.000 * 1.000 * 0.778 * 1.000 * 15.00 22 .13 1.000 * 0.678 * 1.000 * 1.000 * 3 .372 2 . 624 38.622) + 7.838) + = 18.622) + 7.838) + = 93.937 76.812 Total of 2 streams to confluence: Flow rates before confluence point: 88.622 7.838 Maximum flow rates at confluence using above data; 65 93.937 76.812 Area of streams before confluence: 47.880 4.240 Results of confluence: Total flow rate = 93.937(CFS) Time of concentration = 15.004 min. Effective stream area after confluence = 52.120(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 344.000 to Point/Station 3160.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 80.500(Ft.) Downstream point/station elevation = 73.600(Ft.) Pipe length = 91.22(Ft.) Slope = 0.0756 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 93.937(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 93.937(CFS) Normal flow depth in pipe = 15.94(In.) Flow top width inside pipe = 45.21(In.) Critical Depth = 35.25(In.) Pipe flow velocity = 25.78(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 344.000 to Point/Station 3160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 52.120(Ac.) Runoff from this stream = 93.937(CFS) Time of concentration = 15.06 min. Rainfall intensity = 3.363(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3162.000 to Point/Station 3164.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 20.000(Ft.) Highest elevation = 126.390(Ft.) Lowest elevation = 125.900(Ft.) Elevation difference = 0.490(Ft.) Slope = 2.450 % 66 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 2.45 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.51 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.7100)*( 75.000".5)/( 2.450"(1/3)]= 4.51 Calculated TC of 4.510 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.486(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^_^^_i__i__^_i__i__i__i__i__^_^ Process from Point/Station 3164.000 to Point/Station 3166.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 125.900(Ft.) End of street segment elevation = 85.070(Ft.) Length of street segment = 780.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 3 6.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.260(CFS) Depth of flow = 0.294(Ft.), Average velocity = 4.499(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.887(Ft.) Flow velocity = 4.50(Ft/s) Travel time = 2.89 min. TC = 7.40 min. Adding area flow to street Rainfall intensity (I) = 5.320(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 5.320(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 67 (Q=KCIA) is C = 0.710 CA = 1.122 Subarea runoff = 5.482(CFS) for 1.480(Ac.) Total runoff = 5.968(CFS) Total area = 1.580(Ac.) Street flow at end of street = 5.968(CFS) Half street flow at end of street = 5.968(CFS) Depth of flow = 0.342(Ft.), Average velocity = 5.167(Ft/s) Flow width (from curb towards crown)= 10.259(Ft.) ++++ +++++++++++++++++++++++++++++ + + + + + + +++ +++ ++++++++++++++^^^^^_^_^ Process from Point/Station 3166.000 to Point/Station 3160.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 77.530(Ft.) Downstream point/station elevation = 77.300(Ft.) Pipe length = 4.67(Ft.) Slope = 0.0493 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.968(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.968(CFS) Normal flow depth in pipe = 6.21(In.) Flow top width inside pipe = 17.11(In.) Critical Depth = 11.32(In.) Pipe flow velocity = 11.04(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3166.000 to Point/Station 3160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.580(Ac.) Runoff from this stream = 5.968(CFS) Time of concentration = 7.41 min. Rainfall intensity = 5.317(In/Hr) + +++++++++++++++++++ +++++++ + +++++++++++ +++++++++++++ + ++++ + ^^^_^_^_i__j__j_ Process from Point/Station 3168.000 to Point/Station 3170.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.790 Initial subarea total flow distance = 55.000(Ft.) Highest elevation = 125.590(Ft.) Lowest elevation = 124.2 60(Ft.) Elevation difference = 1.330(Ft.) Slope = 2.418 % 68 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 2.42 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.60 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.7900)* ( 75.000".5)/( 2.418"(1/3)]= 3.60 Calculated TC of 3.600 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.790 Subarea runoff = 0.541(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3170.000 to Point/Station 3172.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 124.260(Ft.) End of street segment elevation = 85.910(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 38.000(Ft.) Distance from crown to crossfall grade break = 36.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.02 0 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.979(CFS) Depth of flow = 0.288(Ft.), Average velocity = 4.394(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.587 (Ft.) Flow velocity = 4.39(Ft/s) Travel time = 2.81 min. TC = 6.41 min. Adding area flow to street Rainfall intensity (I) = 5.838(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.790 Rainfall intensity = 5.838(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 69 (Q=KCIA) is C = 0.790 CA = 0.916 Subarea runoff = 4.808(CFS) for 1.060(Ac.) Total runoff = 5.350(CFS) Total area = 1.160(Ac.) Street flow at end of street = 5.350(CFS) Half street flow at end of street = 5.350(CFS) Depth of flow = 0.333(Ft.), Average velocity = 5.017(Ft/s) Flow width (from curb towards crown)= 9.817(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3172.000 to Point/Station 3160.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 78.100(Ft.) Downstream point/station elevation = 77.300 (Ft.) Pipe length = 67.75(Ft.) Slope = 0.0118 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.350(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.350(CFS) Normal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 17.99(In.) Critical Depth = 10.70(In.) Pipe flow velocity = 6.35(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 6.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3172.000 to Point/Station 3160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.160(Ac.) Runoff from this stream = 5.350(CFS) Time of concentration = 6.59 min. Rainfall intensity = 5.736(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 93.937 15.06 3.363 2 5.968 7.41 5.317 3 5.350 6.59 5.736 Qmax(1) = 1.000 * 1.000 * 93.937) + 0.633 * 1.000 * 5.968) + 0.586 * 1.000 * 5.350) + = 100.849 Qmax(2; 1.000 * 0.492 * 93.937) + 1.000 * 1.000 * 5.968) + 0.927 * 1.000 * 5.350) + = 57.113 Qmax(3) = 70 1.000 * 0.437 * 93.937) + 1.000 * 0.889 * 5.968) + 1.000 * 1.000 * 5.350) + = 51.722 Total of 3 streams to confluence: Flow rates before confluence point: 93.937 5.968 5.350 Maximum flow rates at confluence using above data: 100.849 57.113 51.722 Area of streams before confluence: 52.120 1.580 1.160 Results of confluence: Total flow rate = 100.849(CFS) Time of concentration = 15.063 min. Effective stream area after confluence = 54.860(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3160.000 to Point/Station 352.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 73.270(Ft.) Downstream point/station elevation = 73.080(Ft.) Pipe length = 3.83(Ft.) Slope = 0.0496 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 100.849(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 100.849(CFS) Normal flow depth in pipe = 18.52(In.) Flow top width inside pipe = 46.73(In.) Critical Depth = 36.49(In.) Pipe flow velocity = 22.56(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 15.07 min. End of computations, total study area = 54.860 (Ac.) 71 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/01/15 Rancho Costera Basin H Final B Map Design g:\101307\Hydrology\B Map\RCbasinH.out JST ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 231.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 125.000(Ft.) Highest elevation = 175.800(Ft.) Lowest elevation = 173.800(Ft.) Elevation difference = 2.000(Ft.) Slope = 1.600 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.60 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.30 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5700)*( 80.000".5)/( 1.600"(1/3)]= 7.30 The initial area total distance of 125.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.72 minutes for a distance of 45.00 (Ft.) and a slope of 1.60 % with an elevation difference of 0.72(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.719 Minutes Tt=[(11.9*0.0085"3)/( 0.72)]".385= 0.72 Total initial area Ti = 7.30 minutes from Figure 3-3 formula plus 0.72 minutes from the Figure 3-4 formula = 8.01 minutes Rainfall intensity (I) = 5.053(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.288(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 231.000 to Point/Station 231.100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 173.800(Ft.) End of street segment elevation = 147.400(Ft.) Length of street segment = 815.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.464(CFS) Depth of flow = 0.338(Ft.), Average velocity = 4.017(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.044(Ft.) Flow velocity = 4.02(Ft/s) Travel time = 3.38 min. TC = 11.40 min. Adding area flow to street Rainfall intensity (I) = 4.027(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.027(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.570 CA = 2.126 Subarea runoff = 8.273(CFS) for 3.630(Ac.) Total runoff = 8.561(CFS) Total area = 3.730(Ac.) Street flow at end of street = 8.561(CFS) Half street flow at end of street = 8.561(CFS) Depth of flow = 0.399(Ft.), Average velocity = 4.689(Ft/s) Flow width (from curb towards crown)= 13.127(Ft.) Process from Point/Station 231.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 231.200 Upstream point/station elevation = 138.420(Ft.) Downstream point/station elevation = 137.000(Ft.) Pipe length = 28.48(Ft.) Slope = 0.0499 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 7.52(In.) Flow top width inside pipe = 17.76(In.) Critical Depth = 13.60(In.) Pipe flow velocity = 12.23(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 11.44 min 8.561(CFS) 8.561(CFS) Process from Point/Station 231.200 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 231.200 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.730(Ac.) Runoff from this stream = 8.561(CFS) Time of concentration = 11.44 min. Rainfall intensity = 4.018(In/Hr) Process from Point/Station 232.000 to Point/Station **** INITIAL AREA EVALUATION **** 233.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = Highest elevation = 175.800(Ft.) 125.000(Ft.) Lowest elevation = 173.800(Ft.) Elevation difference = 2.000(Ft.) Slope = 1.600 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.60 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.30 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)*( 80.000".5)/( 1.600" (1/3)]= 7.30 The initial area total distance of 125.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.72 minutes for a distance of 45.00 (Ft.) and a slope of 1.60 % with an elevation difference of 0.72(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.719 Minutes Tt=[(11.9*0.0085"3)/( 0.72)]".385= 0.72 Total initial area Ti = 7.30 minutes from Figure 3-3 formula plus 0.72 minutes from the Figure 3-4 formula = 8.01 minutes Rainfall intensity (I) = 5.053(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.288(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 233.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 233.100 Top of street segment elevation = 173.800(Ft.) End of street segment elevation = 146.800(Ft.) Length of street segment = 815.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft, Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.281(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.239(Ft.) Flow velocity = 3.44(Ft/s) Travel time = 3.95 min. TC = 11.97 min. Adding area flow to street Rainfall intensity (I) = 3.901(In/Hr) for a 100.0 year storm 2.153(CFS) 3.436(Ft/s) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.901(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.009 Subarea runoff = 3.648(CFS) for 1.670(Ac.) Total runoff = 3.936(CFS) Total area = 1.770(Ac.) Street flow at end of street = 3.936(CFS) Half street flow at end of street = 3.936(CFS) Depth of flow = 0.326(Ft.), Average velocity = 3.935(Ft/s) Flow width (from curb towards crown)= 9.475(Ft.) Process from Point/Station 233.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 231.200 Upstream point/station elevation = 137.270(Ft.) Downstream point/station elevation = 137.000(Ft. Pipe length = 2.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 4.17(In.) Flow top width inside pipe = 15.19(In.) Critical Depth = 9.10(In.) Pipe flow velocity = 12.68(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 11.97 min. 0.1011 Manning's N = 0.013 3.936(CFS) 3.936(CFS) Process from Point/Station 231.200 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 231.200 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.770(Ac.) Runoff from this stream = 3.936(CFS) Time of concentration = 11.97 min. Rainfall intensity = 3.901(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 8.561 3.936 11.44 11. 97 4.018 3. 901 Qmax(1) = 1.000 * 1.000 * Qmax(2) = 0.971 * 1.000 * 1.000 * 0.955 * 1.000 * 1.000 * 8.561) + 3.936) + 8.561) + 3.936) + 12.321 12.248 Total of 2 streams to confluence: Flow rates before confluence point: 8.561 3.936 Maximum flow rates at confluence using above data: 12.321 12.248 Area of streams before confluence: 3.730 1.770 Results of confluence: Total flow rate = 12.321(CFS) Time of concentration = 11.435 min. Effective stream area after confluence = 5.500(Ac.) Process from Point/Station 231.200 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 236.100 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 209.57(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 7.34(In.) Flow top width inside pipe = 29.01(In.) Critical Depth = 13.36(In.) Pipe flow velocity = 11.91(Ft/s) Travel time through pipe = 0.2 9 min. Time of concentration (TC) = 11.73 min. 135.500(Ft.) 126.880(Ft.) 0.0411 Manning's N = 0.013 12.321(CFS) 12.321(CFS) Process from Point/Station 236.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 236.200 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 196.00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 6.56(In.) Flow top width inside pipe = 27.80(In.) Critical Depth = 13.36(In.) Pipe flow velocity = 13.99(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 11.96 min 126.500(Ft.) 113.780(Ft.) 0.0649 Manning's N = 0.013 12.321(CFS) 12.321(CFS) Process from Point/Station 236.200 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 236.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 198.00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 7.64(In.) Flow top width inside pipe = 29.44(In.) Critical Depth = 13.36(In.) Pipe flow velocity = 11.25(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 12.26 min 113.440(Ft.) 106.510(Ft.) 0.0350 Manning's N = 0.013 12.321(CFS) 12.321(CFS) Process from Point/Station 236.200 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 236.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.500(Ac.) Runoff from this stream = 12.321(CFS) Time of concentration = 12.26 min. Rainfall intensity = 3.842(In/Hr) Process from Point/Station 231.300 to Point/Station **** INITIAL AREA EVALUATION **** 231.100 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 149.600(Ft.) Lowest elevation = 147.400(Ft.) Elevation difference = 2.200(Ft. INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 I, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.66 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] ] 105.000(Ft. Slope = 2.095 TC = [1.8*(l.l-0.5700)*( 80.000".5)/( 2.100"(1/3)]= 6.66 The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.41 minutes for a distance of 25.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.53(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.412 Minutes Tt=[(11.9*0.0047"3)/( 0.53)]".385= 0.41 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.41 minutes from the Figure 3-4 formula = 7.08 minutes Rainfall intensity (I) = 5.476(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.312(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 231.100 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 234.000 Top of street segment elevation = 147.400(Ft.) End of street segment elevation = 120.000(Ft.) Length of street segment = 615.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft. Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.2 94(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.864(Ft.) Flow velocity = 4.15(Ft/s) Travel time = 2.47 min. TC = 9.55 min. Adding area flow to street Rainfall intensity (I) = 4 0.0150 0.0150 2.988(CFS) 145(Ft/s) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.513(In/Hr) for a 513(In/Hr) for a 100.0 year storm 100.0 year storm 8 Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.237 Subarea runoff = 5.270(CFS) for 2.070(Ac Total runoff = 5.583(CFS) Total area = Street flow at end of street = 5.583(CFS) Half street flow at end of street = 5.583(CFS) Depth of flow = 0.343(Ft.), Average velocity = 4.782(Ft/s) Flow width (from curb towards crown)= 10.319(Ft.) 2.170(Ac.) Process from Point/Station 234.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 236.000 Upstream point/station elevation = Downstream point/station elevation Pipe length = 26.67(Ft.) Slope = No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 7.62 (In.) Flow top width inside pipe = 17.79(In.) Critical Depth = 10.93(In.) Pipe flow velocity = 7.84(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 9.60 min 108.220(Ft.) 107.680(Ft.) 0.0202 Manning's N = 0.013 5.583(CFS) 5.583(CFS) Process from Point/Station 234.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 236.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.170(Ac.) Runoff from this stream = 5.583(CFS) Time of concentration = 9.60 min. Rainfall intensity = 4.496(In/Hr) Process from Point/Station 233.200 to Point/Station **** INITIAL AREA EVALUATION **** 233.100 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 149.000(Ft.) Lowest elevation = 146.800(Ft.) 105.000(Ft.) Elevation difference = 2.200(Ft.) Slope = 2.095 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.66 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 80.000".5)/( 2.100"(1/3)]= 6.66 The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.41 minutes for a distance of 25.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.53(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.412 Minutes Tt=[(11.9*0.0047"3)/( 0.53)]".385= 0.41 Total initial area Ti = 6.66 minutes from Figure 3-3 formula plus 0.41 minutes from the Figure 3-4 formula = 7.08 minutes Rainfall intensity (I) = 5.476(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.312(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 233.100 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 235.000 Top of street segment elevation = 146.800(Ft.) End of street segment elevation = 120.000(Ft.) Length of street segment = 615.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft, Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.289(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 7.617(Ft.) Flow velocity = 4.04(Ft/s) Travel time = 2.54 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group 0.0150 0.0150 2.756(CFS) 4.037 (Ft/s) TC = 9.61 min. 4.493(In/Hr) for a = 0.000 100.0 year storm 10 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.493 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.140 Subarea runoff = 4.810(CFS) for 1.900(Ac.) Total runoff = 5.122(CFS) Total area = 2.000(Ac.) Street flow at end of street = 5.122(CFS) Half street flow at end of street = 5.122(CFS) Depth of flow = 0.337(Ft.), Average velocity = 4.647(Ft/s) Flow width (from curb towards crown)= 9.998(Ft.) Process from Point/Station 235.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 236.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 2.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 4.64(In.) Flow top width inside pipe = 15.75(In.) Critical Depth = 10.45(In.) Pipe flow velocity = 14.21(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 9.62 min. 107.980(Ft.) 107.680(Ft.) 0.1124 Manning's N 5.122(CFS) 5.122(CFS) 0. 013 Process from Point/Station 235.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 236.000 Along Main Stream number: 1 in normal stream number 3 Stream flow area = 2.000(Ac.) Runoff from this stream = 5.122(CFS) Time of concentration = 9.62 min. Rainfall intensity = 4.492(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 12.321 5.583 5.122 12 .26 9. 60 9. 62 3.842 4 .496 4.492 11 Qmax(1) Qmax(2) = Qmax(3) = 1 000 * 1 . 000 * 12 .321) + 0 855 * 1 000 * 5 .583) + 0 855 * 1 000 * 5 122) + = 21 472 1 000 * 0 784 * 12 321) + 1 000 * 1 000 * 5 583) + 1 000 * 0 999 * 5 122) + = 20 354 1 000 * 0 785 * 12 321) + 0. 999 * 1. 000 * 5 583) + 1. 000 * 1. 000 * 5. 122) + = 20. 369 Total of 3 streams to confluence: Flow rates before confluence point: 12.321 5.583 5.122 Maximum flow rates at confluence using above data: 21.472 20.354 20.369 Area of streams before confluence: 5.500 2.170 2.000 Results of confluence: Total flow rate = 21.472(CFS) Time of concentration = 12.255 min. Effective stream area after confluence = 9.670(Ac.) Process from Point/Station 236.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 224.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 40.50(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 8.08(In.) Flow top width inside pipe = 30.04(In.) Critical Depth = 17.86(In.) Pipe flow velocity = 18.10(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.29 min 106.180(Ft.) 102.740(Ft.) 0.0849 Manning's N 21.472(CFS) 21.472(CFS) 0. 013 Process from Point/Station 224.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 225.000 Upstream point/station elevation = 102.410(Ft. Downstream point/station elevation Pipe length = 190.85(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow 100.500(Ft.) 0.0100 Manning's N 21.472(CFS) 21.472(CFS) 0. 013 12 Normal flow depth in pipe = 14.04(In.) Flow top width inside pipe = 35.12(In.) Critical Depth = 17.86(In.) Pipe flow velocity = 8.41(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 12.67 min. Process from Point/Station 225.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 226.000 Upstream point/station elevation = 100.170(Ft.) Downstream point/station elevation = 98.900(Ft.) Pipe length = 126.48{Ft.) Slope = 0.0100 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.472(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 21.472(CFS) Normal flow depth in pipe = 14.03(In.) Flow top width inside pipe = 35.11(In.) Critical Depth = 17.86(In.) Pipe flow velocity = 8.42(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 12.92 min. Process from Point/Station 226.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 238.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 59.23(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 8.68(In.) Flow top width inside pipe = 30.80(In.) Critical Depth = 17.86(In.) Pipe flow velocity = 16.36(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 12.98 min. 98.570(Ft.) 94.790(Ft.) 0.0638 Manning's N = 0.013 21.472(CFS) 21.472(CFS) Process from Point/Station 226.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 238.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.670(Ac.) Runoff from this stream = 21.472(CFS) Time of concentration = 12.98 min. Rainfall intensity = 3.702(In/Hr) 13 Program is now starting with Main Stream No. 2 Process from Point/Station 239.000 to Point/Station **** INITIAL AREA EVALUATION **** 240.000 95.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 187.500(Ft.) Lowest elevation = 186.300(Ft.) Elevation difference = 1.200(Ft.) Slope = 1.263 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.26 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.09 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5200)*( 70.000".5)/( 1.260"(1/3)]= 8.09 The initial area total distance of 95.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.50 minutes for a distance of 25.00 (Ft.) and a slope of 1.26 % with an elevation difference of 0.32(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.502 Minutes Tt=[(11.9*0.0047"3)/( 0.32)]".385= 0.50 Total initial area Ti = 8.09 minutes from Figure 3-3 formula plus 0.50 rainutes from the Figure 3-4 formula = 8.59 minutes Rainfall intensity (I) = 4.832(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.251(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 240.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 241.000 Top of street segment elevation = 186.300(Ft.) End of street segment elevation = 148.000(Ft.) Length of street segment = 935.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft Slope from gutter to grade break (v/hz) = 0.020 14 TC = 12.19 mm. Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.162(CFS) Depth of flow = 0.322(Ft.), Average velocity = 4.325(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.273(Ft.) Flow velocity = 4.32(Ft/s) Travel time = 3.60 min. Adding area flow to street Rainfall intensity (I) = 3 Decimal fraction soil group A = Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.855(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.520 CA = 2.075 Subarea runoff = 7.747(CFS) for 3.890(Ac.) Total runoff = 7.998(CFS) Total area = 3.990(Ac.) Street flow at end of street = 7.998(CFS) Half street flow at end of street = 7.998(CFS) Depth of flow = 0.380(Ft.), Average velocity = 5.043(Ft/s) Flow width (from curb towards crown)= 12.180(Ft.) .855(In/Hr) for a 0.000 0.000 0.000 1.000 100.0 year storm Process from Point/Station 241.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 245.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 2.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 5.11(In.) Flow top width inside pipe = 16.23(In.) Critical Depth = 13.15 (In.) Pipe flow velocity = 19.36(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 12.19 min 140.500(Ft.) 140.000(Ft.) 0.1873 Manning's N = 0.013 7.998(CFS) 7.998(CFS) 15 Process from Point/Station 241.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 245.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.990(Ac.) Runoff from this stream = 7.998(CFS) Time of concentration = 12.19 min. Rainfall intensity = 3.855(In/Hr) Process from Point/Station 242.000 to Point/Station **** INITIAL AREA EVALUATION **** 243.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 179.660(Ft.) Lowest elevation = 178.960(Ft.) Elevation difference = 0.700(Ft.) INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% TC = [1.8*(l.l-0.5200)*( 80.000".5)/( 2.000"(1/3)]= 7.41 Rainfall intensity (I) = 5.314(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.276(CFS) Total initial stream area = 0.100(Ac.) 35.000(Ft.) Slope = 2.000 7.41 minutes slope"(1/3)] 2.000"(1/3)]• Process from Point/Station 243.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 178.960(Ft.) End of street segment elevation = 148.000(Ft.) Length of street segment = 470.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft. Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street 244.000 16 3.904(CFS) 5.122(Ft/s) for a 100.0 year storm Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.299(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.123(Ft.) Flow velocity = 5.12(Ft/s) Travel time = 1.53 min. TC = 8.94 min. Adding area flow to street Rainfall intensity (I) = 4.709(In/Hr) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 4.709(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.586 Subarea runoff = 7.192(CFS) for 2.950(Ac.) Total runoff = 7.468(CFS) Total area = 3.050(Ac.) Street flow at end of street = 7.468(CFS) Half street flow at end of street = 7.468(CFS) Depth of flow = 0.351(Ft.), Average velocity = 5.947(Ft/s) Flow width (from curb towards crown)= 10.739(Ft.) Process from Point/Station 244.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 245.000 0 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 26.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 9.20(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 12.70(In.) Pipe flow velocity = 8.21(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 9.00 min 140.500(Ft.) 140.000(Ft.) 0187 Manning's N 7.468(CFS) 0. 013 7.468(CFS) Process from Point/Station 244.000 to Point/Station 245.000 17 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.050(Ac.) Runoff from this stream = 7.468(CFS) Time of concentration = 9.00 min. Rainfall intensity = 4.690(In/Hr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 7 .998 12 .19 3.855 2 7 .468 9 .00 4 . 690 Qmax(1) = 1. 000 * 1. 000 * 7 998) + 0. 822 * 1. 000 * 7 468) + = Qmax(2) = 1. 000 * 0. 738 * 7 998) + 1. 000 * 1. 000 * 7 468) + = (In/Hr) 14.136 13.368 Total of 2 streams to confluence: Flow rates before confluence point: 7.998 7.468 Maximum flow rates at confluence using above data: 14.136 13.368 Area of streams before confluence: 3.990 3.050 Results of confluence: Total flow rate = 14.136(CFS) Time of concentration = 12.194 min. Effective stream area after confluence = 7.040(Ac, Process from Point/Station 245.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 246.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 62.74(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow Normal flow depth in pipe = 7.66(In.) Flow top width inside pipe = 22.38(In.) Critical Depth = 16.26(In.) Pipe flow velocity = 16.36(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 12.26 min. 139.500(Ft.) 134.480(Ft.) 0.0800 Manning's N = 0.013 14.136(CFS) 14.136(CFS) 18 Process from Point/Station 245.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 246.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 7,040(Ac.) Runoff from this stream = 14.136(CFS) Time of concentration = 12.26 min. Rainfall intensity = 3.842(In/Hr) Process from Point/Station 247 **** INITIAL AREA EVALUATION **** 000 to Point/Station 248.000 = 115.000(Ft.) Slope 1.304 % Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 148.000(Ft.) Lowest elevation = 146.500(Ft.) Elevation difference = 1.500(Ft.) INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.30 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.00 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"{l/3)] TC = [1.8*(l.l-0.5200)*( 70.000".5)/( 1.300"(1/3)]= 8.00 The initial area total distance of 115.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.78 minutes for a distance of 45.00 (Ft.) and a slope of 1.30 % with an elevation difference of 0.58(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.779 Minutes Tt=[(11.9*0.0085"3)/( 0.58)]".385= 0.78 Total initial area Ti = 8.00 minutes from Figure 3-3 formula plus 0.78 minutes from the Figure 3-4 formula = 8.78 minutes Rainfall intensity (I) = 4.763(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.248(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 248.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 249.000 19 1.306(CFS) 1.799(Ft/s) Top of street segment elevation = 146.500(Ft.) End of street segment elevation = 145.120(Ft.) Length of street segment = 165.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.295(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 7.895(Ft.) Flow velocity = 1.80(Ft/s) Travel time = 1.53 min. TC = 10.31 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 4.295(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 0.536 Subarea runoff = 2.053(CFS) for 0.930(Ac.) Total runoff = 2.300(CFS) Total area = 1.030(Ac.) Street flow at end of street = 2.300(CFS) Half street flow at end of street = 2.300(CFS) Depth of flow = 0.339(Ft.), Average velocity = 2.048(Ft/s) Flow width (from curb towards crown)= 10.104(Ft.) 295(In/Hr) for a 0.000 0.000 0.000 1.000 100.0 year storm Process from Point/Station 249.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 246.000 Upstream point/station elevation = 137.080(Ft.) ufjo UI. cam jju + iiL. / s Ld L J-un exevdLXun = Downstream point/station elevation Pipe length = 44.71(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 3.86(In. 134.980(Ft.) 0.0470 Manning's N 2.300(CFS) 2.300(CFS) 0.013 20 Flow top width inside pipe = 14.78(In.) Critical Depth = 6.88(In.) Pipe flow velocity = 8.26(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 10.40 min, Process from Point/Station 249.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 246.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.030(Ac.) Runoff from this stream = 2.300(CFS) Time of concentration = 10.40 min. Rainfall intensity = 4.271(In/Hr) Process from Point/Station 250, **** INITIAL AREA EVALUATION **** 000 to Point/Station 251.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 148.900(Ft.) Lowest elevation = 147.700(Ft.) Elevation difference = 1.200(Ft.) INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) = 160.000(Ft.) Slope = 0.750 for the top area slope value of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 0.75 %, in a development type of 9.61 minutes TC = TC = [1.8* (1 [1. 8* (1 1-C)*distance(Ft.)".5)/(I slope"(1/3)] l-0.5200)*( 70.000".5)/( 0.750"(1/3)]= 9.61 The initial area total distance of 160.00 (Ft.) entered leaves a remaining distance of 90.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.64 minutes for a distance of 90.00 (Ft.) and a slope of 0.75 I with an elevation difference of 0.68(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 1.642 Minutes Tt=[(11.9*0.0170"3)/( 0.68)]".385= 1.64 Total initial area Ti = 9.61 minutes from Figure 3-3 formula plus 1.64 minutes from the Figure 3-4 formula = 11.26 minutes Rainfall intensity (I) = 4.059(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 21 Subarea runoff = 0.211(CFS) Total initial stream area = 0.100(Ac. Process from Point/Station 251.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 252.000 Top of street segment elevation = 147.700(Ft.) End of street segment elevation = 146.000(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.327(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.520(Ft.) Flow velocity = 1.58(Ft/s) Travel time = 3.38 min. TC = 14.63 min. Adding area flow to street Rainfall intensity (I) = 3.427(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 0.000 0.000 1.000 1.594(CFS) 1.580(Ft/s) Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.427(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 0.848 Subarea runoff = 2.694(CFS) for 1.530(Ac.) Total runoff = 2.905(CFS) Total area = 1.630(Ac.) Street flow at end of street = 2.905(CFS) Half street flow at end of street = 2.905(CFS) Depth of flow = 0.381(Ft.), Average velocity = 1.820(Ft/s) Flow width (from curb towards crown)= 12.221(Ft.) Process from Point/Station 252.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 246.000 22 137.080(Ft.) 134.980(Ft.) 0.0318 Manning's N 2.905(CFS) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 66.12(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.905(CFS) Normal flow depth in pipe = 4.79(In.) Flow top width inside pipe = 15.91(In.) Critical Depth = 7.76(In.) Pipe flow velocity = 7.69(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 14.78 min. 0. 013 Process from Point/Station 252.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 246.000 Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.630(Ac.) Runoff from this stream = 2.905(CFS) Time of concentration = 14.78 min. Rainfall intensity = 3.406(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 14 .136 2.300 2 . 905 Qmax(1) = 1.000 0.899 1.000 Qmax(2) = 000 000 1.000 Qmax(3) = 0.886 0 . 797 1.000 12.26 10.40 14.78 1.000 * 1.000 * 0.830 * 0.849 * 1.000 * 0.704 * 1.000 * 1.000 * 1.000 * 14.136 2 . 300 2.905 14 .136 2.300 2.905 14.136 2.300 2.905 3.842 4 .271 3.406 + + + = + + + + + 18.615 16.339 17.270 Total of 3 streams to confluence: Flow rates before confluence point: 14.136 2.300 2.905 Maximum flow rates at confluence using above data: 18.615 16.339 17.270 Area of streams before confluence: 7.040 1.030 1.630 Results of confluence: 23 Total flow rate = 18.615(CFS) Time of concentration = 12.258 min. Effective stream area after confluence = 9.700(Ac, Process from Point/Station 246.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 246.100 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 178.05(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 9.41(In.) Flow top width inside pipe = 23.43(In.) Critical Depth = 18.64 (In.) Pipe flow velocity = 16.28(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 12.44 min 134.150(Ft.) 122.740(Ft.) 0.0641 Manning's N = 0.013 18.615(CFS) 18.615(CFS) Process from Point/Station 246.100 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 275.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 113.95(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 9.33(In.) Flow top width inside pipe = 23.40(In.) Critical Depth = 18.64(In.) Pipe flow velocity = 16.50(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 12.56 min 122.410(Ft.) 114.850(Ft.) 0.0663 Manning's N = 0.013 18.615(CFS) 18.615(CFS) Process from Point/Station 275.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 253.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 238.43(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 24.00 (In.) Calculated individual pipe flow = Normal flow depth in pipe = 9.46(In.) Flow top width inside pipe = 23.45(In.) Critical Depth = 18.64(In.) 114.520(Ft.) 99.500(Ft.) 0.0630 Manning' 18.615(CFS) 18.615(CFS) s N = 0.013 24 Pipe flow velocity = 16.18(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 12.80 min. Process from Point/Station 275.000 **** CONFLUENCE OF MINOR STREAMS **** to Point/Station 253.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 9.700(Ac.) Runoff from this stream = 18.615(CFS) Time of concentration = 12.80 min. Rainfall intensity = 3.736(In/Hr) Process from Point/Station 254.000 to Point/Station **** INITIAL AREA EVALUATION **** 251.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 148.900(Ft.) Lowest elevation = 147.700(Ft.) Elevation difference = 1.200(Ft.) Slope = 0.923 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) = 130.000{Ft. for the top area slope value of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% TC = [1.8*(l.l-0.5200)*( 70.000".5)/( 0.92 %, in a development type of 8.98 minutes slope"(1/3)] 0. 920"(1/3)] = 8 . 98 The initial area total distance of 130.00 (Ft.) entered leaves a remaining distance of 60.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.11 minutes for a distance of 60.00 (Ft.) and a slope of 0.92 % with an elevation difference of 0.55(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) = 1.111 Minutes Tt=[(11.9*0.0114"3)/( 0.55)]".385= 1.11 Total initial area Ti = 8.98 minutes from Figure 3-3 formula plus 1.11 minutes from the Figure 3-4 formula = 10.09 minutes Rainfall intensity (I) = 4.355(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.226(CFS) Total initial stream area = 0.100(Ac.) 25 Process from Point/Station 251.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 255.000 Top of street segment elevation = 147.700(Ft.) End of street segment elevation = 110.300(Ft.) Length of street segment = 905.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) (v/hz) 0. 020 :in. ) 0.0150 0.0150 3.630(CFS) 4.206(Ft/s) TC = 13.68 min, ,579(In/Hr) 0.000 0.000 0.000 1.000 for a 100.0 year storm Slope from curb to property line Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.311(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 8.721(Ft.) Flow velocity = 4.21(Ft/s) Travel time = 3.5 9 min. Adding area flow to street Rainfall intensity (I) = 3 Decimal fraction soil group A = Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.579(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.950 Subarea runoff = 6.753(CFS) for 3.650(Ac.) Total runoff = 6.980(CFS) Total area = 3.750(Ac.) Street flow at end of street = 6.980(CFS) Half street flow at end of street = 6.980(CFS) Depth of flow = 0.367(Ft.), Average velocity = 4.899(Ft/s) Flow width (from curb towards crown)= 11.499(Ft.) Process from Point/Station 255.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 253.000 Upstream point/station elevation = 100.450(Ft.) 26 Downstream point/station elevation = Pipe length = 26.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 9.12(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 12.28(In.) Pipe flow velocity = 7.76(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 13.74 min 100.000(Ft.) 0.0169 Manning's N = 0.013 6.980(CFS) 6.980(CFS) Process from Point/Station 255.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 253.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.750(Ac.) Runoff from this stream = 6.980(CFS) Time of concentration = 13.74 min. Rainfall intensity = 3.570(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 18.615 6. 980 1 1 Qmax(2) = ,000 000 0.956 * 1.000 * 12 .80 13. 74 1.000 * 0.932 * 1.000 * 1.000 * 3.736 3.570 18.615) + 6.980) + 18.615) + 6.980) + 25.120 24.768 Total of 2 streams to confluence: Flow rates before confluence point: 18.615 6.980 Maximum flow rates at confluence using above data: 25.120 24.768 Area of streams before confluence: 9.700 3.750 Results of confluence: Total flow rate = 25.120(CFS) Time of concentration = 12.801 min. Effective stream area after confluence = 13.450(Ac, Process from Point/Station 253.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 256.000 27 Upstream point/station elevation = 98.500(Ft.) Downstream point/station elevation = 97.760(Ft.) Pipe length = 65.67(Ft.) Slope = 0.0113 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.120(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 25.120(CFS) Normal flow depth in pipe = 14.81(In.) Flow top width inside pipe = 35.43(In.) Critical Depth = 19.41(In.) Pipe flow velocity = 9.16(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 12.92 min. Process from Point/Station 256.000 to Point/Station 257.000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 97.260(Ft.) Downstream point/station elevation = 96.250(Ft.) Pipe length = 67.29{Ft.) Slope = 0.0150 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.120(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 25.120(CFS) Normal flow depth in pipe = 12.87(In.) Flow top width inside pipe = 38.72(In.) Critical Depth = 18.51(In.) Pipe flow velocity = 10.06(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.03 min. Process from Point/Station 256.000 to Point/Station 257.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 13.450(Ac.) Runoff from this stream = 25.120(CFS) Time of concentration = 13.03 min. Rainfall intensity = 3.693(In/Hr) Process from Point/Station 258.000 to Point/Station 259.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 28 Sub-Area C Value = 0.520 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 146.500(Ft.) Lowest elevation = 146.000(Ft.) Elevation difference = 0.500(Ft.) Slope = 0.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 50.00 (Ft) for the top area slope value of 0.50 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.30 minutes TC = [1.8*(l.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5200)* ( 50.000".5)/( 0.500"(1/3)]= 9.30 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 50.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.22 minutes for a distance of 50.00 (Ft.) and a slope of 0.50 % with an elevation difference of 0.25(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 1.221 Minutes Tt=[(11.9*0.0095"3)/( 0.25)]".385= 1.22 Total initial area Ti = 9.30 minutes from Figure 3-3 formula plus 1.22 minutes from the Figure 3-4 formula = 10.52 minutes Rainfall intensity (I) = 4.239(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.220(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 259.000 to Point/Station 260.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 146.000(Ft.) End of street segment elevation = 106.900(Ft.) Length of street segment = 885.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.732(CFS) Depth of flow = 0.288(Ft.), Average velocity = 4.051(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.563 (Ft.) Flow velocity = 4.05(Ft/s) 29 100.0 year storm Travel time = 3.64 min. TC = 14.16 min. Adding area flow to street Rainfall intensity (I) = 3.500(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.500(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.477 Subarea runoff = 4.948(CFS) for 2.740(Ac.) Total runoff = 5.169(CFS) Total area = 2.840(Ac.) Street flow at end of street = 5.169(CFS) Half street flow at end of street = 5.169(CFS) Depth of flow = 0.337(Ft.), Average velocity = 4.682(Ft/s) Flow width (from curb towards crown)= 10.007(Ft.) Process from Point/Station 259.000 to Point/Station **** SUBAREA FLOW ADDITION **** 260.000 100.0 year storm Rainfall intensity (I) = 3.500(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Time of concentration = 14.16 min. Rainfall intensity = 3.500(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.571 CA = 2.222 Subarea runoff = 2.609(CFS) for 1.050(Ac.) Total runoff = 7.778(CFS) Total area = 3.890(Ac.) Process from Point/Station 260.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 257.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 2.67(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = Normal flow depth in pipe = 5.33 (In 98.650(Ft.) 98.250(Ft.) 0.1498 Manning's N = 0.013 7.778(CFS) 7.778(CFS) 30 Flow top width inside pipe = 16.44(In.) Critical Depth = 12.97(In.) Pipe flow velocity = 17.74(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 14.17 min. Process from Point/Station 260.000 to Point/Station 257.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.890(Ac.) Runoff from this stream = 7.778(CFS) Time of concentration = 14.17 min. Rainfall intensity = 3.499(In/Hr) Process from Point/Station 261.000 to Point/Station 262.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 50.000(Ft.) Highest elevation = 127.100(Ft.) Lowest elevation = 125.000(Ft.) Elevation difference = 2.100(Ft.) Slope = 4.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 4.20 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.24 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.7100)* ( 95.000".5)/( 4.200" (1/3) ]= 4.24 Calculated TC of 4.241 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.486(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 262.000 to Point/Station 263.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 31 Top of street segment elevation = 125.000(Ft.) End of street segment elevation = 106.900(Ft.) Length of street segment = 1050.000(Ft.) Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.295(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 7.903(Ft.) Flow velocity = 2.58(Ft/s) 1.879(CFS) 2.585(Ft/s) TC = 11.01 min. = 1 117(In/Hr) for a 0.000 0. 000 0.000 000 100.0 year storm Travel time = 6.77 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 4.117(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 0.774 Subarea runoff = 2.700(CFS) for 0.990(Ac.) Total runoff = 3.186(CFS) Total area = Street flow at end of street = 3.186(CFS) Half street flow at end of street = 3.186(CFS) Depth of flow = 0.336(Ft.), Average velocity = 2 Flow width (from curb towards crown)= 9.951(Ft.) 1.090(Ac.) 915(Ft/s) Process from Point/Station 263.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 257.000 Upstream point/station elevation = 100.130(Ft, Downstream point/station elevation = 96.250(Ft, Pipe length = 26.67(Ft.) Slope = 0.1455 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.186(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.186(CFS) Normal flow depth in pipe = 3.43(In.) 32 Flow top width inside pipe = 14.14(In.) Critical Depth = 8.14(In.) Pipe flow velocity = 13.56(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.04 min. Process from Point/Station 263.000 to Point/Station 257.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.090(Ac.) Runoff from this stream = 3.186(CFS) Time of concentration = 11.04 min. Rainfall intensity = 4.109(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 25 . 120 13 . 03 3.693 2 7 .778 14 . 17 3.499 3 3 . 186 11 . 04 4 . 109 Qmax(1) = 1. 000 * 1. 000 * 25 120) + 1. 000 * 0. 920 * 7 778) + 0. 899 * 1. 000 * 3 186) + = 35.138 Qmax(2) = 0. 948 * 1. 000 * 25 120) + 1. 000 * 1. 000 * 7 778) + 0. 852 * 1. 000 * 3 186) + = 34.295 Qmax(3) = 1. 000 * 0. 848 * 25 120) + 1. 000 * 0. 780 * 7 778) + 1. 000 * 1. 000 * 3 186) + = 30.539 Total of 3 streams to confluence: Flow rates before confluence point: 25.120 7.778 3.186 Maximum flow rates at confluence using above data: 35.138 34.295 30.539 Area of streams before confluence: 13.450 3.890 1.090 Results of confluence: Total flow rate = 35.138(CFS) Time of concentration = 13.032 min. Effective streara area after confluence = 18.430(Ac.) Process from Point/Station 257.000 to Point/Station 238.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 33 95.920(Ft.) 94.290(Ft.) 0.0100 Manning's N 35.138(CFS) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 162.76(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 42.00(In.) Calculated individual pipe flow = 35.138(CFS) Normal flow depth in pipe = 17.13(In.) Flow top width inside pipe = 41.28(In.) Critical Depth = 22.05(In.) Pipe flow velocity = 9.53(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 13.32 min. 0. 