Loading...
HomeMy WebLinkAbout1 LEGOLAND DR; CASTLE HILL; CB981574; Permit.. B-U~f"L D 1 NG 07/16/98 12:46 · Page· · 1 of 1 · Job Address: 1 LE<'.;6 .DR Permit Type: COMMERCIAL BUILDING Parcel No: . Valuation: 0 PERMIT Suite: Lo-t#: Occupancy-Group: Reference#: De-scription: CASTLE COASTER RIDE-LEGO CITY OF CARLSBAD _Permit No:-CB981574 Project No: A9704324 bevelopment No:' 2075 Las Palni~s Dr., Carl~bad, CA 92009 (619) 438-1161 · I PLEASE NOTE,: THERE ARE MULTIPLE PERMITS F·OR. THE ORIGINAL LEGO PROJECT PLEASE USE CB972027 OR CB971460 OR CB971465 AS THE PLAN CHECK NUMBER WHEN S·EARCHING IN HPRM Pt~ ~ ~t:ft0~8' ft)I. ,o~1'( ~4M,T PrtJ o q -, :.\ ~S<o G,6TL.e OJ .. !ii T(( ------~ PCR-~-oo 12. ~ ~ fa1)N6G lt-\~11% C?Vl·l..y'CNG, PERMIT APPllCAT(ON,ff~NC/3?otr17.lt?b- --..___..._ __ ~e,VI L t?ri--l? ft>RfH-d' M IN CITY OF CARLS LDING DEP ...... ......,_,"T 2075 Las Palmas Dr., Carlsbad CA 92009 (760) 438-1161 '.1. ·, FOR OFFICE USE ONLY PLAN CHECK NO. 031 f/S7 lf' 'EST. VAL.----------,--~ . ·p1an Ck. Deposit .,.._ --,-----,,"-±-,------ Validated By,.,_ ...,_ ___ --t-,,.i.::;.....:..... __ _ Date . ..__'-fa--\7~r..+-::;<-+"------- Business Name (at this address). Legal Description Lot No. Subdliiision Name'/Number Unit No. Phase No. Total # of units Proposeq Use # of Bedrooms # of .Bathrooms (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demqlish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a-signed-stl!tement that he is lic;ensed pursuant ·to the provisions of the Contractor's license Law [Chapter 9, commending with Section 7000 of Division 3 of the BU$iness and Professions Code) ·or that he ·is exempt therefrom, ·and the basis for the alleged exe Any violation of Section 7031.5 by any-applicant-for a errilit·subjects .the-a plicant to-a c;ivil·penalty of hot more than five hundJed dollars [$5001). Name State/Zip Telephgne # State License # _________ _ License Class-----''--------'""'-'---City Business Licens!l # ----~-~~ Designer Name Address City ·state/Zip Telephone State License# _________ _ ~6~-· ~ WQRKERs~-CoMPENSATioNt-=~ l:~ ~ ~~::,; ~::,;:~:}-:_, -~~?,..::: .;~~].~::::'~~-~-::~:-~-;J~~;,;_;·:i5-';J'h:~~~~:~~}-i_::E~?;:~~~~~!Z::;~::;Ji?~:if~i:it~?f;,Y{~~:;.:£L:},:,},~;~1;\:ji;,:::-n~--~;--: Workers: Compensation Declaration: I hereby affirm ur\der pen_alty of .perjury, one of the following declarations: · D I have and will maintain a· certificate of conse.nt to self-insure for workers' compensation as provided by $action 3700 of the Labor Code, for the per:torma.rice of the work for which this permit is issued. · D I have and will maintain workers' compensation, as required by Section 3700 of 'the ·Labor Code, for the performance of the work for which this permit is issued. My worker's compensation insurance carrier and policy number are:· Insurance Company _____________ ---'~~----Policy No·,----~"---'-----,---·Expiration Date ___ -'----~ (THIS SECTION NEED NOT BE COMPLETED IF THE PERMIT IS FOR ONE HUNDRED DOLLARS ($100) OR LESS) D CERTIFICATE OF EXEMPTION: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Workers' Compensation Laws of California •. WARNING: Failure to secure workers' compensation coverage is unlawful, and sh~II subject an employer to criminal pe_nalties and civi! fines up to· one hundred thousand dollars ($100,000), in addition to the cost of compensation, damages.as provided for in Section 3706 of the Labc_'>r cod!I, interest and attorney's fees. SIGNATURE----------------,----,.......---~~~----DATE_,,.---,.------- :.7, . ·owNER~BUILDER'Dl;C~f!ATIPN··.\:·c :;:·:.. -~?. -:~,. \~t;::, :\_;,_/·~· .,1,,::.,,: ,,<;\':·.:·. · .. '):f\}f1?·f'?~•;·,S·~~?'\{t2i:?iiJ:i;ti·:~;/~1,';}'.1;..?:;J:,1f'_'.~;;'°'- I hereby affirm that I am exempt from the Contractor's License Law for ttie following,reljlson: D I, as owner of the property or my employees with wages as their sole. compensation, Will do the work and 'the structure .. is not intended or. offered for sale · (Sec. 7044, Business and Professions Code: ·The Contracto·r•s License Law dO!IS not apply to an owner of-property who builds or improves· thereon, and who ·does such work himself or through his own employees, provided that ·such improvements are not int.ended-or offered .for sale. If, however, the ·b1,1ildifig or improvement is sold within one year of completion, the owner-builder will have the burden of proving thl!t he did not build.or improve fqr the purpose of sale). 'El::._ I, as owner of the property, am exclusively contracting with licensed contractors. to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not appJy to an owner of property Who bujlds or ·improves therecm, and contracts for sui:h projects with contractor(s) license!! pursuant to the Contractor's License Law). D I am exempt under Section ------'-Business and Professions Code for this reason:. 1. I personally plan to provide the major l~b9r and·materials for construction of the proposed property improvement. D YES ONO 2. ~ have not) signed an application for a building permit for the proposed work. 3. I have contracted with the following person (fifm) to provide the proposed construction -(include name / address 1 phone nu~ber / contractors license number): 4. I plan to provide portions of the work, but I· have hired the following per$on to coordinate, supervise and provide-the major Work (include name / address / phone number/ contractors license number): ____ "-------------------'--.,--------------------"----'-.....;- 5. I will provide some of the work, but I have contracted (hired) the following persons to-provide the work indicated (include name / a.ddress / phon!l number / type of work): ________ +..:::....----,.-1==.,,_--=--,,---'\---,---..-"--------,------~--'-+-----'-----,---------- PROPERTY OWNER SIGNATUREI.Jii!!f..~~::::::!kec~!::::!:~:::2~::!:!i~~~~~=--,-c '.COMPLETE.:THIS.SECtiON'FQl'l". Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk man13gement and prevention program under Sections 25505, 25533-or 25534 ofthe Presiey-Tanner Hazardous Substance-Account Act7 0 YES [j _NO, Is the applicant or future building occl.Jp!lnt required to obtajn a permit from the air pollution contrtjl district or air quality manageml!nt district?' D YES D NO Is the facility to be construc~ed within 1,000 feet of·the outer boundary of a school site? D YES CJ NO IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY' SERVICES AND THE AIR POLl:UTION ·CONTROL DISTRICT. I hereby affirm that there is a construction lending agency for the performance. of the work for which this permit is issued (Sec:. 3097(i) Civil Code). LENDER'S NAME ___________ -'---LENDER'S ADDRESS ____________ .....,. ____________ _ 19~ ,, uAPP,llCANT. 'CERTIFlCA TION~;:,;/~· n~, -;\ -:,~ :-;jfI:aBt(:1:~.;;:;,~~?;:::;;;:::~.{:fS:~:1~If.:.~.T!1ti~7:?.%Ji2t:~r±I~:rr~r§;:~J~!t~~~,~}ZiS:~:-i2;'7~\;~~'I:7~~:\1f·.;;~1::~; !:.~ 3 I certify that I have read the application an~ state that the above information is correct and that the-information on the plans is ·accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize rep[esentatives of the Citt of Carlsbad to erit~r upon the above mentioned property for inspection purpqses. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS ·THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH·MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 5'0w deep·and demolition,or·construction of structures over 3 stories in height. EXPIRATION: Every permit issued by the Building Official under the provisions of this ·Code shall expire !>Y !imitation and become null and void if the building or work authorized by such permit is not commenced within 365 days from tl:!e date of suet, P!lrmit or if the buf!~ing or work authorized by such permit .is-suspended or abandoned at any time e work is ed for a.!eriod ·f 180 days !Section 1 0t\4.4 Uniform ~~l!~ing Code). ; l APPLICANT'S SIGNATURE J-~&~=~:::f.,1::!;;;,::~a~-~::::::::~~~::;;::;=...___ DATE 7 _l L_ 9 ~ ~ l ~ PINK: Financf! ·SEE MULTIPLE SPECIAL INSPECTIONS . SCANNED SEPAR-ATELY CB972027 IS THE PLAN CHECK. NUMBER FOR MANY OTH·ER CB 1 S ALSO SEE CB971460{OUTER PARK) CB97146S(ADMtN BLDG) City of-Carlsbad Inspection Request For: 3/15/99 Permit# CB981574 Title: CASTLE COASTER RIDE-LEGO Description: Type: COM Sub Type: Job Address: 1 LEGO DR Suite: Lot Location: l'.\PPLICANT : LEGOLAND LTD Owner: LEGOLAND CARLSBAD INC. <LF> LEGO Remarks: Total Time: CD Description 19 Final Structural 29 Final Plumbing 39 Final Electrical 49 Final Mechanical Act Comments Inspector Assignment: Phone: 7608432831 lnspeo~ Requested By: JIM PAYTON Entered By: CHRISTINE ----------------------------------...a.....------,""--------~ Inspection History Date Description Act lnsp Comments ~ ' •).. -EsGil Corporation 1.n Partnersli.ip witli..(jovemment for tJJuiUin.9 Safety DATE: June 8, 1998 JURISDICTION: Carlsbad PLAN CHECK NO.: 98-1574 PROJECT ADDRESS: 1 Lego Dr. PROJECT NAME: Castle Coaster SET:i Ci _AEEh!_ ~NT ~ 0 PLAN REVIEWER D FILE D The plans transmitted herewith have been cbrrected where necessary c:1nd substantially comply with the jurisdiction's building codes. · ~ The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified in the attached list are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified· on the enclosed check list and should be corrected and resubmitted for a complete recheck. D The check list transmitted herewith is for your information. The plans are being .held at Esgil Corporation .until corrected plans are submitted for recheck. D The applicant's copy of the check list is eF1closed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has be~n sent to: ~ Esgil Corporation staff did not advise the applicant that the plan check has been completed. 0 Esgil Corporation staff did advise the applicant that the .plan check has been completed. Person contacted: 'Telephone #: Date contacted: (by: ) Fax#: Mail Telephone Fax ·In Person ~ REMARKS: 1his project has been reviewed for compliance with Uniform Building Code provisions. The dynamics of a moving· coaster ride are not addressed in the Uniform Building Code. The designer has submitted structural calculations to show compliance with recognized standards for these structures. By: Kurt Culver Esgil Corporation D GA D CM D EJ D PC Enclosures: 5/26/98 trnsmtl.dot 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (619) 560-H68 + Fax,(619) 560-1576 Carlsbad 98-157~ June 8, 1998 1. EACH sheet of the plans shall be signed and sealed by the California st.ate licensed engineer responsible for their preparation. (California Business and Professions Code). 2. On the cover sheet of the plans, specify any items requiring special inspection, in a format similar to that shown belbw. Section 106 .. 3.2. • REQUIRED SPECIAL INSPECTIONS In addition to the regular inspections, the following checked items will also require Special Inspection in accordance with Sec. 1701 of the Uniform Building Code. ITEM FIELD WELDING HIGH-STRENGTH BOLTS EXPANSION/EPOXY ANCHORS REQUIRED? REMARKS 3. In addition to the above, non-field welds must also have ·special inspection, .unless it is shown that those welds are performed in the shop of an approved fabricator. 4. When special inspection is required, the architect or engineer of record shall prepare an inspection program which shall be submitted to the building official for approval prior to issuance of the building permit. Please review Section 106.3.5. Please complete the attached form. 5. 6. The jurisdiction has contracted with Esgil Corporation located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 619/560-1468, to perform the pfan review for your project. If you have any questions regarding these plan review items, please· contact Kurt Culver .at Esgil Corporation. Thank you. . . . Carlsbad 98-1579-. June 8, 1998 SPECIAL INSPECTION. PROGRAM ADDRESS OR LEGAL DESCRIPTION: PLAN CHECK NUMBER: _____ OWNER;S NAME;: I, as the owner, or agent of the owner (contractors may not employ the special inspector), certify that I, or the architect/engineer of record, will be responsible for employing the special inspector(s) as required by Uniform Building Code (UBC) Section 1701.1 for the construction project located at the site listed above. use Section 106.3.5.· Signed ________________ _ I, as the engineer/architect of record; certify that I ~ave prepared the following special inspection program as required by use Section 106.3.5 for' the construction project located .at the site listed above. Signed __ ___,,........ __________ ...,... _____ _ 1. List of work requiring special inspection: D Soils Compliance Prior to Founcfation Inspection D Structural Concrete Over 2500 PSI D Prestressed Concrete D Structural Masonry D Designer Specified D Field Welding Engineer's/Architect's Seal & Signature Here D H_igh Strength Bolting D Expansion/Epoxy Anchors D Sprayed-On Fireproofing D Other ________ _ 2. Name(s) of individual(s) or firm(s) responsible for the special inspections listed above: A. 8. C. 3. Duties of the speci.al inspectors fot the work listed above: A. 8. C. Special inspectors shall check in with the City and present.th~ir credentials for appre>val prlor to beginning work on the job site. SIP 4997 Carlsbad 98-1574 "' June 8, 19~8 VALUATION. AND PLAN CHECK FEE JURISDICTION: Carlsbad PREPARED BY: Kurt Culver BUILDING ADDRESS: 1 Lego-Dr. BUILDING OCCUPANCY: - ING PORTION BUILDING AREA (ft. 2), '' Air Conditioning Fire Sprinklers TOTAL VALUE - PLAN CHECK NO.: 98-1574 DATE: June 8, 1998 TYPE OF CONSTRUCTION: VALUATION' VALUE MULTIPLIER ($) - - - D 199 UBC Building Permit Fee D .Bldg. Permit Fee by ordinance: $ D 199 UBC Plan Check Fee D Plan Check Fee by ordinance: $ Type of Review: D Complete Review ~ Structural Only ~ Hourly D Repetitive Fee Applic~ble D Other: Esgil Plan Review Fee: $ 1045.80 Comments: Esgil fee = 12 hours @ $87. t5/hr. Sheet 1 of 1 macvalue.doc 5196 City of Carlsbad . -M#ih·h,i44ihi•i•l4·i¥11h,Uhil BUILDING PLANCHECK CHECKLIST DATE: 6--/5--7'8 PLANCHECKNO.: cst:/81579- BUILDING ADDRESS: 0/4.e L/':f?c::> ~ . . PROJECT DESCRIPTION: C&::r-/~ : ~zM~ ASSESSOR'S PARCEL NUMBER: --'---------------EST. VALUE: ENGINEERING DEPARTMENT APPROVAL DENIAL The item you have submitted for review has been approved. The approval is based on plans, information and/or specifications provided in your submittal; therefore any changes to these ·items after this date, including field modifications, must be reviewed by this office to insure continueq conformance with applicable codes. Please review carefully all comments attached, as failure to comply with · instructions in this report can result in suspension of permit to build. A Right-of-Way permit is required prior to construction of the following improvements, Please see the attached report of deficiencies marked with D. Make necessary corrections to plans or specifications for compliance with applicable codes and standards. Submit corrected plans and/or specifications to-this office for review. By: Date: By: Date: By: Da.te: . , . . FOR OFFICIAL USE ONLY By: ENGJNjiERIN<iAliTHORiZA:TION!l'o·1ssiJE ,BU1£DiNG PERMIT: / ,,.,,__,_ .d L .. :. . ' . . ,. . . : :" z: -/C ~ 7B //'_,,rPP<..----/ /-:-;. : · ·--:-··. ··_.-_ ·,. · · .. ·Date: t? _,,.,., .. ATTACHMENTS Dedication Application Dedication Checklist Improvement Application Improvement Checklist Future Improvement Agreement Grading Permit Application Grading Submittal Checklist Right-of-Way Permit Application Right-of-Way Permit Submittal Checklisi and Information Sheet Sewer Fee Information Sheet ENGINEERING DEPT. CONTACT PERSON Name: Frank Jimeno City ofCarlsbad Address: 2075 Las Pa.lmas Dr., Carlsbad, CA 92009 Phone: (619) 438-1161, ext. 4501 CFD INFORMATION Parcel Map No: . . Lots: Recordation: Carlsbad Tra.ct: A-4 \\LASPALMAS\SYSILIBRARYIENGIWORO\OOCSICHKLST\Build Pl1ncheck Cklsl BP0001 Form'FJ.doc Rev.913197 2075 Las Palmas Dr,• Carlsbc;td, CA 9~009-576 • (61.9) 438-1161 • FAX (619) 438-0894 \ PLANNING· DEPARTMENT BUILDING PLAN CHECK REViEW CHECKLIST A::-~ '18Cbl2. . ~ ~ Plan Check No .. CB qz.,. Int/ . . Address ·. aaec L.£Go ,{)r:t"ue ~ ~ Planner .bot2 Neu Phone (6l9) 438:.1161, extension 4"4"'4'£ r1:J ;t! APN: 2JJ.-/CXJ~09 -- "* '* '* Type of Project .and Use: Ccisf'/e-Cocis::-(er Project Density: __ N.~'/A-"--L-----'---- ~ ~j ~ Zoning: c-7=:9,. General. Plan: ·7= ;,f. Facilities ~anagement Zone: _ I? ~~~ CF~!'~~# ;,_z,_,Q~te of pqrticipati~n'. /~:$,~~~ainingn~t dev a~res: 2$: .0 .0 .0 ~ ~ &'f (For oori .. residential development: Type of land used crec1ted by ~ § § this permlt: All Jtth~ C0ttzmecci0 I uses n:Jt:: Lrhiiifldl -· ~ ~ Iii on ~ chetr+. _ a. a. a: ~ . Legend: ~ Item 06mplete ~ · 1.terh 1·11c~mplete -Needs your:~c~ion Q'~ ~ Environmental Review Required: YES NO )(' TYPE -------- DA TE OF COMPLETION: £,.-20-97 _ .. Compliance with ~qnditions of approval? If not, state conditions which require action. Conditions of Approval: .... · .......... · ------------------------------------ re(~ Discretionary Action Required: . , Yl:S · ___ NO V TYPE ______ _ ~ )6l~ · . c.c.'#97--G7o s-zo-CJ-z APPROVAL/RESO. NO. Ac. 11'f68'-3r@/DATE f&-/G.-..'17 PROJECT NO .. S/)J} 9C-: 141 --. -. OTHER RELATED CASES: ____ c ___ <) __ /J_ ...... rc ___ -_ .. -....... /C ........... .,...,.,-----,,,--,--------- Compliance with conditions or approval? If not,. state conditions which require action. Conditions of Apprqval :--"'---------------------'------'--~-------'---'--'- ~ fa( Coastal Zone Assessme~t/Compliance . . . . . . . ·. . Project site located 'in Co~stal Zone_?, ~ . .YES' )('~'NO_,·". c," -:·. • • ' ,.;,f_',; ~ =-:.,,~ ~,-f.;s, '4 t~ ,_J} ~·, .. • ,--, :.1.--,.-. -\\'· -... • · ·. : · . . cA"toastal 'comrhisslon Authority? YES_._. NO~ -. · If California Coastal Commission Authority: Contact them at ,, 3111 Camino Del Rio North, Suite ..... 200, San Diego CA 9'2'1-08-1725; (6'1~) 521-8036 Determine status (Coastal Permit Required or Exempt): Coastal Permit Determination Form already completed? YES ____ NO If NO, complete Coastal Permit Determination Form now. Coastal P~rmit Determination Log #: Follow-Up A<;:dons: 1) Stamp Building Pl.ans as "txemj:)t" or "Coastal Permit Required" (at minimum Floor Plans}:. \ -· _- 2) Complete,_Coas~aJJ>errnit Determination Lo~ as needed. -, ~ );8{ lnclusionary Housing Fee required: YES __ NO X 4 ~ (Effective date of lnclusionary Housing Ordinance -May 21, 1993.) .... ,· Data Entry Completed? YES ··NO . · -- --: .: , (Enter CB#; ·UACT; NEXT12; Construct housing Y/N; ·Enter Fee Amount (See fee schedule for amount); Return) Site Plan: @~ 1. Provide a fully dimensional site plan drawn to scale. Show: North arrow, property lines, easements,. existing and proposed structures, streets, existing street im~rovem~nts, r\ght-of-way I widthr, dim~~ionai setb_!l~~~~~d. existing topographical lines. -..Sh;w -ffie toe t:'1-Fi<Yl. -1-f,e-/1'~ l~rwe,·•teni:s an oi s i-f-e-plan o-P -,-J,e er,hre-;:;ccrk, Provide legal ·description of property and assessor's parcel number. . ' ~ 2. ,· \ \ n\~ Zoning: e)~ T 1. Setbacks: Front: Required _____ _ ~2. Interior Side: Street Side: Rear: Required --~'---- Required ------Required _____ _ Accessory structure setbacks: Front: Required , _____ _ Interior Side:· .. Required' _____ _ Street Side: Required ------Rear: · ·Requ'ired _____ _ Structure separation: Required ------ .2S()Z(,0 3. Lot Coverage: Required ------ Shown ------Shown ------Shown ------Shown ------ Shown ------Shown ------Shown ------Shown ------Shown ------ Shown ------- 00 ~ 4. Height: . Required ----~--Shown f'kcise sfcw-1-he MCAJCIJ'Y!V,v, he)o,h+ t'n-fee:f. -x.,,,..,ee.fe_r,-----+o- ~ +he SL)/J d/'bt,vv1'7:JS, * A--ovi&-lfe h~ht-1:">ectsu~ ln_~no/ ~ ~~ 5. Parking: Spaces Required ______ Shown ;>rov,de.~~ Guest Spaces Required ______ Shown JFIA i:r~ . . ,n:e: c;;,u''otwn~s, ~~Additional Comments. ________________________ _ DATE ;-;s--98 - City of Garlsba.d . . · . . . . . 97213C6 -. . . . ' · . · ~ Fire Department .. Bureah· of Prevention Plan Review: Requirements Category: Building Plan Check Date of Report: Wednesday, Jurn~ 10, 1998 Reviewed by: . IM . 4J /:SC Contact Name Gh'la-Vu Address 5342 Armada Dr -------'---'--,--"'--'------"---~'---'--'-----,- City, State Carlst;>ao CA 92009 Bldg. Dept. No. CB981574 Planning No. Job Name Lego CH Coaster Ride Job Address 5342 Armada --------'----'-,-----'--"'---'--------'~~-Ste .. or Bldg. No. ____ _ ~ Approved -The item you have submitted for review has been approved. The approval is based on plans; informa,tion and/or specifications provided in your submittal; therefore any changes to these items after th.is date, including field modifica- tions, must be reviewed by this-office to insure co"ntinued conformance With applicable codes. Please rev.iew carefully all cOmrnents attached, as failure to comply with instructions in this report can result in suspension of permit to· construct or install improvements. · D Disapproved ., Please see the attached report of deficiencies. Please make corrections to plans or specifications necessary to indicate compliance with applicc:tble codes and standards. Submit corrected p·lans and/or specifications to this offic·e for review. For Fire Department Use. qnty Review 1st~-~ 2nd __ _ ·.3rd· --~ Other Agency ID CFD Job# __ 97_2_1_3C_6 __ Flle# .--~'-- 2560 Orion Way • Carlsba(;I, California 92008 • {619) 931-2121 ,1 ••• u. -r LEGOLA D· l· CALIFORNIA-··_ t l, ,! •• ,. Castle Coaster • STRENGTH CALCULATION TRAIN MK 700 J CASTLE COASTER LEGOLAND CARLSBAD USA • VEKOMA MANUFACTURING B.V. VLODROP THE NETHERLANDS • • • • / \ REPORT "-:=..VEK$MA Copy to: L. van Veggel ( cover) J. Jansen (without app.) N. Bommer (without app.) P. Clumpkens (without app.) Th. Kiggen (without app.) J. van Wijk (cover) Kevin Kelly Summary: Re-issue date: number: Project number: 97135 Project name: Castle Coaster Legoland USA TITLE: Strength Calculation MK 700 J, Castle Coaster, Legoland USA Enclosures: This report shows that the strength calculation of the Junior Coaster MK 700; Thorpe Park, project no.: 94138, apply for the Castle Coaster application . The load assumptions for the Thorpe Park Junior Coaster exceed. or are equal to the loads that will occur in the Castle Coaster track. Keywords Database: 1. 2. 3. 4. 5. Strengthcalculation Train MK700J Legoland History Re-issue approved by/dept.: Issue Date (first report= issue 1): November . ...... , All rights reserved. Disclosure to third parties of this document or any part thereof. or the use-of any information contained other than provided for by this document, is not permitted, except with prior and express written permission. _ ... ... . ..... ,.,. ..... ,. ......... :· _ .. ... ~: . :,: :· .. -.~. ¥ .. ::...: ~ ;• ,. ~ ~:."_ ' ' ·-. ·.-: ..... ·. ' ,. i Order: : 97135 Project : MK 700 J, Castle Coaster, Legoland Rev. Date : November 19, 1997 -,~VEK@MA By :JvW • Subject : Strength Calculation Train Dep_t :TEM CONTENTS PAGE 1. INTRODUCTION 2 2. COMPARISON OF MASSES 2 3. COMPARISON OF ACCELERATIONS 2 _4. COMPARISON OF RESULTING MAXIMUM LOADS ON WHEELCARRIER AND COUPLING 3 5. MODIFIED COUPLING FOR MINIMUM HORIZONTAL RADIUS RH = 3.5 M 3 6. CONCLUSIONS 4 7. APPENDICES 5 • • File:\rapportcastlecoasterlego Sheet: 1 of 5 • • • Order: : 97135 Rev. Project : MK 700 J, Castle Coaster, Legoland Date : November 19, 1997 ~VEK$MA By :JvW Subject : Strength Calculation Train Dept : TEM 1. INTRODUCTION The MK 700 J train, Thorpe Park, is calculated according to DIN 4112. (see appendix 15: Strength Calculation, project 94138) TOV has approved this calculation. (see appendix 10: Report on design review) In this report a comparison is given_ of the masses, accelerations and the resulting wheel and coupling loads of the MK 700 J, Castle Coaster and tne MK 700 J, Thorpe Park train. Because of the fact that the Castle Coaster track has a minimum horizontal radius of Rh = 3.5 m the coupling is modified and an additional strength calculation of this item is given. 