HomeMy WebLinkAboutCT 82-12; Cannon Road Box Culvert - Hydrology Calculation; Cannon Road Box Culvert - Hydrology Calculation; 1989-01-12HYDROLOGY CALCULATION
CANNON ROAD BOX CULVERT
STA 48+00
I
I
I
I
I
I
I
I
I
I
| JANUARY 12,1989
I P & D TECHNOLOGIES
I
I
I
I
I
I
LEE S. WOOTEN RCE 25142 DATE
m
*"* TABLE OF CONTENTS
*• Page
*" 1. Project Discussion 1
up 2. Method and References 2
mm
3. Criteria 3
^ 4. Procedure 4
*• 5. Water Surface Pressure Gradient 8
** 6. Charts and Tables 10-17
7. Hydrology Map 18
«m
8. Basin Runoff Calculations 19-31ti»
9. Water Surface Profile 32«PM
«* 10. Drainage Basin Map 33
I
1
I
I
1
I
I
I
CANNON ROAD BOX CULVERT STA. 48+00
HYDROLOGY & HYDRAULIC ANALYSIS
I
I
I
J| PROJECT DISCUSSION
The box culvert undercrossing of Cannon Road has been designed to
• accommodate the ultimate 100 year storm flow for a developed
H drainage basin upstream of the culvert.The channel downstream of
the box has been designed to carry the lOOyr storm flow from the,
m same drainage basin based on fisting land use."*'-\ (Affr- ^^^^V^t" ,
The modified rational method was used to determine flow rar.es (j
m from the contributing drainage basin. The basin was broken into
• subareas and runoff values were calculated for each. These flows
were then routed thru the basin and peak flow for the drainage
• basin was calculated. The flow velocity and depth of flow for
existing conditions were calculated using a water surface
£ pressure gradient program developed by L.A. County Flood
control.
The 100 year storm flow for existing conditions is 1287cfs and
was used to design the channel. The flow depth at station 2+00
where the riprap channel begins is 3.12 feet with an average flow
velocity of 4.35 fps.
METHOD AND REFERENCES
The Modified Rational method was used in this hydrology study. The Rational
Formula is as follows:
Q = CiA, where:
Q = Peak discharge in cubic feet/second*
*1 acre inches/hour = 1.008 cubic feet/second
C = Runoff coefficient (dimensionless)
i = Rainfall intensity (inches/hour)
A = Tributary drainage area (acres)
If rainfall is applied at a uniform rate to an impervious area, the runoff
attributed to this area would eventually reach a rate equal to the rate of
precipitation. The time required to reach this equilibrium is termed the "time of
concentration." For small, impervious areas, one may assume that if precipita-
tion persists at a uniform rate for at least as long as the time of concentration,
the peak discharge will equal the precipitation rate.
This formula may be used for areas up to 1/2-square mile (320 acres) according
to the San Diego County Flood Control District Design and Procedure Manual.
The design procedure followed is described in the San Diego Flood Control
District Design and Procedure Manual (1973 edition). The following charts and
tables used in this study are taken from the above manual and ITS Manual and
are included in this set of calculations:
c
c
I
c
£
Table 1 RUNOFF COEFICIENTS
Figure 1 HYDROLOGIC SOILS CLASSIFICATIONS
FIGURE 2 NOMOGRAPH FOR TIME OF CONCENTRATION
FIGURE 3 EFFECTIVE SLOPE FOR NATURAL WATERSHEDS
FIGURE 4 URBAN OVERLAND FLOW CURVES
FIGURE 5 100 YEAR 6-HR PRECIPITATION MAP
FIGURE 6 100 YEAR 24-HR PRECIPITATION MAP
CHART 1 INTENSITY-DURATION DESIGN CHART
CRITERIA
Frequency - 100 year storm
Hydrologic soils groups from Soil Conservation Service survey maps
Land use per specific plan and tentative map
Open channel flow, where possible, in closed conduits
c
c
•c PROCEDURE
** The following procedure was used in calculating quantity of storm flow at various
•locations along the route of the proposed storm drains. Whenever the term "Manual"
.. .«p»
is used, it refers to the Design and Procedure Manual of San Diego County Floodm Q ° l
Control District, dated December 1973. The general procedure was developed by Losr«* Angeles County Flood Control District and has been modified for use in San Diego
"?•" County.
f~ 1. On the drainage map, divide the runoff area into subareas. These divisions
should, if possible, be based on the topography, soil type, arid the land development.
L> The size of the initial area should be chosen such that the length of travel for the
p water from the most remote point to the point of concentration should not exceed
"""** 2,000 feet and if possible be near 500 feet and be of a generally uniform slope.
. «•»
2. Determine the quantity of water for the initial area.
«M
— a. Estimate the initial time of concentration. This can be obtained
*"" from Appendix X-A of the "Manual" (Figure 4).
..«*
b. Determine the type of soil from "Hydrologic Soil Groups-Runoff
: «•
JB Potential" maps of the Soil Conservation Service soils survey.
m c. Determine the land uses from the specific plan and tentative map.
p d. Obtain the runoff coefficient "C" from Table 2 or Table 3.
e. Obtain the intensity (i) from Appendix XI, "Rainfall Curves for
m County of San Diego" of the "Manual" (Figure 3).
t»
f* f. Calculate the quantity of water (Q) from the "Rational Equation", Q
= CiA.
-..*•»
,-W
3. Determine the quantity of water in a drain or water course at the
«• confluence with subsequent subareas as follows:
a. Determine the water route from the point of concentration of the
previous subarea to the point of concentration of the subarea in
question.
— b. Calculate the time necessary for the quantity of water arriving at
this subarea to pass through to its point of concentration by the
above route. The physical properties of this route must be considered
;?*»
and the velocities obtained from the following:. *•»
••*•
— (1) If traveling in a street the velocity can be figured from
-*" Appendix X-D, "Gutter and Roadway Discharged-Velocity
~* Chart" of the "Manual" (Figure 6).
^ (2) If traveling in a ditch, pipe or other regular section, calculate
-. the velocity from the actual section.
(3) If traveling in a natural watercourse, the velocity can be
derived from Figure 1A, "Velocity in Natural Valley Channels"
or Figure IB, "Velocity in Natural Mountain Channels."
c. Measure the length of flow to the point of inflow of the next subarea
downstream. From the velocity, compute the time of flow and add
this time to the time for the first area to determine a new time of
concentration.
When determining the time of concentration (T ), the expected
future drainage facility and route is used to determine velocity and
travel time (Tt>. Wherever junctions occur, or there is a change in
slope or drainage facility, it is necessary to calculate the velocity
and travel time for the preceding reach. The slope of the hydraulic
grade line is generally assumed to be parallel to the grade slope.
d. Calculate Q for the second subarea, using the new time of concentra-
tion and continue downstream in similar fashion until a junction with
a lateral drain is reached.
e. Start at the upper end of the lateral and carry its Q down to the
junction with the main line.
<f. Compute the peak Q at each junction. Let QA, TA, IA, corresponding to
the tributary area with the longer time of concentration. Let QB> Tn, IB, correspond
6
to the tributary area with the shorter time of concentration and Q , T correspond to
the peak Q and time of concentration when the peak flow occurs.
a. If the tributary areas have the same time of concentration, the
tributary's q's are added to obtain the peak Q.
b. If the tributary areas have different times of concentration, the
smaller of the tributary Q's must be corrected as follows:
(1) The usual case is where the tributary area with the longer time
of concentration has the larger Q. In this case, the smaller Q is
corrected by a ratio the intensities and added to the larger Q to
obtain the peak Q. The tabling is then continued downstream
using the longer time of concentration
Q sQA*QB<Wy VTA
(2) In some cases, the tributary areas with the shorter time of
concentration has the larger Q. In this case, the smaller Q is
corrected by a ratio of the times of concentration and added to
the larger Q to obtain the peak Q. The tabling is then
continued downstream using the shorter time of concentration
QP = QB * QA <TB/TA> T = TB
WATER SURFACE PRESSURE GRADIENT
This water surface pressure gradient program is a hydraulic analysis system
developed by the Los Angeles County Flood Control District.