013 Process from Point/Station 257.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 238.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 18.430(Ac.) Runoff from this stream = 35.138(CFS) Time of concentration = 13.32 min. Rainfall intensity = 3.642(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 21.472 35.138 1.000 1.000 Qmax(2) = 0. 984 1. 000 12. 98 13.32 1.000 * 0.975 * 1.000 * 1.000 * 3.702 3.642 21.472) + 35.138) + 21.472) + 35.138) + 55.727 56.261 Total of 2 main streams to confluence: Flow rates before confluence point: 21.472 35.138 Maximum flow rates at confluence using above data: 55.727 56.261 Area of streams before confluence: 9.670 18.430 Results of confluence: Total flow rate = 56.261(CFS) Time of concentration = 13.317 min. Effective stream area after confluence 28.100(Ac.) 34 Process from Point/Station 238.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 93.960(Ft.) Downstream point/station elevation = 69.300(Ft.) Pipe length = 100.31(Ft.) Slope = 0.2458 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.261(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 56.261(CFS) Normal flow depth in pipe = 9.53(In.) Flow top width inside pipe = 35.18(In.) Critical Depth = 28.19(In.) Pipe flow velocity = 34.34(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 13.37 min. Process from Point/Station 238.000 to Point/Station 220.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 3.633(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Time of concentration = 13.37 min. Rainfall intensity = 3.633(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.550 CA = 15.572 Subarea runoff = 0.316(CFS) for 0.200(Ac.) Total runoff = 56.577(CFS) Total area = 28.300(Ac.) Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68.970(Ft.) Downstream point/station elevation = 56.730(Ft.) Pipe length = 47.23(Ft.) Slope = 0.2592 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.577(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 56.577(CFS) Normal flow depth in pipe = 9.42(In.) Flow top width inside pipe = 35.04(In.) Critical Depth = 28.25(In.) Pipe flow velocity = 35.03(Ft/s) 35 Travel time through pipe = 0.02 min. Time of concentration (TC) = 13.39 min. Process from Point/Station 221.000 to Point/Station 216.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 56.400(Ft.) Downstream point/station elevation = 56.000(Ft.) Pipe length = 3.36(Ft.) Slope = 0.1190 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.577(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 56.577(CFS) Normal flow depth in pipe = 11.47(In.) Flow top width inside pipe = 37.43(In.) Critical Depth = 28.25(In.) Pipe flow velocity = 26.58(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 13.39 min. Process from Point/Station 221.000 to Point/Station 216.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 28.300(Ac.) Runoff from this stream = 56.577(CFS) Time of concentration = 13.39 min. Rainfall intensity = 3.629(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 218.000 to Point/Station 219.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 70.000(Ft.) Highest elevation = 106.000(Ft.) Lowest elevation = 85.000(Ft.) Elevation difference = 21.000(Ft.) Slope = 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 I, in a development type of 36 Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 30.000"(1/3) ]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.384(CFS) Total initial stream area = 0.160(Ac.) Process from Point/Station 219.000 to Point/Station 216.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.000(Ft.) Downstream point/station elevation = 56.000(Ft.) Pipe length = 58.37(Ft.) Slope = 0.0685 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.384(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.384(CFS) Normal flow depth in pipe = 1.49(In.) Flow top width inside pipe = 9.91(In.) Critical depth could not be calculated. Pipe flow velocity = 5.53(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 4.52 min. Process from Point/Station 219.000 to Point/Station 216.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.160(Ac.) Runoff from this stream = 0.384(CFS) Time of concentration = 4.52 min. Rainfall intensity = 6.850(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 2000.000 to Point/Station 2002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) 37 Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 207.100(Ft.) Lowest elevation = 205.000(Ft.) Elevation difference = 2.100(Ft.) Slope = 2.100 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.10 '5, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.29 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5200)* ( 80.000".5)/( 2.100"(1/3)]= 7.29 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 20.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.42(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.347 Minutes Tt=[(11.9*0.0038"3)/( 0.42)]".385= 0.35 Total initial area Ti = 7.29 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7.64 minutes Rainfall intensity (I) = 5.212(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.271(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 2002.000 to Point/Station 2003.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 205.000(Ft.) End of street segment elevation = 179.900(Ft.) Length of street segraent = 805.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.395(CFS) Depth of flow = 0.291(Ft.), Average velocity = 3.435(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.711(Ft.) 38 3.993(In/Hr) for a 0.000 0.000 0.000 1.000 100.0 year storm Flow velocity = 3.43(Ft/s) Travel time = 3.91 min. TC = 11.54 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.993(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.108 Subarea runoff = 4.152(CFS) for 2.030(Ac.) Total runoff = 4.423(CFS) Total area = 2.130(Ac.) Street flow at end of street = 4.423(CFS) Half street flow at end of street = 4.423(CFS) Depth of flow = 0.338(Ft.), Average velocity = 3.950(Ft/s) Flow width (from curb towards crown)= 10.085(Ft.) Process from Point/Station **** SUBAREA FLOW ADDITION 2002.000 to Point/Station 2003.000 993(In/Hr) 0.000 0.000 0.000 1.000 for a 100.0 year storm Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Time of concentration = 11.54 min. Rainfall intensity = 3.993(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.495 CA = 1.237 Subarea runoff = 0.517(CFS) for 0.370(Ac.) Total runoff = 4.940(CFS) Total area = 2.500(Ac.) Process from Point/Station 2003.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 2004.000 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 74.78(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 173.440(Ft.) 172.260(Ft.) 0.0158 Manning's N = 0.013 4.940(CFS) 4.940(CFS) 39 Normal flow depth in pipe = 7.63(In.) Flow top width inside pipe = 17.79(In.) Critical Depth = 10.25(In.) Pipe flow velocity = 6.93(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 11.72 min. Process from Point/Station 2003.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2004.000 Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.500(Ac.) Runoff from this stream = 4.940(CFS) Time of concentration = 11.72 min. Rainfall intensity = 3.953(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 2001.000 to Point/Station * * * * 2002.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance Highest elevation = 207.100(Ft.) Lowest elevation = 205.000(Ft.) Elevation difference = 2.100(Ft.) Slope = 2.100 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: 100.000(Ft. The maximum overland flow distance is 80 for the top area slope value of 2.10 % 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% TC = [1.8* (1.1-0.5200)* ( 80.000".5)/( 00 (Ft) in a development type of 7.29 minutes slope"(1/3)] 2.100"(1/3)]= 7.29 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.35 minutes for a distance of 20.00 (Ft.) and a slope of 2.10 % with an elevation difference of 0.42(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change{Ft.))]".385 *60(min/hr) 0.347 Minutes Tt=[(11.9*0.0038"3)/( 0.42)]".385= 0.35 Total initial area Ti = 7.29 minutes from Figure 3-3 formula plus 0.35 minutes from the Figure 3-4 formula = 7.64 minutes Rainfall intensity (I) = 5.212(In/Hr) for a 100.0 year storm 40 Effective runoff coefficient used for area (Q=KCIA) is C Subarea runoff = 0.271(CFS) Total initial stream area = 0.100(Ac.) 0. 520 Process from Point/Station **** STREET FLOW TRAVEL TIME 2002.000 to Point/Station SUBAREA FLOW ADDITION **** 2004.000 Top of street segment elevation = 205.000(Ft.) End of street segment elevation = 180.720(Ft.) Length of street segment = 830.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.299{Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 8.097(Ft.) Flow velocity = 3.41(Ft/s) Travel time = 4.06 min. TC = 11.70 min. Adding area flow to street Rainfall intensity (I) = 3.959(In/Hr) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 2.583(CFS) 3.407(Ft/s) for a 100.0 year storm Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.959(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.222 Subarea runoff = 4.567(CFS) for 2.250(Ac.) Total runoff = 4.838(CFS) Total area = 2.350(Ac.) Street flow at end of street = 4.838(CFS) Half street flow at end of street = 4.838(CFS) Depth of flow = 0.349(Ft.), Average velocity = 3.937(Ft/s) Flow width (from curb towards crown)= 10.613(Ft.) Process from Point/Station 2002.000 to Point/Station 2004.000 41 SUBAREA FLOW ADDITION Rainfall intensity (I) = 3.959(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Time of concentration = 11.70 min. Rainfall intensity = 3.959(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.493 CA = 1.376 Subarea runoff = 0.610{CFS) for 0.440(Ac.) Total runoff = 5.448(CFS) Total area = 2.790(Ac.) Process from Point/Station 2002.000 to Point/Station 2004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 2.790(Ac.) Runoff from this stream = 5.448(CFS) Time of concentration = 11.70 min. Rainfall intensity = 3.959(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.940 11.72 3.953 2 5.448 11.70 3.959 Qmax(1) = 1.000 * 1.000 * 4.940) + 0.999 * 1.000 * 5.448) + = 10.380 1.000 * 0.998 * 4.940) + 1.000 * 1.000 * 5.448) + = 10.376 Qmax(2) Total of 2 streams to confluence: Flow rates before confluence point: 4.940 5.448 Maximum flow rates at confluence using above data: 10.380 10.376 Area of streams before confluence: 2.500 2.790 Results of confluence: Total flow rate = 10.380(CFS) Time of concentration = 11.725 min. Effective stream area after confluence = 5.290(Ac, 42 Process from Point/Station 2004.000 to Point/Station 2005.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 171.930(Ft.) Downstream point/station elevation = 171.580(Ft.) Pipe length = 18.00(Ft.) Slope = 0.0194 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.380(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.380(CFS) Normal flow depth in pipe = 11.19(In.) Flow top width inside pipe = 17.46(In.) Critical Depth = 14.86(In.) Pipe flow velocity = 8.99(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.76 min. Process from Point/Station 2005.000 to Point/Station 209.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 171.250(Ft.) Downstream point/station elevation = 142.030(Ft.) Pipe length = 146.77(Ft.) Slope = 0.1991 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.380(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.380(CFS) Normal flow depth in pipe = 5.75(In.) Flow top width inside pipe = 16.79{In.) Critical Depth = 14.86(In.) Pipe flow velocity = 21.31(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 11.87 min. Process from Point/Station 209.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 142.030(Ft.) Downstream point/station elevation = 142.000(Ft.) Pipe length = 3.00{Ft.) Slope = 0.0100 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.380(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.380(CFS) Normal flow depth in pipe = 14.58(In.) Flow top width inside pipe = 14.13(In.) Critical Depth = 14.86(In.) Pipe flow velocity = 6.78(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 11.88 min. 43 Process from Point/Station 2005.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 210.000 Along Main Stream number: 3 in normal stream number 1 Stream flow area = 5.290(Ac.) Runoff from this stream = 10.380(CFS) Time of concentration = 11.88 min. Rainfall intensity = 3.920(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION **** 212.000 to Point/Station 210.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = Highest elevation = 150.000(Ft.) Lowest elevation = 142.000(Ft.) Elevation difference = 8.000(Ft.) Slope = 8.000 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) 100.000(Ft.) 8.00 %, in a development type of for the top area slope value of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = TC = [1.8*(l.l-C)*distance(Ft.)".5)/(^ TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 8.000"(1/3)]= 6.75 Rainfall intensity (I) = 5.645(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.391(CFS) Total initial stream area = 1.210(Ac.) 6.75 minutes slope"(1/3)] 8.000"(1/3) Process from Point/Station 212.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 210.000 Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.210(Ac.) Runoff from this stream = 2.391(CFS) Time of concentration = 6.75 min. Rainfall intensity = 5.645(In/Hr) 44 Process from Point/Station 212.000 to Point/Station 210.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 3.610(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 13.50 min. Rain intensity = 3.61(In/Hr) Total area = 2.000(Ac.) Total runoff = 3.000(CFS) Process from Point/Station 212.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 3 Stream flow area = 2.000(Ac.) Runoff from this stream = 3.000(CFS) Time of concentration = 13.50 min. Rainfall intensity = 3.610(In/Hr) Process from Point/Station 212.000 to Point/Station 210.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 2.801(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 20.00 min. Rain intensity = 2.80(In/Hr) Total area = 26.600(Ac.) Total runoff = 38.400(CFS) Process from Point/Station 212.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 4 Stream flow area = 26.600(Ac.) Runoff from this stream = 38.400(CFS) 45 Time of concentration = Rainfall intensity = Summary of stream data: 20.00 min. 2.801(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 4 Qmax(1) = Qmax(2) = Qmax(3) = Qmax(4) = 10 .380 11 .88 3. 920 2 .391 6 .75 5.645 3 .000 13 .50 3.610 38 .400 20 .00 2 . 801 1 000 * 1. 000 * 10 .380 + 0 694 * 1. 000 * 2 391 + 1 000 * 0. 880 * 3 000 + 1 000 * 0. 594 * 38 400 + = 37 .490 1 000 * 0. 568 * 10 380 + 1. 000 * 1. 000 * 2 391 + 1. 000 * 0. 500 * 3 000) + 1. 000 * 0. 338 * 38 400 + = 22 748 0. 921 * 1. 000 * 10 380) + 0. 639 * 1. 000 * 2 391) + 1. 000 * 1. 000 * 3 000) + 1. 000 * 0. 675 * 38 400) + = 40 007 0. 715 * 1. 000 * 10 380) + 0. 496 * 1. 000 * 2. 391) + 0. 776 * 1. 000 * 3. 000) + 1. 000 * 1. 000 * 38 . 400) + = 49 333 Total of 4 streams to confluence: Flow rates before confluence point: 10.380 2.391 3.000 38.400 Maximum flow rates at confluence using above data: 007 000 37.490 22.748 40 Area of streams before confluence: 5.290 1.210 2 Results of confluence: Total flow rate = 49.333(CFS) Time of concentration = 20.000 min. Effective stream area after confluence 49.333 26.600 35.100(Ac, Process from Point/Station 210.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 214.000 Estimated mean flow rate at midpoint of channel = 52.312(CFS) Depth of flow = 1.512(Ft.), Average velocity = 7.632(Ft/s) ******* Irregular Channel Data *********** 46 Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 52.312(CFS) ' ' flow top width = 9.069(Ft.) velocity= 7.632(Ft/s) ' ' area = 6.854(Sq.Ft) ' ' Froude number = 1.54 7 Upstream point elevation = 142.000(Ft.) Downstream point elevation = 70.000(Ft.) Flow length = 1430.000(Ft.) Travel time = 3.12 min. Time of concentration = 23.12 min. Depth of flow = 1.512(Ft.) Average velocity = 7.632(Ft/s) Total irregular channel flow = 52.312(CFS) Irregular channel normal depth above invert elev. = 1.512(Ft.) Average velocity of channel(s) = 7.632(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.551(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.551(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.473 CA = 21.643 Subarea runoff = 5.883(CFS) for 10.670(Ac.) Total runoff = 55.215(CFS) Total area = 45.770(Ac.) Depth of flow = 1.542(Ft.), Average velocity = 7.736(Ft/s) Process from Point/Station 210.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 45.770(Ac.) Runoff from this stream = 55.215(CFS) Time of concentration = 23.12 min. Rainfall intensity = 2.551(In/Hr) Process from Point/Station 211.000 to Point/Station 215.000 47 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 136.100(Ft.) Lowest elevation = 107.000(Ft.) Elevation difference = 29.100(Ft.) Slope = 48.500 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 30.000" (1/3) ]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.240(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 215.000 to Point/Station 213.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 107.000(Ft.) Downstream point elevation = 101.000(Ft.) Channel length thru subarea = 300.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.861(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.861(CFS) Depth of flow = 0.124(Ft.), Average velocity = 3.261(Ft/s) Channel flow top width = 2.249(Ft.) Flow Velocity = 3.26(Ft/s) Travel time = 1.53 min. Time of concentration = 5.88 min. Critical depth = 0.174(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.172(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 48 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 6.172(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.228 Subarea runoff = 1.164(CFS) for 0.550(Ac.) Total runoff = 1.404(CFS) Total area = 0.650(Ac.) Depth of flow = 0.167(Ft.), Average velocity = 3.887(Ft/s) Critical depth = 0.238(Ft.) Process from Point/Station 213.000 to Point/Station 214.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 86.000(Ft.) Downstream point/station elevation = 73.000(Ft.) Pipe length = 72.47(Ft.) Slope = 0.1794 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.404(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.404(CFS) Normal flow depth in pipe = 2.19(In.) Flow top width inside pipe = 11.78(In.) Critical Depth = 5.32(In.) Pipe flow velocity = 11.44(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 5.98 min. Process from Point/Station 213.000 to Point/Station 214.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.650(Ac.) Runoff from this stream = 1.404(CFS) Time of concentration = 5.98 min. Rainfall intensity = 6.101(In/Hr) Process from Point/Station 211.100 to Point/Station 215.100 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] 49 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 20.000(Ft.) Highest elevation = 126.410(Ft.) Lowest elevation = 108.500(Ft.) Elevation difference = 17.910(Ft.) Slope = 89.550 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0. 3500)* ( 100.000".5)/( 30.000"(1/3)]= 4.34 Calculated TC of 4.345 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850{In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.024(CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 215.100 to Point/Station 215.200 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 108.500(Ft.) Downstream point elevation = 107.000(Ft.) Channel length thru subarea = 82.080(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.228(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.228(CFS) Depth of flow = 0.057(Ft.), Average velocity = 1.928(Ft/s) Channel flow top width = 2.115(Ft.) Flow Velocity = 1.93(Ft/s) Travel time = 0.71 min. Time of concentration = 5.05 min. Critical depth = 0.073(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.803(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 50 Rainfall intensity = 6.803(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.063 Subarea runoff = 0.405(CFS) for 0.170(Ac.) Total runoff = 0.429(CFS) Total area = 0.180(Ac.) Depth of flow = 0.084(Ft.), Average velocity = 2.449(Ft/s) Critical depth = 0.110(Ft.) Process from Point/Station 215.200 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 215.500 Upstream point/station elevation = Downstream point/station elevation = Pipe length = 39.21(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.429(CFS) Normal flow depth in pipe = 1.18(In.) Flow top width inside pipe = 8.91 (In.) Critical depth could not be calculated. Pipe flow velocity = 8.69(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 5.13 min. 93.830(Ft.) 87.420(Ft.) 0.1635 Manning's N = 0.011 0.429(CFS) Process from Point/Station 215.500 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 214.000 Upstream point elevation = 86.340(Ft.) Downstream point elevation = 73.000(Ft.) Channel length thru subarea = 216.150(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.429(CFS) Depth of flow = 0.058(Ft.), Average velocity = Channel flow top width = 2.116(Ft.) Flow Velocity = 3.58(Ft/s) Travel time = 1.01 min. Time of concentration = 6.14 min. Critical depth = 0.110(Ft.) 3.575{Ft/s] Process from Point/Station 215.500 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 214.000 Along Main Stream number: 3 in normal stream number 3 Stream flow area = 0.180(Ac.) 51 Runoff from this stream = 0.429(CFS) Time of concentration = 6.14 min. Rainfall intensity = 6.002(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(l) = 55.215 1.404 Qmax(2) Qmax(3) 0.429 1.000 0.418 0. 425 1.000 1. 000 1.000 1.000 0. 984 1.000 23.12 5. 98 6.14 1.000 * 1.000 * 1.000 * 0.259 * 1.000 * 0.975 * 0.265 * 1.000 * 1.000 * 2.551 6.101 6.002 55.215) + 1.404) + 0.429) + 55.215) + 1.404) + 0.429) + 55.215) + 1.404) + 0.429) + 55.984 16.110 16.464 Total of 3 streams to confluence: Flow rates before confluence point: 55.215 1.404 0.429 Maximum flow rates at confluence using above data: 55.984 16.110 16.464 Area of strearas before confluence: 45.770 0.650 0.180 Results of confluence: Total flow rate = 55.984(CFS) Time of concentration = 23.123 min. Effective stream area after confluence = 46.600(Ac.) Process from Point/Station 214.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 216.000 Upstream point/station elevation = 64.000(Ft.) Downstream point/station elevation = 56.000(Ft.) Pipe length = 225.39(Ft.) Slope = 0.0355 Manning's N = 0.035 No. of pipes = 1 Required pipe flow = 55.984(CFS) Given pipe size = 144.00(In.) Calculated individual pipe flow = 55.984(CFS) Normal flow depth in pipe = 17.05(In.) Flow top width inside pipe = 93.05(In.) Critical Depth = 19.58(In.) Pipe flow velocity = 7.42(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 23.63 min. 52 Process from Point/Station 214.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 216.000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 46.600(Ac.) Runoff from this stream = 55.984(CFS) Time of concentration = 23.63 min. Rainfall intensity = 2.516(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 56.577 0.384 55.984 Qmax(1) = Qmax(2) Qmax(3) = 13.39 4.52 23.63 3. 629 6.850 2.516 1 000 * 1 000 * 56 577) + 0 530 * 1 000 * 0 384) + 1 000 * 0 567 * 55 984) + = 88 505 1 000 * 0 338 * 56 577) + 1 000 * 1 000 * 0 384) + 1 000 * 0 191 * 55 984) + = 30 196 0 693 * 1 000 * 56 577) + 0 367 * 1 000 * 0 384) + 1 000 * 1 000 * 55 984) + = 95 348 Total of 3 main streams to confluence: Flow rates before confluence point: 56.577 0.384 55.984 Maximum flow rates at confluence using above data; 88.505 30.196 95.348 Area of streams before confluence: 28.300 0.160 46.600 Results of confluence: Total flow rate = 95.348(CFS) Time of concentration = 23.629 min. Effective stream area after confluence = 75.060(Ac.) Process from Point/Station 216.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 2009.000 Estimated mean flow rate at midpoint of channel 95.392(CFS) 53 Depth of flow = 0.293(Ft.), Average velocity = 3.225(Ft/s) Irregular Channel Data *********** *****! Information entered for subchannel number 1 Point number 1 2 3 4 'X' coordinate 0.00 30.00 130.00 160.00 Manning's 'N' friction factor = 'Y' coordinate 10.00 0.00 0.00 10.00 0.035 Sub-Channel flow = 95.393(CFS) ' ' flow top width = 101.759(Ft.) velocity= 3.225(Ft/s) ' area = 29.580(Sq.Ft) ' ' Froude number = 1.054 323(In/Hr) for 0.000 0.000 0.000 1.000 0.293(Ft. 100.0 year storm Upstream point elevation = 60.000(Ft.) Downstream point elevation = 42.000(Ft.) Flow length = 600.000(Ft.) Travel time = 3.10 min. Time of concentration = 26.73 min. Depth of flow = 0.293(Ft.) Average velocity = 3.225(Ft/s) Total irregular channel flow = 95.392(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 3.225 (Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 The area added to the existing stream causes a a lower flow rate of Q = 90.908(CFS) therefore the upstream flow rate of Q = 95.348(CFS) is being used Rainfall intensity = 2.323(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.492 CA = 39.126 Subarea runoff = 0.000(CFS) for 4.470(Ac.) Total runoff = 95.348(CFS) Total area = 79.530(Ac.) Depth of flow = 0.293(Ft.), Average velocity = 3.224(Ft/s) Process from Point/Station 216.000 to Point/Station **** CONFLUENCE OF MAIN STRE/U^IS **** 2009.000 The following data inside Main Stream is listed: In Main Stream number: 1 54 stream flow area = 79.530(Ac.) Runoff from this stream = 95.348(CFS) Time of concentration = 26.73 min. Rainfall intensity = 2.323(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 265.000 to Point/Station 265.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 3.248(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.90 min. Rain intensity = 3.25(In/Hr) Total area = 22.550(Ac.) Total runoff = 47.400(CFS) Process from Point/Station 265.000 to Point/Station 267.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 47.430(CFS) Depth of flow = 1.060(Ft.), Average velocity = 14.076(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 47.430(CFS) flow top width = 6.359(Ft.) ' ' velocity= 14.076(Ft/s) ' area = 3.369(Sq.Ft) ' ' Froude number = 3.408 Upstream point elevation = 310.000(Ft.) Downstream point elevation = 200.000(Ft.) Flow length = 400.000(Ft.) Travel time = 0.47 min. Time of concentration = 16.37 min. Depth of flow = 1.060(Ft.) Average velocity = 14.076(Ft/s) Total irregular channel flow = 47.430(CFS) 55 Irregular channel normal depth above invert elev. = 1.060(Ft.) Average velocity of channel(s) = 14.076(Ft/s) Adding area flow to channel Rainfall intensity (I) = 3.187(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 The area added to the existing stream causes a a lower flow rate of Q = 45.484(CFS) therefore the upstream flow rate of Q = 47.400(CFS) is being used Rainfall intensity = 3.187(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.479 CA = 14.271 Subarea runoff = 0.000(CFS) for 7.270(Ac.) Total runoff = 47.400(CFS) Total area = 29.820(Ac.) Depth of flow = 1.060(Ft.), Average velocity = 14.074(Ft/s) Process from Point/Station 267.000 to Point/Station 269.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 1.281(Ft.), Average velocity = 9.631(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 47.400(CFS) flow top width = 7.685(Ft.) ' ' velocity= 9.631(Ft/s) ' area = 4.922(Sq.Ft) ' ' Froude number = 2.121 Upstream point elevation = 200.000(Ft.) Downstream point elevation = 185.000(Ft.) Flow length = 150.000(Ft.) Travel time = 0.26 min. Time of concentration = 16.63 min. Depth of flow = 1.281(Ft.) Average velocity = 9.631(Ft/s) Total irregular channel flow = 47.400(CFS) Irregular channel normal depth above invert elev. = 1.281(Ft.) Average velocity of channel(s) = 9.631(Ft/s) 56 Process from Point/Station 267.000 to Point/Station 269.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 29.820(Ac.) Runoff from this stream = 47.400(CFS) Time of concentration = 16.63 min. Rainfall intensity = 3.155 (In/Hr) Process from Point/Station 271.000 to Point/Station 271.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 4.381(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 10.00 min. Rain intensity = 4.38(In/Hr) Total area = 8.200{Ac.) Total runoff = 19.200(CFS) Process from Point/Station 271.000 to Point/Station 269.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 22.342(CFS) Depth of flow = 0.934(Ft.), Average velocity = 8.545(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 22.342(CFS) ' flow top width = 5.601(Ft.) ' ' velocity= 8.545(Ft/s) area = 2.615(Sq.Ft) ' ' Froude number = 2.204 Upstream point elevation = 215.000(Ft.) Downstream point elevation = 185.000(Ft.) Flow length = 250.000(Ft.) 57 100.0 year storm Travel time = 0.4 9 min. Time of concentration = 10.49 min. Depth of flow = 0.934(Ft.) Average velocity = 8.545(Ft/s) Total irregular channel flow = 22.342(CFS) Irregular channel normal depth above invert elev. = 0.934(Ft, Average velocity of channel(s) = 8.545(Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.248(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.456 CA = 5.979 Subarea runoff = 6.200(CFS) for 4.900(Ac.) Total runoff = 25.400(CFS) Total area = 13.100(Ac.) Depth of flow = 0.980(Ft.), Average velocity = 8.823(Ft/s) .248(In/Hr) for a 0.000 0.000 0.000 ] Process from Point/Station 271.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 269.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 13.100(Ac.) Runoff from this stream = 25.400(CFS) Time of concentration = 10.49 min. Rainfall intensity = 4.248(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 47 .400 25.400 1.000 * 0.743 * Qmax(2) = 1.000 1.000 16. 63 10.49 1. 000 1.000 0. 631 1.000 3.155 4.248 47.400) + 25.400) + 47.400) + 25.400) + 66.265 55.287 Total of 2 streams to confluence: Flow rates before confluence point: 47.400 25.400 Maximum flow rates at confluence using above data: 66.265 55.287 58 Area of streams before confluence: 29.820 13.100 Results of confluence: Total flow rate = 66.265(CFS) Time of concentration = 16.633 min. Effective stream area after confluence = 42.920(Ac.) Process from Point/Station 269.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 264.000 Estimated mean flow rate at midpoint of channel = Depth of flow = 1.500(Ft.), Average velocity = Irregular Channel Data *********** 66.861(CFS) 9.906(Ft/s) ******* Information entered for subchannel number 1 : Point number 1 2 3 Manning's 'N' 'X' coordinate 0.00 30.00 60.00 friction factor = 'Y' coordinate 10. 00 0.00 10.00 0.035 Sub-Channel flow = 66.861(CFS) flow top width = 8.999(Ft. ' velocity= 9.906(Ft/s) ' area = 6.749(Sq.Ft) ' ' Froude number = 2.016 Upstream point elevation = 185.000(Ft.) Downstream point elevation = 155.000(Ft.) Flow length = 350.000(Ft.) Travel time = 0.59 min. Time of concentration = 17.22 min. Depth of flow = 1.500(Ft.) Average velocity = 9.906(Ft/s) Total irregular channel flow = 66.861(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 9.906(Ft/s) Adding area flow to channel Rainfall intensity (I) = group A 085(In/Hr) 0.000 0 . 000 0.000 000 1.500(Ft.) for a 100.0 year storm Decimal fraction soil Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D = 1 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.085(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.460 CA = 21.835 Subarea runoff = 1.099(CFS) for 4.530(Ac.) Total runoff = 67.364(CFS) Total area = 47.450(Ac.) 59 Depth of flow = 1.504(Ft.), Average velocity = 9.925(Ft/s) Process from Point/Station 269.000 to Point/Station 264.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 47.450(Ac.) Runoff from this stream = 67.364(CFS) Time of concentration = 17.22 min. Rainfall intensity = 3.085(In/Hr) Process from Point/Station 264.000 to Point/Station 264.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 3.373(In/Hr) for a 100.0 year storra User specified values are as follows: TC = 15.00 min. Rain intensity = 3.37(In/Hr) Total area = 5.990(Ac.) Total runoff = 9.550(CFS) Process from Point/Station 264.000 to Point/Station 264.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal stream number 2 Stream flow area = 5.990(Ac.) Runoff from this stream = 9.550(CFS) Time of concentration = 15.00 min. Rainfall intensity = 3.373(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 67.364 17.22 3.085 2 9.550 15.00 3.373 Qmax(1) = 1.000 * 1.000 * 67.364) + 0.915 * 1.000 * 9.550) + = 76.099 Qmax(2) = 1.000 * 0.871 * 67.364) + 60 1.000 * 1.000 9.550) + 68.222 Total of 2 streams to confluence: Flow rates before confluence point: 67.364 9.550 Maximum flow rates at confluence using above data: 76.099 68.222 Area of streams before confluence: 47.450 5.990 Results of confluence: Total flow rate = 76.099(CFS) Time of concentration = 17.222 min. Effective stream area after confluence = 53.440(Ac.) Process from Point/Station 264.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 270.000 Estimated mean flow rate at midpoint of channel = Depth of flow = 1.815(Ft.), Average velocity = Irregular Channel Data *********** 78.569(CFS) 7.953(Ft/s) ******* Information entered for subchannel number 1 : Point number 1 2 3 Manning's 'N' 'X' coordinate 0.00 30.00 60.00 friction factor = 'Y' coordinate 10. 00 0.00 10. 00 0.035 Sub-Channel flow = 78.569(CFS) ' ' flow top width = 10.888(Ft.) ' ' velocity= 7.953(Ft/s) ' area = 9.879(Sq.Ft) ' ' Froude number = 1.471 155.000(Ft.) 125.000(Ft.) Upstream point elevation = Downstream point elevation = Flow length = 700.000(Ft.) Travel time = 1.47 min. Time of concentration = 18.69 min. Depth of flow = 1.815(Ft.) Average velocity = 7.953(Ft/s) Total irregular channel flow = 78.569(CFS) Irregular channel normal depth above invert elev. = 1.815(Ft.) Average velocity of channel(s) = 7.953(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.927(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) 61 Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.927(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.452 CA = 27.655 Subarea runoff = 4.839(CFS) for 7.730(Ac.) Total runoff = 80.938(CFS) Total area = Depth of flow = 1.835(Ft.), Average velocity = 61.170(Ac.) 8.013(Ft/s) Process from Point/Station 264.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 270.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 61.170(Ac.) Runoff from this stream = 80.938(CFS) Time of concentration = 18.69 min. Rainfall intensity 2.927(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 266.000 to Point/Station 268.000 = 1300.000(Ft.) Slope = 6.154 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance Highest elevation = 350.000(Ft.) Lowest elevation = 270.000(Ft.) Elevation difference = 80.000(Ft.) INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.15 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.37 minutes TC = [1.8* (1.1-C)*distance(Ft.)".5)/{% slope"(l/3)] TC = [1.8*(1.1-0.3500)* ( 100.000".5)/( 6.154"(1/3)]= 7.37 The initial area total distance of 1300.00 (Ft.) entered leaves a remaining distance of 1200.00 (Ft.) Using Figure 3-4, the travel time for this distance is 5.37 minutes for a distance of 1200.00 (Ft.) and a slope of 6.15 % with an elevation difference of 73.85(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) = 5.367 Minutes Tt=[ (11.9*0.2273"3)/( 73.85)]".385= 5.37 Total initial area Ti = 7.37 minutes from Figure 3-3 formula plus 62 5.37 minutes from the Figure 3-4 formula = 12.73 minutes Rainfall intensity (I) = 3.748(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.808(CFS) Total initial stream area = 2.140(Ac.) Process from Point/Station 268.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 270.000 Estimated mean flow rate at midpoint of channel = Depth of flow = 0.688(Ft.), Average velocity = Irregular Channel Data 9.923(CFS) 994(Ft/s) ******* *********** Information entered for subchannel number 1 Point number 1 2 3 Manning's 'N' 'X' coordinate 0.00 30.00 60.00 friction factor = 'Y' coordinate 10.00 0. 00 10. 00 0.035 Sub-Channel flow = 9.923(CFS) flow top width = 4.126(Ft.) velocity= 6.994(Ft/s) area = 1.419(Sq.Ft) Froude number = 2.102 270.000(Ft.) 125.000(Ft, .289(In/Hr) for a 0 . 000 0.000 0.000 1.000 ] 0.688(Ft, 100.0 year storm Upstream point elevation = Downstream point elevation Flow length = 1200.000(Ft.) Travel time = 2.86 min. Time of concentration = 15.59 min. Depth of flow = 0.688(Ft.) Average velocity = 6.994(Ft/s) Total irregular channel flow = 9.923(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 6.994(Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.289(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 5.155 Subarea runoff = 14.150(CFS) for 12.590(Ac.) Total runoff = 16.958(CFS) Total area = 14.730(Ac.) Depth of flow = 0.841(Ft.), Average velocity = 7.996(Ft/s) 63 Process from Point/Station 268.000 to Point/Station 270.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 14.730(Ac.) Runoff from this stream = 16.958(CFS) Time of concentration = 15.59 min. Rainfall intensity = 3.289(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 80.938 18.69 2.927 2 16.958 15.59 3.289 Qmax(1) = 1.000 * 1.000 * 80.938) + 0.890 * 1.000 * 16.958) + = 96.027 1.000 * 0.834 * 80.938) + 1.000 * 1.000 * 16.958) + = 84.491 Qmax(2) Total of 2 streams to confluence: Flow rates before confluence point: 80.938 16.958 Maximum flow rates at confluence using above data: 96.027 84.491 Area of streams before confluence: 61.170 14.730 Results of confluence: Total flow rate = 96.027(CFS) Time of concentration = 18.689 min. Effective stream area after confluence = 75.900(Ac.) Process from Point/Station 270.000 to Point/Station 271.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 97.702(CFS) Depth of flow = 1.729(Ft.), Average velocity = 10.892(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 64 Sub-Channel flow = 97.702(CFS) flow top width = 10.375(Ft.) velocity= 10.892(Ft/s) area = 8.970(Sq.Ft) ' ' Froude number = 2.064 Upstream point elevation = 125.000(Ft.) Downstream point elevation = 95.000(Ft.) Flow length = 350.000(Ft.) Travel time = 0.54 min. Time of concentration = 19.22 min. Depth of flow = 1.729(Ft.) Average velocity = 10.892(Ft/s) Total irregular channel flow = 97.702(CFS) Irregular channel normal depth above invert elev. = 1.729(Ft.) Average velocity of channel(s) = 10.892(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.874(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.874(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.427 CA = 34.547 Subarea runoff = 3.255(CFS) for 4.960(Ac.) Total runoff = 99.281(CFS) Total area = 80.860(Ac.) Depth of flow = 1.740(Ft.), Average velocity = 10.936(Ft/s) Process from Point/Station 270.000 to Point/Station 271.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 80.860(Ac.) Runoff from this stream = 99.281(CFS) Time of concentration = 19.22 min. Rainfall intensity = 2.874(In/Hr) Process from Point/Station 271.000 to Point/Station 271.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] 65 (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 4.723(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 8.90 min. Rain intensity = 4.72(In/Hr) Total area = 15.080(Ac.) Total runoff = 29.060(CFS) Process from Point/Station 271.000 to Point/Station 271.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in normal stream number 2 Stream flow area = 15.080(Ac.) Runoff from this stream = 29.060(CFS) Time of concentration = 8.90 min. Rainfall intensity = 4.723(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 99.281 19.22 2.874 29.060 8.90 4.723 Qmax(1) = 1.000 * 1.000 * 99.281) + Qmax(2) 0.609 * 1.000 * 29.060) + = 116.965 1.000 * 0.463 * 99.281) + 1.000 * 1.000 * 29.060) + = 75.022 Total of 2 streams to confluence: Flow rates before confluence point: 99.281 29.060 Maximum flow rates at confluence using above data: 116.965 75.022 Area of streams before confluence: 80.860 15.080 Results of confluence: Total flow rate = 116.965(CFS) Time of concentration = 19.224 min. Effective stream area after confluence = 95.940(Ac, Process from Point/Station 271.000 to Point/Station 272.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 124.986(CFS) Depth of flow = 2.275(Ft.), Average velocity = 8.052(Ft/s) ******* Irregular Channel Data *********** 66 Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 30.00 0.00 3 60.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 124.986(CFS) ' flow top width = 13.648(Ft.) velocity= 8.052(Ft/s) ' ' area = 15.522(Sq.Ft) ' ' Froude number = 1.331 Upstream point elevation = 95.000(Ft.) Downstream point elevation = 69.000(Ft.) Flow length = 800.000(Ft.) Travel time = 1.66 min. Time of concentration = 20.88 min. Depth of flow = 2.275(Ft.) Average velocity = 8.052(Ft/s) Total irregular channel flow = 124.986(CFS) Irregular channel normal depth above invert elev. = 2.275(Ft.) Average velocity of channel(s) = 8.052(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.725(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.725(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.427 CA = 48.797 Subarea runoff = 15.991(CFS) for 18.310(Ac.) Total runoff = 132.956(CFS) Total area = 114.250(Ac.) Depth of flow = 2.328(Ft.), Average velocity = 8.177(Ft/s) Process from Point/Station 271.000 to Point/Station 272.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 114.250(Ac.) Runoff from this stream = 132.956(CFS) Time of concentration = 20.88 min. Rainfall intensity = 2.725 (In/Hr) Process from Point/Station 130.000 to Point/Station 130.000 67 USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 3.343(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.21 min. Rain intensity = 3.34(In/Hr) Total area = 28.970(Ac.) Total runoff = 27.940(CFS) Process from Point/Station 130.000 to Point/Station 272.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.295(Ft.), Average velocity = 4.378(Ft/s) Irregular Channel Data *********** ******* Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 50.00 0.00 3 70.00 0.00 4 130.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 27.940(CFS) ' ' flow top width = 23.247(Ft.) velocity= 4.378(Ft/s) ' ' area = 6.382(Sq.Ft) ' ' Froude number = 1.472 Upstream point elevation = 121.000(Ft.) Downstream point elevation = 69.000(Ft.) Flow length = 870.000(Ft.) Travel time = 3.31 min. Time of concentration = 18.52 min. Depth of flow = 0.295(Ft.) Average velocity = 4.378(Ft/s) Total irregular channel flow = 27.940(CFS) Irregular channel normal depth above invert elev. = 0.295(Ft.) Average velocity of channel(s) = 4.378(Ft/s) Process from Point/Station 130.000 to Point/Station 272.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 68 stream flow area = 28.970(Ac.) Runoff from this stream = 27.940(CFS) Time of concentration = 18.52 min. Rainfall intensity = 2.944(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 132.956 27.940 1.000 * 0.926 * Qmax(2) = 1.000 * 1.000 * 20.88 18.52 1.000 * 1.000 * 0.887 * 1.000 * 2 . 725 2 . 944 132.956) + 27.940) + 132.956) + 27.940) + 158.817 145.879 Total of 2 streams to confluence: Flow rates before confluence point: 132.956 27.940 Maximum flow rates at confluence using above data: 158.817 145.879 Area of streams before confluence: 114.250 28.970 Results of confluence: Total flow rate = 158.817(CFS) Time of concentration = 20.880 min. Effective stream area after confluence = 143.220(Ac.) Process from Point/Station 272.000 to Point/Station **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** 2009.000 Estimated mean flow rate at midpoint of channel = 161.245(CFS) Depth of flow = 0.721(Ft.), Average velocity = 4.318(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 2 3 4 Manning's 'N' 0.00 30.00 80.00 100.00 friction factor = 10. 00 0.00 0. 00 10. 00 0.035 Sub-Channel flow = 161.245(CFS) ' ' flow top width = 53.604(Ft.) ' velocity= 4.318(Ft/s) ' ' area = 37.338(Sq.Ft) ' ' Froude number = 0.912 69 Upstream point elevation = 69.000(Ft.) Downstream point elevation = 42.000(Ft.) Flow length = 1600.000(Ft.) Travel time = 6.18 min. Time of concentration = 27.06 min. Depth of flow = 0.721(Ft.) Average velocity = 4.318(Ft/s) Total irregular channel flow = 161.245(CFS) Irregular channel normal depth above invert elev. = 0.721(Ft.) Average velocity of channel(s) = 4.318(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.305(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.305(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.434 CA = 70.959 Subarea runoff = 4.771(CFS) for 20.280(Ac.) Total runoff = 163.588(CFS) Total area = 163.500(Ac.) Depth of flow = 0.727(Ft.), Average velocity = 4.342(Ft/s) Process from Point/Station 272.000 to Point/Station 2009.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 163.500(Ac.) Runoff from this stream = 163.588(CFS) Time of concentration = 27.06 min. Rainfall intensity = 2.305(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 95.348 26.73 2.323 2 163.588 27.06 2.305 Qmax(1) = 1.000 * 1.000 * 95.348) + 1.000 * 0.988 * 163.588) + = 256.967 Qmax(2) = 0.992 * 1.000 * 95.348) + 1.000 * 1.000 * 163.588) + = 258.194 Total of 2 main streams to confluence: 70 Flow rates before confluence point: 95.348 163.588 Maximum flow rates at confluence using above data; 256.967 258.194 Area of streams before confluence: 79.530 163.500 Results of confluence: Total flow rate = 258.194(CFS) Time of concentration = 27.055 min. Effective stream area after confluence = 243.030(Ac.) Process from Point/Station 2009.000 to Point/Station 2010.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated raean flow rate at midpoint of channel = 258.243(CFS) Depth of flow = 0.677(Ft.), Average velocity = 3.726(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 10.00 2 50.00 0.00 3 150.00 0.00 4 170.00 10.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 258.243(CFS) ' ' flow top width = 104.739(Ft.) ' velocity= 3.726(Ft/s) area = 69.300(Sq.Ft) ' ' Froude number = 0.807 Upstream point elevation = 42.000(Ft.) Downstream point elevation = 35.300(Ft.) Flow length = 500.000(Ft.) Travel time = 2.24 min. Time of concentration = 29.29 min. Depth of flow = 0.677(Ft.) Average velocity = 3.726(Ft/s) Total irregular channel flow = 258.243(CFS) Irregular channel normal depth above invert elev. = 0.677(Ft.) Average velocity of channel (s) = 3.726(Ft/s) Adding area flow to channel Rainfall intensity (I) = 2.190(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) 71 Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 The area added to the existing stream causes a a lower flow rate of Q = 245.647(CFS) therefore the upstream flow rate of Q = 258.194(CFS) is being used Rainfall intensity = 2.190(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.451 CA = 112.154 Subarea runoff = 0.000(CFS) for 5.910(Ac.) Total runoff = 258.194(CFS) Total area = 248.940(Ac.) Depth of flow = 0.677(Ft.), Average velocity = 3.726(Ft/s) Process from Point/Station 2009.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2010.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 248.940(Ac.) Runoff from this stream = 258.194(CFS) Time of concentration = 29.29 min. Rainfall intensity = 2.190(In/Hr) Process from Point/Station 2011 **** INITIAL AREA EVALUATION **** 000 to Point/Station 2011.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.7 90 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 107.000(Ft.) Lowest elevation = 106.000(Ft.) Elevation difference = 1.000(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.00 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.32 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.7900)* ( 60.000".5)/( 1.000"(1/3)]= 4.32 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 40.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.79 minutes for a distance of 40.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.40(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 72 0.787 Minutes Tt=[(11.9*0.0076"3)/( 0.40)]".385= 0.79 Total initial area Ti = 4.32 minutes from Figure 3-3 formula plus 0.79 minutes from the Figure 3-4 formula = 5.11 minutes Rainfall intensity (I) = 6.755(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff = 0.534(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 2011.000 to Point/Station 2012.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 106.000(Ft.) Downstream point elevation = 98.000(Ft.) Channel length thru subarea = 850.000(Ft.) Channel base width = 800.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated raean flow rate at midpoint of channel = 13.102(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 13.102(CFS) Depth of flow = 0.022(Ft.), Average velocity = 0.750(Ft/s) Channel flow top width = 800.044(Ft.) Flow Velocity = 0.75(Ft/s) Travel time = 18.88 min. Time of concentration = 23.99 min. Critical depth = 0.020(Ft.) Adding area flow to channel Rainfall intensity (I) = 2.492(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.790 Rainfall intensity = 2.492(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.790 CA = 10.278 Subarea runoff = 25.074(CFS) for 12.910(Ac.) Total runoff = 25.607(CFS) Total area = 13.010(Ac.) Depth of flow = 0.033(Ft.), Average velocity = 0.981(Ft/s) Critical depth = 0.032 (Ft.) Process from Point/Station 2012.000 to Point/Station 2012.