2. COMPARISON OF MASSES See appendix 2: calculation of masses and centres of gravity and appendix 15: Strength Calculation, project 94138. The in this calculation used mass values of the Castle Coaster polyester bodies are assumptions and will be checked after manufacturing . Coach Castle Coaster Castle Coaster Thorpe Park Thorpe Park empty loaded empty loaded front 339 kg 519 kg 323 kg 503 kg intermediate 236 kg 416 kg 240 kg 420 kg rear 251 kg 431 kg 278 kg 458 kg 3. COMPARISON OF ACCELERATIONS See appendix 1 : constuction and calculation data and appendix 15: Strength Calculation, project 94138. Load case Castle Coaster ,:t,orpe Park Vmax, H V=2.33g H=0.77g V=3g H=0.55g V, Hmax. V=2.33g H=0.77g V=0.6g H=0.9g V,H V=2.33g H=0.77g V=2.66g H=0.9g File:\rapportcastlecoasterlego Sheet: 2 of 5 • • • Order: : 97135 Project : MK 700 J, Castle Coaster, Legoland Rev. Date : November 19, 1997 -~.--~~.--; VEK$MA ~ By :JvW Subject : Strength Calculation Train Dept : TEM 4. COMPARISON OF RESULTING MAXIMUM LOADS ON WHEELCARRli:R AND COUPLING See appendix 3-8: calculation of axle and coupling loads ano appendix 15: Strength Calculation, project 94138. Axle loads Castle Coaster Thorpe Park Road Wheels 9.23 kN 10.43 kN Guide Wheels 4.49 kN 6.18 kN Up-stop Wheel 2.08 kN 2.Q6 kN Coupling loads Castle Coaster Thorpe Park Vertical Fv= 1.16 kN Fv = 1.84 kN Horizontal Fh = 0.43 kN Fh = 0.62 kN Longitudinal Fl= 8 kN Fl= 8 kN 5. MODIFIED COUPLING FOR MINIMUM HORIZONTAL RADIUS RH= 3.5 M See for calculation of coupling file: appendix 9. This calculation is .,_made for the following maximum load combinations: 1-2: Fv = 2 kN Fh = 0.5 kN Fl= 8 kN 3-4: Fv = 1.5 kN Fh = 1 kN Fl= 8 kN 5-6: Fv = 1.75 kN Fh = 0.75 kN Fl= 8 kN File:\rapportcastlecoastertego Sheet: 3 of 5 • • • Order: : 97135 Project : MK 700 J, Castle Coaster, Legoland Rev. Date : November 19, 1997 ~VEK$MA By :JvW Subject. : Strength Calculation Train Dept :TEM 6. CONCLUSIONS The front coach of the Castle Coaster train has a higher mass than the one of the Thorpe Park train. The masses of the intermediate and rear coaches are lower. The maximum accelerations are lower. The resulting road wheel and guide wheel loads are lower and the upstop wheel load is almost the same (within 1 %), so the by TOV approved strength calculation of the Thorpe Park train is also valid for the Castle Coaster train. The assumed loads for the modified coupling are -higher then the calculated resulting coupling loads, so the coupling will meet the requirements . File:\rapportcastlecoasterlego Sheet: 4of5 • • • Order: : 97135 Project : MK 700 J, Castle Coaster, Legoland Rev. Date : November 19, 1997 -~VEK$MA By :JvW Subject : Strength Calculation Train Dept : TEM 7. APPENDICES Appendix 1 : Construction and calculation data Castle Coaster, page 1-3 Appendix 2: Calculation of masses and centres of gravity, page 1-3 Appendix 3: Calculation of axle and coupling loads, page 1-10, Appendix 4: Total forces load case 2, page 9-10 Appendix 5: Total forces load case 7, page 9-10 Appendix 6: Total forces load case 8, page 9-10 Appendix 7: Total forces load case 9, page 9-16 Appendix 8: Total for~es load case 10, page 9-10 Appendix 9: Calculation of coupling Junior Coaster for train with Rh = 3.5 m Appendix 10: TUV-report on design review, report no.: 24025118, page 1-8 Appendix 11 : Calculation connection of guide wheel support,_ page 1-4 Appendix 12: Calculation of safety brace for mainaxle, page 1-3 Appendix 13: Calculation of lapbar, page 1-6 Appendix 14: Contents of Thorpe.MCD, page 1-3 Appendix 15: Strength Calculation, project: 94138, page 1-137 File:\rapportcastlecoasterlego Sheet: 5 of 5 • • • I-----===-_-=====~-=-----,....---·= ----~-------~--=-=--· - 1~1~0-~=-=--'--==----:--- 1 1 j _.'...:12=--~-=--· --,--= --._-_ -_ ------~=-=-=-----==--> -=-==--=----=-~-------~=--=== 1=1= 4===-,----= -=----: -_ --=-=--=== l =15===--====--=-= --= -=-----; __ =---_ --= --=-=--=== 1 1a =======--::: '=1= 7==--=== )~1-=-8~~~-----========----:--_-_-===--l 19 '----~~ ---------.. ----·---· • • • file: cc-maind.mcd V£KOMA MANUFACTURING 8. V. 11/18197. 8:13 AM. CONSTRUCTION AND CALCULATION DATA CASTLE COASTER General data Project name Project number train Type Rollercoaster Number of coaches Number of persons per coach. General data car Wheelbase intermediate coach Wheelbase leadcoach Distance axle-coupling Wheeldata Diameter road wheel. Diameter guide wheel Diameter upstop wheel General acceleration data Max. vertical acceleration Max horizontal acceleration Max. brake deceleration (fatigue) Max. brake deceleration ( emergency) JvW page 1 of 3 Castle Coaster 97135 Junior Coaster based on MK700 noc:= IO nop := 2 Wb := 1380-mm Wbl = IO00·mm lac .= 295-mm · · D rw .= 150-mm D gw := IOO·mm Duw .= IOO·mm avmax .= 2.33-g a hmax .= 0.77·g a lmax = O.S·g a lemax ·.= I.O·g • • • file: cc-maind.mcd VE:KOMA MANUFACTURING B. V. Weight data (see calculation of masses) Weight per person Mpers ·= 90·kg Weight empty loaded coach 1 M le·= 339·kg MI:= M le+ 2·Mpers coach 2 M2e := 236-kg M2 := M2e + 2·Mpers coach 3 M 3e := 236·kg M3 := M3e + 2·Mpers coach 4 M4e ·= 236·kg M4 .= M4e + 2·Mpers coach 5 M Se := 236· kg M··=Ms +2·M :, e pers coach 6 M6e := 236-kg M6 ·= M 6e + i·Mpers coach 7 M7e = 236·kg M ·-M ... -, M 7 -7e · -· pers coach 8 M 8e ·= .236· kg Mg·= Mse.,. 2·Mpers coach 9 M 9e ·= 436· kg M9 := M 9e + 2·Mpers coach 10 M lOe ·= 25l·kg M 10 ·= M IOe + 2·Mpers Weight of empty train: Mtre ·= M le+ M2e + M3e +M4e + Mse ..-M6e +M7e + Mge +M9e + M lOe JvW Weight of loa~ed train: 3 Mtr =4.278•10 •kg page 2 of 3 11/18/97, 8:13 AM. MI =519·kg M2 =416•kg M 3 =416•kg M4 =416·kg Ms =416·kg M 6 =416•kg M7 =416•kg Mg =416•kg M 9 =416•kg M lO =43l·kg •• • • file: cc-maind.mcd VIEKOMA MANUFACTURING a. V. General data track Brakes: Vekoma brakes Start: boosters Liftdrive: boosters Max lift angle Max velocity in ride: Smallest radii in track: vertical convex bottom lift vertical concave top lift horizontal Distance between milpipes Railpipe diameter Operation factors vertical horizontal ex max:= 25·deg V ·= 12· m max sec Rvbmin ·= 5·m Rvtmm ·= 5·m R hmin ·= 3.5·m Sb:= 700·mm D rp ·= ll4.3·mm Load cases (accelerations in g without operation-factor$) 1 2 3 4 5 6 7 V +2.33 +2.33 +2.33 +2.33 +2.33 +2.33 +1.0 H +0.77 +0.77 +0.77 '+0.77 +0.77 +0.77 0.1 L +0.3 -0.3 +0.3 --0.3 +0;3 -0.3 +0.5 V max H max V mean Acc. H mean Remark: loadcases 1 and 2, 3 and 4, 5 and 6 are equal. JvW p~ge 3 of 3 11/18197, 8:13 AM. 8 9 10 +1.0 0 0 0.1 +0.5 +0.5 -0.5 +0.2 -0.2 Brake just no uplift • • • file: cc-massa.mcd VEKOMA MANUFACTURING 8. V. CALCULATION OF MASSES AND CENTRES OF GRAVITY h = distance of centre of gravity to centre line of rail pipe I = distance of centre of gravity to centre line of main axle Person Mpers:= 90;1cg Wheelbogie Mwb := 28·kg Mainaxle Mina := 33·kg Front axle coach 1 Mfa := 27·kg Frame + brake fin + coupling Mfr:= 80·kg Ratchet + lapbar Mra ,= 12·kg Body coach 1 Mbol := 75·kg Body coach 2-9 Mbo := 55·kg Body coach 10 MbolO := 70·kg Coach 1 empty M le =339•kg h le =241.74•mm hpers := 750·mm hwb .= IOO·mm hma := 210·mm hfa := 210·mm h fr := 245·mm h ra := 400·mm h bol := 450·mm h bo := 400·mm h bol0 := 450·mm 1 pers .= 0·mm lwb := 0·mm lma .= 0·mm 1 fa .= IOOO·mm I fr := 300·mm 1 ra := S00·mm I bol := 350·mm 1 bo := 300·mm l bol0 .= 200·mm 2·Mwb·lwb + Mma·lma + 2·Mwb·l fa+ Mra·l fa+ Mfr-lfr + Mra·lra + Mborlbol l 1 .= . e M1e lie =410.767·mm J.v.W page 1 of 3 11/1 Mt7, 8:23 AM • • • file: cc-massa.mcd Coach 2-9 empty M 6 =236•kg he =249.703 ·mm 1 e = 197.034 ·mm Coach 10 empty M lOe =25l·kg h lOe =272.629·mm I !Oe = 175.299 ·mm Mass of train empty: Mtre = M le+ 8·Me +M 10e 3 Mtre=2.478•10 ·kg J.v.W. V£KOMA MANUFACTURING 8. V. 11/18197, 8:23 AM page 2 of 3 file: cc-massa.mcd VEKOMA MANUFACTURING B. V. 11/18197, 8:23 AM Coach 1 loaded • MI·= M le -t-2·Mpers h 1 =418.015 •mm I 1 = 268.304 •mm • Coach 2-9 loaded M=416•kg h=466.178•mm 1 = 111.779 •mm Coach 10 loaded M 10 := M IOe -t-2·Mpers M lO =431•kg • h IO =471.995 •mm M 10e·11oe -t-2·Mpers·1pers 1 10 := _____ __.;. _ __,._ M10 110 = 102.088 •mm Mass of train loaded • J.v.W page 3 of3 • • • file: cc-asla1 .med VEKOMA MANUFACTURING 8. V. CALCULATION OF AXLE AND COUPLING LOADS (due to vertical, lateral and longitudinal accelerations) 11/18197, 2:18 PM In this chapter only for loacase 1 the complete calculation of the axle and coupling loads is given. For the other load cases only the results of the calculations are given: pages 9 and 1 0 of the complete calculations. Load case 1 AF Al A2 Al A4 AS A6 A7 A8 A9 A10 F = force due to acceleration A = reaction force axle G = reaction force coupling Ml·= 519·kg Load case 1 M 2 := 416·kg cj> V :: 1.25 av-=2.33 M 3 -= 416·kg av:= <l>v·liv av =2.913 M 4 := 416·kg M 5 := 416·kg <l>h := 1.4 ah.= 0.77 M 6 ·= 416·kg ah:=cj>h-ah ah= 1.078 M7 -= 416·kg cj> I:= 1.25 a 1 ·= 0.3 Mg:= 416-kg. M 9 .= 416-kg al := cj> ra I al =0.375 M 10 .= 43l·kg Axle load A and Coupling load G due to vertical acceleration av: av=2.913 -2 g =9.807•m•sec Flv := M 1-av·g . Flv= 14.824•k:N 11 .= 268·mm Wbl := lO00·mm F2v := M 2-av·g F2v = 11.882 ·kN 12 := 112·mm Wb .= 1380-mm F3v := M 3-av·g F3v = 11.882 ·kN 13 .= 112-mm lac .= 295-mm F4v := M 4-av·g F4v = 11.882 •kN 14 .= 112·mm FSv := M 5:av·g FSv = 1 L882 ·l<N 15 := 112·mm F6v := M 5·aY·g F6v = 11.882 ·kN 16 := 112·mm F7v:= MTav·g F7v = 11.882 ·kN 17 .= 112·mm F8v :.= M 8-av·g F8v = 11.882 •kN 18 .= 112·mm F9v := M 9-av·g F9v= rI.882·kN 19 := 112-mm FlOv := M 10-av·g FlOv = 12.31 ·kN 110 := 102-mm J.v.W page 1 _of10 • • • file: cc-as/a1.mcd Vl:KOMA MANUFACTURING B, V. AlOv := FlOv·(Wb -110 -lac) Wb-lac GlOv ·= FIOv-110 Wb-lac A9v:= F9v·(Wb-19-lac) +Gl0v·Wb · Wb-lac F9v· 19 - G 1 Ov· lac G9v ·-------.-· Wb-lac F8v·(Wb -18 -lac) + G9v· Wb A8v:= · Wb-lac F8v· 18 -G9v· lac G8v:=----- Wb-lac A7v:= F7v·(Wb-17-lac) +G8v·Wb Wb-lac F7v· 17 -G8v· lac G7v:=----- Wb-lac A6v := F6v·(Wb -16 -lac) + G7v· W!> Wb-lac F6v· 16 -G7v· lac G6v:=-----Wb-lac F5v· (Wb -15 -lac) + G6v· Wb A5v·-. ·-Wb-lac · FSv-15 -G6v· lac G5v:=-----Wb-lac F4v·(Wb -14 -lac) + G5v· Wb A4v := -~---------Wb-lac F4v·l4-G5v·lac G4v := ---· ----Wb -lac F3v·(Wb-13 -lac)+ G4v·Wb A3v := --'---------Wb-lac F3v· 13 -G4v· lac G3v:=----- Wb-lac F2v·(Wb-12 -lac)+-G3v· Wb A2v := ----------. Wb-lac · F2v· 12 -G3v· lac G2v:=-----Wb-lac Flv·(Wbl -11) + G2v·(Wbl +-lac) Alv := -----------Wbl Fl v· 11 -G2v· lac AFv:=-----Wbl J.v.W AlOv= 11.153 ·kN GlOv = l.157•kN A9v= 12.127•kN G9v =0.912 •kN A8v = 11.815 •kN . G8v =0.979·kN A7v = 11.9 •kN G7v =0.96 ·kN A6v = 11.877 •kN G6v =0.965 •kN A5v = 11.883 ·kN G5v =0.964 •kN A4v = 11.881 •kN G4v = 0.964 •kN A3v = 11,882 •kN G3v =0.964 ·kN A2v = 11.882 ·kN G2v=0.964·kN Alv=l2.l·kN AFv = 3.688 ·kN page 2 of10 11/18197, 2:18 PM AlOv + Gl0v = 12.31 ·kN FlOv = 12.31 ·kN A9v + G9v-GIOv = 11.882 •kN F9v = 11.882 •kN A8v + G8v-G9v = 11.882 ·kN F8v = 11.882 ·kN A7v + G7v -G8v = 11.882 •kN F7v = 11.882 •kN A6v + G6v -G7v = 11.882 •kN F6v = 11.882 ·kN A5v + G5v -G6v = 11.882 •kN F5v = 11.882 •kN A4v + G4v -GSv = 11.882 •kN F4v-= 11.882 •kN A3v + G3v -G4v = 11.882 •kN F3v = 11.882 ·kN A2v + G2v -G3v = 11.882 •kN F2v = 11.882 ·kN Alv ..-AFv -G2v = 14.824 •kN Flv= 14.824·kN • • • file: cc-asla1 .med Axle load .AFv = 3.688 •kN Alv=l2.l•kN A2v = 11.882 ·kN A3v = 11.882 •kN A4v = 11.881 •kN A5v = 11.883 •kN A6v = 11.877 •kN A7v= 11.9•kN A8v=ll.815•kN A9v = 12.127 •kN AlOv = 11.153 •kN Vl:KOMA MANUFACTURING 8. V. . Coupling load G2v =0.964 •kN G3v=0.964•kN G4v =0.964 •kN G5v = 0.964 ·kN G6v =0.965 •kN G7v =0.96 ·kN G8v =0.979 •kN G9v =0.912 •kN GIOv = I. 157 •kN Wheelcarrier load .AFv WFvv·=-2 Alv Wlvv·=-2 A2v W2vv:=-2 A3v W3vv:=- 2 A4v W4vv:=- 2 A5v WSvv·=-2 A6v W6vv:=-2 A7v W7vv·=-2 A8v W8vv:=-2 A9v W9vv·=-2 WlOvv ·= A!Ov 2 Axle load A and coupling load G due to lateral acceleration ah: ah= 1.078 -2 g =9.807•m•sec Flh := M rah·g Flh=5.487•kN · 11 =268·mm F2h ·= Mz·ah·g F2h =4.398 •kN 12 =112·mm F3h := M3·ah·g F3h =4.398 •kN 13 = 112·mm F4h := M 4·ah·g F4h =4.398•kN 14 = 112·mm F5h ·= M 5·ah·g F5h =4.398 ·kN 15 = 112•mm F6h := M 6·ah·g F6h =4.398 •kN 16 = 112·mm F7h := MTah·g F7h =4.398•kN 17 =112·mm F8h = M 8·ah·g F8h =4.398•kN 18 = 112•mm F9h ·= M 9·ah·g F9h =4.398 •kN 19 = 112 ·mm FI0h := M 10·ah·g FlOh =4.556 •kN ll0= 102•mm J.v.W page 3 of 10 11/18/97, 2:18 PM WFvv = 1.844 •kN Wlvv=6.05·kN W2vv=5.941 •kN W3vv=5.941 •kN W4vv=5.941 •kN W5vv=5.942•kN W6vv = 5.938 •kN W7vv=5.95·kN W8vv = 5.908 •kN W9vv=6.064•kN Wl0vv = 5.576 •kN Wbl =1·103 ·mm Wb=l.38•103 •mm lac=295·mm • • • file: cc-asla1.mcd V£KOMA MANUFACTURING 8. V. . 11/18/97, 2:18 PM Al0h .= FlOh·(Wb -Il0 -lac) Wb-lac GlOh := FlOh·llO Wb-lac A9h := F9h·(Wb-l9-!ac) + GlOh·Wb Wb-lac G9h := F9h·l9-GlOh·lac Wb-lac A8h ·= F8h·(Wb-18 -lac)+ Q9h·Wb Wb-lac F8h· 18 -G9h· lac G8h:= · Wb-lac A7h := F7h·(Wb -17 -lac).+ G8h· Wb Wb-lac F7h· 17 -G8h· lac G7h:=-----Wb-lac F6h· (Wb -16 -lac) + G7h· Wb A6h:= · Wb-lac F6h· l6 -G7h· lac G6h:=-----Wb-lac ASh := FSh·(Wb -15 -lac) + G6h· Wb Wb-lac O5h := FSh· 15 -G6h· lac Wb-lac A4h := F4h·(Wb -14 -lac) + G5h· Wb Wb-lac F4h· 14 -G5h· lac G4h ·= _.. ____ _ Wb-lac A3h := F3h·(Wb -13 -lac) + G4h· Wb Wb--lac F3h· 13 -G4h· lac G3h:=-----Wb-lac A2h ·= F2h·(Wb -12 -lac)+ G3h· Wb Wb-lac F2h· 12 -G3h· lac G2h·=----- Wb-lac Alh ·= Flh·(Wbl -11) + G2h·(Wbl + lac) Wbl Flh· Il -G2h· lac AFh:= Wbl .J.v.W A!Oh =4.128•kN Gl0h =0.428 ·kN A9h =4.489•kN G9h =0.338 •kN A8h =4.373 •kN G8h =0.362 ·kN A7h =4.404•kN G7h =0.355 •kN A6h =4.396 •kN G6h=0,357·kN A5h =4.398•kN GSh =0.357 •kN A4h =4.398•kN G4h =0.357 •kN A3h =4.398•kN G3h =0.357 •kN A2h =4.398 ·kN G2h =0.357 ·kN Alh =4.478•kN AFh = 1.365 • kN p~ge 4of 10 A!Oh + GI Oh =4.556 •kN Fl0h =4.556 •kN A9h + G9h -Gl0h =4.398 •kN F9h =4.398 ·kN A8h + G8h-G9h =4.398 ·kN FSh =4.398 •kN A7h + G7h -GSh =4.398 ·kN F7h =4.398 •kN A6h + G6h -G7h =4.398 •kN F6h =4.398 ·kN A5h + G5h -G6h = 4.398 •kN F5h =4.398 ·kN A4h + G4h-G5h =4.398•kN F4h =4.398•kN A3h + G3h -G4h = 4.398 •kN F3h =4.398 ·kN A2h + G2h -G3h =4.398 •kN F2h =4.398·kN Alh + AFh -G2h = 5.487 ·kN Flh =5.487·kN • • • .. file: cc-asla1.mcd VEKOMA MANUFACTURING 8. V. Axle load Coupling load AFh = 1.365 ·kN Alh =4.478 •lcN A2h =4.398 •lcN G2h =0.357 •lcN A3h =4.398 •lcN G3h =0.357 •lcN A4h =4.398 •lcN G4h =0.3.57 •lcN A5h =4.398 •lcN GSh =0.357 ·lcN A6h =4.396 •lcN G6h =0.357 •lcN A7h=4.404•kN" G7h =0.355 •kN A8h =4.373 ·lcN G8h =0.362 ·lcN A9h =4.489 •lcN G9h =0.338 •lcN AlOh =4.128·lcN GI0h =0.428 •lcN Vertical wheelcarrier loads due to lateral acceleration ah hl := 409-mm h2 :=459·mm h3 := 459·mm h4 := 459·mm h5 := 459·mm h6 := 459·mm h7 := 459·mm h8 := 459·mm cog .------1--¥-l--Ah .c Gh Wvhl 11/18197, 2:18 PM Wvhr h9 := 459•mm Ah -----;.-...-.-----'----"~---------·-l--;---1 hlO := 464-mm h (?OUpling := 217·mm Sb sb ·= 700·mm J.v.W page 5 of 10 file: cc-as/at.med VEKOMA MANUFACTURING 8. V. 11/18,197, 2:18 PM Vertical wheelcarrier load left side • h 1· WFvhl := -AFh· coup mg sb WI vhl := -Alh· hl -G2h· h coupling sb sb WFvhl = -0.423 ·kN Wlvhl =-2.727 ·kN W2vhl := -A2h· h2 -G3h· h coupling sb sb W2vhl =-2.994 •kN W3vhl := -A3h· h3 -G4h· h coupling sb sb W3vhl =-2.994 •kN W4vhl := -A4h· h4 -G5h· h coupling sb sb W4vhl =-2.994 •kN h5 h coupling WSvhl := -A5h·--G6h·---sb sb · W5vhl =-2.995 •kN W6vhl ·= -A6h· h6 -G7h· h coupling sb sb W6vhl = -2.993 •kN h7 · h coupling W7vhl := -A7h·--G8h·----W7vhl =-3 ·kN sb sb W8vhl ·= -A8h· hS -G9h· hcoupling W8vhl =-2.972 ·kN sb sb W9vhl ·= -A9h· h9 -GlOh· h coupling sb sb W7vhl =-3 ·kN WIOvhl := -A8h· hlO sb W8vhl =-2.972 •kN • Vertical wheelcarrier load rightside h ling WFvhr := AFh· coup · sb WFvhr =0.423 •kN Wlvhr := Alh· hl + G2h· h coupling sb sb Wlvhr =2.727 •kN W2vl:ir := A2h· h2 + G3h· h coupling sb sb W2vhr = 2.994 •kN W3vhr := A3h· h3 + G4h· h coupling sb sb W3vhr=2.994•kN h4 h coupling W4vhr ·= A4h·-+ GSh·---W4vhr = 2.994 ·kN sb sb WSvhr ·= ASh· hS + G6h· h coupling sb sb W5vhr = 2.995 •kN W6vhr := A6h· h6 + G7h· h coupling sb · sb W6vhr = 2.993 ·kN W7vhr := A7h: h7 + G8h· h coupling sb sb W7vhr=3·kN W8vhr ·= A8h· hS + G9h· h coupling W8vhr = 2.972 ·kN sb sb W9vhr ·= A9h· h9 + GI Oh· h coupling sb sb W7vhr=3•kN • W!Ovhr ·= A8h· hlO sb W8vhr =2.972 ·kN J.v.W page 6 of 10 • • • file: cc-as/at.med VEKOMA MAN&FACTURING 8. V. 11/18197, 2:18 PM J.v.W. Vertical Axle load A and Coupling load G .due to longitudinal acceleration al: AF Al A2 Al A4 AS A6 A7 A8 A9 AIO F = forqe due to acceleration A = reaction force axle G = reaction force coupling al =0.375 Fll := M 1 ·al·g F21 := M2·al·g F31 := M3·al·g F41 := M 4-al·g F51 := M 5·al·g F61.= M6·al·g F71 := M Tal·g FSI := M g·al·g ' F91 ·= M9·al·g FlOl := M 10·al·g Wbl := 1000-mm -FlOl·h IO AlOl := · Wb-lac -F9l·h 9 -1-0-101· Wb A91 := ------Wb-lac -F8l·h 9 -1-G9l· Wb ASI := ------Wb -lac -F7l·h7 -1-G8l·Wb A71·=-·--. ----Wb-lac -2 g =9.807·m•sec Fll = l.909 •kN F21 = 1.53 ·kN F31 = 1.53 •kN F41 = 1.53 •kN F51 = l.53 •kN F61 = 1.53 ·kN F71 = 1.53 •kN F81 = 1.53 •kN F91 = 1.53 •kN FIOI = 1.585 •kN Wb := 1380-mm n =268·mm 12 = 112·mm 13 = 112 ·mrn 14= 112·mm -15 = ll2•mm 16 = 112·mm 17 =112·mm 18 = 112-mm 19 = ll2·mm I10=102•mm lac := 295·mm d ·= 114-mm h l ·= hl .:. O.S·d h-1 =352·mm h 2 := h2 -O.S·d · h 2 =402·mm h3 := h3 -0.5·d h 3 =402·mm h 4 := h4 -0.5·d h 4 =402·mm h 5 ·= h5 -O.S·d hs =402·mm h 6 := h6 -0.5-d h 6 =402•mm h 7 := h7 -O.S·d h 7 =402•mm h g := h8 -0.5·d hg =402·mm h 9 := h9 -O.S·d h 9 = 402 ·mm h 10 := hlO -0.S·d h 10 =407•mm AIOI =--0.595 •kN FlOl·h 10 GIOl ·= ---GIOI =0.595 ·kN Wb-lac A9l =0.189•kN F91,h 9 -GlOl-lac G9l :=-----G91 =0.405·kN Wb-lac A8l =-0.051 •kN F8l·hg -G91-lac G81 ·= -----GS! =0.457 ·kN Wb--lac A71 =0.014·kN F7l·h·7 -G8l·lac G71 ·= -----G71 =0.443 ·kN Wb-lac page 7 of 10 file: cc-asla1.mcd VEKOMA MANUFACTURING 8. V. 11/18197, 2:18 PM • -F61· h 6 -r G71· Wb A61 =--0.004 ·kN G61 := F6l·h 6 -G71-lac G61 =0.446 ·kN A61 ·= Wb-lac Wb-lac ASI := -F5l·h 5 -r G61· Wb ASI =0.001 •kN 051 ·= F5l·h 5 -G61·lac Wb-lac Wb-lac G51 =q.445 ·kN A41:= -F4l·h4 -rG5l·Wb A41 =-2.814, 10-4 ·kN 041 := F4l·h 4 -G51-lac G41 =0.446 ·kN Wb-lac Wb-lac -F3l·h 3 -r G4l· Wb A31 =7.651-10-5 •kN F3l·h 3 -G4l·lac G31 =0.446·kN A31 := G31 := · Wb-lac Wb-lac A21 ·= -F21-h 2 -rG3l·Wb Wb-lac . -5 A21 =-2.08· 10 •kN G21 := F2l·h 2 -G31-Iac Wb-lac G2I =0.446 •kN All·= -Fll·h I -rG2l·Wb All = -0.052 ·kN AFl := Fll· h I -G21· lac Wb-lac Wbl AFl =0.54·kN Axle load Coupling load Wheelcarrier load AF! =0.54•kN AFI WFvl:=-WFvl =0.27·kN • 2 All =-0.052 ·kN Wlvl := All Wlvl =-0.026 ·kN ,, ... A21 =-2.08· IO -5 ·kN G21 =0.446•kN A21 W2vl:=--~ W2vl =-1.04· IO -• la.'\I' 2 A31 =7.651·10-5 ·kN G31 =0.446·kN A31 W3vl·=-· W3vl =3.826·10-s ·kN 2 A41 =-2.814•10 -4 ·kN G4l =0.446•kN W4vl·= Ml W4vl =-1.407•10 -4 ·tl 2 A51 =0.001 •kN G51 =0.445 •kN W5vl ·= A5l W5vl =5.175·10-4 ·kN 2 A61 =--0.004 •kN G61 =0.446•kN W6vl := AG! W6vl =-0.002 •kN 2 A71 =0.014 ·kN 071 =0.443 ·kN W7vl = A7l W7vl =0.007 •kN 2 A8i =--0.051 •kN G81 =0.457 •kN W8vl ·= AS! W8vl =-0.026 •kN 2 A91 =0.189 ·kN 091 =0.405 •kN W9vl ·= A9I W9vl =0.095 ·kN 2 AIOI =-0.595 ·kN G101 =0.595 ·kN W!Ovl ·= AIOI Wl0vl =-0.297 ·kN 2 • J.v.W. page 8 of 10 • • • file: cc-asla1.mcd VEKOMA MANUFACTURING 8. V. TOTAL FORCES LOAD CASE 1 av =2.913 ah= 1.078 al =0.375 Wheelcarrier left side vertical WFtl := WFvv + WFvhl + WFvl WFtl = 1.691 ·kN Wltl ·= Wlvv+ Wlvhl + Wlvl Wltl =3.2%•kN W2tl := W2vv + W2vhl + W2vl W2tl =2.947 •kN W3tl := W3vv + W3vhl + W3vl W3tl = 2.947 ·kN W4tl := W4vv+ W4vhl + W4vl W4tl =2.946 •kN W5tl := W5vv + W5vhl + W5vl W5tl = 2.947 ·kN W6tl := W6vv + W6vhl + W6vl W6tl = 2.944 ·kN W7tl :: W7vv + W7vhl + W7vl -W7tl =2.957 ·kN W8tl := W8vv + W8vhl + W8vl W8tl =2.91 ·kN W9tl := W9vv + W9vhl + W9vl W9tl =3.082 •kN WlOtl := WlOvv+ WlOvhl + WlOvl WIOtl =2.38 •kN Wheelcarrier right side vertical WFtr := WFvv + WFvhr + WFvl WFtr =2.537 •kN Wltr := Wlvv+ Wlvhr+ Wlvl Wltr =8.751 •kN W2tr := W2vv+ W2vhr + W2vl W2tr =8.935 •kN. W3tr :: W3vv + W3vhr + W3vl W3tr =8.935 •kN W4tr := W4vv + W4vhr + W4vl W4tr = 8.935 •kN W5tr := WSvv + W5vhr + W5vl WStr=8.937•kN W6tr := W6vv + W6vhr + W6vl W6tr =8.929 ·kN W7tr ·= W7vv + W7vhr + W7vl W7tr =8.957 •kN W8tr ·= W8vv + W8vhr + W8vl W8tr = 8.854 •kN W9tr ·= W9vv + W9vhr + W9vl W9tr =9.234 •kN WlOtr ·= WIOvv + WlOvhr + WlOvl WIOtr = 8.178 •kN J.v.W. page 9 of 10 11/18197, 2:18 PM file: cc-asla1.mcd Vl=KOMA MANUFACTURING B. V. 11/18197, 2:18 PM Wheelcarrier lateral Cou(:!ling vertical Coueling horizontal • WFh ·= AFh WFh = 1.365 •kN Wlh:= Alh Wlh =4.478 •kN W2h:= A2h W2h =4.398 •kN G2v =0.964 ·kN G2h =0.357 •kN W3h:=A3h W3h =4.398 •kN G3v=0.964·kN G3h =0.357 ·kN W4h:= A4h W4h =4.398 •kN G4v=0.964•kN G4h =0.357 •kN W5h:= A5h W5h=4.398•kN G5v = 0.964 •kN G5h =0.357 ·kN W6h:=A6h W6h =4.396 •kN G6v =0.965 •kN G6h =0.357 •kN W7h·= A7h W7b=4.404·~ G7v=0.96·kN G7h =0.355 •kN W8h:= A8h W8h =4.373 •kN G8v =0.979 •kN G8h =0.362 •kN W9h:= A9h W9h =4.489 ·kN G9v =0.912 ·kN G9h =0.338•kN WlOh:= A8h WlOh =4.373•kN GI0v = 1.157 ·kN GI0h =0.428•kN • • J.v.W. page 10 of 10 • • • file: cc-asla2.mcd VIEKOMA MANUFACTURING 8. V. TOTAL FORCES LOAD CASE 2 Wheelcarrier left side vertical WFtl ··= WFw + WFvhl + WFvl Wltl := Wlw+ Wlvhl + Wlvl W2tl := W2vv + W2vhl + W2vl W3tl := W3w + W3vhl + W3vl W4tl := W4vv+ W4vhl + W4vl W5tl := W5vv + W5vhl + W5vl W6tl := W6vv + W6vhl + W6vl W7tl .= W7w+ W7vhl.,. W7vl W8tl .= W8w + W8vhl + W8vl W9tl := W9vv + W9vhl + W9vl WIOtl := WlOvv + WlOvhl + WIOvl Wheelcarrier right side vertical WFtr := WFw + WFvhr + WFvl Wltr := Wlvv + Wlvhr + Wlvl W2tr = W2w + W2vhr + W2vl W3tr := W3vv + W3vhr + W3vl W4tr := W4w + W4vhr + W4vl W5tr := W5vv + W5vhr ... W5vl W6tr := W6w + W6vhr + W6vl W7tr := W7vy_+ W7vhr + W7vl W8tr := W8w + W8vhr + W8vl W9tr := W9vv + W9vhr ... W9vl Wtotr := WlOw + WlOvhr + WlOv! J.v.W. av=2.913 ah= !.078 al =-0.375 page 9 of 10 WFtl = 1.151 •kN Wltl = 3.349 ·kN W2tl =2.947 •kN W3tl =2.947 •kN W4tl = 2_.947 •kN W5tl =2.946 •kN W6tl =2.948 •kN W7tl =2.943 •kN . W8tl =2.961 ·kN W9tl =2.893 •kN WlOtl = 2.975 ·kN WFtr = l.997 •kN Wltr =8.803 ·kN W2tr =8.935 •kN W3tr = 8.935 •kN W4tr =8.935 ·kN W5tr = 8.936 •kN W6tr = 8.933 •kN W7tr =8.943 •kN W8tr = 8.905 •kN W9tr = 9.045 ·kN WlOtr =8.772 ·kN 11/18197, 2:59 PM file: cc-asla2.mcd VEKOMA MANUFACTURING 8. V. 11/18197, 2:49 PM Wheelcarrier lateral Coueling vertical Coueling horizontal • WFh ·= AFh WFh = 1.365 ·kN Wlh ·= Alh Wlh =4.478 •kN W2h:= A2h W2h =4.398 ·kN G2v =0.964 ·kN G2h =0.357 ·kN W3h:= A3h W3h =4.398 •kN G3v =0.964 •kN G3h =0.357 •kN W4h·= A4h W4h =4.398 •kN G4v=0.964•kN G4h =0.357 •kN W5h:= A5h W5h =4.398 ·kN G5v = 0.964 •kN G5h =0.357 ·kN W6h:= A6h W6h =4.396 •kN G6v=0.%5·kN G6h =0.357 ·kN W7h:=A7h W7h =4.404•kN G7v =0.96•kN G7h =0.355 ·kN W8h ·= A8h W8h =4.373 •kN G8v = 0.979 ·kN G8h =0.362 •kN W9h:= A9h W9h =4.489 ·kN G9v =0.912 ·kN · G9h =0.338 •kN WIOh := A8h WlOh =4.373 ·kN GlOv = 1.157 ·kN GI Oh =0.428 •kN • • J.v.W. page 10 of10 • • • file: cc-as/al.med VEKOMA MANUFACTURING 8. V. TOTAL FORCES LOAD CASE 7 Wheelcarrier left side vertical WFtl := WFvv + WFvhl + WFvl Wltl := Wlvv+ Wlvhl + Wlvl W2tl := W2vv + W2vhl + W2vl W3tl := W3vv+ W3vhl + W3vl W4tl := W4vv + W4vhl + W4vl W5tl := W5vv + W5vhl + W5vl W6tl := W6vv + W6vhl + W6vl W7tl := W7vv + W7vhl + W7vl W8tl ·= W8vv + W8vhl + W8vl W9tl := W9vv + W9vhl + W9vl Wl0tl := WIOvv+ WIOvhl + WIOvl Wheelcarrier right side vertical WFtr := WFvv + WFvbr + WFvl Wltr := Wlvv+ Wlvbr+ Wlvl W2tr : = W2vv + W2vhr + W2vl W3tr := W3vv + W3vhr + W3vl W4tr := W4vv + W4vhr + W4vl W5tr := W5vv + WSvbr + W5vl W6tr := W6vv + W6vbr + W6vl W7tr := W7vv .