The program computes uniform and nonuniform steady flow water surface profiles
and pressure gradients in open channels or closed conduits with irregular or regular
sections. The flow in a system may alternate between super critical, subcritical or
pressure flow in any sequence.
The computational procedure is based on solving Bernoulli's equation for the total
energy at each section and Manning's formula for friction loss between the sections
in a reach. The open channel flow procedure utilizes the standard step method.
Confluences and bridge piers are analyzed using pressure and momemtum theory.
The program uses basic mathematical and hydraulic principles to calculate all such
data as cross sectional area, wetted perimeter, normal depth, critical depth,
pressure, and momentum.
The channel or conduit system is initially subdivided into the following elements:
system outlet, reach, transition, confluence (junction), bridge exit, bridge entrance,
wall entrance (sudden contraction), wall exit (sudden expansion), and system
headworks. Each element is internally assigned a number. The input data must
consist of a minimum of three elements (system outlet, system headwork and any
other element) and is limited to a maximum of 200 elements. A greater number of
elements will require a breakup into two or more systems.
The starting flow rate (Q) at the upstream terminus of a system is specified. The
flow rate (Q) is increased at the desired locations by specifying lateral inflow rates
at a confluence. The flow rate can be reduced by using a negative lateral Q, this
reduction is intended to account for channel storage. If it is used in cases where
the channel or conduit branches it should be understood no loss is computed.
8
The program uses the Manning formula for the friction loss in all types of conduits
or natural channels. The program can only take one "n" value per element,
however, the "n" value can change at subsequent elements. If a section has a lining
composed of different roughness coefficients a composite "n" based on anticipated
depth of flow should be hand computed.
The lower stage w.s. profile begins at the system headworks and ends at the system
outlets. The computation will proceed downstream in every consecutive element
as long as energy is available to maintain flow in the supercritical stage. When
energy becomes expended at any point in an element, the lower stage profile will
be discontinued from that point to the downstream end of that element. Then
computation will resume in the next element with a critical depth control until the
system outlet is analyzed.
The upper stage w.s. profile, begins at the system outlet, and end at the headworks.
Computation proceeds upstream in every element as long as the water surface at
the downstream end of any two adjacent points can support the moving mass of
water to flow at the critical or subcritical depth. Otherwise, computation will be
discontinued from the downstream point to the upstream end of that element.
Then computation will resume at the downstream end of the next element with
critical depth control, provided no depth less than critical depth has been computed
at that point on the lower stage profile. Then computation will proceed upstream
until the system headworks is analyzed. Note that if the computed depth of flow in
any open section exceeds the given section height the program will assume an
additional 10-f eet of vertical wall except for a Trapezoidal Channel where the side
slopes are extended outward until the 10-f eet vertical height is reached.
The jump routine begins at the system outlet and ends at the headworks. It
searches the lower stage and the upper stage profiles for points of equal energy. If
a jump is encountered, it will be approximately located; and data on either the
upper stage or lower stage not consistent with the greater energy theory will be
deleted from every element. The final profile will be a composite of upper stage
and lower stage with hydraulic jumps in between.
9
I
I
I
I
]1I
I
I
I
I
II
I
RUNOFF COEFFICIENTS (RATIONAL METHOD)
LAND USE Coefficient, C
Soil Group (1)
A 1 £ D
Undeveloped .30 .35 .40 .45
Residential:
Rural .30 .35 .40 .^5
Single Family .40 .45 .50 .55
Multi-Units .45 .50 .60 .70
Mobile Homes (2) .45 .SO .55 .65
Commercial (2) .70 .75 .80 .85
80% Impervious
Industrial (2) .80 .85 .90 . .93
90% Impervious
NOTES:
(1) Obtain soil group from maps on file with the Department of Sanitation
and Flood Control.
(2) Where actual conditions deviate significantly from the tabulated
imperviousness values of 80% or 90%, the values given for coefficient
C, may be revised by multiplying 80% or 90% by the ratio of actual
imperviousness to the tabulated imperviousness. However, in no case
shall the final coefficient be less than 0.50. For example: Considej
commercial property on D soil group.
Actual imperviousness = 50%
Tabulated imperviousness = 80?;
Revised C = |° X 0.85 = 0.5580
APPENDIX -X
10
r
r
i ,
r»
4 .
I
0
r
t
IX-C2
}CMZ.<*s
BEST ORIGINAL
IBFUIWTIW «*TE5 EVE:. -VE>. THC=.O,-OHLY ... -ELL TO EXCESSIVU» CS-,::.EO SA.-IO .i^'on C
0' WATER Tf^rSKISSlOX -T.3 -Cc',9 SiSutT I'.
.VEL
« UV
-:;=^TE !BFH.:V;TICH WTES JK£-: THOSI^IIY -•;
V.T£IT OEE» T; CEE?. ^OOE=AT-:IY VEL: TO •.-£'..
T: raoEUTE'.v co»»s£ TtfTu'.Es. THESE tou;
-N
S'.IIS SWV1'.-: SI.3U IKf I'.TSiTICM SATES '.«!: TMOSC'XMIT L'ErfEO. --
C= (I) SOIL! -ITH « UYC? TH>T I-=£OES THE Ca.?iSRO KOVEMEKT OF ** JJfj ^'V
•-£?M«.tlT •---;
-^vc A nx£^T-
;r ''•', CLAY s:«t; '-'ITM A -ICH S-.EILII.-C POTEHII.M: (?) so'iS.^.»'-"•..;-=» TABLE- ;•; s:us ..ITII CIAY ?A:: »> CIAY LAYER »T o*^* I;
•«.» '..?: KATE :- --'..TES T?A:SnISSICK
>>c\s
SAN DIEGO COUNTY
DEPT. OF SPECIAL DISTRICT SERVICES
FLOOD CONTROL DIVISION
DESIGN MANUAL
HYDROLOGIC
SOIL CLASSIFICATIONS
BY :
DATE .APR IX -C 2
11
• 4OOO L • LenaM of tva/er*Aed
.
i:
mmi-
I***u
lw
i:-.
h>
*.
;.«•>
«~
IJ»
^c
c
*•»
»•
Mf/cs
- — /^^? «.
-^ ^<? -
- 800 _
— 700 _
— ^0tf \
—5-^ X\ ~
^./^ >^-> "
'^300 ^ ^
\
200 \ ^1
I \
\ -
\-
— too ' / _
—
—
-
~
1_^2? ^-^ —
mm
••••• 4fl
^
J*/
pU7»<K-K^rur^rc« jexf^a* ^"^j
|NOTE: 5
— 10 | ADO TEN MINUTES TO J
I COMPUTED TIME OF CON- !
^CENTRATION- _j
— /O
fcet //ovs-s
3-
*—
/
•S-30M
~i^4000N
\
— 3000 \
\
\
— 2000 \—/soo \
— /6OO
M/'/it/tes
— 240
'—/80
— /20
— /OO
— 30
"—BO
'—70
— fO_
— 40
-
— 30
9Q^^_» fc *^
— /a
— /£
—/*
— /2
/O
— MOO 1—5
— /2OO t— ^
SOOO
— 9OO
— 800
— TOO
— 600
—-SOO
— 30O
-c
~~s
— t--
— 200
*» // / 7-** ^u //*
** SAN DIEGO COUNTY
^ DEPARTMENT OF SPECIAL DISTRICT SERVICES
DESIGN MANUAl^^ \j w o i vjii rn/A M \j ML.