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 90.350(Ft.) 73 Downstream point/station elevation = 89.430(Ft.) Pipe length = 45.94(Ft.) Slope = 0.0200 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 25.607(CFS) Given pipe size = 36.00 (In.) Calculated individual pipe flow = 25.607(CFS) Normal flow depth in pipe = 11.73(In.) Flow top width inside pipe = 33.75(In.) Critical Depth = 19.60(In.) Pipe flow velocity = 12.81(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 24.05 min. Process from Point/Station 2012.100 to Point/Station 2012.200 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 89.100(Ft.) Downstream point/station elevation = 87.440(Ft.) Pipe length = 83.19(Ft.) Slope = 0.0200 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 25.607(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 25.607(CFS) Normal flow depth in pipe = 11.74(In.) Flow top width inside pipe = 33.75(In.) Critical Depth = 19.60(In.) Pipe flow velocity = 12.79(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 24.16 min. Process from Point/Station 2012.200 to Point/Station 2012.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 87.110(Ft.) Downstream point/station elevation = 67.670(Ft.) Pipe length = 47.43(Ft.) Slope = 0.4099 Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 25.607(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 25.607(CFS) Normal flow depth in pipe = 5.51(In.) Flow top width inside pipe = 25.93(In.) Critical Depth = 19.60(In.) Pipe flow velocity = 37.37(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 24.18 min. Process from Point/Station 2012.300 to Point/Station 2013.000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 67.000(Ft, 74 Downstream point/station elevation = 41.210(Ft.) Pipe length = 336.24(Ft.) Slope = 0.0767 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.607(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 25.607(CFS) Normal flow depth in pipe = 8.25 (In.) Flow top width inside pipe = 36.22(In.) Critical Depth = 17.92(In.) Pipe flow velocity = 17.78(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 24.49 min. Process from Point/Station 2013.000 to Point/Station 2010.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 41.210(Ft.) Downstream point elevation = 35.300(Ft.) Channel length thru subarea = 315.000(Ft.) Channel base width = 180.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Manning's 'N' = 0.035 Maximura depth of channel = 2.000(Ft.) Flow(q) thru subarea = 25.607(CFS) Depth of flow = 0.108(Ft.), Average velocity = 1.317(Ft/s) Channel flow top width = 180.432(Ft.) Flow Velocity = 1.32(Ft/s) Travel time = 3.99 rain. Time of concentration = 28.48 min. Critical depth = 0.086(Ft.) Process from Point/Station 2013.000 to Point/Station 2010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 13.010(Ac.) Runoff from this stream = 25.607(CFS) Time of concentration = 28.48 min. Rainfall intensity = 2.230{In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 258.194 29.29 2.190 2 25.607 28.48 2.230 Qmax(1) = 1.000 * 1.000 * 258.194) + 0.982 * 1.000 * 25.607) + = 283.341 75 Qmax(2) = 1.000 * 0.972 * 258.194) + 1.000 * 1.000 * 25.607) + = 276.634 Total of 2 streams to confluence: Flow rates before confluence point: 258.194 25.607 Maximum flow rates at confluence using above data: 283.341 276.634 Area of streams before confluence: 248.940 13.010 Results of confluence: Total flow rate = 283.341(CFS) Time of concentration = 29.292 min. Effective stream area after confluence = 261.950(Ac, Process from Point/Station 2010.000 to Point/Station 2015.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 35.300(Ft.) Downstream point/station elevation = 34.500(Ft.) Pipe length = 40.00(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 283.341(CFS) Given pipe size = 30.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 95.885(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 19.081(Ft.) Minor friction loss = 77.604(Ft.) K-factor = 1.50 Pipe flow velocity = 57.72(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 29.30 rain. End of computations, total study area = 261.950 (Ac.) 76 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 04/27/15 Rancho Coster Basin H - Edinburgh Drive Outfall Final B Map Design g:\101307\Hydrology\B Map\EdinProp.out JST ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation{inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used Process from Point/Station 100.000 to Point/Station 100.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity (I) = 3.373(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 3.37(In/Hr) Total area = 23.490(Ac.) Total runoff = 19.100(CFS) Process from Point/Station 100.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 145.210(Ft.) Downstream point/station elevation = 144.490(Ft.) Pipe length = 35.97(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.100(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 19.100(CFS) Normal flow depth in pipe = 13.36(In.) Flow top width inside pipe = 23.85(In.) Critical Depth = 18.86(In.) Pipe flow velocity = 10.64(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.06 rain. Process from Point/Station 100.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 23.490(Ac.) Runoff from this stream = 19.100(CFS) Time of concentration = 15.06 min. Rainfall intensity = 3.364(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 110.000 to Point/Station 112.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance = 210.000(Ft.) Highest elevation = 188.000(Ft.) Lowest elevation = 186.300(Ft.) Elevation difference = 1.700(Ft.) Slope = 0.810 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 0.81 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.37 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.5200)* ( 70.000".5)/( 0.810"(1/3)]= 9.37 The initial area total distance of 210.00 (Ft.) entered leaves a reraaining distance of 140.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 2.24 minutes for a distance of 140.00 (Ft.) and a slope of 0.81 % with an elevation difference of 1.13(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 2.241 Minutes Tt=[(11.9*0.0265"3)/( 1.13)]".385= 2.24 Total initial area Ti = 9.37 minutes from Figure 3-3 formula plus 2.24 minutes from the Figure 3-4 formula = 11.61 minutes Rainfall intensity (I) = 3.978(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.207(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 112.000 to Point/Station 114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 186.300(Ft.) End of street segment elevation = 165.400(Ft.) Length of street segment = 860.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.411(CFS) Depth of flow = 0.300(Ft.), Average velocity = 3.122(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.183(Ft.) Flow velocity = 3.12(Ft/s) Travel time = 4.59 min. TC = 16.20 min. Adding area flow to street Rainfall intensity (I) = 3.209(In/Hr) for a 100.0 year storra Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 3.209(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 1.414 Subarea runoff = 4.332(CFS) for 2.620(Ac.) Total runoff = 4.539(CFS) Total area =• 2.720(Ac.) street flow at end of street = 4.539(CFS) Half street flow at end of street = 4.539(CFS) Depth of flow = 0.351(Ft.), Average velocity = 3.613(Ft/s) Flow width (from curb towards crown)= 10.742(Ft.) Process from Point/Station 114.000 to Point/Station 116.000 *+** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 159.350(Ft.) Downstream point/station elevation = 158.740(Ft.) Pipe length = 36.74(Ft.) Slope = 0.0166 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.539(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.539(CFS) Normal flow depth in pipe = 7.18(In.) Flow top width inside pipe = 17.63(In.) Critical Depth = 9.80(In.) Pipe flow velocity = 6.90(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 16.29 min. Process from Point/Station 114.000 to Point/Station 116.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.720(Ac.) Runoff from this stream = 4.539(CFS) Time of concentration = 16.29 min. Rainfall intensity = 3.198(In/Hr) Process from Point/Station 118.000 to Point/Station 120.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance = 70.000(Ft.) Highest elevation = 193.000(Ft.) Lowest elevation = 186.000(Ft.) Elevation difference = 7.000(Ft.) Slope = 10.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraum overland flow distance is 100.00 (Ft) for the top area slope value of 10.00 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.85 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5200)* ( 100.000".5)/( 10.000"(1/3)]= 4.85 Calculated TC of 4.846 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.356(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 120.000 to Point/Station 108.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 185.500(Ft.) End of street segment elevation = 172.730(Ft.) Length of street segment = 140.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.534(CFS) Depth of flow = 0.154(Ft.), Average velocity = 5.024(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 5.02(Ft/s) Travel time = 0.46 min. TC = 5.31 min. Adding area flow to street Rainfall intensity (I) = 6.589(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 6.589(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 0.104 Subarea runoff = 0.329(CFS) for 0.100(Ac.) Total runoff = 0.685(CFS) Total area = 0.200(Ac.) street flow at end of street = 0.685(CFS) Half street flow at end of street = 0.685(CFS) Depth of flow = 0.176(Ft.), Average velocity = 4.878(Ft/s) Flow width (from curb towards crown)= 1.949(Ft.) Process from Point/Station 108.000 to Point/Station 108.000 **** SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 6.589(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Time of concentration = 5.31 min. Rainfall intensity = 6.589(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.375 CA = 0.506 Subarea runoff = 2.652(CFS) for 1.150(Ac.) Total runoff = 3.338(CFS) Total area = 1.350(Ac.) Process from Point/Station 108.000 to Point/Station 116.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 172.730(Ft.) End of street segment elevation = 166.000(Ft.) Length of street segment = 70.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.338(CFS) Depth of flow = 0.275(Ft.), Average velocity = 5.737(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.923(Ft.) Flow velocity = 5.74(Ft/s) Travel time = 0.20 min. TC = 5.51 min. Adding area flow to street Rainfall intensity (I) = 6.432(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Irapervious value, Ai = 0.300 Sub-Area C Value = 0.520 The area added to the existing stream causes a a lower flow rate of Q = 3.258(CFS) therefore the upstream flow rate of Q = 3.338(CFS) is being used Rainfall intensity = 6.432(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.375 CA = 0.506 Subarea runoff = 0.000(CFS) for 0.000(Ac.) Total runoff = 3.338(CFS) Total area = 1.350(Ac.) Street flow at end of street = 3.338(CFS) Half street flow at end of street = 3.338(CFS) Depth of flow = 0.275(Ft.), Average velocity = 5.737(Ft/s) Flow width (from curb towards crown)= 6.923(Ft.) Process from Point/Station 108.000 to Point/Station 116.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.350(Ac.) Runoff frora this stream = 3.338(CFS) Time of concentration = 5.51 min. Rainfall intensity = 6.432(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.539 16.29 3.198 2 3.338 5.51 6.432 Qmax(1) = 1.000 * 1.000 * 4.539) + 0.497 * 1.000 * 3.338) + = 6.198 Qmax(2) = 1.000 * 0.338 * 4.539) + 1.000 * 1.000 * 3.338) + = 4.874 Total of 2 streams to confluence: Flow rates before confluence point: 4.539 3.338 Maximum flow rates at confluence using above data: 6.198 4.874 Area of streams before confluence: 2.720 1.350 Results of confluence: Total flow rate = 6.198(CFS) Time of concentration = 16.290 min. Effective stream area after confluence 4.070(Ac, Process from Point/Station 116.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 102.000 Upstream point/station elevation = 158.410(Ft.) Downstream point/station elevation = 144.990(Ft.) Pipe length = 37.40(Ft.) Slope = 0.3588 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.198(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.198(CFS) Normal flow depth in pipe = 3.81(In.) Flow top width inside pipe = 14.71(In.) Critical Depth = 11.55(In.) Pipe flow velocity = 22.66(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 16.32 min. Process from Point/Station 116.000 to Point/Station **** CONFLUENCE OF MAIN STRE?iMS **** 102.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.070(Ac.) Runoff from this stream = 6.198(CFS) Time of concentration = 16.32 min. Rainfall intensity = 3.194(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 19.100 6.198 Qmax(1) = 1.000 * 1.000 * Qmax(2) = 0.949 * 1.000 * 15 .06 16.32 1.000 * 0.923 * 1.000 * 1.000 * 3.364 3. 194 19.100) + 6.198) + 19.100) + 6.198) + 24.819 24.333 Total of 2 main streams to confluence: Flow rates before confluence point: 19.100 6.198 Maximum flow rates at confluence using above data; 24.819 24.333 Area of streams before confluence: 23.490 4.070 Results of confluence: Total flow rate = 24.819(CFS) Time of concentration = 15.056 min. Effective stream area after confluence = 27.560(Ac.) Process from Point/Station 102.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 144.160(Ft.) Downstream point/station elevation = 143.050(Ft.) Pipe length = 55.60(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.819(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 24.819(CFS) Normal flow depth in pipe = 15.89(In.) Flow top width inside pipe = 22.70(In.) Critical Depth = 21.09{In.) Pipe flow velocity = 11.24(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 15.14 min. Process from Point/Station 102.000 to Point/Station 122.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 27.560(Ac.) Runoff from this stream = 24.819(CFS) Time of concentration = 15.14 min. Rainfall intensity = 3.353(In/Hr) Process from Point/Station 124.000 to Point/Station 126.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Initial subarea total flow distance = 35.000(Ft.) Highest elevation = 179.660(Ft.) Lowest elevation = 178.960(Ft.) Elevation difference = 0.700(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 4.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.41 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5200)* ( 80.000".5)/( 2.000"(1/3)]= 7.41 Rainfall intensity (I) = 5.314(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.520 Subarea runoff = 0.276(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 126.000 to Point/Station 122.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 178.960(Ft.) End of street segment elevation = 161.100(Ft.) Length of street segment = 480.000{Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.548(CFS) Depth of flow = 0.256(Ft.), Average velocity = 3.359(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.985(Ft.) Flow velocity = 3.36(Ft/s) Travel time = 2.38 min. TC = 9.79 rain. Adding area flow to street Rainfall intensity (I) = 4.440(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Rainfall intensity = 4.440(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.520 CA = 0.619 10 Subarea runoff = 2.471(CFS) for 1.090(Ac.) Total runoff = 2.748(CFS) Total area = 1.190(Ac, Street flow at end of street = 2.748(CFS) Half street flow at end of street = 2.748(CFS) Depth of flow = 0.294(Ft.), Average velocity = 3.793(Ft/s) Flow width (from curb towards crown)= 7.886(Ft.) Process from Point/Station 126.000 to Point/Station **** SUBAREA FLOW ADDITION **** 122.000 Rainfall intensity (I) = 4.440(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (4.3 DU/A or Less ) Impervious value, Ai = 0.300 Sub-Area C Value = 0.520 Time of concentration = 9.79 min. Rainfall intensity = 4.440(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.520 CA = 0.733 Subarea runoff = 0.508(CFS) for 0.220(Ac.) Total runoff = 3.256(CFS) Total area = 1.410(Ac.) Process from Point/Station 126.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 122.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.410(Ac.) Runoff from this stream = 3.256(CFS) Time of concentration = 9.79 min. Rainfall intensity = 4.440(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(2) 24.819 3.256 Qmax(1) = 1.000 * 0.755 * 1.000 * 1.000 * 15.14 9.79 1.000 * 1.000 * 0.647 * 1.000 * 3.353 4 .440 24.819) + 3.256) + 24.819) + 3.256) + 27.277 19.311 Total of 2 streams to confluence; 11 Flow rates before confluence point: 24.819 3.256 Maximum flow rates at confluence using above data: 27.277 19.311 Area of streams before confluence: 27.560 1.410 Results of confluence: Total flow rate = 27.277(CFS) Time of concentration = 15.139 rain. Effective stream area after confluence = 28.970(Ac.) Process from Point/Station 122.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 128.000 * * * * Upstream point/station elevation = Downstream point/station elevation = Pipe length = 14.82(Ft.) Slope = No. of pipes = 1 Required pipe flow Nearest computed pipe diameter = Calculated individual pipe flow Normal flow depth in pipe = 16.55(In.) Flow top width inside pipe = 22.21(In.) Critical Depth = 21.77(In.) Pipe flow velocity = 11.81(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 15.16 min 142.720(Ft.) 142.400(Ft.) 0.0216 Manning's N 27.277(CFS) 24.00(ln.) 27.277(CFS) 0. 013 Process from Point/Station 128.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 129.000 Upstream point/station elevation = 142.070(Ft.) Downstream point/station elevation = 117.220(Ft.) Pipe length = 89.89(Ft.) Slope = 0.2764 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.277(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 27.277(CFS) Normal flow depth in pipe = 7.82(In.) Flow top width inside pipe = 22.49(In.) Critical Depth = 21.77(In.) Pipe flow velocity = 30.72(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.21 min. Process from Point/Station 129.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 130.000 Upstream point/station elevation = 117.220(Ft.) Downstream point/station elevation = 117.180(Ft.) 12 0.0100 Manning's N = 0.013 27.277(CFS) Pipe length = 4.00(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) Calculated individual pipe flow = 27.277(CFS) Norraal flow depth in pipe = 16.03(In.) Flow top width inside pipe = 35.78(In.) Critical Depth = 20.28(In.) Pipe flow velocity = 8.96(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 15.22 min. End of computations, total study area = 28.970 (Ac, 13 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 01/26/15 Rancho Costera PA 13 - lOO-YEAR STORM EVENT Final B Map Design g:\l01307\Hydrology\B Map\PropPA13.out JST ********* Hydrology Study Control Information ********** Program License Serial Number 6218 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4000.000 to Point/Station 4002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.4 00 Sub-Area C Value = 0.570 Initial subarea total flow distance = 125.000(Ft.) Highest elevation = 76.000(Ft.) Lowest elevation = 70.500(Ft.) Elevation difference = 5.500(Ft.) Slope = 4.400 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxiraum overland flow distance is 100.00 (Ft) for the top area slope value of 4.40 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.82 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5700)*( 100.000".5)/( 4 . 400" (1/3)]= 5.82 The initial area total distance of 125.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.31 minutes for a distance of 25.00 (Ft.) and a slope of 4.40 % with an elevation difference of 1.10(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.310 Minutes Tt= [ (11.9*0.0047"3)/( 1.10)]".385= 0.31 Total initial area Ti = 5.82 minutes from Figure 3-3 formula plus 0.31 minutes from the Figure 3-4 formula = 6.13 minutes Rainfall intensity (I) = 6.006(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.8 90(CFS) Total initial stream area = 0.260(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4002.000 to Point/Station 4004.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 70.500(Ft.) End of street segment elevation = 66.790(Ft.) Length of street segment = 320.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.900(CFS) Depth of flow = 0.310(Ft.), Average velocity = 2.222(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.676(Ft.) Flow velocity = 2.22(Ft/s) Travel time = 2.40 min. TC = 8.53 min. Adding area flow to street Rainfall intensity (I) = 4.853(In/Hr) for a 100.0 year storm Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.4 00 Sub-Area C Value = 0.570 Rainfall intensity = 4.853(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.581 Subarea runoff = 1.932(CFS) for 0.76 0(Ac.) Total runoff = 2.822(CFS) Total area = 1.020(Ac.) Street flow at end of street = 2.822(CFS) Half street flow at end of street = 2.822(CFS) Depth of flow = 0.342(Ft.), Average velocity = 2.434 (Ft/s) Flow width (from curb towards crown)= 10.279(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 4002.000 to Point/Station 4004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in normal stream number 1 Streara flow area = 1.020(Ac.) Runoff from this streara = 2.822(CFS) Time of concentration = 8.53 min. Rainfall intensity = 4.853(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4006.000 to Point/Station 4002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.4 00 Sub-Area C Value = 0.570 Initial subarea total flow distance = 115.000(Ft.) Highest elevation = 75.000(Ft.) Lowest elevation = 70.500(Ft.) Elevation difference = 4.500 (Ft.) Slope = 3.913 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.91 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.90 minutes TC = [1.8*(1.1-C)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.5700)* ( 95.000".5)/( 3.913" (1/3)]= 5.90 The initial area total distance of 115.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.27 minutes for a distance of 20.00 (Ft.) and a slope of 3.91 % with an elevation difference of 0.78(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]".385 *60(min/hr) 0.273 Minutes Tt=[(11.9*0.0038"3)/( 0.78)]".385= 0.27 Total initial area Ti = 5.90 minutes from Figure 3-3 formula plus 0.2 7 minutes from the Figure 3-4 formula = 6.17 minutes Rainfall intensity (I) = 5.979(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.545(CFS) Total initial streara area = 0.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 4002.000 to Point/Station 4008.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 70.500(Ft.) End of street segraent elevation = 67.430(Ft.) Length of street segment = 340.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft. Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = Depth of flow = 0.337(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.032(Ft.) Flow velocity = 2.12(Ft/s) 2 . 350 (CFS) 2.119(Ft/s) TC = 85 min. 4.741(In/Hr) for a 0 . 000 0 . 000 0. 000 1. 000 Travel time = 2.6 7 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.741(In/Hr) for a 100 Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.861 Subarea runoff = 3.535(CFS) for 1.350(Ac. Total runoff = 4.080(CFS) Total area = Street flow at end of street = 4.080(CFS) Half street flow at end of street = 4.080(CFS) Depth of flow = 0.389(Ft.), Average velocity = Flow width (from curb towards crown)= 12.597(Ft.) 100.0 year storm 0 year storra 1.510(Ac.) 2.415(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4008.000 to Point/Station 4004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 67.430(Ft.) Downstream point elevation = 66.790(Ft.) Channel length thru subarea = 63.46 0(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 66.660 Slope or 'Z' of right channel bank = 66.660 Manning's 'N' = 0.015 Maximum depth of channel = 0.100 (Ft.) Flow(q) thru subarea = 4.080(CFS) Depth of flow = 0.117(Ft.), Average velocity = 1.976(Ft/s) !!Warning: Water is above left or right bank elevations Channel flow top width = 23.332(Ft.) Flow Velocity = 1.98(Ft/s) Travel time = 0.54 rain. Time of concentration = 9.38 min. Critical depth = 0.127(Ft.) ERROR - Channel depth exceeds maximura allowable depth ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4008.000 to Point/Station 4004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in norraal stream number 2 Stream flow area = 1.510(Ac.) Runoff from this streara = 4.080(CFS) Tirae of concentration = 9.3 8 rain. Rainfall intensity = 4.564(In/Hr) Summary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.822 8.53 4.853 2 4.080 9.38 4.564 Qmax(1) = 1.000 * 1.000 * 2 . 822) + 1.000 * 0.909 * 4.080) + = 6.532 0.941 * 1.000 * 2.822) + 1.000 * 1.000 * 4.080) + = 6.734 Qmax(2] Total of 2 streams to confluence: Flow rates before confluence point: 2.822 4.080 Maxiraum flow rates at confluence using above data: 6.532 6.734 Area of streams before confluence: 1.020 1.510 Results of confluence: Total flow rate = 6.734(CFS) Time of concentration = 9.3 83 min. Effective streara area after confluence 2.53 0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 4004.000 to Point/Station 4010.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 66.790(Ft.) End of street segment elevation = 65.380(Ft.) Length of street segraent = 159.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = Depth of flow = 0.450(Ft.), Average velocity = Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 15.643 (Ft.) Flow velocity = 2.73(Ft/s) 6.960(CFS) 2.730(Ft/s) TC = 10.35 min. 4.284(In/Hr) for a = 0.000 = 0.000 = 0.000 = 1.000 Travel tirae = 0.97 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Deciraal fraction soil group C Decimal fraction soil group D [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.284(In/Hr Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.659 Subarea runoff = 0.371(CFS) for 0.380(Ac.) Total runoff = 7.105(CFS) Total area = Street flow at end of street = 7.105 (CFS) Half street flow at end of street = 7.105(CFS) Depth of flow = 0.452(Ft.), Average velocity = Flow width (frora curb towards crown)= 15.770(Ft.) 100.0 year storra for a 100.0 year storra 2.910(Ac.) 2.744(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process frora Point/Station 4010.000 to Point/Station 4012.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 55.480(Ft.) Downstream point/station elevation = 55.450(Ft.) Pipe length = 2.50(Ft.) Slope = 0.0120 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.105(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.105(CFS) Norraal flow depth in pipe = 10.23 (In.) Flow top width inside pipe = 17.83(In.) Critical Depth = 12.39(In.) Pipe flow velocity = 6.85(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.36 min. End of coraputations, total study area = 2.910 (Ac.) SECTION 5 Exhibits SECTION 6 100 Yr. Proposed Hydraulic Calculations ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2 710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92 010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * PA 2 STORM DRAIN NODE 504 8 * * B MAP DESIGN * ************************************************************************** FILE NAME: PA2.DAT TIME/DATE OF STUDY: 13:57 07/31/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 5042.00- 1.00 79.22 5048.10- 5048.15- } FRICTION I- } JUNCTION } FRICTION 5048.00- 0.8 9 DC 0.89 Dc 0.89*Dc 77 . 72 77 . 72 77 . 72 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 0.64* 90.54 0 .61* 0 . 71* 0.89*Dc 94 . 78 84 . 10 77 . 72 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5042.00 FLOWLINE ELEVATION = 44.79 PIPE FLOW = 5.3 9 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 45.790 FEET NODE 5042.00 : HGL = < 45.428>;EGL= < 46.307>;FLOWLINE= < 44.790> ****************************************************************************** FLOW PROCESS FROM NODE 5042.00 TO NODE 5048.10 IS CODE = 1 UPSTREAM NODE 5 048.10 ELEVATION 45 . 01 [FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.3 9 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 21.94 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.69 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 . 89 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L (FT) ( FT) (FT/ SEC) ENERGY (FT) MOMENTUM (POUN 0 . 000 0 . 606 8 . 060 1 615 94 . 78 1 . 973 0 . 609 8 . 000 1 604 94 30 4 004 0 . 613 7 . 941 1 592 93 83 6 096 0 . 616 7 . 883 1 581 93 36 8 255 0 .619 7 . 826 1 571 92 91 10 490 0 . 623 7 . 769 1 561 92 46 12 806 0 . 626 7 . 713 1 551 92 03 15 214 0 . 629 7 .658 1 541 91 60 17 723 0 . 633 7 . 604 1 531 91 18 20 347 0 . 636 7 . 550 1 522 90 77 21 940 0 . 638 7 . 520 1. 517 90 54 NODE 5048.10 : HGL = < 45.616>;EGL= < 46.62 5>;FLOWLINE= < 45.010> ****************************************************************************** FLOW PROCESS FROM NODE 5048.10 TO NODE 5048.15 IS CODE = 5 UPSTREAM NODE 5048.15 ELEVATION = 45.34 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5 .39 18.00 0.00 45.34 0 . 89 6 . 596 DOWNSTREAM 5 . 39 18.00 - 45.01 0 . 89 8 . 062 LATERAL #1 0 . 00 0.00 0.00 0.00 0 . 00 0 . 000 LATERAL #2 0 . 00 0.00 0.00 0.00 0. 00 0 . 000 Q5 0 . 00 ===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00930 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.01603 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01267 JUNCTION LENGTH = 4.0 0 FEET 0.051 FEET ENTRANCE LOSSES = 0.000 FEET TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) 0.046)+( 0.051)+( 0.000) = 0.096 FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = NODE 5048.15 HGL 46.046>;EGL= < 46.721>;FLOWLINE= < 45.340> ****************************************************************************** FLOW PROCESS FROM NODE 5048.15 TO NODE 5048.00 IS CODE = 1 UPSTREAM NODE 5 048.00 ELEVATION = 45.89 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.3 9 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 54.78 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0 . 69 CRITICAL DEPTH(FT) 0.89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 . 895 4 . 902 1 .268 77 . 72 0 . 025 0 . 886 4 . 957 1 .268 77 . 73 0 . 105 0 . 878 5 . 012 1 269 77 . 76 0 . 243 0 . 870 5 . 069 1 269 77 . 81 0 .447 0 . 862 5 . 128 1 270 77 . 88 0 . 721 0 . 854 5 . 187 1 272 77 . 98 1 . 075 0 . 846 5 .249 1 274 78 09 1 . 517 0 . 837 5 .312 1 276 78 23 2 . 058 0 . 829 5 .376 1 278 78 39 2 . 710 0 . 821 5 443 1 281 78 57 3 .487 0 . 813 5 511 1 285 78 78 4 .408 0 . 805 5 580 1 289 79 01 5 .495 0 . 797 5 652 1 293 79 27 6 . 774 0 . 788 5 725 1 298 79 56 8 . 281 0 . 780 5 801 1 303 79 87 10 . 058 0 . 772 5 878 1 309 80 21 12 . 165 0 . 764 5 958 1. 315 80 58 14 .680 0 . 756 6 040 1. 323 80 97 17 . 713 0 . 748 6 124 1. 330 81 40 21 .426 0 . 739 6 211 1 . 339 81. 86 26 . 070 0 . 731 6 300 1. 348 82 . 35 32 . 065 0 . 723 6 391 1. 358 82 . 87 40 . 199 0 . 715 6 485 1. 368 83 . 43 52 . 242 0 . 707 6 582 1 . 380 84 . 02 54 . 780 0 706 6 594 1. 381 84 . 10 NODE 5 048.00 : HGL 46.785>;EGL= < 47.158>;FLOWLINE= < 45.890> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5 048.00 FLOWLINE ELEVATION = 45.89 ASSUMED UPSTREAM CONTROL HGL = 46.78 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS BASINEFl.OUT * **************************************** A ***** Vt * Vf ********* * PIPE-FLOW HYDRAULICS COIVIPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** OESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN E-F - ROBERTSON ROAD STORM DRAIN AT TAMARACK - NODES 5003-5008 * * B MAP DESIGN * Vf Vf * Vf * Vf * Vf Vf * Vf * Vf Vf * Vf Vf Vf * * Vf * Vf * * * Vf * * Vf Vf * Vf * Vf Vf * Vf * Vf Vf Vf Vf Vf * * Vf * Vf * * Vf * Vf Vf Vf * Vf Vf Vf * * * Vf Vf * * Vt Vt Vf Vf * Vt Vt FILE NAME: BASINEFl.DAT TIME/DATE OF STUDY: 14:30 06/02/2014 5V Vf Vf Vf Vf Vf Vf Vf Vc Vf * Vt Vf * Vf * * Vf Vf Vf * Vf Vf Vt * Vf Vf Vf Vf * Vf * * * Vf * Vf * * * * * * Vf Vf Vt * * * Vf * Vf * Vt Vf Vf Vf * * Vt Vf Vt Vf Vf Vt * Vt * Vf Vf * * * * Vt * Vf Vf GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: indi Gates nodal point data used.) UPSTREAM RUN nodal point DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE4- NUMBER PROCESS HEADCFT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5008.00-1.10 149.57 1.02* 150.78 } FRICTION 5007.00-1.10*DC 149.57 1.10*DC 149.57 } JUNCTION 149.57 5007.10-1.35* 140.52 1.10 DC 131.77 } FRICTION 5004.00-1.28* 136.34 1.10 DC 131.77 } JUNCTION 5004.10-1.39* 114.68 0.96 DC 93.95 } FRICTION 5003.00-1.27* 105.53 0.96 DC 93.95 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vt Vf Vf Vt * * Vt Vf * * Vf * * Vf Vf Vt Vt * * Vf * Vf Vt Vt * Vt * Vf Vf Vf Vf Vt Vt * Vt * Vf Vf Vt * * * Vf Vf * Vf * * Vf Vt Vt Vt Vf * * Vf * Vt Vt Vt * * Vf Vf Vr * Vf Vf * * Vf Vf Vf Vf Vf Vf * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5008.00 FLOWLINE ELEVATION = 61.80 PIPE FLOW = 9.44 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 61.800 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.10 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5008.00 : HGL = < 62.821>;EGL= < 63.353>;FLOWLINE= < 61.800> Vf Vf Vt Vt Vt * * Vt Vf * Vf Vt * Vt Vf Vt * Vf Vf Vf * Vt * * * Vf * * Vf * * Vf * Vf * * Vt * * Vt * Vf * * * * Vf * Vt Vt Vf Vf Vt * * * Vf Vf * Vf Vf * * * Vf * Vt * * Vt * * * * Vt * * Vt FLOW PROCESS FROM NODE 5008.00 TO NODE 5007.00 IS CODE = 1 UPSTREAM NODE 5007.00 ELEVATION = 61.97 (FLOW IS SUPERCRITICAL) Page 1 BASINEFl.OUT CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.44 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 25.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.01 CRITICAL DEPTH(FT) = 1.10 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.10 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1.098 5 .344 1 541 149.57 0 .013 1.094 5 .364 1 541 149.57 0 .054 1.091 5 .384 1 542 149.57 0 .125 1.088 5 405 1 542 149.58 0 .229 1.084 5 426 1 542 149.60 0 .370 1.081 5 447 1 542 149.62 0 .550 1.078 5 468 1 542 149.64 0 .775 1.074 5 489 1 542 149.67 1 .049 1.071 5 511 1 543 149.71 1 .379 1.068 5 533 1 543 149.74 1 .771 1.064 5 554 1 544 149.79 2 .235 1.061 5 576 1 544 149.83 2 .781 1.057 5 599 1. 544 149.89 3 .422 1.054 5 621 1. 545 149.94 4 .174 1.051 5 644 1. 546 150.01 5 .060 1.047 5 666 1. 546 150.07 6 .107 1.044 5 689 1. 547 150.14 7 • 354 1.041 5 712 1. 548 150.22 8 • 853 1.037 5 736 1. 548 150.30 10 • 683 1.034 5 759 1. 549 150.39 12 • 966 1.031 5 783 1. 550 150.48 15 • 904 1.027 5 807 1. 551 150.57 19 879 1.024 5 831 1. 552 150.67 25 560 1.021 5 855 1. 553 150.78 NODE 5007.00 : HGL = < 63.068>;EGL= < 63.511>;FL0WLINE= < 61.970> Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vf Vf Vf Vf Vc Vf Vc Vf Vf Vf Vf Vc Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf FLOW PROCESS FROM NODE 5007.00 TO NODE 5007.10 IS CODE = 5 UPSTREAM NODE 5007.10 ELEVATION = 62.30 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 8.00 9.44 0.00 0.00 DIAMETER ANGLE (INCHES) 18.00 24.00 0.00 0.00 (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 62.30 61.97 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.10 1.10 0.00 0.00 (FT/SEC) 4.777 5.345 0.000 0.000 1.44===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00511 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)-!-(FRICTION L0SS)4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.383)+( 0.020)+( 0.089) = 0.492 00511 00511 0.089 FEET NODE 5007.10 : HGL 63.650>;EGL= < 64.004>;FL0WLINE= < Page 2 62.300> BASINEFl.OUT Vt * * * Vt * Vt * * Vt * * * Vt * * Vf * Vt * * * * Vf * * Vf * Vt * Vt Vt * * * Vt * * * * Vt * Vf * Vf * * * * Vf * * * * * * Vt Vt Vt Vt * Vt * Vf * Vt * * * Vf * Vf * Vf * * * * FLOW PROCESS FROM NODE 5007.10 TO NODE 5004.00 IS CODE = 1 UPSTREAM NODE 5004.00 ELEVATION = 62.49 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 28.34 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.14 CRITICAL DEPTH(FT) 1.10 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.350 4.775 1.704 140.52 3.165 1.341 4.796 1.699 140.00 6.313 1.333 4.819 1.694 139.49 9.447 1.325 4.841 1.689 139.00 12.574 1.317 4.865 1.685 138.52 15.696 1.309 4.889 1.680 138.06 18.820 1.300 4.914 1.676 137.61 21.951 1.292 4.939 1.671 137.17 25.093 1.284 4.966 1.667 136.75 28.254 1.276 4.993 1.663 136.35 28.340 1.276 4.993 1.663 136.34 NODE 5004.00 : HGL = < 63.766>;EGL= < 64.153>;FLOWLINE= < 62.490> Vt Vf * Vf * Vf * * Vt * Vf Vf * Vt * Vt Vf Vf * Vf Vf * * * Vf Vf * Vf * Vf * Vf * Vf Vt Vf Vf Vf Vf Vf * * * Vt * Vt * Vf Vt * Vf Vf Vt * Vf Vt * * Vf Vt Vf * * * * Vt * Vf * Vf Vf * * Vf * Vf Vt Vr FLOW PROCESS FROM NODE 5004.00 TO NODE 5004.10 IS CODE = 5 UPSTREAM NODE 5004.10 ELEVATION = 62.82 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 6.22 18.00 0.00 62.82 8.00 18.00 - 62.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.78===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.96 1.10 0.00 0.00 VELOCITY (FT/SEC) 3.638 4.995 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00304 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00546 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00425 4.00 FEET 0.017 FEET ENTRANCE LOSSES = 0.077 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LENGTH FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = ( 0.169)+( 0.017)+( 0.077) = 0.263 NODE 5004.10 : HGL = < 64.211>;EGL= < 64.416>;FLOWLINE= < 62.820> * * Vf * Vf Vr * Vt * Vf * * * * Vt * * * * * * * Vt * * Vt Vf * * * * Vt Vt * Vt * * * * * * * * Vt * Vt Vr Vr * * * Vf Vr Vr * Vt * * * Vt Vt Vr * * Vr Vr Vr Vr Vr Vr * * * Vf Vt * * * FLOW PROCESS FROM NODE 5004.10 TO NODE 5003.00 IS CODE = 1 UPSTREAM NODE 5003.00 ELEVATION = 63.00 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.22 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.15 FEET MANNING'S N = 0.01300 Page 3 BASINEFl OUT NORMAL DEPTH(FT) 0.97 CRITICAL DEPTH(FT) 0.96 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-i- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.391 3.637 1.596 114.68 4.295 1.374 3.666 1.583 113.25 8.523 1.357 3.697 1.570 111.87 12.694 1.341 3.731 1.557 110.52 16.816 1.324 3.767 1.544 109.22 20.896 1.307 3.805 1.532 107.96 24.939 1.290 3.845 1.520 106.75 28.950 1.274 3.887 1.509 105.58 29.150 1.273 3.890 1.508 105.53 NODE 5003.00 : HGL = < 64.273>;EGL= < 64.508>;FLOWLINE= < 63.000> Vf Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr * Vf Vt * * Vf Vt * Vt Vt Vt * * Vt Vt * Vt * Vt Vt Vt Vt Vt Vt Vt Vf Vr Vf * Vt Vr Vr Vr * * * * * Vr * Vr Vr Vr * * * * Vr * * * * * * * Vf Vf * Vr Vr * Vr Vr Vr Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5003.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 63.00 63.96 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 BASINEF2.0UT * Vt * * * * Vt * Vt * * * * * Vt * * * * Vr Vr Vt * Vr Vr * * Vr * Vf Vf * * * Vr * Vr Vr * * * Vr Vr * * * Vr * * * * * * * * * * * * * * Vf * Vf * * Vr * * * * * * Vr * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS Vf VrVrVt Vr VrVrVrVr**Vr*Vr*Vr***VrVf *VtVf VtVt DESCRIPTION OF STUDY ****************ir**Vt*Vf Vt Vt Vt Vt * RANCHO COSTERA A * * BASIN E-F - ROBERTSON ROAD STORM DRAIN AT TAMARACK NODES ^018-3013 * * B MAP DESIGN * Vt Vt Vt Vt * Vt Vt Vt Vt Vf * Vt Vt * Vt Vt Vt * Vt * Vt Vt Vf Vt Vf Vt Vf Vf Vt Vf * Vr Vr * Vf Vf Vf Vf Vr Vr * * Vr Vr Vr Vr * Vr Vr Vr Vf Vf * Vt Vr Vr * Vr * Vr Vr Vr Vr Vr Vr Vf Vf Vt * * Vf Vt Vt * FILE NAME: BASINEF2.DAT TIME/DATE OF STUDY: 14:32 06/02/2014 Vt Vt Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vt Vt Vt Vt Vt Vt Vt * * Vt Vt * Vf * Vt Vr * * * * Vr * Vr Vr * Vr Vr * Vr Vr Vr * * Vr Vt Vt Vt Vt Vf Vt * * Vt Vf * * Vt * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5018.00- 0.77 " } FRICTION 5017.00- 0.77 DC } JUNCTION 5017.10- 0.90 } FRICTION 5013.00- 0.72*DC MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Ve Vf Vf Vf Vf Vf Vf Vf Vf Vf Vr Vf Vf Vf Vc Vf Vf Vf Vf Vc Vc Vc Vc Vf Vf Vc Vc Vf Vc Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vc Vf Vc Vf Vf Vc Vf Vf Vc Vf Vf Vf Vf Vc Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vf Vc Vc Vc Vc Vf Vf Vf Vf Vc Vc DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5018.00 FLOWLINE ELEVATION = 61,00 PIPE FLOW = 4.02 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 59.030 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -1.97 FT.) IS LESS THAN CRITICAL DEPTH( 0.77 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5018.00 : HGL = < 61.333>;EGL= < 64.272>;FLOWLINE= < 61.000> Vt * Vt * Vt Vt Vt Vt Vt Vt Vt Vt * Vf Vt * Vf Vf * * Vt Vt Vt * Vt Vt Vf * Vt * * Vt * Vf * Vr * * * * Vf * Vt Vf Vt * * Vt Vf * Vr * * Vr * * * * * Vt * * Vt * Vt Vf Vt Vt * * * Vf * Vf * Vr * Vf FLOW PROCESS FROM NODE 5018.00 TO NODE 5017.00 IS CODE = 1 UPSTREAM NODE 5017.00 ELEVATION = 64.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.02 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 18.70 FEET MANNING'S N = 0.01300 Page 1 52 95 0 33* 109 65 52 95 0 41* 84 41 48 54 0 29* 101 19 44 73 0 72*Dc 44 73 BASINEF2.OUT NORMAL DEPTH(FT) = 0.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) CRITICAL DEPTH(FT) = 0.41 0.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.409 10.307 2.059 84.41 0.387 0.405 10.444 2.100 85.38 0.798 0.401 10.583 2.141 86.38 1.236 0.397 10.726 2.185 87.40 1.704 0.393 10.873 2.230 88.46 2.203 0.390 11.023 2.278 89.54 2.738 0.386 11.177 2.327 90.65 3.313 0.382 11.334 2.378 91.79 3.932 0.378 11.496 2.432 92.97 4.602 0.374 11.662 2.487 94.18 5.328 0.371 11.832 2.546 95.42 6.119 0.367 12.006 2.606 96.70 6.985 0.363 12.185 2.670 98.01 7.937 0.359 12.369 2.736 99.37 8.992 0.355 12.557 2.805 100.76 10.170 0.351 12.751 2.878 102.19 11.495 0.348 12.950 2.953 103.67 13.005 0.344 13.155 3.033 105.19 14.749 0.340 13.365 3.115 106.76 16.799 0.336 13.581 3.202 108.37 18.700 0.333 13.752 3.272 109.65 NODE 5017.00 : HGL = < 64.409>;EGL= < 66.059>;FLOWLINE= < 64.000> Vt * * Vt * * * Vt Vf Vr * Vr Vr Vr * Vt * Vf * * Vr * * Vr * * * Vr * Vr Vr * * Vr Vr Vt * Vf Vt * * * Vr * Vr Vr Vr * Vf * Vf * * * * * * * Vt Vt Vt Vt * * * Vf * Vf Vt * Vf Vf * * Vr Vf * Vf FLOW PROCESS FROM NODE 5017.00 TO NODE 5017.10 IS CODE = 5 UPSTREAM NODE 5017.10 ELEVATION = 64.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.53 4.02 0.00 0.00 DIAMETER (INCHES) 18.00 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 64.33 64.00 0.00 0.00 0.49===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.72 0.77 0.00 0.00 VELOCITY (FT/SEC) 14.528 10.310 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.16257 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05558 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10908 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.436 FEET ENTRANCE LOSSES = 0.330 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.074)+( 0.436)+( 0.330) = 1.841 NODE 5017.10 : HGL = < 64.623>;EGL= < 67.900>;FLOWLINE= < 64.330> ****************************** **************************************w*****y;,v** FLOW PROCESS FROM NODE 5017.10 TO NODE 5013.00 IS CODE = 1 UPSTREAM NODE 5013.00 ELEVATION = 81.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.53 CFS PIPE DIAMETER = 18.00 INCHES Page 2 PIPE LENGTH = 102.56 FEET BASINEF2.0UT MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.29 CRITICAL DEPTH(FT) = 0.72 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 0.717 4.232 0.005 0.700 4.365 0.021 0.683 4.506 0.050 0.666 4.657 0.093 0.649 4.817 0.152 0.632 4.989 0.230 0.615 5.172 0.329 0.598 5.368 0.454 0.581 5.579 0.608 0.564 5.806 0.796 0.547 6.051 1.025 0.530 6.316 1.303 0.513 6.602 1.640 0.496 6.913 2.049 0.479 7.252 2.546 0.462 7.621 3.155 0.445 8.027 3.907 0.428 8.472 4.845 0.412 8.964 6.037 0.395 9. 509 7.583 0.378 10.115 9.657 0.361 10.794 12.585 0.344 11.556 17.100 0.327 12.418 25.560 0.310 13.399 102.560 0.293 14.523 NODE 5013.00 : HGL = < 81. 717>;EGL= < SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUN 0.995 44.73 0.996 44.77 0.998 44.90 1.003 45.11 1.010 45.42 1.019 45.83 1.031 46.35 1.046 46.99 1.065 47.75 1.088 48.65 1.116 49.69 1.150 50.90 1.191 52.28 1.239 53.85 1.296 55.64 1.365 57.67 1.447 59.97 1.544 62.56 1.660 65.50 1.800 68.82 1.967 72.59 2.171 76.87 2.419 81.76 2.723 87.34 3.099 93.77 3.570 101.19 *********** * * * * * * Vt * * * * * * * * * * * * * * * * * * * * * * * * * ,'r * * * * * * * * * * * * * * * * ****** * * ,'r * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5013.00 FLOWLINE ELEVATION = 81.00 ASSUMED UPSTREAM CONTROL HGL = 81.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 BASING.OUT ****** ********************VtVf ********** Vt ******************* *V!t****************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - MAIN LINE UP W. RANCH ST TO ROBERSTON RD, S. WELLSPRINGS * * B MAP DESIGN * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^, ... * * ^ ^ ^ ^ ^ ^ ,.. ^ ^ ^ ^ y, FILE NAME: BASING.DAT TIME/DATE OF STUDY: 14:59 05/30/2014 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********** * * * * * * *********** * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 368.00- 8.41* 6687.58 ' " 3160.00- ] 3160.10- ] 344.00- 344.10- ] 334.00-334.10- ] 328.00- ^ 328.10- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION 3110.00- 3110.10- ] 3108.00- 3108.lO-'J 3048.00- ] 3048.lO-'i 3100.00- ] 3100.10- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION )- } FRICTION )- } JUNCTION 8.41* 6.39* 6.35* 2.91 DC 3.78 2.75*Dc 4.20 2.44 DC 2.53 DC 2.53 DC 2.53 DC 2.53 DC 2.53 DC 2.53*DC 4.43* 2.96* 3.07* 4954.96 4710.00 } HYDRAULIC JUMP 2459.75 2466.65 2120.15 2386.98 1559.84 1611.73 1611.73 1611.73 1611.73 1611.73 1611.73 1342.51 693.99 353.42 Page 1 1.63 1.66 1.48 2.14* 1.59* 2.75*Dc 1.16* 1.20* 1.30* 1.69* 1.74* 2.00* 2.19* 2.53*DC 0.98 1.16 DC 1.01 4553.92 4439.91 4038.35 2775.27 3017.52 2120.15 2823.95 2715.90 2580.31 1963.25 1917.90 1735.85 1657.48 1611.73 222.82 212.87 171.78 BASING.OUT } FRICTION 3106.00- 2.86* 330.90 1.19 Dc 165.71 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ************************************** ***********^y,^y,y,yj^^^^^^,y,^^^^^^^yjjj.,jyjy^^^y^y^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 368.00 FLOWLINE ELEVATION = 71.02 PIPE FLOW = 98.92 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 79.430 FEET NODE 368.00 : HGL = < 79.430>;EGL= < 80.392>;FLOWLINE= < 71.020> ********************************* *************y„.,^y„.,y,yj^^^y,yj^^jjyj^yjyj^..,jy^yjy^.^.^^y^y^^^^^^ FLOW PROCESS FROM NODE 368.00 TO NODE 3160.00 IS CODE = 1 UPSTREAM NODE 3160.00 ELEVATION = 73.27 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 103.79 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 44.93 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 103.79)/( 1436.453))**2 = 0.00522 HF=L*SF = ( 44.93)*(0.00522) = 0.235 NODE 3160.00 : HGL = < 79.665>;EGL= < 80.724>;FL0WLINE= < 73.270> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * V, * * * * * * * * * * * * i; i, i, ,.. ^. ,y y, y. ^ FLOW PROCESS FROM NODE 3160.00 TO NODE 3160.10 IS CODE = 5 UPSTREAM NODE 3160.10 ELEVATION = 73.60 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 91.83 48.00 0.00 73.60 2.91 7 308 DOWNSTREAM 98.92 48.00 - 73.27 3 01 7 872 LATERAL #1 5.35 18.00 90.00 77.30 0.89 3.027 LATERAL #2 1.74 18.00 90.00 77.30 0.50 0.985 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00409 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00474 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00441 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS)-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.133)4-( 0.018) + ( 0.000) = 0.151 NODE 3160.10 : HGL = < 79.948>;EGL= < 80.777>;FL0WLINE=: < 73.600> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **************************** * * * j. i, i, i. ... ,., ,., ,,, ,,, y, y, FLOW PROCESS FROM NODE 3160.10 TO NODE 344.00 IS CODE = 1 UPSTREAM NODE 344.00 ELEVATION = 80.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 91.83 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 91.22 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS Page 2 NORMAL DEPTH(FT) = 1.31 BASING.OUT CRITICAL DEPTH(FT) 2.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.14 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW JEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 2 .143 13.391 4 .929 2775.27 1 .249 2 .110 13.656 5 .007 2808.25 2 .625 2 .077 13.931 5 .092 2843.45 4 .140 2 .043 14.218 5 .184 2880.97 5 .811 2 .010 14.517 5 .284 2920.93 7 .654 1 .977 14.829 5 393 2963.47 9 .691 1 .944 15.154 5 512 3008.70 11 .945 1 .910 15.494 5 640 3056.79 14 .445 1 .877 15.849 5 780 3107.87 17 .224 1 .844 16.221 5 932 3162.14 20 .323 1 811 16.610 6 097 3219.76 23 .791 1 777 17.017 6 277 3280.93 27 .687 1 744 17.444 6 472 3345.89 32 .086 1 711 17.892 6 685 3414.85 37 .082 1 678 18.362 6 917 3488.07 42 .798 1 644 18.857 7 169 3565.84 49 .394 1 611 19.377 7 445 3648.46 57 .088 1 578 19.925 7 746 3736.27 66 .187 1 545 20.502 8 076 3829.63 77 .138 1 511 21.111 8 436 3928.95 90 639 1 478 21.755 8 832 4034.67 91 220 1 477 21.778 8 846 4038.35 HYDRAULIC JUMP : UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 6.35 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 6. 348 7.308 7. 177 4710.00 32 816 4. 000 7.308 4. 829 2868.72 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 4.