±. W7vhr + W7vl W8tr := W8vv + W8vhr + W8vl W9tr := W9vv + W9vhr .. W9vl WlOtr := WlOvv + W!Ovhr + WlOvl J.v.W. av= 1.25 . ah =0.14 al =0.625 page 9 of 10 WFtl = 1.187 •kN Wltl = 2.199 ·kN . W2tl =2.161 •kN W3tl =2.161 •kN W4tl =2.161 •kN W5tl =2.162 ·kN W6tl =2.157 •kN W7tl =2.176 •kN W8tl = 2.107 ·kN W9tl =2.361 •kN WI0tl = 1.521 ·kN WFtr = 1.297 •kN Wltr=2.907·kN W2tr=2.939•kN W3tr =2.939 •kN W4tr =2.938 •kN W5tt = 2.94 •kN W6tr=2.934•kN W7tr =2.955 ·kN W8tr = 2.878 ·kN W9tr =3.16·kN WlOtr = 2.274 ·kN 11/18197, 2:59 PM file: cc-as/al.med · V£KOMA MANUFACTURING 8. V. 11/18/97, 2·52 PM Wheelcarrier lateral Coueling vertical CouQling horizontal • WFh ·= AFh WFh=0.177·kN Wlh := Alb Wlh =0.582 ·kN W2h := A2h W2h =0.571 •kN G2v =0.414 ·kN G2h =0.046·kN W3h:= A3h 'W3h =0.571 •kN G3v =0.414·kN G3h = 0.046 ·kN W4h·= A4h W4h =0.571 •kN G4v =0.414 ·kN G4h =0.046 •kN W5h·= A5h W5h =0.571 •kN G5v =0.414 ·kN G5h =0.046•kN W6h:= A6h W6h =0.571 •kN G6v=0.414·kN G6h =0.046 ·kN W7h:= A7h W7h =0.572 •kN G7v =0.412 ·kN G7h =0.046 •kN W8h:=.A8h W8h =0.568 •kN G8v =0.42 ·kN G8h =0.047 •kN W9h ·= A9h W9h =0.583 •kN G9v=0.391 ·kN G9h =0.044•kN W!Oh:= A8h W!Oh =0.568 •kN GlOv =0.497 ·kN G IOh = 0.056 •kN • • J.v.W page 10of10 • • • file: cc-aslaB.mcd VE:KOMA MANUFACTURING 8. V. TOTAL FORCES LOAD CASE 8 Wheelcarrier left side vertical WFtl := WFvv + WFvhl + WFvl Wltl := Wlvv+ Wlvhl + Wlvl W2tl := W2vv + W2vhl + W2vl W3tl .= W3vv + W3vhl + W3vl W4tl := W4vv+ W4vhl + W4vl WStl := W5vv + W5vhl + W5vl W6tl := W6vv + W6vhl + W6vl W7tl := W7vv+ W7vhl + W7vl W8tl := W8vv + W8vhl + W8vl W9tl := W9vv + W9vhl + W9vl Wl0tl := WlOvv + WIOvhl + WlOvl Wheelcarrier right side vertical WFtr := WFvv + WFvhr + WFvl Wltr := Wlvv + Wlvhr + Wlvl W2tr := W2vv + W2vhr + W2vl W3tr := W3vv + W3vhr + W3vl W4tr := W4vv + W4vhr + W4vl W5tr := W5vv + W5vhr + W5vl W6tr := W6vv + W6vhr + W6vl W7tr := W7vv_t W7vhr + W7vl W8tr ::: W8vv + W8vhr + W8vl W9tr . = W9vv + W9vhr • W9vl WlOtr ·= WlOvv + W!Ovhr + W10vl J.v.W av= 1.25 ah =0.14 al =--0.625 page 9 of 10 WFtl =0.286 ·kN Wltl =2.286•kN W2tl =2.161 ·kN W3tl =2.161 •kN W4tl =2.161 ·kN W5tl =2.16•kN W6tl =2.163 ·kN W7tl =2.152•kN W8tl =2.192•kN W9tl =2.045 ·kN WIOtl =2.512·kN WFtr =0.396·kN WI tr = 2.994 •k:N W2tr = 2.939 •k:N W3tr = 2.939 •k:N W4tr = 2.939 •k:N W5tr = 2.938 •k:N W6tr =2.941 •k:N W7tr = 2.932 ·k:N W8tr =2.964•k:N W9tr = 2.844 •kN WlOtr = 3.265 ·k:N 11118/97, 3:00 PM fife: cc-as/aB.mcd VEKOMA MANUFACTURING B. V. 11/18197, 2:53 PM Wheelcarrier lateral Coueling vertical Coueling horizontal • WFh ·= AFh WFh =0.177 ·kN Wlh := Alh Wlh =0.582 ·kN W2h:=A2h W2h =0.571 ·kN G2v =0.414 ·kN G2h =0.046 •kN W3h:=A3h W3h =0.571 ·kN G3v =0.414 ·kN G3h =0.046 •kN W4h:= A4h W4h =0.571 ·kN G4v=0.414•kN G4h =0.046 ·kN W5h:= A5h W5h =0.571 •kN G5v=0.414•kN G5h = 0.046 ·kN W6h:=A6h W6h =0.571 •kN G6v=0.414•kN G6h = 0.046 ·kN W7h:= A7h W7h =0.572 ·kN G7v =0.4:12 •kN G7h =0.046·kN WSh:= ASh W8h =0.568 •kN G8v=0.42•kN GSh =0.047 ·kN W9h:= A9h W9h =0.583 ·kN G9v =0.391 ·kN G9h =0.044·kN WIOh:= A8h WlOh =0.568 •kN GlOv =0.497 ·kN GI Oh =0.056 •kN • • J. V. w. page 10 of 10 • • • file: cc-asla9.mcd VEKOMA MANUFACTURING 8. V. TOTAL FORCES LOAD CASE 9 Wheelcarrier left side vertical WFtl · = WFvv + WFvhl + WFvl Wltl := Wlvv+ Wlvhl + Wlvl W2tl := W2vv + W2vhl + W2vl W3tl := W3.vv + W3vhl + W3vl W4tl := W4vv + W4vhl + W4vl W5tl := W5vv + W5vhl + W5vl W6tl .= W6vv + \V6vhl + W6vl W7tl := W7vv+ W7vhl + W7vl W8tl := W8vv+ W8vhl + W8vl W9tl := W9vv + W9vhl + W9vl ' WlOtl .= WlOvv+ WlOvhl + W-IOvl Wheelcarrier right side .vertical WFtr ·= WFvv + WFvhr + WFvl WI tr:= Wlvv + Wlvhr + Wlvl W2tr := W2vv + W2vhr + W2vl W3tr ·= W3vv + W3vhr + W3vl W4tr := W4vv + W4vhr + W4vl W5tr ·= W5vv + W5vhr + W5vl W6tr := W6vv + W6vhr + W6vl W7tr := W7vv + W7vhr + W7vl W8tr := W8vv .... W8vhr + W8vl W9tr ·= W9vv + W9vhr + W9vl WlOtr ·= WlOvv + WlOvhr + WIOvl J.v.W. av·=O ah =0.7 al =0.25 page 9 of 10 WFtl =-0.095 ·kN Wltl =-1.788 ·kN W2tl =-1.944 •kN W3tl =-1.944 ·kN W4tl =-1.944 ·kN W5tl =-1.944 •kN W6tl =-1.945 •kN W7tl =-1.944 ·kN W8tl =-1.947 ·kN W9tl =-1.934 ·kN WlOtl =-2.08 ·kN WFtr =0.455 ·kN Wltr = 1-.754 •kN W2tr = l.944·kN W3tr = 1.944 •kN W4tr = 1.944 •kN W5tr = 1.945 •kN W6tr = 1.942 •kN W7tr = l.953 •kN W8tr = 1.913 •kN W9tr =2.061 ·kN WlOtr = l.684 •kN 11/18197, 3:00 PM file: cc-asla9.mcd VEKOMA MANUFACTURING 8. V. 11/18197, 2:54 PM Wheelcarrier lateral Coueling vertical Coueling horizontal • WFh := AFh WFh =0.886 ·kN Wlh ·= Alh Wlh = 2.908 •kN W2h ·= A2h W2h =2.856-•kN G2v=0•kN G2h =0.232 ·kN W3h:= A3h W3h = 2.856 ·kN G3v=0•kN G3h =0.232 •kN W4h:= A4h W4h=2.856·kN G4v==0·kN G4h =0.232·kN W5h:= A5h W5h = 2.856 •kN GSv=0·kN G5h =0.232 •kN W6h:= A6h W6h =2.855 ·kN G6v=0•kN G6h =0.232 ·kN W7h:=A7h W7h = 2.86 ·kN G7v=0·kN G7h =0.231 •kN W8h·= A8h W8h = 2.84 •kN G8v=0•kN G8h =0.235 ·kN W9h:= A9h W9h =2.915 •kN G9v=0•kN G9h =0.219 •kN WlOh:= A8h W10h=2.84·kN GlOv=0•kN GlOh =0.278·kN • • J.v.W page 10of 10 • • • file: cc-asla10.mcd VEKOMA MANUFACTURING B. V. TOTAL FORCES LOAD CASE 10 Wheelcarrier left side vertical WFtl . = WFvv + WFvhl + WFvl Wit!:= Wlvv+ Wlvhl + Wlvl W2tl := W2vv + W2vhl + W2vl W3tl := W3vv + W3vhl + W3vl W4tl .= W4vv + W4vhl -r W4vl W5tl .= W5vv+ W5vhl + W5vl W6tl := W6vv + W6vhl + W6vl W7tl .= W7vv+ W7vhl + W7vl W8tl = W8vv + W8vhl + W8vl W9tl .= W9vv + W9vhl + W9vl Wl0tl .= WIOvv + WlOvhl + WlOvl Wheelcarrier right side vertical WFtr := WFvv + WFvhr .,. WFvl Wltr := Wlvv+ Wlvhr+ Wlvl W2tr : = W2vv + W2vhr + W2vl W3tr := W3vv + W3vhr + W3vl W4tr := W4vv + W4vhr + W4vl W5tr := W5vv + W5vhr + W5vl W6tr := W6vv + W6vhr + W6vl W7tr .= W7vv..::_ W7vhr+ W7vl W8tr . = W8vv + W8vhr .,.. W8vl W9tr · = W9vv + W9vhr -W9vl WlOtr := Wl0vv + WlOvhr + WlOvl J.v.W. av=0 ah=0.7 al =--0.25 page 9 of 10 WFtl =--0.455 ·kN Wltl =-1.754 •kN W2tl =-1.944 ·kN W3tl =-1.944 •kN W4tl =-1.944 ·kN W5tl =-1.945 •kN W6tl =-1.942 ·kN W7tl =-1.953 •kN W8tl =-1.913 ·kN W9tl =-2.061 ·kN WlOtl =-1.684 ·kN WFtr =0.095 ·kN Wltr =-I.788•kN W2tr = 1.944 •kN W3tr = 1.944 •kN W4tr = 1.944•kN W5tr = 1.944 •kN W6tr = 1.945 •kN W7tr = l.944 ·kN W8tr = l.947 ·kN W9tr = l.934 •kN WlOtr = ~.08 •kN 11/18197, 3:01 PM file: cc-asla10.mcd VEKOMA MANUFACTURING 8. V. 11/18197, 2:55 PM Wheelcarrier lateral Coueling vertical Coueling horizontal • WFh:; AFh WFh =0.886•kN Wlh:= Alh Wlh = 2.908 •kN W2h:= A2h W2h = 2.856 ·kN G2v=0•kN G2h =0.232 ·kN W3h:= A3h W3h = 2.856 ·kN G3v=0·kN G3h =0.232 ·kN W4h:= A4h W4h =2.856•kN G4v=0•kN G4h =0.232 ·kN W5h:= A5h W5h = 2.856 •kN G5v=0·kN G5h =0.232 ·kN W6h:= A6h W6h=2.855•kN G6v=0·kN G6h =0.232•kN W7h:= A7h W7h=2.86·kN G7v=O•kN G7h=0.231 ·kN W8h:= A8h W8h=2.84•kN G8v=0•kN G8h =0.235 •kN W9h:= A9h W9h = 2.915 •kN G9v=0•kN G9h =0.219•kN WlOh:= A8h WlOh =2.84·kN GlOv=0•kN Gl0h =0.278 ·kN • • J.v.W. page 10of 10 • • • file: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11117/97, 4:16 PM Calculation coupling Junior Coasterfor train with Rh ~ 3.5 m drawing no.: 00705-56-1106 The coupling between the coach~ exists of a ball bearing, derived of type ELGES GE 60DO-2RS. The bearing is loaded with a vertical, an horizontal and a longitudinal force and will be calculated with the following loads: · Coupling loads in non-rotated position: Loadcase 1-2: F v_l2 := 2·kN F h_l2 -= 0.5·kN F 1 .= 8·kN Loadcase 3-4: F v_34 := l.S·kN Fh_34 := l·kN FI:= 8·kN Loadcase 5-6: F v_s6 := 1.75·kN F h_s6 .= 0.75·kN F 1 := 8·kN F r_l2 := JF v_tz2-t-F 12 f r_34 == JF v_3/-t-F 12 . J 2 2 F r_56 -=F v_56 -t-F 1 F r_l2 =8.246•kN F r_34 =8.139·kN Maximum coupling angles: J.v.W movement around the longitudinal axis: movement around the horizontal axis: movement around the vertical axis: . page 1 of 12 F r_s6 =8.189•kN ex x_max = IO·deg exy_max .= 19-deg ex z_max .= 25-deg m • • • file: cc~oupling.mcd VEKOMA MANUFACTURING 8. V. Additional vertical and horizontal forces due to rotation of the coupling: p v_max := F rsin(cxy_max) p h_max := F rsin( ex z_max) Longitudinal forcesin rotated position: Lv_rot := F rcos(cxy_max) Lh_rot := F rcos(cxz_max) Coupling loads in rotated postion: Loadcase 1-2: V 12_max := F v_12 +P v_max H 12_max := F h_12 + P h_max . 2 ~ J -R 12 :=V li_max + (L v_rot) Loadcase 3-4: V 34_max := F v_34 + p v_rnax H 34_max == F h_34 + P h_max . J 2 2 R 34 .=V 34_max + 1 v_rot Loadcase 5-6: P v_max =2.605 ·kN Ph_max =3.381 ·kN Lv_rot =7.564·kN L h_rot =7.25 ·kN V l2_max =4.605 ·kN H lZ_max =3.881 ·kN R 12 = 8.855 •kN V 34_max =4.105 •kN H 34_max =4.381 •kN R 34 = 8.606 •kN · V 56_max := F v_56 + p v_ma."'< V 56_ma."'< =4.355 ·kN H 56_max := F h_56 + p h_max H 56_ma."'< =4.131 •kN Rmax := R 12 Rmax =8.855·kN 11117197, 4:16 PM combination is an overestimation :£:!max =4.381 ·kN J.v.W page 2 of12 • • • file: cc-coupling.med VEKOMA MANUFACTURING B. V. 11/17197, 4:16 PM Check of spherical plain bearing: Bearing type: equivalent to ELG ES GE 60OO-2RS drawing no.: 00705-56-2102 C := 245·k:N C o := 1220· k:N According to manual ELGES: P:=X·Rmax C S:=-p Fixing bolts bearing Hmax 13:=---Rmax P =39.554•kN S =6.194 X := 0.978·21.54613 O.K. The outer ring of the coupling is held in axial position by 7 bolts M6 -8.8. Assume the horizontal force is taken.by 4 bolts . Hmax =4.381 ·kN Hmax Fbolt:=--4 According t~ DIN 4112: J.v.W F bolt= 1.095 ·kN F pre·= 8·kN F al·= 0.6-F pre F al =4.8•kN page 3 of 12 X =4.467 O.K. file: cc-coupling.med veKOMA MANUFACTURING B. V. 11/17197, 4:16 PM • Fitting bolt M24x 1.5 drawing no.: 00705-56-3107 94 MA:= 450·N·m P:,; l.S·mm · µk = 0.14 • d 2 := 23.026·mm dh := 26·mm dw := 36·mm F pre = 105.422 ·kN • J.v.W page 4of12 • • • file: cc-coupling.med Vl:KOMA MANUFACTURING 8. V. 11/17197, 4:16 PM J."v.W Check of thread M24*1.5 Dynamic force: Hmax =4.381 ·kN overestimation because of force, needed for deformation of side plate. Pretension force: F pre = 105.422 •kN Modulus of elasticity: Hub: di:= 30·mm l hub := 140·mm Shaft: d shaft := 30·mm l shaft := 140·mm Force amplitude: E := 2.1· 105,2!_ . mm2 ,c 2 A shaft:= -·d shaft 4 6 hub 6 shaft Fa·= O.S·Hmax·--- 6 hub l+-- 6shaft A hub =4.877 •cm.2 2 A shaft = 7.069 •cm Ll shaft =0.099 ·mm F min:= F pre F max := F pre + 2· F a F min= 105.4ZZ•kN F max= 108.015 •kN Because of small stress amplitude fatigue check not necessary Check mounting stress thread dz =Z3.0Z6·mm Fmax cr:=--A 34CrNiMo6: ,c 2 A:= -·dz 4 1t 3 Wt:=16·d2 er = 25.939 • kN cm.2 kN er 0_2 = 88.5·- cm2 page 5 of12 A =4.164 •cm2 Wt =2.397 •cm3 kN 't=l8.773·- cr eq =41.594 • kN . cm2 S =2.128 cm2 O.K. • • • file: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11117197, 4:16 PM J.v.W Check mounting stress thread groove d:= 20·mm Fmax a·=--A ,,;--; a eq :=~er·+ 3·t· 34CrNiMo6: Bending of fitting bolt Rmax =8.855 ·kN Hmax =4.381 ·kN d:= 30·mm A:= .::.d2 4 1 Mb·=-·R ·l . 4 max F pre a pre:=-;:- 1t 2 A:= -·d2 4 1t 3 Wt:=-·d 16 kN a=25.939·- cm2 F pre = 105.422 •kN A =4.164·cm2 Wt = 1.571 ·cm3 kN t=28.648·- a eq = 55.991 • kN cm2 S = 1.581 cm2 O.K. overestimation because of force, needed for deformation of side plate. I:= 94·mm A =7.069•cm2 Mb =20.81 •kN·cm kN ab =7.851 ·-,., cm· kN cr pre= 14.914·- cm2 W:=~-d3 32 O.S·Rmax t:=--- A Hmax ah·=--A . kN W =2.651 ·cm3 kN t =0.626·- cm2 kN 0-h =0.62·- cm2 er max:= er pre+ erh + er eq er tna."< =23.459·-cm2 a min := ·a pre -a eq kN er min =6.989·-cm2 page 6 of12 • • • fife: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11/17197, 4:16 PM J.v.W Fatigu~ check according to Hanchen: Material: 34CrNiMo6 <:1max+·<:1mm R:=..,.. ___ 2 __ R =0.649 a max kN O'bd := 115·-. cm2 (See figure 5e) ho.= o.93 (See figure 119) b d := 0.9 (See figure 120) (no diameter change} kN er max =23.459 • ~2 fun:=1.2 f leb := 1.2 fQetr := 1.0 snerr= 1.13 Bearing surface main beam F pre = 105.422 ·kN F max:= F pre+ Hmax D := 39·mm n: ( 2 2\ A:=-· D - d I 4 Fmax p:=---A kN a A =96.255·- cm2 er A S:=-·- amax (Equation 42b) S =4.103 (Pretension for bending, g-forces checked by measurement} (Safety device present) (Included in operation factor cj>) (See figure 156) $ erf=2.491 Hmax =4.381 ·kN F max= 109.803 •kN d := 30·mm A =4.877 •cm2 kN p = 22.513 ·-., cm· page 7 of12 overestimation because of force, needed for deformation of side plate. St 52-3: p al := 50· ~ O.K. cm· • • • file: cc-coupling.med Backup coupling Material bolt: 34CrNiMo6V VEKOMA MANUFACTURING B. V. drawing no.: 00705-56-3108 108 94 cr 0_2 .= 88.5· kN., cm· kN cr ult:= l 10·-cm2 Maximum load: Rmax =8.855·kN Dynamic factor: 4> 5 .= 2 J.v.W d bolt.:: 20·mm 1t 2 A bolt.= -·d bolt 4 Rmax·1bolt M bolt:= --4-- M bolt crbolt·=-- wbolt O.S·Rmax 't' bolt:= Abolt J 2 ,. 2 cr eq :=cr bolt + .,.t bolt cr ult S break := =-- cr eq cr 0.2 8 0.2:=- cr eq I bolt -= 108-mm ., A bolt =3.142 •cm· 1t 3 w bolt.:: -·dbolt 32 I Mbolt =0.239·kN·m . kN er bolt = 30.443 ·-cm2 kN -r bolt = l.409 ·-cm2 . "0 54 kN creq =., . ·-cm2 S break =3.602 S 0.2 =2.898 page Bot 12 O.K. O.K. 11/17197, 4:26 PM W bolt =0.785 •cm3 • • • file: cc-coupling.med V£KOMA MANUFACTURING 8. V. J.v.W Rear plates on frame drawing no.: 00705-51-3193/3194 Load in vertical direction: Load in horizontal direction: F v_34 = 1.5 •kN Fh_34 =l ·kN F 1=8·kN Load in longitudinal direction: Maximum clearence between bearing and plates: l := 80-mm I • I:= -·h·b~ 12 fmax 3·--·I·E 2 Fpre:=----13 F h := 0.5·F h_34 F v := O.S·F v_34 b := IO·mm I= 1.167 •cm4 F pre =4.45 ·kN F v =0.75•kN page 9 of 12 f'max := 0.62·mm h .= 140·mm N E .= 210000·-,, mm· 11117197, 4:27 PM Mpre =35.602·kN·cm Mv=6·kN·cm file: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11117/97, 4:16 PM 1 2 W h = 2.333 •cm3 1 2 WV = 32.667 •cm3 w h := -·h·b w =-·b·h • 6 V 6 A= 14•cm2 A·= b·h M kN Mh kN O" ·= pre cr pre = 15.258 • cm2 crh·=-O"h =1.714·-pre wh wh cm2 0.S·F l kN Mv kN a-1 :=--a-1 =0.286·-· ·-O" ·=-r:rv=0.184·-A 2 V W cm2 cm V kN cr max := cr pre + cr h + cr v + cr 1 r:r max= 17.441 •-. -cm2 kN r:r min := r:r pre -r:r h -r:r 1 cr min= 13.258 ·-cm2 (j . kN mm K =0.76 St52-3: O.K. K'=--cr arwo := 24·-2 r:rmax cm Stress at weld mainbeam: 1·=90·mm b ·= 25-irun h := 140-mm M ·=F ·l pre pre ~pre =4Q.052·kN·cm • F h ·= 0.5· F h_34 Fh =0.5·kN Mh ·= Fh·l Mh =4.S•kN·cm F v 34 F ·--v·----i--F v =0.75•kN Mv = F v·l M v =6.75 ·kN·cm l 2 W h = 14.583 ·cm3 1 ,., WV =81.667 •cm3 wh ·=-·h·b w := -·b·h-6 V 6 A:= b·h ,., A=35-·cm- Mpre kN Mh kN r:rpre ·= --r:r pre =2.746·2 O"h := -(jh =0.309·-., wh cm wh cm- 0.5·F1 kN Mv kN r:r1 := -.--0-1 =0.114·-O" ·=-O" V =0.083 ·-., A -2 V W cm-cm V kN ' cr max := cr pre + cr h ;-cr v + crl cr max = 3.252 ·-., cm- cr min ·= cr pre -cr h -cr I . 2 "24 kN O"min = . .J ·-2 cm cr min K =0.715 kN O.K. 1e·=--cr alK.4 ·= 12·-, O" max cm- • J:v.W page 10of 12 • • • file: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11117197, 4:16 PM Stress in weld side plate 1 ·= 130-mm F v ·= F v_12 Shear force: F 1 =8•kN A·= 1t·D·a 1C ·= -1 Front plate Striping out:: equivalent beam: B = 23·mm 1 / • ") I·= -·B·\H-' -h-' 12 M cr·= -w J.v.W. R ·= 50·mm F v =2·kN 0.5-Mv Fs:=---R F tot := F s + F 1 A :::;4.901 •cm2 't al := 5.94· kN cm2 a·= 4-mm Mv:= F v·l F s =2.6·kN F tot= 10.6 •kN F tot t:=--A O.K. kN t =2.163 ·-cm2 drawing no.: 00705-51-2196 , ______ .., ____________ _ .; ~i------;-_,_.__"_"...;.t ,: :..------------------- Rmax =8.855 ·kN D hole·= 90-mm H := 18·mm Diameter hole for bolt: h ·= 7·mm I= I.052·cm4 cr = 8.522 • kN .., cm- I W=--0.S·H 1C ·= 0 ' page 11 of12 W = 1.169 ·cm3 kN cr alWO = 22·-.., cm· • • • file: cc-coupling.med VEKOMA MANUFACTURING 8. V. 11117197. 4:16 PM J.v.W Stress in weld front plate: Assume the vertical force is taken by the vertical weld and the moment due to the vertical force is taken by shear of the longitudinal welds. Vertical weld: I weld := 120·mm Longitudinal weld: I:= ISO·mm F tot := F s + F I F tot ,;:=--- 2·a·1weld F v:; F v_l2 a:= 4·mm h:= 120·mm F s =2.S•kN F tot= 10.5 ·~ kN t =1.313·-· cm.2 F v =2·kN Fv ,;:=--- 2·a·1weld F 1 =S•kN a:=4·mm IC:= -1 kN t =0.208·-- cm2 O.K. kN t al ·= 5.94·-2 O.K. cm Stress in main beam: I:= 200-mm B := 80-rnm b := B-2·t I ( 3 ") I:=-· B·H -b·h-' 12 I W=-- 0.S·H M O'b ·=-w F1 O't :=-A JC:= -1 H := 120·mm b =70·mm I =375.583 ·cm4 W =62.597 ·cm3 O'b =0.639• kN cm2 kN O't=0.421·- _cm2 kN O' alK.4 := 2.7·---:, cm~ o.K. M=40•kN·cm t:= 5·mm h:=H-2-t h = llO•mm A:= B·H-b·h A= 19•cm2 page 12 of 12 • • • TOV BAU-UNO BETRIEBSTECHNIK GMBH Westendstr. 199 · D-80686 M0nchen REPORT ON DESIGN REVIEW 1. Reference Report no.: 24025118 Ride: Steel Roller Coaster· TOV~ Munich, 07.02.1997 BT BSF / LN JCSTR065.LN1 page 1 / 8 ,,JUNIOR COASTER, MINI ILLUSION" Manufacturer, Design: Stress analysis: Owner: here: Vehicles VEKOMA Manufacturing BV Schaapweg 18 NL-6063 BA Vlodrop NETHERLANDS VEKOMA Manufacturing BV Schaapweg 18 NL-6063 BA Vlodrop NETHERLANDS THORPE PARK United Kingdom . · . .._ -~ .- Dieser Berieht gilt nur mit dieser Original- This report is valid with this raised logo pragung und m1t Origrnalunterschnft (grun ). and the ongrnal signature (green) only. • • • JCSTR065.LN1 -2/8-TOVOO 2. Reviewed Documents a) Calculations (performed by VEKOMA Manufacturir,g BV)): b) 3. -STRENGTH-CALCULATION JUNIOR COASTER MK 700 dated January 1996, 137 pages'. Following amendments to above calculations were additionally submitted: -Calculation connection of guide wheel support to wheel carrier junior coaster Thorpe dated 9127196, 4 pages. -Calculation of safety brace for main axle dated 9127196, 3 pages. -Calculation of lapbar dated 8122196, 3 pages. Design drawings See attached list of drawings . Design Description The calculations and drawings provide verification of all essential structural components of the roller coaster vehicles. Each of the vehicles provides seating for two persons. The passengers, who sit side by side, share a single lap bar which either can secure one or two persons. During the ride, the lap bar is locked and can only be unlocked in the station by the operatin_g staff. The roller coaster vehicles have a steel chassis onto which a fiber glass reinforced plastic car body is bolted. The steel chassis consists of a framework and a main axle bearing the wheel bogies. Each wheel bogie consists. of two road wheels, two lateral guide wheels and one upstop wheel. For more detailed information see the stress calculations . Dieser Bericht gilt nur mit dieser Original- This report is valid with this raised logo ...... ._.,.._ ·-.~ ' pragung und mit Originalunterschnft (grunl. and the original signature (green) only. '· / :'"· • • • JCSTR065. LN 1 -3/8-TCJV~ 4. Design Loads Since a roller coaster train consists of several separate vehicles and can run on several different tracks, the following loads were assumed in the principal calculations. A roller coaster train consists of a maximum of five vehicles: dead load of intermediate vehicle m = 239.5 kg; imposed load P = 2 x 90 = 180 kg. dead load of the first vehicle . m = 322.5 kg; imposed load P = 2 x 90 = 180 kg. dead load of the last vehicle m = 277.5 kg; imposed load P = 2 x 90 = 180 kg. The load P= 90 kg per person supersedes the requirements of DIN 4112. Laod case 1: Laod case 2A: Laod case 28: Maximum vertical force and associated horizontal force Vertical force (vertical to the rail) V = Ci)v X 3,0 X g X M2 Horizontal force (horizontal to the rail) H = <t>H X 0,55 X g X M2 Longitudinal force (in direction of driving} T z = ± 8.0 kN., Maximum horizontal force and belonging to vertical laod Horizontal force H = <t>H X 0,9 X g X M2 Q = 1,0 kN Longitudinal force T z = ± 8.0 kN. Vertical force V = <t>v x 0,6 x g x M2 Horizontal force H = <t>H X 0,9 X g X M2 Q = 1;0 kN Longitudinal force T z = ± 8.0 kN . · . ...,. -~ =-. Dieser Bericht gilt our mit dieser Original- This report is valid with this raised logo pragung und mit Originalunterschnft (gnin). and the original signature (green) only. • • • JCSTR065.LN1 Laod case 3-2: Laod case 3-3: -4/8- Vertical laod V = cr;v x 2,66 x g x M2 Train in brakes Maximum brake deceleration 0, 7 g Longitudinale force !z = a.a kN. (in the middle of the train) 'at= 15,23 kN. (train in brakes) For the calculation of the up-stop wheel Vertical force V = -1,0 X g X M2 TCJV~ For the complete vehicle an impact factor of <t>v = 1.25 and <t>H = 1.4 was assumed. For some design details the loads were increased by additional impact factors. The theoretical total mass of an intermediate loaded vehi9le is M2 = 419.5 kg. For the lap bar is not calculated for intertia forces which would lift off the train. . ' 5. Materials The essential materials used were: Main axle: Bearing housing cover for main axle: Distance pipe of main axle: Wheel bogie: Roadwheel spindle: fit bolts of grade: Frame for polyester body: Tube for frame of polyester body: Fitting bolt for coupling: Coupling: Lap bar: Toothed bar for ratchet: Brake fin: Bolts of grade: Connection of safety brace: Bolts of grade Dieser Bericht gilt nur mit dieser Original- This report is valid with this raised logo 42CrMo4v (annealed) R St 37-2, R St 52-3 R St 37.0 St-52.0, R St 37-2 a.a R St 37-2, St 37.0 St 44-3 42CtMo4v, 34CrNiMo6v (annealed) St 52-3 API 5L Gr B, R St 37-2 16MnCr5 St 37 K 8.8. 10.9 .,_ .... _ ·-pragung und mit Originalunters~h~ft (gn.in). and the ongmal signature (green) only. • • • JCSTR065.LN1 -5/8-TOVOO 6. Results In accordance to DIN 4112, ed~ion February 1983 there was no assessment of the as- sembly conditions. The transport conditions were not to be considered within the scope of this review . . A review of the track layout calculations (speed diagram and accelerations) is not '-Yithin the scope of this present design review. · Various calculations and sections of the calculations presented were checked using our own reference calculations. Clerical errors, transmission errors and insignificant calculation errors without influence . on the design were not corrected in the calculation copy reviewed. From our review following observations were made: Wheelbogie: The calculated stress of the wheelbogie plate (pos. 2, drawing no. 00701-55-2182) exeeds the allowables stresses. Therefore we recommend one of the following measu- res to reinforce the wheelbogie plate . -two supplementary tubes (sleeves) between the vertical plates of the bogie so that the bolts can be longer and connect both plates -an additional plate welded in so that the load ist directly transfered into the existing web. In the a.,a section of the console for the guide wheel (page 54 of 137) the bending stress is calculated as crb = 5.15 kN/cm2 • The excess of stress of approximately 14% cari be tolerated according to subclause 7.3.1 of DIN 4112. under the assumption of regular inspections. Main Axle The verification of fatigue strength on the main axle is without objections provided that the main axle does not change orientation throughout operation and maintenance. For this purpose, the main axle should be installed with a longitudinal slot in its thread or a ... ;._-. clear marking showing its position. ~...._-.. ~ Dieser Bericht gilt nur mrt dieser Ongrnat- This report is valid with this raised logo ,; .. ,;....., ":'. ~., ,"'·· /. " .. __ ,._ ,~ ....... .., ... ,#., --~ .. ,,,;.,.'"• -~ ·:·~ .. , .. \ -·~ ·-y-: "-.. .... ~ i;.;· .. . ..... ·.": ; ' r .... ... "\ ..1t,, ' ''-. . _, -~.._ ··-pragung und mit Origrnalu~terschnft (griin). and the ong1nat signature (green> only. • • • JCSTR065.LN1 -6/8-TCJVOO Clamping Segment The verification of fatigue strength on the clamping segment showed increased bending stress in the cross section of the hole. Therefore the clamping segment shall be manu- factured with the material St 52. The bolts of the clamping segment shall be built in with grade 10.9. Vehicle Body The vehicle body (seat shell) is laminated completely with glass-fiber-reinforced plastic and does not have any special steel reinforcement due to the small dimensions. Ongoing check by the operator and speci?I attention within the framework of periodic tests and inspections carried out by expert engineers are, however, necessary (see requirements). 7. Con'cfusions The stress calculations and the corresponding design drawings are in agreement with DIN 4112, issue of February 1983 and with the "Regulations for the Design and_ Opera- tion of Amus~ment Rides" (issue April 1977) 1md they are essentially correct. The following requirements shall be observed Requirements: 1. The correctness of the load assumptions made and their compliance with the existing track parameters shall be verified for each. single coaster on the basis of the accelerometer test results obtained for the individual track layout during an acceptance inspection. 