APPRnVPn 0 / // /^^C^re -tf~i?C^ 4 o
NOMOGRAPH FOR DETERMINATION
OF TIME OF CONCENTRATION (Tc)
FOR NATURAL WATERSHEDS
OATP /2///£? 1 APPENDIX X-A
i:
"/?' * Area.
SAN DIEGO COUNTY
DEPARTMENT OF SPECIAL DISTRICT SERVICES
DESIGN MANUAl
APPROVED _, //,fer
COMPUTATION OF EFFECTIVE SLOPS
FOR NATURAL WATERSHEDS
DATE APPENDIX X-S
13
G/resr ••a/ /~/ow • 3 GO //.
%
o/ fusto//. C • . SO
C
SAN DIEGO COUNTY
DEPARTMENT OF SPECIAL DISTRICT SERVICES
DESIGN M>VNUAL^_
APPROVE /•>' / /^^c-'T-'^^r^,'^^~'}
URBAN AREAS OVERLAND TIME
OF FLOW CURVES
OATF -'''/'/ty APPFNDIX X-C
14
I T I T~l I i • I I i i i f i i i i i § i i t i I • 1 ft ft II
COIWTY OF SAN DIEGO
DEPARTMENT OF SANITATION
FLOOD CONTROL
33°
100-YEAR 6-HOlrt PRECIPITATION
^2(U ISOPLUVIALS OF 100-YEAR 6-HOUR
PRECIPITATION IN TENTHS OF AM ISiCII
•Otn
a
io
U.S. DEPARTMEN
NATIONAL OCEANIC AND AT.<
SPECIAL STUDIES DRANCII. OFFICE OF II
30'_
SPHERIC ADMINISTRATION
ROLOOY. NATIONAL WEATHER SERVICE
30'15' 116°
APPENDIX XI-D
ir~i ir~i v~i i i t i r i r r t i • i • i • i • i r i t i § i
0)
COUNTY OF SAN DIEGO
DEPARTMENT OF SANITATION fi-
FLOOD CONTROL
'•5
33°
30'
15'
100-YEAR 24-IIOIJR PRECIPITATION
--2(MSOPLin/IALS O.F 100 -YEAR 24-IIOUR
PRECIPITATION IN *tlEMTIIS OF AN INCH
rns:oi—i
X
XhH
I
0
U.S. DEPARTMfclM
NATIONAL OCKAMC AND AT:.
SPECIAL STUDIES UKAMtll. OFKlCli OK Iff
30'
111!"30'II1 117'IV 116"
APPENDIX XI- G
l -1 i I I -I ! "T 'i Vt 1 j Y~i
JNTENSITY'DUMTluN DESIGN CHART
II I I I i li I )
J Equation: I '••= 7.44 P. D'"'64S
Intensity (In./Hr.)
Pfi » 6 Hr, Precipitation (In.)
D » Duration (Min.)
15 20
Minutes
40 50 1
Duration
5 6
Directions for Application:
1) From precipitation naps determine 6 hr. and
24 hr. amounts for the selected frequency.
These maps are printed 1n the County Hydrology
Manual (10, 50 and 100 yr. maps included in th
Design and Procedure Manual).
2) Adjust 6 hr. precipitation (if necessary) so
that 1t Is within the range of 45% to 65% of
the 24 hr. precipitation. (Not applicable
to Desert)
3) Plot 6 hr. precipitation on the right side
of the chart.
4) Draw a line through the point parallel to the
plotted lines.
5) This Hne 1s the Intensity-duration curve for
the location being analyzed.
Application Form:
0) Selected Frequency /00 yr.
P24=
2) Adjusted
3) tc-_
4) I =
24
in.
min.~
In/hr.
*Not Applicable to Desert Region
APPriNOIX XI-A
.iSSv ^.c <ji - - r
-•-i^-^^i
?MVy
N
>^5 S'
._i
=:^j=^r
C.r»P«rW
iM^ff .•*.-•'y>
(ii .rf?U&S W
/•BwuS^I Sch_V
/
t&*tf ,'-^r;=i ..,V^ ,,=^f 8;Sch
=ix?&sffiir' '-••^f
s^-i/ :=0' Park JjXIMfg Sr. 1
. _- _. _ _ r,- ~>*--•«%'
v7?
=^i
- r*f
^
c«,V/**«. v«•^•2?>>-.
H5<^<./
* »U*\ Mir»costa
^ ^ ]Coll«f«/.x .
WT«
-^
Breeze .
Hiir
Libr
^^^N-iii .VTCTA-II'3W-'
^
-s.r25\
?===-»
^A>"
A r-& 5
-TVs^ .-vS.
;.::«
1-
, Sewage.o?al
f*:•*•:/ -1
.^ V^>
//?_,*
Heliport ,
Hospital
xx
. 4M-M~9^-.—--V--;^b •
S^^v'S
^^^A
irf*v
Country I f-BDY"l A«•x^.
/:f^\.JL^.-K«.
Xi' l^?T<v ^~
*i. /I
•J^>" »•'
X.^&£
y**.~ •^A?-?
Park^ s^»---.
V«JSp.* I
«*•&= I 35>
J"
:;x ,1.53
f..-"-'
•*S£*^w
^W'*^
:.l:J'/•".^Wl.. -—-I. _*»-j
*i->-/<^r-2^r«T.
O
' i ™>_Ji
/y:.\(
•as--:
J*T\ . V \ —^=ZZ^» :? A /—i ,*&&£=^- ..^.-//-V.fH L/S!r-
Trailer r—•
3^,
-y-./j ^NT:'->/;^>^
~y\Sf /Vj mi->-i\
j rtaoi
*•.*
^1-
fc4^-^N^^^S^^
^ \^C^
"\~
"*b~
"-V^r
ORP X~
VM
%A
./W»t«r.
•.nkP ^
•*Ji *»••
S^\«
sr--*«.t:!5
CCer
x..
9L----^T—^ N
&tf2:-.\^^r . •-- ~~r=*
V >.
"*?=.- "-^ S.
> -^
Mi^-'
^e
^ ^,KeV
^!\
••x
'/>]^/
s
X* i
J
i^^'
SWMO^h:....VH:Sn^n1
-tM^t2.0:L£U
f^Sff
t *~,a-/ -<^\ L5'fc
-J N-^OO-
H^J-.'\-'-'
»•».«K1
^?
/
M;
/Gravel T
Pit-'
C€^
^
yx .^
14.
r^E•^|07-
V. A £ ;• i_-
• -i**,-!'*'!>v.
;..-. Coxey/% f <i >] - /f Hiit^ >4^.J y(, :A;:'
:._Ji;^^
y\^ltettf=2N
t-rV'^i^ f LN jTsy'-jC'
If:" .- Si: ^ X f >V ,v ?•? •2.1*
--.-^-:&&?*'
/r,^ -7>j? /- ..^-' f .'... -^ /• -. •
Counlfy
_ mf%s^ T
T> .S\ /^7 :W^J^g. |i/^ -r':<^^^SS3^^=Dr A:l C '<c? %$^^ •';;V/^fy^^^f\ ^ ^o ?'
x ..*^-''" "*7 «^V—> j *• i -' - ' ^ ^ ' '-•• Vt ' ^-''-;--=-—"^7^ ** ,x> jy ^_ ^^_- -f A ^an^;,c."