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 32 .816 4.000 7 305 4.829 2868.72 33 .384 3.956 7 320 4.789 2836.92 33 .910 3.912 7 345 4.751 2807.32 34 .411 3.869 7 379 4.715 2779.24 34 .891 3.825 7 419 4.680 2752.46 35 .352 3.781 7 465 4.647 2726.89 35 .795 3.737 7 516 4.615 2702.45 36 .221 3.693 7 572 4.584 2679.13 36 .630 3.650 7 632 4.555 2656.90 37 .022 3.606 7 697 4.526 2635.76 37 .398 3.562 7 767 4.499 2615.71 37 .757 3.518 7 841 4.474 2596.76 38 .098 3.474 7 920 4.449 2578.92 38 .421 3.431 8 003 4.426 2562.20 38 .726 3.387 8 091 4.404 2546.63 Page 3 BASING.OUT 39 Oil 3 .343 8 183 4 .383 2532.23 39 276 3 .299 8 280 4 • 364 2519.03 39 519 3 • 255 8 382 4 347 2507.06 39 740 3 212 8 489 4 331 2496.34 39 937 3 168 8 601 4 317 2486.91 40 109 3 124 8 718 4 305 2478.81 40 254 3 080 8 841 4 295 2472.08 40 370 3 036 8 969 4 286 2466.77 40. 456 2 993 9 104 4 280 2462.90 40. 510 2 949 9 244 4 277 2460.55 40. 528 2 905 9. 391 4 275 2459.75 91. 220 2 905 9. 391 4. 275 2459.75 EI^D OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 13.89 FEET UPSTREAM OF DOWNSTREAM DEPTH = 5.354 FEET. UPSTREAM CONJUGATE DEPTH NODE 3160.10 I = 1.511 FEET I NODE 344.00 : HGL = < 82.643>;EGL= < 85.429>;FLOWLINE= < 80.500> * * * * * * * * * * * * Vt * * * * * * * * * * * * * * * * * * * * * * * * * * * * ******************** * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 344.00 TO NODE 344.10 IS CODE = 5 UPSTREAM NODE 344.10 ELEVATION = 80.83 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 82.27 91.83 9.54 0.00 0.02== DIAMETER (INCHES) 48.00 48.00 18.00 0.00 ANGLE (DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 80.83 80.50 83.33 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.75 2.91 1.19 0.00 VELOCITY (FT/SEC) 17.722 13.395 6.331 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02978 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01298 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02138 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.086 FEET ENTRANCE LOSSES = 0.557 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.222) + ( 0.086)-f( 0.557) = 1.864 NODE 344.10 : HGL = < 82.417>;EGL= < 87.294>;FLOWLINE= < 80.830> * Vt * * Vt * Vf * Vr * * * * * Vr * * Vr Vt Vt Vt * * Vt Vr Vr * * * * Vt * * * Vt Vt Vt * Vr * Vr * Vr * * Vr * * * * * Vr * Vt * Vt Vt * Vt Vt Vt * Vt Vt Vr * * * * Vr * Vr Vr Vr Vr * * Vr FLOW PROCESS FROM NODE 344.10 TO NODE 334.00 IS CODE = 1 UPSTREAM NODE 334.00 ELEVATION = 91.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 82.27 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 311.57 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.54 CRITICAL DEPTH(FT) 2.75 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.748 8.936 3.989 2120.15 0.061 2.700 9.114 3.990 2121.12 0.251 2.651 9.302 3.996 2124.09 0.586 2.603 9.499 4.005 2129.16 1.082 2.555 9.706 4.019 2136.41 Page 4 BASING.OUT 1.756 2 .506 9.925 4.037 2145.95 2.633 2 .458 10.155 4.060 2157.91 3.736 2 .410 10.397 4.089 2172.41 5.098 2 .361 10.653 4.124 2189.58 6.754 2 .313 10.922 4.167 2209.58 8.749 2 .265 11.207 4.216 2232.57 11.136 2 .216 11.508 4.274 2258.73 13.982 2 .168 11.827 4.341 2288.26 17.367 2 .120 12.164 4.419 2321.37 21.397 2 071 12.522 4.507 2358.31 26.207 2 023 12.901 4.609 2399.35 31.973 1 975 13.305 4.725 2444.77 38.940 1 926 13.734 4.857 2494.91 47.447 1 878 14.192 5.007 2550.14 57.994 1 830 14.681 5.178 2610.86 71.358 1 781 15.203 5.372 2677.54 88.842 1 733 15.762 5.593 2750.70 112.891 1 685 16.362 5.844 2830.92 149.002 1 636 17.007 6.130 2918.87 214.820 1 588 17.701 6.456 3015.30 311.570 1 587 17.717 6.464 3017.52 334.00 : HGL = < 93. 948>;EGL= < 95.189>;FLOWLINE= < 91.200> r Vr Vr Vr Vr * Vr Vr Vt Vf Vt Vt Vf Vf * * * Vt Vt * * Vt Vt Vt * Vt * -* Vf * Vt Vt Vr Vr Vr Vr * * Vr Vr Vr Vr Vr Vt Vt Vr Vr Vr * Vr Vr * Vt Vt Vt Vt * Vt * Vt Vf Vt Vf * Vf * * Vf * Vt Vf Vf Vf Vr Vr * * Vr FLOW PROCESS FROM NODE 334.00 TO NODE 334.10 IS CODE = 5 UPSTREAM NODE 334.10 ELEVATION = 91.53 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 65.34 82.27 16.94 0.00 DIAMETER ANGLE (INCHES) 48.00 48.00 24.00 0.00 (DEGREES) 90.00 0.00 0.00 FLOWLINE ELEVATION 91.53 91.20 92.53 0.00 CRITICAL VELOCITY 0.00===Q5 EQUALS BASIN INPUT=== DEPTH(FT.) 2.44 2.75 1.48 0.00 (FT/SEC) 21.589 8.938 6.779 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06144 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00492 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03318 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.133 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS)4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.607)+( 0.133)+( 0.000) = 4.739 NODE 334.10 : HGL = < 92.690>;EGL= < 99.928>;FLOWLINE= < 91.530> Vr Vr Vr Vr * Vr * Vr Vr Vr * Vr Vr Vr * Vt * Vr Vf Vf * -;f * * Vr * * Vr * * * Vr Vr * Vr Vt Vf * Vf Vr Vr Vr Vr * Vr Vr Vr Vr Vf * Vt * * Vt Vf * Vf * * Vr Vr Vr Vr Vf Vf Vr * Vr * * Vr * Vr Vf Vf * Vr * FLOW PROCESS FROM NODE UPSTREAM NODE 328.00 334.10 TO NODE 328.00 IS CODE = 1 ELEVATION = 94.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 65.34 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 41.37 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.12 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.20 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.44 Page 5 BASING.OUT DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1 197 20. 674 7. 838 2715.90 2.787 1 194 20. 753 7. 885 2725.23 5.707 1 190 20. 832 7. 933 2734.64 8.771 1 187 20. 912 7. 982 2744.11 11.993 1 184 20. 992 8. 031 2753.65 15.387 1 181 21. 073 8. 080 2763.27 18.973 1 177 21. 155 8. 131 2772.96 22.770 1 174 21. 237 8. 181 2782.73 26.803 1 171 21. 319 8. 233 2792.57 31.101 1 167 21. 403 8. 285 2802.49 35.697 1 164 21. 486 8. 337 2812.48 40.634 1. 161 21. 571 8. 391 2822.55 41.370 1. 160 21. 582 8. 398 2823.95 NODE 328.00 : HGL = < 95. 697>;EGL= < 102.338>;FLOWLINE= < 94.500> Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vf Vc Vf Vc Vc Vc Vc Vc V. - Vf Vf Vf Vf Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Vt Vr * Vf * Vf Vr * * * Vr * Vr Vr * Vr Vf Vf Vr * Vr Vr * Vr * * * Vr Vr Vr * FLOW PROCESS FROM NODE 328. 00 TO NODE 328.10 IS CODE = = 5 UPSTREAM NODE 328 .10 ELEVATION = 95.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 61.41 65.34 2.78 1.14 DIAMETER (INCHES) 36.00 48.00 18.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 90.00 95.50 94.50 97.00 97.00 CRITICAL DEPTH(FT.) 2.53 2.44 0.63 0.40 VELOCITY (FT/SEC) 20.836 20.680 3.924 3.026 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05530 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05449 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05489 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.220 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION L0SS)4-(FRICTI0N LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.988)+( 0.220)+( 0.000) = 1.207 NODE 328.10 : HGL 96.804>;EGL= < 103.545>;FLOWLINE= < 95.500> Vr * * it * * Vr Vr Vr * Vr Vt Vt Vt Vt Vt Vt Vt * Vr Vr Vr Vr * Vr -A- Vr Vr * Vr Vr Vt * Vt Vr Vr Vr Vf Vr Vr Vr * Vr * Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr * Vt Vt Vt * * Vt * Vf * * * Vt Vt Vt Vt Vf Vt FLOW PROCESS FROM NODE UPSTREAM NODE 3110.00 328.10 TO NODE 3110.00 IS CODE = 1 ELEVATION = 109.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.41 CFS PIPE PIPE LENGTH = 242.06 FEET DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.29 CRITICAL DEPTH(FT) = 2.53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.915 3.964 6.157 8.511 FLOW DEPTH VELOCITY (FT) 1.694 1.677 1.661 1.645 1.629 (FT/SEC) 14.924 15.102 15.284 15.471 15.662 SPECIFIC ENERGY(FT) 5.154 5.221 5.291 5.364 5.440 PRESSURE-i- MOMENTUM(POUNDS) 1963.25 1980.23 1997.81 2015.98 2034.79 Page 6 BASING.OUT 11.040 1.612 15.859 5.520 2054.23 13.765 1.596 16.060 5.604 2074.34 16.707 1.580 16.267 5.692 2095.13 19.893 1.564 16.480 5.783 2116.63 23.352 1.547 16.698 5.880 2138.86 27.123 1.531 16.922 5.981 2161.85 31.249 1.515 17.153 6.086 2185.62 35.784 1.499 17.389 6.197 2210.20 40.797 1.482 17.633 6.313 2235.61 46.371 1.466 17.883 6.435 2261.90 52.617 1.450 18.140 6.563 2289.08 59.678 1.434 18.405 6.697 2317.20 67.750 1.417 18.678 6.838 2346.28 77.106 1.401 18.958 6.986 2376.37 88.149 1.385 19.247 7.141 2407.50 101.499 1.369 19.545 7.304 2439.72 118.199 1.353 19.851 7.475 2473.06 140.204 1.336 20.167 7.656 2507.57 171.905 1.320 20.493 7.845 2543.30 227.391 1.304 20.829 8.045 2580.30 242.060 1.304 20.829 8.045 2580.31 NODE 3110.00 : HGL = < 111.194>;EGL= < 114.654>;FL0WLINE= < 109.500> Vt Vt Vt Vf Vf Vf Vf * Vr Vr Vr Vr * * Vr * * Vr * Vr Vr Vr Vt * * Vr Vr Vr Vr Vr * Vr Vr * Vr * * * Vr * Vr Vr * Vr * * Vr * Vr Vr Vr * * Vt Vf Vr Vr * * Vt Vt Vt Vf Vr * * Vr * * * * * Vr Vr Vr * * Vf FLOW PROCESS FROM NODE 3110.00 TO NODE 3110.10 IS CODE = 5 UPSTREAM NODE 3110.10 ELEVATION = 109.83 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 61.41 36.00 0.00 109.83 2.53 14.447 DOWNSTREAM 61.41 36.00 - 109.50 2.53 14.929 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02087 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02272 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02180 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.087 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)4-(FRICTION LOSS)-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.069)+( 0.087)+( 0.000) = 0.156 NODE 3110.10 : HGL = < 111.570>;EGL= < 114.811>;FLOWLINE= < 109.830> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********** y. yj yj y; y, y, y. J. y. y. yj yj yj y, J, yj yj yj y, yj yj y^ y. FLOW PROCESS FROM NODE 3110.10 TO NODE 3108.00 IS CODE = 1 UPSTREAM NODE 3108.00 ELEVATION = 115.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.41 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 246.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.73 CRITICAL DEPTH(FT) = 2.53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-H Page 7 CONTROL(FT) 0.000 2.458 5.075 7.866 10.848 14.039 17.460 21.138 25.101 29.386 34.033 39.094 44.629 50.717 57.452 64.961 73.406 83.010 94.083 107.082 122.713 142.160 167.642 204.147 246.000 (FT) 1.996 1.985 1.974 1.963 1.953 1.942 1.931 1.920 1.909 1.898 1.888 1.877 1.866 1.855 1.844 1.834 1.823 1.812 1.801 1.790 1.779 1.769 1.758 1.747 1.740 BASING (FT/SEC) 12.292 12.368 12.445 12.524 12.603 12.684 12.766 12.849 12.933 13.019 13.106 13.194 13.284 13.375 13.468 13.562 13.658 13.755 13.853 13.954 14.055 14.159 14.264 14.371 14.442 .OUT ENERGY(FT) 4.344 4.362 4.381 4.400 4.421 4.441 4.463 4.485 4.508 4.532 4.557 4.582 4.608 4.635 4.663 4.691 4.721 4.752 4.783 4.815 4.849 4.883 4.919 4.956 4.981 MOMENTUM(POUNDS) 1735.85 1741.53 1747.37 1753.37 1759.53 1765.86 1772.35 1779.01 1785.85 1792.86 1800.05 1807.43 1814.98 1822.73 1830.67 1838.80 1847.13 1855.66 1864.40 1873.35 1882.51 1891.89 1901.48 1911.31 1917.90 NODE 3108.00 : HGL = < 117.096>;EGL= < 119.444>;FLOWLINE= < 115.100> * * * * * * * * * * * * Vt * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ***** * ^ y, y, y, ... y, y^ y_. FLOW PROCESS FROM NODE 3108.00 TO NODE 3108.10 IS CODE = 5 UPSTREAM NODE 3108.10 ELEVATION = 115.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 61.41 61.41 0.00 0.00 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 36.00 36.00 0.00 0.00 0.00 0.00 0.00 115.43 115.10 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.53 2.53 0.00 0.00 VELOCITY (FT/SEC) 11.095 12.296 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01085 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01388 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01236 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.049 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-I-(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.041)+( 0.049)+( 0.000) = 0.090 NODE 3108.10 : HGL = < 117.622>;EGL= < 119.534>;FLOWLINE= < 115.430> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****** * * * y, * * yj y, * * * * * * * * * **************** * * * * * * * * * FLOW PROCESS FROM NODE 3108.10 TO NODE 3048.00 IS CODE = 1 UPSTREAM NODE 3048.00 ELEVATION = 118.12 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.41 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 244.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.18 CRITICAL DEPTH(FT) Page 8 2.53 BASING.OUT UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.53 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .526 9.665 3 .977 1611.73 0.064 2 .512 9.712 3 .978 1611.80 0.263 2 .498 9.759 3 .978 1612.02 0.606 2 .484 9.808 3 .979 1612.39 1.105 2 .471 9.858 3 .980 1612.90 1.775 2 .457 9.909 3 .982 1613.56 2.631 2 .443 9.961 3 .984 1614.38 3.692 2 .429 10.013 3 987 1615.35 4.979 2 .415 10.067 3 990 1616.48 6.520 2 • 401 10.123 3 993 1617.76 8.345 2 387 10.179 3 997 1619.20 10.492 2 373 10.236 4 001 1620.81 13.007 2 359 10.294 4 006 1622.57 15.949 2 346 10.354 4 Oil 1624.51 19.390 2 332 10.415 4 017 1626.61 23.424 2 318 10.476 4 023 1628.87 28.174 2 304 10.539 4 030 1631.32 33.809 2 290 10.604 4 037 1633.93 40.564 2 276 10.669 4. 045 1636.73 48.784 2 262 10.736 4. 053 1639.70 59.004 2 248 10.804 4. 062 1642.86 72.120 2. 234 10.873 4. 071 1646.20 89.813 2. 221 10.944 4. 081 1649.73 115.861 2. 207 11.016 4. 092 1653.45 162.382 2. 193 11.089 4. 103 1657.37 244.300 2. 192 11.091 4. 104 1657.48 NODE 3048.00 : HGL = < 120.646>;EGL= < 122.097>; FLOWLINE= < 118.120> t Vt Vf Vr Vr Vr Vr Vr * Vr Vr Vr * Vr Vr * Vr Vr Vr Vr Vr * Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vt * * Vr Vr * Vr Vt * Vt * Vt Vt * * Vt * * Vt * Vt Vt * Vt Vf * Vr * * * * Vf Vf Vt Vt Vt Vt Vr Vr * Vf Vf FLOW PROCESS FROM NODE 3048.00 TO NODE 3048.10 IS CODE = 5 UPSTREAM NODE 3048.10 ELEVATION = 118.45 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 13.34 61.41 26.42 21.69 0.00= DIAMETER (INCHES) 36.00 36.00 36.00 36.00 ANGLE (DEGREES) 90.00 0.00 90.00 FLOWLINE ELEVATION 118.45 118.12 118.45 118.45 ==Q5 EQUALS BASIN INPUT== CRITICAL DEPTH(FT.) 1.16 2.53 1.66 1.50 VELOCITY (FT/SEC) 1.887 9.668 3.738 3.069 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00040 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00810 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00425 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-I-(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.824)+( 0.017)+( 0.000) = 0.841 NODE 3048.10 : HGL = < 122.883>;EGL= < 122.938>;FLOWLINE= < 118.450> Vr * Vf Vr Vr Vr * Vr * Vf Vf Vr ****** * Vf Vt Vt * * Vf * Vr * Vr * Vr Vf * Vt * * Vt * Vt Vt * Vf Vr * * Vr * Vr Vr * * Vr Vr * * * * Vt * Vr * * * Vf * Vt * * Vt Vf * * * * Vt Vt Vt Vt FLOW PROCESS FROM NODE 3048.10 TO NODE 3100.00 IS CODE = 1 UPSTREAM NODE 3100.00 ELEVATION = 120.00 (FLOW SEALS IN REACH) Page 9 BASING.OUT CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.34 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 199.78 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.43 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 194.751 PRESSURE HEAD(FT) 4.433 3.000 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 1.887 4.488 1.887 3.055 PRESSURE+ MOMENTUM(POUNDS) 1342.51 710.41 NORMAL DEPTH(FT) = 0.97 CRITICAL DEPTH(FT) 1.16 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 194.751 199.780 FLOW DEPTH (FT) 3.000 2.962 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 1.887 3.055 1.891 3.018 PRESSURE+ MOMENTUM(POUNDS) 710.41 693.99 NODE 3100.00 : HGL = < 122.962>;EGL= < 123.018>;FLOWLINE= < 120.000> Vt Vt Vf * * Vt Vr Vr Vr Vr Vr Vr * * Vt Vt Vt Vt Vt ***** Vt Vt Vt Vt Vt * Vf Vt * Vt Vf Vr Vr Vr Vr * Vr Vr Vr Vr Vr * Vr Vr * * Vr * Vt Vt * Vf Vt Vt * Vt * Vf Vt Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr FLOW PROCESS FROM NODE 3100.00 TO NODE 3100.10 IS CODE = 5 UPSTREAM NODE 3100.10 ELEVATION = 120.00 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.45 18.00 74.00 120.00 1.19 5.348 DOWNSTREAM 13.34 36.00 - 120.00 1.16 1.892 LATERAL #1 3.89 18.00 90.00 120.50 0.75 2.201 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00809 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00037 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00423 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.476)+( 0.017)+( 0.000) = 0.493 NODE 3100.10 : HGL = < 123.067>;EGL= < 123.511>;FLOWLINE= < 120.000> * * * Vr Vr Vr Vr * Vr Vr Vf * * * Vf Vf Vr * Vr * * Vr Vr * Vr Vr * Vf Vf * Vf * * * Vr Vr Vr Vr * Vf * Vf * * Vr * Vt * Vf * * * * Vt Vt Vf * * * Vt * * Vf * * * * * * Vr * * * * Vt Vt * * FLOW PROCESS FROM NODE 3100.10 TO NODE 3106.00 IS CODE = 1 UPSTREAM NODE 3106.00 ELEVATION = 120.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.45 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.55 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.45)/( 105.044))**2 = 0.00809 HF=L*SF = ( 36.55)*(0.00809) = 0.296 NODE 3106.00 : HGL = < 123.363>;EGL= < 123.807>;FLOWLINE= < 120.500> Vf * Vt Vt Vt Vt * * Vt Vt Vr Vr * Vr Vt * Vt Vt Vt Vt * Vt * * Vt * * Vf Vf * * Vf * * Vr Vf * Vr * Vr * Vr Vr * Vr * * * * * Vr Vr * * * Vf * Vf * * Vt Vf Vf * * * Vt Vt Vf Vf Vr * * Vf * Vr Vr Vr Page 10 BASING.OUT UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3106.00 FLOWLINE ELEVATION = 120.50 ASSUMED UPSTREAM CONTROL HGL = 121.69 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 11 WEL3098.OUT ************************************ **y,*^^y,y,yj^y^yjyjy.y,y,yjy^y^y^y^y^y^y^^^^^^^^^^,^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - WELLSPRING STREET STORM DRAIN LATERAL AT NODE 3098 * * B MAP DESIGN * **************************** *********y,y,y^y,y,y,y,y..y,y^y,y^y^y^^y^y^y,y^y^^^^^^,^^,^^^^^,^^.^^^.^,^^,^^^^,^^^^^^^ FILE NAME: WEL3098.DAT TIME/DATE OF STUDY: 08:55 06/02/2014 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ************ * ******** * * * * * * * * y, y, y, y, y, y, y^ y, y, y. y, y, y^ y, y^ y, y^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ n^;"^!^^^^ PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 3100.10- 3.07* 284.80 0.41 136 23 } FRICTION _3098^00-^ 0.87*Dc 73.01 0.87*Dc 73.01 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * * Vf * * * * * * * * * * * * * * * * * * * i, y, y, y, y, y, y, y, y, y, y, y. y, y, y, y, y, y, y^ y, y, y^ y, y, y, ^ ..^ ^ ^ ^.^ ^. ^ ^ ^, ^ ,^ ^ ,^ ,^ ^ ^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3100.10 FLOWLINE ELEVATION = 120.00 PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 123.070 FEET NODE 3100.10 : HGL = < 123.070>;EGL= < 123.201>;FL0WLINE= < 12o"oOO > * * * * * * * * * * * * * * ******** * y, y, y, y, y. y, y, y, y, y, y, y, y, y, y, y^ y^ y, y. y^ y. y, y^ y, y, y, y, y, y, y^ y^ y. y^ y, y. y, y. y. y^ ^. ^, ^ ^ FLOW PROCESS FROM NODE 3100.10 TO NODE 3098.00 IS CODE = 1 _UPSTREAM NODE 3098.00 ELEVATION = 122.08 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.14 CFS PIPE DIAMETER = 18.00 INCHES __^5!L!:!!^^™_" ^"•'•^ ^^^'^ MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 37o7 ========== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ===== DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0-000 3.070 2.909 3.201 284.80 Page 1 2.402 WEL3098.OUT 1.500 2.909 1.631 111.67 0.87 NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 2 .402 1 .500 2 .908 1.631 111.67 2 .438 1 .475 2 .918 1.607 109.02 2 .474 1 .450 2 .938 1.584 106.46 2 .509 1 .425 2 .963 1.561 103.99 2 .543 1 .400 2 .994 1.539 101.59 2 .576 1 .375 3 .029 1.517 99.27 2 .609 1 .349 3 .068 1.496 97.02 2 .641 1 .324 3 .112 1.475 94.85 2 .672 1 .299 3 .160 1.454 92.76 2 .703 1 274 3 211 1.434 90.75 2 .732 1 249 3 268 1.415 88.83 2 .761 1 224 3 328 1.396 86.99 2 .789 1 199 3 393 1.378 85.25 2 .816 1 174 3 463 1.360 83.60 2 842 1 149 3 538 1.343 82.05 2 867 1 124 3 619 1.327 80.60 2 890 1 099 3 705 1.312 79.26 2 912 1 073 3 797 1.297 78.04 2 933 1 048 3 896 1.284 76.93 2 951 1 023 4. 001 1.272 75.94 2 968 0. 998 4. 114 1.261 75.08 2 982 0. 973 4. 235 1.252 74.36 2 994 0. 948 4. 365 1.244 73.79 3 003 0. 923 4. 505 1.238 73.36 3 009 0. 898 4. 655 1.234 73.10 3 Oil 0. 873 4. 817 1.233 73.01 3 170 0. 873 4. 817 1.233 73.01 NODE 3098.00 : HGL = < 122.953>;EGL= < 123.313>;FLOWLINE= < 122.080> * * * Vr * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Vt * ******************** * y, * ******** * * * * * * * * * * y, UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3098.00 FLOWLINE ELEVATION = 122.08 ASSUMED UPSTREAM CONTROL HGL = 122.95 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ROB3114.0UT * Vr Vr Vr * * Vr * * * * Vr Vr Vt * * * * Vt * * * * * * * * Vt * * * * * * Vt Vt Vr * * Vt * * Vt * Vr * Vr * * * Vt Vt * * * * Vr * * * * * * * Vr * Vr Vr * * * * Vr * * Vt Vt Vf PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS VrVrVr*VrVrVr***VtVf *VtVtVtVt**Vt*VtVf*Vf * DESCRIPTION OF STUDY *************VtVtVf VrVrVrVr**VrVr*Vr * RANCHO COSTERA * * BASIN G - ROBERTSON ROAD STORM DRAIN LATERAL AT NODE 3114 * * B MAP DESIGN * Vt Vt Vr Vf * * Vr Vr * Vr Vr Vr * Vr * * Vr Vr * Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vt * Vt Vt Vt Vt Vt Vt Vt Vr Vr * Vr Vr Vr Vr Vr Vr * Vr * Vt Vr * Vr Vr * * * * * Vr * Vf Vt * * Vr * * * Vr Vr FILE NAME: R0B3114.DAT TIME/DATE OF STUDY: 15:27 05/30/2014 Vr Vr Vr Vr * * * Vr Vr * Vr Vf Vf Vr Vr * * Vr Vr Vf * Vf Vr Vr * Vr Vr Vr * Vr Vr Vr Vr * Vr * Vr * * * * Vr Vt Vr Vr * Vr Vt * * * Vt Vt * * * Vf Vr * Vr Vr * * * * Vr * Vt Vt Vt Vt Vr Vr Vf * Vr * Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 328.10- 0.63 32.87 0.41* 42.03 } FRICTION 3114.00- 0.63*Dc 32.87 0.63*Dc 32.87 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Vf Vc Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vc Vf Vf Vf Vc Vf Vf Vc Vc Vr Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf it Vf Vf Vf Vf Vf Vf Vf DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 328.10 FLOWLINE ELEVATION = 97.00 PIPE FLOW = 2.78 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 96.800 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.20 FT.) IS LESS THAN CRITICAL DEPTH( 0.63 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 328.10 : HGL = < 97.413>;EGL= < 98.179>;FLOWLINE= < 97.000> * * Vr Vt * Vt Vt * Vt Vt Vr * Vr Vr Vr Vr * Vr * * * * Vr Vr Vr * Vr * * Vr * * Vt * Vt * Vr * * * Vr * * Vr * Vr * * * * Vr * Vr * * Vr Vr * * Vr Vr Vr * * * * * Vr * Vr Vr Vr * Vr Vr Vr * Vr FLOW PROCESS FROM NODE 328.10 TO NODE 3114.00 IS CODE = 1 UPSTREAM NODE 3114.00 ELEVATION = 97.37 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.70 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 Page 1 ROB3114.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.633 3.923 0.872 32.87 0.006 0.619 4.037 0.872 32.89 0.025 0.606 4.158 0.874 32.97 0.060 0.592 4.286 0.877 33.10 0.111 0.578 4.422 0.882 33.29 0.181 0.565 4.565 0.889 33.54 0.272 0.551 4.718 0.897 33.86 0.389 0.538 4.880 0.908 34.24 0.534 0.524 5.053 0.921 34.70 0.712 0.511 5.237 0.937 35.23 0.929 0.497 5.434 0.956 35.85 1.190 0.483 5.645 0.979 36.56 1.505 0.470 5.871 1.005 37.37 1.884 0.456 6.114 1.037 38.29 2.340 0.443 6.376 1.074 39.32 2.891 0.429 6.658 1.118 40.48 3.558 0.416 6.964 1.169 41.79 3.700 0.413 7.020 1.179 42.03 NODE 3114.00 : HGL = < 98.003>;EGL= < 98.242>;FLOWLINE= < 97.370> Vr Vr Vr Vr * * * * Vr Vr * Vr Vr * * Vf * Vt Vf Vt Vt * * * Vf Vr Vr * * Vr Vr Vr * * Vr * Vr Vf Vt Vr Vr * * Vf * Vt * Vt Vt Vf * * * * * Vf Vt Vr Vr * * * * Vt * Vr * Vr Vr Vr Vr Vf Vf Vt * Vf Vt Vt UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3114.00 FLOWLINE ELEVATION = 97.37 ASSUMED UPSTREAM CONTROL HGL = 98.00 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ROB3120.OUT *****************************************************y,y,y,y,y;yjy,^y,y,yjy,yjy,yjyjyjy,yjyjyjyjy.yjy PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - ROBERTSON ROAD STORM DRAIN LATERAL AT NODE 3120 * * B MAP DESIGN * Vt Vt * * * Vt * Vf * Vf Vr Vr Vt Vr * Vr Vr Vr Vr * Vr * Vr Vt Vf Vt * Vt Vt Vf * Vr Vt * * * * Vt Vt Vf * * Vr Vr Vr Vr Vr Vr Vr * Vr * * * * Vr Vf * * * * Vf * * Vt Vt Vt Vf * Vf * * Vt Vf FILE NAME: ROB3120.DAT TIME/DATE OF STUDY: 09:04 06/02/2014 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, yj y, y, * * * y^ y, ^ y, y, y, y, y, y, ^ y, y, y, ^ y^ y, y, y, y, y, GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 328.10- 0.60 28.83 0.35* 41.66 } FRICTION 3120.00- 0.60*Dc 28.83 0.60*Dc 28.83 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y^ y. y, y, y, y^ y^ y. y. y. y, y^ y^ y, y, y^ y^ y^ y^ y^ y^ y^ y^ y^ ^ ^ ^ ^. ^ ^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 328.10 FLOWLINE ELEVATION = 97.00 PIPE FLOW = 2.51 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 96.800 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.20 FT ) IS LESS THAN CRITICAL DEPTH( 0.60 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 328.10 : HGL = < 97.351>;EGL= < 98.341>;FLOWLINE= < 97.000> FLOW PROCESS FROM NODE 328.10 TO NODE 3120.00 IS CODE = 1 UPSTREAM NODE 3120.00 ELEVATION = 98.47 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.51 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 32.82 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.60 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60 Page 1 ROB3120.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNC 0.000 0.600 3 .802 0 .825 28.83 0.009 0.590 3 .891 0 .825 28.84 0.037 0.579 3 .985 0 .826 28.88 0.087 0.569 4 .084 0 .828 28.96 0.160 0.558 4 .186 0 .831 29.07 0.260 0.548 4 .294 0 .835 29.21 0.391 0.538 4 .407 0 .839 29.38 0.555 0.527 4 526 0 845 29.59 0.757 0.517 4 650 0 853 29.84 1.004 0.507 4 781 0 862 30.14 1.300 0.496 4 919 0 872 30.47 1.656 0.486 5 064 0 884 30.85 2.079 0.475 5 217 0 898 31.28 2.583 0.465 5 378 0 914 31.76 3.182 0.455 5 549 0 933 32.29 3.898 0.444 5 730 0 954 32.88 4.755 0.434 5. 922 0. 979 33.54 5.790 0.423 6. 125 1. 006 34.26 7.053 0.413 6. 342 1. 038 35.05 8.617 0.403 6. 572 1. 074 35.92 10.598 0.392 6. 817 1. 114 36.87 13.186 0.382 7. 079 1. 161 37.91 16.742 0.371 7. 360 1. 213 39.05 22.074 0.361 7. 661 1. 273 40.30 31.778 0.351 7. 984 1. 341 41.66 32.820 0.351 7. 983 1. 341 41.66 NODE 3120.00 : HGL = < 99. 070>;EGL= < 99.295>;FLOWLINE= < 98.470> Vr Vr * * Vr Vt Vt Vr Vr Vr Vr Vr Vr Vr Vf Vf Vt Vt Vf Vt Vt Vt * Vt Vf Vr Vr Vr Vr Vr Vr Vr Vf Vt Vt Vt * Vt * * Vt Vr Vr Vr * Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr * Vr * Vr Vf Vf Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vt Vt Vf UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3120.00 FLOWLINE ELEVATION = 98.47 ASSUMED UPSTREAM CONTROL HGL = 99.07 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WEST350.OUT * Vf * Vf * Vr * * * * * Vr Vt Vr Vr * * * * * * * * Vr Vf * * Vr * * Vr * * Vr Vr * * Vr * * * * * * * -* Vr * * * * * Vt * * * * * * * * * * * Vt Vt * * * Vt * Vt * * * Vt * Vt PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY *******************vt****** * RANCHO COSTERA * BASIN G - WEST RANCH STORM DRAIN LATERAL AT NODE 350 * * B MAP DESIGN * * * Vt Vt * * Vr Vr * * * Vt * Vf * Vt * Vt Vt Vf Vf * * Vt Vt * Vt Vf * Vf Vf Vr * Vr * * Vr * * Vr * * Vr Vt * * Vt Vt * * -k * * Vt * * Vt Vt * Vf Vr * * Vf * Vt * Vt * Vt * Vt Vf * FILE NAME: WEST350.DAT TIME/DATE OF STUDY: 09:07 06/02/2014 Vr Vr * * * Vt * Vr * Vr * * * Vr Vr Vr Vr Vr * * Vr Vr Vr * Vr Vr Vr * Vr * Vr Vr Vr Vr Vr * * * •* Vr * * * * Vf Vt Vt Vt Vt Vt Vf * Vr * Vr * * Vf * Vf Vt Vt * * Vr * Vr Vr Vr * * Vr * * Vr * Vt * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 344.10- 1.22 180.36 0.59* 312.29 } FRICTION 350.00- 1.22*Dc 180.36 1.22*Dc 180.36 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr i! * Vr Vr Vt Vt * Vt Vt Vt Vr * * Vf Vt Vt Vt * Vt Vr Vt Vf * Vt Vr * Vr * Vt Vt * Vf * Vt * * Vt * Vt Vr Vt Vt Vt Vf Vr Vr * Vf Vr Vr Vr Vr * * * * Vr Vr Vt Vr Vt Vt Vt * Vt Vt * Vt * Vt Vf Vt Vr Vr Vr Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 344,10 FLOWLINE ELEVATION = 83.33 PIPE FLOW = 10,04 CFS PIPE DIAMETER = 18,00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 82.420 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.91 FT.) IS LESS THAN CRITICAL DEPTH( 1.22 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 344.10 : HGL = < 83.920>;EGL= < 87.670>;FLOWLINE= < 83.330> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *********** Vr ***** * * * * * * * * * * * * ******** * * * * FLOW PROCESS FROM NODE 344.10 TO NODE 350.00 IS CODE = 1 UPSTREAM NODE 350.00 ELEVATION = 94.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.04 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 106.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.57 CRITICAL DEPTH(FT) = 1.22 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 Page 1 WEST350.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNC 0.000 1.221 6 .516 1.881 180 .36 0.014 1.195 6 .651 1.882 180 .48 0.059 1.168 6 .795 1.886 180 .85 0.137 1.142 6 .951 1.893 181 .50 0.253 1.116 7 .118 1.903 182 .42 0.412 1.090 7 .298 1.917 183 .63 0.617 1.064 7 .491 1.935 185 .16 0.877 1.037 7 698 1.958 187 03 1.199 1.011 7 920 1.986 189 26 1.592 0.985 8 159 2.019 191 86 2.068 0.959 8 416 2.059 194 88 2.641 0.932 8 693 2.107 198 35 3.328 0.906 8 991 2.162 202 30 4.152 0.880 9 314 2.228 206 77 5.141 0.854 9 662 2.304 211 82 6.331 0.828 10. 039 2.394 217 50 7.771 0.801 10. 449 2.498 223. 86 9.529 0.775 10. 894 2.619 230. 99 11.698 0.749 11. 380 2.761 238. 97 14.418 0.723 11. 911 2.927 247. 90 17.907 0.696 12. 493 3.122 257. 88 22.529 0.670 13. 134 3.350 269. 06 28.972 0.644 13. 840 3.620 281. 60 38.782 0.618 14. 623 3.940 295. 69 56.930 0.592 15. 495 4.322 311. 55 106.560 0.590 15. 535 4.340 312. 29 NODE 350.00 : HGL = < 95. 221>;EGL= < 95.881>;FLOWLINE= < 94.000> Vr Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vt Vt Vt * Vt Vt Vt * Vt Vf Vf Vt Vt Vt Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf * Vf Vr Vr * Vt * Vr Vr Vr * Vf Vf * * * * * Vf Vr * Vr Vr * Vt Vt Vt Vt * Vt Vt Vf Vt Vr Vr * * Vr V UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 350.00 FLOWLINE ELEVATION = 94.00 ASSUMED UPSTREAM CONTROL HGL = 95.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WEST3166,0UT Vr **************** Vr ******************************* Vt ********************** Vt * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver, 19,0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN G - WEST RANCH STREET STORM DRAIN LATERAL AT NODE 3166 * * B MAP DESIGN * Vr * Vr * * * Vt * * * Vt Vt * * Vt Vt Vt * * Vr * * * Vr * Vr Vr * Vr Vr * * Vr * Vf Vf * Vt * Vf Vr Vr Vr Vr Vr Vr * * * Vr Vr * Vr * * * * * * Vf Vf Vr Vr * * * * * * Vr * * * * FILE NAME: WEST3166.DAT TIME/DATE OF STUDY: 08:07 06/02/2014 Vr * Vt Vr Vr Vr * Vr * Vr * Vr Vr Vr Vr * * * Vr * Vr Vr Vr Vr Vr Vr * Vr * Vr Vr * Vr Vr Vr * * Vr * Vr * Vf Vt Vt Vt Vt Vt Vr * * * * Vr Vr * * Vt * * Vr Vr * * Vr * Vr * Vr Vr * Vr * Vr Vr Vr Vr * Vt GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(:FT) MOMENTUM (POUNDS) 3160.10- 2.65* 248.60 0.71 99 05 } FRICTION 3166.00- 2.44* 224.90 0.94 Dc 88.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * **************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, y^ y, yj y. * * * * * * * * y. y, y^ y, y, y. y^ y, y^ y, * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3160.10 FLOWLINE ELEVATION = 77.30 PIPE FLOW = 5.97 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 79.950 FEET NODE 3160.10 : HGL = < 79.950>;EGL= < 80.127>;FLOWLINE= < 77.300> * * * ****** * * * * * * * ****** * ****** * * * ****** * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y. y^ y^ y, y, y^ y^ y^ y, y^ y^ y^ FLOW PROCESS FROM NODE 3160.10 TO NODE 3166.00 IS CODE = 1 UPSTREAM NODE 3166.00 ELEVATION = 77.53 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.97 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.67 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.97)/( 105.047))**2 = 0.00323 HF=L*SF = ( 4,67)*(0,00323) = 0.015 NODE 3166.00 : HGL = < 79.965>;EGL= < 80.142>;FL0WLINE= < 77.530> **********************************************y,y,y,y,yfy,y„.„.,yjyjy,y,y^y^y,y^yjyjyjy.y^y^y^y^y.y^y^^^y^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3166.00 FLOWLINE ELEVATION = 77.53 Page 1 WEST3166.0UT ASSUMED UPSTREAM CONTROL HGL = 78.47 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WEST3172.0UT * Vt * Vt * * Vt * * * Vt * Vr Vr * * Vr Vr Vr * Vr Vr * Vr * Vf Vf * * * * * Vt * * * * Vr * * * * * * * * * Vr * * * * * * * * * * * * * * * * * * * * * Vr Vr Vt * * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS *VrVrVr*****VrVrVr*Vr*VrVt*Vf ******Vf DESCRIPTION OF STUDY ******************* Vf *** Vt * Vf * RANCHO COSTERA * * BASIN G - WEST RANCH STREET STORM DRAIN LATERAL AT NODE 3172 * * B MAP DESIGN * * * Vt * * Vt * Vf Vt Vt * * Vr * Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr * Vr Vr * Vr * * * Vr Vt Vf Vf Vf Vf Vt Vt Vt Vt * Vf Vf Vr Vr Vr * Vr Vf * Vt * * Vt Vt Vf Vf Vf Vr Vr Vr Vr Vr * Vr Vf Vf * * FILE NAME: WEST3172.DAT TIME/DATE OF STUDY: 08:19 06/02/2014 * Vt Vt * * * * Vf Vf Vf Vf Vr Vr Vr Vr * Vr * Vr Vf Vf Vf Vr Vr * Vr Vr * Vr Vr Vr Vr * Vr * Vf Vt Vf * * * * * Vr Vf * Vt Vt * Vt Vf Vf Vf * * Vr * Vr * Vr Vr Vr Vr * Vr Vr * Vf Vr Vr * Vr * Vr Vr Vf Vf Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3160.10- 2.65* 240.90 0.73 81.52 } FRICTION 3172.00- 2.03* 172.06 0.89 Dc 76.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vt Vf ****** Vr Vr Vt Vt * Vr Vr Vr * Vr * Vr Vt * Vr Vr Vr Vr * * * Vr Vr * Vr * * * * * •* * * Vr Vr Vr * -* Vr Vr Vr Vr * Vt Vr Vr Vr * Vr -A- Vt Vr Vr Vr * Vt * Vf * Vr * * Vr Vr Vr * Vr Vr * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3160.10 FLOWLINE ELEVATION = 77.30 PIPE FLOW = 5.35 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 79.950 FEET NODE 3160.10 : HGL = < 79.950>;EGL= < 80.092>;FL0WLINE= < 77.300> Vr * Vr Vr * * * * Vr Vr * * Vr Vf * * Vt * Vt Vt Vt * * Vr * Vr * Vr * * * * Vt * * Vr * Vr Vr * * * Vf * * Vt * * * * Vt Vt Vt * Vf * Vr Vr * * Vr * * * * * * Vt * Vt * Vt * * * * * Vf FLOW PROCESS FROM NODE 3160.10 TO NODE 3172.00 IS CODE = 1 UPSTREAM NODE 3172.00 ELEVATION = 78.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 67.74 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.35)/( 105.045))**2 = 0.00259 HF=L*SF = ( 67.74)*(0.00259) = 0.176 NODE 3172.00 : HGL = < 80.126>;EGL= < 80.268>;FLOWLINE= < 78.100> Vt * Vt * Vt * * Vt * Vt * * Vt Vt Vt * Vr * Vr Vr * Vr Vr Vr * Vr * * Vr Vr * Vr * * Vf * * * Vt * * Vt * Vt * * * Vt Vt Vf * Vr * * * * * * * * Vr * * * * Vr Vr * * Vt * * * * * * Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3172.00 FLOWLINE ELEVATION = 78.10 Page 1 WEST3172.0UT ASSUMED UPSTREAM CONTROL HGL = 78.99 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 BASING2.0UT Vr Vr Vr * Vt * Vr * Vr * * * Vt Vt Vt Vt * Vt * * Vt * * * Vt Vt * * Vf * * Vf Vr * * * * Vr Vr * * * Vr Vr Vf * * * Vt * Vt * Vf * * * * Vr Vr * * Vr * * * Vt Vt * * * * Vt Vt Vf Vt * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - MAIN SD LINE UP ROBERTSON RD. N. ON GLASGOW * * B MAP DESIGN Vt * Vr Vr Vr Vr Vt Vt * * Vt Vr * Vr * * * Vt * Vf * Vr Vr Vr * Vr Vr * Vr Vt * * Vt Vt Vt Vt Vt Vt * Vf * * * Vt Vt * * * * * * * * * * * * Vt Vt * Vf Vt * Vf * Vf Vr Vr Vr Vr Vr Vr * Vr FILE NAME: BASING2.DAT TIME/DATE OF STUDY: 15:55 05/30/2014 Vr Vr * Vr * Vr Vr * Vr Vr * Vr Vf Vf Vr Vr * Vr Vr Vr Vf Vf Vr Vr * * Vr * Vr * * * Vr Vr Vr * Vr Vr * Vr * * * Vr Vr Vr * Vr * Vr * Vt Vf * Vt * * Vt Vt Vf ***** Vr Vr Vr * -* Vr * Vr * Vr Vr Vr Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 3048.10- } 3038.00- } 3038.10- } 3030.00- } 3030.10- } 3022.00- } 3022.10- } 3014.00- } 3014.10- } 3012.10- } 3012.20- } 3006.00- } 3006.10- } 3004.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION DOWNSTREAM RUN FLOW PRESSURE+ 4 .03* 1307 .30 0 .92 780 .09 } HYDRAULIC JUMP 1 .66 DC 515 .12 0 .98* 724 .29 1 .59 DC 464 .29 0 .87* 712 .27 1 .59*Dc 464 29 1 .59*Dc 464 .29 1 95 521 71 1 24* 578 98 1 71*DC 506 54 1 71* DC 506 54 2 21 455 06 1 04* 462 88 1 56*Dc 376 60 1 56*Dc 376 60 2 14* 323. 22 0 73 320 47 } HYDRAULIC JUMP 1. 28*DC 221. 57 1. 28*Dc 221. 57 1. 79* 173. 29 0. 48 97. 34 } HYDRAULIC JUMP 0. 80*DC 69. 14 0. 80*Dc 69. 14 0. 93 71. 56 0. 54* 85. 66 0. 80*Dc 69. 14 0. 80*Dc 69. 14 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. Page 1 BASING2.0UT JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * Vr * * * * Vr * Vt Vt * Vt * Vt * Vt * * * * Vr * * * Vt * Vr Vt Vf * * * Vr * * Vr * Vr Vf * Vf Vt * Vt Vt * * * Vr * Vr * * Vr * * * * * Vt Vt * Vf * * * Vt * * * Vt * Vt * Vt * * Vt DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3048.10 FLOWLINE ELEVATION = 118.45 PIPE FLOW = 26.42 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 122.480 FEET NODE 3048.10 : HGL = < 122.480>;EGL= < 122.697>;FLOWLINE= < 118.450> Vt Vt * Vt * * * * Vt Vt * Vt Vt Vt * * * * Vt Vr * * * * * Vf * Vf Vr * * Vr * Vr Vr Vr Vr Vr Vr * Vr Vf * * * * Vf * * * Vt Vf Vf Vf * * * * •* Vt * * * Vt Vf * Vf * * * * * Vt Vf Vf * * * FLOW PROCESS FROM NODE 3048.10 TO NODE 3038.00 IS CODE = 1 UPSTREAM NODE 3038.00 ELEVATION = 120.56 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 26.42 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 48.19 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.88 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 1.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0.981 13 .149 3.667 724 .29 1 .793 0.977 13 .220 3.693 727 .47 3 .678 0.973 13 .292 3.718 730 .69 5 .663 0.969 13 365 3.745 733 95 7 .757 0.965 13 439 3.772 737 24 9 .972 0.962 13 513 3.799 740 58 12 .319 0.958 13 588 3.827 743 96 14 .812 0.954 13 664 3.855 747 38 17 .470 0.950 13 741 3.884 750 84 20 311 0.946 13 818 3.913 754 34 23 360 0.942 13 897 3.943 757 89 26 646 0.938 13 976 3.973 761 48 30 203 0.935 14 055 4.004 765 11 34 075 0.931 14 136 4.036 768 79 38 318 0.927 14 218 4.068 772 52 43 002 0.923 14. 300 4,100 776. 29 48 190 0.919 14. 383 4,133 780. 09 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 4.03 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4.030 3.738 4.247 1307.30 24.398 3.000 3.738 3.217 852.98 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 24.398 FLOW DEPTH (FT) 3.000 VELOCITY (FT/SEC) 3.737 Page SPECIFIC ENERGY(FT) 3.217 PRESSUREH- MOMENTUM(POUNDS) 852.98 BASING2.OUT 25.625 2.946 3.752 3.165 830.16 26.813 2.893 3.779 3.115 808.12 27.975 2.839 3.816 3.065 786.70 29.117 2.786 3.859 3.017 765.90 30.238 2.732 3.909 2.969 745.71 31.340 2.678 3.965 2.923 726.15 32.422 2.625 4.027 2.877 707.23 33.484 2.571 4.096 2.832 688.98 34.525 2.518 4.170 2.788 671.43 35.542 2.464 4.251 2.745 654.59 36.535 2.410 4.339 2.703 638.52 37.501 2.357 4.434 2.662 623.22 38.438 2.303 4.535 2.623 608.74 39.343 2.250 4.645 2.585 595.11 40.211 2.196 4.763 2.549 582.38 41.040 2.142 4.890 2.514 570.57 41.823 2.089 5.027 2.481 559.74 42.555 2.035 5.173 2.451 549.93 43.229 1.982 5.331 2.423 541.20 43.837 1.928 5.501 2.398 533.60 44.369 1.874 5.685 2.377 527.20 44.812 1.821 5.883 2.359 522.06 45.154 1.767 6.097 2.345 518.28 45.375 1.714 6.329 2.336 515.93 45.454 1.660 6.580 2.333 515.12 48.190 1.660 6.580 2.333 515.12 PRESSURE4-M0MENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 29.90 FEET UPSTREAM OF DEPTH = 2.748 FEET. UPSTREAM CONJUGATE DEPTH NODE 3048.10 I = 0.949 FEET I NODE 3038.00 : HGL = < 121.541>;EGL= < 124.227>;FLOWLINE= < 120.560> Vt Vt * Vt Vt Vf Vr Vr Vr * * Vr Vr Vr Vr Vr Vr * Vt Vt Vt Vt Vt Vt Vt Vt Vt * Vt Vt * Vt Vt Vt Vf Vr Vt Vt Vt Vt Vt Vt Vt it icit it ic ic Vr Vt * Vt Vr * Vr * Vr Vf Vr Vr * * Vt Vt * Vt Vt Vt Vf Vf Vr Vr Vr Vt Vf Vr Vf FLOW PROCESS FROM NODE 3038.00 TO NODE 3038.10 IS CODE = 5 UPSTREAM NODE 3038.10 ELEVATION = 120.89 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 24.40 26.42 2.02 0.00 DIAMETER (INCHES) 36.00 36.00 18.00 0.00 ANGLE (DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 120.89 120.56 122.37 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.59 1.66 0.54 0.00 VELOCITY (FT/SEC) 14.250 13.153 3.563 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03910 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02938 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03424 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.137 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS)-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.553)+( 0.137)+( 0.000) = 0.690 NODE 3038.10 : HGL = < 121.764>;EGL= < 124.917>;FLOWLINE= < 120.890> ********* * * Vf * Vt * Vf * * * * Vf * Vr ******* * * * * Vr * ************ Vt ******** * * * ********** * Vf * Vf * * * * FLOW PROCESS FROM NODE 3038.10 TO NODE 3030.00 IS CODE = 1 UPSTREAM NODE 3030.00 ELEVATION = 132.46 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 261.50 FEET MANNING'S N = 0.01300 Page 3 BASING2.0UT NORMAL DEPTH(FT) 0.85 CRITICAL DEPTH(FT) 1.59 ==================:= ======z=====:==: ========== ================== =================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.592 6.404 2.229 464.29 0.029 1.562 6.558 2.230 464.56 0.118 1.532 6.719 2.233 465.36 0.273 1.502 6.889 2.240 466.72 0.503 1.472 7.067 2.248 468.66 0.816 1.443 7.255 2.260 471.21 1.223 1.413 7.453 2.276 474.40 1.737 1.383 7.662 2.295 478.27 2.373 1.353 7.882 2.319 482.86 3.148 1.323 8.115 2.347 488.21 4.084 1.294 8.362 2.380 494.37 5.208 1.264 8.623 2.419 501.39 6.550 1.234 8.900 2.465 509.33 8.152 1.204 9.195 2.518 518.25 10.065 1.174 9.508 2.579 528.22 12.354 1.145 9.842 2.650 539.33 15.106 1.115 10.199 2.731 551.66 18.442 1.085 10.580 2.824 565.32 22.528 1.055 10.988 2.931 580.42 27.609 1.025 11.426 3.054 597.08 34.067 0.996 11.897 3.195 615.46 42.544 0.966 12.404 3.356 635.72 54.240 0.936 12.952 3.543 658.05 71.860 0.906 13.545 3.757 682.68 104.079 0.877 14.188 4.004 709.85 261.500 0.874 14.245 4.027 712.27 NODE 3030.00 : HGL = < 134.052>;EGL= < 134.689>;FLOWLINE= < 132.460> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, y, y, y, * * * * y, y, y^ y, y, y, y, y^ y, y, y^ y, y. ^ y, y, y^ y. y^ y^ y^ y, y^ FLOW PROCESS FROM NODE 3030.00 TO NODE 3030.10 IS CODE = 5 UPSTREAM NODE 3030.10 ELEVATION = 133.46 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 23.22 24.40 1.18 0.00 DIAMETER (INCHES) 24.00 36.00 18.00 0.00 ANGLE (DEGREES) 90.00 9.00 0.00 FLOWLINE ELEVATION 133.46 132.46 133.96 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.71 1.59 0.41 0.00 VELOCITY (FT/SEC) 11.337 6.402 2.945 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02109 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00438 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01273 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.057 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-I-(FRICTION LOSS)-f(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.951) + ( 0.057)-i-( 0.000) = 2.008 NODE 3030.10 : HGL = < 134.701>;EGL= < 136.697>;FLOWLINE= < 133.460> Page 4 BASING2.0UT ic ic it ic ic ic ic ic icit ic ic ic ic ic ic ic ic Vt Vr Vr * Vr Vr Vr Vr * Vt Vt ic ic ic ic ic ic ic it it it it it it ic ic it it it ic ic it it it ic ic ic it it it it it ic ic ic ic ic ic it it it ic ic Vt * * * Vt * * FLOW PROCESS FROM NODE 3030.10 TO NODE 3022.00 IS CODE = 1 UPSTREAM NODE 3022.00 ELEVATION = 134.61 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 38.19 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.11 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.71 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .711 8 .110 2 .733 506.54 0 .048 1 .687 8 .209 2 .734 506.71 0 .186 1 .663 8 .314 2 .737 507.20 0 .421 1 .639 8 .425 2 .742 508.00 0 .762 1 .615 8 542 2 .748 509.13 1 .219 1 590 8 665 2 .757 510.60 1 .802 1 566 8 795 2 768 512.42 2 .527 1 542 8 931 2 781 514.59 3 .410 1 518 9 074 2 797 517.15 4 .469 1 494 9 225 2 816 520.09 5 .730 1 469 9 383 2 837 523.44 7 221 1 445 9 549 2 862 527.21 8 978 1 421 9 723 2 890 531.42 11 045 1 397 9 906 2 922 536.10 13 479 1 373 10 099 2 957 541.25 16 353 1 349 10 301 2 997 546.92 19 762 1 324 10. 513 3 042 553,12 23 838 1. 300 10. 737 3 091 559,88 28 764 1. 276 10. 972 3. 146 567,23 34 808 1. 252 11. 219 3. 207 575,21 38 190 1. 241 11. 334 3. 237 578,98 NODE 3022,00 : HGL = < 136.321>;EGL= < 137.343>;FLOWLINE= < 134.610> Vt Vt Vt Vf Vt Vt * Vt Vf Vf Vf Vr Vr * Vt * * Vr Vr Vr Vt Vr Vr Vr * * Vt Vt Vr * Vr Vr * Vt Vt Vt Vt * Vt Vt Vt Vt Vt Vt Vt Vt * Vt Vr Vt Vr Vt Vt Vt Vt Vt * Vt Vr Vt Vr * Vr Vr Vr Vr Vt Vt Vt Vt Vt Vt Vf Vr Vr Vr Vr Vt FLOW PROCESS FROM NODE 3022.00 TO NODE 3022.10 IS CODE = 5 UPSTREAM NODE 3022.10 ELEVATION = 134.94 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 18.82 24.00 0.00 134.94 23.22 24.00 - 134.61 4.40 18.00 90.00 135.53 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.56 1.71 0.80 0.00 VELOCITY (FT/SEC) 11.451 8.107 4.558 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02455 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00982 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01718 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.069 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-f-(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.600) + ( 0.069)-i-( 0.000) = 0.669 Page 5 BASING2,0UT NODE 3022,10 : HGL = < 135,976>;EGL= < 138,012>;FLOWLINE= < 134,940> * * * Vt * Vr * Vt * * * * * * Vt * * * Vt * * * * * Vf * * * * Vf Vr * * * Vr Vr * Vr * * Vr * * Vr Vr * Vf * * Vt * Vr Vr * Vr * * * * Vr Vr * * * Vr * Vr * * Vr Vf * * * * * Vt * FLOW PROCESS FROM NODE 3022,10 TO NODE 3014,00 IS CODE = 1 UPSTREAM NODE 3014.00 ELEVATION = 141.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.82 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 238.69 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.02 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.56 1.56 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .561 7.151 2.356 376,60 0 .036 1 .539 7.252 2.356 376,70 0 .146 1 .517 7.356 2.358 377,03 0 .340 1 .496 7.466 2.362 377.58 0 .623 1 .474 7.581 2.367 378.36 1 .007 1 .452 7.701 2.374 379.39 1 .502 1 .430 7.826 2.382 380.66 2 .121 1 .408 7.957 2.392 382.20 2 .879 1 .387 8.094 2.405 384.01 3 794 1 365 8.237 2.419 386.09 4 888 1 343 8.387 2.436 388.48 6 187 1 321 8.544 2.455 391.17 7 725 1 299 8.707 2.478 394.18 9 540 1 278 8.879 2.503 397.53 11 685 1 256 9.059 2.531 401.23 14 224 1 234 9.247 2.563 405.29 17 245 1 212 9.444 2.598 409.75 20 866 1 190 9.651 2.638 414,62 25 251 1 169 9.868 2.682 419,92 30 644 1 147 10.096 2.731 425,67 37 419 1. 125 10.336 2.785 431.90 46. 209 1. 103 10.587 2.845 438.65 58. 195 1. 081 10.853 2.911 445.93 76. 035 1. 060 11.132 2.985 453.79 108. 261 1. 038 11.426 3.066 462.26 238. 690 1. 036 11.447 3.072 462.88 NODE 3014.00 : HGL = < 142.761>;EGL= < 143.556>;FLOWLINE= < 141.200> * * * * * * * * ******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ic icit it it it icit it it ic ic ic it it it ic ic ic ic icicicic ic ic ic ic FLOW PROCESS FROM NODE 3014.00 TO NODE 3014.10 IS CODE = 5 UPSTREAM NODE 3014.10 ELEVATION = 141.53 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 12.72 18.82 6.10 0.00 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION " " 0.00 24.00 24.00 18.00 0.00 90.00 0.00 141.53 141.20 141.70 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.28 1.56 0.95 0.00 VELOCITY (FT/SEC) 4, 7. 3. 0. 049 153 452 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = Page 6 0.00316 0.00762 BASING2.OUT AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00539 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.347)-H( 0.022) + ( 0.000) = 0.369 NODE 3014.10 : HGL = < 143.670>;EGL= < 143.924>;FL0WLINE= < 141.530> it it it it itic ic * * * * * Vr * * Vr * * * * Vt * * Vr ic icicicic ic ic ic ic ic ic ic ic it it it it it Vr * Vr * Vr ic ic ic ic it it ic ic ic ic ic ic * Vr * Vt Vt * Vr Vr * * * Vr * * Vr Vr Vr Vr * FLOW PROCESS FROM NODE 3014.10 TO NODE 3012.10 IS CODE = 1 UPSTREAM NODE 3012.10 ELEVATION = 153.67 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.72 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 285.51 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.71 CRITICAL DEPTH(FT) 1.28 =================== =============: ======= ====== ================ =================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.28 =================== ============== ======= ====== ================ =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.280 5 .986 1.837 221.57 0.026 1.258 6 .112 1.838 221.69 0.099 1.235 6 .244 1.841 222.03 0.224 1.212 6 382 1.845 222.60 0.407 1.190 6 528 1.852 223.40 0.656 1.167 6 681 1.861 224.44 0.978 1.144 6 842 1.872 225.75 1.383 1.122 7 Oil 1.886 227.34 1.882 1.099 7 190 1.902 229.21 2.488 1.076 7 378 1.922 231.38 3.218 1.054 7 577 1.946 233.88 4.091 1.031 7 787 1.973 236.72 5.132 1.008 8 010 2.005 239.93 6.370 0.986 8 245 2.042 243.52 7.843 0.963 8 495 2.084 247.53 9.602 0.940 8 760 2.133 251.98 11.711 0.918 9 042 2.188 256.90 14.259 0.895 9 341 2.251 262.34 17.372 0.872 9 661 2.323 268.32 21.231 0.850 10 002 2.404 274.91 26.121 0.827 10 367 2.497 282.14 32.521 0.804 10. 758 2.603 290.07 41.325 0.782 11. 178 2.723 298.78 54.548 0.759 11. 629 2.860 308.32 78.652 0.736 12. 115 3.017 318.79 285.510 0.733 12. 