2. The steels for q.uenching and tempering shall be used only in the annealed state. 3. The glass-fiber-reinforc~d seat shells of the vehicles shallbe regularly inspected for cracks and deformatic;ms. The connections points between seat shell and bolts (14 bolts M12), in particular, shallbe checked for cracks. Any damage shall be repaired immediately. , ;., - 4. All bearings, mechanical assemblies and machine components shallbe install~":, ~ and maintained in accordance with manufacturer rules. . .. '</'"'_.:_ -·~ 5. \ ~~;~--;~>· '• Every vehicle may be loaded with two passengers (2 x 90 kg = 180 kg). "'--~-~ . .._ · ,.~ ' .. .,...-:~> I> ,;..:.--~~:;:-. ,~·, ,,.,. .";.,,. ... .., ... -.... .. . ., ... .., ...... ~ . ..-....'"'\ : '-._, .... ~\.,_~ -,,~ . Dieser Bericht gilt nur-mit dieser Original-pragung und mit Origmatunterschrift (grtin). This report is valid with this raised logo and the original signature (green) only. • • • JCSTR065.LN1 -7/8-TOVOO . 6. The comprehensive certificate of suitability in accordance with DIN 18800 Part 7, together with the extension for DIN 4112 shall be submitted by the manu- facturers performing welding for the vehicles. 7. All bolted connections shall be secured against loosening. 8. The correct tightening torques for prestressed bolts shall be observed and c_hek- ked by random sampling during periodic maintenance and surveillance activities. 9. The applicable provisions of the "Regulations for the Design and Operation of Amusement Rides", issue of April 1977, shail be observed. 10. The increase of the permissible stresses by 20 % in accordance with DIN 4112, subclause 7.3.1 has been utilized for the guidewheer s consoles. These compo- _nents shall be specially checked monthly by the owner and yearly by an expert engineer. 11. The wheel bogie plate (pas. 2, drawing no .. 00701-55-2182) shows an over- stressed area at the weld around the connecting pin (see green remark in the drawings). The weldings shall be visually checked monthly by the owner and ye- arly by an expert engineer during the regular inspections. If cracks start an im- mediate reinforcement shall be carried out in accordance to the above proposals . 12. The main axle shall be installed in such a way that either the longitudinal slot of its thread or an external mark (stamp) points always upwards. The position of the longitudinal slot shall be regularly checked. If the axle rotates, further action shallbe taken. 13. The clamping segmentshall be man1.,1factured with the material St 52. The bolts of the cl~mping segment shall be built in with the grade 10.9. 14. The compliance of the vehicle and especially the restraint system to the appro- ved design shall be verified. · 15. We recommend annual inspections of the ride by an expert engineer of TOV Bayern to maintain the safe state and compliance to the approval. Dieser Bencht gilt nur m1t dieser Original- This report is valid with this raised logo ._ ... .-.._ ··-pragung und mrt Origrnalunterschnft (gn.in). and the original signature \green) only. • • • JCSTR065. LN 1 ·8/8. TOVOO 16. The following signboard notices shall be placed at a location of the ride clearly visible ror the users: -Stretching out arms and legs during the ride is prohibited! -Unwieldy or loose objeGts may not be taken on board. -No smoking on board. -Intoxicated persons and persons under the influence of drugs shall be excluded from the ride.· -The safety bar shall be locked in a position during riding. Dept For Amusement Rides & Temporary Structures ctJIJ1:l 1 i. V. Leutenstorfer Attachment:: List of drawings Dieser Bericht gilt nur m1t dieser Onginat- This report is valid with this raised logo L. Neuhauser. . ., -~-........... ~ ... ........ ---...... ._ pragung und m1t Onginalunterschrrft (grun). and the onginat signature 1green) only. - .... _ .. - ... i ....... . .., "' • • ) • file: THORPE'NC.MCD VEX.OMA MANUFACTURING B. V. 912.7196, 11:48 AM Calculation connection of guide wheel supportto wheal carrierjuniorcogtec:0,orpe- tt :=35·deg Maximum forces: Moment to tilting point A: Force on lower bolts: J.v.W 11 :=252·mm Y1 :=50-mm 12 := 1?9-mm Y2 :: l2·mm (see THORPETR.MCO page 38) Av:=2.06-kN Fli :=Av·tan(tt) MA= 138.731 •kN·cm MA F1b =-----2 ( ,2 Y2 + YI+ Y2J Y1+Y2 page 1 ofd. F lb = 21.568 •kN ·'-'·7~1c·;<;."\ .. - revision • • • • -.-... .. . , .... · .... " ·, ' ---- , .......... file: 77-IORPcWC.MCD Vcl<OMA MANUFACTIJRING B. V. SIDE PLATE WHEE.CARRIER 1 ~-=-~-.---~ ·: ~ ,-:.:_:~o.-~-:~ .. l:. ·:~ ~ --· j. ' - -:· I -• L I -~ --j-. . - ! =· -=· - --~ ···,:·: ._I l -j----.... - ---; I ·_ -__ ·-~ _:~~1.f~1~r1P~ ~--- -------r j-tt ---· ----.. ,-··-·-·-·-·----.,J-··---rr:::: ·;----·--· . - . :-·;' ,,. -:.·; ·-·' :,_ __ -· t I. .... !"·--------- Assume the side plate of the wheelcarrier as a built-in beam: Because of the U-profile under the bolt heads almost the whole plate is working: Force on lower bolts: Force on upper bolts: Total fore~ in plate: l :=35-mm I M :=-·Fb·l 8 F lb = 21.568 ·kN v, F ub = . , ... ·F lb YI -:-Y 2 F ub =4.li4·kN Fb =F1b+-Fub (distance of bolts is 60 mm) M = 11.262 ·kN·cm 912.7/'J6, 10:48 AM b := 140-mm h :=8·mm I 2 w =-·b·h W = 1.493 -cm3 ._M a.-- W IC ·=O ' -·42 kN a=1.::, ·-, cm· ._ -kN rr ll.KJ = 1.::i·-, cm· 6 O.K. J.v.W. page 2 of4 revision 1 ,. • • ) • J.v.W file: THORPeNC.MCD VEKOMA MANUFACTURING B. V. Check of connection pf ate gwde wheel support: E :=2.l, Io-5,2!._ r,nm2 14 := 14-mm Force on one bolt I 5 :=24.5-mm . I av .. 19.2S-mm Ft :=O.S·F1b a:=55-mm h:=8·mm Ft• 10.784•lcN g/27/96, 10:48 AM Assuming a simple cantilever section for the plate near the bolt and assuming an equal bending moment at the weld and the bolt I l Moment at weld: 1av M:=-Fr-· 2 page 3 of4 M = I 0.38 •kN,cm revision 1 • • • tile: THORPF='NC.MCD VEKOMA MANUFACTURING 8.11. 9127196, 10:48 AM Woricing part of CQnnection plate: b :=2·a W•l..173-cm3 ._ I h3 I.--·b· M (J"l :=-w Deflection of plate: . kN er 1 • 8.846 ·- cm2 1 av Fr-· ( ) 3 f:= 2 3·E·I Check of bending stress according to Roark: 12 b =-110-mm Assume fotce in bolt divided over plate area, wich means an underestimation of the load situation: A :=a2 A= 30.25-cm2 F1b kN q:=-q =0.713·- A cm2 t ,=h t =8·mm b:=a b :a55-mm Acco~ing to Roark's Formulas for Stress & $train, page 471, figure 11a, plate with two edges free, wich means an overestimation of the load situation: ~ l := 1.769 kN aa1K3 :=7.5·-. cm2 2 ~ rq·b a:=--- O.K. II. Kn.....,._.piui:,_ari-IJL u • ...,. o..,. ca&ft. (Atza.,,ao) , ........... 6-1. ,_ piala ·~·-1\ree •" I O.lU o.u 0'* /J, 0.050 0.111 p., 0,047 0.111 r, O.Jlt O.S72 ... -• 71 0.127 o.:•• kN a=7.542•- cm2 -fl#' "'-•,•-r-... ·Jt •T1fi -~ ·--~ 0.375 a.so 0.7S 1.0 O.J.SJ o.UI l.2f6 1.70 O.Jtl o.1.11 I.Ill 1.7H 0.'71 0.174 I.lit I.JU o., • ., 0.557 a.alt I.Ji3 .... ..... --·-"""'-· • • ..:! .. ..:P-:ir .,,,"' • • I !,, ~'"' ...... - J.v.W. page 4of a. revision •. - • ) • • file: THORPESB.MCD VEJ<OMA MANUFACTURING B. V. 9i2.7/96, 2:09 PM Calculatfon of.safety brace for main axle w---. i cr, h :=70-mm "' - According to caculation TiiORPETR.MCO page n: ME = 172·kN·cm ME Fh:=- h J.v.W. Ev.=6.I·kN F h = 24.571 •kN F v =6.1 ·kN page 1 of3 drawing _no.; 0071-52-2114- E -;-½ LY!. ; ' = ' I :J.._ revision 1 " • • ) • .. me: n-lORPESB.MCD VEKOMA MANUFACTURING B. \I. 912.7196, 2:09 PM Global calculation for section A: r.=65-mm h := IO-mm 1 h: = 26.S·mm Iv-=4·mm Mh-Mv (1:=---w St37-3: __ ., kN ao.2--..4·-2 cm b :=u-(7-9 + 2-2.S)·mm W:=..!.·b·h2 6 Mh:=F111h (1 = 27.609 • kN cm2 Bolt connection safety brace: · 11 ·= 10-mm F h = 24.571 ·kN Force on bolts: Force per bolt MS-8.8 F v := 16-kN F al .=0.8-F v J.v.W. page 2 of3 -I b = 136.204 -mm W = 2.27-cm.3 M h =65. I 14 ·kN·cm M v = 2.44 ·kN·cm FA1i., Safety brace will deform, but not--.. F b =89.686•kN F = 12.812 •kN F al = 12.8 •kN revision ' ... • ) • ) • file: n-tORPESB.MCD VS<OMA MANUFAC11.JR/NG 8. \I. 912.7196, 2:38 PM Local calculation for seclion B: ME• 172•kN•cm a :=30·mm YO :=a+R y I ::a+R·cos(2S·deg) Yl :=a+ R·cos(SO-deg) y3 :=a+R·cos(7S·deg) I h •26.S-mm R :=38.S·mm Yo •68.5-mm y 1 •64.893 -mm Y2 •54.747-mm Y3 =-39.965-mm Yo F O :=M 1r---2 ___ 2 ___ 2 ___ 2 no·Yo +nry 1 +nrY2 +n3·Y3 I 1 a 10-mm d:=9·mm no:: 1 F o :sS.283•kN bo := 25 -,r,r--d 180 Mo =-13.999•kN·cm b o :a 19.362 -mm ~ft ~ r=65-mm h := lO·mm W ._lb h2 .--· o· 6 ·-Mo a.--W St52-3 kN a 0.2 : = 36·2 cm W =0.323 •cm3 :_,,{,f· · ~ 2 !rJ-kN a =-43.382 ·-·-. cm2 ---( ~ W; l( == .'-!S - i:A,l. Safety brace will deform, but not ~ Bolt connection safety brace: _ ..... ~t::O::,~ ·, ~~ - 11 := 10-mm Force on bolt M8-10.9 F v:=23·kN J.v.W. F O ,. S.283 •kN 1 h-l 1 Fb:=Fo·- 1 l F b = 19.282 •kN ~ 'q' l:Q ~ ? . . .-- .... -~f."~tc·.iP\ ,,/ ,~- ·F al :=O.S·F v F al"" 18.4•kN O.K. .,, page 3 of3 . .... r' .,...d masci-,iner.· 1n stat1sc, ,e -•' .. tec~·r.,scr.er l-:insicht gecn .. .lt. ··········· ·-·········· :::..:r .. ~,•e!: ' revisin,., • .. • • • file: THORPELS.MCD VE:KOMA MANUFACTURING B. V. 8122198, 11 :04 AM Calculation of lapbar drawing no.: 00701-57-0135 Assume 50% of the longitudinal forces due to deceleration ara taken by the seat and the feet and 50% by the lapbar. o.s ft!, .,. ~-~---// .,,,,,/ / i.., L,. mpers :=9Q-kg a1 :=0.7-g (see THORPETR.MCD page 6 -7) 11 :=410-mm 12 :=45·mm ci:=36-deg Force. on lapbar: F lb :=0.5-2·mpers·a1 F lb =0.618 •kN Force on ratchet I 1 Fr= 5.629 •kN Fr :=F lb"-,-. I 2 Force on bearing: Fbe:=F1b+F.r F be = 6.247 •kN J.v.W. page 1 of6 final . • • Ole: THORPELS.MCD VEKOMA MANUFACTURING B. V. Lapbar Pipe Section A: D ::33.4-mm. d:=0-l·t A::.!. (o2 -d2) 4 w := ir-(04 -d") 32·0 Wr:=2·W F d :=O.S·Fib·cos(a) F b :=F lb·sin(a) MA :=Fb·l 3 MT :=0.5·Fb·I_4 .:¥. ,.,.-q,;-,c.-~,-- Fd MA crBI :=---'--A 2W Fd MA crB2:=--+-A ~W ":=O J.v.W. '/ a.,J ·J.:i.F -r drawing no.: 00701-57-0119 t :=3.4-mm d•26.6-mm A •3.204•cm2 WT =4.373-em3 13 ::645·mm F d =0.25•kN F b =0.363 •kN MA =-23.423 ·kN·cm MT =3.178•kN·cm t=0.727·kN" cm2 . kN ta1 :=9.9·- cm2. O.K . page 2 of6 8122196, 11 :04 AM final • • • file: THORPs.B.MCD ve<OMA MANUFACTURING B. V. ~8, 11:04AM Ratchetconnedion drawing no.: 00701-57-0135 F raS.629•kN Bolt dnMmg no.: 00701-57-4109 ··--}-F;. . . . . -. . ..... ~ --~ ..... ·-k~---. -t<4 · s_-/1/{j - -............. . j ' r i i Kt:::::>'i a:=4-mm b :=6-mm W::.!...d3 W=0.0S-em3 32 Ma :=0.5-F r·a M a = 1.126 ·kN·cm D a :=O.S·F r D a =2.81S•kN aac:=)cra2+3·ta2 Mc :=0.S·F ta+ O.S·O.S-F r·O.S-b ·-Mc O'c ·--W kN CJ C =-30.796•-. cm2 cr max = 30. 796 • kN cm2 d:=8·mm A ::l.d2 4 Ma aa :=-. w Da ta:=- A a ae = 24.407 • kN cm2 Mc = I.S48 ·kN·cm J.v.W. page 3-of6 A = 0.503 ·cm.2 kN a a = 22.397 ·- cm2 kN ta =S.599•- cm2 , . : . -~ ~..., . '.....:.::,..,' .:::. -/ final • • • file: THORPS.S.MCD ve<OMA MANUFAC77JRING B. \I. 812.2196, 11 :04 AM Fatigue checlc according to Hanchen; Part Bolt amax:=ac kN er min :=O·- cm.2 2 R:=------- b o :=0.93 b d :=0.97 no diameter c~ange--> abd·b o·b d a sch:=----~ kb ._ 11·sch S.--- amax J.v.W. Material: a.a kN a max a30.796·- cm2 kN 11 • •0·- 0 mm c:m.2 · R =-0.5 a sch =63.147 • kN cm2 a max = 30.796 • kN cm2 S =2.05 Scrf:=2 page 4of6 (See figure 56) (See figure 119) (See figure 120) (See figure 131, right) (See figure 131, left) (formula stated in figure 131) (Equation 42b) O.K. ....... -- final • • • file: THORPELB.MCD VEJ<OMA MANUFACTURING B. V. Lapbar bearing drawing no.: 00701-57-0135 F be :a 6.247 •kN \, 2 x bushing Glycodur GLY.PBG 1618-17F Load rating: static: 58.S kN dynamic: 18.6 kN Pin drawing no.: 00701-57-4143 1 f 1 } 0-t t 0-r D ~I ..... --------....... --- a:= 12-mm b ·=20·mm n • 3 W:=--d~ W=0.402•cm 32 D a · = O.S· F be D a = 3.123-•kN . _ I ..2 ,, 2 erae·-..,Jera +.,..ta J.v.W. d:=16-mm A ::.!,d2 4 __ M..a er .--a W Da ta:=- A ' . kN er ae =9.701 ·-cmz page 5 of6 &iZZ,g6, 11 :04 AM O.K. A =2.011 ·cm2 er a =9.321 • kN cm2 I .... kN ta= .:J:>.J·-;;_--.... ,:.l!:tJi-... c-,-. · • '"~<~:. ·.:, ~- ·''n'JC''(.-.\ J' ,., -l ._,._ final • • • file: niORPS.S.MCD VEJ<OMA MANUFACTTJR/NG B. V. 8122196, 11 :04 AM Fatigue check according to Hanchen: J.v.W Part Pin a max :=a ae kN a min :=O·-cm2 2 R:=----- crmax kN (J'bd :=93·- cm.2 b o :=0.93 b d :=0.97 no diameter change--> 11 bct·bo·b d 11 sch:=---- ~kb ·-a sch S.--- amax --> Material: 42CrMo4 kN a max :s9.701 ·- cm2 0 kN (J'. -·-mm 2 cm R:aO.S kN a sch= 83.89S ·-. cmz kN a max =9.70l·-cm2 S =8.648 page 6 of6 (See figure 56) (See figure 119) · (See figure 120) (See figure 131, right) (See figure 131, left) (formula stated in figure 131) (Equation 42b) O.K. final -: • • • file: THORPETR.CON Contents of THORPETR.MCD Note from the author 22 januari 1996, 16:55 Page 2 Used DIN-Norms and guidelines . . . . . . • . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Used literature . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 4 Construc.tion and calculation data . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Introduction to the systemcalculation .••. • • . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 9 General introduction . . . . . . . . . . . . . • . . . . . . . . . . . . • . . • • • . . . . . . . . . . . . . . . . . . . . . 9 Introduction to the dynamic load distribution in the coach • • . . . . . . . . . . . . . . . . . . . . . . . . 10 Model of the impact f11ctor distribution • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Frequency measurement . . . . . . . . • . . . . . . . . . . . . . . . . . • . . . . . . • . . . . . . . . . . . . . . . . . 12 ,-Reversing forces from the longitudinal force· of the coach .•...•..... : . . . . . . . . . . . . . . 13 Indication for determining the fatigue strc• . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . . . . . 15 Determination of coordinatesystcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Calculation case determination . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . 17 Calculation case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Calculation case 2 . . . . . . . . . • . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . • . . . . . . 17 Calculation case 3 . . • . . . . . • . • . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .....•... -17 Load case determination . . . . . . . . . . • . • . . . . . . • . . . . . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . . . . 18 Load case 1 max speed and max vertikal acceleration . . .. .. . .. . .. . . . . . . . . . .. .. . . . 18 Load case 2A. max speed and partial horizontal accelleration . . . . . . . . . . . . . . . . . . . . . . . . 18 Load case 2B max speed and max horizontal acceleration . . . . . . . . . . . . . . . . .... ·. . . . . . 19 Load case 3-2 train in brakes . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Load case 3-3 catastrophy ................................................. 21 Loaddistribution of a single coach ...... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 The single parts of a coach . . . . . . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Position center of gravity in axial position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Determination of the loads on the couplings . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 25 Summary of dynamic factors and ce~ters of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Determination of the dynamic factors . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 28 Determination of wheelloads . . . . . .. . . . . . . . . . . . . . . . . . . . . . • • .. . . . . . . . . . . . . . . . . . . . . . . . . 32 Summary of wheelloads . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Steering forces ...........•........................ ; . . . . . . . . . . . . . . . . . . . . . 38 Conclusion concerning wheelloads . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 38 Wheelbogie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 40 Roadwheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Bearing of the roadwhcels . . ... , . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Roadwhcel spindle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Maximum stress under housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Fatigue check according to Hanchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Maximum load on hex fit bolt for road wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Guidewheels ......... , ........................... · ....................... · ... 46 Bearing of the Guidewheels .................... , . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Erik Schroen -page l of 3 final • • • file: THORPETR.CON 22 januari 1996, 16:56 G uidewbeel spindle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Maximum stress under housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Fatigue c:4eclc according to Hanchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Maximum load on hex fit bolt for Guide wheel . · ................................. 51 Upstop wheels ..................•....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Console for U pstop and G!lidewbeels .......... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Bolting ............................................................... 56 Welding in loaded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Bearing bush for wheel carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Bearing bush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Main axle . . . • . . • . . . . . . . • . . . • . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Introduction •.........................•................................. 61 Calculation of the decisive loads on die main axle. . ......... ·. . . . . . . . . . . . . . . . . . . . . 62 Case P ............. ,. , ................................................ 62 Case E ...........................••.•................................ 64 Case F ....•.............................•............................. 66 Case DE .............................•................................ 68 Summary loads on main axle . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Measurement main axle . . . . . . . . . . . . . . . . . • . • . . . • . . . . . .. . . . . . . . . . . . . . . . . . . . . . 71 Main axle section e and d. . • . . . . . . • . • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Fatigue check according to Hanchen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Main axle section f ..........•... , ......................................... · 74 Fatigue check a,.crording to Hanchen ........•....................•............ 75 Spherical plain bearing .... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Bolting Spherical plain bearing . . • • . . . . . . . • • • . . • • . . . . . . . • . • • • . • . . . . . . . . . . . . . . 76 Safety brace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Bolting of safety brace ......... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Remarks on the coupling angles, . . . . . . . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8'.2 Sperical plain bearing in coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Bolting spherial plain bearing . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Distance rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . 86 Fatigue check according to Hanchen ......................................... 88 Backup coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Plates on frame . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Loads for plates on frame . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Calculation of overall allowable stress in plates on frame . . . . ............ ; . . . . . . . . . . 92 Calculation of section c-c . . . . . . . . . . . ........ , ... _. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Calculation of section a-a . . . . . . . . . . . . . . ...... _. . . . . . . . . . . . . . . . . • . . . . . . . . . . . . 92 Calculation of section d~d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Calculation of section b-b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 . . Calculation of front frame . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Striping out of the frontplate of a coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Welding .. ..:..· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Brakefin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _,. . . . . . . . . . . . . . . . . . . 97 Brakefm bolting ................................................. ~ 97 Welding of Brakefin attachment .................................. ,-t.:-:~:!li.:.·,·~· 98 E, ik Schroen page::'. of 3 ·"' . . .., ... , . .. ~'J ·~ .... .... ..., ·'·· :::: _.,,. -_, .. ,· ---~---·-·· final • •• • file: THORPETR.CON :.2 januari 1996, 16:55 Frame for polyester body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 General note . . . . . . . . . . ............. -. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 100 Cross member resp. distribution arm . . . . . • . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Sidemember ................................................. , . . . . . . . . . . . 101 1st Crossmember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2nd Crossmember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Shaft supports ............................ ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3rd and 4th Crossmember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Calculation of fatique stre~ght . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Loadcase 1. case F ..... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Loadcase 1. case D •..... : . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Loadcase 2A. case F .............. , ......... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Loadcase 2A. case D . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Loadcase 2B. case F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Loadcase 2B. case D . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Tube for frame polyester body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Calculation of fatigue strenght tube for Case 1 and 2. ... , . . . . . . . . . . . . . . . . . . . . . . . . 113 Cases for the tube for frame polyester body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Case 1 Vertical acceleration . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Case 2 Horizontal acceleration ................................... ·. . . . . . . . . . 115 Polyester housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Lap bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Enclosures . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .... : . . . . . . . . . . . . 121 Enclosure 1: Arrangement train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Enclosure 2: Kinematic analysis of coaches , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Enclosure 3: Drawing 94138,51-0105 Frame fqr Polyester . . . . . . . . . . . . . . . . . . . . . . . . 125 Enclosure 4: Places for frame Drawings 51-2142 and 51-2140 . . . . . . . . . . . . . . . . . . . . . . 127 Enclosure 5: Safety brace for main axle . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 130 Last page of THORPETR.MCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Contents of THORPETR.~CD ,. ·::·; Erik ~chrncn --. -..... ·" ,;I " --• -· •• 1 1: • • . ~ -·,. ,·1 c..:: .,, ... "inal - file: THORPETR.MCD t/22196. 11:31 AM • Project: 94.138 • • Client:. THORPE PARK STRENGTH-CALCULATION· JUNIOR COASTER ~700 REVERTED RIDE ':-"\ I ' i ~-, . \ ; -j ~ .. I :.;j; ;;: I 1~~\ . =-·:: -0 •6 1i·-_.;---··71 I .,. ~ .::-:-::-:-:. :: __ T :., . I I I:/ .• . &~u· · . I i i j!J zr,. . . ,,1: . ::· / / / : I . . : .' . . J ,/JI .. p• . i \ _. i I' i I . '· .' . : t' ". 1 ' •• / / i · f ,:\_ \ , I • • , ,. ---~· -~ I'' ~ I \i \-v1•·...,_ ·· .. ·;= { i\ '> ;,·. ···-·-.·.:::. '-., ', I ,i:!i, "···::::-·-..:.-::§t::l \ \i Jt.i' ·-....__ -·-----=-~ , .. ., ·If" '--r· ----==. JJ ,,..::.,___ __ ':;:~~ .. -,-· --=-=--<=-;;;;iCJ ·U , \, If, t. ·-', I \ ·// • • ---"'·~ ) d-;\f.i.: . ..: i -;.!if.: . .!._;. -. . , w.:. .!::.