.- V;^S^->'. - S^r^^--'i^i^mirt'xi''"~' "": '^~ -' -'--"^ "^"~
^X^^^fex-t^^V-1 !^isT ORIGINAL'^-•if-S^^^^'tAi. *=--^=^«-. i TO ' - ' / ~-7 --.-> <UV^5g^>==r¥; TTt i 1-^-j '- ' ( v =Oj ^arron^CC-: * M = ,.^ !.- ---.- X^ i
lit
&;<•-' fi/r.- ; ^'— x \ ^ S-
./ ' &J <.\^^-^
_
.!a- •'
" SAN DIEGO COUNTY
R ATIONAL-HYDROGRA P H
PROGRAM PACKAGE:
Copyright (c> CivilOadd , 1988
R a t i anal I I y cl r o 1 n g y S t i.i cl y D a t e :10--2 0-8 8
HYDROLOGY FOR CANNON RD BOX CULVERT STA.48+ WITH EXISTING
LAND USE IN DRAINAGE BASIN
*USFR SPECIFIED HYDROLOGY INFORMATION*
Rational method hydrology program based on
San Diego County Flood Control Division
1985 Hydrology Manual
Storm Event (Year) =» 100.00
Map data precipitation entered:
f. HOUR, Prooipitat ion( Xnoh«M) "" 2.75O
24 Hour Precipitation (Inches) = 4-. 750
Adjusted 6 Hour Precipitation (Inches) «= 2.75O
P6/P24 = 57.9 %
San Diego Hydrology Manual "C" Values Used
Runoff Coefficients by MODIFIED RATIONAL METHOD
4-4^4-4^4-4-4 4 4-4-4 4-4-4H-4-4-+4-4-4H-+4-4-4-4-4-+4-4-4-++^
Process -from Point/Stat ion 10O.OO to Point/Stat ion 101.00
*** INITIAL AREA EVALUATION ***
Decimal Fraction Soil Group A = .OOO
Decimal Fraction Soil Group B = .OOO
Decimal Fraction Soil Group C = 1.OOO
Decimal Fraction Soil Group D *» .OOO
RURAL (lots > 1/2 acre) runo-f-f coefficient =• .40OO
Initial Subarea is assummed uniform
Area Type is: RURAL(Greater than 1/2 Acre)
Time of concentration computed by the Natural
Watersheds nomograph, (App. X—A)
TC = Cll.9*Length(Mi)*3)/(Elevation Change)3~.385*6O(MIN/HR)
4- 1O min .
Initial Subarea Flow Diet. => 946O . OO
Highest Elevation = 5OO.OO
Lowest Elevation = 333.00
Elevation Difference = 167.OO
TC = C(11.9* 1.7S17**3)/( 167.OO)3**..385 = 42.560
4- 1O Min. = 52.56O Min.
1OO.OO Year Rainfall Intensity(In./Hr.) = 1.589
Subarea (Acres) = 476. OO Subarea Runoff (CFS) •=• 302.52
Total Area(Acres) = 476.OO Total Runoff(CFS) = 3O2.52
TC(MIN) 52 56
CA = 19O.40 Sum of CA « 19O.40
Process from Point/Station 100.OO to Point/Station 1O1.OO
*** CONFLUENCE OF MAIN STREAMS ***
I
I
I
I
I
I
I
1
I
I!
I
I
I
II
I
I
I
1
II
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
1.0O OO »ar Rainfall Intensit y < In / Hr . ) == 1.589
The flaw v«»lu «•>••; used for the stream: 1 are:
Timti of eonoent rat ion (min . ) = 5S.5S
Rairif al 1 -i n tensity (in./hr/) *» t .59
Total flow area < Acres) « 4-76 . OO
Total runoff <Cf-"!3> at confluence point « 3O2.32
Program is now starting with MAIN STREAM NO. 2
++++.f+++++++++++4.+++++++++++++++++^^
Process from Point /Station 2OO . OO to Point /Station 101. OO
*** INITIAL AREA EVALUATION ***
Decimal Fraction Soil Croup A =• . OOO
Decimal Fraction Soil Cr.oup B «* .OOO
Decimal Fraction Soil Croup C «" l.OOO
Decimal Fraction Soil Group D •» .OOO
RURAL, (lots > 1/2 acre) runoff coe-f -Ficient =» . 4.QOO
Initial Subarea is as summed uniform
Area Type is: RURAL (Greater than 1/2 Acre)
Time of concentration computed by the Natural
Watersheds nomograph, (App. X— A)
TC - Cll 9*L.ength(Mi)*3)/ (Elevation Change) D* .385*60 (MIN/HR)
•4- 1 0 mi n .
Initial Subarea Flow Dist . =• 505O . OO
Highest Elevation •= 470. OO
Lowest Elevation •» 333 . OO
Elevation Difference »• 137 . OO
TC » Cdl.S* .9564**3)/( 137 . OO) 3**. .385 = 22.34-6
+ 1O Min. « 32.246 Min .
1OO.OO Year Rainfall Intensity ( In . /Hr .) - 2.177
Subarea (Acres) = 132 . OO Subarea Runoff (CFS) = 114.97
Total Area (Acres) •» 132 . OO Total Runoff (CFS) = 114.97
TC(MIN) = 32.25
CA - 52. SO Sum of CA - 52. 8O
Process from Point /Station 2OO . OO to Point /Stat ion 1O1.OO
*** CONFLUENCE OF MAIN STREAMS ***
*** Compute Various Confluenced Flow Values ***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
1OO.OO Year Rainfall Intensity (In ./Hr .) •= 2.177
The flow values used for the stream: 2 are:
Time of concentration(min.) = 32.25
Rainfall intensity (in./hr/) = 2.18
Total f-1-ew-a^ea (Acres) » 132. OO
Total runoff (CFS) at confluence point = 114.97
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I!
I
I
C o n i .1 i.i '•••> n o *•? 1.n •(• o i- ma 1.1 o n :
St r earn run o I ( T i me Intensity
Number (CFB) (miri.) (inch/hour)
1 302.52 52.56 1 .58'£>
2 114.97 33.25 2.177
QSMX <1) =
•fl . OOO*1 . OOO* 302.5)
f 730*1.000* 115.0)
= 386.4O8
QSHX(2) =
4-1. OOO* .614* 302.5)
fl.000*1 OOO* 115.0)
= 3OO.564
Pain-fall intensity and time of concent rait ion
used for 2 MAIN stream's.
Individual stream flow values are:
302.52 114.97
Possible confluenced flow values are:
386.41 300.56
Individual Stream Area values are:
476.OO 132.00
Computed confluence estimates are:
Runoff(CFS) » 386.41 Time(min.) - 52.560
Total main stream study area (Acres) «=• 6O8. OO
Process from Point/Station 1O1.OO to Point/Station 1O2.0O
*** TRAPEZOIDAL/RECT. CHANNEL TRAVEL TIME ***•
Upstream point elevation — 333.00
Downstream point elevation ** 203 . OO
Channel length thru subareafFeet) •• 41OO.OO
Channel base(Feet) « 1O.OO
Slope or "7." of left channel bank •» 3. OOO
Slope or "Z" of right channel bank - 3.OOO
Mannings "N" = .O45 Maximum depth of channel (Ft.) = 2O.OO
Flow(O.) thru subarea(CFS) » 386.41
Upstream point elevation == 333. OO
Downstream point elevation "= 285.00
Flow length(Ft.) = 410O.OO
Travel time (Min.) = 11.58 TC(min.) = 64.14
Depth of flow =• 3.29 (Ft.)
Average Velocity = 5.90 (Ft./Sec.)
Channel flow top width = 29.76 (Ft.)