192 3.043 320.47 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.14 DISTANCE FROM CONTROL(FT) 0.000 3.549 PRESSURE HEAD(FT) 2.140 2.000 VELOCITY (FT/SEC) 4.049 4.049 Page SPECIFIC ENERGY(FT) 2.394 2.255 PRESSURE+ MOMENTUM(POUNDS) 323.22 295.84 BASING2.0UT ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED 2.00 INFORMATION: =================== DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3.549 2.000 4.048 2.255 295.84 4.238 1.971 4.059 2.227 290.51 4.892 1.943 4.081 2.201 285.45 5.524 1.914 4.109 2.176 280.58 6.138 1.885 4.143 2.152 275.89 6.734 1.857 4.181 2.128 271.36 7.315 1.828 4.224 2.105 267.00 7.879 1.799 4.271 2.083 262.81 8.428 1.770 4.323 2.061 258.78 8.961 1.742 4.379 2.040 254.93 9.477 1.713 4.439 2.019 251.25 9.976 1.684 4.504 1.999 247.75 10.457 1.656 4.573 1.981 244.43 10.918 1.627 4.646 1.962 241.30 11.359 1.598 4.725 1.945 238.37 11.777 1.570 4.808 1.929 235.65 12.171 1.541 4.896 1.913 233.13 12.539 1.512 4.990 1.899 230.84 12.878 1.483 5.089 1.886 228.77 13.186 1.455 5.195 1.874 226.94 13.459 1.426 5.306 1.864 225.35 13.694 1.397 5.425 1.855 224.03 13.887 1.369 5.550 1.847 222.97 14.032 1.340 5.684 1.842 222.20 14.124 1.311 5.825 1.838 221.73 14.156 1,283 5.975 1.837 221.57 285.510 1.283 5.975 1.837 221.57 PRESSURE4-M0MENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 0.36 FEET UPSTREAM OF NODE 3014.10 DEPTH = 2.126 FEET. UPSTREAM CONJUGATE DEPTH = 0.733 FEET NODE 3012.10 : HGL = < 154.950>;EGL= < 155.507>;FLOWLINE= < 153.670> * * Vr Vf Vr Vf * * Vr Vt * Vr * Vr Vr icit icicicic ic Vr Vr Vt * Vt * Vt * Vt Vr Vr Vr Vr Vr Vt Vr Vr Vr ic it it ic ic ic ic ic ic ic icic icicicic ic ic ic ic ic icit it it it Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vt * FLOW PROCESS FROM NODE 3012.10 TO NODE 3012.20 IS CODE = 5 UPSTREAM NODE 3012.20 ELEVATION = 154.00 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 5.20 24.00 0.00 154.00 12.72 24.00 - 153.67 7.52 18.00 90.00 154.50 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.80 1.28 1.06 0.00 VELOCITY (FT/SEC) 1.754 5.977 5.620 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00047 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00574 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00311 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.317) + ( 0.012)-i-( 0.000) = 0.330 NODE 3012.20 : HGL < 155.789>;EGL= < 155.837>;FL0WLINE= < 154.000> Page 8 BASING2.OUT icit it it it it it it if it icic it it it it it icic icit it it it icic icic icic icic icic it it it it it it it it it it it it it icic icic icit it it it it it it it it it icic it it it it it it icic ic icicicic Vt FLOW PROCESS FROM NODE 3012.10 TO NODE 3006.00 IS CODE = 1 UPSTREAM NODE 3006.00 ELEVATION = 155.17 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 24.72 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.80 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 0 .804 4 ,402 1.105 69,14 0 .012 0 .789 4 ,511 1.105 69.17 0 .051 0 .775 4 ,625 1.107 69.29 0 .119 0 .760 4 .745 1.110 69.49 0 .220 0 .745 4 .871 1.114 69.77 0 .358 0 .731 5 .003 1.120 70.14 0 .538 0 .716 5 142 1.127 70.61 0 .765 0 .702 5 288 1.136 71.17 1 .045 0 .687 5 442 1.147 71.84 1 .386 0 672 5 604 1.160 72.62 1 .798 0 658 5 775 1.176 73.51 2 .292 0 643 5 956 1.194 74.53 2 .882 0 629 6 147 1,216 75.67 3 585 0 614 6 350 1,241 76.96 4 423 0 600 6 565 1,269 78.40 5 425 0 585 6 794 1,302 79.99 6 628 0 570 7 037 1,340 81.76 8 083 0 556 7. 297 1,383 83.71 9 863 0 541 7. 573 1,432 85.87 12 073 0 527 7. 869 1,489 88.24 14 877 0 512 8. 187 1,553 90.85 18 550 0 497 8. 527 1,627 93.71 23 608 0. 483 8. 893 1,712 96.86 24 720 0. 481 8, 949 1,725 97.34 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ================== ============= ============== =================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1,79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-l- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.789 1.753 1,837 173.29 0.806 1.750 1.784 1,799 166.36 1.607 1.710 1.817 1.762 159.60 2.403 1.671 1.854 1.724 153.01 3.195 1.631 1.895 1.687 146.60 3.981 1.592 1.939 1.650 140.37 4.761 1.553 1.987 1.614 134.34 5.535 1.513 2,039 1.578 128.51 6.302 1.474 2,095 1.542 122.89 7.060 1.434 2,156 1.507 117.49 7.810 1.395 2,222 1.472 112.31 Page 9 BASING2.0UT 8.549 1.356 2.294 1.437 107.37 9.275 1.316 2.371 1.403 102.67 9.989 1.277 2.455 1.370 98.22 10.686 1.237 2.547 1.338 94.03 11.364 1.198 2.647 1.307 90.11 12.021 1.158 2.756 1.276 86.47 12.652 1.119 2.875 1.247 83.13 13.253 1.080 3.005 1.220 80.09 13.817 1.040 3.148 1.194 77.38 14.337 1.001 3.306 1.171 75.01 14.804 0,961 3.480 1.150 72.99 15.204 0.922 3.674 1.132 71.37 15.521 0.883 3.889 1.118 70.16 15.734 0.843 4.131 1.108 69.40 15.814 0.804 4.402 1.105 69.14 24.720 0.804 4.402 1.105 69.14 END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 11.51 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.189 FEET, UPSTREAM CONJUGATE DEPTH NODE 3012.10 = 0.521 FEET NODE 3006.00 : HGL = < 155.974>;EGL= < 156.275>;FLOWLINE= < 155.170> Vt Vt Vt * Vt * * Vf Vf -* * Vr it it it it it it it it it it ic ic ic ic ic Vt Vt Vr Vr Vr icic icic icic ic it it it it it it it it Vr Vr Vr Vr ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic it it it it it it it it Vr Vt * FLOW PROCESS FROM NODE 3006.00 TO NODE 3006.10 IS CODE = 5 UPSTREAM NODE 3006.10 ELEVATION = 155.50 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 5.20 5.20 0.00 0.00 DIAMETER ANGLE (INCHES) 24.00 24.00 0.00 0.00 (DEGREES) 74.00 0.00 0.00 FLOWLINE ELEVATION 155.50 155.17 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 0.80 0.80 0.00 0.00 (FT/SEC) 7.549 4.403 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02041 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00457 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01249 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0,056 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,596)+( 0,056)+( 0,000) = 0,653 NODE 3006.10 : HGL = < 156.043>;EGL= < 156.927>;FL0WLINE= < 155.500> Vr Vr Vr * Vr Vt Vt * Vr Vt Vr Vr Vr * Vr * Vr Vr Vr Vr icic icic itic ic ic ic ic icicicic ic ic ic ic ic ic ic ic ic ic ic ic icic icic ic ic icicicic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic Vf Vt * FLOW PROCESS FROM NODE 3006.10 TO NODE 3004.00 IS CODE = 1 UPSTREAM NODE 3004.00 ELEVATION = 156.31 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 32.02 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.80 DISTANCE FROM CONTROL(FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) Page 10 SPECIFIC ENERGY(FT) PRESSURE4- MOMENTUM(POUNDS) BASING2 .OUT 0.000 0 .804 4.402 1.105 69.14 0.016 0 .792 4.488 1.105 69.16 0.066 0 .781 4.578 1.106 69.23 0.154 0 .769 4.671 1.108 69.36 0.284 0 757 4.768 1.111 69.53 0.460 0 746 4.868 1.114 69.76 0.688 0 734 4.972 1.118 70.05 0.974 0 723 5.081 1.124 70.39 1.325 0 711 5.194 1.130 70.80 1.751 0 699 5.311 1.138 71.27 2.262 0 688 5.434 1.147 71.81 2.870 0 676 5.562 1.157 72.41 3.592 0 665 5.696 1.169 73.09 4.446 0 653 5.835 1.182 73.84 5.458 0. 641 5.981 1.197 74.67 6.658 0. 630 6.133 1.214 75.59 8.088 0. 618 6.293 1.233 76.59 9.806 0. 607 6.460 1.255 77.69 11.890 0. 595 6.636 1.279 78.88 14.456 0. 583 6.820 1.306 80.18 17.685 0. 572 7.013 1.336 81.58 21.879 0. 560 7.217 1.369 83.11 27.605 0. 549 7.431 1.407 84.75 32.020 0. 543 7. 547 1.427 85.66 3004.00 : HGL = < 157. 114>;EGL= < 157.415>;FL0WLINE= < 156.310> Vt Vf Vr * Vr Vr Vt * Vf Vt Vr Vr * Vr Vr Vr Vt Vt Vf Vt Vt Vt Vt Vt * Vt Vt Vr Vr Vr Vr * Vr Vr Vf Vt Vt Vt Vt Vt icicicic ic Vr Vr Vr Vr Vt Vr Vr icicicic it it it it it it it ic ic ic ic ic ic ic ic ic ic it it it it ic UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3004.00 FLOWLINE ELEVATION = 156.31 ASSUMED UPSTREAM CONTROL HGL = 157.11 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 11 GLA3012.OUT ************** Vf**********Vt**Vf ******* *Vf ********** **Vf ******************* Vt ******* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - GLASGOW STREET STORM DRAIN LATERAL AT NODE 3012 * B MAP DESIGN * icic icic it Vt Vt Vt Vt Vt Vt icicicic ic ic it it it it it it ic it ic ic ic ic ic ic ic ic ic ic ic ic it it it it it it it it it it ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic icicicic ic ic ic ic ic FILE NAME: GLA3012.DAT TIME/DATE OF STUDY: 08:25 06/02/2014 * * Vt Vt Vt Vt Vf Vf Vf Vf Vf Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr * Vr Vt Vt Vr ic ic ic ic ic ic ic ic ic ic ic ic it it it it it it ic ic ic ic ic ic it it it it it it icic it it it ic it it itic ic ic ic it it it ic ic ic GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3012.10- 1.07 124.23 0.54* 207.23 } FRICTION 3012.00- 1.07*Dc 124.23 1.07*Dc 124.23 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * Vr * Vf Vr * Vr * * Vf Vt icicicic Vt * Vt Vr icicicic ic ic ic ic ic ic ic ic icic icic Vr Vr Vt * Vr Vt Vt Vr Vt Vr Vr Vr Vt icicicic Vt ic ic ic ic ic ic ic ic ic it ic ic ic it it it it ic ic ic ic ic ic ic DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3012.10 FLOWLINE ELEVATION = 158.00 PIPE FLOW = 7.62 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 154.950 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -3.05 FT.) IS LESS THAN CRITICAL DEPTH( 1.07 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3012.10 : HGL = < 158.539>;EGL= < 161.307>;FLOWLINE= < 158.000> * * Vt * * icicicic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic it it it it it icic it it it it it it it it it it ic ic ic ic ic ic ic ic ic ic ic ic ic ic icicicic ic ic ic ic Vr * Vr Vr Vr FLOW PROCESS FROM NODE 3012.10 TO NODE 3012.00 IS CODE = 1 UPSTREAM NODE 3012.00 ELEVATION = 160.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 7.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 17.10 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH(FT) = 1.07 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07 Page 1 GLA3012.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.072 5.666 1.571 124.23 0.009 1.047 5.814 1.572 124.33 0.036 1.022 5.972 1.576 124.64 0.085 0.997 6.141 1.583 125.17 0.159 0.972 6.323 1.593 125.94 0.259 0.946 6.518 1.607 126.96 0.392 0.921 6.727 1.624 128.25 0.560 0.896 6.952 1.647 129.84 0.770 0.871 7.194 1.675 131.74 1.029 0.846 7.455 1.710 133.98 1.345 0.821 7.738 1.751 136.58 1.729 0.796 8.043 1.801 139.60 2.194 0.771 8.374 1.860 143.05 2.756 0.745 8.734 1.931 146.99 3.436 0.720 9.126 2.014 151.47 4.262 0.695 9.555 2.114 156.55 5.271 0.670 10.025 2.231 162.29 6.514 0.645 10.541 2.371 168.79 8.064 0.620 11.110 2.538 176.13 10.027 0.595 11.740 2.736 184.44 12.572 0.570 12.441 2.974 193.85 15.979 0.544 13.223 3.261 204.53 17.100 0.539 13.419 3.337 207.23 NODE 3012.00 : HGL = < 161.572>;EGL= < 162.071>;FLOWLINE= < 160.500> Vf Vt Vf Vt * Vf Vf Vf Vf * * Vr * Vt * Vf * Vr Vr * * Vr Vr Vr Vr * * Vr Vr * * * Vr Vr Vr Vt * Vr * Vr Vr Vr Vr Vr * Vr Vr * icic icic icic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic i UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3012.00 FLOWLINE ELEVATION = 160.50 ASSUMED UPSTREAM CONTROL HGL = 161.57 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GLA3020,OUT Vr *********** Vr ********* Vt * Vt * * * Vt * * * Vt ****** Vf Vt Vf Vr * Vr Vf ******* Vf ************ Vr Vf Vr * * * Vf Vr * * * Vr PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver, 19,0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ic ic ic ic ic it it it it ic ic ic ic ic ic ic ic ic ic ic ic ic ic it ic ic DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - GLASGOW STREET STORM DRAIN LATERAL AT NODE 3020 * * B MAP DESIGN * Vf Vf Vf Vi- Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vr Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Ve Vf Vc Vf Vf Vf Vf Vf Vr Vf Vf Vf Vf Vf Vf Vr Vf Vf Vf Vf Vf Vr Vf Vf Vf Vf Vf Vf Vr Vf Vr Vf FILE NAME: GLA3020,DAT TIME/DATE OF STUDY: 16:29 05/30/2014 Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Vf Ve Vr Vf Vr Vf Vf Vr Vf Vr Vf Vf Vf Vf Vr Vf Vf Vf Vr Vf Vf Vf Vr Vr Vf Vr Vf Vr Vf Vr Ve Vf Vf * Vf Vf Vf Vf Vf Vf Vr Vr Vc Vc Vf Vf Vr Vf Vf Vf Vf Vf Vf Vr Vr Vc Vf Vr Vf Vr Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used,) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3014,10- 1.97* 179.59 0.54 147.97 } FRICTION 3020.00- 0.98*Dc 97.79 0.98*Dc 97.79 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Vr Vf Vr Vf Vc Vf Vf Vf Ve Vf Vf Ve Ve Ve Ve Ve Ve Ve Vc Ve Ve Ve Ve Ve Ve Vf Ve Ve Ve Ve Ve Vc Ve Ve Vc Vc Ve Vc Ve Ve Vc Ve Ve Ve Vc Ve Ve Vc Vc Vc Vc Ve Vf Vc Vc Vc Vc Vc Vr Vr Ve Vr Vr Vr Vc Vr Vr Vr Ve Vr Vr Vr Vr Ve Vr Ve Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3014.10 FLOWLINE ELEVATION = 141.70 PIPE FLOW = 6.41 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 143.670 FEET NODE 3014.10 : HGL = < 143.670>;EGL= < 143.874>;FLOWLINE= < 141.700> Vr Vr Vr •* * Vr Vr Vr icic icic icic ic it it it ic ic ic ic icic it it icic ic icicicic ic Vr * Vr * * * * * Vr * * * Vr * * * * Vr * * * * * * Vr * * * * * Vr * * * Vr * Vr * Vr Vr * Vr * * FLOW PROCESS FROM NODE 3014.10 TO NODE 3020.00 IS CODE = 1 UPSTREAM NODE 3020.00 ELEVATION = 142.95 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.41 CFS PIPE DIAMETER = PIPE LENGTH = 4.67 FEET MANNING'S 18 N = 00 INCHES = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1. 97 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.970 3.627 2.174 179.59 Page 1 1.781 GLA3020.OUT 1.500 3.627 1.704 127.76 0.98 NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(FT) = ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: —. _ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 1.781 1.500 3.626 1.704 127.76 1.855 1.479 3.636 1.685 125.59 1.926 1.458 3.655 1.666 123.53 1.995 1.437 3.679 1.648 121.56 2.061 1.417 3.707 1.630 119.66 2.126 1.396 3.740 1.613 117.82 2.188 1.375 3.777 1.597 116.06 2.249 1.354 3.817 1.580 114.37 2.308 1.333 3.861 1.565 112.74 2.366 1.312 3.908 1.550 111.19 2.421 1.292 3.959 1.535 109.70 2.474 1.271 4.014 1.521 108.29 2.525 1.250 4.073 1.508 106.96 2.574 1.229 4.135 1.495 105.70 2.620 1.208 4.201 1.482 104.52 2.664 1.187 4.271 1.471 103.43 2.706 1.167 4.346 1.460 102.42 2.744 1.146 4.425 1.450 101.50 2.779 1.125 4.508 1.441 100.67 2.811 1.104 4.597 1.432 99.93 2.839 1.083 4.690 1.425 99.30 2.863 1.062 4.789 1.419 98.77 2.882 1.041 4.894 1.414 98.35 2.897 1.021 5.004 1.410 98.04 2.906 1.000 5.122 1.407 97.85 2.909 0.979 5.246 1.406 97.79 4.670 0.979 5.246 1.406 97.79 NODE 3020.00 : HGL = < 143.929>;EGL= < 144.356>;FLOWLINE= < 142.950> * * * * * * * * * * * * * * * * * * * * it it icic icic ic ic ic ic ic it it * * it it it it icic ic ic ic ic ic ic ic ic it it it ic ic ic ic ic ic ic ic ic ic it it ic icicic ic ic it ic icic icic icic UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3020.00 FLOWLINE ELEVATION = 142.95 ASSUMED UPSTREAM CONTROL HGL = 143.93 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GLA3028.OUT *********************************************** ******y,yjyt*y.y.yjy,yjy;yfy;y,yjy^yj^y,yjyjyj^y^y^y, PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN G - GLASGOW STREET STORM DRAIN LATERAL AT NODE 3028 * B MAP DESIGN * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********* yj y, * * * * * * icicicic ic ic ic * * * * * * * * FILE NAME: GLA3028.DAT TIME/DATE OF STUDY: 08:29 06/02/2014 ********************** **************************y,^y,y,y,y,y.y,y,y,y,y.^yjy,yjyjy^yjy^y.y^y^y^y^yjy^y^y^y^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3022.10- 0.88 74.32 0,75* 77,25 } FRICTION 3028,00- 0.88*Dc 74,32 0.88*Dc 74,32 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vt Vt icicicic ic ic ic ic ic ic ic ic ic ic ie ic icic icic icic ic ic icicicic ic ic ic ic icicicic ic ic ic ic ic ic ic ic ic Vr icicicic ic ic * Vr Vr Vr Vr Vr * Vr Vr Vt Vr Vr Vr Vr ic ic ic ic ic ic ic ic ic DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3022.10 FLOWLINE ELEVATION = 135.44 PIPE FLOW = 5.21 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 135.970 FEET *N0TE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.53 FT.) IS LESS THAN CRITICAL DEPTH( 0.88 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3022.10 : HGL = < 136.186>;EGL= < 136.733>;FLOWLINE= < 135.440> * * * * * * * * * * * * * * * * icic it it it* it it it it it ic ic ic it it it ic ic it ic ic ic ic ic it it ic ic ic it it ic ic ic ic ic ic it ic ic it it it it it ic ic ic ic ic ic it it it it ic it it it it it FLOW PROCESS FROM NODE 3022.10 TO NODE 3028.00 IS CODE = 1 UPSTREAM NODE 3028.00 ELEVATION = 135.53 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 5.21 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 Page 1 GLA3028.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.879 4.841 1.243 74.32 0.018 0.869 4.911 1.243 74.34 0.074 0.858 4.983 1.244 74.39 0.173 0.848 5.058 1.245 74.47 0.317 0.837 5.134 1.247 74.58 0.513 0.827 5.214 1.249 74.73 0.766 0.817 5.296 1.252 74.92 1.083 0.806 5.381 1.256 75.15 1.471 0.796 5.469 1.261 75.41 1.939 0.786 5.559 1.266 75.72 2.500 0.775 5.653 1.272 76.06 3.165 0.765 5.750 1.279 76.45 3.952 0.754 5.851 1.286 76.88 4.670 0.746 5.931 1.293 77.25 NODE 3028.00 : HGL = < 136.409>;EGL= < 136.773>;FLOWLINE= < 135.530> Vr * it it icic it it it ic ic ic it it it it it ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic icic it it it it it ic ic ic ic ic ic ic ic ic ic ic ic icicicic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic icicicic UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3028.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 135.53 136.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ROB3036.OUT VcVfVfVfVrVtVfVfVcVcVfVfVcVcVcVcVfVfVcVfVrVfVfVfVfVfVrVfVfVfVrVfVfVfVfVfVeVrVfVfVfVfVfVfVfVfVfVfVfVfVfVf* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic it it it it ic ic DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN G - ROBERTSON ROAD STORM DRAIN LATERAL AT NODE 3036 * * B MAP DESIGN * Vf Vf Vf Vf Vf Vf Vf Vf Vf Vr Vf Vr Vf Vf Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vc Vf Vc Vc Vc Vf Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Vc Vc Vf Vc Vc Vr Vr Vr Vr Vr Vr Vr Vf Vc Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vc FILE NAME: ROB3036.DAT TIME/DATE OF STUDY: 08:32 06/02/2014 Vf Vf Vf Vf Vf Vf Vf Vf Vf Vc Vf Vc Vc Vc Vr Vc Vf Vc Vf Vr Vf Vt Vr Vr Vr Vr Vr Vr Vr Ve Vr Vr Vf Vf Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vt Vt Vr Vr Vr Vt Vr Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3030.10- 0.74 21.96 0.26* 22.20 } FRICTION 3036.00- 0.46*Dc 14.81 0.46*Dc 14.81 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vc Vc Vf Vf Ve Vf Vc Vf Vf Vf Vf Vf Vc Vf Vc Vc Vc Ve Vc Vf Vc Ve Ve Ve Ve Ve Vr Ve Ve Ve Vr Vr Ve Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Ve Vr Vt Vf Vr Ve Vr Vr Vr Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3030.10 FLOWLINE ELEVATION = 133.96 PIPE FLOW = 1.49 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 134.700 FEET NODE 3030.10 : HGL = < 134.221>;EGL= < 135.030>;FL0WLINE= < 133.960> Vr Vf Vf Vr Vr Vr Vr Vf Vf Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vf Vf Vf Vf Vf Vf Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vf Vf Vc Vf Vc Vc Vc Vc Vc Vr Vr Ve Vc Vc Vc Vf Vr Vr Vr Vr Vr Vr Vr Vr ^ FLOW PROCESS FROM NODE 3030.10 TO NODE 3036.00 IS CODE = 1 UPSTREAM NODE 3036.00 ELEVATION = 136.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.49 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 49.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) = 0.46 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Page 1 ROB3036 OUT )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0.458 3.262 0.623 14.81 0.006 0.450 3.344 0.623 14.81 0.026 0.442 3.430 0.624 14.84 0.060 0.433 3.520 0.626 14.88 0.111 0.425 3.615 0.628 14.94 0.181 0.417 3.714 0.631 15.02 0.271 0.409 3.818 0.635 15.12 0.385 0.401 3.927 0.640 15.24 0.526 0.393 4.042 0.646 15.38 0.697 0.384 4.164 0.654 15.55 0.904 0.376 4.291 0.662 15.74 1.152 0.368 4.426 0.672 15.95 1.448 0.360 4.569 0.684 16.20 1.800 0.352 4.719 0.698 16.47 2.220 0.344 4.879 0.713 16.77 2.721 0.335 5.049 0.731 17.11 3.322 0.327 5.229 0.752 17.48 4.048 0.319 5.420 0.776 17.89 4.936 0.311 5.624 0.802 18.34 6.037 0.303 5.842 0.833 18.84 7.432 0.295 6.075 0.868 19.38 9.257 0.286 6.324 0.908 19.98 11.768 0.278 6.592 0.954 20.64 15.537 0.270 6.880 1.006 21.36 22.405 0.262 7.191 1.065 22.15 49.000 0.261 7.212 1.070 22.20 NODE 3036.00 : HGL = < 136.958>;EGL= < 137.123>;FL0WLINE= < 136.500> r Vr Vf Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf Vf Vf Vf Vf Vr Vc Vc Vc Vc Vc Vr Vf Vc Vc Vf Vf Vf Vc Vc Vc Vc Vf Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vf Vr Vr Vr Ve Vf Vf Vf Vf Vr Vc Vc Vc Vr Vr Vr Vc Vc Vr Vr Vr Vr Vr Vr Vt UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3036.00 FLOWLINE ELEVATION = 136.50 ASSUMED UPSTREAM CONTROL HGL = 136.96 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ROB3046.OUT ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA ^ * BASIN G - ROBERTSON ROAD STORM DRAIN LATERAL AT NODE 3046 ' * B MAP DESIGN ^ Vt it it icic icic icit icic icic icic icic icic icicic icic icic it it it icic * * icicicic * * Vr Vr Vr * Vr * Vt icic it it it ic ic Vt * * * * * Vt icic icic icit it it ic ic ic ic ic ic FILE NAME: ROB3046.DAT TIME/DATE OF STUDY: 08:42 06/02/2014 y. V, * y. y, * y, y, * y, y, icicicic Vf Vt Vf Vt * * Vf * Vr * Vr * * * * Vr Vr * Vr Vf Vf Vt icicicic ic ic it it it it it it ic ic ic ic ic ic ic it it it it it it it it it it it it it it it it it it ic ic ic ic GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3038.10- 0.61 30.16 0.31* 50.89 } FRICTION 3046.00- 0.61*Dc 30.16 0.61*Dc 30.16 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr * * * * Vr * * * * * Vr Vr Vr Vr * Vt Vf * Vr * * Vr Vr * Vr Vr * Vr * Vr Vr * * Vr ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic it it it ic ic ic ic ic ic ic it ic ic ic ic ic ic ic it DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3038.10 FLOWLINE ELEVATION = 122.37 PIPE FLOW = 2.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 121.760 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.61 FT.) IS LESS THAN CRITICAL DEPTH( 0.61 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3038.10 : HGL = < 122.684>;EGL= < 124.137>;FLOWLINE= < 122.370> Vr Vr Vr Vr * Vr ***** Vr * * * * Vr it it it it ic ic ic it it it icic ic ic ic ic it it it ic ic ic ic it it ic ic ic ic ic ic ic it ic ic ic ic ic ic ic ic ic ic ic ic ic it it ic ic ic ic icic icic icic ic ic * FLOW PROCESS FROM NODE 3038.10 TO NODE 3046.00 IS CODE = 1 UPSTREAM NODE 3046.00 ELEVATION = 123.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) = 0.61 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 Page 1 ROB3046.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE -ROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .611 3 843 0.841 30.16 0 .003 0 .596 3 975 0.841 30.19 0 .014 0 .581 4 115 0.844 30.29 0 .032 0 .565 4 265 0.848 30.45 0 .060 0 .550 4 426 0.854 30.69 0 .099 0 .535 4 598 0.863 31.01 0 150 0 520 4 783 0.875 31.42 0 215 0 504 4 982 0.890 31.91 0 298 0 489 5 196 0.909 32.51 0 400 0 474 5 428 0.932 33.21 0 525 0 459 5 679 0.960 34.03 0 679 0 443 5 952 0.994 34.98 0 866 0 428 6 249 1.035 36.07 1 094 0 413 6 574 1.084 37.32 1 373 0 398 6 930 1.144 38.75 1 714 0 382 7 322 1.215 40.38 2 134 0 367 7 754 1.301 42.23 2 657 0 352 8 234 1.405 44.34 3 314 0 337 8 768 1.531 46.74 4 155 0 321 9 367 1.684 49.48 4 670 0 314 9. 671 1.767 50.89 NODE 3046.00 : HGL = < 124.091>;EGL= < 124.321>;FLOWLINE= < 123.480> Vf Vf Vr Vr Vr Vf Vr Vr Vr Vf Vr Vr Vr Vf Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vc Vc Vc Vc Vc Vc Ve Vc Vr Vr Vr Vr Vr Vc Vr Vc Ve Vr Vf Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vf Vr Vf Vf Vr Vc Vc Vc Vc Vc Vc UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3046.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 123.48 124.09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 BASING3.0UT * * Vt Vt * * * Vt * * * * Vf * * * * Vr * * Vr * * * * * * * * * * * * * * Vr Vr Vt Vt * * * * * Vt Vt * * * * * Vr * * * * * * * * Vr * * Vr Vr Vr Vt * * * * * * * * Vt * Vt PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by; O'DAY CONSULTANTS ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic DESCRIPTION OF STUDY *************** VrVr ** Vr Vr Vt*** * * RANCHO COSTERA * BASIN G - MAIN SD LINE FROM ROBERTSON RD NORTH UP WELLSPRING STREET * B MAP DESIGN ^ Vf Vc Vf Vf Vc Vc Vc Vf Vc Vf Vc Vc Vc Vc Vr Vc Vc Vc Vc Vc Vr Vc Vc Vr Vc Vc Vc Vr Vr Vc Vf Vf Vr Ve Ve Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vc Vr Vf Vf Vr Vr Vr Vf Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr FILE NAME: BASING3.DAT TIME/DATE OF STUDY: 10:13 06/02/2014 Vr Vf Vf Vf Vf Vf Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vc Vc Vc Vf Vc Vc Vc Vc Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Vc Vr Vc Ve Vc Ve Vc Vc Vc Vc Vc Vr Vc Vc Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vc Vr Vr Vr Vr Vr Vr Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3048 .10- } FRICTION 2 .20 534.24 0.97* 598.20 3084 .00- } JUNCTION 1 .57 DC 444.80 1.05* 551.42 3084 10- } FRICTION 1 71 370.07 0.79* 532.88 3074 00- } JUNCTION 1 42 DC 350.02 0.62* 730.23 3074 10- } FRICTION 1 50 DC 335.36 0.62* 713.01 3066 00- } JUNCTION 1 50 DC 335.36 1.13* 373.12 3066 10- } FRICTION 1 77 286.13 0,81* 355,89 3058 00- } JUNCTION 1 36*Dc 258.11 l,36*Dc 258.11 3058 10-2 00* 297.25 0,93 256.81 } FRICTION } HYDRAULIC JUMP 3064. 00-1 29*DC 223.65 1.29*Dc 223.65 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Vf Vr Vr Vr Vr Vr Vf Vf Vf Vr Vf Vf Vf Vf Vf Vf Vf Vf Vr Vf Vr Vf Vf Vr Vr Vr Vr Vr Vf Vf Vr Vf Vf Vf Vf Vf Vf Vc Vf Vc Vc Ve Vc Vf Vf Vf Vc Ve Vr Vf Vr Vf Vc Vf DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3048.10 FLOWLINE ELEVATION = 118.45 PIPE FLOW = 23.61 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 120.650 FEET NODE 3048.10 : HGL = < 119.416>;EGL= < 121.653>;FLOWLINE= < 118.450> Page 1 BASING3.0UT ******** Vr *** Vr *** Vr ** Vr **** Vr Vr ****** Vr * Vr ** Vr****VrVrVrVr ********* *Vf**Vt*****Vf ************ FLOW PROCESS FROM NODE 3048.10 TO NODE 3084.00 IS CODE = 1 UPSTREAM NODE 3084.00 ELEVATION = 119.54 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.61 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 33.23 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.90 CRITICAL DEPTH(FT) 1.57 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.047 10.747 2.842 551.42 1.543 1.041 10.830 2.864 554.43 3.176 1.035 10.915 2.886 557.50 4.905 1.029 11.001 2.910 560.63 6.742 1.023 11.088 2.933 563.82 8.696 1.017 11.176 2.958 567.08 10.779 1.011 11.266 2.983 570.40 13.006 1.006 11.357 3.009 573.79 15.394 1.000 11.449 3.036 577.25 17.961 0.994 11.542 3.064 580.78 20.732 0.988 11.637 3.092 584.37 23.735 0.982 11.734 3.121 588.04 27.005 0.976 11.832 3.151 591.78 30.585 0.970 11.931 3.182 595.60 33.230 0.966 11.999 3.203 598.20 NODE 3084.00 : HGL = < 120.587>;EGL= < 122.382>;FLOWLINE= < 119.540> Vf Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Ve Vr Vr Vf Vr Ve Vc Vc Vc Vc Vr Vr Vr Vr Vr Ve Vr Vr Ve Vr Vf Vf Vr Vf Vf Vr Vr Vr Vf Vf Vf FLOW PROCESS FROM NODE 3084.00 TO NODE 3084.10 IS CODE = 5 UPSTREAM NODE 3084.10 ELEVATION = 119.87 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 19.63 23.61 3.11 0.87 DIAMETER (INCHES) 36.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 90.00 90.00 FLOWLINE ELEVATION 119.87 119.54 121.37 121.37 CRITICAL DEPTH(FT.) 1.42 1.57 0.67 0.35 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 13.219 10.750 4.064 2.808 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03771 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01832 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02802 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.112 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.879)+( 0.112)+( 0.000) = 0.991 NODE 3084.10 : HGL = < 120.659>;EGL= < 123.373>;FLOWLINE= < 119.870> * * Vr Vr * * * Vr * * * * * Vr * Vr Vr Vr * Vr * * * Vr * * * * * * Vt * Vf Vt * * Vt Vr * Vr * Vr * * * * * * * * Vr * * * * * * Vr * * * Vr Vf Vt * Vf Vt Vr * * Vt ic ic ic it ic ic ic FLOW PROCESS FROM NODE 3084.10 TO NODE 3074.00 IS CODE = 1 UPSTREAM NODE 3074.00 ELEVATION = 127.00 (FLOW IS SUPERCRITICAL) Page 2 BASING3.0UT CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.63 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 195.87 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.42 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0 .616 18 .758 6.084 730 .23 2.740 0 .624 18 450 5.913 718 .96 5.556 0 .631 18 150 5.749 708 .04 8.457 0 .638 17 859 5.594 697 .44 11.450 0 .645 17 575 5.445 687 .15 14.544 0 .652 17 300 5.303 677 17 17.751 0 .660 17 032 5.167 667 48 21.082 0 .667 16 771 5.037 658 08 24.553 0 .674 16 517 4.913 648 94 28.180 0 .681 16 269 4.794 640 06 31.985 0 .688 16 028 4.680 631 44 35.992 0 696 15 794 4.571 623 06 40.232 0 703 15 565 4.467 614 92 44.744 0 710 15 342 4.367 607 00 49.573 0 717 15 124 4.271 599 30 54.784 0 724 14 912 4.180 591 82 60.455 0 732 14 705 4.092 584 54 66.697 0 739 14 503 4.007 577 46 73.665 0 746 14 306 3.926 570 57 81.582 0 753 14 114 3.848 563 87 90.799 0 760 13 926 3.774 557. 34 101.900 0 768 13. 742 3.702 551. 00 115.984 0 775 13. 563 3.633 544. 82 135.516 0 782 13. 388 3.567 538. 81 168.406 0 789 13. 217 3.503 532. 95 195.870 0 789 13. 214 3.503 532. 88 NODE 3074.00 : HGL = < 127.616>;EGL= < 133.084>;FLOWLINE= < 127.000> Vt Vr Vr Vr icicicic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic it it it ie ic ic ic ic ic ic ic ic ic ic ic ic icicicic ic ic ic ic ic ic ic ic ie it it it it it it it ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic ic FLOW PROCESS FROM NODE 3074.00 TO NODE 3074.10 IS CODE = 5 UPSTREAM NODE 3074.10 ELEVATION = 128.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 17.30 19.63 2.33 0.00 DIAMETER ANGLE (INCHES) 24.00 36.00 18.00 0.00 (DEGREES) 0.00 85.00 0.00 FLOWLINE ELEVATION 128.00 127.00 127.00 128.50 CRITICAL VELOCITY 0.00===Q5 EQUALS BASIN INPUT= DEPTH(FT.) 1.50 1.42 0.58 0.00 (FT/SEC) 20.873 18.764 1.649 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.13467 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10124 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.11796 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.472 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-f(FRICTION LOSS)-f(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.829)-f( 0.472) + ( 0.000) = 2.301 Page 3 BASING3.0UT NODE 3074.10 : HGL = < 128.620>;EGL= < 135.385>;FLOWLINE= < 128.000> ic ic ic it it it it it ic ic ic ic ic ic it it ic ic ic it it it it it it icic icic icic it it it it it it it it it it it it it it it it icic icic icicic icic it it icic icic icic icic it it it ic^ FLOW PROCESS FROM NODE 3074.10 TO NODE 3066.00 IS CODE = 1 UPSTREAM NODE 3066.00 ELEVATION = 136.42 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.30 CFS PIPE PIPE LENGTH = 42.50 FEET DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 1.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1 127 9 486 2 525 373 12 0.269 1 104 9. 726 2 574 378 62 0.572 1 081 9 979 2 628 384 62 0.914 1 059 10 245 2 690 391 15 1.297 1 036 10 527 2 758 398 25 1.729 1 013 10 825 2 834 405 96 2.216 0 991 11 141 2 919 414 32 2.764 0 968 11 475 3 014 423 37 3.384 0 946 11 830 3 120 433 17 4.085 0 923 12 207 3 238 443 78 4.881 0 900 12 608 3 370 455 26 5.787 0 878 13 035 3 518 467 69 6.824 0 855 13 491 3 683 481 14 8.015 0 832 13 978 3 868 495 70 9.392 0 810 14 500 4 077 511 48 10.995 0 787 15 060 4 311 528 59 12.879 0 765 15 661 4 575 547 17 15.116 0 .742 16 308 4 874 567 36 17.809 0 • 719 17 007 5 214 589 32 21.110 0 • 697 17 763 5 599 613 27 25.256 0 .674 18 583 6 040 639 41 30.642 0 .651 19 474 6 544 668 02 38.014 0 .629 20 446 7 124 699 39 42.500 0 • 620 20 867 7 385 713 01 NODE 3066.00 : HGL = < 137.547>;EGL= < 138.945>;FLOWLINE= < 136.420> r Vr * Vr Vr * Vr * * Vf * * Vf Vt Vf Vf * Vr * Vt Vf Vt Vt Vf Vr Vr Vf Vf Vf * Vt * Vt * Vt * Vr ******* Vr * * * * Vr Vt icicic icic it it it ic ic ic ic ic ic ic ic ic ic it it it ic ic ic ic ic it FLOW PROCESS FROM NODE 3066.00 TO NODE 3066.10 IS CODE = 5 UPSTREAM NODE 3066.10 ELEVATION = 136.75 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14.26 17.30 3.04 0.00 DIAMETER ANGLE (INCHES) 24.00 24.00 18.00 0.00 (DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 136.75 136.42 137.25 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.36 1.50 0.66 0.00 (FT/SEC) 11.968 9.489 4.035 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION FRICTION SLOPE FRICTION SLOPE UPSTREAM: MANNING'S N = 0.01300; DOWNSTREAM: MANNING'S N = 0.01300; AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02468 JUNCTION LENGTH = 4.00 FEET 0.03356 0.01579 Page 4 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES BASING3.0UT 0.099 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)-f(FRICTION LOSS)-f(ENTRANCE LOSSES) ( 0.740)+( 0.099)+( 0.000) = 0.839 NODE 3066.10 : HGL = < 137.559>;EGL= < 139.783>;FL0WLINE= < 136.750> ******************** * * * * * * * it it it icicic ic * * Vt **************************************** * FLOW PROCESS FROM NODE 3066.10 TO NODE 3058.00 IS CODE = 1 UPSTREAM NODE 3058.00 ELEVATION = 141.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 12 5.28 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.79 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.36 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1.360 6 265 1.970 258.11 0 025 1.337 6 386 1.971 258.21 0 104 1.314 6 512 1.973 258.55 0 242 1.291 6 645 1.978 259.11 0 447 1.269 6 784 1.984 259.92 0 72 5 1.246 6 930 1.992 260.99 1 086 1.223 7 084 2.002 262.32 1 541 1.200 7 245 2.015 263.94 2 101 1.177 7 415 2.031 265.85 2 781 1.154 7 594 2.050 268.07 3 .600 1.131 7 782 2.072 270.62 4 .578 1.108 7 981 2.098 273.52 5 .743 1.085 8 190 2.127 276.78 7 .126 1.062 8 411 2.161 280.43 8 .771 1.039 8 645 2.200 284.50 10 .731 1.016 8 892 2.245 289.01 13 .078 0.993 9 154 2.295 293.99 15 .908 0.970 9 432 2.353 299.47 19 .358 0.947 9 727 2.417 305.50 23 .629 0.924 10 041 2.491 312.11 29 .030 0.901 10 375 2.574 319.34 36 .084 0.879 10 731 2.668 327.25 45 .767 0.856 11 111 2.774 335.90 60 .279 0.833 11 518 2.894 345.34 86 .675 0.810 11 954 3.030 355.65 12 5 .280 0.809 11 964 3.033 355.89 NODE 3058.00 : HGL = < 142.770>;EGL= < 143.380>;FLOWLINE= < 141.410> Vt * Vt * Vr Vf * * * Vr * Vr * * * * * * Vr ****** Vr * Vr Vt * * Vf icicicic ic ic icit icicicic ic icit icit icic icic icicicicitititit it icicic ic ic ic ic ic ic ic ic ic ic ic ic ie FLOW PROCESS FROM NODE 3058.00 TO NODE 3058.10 IS CODE = 5 UPSTREAM NODE 3058.10 ELEVATION = 141.79 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 12.81 14.26 1.45 DIAMETER (INCHES) 24.00 24.00 18.00 0.00 ANGLE (DEGREES) 90.00 FLOWLINE ELEVATION 141.79 141.41 141.91 0.00 10.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== Page 5 CRITICAL DEPTH(FT.) 1.29 1.36 0.45 0.00 VELOCITY (FT/SEC) 4.078 6.267 0.857 0.000 BASING3.0UT JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00319 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00612 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00466 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)4-(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.649)+( 0.019)+( 0.000) = 0.668 NODE 3058.10 : HGL = < 143.790>;EGL= < 144.048>;FLOWLINE= < 141.790> icic icic icit it it it it it it it it** it it it icic icic icic icic icicic it it it it * Vr Vr Vr Vr * Vr Vr Vr Vr Vt Vr Vr * * * * Vr * * Vr Vr * Vr Vr * Vr Vr * Vr * Vt Vr Vt Vr * Vr * Vr * Vr Vr Vr Vr FLOW PROCESS FROM NODE 3058.10 TO NODE 3064.00 IS CODE = 1 UPSTREAM NODE 3064.00 ELEVATION = 142.45 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 26.67 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.83 CRITICAL DEPTH(FT) = 1.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE -ROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1.287 5.992 1.845 223 .65 0 .027 1.269 6.092 1.846 223 .72 0 .113 1.251 6.196 1.847 223 .93 0 .263 1.232 6.305 1.850 224 .28 0 .484 1.214 6.417 1.854 224 78 0 .783 1.196 6.535 1.859 225 44 1 .171 1.177 6.657 1.866 226 25 1 657 1.159 6.784 1.874 227 24 2 255 1.141 6.917 1.884 228 39 2 978 1.122 7.055 1.896 229 74 3 845 1.104 7.200 1.910 231 27 4 878 1.086 7.350 1.925 233 00 6 102 1.068 7.508 1.943 234 93 7 550 1.049 7.672 1.964 237 09 9 265 1.031 7.844 1.987 239 47 11 299 1.013 8.024 2.013 242 09 13 723 0.994 8.212 2.042 244 97 16 633 0.976 8.410 2.075 248 11 20 163 0.958 8.617 2.111 251 54 24 510 0.939 8.834 2.152 255 26 26 670 0.932 8.923 2.169 256 81 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.245 2.423 FLOW DEPTH (FT) 2.000 1.971 1.943 VELOCITY (FT/SEC) 4.076 4.088 4.110 Page 6 SPECIFIC ENERGY(FT) 2.258 2.231 2.205 PRESSURE-f MOMENTUM(POUNDS) 297.25 291.96 286.94 BASING3.0UT 3 .558 1.914 4 .138 2.180 282.11 4 .660 1.886 4 .171 2.156 277.45 5 .730 1.857 4 .209 2.133 272.97 6 .772 1.829 4 .252 2.110 268.64 7 .785 1.800 4 299 2.088 264.49 8 771 1.772 4 351 2.066 260.50 9 728 1.743 4 407 2.045 256.68 10 657 1.715 4 467 2.025 253.03 11 555 1.686 4 531 2.005 249.56 12 422 1.658 4 600 1.987 246.28 13 255 1.629 4 673 1.969 243.18 14 053 1.601 4 751 1.951 240.28 14 811 1.572 4 833 1.935 237.58 15 527 1.544 4 921 1.920 235.09 16 198 1.515 5 015 1.906 232.82 16 818 1.487 5 113 1.893 230.78 17 383 1.458 5 218 1.881 228.97 17 886 1.430 5 329 1.871 227.40 18 321 1.401 5 446 1.862 226.09 18 679 1.373 5 571 1.855 225.05 18 951 1.344 5. 703 1.850 224.28 19 124 1.316 5. 843 1.846 223.81 19 186 1.287 5. 992 1.845 223.65 26 670 1.287 5. 992 1.845 223.65 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 12.70 FEET UPSTREAM OF NODE 3058.10 | I DOWNSTREAM DEPTH = 1.648 FEET. UPSTREAM CONJUGATE DEPTH = 0.993 FEET | NODE 3064.00 : HGL = < 143.737>;EGL= < 144.295>;FLOWLINE= < 142.450> Vr Vr Vr Vr Vr Vr -* * Vr Vr * Vr * Vf Vf Vf Vr * Vr Vr Vr Vr ****** * * ic ic ic * ic ic * ic ic * ic ic ic ic * * ic ic ic * ic ic * * Vr * Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr * ic ic ic UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3064.00 FLOWLINE ELEVATION = 142.45 ASSUMED UPSTREAM CONTROL HGL = 143.74 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 7 WEL3054.OUT ************************ ie ****************** *icicic****ic**** it ********* ic * icit******** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS **Vf Vr*****Vr*VrVr**Vr*VrVr***VrVr*Vr DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - WELLSPRING STREET STORM DRAIN LATERAL AT NODE 3054 TO 3058 * * B MAP DESIGN Vr ********** ic ic Vr Vt * * Vr * Vr Vr Vr Vr Vr * * * * Vr * Vr Vr Vr ****** * ic***** * * it * it it it * it ic * ic ic ie*** * ic ie * Vr * Vr * Vr * * FILE NAME: WEL3054.DAT TIME/DATE OF STUDY: 10:54 06/02/2014 Vr Vr Vr * Vr Vr * Vr * Vr Vr * * * Vr * * Vr * Vr * * Vr Vr * Vr Vr Vr Vt ****icic*ic*****ie* it ************* it it it it * it ic * Vr * Vr * Vr Vr Vr * * Vr * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3058.10- 1.88* 128.12 0.26 32.28 } FRICTION } HYDRAULIC JUMP 3056.00- 0.50 DC 18.70 0.36* 22.06 } JUNCTION 3056.10- 0.50 DC 18.70 0.28* 28.45 } FRICTION 3054.00- 0.50*Dc 18.70 0.50*DC 18.70 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr * Vr * Vr Vr * * * Vr Vr Vr Vr * * Vr Vr Vf * Vr Vr Vr Vr ********** ic * * ic * ic * ie * * ic * * * ic * * * ic ic * * * * * Vr * Vr Vr * Vr * * * Vr * * Vr Vr Vt Vf * Vf Vf DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3058.10 FLOWLINE ELEVATION = 141.91 PIPE FLOW = 1.79 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 143.790 FEET NODE 3058.10 : HGL = < 143.790>;EGL= < 143.806>;FLOWLINE= < 141.910> Vf Vf **************** * ic ic Vr * * * * Vr Vf * Vr * * Vr * Vr Vr Vr * * * * Vr * Vr Vr * * * * Vr * * Vr Vt * * * * * Vt * * * Vr * * * Vr * ******** ic FLOW PROCESS FROM NODE 3058.10 TO NODE 3056.00 IS CODE = 1 UPSTREAM NODE 3056.00 ELEVATION = 148.85 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 90.73 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) = 0.50 Page 1 WEL3054.OUT UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .360 5.493 0.829 22.06 0 .206 0 .355 5.587 0.840 22.30 0 .429 0 .351 5.684 0.853 22.55 0 .671 0 .347 5.784 0.867 22.81 0 .933 0 .343 5.887 0.881 23.09 1 .219 0 .338 5.993 0.896 23.37 1 .529 0 .334 6.103 0.913 23.67 1 .869 0 .330 6.216 0.930 23.99 2 .240 0 .325 6.333 0.949 24.32 2 .647 0 .321 6.454 0.968 24.66 3 .095 0 .317 6.579 0.989 25.02 3 .589 0 .313 6.708 1.012 25.40 4 .138 0 .308 6.842 1.036 25.79 4 .750 0 .304 6.980 1.061 26.20 5 .437 0 .300 7.124 1.088 26.63 6 .213 0 • 295 7.272 1.117 27.08 7 .098 0 291 7.426 1.148 27.55 8 .117 0 287 7.586 1.181 28.04 9 308 0 282 7.752 1.216 28.56 10 725 0 278 7.924 1.254 29.09 12 451 0 274 8.103 1.294 29.65 14 626 0 270 8.289 1.337 30.24 17 513 0 265 8.483 1.383 30.86 21 701 0 261 8.684 1.433 31.50 29 084 0 257 8.894 1.486 32.17 90 730 0 256 8.927 1.494 32.28 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1.88 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1. 880 1.013 1.896 128.12 4. 987 1. 500 1.013 1.516 86.22 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 4. 987 1. 500 1.013 1.516 86.22 5. 507 1. 460 1.020 1.476 81.86 6. 024 1. 420 1.034 1.437 77.57 6. 539 1. 380 1.052 1.398 73.36 7. 053 1. 341 1.074 1.358 69.25 7. 564 1. 301 1.099 1.319 65.24 8. 074 1. 261 1.129 1.281 61.34 8. 582 1. 221 1.162 1.242 57.57 9. 087 1. 181 1.199 1.203 53.93 9. 590 1. 141 1.240 1.165 50.42 10. 089 1. 101 1.287 1.127 47.06 10. 585 1. 061 1.338 1.089 43.84 Page 2 WEL3054.OUT 11.077 1 .022 1.396 1.052 11.564 0 982 1.460 1.015 12.045 0 942 1.532 0.978 12.519 0 902 1.612 0.942 12.983 0 862 1.702 0.907 13.437 0 822 1.804 0.873 13.876 0 782 1.920 0.840 14.297 0 743 2.051 0.808 14.695 0 703 2.202 0.778 15.062 0. 663 2.376 0.751 15.388 0. 623 2.579 0.726 15.657 0. 583 2.817 0.706 15.846 0. 543 3.099 0.692 15.921 0. 503 3.438 0.687 90.730 0. 503 3.438 0.687 PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 12.59 FEET UPSTREAM OF DEPTH = 0.896 FEET, UPSTREAM CONJUGATE DEPTH 40.78 37.89 35.16 32.60 30.23 28.04 26.05 24.26 22.69 21.34 20.25 19.42 18.89 18.70 18.70 NODE 3058.10 = 0.256 FEET NODE 3056.00 : HGL = < 149.210>;EGL= < 149.679>;FLOWLINE= < 148.850> * * * * * * * * * * * * * ***** * * *********** * * * * * * * * * * * * * * * * * * * * * * y, y, y, y, y, y, y, y, y, y, y, y, y, y^ y, y, y^ y^ yj y^ y^ y. y^ y^ ^ FLOW PROCESS FROM NODE 3056.00 TO NODE 3056.10 IS CODE = 5 UPSTREAM NODE 3056.10 ELEVATION = 149.18 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 1.79 18.00 48.00 149.18 1.79 18.00 - 148.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.50 0.50 0.00 0.00 VELOCITY (FT/SEC) 7.721 5.495 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04776 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01826 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03301 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.132 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.579)+( 0.132)+( 0.000) = 0.711 NODE 3056.10 : HGL = < 149.463>;EGL= < 150.389>;FLOWLINE= < 149.180> * * * * * * * * * * * * * * * * * * * * * * * * * * * ****** * * .;, y, y, y, y, * * * * y, y, y, y. y, y, y, y^ y, y, y, y^ y, y, y. y, y, y, y, y, y^ y^ y, y^ y^ y^ y. y^ y^ y_. y^ y. y^ y^ FLOW PROCESS FROM NODE 3056.10 TO NODE 3054.00 IS CODE = 1 ELEVATION = 155.00 (FLOW IS SUPERCRITICAL) UPSTREAM NODE 3054.00 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 109.61 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.28 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.50 DISTANCE FROM CONTROL(FT) 0.000 0.007 FLOW DEPTH (FT) 0.503 0.494 VELOCITY (FT/SEC) 3.438 3.525 Page SPECIFIC ENERGY(FT) 0.687 0.687 PRESSURE+ MOMENTUM(POUNDS) 18.70 18.71 WEL3054 .OUT 0.028 0.485 3.617 0 688 18.75 0.066 0.476 3.712 0 690 18.80 0.122 0.467 3.812 0 693 18.88 0.198 0.458 3.917 0 696 18.98 0.298 0.449 4.028 0 701 19.11 0.423 0.440 4.144 0 707 19.26 0.578 0.431 4.266 0 713 19.45 0.767 0.422 4.395 0 722 19.66 0.995 0.412 4.531 0 731 19.90 1.268 0.403 4.675 0 743 20.18 1.594 0.394 4.827 0 756 20.49 1.982 0.385 4.988 0 772 20.85 2.445 0.376 5.159 0 790 21.24 2.999 0.367 5.340 0 810 21.67 3.663 0.358 5.533 0 834 22.16 4.467 0.349 5.738 0 860 22.69 5.449 0.340 5.957 0 891 23.28 6.668 0.331 6.192 0 926 23.92 8.214 0.322 6.442 0 966 24.63 10.238 0.312 6.712 1 012 25.41 13.025 0.303 7.001 1 065 26.27 17.212 0.294 7.313 1 125 27.20 24.848 0.285 7.649 1 194 28.24 109.610 0.283 7.719 1 209 28.45 NODE 3054.00 : HGL = < 155. 503>;EGL= < 155. 687> FLOWLINE= < 155.000> Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vf Vf Vf Vf Vr Vr Vf Vf Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vc Vf Vr Vf Vr Vr Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vc Vc Vc Vc Vf Vr Vc Vf Vr Vr Vr Ve Ve Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf Vc UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3054.00 FLOWLINE ELEVATION = 155.00 ASSUMED UPSTREAM CONTROL HGL = 155.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 WEST3172.0UT ************** ie**ie ******************** icic ************************** ************ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - WEST RANCH STREET STORM DRAIN LATERAL AT NODE 3172 * * B MAP DESIGN * Vc Vc Vc Vc Vc Vc Vt Vc Vc Vr Vf Ve Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vc Vc Ve Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vf Vc Vc Vc Vc Vr Vc Vc Vc Ve Vc FILE NAME: WEST3172.DAT TIME/DATE OF STUDY: 08:19 06/02/2014 Vc Vc Vc Vf Vf Vc Vf Vt Vc Vf Vr Vc Vc Vc Vc Ve Vc Vc Vc Ve Vc Vc Vr Vr Vc Vc Vr Vc Vc Vr Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Ve Vc Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Vc Vr Vr Vr Vr Ve Vf Vr Vf Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3160.10- 2.65* 240.90 0.73 81.52 } FRICTION 3172.00- 2.03* 172.06 0.89 DC 76.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Ve Ve Vf Vc Vr Ve Vr Ve Vc Ve Ve Vr Ve Ve Vr Ve Ve Vr Vf Ve Vr Vr Vr Ve Vr Vr Ve Ve Ve Vr Ve Vc Ve Vr Ve Ve Vr Vr Ve Vr Ve Vr Vr Vr Vr Ve Vc Ve Vr Vr Vc Ve Vc Ve Ve Vr Vr Vc Ve Ve Ve Ve Ve Ve Ve Vc Ve Ve Ve Ve Ve Vc Vc Vc Ve Ve Ve DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3160.10 FLOWLINE ELEVATION = 77.30 PIPE FLOW = 5.35 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 79.950 FEET NODE 3160.10 : HGL = < 79.950>;EGL= < 80.092>;FLOWLINE= < 77.300> Vt Vt * Vt * Vt * Vr * Vr * * * Vr Vr Vr * * * Vr Vr * Vr Vt * * * * Vt Vt * * Vf -A- Vr Vr Vt Vr * Vr * Vr Vr Vr Vr * Vr * * Vr * Vr Vr * * * * * * Vr * * * * * * Vr Vr * * Vr Vr * * * * Vr Vf FLOW PROCESS FROM NODE 3160.10 TO NODE 3172.00 IS CODE = 1 UPSTREAM NODE 3172.00 ELEVATION = 78.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 67.74 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.35)/( 105.045))**2 = 0.00259 HF=L*SF = ( 67.74)*(0.00259) = 0.176 NODE 3172.00 : HGL = < 80.126>;EGL= < 80.268>;FLOWLINE= < 78.100> * * * * Vt Vt * Vf Vf Vf * Vf Vr * * * Vf Vf * ic ********* ie* Vt * Vt * Vt Vt Vt Vt ic ******* * * ic * ***ie ************ * ie ic * Vt * Vt Vt * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3172.00 FLOWLINE ELEVATION = 78.10 Page 1 WEST3172.0UT ASSUMED UPSTREAM CONTROL HGL = 78.99 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 NEL3080.OUT ************ Vf ****************************************************** y, * y, yt y. y, y, y, yj yj. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN G - NELSON COURT STORM DRAIN LATERAL FROM NODE 3080 TO 3074 * * B MAP DESIGN Vt Vr * * * Vr Vr * Vr Vr Vr Vr Vr Vf * Vt Vt * * Vt * * Vt * Vt ic * ic * ic ie * ie * ic * ic ******* ic* * ic * Vr * * * Vr * * * * * Vr * Vr * Vr * Vr * * * Vr Vr * Vr Vr FILE NAME: NEL3080.DAT TIME/DATE OF STUDY: 11:02 06/02/2014 34 24 0 28* 71 64 34 24 0 49* 38 35 34 24 0 64*Dc 34 24 35 16 0 64 DC 34. 24 * * * * * ****** * * * * * * * * * * ***** Vr * * * * * * * Vr * * * * * * * * * ********* Vr * ******** * * * * * ****** * * * Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUMrPOUNDS^ 3074.10- 0.64 " ' ' } FRICTION 3082.00- 0.64 Dc } JUNCTION 3082.10- 0.64*Dc } FRICTION 3080.00- 0.73* MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION **************** * * * * Vr * * * * * * * * * * * * * * * * * * ****** * ********** * ******* * ****** * * * * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3074.10 FLOWLINE ELEVATION = 128.50 PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 128.620 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.12 FT.) IS LESS THAN CRITICAL DEPTH( 0.64 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3074.10 : HGL = < 128.780>;EGL= < 131.241>;FLOWLINE= < 128.500> Vr * Vr Vf * Vf * Vt Vt Vf Vr * * Vr * * Vr * * Vr * * Vr Vr Vr Vr * * Vr Vf Vt Vt Vt * * * * * * Vf Vt Vt * * * Vt * * Vt * Vr * Vr * Vf * * Vt * * * Vr * * Vr * * Vr Vr * * * Vt * * * Vr * FLOW PROCESS FROM NODE 3074.10 TO NODE 3082.00 IS CODE = 1 UPSTREAM NODE 3082.00 ELEVATION = 135.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 47.50 FEET MANNING'S N = 0.01300 Page 1 NEL3080.OUT NORMAL DEPTH(FT) 0.27 CRITICAL DEPTH(FT) = 0.