--I~[ r.a:~t-..:J.. -i#i-\---1~ .c::~~ r 1--r·il • • . ' ,. . . . r•..-... ·f·l 1,::.1 . . --~·, ',...;..!; .. ;:-it-. · , • •:.i 1 · • • iti f.T ~---' ' r • n:::r.::--l 1 -' ''t'fj· •• .,... , i:.-• ·::;:iu :-'"'J'.:· ••• ::::- 1 ·--~.::c ·t:. ,..-.t.!.1-U.:t'r -· . + +!th . ..., ~:±w : i _J .. . .1.f-.31..i . -~:-·; i .::-·-:~-.. · . . --I ,~r.:-~~ -1"] ! ~-·_-:.,, •. ,.. -. . . ri ·. ": Calculations and production by: VEKOMA INTERNATIONAL B.V. 6063 BA VLODROP. NETHERLANDS . Revision: 0 11E.:.:.OMA i E:tl<. Sd1mr!fl ,,nc,e : Ji :J;- : .. ' -. \ ' (;no/ • • • tile: THORPETR.MCD 1122196, 3:06 PM NOTE FROM THE AUTHOR The ~unior coaster is originally designed as a booster lift rollercoaster. The design is adapted to reverted ride and the addition of the audio. This calculation is made for this redesign. We have used the program MA THCAO 5.0 for the calculation of the JUNIOR-COASTER with reverted ride. MATHCAO 5.0 enables you to work more flexible with variables and formulas. MA THCAO 5.0 requires a definition of every variable you use. The important global definitions are summarised in the chapter CONSTRUCTION AND CALCULATION DATA. You will find the other definitions included as part of the calculation$. MA 11-iCAO 5.0 does not have the possibility to build a contents based on the names of.the- chapters used in a tile. We have build a contents separately. in WP and added that after the calculation. -The calculation is in the document THORPE.TR.MCD .. -The contents are in the document THORPE.TR.CON. For clarity is the filename added on every page in the t,Jpper left comer . VEKOMA I Erik Schroen page 2 of 137 final • • • file: THORPETR.MCD DIN 1055 DIN 1080 DIN 1629 DIN 1912 DIN 2448 DIN 2458 DIN 4112. DIN 4114 DIN 4132. DIN 15018 DIN 17100 DIN. 17200 DIN 17210 DIN 18800 DIN 18801 DIN 18808 DIN 18809 DIN 55928 USED DIN-NORMS AND GUIDELINES Lastannahmen Begriffe, Formelzeichen und Einheiten im Bauingenieurwesen Nahttose Rohre aus unlegiertem Stahl. Schmelz-Verbindungsschweissen Nahtlose Flusstahlrohre Geschweisste-Stahlrohre Fliegende Bauten Knicken, Kippen , Beulen Kranbahnen Krane Allgemeine Baustahle Vergutungsstahle. Einsatzstahle. Stahlbauten Stahlhochbau Tragwerke aus Hohlprofilen Stahlerne Strassen-und Wegebrucken Korrosionsschu~ von Stahlbauten 1986 1980 1961 1977 1961 1961 1983 1952. 1981 1984 1980 1969 1969 1983 1983 1984 1987 1978 DAST -Richtlinie 009 -Empfehlung zur Wehl der Stahlgutegruppe 1973 CAST -Richtlinie 014 -Empfehlung zur Vermeidung von Terrassenbruchen 1981 Bau -und Betriebsvorschrift fur fliegende Bauten 1977 VEKOMA I Enk Schroen page 3 of 137 1122196, 3:02 PM tinal •• • • file: THORPf=TR.MCD USED LITERATURE [11 "Stahl in Hochbau" -13. Auflage [21 "Neue Festigkeitsberechnung", R. Hanchen -3. auflage (3] "Elges Gelenklager -Katalog" K233D [4J "SKF" -Kugellager -Katalig 3200 T/IX [5] "Dynamik", Heinrich Rodel -6. auflage [SJ "Fordertechnik 1 -Hebezeuge", H. -J. Zebisch [7] "Triebwerke schnellaufender Verbrennungsmotoren" -O.R. Lang [8] "Maschinenelemente", K.H. Decker -9. Auflage [9} "Dauerschwingversuche als Grundlage zur Bemessung von hochfesten axial beanspruchten Schrauben der gute 10.9 in Kopfplattenverbindungen" Forschungsbericht T 1439 -IRS-Verlag (1 OJ "Hutte IIA" -28. Auflage [11 J "Dubbel" Taschenbuch fur den Maschinenbau -17. Auflage VEKOMA !Erik Schroen page~ of 137 112.2196, 2:54. PM . .. ~.· ... ___ ..... fina1 file: THORPETR.MCD 11'22196, 2:54 PM • • . .. ~f __ .. .:-..:.:..·· .. :... .. u. _.;..,.!:. tt.::; ~fF~ .:.~·· . .• . .... +.;,. r• ._.. . .... ___ : !:. ·"' .-::::. -:...: .. ____ _ . ..,.~···~-11n :.. • ligun: = I General arrangement of coaches. -. ..._ VEKOMA I Erik Schroen page 5 of 137 · fina1 • • • file: THORPeTR.MCD 1122196, 2:54-PM CONSTRUCTION AND CALCULATION DATA General data Project number TRAIN Type Rollercoaster Number of coaches Number of persons per coach. Gravity constant Centre of gravity of coach plus passengers Height Length (reference centerline railpipe) (reference center _main axle) General data car Wheelbase intermediate coach Wheelbaseleadcoach Distance axle coupling Height difference axle coupling Wheeldata Diameter Road WheeL Radius Guide Wheel Radius Upstop Wheel General acceleration data Max. vertical acceleration Max horizontal acceleration D 1w = 150-mm D gw = 100-mm Duw = !00-mm Max. brake deceleration (fatigue) VEKOMA I Erik Schroen 0 rw R -=-rw 2 -Dgw Rgw·--2- Duw 2 94.138 Junior Coaster based on MK700 noc = 5 nop =2 g =9.8I·m·sec -i htthorpe =493.6-mm I tthorpe = 1~9.J·mm wb = 1300-mm wbl = 1000-mm Wac = 295-mm hac = 30-mm R ,.;75•mm rw R gw =50•mm \ . .' (70" \ i"l ) -....:..::...-· avmax ·J.O·g a hmux 'o.9·g a amax o.7-g 'l = ?9 '1•m•""C. :! ' vmax -.... · · a hmax = 8.83·m•scc :: a amux =6.86•m•s«.:c -~ page 6 of 137 fina, • • • file: THORPF:TR.MCD Car weight data Weight per PERSon. Weight Wheel Bogie Weight AXLE SOLO Weight FRAME+-brakefin +-coupling +-cables Weight ratchet +--BODY Weight HAndles Weight HeadRest Weight FOAM Weight C~rrent Take Off Weight SPeakers Weight Audio Box General data track Brakes: Short type VEKOMA Brakes Start: Boosters Liftdrive: Boosters Max lift angle Max velocity in ride: Smallest Radii in track vertical convex bottom lift vertical concave top lift horizontal Distance between railpipes Railpipe diameter VEKOMA I Erik Schroen page 7 of 137 M pt:rS .: 90· kg M wb =:!5-kg M a:<lesolo = 30· kg 1122196, 2:54 PM M frame : 70-kg ~ 3-kg -M body =63-kg M ha =4-kg M hr =3.5-kg M foam = 2· kg M cto = 3.0· kg M sp = 10.5· kg Mab =35-kg u m::ix = 30-deg m V ma.'< = 12.6·-s R vbmin = 5.0· m R vtmin = 5.o-m Rhmin =-l..5-m Sb :700-mm D rp = I 14.J-mm final • • • file: THORPETR.MCD Train weight data Weight Coach 1 (front) Coach 2.(intermediate) Coach 3 (intermediate) Coach 4-(intermediate) Coach 5 (rear) Sum Mean Typical mass coach 'vEKOMA I Erik Schroen Empty M le: = 321.5·kg M ze. = 239.5•kg M Je =239.5·kg M 4e. =239.5•kg M 5e =277.5•kg M tote= !318.5•kg Mmeane =263.7·kg Mctyp· =M2 page 8 of 137 Loaded M l = 502.5·kg M 2 =419.5·kg M 3 =4l9.5•kg M 4 =4!9.5•kg M 5 =45i.5·kg M tot= 2218.S·kg M mean =.W3.7·kg Mctyp =4!9.5•kg 1/22196. 2:54 PM --.,._·· ... final • • • file: THORPETR.MCD 1122196, 2:54 PM INTRODUCTION TO THE SYSTEMCALCULATION A. General Introduction. • A train is composed of a given number of coaches and can run on several different tracks. Therefore we have made a system calculation based on maximum allowable loads. " Five determining loads can be distinguished. 1:V 2: 'H' 3:'Tz' 5:'Q' Vertical load perp1andicular to the track. Horizontal load parallel with the tie's of the track. Tangential load in longitudinal direction of the coach as a result of the mass load. (e.g. long train in valley or across tops.) Tangential load in longitudinal direction of the driving axle from the de-and ~cceleration and from the forces initiated cy ~n.ti Roll Back and ~hl:lin or pusher dog. Sheer force from the brake-fin and ARB-dog. " Eccentric loads as a result of not fully occupied coaches will not be checked (minor influence on calculation). " The types of loads as a result of snow, wind, temperature and passenger movements are of minor importance for the coach calculation and therefore not included. " The following calculation is based on a train with 5 coaches. It's mass is : M tot =2218.S·kg " A persons weight is assumed: M pers = 90-kg VEKOMA I Erik Schroen page 9 of 137 final • • • file: THORPETR.MCD 1122196, 2:54 PM 8. Introduction to the dynamic load distributio_n in the coach The coach is primarily loaded by the rails at the wheel bogie. It means that the load on the wheel bogie which is due to acceleration is absorbed by the coach force. In accordance with the weights and their self-damping capacity any impact will spread radially from the generation point An impactdoes of course not imply the dead weight and the centrifugal force. A badly absorbed rail impact for instance, is hardly perc:eptible for the passenger, but is perceived however by the roadwheels and wheelbogie. The guidewheels are d.ue to the swimming effect caused. by the backlash loaded by impacts at the change of load. With the-following model we have tried to show a realistic distribution of the impact factors . .-('·:·~-;:.:/?·- ··· .· VEKOMA I Erik Schroen . page 10 of 137 final • • • file: THORPETR.MCD 1122/96, 3:21 PM C. Model of the impact factor distribution • Only the horizontal load is determined. Assumption:. On a finished track a horiZontal load is measured at the wheel bogie through a stress strain analysis or comparable analysis. These analyses also indicate the load frequency (filter). Measured is e.g. H·=6:2kN. This corresponds with 1.T.g~m. in which 'm' represents the total mass. In the 'GSW..! · Load tables however; a. horizontal load of t.O g is indicated. Furthermore is assumed that in this load a deflection force of ca 1.0 kN is included. Irrespective of the vertical load, a load H = 6.2 kN works at the right wheel bogie. The left wheel bogie is-therefore loose and doesn't touch the rail. Weights Horizontal Vertical 1. Weight live load 2-Mpers = !S0•kg +:1.2 ~=1.2 2. Weight body+ratchet M frame = 73•kg · +=1.2 ~=1.2 3. Weight frame+brakefin+coupling+cables M body =63·kg +=-1.2 ~=1.2 4. Weight axle solo M a.xlesolo = 3o•kg +=1.8 ~=1.2 5. Weight wheelbogie Mwb =25•kg +=1.6 ~=1.5 6. Weight wheelbogie M wb =25•kg +=3.0 ~=1.5 7. Weight handles M ha =4•kg +=1.2 +=1.2 8. Weight headrest M hr =3.5•kg +=1.2 +=1.2 9. Weight foam M foam =2•kg +=1.2 +=1.2 10. Weight speakers M sp = !0.5•kg +:1.2 +=1.2 Sum M, =419.S•kg -~ l.2-2-M.pcrs ;-1.2-M fr:imc: ~ l.2-M hodv,. l.S·M a.-.:k.•:.olo,. 1.6-M wb -3.0-M wb +h . ----------------,,_--...;.·-------------M, + h = l.31 .--> 1.2-2-M ~er~~ l.2-M fram1: · 1.2-M h~><ly ,-__ 1_-?·M a~~'=~>I~> ·. _'_-~-M wb · M, +v=l.17 -> ~ V 1.25 VEKOMA I Errk Schroen page 11 of 137 finat • • • file: THORPF=TR.MCD 1122196, 3:21 PM The mean impact factors are calculated for the complete weight of the coach . Horizontal + h = 1.4 Vertical -These mean impactfactors are based on a maximum velocity in the ride. -The ride is assumed relatively smooth manufactured. -The highest significant freq1,1ency is 10 Hz. D. Frequency measurement Assumption: The system behaves elastic, thus the forces are linear equivalent to the strains. Calculating with linear equation we get the following relation between frequency, acceleration and amplitude. . ' ~ ligurc-= 2 vEKOMA I Erik Schroen I I I I page 12 of 137 (I) =2·-;r- T-sec rad ro =2·:t·f·- sec f I f (l) ----T 2·:t b 2 : S·ro assume b =g b=9.81·m·sec~ b fina1 • • • file: THORPETR.MCD 1/22196, 3:21 PM With our formula's we can calculate the amplitude at a given frequency. t' :5-f!z f a 7-Hz f = IO-Hz f : 20-Hz f =50-Hz s .s s s s h s =9.94·mm ----~ (2·;t·f/· b s =5.07·mm ---~ (2·:t·tY b s =2.48·mm --- (2·:t·t-/ b s =0.62·mm ---~ (2·:t-(t b s =0.1 ·mm --- (2·:t·f) 2 From this consideration can be deduced that people hardly perceive these low amplitudes as a reaction force. Consequently the impact factor decays considerably from the wheel bogie. Measured \lalues within 1.g having a frequency of over 10 Hz are insignificant for the passenger and therefore for the total mass. Note: We want to stress from this pointthat the consideration is for force calculations. For e.g. noiseproduction these frequents are of importance, but not for the strength-calculation . E. Reversing forces from the longitudinaUorce of the coach. The longitudinal force ~ g~nerates a deflection force within a horizontal as well as a vertical bend. This force is an internal load between the wheel bogie and the bearing. The longitudinal force is mainly generated in the lift and at the brake entrance and exit. Also at free speed a longitudinal force is generated depending on the train length an~ the longitudinal grade. The maximum values of the longitudinal force meet in the middle of the train. ligun: =:, VEKOMA I Enk Schroen page 13 of 137 fina1 • • • me: THORPETR.MCD 112.2196, 3:21 PM F. Indications for determining the fatigue strength The fatigue strength indications are to be calculated according to the "Hanchen-Oecker new fatigue stress analysis for mechanical engineering". Therefore should first be recorded the frequency respecijvely the sum frequency curve. When considering the ride time without entering and lifting time at<= 100%, the following sum frequency.curve can be recorded. Assumption: A typical rollercoaster having a ride time of -40 sec). +--1.·~ 3.,. Z·r .. f·-1 ~ figure =4 I 10 50°0 ' zo Load distribution of the JUNIOR-COASTER. . 30 35 · The frequency of the maximum forces H= 50% is taken into consideration in the fatigue strength analysis. The operating factors fun and fbetr are determined at 1.0, while the acceleration values are measured on a finished track and can therefore immediately be compared (fbetr included in the impact factor +v and +i,). .. .. ---:-. VEKOMA I Erik Schroen page 15 of 137 fina; • • • file: THORPETR.MCD 1/22196, 3:21 PM G. Determination of coordinatesystem In the calculation of the whole trai·n the coordinate axes are also maintained the cross section value index (right hand rule). figure= 5 Xis in travel, longitudinal direction. positive T . Y is directed upward. negatiVe V. Z is directed to the right (seen from the pass!,!nger). positive H. The moments stand vectorial on these axes . VEKOMA I Erik Schroen page 16 of 137 'fina1 • • • file: THORPETR.MCD 1122./96, 3:21 PM CALCULATION CASE DETERMINATION. An important goal of our calculation is the production of calculation cases. These are simplified assumptions to get a understanding of the numbers and their relation. We investigate the following calculation cases. Calculation case 1: A vertical acceleration of 1·g. No dynamic factor is used. Calculation case 2: Calculation case 3: VEKOMA I Erik Schroen V ,,.1 = l·g·M2. Hvl =0·g·M l Q vi =0·kN T av! =0'.kN T zvl =0·kN A horizontal acceleration of 1·g. No dynamic factor is used. V hi =0·g·M 2 Hhl = l·g·M 2 Q hi =0-kN T ahl =0-kN T zhl =0-kN A shear force from the brakefin 1 kN. No dynamic factor is used. V qi =0·g·M 2 Hql =0·g·M 2 Oql =l·kN T aql =O·kN T zql =O·kN paae 1 i of 137 . --~--:-:--.... . . . finai • • • file: THORPETR.MCD LOAD CASE' DETERMINATION • The main goal of the calculation is the calculation of Load cases. The Load cases·are based on VEKOMA experience. We investigate the following loadcases. figure =6 Load case 1: at maximum speed and maximum vertical acceleration. assume: ah=O.SS*g a vma."< = 3 ·g V LCI =+v-avma."<·M 2 Vi. L ,--,.. J. V ma.'< = 12.6·m·sec -i V LCI = 15.43 ·kN QLCI =O·kN T aLCI =O·kN T zLCI ·=-8-kN or TzLCI :=8-kN Load case 2A: at-maximum speed and V ma.'<= 12.6•m•sec -i maximum horizontal VEKOMA I Erik Schroen acceleration. assume: av=O.S-g V LC2A = + v·0.6· g· M 2 H LC2A = + h' a hma.x· M 2 Q LC2A = l.O·kN T aLC2A : O· kN +v = 1.25 h=l.4 V LC2A = 3.09·kN T zLC2A -=-S·kN or T 7.LCZA · 8-kN page 18 of 137 1122196, 3:21 PM final • • • file: THORPETR.MCD Load case 2B: at maximum speed and maximum horizontal acceleration. assume: av=2.6~g V LC2B =+v·2'.66·g·M :t ahma.'C=0.9•g. . HLC2B ~+li"ahmn.~·Mz Q LC2B = 1.0-kN T aLC2B =O·kN V. = 1., 6•m•., ... -i ma:< -.-... .. ,, \" = 1.2.S T zLC2B =-S·kN or T zLC2B .=8-kN 1122196, 3:21 PM Besides these three main load cases the following excessive loads are tested on the decisive parts . VEKOMA I Erik Schroen page 1-9 of 137 fina, • • • file: THORPETR.MCD 1122196, 3:21 PM Load case 3-2: Train in brakes _, Maximum brake deceleration a ama'C = 6.86·m·sec " The maximum brakeforce is accomplished when the brakelenght is larger or equal to the trainlenght. T br = a ama'{·M tot T br=JS.23 ·kN The greatest longitudinal force in a train entered halfway in the brake, is exercised in the middle of the train. For our train the largest brake force will be: T zLC32 = 3_i'1 ·_kN The maximum force on the coupling in longitudinal direction on a lift is: T zLCJl = 3.81 ·kl"f This is less then the assumed: T =8•kN z Thus ls decisive. T z =8·kN The force Fed is working eccentric on the coach. This force Fed leads to a vertical and a horizontal moment on the coach and a reaction in the wheelcarriers. M Tbr .... brh =-·.>.>·mm noc M brv : T br_ 123·mm· noc VLC32 II 1.cn Mbrv --·-- V \'I wh M brh . . 11,.., wh C.) !.CJ2 (l-kN' (.) vi VEKOMA I Erik Schroen M brh = 10.05 ·kN-cm M brv = 37.46 ·kNcm V LC32 =4.4 ·kN ! ! !.C:;?. = 0.08 ·kN () I.CJZ = o ·kN . .. ______ ,., page 20 of 137 finaI • • • file: THORPETR.MCD 1122/96, 3:21 PM Load case 3-3 case for catastrophe A worst case assumption is a coach hanging upside-down on the track. Although this can not occur in the Thorpe configuration. This load case is only decisive for the static calculation of the opposing up-stop wheel. HLC33 =O·kN Q LCJ~ .=O·kN V LC33 = -4.1 r •ki.\l Note: The wheelload works on two. upstopwheels inst'=lad of four roadwheels . VEKOMA I Erik .Schroen page 21 of 137 -fina1 • • • file: 77-IORPETR.MCD 1122/96, 3:21 PM LOADDISTRIBUTtON OF A SINGLE COACH • 2.1 The single parts of a coach Weight of the different parts of the coach and the position of it's centre of gravity relative to the centre of the rail pipe. See included drawings and the chapter CONSTRUCTION ANO CALCUlATION DATA. . The rearaxle is decisive for the angle of the coach frame relative to the trac!c. The exact weights ofthesingle parts are not known in this stage of the calculation. The calculation stated below is an example. The exact calculation is done with a VEKOMA program CG (Center of Gravity) based on the underlying principle of the example shown below. The preliminary result is iri the file CG02.out. 1. Wheelbogie complete: 2. Axle body complete: 2'"wheel = 8.kg weldassembly + bearings = 17 kg Mwb =25·kg h51 = 173-mm l sl = 0.00-mm M a:-:lesolo = 30·kg h5z = Iii-mm l 52 =0.00-mm 3. Frame + brakefir, + coupling complete: M frame= 73·kg h53 = 226-mm ls3 =46i-mm 4. Body+ ratchet complete: 5. Weight live load complete: Typical sum weight complete (Thorpe): M body =63·kg h54 =509-mm l _s4 = 275-!llm hss -:"2l·mm l sS 0.00· mm M., =4195•k!.! -- VEKOMA I Errk Schroen page 22 of 137 fina1 • • • file: THORPETR.MCD 1122/Jo, 3:21 PM 2.2 Position centre of gravity in axial position • The front coach has two axles with a distance of: W bl= IOOO•mm All other coaches have one axle. The distance between the axles of the different coaches is: The position of the coupling is 295 mm behind the axle. See tigure=T -----r-r I ; - ', I ~ // $:::_z;~--r, 1. l(QAeu. r ~ rT.~ I I [ I . / ( I ~ I I I I I~ / . \l / __ _,......;.:....~~~~ / I ! I I -~ II~ l ~-. I s~ ~ ~ If~ ~ / OZ4b <>c"" i I '::-.,J S SZ / . a.1Ll ® ' ~3 (;;'\5L. \,, ~~ ~~_sE s~ " -----~-----· __ »_-J._,,p1/f. nc, ___ . £() d.00 RA1t P!,1'1: 11!.t-f lc.n ! ±(JJJ ______ JSZ... I ,1, Position of the centre of gravity of the several parts . VEKOMA I Erik Schroen page 23 of 137 • • • file: THORPETR.MCD The position of the .centre of gravity of the coach is calculated without the contribution of the axle. M frame -~,t body -. 2· M pen;= .3 !6•kg l _ M tbune·l s3 -M body"! s4 -2.:M per:.·1 s5 t -. M frame -~ body -2· M pers l t =162.71 ·mm l = 1'?9 ~. tthorpe • -· J mm With the known wheelbase of coach 1, the load on the front axle will be: M frame""'" M bodv-2·M pets . _ -----=-· ---'-·l t =:,l.42·kg wbl The load on the frontwheels will be: M frnme .,.. M body-2 · M pers . . -~-•. W · 1 t.,.. 2· M wb -M a.--:lesolo -I.> 1.42 kg bl With the known wheelbase of coach 1, the load on the rear axle will be: The load on the rearwheels will be: vEl<OMA I Erik Schroen page 2-+ of 13°7 .- 1~6. 3:21 PM final • • • file: THORPE:TR.MCD 1122196, 3:21 PM 2.3 Oetennination of the loads on the couplings . This also an exmple based on preliminary weights (see chapter 2.2). The last coach has no guide load at the rear axle. The full force of the guide load is therefore applied on the preceding axle, By distributing the leverage ratios. the guide load (load on the coupling) on the preceding axles is reduced. A full loaded train of 5 coaches has 6 axles and the following loads on couplings and axles: axleweight = M a.xlesolo -2:· M wb = 80•kg- · The load on the coupling is equal to the-load on the first axle of the front coach, Mtr --Mbod -"·M :une Y ... • pers_l t =51.42~kg wbi The load on the rear axle is: M~ -Mbod -"·M urune . y .... pers ,,., I '--"'64 ·s k w . ". SY bl -t _; -.;. . .::, • g bl . tigun: = x : load distribution over the axles. VEKOMA I Enk Schroen page 25 of 137 final • • • file: THORPETR.MCD 1/22196, 3:21 PM Coupling load Gn = 44*kg -Gn+! ~95/1005 Axle load V n = 326*kg + Gn+t *1325/1.005 The first axle weights 80 kg. 88% G07 =0-kg Go6 =44-kg 0 05 =31-kg 0 04 =35-kg 0 03 ·=34-kg G 02 =34-kg V 06 = 326-kg VOS =383-kg V 04 =366-kg V OJ =371-kg V 02 .: 370-kg 103.5% max V 01 = 34-kg -2·25-kg -30-kg Simplified loads for the strength calculation of a S coach train. 1. axle 2.-5 .. axle 6. axle Remark: m = 114 kg m = 370 kg m = 336 kg 31 % 100% 91 % The forces on the couplings are also determined by the load cases Ill ... 99% 100% IC,0% 31% The load introduction point of the brake is situated underneath the train couplings and generates a moment at the coach cross shaft which can only be stopped by a vertical couple of forces at the (couple}pin and the main axle . VEKOMA I Erik Schroen page 26 of 137 'fina, • • • file: THORPETR.MCD The maximum coupling angle around the y-axis is 18° for The maximum coupling angle arouod the z-axis is 17.6° for Rhmin =-U·m R \'bmin = S·m 1122196, 3:21 PM The load introduction point of the booster wheel is positioned 142 mm under the coupling. T ma'< =-4-kN T ma'< =4-kN T ma~ =M 2·aam~"< T ma~ = 2-88 ·kN M 2. =4l9.5•kg i (? -i f. Wa.7eu. Ji • £ I • ±r ti 'P. ! f f,005 . ' < _, ' 1 • ~ tigure =9 : static system of brake forces max_ P 1' = ± 4.0 • 0.142 / 1.005 = ± 0.6 kN max G/ = ± 4.0 ·_ 0.142 / 1.005 = ± 0.6 kN .tr _ -t,_005' from the booster. from the brakes. • ;1,(, J ~ ~ 2\. ) ~l ... , t ' ,\ These loads -can superimpose the mass forces. VEKOMA made sure that no boosters or brakes are found in highly loaded track parts. The brake deceleration has at bBr =0.7*g a lever arm of ca 0.385 m to the total mass of coupled coaches. maxP/= -3.7*0.385/1.005= -1.42kN max G/ = +3.7 • 0.385 / 1.005 = + 1.42 kN VEKOMA I Erik Schroen page 27 of 137 finai • • • file: THORPETR.MCD 2.4 Summary of dynamic factors and centres of gravity Dynamic factors hortz. vert. Wheelbogie Axlesolo 1.6(3.0) 1.8 1.5 2-M wb =50•kg 1.2 M a:desolo =_30·kg Frame+-1.2 1.2 M frame = 73•kg 1.2 1.2 M body =63•kg Live load 1.2 1.2 2· M pers = I 80·ks Table offactors. Determination of the dynamic factors. M bod =63•k2 .:-,· y .... 2..-M = l80·k2 pers .~ M bodv·hs4 -2·M pers·hs5 h = . . s M body-;-2· M pers M body+-2·M pers Is =il.J ·mm + h ·. 1.2 vEl<OMA I Erik Schroen page 28 of 137 h,,1 = !73·mm h _., = lii•mm ,, .. h _,3 = 226 ·mm h54 =509-mm h 55 = 721 •rmn 1122196, 3:21 PM 1 sl =O·mm l s2. =0-mm: l 53 =467·mm ls4 =275·mm t 55 =0·mm final file: THORPETR.MCD • • • VEKOMA I Erik Schroen M fr:unc = 73•kg 2-M pers = l8fJ·kg _ M trnme·hs3 -M body·h s4..,. 2:M pers·h ,;5 h sbody --------..a..--,----..a..-- M frame -M b~~---2: M pers hsbod.y =-564.4_·mm ._ M fr~e·1 s3...,. M body'! s4-"'"2·Mpers·1 s5 1 sbodv ·-· · M frame -M body.,.. 2· M pers il h = 1.2::· pc1ge 29 of 137 1122196, 3:21 PM ,~~.if:••Jf'\ .... , ....... {Ina, • • • tile: THORPETR.MCD h 5 = 5"30.8 ·mm M fr:une = i3·kg. M body =63·kg 2.-M = !80•k2 pers - = M a:<lesolo· 1 s2 -M frame· 1 s3 -M body· 1 s4 -2.: M pers· 1 s5 Is M axlesolo -;-M fr:une -M body-2·M pers I 5 = 1~8.6 ·mm M axlesolo· i .S -M frame -M bodv -2· M pers: · l.2 h = . . . ~r axle:mlo -M frame -M body-2·M pers h = 1.251 ~ h = 1.26 h : 1.2 VE.K.OMA I Enk Schroen page 30 of 137 1122196, 3:21 PM ··- fina1 • • -· file: THORPETR.MCD M 3.'<lesolo = 30·kg M frame = 73•kg Mbody =63•kg 2· M pers = I 80•kg hs := 2:Mwb·hsl -Maxlesolo·hs2.,..Mframe·hs3-Mbooy·hs4..,..2·M_pers·hs5 2· M wb .,.. M axlesolo.,.. M frame.,.. M body i-2· M pers h 5 = 485.6 -mm h tthorpe = 493.6 -mm Calculated as examp!e Calculated with program CG 1 • := 2·M wb·1 sl ... M a.xleso10·1 s2 + Mframe·1 s3-Mbooy·1 s4.,.. 