4-+4-++^
Process from Point /Stat ion 1O1 . OO to Point / Stat ion 1O2.OO
*** SURAREA FLOW ADDITION ***
1. 0 0 . O (> Yea r Ra :i. n -f a 1 1 I n t en s i t y ( I n . / Hr . ) = .1. . 397
Decimal Fraction Soil Group A = . OOO
Decimal Fraction Soil Group & - .OOO
Decimal Fraction Soil Group C = 1 . OOO
Decimal Fraction Soil Group D = .000
RURAL (lots > 1/2 acre) runoff coef -f icient ~ .4000
Subarea < Acres) « 305 . OO Subarea Runoff (CFS) » 133. S3
Total Area (Acres?) *• 913.00 Total Runoff(CFS) » 510.33
TC(MIN) - 64- . 14
CA - 122.OO Sum of CA •» 365. SO
Process from Point /Stat ion 1O1.OO to
*** CONFLUENCE OF MAIN STREAMS
Point /Stat ion 103. OO
***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year Rainfall Intensity(In./Hr.) = 1.397
The> flow values used for the stream: 1 are:
Time of concent rat ion (min .) «= 64.14-
Rainfall intensity (in./hr/) => 1.4O
Total flow area (Acres) «* 913. OO
Total runoff (CFS) at confluence point = 51O.33
Program is now starting with MAIN STREAM NO. 2
•4-f •»••»•-H
Process from Point/Station 30O.OO to Point/Station 102.OO
*** INITIAL AREA EVALUATION ***'
Decimal Fraction Soil Group A
Decimal Fraction Soil Group B
Fract ionDecimal
Decimal Fract ion
Soil
Soil
Group
Group
.4OOO
.OOO
.OOO
1 . 000
.OOO
RURAL (lots > 1/2 acre) runoff coefficient
Initial Subarea is assummed uniform
Area Type is: RURAL(Greater than 1/2 Acre)
Time of concentration computed by the Natural
watersheds nomograph, (App. X—A)
TC = Cll.9*Length(Mi)A3)/(Elevation Change)
-f 1O min .
Initial Subarea Flow Dist. = 1OOOO.OO
Highest Elevation == 435 . OO
Lowest Elevation = 285.OO
Elevat. ion Difference = ISO . OO
TC = [(11 9* 1 .893S»**3) / ( 150.00)D**.
+ 10 Min = 57.293 Min.
1OO.OO Year Rainfall Intensity(In./Hr.)
Subarea(Acres) = 433.OO Subarea Runoff(CFS)
Total Area(Acres) = 433.OO Total Runoff(CFS)
TC(MIN) = 57.29
CA = 173.20 Sum of CA « 173.2O
.385*60(MIN/HR)
.385 ==47.293
1.503
260.30
26O.3O
I
I
I
I
I
I
I
I
I
I
I
I
4-4 •»-* i •»-»••• 4••^•^•^•^4••^•^^•^•^•4•
ITCH-WKT; -I- row Point/Station 30O . OO to Point /Stat ion 1O2.OO
*** CONFLUENCE OF MAIN STREAMS ***
*** Compute Various Confluenced Flow Values ***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
1
I
I
I
I
I
1OO.OO Year Rainfall Intensity ( In . /Hr .) = 1.5O3
The -Flow values used for the stream: 2 are:
Time of concentration (min .) «« " 57.29
Rainfall intensity (in./hr/) « l.SO
Total flow area < Acres) «• 433.00
Total runoff (CFS) at confluence point = 260.30
Confluence information:
Stream runoff Time Intensity
Number (CFS) (min.) (inch /hour)
1 51O.33 64.14 1.397
2 26O.30 57.29 1.503
QSMX ( 1 > -
4-1.00O*1.00O* 51O.3)
4- .93O*1.OOO* 26O.3)
» 752 . 365
QSMX ( 2 ) -
4-1 000* S93* S1O.3)
4-1 OOO*1 OOO* 26O.3)
716.185
Rainfall intensity and time of concentration
used for 2 MAIN streams.
Individual stream flow values are:
510.33 260. 3O
Possible confluenced flow values are:
752.36 716.18
Individual Stream Area values are:
•513. OO 433.OO
Computed confluence estimates are:
Runoff (CFS) - 752.36 Time(min.) = 64.136
Total main stream study area (Acres) = 1346.00
•»• f 4- •«••«• 4- f f •«• »• f -f •»• -f *• *- f 4-H- f -f + -M-f -f f -4- f -4- f -f + -f •*• •«"»• + *• + -r-f-f -f -f-f-f + f -
Process from Point / St. at ion 1O2.OO to Point /Stat ion
*** TRAPtii'/oiDAL/RECT. CHANNEL TRAVEL TIME
103.OO
***
Up s»t. r«=?;an» point, wlevat. ion =a 285 . CO
Downstream point el«v»tion «• 239 . OO
Channel length thru subarea ( Feet ) - 320O . OO
Channel base < Feet) =• 1O.OO
Slope or "Z" of left channel bank =• 3 . OOO
Slope or "7L" of right channel bank = 3 . OOO
Mannings "N" = . O45 Maximum depth o-f channel (Ft.)
Flow(Q) thru subarea(CFS) = 752.36
Upstream point elevation =» S85 . OO
Downstream point elevation "= 23S . OO
Flow length (Ft . ) = 3200 . OO
Travel time <Min.) = 7 . 02 TC(min.) « 71.16
Depth of flow » 4.32 (Ft.)
Average Velocity = 7.60 (Ft. /Sec.)
Channel flow top width = 35.S>O (Ft.)
6.00
Process from Point /Station
*** SUBAREA FLOW ADDITION
1O2.00 to Point /Stat ion 103 . OO
***
_ 100.00 Year Rainfall Intensity ( In . /Hr .) = 1.3O7
Decimal Fraction Soil Group A =• .OOO
•** Decimal Fraction Soil Group & <= .OOO
Decimal Fraction Soil Group C «• l.OOO
*™ Decimal Fraction Soil Group D «= .OOO
j; RURAL (lots > 1/2 acre) runoff coefficient » .400O
Subarea( Acres) = 127 . OO Subarea Runoff (CFS) « 17.62
Total Area (Acres) = 1473. OO Total Runoff (CFS) -" 769.99
TC(MIN) =71.16
CA = *>O.8O Sum of CA »= 589 . 2O
1
Process from Point / Stat ion 1O2.OO to Point /Stat ion
*** CONFLUENCE OF MAIN STREAMS
1O3.OO
***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
1OO.OO Year Rainfall Intensity(In./Hr.) = 1.3O7
The flow values used for the stream: 1 are:
Time of concentration(min.) = 71.16
Rainfall intensity lin./hr/) = 1.31
Total flow area (Acres) = 1473.OO
Total runoff (CFS) at confluence, point — 769.99
C-
c IT ocji-i-ni, i -. IMIW ;;. Hiirtinu with MAIN STREAM NO. 2
.f+f 4.,. M.4..t.M..,..f ».f ^. + .4. + ++^^
Process from Point/Station 4OO.OO to Point/Station 103.OO
*** TNITT.A!... AREA EVALUATION ***
Qi-y.r. i riV:.'! Fraction Gail Group A "= .OOO
Decimal Fraction Soil Group B = .000
Decimal Fraction Gail Group C = 1 . OOO
Decimal Fraction Soil Group D = .OOO
SINGLE FAMILY runoff coefficient « .5000
Initial Subarea is as-summed uniform
Area Type is: SINGLE FAMILY
Time of concentration computed by the Natural
Watersheds nomograph, (App. X—A)
TC •- Cll .9*Length(Mi) A3)/ (Elevation Change ) 3" . 385*60 ( MIN/HR)
•f J O mi n .
Initial Subarea Flow Dist . = 6OOO.OO ^_*
Highest Elevation = 355.OO
Lowest Elevation = 239.OO
Elevation Difference = 116.00
TC = C(11.9* 1.1364**3>/< 116.O0>3**..385 = 28.943
•t- 1O Min. = 38.943 Min.