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0.487 5 769 1.004 38 35 0.133 0.478 5 913 1.022 38 88 0.282 0.470 6 063 1.041 39 46 0.449 0.461 6 220 1.062 40 08 0.635 0.453 6 384 1.086 40 75 0.842 0.444 6 557 1.112 41 48 1.074 0.435 6 738 1.141 42 25 1.333 0.427 6 928 1.172 43 08 1.624 0.418 7 128 1.208 43 98 1.951 0.410 7 338 1.246 44 93 2.319 0.401 7 560 1.289 45 96 2.734 0.392 7 794 1.336 47 06 3.206 0.384 8 041 1.388 48 24 3.743 0.375 8 302 1.446 49 51 4.359 0.366 8 579 1.510 50 86 5.070 0.358 8 872 1.581 52 32 5.898 0.349 9 183 1.660 53 88 6.872 0.341 9 514 1.747 55 55 8.033 0.332 9 867 1.845 57 36 9.444 0.323 10 243 1.953 59 29 11.197 0.315 10 644 2.075 61 38 13.452 0.306 11 074 2.212 63 63 16.506 0.298 11 535 2.365 66 06 21.027 0.289 12 031 2.538 68 68 29.159 0.280 12 564 2.733 71 53 47.500 0.280 12 585 2.741 71 64 NODE 3082.00 : HGL = < 135.897>;EGL= < 136.414>;FLOWLINE= < 135.410> Vt Vt * * Vf Vf Vf Vr * * * * Vr Vr Vr Vr Vr Vt * Vt Vt * Vr Vr Vr * Vr Vf Vt Vf *********** ie ie * * * ic ic ic * * * ic * ic * * * * ic ic ic ic * Vt Vt * Vt Vt Vt * Vt Vt * Vt Vt Vt * FLOW PROCESS FROM NODE 3082.00 TO NODE 3082.10 IS CODE = 5 UPSTREAM NODE 3082.10 ELEVATION = 136.18 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 DIAMETER ANGLE (INCHES) 18.00 18,00 0,00 0,00 FLOWLINE FLOW (CFS) 2,87 2.87 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== (DEGREES) ELEVATION 90.00 136.18 135.41 0.00 0.00 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 0.64 0.64 0.00 0.00 (FT/SEC) 3.963 3.963 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00510 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00510 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00510 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.750)+( 0.020)+( 0.000) = 0.770 NODE 3082.10 : HGL = < 136.823>;EGL= < 137.067>;FLOWLINE= < 136.180> Vf Vf Vf * * Vr Vr ****** * * Vr Vr * * Vr * * Vt Vr Vt Vt ic *** ie *** icic ie* *ieic* **** ic* ic* *** ic ********** ic Vr Vt * Vt Vt * * * Vr Vr * * * Page 2 NEL3080.OUT FLOW PROCESS FROM NODE 3082.10 TO NODE 3080.00 IS CODE = 1 UPSTREAM NODE 3080.00 ELEVATION = 136.17 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.17 FEET MANNING'S N = 0.01300 *WARNING -- PIPE INVERT SLOPE IS LESS THAN .0001. AND DEFAULTED TO .0001 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 1.50 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 0.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.643 3.962 0.887 34.24 0.730 0.678 3.701 0.890 34.40 3.044 0.712 3.472 0.899 34.83 5.170 0.730 3.363 0.905 35.16 NODE 3080.00 : HGL = < 136. 900>;EGL= < 137.075>;FLOWLINE= < 136.170> Vc Vt Vc Vc Vc Vc Vc Vf Vc Vf Vc Vr Vr Vr Vr Vr Vr Vf Vc Vc Vc Vc Vc Vf Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Vc Ve Vc Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vr Vc Vc Vc Vc Vc Vf Vc Vc Vr Vc Vr Vc Vc Vf Vc Ve Vc Vr Vr Vr Vr Vr Vr Vr Vf Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3080.00 FLOWLINE ELEVATION = 136.17 ASSUMED UPSTREAM CONTROL HGL = 136.81 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 WEL3086.OUT *ic ********************** ic**ic*ic ********************************************** ic* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS *VrVrVr***Vr*VrVrVr***Vr*VrVrVrVr*Vf Vr** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA ^ * BASIN G - WELLSPRING STREET STORM DRAIN LATERAL AT NODE 3086 ^ * B MAP DESIGN • Vf Vr Vf Vc Vc Vc Vc Vf Vr Vr Vc Vc Vc Vf Vr Vr Vr Vf Vc Vr Vt Vr Vc Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vf Vr Vr Ve Vc Vc Vr Vc Vc Vc Vr Vr Vr Vr Vr Vt Vf Vr Vf Vr Vc Vc Vc Vr Vt Vr Vr Vf Vr Vr Vt Vr Vr Vr Vc Vr Vr Vr Vt Vr Ve FILE NAME: WEL3086.DAT TIME/DATE OF STUDY: 11:09 06/02/2014 Vf Vr Vr Vr Vr Vr Vf Vr Vr Vr Vf Vr Vr Vf Vr Vf Vr Vr Vr Vr Vf Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vc Vr Vf Vc Vr Ve Vc Vr Vr Vr Vr Vr Vr Vr Vr Vc Vr Vr Vt Vr Vr Vf Vr Vf Vr Vr Vr Vf Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3084.10- 0.57 25.63 0.27* 47.99 } FRICTION 3086.00- 0.57*Dc 25.63 0.57*Dc 25.63 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vf Vf Ve Ve Ve Vc Vc Vc Vt Ve Ve Vc Ve Vc Vc Ve Ve Vc Ve Ve Vc Vc Ve Ve Vc Vc Ve Vc Vc Ve Vt Vc Vc Vr Vc Vr Vr Vr Vr Vc Vr Vr Vr Vr Vr Vr Vr Vr Ve Vc Vt Vr Vf Vr Vr Ve Ve Vc Vc Vr Vr Vr Vr Vt Vf Vf Vr Vr Ve Vf Vr Ve Vc Ve Vc Vt Ve Ve DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3084.10 FLOWLINE ELEVATION = 121.37 PIPE FLOW = 2.29 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 120.660 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.71 FT.) IS LESS THAN CRITICAL DEPTH( 0.57 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3084.10 : HGL = < 121.642>;EGL= < 123.346>;FLOWLINE= < 121.370> * Vr * Vr * Vr * * Vr * Vr Vr Vr * Vr Vt Vt Vt * Vf Vf * * Vt * Vf Vt Vf * * Vr * * Vr * Vr Vr Vr ************** ie * ie ie ic * ic ic ic ic * * * * Vr Vt Vt * ******** FLOW PROCESS FROM NODE 3084.10 TO NODE 3086.00 IS CODE = 1 UPSTREAM NODE 3086.00 ELEVATION = 122.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.29 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.18 CRITICAL DEPTH(FT) = 0.57 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.57 Page 1 WEL3086.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 .572 3.698 0.784 25.63 0.002 0 .556 3.839 0.785 25.66 0.007 0 .541 3.990 0.788 25.76 0.017 0 .525 4.152 0.793 25.93 0.032 0 .509 4.328 0.800 26.18 0.054 0 .494 4.517 0.811 26.52 0.082 0 .478 4.721 0.824 26.94 0.118 0 462 4.943 0.842 27.46 0.164 0 447 5.185 0.865 28.09 0.221 0 431 5.448 0.892 28.84 0.293 0 416 5.737 0.927 29.72 0.381 0 400 6.054 0.969 30.75 0.490 0 384 6.403 1.021 31.94 0.625 0 369 6.789 1.085 33.32 0.791 0 353 7.219 1.163 34.90 0.997 0 337 7.698 1.258 36.73 1.255 0 322 8.236 1.376 38.84 1.582 0 306 8.844 1.521 41.28 1.999 0 290 9.534 1.703 44.09 2.544 0 275 10.323 1.930 47.37 2.670 0 272 10.472 1.976 47.99 NODE 3086.00 : HGL = < 123. 272>;EGL= < 123.484>;FL0WLINE= < 122.700> Ve Vr Vc Vf Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vc Vf Vc Vc Vc Vc Vc Ve Vc Vc Vc Ve Vc Vc Vc Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vf Vr Vr Vr Vr Vr Vr Vf Vr Vc Vf Vr Ve Vc Vc Ve Vc Vc Vc Vc Vc Vf Vc Ve Vc Vc Vc Vc Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3086.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 122.70 123.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WEL3092.OUT ************ Vf ************* Vr ************************* Vt * Vf ********************** * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - WELLSPRING STREET STORM DRAIN LATERAL AT NODE 3092 * * B MAP DESIGN * Vf ****** ic ic ic * ie * ie * * ic ic ic * ic ic ic ie ie ic ic ic * ic ic ic * ic ic ie ic * icicic** ic ic * ic ic ic * ****** ic ie ic ic Vr * Vr Vr * * * Vr Vr Vr * Vr Vr Vr FILE NAME: WEL3092.DAT TIME/DATE OF STUDY: 11:11 06/02/2014 Vr * Vr Vr Vr Vr * Vt Vt * Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vf * * * * Vt Vt Vt * Vt Vt Vf icic ******** icic ******** ic* ic ie ie*** ie ic ic * ic ie ie ic * ic icic**** ic ic GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3084.10- 0.67 37.98 0.49* 44.03 } FRICTION 3092.00- 0.67*Dc 37.98 0.67*Dc 37.98 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vt Vt Vt Vf Vf * * Vr * Vr Vr Vr * Vt Vr Vr Vt Vt Vt Vf Vt Vr * Vr Vr Vr Vr Vr Vr * Vr Vt Vt Vt Vt Vf Vt Vt Vt Vt Vt Vf Vr * Vf Vr Vr Vt * * Vf Vt * Vf Vf Vt Vr * * Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vr Vf Vf * Vf Vf Vf Vt Vf DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3084.10 FLOWLINE ELEVATION = 121.37 PIPE FLOW = 3.11 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 120.660 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.71 FT.) IS LESS THAN CRITICAL DEPTH( 0.67 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3084.10 : HGL = < 121.856>;EGL= < 122.467>;FL0WLINE= < 121.370> Vf Vr Vr Vr Vr Vr * * Vf * Vf * * Vt Vf Vt * Vf Vf * Vr Vr Vr Vr Vr * * * Vr * * * Vr Vr * Vr * Vr * Vr * Vr Vr Vf * * * Vf * * Vf * * Vf Vt * * Vt * Vt * Vt * * Vf Vf Vf * Vt Vf * Vf Vr * * Vr * Vr FLOW PROCESS FROM NODE 3084.10 TO NODE 3092.00 IS CODE = 1 UPSTREAM NODE 3092.00 ELEVATION = 121.91 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 3.11 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 27.53 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) = 0.67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 Page 1 WEL3092.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM CONTROL(FT) 0.000 0.013 0.055 0.128 0.236 0.382 0.570 0.806 1.094 1.443 1.861 2.357 2.943 3.635 4.452 5.419 6.567 7.942 9.605 11.646 14.205 17.518 22.025 27.530 FLOW DEPTH (FT) 0.671 0.663 0.655 0.647 0.638 0.630 0.622 0.614 0.606 0.598 0.590 0.582 0.574 0.566 0.557 0.549 0.541 0.533 0.525 0.517 0.509 0.501 0.493 0.486 VELOCITY (FT/SEC) 4.063 4.128 4.196 4.265 4.337 4.410 4.487 4.566 4.647 4.732 4.819 4.909 5.003 5.100 5 5, 5, 5, 5, .200 .304 .412 .525 ,641 5.762 5.888 6.019 6.156 6.272 SPECIFIC ENERGY(FT) 0.927 0.928 0.928 0.929 0.931 0.933 0.935 0.938 0.942 0.946 0.951 0.956 0.962 0.970 0.978 0.986 0.996 1.007 1.019 1.033 1.047 1.064 1.081 1.097 PRESSURE+ MOMENTUM(POUNDS) 37.98 37.99 38.01 38.06 38.13 38.21 38.32 38.45 38.60 38.77 38.97 39.19 39.43 39.71 40.01 40.34 40.69 41.08 41.50 41.96 42.45 42.97 43.54 44.03 NODE 3092.00 : HGL = < 122.581>;EGL= < 122.837>;FLOWLINE= < 121.910> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, y, y, y, y, y, y, y, y, y^ y^ y, y^ y^ y. y^ y^ y^ y^ y^ ^ ^ ^ _^ ^. ^ ^ ^.^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3092.00 FLOWLINE ELEVATION = 121.91 ASSUMED UPSTREAM CONTROL HGL = 122.58 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 BASING4.0UT ******** * * * * ******************************ie***ic***ic*-k****ic**ic***ic**i,*ic**ic**itit* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN G - W RANCH ST STORM DRAIN NORTH OF ROBERTSON UP TO GAGE * B MAP DESIGN * * * * * * * ******** * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, y, y, y, y, y, y, y, y, y. y^ y, y, y^ y^ y^ y^ y^ y, y^ y^ y^ ^ ^ ^.^ ^ FILE NAME: BASING4.DAT TIME/DATE OF STUDY: 13:30 06/02/2014 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y, y, y, ******** * * * * * * * * * * * y, y, y, y, y, y, y, y, y^ y, y, GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 334.10- 1.38 327.60 0.64* 631 56 } FRICTION 3152.00- 1.38*Dc 327.60 1.38*Dc 327.60 } JUNCTION 3152.10- 1.89* 285.27 0.65 205 97 } FRICTION } HYDRAULIC JUMP 3136.00- 1,02 DC 155,96 0,58* 233 58 } JUNCTION 3136.10- 1.02 DC 184.61 0.66* 204 19 } FRICTION 3134.00- 1.09*DC 182.72 1.09*Dc 183 31 } JUNCTION 3134.10- 1,46 209,97 0,85* 242 32 } FRICTION 3132,00- 1.24 DC 201,47 1,00* 214 51 } JUNCTION 3132.10- 1.24 DC 201,47 0,85* 240 68 } FRICTION _3130^00- 1,24*DC 201,47 l,24*Dc 201,47 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS, JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION *************************************y^y.y,y,y,y,y,y,y^y,y,y,y^y,y,y,y^y.y^y^y^^^^^,^^^^,^^.^^^^^^^^^,^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 334,10 FLOWLINE ELEVATION = 92,53 PIPE FLOW = 18,65 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 82.420 FEET *N0TE: ASSUMED DOWNSTREAM CONTROL DEPTH(-10.11 FT.) IS LESS THAN CRITICAL DEPTH( 1.38 FT.) Page 1 BASING4.0UT ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 334.10 : HGL = < 93.168>;EGL= < 97.645>;FL0WLINE= < 92.530> ***icie****ic***********ic *********** ie***ie ************************** ie****ic*ic**ic**ic FLOW PROCESS FROM NODE UPSTREAM NODE 3152.00 334.10 TO NODE 3152.00 IS CODE = 1 ELEVATION = 100.37 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.65 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 80.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.61 CRITICAL DEPTH(FT) 1.38 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.383 5.854 1.916 327.60 0.015 1.352 6.030 1.917 327.87 0.062 1.321 6.216 1.922 328.70 0.146 1.290 6.413 1.929 330.11 0.270 1.259 6.623 1.941 332.16 0.442 1.228 6.846 1.956 334.86 0.667 1.197 7.084 1.977 338.27 0.954 1.166 7.338 2.003 342.44 1.313 1.135 7.610 2.035 347.42 1.754 1.104 7.900 2.074 353.26 2.291 1.073 8.212 2.121 360.05 2.943 1.042 8.547 2.177 367.85 3.730 1.011 8.908 2.244 376.76 4.679 0.980 9.298 2,323 386.88 5.826 0.949 9.720 2.417 398.33 7.215 0.918 10.178 2.527 411.25 8.906 0.886 10.676 2.657 425.79 10.982 0.855 11.219 2.811 442.13 13.560 0.824 11.814 2.993 460.49 16.811 0.793 12.467 3.208 481.13 21.004 0.762 13.187 3.464 504.35 26.590 0.731 13.985 3.770 530.50 34.420 0.700 14.870 4.136 560.02 46.405 0.669 15.860 4.577 593.44 68.687 0.638 16.970 5.113 631.38 80.560 0.638 16.975 5.115 631.56 NODE 3152.00 : HGL = < 101.753>;EGL= < 102.286>;FLOWLINE= < 100.370> t * * * * Vt * Vr * * Vr * * Vr * * Vr Vr * Vt Vr * Vt * Vt ********** ic * * Vt * * Vt Vr Vr Vr ******* ****ie*****ic ******** * * ic * ic * ic FLOW PROCESS FROM NODE 3152.00 TO NODE 3152.10 IS CODE = 5 UPSTREAM NODE 3152.10 ELEVATION = 100.70 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 DIAMETER ANGLE (INCHES) 36.00 36.00 18.00 0.00 FLOWLINE FLOW (CFS) 10.46 18.65 8.12 0.00 0.07===Q5 EQUALS BASIN INPUT=== (DEGREES) ELEVATION 0.00 100.70 100.37 90.00 102.20 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.02 1.38 1.10 0.00 (FT/SEC) 2.232 5 5 0 856 825 000 Page 2 BASING4.0UT JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00047 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00413 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00230 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.106 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.264)+( 0.009)+( 0.106) = 0.380 NODE 3152.10 : HGL = < 102.588>;EGL= < 102.665>;FLOWLINE= < 100.700> ********************** **********************ic****ic**ic****ic*ic****ic*****ic***ie*** FLOW PROCESS FROM NODE 3152.10 TO NODE 3136.00 IS CODE = 1 UPSTREAM NODE 3136.00 ELEVATION = 107.30 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.46 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 292.02 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.65 CRITICAL DEPTH(FT) 1.02 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.584 10.812 2.400 233.58 1.715 0.586 10.737 2.378 232.23 3.487 0.589 10.663 2.356 230.91 5.323 0.592 10.590 2.335 229.60 7.229 0.595 10.518 2.314 228.32 9.211 0.598 10.447 2.293 227.05 11.277 0.601 10.376 2.273 225.80 13.436 0.603 10.307 2.254 224.57 15.700 0.606 10.238 2.235 223.35 18.080 0.609 10.170 2.216 222.15 20.592 0.612 10.103 2.198 220.97 23.254 0.615 10.036 2.180 219.81 26.089 0.618 9.971 2.162 218.66 29.123 0.620 9.906 2,145 217.53 32.393 0.623 9.842 2,128 216.42 35.944 0.626 9,778 2,112 215.32 39.833 0.629 9,715 2.095 214.24 44.143 0.632 9,653 2.080 213.17 48.985 0.635 9,592 2.064 212.12 54.523 0.637 9,531 2.049 211.08 61.015 0.640 9,471 2.034 210.06 68.887 0.643 9.412 2.019 209.05 78.942 0.646 9.353 2.005 208.05 92.985 0.649 9.295 1.991 207.07 116.800 0.652 9.238 1.977 206.11 292.020 0.652 9.230 1.975 205.97 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC Page 3 PRESSURE+ BASING4 OUT CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.888 2.232 1.966 285.27 1.408 1.854 2.281 1.934 276.26 2.806 1.819 2.332 1.903 267.52 4.194 1.784 2.386 1.873 259.05 5.570 1.750 2.443 1.843 250.86 6.933 1.715 2.503 1.813 242.95 8.281 1.681 2.566 1.783 235.33 9.614 1.646 2.633 1.754 228.00 10.929 1.612 2.703 1.725 220.97 12.225 1.577 2.777 1.697 214.25 13.499 1.542 2.856 1.669 207.83 14.748 1.508 2.939 1.642 201.73 15.970 1.473 3.027 1.616 195.96 17.161 1.439 3.121 1.590 190.52 18.317 1.404 3.221 1.565 185.42 19.434 1.370 3.327 1.541 180.67 20.505 1.335 3.439 1.519 176.29 21.524 1.300 3.560 1.497 172.29 22.484 1.266 3.689 1.477 168.68 23.374 1.231 3.827 1.459 165.47 24.184 1.197 3.975 1.442 162.69 24.898 1.162 4.134 1.428 160.35 25.501 1.128 4.306 1.416 158.48 25.971 1.093 4.491 1.406 157.11 26.279 1.058 4.691 1.400 156.26 26.392 1.024 4.909 1.398 155.96 292.020 1.024 4.909 1.398 155.96 PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 13.88 FEET UPSTREAM OF DEPTH = 1.532 FEET, UPSTREAM CONJUGATE DEPTH NODE 3152.10 = 0.652 FEET NODE 3136.00 : HGL = < 107.884>;EGL= < 109.700>;FL0WLINE= < 107.300> * * Vr Vr Vr Vr Vr * * Vr Vr * * Vr Vr * Vr ic*** ie ie ie*** ie * * ic ic ic * * ic Vt * * Vt Vt * * * Vt * Vt Vt ********* * * it * * * ic * * ic Vr Vr Vr Vr Vr * Vr * Vr Vr * FLOW PROCESS FROM NODE 3136.00 TO NODE 3136.10 IS CODE = 5 UPSTREAM NODE 3136.10 ELEVATION = 108.30 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 10.46 10.46 0.00 0.00 DIAMETER (INCHES) 36.00 36.00 0.00 0.00 ANGLE (DEGREES) 28.00 0.00 0.00 FLOWLINE ELEVATION 108.30 107.30 0.00 0.00 CRITICAL DEPTH(FT.) 1.02 1.02 0.00 0.00 VELOCITY (FT/SEC) 9.126 10.815 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02220 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03590 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02905 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.116 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.434)+( 0.116)+( 0.000) = 0.551 NODE 3136.10 : HGL = < 108.957>;EGL= < 110.250>;FL0WLINE= < 108.300> Vf Vf Vr Vf Vf Vf Vr Vr Vf Vc Vf Vf Vc Vf Vf Vc Ve Vc Vf Vf Vf Vf Vf Vf vt Vr Vr Vr Vr Vr Vf Vc Vc Vf Vr vt Vf Vc Vr Vf Vf Vf Ve Vr vt Vr vt Vf Vr Vr Vf Vf Vf Vr Vf FLOW PROCESS FROM NODE UPSTREAM NODE 3134.00 3136.10 TO NODE 3134.00 IS CODE = 1 ELEVATION = 111.04 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) Page 4 PIPE FLOW PIPE LENGTH = BASING4.0UT 11.87 CFS PIPE DIAMETER = 36.00 INCHES 85.72 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.64 CRITICAL DEPTH(FT) 1.09 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.091 5.109 1.497 183.31 0.027 1.073 5.226 1.497 183.42 0.099 1.055 5.348 1.499 183.70 0.223 1.037 5.476 1.503 184.16 0.403 1.019 5.609 1.508 184.81 0.647 1,001 5.748 1.514 185.66 0.962 0,983 5.894 1.522 186.71 1.357 0,964 6.046 1.533 187.98 1.842 0,946 6.206 1.545 189.47 2.432 0,928 6.373 1.560 191.19 3.139 0,910 6.549 1.577 193.17 3.984 0,892 6.734 1.597 195.40 4.988 0,874 6.928 1.620 197.91 6.181 0,856 7.133 1.647 200.72 7.596 0,838 7.348 1.677 203.83 9.281 0,820 7.576 1.712 207.27 11.296 0,802 7.816 1.751 211.05 13.724 0,784 8.070 1.796 215.22 16.680 0.766 8.339 1.846 219.78 20.335 0.748 8.624 1.903 224.76 24.950 0.730 8.927 1.968 230.21 30.969 0.712 9.250 2.041 236.15 39.219 0,693 9.593 2.123 242.63 51.563 0,675 9.959 2.216 249.69 73.975 0,657 10.351 2.322 257.38 85.720 0,657 10.352 2.322 257.42 NODE 3134.00 : HGL = < 112.131>;EGL= < 112.537>;FLOWLINE= < 111.040> Vr Vr * Vt * * Vr * Vr ****** * ic * * * ie * ie ******* * *** * * Vr Vr * * * * Vr * Vr * * * Vr * Vr Vr * ****** ic * Vr * Vr * * Vt * Vr ******** ic FLOW PROCESS FROM NODE 3134.00 TO NODE 3134.10 IS CODE = 5 UPSTREAM NODE 3134.10 ELEVATION = 111.37 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.84 11.84 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== DIAMETER ANGLE (INCHES) 24.00 36.00 0.00 0.00 (DEGREES) ELEVATION 83.00 111.37 111.04 64.00 0.00 0.00 0.00 FLOWLINE CRITICAL VELOCITY DEPTH(FT.) 1.24 1.09 0.00 0.00 (FT/SEC) 9.333 5.098 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01172 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.047 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.990)+( 0.047)+( 0.000) = 1.036 01950 00395 0.000 FEET NODE 3134.10 : HGL = < 112.218>;EGL= < 113.571>;FLOWLINE= Page 5 < 111.370> BASING4.0UT VfVeVfVtVfVfVr':ft:VrVeVfVfVcVcVcVcVeVeVcVeVcVfVfVfVrVeVfVfVrVtVrVrVrVtVrVfVfVrVrVfVfVfVcVcVeVfVcVcVfVcVr^ FLOW PROCESS FROM NODE 3134.10 TO NODE 3132.00 IS CODE = 1 UPSTREAM NODE 3132.00 ELEVATION = 115.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.84 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 207.07 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.24 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1 000 7 533 1.882 214 .51 0.899 0 994 7 594 1.890 215 .30 1.865 0 988 7 656 1.898 216 .11 2.901 0 981 7 719 1.907 216 .95 4.016 0 975 7 783 1.916 217 .82 5.218 0 969 7 848 1.926 218 .72 6.515 0 962 7 914 1.936 219 .65 7.917 0 956 7 982 1.946 220 .60 9.438 0 950 8 050 1.957 221 .59 11.092 0 943 8 120 1.968 222 .62 12.896 0 937 8 190 1.979 223 .67 14.871 0 931 8 263 1.992 224 .76 17.043 0 924 8 336 2.004 225 .88 19.444 0 918 8 410 2.017 227 .03 22.113 0 912 8 486 2.031 228 .22 25.103 0 906 8 563 2.045 229 .45 28.483 0 899 8 642 2.060 230 .71 32.343 0 893 8 722 2.075 232 .01 36.813 0 887 8 803 2.091 233 34 42.084 0 880 8 886 2.107 234 72 48.448 0 874 8 971 2.124 236 13 56.398 0 868 9 057 2.142 237 59 66.856 0 861 9 144 2.161 239 09 81.897 0 855 9 233 2.180 240 .62 108.174 0 849 9 324 2.200 242 .21 207.070 0 848 9 331 2.201 242 .32 NODE 3132.00 : HGL = < 116. 510>;EGL= < 117.392>;FL0WLINE= < 115.510 Vc Vr Vt Vf Vf Vf Vr Vr Vr Vf Vr Vr Vr Vr Vf Vf Vc Vc Vc Vt Vc Vc Vf Vr Vr Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vc Vc Vf Vc Vc Vc Vc Vt Vc Vc Vr Vc Vc Vr Vr Vr Vr Vr Vr Vr Vt Ve Vr Vr Vr Vr Vc Vc Vc Vc ^ Vc Vc Vc Ve Vc Vc Vc Vr Vr FLOW PROCESS FROM NODE 3132.00 TO NODE 3132.10 IS CODE = 5 UPSTREAM NODE 3132.10 ELEVATION = 115.84 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 11.84 24.00 39.00 115.84 11.84 24.00 - 115.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.24 1.24 0.00 0.00 VELOCITY (FT/SEC) 9.240 7.535 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01897 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01095 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01496 Page 6 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES BASING4.0UT 4.00 FEET 0.060 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ( 0.569)+( 0.060)+( 0.000) = 0.629 NODE 3132.10 : HGL = < 116.695>;EGL= < 118.020>;FL0WLINE= < 115.840> * Vr Vr ********** ***ic ic ie ic * ic ic ** ie ic * ic ******* ic *** * * * * ie***ic* icic ic* ******** ************** * ic FLOW PROCESS FROM NODE 3132.10 TO NODE 3130.00 IS CODE = 1 UPSTREAM NODE 3130.00 ELEVATION = 116.78 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.84 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 36.36 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) — 0.79 CRITICAL DEPTH(FT) 1.24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.24 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1 .236 5.808 1.760 201.47 0.026 1 .218 5.910 1.760 201.53 0.106 1 .200 6.016 1.762 201.73 0.247 1 .182 6.126 1.765 202.07 0.455 1 .164 6.241 1.769 202.55 0.737 1 .146 6.361 1.774 203.17 1.103 1 .128 6.485 1.781 203.96 1.561 1 .109 6.615 1.789 204.90 2.125 1 .091 6.750 1.799 206.02 2.808 1 073 6.891 1.811 207.30 3.627 1 055 7.039 1.825 208.78 4.603 1 037 7.193 1.841 210.44 5.761 1 019 7.354 1.860 212.31 7.131 1 001 7.522 1.881 214.38 8.755 0 983 7.699 1.904 216.68 10.682 0 965 7.884 1.931 219.22 12.981 0 947 8.077 1.961 221.99 15.742 0 929 8.281 1.995 225.03 19.093 0. 911 8.494 2.032 228.35 23.222 0. 893 8.719 2.074 231.95 28.422 0. 875 8.955 2.121 235.87 35.180 0. 857 9.204 2.173 240.11 36.360 0. 855 9.237 2.180 240.68 NODE 3130.00 : HGL = < 118.016>;EGL= < 118.540>;FLOWLINE= < 116.780> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****************** * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3130.00 FLOWLINE ELEVATION = 116.78 ASSUMED UPSTREAM CONTROL HGL = 118.02 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 7 GAG 314 8. OUT *****************************************ie***ic**ie***i,ic*ie*****ic***ic**ic***ic**ie** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - W RANCH ST & GAGE DR STORM DRAIN LATERAL AT NODE 3148 * * B MAP DESIGN * ******************** ****************y,y,y,y,y,y,y,y,y,y^y.y,y„,,y^y,y^y^y^y^y^^^^^^^^.^^^^^^^^^^^^^^^^^^ FILE NAME: GAG3148.DAT TIME/DATE OF STUDY: 13:40 06/02/2014 *^^**"***"***^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3136.10- 1,24 191,10 0,70* 275 90 } FRICTION __3148.00- l,24*Dc 191,10 1.24*Dc 191,10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * * ****** * * * ****** * * * * * * * * * * y. y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y. y^ y^ y, ^ y^ y^ y^ y^ ^ ^_ y, y, y, y, ^ y. y^ y^ y, y, y, y, y, y, y, y, y. y, y^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3136.10 FLOWLINE ELEVATION = 108.30 PIPE FLOW = 10.46 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 108.960 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.66 FT ) IS LESS THAN CRITICAL DEPTH( 1.24 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3136.10 : HGL = < 109.003>;EGL= < 111.574>;FLOWLINE= < 108.300> ****************************** *****y,y,y,yty,yty,y,y,y.y.y^y^y,y^y^y^y^y^^,,^^^^^^^^^,^^,^^,^^^,.^^^^,,^ FLOW PROCESS FROM NODE 3136.10 TO NODE 3148.00 IS CODE = 1 __UPSTREAM NODE 3148.00 ELEVATION = 113.31 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.46 CFS PIPE DIAMETER = 18.00 INCHES _PIPEJ-ENGTH = 90.25 FEET MANNING'S N = 0.01300 ° • CRITICAL~DEPTH(FT) "= l'24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = iTii ======= Page 1 GAG3148.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.243 6.678 1.936 191.10 0.021 1.221 6.790 1.937 191.19 0.087 1.198 6.910 1.940 191.47 0.201 1.176 7.037 1.945 191.95 0.369 1.153 7.173 1.953 192.64 0.597 1.131 7.317 1.963 193.54 0.892 1.108 7.471 1.975 194.67 1.261 1.086 7.634 1.991 196.04 1.714 1.063 7.808 2.010 197.65 2.264 1.041 7.992 2.033 199.53 2.923 1.018 8.188 2.060 201.69 3.711 0.996 8.397 2.091 204.15 4.647 0.973 8.619 2.127 206.92 5.759 0.951 8.855 2.169 210.03 7.080 0.928 9.107 2.217 213.50 8.654 0.906 9.375 2.271 217.36 10.539 0.883 9.662 2.334 221.64 12.815 0.861 9.969 2.405 226.36 15.593 0.838 10.298 2.486 231.57 19.035 0.816 10.650 2.578 237.31 23.397 0.793 11.028 2.683 243.62 29.103 0.771 11.435 2.802 250.56 36.956 0.748 11.873 2.938 258.19 48.753 0.726 12.346 3.094 266.57 70.273 0.703 12.858 3.272 275.78 90.250 0.703 12.864 3.274 275.90 NODE 3148.00 : HGL = < 114.553>;EGL= < 115.246>;FL0WLINE= < 113.310> r * Vr Vr Vr ****** ic ic ic * ic ic * * icicic** ie ic ie ie * ic ie * ie * * * ic ic * * ic * ic ic Vf Vf Vf Vf ic ******* ic Vr * Vt * Vf * * Vr * Vr Vr * * Vr Vr * * Vr Vr Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3148.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 113.31 114.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WEST3158.0UT Vf Vt Vr Vf Vr Vr Vc Vf Vf Vr Vf Vf Vf Vr Vf Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Vc Vc Vt Vr Vr Vr Vf Vf Vf Vf Vf Vr Vf Vf Vf Vr Vf Vf Vf Vf Vf Vf Vr Vf Vr Vr Vt :^ Vf Vf V PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN G - WEST RANCH STREET STORM DRAIN LATERAL AT NODE 3158 * * B MAP DESIGN * Vf Vf Vf Vc Vc Vc Vc Vc Vf Ve Vc Vc Vf Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Vc Ve Vr Vr Vc Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vc Vc Ve Ve Vc Vc Vc Vc Vr Vt Vr Vr Ve FILE NAME: WEST3158.DAT TIME/DATE OF STUDY: 13:44 06/02/2014 Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vc Vr Vt Vr Vr Vr Vr Vr Vf Vc Vr Vr Vr Vf Vr Vr Vr Vr Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Ve Vf Vc Ve Vc Vc Vc Vc Vf Vc Vc Vr Vc Vf Vr Vr Vr Vr Vf Vr Vf Vr Vr Vf Vf Vc Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3152.10- 1.89 216.12 0.62* 243.46 } FRICTION 3158.00- 1.17*Dc 156.77 1.17*Dc 156.77 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr * Vr Vr Vr * Vr Vr * Vr Vr Vr Vr * Vr * * Vr ****** ic**** * ic ************** ie * Vr * Vr * * Vr Vr Vr Vr * Vr Vr Vr * Vr Vr Vr * Vr * * Vt * Vt * Vt Vf * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3152.10 FLOWLINE ELEVATION = 100.70 PIPE FLOW = 9.08 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 102.590 FEET NODE 3152.10 : HGL = < 101.319>;EGL= < 104.026>;FLOWLINE= < 100.700> Vr Vr Vr * * * * * * * Vr * * * * * * * Vr * Vr * Vf Vt * * Vf Vf * Vr * Vr Vr ****** * Vr * * Vr * Vr * * Vf * Vt * * * * Vt Vt Vt * * Vf Vr * * * Vr * * Vr * Vr Vr Vr Vr Vf Vf * * FLOW PROCESS FROM NODE 3152.10 TO NODE 3158.00 IS CODE = 1 UPSTREAM NODE 3158.00 ELEVATION = 106.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.08 CFS PIPE PIPE LENGTH = 86.23 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.60 CRITICAL DEPTH(FT) = 1.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Page 1 CONTROL(FT) WEST3158 OUT CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 0.000 1.165 6.161 1.755 0.016 1.143 6.284 1.756 0.068 1.120 6.415 1.759 0.158 1.097 6.554 1.764 0.291 1.074 6.701 1.772 0.473 1.052 6.858 1.782 0.708 1.029 7.025 1.796 1.006 1.006 7.203 1.812 1.373 0.983 7.393 1.832 1.821 0.961 7.594 1.857 2.361 0.938 7.809 1.885 3.009 0.915 8.039 1.919 3.784 0.892 8.284 1.959 4.708 0.870 8.546 2.004 5.812 0.847 8.827 2.057 7.135 0.824 9.128 2.119 8.727 0.801 9.451 2.189 10.658 0.778 9.799 2.271 13.027 0.756 10.174 2.364 15.979 0.733 10.579 2.472 19.738 0.710 11.017 2.596 24.683 0.687 11.492 2.740 31.523 0.665 12.009 2.905 41.856 0.642 12.572 3.098 60.810 0.619 13.188 3.321 86.230 0.619 13.200 3.326 MOMENTUM(POUNDS) 156.77 156.86 157.12 157.58 158.23 159.10 160.18 161.50 163.06 164.89 167.00 169.42 172.15 175.23 178.69 182.55 186.86 191.64 196.95 202.83 209.35 216.57 224.56 233.42 243.26 243.46 NODE 3158.00 : HGL = < 107.665>;EGL= < 108.255>;FLOWLINE= < 106.500> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y, y. y, y, y. y, y, y, y. y, y^ y, y^ y^ y^ yj y^ y^ y^ y^ y^ y^ y^ ^. ^_ ^, ^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3158.00 FLOWLINE ELEVATION = 106.50 ASSUMED UPSTREAM CONTROL HGL = 107.67 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 *******************************************************************^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2 710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92 010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * Rancho Costera * * PA 8 N/W Slope SD Nodes 3126-3128 * * B Map Design * ************************************************************************** FILE NAME: PA8-312 6.DAT TIME/DATE OF STUDY: 10:36 07/31/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3128.00- 0.44 10.63 0.16* 28.94 } FRICTION 3126.00- 0.44*Dc 10.63 0.44*Dc 10.63 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3128.00 FLOWLINE ELEVATION = 132.60 PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 132.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.0 0 FT.) IS LESS THAN CRITICAL DEPTH( 0.44 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3128.00 : HGL = < 132.757>;EGL= < 135.662>;FLOWLINE= < 132.600> ****************************************************************************** FLOW PROCESS FROM NODE 3128.00 TO NODE 3126.00 IS CODE = 1 UPSTREAM NODE 3126.00 ELEVATION = 146.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 42 .30 FEET MANNING' S N = 0 . 01100 NORMAL DEPTH(FT) = 0 . 15 CRITICAL DEPTH(FT) = 0 .44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4 CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .437 3 .272 0 603 10 . 63 0 . 002 0 .425 3 .390 0 604 10 . 64 0 . 008 0 .414 3 . 518 0 606 10 . 68 0 . 020 0 .402 3 .654 0 610 10 . 75 0 . 037 0 .390 3 801 0 615 10 . 85 0 . 061 0 . 379 3 959 0 622 10 . 98 0 . 093 0 . 367 4 130 0 632 11. 14 0 . 134 0 . 355 4 316 0 645 11. 34 0 . 185 0 . 344 4 516 0 661 11. 58 0 . 250 0 . 332 4 735 0 680 11 . 87 0 . 330 0 . 320 4 974 0 705 12 . 21 0 .428 0 .309 5 235 0 735 12 . 60 0 . 549 0 .297 5 522 0 771 13 . 06 0 .698 0 .285 5 839 0 815 13 . 58 0 . 881 0 .274 6 190 0 869 14 . 18 1 . 108 0 . 262 6 580 0 935 14 . 88 1 .390 0 . 250 7 015 1. 015 15 . 67 1 . 744 0 .239 7 504 1 . 114 16 . 59 2 . 196 0 . 227 8 057 1 . 236 17 . 64 2 . 781 0 . 215 8 684 1 . 387 18 . 86 3 . 557 0 .204 9 403 1 . 577 20 . 28 4 . 622 0 . 192 10 231 1 . 819 21. 94 6 . 162 0 . 180 11 195 2 . 128 23 . 88 8 . 598 0 . 169 12 328 2 . 530 26 . 18 13 .286 0 . 157 13 673 3 . 052 28 . 94 42 .300 0 . 157 13 673 3 . 062 28 . 94 NODE 3126.00 HGL < 146.437>;EGL= < 146.603>;FLOWLINE= < 146.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 312 6.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 146.00 146.44 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *********************************************************^^*^^^^^J^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92 010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * Rancho Costera * * PA 8 S/W Slope SD Nodes 3144-3146 * * B Map Design * ******************************************************.^.*^^J^.^^^^^^^^^J^.^^^J^.^ FILE NAME: PA8-3144.DAT TIME/DATE OF STUDY: 17:00 07/30/2014 ********************************************************.j.^^^^^^^^^^^^j^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3146.00- 0.32 4.80 0.11* 13.35 } FRICTION 3144.00- 0.32*Dc 4.80 0.32*Dc 4.80 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************************************.j,*^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3146.00 FLOWLINE ELEVATION = 132.70 PIPE FLOW = 0.58 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 132.700 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH{ 0.3 2 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3146.00 : HGL = < 132.814>;EGL= < 134.957>;FLOWLINE= < 132.700> ***************************************************************J^.^^^^^^^J^^^^^^^ FLOW PROCESS FROM NODE 3146.00 TO NODE 3144.00 IS CODE = 1 UPSTREAM NODE 3144.00 ELEVATION = 146.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.58 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 37 . 95 FEET MANNING' S N = 0. 01100 NORMAL DEPTH(FT) = 0 .11 CRITICAL DEPTH(FT) = 0 . 32 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 32 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4 CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .316 2 .717 0 431 4 . 80 0 . 001 0 .308 2 .821 0 432 4 . 80 0 . 006 0 .300 2 . 931 0 433 4 . 82 0 . 013 0 . 291 3 050 0 436 4 . 85 0 . 024 0 .283 3 178 0 440 4 . 90 0 . 040 0 .274 3 316 0 445 4 . 96 0 . 061 0 .266 3 464 0 452 5 . 04 0 . 088 0 .257 3 625 0 462 5 . 13 0 . 123 0 . 249 3 800 0 473 5 . 24 0 . 165 0 .240 3 989 0 488 5 . 38 0 .218 0 . 232 4 197 0 506 5 . 54 0 .284 0 . 224 4 423 0 528 5 . 72 0 . 364 0 .215 4 673 0 554 5 . 93 0 .463 0 .207 4 948 0 587 6 . 18 0 . 585 0 . 198 5 252 0 627 6 . 46 0 . 735 0 . 190 5 590 0 675 6 . 79 0 . 923 0 . 181 5 968 0 735 7 . 16 1 . 159 0 . 173 6 392 0 808 7 . 58 1 .459 0 . 164 6 872 0 898 8 . 08 1 . 849 0 . 156 7 416 1 Oil 8 . 65 2 .365 0 . 148 8 039 1 152 9 . 31 3 . 075 0 . 139 8 758 1 331 10 . 08 4 . 101 0 . 131 9 595 1 561 10 . 99 5 . 724 0 . 122 10 577 1 861 12 . 06 8 . 848 0 . 114 11 745 2 257 13 . 35 37 . 950 0 . 114 11 745 2 . 257 13 . 35 NODE 3144.00 : HGL = < 146.316>;EGL= < 146.431>;FLOWLINE= < 146.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3144.00 FLOWLINE ELEVATION = 146.00 ASSUMED UPSTREAM CONTROL HGL = 146.32 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS GAGEEAST.OUT Vr * * Vr * Vr Vr ************** ie * ic Vt Vt ******** * * * * * ******** ie ** ic **1e ************* ic* ic ic ic ic ic ic ic * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS Vt * * Vt Vf Vf Vr * * Vr -A- * Vr Vr Vr Vr Vr Vr Vt Vt Vt Vf Vf Vr Vr Vf DESCRIPTION OF STUDY * * * * * * ******** * * * * Vr Vr Vr * Vr * * Vr * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN EAST OF LAND BRIDGE * B MAP DESIGN * Vt Vf Vr Vr Vr Vr Vr * * Vr Vr * Vr Vr Vf Vt Vt Vt Vf Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt * Vt Vt Vt Vf Vr * Vr Vr Vr Vr Vr Vr * Vr Vr Vt Vt Vf Vr Vr Vr * Vr ic * * ic * * ic * ic * * ie ie ic ic ic ic ic ic FILE NAME: GAGEEAST.DAT TIME/DATE OF STUDY: 15:45 06/02/2014 Vr Vr * Vr * Vr Vr Vf * Vt Vt Vt * Vt Vt Vt * Vt * Vt Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr * Vt Vt Vt Vt Vt Vf * Vr Vr Vr * * Vt Vt Vf * Vf * Vt Vf Vt * Vf * * Vt Vr Vr Vr Vr Vr * Vt Vf Vt Vf Vt * Vf Vr Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) 1.82* MOMENTUM(POUNDS) 216.00-2.36 1345.17 DEPTH(FT) 1.82* 1473.87 } FRICTION 221.00-2.36*DC 1345.17 2 .36*Dc 1345.17 } JUNCTION 221.10-3.72 1827.69 0 .82* 3634.34 } FRICTION 220.00-2.36 DC 1345.17 0 .89* 3263.83 } JUNCTION 220.10-2.94 1440.09 0 .79* 3776.93 } FRICTION 238.00-2.35*Dc 1334.99 2 .35*Dc 1334.99 } JUNCTION 238.10-3,70* 1421,57 1 44 780.43 } FRICTION } HYDRAULIC JUMP 257.00-1,84*DC 717,73 1 84*DC 717,73 } JUNCTION 257.10-2,30* 604,25 1 02 584,84 } FRICTION } HYDRAULIC JUMP 256.00-1,54 DC 464,63 0 94* 639.73 } JUNCTION 256.10-1,62 DC 482,25 1 10* 587,53 } FRICTION 253.00-1,62 DC 482,25 0 95* 683,55 } JUNCTION 253.10-1,55 DC 371,07 0. 79* 606,92 } FRICTION 275.00-1.55 DC 371.07 0. 81* 588,31 } JUNCTION 275.10-1.55 DC 371.07 0. 79* 609,81 } FRICTION 246.00-1.55 DC 371.07 1. 06* 444,02 } JUNCTION 246.10-1.98 316.42 0. 68* 431,08 Page 1 245,00- ] 245.10- ] 241.00- } FRICTION )- } JUNCTION )- } FRICTION 1.35*DC 2.12* 1.64* GAGEEAST.OUT 255.20 221.37 167.94 1.35*Dc 0.74 1.10 DC 255.20 160.30 131,77 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr * Vr Vt Vt Vt Vt Vt Vt Vf ******** * ic ie * ic * ic ic ic ic ic ic ic ic ic *ie******ic*ic***icie ******** ic * Vr * * Vr Vt * Vr Vr Vr Vr Vr * Vr Vr * * * Vt * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.00 FLOWLINE ELEVATION = 56.00 PIPE FLOW = 56.58 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.560 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.56 FT.) IS LESS THAN CRITICAL DEPTH( 2.36 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 216.00 : HGL 57.816>;EGL= < 59.772>;FLOWLINE= < 56.000> Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vt Vr Vr Vr Vr Vr * * Vr •* Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr ****** * ie ic ic ic ic ic ie * Vt Vt * Vt Vt Vf Vf Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr FLOW PROCESS FROM NODE 216.00 TO NODE 221.00 IS CODE = 1 UPSTREAM NODE 221.00 ELEVATION = 56.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.58 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 3.36 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.96 CRITICAL DEPTH(FT) 2.36 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.36 =================== ============== ========== ================== =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.355 8,214 3.404 1345.17 0.024 2.299 8.441 3.406 1346.30 0.099 2.243 8.683 3.415 1349.80 0.232 2.187 8.943 3.430 1355.82 0.430 2.131 9.220 3.452 1364.52 0.704 2.075 9.518 3.483 1376.08 1.065 2.019 9.838 3.523 1390.71 1.524 1.963 10.182 3.574 1408.66 2.099 1.907 10.552 3.637 1430.18 2.809 1.851 10.951 3.715 1455.58 3.360 1.816 11.221 3.772 1473.87 NODE 221.00 : HGL = < 58.755>;EGL= < 59.804>;FLOWLINE= < 56.400> Vt Vt Vf ****** * * ********** * * ie * ic ic * Vt ***** * Vt * Vt Vt * * Vt * * * Vt * * * * * Vt Vr * * Vr Vt * Vt Vt * * Vt Vt * Vr Vr icic**** Vt * * Vt Vt FLOW PROCESS FROM NODE 221.00 TO NODE 221.10 IS CODE = 5 UPSTREAM NODE 221.10 ELEVATION = 56.73 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) Page 2 GAGEEAST.OUT UPSTREAM 56.58 42.00 90.00 56.73 2.36 DOWNSTREAM 56.58 42.00 - 56.40 2.36 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 32.816 8.217 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.21534 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00502 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.11018 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.441 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = (14.030)+( 0.441)+( 0.000) = 14.471 NODE 221.10 : HGL = < 57.553>;EGL= < 74.274>;FLOWLINE= < 56.730> Vc Vc Ve Vc Ve Vc Ve Vc Vc Vc Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vc Vc Vc Vc Ve Vc Ve Vc Vc Vr Vc Ve Vr Vc Vc Vc Vc Ve Ve Vc Vc Vc Vc Vc Vc Vc Vr Vr Vt Ve Vr Vr Vt Vt Vr Vc Vc Vt Vc Vf Vr Vr Vr Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vc Vr Vr Vr Vr FLOW PROCESS FROM NODE UPSTREAM NODE 220.00 221.10 TO NODE 220.00 IS CODE = 1 ELEVATION = 68.97 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.58 CFS PIPE PIPE LENGTH = 47.23 FEET DIAMETER = 42.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.79 CRITICAL DEPTH(FT) = 2.36 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 0 890 29 358 14.281 3263,83 1.744 0 886 29 553 14,456 3284,75 3.576 0 882 29 751 14,634 3305,93 5.504 0 878 29 951 14,815 3327,38 7.537 0 873 30 153 15,000 3349,08 9.686 0 869 30 358 15,188 3371,06 11.961 0 865 30 565 15,381 3393,31 14.378 0 861 30 775 15.576 3415.84 16.953 0 857 30 987 15,776 3438.65 19.705 0 852 31 202 15,979 3461.75 22.656 0 848 31 420 16,187 3485.14 25.835 0 844 31 640 16,398 3508.83 29.275 0 840 31 863 16,614 3532.82 33.020 0 836 32 089 16,834 3557.12 37.121 0 832 32 317 17,059 3581.73 41.647 0 827 32 549 17,288 3606.66 46.689 0 823 32 783 17,522 3631.92 47.230 0 823 32 806 17,544 3634.34 NODE 220.00 : HGL = < 69. 860>;EGL= < 83,251>;FLOWLINE= < 68,970> Vf Vf Vf Vr Vt Vr Vr Vr Vf Vf V: Vf Vc Vc Vc Vc Ve Vf Vf Vr Vr Vr Vf Vr Vr Vr Vr Vt Vc Vc Vc Vf Vf Vc Vf Ve Vc Vc Vc Vr Vr Vr Vc Vr Vc Vc Vc Vc Vc Vr Vt Vc Vc Vf V Ve Ve Vr Vr Ve Vc Vc Vc Vr Vc FLOW PROCESS FROM NODE UPSTREAM NODE 220.10 220.00 TO NODE ELEVATION = 220.10 IS CODE = 5 69.30 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) UPSTREAM 56.26 DOWNSTREAM 56.58 ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 42.00 0.00 69.30 2.35 34.338 42.00 - 68.97 2.36 29.367 Page 3 GAGEEAST.OUT LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.32===Q5 EQUALS BASIN INPUT=== 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.24586 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.15755 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.20170 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.807 FEET ENTRANCE LOSSES = 2.678 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.666)+( 0.807)+( 2.678) = 5.152 NODE 220.10 : HGL = < 70.094>;EGL= < 88.403>;FLOWLINE= < 69.300> Vr Vr Vr Vr * Vr Vr Vr * * * * * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vt Vt * * Vt * * * * * Vt Vr * * Vr Vr * Vr * * * * * * Vr * Vr * * Vr * Vr * Vr * Vr * Vt Vt Vt Vt Vt Vt Vt Vt Vr Vr Vr Vr Vr * Vr FLOW PROCESS FROM NODE UPSTREAM NODE 238.00 220.10 TO NODE ELEVATION = 238.00 IS CODE = 1 93.96 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.26 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 100.31 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.79 CRITICAL DEPTH(FT) = 2.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.348 8.195 3.392 1334,99 0.014 2.286 8.448 3.395 1336,39 0.058 2.224 8.721 3.406 1340.73 0.137 2.162 9.015 3.425 1348.21 0.256 2.100 9.333 3.453 1359.08 0.421 2.037 9.677 3.492 1373.59 0.639 1.975 10.049 3.544 1392.05 0.920 1.913 10.453 3.611 1414.81 1.274 1.851 10.892 3.694 1442.27 1.714 1.789 11.371 3.798 1474.88 2.258 1.727 11.895 3.925 1513.20 2.927 1.664 12.468 4.080 1557.83 3.746 1.602 13.099 4.268 1609.53 4.750 1,540 13.795 4.497 1669.15 5.983 1.478 14.565 4.774 1737.73 7,504 1.416 15.421 5.110 1816.52 9.393 1.353 16.377 5.520 1907.01 11,762 1.291 17.449 6.022 2011.03 14,769 1.229 18.658 6.638 2130.84 18.655 1.167 20.031 7.401 2269.22 23.797 1.105 21.598 8.353 2429.69 30.838 1.042 23.402 9.552 2616.70 40.994 0.980 25.495 11.080 2836.04 57.021 0.918 27.947 13.053 3095.22 87.797 0.856 30.849 15.643 3404.30 100.310 0.794 34.328 19.103 3776.93 NODE 238.00 : HGL = < 96.308>;EGL= < 97.352>;FL0WLINE= < 93,960> Vt * Vt Vf * Vf * -A Vf * * * Vt Vf Vt Vt * Vf Vt Vt * Vf * * Vf Vr icic** ic ie * ic ic ic ic ****** ic * * Vf Vf Vr * Vr * * Vr * Vr * Vf * Vr Vf Vt Vf ****** ie ie * ic ic ic ic ic ic FLOW PROCESS FROM NODE 238.00 TO NODE 238.10 IS CODE = 5 UPSTREAM NODE 238.10 ELEVATION = 94.29 (FLOW UNSEALS IN REACH) Page 4 GAGEEAST.OUT CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) 35.14 42.00 90.00 56.26 42.00 21.14 30.00 90.00 0.00 0.00 0.00 FLOWLINE ELEVATION 94.29 93.96 95.29 0.00 CRITICAL DEPTH(FT.) 1.84 2.35 1.56 0.00 VELOCITY (FT/SEC) 3.652 8.197 5.395 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00122 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00500 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00311 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.835)+( 0.014)+( 0.000) = 0.849 NODE 238.10 : HGL 97.994>;EGL= < 98.201>;FLOWLINE= < 94.290> Vr Vt Vt * * Vt Vf * Vf Vf Vf Vr Vr Vf *ic*ic ********** * * * ic ic ic ie ***** ic * * ic ic ic Vr * Vr Vr ****** ****ic**ic ic ic ic * Vt Vr Vr * Vr Vr Vr Vr * Vr FLOW PROCESS FROM NODE UPSTREAM NODE 257.00 238.10 TO NODE ELEVATION = 257.00 IS CODE = 1 95.92 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 35.14 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 162.76 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.43 CRITICAL DEPTH(FT) = 1.84 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1.838 6.864 2.570 717.73 0.049 1.821 6.942 2.570 717.82 0.202 1.805 7.022 2.571 718.09 0.470 1.789 7.103 2.573 718.55 0.862 1.772 7.187 2.575 719.20 1.392 1.756 7.272 2.577 720.04 2.075 1.739 7.360 2.581 721.09 2.928 1.723 7.450 2.585 722.34 3.971 1.706 7. 542 2.590 723.80 5.228 1.690 7.636 2.596 725.47 6.728 1.674 7.732 2.603 727.36 8.505 1.657 7.831 2.610 729.48 10.601 1.641 7.933 2.618 731.82 13.068 1.624 8.037 2.628 734.40 15.973 1.608 8.144 2.638 737.23 19.401 1.591 8.253 2.650 740.30 23.462 1.575 8.366 2.662 743.63 28.309 1.559 8.481 2.676 747.22 34.155 1.542 8.600 2.691 751.09 41.309 1.526 8.722 2.708 755.23 50.255 1.509 8.847 2.725 759.65 61.802 1.493 8.976 2.745 764.37 77.464 1.476 9.108 2.765 769.40 100.648 1.460 9.244 2.788 774.74 Page 5 GAGEEAST.OUT 142 .281 1.444 9.384 2 .812 780.40 162 .760 1.444 9.384 2 .812 780.43 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) -3.70 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3.704 3.652 3 .911 1421.57 23 .148 3.500 3.652 3 .707 1299.34 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 23 .148 3.500 3.651 3 .707 1299.34 30 .438 3.434 3.667 3 642 1260.60 37 .497 3.367 3.697 3 579 1223.04 44 .419 3.301 3.736 3 517 1186.47 51 .232 3.234 3.783 3 456 1150.87 57 .948 3.168 3.836 3 396 1116.26 64 .575 3.101 3.897 3 337 1082.69 71 .113 3.035 3.964 3 279 1050.19 77 .562 2.968 4.038 3 221 1018.81 83 .920 2.902 4.119 3 165 988.59 90 .181 2.835 4.208 3 110 959.60 96 .338 2.769 4.304 3 056 931.87 102 .382 2.702 4.407 3 004 905.48 108 .301 2.636 4.520 2 953 880.47 114 079 2.569 4.641 2 904 856.90 119 698 2.503 4.772 2. 857 834.86 125 135 2.436 4.914 2. 811 814.40 130 361 2.370 5.067 2. 769 795.61 135 340 2.303 5.232 2. 729 778.57 140 026 2.237 5.411 2. 692 763.37 144 361 2.170 5.605 2. 658 750.12 148 268 2.104 5.816 2. 629 738.93 151 646 2.037 6.045 2. 605 729.94 154 356 1.971 6,294 2. 586 723.29 156 205 1.904 6.566 2. 574 719.15 156 907 1.838 6.864 2. 570 717.73 162 760 1.838 6.864 2. 570 717.73 PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 150.15 FEET UPSTREAM OF NODE 238.10 DEPTH = 2.067 FEET, UPSTREAM CONJUGATE DEPTH = 1.627 FEET NODE 257.00 : HGL = < 97.758>;EGL= < 98.490>;FLOWLINE= < 95.920> Vr * Vr Vr Vr Vr * Vr Vr Vr * Vr Vr Vr Vr Vr Vr * Vr * * * Vr * Vr Vf * Vf * * Vr Vr Vr * Vr Vr Vr * * * Vr Vt * * * Vt Vt Vt * * * Vf * * * * Vt Vt * * * Vt Vf Vr Vr * * Vr Vr * Vr Vt * * Vt Vt Vt Vt FLOW PROCESS FROM NODE 257.00 TO NODE 257.10 IS CODE = 5 UPSTREAM NODE 257.10 ELEVATION = 96.25 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 25.12 42.00 0.00 96.25 1.54 3.742 DOWNSTREAM 35.14 42.00 - 95.92 1.84 6.866 LATERAL #1 7.78 18.00 90.00 98.25 1.08 5.709 Page 6 GAGEEAST.OUT LATERAL #2 2.25 18.00 90.00 98.25 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0.57 3.679 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00105 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00414 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00260 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.270)+( 0.010)+( 0.000) = 0.281 NODE 257.10 : HGL = < 98.553>;EGL= < 98.771>;FLOWLINE= < 96.250> ! ic icic icic ******** icic** ie Vt Vt * * Vt Vt * * Vt Vt Vt * Vt * Vt Vt Vf Vt Vt Vr * * Vr Vr Vr Vr * * Vr * Vr Vr Vt * * Vt * * Vt * * Vt Vt Vt Vt * Vf Vr Vr * Vr Vr * Vr Vr Vf Vf Vf Vt FLOW PROCESS FROM NODE UPSTREAM NODE 256.00 257.10 TO NODE 2 56.00 IS CODE = 1 ELEVATION = 97.26 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2 5.12 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 67.29 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.07 CRITICAL DEPTH(FT) = 1.54 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.94 GRADUALLY VARIED FLOW PROFILE COMPUTED [NFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .938 12.114 3.218 639 .73 3 .087 0 .943 12.018 3.187 635 .73 6 .271 0 .948 11.922 3.157 631 .79 9 .561 0 .954 11.828 3.128 627 • 93 12 .967 0 .959 11.736 3.099 624 .13 16 .500 0 .964 11.645 3.071 620 .41 20 .172 0 .970 11.554 3.044 616 • 75 24 .001 0 975 11.466 3.018 613 15 28 .003 0 981 11.378 2.992 609 62 32 199 0 986 11.292 2.967 606 16 36 616 0 991 11.206 2.943 602 75 41 283 0 997 11.122 2.919 599 41 46 238 1 002 11.039 2.896 596 13 51 528 1 007 10.957 2.873 592 90 57 210 1 013 10.876 2.851 589 74 63 360 1 018 10.797 2.829 586 63 67 290 1 021 10.750 2.817 584 84 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM CONTROL(FT) 0.000 1.703 3.385 5.045 6.681 FLOW DEPTH VELOCITY (FT) 2.303 2.273 2.242 2.212 2.181 (FT/SEC) 3.740 3.798 3.857 3.919 3.983 Page SPECIFIC ENERGY(FT) 2.521 2.497 2.473 2.450 2.428 PRESSURE+ MOMENTUM(POUNDS) 604.25 594.39 584.82 575.55 566.59 GAGEEAST.OUT 8.292 2.151 4.050 2 .406 557.95 9.876 2.120 4.119 2 .384 549.62 11.430 2.090 4.190 2 .363 541.63 12.951 2.060 4.265 2 .342 533.97 14.439 2.029 4.342 2 .322 526.65 15.888 1.999 4.423 2 .303 519.69 17.297 1.968 4.507 2 .284 513.08 18.661 1.938 4.594 2 .266 506.84 19.977 1.907 4.685 2 .248 500.98 21.239 1.877 4.780 2 .232 495.51 22.443 1.846 4.878 2 216 490.44 23.583 1.816 4.981 2 201 485.78 24.652 1.785 5.089 2 188 481.53 25.643 1.755 5.201 2 175 477.73 26.546 1.725 5.319 2 164 474.37 27.352 1.694 5.442 2 154 471.48 28.049 1.664 5.570 2 146 469.07 28.623 1.633 5.705 2 139 467.16 29.060 1.603 5.846 2 134 465.77 29.338 1.572 5.994 2 130 464.92 29.437 1.542 6.149 2. 129 464.63 67.290 1.542 6.149 2. 129 464.63 PRESSURE+MOMENTUM DOWNSTREAM BALANCE OCCURS AT 3.13 FEET UPSTREAM OF DEPTH = 2.247 FEET, UPSTREAM CONJUGATE DEPTH NODE 257.10 = 1.019 FEET NODE 256.00 : HGL = < 98.198>;EGL= < 100.478>;FL0WLINE= < 97.260> Vt Vt Vt * Vt Vf Vf * Vt Vt * Vt -* Vf Vf Vf Vf Vr Vr Vr Vr Vr Vt Vt Vt Vf Vf Vr * Vr Vr Vr Vf Vr Vr * Vr Vr * * Vr Vr * Vr Vr Vr Vt Vt * Vt * Vr Vr Vr * * Vr Vf Vf * Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vr * Vr Vr Vr Vr Vr Vr FLOW PROCESS FROM NODE 256.00 TO NODE 256.10 IS CODE = 5 UPSTREAM NODE 256.10 ELEVATION = 97.76 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 25.12 36.00 0.00 97.76 25.12 42.00 - 97.