2·M pers·1 s5 :s 2·M wb -M a.xlesolo + M frame+-M body-2·M pers 1 5 = 129.8 ·mm l tthorpe..= 129.3 -mm Calculated as example Calculated·with program CG M wb·( I.6 +-3.0)-M axlesolo· l.S..,.. (M frame-M bodv-2·Mpers)° I.2 h = . ' . . . 2· M wb .,.. M a.xlesolo .,.. M frame +-M body-2· M pers Overestimation 2·M wb· l.S + (M oxlesolo + M frame.,.. M bodv-2·M pers'.-1.2 ~ ·= \ . . • ~v . .. 2· M wb -M a.xlesolo +-M frame +-M body.,. 2· M pers f V = 1.24 'v = 1.25 Overestimation VEKOMA I Erik Schroen page 31 of 137 1/22196, 3:21 PM 'fina1 • • • file: THORPETR.MCD 1/22198, 3:21 PM DETERMINATION OF THE WHEELLOADS . The load on the first and last axle (1 and 9) are less then the loads on the intermediate axles. Thus the loads on the-intermediate axles are decisive. Typical weight coach +-live load: · M 2 = 4 I 9.S·kg Height centre of gravity of the complete h tthorpe = 493.6 -mm coach over the railpipe: Height centre of gravity body coach over the h 53 = 226 -mm railpipe: Distance between railpipes Sb = 700 ·mm Dynamic factor vertical + v = 1.25 Dynamic factor horizontal + h = 1.4 The load in longitudinal direction leads to a vertical_load on the railpipe. ±V =~" h5 / wheelbase. The positive load for one axle heaves off for the other axle. Thus the overall effect is :· negligible . -------·-·---·-··-----····---·-----·····-.... -· ·-· .. ---· - figure = I 0 : static system of wheelloads. VEKOMA I Erik Schroen page 32 of 137 fina; • • • file: THORPETR.MCD V A.j.V) =-2 from H V 8 .j.V) =- 2 htth ·+ A .j.H) .=-H-. orpe v htth ·+ 8 .,CH) =H· orpe v Sb·+h Sb·+h fromq h53 A.,(Q) :=-Q·- Sb hs3 B.,(Q).=Q·-Sb The wheelloads are applicable for a set of wheels. V h .tthorpe +v h s3 . A.,(V,H,Q) =--,--H---·--1--Q·- 2 Sb +h Sb Ah(V,H,Q) ::0.0-V-;-1.0-H.,.. i.O·Q V h tthorpe h h s3 B.,(V.H,Q) =-+H-. ·-+Q·- 2 Sb +h Sb B h( V .H.Q) =0.0-V,. O.O·H,. O.O·Q VEKOMA I Erik Schroen page 33 of 137 1/22196, 3:21 PM final • • • tile: THORPETR.MCD V vi =-1-. l l ·kN Hvl =O·kN Q vi =O·kN V hi =O•kN H h I = 4.11 ·k.N Qhl =O•k.N V qi =O·kN Hql =P·kN Q qi= l ·kN VEKOMA .i Enk Schroen Avvl = A v• V v I · [·{ v I · Q v l Ahvl .:Ah V vl .H\·l·Q vl 8 vvl =B.,..,V v1,Hv1•Q\.I B hvl =Bh(V v1,H.-1,Qv1 Avhl =A,,.:Y hi ,H hi• Q hi Ahhl :=Ah\Vhl•Hhl•Qhl,' 8 vhl :=Bv(Vhl•Hhl•Qhl: 8 hhl :=B h(V hi •Hhl•Q hl; A\'ql =Av;v ql•Hq1•Q qi Ahql ·=Ah\_V q1,Hq1•0q1 B vq I · = B v{ V qi • H q I• Q q I . 8 hql =Bh(V ql·Hql•Qql page 3./. of t 37 1/22}g6, 3:21 PM rina1 • • • file: THORPETR.MCD V LCI = 15.43 ·kN HLCI =3.17·kN Q LCI =O·kN V LC2A =3.09·kN HLCZA =5.-IS•kN QLC2A =I ·kN V LC2B = !3.68·kN Htc2B =5.l8·kN Q LC2B = l ·kN VEKOMA I Erik Schroen AvLCI -=Av(V LC! •f:!LCI ,Q LC!/ AhLCI =Ah(V LCl •HLC! •Q LC!) 8 vLCI ·=8v(VLCI•HLCl•QLCt) 8 hLCI =8h(Vcc1,Htc1,0tc1) AvLC2A =Av(V LC2A•HLC2A•Q LC2A) AhLC2A :=An(V LC2A•HLC2A•Q LC2A) 8 vLC2A =8 v(V LC2A•HLC2A•Q LC2A} B bLC2A ·=8 h(V LC2A•HLC2A•Q LC2A/ AvLC2B =Av(VtC2B•HLC2B•QLC2B) AhLC2B =A11(V LC2B•Htc2a,Q LC2B) B vLC2B =8 v(V LC2B•HLC2B•Q LCZB} B hLC.2B = 8 h(V LC2A • H LC2A-Q LC2A) page 35 of 137 1/22196, 3:21 PM final • • • file: THORPETR.MCD V LC32. = -+.4 ·k::,i H LC32 =0.08·k.'.'i Q LC32 =O•kN V LCJJ =-4.11 ·kN VEKOMA I Erik Schroen /\ vLC32 ~ i\ v V LCJ::?.· H LC32 · Q LC32. B vLC32 = B v· V LC32.•H LC32.· Q LC32. AvLC33 =Av. V LC33•HLCJJ,Q LC33 A .hLC33 : Ah, V Lc33·,H LC33, Q LC33 · page 36 of 137 1122196. 3:21 PM :,::'~. ... --, .. '·. --. J --- -finat • • • file: THORPETR.MCD Summary of wheelloads Avvt =2.06•kN Avhl =-2.59 ·kN A vq I =-0.32 ·k.l\f AvLCI =5.i2·kN A vLC2A = -2.04 •kN A vLC2-B = 3.25 ·kN AvLC32 =~.15·kN A vLC33 = -2.06 ·kN VEKOMA I Enk Schroen A hvl =O ·k.'l Ahhl =4.11 ·kN Ahql = I ·kN A hLCI = 3. li·kN AhLC2-A =6.18•kN AhLC2B =6.18•kN AhLc32 =0.08·kN A hLC33 = 0 ·kN B vvl = 2.06 ·kN B vhl = 2.59•kN B --03"·kN vql -· -1 8 vLCI =9.7l·kN 8 vLC2A = 5. 13 •kN B vLC2B = !0.43 •lc!"i B vLC32 = 2.25 ·k.l\f 8 vLCJ 3 = -2.06 ·kN page 37 of t 37 1/22196, 3:21 PM 8 hvl =O•k.'; B hhl =O ·k."i 8 hql =O·kN' B hLCI =O •k.'! B hLC2A =O ·kN B hLC2B = O ·kN B hLC32 =O ·kN fina, • • • file: THORPETR.MCD Steering forces • In a ride the axle needs to be accelerated arid decelerated around it's vertical axis. Compared with the forces required to decelerate and accelerate the entire coach these extra forces are of neglectable influence. · Conclusion concerning wheelloads The maximum dynamic forces on a wheelbogie are summarised in the following table. A vma.x =B vLC2B A hma.x =A hLC2A A vmin =-AvLC33 VEKOMA I Erik Schroen A .ma.x = 10.43 ·kN A hma.x =-6.18 •kN A vmin =-2.06 ·kN page 38 of 137 1122196, 3:21 PM fina, file: THORPE:TR.MCD 1/22196, 3:21 PM • • </ 100 r/ 100 ------· • ligun.: -= l l assembly of wheelbogie --· VEKOMA I Erik Schroen page 39 of 137 rina1 • • •• file: THORPf:TR;MCD 1/22196, 3:21 PM WHEELBOGIE Maximum downward vertical force onwheelbogie: Maximum horizontal force on wheelbogie: Maximum u~rd vertical force on wheelbogie: Roadwheel Rrw =75•mm LC1 is decisive. Maximum vertical load A vmax = 10.43 ·kN Maximum vertical load per wheel. Avma.x Fwr·=---2 A vma."< = 10.43 ·kN A hma.x = 6.18 ·kN Avmin =-2.06 ·kN F wr = 5.21 ·kN The horizontal load due to friction-is a percentage of the vertical wheelload. This percentage is assumed 15 %. F wa =0.15-F wr F wa =0.i8·kN The maximum number of revolutions per-minute of the bearing are: sec V 60·-. ma."< mm n =--·--w R 1 rw -·:t _ nw = 1604.3 ·mm· 1 The wheels are made out of a aluminium (G-AISi 10 Mgwa) core with a vulcanised wheeJcover of Vulkolan 96° Shore A. The life of the wheelcovers depends more· on it's temperature during the ride than on the load and speed. The geometry of the rails may also influence the life of the wheel covers. The plastics manufacturer is therefore not able to indicate an allowable load value. The potentially lifecritical result of a cover failure can be prevented-by applying emergency brackets. The coach can not derail. vEKOMA I Erik Schroen page 40 of 137 final • • • tile: THORPETR.MCD Bearing of the roadwheels . The bearing of the roadwheels consists out of two taper roller bearings. SKF 7305 d/D/8 = 25/62/17 mm. C = 24.2:kN Co = 12.7-kN a =2.Tmm The mounting distance is: I =2-a-8-mm The number of revolutions per minute are: I =62.·mm 60 ~ . -1 nw=l 4 . .>•rrun tig1,lfe = 12 static system roadwheel The maximum axial load per bearing is: F wa =0.78·kN The maximum radial load per bearing is: -Fbl Fwr . Rrw .,,... • !· wa· 1 Fi,1 =3.55·kN (." wa =o 22 F wa :() ()(l F hi Cu VEKOMA I Erik Schroen page -1-1 of 137 1122196, 3:21 PM .. , final • • • file: THORPEITR.MCD Equivalent bearingload P: P =3.98·!<N The calculation of the bearings is based on a mean bearing load and a mean number of revolutions per minute. ; C 13 106 L.=:--l ·-----\ p I min \ mean/ nmean·60--hr L = 3886.1 ·hr Roadwheel spindle. O.K. P ~e:in =3.i-kN nme:m = 1200-min" 1 The roadwheel is mounted on a hex tit bolt (drw: 00701-55-4135) M20, 8.8. D .=21-mm 10·2 Area ·=it·!-\ i 2., Torque= 110 Nm (2lk6) Area =3.46•cm2 W =0.9l ·cm3 F v =40-k.N_ The bearings are mounted with a distance tube between the bearings. The material of the distance tube is C45. D dt -=32·mm ddt ·=25-mm Adt =3.13·cm2 kN p = 12.76·- cm2 kN p zul. 16.0· -· cm! O.K. The outerbush round 25 mm is not included in this analysis. This is an underestimation . VEKOMA I Erik Schroen page 42 of 137 1122196, 3:21 PM final • • • file: THORPETR.MCD Equivalent bearingload P: p : F bl ,.. 0.55-F wa P =3.98·~.N The calculation of the bearings is based on a mean bearing load and a mean number of revolutions per minute. i C :3 106 L.=!--! ·-------' : \ P mean/ min n -60·-mean hr L = 3886.1 ·hr O.K. Roadwheel spindle. P memt = 3.7-kN nmean = 1200-min" 1 The roadwheel is mounted on a hex fit bolt (drw: 00701-55-4135) M20, 8.8. D =21-mm (2lk6) Area= 3.46 •cm 2 W =0.9! ·cm3 Torque=· 11 O Nm F \" -=-40-kN The bearings are mounted with a distance tube between the bearings. The material of the distance tube is C45. D dt =32-mm 1/22196, 3:21 PM ~--, · . . , F V p -·--kN p = 12.76·-~ cm· . kN p zul : 16.0· -·; cm- O.K. The outerbush round 25 mm is not included in this analysis. This is an underestimation . VEKOMA I Erik Schroen page 42 of 13i ---- ·-·· ..... i - final file: THORPETR.MCD 1122.196, 3:21 PM • Maximum stress under housing . F \VT Rm· Fbl =---F ·--2 wa 68·mm f hi =3A.7·kN M wl = l.04·kNcm F \vr Rrw Fb2 =2-Fwa·6S.mm F b1 =· l.74·kN Mw2 =Fbi·3·mm M w2 = 0.52 ·kNcm- Fv Mw1 kN O.K. (j l ---.,.---cr I = 12.69 ·- Area w cm2 v !max = {j l F V Mwl kN (i l ------. cr I= l0A.·~ Area w cm- Fbl . kN O.K. t I ---ti=[·-:- Area cm-2 • F wa ., kN rr L = VL =0.4, ·-~ D-8-rnrn cm· O,K. • VEKOMA I Enk Schroen page -+3 of 137 final • • • file: THORPETR.MCD Fatigue check according to Hlinchen: Part: Hex fit bolt for road wheel er ma.'< = rr l ma.'I: er min kN' =O·- cm2 rr ma.'C ... er min 2 R.=----- er ma.'I: kN rrr =60·-~ cm- ,, kN rrbd =oo·-~ cm- bo =0.94 ~ k = 1.0 s cr ma:,; vEKOMA I Erik Schroen till section: overall kN r; ma.'I: = 12.69·-., cm- R =0.5 (See figure 60) (See figure 119) (See figure 120) no diameter change -c, _. kN CT sch= :>:,,,:,o ·- . cm2 S =4.69 page 4.J. of 137 O.K. 1/22196, 3:21 PM final • • • file: THORPETR.MCD Maximum load on hex frt bolt for road wheel. The prestress on the bolt gives a maximum force with a given coefficient of friction ·t. 7 =0.2 F max =E v·7 F max =8•kN O.K. VEKOMA I Enk Schroen page ..f.5 of 13i 1/22196, 3:21 PM fina1 • • • tffe: THORPETR.MCD 1122196, 3:21 PM 4.Z Guidewheels . LC2 is decisive. A hmax =6.18•kN _ Maximum horizontal load perwheel: Ahmax F\\T =--2 F \\T = 3.09 •k;.\i Assume: The horizontal load due to friction is a percentage of the horizontal wheelload. This percentage is 15%. Fwa ·=0.15-F wr The maximum number of revolutions per minute of the bearings are: V ma.x 60 sec ng,.v :=----·-._ Rgw 2-:r mm n gw =2406.4•min· 1 Bearing of the quidewheels. The bearing of the guidewheels-consists out of two deep grove ball bearings. SKF 6205 d/D/8 = 25/52/15 mm. C = 14.0-kN Co =6.95-kN Mounting distance: a ~ 29·mm Distance between bolts: db =68-mm The revolutions per minute are: n g.w = 2406.-4 ·min· 1 The maximum radial load pe"r bearing is: F hi F wr . R "W .. (• \Va· ~ .. : a VEKOMA I Erik Schroen page ./.6 of 137 :,, A I i so ~' er; ', Cs)~' <. <:"l"l "' ~ /Jf.A~IN'j ~-~ \\\, '()_ ... ~ IYAl<./NG figure= 13 -. _ ___,.• tina1 • • • tile: THORPEiR.MCD The maximum axial load per bearing i_s: F wa =0A6·kN F ~=0.2 F bl e-= 0.29 x = 1,0. and y =O Equivalent bearingload P: F . . -~=O.Oi Co P =2.35•kN The calculation of the bearings is based on a mean bearing load and a mean number of revolutions per minute. ! C \~ 106 L =I--:·----'P . \ mean/ n -60-~ mean hr L = 5688.9 •hr VEKOMA I Erik Schroen page .J.7 of 137 1122196, 3:21 PM p m~an ·= l.i5-kN n · = 1500-min" 1 mean fina1 • • • file: THORP/:TR.MCD Guidewheel spindle . The guidewheel is m·ounted on a hex fit bolt (drw: 00701-55-4147) M16, 8.8. D = IT-mm (j b =80· kN cm2 w :...!..03 32. Torque= 60 Nm (17k6) Area =127·cm2 W =0.48·cm3 F v =24-kN The bearing are mounted with a distance tube between the bearings. The material of the distance tube is C45. D dt =32-mm p -- Ade =3.!3·cm1 p =7.66· kN, cm· ld-f p zul = 16.0·-. O.K. cm2 The outerbu~h round 25 mm is not included in this analysis. This is an underestimation . vEKOMA I Ertk Schroen pa9e 48 of 137 1122/96, 3:21 PM final • • • file: THORPETR.MCD Maximum stress under housing • - F wr. R g\V Fhl ---F ·--2 · wa 68-mm M wl :=F bl' 19.5-mm F \\T R IZW F b2 · =---F wa·-,-~_ 2 68-mm Mw2 :=F bl'. 19.5-mm Fv Mwl (jl ·=---!--- Area W Fv Mw1 a I .------Are:i w Fbl t I ---Area F wa er L = D-8-mm Safety against yielding. cr 0.2 Sy --- cr !max VEKOMA I Erik Schroen M wl =3.68·kNcm kN cr 1 =18.2·- cm2 -kN a I = 1.9.:, ·-., cm" " 08"' kN ~, = . .)·-cm2 S \' = 3.52 page ... 9 of r 3i 1122/96, 3:21 PM O.K. <r Ima.'< = ir I F \" rr !min ---Area O.K. O.K. O.K. fina1 • • • file: THORPETR.MCD Fatigue check according to Hanchen: Part: Hex fit bolt for upstop + guide wheel er ma:< =cr Ima--: er min = <r !min er ma'< -cr min 2 R =----- cr ma'< cr bd =85· kN " cm- bo =0.94 bd =0.96 kN rrmax = 18.2·-., cm,.. • kN cr min= 10.;,7 ·-., cm- R =0.79 (See figure 60) (See figure 119) (See figure 120) section: pk = 1.0 no diameter change cr sch s ---S =4.21 O.K. cr max VEKOMA I Enk Schroen page 50 of 137 1122196, 3:21 PM . rina, • • • file: THORPETR.MCD Maximum load on hex fit bolt for guidewheel. The prestress on the bolt gives a maximum force with a given coefficient offriction 7. y =O.l F ma.x =F v·: F m:i.'i: = 4.8 ·kN O.K. VEKOMA I Erik Schroen page 51 of 137 1/22196, 3:21 PM fina; • • • file: THORPeTR.MCD 1/22196, 3:21 PM 4.3. Upstop w_heels. The up-stop wheel is an emergency wheel that doesn't touch the rails in normal operating conditic;,ns. In load case 111-3 a lift-off load is calculated. The road wheel spindle stands in an angle of 35121 on the horizontal Z-axis. Therefore a horizontal load is generated from the lift-off load which e.g. in load case II partially deloads the guide wheels. The lift-off load in Load case II-a is: AvLC2A =-2.04 ·kN figure= l-+ Load on upstop-wheel -A,,Lc..,.i p = ' -·. r ( ~ -, COS,.l)·ul!g_) Pr= :A9·k>i Horizontal load on upstop-wheel P z = l.-l-3 ·k~ The lift-off load in Load case .111-3 is: A vLCJJ =-2.06 ·kN Load on upstop-wheel · AvLc~~ p = . .,., r cos( 35-Jeg) Horizontal load on upstop-wheel The upstop-wheel and the upstop-wheel spindle is identical to that of the guidewheel. The loads are less so the calculation of the guidewheel and guidewheelspindle is decisive. ~_-:,--;-;-;:·.;;. _ .:' ---- IEKOMA I Enk Schroen pqge 52 of : 37 .:.. ~:: tina, • • • • file: THORPETR.MCD I • . i i I I ~11 ~1 t \ f ·--+----c I .., ---t!. n'6_i ~ \ \ tigun;-= 15 Console for upstop and guidewheels. VEKOMA I Enk Schroen page 53 of 137 1122196, 3:21 PM 1"25" I -~ 6· ci- 1 fina1 • • • tile: n-lORPE:TR.MCD 1/'22196, 3:21 PM 4.4 CONSOLE FOR UPSTOP AND GUIDEWHEELS • {t ~ r,~~½,£ 1~~ifjel},'c.,_ ,_ 4Lt';- -1..,,.,,., -o ~I? ry1 -I figure= 16 a y : = 6.25-cm az :=0.5,cm a .=68,mm (00 . ·11-=1,'J1~'f 1 ~t,f ~ ~ ·-A1mwc F •. ---2 lt,]~ Fr~kN t.=S·mm kweld ·=4·mrii l weld :=62,mm . 2 1weld W y :=2·kweld·-:-6- Area =4.96•cm2 k 2 d-6"' .wettr a ' W :=2-1 1-:1·---+1 ·1-:1' Id'-/ z :.;.we u 6 '_,?ff! u we 2 1...1,/ 7 tJ{/, I W z =8.76•cm3 Id . . S,..f,S- ·-May M.az -3· rr, 1. I I, kN a a---+-. - -1.J,;J+ 1 ,r} a a =3.19•-Wy wz cm2 May Maz a =---a W W y z A ta=-Area DIN 15018 kN a a =2.53·- cm2 ,r,.n "I kN 'a =0.47·- cm2 -kN cr zulK41eO · = 4 . .:,0-- cm2 O.K. VEKOMA I Erik Schroen page 54 of 137 final • • • file: THORP/ETR.MCD 1122196, 3:21 PM section b-b The torsion from the guide forces can safely be lead over the middle rib t = 6 mm to the lower nut row {MyT~4-.35. 12.S = 54.0 kN cm). LC2a 8 vLC33 = -2.06 ·kN Load on upstopwheel = B v = B vLC33 8 V =-2.06 •kN Thus = Force on guidewheel =-B h -=Ahma.·c P z 8 h =4.74-·kN Q =6.18·kN M xb = P z· 19.0-cm.:.. B h-9.T-cm ' M xb = 73.37 ·kNcm F n =2.0·kN Section like 2FL 70*8 St3.7-2 I.= 70-mm b =8-mm VEKOMA I Erik Schroen Area =2·1-b 12 W =2-b·-x 6 . F n ~[ xb (1 =---- Are:t W X DIN 15018 Area= I l.2 ·cm1 W• l~ o-.. x = J. ; ·cm rr =5.79· ki\J' ' cm- _ •0 kN cr zu!K3i:O = ; .) ·-cm1 par;;e 55 of -137 O.K. final • • • file: THORPETR.MCD Bolting: Assume the torsion of one time. A-..ma."< -• ., l k" ----) . .:.. ....... Works on section b-b. The bolting consists of 4xM16 2 A -..ma."< -Mt '--·l~·cm 2 h =:50-mm b =60-mm Assume: The torsion works on the two lower bolts of the pattern. maximum boltforce Mt P 2·240-mm B h' l-+7·mm z Ima:< =b... 2-h 2·h Z Ima."< = 21.29 ·k.ll,f BoltM16 8.8 Torque=170 Nm (MoS2) p V :68•kN p zul =0.6-P v P zui = 40.8 ·k.1\f _ O.K. Welding in loaded area UnderV Side K b =6·mm b =4·mm =50-mm =50-mm Z !max 'w =---A1~A2 VEKOMA I Erik Schrqen A I = b-1 A-, =:?.·b·I ., 04 kN 'w=.,, ·-., cm· page 56 of 137 1.122'96, 3:21 PM Al =3·cm2 , A., =-1-·cm· O.K. ·-. ---·- .: .... final • • • file: THORPETR.MCD Bearing bush forwheel carrier: I 1Y ,, c.. I '1 1 ~ t=8 lji i ,,, I ., ; ··I I ,;1 I \ ;:1 I ;I, v~h Av section a-a section b-b LC1 is decisive. l =90-mm d. =2l·mm l = 150-mm 12 W 7.b = 2-b·-6 X ~ ~-~- '' figure= 17 b =8-mrn b =8-mm F wr Avm:1x 2 F wr = 5.21 ·kN F wa 0.15· F wr · F wa =0.78·kN r\ ~ 1> :r ... arm·= 100-mm St 37-2 W ya =0.96 ·cm' St 37-2 i\rea b = 2_4 ·cm 2 W zb =6(l-t:m3 W yh = 1.6 ·cm3 VEKOMA I Erik Schroen page Si of 13i 1122196, 3:21 PM I \ ~~a- ·final • • • tile: THORPE:TR.MCD The roadwheel axle is mounted with prestress. thus the wheelcarrier has a certain stiffness in flexure. lU1?l M ,.ma.'< = F wa· -• 2-2. = M jma.'< <Ta Fwr ta·=-- Are:ia = M yma.'< -M zb (j b wyb wzb Section C M zb = 52.13 ·kNctn . .,. kN (jil =.:..04·- cm2 kN <rzu1woi.:o .= 18.0·-., cm- kN ta =0.47·- cm2 ki.\l' <r b = 2.09 ·-, cm- _ -kN rr zulK.3i.:O = ,.)·-, cm- M v ·=0.31-kNm :imil = 2!2-mm ann2. = 305· mm from table 2a: LC 1: A vmax = 10.43 ·kN 8 vl = 5.46-kN B hi =2.6·kN VE.l<OMA I Erik Schroen Overestimation Oversetimation M xc = 0.55 ·kNm M res = 0.63 ·kNtn page 58 of 137 1/22196, 3:21 PM ·-·--' final • • • file: THORPETR.MCD LC2a: B v2ll = I. 92-k>f B h2al =4.8-kN" 8 h =B h2al -8 h2a2 · 2 2 M cres .=.;MY - M xc 8 hhl = IA-kN 8 h =6.2·kN' Calculation of the weld between the axle and the weld round 80 mm. t ·=8·mm k =4-mm r =80-mrn Distance between weldings. a = 68-mm Ma.'CQ -B vlo. ~vf ,:'res t = Ma.'CQ 2-k·r 2 a VEKOMA I Erik Schroen MaxQ = 22.69 •k.'\J' , =3.54· kN O.K. , cm- page 59 of t3i 1~6. 3:21 PM Meres= l.48·k.Nm final • • • file: THORPETR.MCD 4.6 Bearing bush . Bearing bush made out of Rg 7 with lubricating grooves. D -=62-mm d =51-mm L = 131-mm Collar = 80-mm Area =d·L L2 w =d·- 6 Area =66.8l ·cm2 w = l45.87 ·cm3 i,c-11 ,2 '021. • i I o ar\ , , , R1mza.rea =. 1 1--. -,_, ·:t ~ ! 2 j . '7; I '-; I ,-: ; LC 2 is decisive · B v2a Meres P rad Area W pa.'.: = VEKOMA I Erik Schroen Ringarea =20.07·cm2 k~ Prnd = 1.04 ·-, cm~ .kJ."\f p a.x =0.3 I·-, cm- page 60 of t 37 1122196, 3:21 PM final • • • file: THORPETR.MCD 1122196, 3:21 PM MAIN AXLE. Introduction: A train of 8 coaches has 8 rear axles and 1 front axle. The front axle is freetuming around the x-axis. AU the axles have basically the same construction. The r!!ar axle has perpendicular bearings mounted at 3 points-and is therefore static undefined, the worst situation is always determined. We calculate with one after the other each of the three bearingpoints free. The front axle requires an extra calculation with Eand D free and a reduced load V and H. The loads on the axle-of the rear coach are less then the loads on the axle of a intermediate coach. Thus the calculation of the intermediate coach is decisive. Ffree Efree D free /F=O /E=O /D=O -caseF caseE -case D D and E free-/ D=O and E=O -case DE fl ' Iv . hi 1 Q, --1=-·' ..... -,.,...,- 1 ---.... 1~ AH ! 0 n5-; l ~ ~ -_L _._ ________ --- :·\-V I • , '( • ..._, ·, I figure= LS :static system of main axle. hrpma = 212-mm Sb =0.7•m Ice = 125-mm I ta : 225-mm I cf -= 2'.!S·mm-I gd = t2S·mm i 6'v I 1-1, I The load on a typical axle M 2 =4l9.5•kg ··] -~j The load on a front axle <J.J I· M 2 = I J0.04·kg -- VEKOMA I Erik Schroen page 61 of 137 _ final • • • file: THORPETR.MCD Calculation of the decisive loads of the Main Axle. case 0 CA 5 l: ,~. ~-.r. I ·I I' I "v A y = I - ! ,.c- 1/22196, 3:21 PM ) ,- / . ...... 1g l ' j· ·-·--~---.. -...... '---·-·-4--, I ~; =oa figure= 19 Mcd(Av,Ah,Bv,Bh) =-Alihtpma M ed(Av,Ah,B v•B h) =-Ah·hq,ma -Av·l ce i I ! . "'!' .::·,~! I i J,,.__ M tu(Av,_A h• [3 v•B hi =· Ah-hrpma .. Av· (l cc,. l c:f) -E vd1 Av.Ah,[3 v•8 hj'l cf M gd(Av,A h•l3 v•B hi = [3 v·<>·m M dd(Av,A h•B y,8 hi = 8 v·l gd VEKOMA I Erik Schroen page 62 of 137 ,'.ffJNC'r\ 't."\ final • • • file: THORPETR.MCD D vdtAvLCl•A hLCI ,8 vLCI•8 hLCI: =<HN E vd\_AvLCI .AhLCl ,8 vLCI ,8 hLCl. =-3.Z2·kN F \.d(AvLCI ,AhLCI ,B vLCI ,B hLCl} = 1~·65 ·kN M cdiAvLCI •AhLCl•B vLCI•B hLCI_; =-0.67 ·kNm M ed.(AvLCI ,AhLCI•B vLCI•B hLCI~ =-i".3 9 ·kNm M ta(AvLCI•AhLCI •B vLCl ,B hLCl} =-3.4 ·kNm M szd(AvLCI•AhLCJ ,B vLCJ,B hLCI \ =O•kNm ~ I M dd( AvLCI ,A hLCI ,B vLCI ,B hLCI) = 1.21 ·kNm D vd( AvLC2A•A hLC2A•B vLC2A•B hLC2A} =O ·lc!\f E vd(AvLC2A•AhLC2A•B vLC2A•BhLC2A} =-5.33 •kN F vd(AvLC2A•AhLC2A•B vLC2A•B hLC2AJ =8.42·kN M cd(AvLC2A•AhLC2A•B vLC2A•B hLC2A} ,;,_1.3.1 ·k..\fm M ed(AvLC2A•A hLC2A•B vLC2A•B hLC2A) =-L06 •kNm M ta(AvLC2A'AhLC2A-B vLC2A•B hLC2A) =-1.S ·kNm M gd(AvLC2A-AhLC2A•B vLC2A>B hLC2A; =O·kNm M dd(AvLC2A'AhLC2A·8 vLC2A•B hLC2Aj =O.o-4•kNm D vd( A vLC:?B•A hLC28•B vLC2B•B hLC28) =O •kN E vd( AvLC2B•Ahl.c:m•8 vLC2B•B hLC2B; =-S.33 ·kN F vd(AvLC2B•AhLC2B•8 vLC2B•B hLC2B) = 19-0I ·kN M cd( A vLC2B. A hLC2B • B vLC2B • B hLC28) = -1.3 I ·kNm M cd\ A vl.C2B·Ahl.Ci3·8 vLC.8•8 hLC20i = ·l.:Z ·kNm M t<.l''. A vi.CB·:\ hi.CB· B vl.l:213 · B hl.C2B; = 3 -65 ·kNm M gd ( A vl.C2B ·:\hi.CB· f3 \"LC2B · f3 hl.C2B. = n ·kNm M Jtl \ A vi.CB·:\ hi.CB. B vl.C2B · 13 hl.C:!B: = 1.3 ·kNm VEKOMA I Erik Schroen page 63 of 137 112VJ6, 3:21 PM fina, • • • file: THORPETR.MCD case e ,.:~-~ : .: ' ·-'·,.,_.: i • , I 'J 'i1 ~:, -= ' -- ·p ' i f: c! ·-------·r -~ rOO figure =20 Mc//\v,J\h.B,...Bh: -. /\h-hrpma M ,.;,./Av.A h•B \ .. B h: Ah-hrpma · Av It:..: A h" h rpm:i /\ ..,.·: I ~.; . I ..:r M gc{ I\ v•A h·B v·ll h. B v·O·m Mdc~/\v.Ah.Bv.Bh Bvlgu VEKOMA I Enk Schroen page 64 of 137 1122196, 3:21 PM --, --: _..., · .... ~.____· final • • • file: THORPETR.MCD D ve/'-vLCI ,Ahl.Cl ,B vLCt ·13 hLCI =].22·kN Eve: AvLCI .A hLCl ,BvLCI ,B hLCI =O •kN F v/:AvLCt •AhLCI •B vLCt ·B hLCI: = 11.11 ·kN M ce{AvLCI ,AhLCI ,B vLCI ,B hLCI :a-0.6'7 ·kNm . .. Mee( AvLCI ,AhLCI ,B vLCI ,B hLCI) =-1.39 ·kNm M fe(AvLCI ,AhLCI ,B \·Lei ,B hLC-I; =-i67·kNm M ge(AvLCI•A hLCI ,B vLCt·8 hLCI) =O·kNm M de(AvLCl •AhLCI•B vLCl•B hLCI) = I.21-lcNm D ve(AvLC2A•AhLC2A•B vLC2A•B hLC2A} =5.33•kN E ve(AvLC2A•AhLC2A•B vLC2A•B hLC2A) =O·kN F ve(AvLC2A•AhLC2A'B vLC2A'B hLC2A) =-2.25 ·kN M ce(A vLC2A•A hLC2A•B vLC2A•B hLC2A} =-l.31 ·kNm M ee(AvLC2A•AhLC2A•B vLC2A•B hLC2Aj =-1.06 •kNm M te(AvLC2A•AhLC2A•B vLC2A'B hLC2A~ =-0.6 ·kNm M ge(AvLC2A•AhLC2A•B ~LC2A•B hLC2Ai =O·lu\J"m M de( A vLC2A • A hLC2A • B vLC2A • B hLC:?A) = 0:64 •kNm D ve( AvLC2B•AhLC2B•B vLC:?B•B hLC2$} =5.33·kN E ve(AvLC2B•AhLC2B•B vLC2B•B hLC2B} =O•kN F ve( AvLC2B•AhLC2B•B vLC213•8 hLC2B} =S.JS·kN M ce(A vLC2B•A hLC2B•8 vLC2B•8 hLC2!3/ =-I.} I ·kNm M i..'t.:(Avl.C2B·A h!.CB·A vl.C:m.f3 hLC213) = -l.i2 ·kNm M 1/ /\. vl.C2B · A hLC:13 · IJ vl.C2B .l3 hLC'.!13: = 2A5 ·kNm M i,t1:!. /\. vl.C2B·A hl.C'.!B· 13 vl.C2i3· 1~ hLC2i3: =O ·kNm M d1:; /\. vf.CB.-A hl.C~B·H d.C2B•B hl.C1Bi = l.3 ·kNm VEKOMA I Erik Schroen P?ge 65 of 137 112.2196, 3:21 PM ,lfa,•1c':ic'-\ finai • • • file: THORPETR.MCD figure =21 le ' .11 ~11 I ,._. ---.-.:-~ ,; I • f ..,; j'I t ' 1 ) . .. I I . ,. ' JV ! y I I • I ?00 = -1 ta-1 ef-'-1 ce. ·Av-h.rpma·Ah-l gct·B v l ta-1 ef M cfi A v·A h• 13 v• [3 h. /\ h·h rpma Mer :\ v· /\ h· B v• B h. :\ h' h rprrta :\ \" l cc 1122'96, 3:21 PM : .-C'!I! ., ' ---·-~'-d ____ ~ i L- (ITi\ \SI Mtl''.:\v·'\h.Bv.Bh. ,\h-hrpma /\v:11.:c· 11i,L · Evr:\v·'\h.Bv.Bh. 1cr M!:!1,A...-.A 1,.B ..... Bft_· Bvn-m iv! ,Ir.,\ v .. '\ h· ll v· Il h. B \: I g<l VEKOMA l Erik Schroen page 66 of 137 · !ina1 • • • file: THORPETR.MCD E vt: AvLC! ,A hLC! .O vLC! ,B hLCI, =6-1 ·kN D ,,r°AvLCI·AhLCI·8 vLCI·BhLG1 =9-32 ·kN. F vt~ AvLC! ,AhLCl ,B vLCI ,B hLCJ_ =O •kN M cf'.AvLCI ,AhLC! ,B vLC! ,B hLCl; =-0.6i·kNm M ef\AvLCl ,AhLCI ,B vLCI ,B hLCI '. =-1.39 •kNm M tf: AvLCI ,AhLCl •B vLCI •B hLC!, =-1.3 ·kNm M g:f\AvLCI•AhLCl•B vLCl•B hLCI; =O•k..'l\fm M cifiAvLCI ,AhLCI ,B vLCI •B hLCI} = L2I·kNm E vf\ AvLC2A•AhLC2A•B vLC2A•B hLC2Ai =-1.12 ·kN D vt(AvLC2A•AhLC2A•B vLC2A•B hLC2A:; =4.21 •kN F vt1AvLC2A-AhLC2A·B vLC2A•B hLC2A; =O·kN M cf( A vLC2A• A hLC2A• B vLC2A• B hLC2A_. = -1.31 ·kNm M ef?vLC2A•AhLC2A•B vLC2A•B hLC2A: =-1.06 ·kL'-rm M tr(AvLC2A•AhLC:A•B vLC2A•B hLC2A: =--0.SS ·ki."'l'm M gf1. AvLC2A•A hLC2A·8 vLC2A• B hi.C2A: =O ·kNm M dti_AvLC2A•A hLC:?A•B vLC2A•B hLC2A; =0;64·!