10O.OO Year Rainfall Intensity(In./Hr.) = 1.928
Subarea (Acres) = 323. OO Subarea Runoff (CFS) =* 311.35
Total Area(Acres) = 323.OO Total Runoff(CFS) = 311.35
TC(MIN) = 38.94
CA - 161.5O Sum of CA «= 161.5O
Process from Point/Station 4OO.OO to Point/Station 103.OO
*** CONFLUENCE OF MAIN STREAMS ***
*** Compute Various Confluenced Flow Values *#*
FOLLOUING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year Rainfall Intensity<In./Hr.) = 1.928
The flow values used for the stream: 2 are:
Time of concentration(min.) = 38.94
Rainfall intensity (in./hr/) = 1.93
Total flow area (Acres) =•= 323 . OO
Total runoff (CFS) at confluence.point = 311.35
Con f 1 uenc-e i n f ormat ion:
Stream runoff Time
Number (CFS) (min.)
Intensity
(inch/hour)
1 769 99 71.16
2 311.35 38.94
QSMX(1) ~
t .1 . OOO*1 . OOO* 770 . 0 )
f .678*1.OOO* 311.4)
981.O39
QSMX(2) -
+1.OOO* .547* 770.0)
+1.OOO*1.OOO* 311.4)
732.743
1 .307
1 .928
I
I
I
I
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
ft a i. n i a J II i r> t e 11 •., 11. y a n d t i me ei f r.: o n c e n 1. r a t :i. 1:1 n
u'-sed for P MAIN streams.
Individual ••; I. r »>;;ii'i> flow values i»\rt»:
7t>9 .99 an. .35
P o si si :i. t) 1 e c c:> n •(• 1 u <» n ce d flow values a r e :
981 04 732 . 74
I n r.l :i. v i dun I St. r earn Area va 1 Lies are?:
14/3 00 :.-)£'3.00
Computed confluence e<st imat es are:
Runoff (CFS) =••=•• 981.04 TinvsMmiri.) ==' 71.158
Total main 'stream study area (Acres) = 179S . OO
Process from Point/Station 1O3.00 to Point /Stnt ion 104 . OO
*** TRAPEZOIDAL/ RECT. CHANNEL TRAVEL TIME ***
Upstream point elevation •» 239 . OO
Downstream point elevation » 212 . OO
Channel length thru su bar ea< Feet I- 8700. OO
Channel base (Feet) « 10. OO
Slope or "Z" of left channel bank =• 3 . OOO
Slope or "Z" of right channel bank = 3. OOO
Mannings "N" » . O45 Maximum depth of channel <Ft.) «= 6.00
Flow(Q) thru subarea(CFS) - S81.O4
Upstream point elevation = 239 . OO
Downstream point elevation = 212 . OO
Flow length < Ft .) = 2700. OO
Travel time <Min.) - 6.33 TC<min . ) = 77.49
Depth of flow = 5.3S (Ft.)
Average velocity = 7.11 (Ft. /Sec.)
Channel flow top width • 41.90 (Ft.)
Process from Point/Station 1O3.00 to Point /Station 104 . OO
*** SUBAREA FLOW ADDITION ***
1OO.OO Year Rainfall Intensity ( In . /Hr .) « 1.237
Decimal Fraction Soil Group A •* .OOO
Decimal Fraction Soil Group B = .OOO
Decimal Fraction Soil Group C = 1 . OOO
Decimal Fraction Soil Grou'p D = .OOO
MOBILE HOMES runoff coefficient = .55OO
Subarea< Acres) = 127 . OO Subarea Runoff (CFS) *= 33.95
Total Area(Acres) = 1923. OO Total Runoff (CFS) =• 1O14.99
TC<MIN) -~ 77.49
CA = 69.35 Sum of CA = 82O.55
++++++++4-++++++++^
Process from Point /Station 1O3.0O to Point /Station 1O4 . OO
*** CONFLUENCE OF MAIN STREAMS ***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
100.00 Year Rainfall Intensity(In./Hr.) = 1.237
The flow values used for the stream: 1 are:
Time of concentration(min.) = 77.49
Rainfall intensity (in./hr/) - 1.24
Total flow area (Acres) - 1923.OO
Total runoff (CFS) at eon-Ftuonr?** orH n+ = lotx QC,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Program :i s now starting with MAIN STREAM NO. £'
f » ^4 « M t M- M + M M M ++-f f++-M + f +-M-+^
Process from Point. AStat ion 5OO.OO to Point /Stat ion 1O4.OO
*** INITIAL AREA EVALUATION ***
Decimal Fraction Soil Group A =• . OOO
Decimal Fraction Soil Group B •* .OOO
Decimal Fraction Soil Group C =» 1 . OOO
Decimal Fraction Soil Group D « .OOO
RURAL (lots > 1/2 acre) runoff coefficient « .400O
Initial Subarea is assuiraned uniform
Area Type is: RURAL. (Greater than 1/2 Acre)
Time of concentration computed by the Natural
Watersheds nomograph, (App. X— A)
TC •=• Cll .9*Length(Mi)*3>/ (Elevation Change) 3* . 38S*6O(MIN/HR)
+ 10 min .
Initial Subarea Flow Dist . *» 565O . 00
Highest Elevation = 42O . OO
Lowest Elevation - 212 . OO
Elevation Difference *• SOS . OO
TC « C(11.9* l.O701**3)/( 208.00)3**. .385 - 31.565
+ 1O Min. « 31.565 Min.
1OO.OO Year Rainfall Intensity ( In . /Hr .) » 2. SOS
Subarea (Acres) « 183 . OO Subarea Runoff (CFS) *» 161.59
Total Area (Acres) - 183 . OO Total Runoff (CFS) » 161.59
TC(MIN) «= 31.57
CA = 73.2O Sum of CA - 73. SO
Process from Point /Station 50O.OO to Point /Station 1O4.OO
*** CONFLUENCE OF MAIN STREAMS ***
*** Compute various Confluenced Flow Values ***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
10O.OO Year Rainfall Intensity(In./Hr.) = 2.SOS
The flow values used for the stream: 2 are:
Time of concentration(min.) ™ 31.57
Rainfall intensity (in./hr/) » 2.21
Total flow area (Acres) «• 183. OO
Total runoff (CFS) at confluence point «• 161.59
Confluence information:
Stream runoff Time Intensity
Number (CFS) (min.) (inch/hour)
1 1014.99 77.49 1.237
2 161.59 31.57 2.2O8
QSMX (1) =••
+1.OOO*1 OOO*1015.O)
Jr. -56_0*1 .OOQ*_16l .6)
11O5.532
QSMX (2) =»
H.OOO* .407*1015.0)
+1.000*1.000* 161.6)
= 575 . O65
f'»• ;s :i. n f a 11 int. •;;• n s i t y a n d t i rne cH; c o n c « r> t1- a t i ti n
us tad for /2 MAIN streams.
I nr.l i w i . di.ia I stream -Flow values arw:
1O14 . W 161 . 59
P a •;;;.•; i b I e rronfluenced flaw values are:
.1 1.O5 S3 S75 . 07
In dividual Stream Area valuer; are:
1 Tic?3. 00 1.83.OO
Computed confluence estimates arra:
Runoff <CFS) = 1105.53 Time<min.) = 77.4-86
Total main stream study area < Acres) ««= 21O6.OO
I -4 "f-t-H f *H-H- »• »-+-f +^-t--f -4-f -f -f -f -f 4-i
Process -from Point /Stat ion 1O4.OO to
*** TRAPEZOIDAL/ RECT. CHANNEL. TRAVEL
Point /Stat ion 105. OO
TIME . ***
Upstream point elevation •» 212 . OO
Downstream point elevation "" 175 . OO
Channel length thru subarea(Feet) = 250O.OO
Channel base (Feet) •» 20 . OO
Slope or "Z" of left channel bank •= 4. OOO
Slope or "Z" of right channel bank « 4.OOO
Mannings "N" = .O45 Maximum depth of channel (Ft.)