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.62 1.54 0.00 0.00 VELOCITY (FT/SEC) 10.690 12.118 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01721 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02529 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02125 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.085 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.072)+( 0.085)+( 0.000) = 0.157 NODE 256.10 : HGL = < 98.860>;EGL= < 100.635>;FL0WLINE= < 97.760> Vr * Vr * Vr Vr * Vr * Vr * * * Vf Vf * Vr * Vr Vr * * Vr * Vr * Vr Vr Vf Vr Vr * Vr * Vr * Vr * * * * Vr * Vf * Vf * * * Vr Vr * * * * Vf * * * Vt * * * Vt Vt Vt Vr * Vr * * * * Vr * Vr * * FLOW PROCESS FROM NODE UPSTREAM NODE 253.00 256.10 TO NODE 253.00 IS CODE = 1 ELEVATION = 98.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.12 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 65.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.23 CRITICAL DEPTH(FT) = 1.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 Page 8 GAGEEAST.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 .950 13.071 3 .604 683.55 4.109 0 .961 12.858 3 .530 674.55 8.309 0 .972 12.651 3 .459 665.88 12.607 0 .984 12.450 3 .392 657.52 17.013 0 .995 12.255 3 329 649.46 21.538 1 .007 12.065 3 268 641.69 26.195 1 .018 11.881 3 211 634.20 30.999 1 029 11.702 3 157 626.98 35.966 1 041 11.527 3 105 620.02 41.117 1 052 11.357 3 056 613.32 46.477 1 064 11.192 3 010 606.85 52.076 1 075 11.031 2 966 600.62 57.948 1 086 10.875 2 924 594.62 64.139 1 098 10.722 2 884 588.84 65.670 1 100 10.687 2 875 587.53 NODE 253.00 : HGL = < 99.450>;EGL= < 102.104> FLOWLINE= < 98.500> Vc Vr Vf Vf Vf Vr Vf Vr Vr Vr Vr Vc Vc Vc Vc Vc Vr Vf Vf Vc Vc Vr Ve Vr Vr Vr Vr Vr Vf Vr Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Ve Ve Vc Ve Vc Vc Vc Vc Vc Vr Vc Vf Vc Vc Vc Ve Vc Ve Vc Vc Vc Ve Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Vc FLOW PROCESS FROM NODE 253.00 TO NODE 253.10 IS CODE = 5 UPSTREAM NODE 2 53.10 ELEVATION = 99.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOWLINE CRITICAL VELOCITY FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.62 24.00 0.00 99.50 1.55 16.163 25.12 36.00 - 98.50 1.62 13.075 6.50 18.00 90.00 100.00 0.99 5.278 0.00 0.00 0.00 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06276 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03006 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04641 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0,186 FEET ENTRANCE LOSSES = 0,000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.056)+( 0.186)+( 0.000) = 2.242 NODE 2 53.10 : HGL = < 100.289>;EGL= < 104.346>;FL0WLINE= < 99.500> Vc Vc Vr Vr Vr Vr Vr Vr Vr Vc Ve Vc Ve Vr Vc Vc Ve Vf Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Ve Vc Vc Vc Vc Ve Vc Vc Ve Ve Vc Vc Ve Ve Vc Vc Vc Vc Vc Vc Vc Vt Vc Vc Vc Vr Vt Vr Vr Vr Vr Vr Ve Vr Ve Vc Vr Ve Vr Ve Ve Vc Vc Vc Vr Vr i FLOW PROCESS FROM NODE 253.10 TO NODE 275.00 IS CODE = 1 UPSTREAM NODE 275.00 ELEVATION = 114.52 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.62 CFS PIPE PIPE LENGTH = 238.43 FEET DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.79 CRITICAL DEPTH(FT) = 1.55 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) Page SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) GAGEEAST.OUT 0.000 0 810 15.600 4.591 588.31 1.704 0 809 15.623 4.601 589.05 3.483 0 808 15.645 4.611 589.80 5.346 0 807 15.668 4.622 590.55 7.298 0 807 15.690 4.632 591.31 9.350 0 806 15.713 4.642 592.06 11.511 0 805 15.736 4.652 592.82 13.793 0 804 15.759 4.663 593.58 16.210 0 803 15.782 4.673 594.34 18.779 0 802 15.805 4.683 595.11 21.518 0 801 15.828 4.694 595.88 24.453 0 800 15.851 4.704 596.65 27.610 0 800 15.874 4.715 597.42 31.027 0 799 15.897 4.725 598.19 34.749 0 798 15.921 4.736 598.97 38.833 0 797 15.944 4.747 599.75 43.356 0. 796 15.967 4.757 600.53 48.422 0. 795 15.991 4.768 601.32 54.176 0. 794 16.014 4.779 602.10 60.832 0. 793 16.038 4.790 602.89 68.718 0. 793 16.062 4.801 603.68 78.388 0. 792 16.085 4.812 604.48 90.879 0. 791 16.109 4.823 605.27 108.521 0. 790 16.133 4.834 606.07 138.787 0. 789 16.157 4.845 606.87 238.430 0. 789 16.158 4.846 606.92 275.00 : HGL = < 115. 330>;EGL= < 119.111>;FL0WLINE= < 114.520> Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vf Vf Vf * Vt Vt Vr Vf Vr Vr * Vr Vr * Vr Vr Vr Vr Vr Vt Vt Vr Vr Vr * Vr Vr Vr Vr * Vr Vr Vt Vt Vr Vr Vr Vr Vr Vr Vr * * Vr Vr * Vr Vr * FLOW PROCESS FROM NODE 275.00 TO NODE 275.10 IS CODE = 5 UPSTREAM NODE 275.10 ELEVATION = 114.64 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 18.62 24.00 0.00 114.64 18.62 24.00 - 114.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) 1.55 1.55 0.00 0.00 (FT/SEC) 16.250 15.605 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06368 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05700 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06034 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.241 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.173)+( 0.241)+( 0.000) = 0.415 NODE 275.10 : HGL = < 115.426>;EGL= < 119.526>;FLOWLINE= < 114.640> Vf Vr Vr * * Vr * Vr Vr Vr Vr * Vr Vr * * Vr * Vr * * Vf Vr Vr Vr * * Vr Vr * Vr Vr * Vr Vr * Vr Vr * Vr Vr * * * Vr Vr Vr Vr Vr Vr Vf Vf * Vr Vr * Vr Vr * * * Vf Vf Vr Vr Vr Vr * Vr Vr Vr * * Vr * * Vf * FLOW PROCESS FROM NODE 275.10 TO NODE 246.00 IS CODE = 1 UPSTREAM NODE 246.00 ELEVATION = 134.15 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.62 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 292.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.78 CRITICAL DEPTH(FT) = 1.55 Page 10 GAGEEAST.OUT UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE =ROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .063 10 971 2.933 444.02 0 .906 1 .051 11 122 2.973 448.24 1 .879 1 .040 11 276 3.016 452.63 2 .927 1 028 11 435 3.060 457.20 4 .057 1 017 11 599 3.107 461.95 5 .277 1 006 11 768 3.157 466.89 6 .598 0 994 11 941 3.210 472.03 8 .031 0 983 12 120 3.265 477.37 9 .590 0 971 12 304 3.323 482.92 11 .290 0 960 12 494 3.385 488.69 13 151 0 948 12 689 3.450 494.68 15 196 0 937 12 891 3.518 500.92 17 454 0 925 13 099 3.591 507.40 19 959 0 914 13 313 3.668 514.13 22 757 0 902 13 535 3.748 521.13 25 904 0 891 13 764 3.834 528.41 29 477 0 879 14 000 3.924 535.98 33 576 0 868 14 244 4.020 543.85 38 346 0 856 14 497 4.121 552.04 43 997 0 845 14 758 4.229 560.55 50 854 0 833 15 028 4.342 569.41 59 464 0 822 15. 308 4.463 578.63 70 850 0 810 15. 598 4.590 588.22 87 312 0 799 15. 898 4.726 598.21 116 230 0 787 16. 209 4.869 608.62 292 000 0 786 16. 245 4.886 609.81 NODE 246.00 : HGL = < 135.213>;EGL= < 137.083>;FLOWLINE= < 134.150> Vc Ve Vc Ve Vc Vc Ve Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vf Vr Vr Vr Vr Vr Vf Vr Vf Vr Vf Ve Vr Vr Vr Vr Ve Ve Ve Vc Vt Ve Vc Ve Vc Ve Vc Ve Vc Vc Vc Vf Vr Vr Vr Vr Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vt Vc Vc Vc Vc Ve Vc Vc Vf Vc Vc Vc FLOW PROCESS FROM NODE UPSTREAM NODE 246.10 246.00 TO NODE 246.10 IS CODE = 5 ELEVATION = 134.48 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 (DEGREES) ELEVATION FLOW DIAMETER ANGLE (CFS) (INCHES) 14.14 24.00 0.00 134.48 18.62 24.00 - 134.15 2.91 18.00 80.00 134.98 1.57 18.00 80.00 134.98 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) 1.35 1.55 0.65 0.47 (FT/SEC) 15.136 10.975 3.980 3.312 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06451 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02209 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04330 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.173 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.457)+( 0.173)+( 0.000) = 1.630 NODE 246.10 : HGL = < 135.156>;EGL= < 138.713>;FLOWLINE= < 134.480> * * Vf * Vr icic**** ic ic * Vr Vr * * icic**** ic ic * ic ic ic Vf Vr * Vr Vr Vr Vr Vr * Vr * Vr * * Vr Vt Vt Vt Vr * * Vr Vr * * * * Vr Vr * Vt * Vt * Vr * Vr * Vr * Vr Vr * Vr * Vr * Vr FLOW PROCESS FROM NODE UPSTREAM NODE 245.00 246.10 TO NODE 245.00 IS CODE = 1 ELEVATION = 139.50 (FLOW IS SUPERCRITICAL) Page 11 GAGEEAST.OUT CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.14 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 62.74 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.64 CRITICAL DEPTH(FT) = 1.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1. 354 6.242 1.960 255.20 0.017 1. 326 6.394 1.961 255.37 0.069 1. 297 6.556 1.965 255.89 0.161 1. 269 6.727 1.972 256.78 0.298 1. 240 6.909 1.982 258.07 0.487 1. 211 7.102 1.995 259.77 0.732 1. 183 7.309 2.013 261.91 1.044 1. 154 7.528 2.035 264.53 1.432 1. 125 7.763 2.062 267.65 1.906 1. 097 8.013 2.094 271.31 2.482 1 068 8.281 2.134 275.55 3.177 1 040 8.568 2.180 280.42 4.013 1 Oil 8.875 2.235 285.96 5.015 0 982 9.206 2.299 292.24 6.220 0 954 9.563 2.375 299.31 7.671 0 925 9.947 2.462 307.26 9.429 0 896 10.363 2.565 316.17 11.575 0 868 10.814 2.685 326.14 14.224 0 839 11.303 2.824 337.28 17.545 0 811 11.837 2.988 349.72 21.802 0 782 12.420 3.179 363.61 27.440 0 753 13.059 3.403 379.14 35.291 0 725 13.761 3.667 396.51 47.234 0 696 14.537 3.979 415.98 62.740 0 676 15.131 4.233 431.08 NODE 245.00 : HGL = < 140. 854>;EGL= < 141.460>;FLOWLINE= < 139.500> Vf Vt * Vr Vr Vr * * * Vr * * Vr * Vr Vr Vr * Vt Vr Vt Vf * Vr Vr Vr * * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr * Vr * Vt Vf Vt Vt * * * Vt * Vr Vr Vt Vt Vt * Vt Vt * Vf * Vc Vc Vr Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc FLOW PROCESS FROM NODE UPSTREAM NODE 245.10 245.00 TO NODE ELEVATION = 245.10 IS CODE = 5 140,00 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 8,00 14,14 6,14 0.00 DIAMETER (INCHES) 18.00 24.00 18.00 0.00 ANGLE (DEGREES) 90.00 90.00 0.00 FLOWLINE ELEVATION 140.00 139.50 140.00 0.00 CRITICAL DEPTH(FT.) 1.10 1.35 0.96 0.00 VELOCITY (FT/SEC) 4.527 6.244 3.479 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00580 0.00609 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00594 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.953)+( 0.027)+( 0.000) = 0.979 NODE 245.10 HGL = < 142.121>;EGL= < 142.439>;FLOWLINE= < Page 12 140.000> GAGEEAST.OUT ie ***** ie ic **** ic ******* ic* ie * ie* icic ****** ie**ic ****** ****************** ic **ic ************ FLOW PROCESS FROM NODE 245.10 TO NODE 241.00 IS CODE = 1 UPSTREAM NODE 241.00 ELEVATION = 140.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.67 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 8.00)/( 105.039))**2 = 0.00580 HF=L*SF = ( 2.67)*(0.00580) = 0.015 NODE 241.00 : HGL = < 142.137>;EGL= < 142.455>;FLOWLINE= < 140.500> **ic ************ * ie ic * ic * Vr * * Vr Vr Vr * Vt * Vr Vr * Vr Vr Vr * * * Vr * Vr * * Vr Vr Vr Vr * * Vr ic*** ic ***ic *********** * * Vt Vt * Vt * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 241.00 FLOWLINE ELEVATION = 140.50 ASSUMED UPSTREAM CONTROL HGL = 141.60 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 13 GAGE244.0UT ******************** * icic****ic**icic***ie***ic**ic*icicicic***ic***ic ******** ********* ic Vt Vt * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 * Vf Vt Vt Vr * Vr Vr Vr * Vr * Vr Vr * Vt Vt Vt Vf Vt Vt Vr * Vr Vr Vr DESCRIPTION OF STUDY *** * * * Vr * ** Vr Vr * Vr * Vr * Vr Vr * Vr Vr * * Vr Vt * RANCHO COSTERA * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 244 * * B MAP DESIGN * Vc Vc Vc Vc Vc Vc Vf Vr Vt Vr Vf Vf Ve Vr Vc Vc Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vf Vr Vc Vc Vt Vc Vc Ve Vc Ve Vc Vc Vc Vf Vr Vt Vc Vc Vc Vc Vc Vr Vc Vc Ve Vc Vc Ve Vc Vc Vr Vr Ve Vc Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc FILE NAME: GAGE244.DAT TIME/DATE OF STUDY: 09:45 10/07/2013 Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Ve Vr Vr Vf Vr Vr Vr Vr Vt Vf Vr Vr Vr Vr Vr Vr Vr Vf Vf Vf Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Vc Vc Vc Vc Vr Vr Vr Vf Vr Vr Vr Vr Vf Vr Vr Vr Vr Vf Vr Ve Ve Ve Vc Vc Vc Vr Vr Ve Ve Ve Vc Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 245.10- 2.12* 212.26 0.82 131.28 } FRICTION 244.00- 1.75* 172.00 1.06 Dc 120.08 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vt * * * Vf Vf * * Vf Vt Vf Vr Vt Vt * * Vt Vt Vt Vt * Vt Vr Vr Vr Vr Vr Vr Vr ************** icic ic * * ic * * ic * * Vt Vt * Vt Vr Vr Vr Vr * Vr Vr Vr * Vr * Vr * Vr Vr * Vr Vr Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 245.10 FLOWLINE ELEVATION = 140.00 PIPE FLOW = 7.47 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 142.120 FEET NODE 245.10 : HGL = < 142.120>;EGL= < 142.397>;FL0WLINE= < 140.000> * * ie ie * * ie ie ic ic ie * ic ic * * ic ie ic * * * Vr Vr * * Vr Vr icic** ie ie * * ic ie * * ic * ic ie * ie ic ic ic * * Vf Vr * Vr Vr Vr * * Vr *ie****ic ******* * ic * ie FLOW PROCESS FROM NODE 245.10 TO NODE 244.00 IS CODE = 1 UPSTREAM NODE 244.00 ELEVATION = 140.50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.47 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.67 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.47)/( 105.044))**2 = 0.00506 HF=L*SF = ( 26.67)*(0.00506) = 0.135 NODE 244.00 : HGL = < 142.255>;EGL= < 142.532>;FLOWLINE= < 140.500> Vf Vf Vc Vc Vc Vc Vc Vc Vf Vc Vr Vc Vc Vc Vc Ve Vc Vc Vc Ve Vc Vc Vc Vc Vc Vf Vf Vc Vc Ve Vr Vc Vc Vc Vc Vc Vc Vf Vc Vr Vc Vt Vc Vc Vc Vc Vc Vc Vc Ve Vr Vr Vr Vt Vf Ve Ve Vc Vt Vr Vt Vc Vc Vc Vr Vr Vr Vr Vt Vr Vt Vc Vc Vc Vc Vc Ve Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 244.00 FLOWLINE ELEVATION = 140.50 Page 1 GAGE244.0UT ASSUMED UPSTREAM CONTROL HGL = 141.56 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE249.0UT *** ic ** ic * ic ** ic ** ic ic* ic ************** ie***ie*ie*icic*icicic*****ie ***************** ie ******** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS Vr***VrVrVr**VrVr*VrVrVrVt*Vf **Vf Vt Vt *Vf Vf DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 249 * * B MAP DESIGN Vf Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Ve Vf Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Vr Vf Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf Vc Vf Vt Vr Vc Vf Vc Vr Vt Vr Vc Vf Vc Vc Vr Vt Vc Vf Vc Vc Vf FILE NAME: GAGE249.DAT TIME/DATE OF STUDY: 16:02 06/02/2014 Vt Vf Vr Vr Ve Ve Ve Vf Ve Vc Ve Vc Vc Vc Vc Vt Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Vc Ve Vc Ve Vr Vf Vr Vr Vc Vc Vc Vc Vc Ve Vc Vc Vf Vr Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vf Vc Vt Vr Vf Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 246.10- 0.57 25.77 0.33* 37.75 } FRICTION 249.00- 0.57*Dc 25.77 0.57*Dc 25.77 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Ve Vr Vr Vr Vr Vr Vr Vf Vf Vf Vr Vr Vf Ve Ve Vf Vr Vf Ve Vf Vr Vr Vc Ve Vc Vf Vc Ve Vf Vc Vc Vf Vc Vf Vc Vc Vc Vt Vf Vc Vf Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Ve Vr Vf Vf Vc Vc Vc Vf Vr Vc Vc Vc Vc Vc Vc Vc Vr Vr Vc DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 246.10 FLOWLINE ELEVATION = 134.98 PIPE FLOW = 2.30 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 135.160 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.18 FT.) IS LESS THAN CRITICAL DEPTH( 0.57 FT,) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 246.10 : HGL = < 135.312>;EGL= < 136.285>;FLOWLINE= < 134.980> Ve Vf Vr Vr Vf Vr Vr Vr Vc Vr Ve Vr Vr Vc Vc Vc Vr Ve Vc Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vf Vf Vr Vr Vf Vr Vr Vr Vr Vr Vr Vf Vr Vr FLOW PROCESS FROM NODE 246.10 TO NODE 249.00 IS CODE = 1 UPSTREAM NODE 249.00 ELEVATION = 137.08 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 44.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = 0.57 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.57 Page 1 GAGE249.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 .573 3.703 0 .786 25.77 0.008 0 .563 3.792 0 787 25.78 0.035 0 .553 3.885 0 788 25.82 0.081 0 .543 3.983 0 790 25.89 0.149 0 .533 4,085 0 792 25.99 0.243 0 .523 4,193 0 796 26.12 0.364 0 .513 4,305 0 801 26.28 0.517 0 .503 4.423 0 807 26.48 0.705 0 493 4.548 0 814 26.71 0.935 0 483 4.678 0 823 26.98 1.212 0 473 4.816 0 833 27.29 1.544 0 463 4.961 0 845 27.65 1.939 0 453 5.114 0 859 28.04 2.410 0 443 5.276 0 875 28.49 2.970 0 433 5.448 0 894 28.98 3.639 0 423 5.629 0 915 29.53 4.441 0 412 5.822 0 939 30.14 5.410 0 402 6.027 0 967 30.81 6.593 0 392 6.244 0 998 31.54 8.059 0 382 6.477 1 034 32.35 9.916 0 372 6.724 1 075 33.24 12.345 0 362 6.989 1. 121 34.21 15.682 0 352 7.273 1. 174 35.27 20.690 0 342 7.578 1. 234 36.44 29.809 0 332 7.906 1. 303 37.71 44.710 0 332 7.915 1. 305 37.75 NODE 249.00 : HGL = < 137.653>;EGL= < 137.866>;FLOWLINE= < 137.080> Vc Ve Ve Vc Vc Vc Vc Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vt Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vf Vc Vc Vc Vc Ve Vc Ve Vc Ve Vr Vr Vr Vr Vr Vr Vr Vr Vc Vc Ve Ve Vc Vc Ve Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Vc Vc Ve Ve Vc Vc Vc UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 249.00 FLOWLINE ELEVATION = 137.08 ASSUMED UPSTREAM CONTROL HGL = 137.65 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE252.0UT Vt * * * * Vt * * * * Vf * Vf * * * * Vr * * * * * * * * * * * * Vr * * * * Vr * * * * Vr Vr * Vt * * * * * * * * * Vt * * Vt * * * * * * * * Vt * * Vt * * * Vr * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 252 * * B MAP DESIGN * Vr Vr * * Vr * Vt Vt * Vt Vf Vr Vf Vt * * * * Vr Vr Vt * Vt * * * Vf * * Vt Vt Vf Vf Vf Vr Vr Vt Vt Vr * * Vt Vr * * Vr Vr Vr * * * * * * Vt Vt * * * * Vt Vf Vf * Vf * * * Vt Vr * Vr Vt * FILE NAME: GAGE252.DAT TIME/DATE OF STUDY: 16:04 06/02/2014 Vr * * * * Vr * * Vr * * Vr * Vr Vr Vr Vr Vr * Vr Vr ******** ic ic * Vr Vr * Vr * Vr * Vf * * * Vt * * Vf * * Vt Vt * * Vt Vt * * Vt Vf * * * Vt * * * Vf * Vt Vt * Vt Vt Vt Vf Vf Vf Vf GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 246.10- 0.65 34.86 0.41* 46.11 } FRICTION 252.00- 0.65*Dc 34.86 0.65*Dc 34.86 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vt Vr * * * Vr * Vt * Vt Vr * * Vt * Vt Vt * Vr Vt * Vr Vt * * * Vt * * * Vt * * Vt Vt * Vt * * Vt * * Vt Vt * Vt * * * * * * * * * Vt Vr * * Vr * Vt Vt Vt * * Vr Vr * Vt * Vt Vt Vt Vr Vr Vr Vt DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 246.10 FLOWLINE ELEVATION = 134.98 PIPE FLOW = 2.91 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 135.160 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.18 FT.) IS LESS THAN CRITICAL DEPTH( 0.65 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 246.10 : HGL = < 135.389>;EGL= < 136.251>;FLOWLINE= < 134.980> Vf * Vf * * * * * Vf Vf Vf Vr Vr Vr ******** ic* ic Vf **** ie * Vf * Vf Vr * * * ******** * * ic ******** ic * * ic * ic * ic * * * ic * * * Vr Vr * Vr * FLOW PROCESS FROM NODE 246.10 TO NODE 252.00 IS CODE = 1 UPSTREAM NODE 252.00 ELEVATION = 137.08 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.91 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 66.12 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = 0.65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 Page 1 GAGE252.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) M0MENTUM(P0UN1 0.000 0.648 3 979 0.894 34 86 0.011 0.638 4 061 0.894 34 87 0.047 0.628 4 146 0.895 34 91 0.109 0.618 4 235 0.897 34 98 0.201 0.608 4 327 0.899 35 08 0.325 0.598 4 423 0.902 35 21 0.487 0.588 4 523 0.906 35 38 0.690 0.579 4 628 0.911 35 57 0.940 0.569 4 737 0.917 35 80 1.243 0.559 4 851 0.924 36 07 1.607 0.549 4 970 0.933 36 37 2.041 0.539 5 094 0.942 36 72 2.557 0.529 5 225 0.953 37 10 3.168 0.519 5 362 0.966 37 54 3.893 0.509 5 505 0.980 38 01 4.754 0.499 5 656 0.996 38 54 5.783 0.489 5 814 1.014 39 12 7.019 0.479 5 981 1.035 39 75 8.522 0.469 6 156 1.058 40 44 10.376 0.459 6 341 1.084 41 20 12.712 0.449 6 536 1.113 42 02 15.752 0.440 6 742 1.146 42 91 19.909 0.430 6 .960 1.182 43 87 26.114 0.420 7 .191 1.223 44 92 37.352 0.410 7 .435 1.269 46 06 66.120 0.409 7 .446 1.271 46 11 NODE 252.00 : HGL = < 137.728>;EGL= < 137.974>;FLOWLINE= < 137.080> ^ y, yj y, y. ******** * * * ******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 252.00 FLOWLINE ELEVATION = 137.08 ASSUMED UPSTREAM CONTROL HGL = 137.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE255.0UT * Vr Vr Vr Vr ******* Vr Vr Vr Vr ****************** ie * ie ic ic ****************** ic ********* ic ic ic * ic ****** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST. SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 *ic*icicicicicieie*icic**ic*icic*icie*ic*ic DESCRIPTION OF STUDY *********'<'**************** * RANCHO COSTERA * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 255 * * B MAP DESIGN * Vr Vr Vt Vt Vt Vf * Vr * Vr * Vr Vr Vr Vt Vt Vt Vf Vf ****** ic ic * ic ic ic * ic ic ic * ic * ic * ic ic * ic ic ic ic ie ie ic * * Vr * Vr Vr * Vr Vr Vr Vr Vr ic*** ic ic * ie * ic * * FILE NAME: GAGE255.DAT TIME/DATE OF STUDY: 10:39 10/07/2013 * Vr Vr * Vr * Vr Vr Vr Vt Vf Vr Vf Vf * Vr Vr * * Vr Vf Vf Vf Vf Vr Vr Vr Vr * Vr Vr Vf Vf Vt * Vf Vt Vf * * Vt Vt * * Vt Vf ******** ic * ic * ic * * ic ic ic Vr * Vr * Vr * * Vr Vr Vr Vr Vf Vf Vf GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 253.10- 1.02 109.59 0.80* 118.62 } FRICTION 255.00- 1.02*Dc 109.59 1.02*Dc 109.59 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vt Vf Vt Vr Vt Vf *ic ********** ic it it * * ic Vt * Vr * Vr * * Vr Vr Vr Vr Vr Vt Vt Vt Vt Vt Vr Vr Vr Vr Vr Vr Vr * Vr Vt Vr Vr Vr * Vr Vr Vr * Vf * Vr Vr Vr Vr Vr * Vt Vf Vf * Vt * Vt * Vt Vt * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2 53.10 FLOWLINE ELEVATION = 100.00 PIPE FLOW = 6.98 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 100.280 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.28 FT.) IS LESS THAN CRITICAL DEPTH( 1.02 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 253.10 : HGL = < 100.803>;EGL= < 101.618>;FL0WLINE= < 100.000> Vt Vt Vf * Vf Vf Vr * Vr * Vr * Vr Vr Vr Vr Vt * Vt Vf Vr * * * Vt * * * Vt * * * * Vf Vf Vf Vf Vr Vr Vr Vr * Vr * Vr Vr * Vr * Vr * * Vr Vr Vr Vr * Vr * Vr Vf * Vf * Vt Vt Vt Vt * Vt * * Vt Vt Vt Vf * Vf FLOW PROCESS FROM NODE 253.10 TO NODE 255.00 IS CODE = 1 UPSTREAM NODE 255.00 ELEVATION = 100.45 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 6.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.76 CRITICAL DEPTH(FT) = 1.02 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.02 Page 1 GAGE255.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.023 5.437 1.482 109.59 0.021 1.012 5.500 1.482 109.61 0.088 1.002 5.565 1.483 109.66 0.205 0.991 5.632 1.484 109.75 0.377 0.981 5.700 1.486 109.87 0.608 0.970 5.771 1.488 110.03 0.907 0.960 5.844 1.490 110.23 1.280 0.949 5.919 1.494 110.47 1.736 0.939 5.997 1.497 110.75 2.286 0.928 6.076 1.502 111.07 2.943 0.918 6.159 1.507 111.44 3.721 0.907 6.243 1.513 111.85 4.640 0.897 6.331 1.519 112.30 5.722 0.886 6.421 1.527 112.80 6.997 0.876 6.514 1.535 113.35 8.503 0.865 6.610 1.544 113.96 10.288 0.855 6.709 1.554 114.61 12.421 0.844 6.811 1.565 115.32 14.995 0.834 6.917 1.577 116.08 18.148 0.823 7.026 1.590 116.90 22.095 0.813 7.138 1.604 117.78 26.670 0.803 7.243 1.618 118.62 NODE 255.00 : HGL = < 101.473>;EGL= < 101.932>;FLOWLINE= < 100.450> Vr Vr Vr * Vr Vr Vr Vt Vr Vr Vr * Vr Vr Vr Vr Vr Vr Vr * Vr Vf Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr -.'r Vr Vr Vf Vf Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vf Vt Vt Vt Vt Vt Vt Vr Vr Vr * Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 255.00 FLOWLINE ELEVATION = 100.45 ASSUMED UPSTREAM CONTROL HGL = 101.47 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE260.OUT ******* ic *** *ieicie**ic**ic***ie*****ic** icic ******** ic ******************** ****icic*****ie** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 VrVrVrVrVr****Vr*Vr*Vr*VrVf Vf**Vf *Vf Vt VtVt DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 260 * * B MAP DESIGN * Vr Vr Vr * * Vr Vr Vf * Vr Vr Vr * Vr * Vr Vr * ****** * ic * * ic * * ic Vr Vr * * Vr Vr Vt Vf Vf Vt Vr Vr ic***** ic ic ic ic ic * * ic ic ic ic ie * ic ie * ie ie * ic ic ie * ie FILE NAME: GAGE260.DAT TIME/DATE OF STUDY: 10:45 10/07/2013 * Vr Vr Vr * Vr * * Vr Vr Vr Vr Vr Vr Vr Vr Vr * * * Vr Vf Vf Vf Vr Vr Vf * Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr * * * * Vr Vr Vt Vt ****** * * * ie ** icicic* ic ic * ic ie ic ie ie ie ie ie ic * ic ic GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 257.10- 1.08 126.87 0.75* 149.76 } FRICTION 260.00- 1.08*Dc 126.87 1.08*Dc 126.87 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr ****** ic ic*** ie ic * ic * * * * ic * ic * * * * ic Vt Vr Vt Vt * Vt * * * * Vt Vt * * * Vt Vr * * Vr Vr Vr Vr * Vr * Vr Vr Vr * * Vt Vt Vt Vt Vt Vf Vt Vt Vr Vr Vr Vr Vr Vr Vr Vt Vt Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 257.10 FLOWLINE ELEVATION = 98.25 PIPE FLOW = 7.78 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 98.550 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.30 FT.) IS LESS THAN CRITICAL DEPTH( 1.08 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 257.10 : HGL = < 99.003>;EGL= < 100.194>;FLOWLINE= < 98.250> * Vr Vr Vr Vr Vr Vr * icic**** ic * * ie ic * * * ic * * ic ic * * * * ic * ie ic ie * * ie * * ic ic ic ic ic ic*** ic ic * it it it it ic * ic ic * ic ie ie Vt * Vt * Vt Vt * Vt Vt Vt Vr Vr * FLOW PROCESS FROM NODE 257.10 TO NODE 260.00 IS CODE = 1 UPSTREAM NODE 260.00 ELEVATION = 98.65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 7.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH(FT) = 1.08 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.08 Page 1 GAGE260.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.081 5.707 1.587 126.87 0.009 1.055 5.855 1.588 126.98 0.036 1.030 6.015 1.592 127.29 0.085 1.004 6.185 1.599 127.84 0.158 0.979 6.368 1.609 128.63 0.258 0.953 6.564 1.623 129.69 0.389 0.928 6.775 1.641 131.02 0.557 0.902 7.002 1.664 132.65 0.766 0.877 7.247 1.693 134.60 1.024 0.852 7.511 1.728 136.91 1.339 0.826 7.796 1.771 139.60 1.721 0.801 8.105 1.821 142.70 2.184 0.775 8.440 1.882 146.26 2.670 0.753 8.754 1.944 149.76 NODE 260.00 : HGL = < 99.731>;EGL= < 100.237>;FLOWLINE= < 98.650> Vc Vc Ve Ve * Ve Ve Ve Vr Vr Vr Vr Vr Vr Vc Ve Vc Ve Vc Vr Vr Vr Vr Ve Vr Vr Vr Ve Vc Ve Vc Vc Vc Vc Vr Vf Vr Vr Vr Vr Vr Vf Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Ve Vr Vc Ve Vc Vc Ve Ve Vc Ve Vr Vc Vr Vr Vc Vr Vr Vr Vr Vr Vc UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 260.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 98.65 99.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE263.0UT Vt * * * Vt Vf * * * * Vt * * * * Vt * * * * Vt Vt Vt * Vt Vr * * Vr * Vr * * * * Vr Vt * * * Vt Vt * * Vt * * Vt Vt Vr * * * -A- * * Vr * * * * * Vt * Vt * * * * * Vt Vt Vt * Vt Vt Vt * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 Vt Vr * Vr Vr Vr * Vr * * * Vr * * Vr * Vr * Vr Vr Vr Vr Vr Vt * Vt D E S C RI PT 10 N OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * * * * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN LATERAL AT NODE 263 * B MAP DESIGN * Vt Vr * Vr ******** ic ic * Vt Vt Vt Vt * Vt Vt * Vf Vf * * * Vr * Vr * * Vr Vr Vt Vt Vt Vr Vr * * Vr Vr Vr Vr Vf Vt * Vf Vt Vt Vt Vt Vf Vf * * * Vf Vr * Vr * Vr Vr * Vr Vr * * Vr Vr Vr FILE NAME: GAGE263.DAT TIME/DATE OF STUDY: 10:51 10/07/2013 Vr * Vr Vr * * Vr Vr Vr Vr Vt Vt Vt Vf * Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr Vr Vr Vr * Vr Vr Vr Vr * Vr Vf Vt Vf Vr Vr Vt * * * Vt Vt * Vf Vr Vr ******** * ie ic * Vt Vt * Vt Vt Vt Vf Vf Vf Vr Vr * * * Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 257.10- 0.68 39.24 0.36* 62.72 } FRICTION 263.00- 0.68*Dc 39.24 0.68*Dc 39.24 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr Vr * Vr * Vr Vr Vr Vr Vr Vr Vr Vr * * Vr Vr Vr Vr Vr * * Vr Vr * Vr Vr Vf * * Vf Vt * * * Vt Vt * Vt * Vf Vr Vr Vr Vr Vr Vr * Vr Vr * * * * Vr Vr Vr Vr Vr Vr Vr Vt * Vr * Vr * Vr Vr Vr Vr * icicic** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 257.10 FLOWLINE ELEVATION = 98.25 PIPE FLOW = 3.19 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 98.550 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.30 FT.) IS LESS THAN CRITICAL DEPTH( 0.68 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 257.10 : HGL = < 98.613>;EGL= < 100.059>;FLOWLINE= < 98.250> Vr Vr * * * * * Vr Vr * * Vr * * * * * Vr Vr Vr * Vr * Vf * * Vf * Vt * * Vt ******** ie ic * ie * ic Vt * Vt Vr * * Vt * Vt Vt * * * Vt Vt Vt Vt Vt Vt Vt * Vr * * * Vr Vt Vt * * * * FLOW PROCESS FROM NODE 257.10 TO NODE 263.00 IS CODE = 1 UPSTREAM NODE 263.00 ELEVATION = 100.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 3.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.68 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 Page 1 GAGE263.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.680 4. 096 0.941 39.24 0.008 0.666 4. 205 0.941 39.27 0.034 0.653 4. 319 0.943 39.35 0.079 0.639 4 440 0.946 39.48 0.146 0.626 4. 567 0.950 39.67 0.238 0.612 4 701 0.956 39.92 0.359 0.599 4 843 0.963 40.23 0.511 0.585 4 993 0.973 40.61 0.700 0.572 5 152 0.984 41.07 0.931 0.558 5 320 0.998 41.60 1.211 0.545 5 499 1.015 42.21 1.547 0.531 5 690 1.034 42.91 1.951 0.518 5 893 1.058 43.70 2.433 0.504 6 109 1.084 44.59 3.012 0.491 6 341 1.116 45.59 3.706 0.477 6 589 1.152 46.71 4.544 0.464 6 855 1.194 47.95 5.563 0.450 7 141 1.243 49.34 6.815 0.437 7 449 1.299 50.88 8.377 0.424 7 782 1.365 52.58 10.371 0.410 8 143 1.440 54.47 12.997 0.397 8 534 1.528 56.57 16.634 0.383 8 959 1.630 58.89 22.134 0.370 9 424 1.749 61.47 26.670 0.363 9 647 1.809 62.72 NODE 263.00 : HGL = < 100.810>;EGL= < 101.071>;FLOWLINE= < 100.130> y, yj y, y, y. y. ... y, y, y. y; * * * y. y, y; y, y, * y. * icicic* Vf Vf Vf Vt Vt Vt Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr * * Vf * Vt ****** ie * ic ic ****** Vt * Vt Vt * * Vt * * * Vt * Vf * Vt UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 263.00 FLOWLINE ELEVATION = 100.13 ASSUMED UPSTREAM CONTROL HGL = 100.81 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGE219.0UT Vt ****** * * ic Vr * * Vr * Vf Vt * Vt * Vf Vt * * Vt * * Vt * * * Vt * Vt * Vt Vt Vt Vr Vt * Vt * * Vt * Vt * Vt * Vt * * * * * Vr Vr * Vf * * * * * * Vt * Vr Vr * * * * Vr Vr * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS VrVr***VrVr**VrVrVr**Vr*VrVrVrVrVf Vt VtVt Vt * DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN EAST OF LAND BRIDGE * * B MAP DESIGN * Vf Vf Vr Vf Vr Vr Vr Vr Vr Vr Vf Vf Vf Vf Ve Vf Ve Ve Vf Vr Ve Ve Vr Ve Ve Vr Vr Vr Vr Vr Vc Vc Vc Vc Vc Ve Vc Ve Vc Vc Vc Vc Ve Vc Vc Ve Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vf Vc Vc Vc Vc Vf Vf Vc Vc Ve Vc Vf Vr Ve Ve FILE NAME: GAGE219.DAT TIME/DATE OF STUDY: 08:46 07/01/2014 Vc Vc Vc Vc Ve Ve Vc Ve Vc Ve Vc Vc Vc Vc Vc Vr Vr Vr Vf Vr Vr Vc Vc Vc Vr Vr Vf Vr Vr Vc Ve Vc Ve Vc Vc Ve Ve Ve Ve Vc Ve Vc Ve Vc Ve Vr Vr Vr Vr Vr Vr Vr Vf Vf Vf Vf Vf Ve Vc Vr Vr Ve Ve Vr Vr Vr Ve Ve Vc Ve Ve Vc Vc Vc Vc Ve Vc Vc GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 219.00- 0.23 DC 2.63 0.13* 4.15 } FRICTION 216.00- 0.23*Dc 2.63 0.23*Dc 2.63 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. Vc Vf Vr Vf Vr Vr Vr Vr Vt Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Vc Vc Ve Ve Vc Ve Ve Vc Vr Ve Ve Vc Vc Ve Vr Vr Vr Vr Vr Vc Vr Vr Vr Vf Vr Vr Vr Vr Vf Vr Vr Ve Ve Vc Vr Vc Ve Ve Vc Ve Ve Ve Vc Ve Vc Vc Vc Ve Vr Vr Ve Vr Vr Vr Vc Vc Vc DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 219.00 FLOWLINE ELEVATION = 56.00 PIPE FLOW = 0.38 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 0.23 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 219.00 : HGL = < 56.126>;EGL= < 56.567>;FL0WLINE= < 56.000> Vf Vf Vf Vr Vr Vr Vr Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Ve Vc Ve Ve Vc Ve Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vf Vc Vc Ve Vc Ve Vc Ve Vc Ve Ve Vc Vc Vc Vr Vr Vr Vr Vr Vr Vr Ve Ve Vc Vc Ve Ve Vc Vt Vr Vc Vr Vc Vc Vc Ve Vc Ve Vc Vc Vc Vc FLOW PROCESS FROM NODE 219.00 TO NODE 216.00 IS CODE = 1 UPSTREAM NODE 216.00 ELEVATION = 60.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.38 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 58.37 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.12 CRITICAL DEPTH(FT) = 0.23 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.23 Page 1 GAGE219.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.228 2.248 0.306 2.63 0.002 0.223 2.309 0.306 2.63 0.010 0.219 2.373 0.307 2.64 0.024 0.215 2.440 0.308 2.64 0.044 0.211 2.510 0.309 2.66 0.072 0.207 2.584 0.311 2.67 0.108 0.203 2.662 0.313 2.69 0.153 0.198 2.744 0.315 2.72 0.209 0.194 2.830 0.319 2.74 0.278 0.190 2.921 0.323 2.78 0.361 0.186 3.018 0.327 2.81 0.460 0.182 3.119 0.333 2.86 0.578 0.178 3.227 0.339 2.90 0.719 0.173 3.341 0.347 2.96 0.888 0.169 3.462 0.355 3.02 1.089 0.165 3.591 0.365 3.09 1.331 0.161 3.728 0.377 3.16 1.624 0.157 3.874 0.390 3.24 1.981 0.153 4.031 0.405 3.33 2.426 0.148 4.198 0.422 3.43 2.990 0.144 4.378 0.442 3.54 3.728 0.140 4.571 0.465 3.66 4.745 0.136 4.779 0.491 3.79 6.274 0.132 5.003 0.521 3.94 9.062 0.127 5.246 0.555 4.10 58.370 0.126 5.328 0.567 4.15 NODE 216.00 : HGL = Ve Vc Vc Vc Vc Vc Vc Vc Ve Vc Ve Vr Vr Vr Vr Ve Vr Vr Vr Vf Vr Vr Vr V < 60.228>;EGL= < 60.306>;FL0WLINE= < 60.000> Vt Vf Vt Vt Vf Vf Vf * -A- Vf Vr * Vr Vr * Vr Vr Vr * Vr * * Vt Vt Vt Vt Vf Vf Vf Vf * Vt Vt Vt Vt Vt Vt Vf * Vt Vt Vt Vf Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 60.00 60.23 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 GAGEWEST.OUT *********** ic**ic ***************************************************** ********** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS vt****vtVf Vt Vf vt*vt***vt**Vf *vr**Vf *vt DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GAGE DRIVE STORM DRAIN WEST OF LAND BRIDGE * * B MAP DESIGN * Vt Vt Vt Vf * * * * Vf Vt Vt * Vt Vf * * Vt * Vf Vr Vr Vr * Vt Vt Vt Vt * Vt Vf Vf Vt * Vt Vt * * Vt Vt Vt * Vt Vt Vt * Vt Vt Vf Vf Vt Vt * Vt Vr Vr * Vr * Vr * Vr * Vr * Vr Vr Vr Vr * Vr Vf Vf Vr Vr FILE NAME: GAGEWEST.DAT TIME/DATE OF STUDY: 08:19 06/03/2014 Vr * Vr Vr Vr Vr * Vt Vf Vf Vf Vr Vr Vr Vr Vr * * * Vr * * Vr * * * Vf * * * * Vr * Vr Vf * Vf * * * * * Vr Vr Vr * Vr Vr ******** * * * ic Vt Vt * * Vt * * Vt ****** ic * ic ie GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 238.10- 3.20* 876.33 0.77 649.00 } FRICTION } HYDRAULIC JUMP 226.00- 1.49 DC 393.35 1.05* 465.42 } JUNCTION 226.10- 1.49 DC 393.35 1.16* 430.99 } FRICTION 225.00- 1.49 DC 393.35 1.06* 460.98 } JUNCTION 225.10- 1.49 DC 393.35 1.18* 425.11 } FRICTION 224.00- 1.49*Dc 393.35 1.49*Dc 393.35 } JUNCTION 224.10- 2.11 477.98 0.77* 652.80 } FRICTION 236.00- 1.49*DC 393.35 1.49*DC 393.35 } JUNCTION 236.10- 1.62* 124.53 0.61 85.55 } FRICTION 235.00- 1.30* 92.70 0.87 Dc 72.64 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ie ******************** it ******** it * it ****************** ic ******* ic*ic** icic ********** icic DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 238.10 FLOWLINE ELEVATION = 94.79 PIPE FLOW = 21.48 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 97.990 FEET NODE 238.10 : HGL = < 97.990>;EGL= < 98.133>;FLOWLINE= < 94.790> Page 1 GAGEWEST.OUT * ic***ic**ic*itic***ic*ic ************************ *****ic*** it ****************** it icicic**** FLOW PROCESS FROM NODE UPSTREAM NODE 226.00 238.10 TO NODE ELEVATION = 226.00 IS CODE = 1 98.57 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.48 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 59.23 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.72 CRITICAL DEPTH(FT) = 1.49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1.050 9 737 2.523 465 42 0 787 1.037 9 904 2.561 470 62 1 640 1.024 10 078 2.602 476 08 2 565 1.011 10 256 2.645 481 80 3 570 0.998 10 441 2.692 487 79 4 663 0.985 10 632 2.741 494 07 5 855 0.972 10 829 2.794 500 65 7 157 0.959 11 033 2.850 507 53 8 583 0.946 11 244 2.910 514 74 10 148 0.933 11 462 2.974 522 29 11 873 0.919 11 688 3.042 530 19 13 779 0.906 11 922 3.115 538 46 15 897 0.893 12 165 3.193 547 12 18 261 0.880 12 417 3.276 556 18 20 915 0.867 12 678 3.365 565 66 23 919 0.854 12 950 3.460 575 59 27 346 0.841 13 231 3.561 585 99 31 301 0.828 13 524 3.670 596 87 35 927 0.815 13 829 3.786 608 28 41 436 0.802 14 146 3.911 620 23 48 155 0.789 14 476 4.045 632 75 56 634 0.776 14 820 4.188 645 89 59 230 0.773 14 902 4.223 649 00 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.20 PRESSURE FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM CONTROL(FT) 0.000 3.186 PRESSURE HEAD(FT) 3.200 3.000 VELOCITY (FT/SEC) 3.039 3.039 SPECIFIC ENERGY(FT) 3.343 3.143 PRESSURE+ MOMENTUM(POUNDS) 876.33 788.11 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM CONTROL(FT) 3.186 4.126 5.045 FLOW DEPTH (FT) 3.000 2.940 2.879 VELOCITY (FT/SEC) 3.038 3.053 3.080 Page 2 SPECIFIC ENERGY(FT) 3.143 3.084 3.027 PRESSURE+ MOMENTUM(POUNDS) 788.11 762.13 736.84 GAGEWEST.OUT 5.951 2.819 3.115 2.970 712.17 6.846 2.758 3.157 2.913 688.12 7.729 2.698 3.206 2.858 664.72 8.601 2.637 3.262 2.803 641.99 9.462 2.577 3.324 2.749 619.96 10.310 2.517 3.392 2.695 598.68 11.145 2.456 3.466 2.643 578.18 11.966 2.396 3.548 2.591 558.50 12.771 2.335 3.637 2.541 539.66 13.559 2.275 3.734 2.492 521.71 14.327 2.215 3.839 2.444 504.70 15.073 2.154 3.953 2.397 488.66 15.795 2.094 4.076 2.352 473.64 16.487 2.033 4.211 2.309 459.68 17.147 1.973 4.356 2.268 446.85 17.769 1.912 4.515 2.229 435.20 18.347 1.852 4.688 2.194 424.79 18.873 1.792 4.876 2.161 415.70 19.338 1.731 5.082 2.133 408.01 19.731 1.671 5.308 2.109 401.81 20.037 1.610 5.556 2.090 397.22 20.239 1.550 5.828 2.078 394.35 20.312 1.490 6.130 2.073 393.35 59.230 1.490 6.130 2.073 393.35 PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 8.83 FEET UPSTREAM OF DEPTH = 2.622 FEET, UPSTREAM CONJUGATE DEPTH NODE 238.10 I = 0.785 FEET I NODE 226.00 : HGL = < 99.620>;EGL= < 101.093>;FLOWLINE= < 98.570> Vr Vr Vt Vf Vf Vr Vr Vr Vr * * Vr ***** ic ic** ic ic ic ic * ie * * ie ic * ic * ic * * ie ic * * ic ic * ie ie Vr Vr * * Vr Vf * Vt Vt * * Vr Vr * Vr * Vr Vr Vr Vt * Vf Vf * Vr * Vr * Vr Vr Vf Vr FLOW PROCESS FROM NODE 226.00 TO NODE 226.10 IS CODE = 5 UPSTREAM NODE 226.10 ELEVATION = 98.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 21.48 21.48 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT== DIAMETER ANGLE (INCHES) 36.00 36.00 0.00 0.00 FLOWLINE (DEGREES) ELEVATION 0.00 98.90 98.57 0.00 0.00 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.49 1.49 0.00 0.00 (FT/SEC) 8.530 9.740 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01040 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01499 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01270 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.044)+( 0.051)+( 0.000) = 0.095 NODE 226.10 : HGL = < 100.058>;EGL= < 101.188>;FLOWLINE= < 98.900> Vr ********************** icic** icic ******* icicic *************** ie*** * ic ****************** FLOW PROCESS FROM NODE UPSTREAM NODE 225.00 226.10 TO NODE 225.00 IS CODE = 1 ELEVATION = 100.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.48 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 126.48 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.17 CRITICAL DEPTH(FT) Page 3 1.49 GAGEWEST.OUT UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0 000 1 062 9 591 2.491 460.98 2 680 1 066 9 539 2.480 459.40 5 444 1 070 9 487 2.469 457.83 8 298 1 075 9 435 2.458 456.30 11 252 1 079 9 384 2.447 454.78 14 314 1 083 9 334 2.437 453.29 17 497 1 088 9 283 2.427 451.83 20 813 1 092 9 234 2.417 450.39 24 278 1 096 9 185 2.407 448.97 27 909 1 101 9 136 2.398 447.58 31 729 1 105 9 088 2.388 446.21 35 764 1 109 9 041 2.379 444.86 40 045 1 113 8 993 2.370 443.53 44 611 1 118 8 947 2.361 442.23 49 514 1 122 8 900 2.353 440.95 54 817 1 126 8 854 2.345 439.69 60 605 1 131 8 809 2.336 438.45 66 992 1 135 8 764 2.328 437.23 74 140 1 139 8 720 2.321 436.04 82 282 1 144 8 675 2.313 434.86 91 785 1 148 8 632 2.306 433.71 103 259 1 152 8 588 2.298 432.57 117 850 1 156 8 545 2.291 431.46 126 480 1 158 8 527 2.288 430.99 NODE 22 5.00 : HGL = < 101. 232>;EGL= < 102.661>;FLOWLINE= < 100.170> Vf Vc Ve Vc Vc Vc Vr Vr Vr Vr Ve Ve Ve Vc Ve Vc Ve Ve Ve Vc Vr Ve Vr Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Ve Vc Vc Ve Vc Ve Vc Ve Vc Vc Vc Ve Vc Vr Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Vr Vc Vr Vr Vr Vf Vf Vf Vf Vf Vf Vr Vf Vf Ve FLOW PROCESS FROM NODE UPSTREAM NODE 225.10 225.00 TO NODE 225.10 IS CODE = 5 ELEVATION = 100.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW (CFS) 21.48 21.48 0.00 0.00 DIAMETER ANGLE (INCHES) 36.00 36,00 0,00 0.00 (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 100.50 100.17 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.49 1.49 0.00 0.00 (FT/SEC) 8.295 9.594 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00963 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01438 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01201 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.048 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.042)+( 0.048)+( 0.000) = 0.090 NODE 225.10 : HGL = < 101.683>;EGL= < 102.751>;FL0WLINE= < 100.500> ************** it ******** *ic ********* icic ******* *********** * Vt Vf * * Vt Vt * Vt * * Vt * Vt * * Vr Vr * * * * Vr * FLOW PROCESS FROM NODE UPSTREAM NODE 224.00 225.10 TO NODE 224.00 IS CODE = 1 ELEVATION = 102.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) Page 4 PIPE FLOW PIPE LENGTH = 21.48 CFS 190.85 FEET GAGEWEST.OUT PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.17 CRITICAL DEPTH(FT) 1.49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.490 6.130 2.073 393.35 0.037 1.477 6.198 2.074 393.40 0.154 1.464 6.267 2.074 393.54 0.357 1.451 6.338 2.075 393.77 0.655 1.439 6.410 2.077 394.11 1.058 1.426 6.484 2.079 394.54 1.576 1.413 6.560 2.082 395.07 2.224 1.400 6.637 2.085 395.70 3.015 1.387 6.717 2.088 396.44 3.969 1.375 6.798 2.093 397.29 5.107 1.362 6.881 2.098 398.25 6.454 1.349 6.966 2.103 399.32 8.043 1.336 7.053 2.109 400.51 9.914 1.324 7.143 2.116 401.82 12.115 1.311 7.234 2.124 403.25 14.711 1.298 7.328 2.132 404.80 17.787 1.285 7.424 2.142 406.48 21.456 1.273 7.522 2.152 408.29 25.880 1.260 7.623 2.163 410.24 31.294 1.247 7.727 2.175 412.33 38.060 1.234 7.833 2.188 414.56 46.791 1.222 7.942 2.202 416.93 58.630 1.209 8.054 2.217 419.46 76.149 1.196 8.169 2.233 422.14 107.599 1.183 8.288 2.250 424.98 190.850 1.183 8.293 2.251 425.11 NODE 224.00 : HGL = < 103.900>;EGL= < 104.483>;FLOWLINE= < 102.410> Vt * Vf * Vr ******** Vr Vr * * Vr Vr Vt Vt * Vt Vt * * Vt * * * Vt ie ** ic * ic ic ******* ic ic *** ie* ** ic ******* ic ie **** ic ******* ic i FLOW PROCESS FROM NODE 224.00 TO NODE 224.10 IS CODE = 5 UPSTREAM NODE 224.10 ELEVATION = 102.74 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 21.48 36.00 90.00 102.74 21.48 36.00 - 102.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.49 1.49 0.00 0.00 VELOCITY (FT/SEC) 15.005 6.132 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05006 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00425 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02716 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.122 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.400)+( 0.122)+( 0.000) = 2.522 Page 5 NODE 224.10 : HGL GAGEWEST.OUT < 103.509>;EGL= < 107.005>;FLOWLINE= < 102.740> Vf *Vt*Vf***Vf *********** ********Vr*******Vr ************** *****Vr ******************* Vr* FLOW PROCESS FROM NODE UPSTREAM NODE 236.00 224.10 TO NODE 236.00 IS CODE = 1 ELEVATION = 106.18 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.48 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 40.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.67 CRITICAL DEPTH(FT) 1.49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.490 6.130 2.073 393.35 0.018 1.457 6.306 2.075 393.66 0.073 1.424 6.493 2.079 394.59 0.172 1.392 6.691 2.087 396.19 0.319 1.359 6.900 2.099 398.49 0.521 1.326 7.123 2.115 401.53 0.786 1.294 7.361 2.136 405.37 1.123 1.261 7.613 2.162 410.05 1.543 1.228 7.883 2.194 415.63 2.059 1.196 8.172 2.233 422.19 2.687 1.163 8.480 2.280 429.79 3.447 1.130 8.811 2.337 438.52 4.364 1.098 9.168 2.404 448.47 5.468 1.065 9.551 2.483 459.77 6.798 1.033 9.965 2.575 472.52 8.405 1.000 10.413 2.685 486.88 10.359 0.967 10.899 2.813 503.01 12.752 0.935 11.428 2.964 521.10 15.716 0.902 12.004 3.141 541.37 19.445 0.869 12.635 3.350 564.10 24.243 0.837 13.328 3.597 589.58 30.618 0.804 14.092 3.890 618.19 39.528 0.771 14.937 4.238 650.35 40.500 0.769 15.001 4.265 652.80 NODE 236.00 : HGL = < 107.670>;EGL= < 108.253>;FL0WLINE= < 106.180> r * * Vr Vr * Vr Vr Vr Vr Vr Vr * * * Vr Vr Vr Vr * * * * * Vr * * * * * Vr Vr Vr Vr * Vr Vr Vr *****ic***ie*****ie **************** ic * ie Vr * Vr * Vr FLOW PROCESS FROM NODE 236.00 TO NODE 236.10 IS CODE = 5 UPSTREAM NODE 236.10 ELEVATION = 107.68 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) 5.12 18.00 90.00 21.48 36.00 5.58 18.00 90.00 0.00 0.00 0.00 FLOWLINE ELEVATION 107.68 106.18 107.68 0.00 CRITICAL DEPTH(FT.) 0.87 1.49 0.91 0.00 10.78===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 2.897 6.132 4.968 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00238 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00425 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00331 JUNCTION LENGTH = 4.50 FEET Page 6 GAGEWEST.OUT FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.117 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.044)+( 0.015)+( 0.117) = 1.176 NODE 236.10 : HGL = < 109.299>;EGL= < 109.429>;FLOWLINE= < 107.680> ** Vr **** Vr ********* Vf ***** Vf ** Vr Vf **** Vf Vr ** Vr ********Vf ********** ****Vf ***************** FLOW PROCESS FROM NODE 236.10 TO NODE 235.00 IS CODE = 1 UPSTREAM NODE 235.00 ELEVATION = 107.98 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.12 CFS PIPE DIAMETER = PIPE LENGTH = 2.67 FEET MANNING'S 18. N = 00 INCHES = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1. 62 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.619 2.897 1.749 124.53 1.079 1.500 2.897 1.630 111.45 NORMAL DEPTH(FT) 0.39 CRITICAL DEPTH(FT) 0.87 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.079 1.500 2.896 1.630 111.45 1.299 1.475 2.907 1.606 108.78 1.511 1.450 2.927 1.583 106.22 1.718 1.425 2.952 1.560 103.74 1.921 1.399 2.983 1.538 101.34 2.119 1.374 3.018 1.516 99.00 2.313 1.349 3.057 1.494 96.75 2.504 1.324 3.101 1.473 94.57 2.670 1.301 3.143 1.455 92.70 NODE 235.00 : HGL = < 109.281>;EGL= < 109.435>;FL0WLINE= < 107.980> Vt Ve Vf Vf Vf Vf Ve Vt Ve Vr Ve Vc Vc Ve Ve Vc Ve Vc Ve Vc Ve Ve Vc Vf Vf Vf Vr Vt Vr Vf Vf Vt Vf Vt Vf Vf Vr Vt Vr Vr Vf Vf Ve Vc Ve Vc Vc Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vf Vr Vc Vc Ve Vr Vr Vr Vr Ve Ve Vc Vr Vt Vr Vr Vr Vr Vr Vr Vf UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 235.00 FLOWLINE ELEVATION = 107.98 ASSUMED UPSTREAM CONTROL HGL = 108.85 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 7 WADES234.0UT ********************ic*ic**icieicie*ic*ic* ****** icic* ****** ***************** * ic ic * Vr Vt * Vr Vr Vr Vr Vr PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS FILE NAME: WADES234.DAT TIME/DATE OF STUDY: 08:26 06/03/2014 -A- * Vr Vr Vr ************ ic Vr * Vr Vr * * * * Vr * Vr Vr Vr * * * * Vr Vr * * * * * * * * * * * * * Vr * Vr * Vr * Vt * Vt Vr * Vr Vr * Vf * * Vf Vt * Vt Vt Vt * Vf Vf Vr * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 236.10- 1.62* 130.08 0.91 81.36 } FRICTION 234.00- 1.69* 138.08 0.91 Dc 81.36 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION Vr Vr ******** * ie * * ic ie ic ic ic ic ic Vf Vr * * * * Vt Vt Vf Vt * Vt * Vt * Vt * Vr * Vt * Vt * Vt Vt Vf Vt * * Vt Vf Vf Vr * Vr * * * Vr Vr Vr Vr Vr Vr * * * Vr Vr * Vr * Vr * Vr Vr * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 236.10 FLOWLINE ELEVATION = 107.68 PIPE FLOW = 5.12 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 109.300 FEET NODE 236.10 : HGL = < 109.300>;EGL= < 109.430>;FLOWLINE= < 107.680> * * * * * * * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * * * * * Vr * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Vf * * * FLOW PROCESS FROM NODE 236.10 TO NODE 234.00 IS CODE = 1 UPSTREAM NODE 234.00 ELEVATION = 107.68 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.58 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.67 FEET MANNING'S N = 0.01300 *WARNING -- PIPE INVERT SLOPE IS LESS THAN .0001, AND DEFAULTED TO .0001 SF=(Q/K)**2 = (( 5.58)/( 106.954))**2 = 0.00272 HF=L*SF = ( 26.67)*(0.00272) = 0.073 NODE 234.00 : HGL = < 109.373>;EGL= < 109.527>;FLOWLINE= < 107.680> Vr Vr * Vr Vr * Vr Vr * * * Vr ic ******* ie * * ic ie ie * * ic * * Vr * * * Vr Vr * * * * * * * * Vt * * * * Vr Vr Vr * * * * * Vr * * * Vr * * Vr * * Vr Vr * Vr Vr Vr Vr Vr * Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 234.00 FLOWLINE ELEVATION = 107.68 ASSUMED UPSTREAM CONTROL HGL = 108.59 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 1 GAGE216.0UT ************* ic ****** ic ********* ic ************************************ ic***ie ****** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - LAND BRIDGE STORM DRAIN ANIMAL CROSSING * * B MAP DESIGN * ******* ic*****ic*ic * Vr * * * * * * * * Vr Vr Vt Vt Vf * Vr * Vr Vr * Vr * Vr Vr Vr * * Vt * * * * Vt * * * * * Vt * Vr * * * Vr Vr Vr Vf Vt Vf * Vr Vr Vr Vr Vr * FILE NAME: GAGE216.DAT TIME/DATE OF STUDY: 08:30 06/03/2014 Vr ic ********* icic ***************** icic* ic Vt * * * * Vt ******** icic* **ic****ic*ic ic icic** * ic * ic ic ie * Vr Vr * * Vr GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 216.00- 1.64 1038.75 0.92* 1625.34 } FRICTION 214.00- 1.64*Dc 1038.75 1.64*Dc 1038.75 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ic***ie* icic* ********** * * * ic * Vr * Vr * * Vr * * * * Vr * * * * * Vr * * * * Vr Vr * * * * Vt * * * * * Vt * * * Vt Vr Vr Vr Vr Vr * Vr Vr Vr ie***** * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.00 FLOWLINE ELEVATION = 56.00 PIPE FLOW = 55.98 CFS PIPE DIAMETER = 144.