<Nm E vt\ A vLC28 • A hLC:B • B vLC2B • B hLC28; = 4-17 ·kN D vt{A vLC2B · A hLC:!B · B vLC28 • B hLC2B ·; = 9.5 ·kN F vt{ A vLC2B • A hLC28 • B vLC2B • !3 hLC:!B; = O ·kN M cn_A vLC:m,A hLC:B· 8 vf.C2B• B hLc:!B·: = -1.3I ·kNm M cf{AvLC2B·A hf.C:[3·8 vLC:B•B hLC2l3·. = -1.n·kNm M gti :\vi.CB· A h(.C:::B · 13 vl.C'.!B · B hi.CB = o ·kNm M Jt1• :\ vi.CB·:\ hi.CB· B vi.CB· B hi.CB = 1..1 ·kNm VEKOMA I Enk Schroen page 67 of 137 1122196, 3:21 PM . ·-·- ·.' .:::.·· : ... __ _ final • • • file: THORPETR.MCD case DE The load on a front axle 0 . .31 · M 2 = IJO f14·kg ii I I lt\t ---~~! ~! l :-,, .-<..,· : i - figure= 22 D vde(A,..,A h,B v•B h} =0·kN E vde\Av,A h•B v,B hj .= Q·lct:f F vde(A,.,A~,B v•B h) .=0.3 l·Av.,. 0.3.l·B v Mcde\Av.Ah,Bv,Bh) =-0.31-Ah·htpma M cde/v·Ah.8 v•B hi -=-0.31-Ah-htpmn -0.3l·A,..·l ce ! • I J'II l y i !F ' rOO M tuci/\ , .. A h·8 v•B hi = · O.J l-;\ h·h rpma -O.J l·A v· /l ce !-1 cfi M Jue; A v· :\ h • B v· B hi = . 0.3 l · 11 v· l gd Mgifo.'\v-~h-Bv.Bh; -0-kNm Conclusion: The loads from Case OE are not decisive . VEKOMA I Enk Schroen page 68 of 137 ,- 1/22196. 3:21 PM --~-... l_d ______ -4-- ~i ..... ·-~j I ..,__ - 1na1 / • • • file: THORPETR.MCD E vcie( AvLCl ,AhLCl ,B vLCl ,B hLCI) =O•kN D vde(AvLCl•AhLc1,BvLCl•BhLct) =O•kN F vde(AvLCl•AhLCl•B vLCl•B hLCI) ""4-78 ·kN M cde(AvLCt,AhLCt•BvLCl•BhLCt) =-O.il •kNm . Mede(AvLCl•AhLCt•BvLCt•BhLCt) =-0:43•kNm . M fdc(AvLCt•AhLCl•BvLCt•B hLCl) =-0.83 •kNm M gde(AvLCt•AhLtl•B vLci,B hLCt) =O•kNm Mdde(AvLCt,AhLCl•BvLCl•BhLct) =-0.38•kNm E vde( AvLC2A•A hLC2A•B vLC2A•B hLC2A) =O •kN D vcic(AvLC2A•AhLC2A•BvLC2A•BhLC2A) =O•kN F vde(AvLC2A•AhLC2A•BvLC2A•BhLC2A) =0.96•kN M cde(AvLC2A•AhLC2A•B vLC2A•B hLC2A) =-0.41 •kNm Mede(AvLC2A•AhLC2A•B vLC2A•B hLC2A) =-0.33 ·kNm M fde(AvLC2A>AhLC2A•B vLC2A•B hLC2A) =-0.18 •kNm M gde(AvLC2A•AhLC2A•B vLC2A•B hLC2A) =O•kNm M dde(AvLC2A•AhLC2A•B vLC2A•B hLC2A) =-0.2 •kNm Evde(AvLC2B•AhLC2B•B vLC2B•B hLC2B) =O•kN D.vcic(AvLC2B•AhLC2B•B vLC2B•B hLC2B) =O•kN F vde(AvLC2B•AhLC2B•B vLC2B•B hLC2B) =4-24 ·kN M cde(AvLC2B•AhLC2B•B vLC2B•B hLC2B) =-0.41 •kNm M ede(AvLC2B•AhLC2B•B vLC2B•B hLC2B) =-0.SJ •kNm M fde( Avb.C2B • A hLC2B • B vLC2B • B hLC2B) = -0. 76 ·kNm M gdc(AvLC2B•AhLC2B•B vLC2B•B hLC2B) ::;:O•kNm M dde( A vLC2B ,A hLC2B ;B vLC2B • B hLC2B) = -0.4 •kNm VEKOMA I Erik Schroen page 69 of 137 1122196, 3:21 PM final ( • ( • • file: THORP£:TR.MCD · Summary loads on main·axle From our analysis we learned about the loads on the main axle in several Load-Cases. The Decisive loads are summariseq in the following table. D vmax :=D vt(AvLC2B•AhLC2B•B vLC2B•B hLC2B) E vmax :=E vt\AvLCl ,AhLCI ,B vLCI ,B hLCI) F vmax :=F vd(AvLCl•AhLCl•BvLCl•BhLct) M cmax :=Mcd(AvLC2A•AhLC2A•B vLC2A•B hLC2A) M dmax :=M dd(AvLC2B•A~c2B•B vLC2B•B hLC2B) M emax :=Med( AvLC2B•A hLC2B•B vLC2B•B hLC2BJ Mfinax :=Mrd(AvLC2B•AhLC2B•B vLC2B•B hLC2B) M gmax :=M gd(AvLCl•AhLCl•BvLC·1,B hLCI) D vmax =9.5 •kN E vmax =6.1 ·kN F vmax = 18.65 •kN M cmax =-1.31 •kNm M dmax = 1.3 ·kNm M emax ;,,.-l.72•kNm M finax =-3.65 •kNm M gmax =O •kNm VEKOMA I Erik Schroen page 70ot137 1122196, 3:21 PM final ( • • • file: THORPE:TR.MCD 1/22196, 3:21 PM 5.2 Measurement main axle. The total axle is across the axial unions at both sides MSO x 1.5 static set along the bushings and the intermediate pipes. The prestress force is assumed. Torque for M50x1 ,5 (MoS~ µ. :=0.10 d:=49-mm p :=l.S·mm + :=atan(L) d:,r + =O.S6•dcg pg :=atan(µ.) pg =S.71 ·dcg pk :=pg D1cm ·=6Q.mm M an = 284.S7 •Nm Pv:=SO·kN The largest axial force is A hma.'C = 6. I 8 ·kN SKF Locking Nut M50x1 .5 B:=ll·mm Calculation of shear of threat. 1t·SO·mm·B A shear:=-----· --2 ·-p V t---- Ashcar A shear =863.94'1l1Ill.2 . kN t=S.79•-cm2 .. O.K. -~- ------· The prestress of the nut is held by a identical secondary nut. The two nuts can not move relatively. Th~ secondary nut is secured against rotation by a Locking Plate. The Circlip is a back-up . VEKOMA I Erik Schroen page 71 of 137 -final ( • • • tile: THORPETR.MCD 1/22196, 3:21 PM Main axle Section e and d The diameter of the axle changes from D . = 59· mm Tensile stress Yield stress Memax =-1.72.•kNm to Wrth a radius of kN 0-0.2 :=65·-2 cm A = 20.43 •cm.2 - W::.!..d3 32 W = }3.02 •cni3 Pv Memax a . :=-+---mm A W 0 vmax tmax:=--- A VEKOMA I Erik Schroen d:=51,mm S:=4-mm Assumption: The whole load will be carried by the main axle. Note: This is an overestimation. The distance pipe will also carry part of the bending moment kN a min =-10.74 ·-cm2 kN t max = 0.47 ·-cm2 page 72 of 137 final / • • • file: THORPcT'R.MCD Fatigue check according to Hinchen: Part: Main axle d=SI·mm D =59·mm 5=4-mm a max+ cr min 2 R ·-.- a max kN crb :=80.- cm2 kN CT(=60·- cm2 kN O"bd ::65-- cm2 b o :=0.93 b d :=0.8 D - = 1.16 d 6 -=0.08 d kN ab= I 10•- cm2 till Pkb :=_I+ bk·(Pkb2-t) abd·bo·bd 11 sch:= · Pkb a sch S:=-- cr max W::....!:..d3 32 section: d-d and e-e. A = 20.43 •cm2 W = 13.02 ·cm3 kN a max= 15.64·-cmz kN a min =-10.74 ·- r::m.2 crb := 110· kN cm2 b-k :=0.35 Pkb2 := 1.s R =0.16 (See figure 56) (See figure 119) (See figure 120) diameter change P-kb = 1.2s kN er sch =37.78·-? cm~ S=2.42 O.K. VEKOMA I Erik Schroen page 73 of 137 1/22196, 3:21 PM ,1,0,,,c .. c.,, ,. :1-.. finai • • • file: THORPETR.MCD Main axle Section f: The diameter of the axle changes from to Tensile stress Yield stress M emax =-I.72•kNm kN ab := l IO·-·-cm2 kN ao.2 :=65--2 cm A ::.!.d2 4 . A =21.34·cm2 w ::..:!..ct' 32 . 3. W=20J(i•cm P v -Mfinax amax:=-+ · · A W __ Pv Mfinax a .. --+--. mm A W F vmax t .=--max A D :=60-mm d:=59-mm kN a max= 19.93 ·-cm2 kN CT min =-16.27 •- cm2 kN tma." =Q.68·- cm2 VEKOMA I Erik Schroen page 74 of 137 1122196, 3:21 PM . --.. - final • • • file: THORPETR.MCD Fatigue check according to Hanchen: Part Main axle d = S 9 -mm D =60·mm o :=0.5-mm amax+amin 2 R·-.- amax kN ab :=80·- -cm2 kN ar:=60·- cm2 6-kN abd := :,----cm2 b o :=0.83 b d :=0.8 D - = 1.02 d 0 -=0.01 d kN ab=IIO•-cm2 till ~kb:= I+ bk·(~kb2-1) crbd·bo·bd a sch:= ~kb_ a sch S.=-- a max VEKOMA I Erik Schroen A::!.d2 4 W::..!..d3 32 section: f-f. A=27.34•cm2 W=20.16~3 kN a · =-16.27·-mm z· kN ab :=110·- cm2 ~ kb2 := 1.8 cm R =0.09- (See figure 56) (See figure 119) {See figure 120) diameter change Assumption overestimation. ~kb= 1.04 a sch =41.5• kN cm2 S =2.08 O.K. page 75 of 137 1/22/fJ6, 3:21 PM fina, • • • file: THORPETR.MCD 3 Spherical plain bearing Elges -Radial -Plainbearing. GE 60 FO -2RS D/d/8/C = 105/60/63/40 mtn. C :=31S·kN Co := 1S60-kN Loads. F r:=F vmax F a.:=Ahmax F 2 =0.33" Fr p :=y·Fr Fr= 18.65•kN Fa =6.l8•kN y :=3.5 P =65.26•kN C adv= 130.53 ·kN C =31S•kN The spherical bearing is safely overdimensioned . Bolting spherical plain bearing Connection with 4 Bolts M12x8.8 __ Ahmax F ----a 4 Fa =l.SS•kN Torque MoS2 Maximum pull M12x8.8 Fm~ :=2L6·kN __ F max S;---S = 13.97 Fa Also the bolt connection is safely overdimensioned • VEKOMA I Erik Schroen page 76 of 137 1122196, 3:21 PM · final • • • tile: THORPETR.MCD 1122196, 3:21 PM Safety brace I ,:-. ·" /. / . 1 ! /(p*y L/ /-/· 1.,~ _,. / /' ,,Z (C,C,r.. CC,,-1"7~.,,, ; \.:-,I~ / ~""" I _.._ ;,.,...'.,,. - - The main axle section f is calculated according to Hanchen. The calculated safety factor is OK. In case the main axle fails in section f the wheelcarrier would derail with a catastrofal result This is called a single point failure. A safety brace is designed as backup. Ki I tn figure = 23 Assembly with safety brace. ,-l · sl Q§7 @ THERlAFTtR fflllWf THIS 80!.TS. ~1 = I ) ________ L I h =70-mm In case of a failure the next forces will work on the safety brace. M emax = -1. 72 •kNm Fv-=Evmax VEKOMA I Erik Schroen F Ii = 24.54 ·kN F v =6.1 ·kN page 77 of 137 ----- final • • • file: THORPETR.MCD 112YJ6, 3:21 PM The safety brace consists Of a inner and a outer:part. See enclosure 8 for assembly and partdrawings . The material and size of the inner and outerpart are comparable. We work with a model which is applicable for the inner and outerring. The safety brace and the forces are modelled in the following way. b =70-mm /: a I =5·mm a2 =IO·mm h I =5·mm I y.o =-o h-, =20-mm ! I ~ h~ ., = 10-mm figure= 24 Model of safety brace The real width of the brace is We calculate with a width of b.., =45·mrn·2·:.-150 " 360 We overestimate the loads in our calculation. --, bw=l!78l·mrn b =70·mrn The load Fh will work on the entire width of the safety brace see above. We calculate with a width of 70 mm. The Safety brace is loaded with a bending moment. This will lead to a three dimensional membrane effect. This effect is neglected. We calculate the safety brace as a 2 dimensional bending problem: In case of a .failure the train will remain in the track. The banking will cause the wheelcarrier to rotate around it's horizontal axis. This is partially prevented by the safety brace. The movement will lead to a bending moment around the vertical axis, It is not known how large this moment is. W&estimate 20% of the horizontal moment. l .,:;-..;: ;,;, The real width of the safety brace is We calculate with a width bw=ll7.81 ·mm b =7(>-rnm ""-»: '"''-wJ I ... ' ..... ~ ... :..."".·:.>. ~... ~ .. · .. · . .,,., The difference in width will carry the bending moment around the vertical axis. I~ ·;··· / I .J I ..:-;1 \ ,::i t ,-,: -· ~ \._ .. :~,./ "::t ....,, -.:.::, \~/ VEKOMA I Erik Schroen · page 78 of 137 final • • • file: THORPETR.MCD a I M~ =-F ·-.. V 2 wa Aa =b·h I Fv t --a A a ., b·a .,- W bb =-;:- Mb ab --- Wbb VEKOMA I Erik Schroen / Ma =-1.53 ·kNcm W a =0.29·cm~ / kN" er =-5.23•-a /_ 2 /Ctn / // A a '.7'"3.5 ·cm2 , kN 'ta= l.74·- cm2 Mb =45.72·kNcm W bb = 1.17 ·cm3 kN O'b =39.!9·- cm2 page 79 of 137 1122196, 3:21 PM O.K. O.K. O.K. O.K. ~-. rina; ( •• ( • • file: THORPl=TR.MCD Bolting of safety brace The horizontal force on the safety brace is ' / F h = 24.54 •kN / The force on the bolts is hz. +h3 // Fb ::fh .. h3 . /// Fb=73.6l·kN / Overestimate: The bolt force is F b :=80-kN Overestimate: only 5 of the· 7 bolts will carry the entire force • . / MS 8.8 maximum load is This lead to a safety / M8 8.8 normal preloacY'is _/ ., This lead-t~ a safety / V~KOMA I Erik Schrotin ,//.' As := 36.~·~2 / / N F 81:=A5-800·-·0.8 S·F S:=-· _a Fb mm2 Fa:= 18.5-kN A5 :=36.6·mm2 page 80of137 Fa = 23.42 •kN S = 1.46 S = 1.16 1/22/J6, 3:21 PM , O.K. O.K. final ( • • • tile: THORPETR.MCD 1122196, 3:21 PM COUPLING The massfoad of the coupling is calculated in Calculation of the loads on the couplings. The loads vary between: and: a05 =31·kg 006 =44•kg As an overestimation we calculate with a representative mass: Load case 1. M G ·-v gtyp vLCI --LCI ·--M ctyp M G ·-H gtyp hLCI --LCI ·---Mctyp G zLCI := T zLCI Load c~se 2 b . M G vLC2B := V LC2B" gtyp Mctyp Mgtyp GhLC2B :=HLC2B"-- Mctyp GzLC2B :=T zLC2B Load case 3-2. Mgtyp G vLC32 := V LC32·--. Mctyp M GhLC32 :=Htc32· gtyp -M ctyp G zLC32 :=7' zLC32 G vLCl = l.84•kN GhLCI =0.38•kN G zLCl = 8 ·kN G vLC2B = I.6J•kN GhLc2B =0.62•kN G zLC2B = 8 •kN GvLC32 =O.S2•kN GhLC32 =0.01 •kN G zLCJZ = 3.81 •kN Remark: The other load cases are of minor importance for the coupling loads . VEKOMA I Erik Schroen page 81 of 137 'fins/ • • • file: THORPETR.MCD 1122196, 3:21 PM Remarks on the couplinq angles. · figure=2S The coupling movement around the x-axis is: a. xmax : = 4-deg Coach longitudinal axis: Coach vertical axis Coach horizontal axis The coupling movement around the y-axis is: ~ a.ymax := 18.6-deg The coupling movement around the z-axis is: a.zmax := 17.6-deg Rv:=Rvtmin Rh:=Rbmin p vmax :=T z·sin(a.zma.x) Phmax :=T z·sin(a.yma.x} R =S•m ·V Rh =4.S•m T z =8·kN P vma.x = 2.42 •kN P hma.x = 2.55 ·kN Due to the vital importance of this co·upling these values are fully and unfavourable. superimposed in the load cases I and II. (at max P v 50% of PH is superimposed and reversed). The torque of the coupling is.tested for. maximum 2 load cases. Load case A: max V V amax : = G vLC 1 + P vma.~ Phmax Hamax :=GhLCI +-2- T zamax ·=T z R ama.x . =JV amax 2 + T zama.x 2 VEKOMA I Erik Schroen V ama.x = 4.26 •kN H amax = 1.65 •kN T zamax =8·kN R ama.x = 9.06 •kN page 82 of 137 ,,.. . a.x a.y ci.z final • • • file: THORPE:TR.MCD Load case B: max H p V ·-G vmax bmax ·-vLC2B +-2 H bmax :=G hLC2B + p vmax T zbmax :=T, R bmax := ~V bmax2 + T zbmax 2 . Load case C: max rz. V cmax : = G vLC32. Hcmax :=O·kN T zcmax ·= T zLC32 R cmax := Jv <:max 2 + T zcmax 2 VEKOMA I Erik Schroen V bmax = 2.84 •k:N Hbmax :aJ.04•k:N T zbmax = 8 •k:N R bmax =8.49•kN V cmax =0.52•kN T zcmax = 3.81 ·k:N . R cmax = 3.84 •kN page 83 of 137 112.2198, 3:21 PM ·---·· final • • • file: THORPETR.MCD Spherical plain bearing in coupfinq Elges -Radial -Plainbearing. GE 30 PB d/0/8/C :s 30/55137/25 mm. C :=64-kN c 0 := 160-kN Load case B is decisive for the bearing. F r==Ramax Fa :=Hbmax Fa -=0.34 Fr Fr=-9.06•kN Fa =3.04•kN We calculate with 0.5 Calculation according to Elges Katalog K 233 D page. 30 H. X :=0.978-21.546°.5 P :=X·F r ._c S.--p Equivalent load. S = l.56 The life analysis is not made when the collective load. is significantly lower and the rotating movement is relatively slow. A further calculation is not necessary . VEKOMA I Erik Schroiin page 84 of 137 112.2/96, 3:21 PM final • • • file: THORPETR.MCD 1122196, 3:21 PM Bolting spherical plain bearing in coupling The external ring ofthe coupling bearing is held in axial position by two flanges with 4 nuts of M 8 mm bearing plate t = 25. · Hbmax Fa:-. 4- Torque MO~ Maximum pull ·-Fmax -S.--- Fa Fa =0.76•kN Mt :=22-Nm F max :=8.4-kN S = 11.06 Pv:=14-kN This bolt connection is safely overdimensioned. TIiting Bolts. D :=30-mm Mat 34CrNiMo6 1r 2. Atb =7.07•cm.2 Atb :=-·D 4 W :r D3 W tb =2.6S-cm3 tb:=-· 32 p V ·: 100-kN TorqueMOS2 VEKOMA I f=rik Schroen page 85 of 137 Mt :=470-Nm ~l"l ..... ·' final • • • me: THORPcTR.MCD 11221;6, 3:21 PM Distance rings. These rings are positioned between the Bearing innerring and the Bearing flanges. D a ::40-mm Di :=34-mm Aa :={(o /-d/) Pv Pi:=-A· 1 Aa =5.5·cm2 kN pa =18.19•- cm2 kN pi =49.74·-.-cm2 ---·~ .----·w.r : '.t' - • ~ According to Bauer und Schwarte the allowable surfacepressure is ' kN cr zuISt27 := 30·-· - cm2 kN er zuIStS2 ·=SO--cm 2 kN er zulC45V : = 90·-cm2 --> O.K. -> O.K. 1 figure= 26 static system of pin. VEKOMA I Erik Schroen page 86 of 137 A .B The allowable surfacepressure of 42CrMo4 is equal to C45V. -finai file: THORPE:TR.MCD 112.2196, 3:21 PM • R max:= R amax R max =9.06•1cN Rmax Fa =4.53•kN Fa:=--2 ·-Rmax Fb =4.53•kN Fb·--· -2 MI :=F a·27·mm MI = 12.23 ·kN·cm Pv M1 kN amax:=-+-a max= 18.76·-·-Atb . Wtb cm2 p . M1 er · =9.53• kN V crmin:=--- Atb Wtb mm-2 cm Fa . kN tmax:=-. t max = 0.64 ·-·-Atb cm2 Fa a sur = 1.5 I • kN cr sur := l.O·cm-3.0·cm cm2 • • Vl:KOMA I Erik Schroen page 87 of 137 fine/ ( • ( • • file: THORPETR.MCD Fatigue check according to Hlnchen: Part F'ttting bolt for coupling. section: x-x A =7.07-cm.2 d:=30-mm D =30•mm er max = 187.63 • ..Ii_ mm2 2 R:=----,- crmax kN ab:= I 10-- cm2 kN O'bd :=92--cm2 b o :=0.95 b d :=0.90 D till -=l --> d --> kN O'b = 130·- cm2 P kb:= 1 + b k·(P kb2-1) abd'b o·b d O' sch:= P·kb O' sch S.=-- a ma."< VEKOMA I Erik Schroen W::.!..d3 32 W=2.65·cm3 N er min =95.32 ·-mm2 R =0,75 kN O'b := 130-- cm2 Pkb2 := 1.o (See figure 56) (See figure 119) (See figure 120) no diameter change a sch =78.66• kN . . 2 cm S =4.19 O.K. page 88 of 137 . 1122196, 3:21 PM final • • • file: THORPcTR.MCD 11'22196, 3:21 PM Backup coupling Remark: the Frtting bolt for the coupling is safety critical. Therefore a backup is provided. This backup is a special bolt d:=20·mm Mat 42CrMo4V Under normal conditions this bolt is unloaded. The Fitting boltfor the coupling is calculated for fatique. In the theoretical case ttie Fitting bolt fails, the backup will be loaded. We check this bolt not for fatigue but for yielding for a maximum load: R amax = 9.06 •kN Dynamic factor. A ::.!,d2 4 w ::...:..d3 32 R ·+·90·mm M := amax M ~·-v---w 4 Mat 42CrMo4V . . 100-kN ab!=--· cm.2 kN ao.2 :=78·-2 cm ao.2 5 yield :=-a VEKOMA I Erik Schrotln + :=2.0 till A=3.14•cm2 W =0.79 ·crn3 M =40.78 ·kN·cm kN a =51.92·-. cm2 120-kN abh·=-· --cm2 S break = 1.93 page 89 of137 final • • • file: THORPETR.MCD 1122196, 3:21 PM PLATES ON FRAME. The wheelbase of the Thorpetrain is 1300 mm. The following calculation is made for a lengtened coach but is applicable for the Thorpe configuration. · We calculate the maximum stresses in the plates on frame. See enclosure 4 and drawings 51-2.169 and 51-2.170. We have calculated 4 sections a-a, b-b, c-c and d-d. For the definition of this sections see .figure=27 I I I ! 1------r-® ---...J· figure=27 b a:= 10,mm b C : 10-mm b d := 10-mm Decisive sections of the plates on frame. ha:= 130-mm he:= 130-mm hd := 130-mm loads on plates on frame From earlier analysis we have learned that the maximum loads on the coupling are: V = V bma.x V =2,84•kN H .=Hbma.x H=3.04•kN T z .=T zbmax T =S•kN z . VEKOMA I Erik Schroen page 90 of 137 finai ( • I' • • me: THORPeTR.MCD The fitting bolt for coupling is mounted with prestress. Thus the coupling has a certain stiffness in flexure. drawing 56-2114 M=30 D bolt :=30-mm D bush :=40·mm lt 2 Area bolt -=-·D bolt 4 lt 3 W bolt:= 32·0 bolt Area bolt =7.07 ·cm.2 W bolt = 2.65 •cni3 lt( 2 2) Area bush : = :j:" D bush -D bolt --2 Area bush = :,.5 ·cm W ·=~-(D bush 4 -D bol/) bush. 32 D bush BoltM30 M t : =-450· Nm Pv cr bolt:= -- Area bolt Pv cr ·----bush . -Area bush M max :=crbush.w bush W bush =4.3 ·cm3 kN cr bolt = l l.32 ·- cm2 kN crbush = 14.SS·- cm2 Mmax =625•Nm I _'. If a force F is implied a bending moment ~ will be led through the plates on frame into the frame. This moment is: M ben =79.72•Nm This moment is far less then Mmax· Thus the prestress is sufficient to make the bolt plus bushing a relative rigid connection . VEKOMA I Erik Schroen page 91 of 137 1/22/ii6, 3:21 PM '-,-- - · final • • • me: THORPETR.MCD Calculation of overall allowable stress in plates.on frame • IC·:. 0.4 kN azu!K3 :=S.92·-cm2 Calculation of section c-c. H M :=-·40-mm-Mben C 2 b 2 C Wc:=hc·-6 Mc -T z ac:=-+-- W c 2·Ac A = 13•cm2· C We =2.17-an3 Calculation of section a-a. H Ma :=-·64-mm-Mben 2 b 2 a W a :=ha·-6 Ma Tz aa:=-+-- W a 2·Aa VEKOMA I Erik Schroen A =13·cm2 a W a =2.17-cm3 Mc =-18.98 ·Nm kN <re =~.57·- cmz kN <re =-l.18·-cm2 Ma= 17.46 ·Nm page 92 of 137 kN aa =0.5·-cmz 11221')6, 3:21 PM O.K. O.K. O.K. O.K. final ( • {,.. • • tile: THORPETR.MCD Calculation of section d-d . Md ::!:!.105:mm-M bcn 2 b 2 d Wd:=hd·-6 VEKOMA I Erik Schroen W d=2.lh:m3 1122196, 3:21 PM Md =7p2·Nm O.K. O.K. page 93 of 137 tinai • • • file: THORPETR.MCD Calculation of section b-b . - I .... -,----- ! I ~· --1---.-_-. :·;;~_ f ::·.·-~· ........ . -. ··-. ~-.-. , ... ----, -----· ··-. .. . .... . -;-:-...~~.,'<Y!.'1'\i'-'-'''<'--''-~ ./ I • ; i' 171 i ' . .!.' , . : .. 1 1 I 1 : 1-! , ; J.!,.1.I -·1 • •1 1··1 · r-. : ; i;r. · ·!=1 : 1 :, t ,· .... -.. - figure =28 Section b-b M xb ·= V-135-mm Myb :=H-135-mm Ab :=3080-mm2 W xb : = 69.9-cm3 Wyb := lll-cm3 M yb =0.37• kN Wyb cm2 O.K • VEKOMA I Erik Schrolin M xb ~ 383.38 •Nm M yb = 409.97 ·Nm Ab = 30.8 •cm2 W xb =69.9•cm3 W yb = 111 ·cm3 M xb =0.55• kN W xb cm2 T z kN ·-=0.26·- Ab cm2 page 94 of 137 1/22196, 3:21 PM • ,'t -•• · final file: THORPETR.MCD CALCULATION OF FRONT OF FRAME. • Striping out of the frontplate of a coach. Mat St 52-3 t := 25-mm This problem is calculated globally. /, ~I . I ' J r • figure= 29 Welding 2. X • figure= 30 'IEKOMA I Erik Schroen page 95 of 137 Rmax=9.06•kN 55-mm Mmax:=Rmax·-- 8 Mmax =62.3·Nm 1122196, 3:21 PM 2 W :=(2S·mm-6-mm)· (17.5-mm) 6 W=0.97•cm3 ._ Mma.x a .---max W kN a max = 6.42 ·- cm2 ._., kN azu1wo .-.. 2·-, Mat St52-3 Section Z-Z h 2 z Wz:=bz,-6 cm-O.K. hz = 135-mm bz :=25-mm lz :=IOO·mm A= 33.75 •cm2 W y = !4.06•cm3 W = 75.94 ·cm3 Z~-.• . · . final file: IBORPETR.MCD 1/22/J6, 3:21 PM I • The coupling loads are decisive. Load case 1. V :=GvLCl V = l.84•kN H:=GhLCl H=0.38•kN T :=T zLCl T=8•kN My :=H-lz My= 3.78•kNcm Mz :=V·lz M z = 18.39 •kNcm T My Mz kN O.K. az:=-+-+-az=0.75·- A Wy Wz cm2 Load case 2b. V ·=GvLC2B V = l.63•kN H .=GhLC2B H=0.62•kN • T :=T zLC2B T =8•kN My-=H-lz My =6.18•kNcm Mz :=V·lz Mz = 16.3•kNcm ·-T My Mz kN O.K. az---+-+-.--a z =0.89·---- A Wy Wz cm:2 These stresses are so low that a further ~lculation is not necessary . • VEKOMA I Erik Schrol:Jn · page 96 of 137_ final • • • tile: THORP!:TR.MCD 1122196, 3:21 PM BRAKEFIN • Brakefin bolting At the chassis of each coach a brakefin of 1.20 m is placed. This brakefin is made out ofFL 125 x 12, St 37K. The attachment with three bolts round 16/ M 12 Material 34CrNiMo6 is provided with rubber discs (swimming) of 2 L 40 x 29 x 6. 1 1 4S5 t V1 ,r ~ '-/--'-(_1r _____ ~_3_·_~ ____ ..-._r, ______ _ ~ J 1)-L I l 1 1,zo~ figure =31 Brakefin I VI .:455-mm The maximum braking force for an entire train is calculated iii Load Case 3-2. T br = 15.23 •kN Tb =3.0S•kN T bolt = I.02 ·kN I An impact factor of Y = 1.5 is assumed. The force on one bolt is: hyy VI :=Tb·-- 2·1 VI VEKOMA I Erik Schroen VI =0.2 ·kN R = l.03•kN page 97 of 137 hy1 =60-mm I l 1 final • I • • file: THORPETR.MCD 1122196, 3:21 PM Bolt D bolt:= 16-mm I bolt:= 28-mm :t D 2. A:=-· bolt 4 A =2.01 -cm2 lr -3 W:=-·Dbolt 32 M :=R·lbolt 4 ·-1.5-M (1.---w t := 1.S-~-1.5 2·A ztJ fi~=32 Static system bolt W=0.4·cm3 M =0.72•kNcm kN a=2.7·- cm2 t=0.58• kN cm2 kN CJv =0.81 ·--2 cm Material bolt is 34CrNiMo6 according to DIN 17200. CJ b := 120-kN till CJ b := 140· kN cm2 cm2 kN CJ 0.2 := 100·2 cm A calculation of the fatigue life of the bolt is not necessary due to the very low stresses that occur. Welding of Brakefin attachment. Material St 37-2 t:=--,---- 1 weld·b weld I weld := 100-mm b weld :=3-mm kN t=l.52·-- cm2 ® ., . The stress is so low that a further calculation is not necessary. Also the effect of the eccentricity of the brakefin is neglectable seen the level of the stresses • VEKOMA I Erik Schroen page 98 of 137 final file: THORPETR.MCD 1/22196, 3:21 PM • -. / ' i I • -.... -. ·= .-- I tH ! ' i I :r+-1 1 r H-· _....,. .• I . ; i;; l ·-I ' l I I tGlf I tG ,-----~---H .... j figure= 33 Frame for polyester body. • VEKOMA I Erik Schroen page 99 of 137 -final ( • • • file: THORPETR.MCD 1/22/J6, 3:21 PM FRAME FOR POLYESTER BODY . 3 LSOir4-- X figure= 34 The representative sections of the frame for polyester body. General Note. The forces work.in the centre of the main axle. We have calculated the loads for the Main axle. These loads are based on a typical mass of M typ =419.S•kg These loads are applicable for the frame for polyester body if we correct them for the mass of the wheelbogies and main axle. Ev:=l·kN . M typ-M a.'Clesoio -2·M wb -factor·= · . Mtyp Load:= E v·Factor Load =0.8O9•kN VEKOMA I Erik Schroen page 100 of 137 fina, • • • , I file: THORPETR.MCD 1122196, 3:21 PM From the analysis of the main axle we have learned that the cases D and F are decisive. We use this information in the calculation of the frame for polyester body. Cross member resp. distribution arm. Introduction: Because of the fact that the passengers are sitting directly above the coach shaft, the front cross member resp. rib receives a higher load during the passengers entry of the coach then during the ride. A single load of 0.75 kN in unfavourable position has been tested. Sidemember Mat St37-2 L:=SO·mm d:=4·mm A :=(L+-L-d)·d A =3.84-cm2 W : = 2.46·cm3 W = 2.46 ·cni3 Maximum free length 11 ·=400-mm PI :=M pers·g PI =0.88•kN I 1 M:=Pr-4 __ M cr .--W VEKOMA I Erik Schroen M = 8.83 ·kNcm ... ·9 kN er=.,.::, ·-cm2 kN crzu1 := 14·-cm2 page 101 of 137 O.K. final • • • file: THORPF:IR.MCD · 1st Crossmember MatSt37-2 L :=50-mm d:=4-mm A :=(L+L-d)·d W :=2.46-cm3 Maximum free length 11 :=350-mm A=~.84·cm2 W =2.46•cm3 M :=-P 2·11 __ M (1.-- M = IS.45•kNcm kN cr=6.28·-· w cmz kN er zulKJ :=7.S·--2 cm 1122196, 3_:21 PM O.K. In the coupling area of the rib a node plate under 45° and t = 4 mm is provided for the load initiation. Welding is 2 mm, height 115. Further calculation is not required. 2nd _Crossmember Qdentical construction with 3 or 4 cross membe~) This cross member is a taper edged [-profile, high, 50 mm at 135 mm and a cover width of 40 mm. See TT figure= 35 VEKOMA I Erik Schroen H:=l3S·mm B :=40-mm t :=4·mm A :=H-t + 2·(B-t)·t A=8.28•cm2 Lx := 205-cm4 I w ::-2... x {H.) \2 . page 102 of 137 W = 30.37 ·cm3 . X ( • -- • • me: THORPETR.MCD 1122/96, 3:21 PM P 3 :=0.75-kN 11 -=350-mm M:=P3·l1 ·-M a.-- W x t:=-----(H-20-mm)·t Departure of people • M = 26.25 •kNcm . kN a=0.86·- cm2 a zu.1 := 7.5-kN r:m.2 . kN t=0.16·-. cm2 Shaft supports (braces) (ledger tubes at D and I:) Introduction: O.K. O.K. As an overestimation for the measuring of the shaft the up-stop forces with the connecting axle . masses have been determined . Ev :=E vmax This-force is working upward. The force works in the centre of the axle. I., Zfl. (... 1 1 11 :=280-mm 'Z V f Ea, Ev A.=- 2 A =3.0S•kN C. +, Ev B ·----·2 B =3.0S•kN figw-e =36 Static system Assume for a tilted axle M =42.72·kNcm Vf::KOMA I Erik Schroen page 103 of 137 final • • • file: THORPETR.MCD Section RHS H:=50-mm B ·=50-mm t :=4·mm A :=H-B-(H-2·t)·(B-2·t) W := IO.l·cm3 __ M O' .--w Check for fatigue. Up side WO. r-=O Down side K4, x:;:O Further calculation is not necessary. 3rd and 4th Crossmember . H:=135:mm B :=40·mm t .=4·mm A :=H-t+ 2·(B ... t)·t · A =8.28•cmi 4 I xt<= 205-cm A=7.36·cm2 W = !O.I -cm3 kN <n=4.23·- cm2 kN O'zui :=18·- cm2 kN O' zul :=-5.4._ . cm2 W xr=30.37·cm3 At position D h .=70-mm At position E h .=70-mm VE=KOMA I &ik Schroen A :=Kl-cm2 W xd . = l l.6-cm3 A :=8.l-cm2 W xe . = l l.6·cm3 page 104 of 137 1122196, 3:21 PM O.K. . O.K. ~--·-.. . , ' .; ............. . ., ....... · final • • • file: THORPETR.MCD 1/22/96, 3:21 PM For the calculation of these Crossmember we make the following save assumptions . 1. The total loads from mass work on these two crosssections. M :=M frame+Mbody+ 2·Mpers+ Mha +·2-Mhr+Mroam +M sp M =339.S•kg 2. This load is devided over two singlepoint loads working at a distance of Sb = 700 'lllill 3. For one load at position E W xe = l l.6·cm3 W xd = ll.6·cm3 W xf = 30.37 ·cm3 4. For one load at~sition D 5. For one load at position F Calculation of fatigue strength The weldings have a K3 character. x:>=-0.2 Pull Push VEKOMA I Erik Schrotin . kN a zu1 ·=6.62·- cm2 kN crzul =-7.5-- cm2 page 105 of 137 ....___. final • • • file: THORPETR.MCD Loadcasa 1. case F Ev.:=Factor·Evf{AvLC,::l ,AhLCl ,B vLCI ,B hLCI) D v :=Factor-D vf\AvLCI ,AbLc:1,B vLCI ,B hLCI) F v :=Facror-F vf\AvLCI ,AhLCI ,B vLCI ,B hLCI) Ev=4.94•kN D v=7.SS•kN L :: (I cf+ I fd+ I gd)·E v+ I gd·D v 1 ce + 'I ef+ 1 fd + 1 gd L =5.4•kN R := 1 ce·E v+ (1 cc+ l ef-t-1 fd)·D v l cc+ I ef-:-I fd i" l gd R =7.0S•kN Md :=R-1 gd M f: = L· (l ce + I ef) -Ev· (1 ef) ·-Me cre·--- 2·Wxe VEKOMA I Erik Schroen Me = 0.68 ·kNm Md= 0.89 •kNin M r=0.78·kNm kN cr d = 3.81 ·-., cm- kN cre =2.91·- cm2 kN crr= l.28·- cm2 page 106 of 137 1122196, 3:21 PM O.K. O.K. O.K. final • • • file: THORPETR.MCD Loadcase 1. case D D v :=Factor·D vd(AvLCl•AhLCl•BvLCl ,B hLCI) Ev :=Factor·Evd(AvLCl•AhLCJ•BvLCl •~hLCI) F v :::Factor·F vd(AvLCl•AhLCl•B vLCl •B hLCI) D =O•kN -v Ev =-2.61 •kN F v = 15.09•kN L := (1 ef+ l fd+ I gd)·Ev+ (l fd +l g~)·_F v 1 ce -t-l ef+-1 fd +-1 gd L =5.4•kN R ::: l ce·E v+-(1 ce t-Ler)·F V 1 ce + 1 ef+ 1 fd+ l gd R =7.08•kN Md.=R-lgd M r-=L·(I ce+-1 er)-Ev·(1 ef) Me ,. ·-U e ·---2·Wxe Me = 0.68 •kNm M d = 0.89 ·kNm M f = 2.48 •kNm . kN CJ·e =2.91 ·- cm2 kN a r=4.08·- cm2 VEKOMA I Erik SchrotJn page 107 of137 1122196, 3:21 PM O.K. O.K. O.K. ··-- final • • • \, tile: THORPETR_.MCD Loadcase 2A. case F Ev :=Factor·Evt{AvLC2A•AhLC2A•B vLC2A•B hLC2A) D v :=Factor·D vt(AvLC2A•AhLC:2A•B vLC2A,B hLC2A) F v :=Factor·F vt{AvLC2A•AhLC2A•B vLC2A•B hLC2A) Ev =-0.91 •kN D v =3.41 •kN L := (I ~f+ l_rd+ I gd)·E v.+ I gd·D v 1 cc + 1 ef + 1 fd + 1 gd L =-0.14•kN R := 1 ce·E v_+ (1 ce + l ef+ I fd)·D v l ce ;-I ef+ I fd 1-I gd R =2.64·kN Me :=L·l ce Md :=R-1 gd M f: = L-(1 ce + I ef) -Ev·(! ef) Me ae·=- 2·Wxe Vf=KOMA I Erik Schroen Me = -0.02 ·kNm M d = 0.33 •kNm M f=0.l6•kNm kN ad= 1.42·-cm.2 kN c;·e = -0.07 ·- cm2 kN ar=0.26·- cm2 page 108 of 137 1122/'J6, 3:21 PM O.K. O.K. O.K. fins, • • • file: THORPcTR.MCD Loadcase 2A. case D D v:=Factor·D vd(AvLC2A•AhLC2A•B vLC2A•B hLC2A) Ev :=Factor·Evd(AvLC2A•AhLC2A•BvLC2A•B hLC2A). F v :=FactQr-F vd(AvLC2A•AhLC2A•B vLC2A•B hLC2A) D V =O·kN Ev =-4.31 ·kN F v =6.81 •kN L := (l ef+ l fd+ l gd)·E v+ (I fd + l gci)·F v l ce + l ef+ I fd + 1 gd L =--0.14 •kN I ce·E v+ (Ice+ I er)·F v R . \ . . - ! ce + I ef-r-1 fd-r-1 gd R =2.64•kN Md-=Rlgd M f ·= L· (1 ce + 1 ef)-Ev· (1 ef) ·-Me <re.--- 2·Wxe M e = --0.02 •kNm M d = 0.33 •kNm M r=0.92•kNm kN ad= l.42·-cm2 kN . a e = --0.07 ·-cm2 VEKOMA I Erik Schroen page 109 of 137 1/22196, 3:21 PM O.K. O.K. O.K. · final I • • • file: THORPETR.MCD Loadcase 2B. case F E,; :=Factor·Evt(AvLC2B•AbLC2B•B vLC2B•B hLC~) D v : = Factor-O v/._ AvLC2B • A bLC2B ,B vLC2B• B hLC2B) F v ;=Factor·F vt(AvLC2B•AhLC2B•B vLC2B•B hLC2B) Ev=3.38•kN D v=7.69•kN F v =O•kN L := (1 ef+ 1fd+ I gd)·Ev-1-l gd·Dv . lce+ler+lrd+lgd L =4.IS·kN R =6.92•kN Md:=R·lgd M f :=L·.(l ce + 1 er)-E v·(l ef) ·-Me O'e .--- 2·Wxc VEKOMA I Erik Schroen M e = 0.52 •kNm Md= 0.87 ·kNm M f = 0.69 •kNm kN O'd =3.73·-cm2 kN O'e =2.24·- cm2 O' f'= l.14• kN cm2 page 110 of 137 1122196, 3:21 PM O.K. O.K. O.K. final • • • me: THO~ PE:TR.MCD Loadcase 2B. case 0 D v ::Factor·D vc1(AvLC2B•AhLC2B•B vLC2B•B hLC2B/ Ev :=Factor·Ev4(AvLC2B•AhLC2B•B vLC2B•B hLC2B) F v :=Factor·F vc1(AvLC2B•AhLC2B•B vLC2B•B hLC2,B) Ev=-4.31 •kN F v = 15.38·kN L := (I ef+ 1fd+ I gd)·Ev+ (ltd+ I gd)·F v I ce + I ef + l fd + l gd L =4.IS•kN R:= lce·Ev+(Ice+lef)·Fv. I cc+ l ef+ l fd + I· gd R =6.92•kN Md :=R·l gd M (=L·(l ce+ 1 er)-Ev·(l ef) ·-Me ae·-- 2·Wxc Me = 0.52 ·kNm Md= 0.87 ·kNm M f = 2.42 •kNm . . kN ar=3.99·- cm2 VEKOMA I Erik Schroen page 111 of 137 1!22.l'J6, 3:21 PM O.K. O.K. O.K. final • • • file: THORPETR.MCD 1/22/J6, 3:21 PM Tube for frame polyester body Mat: St 44.3 hot rolled. A :=h·b-(h-2-t)·(b-2·t) . h-= 120.-mm b ::80-mm t :=5-mm W x: := 86.l-cm3 Wt :=86.I-cm3 W y_ :=47.9-cm3 W z :=60.4-cm3 This profile is determined with the full load on the tube for frame polyester body. The positive effect of the resultant cross members and sole bars (ledger tubes) is neglected. The weldings of the plates on frame have already been determined. The welding of the axle housing (VS) lias the same section value as the basic profile. The horizontal and vertical loads on the tube for frame polyester body are calculated with the same correction Factor as the frame for polyester body. The axial loads are calculated without a correction. Factor =0.81 The position of the centre of gravity of the coach plus frame plus persons is calculat~i~ Determination of the dynamic factors. i .... -:-:.\ ll (TIJ') ;,\ hsbody =564•mm 1~ "& ~J \~~ ~ l l sbody = 163 •mm W b = 1300-mrn W =29S•mm ac h 1 ac =30-mm figure= 37 VEKOMA I Erik Schroen -f005. v., -]•$' 0 page 112 of 137 j 4 f t l I! I ... • I -.::: "'' I ..... , ~, i ! __ ..,.,,__-L tinai / • • • file: THORPE=TR.MCD 1122196, 3:21 PM Y°t r 961 ~I~ )v ] I x~ I 2 Af -Tz. !A 8 l -1005 j. 1 figure =38 Wac = 295 •tnm static system of tube for frame polyester body Calculation of fatigue strength for Case 1 and 2 The weldings have a K3 character. x:>=-0.5 Push Pull kN O'zuj :=-6.0·-· - cm2 kN a zu1 := 5.62·- cm2 Cases for the tube, for frame polyester body (Overestimation) t~u· J ( l 1 Due to the fact that the passengers an~ almost sittjng on top of the axle (Pkt f) the bending, resulting from the horizontal and vertical acceleration on the tube for frame polyester body, is relatively low. · Due to a torsion of the coupling the longitudinal force may create a larger bending at the spindle coupling 'f, see Chapter Coupling. VE.z<.OMA I Erik Schroen page 113 of 137 final • • • file: THORPETR.MCD Case 1 Vertical acceleration V :=Factor· V LCI H :=Factor·HLCl Maximum vertical force on coupling Maximum horizontal force _on coupling V· l sbody P vmax· Wac Ay :=---------- W b -Wac Wb-Wac T z kN -=0.42·- A cm2 VEKOMA I Erik SchrofJn Miz kN -=-1.58·-"- wz cm2 pag~ 114of137 V =-12.49•kN H=2.56·kN T z =8•kN P vmax = 2.42 •kN P bmax = 2.55 ·kN M fz =-0.95 ·kNm M gz =0.86·kNm Mfy =0.7S•kNm Mfy kN -=I.57·- wy cm2 ., -7 kN crf=-.,,.:, ·-~ cm- . kN er f=0.41 ·- cm2 1122/JB, 3:21 PM O.K. O.K. ---· ~ final ( • • • file: THORPETR.MCD Case 2 Horizontal acceieration V :=Factor·V LC2a H :=Factor·HLC2B T z := l·T zLC2B Maximum vertical force on coupling Maximum horizontal force on coupling V·I sbodv A ·-• y·"" Wb-W ac M fy :=Phmmc"w ac T z kN -=0.42·- A cm2 V1=KOMA I Erik Schroiin Pvmax·W ac Wb,-W ac Mfz kN -=-l.58·- Wz cm2 page 115 of 137 V = I l.07·kN H =4.19•kN T z =8·kN P vmax = 2.42 ·kN P hmax = 2.55 •kN Ay = l.08•kN A z = --0.07 •kN M fz = --0.95 •kNm M gz =0.67·kNm M fy =0.75·kNm M gy =--0.06 •kNm M x = l.46•kNm Mty kN -=1.57·- Wy cm2 kN cr f=-3.57 ·- cm2 kN crr=0.41·-. 2 cm · 1122196, 3:21 PM O.K. O.K. ffnal ( • • • file: THORPETR.MCD 1/2UJ6, 3:21 PM POL VESTER HOUSING • The self-supporting body is made of glass fibre reinforced plastic, and is mounted on the frame polyester body with 14 nuts M12 8.8. The polyester components are not part of this strength ·calculation . VEKOMA I Erik Schroen page 117 of 137 final • • • file: THORPETR.MCD 1122196, 3:21 PM LAP BAR. l J~ 7'( e,--,i c.c/ ~.;-1,,-C;; ~l-~t-h '.:....,_ ) From the foadcaseswe have learned there are no upward accelerations. As an overestimation we calculate with the following data. M pers :s 90-kg a amax =0.7 •g F :=Mpers-aamax F =0.62·kN This decelleration will work partly on the lapbar and partly on the floor. On the lapbar we calculate with a force of 0 .! ~ p 2 ~ 0,S' kAJ - F lb :=O.S-kN b C. I o.s-~"' T j, figure= 39 Static system Lapbar. Pipe D := 33.4-mm t :=3.4-mm d::D.a. 2-t A :=~-(D2 -i) 4 it-(D4 -d"') w--~--.-32-D VEKOMA I Erik Schroen d=26.6·mm A =3.2•cm2 W =2.19•cm3 page 118 of 137 + o,s /OJ 720. 11:il ·-·c.· ~ .. ;.;Jtfr "' • ~,.J( .•) .. ,~--/§ ·r\ , @·=F3\ ~, ::, \ \,,,J -· ~ n. ~: -I -~ ;,' final file: THORPETR.MCD 1122196, 3:21 PM • section a 1 1 ·= 160-mm Ma:=F1b·11 Ma =8·kNcm Ma a a =3.66• kN aa:=-w r:m.2 kN O.K. azu1 .=16·- cm2 section b i.2 :=700-mm Mb :=F1b·12 Mb =35•kNcm Mb kN crb :=-ab = 16.01 ·-w cm2 kN O.K. a zu1 := 16·-• r:m.2 Welding. between bar and Plate Height a . = 2.5-rnrn Length l.=75-rnrn Mi, T I = 10.48 •kN r,:=-D T1 kN O.K. t:=-t=2.79·- 2-a·l cm2 • VEKOMA I Erik Schroen page 119 of 137 final • • • file: THORPETR.MCD 13 :=50-mm t :=8-mm 12 ~I 3 Q :=F1b·--Q =7.5·kN l 3 12 P:=F1b·~ P=7•kN l 3 Platethickness under the bearing h :=45-mm A:=h·t A=3.6·cm2 ·-t-h2 W.--W=2.7·cm3 6 p t :=-· 1.5 A d:= 15-mm t .=..£..-1.s 2.·A Screw MS -8.8 A .=0.5-cm2 p t:=--1.5 2·A Mat St 37-2 kN t=2.92·- cm2 kN a= 12.96·-- A= l.77·cm2 kN t=3.18·- cm2 kN t=-I0.5·- cm2 7 cm- Further calculation is not necessary . VEKOMA I Erik Schroen page 1200(137 1122196, 3:21 PM O.K. O.K. O.K. O.K. final file: THORPETR.MCD • Enclosure 1: Arrangement train. Note: for infonnatlon only • • VEKOMA I Erik SchroiJn page 121 of 137 1122196, 3:21 PM '/:'"' ~,-\c. ~\ .~ :,J ;i''-• "" finai • • • .( ( -1 : l I :I -=. I i I i =----=--· , --. ·' t:, ----r.-- ---~~ ~-··:l'/~.'! ___ .; I ,-., : -·· I -4 -:-·· -~, \ ! ·j -.... ··-~ .... A. - ; 6~ I 'I~., .. I It I l ••. aj •u@';li;f!li'.: i h ' f u:hj r,;. : I HP:!i!!!I I. l.i•!Pf:: ih h •• U,!n1 ~ ., 1-1' --'I' ·1 ·· J ' -C i; 1 !:+t~ ! ii ~ • i I ; .. ! :·:k=: i.· . ii 1tj:; l: I~ ~ jl ; ' J.~ .. ,: "' ~~ !! j0 ;; iij I, :ii: l i ..,.,.JI ! ., r .. i I t!J, ;j:!:f:•. '. ~: i C C !!!,;:!!i't;:0!':; ! Q ·l' ........ ~ ... .;.. . .._ _ _.< .. ...; ... : •. ~ II; ; .. ~•·•n!n; •,•!!•H.J 1•,! m • ; .. :sc:s:sr:s •• , •• t .• tt'lf ... ti. I 11r i: .. i, •• :-·!1;, ilhii i ;II ; .. !: ! "'.: i "; C i.~t ·• iljj:di ~L.tr,_ il:;··· ,.;,!H i li:iiiii t ··-·· ,..... . : '.: : immmm:;,;; I'· I file: THORPETR.MCD 1/22196, 3:21 PM • Enclosure 2: Kinematic analysis of coaches . Note: for information only • figure = 40 : Graphical representation of smallest radfi in track. One typical draWing is included on the next page . • VEKOMA I Erik Schroen page 123 of 137 final • • • I i I I I I I l I I I I I I i ' ! I . I ! i I • -+7 . l. I: l' I l I ·T·-----------------i i i i i . 1/ I I i i I I I I I I I 'Ir r ·I file: THORPETR.MCD 1122196, 3:21 PM • Enclosure 3: Drawing 94138-51-0179 Frame for Polyester body Note: for information only • • VEKOMA I Erik Schroen page 125 of 137 finai • • • ! '1 ,. ;, Ii: II. ·, .,. ti J ~ l ~ ~,, -.,,_ ---~ i -' .l "' . ..,, ... r. ,; --~~/ i _,... "'-. / / I / I 'I :1 ;, ii II .:.:1;; ~ .Cf!. ~;•I ~11:::.-:, q ! JI I I I -i I ' .• ~ • : •/~ I T1 I \ • \ / • I ~: ' :!j ·: I I ,-., . I, I i ' ~ 1 ~ , ,, 1 i '! •;-& -I ! ;lj i I: ! ' ·, ! :_ I I I. ',::, f.1 I I ,.:., (1c\ c:,' ~ I ~ i.. I I .. ; ! .,:.:"""11S', . .l ,. ,'. -+ : '·-4_ ~ !, l1..I _i:_-:,:.~i:::,J:·-~r;"]':J. ~:~.:...:--~ !1 1 i I ,, :J : -c~ L'---~~TTT)~.r·~~--... I ~: I : I I ~ r- li. I I ' ' , .~· 1 -~ 'I •1, ·, ,t_~''--=----~-:--;-~--:;..__~~&u I u .,1-~·~· ~~-=:--:~-t-rnr-""~,r--;··1 ·1 ! " ' ! "" / ,, . @ : : : ' .:; : : I ~ /·-'11 ; i . / / t--,,..-••-1: Pi i· ' 4 ' ' '+ 21 ,,;I/ ~,, ~ ' I . I" : ! F"" .. I '1 -; .. ~111 I...: tf" 1 I "' .__..~ :.,' r,,:-I j I ,-- ""' I I ,a :' , •• : • : I / .' ' ! ;; -i__..---~ ;. ,"'.:I GJI I ! ., .... 1-n-.~;,.;;-:,--~ lli,::."::::::n----3.! ~ r" r r : J1. ~ ""7' j :, I \'j!/ ! 1 : -. Of n · , ..c V , LI--IH -\ .Z., 4• II i / -t"'.. , ' "'--·III ', ..:::::i~-n,,;.., I :,_ fP ;·r-,-..<d,_,,--•• --;;.,i. •u ,I r I \~ ':I -61 / ,,-'I • 1 i ,, • J , , I :,_ / ,. r • , ... , --"'i,..., -,~ / ' i '," l \ G / i! j ;' ·, -: i i1 i ~ j : i ! I ' ,-, ! ·,' ~! ·, ! @ ' : I 11, • • I -~-! ! I I • ' ! _;, : I . j' l ,. ,, . • l -. I ,: {' ; I i : I ' I ' ::i -·- ! .I l ! " -·:- fi ee i jj -;iZi ~§ "' c ~ z 0 0 z ii! 0 z i C cc Q I _j Jj L ! I I ! ii ~ : I I! I I I ,, I I i I' ! . . .I '/ -1..-_ :t.rr · ·11~-1 :j r,-:--,,,_.... ·-------:-·- • • • file: THORPETR.MCD Enclosure 4 Plates for frame Drawings 51-2142 and 51-2140 Note: for information only VEKOMA I Erik Schroen 1122196, 3:21 PM page 127 of 137 -final • ( • { .,,; ,..,, "'' <( .1- • ( t "'· 14 i I ' "' - s. 09 "' ·! e =a I!: "" ...: " . ' ,, ' ' ' ... ' SEI l,_L---JL..----',----------=..-~---- io;os ~ .. ---······ ·---~-,--~ , ~ '° N ~ ~I I % 9 1-u w VI < _l 0 ~ ~ •Z i5 ''" -~ N :c ' X '"' "" 1-... ici ;5: ' . - j_ . ; . ~ " ! li ! C • ! --: ~ C C ~ ; g 0 ~ c::,: t .... ... ,-.;. VI w ! N < I-~ 0 .... < ~ ...J "' C. .. % .. =? .. cs ... Ii I 0 3 ..0::: . ... s i I _j § ! I .. ~ ; 3 s a ! ... ... , ; .... .. _§ -~ -:;; i .a "i! I f::, ,:, i ~j 3 .: ~ : a> t .2!. ..l! "' -2" ::,..0:::. --'" e a,·-I ~ ];~ i' :'::~~ . "' ::i Vlr a:: '°' -liO ; ~ e g..? J: ! .... i..i ' .... :ll i ~ti~ cf~ /~ /::::j ,<' .,. ,.,. ·.,,.·. /:C ~ -:;.\ !> i T:]\ ;:~ ·-\ ;;_ ) ; ,;:;. ~ ~: ~· ~I • J~ l_ =-185 !l Fibre direction • 35 ~~ ;:. 1·--···---({)·· , ,. ~o t""' 0 00 0-H•• ~ 1.f>l N ~-.ti:.:f • $ \ ,., I 0 ,., N' d ., "''" .., £ :~ I --I .,.,_I L-,,,, . I ,,". J 7'-'i'a. ~-\if1fi;~ ·:..v -~-<'... ~ ... ~ _.,_, ~-1 Q @),--"' ··-l...j ·-"' r, ~ t- "-y · IIElJv'l 'A\~. --·-· !l{~ -General limil loleronce ! O,S mm. -Pos. no marked wilh • • hove a lest cer lilicote QC[ lo DIN 50049 -3 1. B ~-for 11,e c00<h..__ --1 • reqil as shown ..___ 1 • reqil OS (t" h(nJ E ll l P· · chon!!"'1 -~ ~ ~ tlotc ,uri udikd llrw<J c111111lcl~ ,h111~1cd -4 11 I I r- .,, ~ .0v "' I \)_.--1~ I '--!.)~ '.\. .. • ll•ft(QP fQft U•P IVHH t.RIQ"D fVA INUIN(PIAII IP•I• lo Rj:QO IOI! IUlllNij fllAIII r•e1uu ros P"f ,0,,0 ~,:Fr}l~tf ~·:1~1r~-~~---·--r~tt mttl tt :i~ tus 1•.uu •lkA._.NG I.A""-I ... , Uf'UtM .. 1,-C.11'1 •n L. Thomonen 28 ·6·90 1 ICHAAL ... ," .... GlCON111 WE. t · I GOIDGIK .... " OUIIN I '"'"' II t.111\ftMIIIII 0111•-•-• JUNIOR COASTER OHOIA .,..,uuu11,c PLATE FOR FRAME fllLYESTER BJOY .. A2 loo101-_s1-211t2 lf· ........... n ......... n ·- file: THORPcTR.MCD 1/22196, 3:21 PM • Enclosure 5: Safety brace for main axle Note: for information only • . --..._ ,,..-., ·..1L.····-----~, / ... ·.:-" ,"" ' / .. :" . -::'~'-··"' --.... ~ ,_:::J /'-.• , \ . I -I J (~ ) , 1~ "..">I !::=-\,k ~ ~, \~ -;;;; \ ~ • VEKOMA I Erik Schroen page 130 of 137 final • • • r------ I I ,, I' I • ·, . !I J. __ .L-- ' r·I-. - I / -.1 -·J-·-.-..J r = ·-w·· .. --;·--~·--- I~ '. i I ~ II• ., ' r1.' ~::; ~ ,.U.<, l I I ! ! • ~ -~ n :;s:. ...... ,;:,. ~~ . ' . ,;; . j/m,,r ·1·':~-~ / ......... .,!,:l __ •:...,,·· ,,., a, a • ~ ~ "' ~cio +1 N N 0 a, ,,., co a $ a 7 -JL. l d -.112 - 47 ----- ----. -. -· ··--···--·-.. ---·. -·---··-------- •-• ••-·-•••• ••• -•••n•-~• •-•• -~--·•-•-•-•• ·- A l•O:li !~? lhowi,hJ ~lwn,J~\J uflc1 d1ul.l-nu1 wr .. r • - REQUIREMENTS FOR MAKRIAL-DOCUMENIS - ~-.;. , .. , .... ,,.,, .. , ... ~ ~ .... , -wllh Spec Toal Report (l.18)' occ. 10 DIN 50 Ot9(•) -wllh on lmpocl h•I (•) -.. uh , .. 1 Ropo,t occ. lo SEL 096-1981 11u .. 11, CIDH Z15(•l -wilh lhe 14-Chtm [ltme,111 Anol)"ll1 ecc, to Din 11100-PI-IISI0 ApptndI• Al(•) , -wllh -l~al Ropo,I of lho Cham,An .. 1111 ol Al >0.020ll•(EN ,10 025 7.4.4)(') (•) Ho "MAIERIAL-R£0UIREM£NlS 0£ \'£KOMA" (1994.02) PARTUST FOR TWO WHEEL-CARRIERS ONE RING EXIST OUT TWO PARTS 1 I Ring •1 l2••80 47 Rsl 110 On 1111 oul p~ ll>J,l6 m KM QTY. OESCRIPnON l[NGnl UAl. REMARKS v v' 9"IIO 11111 i~ 1111 "31 ..... -............ lo..- .10a NlillllC.,.) _,05 _ ,o.~ , __ °'• '[ -~~!!!!!t 11·8'-"""Sc .. o: Olmana'°"• .. ~ .. --. -.,,. ,.,._ 11 ••• 1i,ji In mm. .. _ ............ ........... .s::r:· ~ .... ,, I 1:1 -@-El--~ .... ~c ....... .__.,, I C-'l:::.: :-"'::i.!.C::. ~ct JUNIOR COASTER MK7OOJ .. ~ .... ~..., ......... ~.,-.,__,~·· z:r~ -r.r = ~:-::r.: ·..,,... ..... Mc -RING FOR WHEEL-CARRIER -RH· 55 · 204 --. -VEK$MA1~=-----------I\T •••u1,t1u•IHIV~ (lll'l(i II '.)11I'~ • /'\i~ ··,;·~ u -,, ,, ~ -::, ~ :~ •"' ~ @-:,-) Ci ···' <· ,. ... ;:-. i .'· -. .' ,, lfuur, -;.\'~y ... ___ :.:;..,- A L(} N d -tl 0 .. • ~ 7 28±0.2, IO 0. • ~~ I L(} c5 O ~LI-,- ·1 --1--------; ~ . ~ U> • 1.6 15 140 +0.1· 193.5-0 221 SECTION A-A R[Q\JIR[M[NTS fOR MATERIAL-DOCUMENTS -wilh Spoc Tut Rcp°'I (J 1B) occ. to DIN 50 049(•) -with on lmpocl Jut (•) -•Ith THl Reporl occ. to SEL 096-1988 Ouohly CloH Zl5(•) I-wilh Tul Rop°'I (2.2) occ. lo DIN 50 049(•) -with the 14-Chtm El1menl1 Anolyslt occ. to Oln 18800-Pl-1990 i\ppendh1 At(•) -with T,11 Rtp01t of lha Chem A,iol~11 ol Al >O 020" (EN 10 025 7.4 4)(•) (•) Ht "MAl[RIAL-R[QUIR[M[tHS Of v[KOMA" (199,402) REMARKS. ALL MACHININEO SURFACES PAINTED EXCEPT SURFACES ON INSIDE PIPE. FOR PAINTSYSTEM SEE 94129-61-4104 ,. 0 Al,11., .... 111,1, ~!10~111~ ~!·~~~·~~~ uflc, ~·~~..:~111~ 1, ...... , •• WEy -····· -I~,.,, ~I, I ~ • • dlOL(} i +ci • I ... i PARTUST FOR ONE MAIN AXLE TOTAL ... x REQ'D 2 I Pipe •95•25 228 R,t ll O I 0., ZUl/1621 HEM IOTY D[SCRIPnOtl i~l50$411 tENCTH I MAT I RCMAR•s I ••----...,,. low. -105 ... 0.5 1-· 0kn9ft1lon1 a..,~__,,...,...,....,.,..,,..,, In mm. ,11,._ It .. t:--11'111 1--,---,-1 ... ~.. ~. 1:--: :•. ::g::::::r I ::~:-:::.1sco10: I I ~ -~ .... ~to\ -..... 1 .. ~-,......,.,_ .. ~·-·· '"'==-----''---~--..._----; Mj,d It_.,._" ........ . =.i-•1 JUNIOR COASTER MK700J ::=1;!:\.."~~'l:!t,,; ..,""""'_.,-..,t•llri* Prolocl .., ,i !Ni....,• i. •,. N .. !_N °'""'lik DISTANCE-PIPE OF MAIN AXLE (front) · RN-52-004 ~-.~~rn_,,., n 'V[Kcf>Mf ~;~ ')-~--~~;,~·: • - -·---· ·-------- .----,-. @ (105/ •~ 52.5 Al.,..- <O I() \~~ ".· /~~-v• £~,~~ c::, _..-, . ~ l;_,j\ i: ~ \'.: 1) l• -· __ ., 1-, ·, ..... . ,,. .~,, . ,-~ . -....!'111-1~) -.~\~1/ ·-··-,..,.,,,,. A "1 N d -H g e ... oO ~n d~ +O + ~ "' e 1.6 • ~ 0 28±0.2 '° 1x45" . ---·- '° ci ---------~---ti 'i 32 _!5 140 +0.1 1-93.5-0 221 SECTION A-A REOUIREMEIHS FOR MA TERI Al -OOClJMEtllS -111ilh Spec Te1l Reporl O 18) occ 10 OU4 50 049(•) -•llh on lrnpocl Tut (•) -with Tut Report acc. to SEL 096-1986 Ouolll)' Oon Zl5(•) ; -••lh hit Reporl (2 2) ace \o OIU 50 049(•) -•ilh lt11 14-Cham.[lem1nl1 Anol)•I• acc. lo Din t8800-P1-IV90 App.ndh1 Al(•) -with lcsl Report of the Chcm,Auoly111 ol Al >0 020% (Eu 10 O:l~ 1 4 4)(•) (•) HI "MAIERIAL-REQUIREMENIS OF VEKOMA-(199102) REMARKS ALL MACHll~EO SUHfACE PAINll:.O EXCEPT SURFACES ON INSIDE PIPE FOR PAINTSYSTEM SEE 94129-61-4104 ,l4•0)' A 11!!? ~l~~·~<i ~!IOU~~~. ~!l~~ ~ ~!~~~hi~~ ~r ~ M6(2x) 1r ~----1 anJJBl1 v J>I ~ • ·1 o:G 0 t-• -H 0 .-I ao ,. • Ol .. , SURFACES NOf PAINJEO PARTLIST FOR ONE MAIN AXLE TOTAL ... x REQ'D 2 I Pipe •9!;),25 228 Rsl JI O Io .. lHl/1629 ffEM IQTY. L[HGIH I MAT. I A[I.IAA•S m .,/ v' 9'110llfl . .lo•••C-1 ... ____ 1°'" I _ ,o~ ..,,.,o.~~= 1(1 ..... ,....., Oun1n1lona t.:. •:t:-.t:,..... ti. ......,. ,,.,,, . In"""· :~ .. ~~ .... I, I lit', r:::J ~·-"·':!~"'_.,_. -~ ~ t.i:;::.: = tll!H":':..::; :1 JUNIOR COASTER MK700J "'--:=.t.•~~ .. -,~~---------------~.-1i-oo1" ... ~ ,wllM•""I•••"" DISTANCE-PIPE OF MAIN AXLE (bocl<-sioe) RM-52· 203 mu,ac1U11H" 'VEK$M1A~;;~l i:1,1 ·,,, ,nl';T • b a, PAIIII SURF ACE +0.5 4-0 --- Ill I ,'\ II PAINT SURfACE N d -H N ~ ;. ., ~ ·.:; § ii: llJ[]]fil- ~ ~ N ,..., • ~1 ii ~ -H N N ~ i :: .. .. +O 5-0.2 MARKED SURFACES PAINTED FDR PAINTSYSTEM SEE 4129-61-4104 u r• -~· 11!!lt !) 'j,\\~'t, '\ A 1:;;,0101\lwiruJ chatuJetJ ofle, _chcckmg _________ ,WE)', __ 11 •• r " •• • ...,. REQUlll[M[NJS FOR MAl£RIAL-O0CUM£NJS I-,.'11h THI fftpo,I (2.2) DCC. lo DIN 50 049(•) -wllh 5Ptc fHI Ropo,I (l lB) occ. lo DIN 50 049(•) -wllh on lmpocl ·Jul (•) -wllh THI Rop0<I occ. lo S(L 0H-1118 Ouolllr Clou 21~") -11111h the '4-Chem [lemenla ,'not,-1, occ. to, 0!"1 18100-Pl-1190 App,,,di• Al(•) -•ilh htl Ropo,I ol lht Cnom."Anol)'llt ol Al >O OWi! (£N 10 02~ I 4 4)(•) (•) Ht "MAIERIAL-REQUIREMENIS Of 1/EKOMA" (1994.02) PARTUST FOR ONE MAIN AXLE ONE RING EXIST OUT TWO PARTS Ring elJ2xe72 16 Rsl 370 IDnllll .. , pop, ,t)),)6 ffi 1£'1 LENGlHI MAJ R[IURKS .. ___ ,... .. ~---& 0 5 "fo I 0.5 IC.00.-. 1:'":' ".'. ""T q ---, .. , Scolt: Olmon1lon1 ""·~-h _ .....,, • i,, mm. ::::... .. ==i""' I • I ~ .._,.U,wioll\ ... ._ .. ,., ~-~--....... " ...... ~ ...... i;u==-----'---''---...... --'----t .. )clll _..,. _ ... ---·· JUNIOR COASTER MK7OOJ ~~\,·,::!~1, ~..., ... .., ....,. _., __.. . ...,.... -------~-.,.......... ...... . CLAMPING-RING BETWEEN DISTANCE- PIPE ANO WHEEL-CARRIERS RM-s2-006 ~--·-· ,·- 1"/J • ')j-:J~~ 1 · I 1 1"7 $ \ \ • a, ' lyp drill ·--o-----0-----e-" deloil H8 A 1:110<1x> A • ~ I "' ___ J ~ ~ £0 1,0.2 'r.i ,o 2 12:1 so I 250 10 i! • ·-------- IT[!! f~l 131 :H -lJIFIIJ <u Oci • I .., :1& .. 16 II ,o:; .... ZII ,o 2 -~ ~-N6 I Nlhl l fl.-jj ·~:; -nr ll1-"-~- -V 0 1/.l'Z ,,,3 /1lz&tw79i .:;J I k= . • ""-lrokP shGrp rdges ,.fil,-,_ ~ J_ll lu .+-->'--l..-.:1 S£Clll)I A·A 116) 0 a °'-> . 5: ~ ------------------------------ ~!~~~$ :-..;- ::! ,:7 · .... 'l} \ .-,U'fii.fo···-. . :.~;·~, ( /° .;\ l·Js, , __ (.lc.,\y· .., .. ~ i""n Cc. ~' ... ~ .• ,,,:· ~-]•'' ,,\..-' . .... -' i ,··! 1:, '!.• .. NI Slll<fACfS PAlNllO [XCl"PI SU~fAC[ I 7'· 111 Ill \" 11111 l',\INISY'.:.11 H !,;11 'J4li"J (,I 41114 WEtjr; IC CC < U i i i . w~\u. \ .. J~~ S1·1 11,., » I r.= I ···· I ISlllPIIIII UllilK t Ml._{ ll!WlS Q CD ••:ioi """"n--11,~w 1-• A Cilll ,..,.. "+ ,..,... I ._., 111--Zl-11-lffl kolo -.. 11, .... 11o,1-........ .,..~ a.cw., l•I 11• .. ..._""'"""' .... ~ .. ··-"""""",.,,,..., _., .d.\.c:::L ........... ~ ...... 111 .. ....... ~ ~ =.1t~--..:.,-=,:;~m ...IKk Hllll[JR COAST[R ......... ur. .. .., ....... ,., JU11 ,...._ .. ,._,.,_..,,,v•-01 .. . . ::ri.r;:.~.'i:e:: ...... ···· 1· ----· ····--·-··· ..... .: .. ~------~=---~---~~~=~~=--·--·····-=:_-= . MACI ll Nl NG-DRAW I NG WI IU.L ~ :~ ;:;;;: ~;';',~'~;i ;~~~·~~;;~; if\,: -Id-. : ; .. -. ; I ; ; I .-, ,; ~;;;;;_~ ,t~-~ : " ,. ,. ,.,,. , .. ,. ... ._ _ _. , l'JI, I CARI< IL I< ~~-~~-~o,L,~ '1'1' ;•1 .II tf file: THORPETR.MCD 1122196. 3:21 PM Last page of THORPETR.MCD. ,,- • ~ ; ... . . ...... ~ .-..--s--. ( • '-' l ~ • ~ J \...:.;:...,I --~- C:, I \, . . -~ ' I / ' ·"'J)l('ll=-~\ / ~- / VE=KOMA I frik Schroen page 137 of 137 fina,