Flow(Q) thru subarea(CFS) » 1105.53
Upstream point elevation •»
Downstream point elevation «
Flow length (Ft.) =• 2500 . OO
Travel time (Min.) = 5.35
Depth of flow =«
Average Velocity =
6 . OO
212 . OO
175.00
TC(min.)
3.96 (Ft.)
7.79 (Ft. /Sec.)
82.84
Channel flow top width « 51.69 (Ft.)
Process from Point /Stat ion
*** SUBAREA FLOW ADDITION
1O4.OO to Point /Stat ion 105. OO
. ***
1OO.OO Year Rainfall
Decimal Fraction Soil
Decimal Fraction Soil
Decimal Fraction Soil
Decimal Fraction Soil
RURAL (lots > 1/2
Subarea( Acres) «=
Total Area (Acres)
TC(MIN) - 82.84
CA = 79.2O Sum of CA =
Intensity ( In . /Hr .) = 1.185
Group A = .OOO
Group B = .OOO
Group C = 1 . OOO
Group D = .OOO
acre) runoff coefficient = .40OO
198.00 Subarea Runoff (CFS) •= 47.23
= 2304.00 Total Runoff (CFS) = 1152.76
972.95
++++++++++++++++++++++++++
F'-'rocess from Point /Stat ion 105. OO to Point /Stat ion 1O6 . OO
'*** "-ITTAPezaiDALABECT. CHANNEL~TRAVEL~ TIME ***
Upstream point elevation = 175.OO
Downstream pioint elevation =» 78 . OO
Channel length thru subarea (Feet ) == 360O.OO
Channel ba«;e ( Feet ) ~ 1.O . OO
S3 ope cir "/" o-F left channel bank =•= 3 . OOO
Slope or- "'£" of right channel bank =» 3 . OOO
Manning's "N" ~= .045 Maximum depth of channel
Flow(Q.) thru subarea (CFS) =-' 11.52.76
Upstream point elevation = 175.00
Downstream point elevation = 78.OO
Flow length(Ft.) = 3600.00
Travel time (Min.) =» 5.60 TC(min.) » 88.44
Depth of flow = 4.55 (Ft.)
Average Velocity = 1O.71 (Ft./Sec.)
Channel flow top width « 37.30 (Ft.)
(Ft . ) ••* 8 . 00
|| Process from Point /Station
*** SUB AREA FLOW ADDITION
1O5.OO to Point /Station 106.00
***
1OO.OO Year Rainfall Intensity(In./Hr.) « 1.136
Decimal Fraction Soil Group A «= .OOO
Decimal Fraction Soil Group 8 *» .000
Decimal Fraction Soil Group C = 1.OOO
Decimal Fraction Soil Group D = .OOO
RURAL (lots > 1/H acre) runoff coefficient «= .4OOO
Subarea( Acres) = 231. OO Subarea Runoff (CFS) =* 57.31
Total Area (Acres) •* 2535. OO Total Runoff (CFS) « 121O.07
TC(MIN) » 88.44
CA = 92.40 Sum of CA =• 1O65.35
Process from Point/Station 1O5.OO to Point/Station 1O6.0O.
*** CONFLUENCE OF MAIN STREAMS ***
FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
1OO.OO Year Rainfall Intensity(In./Hr.) * 1.136
The flow values used for the stream: 1 are:
Time of concentration(min.) = 88.44
Rainfall intensity (in./hr/) = 1.14
Total flow area (Acres) = 2535.OO
Total runoff (CFS) at confluence point = 121O.07
3
Program is now starting with MAIN STREAM NO. 2
+++++++++++++++++++++++++++++++
Process from Point/Station 60O.OO to Point/Station 106.OO
*** INITIAL AREA EVALUATION ***
Decimal Fraction Soil Group A -• . OOO
Decimal. Fraction Soil Group 13 ~ .OOO
Decimal Fract i on Soil Group C ~ 1. . OOO
Decimal F-'raction Soil Group D == OOO
RURAL (lots; > 1/2 acre) runoff coefficient --- .40OO
Initial Subarea is as summed uniform
Area Type is: RURAL ( Great er than 1/2 Acre)
Time of concent i-at iori computed by the Natural
UI.3 i <>> r • ••• \"< e cl s nomograph, ( App . X--A)
I I.: ~ I! I. :l S*l..en<:jt h ( Mi ) ~3 ) / ( Elevat ion Change > ::i ~ . 38S*6O < MIN/ HP )
I 1.0 min
Initial Su barer. Flow Dist. =- SHOO . OO
Highest Elevation = 365 . OO
Lowest Elevation « 7Q . 00
Elevation Di-f -Ferenee =» 287 . OO
TC =• C(11.9* 1 .OOOO**3>/ ( 887.00)3**. .385 » 17.618
•f 10 Min. - 27.618 Min.
100.00 Year Rain-fall Intensity ( In . /Hr .) » 2.406
<3ubarea( Acres) = 148 . OO Subarea Runoff <CFS) « 142.45
Total Ar«~»a< Acres) « 148 . OO Total Runoff <CFS) » 148.45
TC(MIN) « 27.62
CA =*= 59.20 Sum of CA - 5S.2O
Process from Point /Station 6OO . OO to Point /Station 1O6 . OO
*** CONFLUENCE OF MAIN STREAMS ***_ _ _ ..„ „«_______„______________._______ ________________ ___ __
*** Compute Various Confluenced Flow Values *#*
*- FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED
** 100.00 Year Rainfall Intensity(In./Hr.) « 2.4O6
The flow values used for the stream: 2 are:
Time of concentration(min.) = 27.62
m Rainfall intensity <in./hr/) « 2.41
Total flow area (Acres) « 148.OO
— Total runoff <CFS) at confluence point « 142.45
Confluence information:
Stream runoff Time Intensity
Number <CFS) (min,) Cinch/hour)
1 1210.O7 88.44 1.136
2 142.45 27.62 2.406
QSMX <1) «
•H . OOO*1 . OOO*121.O . 1 )
4- .472*1.OOO* 142.4)
1277.312
QSMX ( 2 ) --
•M .OOO* .312*1210.1)
+1.000*1.000* 142.4)
520.328
Rainfall intensity and time of concentration
used for 2 MAIN streams.
Individual stream flow values are:
1210 07 142.45
Passible canfluenced flow values are:
1277.31 520.33
Individual Stream Area values are:
2535.00 148.OO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
confluence estimates are:
i;...io I f (CF53) ••••••• J.cT/7.31 Time (mi ri.) =• 88.44O
ID1/•» I main stream study area (Acres) •=•= 2683. OO
.4. < ..,. .f .4..M. + .f..f.f f .|.+.f .f + + .f
c-e^r. from Point / Stat ion 106 . OO to
vi:;'APE/.o.i:DAi../necT. CHANNEL. TRAVEL.
Point /Stat ir»n
TIME
1O7.OO
***
IJpT;1 • r*».;im point e»J ovation » V8 . OO
Downstream point elevation = 61. OO
Channel length thru subarea(Feet ) »= H65O . OO
Channel base (Feet) = 20 . OO
Slope or "Z" of left channel bank - 4 . OOO
Slope or "Z" of right channel bank - 4. OOO
Mannings "N" •» . O45 Maximum depth of channel (Ft.)
Flow(Q) thru subarea(CFS) - 1H77.31
Upstream point elevation •* 78.00
Downstream point elevation = 61 . OO
Flow length (Ft.) - 2650.00
Travel time (Min.) « 7.4O TC(min.) « S3. 84
Depth of flow » 3.23 (Ft.)
Average Velocity - 5.97 (Ft. /Sec.)
Channel flow top width » 61.84 (Ft.)
6.0O
Process from Point/Station
*** SUBAREA FLOW ADDITION
106.OO to Point/Station 1O7.OO
***
10O.OO Year Rainfall Intensity(In./Hr.) - 1.O78
Decimal Fraction Soil Group A •« .OOO
Decimal Fraction Soil Croup B « .OOO
Decimal Fraction Soil Group C «• 1. OOO
Decimal Fraction Soil Group D •= .OOO
RURAL (lots > 1/2 acre) runoff coefficient «= .4OOO
Subarea (Acres) •» 171. OO Subarea Runoff(CFS) •= 9.24
Total Area (Acres) «• 2854. OO Total Runoff (CFS) » 1286.35
TC(MIN) = 95.84
CA = 68.40 Sum of CA « 1192.95
End of computations.. ,
TOTAL STUDY AREA(ACRES)2854.OO
STORM DRAIN STA. 4B + 00
F031SP
WATER SURFACE PROFILE! LISTING
; a c a
0
0
0
0
0
0
0
0
0
0
w °ro °0
0
0
0
0
0
0
0
0
0
; o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o
0
0
0
0o
o
0
0
0
0
0
0
0
o
0
1
1
STATION
I../ EL EM
************
.00
200 . OO
aoo .00
16 .21
8.16.81
3.79
220 . 00
17 .46
337 .46
23.73
261 . 19
a.af.
270 . 0()
23 . 87
893.87
86 . 73
320.00
33. 82
353 . SB
21 .78
375 .00
18.83
387 . 83
7. 17
395 . 00
393.00
3.94
398 . 94
3.50
408 .44
8.97
405 .41
a. 38
407.93
8. 10
410.03
1 .78
4.11 .73
1 .38
413 . 13
1 .08
414.21
413
10
423
WALL
425
20
445
34
500
49
549
43
393
WALL.
595 .
3 .
600 .
4 .
60S
.79
.00
.00. oo
EXIT
. 00
.31
.31
.92
.23
.81
.44
.36
. OO
INVERT
IrlLEV
ISO
[********
57 . 00
. 00830
57 .50
. 00830
57 . 34
. 00230
57 . 53
.00260
57 . 60
. 00260
37 .66
. 0026O
57 .68
.00240
37 . 74
. 00840
57 .80
.00255
57 .88
. 00833
57 . 94
. 00300
57 .98
.00300
38 . 00
58.00
. 10000
30 . 99
. 10000
58.74
. 10000
59 . 04
. 1OOOO
59 . 29
. 1 0000
59 .30
. 10000
59 . 67
. 1OOOO
59.81
. 1OOOO
59 . 92
. 1OOOO
60 . 00
. 01000
60 . 10
60 . I 0
. 004.1. a
60 . 18
. OO412
SO .4.1.
. O04J.H
6O . 61-
. OO4J.2
SO .ISO
DEPTH
OF FLOW
<*********
3 . 100
3 . 121
a . 246
3.271
3.409
3.333
3 .598
3 . 737
3.901
4 . 081
4 . 177
4 .349
4 . 429a. 111
2.304
2 . 305
a. 410
8. 519
2 . 633
2.758
a . 876
3 . 005
9. 140
3 . 855
3.6061
3 . S53
3 . 388
3 .230
3 . OHO
W.8.
ELEV
;**********
60 . 100
60.621
60 .787
60.821
61 . 004
61 .810
61 .278
61 .493
61 .701
61 .966
68. 117
62 . 388
68 . 489
60. Ill
60.398
61.049
61 .431
61.818
68 . 136
68 . 487
68 . 689
68 . 986
63
63
63
63
63
63
63
. 140
.355
.708
.737
.798
.842
.880
Q
:******
1807
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
1887
***]
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
VEL.
********
4.71
4.33
4. 13
4.67
4.45
4.84
4.81
4.58
4.85
4.63
6.99
6.09
5.96
17.85
17.03
16.86
13.30
14.78
14.09
13.43
18.81
12.81
18.81
18.36
11.39
18.07
18.66
13.88
13.99
VEL
HEAD
SF AVE
**********.344
. 008377
.894
.008371
.867
. 007788
.338
. 008744
.308
. 007488
.880
. 006755
.359
.007833
.886
.006801
.866
. 006980
.833
.006808
.634
.011948
.576
.010760
.358
4.949
. 013808
4.514
.011303
4. 103
. 009933
9.780
. 008566
3.991
. 007896
3.083
. 006389
8.803
. 005588
8.348
. 004773
8.316
.004188
8.547
. 003809
8.371
8. 195
. 004780
8.863
. 005888
S.49O
. 005973
8.789
. 006889
a. 013
ENERGY SUPER
GRD . EL . ELEV
HF
:*****************
60.444
.58
60.915
. 14
61 .034
.03
61 . 139
.13
61.318
.18
61.490
.06
61.637
. IB
61.819
.18
68 . 067
.83
68.899
.14
68.731
.13
68.904
.08
68.981
65 . 060
.05
65.118
.04
63 . 138
.08
65. 181
.02
65.803
.08
65.819
.01
65 . 830
.01
65 . 837
.01
65.848
0
65
63
63
66
66
66
66
00
.687
.04
.786
.903
.10
.000
.89
.888
.89
.581
.81
.893
.00
.00
.00
.00
.00
.00
.00
CRITICAL HUT/ BASF/ ?L NO AVDPR
DEPTH 01 A IO NCI. PTF.R
NORM DEPTH /R
t************************ ************************
a . i4a 7 o o
3 . 135
8 . 183 H 0.0
4 986
8 . 183 8 0 . O
4 .386
8 . 199 9 O . 0
4 . 649
' &. 199 9 0.0
4 .649
8 . 199 9 O . 0
4 .649
8.301 10 0 .0
3 . 166
8.901 10 0.0
3 . lf.6
8 . 958 1 1 0.0
3 .400
a . 332 11 o . o
3 .400
3.080 18 O .0
6 .301
3 , 080 12 " • 0
6.301
3.080 t8 0 .0
8.549 13 0 .0
1 . 171
3.549 tM 0 . 0
1 . 171
3.549 13 0 .0
1 . 171
3.549 13 0.0
1 . 171
3.549 13 0 .0
1.171
3 . 549 18 0.0
1 . 171
3.549 13 0 .0
1.171
3.349 13 0 .0
1 . 171
3.349 13 0 0
1 . 171
3.691
8.349
3.691
3 .833
3 . 778
3.853
3 . 778
3.853
3.778
3.833
3 . 778
3 . £>33
6. 00
6 . 00
3 . 00
3 . 00
3 . OO
3 . 00
3 OO
88
32
31
31
31.
31
31
.OO
OO
. 00
. 00
. 00
. oo
. oo
ENTRANCE
00
88aa
la
o'o
60 .80
. 00500
60 .89
. OOSOO
GO .83
2 . 738
a .aoa
a .940
63
63
63.
.338
.631
.790
1887
1887
1287
. 0
.0
. 0
tO .45
10.81
9 . 73
1 .694
.008848
1 .617
. 002543
) .469
63
65
65
.832
.08
.848
. 01
.839
.00
.00
.00
8 .940
2 .380
2.940
2 . 380
a .940
6 . 00
C> . 00
6 . 00
45 .
43
43
00
oo
. oo
.00
.00
. 00
. 00on
. 00
. 00
. 00
.00
. 00. oo
00
oo
. 00
00
. 00
. oo
. 00
oo
0
o
a
f>
p
p
f?.
o
o
0
. 0
. 0
."f
. H
.3
3
f>
O
O
. 0