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.64 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 216.00 : HGL = < 56.917>;EGL= < 60.022>;FLOWLINE= < 56.000> Vf Vf * Vf Vf Vf Vr * * * * Vr * * * ic * * * ic ic* * ic ie****ic*icie*ie*ie* ********** icic* ******** ic * * * Vt Vt * * Vt * * Vt Vt * Vt * Vr * * FLOW PROCESS FROM NODE 216.00 TO NODE 214.00 IS CODE = I UPSTREAM NODE 214.00 ELEVATION = 64.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 55.98 CFS PIPE DIAMETER = 144.00 INCHES PIPE LENGTH = 225.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) = 1.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.64 Page 1 GAGE216.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.640 6.023 2.204 1038.75 0.034 1.610 6.187 2.205 1039.39 0.143 1.580 6.360 2.208 1041.34 0.333 1.550 6.540 2.214 1044.66 0.616 1.520 6.730 2.223 1049.40 1.001 1.489 6.929 2.236 1055.64 1.504 1.459 7.139 2.251 1063.44 2.138 1.429 7.359 2.271 1072.88 2.922 1.399 7.592 2.295 1084.05 3.879 1.369 7.837 2.323 1097.04 5.033 1.339 8.096 2.358 1111.96 6.417 1.309 8.370 2.398 1128.92 8.071 1.279 8.660 2.444 1148.07 10.042 1.249 8.968 2.498 1169.53 12.394 1.219 9.295 2.561 1193.47 15.205 1.189 9.642 2.633 1220.07 18.583 1.158 10.012 2.716 1249.53 22.670 1.128 10.407 2.811 1282.07 27.668 1.098 10.829 2.920 1317.96 33.875 1.068 11.281 3.045 1357.47 41.751 1.038 11.765 3.189 1400.93 52.068 1.008 12.286 3.353 1448.72 66.274 0.978 12.847 3.542 1501.25 87.627 0.948 13.453 3.760 1559.01 126.576 0.918 14.109 4.011 1622.55 225.390 0.917 14.138 4.022 1625.34 NODE 214.00 : HGL = < 65. 640>;EGL= < 66.204>;FLOWLINE= < 64.000> Vf Vf Vf Vf Vf Vf Vf Vr Vr Vr Vt Vf Vf Vf Vr Vf Vf Vf Vf Vc Vf Vf Vf Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vf Vf Vf Vf Vf Vf Vf Vr Vf Vf Vr Vt Vf Vr Vf Vr Vf Vr Vr Vr Vr Vr Vf Vt Vr Vr Vf V^ Vf Vr Vf Vr Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 64.00 65.64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 WADS231.0UT ******************* ic***ic ************** ie ****************************** ********* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS *ic*icic***ie*********icic****** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * BASIN H - WADSWORTH STREET STORM DRAIN LATERAL AT NODE 236.10 * * B MAP DESIGN * * * * Vr * Vt * Vt icic** **icic****ie* ******* ic * * * ic ie * * ic ic * * * Vr * Vr Vr * * * * Vr * Vr Vt * Vt * * Vt Vt Vt Vt Vt Vt ******* ic * FILE NAME: WADS231.DAT TIME/DATE OF STUDY: 10:03 06/03/2014 Vr Vr Vr * * Vr * Vr Vr Vf Vf ic icicic**ic*ic ******** ic***ic*ic **************** ic * ic * * ic ie * * * * ie * * ic ic ic ic * ic * * * * * * ic GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 236.10- 1.11 DC 192.25 0.61* 298.49 } FRICTION 231.20- l.ll*Dc 192.2 5 l.ll*Dc 192.25 } JUNCTION 231.21- 0.76 DC 51.58 0.53* 61.14 } FRICTION 233.10- 0.76*Dc 51.58 0.76*Dc 51.58 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. *********** ie****ieic*ic***icic***icic***ic ic * ic * * Vt Vt Vt * * * Vt Vt Vt Vt Vt Vt * Vt Vt * Vt ****** icic* icicic********** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 236.10 FLOWLINE ELEVATION = 109.30 PIPE FLOW = 12.32 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 109.300 FEET *N0TE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 1,11 FT,) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 236.10 : HGL = < 109.915>;EGL= < 112.084>;FL0WLINE= < 109.300> ie *********** ic*icieie**ieieic***ic*ic***ic***ic**********ic*ic******ic*****ic **************** FLOW PROCESS FROM NODE 236.10 TO NODE 231.20 IS CODE = 1 UPSTREAM NODE 231.20 ELEVATION = 135.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.32 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 603.57 FEET MANNING'S N = 0.01300 Page 1 NORMAL DEPTH(FT) WADS231.0UT 0.60 CRITICAL DEPTH(FT) 1.11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.114 5.156 1.527 192.25 0.020 1.093 5.287 1.528 192.37 0.081 1.073 5.424 1.530 192.71 0.188 1.053 5.567 1.534 193.28 0.345 1.032 5.718 1.540 194.10 0.558 1.012 5.876 1.548 195.18 0.836 0.991 6.043 1.559 196.52 1.187 0.971 6.218 1.572 198.15 1.620 0.951 6.403 1.588 200.07 2.148 0.930 6.597 1.606 202.31 2.785 0.910 6.803 1.629 204.88 3.548 0.889 7.021 1.655 207.81 4.460 0.869 7.251 1.686 211.11 5.547 0.849 7.495 1.721 214.82 6.843 0.828 7.755 1.762 218.95 8.392 0.808 8.030 1.810 223.55 10.253 0.787 8.324 1.864 228.64 12.505 0.767 8.637 1.926 234.27 15.261 0.746 8.971 1.997 240.47 18.683 0.726 9.329 2.078 247.31 23.025 0.706 9.713 2.172 254.83 28.716 0.685 10.126 2.278 263.11 36.556 0.665 10.570 2.401 272.20 48.346 0.644 11.050 2.542 282.21 69.864 0.624 11.569 2.704 293.21 603.570 0.615 11.815 2.784 298.49 NODE 231.20 : HGL = < 136.614>;EGL= < 137.027>;FLOWLINE= < 135.500> Vt icic** ie ie ic ******** ic * ic * ic ic * * ic * ic ic ie ie ic * ie ie ic * ic ic ic * Vt Vr * Vr Vr Vr Vr * Vr Vr * Vt icic****** * ic ic * ic ic ic ie * * ie * * * Vt * Vt Vt FLOW PROCESS FROM NODE 231.20 TO NODE 231.21 IS CODE = 5 UPSTREAM NODE 231.21 ELEVATION = 137.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOWLINE FLOW (CFS) 3.94 12.32 8.38 0.00 0,00===Q5 EQUALS BASIN INPUT=== DIAMETER ANGLE (INCHES) 18.00 36.00 18.00 0.00 (DEGREES) ELEVATION 90.00 137.00 135.50 68.00 137.00 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 0.76 1.11 1.12 0.00 (FT/SEC) 6.986 5.153 5.916 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(02*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01910 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00395 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01152 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.265)+( 0.000) = 1.265 NODE 231.21 : HGL = < 137.534>;EGL= < 138.292>;FLOWLINE= < Page 2 137.000> WADS231.0UT Vf Vr Vr Vr Vr Vr Vf Vf Vf Vf Vf Vf Ve Ve Vc Vt Vc Vt Ve Ve Vc Vt Vc Vf Vc Vf Vf Vc Vf Vf Vf Vf Vf Vf Vf Ve Ve Ve Ve Vc Ve Vc Ve Ve Vc Ve Vc Ve Ve Vc Vc Vc Vc Ve Ve FLOW PROCESS FROM NODE 231.21 TO NODE 233.10 IS CODE = 1 UPSTREAM NODE 233.10 ELEVATION = 137.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.94 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.35 CRITICAL DEPTH(FT) = 0.76 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.759 4 388 1 059 51.58 0.007 0.743 4 512 1 059 51.62 0.031 0.726 4 644 1 061 51.74 0.072 0.710 4 783 1 065 51.95 0.134 0.693 4 930 1 071 52.24 0.219 0.677 5 087 1 079 52.63 0.330 0.661 5 253 1 089 53.12 0.471 0.644 5 431 1 102 53.71 0.646 0.628 5 620 1 118 54.43 0.862 0.611 5 822 1 138 55.26 1.125 0.595 6 038 1 161 56.23 1.442 0.578 6 269 1 189 57.34 1.825 0.562 6 518 1 222 58.61 2.285 0.545 6 786 1 261 60.04 2.670 0.534 6 984 1 292 61.14 NODE 233.10 : HGL = < 138.029>;EGL= < 138.329>;FL0WLINE= < 137.270> Vc Vc Vf Vc Vf Vc Vc Vc Ve Vc Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vc Vc Vf Vc Vc Ve Vc Vc Vc Vc Vc Vc Ve Vc Ve Ve Vc Ve Ve Vc Vc Ve Ve Vc Ve Vc Ve Vc Ve Ve Ve Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 233.10 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 137.27 138.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 3 WADS2311.0UT ic****ic****ieie** ******************************************* **ie*********ic ******** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS *****VfVf*********VtVtVfvtVtVf**** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - WADSWORTH STREET STORM DRAIN LATERAL AT NODE 231 * * B MAP DESIGN * itic** it it it it it it*** it it ******** it ie * Vr * * Vr icic******** ie ic * * ie ic ic * Vr * Vr * Vr Vr Vr * Vr * * Vr Vr * * * Vr * Vr Vr Vr * Vr Vr Vr Vr FILE NAME: WADS2311.DAT TIME/DATE OF STUDY: 10:10 06/03/2014 Vf Vf Vf Vf Vf Vr Vf Vr Vr Vr Vr Vr Vr Vf Vr Vc Ve Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Ve Ve Vc Vt Vc Vt Ve Ve Vr Vr Vr Vr Vr Vr Vc Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vf Vt Vr Vf GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 231.21- 1.13 DC 144.54 0.70* 190.02 } FRICTION 213.11- 1.13*DC 144.54 1.13*Dc 144.54 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. Vc Vf Vc Vc Ve Vf Vf Vr Vr Vf Vf Vf Vt Vf Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vf Vr Vc Vc Ve Vc Ve Vc Ve Vc Vt Vc Vc Vc Vc Vc Vr Vc Vc Vc Vc Vc Vc Vf Vr Vr Vf Vc Vc Vc Vc Vt Vc Vc Vc Vc Vc Vc Vf Vc Vc Ve Ve Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 231.21 FLOWLINE ELEVATION = 137.00 PIPE FLOW = 8,56 CFS PIPE DIAMETER = 18,00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 137,530 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0,53 FT,) IS LESS THAN CRITICAL DEPTH( 1,13 FT,) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 231.21 : HGL = < 137.702>;EGL= < 139.430>;FLOWLINE= < 137.000> Vr * Vr Vr Vr * Vr Vr Vr Vr * * * Vt * Vt Vt * * Vt ****** * * * ic * * * * * Vr Vr * * * * Vr * * * * Vr * Vr Vr Vr Vt Vr Vt Vt * Vt * * Vr **************** ic* FLOW PROCESS FROM NODE 231.21 TO NODE 213.11 IS CODE = 1 UPSTREAM NODE 213.11 ELEVATION = 138.42 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.56 CFS PIPE PIPE LENGTH = 28.48 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 1.13 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.13 Page 1 WADS2311.0UT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0.000 1 .133 5.977 1 688 144.54 0.018 1 .113 6.089 1 689 144.60 0.075 1 092 6.207 1 691 144.81 0.176 1 072 6.332 1 695 145.16 0.323 1 052 6.464 1 701 145.66 0.525 1 032 6.604 1 709 146.32 0.786 1 Oil 6.751 1 720 147.15 1.114 0 991 6.907 1 732 148.15 1.519 0 971 7.072 1 748 149.34 2.011 0 951 7.246 1 766 150.73 2.603 0 930 7.431 1 788 152.32 3.312 0 910 7.627 1 814 154.13 4.155 0 890 7.834 1 844 156.18 5.159 0 870 8.055 1 878 158.48 6.354 0 849 8.289 1 917 161.04 7.779 0 829 8.538 1 962 163.89 9.488 0 809 8.804 2 013 167.05 11.553 0 789 9.087 2 072 170.54 14.075 0 769 9.389 2 138 174.39 17.203 0 748 9.713 2. 214 178.63 21.167 0 728 10.059 2 300 183.28 26.355 0 708 10.431 2. 399 188.40 28.480 0 702 10.547 2. 430 190.02 NODE 213.11 : HGL = < 139. 553>;EGL= < 140.108>;FLOWLINE= < 138.420> Vr Vr Ve Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vc Vc Ve Vc Ve Vc Vc Vc Vc Ve Ve Ve Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Vr Vr Vr Vr Vr Vr Vr Vr Vr Vt Ve Ve Ve Vc Vc Ve Vc Vc Vc Vc Vc Vc Vc Vc Vr Vr Vr Vr Ve Vr Vt Vr Vr Ve Ve Vr Vr Vc Vr Vc UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 213.11 FLOWLINE ELEVATION = 138.42 ASSUMED UPSTREAM CONTROL HGL = 139.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ***************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * EDINBURGH OUTFALL (BASIN H) * * B MAP DESIGN * ************************************************************************** FILE NAME: BASINEH.DAT TIME/DATE OF STUDY: 11:46 04/28/2015 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) } NODE NUMBER 130.00- 129.00- } 128.00- } 128.10- } 122.00- 122.10- 102.00- 1 102.10- 100.00- } } UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 655.09 DOWNSTREAM RUN FRICTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2. 00 2 . 02 1.81 Dc 1.81 Dc 1.81*Dc 2.32* 658.65 641.85 641.85 641.85 639.14 } HYDRAULIC JUMP 1.76*Dc 557.99 2.76* 2 . 30* 570.62 479.74 FLOW DEPTH(FT) 0.70* 0. 68* 1.44* 1. 58* 1.81*Dc 1.39 1.76*Dc 1.21 1.57 Dc PRESSURE+ MOMENTUM(POUNDS) 1488.78 1539.35 692.17 660.19 641.85 600.20 557.99 420.17 384.39 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *********************************************************************** ******* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 117.18 PIPE FLOW = 27.28 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 119.180 FEET NODE 130.00 : HGL = < 117.880>;EGL= < 129.903>;FLOWLINE= < 117.180> ****************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 12 9.00 IS CODE = 1 UPSTREAM NODE 129.00 ELEVATION = 117.22 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.28 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) = 1.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.683 28.793 13.564 1539.35 4.000 0.700 27.817 12.723 1488.78 NODE 129.00 : HGL = < 117.903>;EGL= < 130.784>;FLOWLINE= < 117.220> ****************************************************************************** FLOW PROCESS FROM NODE 129.00 TO NODE 128.00 IS CODE = 1 UPSTREAM NODE 128.00 ELEVATION = 142.07 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.28 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 89.89 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.65 CRITICAL DEPTH(FT) = 1.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 4 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/ SEC) ENERGY (FT) MOMENTUM(POUN 0 . 000 1 .440 11 .262 3 411 692 17 0 .253 1 . 408 11 .534 3 476 701 85 0 . 541 1 .377 11 .824 3 549 712 60 0 . 871 1 . 345 12 . 134 3 633 724 48 1 .246 1 . 314 12 .464 3 728 737 58 1 . 672 1 .282 12 .817 3 835 751 99 2 . 158 1 .251 13 .194 3 956 767 80 2 . 710 1 .219 13 .597 4 092 785 12 3 . 340 1 . 188 14 .029 4 246 804 09 4 059 1 156 14 493 4 420 824 83 4 882 1 125 14 990 4 616 847 50 5 827 1 093 15 526 4 838 872 28 6 917 1 061 16 102 5 090 899 38 8 181 1 030 16 725 5 376 929 02 9 653 0 998 17 398 5 701 961 46 11 383 0 967 18 127 6 072 997 02 13 432 0 935 18 920 6 497 1036 02 15 888 0 904 19 783 6 984 1078 89 18 871 0 872 20 725 7 546 1126 08 22 562 0 841 21 758 8 196 1178 14 27 241 0 809 22 892 8 951 1235 73 33 380 0 778 24 143 9 834 1299 60 41 867 0 746 25 528 10 871 1370 66 54 700 0 714 27 067 12 098 1450 02 78 298 0 683 28 786 13 558 1538 98 89 890 0 683 28 793 13 564 1539 35 NODE 128.00 HGL = < 143.510>;EGL= < 145.481>;FLOWLINE= < 142.070> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 128.10 128.00 TO NODE 128.10 IS CODE = 5 ELEVATION = 142.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 27 .28 27 .28 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 24.00 0.00 142.40 1.81 24.00 - 142.07 1.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 10.232 11.265 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01556 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01930 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01743 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.070 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.128)+( 0.000) = 0.128 NODE 128.10 HGL = < 143.982>;EGL= < 145 . 608>;FLOWLINE= < 142.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 122.00 128.10 TO NODE 122.00 IS CODE = 1 ELEVATION = 142.72 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.28 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 14.82 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.38 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.81 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY( FT) MOMENTUM(POUN 0. 000 1 . 814 9 . 107 3. 103 641 . 85 0. 062 1 .797 9 . 170 3. 103 641 . 95 0. 250 1 . 779 9 .237 3. 105 642 .25 0. 570 1 .762 9 .307 3. 108 642 .76 1. 029 1 . 744 9 .380 3. 111 643 .46 1. 637 1 . 727 9 .457 3. 116 644 . 37 2. 406 1 .710 9 . 537 3. 123 645 .49 3. 350 1 . 692 9 . 620 3. 130 646 .81 4 . 485 1 . 675 9 .707 3. 139 648 .35 5. 832 1 . 657 9 .798 3. 149 650 . 10 7 . 416 1 . 640 9 .892 3. 160 652 . 07 9. 268 1 . 623 9 . 990 3. 173 654 .26 11. 426 1 . 605 10 .091 3. 187 656 . 68 13. 937 1 . 588 10 .197 3. 203 659 .34 14 . 820 1 . 582 10 .229 3. 208 660 . 19 NODE 122 .00 : HGL = < 144 . 534>;EGL= < 145.823>; FLOWLINE= < 142. 720 ************************************************************************* FLOW PROCESS FROM NODE 122 . 00 TO NODE 122.10 IS CODE = 5 UPSTREAM NODE 122.10 ELEVATION = 143.05 (FLOW UNSEALS IN REACH) CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.76 7. 900 1.81 9. 110 0.00 0.000 0.00 0. 000 CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 24 . 82 27 0 0 2 ,28 ,00 ,00 ,4 6== 24.00 0.00 143.05 24.00 - 142.72 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01204 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01273 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01238 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.050 FEET ENTRANCE LOSSES = 0.258 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.261)+( 0.258) = 0.518 NODE 122.10 : HGL = < 145.372>;EGL= < 146.341>;FLOWLINE= < 143.050> ****************************************************************************** FLOW PROCESS FROM NODE 122.10 TO NODE 102.00 IS CODE = 1 UPSTREAM NODE 102.00 ELEVATION = 144.16 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.82 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 55.60 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: D0WNSTRE7\M RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.32 CRITICAL DEPTH(FT) 1.76 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.7 6 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 . 757 8 .485 2 . 876 557 . 99 0 .052 1 .740 8.553 2 . 876 558 08 0 .212 1 . 722 8 . 623 2 .878 558 33 0 .487 1 . 705 8 . 696 2 880 558 76 0 .886 1 . 688 8.772 2 883 559 37 1 .417 1 . 670 8 . 852 2 888 560 15 2 .094 1 . 653 8.935 2 893 561 12 2 . 929 1 . 636 9.021 2 900 562 27 3 . 940 1 . 619 9.110 2 908 563 61 5 . 147 1 . 601 9.203 2 917 565 14 6 . 573 1 . 584 9.299 2 927 566 87 8 .249 1 . 567 9.398 2 939 568 80 10 .211 1 . 549 9.502 2 952 570 94 12 . 502 1 . 532 9. 609 2 967 573 29 15 . 182 1 .515 9.720 2 983 575 86 18 . 323 1 .497 9.835 3 000 578 66 22 .024 1 . 480 9. 954 3 020 581 68 26 .415 1 . 463 10.078 3 041 584 94 31 . 684 1 . 445 10.205 3 064 588 45 38 . 101 1 . 428 10.338 3 089 592 21 46 . 089 1 .411 10.475 3 116 596. 23 55 . 600 1 . 395 10.606 3 143 600. 20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.32 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 2.322 7.900 3.291 639.14 40.607 2.000 7 . 900 2 . 969 576.03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 40 . 607 2 . 000 7 .898 2 . 969 576 .03 41 . 643 1 . 990 7 . 903 2 . 961 574 35 42 . 522 1 . 981 7 . 911 2 . 953 572 84 43 . 312 1 . 971 7 922 2 . 946 571 46 44 .035 1 . 961 7 934 2 . 939 570 17 44 .703 1 . 951 7 949 2 . 933 568 97 45 . 322 1 . 942 7 965 2 . 927 567 85 45 .897 1 . 932 7 982 2 922 566 80 46 . 433 1 . 922 8 001 2 917 565 82 46 . 933 1 . 913 8 021 2 912 564 90 47 .398 1 . 903 8 042 2 908 564 05 47 . 830 1 .893 8 065 2 904 563 26 48 .231 1 .883 8 088 2 900 562 52 48 . 601 1 . 874 8 113 2 896 561 85 48 . 941 1 .864 8 138 2 893 561 23 49 .252 1 . 854 8 165 2 890 560 66 49 . 534 1 . 844 8 192 2 887 560 15 49 .788 1 .835 8 221 2 885 559 70 50 . 012 1 . 825 8 251 2 883 559 30 50 . 208 1 .815 8 281 2 881 558. 95 50 . 375 1 . 806 8 313 2 879 558. 66 50 .513 1 .796 8 346 2 878 558 . 42 50 . 622 1 .786 8 379 2 877 558 . 23 50 . 700 1 .776 8 414 2 876 558. 10 50 .747 1 .767 8 449 2 876 558. 02 50 .763 1 .757 8 485 2 876 557 . 99 55 . 600 1 . 757 8. 485 2 . 876 557 . 99 PRESSURE+MOMENTUM DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 41.14 FEET UPSTREAM OF NODE 122.10 DEPTH = 1.995 FEET, UPSTREAM CONJUGATE DEPTH = 1.519 FEET NODE 102.00 HGL = < 145.917>;EGL= < 147.036>;FLOWLINE= < 144.160> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.10 IS CODE = 5 UPSTREAM NODE 102.10 ELEVATION = 144.49 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 19. 10 24 . 82 5.72 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT, 24.00 45.00 144.49 1.57 24.00 - 144.16 1.76 18.00 85.00 144.99 0.92 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 6. 080 8. 488 3.237 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00713 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01085 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.008 99 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.791)+( 0.000) = 0.791 NODE 102.10 : HGL = < 147.253>;EGL= < 147.827>;FLOWLINE= < 144.490> ****************************************************************************** FLOW PROCESS FROM NODE 102.10 TO NODE 100.00 IS CODE = 1 UPSTREAM NODE 100.00 ELEVATION = 145.21 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 19.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.97 FEET MANNING S N = 0 .01300 SF=(Q/K)**2 = ( 19.10)/( 226.223))**2 = 0 00713 HF=L*SF = ( 35 97)* (0.00713) = 0.256 NODE 100.00 : HGL = < 147.509>;EGL= < 148.083>;FLOWLINE= < 145.210> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 145.21 ASSUMED UPSTREAM CONTROL HGL = 146.78 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * EDINBURGH OUTFALL (BASIN H) LATERAL 1 * * B MAP DESIGN * ************************************************************************** FILE NAME: BASINEH2.DAT TIME/DATE OF STUDY: 12:15 04/28/2015 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 102.10- 2.26 208.66 0.34* 246.91 } FRICTION 116.00- 0.96*Dc 93.55 0.96*Dc 93.55 } JUNCTION 116.10- 1.29* 84.80 0.62 69.49 } FRICTION } HYDRAULIC JUMP 114.00- 0.82*Dc 62.05 0.82*Dc 62.05 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.10 FLOWLINE ELEVATION = 14 4.99 PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 147.250 FEET NODE 102.10 : HGL = < 145.333>;EGL= < 151.750>;FLOWLINE= < 144.990> ****************************************************************************** FLOW PROCESS FROM NODE 102.10 TO NODE 116.00 IS CODE = 1 UPSTREAM NODE 116.00 ELEVATION = 158.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0. 96 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 962 5. 176 1. 378 93. 55 0. 004 0. 936 5 . 342 1. 380 93. 65 0. 017 0. 911 5. 521 1. 384 93. 96 0. 039 0. 885 5 . 713 1. 392 94. 50 0. 073 0. 859 5 . 922 1. 404 95. 29 0. 120 0. 833 6. 147 1. 420 96. 35 0. 182 0. 808 6. 391 1. 442 97. 69 0. 263 0. 782 6. 655 1 470 99. 34 0. 364 0 756 6 943 1 505 101. 34 0. 491 0 730 7 258 1 549 103. 71 0 647 0 705 7 601 1 602 106 50 0 839 0 679 7 978 1 668 109 75 1 076 0 653 8 393 1 748 113 51 1 366 0 627 8 851 1 845 117 87 1 723 0 601 9 359 1 963 122 88 2 164 0 576 9 925 2 106 128 64 2 713 0 550 10 558 2 282 135 27 3 403 0 .524 11 269 2 497 142 91 4 .281 0 .498 12 073 2 .763 151 72 5 . 418 0 . 473 12 . 988 3 .094 161 92 6 . 928 0 . 447 14 .036 3 . 508 173 .78 9 .000 0 . 421 15 .247 4 .033 187 . 64 11 . 998 0 . 395 16 . 656 4 .706 203 . 95 16 .744 0 . 370 18 .314 5 .581 223 . 31 25 . 887 0 . 344 20 .286 6 .738 246 . 50 37 . 400 0 . 343 20 .322 6 .760 246 . 91 NODE 116.00 : HGL = < 159.372>;EGL= < 159.788>;FLOWLINE= < 158.410> :************************************* *****************************************' FLOW PROCESS FROM NODE 116.00 TO NODE 116.10 IS CODE = 5 UPSTREAM NODE 116.10 ELEVATION = 158.74 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.54 6.20 0.00 0.00 DIAMETER (INCHES) 18 . 00 18.00 0.00 0.00 ANGLE (DEGREES) 45.00 0.00 0.00 FLOWLINE ELEVATION 158.74 158.41 0.00 0.00 CRITICAL DEPTH(FT.; 0.82 0. 96 0. 00 0.00 VELOCITY (FT/SEC) 2.813 5.177 0.000 0.000 1.66===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00174 0.00632 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00403 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.278)+( 0.083) = 0.362 0.083 FEET NODE 116.10 : HGL = < 160.027>;EGL= < 160.150>;FLOWLINE= < 158.740> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 116.10 TO NODE ELEVATION = 114.00 IS CODE = 1 159.35 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.54 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 36.74 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.60 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.82 DISTANCE FROM CONTROL(FT) 0.000 0. 017 0. 069 0. 161 0.296 0. 479 0. 714 1.009 1. 369 804 324 941 669 528 541 6. 737 8.157 9. 854 11.904 14.416 17.564 21.632 FLOW DEPTH (FT) 0.818 0. 809 0. 800 0.792 0.783 0 . 774 0.765 0.756 0.748 0.739 0.730 0. 721 0.713 0. 704 0. 695 0. 686 0. 677 0. 669 0. 660 0. 651 0. 642 0. 634 VELOCITY (FT/SEC) 4 . 607 , 669 ,733 ,799 ,866 , 936 .008 .081 , 157 .236 .316 ,399 ,485 ,574 . 665 ,760 ,857 , 958 ,062 ,169 .281 ,396 SPECIFIC ENERGY(FT) 1 . 148 1 . 148 1 . 148 1.149 1. 151 1. 153 1.155 1.158 1. 161 1. 165 1.169 1.174 1.180 1.186 1. 194 1.202 1.210 1.220 1.231 1.242 1.255 1.269 PRESSURE+ MOMENTUM(POUNDS) 62.05 62 .06 62.09 62. 15 62.23 62 . 34 62.47 62.62 62.81 63.02 63.26 63. 53 63.83 64.15 64 . 52 64 . 91 65.34 65.81 66. 31 66.85 67 . 43 68.05 27.160 0.625 6.515 1.284 68.72 35.356 0.616 6.639 1.301 69.42 36.740 0.615 6.650 1.302 69.49 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.2 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.287 2.813 1.410 84.80 1.055 1.268 2.848 1.394 83.23 2.097 1.249 2.885 1.379 81.70 3.126 1.231 2.925 1.364 80.22 4.141 1.212 2.967 1.349 78.79 5.141 1.193 3.011 1.334 77.40 6.126 1.174 3.058 1.320 76.06 7.095 1.156 3.107 1.306 74.76 8.045 1.137 3.158 1.292 73.52 8.977 1.118 3.213 1.278 72.33 9.888 1.099 3.270 1.265 71.19 10.776 1.081 3.330 1.253 70.11 11.639 1.062 3.393 1.241 69.09 12.476 1.043 3.460 1.229 68.13 13.282 1.024 3.530 1.218 67.22 14.055 1.006 3.604 1.207 66.38 14.792 0.987 3.682 1.197 65.61 15.487 0.968 3.764 1.188 64.90 16.137 0.949 3.850 1.180 64.26 16.734 0.930 3.941 1.172 63.70 17.272 0.912 4.037 1.165 63.21 17.742 0.893 4.139 1.159 62.81 18.134 0.874 4.246 1.154 62.48 18.436 0.855 4.359 1.151 62.24 18.631 0.837 4.479 1.148 62.10 18.702 0.818 4.607 1.148 62.05 36.740 0.818 4.607 1.148 62.05 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 12.24 FEET UPSTREAM OF NODE 116.10 | DOWNSTREAM DEPTH = 1.048 FEET, UPSTREAM CONJUGATE DEPTH = 0.629 FEET | NODE 114.00 : HGL = < 160.168>;EGL= < 160.498>;FLOWLINE= < 159.350> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 114.00 FLOWLINE ELEVATION = 159.35 ASSUMED UPSTREAM CONTROL HGL = 160.17 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS GLAS210.OUT *Vf*******Vt*****Vf*********VfVf*********Vr ************ ************Vr **************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS *****************vr******** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - GLASGOW STREET STORM DRAIN LATERAL AT NODE 210 * * B MAP DESIGN * * Vr Vr * * Vr * Vr Vr * Vr * * Vf Vf Vr Vt Vr Vr * it it * it it ic ic * ie ****** ic ****** ic icic**** ic ic * Vr * * Vr * Vt Vt Vt Vr Vr Vr Vr * * Vr Vr * Vr * Vt * FILE NAME: GLAS210.DAT TIME/DATE OF STUDY: 09:45 06/03/2014 Vr Vr Vr * Vr Vr * Vr Vt Vf * icic ****** ic ic ic ic ic * ie * ic ic ic ** ie ** ic * ie ic ic ic ******* ic ** ic ************ ic ic* ie *** ic * ie *** * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 210.00- 1.24 189.03 0.49* 418.17 } FRICTION 210.10- 1.24 DC 189.03 0.48* 434.74 } FRICTION 2005.00- 1.24 DC 189.03 0.88* 218.41 } MANHOLE 2005.10- 1.24 DC 189.03 1.02* 198.76 } FRICTION 2004.00- 1.24*Dc 189.03 1.24*Dc 189.03 } JUNCTION 2004.10- 2.08* 173.91 0.64 77.42 } FRICTION } HYDRAULIC JUMP 2003.00- 0.85*Dc 69.30 0.85*Dc 69.30 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * * ******** * * ******* * * Vt * * * Vf * * * * * * Vt * * * * * Vt ************************ * * * * * * * * * * Vf * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 210.00 FLOWLINE ELEVATION = 142.00 PIPE FLOW = 10.38 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 142.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.24 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 210.00 : HGL = < 142.494>;EGL= < 148.999>;FLOWLINE= < 142.000> * Vf ********* Vt * * * * * * * * * * * * * * * * * * * * * * * Vr Vr ********* Vr * * * * * Vr * ********** * * * * * Vr ******* * Page 1 GLAS210.0UT FLOW PROCESS FROM NODE 210.00 TO NODE 210.10 IS CODE = 1 UPSTREAM NODE 210.10 ELEVATION = 142.03 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.38 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.21 CRITICAL DEPTH(FT) = 1.24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.480 21.306 7.533 434.74 3.000 0.494 20.461 6.999 418.17 NODE 210.10 : HGL = < 142. 510>;EGL= < 149.563>;FLOWLINE= < 142.030> * * Vr Vr * Vr Vr Vr Vt Vf Vf * * Vr Vr Vr Vt * * * Vf * Vf Vr * Vr Vr * Vf Vt Vt * Vf * Vf Vf Vf * Vt * Vt * * Vt * Vf Vt * Vt * Vt ic ** ic * ic ic ******** *ic * ic ie * ic ie * ic ie ic FLOW PROCESS FROM NODE 210. 10 TO NODE 2005.00 IS CODE = 1 UPSTREAM NODE 2005.00 ELEVATION = 171.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 10.38 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 146.77 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.48 CRITICAL DEPTH(FT) = 1.24 =================== ============== ========== ====== ============= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.88 =================== ============== ========== ================== ====== ============= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.884 9.572 2.308 218.41 0.278 0.868 9.788 2.357 221.67 0.586 0.852 10.015 2.410 225.18 0.927 0.836 10.253 2.469 228.94 1.306 0.820 10.504 2.534 232.98 1.726 0.803 10.768 2.605 237.30 2.193 0.787 11.046 2.683 241.93 2.713 0.771 11.339 2.769 246.88 3.293 0.755 11.648 2.863 252.19 3.943 0.739 11.974 2.966 257.87 4.673 0.723 12.319 3.080 263.95 5.495 0.706 12.684 3.206 270.46 6.426 0.690 13.071 3.345 277.43 7.484 0.674 13.482 3.498 284.91 8.696 0.658 13.918 3.668 292.92 10.094 0.642 14.383 3.856 301.52 11.719 0.625 14.877 4.064 310.76 13.632 0.609 15.405 4.297 320.69 15.913 0.593 15.969 4.555 331.37 18.682 0.577 16.574 4.845 342.88 22.128 0.561 17.222 5.169 355.30 26.563 0.544 17.918 5.533 368.73 32.576 0.528 18.669 5.943 383.25 41.491 0.512 19.479 6.407 399.00 57.557 0.496 20.355 6.934 416.11 146.770 0.480 21.306 7.533 434.74 Page 2 GLAS210.0UT NODE 2005.00 : HGL = < 172.134>;EGL= < 173.558>;FLOWLINE= < 171.250> *ie*ie***************************************************ie*************ie***ic**** FLOW PROCESS FROM NODE 2005.00 TO NODE 2005.10 IS CODE = 2 UPSTREAM NODE 2005.10 ELEVATION = 171.58 (FLOW IS SUPERCRITICAL) 18.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 10.38 CFS PIPE DIAMETER : AVERAGED VELOCITY HEAD = 1.220 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 1.220) = 0.061 NODE 2005.10 : HGL = < 172.602>;EGL= < 173.619>;FL0WLINE= < 171.580> ******* ie *************************************** ie***ie***ic ********* ieieie***icic**ic** FLOW PROCESS FROM NODE 2005.10 TO NODE 2004.00 IS CODE = 1 UPSTREAM NODE 2004.00 ELEVATION = 171.93 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.38 CFS PIPE PIPE LENGTH = 18.00 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = 1.24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.24 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 1.239 6 647 1.925 189 03 0.029 1.227 6 707 1.926 189 06 0.119 1.215 6 770 1.927 189 14 0.275 1.202 6 835 1.928 189 28 0.503 1.190 6 902 1.930 189 48 0.809 1.178 6 972 1.933 189 73 1.201 1.165 7 044 1.936 190 05 1.689 1.153 7 118 1.940 190 42 2.282 1.141 7 195 1.945 190 87 2.994 1.129 7 275 1.951 191 37 3.840 1.116 7 357 1.957 191 94 4.839 1.104 7 442 1.965 192 58 6.013 1.092 7 530 1.973 193 29 7.391 1.080 7 621 1.982 194 08 9.008 1.067 7 715 1.992 194 93 10.911 1.055 7 813 2.003 195 87 13.160 1.043 7 913 2.016 196 88 15.838 1.031 8 017 2.029 197 97 18.000 1.022 8 089 2.039 198 76 NODE 2004.00 : HGL = < 173.169>;EGL= < 173.855>;FLOWLINE= < 171.930> * Vf * * Vr * * * Vr Vr * -A- Vt Vt Vt Vt ************* ic Vr * * * Vr Vr * Vr ***** * Vr Vr ************** * Vt Vf * * Vr * * * Vr Vr Vr * * * * * Vr FLOW PROCESS FROM NODE 2004.00 TO NODE 2004.10 IS CODE = 5 UPSTREAM NODE 2004.10 ELEVATION = 172.26 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 4.94 18.00 0.00 172.26 10.38 18.00 - 171.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.44===Q5 EQUALS BASIN INPUT=== Page 3 CRITICAL DEPTH(FT.) 0.85 1.24 0.00 0.00 VELOCITY (FT/SEC) 2.796 6.649 0.000 0.000 GLAS210.0UT JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00221 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00963 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00592 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.024 FEET ENTRANCE LOSSES = 0.137 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.449)+( 0.024)+( 0.137) = 0.610 NODE 2004.10 : HGL = < 174.344>;EGL= < 174.466>;FLOWLINE= < 172.260> t Vf * Vr Vr * * Vr * Vr * * * Vr Vr Vr * * Vr * Vr Vr * * * Vr * * * * * Vr * Vr * Vr * Vt * * * Vt * * Vf * * * * Vr * * Vr * * * * Vr * * * * Vt Vt * Vf * Vt Vf Vr Vr Vr * * Vr * * * FLOW PROCESS FROM NODE 2004.10 TO NODE 2003.00 IS CODE = 1 UPSTREAM NODE 2003.00 ELEVATION = 173.44 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.94 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 74.78 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) = 0.85 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION; DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0 855 4 747 1 205 69.30 0 018 0 846 4 808 1 205 69.31 0 .073 0 837 4 869 1 206 69.35 0 .169 0 829 4 933 1 207 69.41 0 .310 0 820 4 998 1 208 69.49 0 .501 0 811 5 065 1 210 69.59 0 .747 0 802 5 134 1 212 69.72 1 .054 0 793 5 205 1 214 69.88 1 .431 0 785 5 278 1 218 70.07 1 ,885 0 776 5 353 1 221 70.28 2 .428 0 767 5 431 1 225 70.52 3 .071 0 758 5 510 1 230 70.79 3 .830 0 750 5 592 1 236 71.08 4 .725 0 741 5 677 1 242 71.41 5 .780 0 732 5 764 1 248 71.78 7 .026 0 723 5 853 1 256 72.17 8 .503 0 715 5 946 1 264 72.60 10 .269 0 706 6 041 1 273 73.06 12 .400 0 697 6 140 1 283 73.56 15 .012 0 688 6 242 1 294 74.10 18 .282 0 680 6 347 1 305 74.68 22 .507 0 671 6 455 1 318 75.29 28 .245 0 662 6 567 1 332 75.95 36 .749 0 653 6 683 1 347 76.65 52 .038 0 645 6 803 1 364 77.40 74 .780 0 644 6 806 1 364 77.42 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.08 PRESSURE FLOW PROFILE COMPUTED INFORMATION: Page 4 GLAS210 .OUT DISTANCE FROM PRESSURE VELOCITY SPECIFIC CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) 0.000 2.084 2.795 2.206 43.075 1.500 2.795 1.621 ==================== =========== ============= :—: ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ==================== =========== ============= — — —:— —r~i= — GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 43.075 1.500 2.795 1.621 44.893 1.474 2.805 1.596 46.636 1.448 2.825 1.572 48.336 1.423 2.850 1.549 50.001 1.397 2.881 1.526 51.634 1.371 2.916 1.503 53.238 1.345 2.956 1.481 54.813 1.319 3.000 1.459 56.360 1.294 3.048 1.438 57.878 1.268 3.100 1.417 59.366 1.242 3.157 1.397 60.821 1.216 3.218 1.377 62.241 1.190 3.284 1.358 63.624 1.164 3.355 1.339 64.964 1.139 3.431 1.322 66.259 1.113 3.513 1.305 67.501 1.087 3.601 1.288 68.684 1.061 3.695 1.273 69.800 1.035 3.795 1.259 70.838 1.010 3.904 1.246 71.785 0.984 4.020 1.235 72.626 0.958 4.145 1.225 73.340 0.932 4.279 1.217 73.899 0.906 4.423 1.210 74.271 0.881 4.579 1.206 74.408 0.855 4.747 1.205 74.780 0.855 4.747 1.205 PRESSURE+ MOMENTUM(POUNDS) 173.91 109.46 PRESSURE+ MOMENTUM(POUNDS) 109.46 106.72 104.09 101.53 99.05 96.64 94.31 92.06 89.89 87.80 85.80 83.89 82.08 80.36 78.74 77.24 75.84 74.56 73.40 72.37 71.47 70.72 70.12 69.67 69.40 69.30 69.30 EI^Q OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 73.49 FEET UPSTREAM OF NODE 2004 10 I DOWNSTREAM DEPTH = 0.925 FEET, UPSTREAM CONJUGATE DEPTH = 0.788 FEET NODE 2003.00 : HGL = < 174.295>;EGL= < 174.645>;FLOWLINE= < 173.440> ************************************** *******y,y,y,y,y,y,y,y,y,y,y.y.y^y.y.y.y.y^yjy.y^y.y.^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2003.00 FLOWLINE ELEVATION = 173.44 ASSUMED UPSTREAM CONTROL HGL = 174.29 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS MISTCT.OUT y.***************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN PA-13 - TRAILBLAZER ROAD STORM DRAIN - NODES 4010-4012 * * B MAP DESIGN * y, * * * yj ******** * * * * * * * * * * * * * * * * * ****ie***ic****ie*icic* ********* * * ****** * * * * * * * * * FILE NAME: MISTCT.DAT TIME/DATE OF STUDY: 13:08 05/29/2014 y. y, y, y, y, yt y, y, * * * y, y, ******* * * * y, * * * * **************************************** * * * * * ***** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 4012.00- 1.04 113.19 0.92* 115.31 } FRICTION 4010.00- 1.04*DC 113.19 1.04*DC 113.19 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. icie****ie***ic****ic ic ic ic ie * Vt * ic ***** ie * ic ie ic ic ic * ic ic ie *** ie ******** ** * * ic * ic ic * ********** ic * Vr * Vr * Vr DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4012.00 FLOWLINE ELEVATION = 55.43 PIPE FLOW = 0.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 0.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH(-55.43 FT.) IS LESS THAN CRITICAL DEPTH( 0.00 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 4012.00 : HGL = < 56.353>;EGL= < 56.353>;FLOWLINE= < 55.430> ilifif ilie* it icic* it it* ***it***it********itic ********************* it *****ic ******************* FLOW PROCESS FROM NODE 4012.00 TO NODE 4010.00 IS CODE = 1 UPSTREAM NODE 4010.00 ELEVATION = 55.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.15 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 1.04 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.04 Page 1 MISTCT.OUT GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.035 5.494 1.504 113.19 0.022 1.023 5.566 1.505 113.22 0.089 1.011 5.640 1.505 113.29 0.207 0.999 5.717 1.507 113.40 0.381 0.987 5.796 1.509 113.57 0.616 0.975 5.879 1.512 113.78 0.919 0.963 5.964 1.515 114.05 1.298 0.951 6.051 1.520 114.37 1.761 0.939 6.142 1.525 114.75 2.321 0.927 6.237 1.531 115.18 2.500 0.923 6.262 1.533 115.31 NODE 4010.00 : HGL 56.515>;EGL= < 56.984>;FL0WLINE= < 55.480> Vr Vr Vr it * * it * it * * ic ic * * ic ic ic ic * ic ic * * * ic ic ie * Vr * Vr Vr * Vr Vt Vt Vt Vt * * Vt Vt ******** * ic *ic ********** ic * ic * ic * * Vr * Vr Vr Vr * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4010.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 55.48 56.52 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2 710 LOKER AVENUE WEST, SUITE 10 0 CARLSBAD, CA 92 010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H- SD AT END OF CHASE CT. NODE 215.5 * * B MAP DESIGN * ************************************************************************** FILE NAME: CHASE215.DAT TIME/DATE OF STUDY: 11:05 07/31/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 215.50- 0.24 3.07 0.09* 8.24 } FRICTION 215.20- 0.24*Dc 3.07 0.24*Dc 3.07 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.50 FLOWLINE ELEVATION = 86.34 PIPE FLOW = 0.43 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 86.34 0 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.00 FT.) IS LESS THAN CRITICAL DEPTH( 0.24 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 215.50 : HGL = < 86.431>;EGL= < 87.911>;FLOWLINE= < 86.340> ****************************************************************************** FLOW PROCESS FROM NODE 215.50 TO NODE 215.20 IS CODE = 1 UPSTREAM NODE 215.20 ELEVATION = 103.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 0.43 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 45 . 82 FEET MANNING' S N = 0. 01300 NORMAL DEPTH(FT) = 0 . 09 CRITICAL DEPTH(FT) 0 . 24 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 24 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .242 2 323 0 326 3 . 07 0 . 001 0 .236 2 411 0 326 3 . 08 0 . 004 0 .230 2 506 0 328 3 . 09 0 . 009 0 . 224 2 608 0 329 3 . 11 0 .016 0 .218 2 716 0 332 3 . 13 0 . 026 0 .211 2 833 0 336 3 . 17 0 . 040 0 .205 2 958 0 341 3 . 22 0 . 058 0 . 199 3 094 0 348 3 . 28 0 . 080 0 . 193 3 240 0 356 3 . 35 0 . 107 0 . 186 3 398 0 366 3 . 43 0 . 141 0 . 180 3 570 0 378 3 . 52 0 . 183 0 . 174 3 758 0 393 3 . 63 0 . 234 0 . 168 3 963 0 412 3 . 76 0 .297 0 . 162 4 187 0 434 3 . 91 0 . 373 0 . 155 4 435 0 461 4 . 08 0 .468 0 . 149 4 708 0 494 4 . 27 0 . 585 0 . 143 5 Oil 0 533 4 . 49 0 . 730 0 . 137 5 348 0 581 4 . 73 0 . 915 0 . 131 5 726 0 640 5 . 02 1 . 152 0 . 124 6 151 0 712 5 . 35 1 .464 0 . 118 6 633 0 802 5 . 72 1 . 888 0 . 112 7 183 0 914 6 . 16 2 .495 0 . 106 7 813 1 054 6 . 66 3 .446 0 . 100 8 543 1 234 7 . 25 5 .254 0 . 093 9 396 1 465 7 . 94 45 . 820 0 . 091 9 760 1 571 8 . 24 NODE 215.20 : HGL = < 104.072>;EGL= < 104.156>;FLOWLINE= < 103.830> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.20 FLOWLINE ELEVATION = 103.83 ASSUMED UPSTREAM CONTROL HGL = 104.07 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 2 710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92 010 (760) 931-7700 ************************** DESCRIPTION OF STUDY ************************** * RANCHO COSTERA * * BASIN H - PA 11 NODE 2012 * * B MAP DESIGN * ************************************************************************** FILE NAME: PAll.DAT TIME/DATE OF STUDY: 12:52 07/31/2014 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 535.09 2013.00 2012.30 2012 .35 2012 .20 2012 .25 2012.10 2012.15 2012.00 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2 . 00 1.50 Dc 1.63 Dc 1.63 Dc 1.63 Dc 1.63 Dc 1.63 Dc 1.63*Dc DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 913.08 463.09 494.57 494 . 57 494.57 494 . 57 494.57 494 . 57 0 . 68* 0 . 60* 0. 52* 0 . 97* 1. 01* 1. 07* 1. 14* 1. 63*Dc 1089.44 1578.46 689.45 665.14 625.54 591.01 494 . 57 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2 013.00 PIPE FLOW = 2 5.61 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 41.21 PIPE DIAMETER = 48.00 INCHES 43.210 FEET NODE 2013.00 HGL 41.895>;EGL= < 46.868>;FLOWLINE= < 41.210> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2012.30 2 013.00 TO NODE ELEVATION = 2012.30 IS CODE = 1 67.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.61 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 336.24 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.6 9 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1 . 50 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0 . 602 21 581 7 . 838 1089 44 2 108 0 605 21 403 7 722 1080 85 4 289 0 608 21 227 7 609 1072 38 6 551 0 612 21 054 7 499 1064 04 8 901 0 615 20 883 7 391 1055 81 11 346 0 619 20 714 7 286 1047 71 13 .899 0 622 20 548 7 182 1039 73 16 . 569 0 626 20 384 7 082 1031 86 19 . 371 0 629 20 222 6 983 1024 10 22 . 320 0 633 20 063 6 887 1016 46 25 .437 0 636 19 905 6 792 1008 92 28 . 743 0 639 19 750 6 700 1001 49 32 . 268 0 643 19 597 6 610 994 16 36 . 046 0 646 19 446 6 522 986 94 40 . 123 0 650 19 297 6 435 979 82 44 . 554 0 653 19 149 6 351 972 80 49 .415 0 657 19 004 6 268 965 . 88 54 .809 0 660 18 .861 6 187 959 . 05 60 . 876 0 664 18 .719 6 108 952 . 32 67 . 827 0 667 18 . 579 6 031 945 . 68 75 . 986 0 671 18 .442 5 955 939 . 13 85 .894 0 .674 18 .305 5 880 932 . 67 98 . 570 0 .677 18 .171 5 .808 926 . 30 116 .301 0 . 681 18 . 038 5 .736 920 . 01 146 .422 0 . 684 17 . 907 5 . 667 913 .81 336 . 240 0 .685 17 .892 5 . 658 913 . 08 NODE 2012.30 : HGL = < 67.602>;EGL= < 74.838>;FLOWLINE= < 67.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2012.35 2 012.30 TO NODE ELEVATION = 2012.35 IS CODE = 5 67.67 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 25 . 61 36.00 45.00 67.67 1. 63 31.591 DOWNSTREAM 25 .61 48.00 - 67.00 1. 50 21. 588 LATERAL #1 0 . 00 0.00 0.00 0.00 0 . 00 0 . 000 LATERAL #2 0 . 00 0.00 0.00 0.00 0 . 00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 .25420 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 . 13314 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.19367 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 4.00 FEET 0.775 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)4(FRICTION LOSS)+(ENTRANCE LOSSES) ( 8.070)+( 0.775)+( 0.000) = 8.845 NODE 2012.35 : HGL = < 68.186>;EGL= < 83.683>;FLOWLINE= < 67.670> ****************************************************************************** FLOW PROCESS FROM NODE 2012.35 TO NODE 2012.20 IS CODE = 1 UPSTREAM NODE 2012.20 ELEVATION = 87.11 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.61 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 47.43 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.46 CRITICAL DEPTH(FT) 1. 63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL ( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 . 973 12 .882 3 552 689 . 45 0 . 349 0 . 953 13 .266 3 687 706 . 01 0 . 735 0 . 932 13 .671 3 836 723 . 71 1 . 162 0 . 912 14 . 100 4 001 742 . 61 1 . 635 0 .891 14 .553 4 182 762 . 82 2 . 162 0 . 871 15 . 033 4 382 784 . 43 2 . 749 0 . 850 15 542 4 603 807 . 55 3 .405 0 . 829 16 083 4 848 832 . 31 4 . 139 0 .809 16 658 5 120 858 . 85 4 . 966 0 . 788 17 270 5 423 887 . 32 5 .898 0 . 768 17 924 5 759 917 . 90 6 . 956 0 . 747 18 622 6 136 950 . 78 8 . 160 0 . 727 19 370 6 557 986 . 19 9 . 541 0 . 706 20 173 7 029 1024 . 37 11 . 134 0 . 686 21 036 7 561 1065 . 61 12 . 986 0 . 665 21 965 8 162 1110 . 23 15 . 161 0 . 644 22 969 8 842 1158 . 61 17.743 0 624 24.056 9.615 1211.16 20.854 0 603 25 .236 10.498 1268 .39 24 .671 0 583 26.520 11.510 1330.86 29.471 0 562 27 . 921 12 .675 1399.24 35 . 720 0 542 29.456 14.023 1474.31 44.289 0 521 31.144 15.591 1556.99 47 .430 0 516 31.581 16.013 1578 .46 2012.20 HGL = < 88 . 01 33>;EGL= < 90 . 662>;FLOWLINE= < 87.110 ****************************************************************************** FLOW PROCESS FROM NODE 2012.20 TO NODE 2012.25 IS CODE = 5 UPSTREAM NODE 2012.25 ELEVATION = 87.44 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 25 .61 36 . 00 0 . 00 87 .44 1. 63 12.312 DOWNSTREAM 25 .61 36 . 00 -87 . 11 1.63 12.886 LATERAL #1 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 000 LATERAL #2 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.01794 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.02036 AVERAGED FRICTION JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = SLOPE IN JUNCTION ASSUMED AS 0.01915 4.0 0 FEET 0.077 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ( 0.062)+( 0.077)+( 0.000) = 0.138 NODE 2012.25 : HGL = < 88.446>;EGL= < 90.800>;FLOWLINE= < 87.440> ****************************************************************************** FLOW PROCESS FROM NODE 2012.25 TO NODE 2012.10 IS CODE = 1 UPSTREAM NODE 2012.10 ELEVATION = 89.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.61 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 83.19 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.98 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07 1.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4 CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1. 068 11.341 3 . 067 625.54 2 . 664 1. 065 11.393 3 . 082 627.62 5 .464 1. 061 11 .445 3 . 097 629 . 72 8 .412 1. 058 11.498 4 3 .112 631. 85 11. 523 1. 054 11. 552 3.127 634 . 01 14 . 811 1. 050 11 . 606 3.143 636 . 19 18 . 295 1. 047 11 . 660 3.159 638 .39 21 . 998 1. 043 11 . 715 3.176 640 . 63 25 . 943 1. 040 11. 770 3.192 642 .88 30 . 160 1. 036 11. 826 3.209 645 . 17 34 . 685 1. 032 11. 882 3.226 647 .48 39 . 560 1. 029 11 . 939 3.244 649 . 81 44 . 838 1 . 025 11 . 996 3.261 652 . 17 50 . 582 1. 022 12 . 054 3.279 654 . 56 56 . 875 1. 018 12 . 112 3.298 656 . 98 63 . 821 1. 014 12 . 171 3.316 659 .43 71 . 558 1. Oil 12 . 231 3.335 661 . 90 80 . 274 1. 007 12 . 290 3.354 664 .41 83 . 190 1. 006 12 . 308 3.360 665 . 14 NODE 2 012 . 10 : HGL = < 90.168 >;EGL= < 92.167>;FLOWLINE= < 89 . 100> ****************************************************************************** FLOW PROCESS FROM NODE 2012.10 TO NODE 2012.15 IS CODE = 5 UPSTREAM NODE 2012.15 ELEVATION 89.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) ( INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 25.61 36 . 00 0.00 89.43 1.63 10 .451 DOWNSTREAM 25 . 61 36 . 00 89.10 1.63 11. 344 LATERAL #1 0 . 00 0 . 00 0.00 0.00 0.00 0 . 000 LATERAL #2 0 . 00 0 . 00 0.00 0.00 0.00 0 .000 Q5 0 . 00 = = = Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.01141 DOWNSTREAM : MANNING'S N = 0.01100; FRICTION SLOPE = 0.01430 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01286 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 4.0 0 FEET 0.051 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ( 0.043)+( 0.051)+( 0.000) = 0.094 NODE 2012.15 : HGL = < 90.565>;EGL= < 92.261>;FLOWLINE= < 89.430> ****************************************************************************** FLOW PROCESS FROM NODE 2012.15 TO NODE 2012.00 IS CODE = 1 UPSTREAM NODE 2012.00 ELEVATION = 90.35 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 25.61 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 45.94 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) 0.98 CRITICAL DEPTH(FT) = 1. 63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 0 . 049 0 .204 0 .476 0 . 877 1 , 2 , 3 , 4 , 5 , 7 , ,424 , 132 , 023 , 121 ,454 , 057 8 . 970 11 .246 13 . 947 17.155 20.972 25 . 536 31.032 37 . 722 45 . 940 FLOW DEPTH (FT) 1. 633 1. 607 1. 581 1. 555 1.528 1 . 502 1 .476 1.450 1.423 1.397 1.371 1. 345 1 .319 1.292 1, 1, 1, 1 1 1 ,266 , 240 , 214 . 187 . 161 . 135 VELOCITY (FT/SEC) 6 . 509 6 .641 6 . 779 6 . 923 7 . 074 7 .231 7 . 395 7 . 567 7 .747 7 . 936 8 . 133 8 .341 8 . 559 8 .788 9 . 029 9 .284 9 .552 9 . 834 10.133 10.448 SPECIFIC ENERGY(FT) 2 .291 2 . 2 . 2 . 2 , 2 , 2 , 2 , 2 2 2 2 2 2 2 2 2 2 2 2 292 295 299 306 315 326 339 356 376 399 426 457 492 533 579 631 690 757 831 PRESSURE+ MOMENTUM(POUNDS) 494.57 494.77 495.38 496.42 497.90 499.84 502.27 505 .20 508 . 67 512.69 517 .29 522.51 528 . 37 534.92 542.19 550.23 559.08 568 . 80 579.44 591.01 NODE 2012.00 : HGL = < 91.983>;EGL= < 92.641>;FLOWLINE= < 90.350> **************** ************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2 012.00 FLOWLINE ELEVATION = 90.35 ASSUMED UPSTREAM CONTROL HGL = 91.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS